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Preface

The hasic characteristic of this new hook i econometries 1s that it presents a
unified approach of modern linear ad nonlinear economet rics. I covers a wide
range of contemporary topics in applied econometries in a concise and imtuitive
way. while focusing on fowr major parts of modern econginetries. .o, Mnear and
nonlinear ceonometric estimation and testing. linear and nonlinear time series
analysis. models with categorical and Lmited dependent variables, and. finally.
a thorough analysis ou lincar and noulinear panel data modeling.
Some distinctive features tor This book are:

e o unified appreach of both linear and nonlinear {heoretical aspects and
applications in wodern ceonometries:

o empliasis on sound theoretical and cmpirical relevance ad intnition. pay-
ing attention to the links between alternative approaches:

o focus on cconomelrie and statistical methods for the analysis of linear and
nonlinear processes in economics and finance, ineluding computational
et hods and muerical tools:

o completely worked out crnpirical illustrations are pre naded throughout . the
macroeconomic and microeconomic (honsehold and firm level} data sels
of which are available frout the internet; these empirical illnstrations are
taken from finanee {e.g. CAPM]. international cconmnics {e.g. exclange
rates). immovation cconomics (€.8. pateuting). labor and edncational eco-
nomics (e.g. demand for teachers according to gender). bosiness cycle
analvsis, monetary cconomics. honsing economics. and many others:

o oxercises are added to the chapters to gain experience and mbution and
soveral of these exercises involve the use of actual data that are typical for
crrrent emnpirical work and that are available on the internet.

The hook is (almost} completely self-conained and written i a clear way {or
final vear baclielor and master students. but also [or practitioners i business.
inclustry. and public nstitutions who want to Tearn about recent developmenits in
i he field of cconometrics. A basie introductory text in Feonometries or Statistics
i 4 valuable asset in reading and using this hook. The present volume oripmates
from various lecture notes used for courses in applicd cconometnes, nonlinear
ceonometrics, and time series analysis, ot at the University of Antwerp and
al Tilburg Universiny,

‘Learning by doing’ 15 an importan paradigni in cconometrics, Therefore.
readers are strongly encouraged to solve theoret ical cxercises, to (re-jestimate o
munber of models and to carry ot a number of specification 1ests. With modern
software the actual computation of even the more complicated estimators and
test statistics is often very simple, sometines even too simple to be safe. Bt
this book will help the reader to remain on the right track. The contents and
form of this hook are designed i a way that cuables scholars (o use 1t as a
textbook in the area of cconowetrics,

vil
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GLS generalized least. squares

MM genoralized method of moments

GSD seneralized Student #-distribution

i, null liypothesis

4 allernative livpothesis

HEGY Hyleberg-Engle-Granger-Yoo

~ I{d} follows an integrated process of order d

X! inverse matrix X

itd independently and identically distributed

I identity matrix of order p

3y inforniation set at timne ¢

IGARCH integrated GARCH

e, that is

1IRF impulse response fuuction

IVs instrumenial variables

Ji3 Jarque-Bera

K kurtosis

KPS5 Kwiatkowski-Phillips-Sclunidt-Shin

LLS lincar least sqguares

£ joint likelihood function

L loglikelihood function (usually equal to Iné)

LS least squares

LSDV least squares dwnmy variables

LSTAR logistic smooth transition autoregressive

ArA NIOVILE average

max(min) naximize (minimize) as a function of r
& E)

ML maximum likelihood

MoAl method of moments

MSE mean squared error

AMSFE mean squared forecast error

MOSUM INOVINE S

N:= {0.1.2.3....} the set of natural numbers

NLILS nonlinear least seuares

Nip.o%) normal distribution with mean g and variace o

NLIS nonlinear least squares

~ N{j. o) is Ganssian with mean g and variance o”

LS ordinary least squares

PA partial adjustment

PACF partial autocorrelation funection

PP Phillips-Perron

pdf probability density function
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plim probability limit for § — a

f—a

PPE purchasing power parity

QML quasi-ML

R the set of real numbers

R" the set of vectors with n entries

RE random effect

R? coefficient of determination

SAR seasonal AR

SARIMA seasonal ARIM A

SES simple exponential smoothing

SETAR self-exciting threshold autoregressive
SGSD skewed generalized Student #-distribution
SI seasonal index

SK Skewness

SMA seasonal M A

SOMI single output multiple input

SOST single output single input

STAR smooth transition autoregressive model
SUR seemingly unrelated regression

TAR threshold autoregressive

TARCH threshold ARCH

25LS two stage least squares

U(0,1) uniform distribution on the interval (0,1)
UIP uncovered interest rate parity

US(A) United States (of America)

UK United Kingdom

var(z) variance of x

var(x) variance-covariance matrix of vector x
vary—y(z) variance of ¥ conditional on 3,_,
vary_1(x) variance-covariance matrix of x conditional on J,_ ;
VaR value at risk

VAR vector autoregression

vee vectorized

WN white noise

Z:={0,£1,+2,43,...} set of equidistant time points 0, +1, +2, +3. ...



Part 1

Linear and Nonlinear
Econometric Inference:
Estimation and Testing



This part consists of three chapters. Chapter 1 provides an introduction
to the basic algorithms of lincar and neoulinear estimation with a focus on the
ceonometric specification of the models, More technical nonlinear optimization
procedures are delegated to the Appendix. Least squares and maximm like-
lihood estimalors are at the core of this chapter. Chapter 2 digs further in
modern econometric estimation methods. as the method of moments and the
generalized method of moments. These esthnation methods encompass more
common estimation methods as (generalized) least squares. instrumental vari-
ables, maximmn likelihood. simultaneous equations estimation methods, ete,
Also several applications on real-world economic cases are disenssed. involving,
among others. rational expeetations models. Since there cannot he econotnet-
ries inforence without testing, Chapter 3 focuses on testing linear and nonlinear
hypotheses with a basie split hetween nested and nonnested model tests,



Chapter 1

Estimation in Linear and
Nonlinear Models

1.1 Introduction to linear and nonlinear opti-
mization

Linear modeling is known 1o most economists and social scientists. but in prac-
tice Lhere are numerous exaples of nonlinear models, such as nonlinear antore-
gressive wodels. nonlinear moving average models, bilinear models, time-varying
odels, limited dependent variables, production models, exehange rate models.

In general. two tvpes of linear/nonlinear estimation methods will be an-
alvzed in this introductory chapter. On the one hand, o {generalized) least
squares (L8} tepe of estimation method vielding estimators! corresponding to
the shortest {weighted) distance between observations and the unknown lin-
ear/nonlinear regression line and, on the other hand, a maximum likelihood
(ML) type of estimation wethod aiming for a modal estimator that maximizes
the joint probabilty density function {pdf) of the observations and that possesses
clegant statistical propertics under the hvpothesis of, for example, a nornal pdf,

Consider the general nonlinear regression wodel for i 12,0 o0

where the ervor terus are assuwned to be distributed according to a (not neces-
sarily nonnal, e.g. Pareto. Cauchy) disiribution function characterized by two
tvpes of paramaters {expectation and variances-covariances). or the @< 1 vector

CAn osbmator et he compatable from e dlita ool aned st e be formmlined
teris of witkoosens. L oewerall The estimaror 3= ieselE s vanslonn variable aonl an cstonatn 1= a
specific momerioal valine Tor the estiueaor. usnally sarsing fron o sarnple b renlieed vabnes o

faiostoelsstie viablelst Hoence, an estinate Bsoorealization of an eslincaoor
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€ is assumed to be distributed according to a certain distribution with mean
zero and (variance-)covariance matrix X, or € « (0, Z), x; an m dimensional
vector of ‘explanatory variables’ at observation i, and 3 a p dimensional vector
of unknown parameters, or 3 € [R?.

Stacking vectors as y := ( ¥1,¥%2,...,¥n)’, € := (€1,€2,...,6,)', and
£(X,8) = [f(x1,8), f(x2,8), .- f(%n,B)], consider for linear(arized) estima-
tion a first order Taylor approximation around a parameter vector 8%:

af

= (X, ﬁ)+€—f(xﬁ°)+(aﬁﬁ .

)(ﬁ~6")+...+e (1.1)

T Lo
with &

: 3 0
5|ﬂ:§" an n X p Jacobian matrix Z(3"), or
¥(B) = Z(B")B +e (1.2)
with y (8°) := y — (X, 8°) + Z(8")B", which is called the pseudo-linear model

(or quasi-linear or linearized regression model).
The corresponding generalized least squares (GLS) estimation aims to solve:

min €' = min{(y - £(X,8) =" (v - £(X. )}

min { (7(6") - 2(8")8) = (¥(6") - 2(6")8) } 13

12

which yields the GLS estimator for a known error covariance matrix X:

Baws = ((Z(8")=7'2(8°) 1 (2(8%) ="'y (8°) (1.4)

and the feasible GLS (FGLS) estimator if some initial estimate £ of X is avail-
able:

Braws = ((2(8°))'S7'2(8°)~1(Z(8%)) = 'y(8°). (1.5)

If the error covariance matrix is a scalar covariance matrix, or X := JeIn,
the appropriate estimator (1.4) and (1.5) is the ordinary least squares (OLS)

estimator B,,5 = ((Z (8°))'Z(By)) 1 (Z(8"))'y(8).

1.1.1 Nonlinear least squares

In this section the nonlinear regression model y = (X, 8)+¢ withe ~ (0,072L,)
is studied, from which it is clear that the precise pdf of € is not fully specified.
Then the nonlinear least squares (NLLS) estimator is derived from:

min e'e=min (y —£(X,8))'(v — £ (X, f))=min 5 (9)
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. - = . atd .
and the NLLS estimators of 8. Bappg . and 02, 82 ;1 s. should directly be
derived trom the resulting normal cquations:

(Y - f{X. 3;\-‘1,145'))’ Z (J‘é.-'\:’LL.‘:’ ) =0 (L.6)

"7{;@ Nl )

n—p

ﬁé._f\-'f.}’,ﬁ’ = (}i,NLLS‘[(Z{f}.\-‘LLS)J;z(a:’\-’f,f,.‘:’))_]‘

o id . e . . .
and 67 yypre = with estimated variance-covariance matrix

1.1.2 Nonlincar maximum likelihood
Assume now normality of the stochastic error terms, or € ~ N{0,2}. which
Jeads to the following nonlinear maximum likelihood (NLMLY problen:
£(8.3) =ma o exp | 3 (v £ (KB S (y—F (X.8))
mex £(B3.X)=max —————expy —-{y— . — . .
ax £(B, e RTrTE R B R y )

To maximize the joint likelihood function, take logarithims:
. 1 | .
L(B.2):=f(B.X) :—g In 2?.'—5 I | X —E(y—f (X8 E Yy-f(X.8)). (1.7}

In the sequel. both the ML estimator from the maximization of (1.7) and
the statistical properties of this M. estimalor will be analyzed.

Nonlinecar ML estimator

. . . . . . 3
Considering in first instance a scalar covariance matrix X := ;L. the necessary
conditions for a maximum of (1.7} are:

1 ot
=2 28|, . (y - HX.Bypar)) =0 (1.8)
NLafl T wLarn YElA-AaG a0

oL
0B

and

ar n 1 e
- = - — + B »S’ (}8‘,\:;“.\!;‘) = O4 (l())
0 |yrari 205,;\' LALL 2";,.-\' LAt

. N A P ) - .
so that the estimated residual variance satisfies 6. yp a7, = S (ﬁ,\:;“.\”‘) jn.?
Replacing this expression for the variance (}i_.-\'.c_\”, in (1.8):

n of 1

5 (B NLAM L) 93

so that by solving this system (1.10) of nonlinear cquations Bary sy Is found.

(y - f(X.Byrare)) =0. {1.10)
NELATL

el &2 _ SlANpae]
A T -

S(Bxias)
Ty W

YT Cdifference etween &2 =
Mind rhe difference botween 87 0 =
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Statistical properties of the ML estimator

Sample statistics follow probability distributions depending on the sample size
n, where finite and large samples can be analyzed. Large sample (asymptotic)
theory is studied when analyzing what happens as n — oo. Of course, n is never
infinitely large, but asymptotic results often provide good approximations when
samples are large. Denoting a sequence of random variables 1, o, x3, ... with a
corresponding sequence of distribution functions Fi (u), F3(u), Fa(u), ..., where

Fo(u) := P (z, < u), converges in distribution to a random variable z as &, —

and we call the distribution of = the limiting (or asymptotic) distribution of x,,.%

If lim P(|z, —c| <€) =1forall € >0, or equivalently lim P (z, =¢c) = 1,
n—oo Ti— 00

we say that x, converges in probability to ¢ and we write that z, - ¢ or
plima,, = ¢, where the number ¢ is called the probability limit of z,,; if x,, would

T—00

be an estimator of ¢ we would say then that it is a consistent estimator of
c.! The central limit theorem establishes the limiting distribution (function) of

T 42 implying e.g. z,, ~ N(u,a?), where the symbol ~ means asymptotically
distributed. Mind that a common limiting distribution does not imply that the
stochastic variates are (asymptotically) the same: the sequence of normalized
and standardized sample means z,, := %—'}iﬁ is according to the central limit
theorem asymptotically normally distributed with zero mean and unit variance,
or z; ~ N(0,1), but also —z, ~ N(0,1) and clearly z, and —z, are not the
same! s

While the general linear LS (LLS) estimator 615 of the p x 1 vector @ be-
longing to the parameter space © is unbiased, or bias ém) =FE (5;,1,3) -
6 =0forall @ € ® C R” and efficient, i.e. it has lowest variance of all unbiased
estimators,” it has also certain desirable large sample properties as the NLLS and
NLML estimators have. More specifically, under certain regularity conditions,

the estimator Oyparp == (B;VLML,&EYNLML)', derived from (1.8) and (1.9), is

consistent or plim ONLML = 0. asymptotically unbiased or lim E(@NLML) =
n—oo n—oo

4A simple example is obtained by looking at Student’s t(n)-pdf, where the standard normal
pdf is obtained by letting n — oo. For more information on statistical properties of the ML
estimators, see e.g. Berenson ef al. (2003).

4 A stronger mode of stochastic convergence corresponds to uniform convergence in the
deterministic case: if P( limm:.:,. = c) = 1 we say that =, converges almost surely (or with

n=

probability 1) to e for which we write @, — ¢. The two types of stochastic convergence, i.e.
convergence in probability and almost-sure convergence, have two corresponding important
implications. Consider therefore a random sample {z,} from some unspecified cllstrlhulmn
with mean p and variance o2, both central moments assumed to exist, and let T, En a3 1 E —1 %4
denote the sample mean based on n observations. The strong law of large numbers states that
Ty — 1, ie. the sample mean converges almost burc]\ to the population mean as n — oc,
while the weak law of large numbere states that T, 2 pu.

5Since the LLS estimator 9,(,;,3 = @ is unbiased and efficient, it has also lowest mean

L

squared error (MSE) because MSE (8)=E (8—9) (8—6) =var (9)+blm¢(9) bias (9) R AT
known as the best linear unbiased estimator (BLUE) then.

SOne could also consider strong consistency by requiring almost-sure convergence instead
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B, asymptotically efficient with covariance marrix being the inverse informadion

188
involving the Cramér-Rao lower bound. and from the central limil theorem as-
ymptotically normally distributed or /(8 - 8) = N((. Yo, ) To evaluate
this information matrix. we take partial derivatives of the theoretical values of
(1.8} and (1.9}

matrix (J(#)) ', where the information matrix is given by J(8) := —F ( oL )

L 1 FfixnB8) O (x4.8) f (x1. 8)
oras, o (WS B = T, 7,
2L 1 | T 2
m 201 U—;hzl (o — (x5, 3))
"L _ 1 & L Of (x,. B8)
(){z() (0"}) - O’} = (.?Hr Jf (Xhﬁ),] T

Since the asvinptotie mean and variance of a random variable are usually
the mean and variance of the asyimplotic distribution. the asymptotic variance-
covariance matrix of the ML estimator can be exprossed as:

Ny | . T A - & o
avar(@xparp) = & lim E{n(@xpan — N E{Bxparp ) Onnars —
H— X, o

nﬁi{i E@nxpaur)) =%

B

Hence, the asvinptotic variance-covariance matrix of the ML estimator sal-
isfies the Cramér-Rao lower bowud:

-1
{L, T % B f.?‘ﬁx_.,.ﬁ_'r} 0

—1i Fd La g e
bopa, = WO = LT e (L.11)
v
In practice. £z i not observable and can be estimated by ML as:
2 Gt UZEN AN Z By ) 0 .
o = el (1.12}
YT 0} =T

gl
such that., under novmality asswmption. vour can observe that no second order
derivatives are necded to evaluate the covarianee matrix of the estimators.
Alternatively, X, oy, can utler cortain regularity conditions, also consis-

tently {but less asviiptotically efficiently) be estimated by the inverse negative

1 this ease. second order derivatives

. |
: : L
SR 1AL -t 7
[[L‘)"&l:u H ( aeoe )

B 8~y
are necded.

of comvergence in arobalilice,
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1.2 Econometric methods of nonlinear estima-
tion

Most of the methods or algorithms of nonlinear estimation that derive the NLLS
estimator from (1.6) or the NLML estimator from (1.10) are based on the gradi-
ent principle, analyzed in Section A.2 of Appendix A and saying that if you want
to minimize the objective function, you have to choose a downhill direction. Ac-
cording to Lemma A.1 of that Section A.2 the best downhill direction in which
the objective function decreases most is the direction opposite to that of the
gradient vector g (being equal to V§(8) :=35 for NLLS and to VL(B) :=35
for NLML).

In Appendix A several examples of nonlinear unconstrained optimization
methods based on the gradient principle are discussed and mutually compared:
steepest descent, Newton(-Raphson), rank one correction, and Quasi-Newton
with, among others, the Davidon-Fletcher-Powell algorithm. But the conver-
gence properties of the regression-based methods of unconstrained optimization
that are essential for nonlinear econometric estimation as the Gauss, Quasi-
Gauss, Marquardt, and the quadratic hill-climbing methods and the method of
scoring are discussed in detail in this section. Algorithms for constrained nonlin-
ear estimation based on the transformation of parameters, the transformation of
the objective function (barrier and penalty function methods), and the transfor-
mation of the optimization procedure itself (extended (or augmented) Lagrange
function method) are presented in Section A.3 of Appendix A.

1.2.1 Gauss method

Consider the nonlinear regression problem for the model y = f (X, 8) + € with
e~ (0,X):
usnzlqo{ﬁ) mm (y-£(X.8)' ="' (y-£(X,8)
V9 (B) = 25=—2 (&) B (£ (X, 8))=2(Z(8)) =~ (v-£(X. 8)) =0,

so that the Hessian matrix satisfies:

HB) = 5ol =22 @)E () - 2ppt e ((X,)
— ry—1 i gf[x’uﬁ)
- 2T @2 ot 08 S 019

The Gauss estimation method is a gradient method (see Section A.2 of Ap-
pendix A) and is characterized by the parameter sequence g+ .= g(k) 4 ¢(h)

=¥
with ¢ = —pkigh) — _ (I-I (ﬁ“")) g®) or the direction matrix P*)

satisfies from (1.13): P%) = ((Z (ﬁ“‘)))‘ »-17 (ﬁm)) 3
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If the error terms are asumed Lo be white noise (1o correlations among error
- - - 2
terms belonging to different observations). or 30 o7L,. then:

gttt gt ((Z Bz ) ) (y X80
((zuﬁ“ YZ(BF)) HZB)) (y-E(X. B H Z(8'H B

which is the OLS estimator of the pseudo-linear model {1.2) at iteration A:

I ES V=1 [k (k)

y - f(X. 8"+ Z(B'7)BY w8 BT ) B e (1.14)
or the Gauss algorithu of the nonlinear regression problem vields a row of linear
regression estirnators. where the lincar regressions are linear approximations 1o
the original noulinear regression problen.

cxample 1.1 As o Hieoretical f-mmpfw consider the {ftwo foctor) production
funecteon g, fi{x..8)1 & J+ S fz oy b5, wibh e error termny de-
jf)f"'f!(f('ﬂff'g and identically ri-z,sh n'um,rf. {f. id ) wth zevo meoan and constanl variance,

f
or 2 (V0.0 ]
Voo b 200,10
From the resulting definition of the < 2 Jacobian matrix Z(3}): | - :
1o 203,00
vou get the moment matrix:
it Zif_ L {.J.‘,_-_) t 2__i":;))-_3.1.',';;)
- - ~ . 2
ST e 4 2wy D00 (it 20,00

aud the expression y (3) for the psendo-Jinear madel {see (1.2} and {1.14)

)
1 (3["‘3-_)‘3[2+a"r)7-‘£.'l-'];{) 4-( 1t f Tyt 2 i I];) i s;)’ Jls"

(Z(B))'Z(8)~

i - (J"'}l +_:"ﬁ-h’l'-_,_.) { ,".).':;_.I.'-_J_'{) t (_J)] t ;)2.}.23—!—2,&. J.‘g_;) Yot 7) Ty
y (@)= | i

Wn (.-"'.7’ +d5r .3:'3:1".,,-5) + (1 '-.-"7’.,:t:,,_->+2;’)’f:}r,,;;) T b ‘f T

so that the Gauss (‘wtmmlor of this psendo-linear model 35 obtained afrer &

ik
iterations for which g% = g* - ,BI' . vielding the OLS estimator 8 =
{({Z(BYWYZ(3)) B (Z {,(5))’_ {3), where the iteration index & is onmitted, or:
i: [ I-'Z_f)’-_,.?,{ 3 (r;, SR 3“ (i b ) 5”1 {1 :fi.r:_.;;) (w2 - 2i3 0040
A I '1

/¢|/j| c " l

A "
it Z (Ur S :: ) {hz F2:1. -I.IU' \“ (',f,‘.: ! ‘.)I'I_::J:rﬁ) }j frss 2{}'_1_?1-';25)
[ oL

[
Example 1.2 Consider the nonlmear model y; O + Domys Hj;::i;; bo, i =
1,....20) with date green in Figure A5 of Appendir A
The Canss iterations are obtained i Figure 1.1, Notice the sensitivity of the

. 0
nonlinear ()111111117(1“(,\11 procedure to the choice of the starting values {0
(3.2) and 6" = (1.5,0.5Y lead to the local minimmm 16,1 and not 8"

(3.—1)").
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Figure 1.1: Iterations of the Ganss algorithmn (Example 1.2)

k 9 ,"(“ 03(“ F(gfi))
1 3.000000 2000000 2643918
2 0723481  1.404965 16.6635
3 0837007 1.259230 16.0880
4 0861002 1.238408 16.0818
5 0.864359 1.236040 16.0817
6 0864740 1.235780 16.0817
7 0.864782 1.235752 16.0817
8 0864787 1.235749  16.0817
9 0.864787 1.235749 16.0817
1 3.000000 -1.000000 255156
2 2498561 -0.989894  20.4856
3 2498566 -0.985678 20.4824
4 2498571 -0.983903 20.4823
5 2498574 0-983154 20.4823
6 2.498575 -0.982837  20.4823
7 2498576 -0.982703  20.4823
8 2498576 -0.982646 204823
9 2498576 -0.982623 204823

10 2.498576 -0982612  20.4823
11 2498576 -0.982607  20.4823
12 2.498576 -0.982605  20.4823
13 2498576 -0.982605 20.4823

1.500000  0.500000  20.295]
1.067414  1.213585  16.6646
0.868351 1.233424  16.0818
0.865161  1.235496  16.0817
0.864828 1.235721  16.0817
0.864792 1235746  16.0817
0.864788 1.235748  16.0817
0.864787 1.235748  16.0817
0.864787 1.233748  16.0817

N0 Ot e D —
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1.2.2 Mecthod of scoring

The method of scormg 15 an estintation method that is based on the NLML
procedure. with first order partial derivatives given by (1.8} and (1.9}, which
together form the score veetor. and the Cramer-Rao lower hound as estitmated
variance-covariance matrix {1.12). Hence. the appropiate direction matrix for

the method of scoring is defined from Section 112 as | L '[—H(_;;__;;;,ﬂ
(3 I

ok

The advantages of the method of scoring are that it is a siwple and (‘f?i('i(:!m
algorithm which has good local convergence properties. However, Inomay cases
P s not positive definite or does not even exist because the upderlyving uatrix
is singular. Morcover, if the lincar approxination model s Dad. large errovs and
S10W COLVETECILEC CUETEe.

1.2.3 Quasi-Gauss method

The Quase-Ganss method 15 used when there s singularity of the underlying
mattix or nonpositive definiteness of the direction watrix P'*'. The algoritlnn
is bused on a regular and positive definite approximation of the Hessian matrix
of the regression function.

TP L S o fix, .G
For G;"an approximation to the Ho.sman(w

] of the regres-
g

sion function at the &7 iteration and a correspunding correction marrix MEM
in G:k‘ b GE-M + l\r'I_:'_A—" we find from a linearization of the gradient of the
regression function af He new point (see also the Quasi-Newton procedure in
Section A.2.3 of Appendix A):

— ) [ B _ f)\f(X,ld)
vf (""’6 ) T ’ﬁ_ﬁ,k,
(r)Jf (xaﬁ} (I)gf{xa-!@) [ 1]
y LI B) gk gk,
0B |y geo 0B |ggeo (’f : )

. . L&Y -
so that the corvection matrix M,T shonld satisfy:

cef Akt —_ Y L fix 8] P41 (&}
wof (xp;i ) —f (x,,ﬁ ) >~ hEoa Li--ﬁ’-‘" N (,{3 3 )

or M (;3”‘ *'”-,3‘*11) ~7f (xi B “)-v,f (x;.ﬁ"“)—GiM (,8”" "-'-,6“") .
i.e. I\/IEM (,8“‘" 1 —,@[*:?) ({3'1*" Lt 6(“); ~ “Ekl (I@(L--l o ﬁ.;g-])’
with p:“ =g f (x.!-‘ﬁ" ki “)-‘._V,-'f (x,,ﬁ“*‘)—Gi“ ([3[*" 'I"—,@'R') . 50 that:

“-:i . (ﬁ--\- 13 I(j--:k- )

l\/IL'.L:'] . . , . . .
hi (ﬁ:a-ll_ﬁ-‘.\u) (B:J.-.- '.ﬁl“)
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which is similar to the rank one correction procedure in Section A.2.3 of Ap-
pendix A for quasi-Newton.

The advantage of this method is a reasonable convergence, while a small
disadvantage is that it requires a pretty large computer memory.

1.2.4 Marquardt method

This method is a combination between the Gauss and steepest descent algo-
rithms (see also Section A.2.1 of Appendix A ). The direction matrix belonging

~1
to the Marquardt method satisfies P(*) = ((zw(*')}’z—lzw“") + a“ﬂcﬂfl)

with o'*) a sufficiently large positive number.

If a'®) tends to zero, the Marquardt algorithm converges to the Gauss algo-
rithm, and if &'*) tends to infinity, Marquardt converges to the steepest descent
algorithm.

Example 1.3 Comparison between the Gauss and Marquandt algorithms (based
on Judge et al. (1980), pp. 737-739).

Consider the CES production function @Q; = A[6L;” + (1 — §)K;?] ™% exp(e;)
or nQ; = By + By In [B,LY + (1= o) K] + i (i = 1,2,....,m), with data

given in Figure A.1 in Appendix A and a starting vector 8" := (1,-1,0.5, —1)".
Comparing Figure 1.2 as iterations of the Gauss algorithm with those of the
Marquardt algorithm in Figure 1.3, you can observe that both algorithms con-
verged after 15 iterations, but that the iteration process proceeded much quicker
in the Marquandt algorithm; the last Marquardt steps were practically equal to
those of the Gauss iterations.

1.2.5 Quadratic hill-climbing method

If the Hessian of the objective function to be minimized is transformed as P*¥) .=
(H® + o }Ip)_l , we get the quadratic hill-climbing direction matrix. Note
that this method is not invariant to transformations of the parameter space.

Hence, the Marquardt method is generally superior for nonlinear regressions.
In general, the Marquardt method converges very well, even when the initial
parameters are rather far from the optimal values.

1.2.6 Concluding remarks

In this chapter the regression-based methods that are essential for nonlinear
econometric estimation: Gauss, Quasi-Gauss, the method of scoring, quadratic
hill-climbing, and Marquardt have been mutually compared. Other uncon-
strained nonlinear optimization procedures are discussed in Appendix A: steep-
est descent, Newton(-Raphson), rank one correction, and Quasi-Newton with,
among others, the Davidon-Fletcher-Powell algorithm. The unconstrained non-
linear optimization algorithms differ in the choice of the direction matrix P®*)
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Figure 1.2: Iterations of the Gauss algorithm

True
Parameter fS,=0.0  4,=-05 B:=03 B =20
Values
Iterations B i B- B S(B)
0 1.00000000 -1.00000000 0,50000000 -1.00000000 37.09647696
1 0.53348846 -0.48109035 0.435060133 -1.49993613 35.48664241
2 0.32051558 -0.30765599 0.38316020 -2.30968355 22.69061393
3 0.12479022 -0.28742856 030140828 -3.41818117 1.84546513
4 0.12404406 -0.30792127 0.31714961 -3.20435160  1.83336003
5 0.12293317 -0.35563222 034972967 -2.80035238  1.82033702
6 0.12508517 -0.32429484 0.33021412 -3.08911305  1.77400355
7 0.12401054 -0.34250499 0.34052971 -2.95160409 1.76210788
8 0.12471260 -0.33275379 0.33459590 -3.03898265 1.76117633
9 0.12434641 -0.33824362 0.33784883 -2.99373468 1.76105698
10 0.12456252 -0.33519741 0.33602421 -3.02017060 1.76104269
11 0.12444618 -0.33689004 0.33703533 -3.00586988 1.76104014
12 0.12451237 -0.33594673 0.33647149 -3.01396582 1.76103933
13 0.12447601 -0.33647084 0.33678488 -3.00950550 1.76103936
14 0.12449640 -0.33617890 0.33661040 -3.01200194 1.76103931
15 0.12448510 -0.33634124 033670746 -3.01061741  1.76103929
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Figure 1.3: Iterations of the Marquardt algorithm

True
Parameter
Values  f,=0.0 B =05 B =03 B3=-2.0
Iteration Lo B B iR SB)
0 1.00000000 -1.00000000 0.50000000 -1.00000000 37.09647696
1 0.09415663 -0.56438540 0.39608434 -1.47811571 8.21029114
2 0.10527940 -0:47#51281 0.35597976 -2.05526646 2.14540896
3 0.11438473 +~0.43433472 0.35332137 -2.33452360 1.79265263
4 0.11778508 -0.40169905 0.34893435 -2.52753974 1.77154836
5 0.11985791 -0.38073528 0.34546303 -2.66794650 1.76445604
6 0.12126599 -0.36685455 0.34296606 -2.76791870  1.76233250
7 0.12223435 -0.35747645 0.34116087 -2.83892982  1.76159005
8 0.12290661 -0.35105837 0.33986459 -2.88928169 1.76129103
9 0.12337607 -0.34662508 0.33893837 -2.92494346 1.76115900
10 0.12421153 -0.33763945 0.33607238 -2.99759855 1.76111747
11 0.12437263 -0.33727961 0.33686984 -3.00261134 1.76104041
12 0.12448186 -0.33621046 0.33652837 -3.01170161 1.76103945
13 0.12447476 -0.33644528 0.33674359 -3.00972804 1.76103932
14 0.12449246 -0.33622429 0.33663096 -3.01161499  1.76103930
15 0.12448612 -0.33632386 0.33669540 -3.01076606 1.76103929

and in the corresponding properties. An overview of these direction matrices for
iteration k is given by the following list.
If P) — I, the steepest descent algorithm with a constant metric is ob-
tained; all the other gradient methods show a variable metric, such as:
—1 ==
P”‘)=(i‘ﬂr ) = (H®) ' for the Newton(-Raphson) algorithm with

96808 ’9:8“‘1

) : =1
variable metric (H®)) ;.

. k—1)f(k—1) x s
Pltiopik-l) o ﬂ,‘k_l,,(gf:’,_gu_”] for the rank one correction algorithm;

- ~1) (k) (k=133 pik—1)
(k) —p(k—1) W= (i (M) =t =Dy b gth=1)yp
PM=P +£’IL'—I\(g[k1_,g[k—lj) (g(i-'l_gr_k—I])’P[i.-—li(gikr_s—lk-ll)

Davidon-Fletcher-Powell (DFP) algorithm;
s -1
(k)— 1 LA &L
B ull-mx,{ [ E (aaaoi )] G

i
Pk = [(Z(ﬁ‘k’))’E‘lz(,B(k’)} for the Gauss algorithm;

k—1) gth—
il i for the

} for the method of scoring;

¥ : =1
P = [(Z(;’f‘*’})'z:—lzw“'-') = ,\‘*"c(kl] for the Marquardt algorithm;

P®=(H® 4 u”‘)I,r,)_1 for the quadratic hill-climbing method.

Various contrained optimization methods are also discussed in Appendix A.
The most efficient regression-based procedure for unconstrained nonlinear esti-
mation appears to be the Marquardt procedure, while for constrained nonlinear
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estimation a barrier or penalty function method and the extended (augmented)
Lagrange function method are to be preferred.
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Chapter 2

Generalized Method of
Moments

As seen in Subsection 1.1.2 the linear OLS (LLS) estimator is best lincar un-
biased, consistent and asymptotically normally distributed and, under certain
regularity conditions, the NLLS and NLML estimators are consistent, asymp-
totically efficient and asymptotically normally distributed, provided that the
regressors are not correlated with the disturbances. However, failure to attain
this property of noncorrelation. which is so in many real world cases, provides a
no longer (asymptotically) efficient estimator. The generalized method of mo-
ments (GMM) estimators discussed in this chapter take account of this often
observed correlation.

Consequently, GMM is an increasingly popular estimation method in eco-
nomics and econometrics. It has desirable asymptotic or large sample properties
and, one may note two main reasons for its current popularity. The first one
is that GMM nests most of the commeonly known estimators (such as OLS, in-
strumental variables (IVs) or ML) and provides a useful framework for their
comparison and evaluation. The second one is that GMM provides a ‘simple’
alternative to other estimation methods, especially when it is difficult to write
down the ML estimator.

We begin in Section 2.1 with some examples. Section 2.2 sets up a classical
starting point for the GMM: the Method of Moments (MoM) with applications
on OLS, IVs, GLS and ML. The GMM estimator is defined in Section 2.3 with
various examples and Section 2.4 concludes.

2.1 Endogeneity bias: two examples
Working’s example A regressor that is not orthogonal to the error is said
to be endogenous, and this causes OLS to break down. Endogeneity naturally

arises in a simultaneous equations model of market equilibrium {when modeling

19
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e.g. markets of agricultural products). Working’s (1927) model specifies:!

¢ = ap+aip;+u;, (demand)
g = Bo+Bwpi+vi, (supply) (2.1)
qf =1 g7 =H (equilibrium),

where p; is the price for observation 2 (can be period, individual, country, etc.);
u; includes other unobserved determinants of demand; and v; represents other
factors affecting supply with E(u;) = E(v;) = 0 and variances o2 and o2 with
(mostly) cov(u;,v;) = 0. Solving system (2.1) of simultaneous equations for
(qi,ps) yields p; = £a=80 | niw and g, — @ba=0o By | civ—Biu

s a— 5, ay— 4, ay—f,; oy —f,;
The covariances between the price p; and the demand and supply error terms,

u; and v;, are:

E(pi:) = cov(pi, ) = — 524 # 0 and E(pivs) = coo(pi, v;) = 52 #0,

so that the price is correlated positively with the demand shifter u, if the demand
curve is downward sloping (@; < 0) and negatively with the supply shifter v; if
the supply curve is upward sloping (3, > 0).

A regressor is said to be endogenous if it is not predetermined, i.e. if it is
not orthogonal to the error term. Given that both cov(p;,u;) and cov(p;,v;)
are different from zero, the endogeneity of p; is a fact. Note that the data for
the demand equation and the data for the supply equation are identical, and so
must be the OLS estimates of these equations. The slope estimate converges in
probability to:

cov(pi i)

mv[]g(..gf.-) = { @y + var(p;)
var(p; cov(pi,vi)
61 s var(p)

and is neither consistent for oy nor for 3,. This is an example of endogeneity
bias (or simultaneity bias). It is a direct consequence of the correlation between
(the) explanatory variables and the error term.

How can this be solved? The answer is that without extra data, there is
no hope. Suppose, however, that the supply shifter, v;, can be partly observed.
Specifically, v; = §,2z; + (; with z; observable, uncorrelated with ¢; and un-
correlated with u;. The variations in z; cause price variations and these, in
turn, help us to identify the demand curve in Figure 2.1. A variable which
has the properties of being predetermined or uncorrelated relative to the error
and correlated with the endogenous variable, is an instrumental variable or IV.
Hence, 2; is an instrument for the demand equation because cov(z;,u;) = 0 and

cov(z,p;) = ;ﬂ_zs—lvar(z;) # 0. It follows directly from the demand equation
that cmiz;. gi) = aycov(z;, p;) and this suggests the estimator v = %"{‘;‘—H,
where cov(-) denotes the sample covariance. This estimator is an IV estimator,
with z; as IV for p;.

"Hayashi (2000) considers this case at length.
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Figure 2.1: Supply and demand shifts

No shifts in Demand: No shifts in Supply:
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Since endogeneity bias arises when a regressor is correlated with the error,
the presence of an instrument, uncorrelated with the error and correlated with
the regressor, solves the problem.

A simple macroeconomic example Endogeneity arises in many contexts.
e.g.in macroeconometrics and in errors-in-variables situations. Haavelmo (1943)
illustrates the endogeneity problem by the following simple consumption output
Ci=ap+aY;+w, O0<a <1

model: .
Y. =Ci+ I, where I; is investment

Solving for income Y; gives ¥; = 1_arf?+l_fclx_.+1_“ci_1 Hence. the covariance

between income and the error term wu; is:
a__’
cov(Yi ui) = - >0

showing that ¥; is endogenous. and cov(¥;. I;} = varlli} - g Hence I, is a valid

1-¢x)
. . . ‘oA ol ,C,
instrument provided that cov(l;, u;) = 0. The IV estimator is &, v = %'}—,;

2.2 The method of moments

In general the MoM is based on the estimation of the moments of a pdf. Defining
the general nonlinear regression model in (1.1), the theoretical (first) moment

restrictions are given by:
Eg [£(X.8%)] =0, (2.2)
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with @” the true value of the parameter 8, which contains all the unknown
parameters.” In general the population moment restrictions can be estimated
when taking a sample of size n:

e 5
~ Y1 £(xi,0) =0, (2.3)

which are known as the sample or estimated moment conditions.

However, it is frequently difficult to directly estimate the parameters of in-
terest. An alternative method consists in:

e finding functions of the parameters under the form of auxiliary parameters
that can easily be consistently estimated;

e zppropriately combining the estimates of the auxiliary parameters to ap-
proximate the parameters of interest.

If we consider sampling models, i.e. models where the observations yy, yo,.. ., yn
are #id according to a probability distribution Fy with unknown parameter
6 € © C RP, @ is said to be estimated by the MoM if the auxiliary parameters
are chosen as the first moments of the observations (probability distribution).
Specifically, if there exist unique relationships between the first & moments and
the parameter vector 6:

Eg(y) = b1(0), Eo(y?) = b2(0), ..., Eg(y*) = bi(8),

then, in a first step, you can estimate the auxiliary parameters by, bs, ..., by by
the sample moments:

b= vba =3 B0, uh e b = F 0L o,

which can be assembled in the vector b := (E bz bk} in a second step, the
MoM obtains a consistent estimator for @ by 8 = l(b)

2.2.1 Some examples

Example 2.1 Consider the logistic pdf V=9 /(1 + e~ (¥=9))2,

Verify that the ML estimator of # is difficult to compute. The MoM estimator
of # is based on the first moment Eg(y) = b = 0 : § = b; = g. This logistic
pdf proved itself suited to study households’ (skew) income and durable goods
consumption behavior exceeding a certain threshold .

Example 2.2 Consider the uniform pdf on the closed interval [0,,6].

?Notice that, in general, Ego [f(X,8)] £ 0 for 6 # 6°.
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If a sample of n_obsevations would be available, appropiate estimators for &,
and @, would be ¢1 = min {y1,92,...,Y} and 82 = max {y:,y2,..-,Ya}. respec-
tively. Regarding the MoM estimators, the two first noncentral moments are
h 2 g2
Eg(y) = by = 2492 and Eo(y?) = by = Elﬂ%.:'a—‘ﬂz. so that the MoM estimators
can be found by solving the following two equations in two unknowns:
02+82 48,8,

- 8,48 i ¢ A ;
:yn=_]';—")b2: -f|= 3 161<62

1
élzél— 3(52—8%),@2=61+\H3(&2—5¥)

2.2.2 MoM encompasses many estimation methods

Most kuown estimators can be constructed as {special cases of) MoM estimators.

Linear least squares

This linear least squares (LLS or OLS) estimator is an MoM estimator since
the estimation of the conventional linear model y; = x{8 +¢; (i=1,...,n) is
based on the assumption that E(x;g;) = 0, which is precisely the moment or
orthogonality condition. From this we can derive that

E(X'e) = E(X'(y - XB)) = E(X'y) - E(X'X)8 =0,

or B =E(X'X) ' E(X'y). which is estimated as 87 s=(X'X) "' X'y = Bprrons-

Linear instrumental variables

Consider the familiar linear model y = X3 + ¢ with the white noise error
term £ with zero mean and covariance matrix ¢2I,,, I, being the n X n unitary
matrix with n the number of observations, and E(X’e) # 0, so that OLS is
inconsistent. As put forth by the examples in Section 2.1, the basic issue is the
solution of the endogeneity bias by appropiately choosing a matrix 2 of IVs,
that are (strongly) correlated with the right-hand side endogenous variable(s)
but uncorrelated with the error term £. The latter property leads to the IV
orthogonality condition E(Z'e) = 0.

Johuston and DiNardo {1997), pp. 331-332, provide a nice economic exampie
of this situation. Assume we have to determine the logarithmic firm employ-
ment as a linear function of the logarithmic entrepreneurial real contract wages.
Hence, there is {besides the constant term) only one explanatory variable in the
above linear model so that X may be written as X := [¢,X], where ¢ is the unit
vector and x is an n vector of observations on the firin’s real contract wages.
But since the firm employment results from a rationing scheme on the labor
market (e.g. as the minimum of the entrepreneurial labor demand and supply
depending on the size of the firm’s real wage rate), both employment and wages
are the result of both supply and demand changes so that F{x’e) # 0. Since
contract wages are negotiated in advance, a possible IV is unexpected inflation,
which shifts the real wage rate. If, e.g., inflation was unexpectedly high, this
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would lower the real wage rate and employers would move down their labor
demand curve, and, hence, mostly their effective employment itself.

Assume now that we have two IVs, the unexpected inflation and the (ex-
pected) short term interest rate which is simply taken as the current short term
interest rate (the money market is assumed to be efficient). We can put these
variables into a matrix form Z := [¢, 21 22].

The three orthogonality conditions for this problem can be written as:

E(Z'e) = E(Z'(y — XB)) = 0, (2.4)

which are estimated as %(Z'(}'—xa)) = 0. Remember that the MoM estimator
should satisfy these moment restrictions. Since, in general, the number of IVs is
larger than the number of explanatory variables the matrix (Z’X) is not square
because we have three moment restrictions and two parameters in this example.

Given this overidentification, one has several options. First, one could drop
one of the equations which boils down in deleting one of the IVs. Second, the
squared deviations from the satisfaction to each moment condition could be
minimized without any weights in a simple LS framework and, third, the devia-
tions from the moment equations could be weighted according to how precisely
(measured by the variance) each of these equations is estimated. Proceeding
with this (more) efficient third procedure, an appropriate MoM estimator could
be found by solving the weighted LS problem:

min { 212/ - XAV 112 - X0) | (25)

with V! the inverse variance-covariance matrix, V= = [var[(Z'e)]|~!, where
it is assumed that restrictions which will be estimated less precisely (so, show-
ing higher variances) are given less weight than those that are estimated more
precisely, provided that a consistent estimator V! of this inverse variance-
covariance matrix is available (V := %f;: (Z'Z)). Solving the minimization prob-
lem (2.5), we find the desired estimator as:

B =[((X'2)(Z'Z)""(Z'X)]"! (X'2)(Z'Z)"(Zy),

which is precisely the two stage least squares (2SLS) estimator of 3 (see e.g.
Greene (2003), p. 399).

Linear generalized least squares

Since the linear generalized least squares (GLS) estimator is derived from the
normal equations E(X'E~'e) = 0 with estimate 1X’E~'2 = 0 (for known X,
otherwise with a consistent estimate %), this is exactly equal to the estimated
moment equations. Hence the linear GLS estimator is an MoM estimator.
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Maximum Likelihood

The (non)linear ML estimator is derived from (1.8) and (1.9), which can be
interpreted as the estimated moment equations, or in general % |9= By = 0 so
that the ML estimator is an MoM estimator. o

Example 2.3 Compare the ML and MoM estimators of the parameters in the
general gamma pdf.

Consider the loglikelihood function for this general gamma pdf:

=1Inf = nfylnA — ()] - A+ (v — 1) Y Iny,,

where the gamma function is I'(y) := f;“t""'e *di. Siuce an exponential
(parametric) family of distributions is one whose loglikelihood is of the form
In8(8]X) = a(X) +5(8) + X, c:(X)s5:(8). where a(-), b(-), :(-), and 5(-) are
differentiable functions, this gamma pdf belongs to an exponential family with
a{X) := 0,b(8) := nlyinx — In['(7)] and two sufficient statistics, >, , y; and
S Iny;. The ML estimators of v and A and corresponding standard errors,
found by maximizing the above gamma loglikelihood function for the income
data in Table 2.1 are 4 = 2.4106 (0.87683) and A = 0.07707 (0.0271).

Table 2.1: Relationship between income and education

Observation Income FEducation Observation Income Education

1 20.5 12 11 55.8 16
2 31.5 16 12 25.2 20
3 47.7 18 13 29.0 12
4 26.2 16 14 85.5 16
5 44.0 12 15 15.1 10
6 8.28 12 16 28.5 18
7 30.8 16 17 214 16
8 17.2 12 18 17.7 20
9 19.9 10 19 6.42 12
10 9.96 12 20 84.9 16

Source: This example is considered in Groene (2003). p. 953,

Since the ML estimator is an MoM estimator. the LS criterion for deriving
an initial set of MoM estimates can be used. Consider therefore the following
relevant moment conditions for the gamma pdf:

Ee{yi— 1} =0, R
Follnyi—®(x)+lnA} =0, Fo{i-:21-0,
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where the unknown parameter vector @ is defined as @ := (v, \)’ and use has
been made of the property that

Eg {lny} = 4520 —in X = &(7) — In\.

The estimates of the four moment equations are the estimated (sample)
moment equations. Let y; := y, yo = y°, y3 := Iny, ys4 := 1/y, then the first
sample moment equation can be written as:

LA i=s i (=3 =21, (pa—b)=F-b = by — by,

and the other sample moment equations 7a(7v, A), Ta(7y, A). 4(y.A) can be
written down in a similar way.

LS (and, hence, also MoM) estimators of (v, )’ can be obtained by solving
the following optimization problem:

mip { L (0, 0 = Sy [b -] =m0 )1 mp. e

This is a minimum distance estimator with a unitary matrix I as a weight-
ing matrix. Following Greene (2003), pp. 538-540, this nonlinear optimization
problem can conveniently be solved by multiplying the sample moment equa-
tions by A, A% 1, (y — 1), respectively (equal denominators). The following
sample moment equations directly follow from the numerators:

Aby — =0, Xby — (7 +1) = 0,b3 — ®(7) + A =0, (y — 1)by — A = 0.

This is a system of four nonlinear equations in two unknowns; any pair could
be used to estimate the two unknown parameters, but notice that the six pairs in
general produce six different LS estimates of @ := (-, A)’. This can be illustrated
as follows. Consider the sample of twenty observations on income in Table 2.1.
The four relevant sample moments restrictions of the income series serve as the
above mentioned auxiliary sample parameters:

20 e

By [y,-; v Inys; ;7] =[31.278; 1453.96; 3.2214; 0.050014]=:by , by, by, bs,

so that the following empirical MoM estimators for @ := (y, A)’ result:®
81) (b1, b2)=(2.0568; 0.06575)’ 02 (b1, bs)=(2.4106;0.07707)'

8(3) (b1, ba)=(2.77198; 0.0886)’ 84) (b2, bs)=(2.4806; 0.079835)’
65, (b2, bs)=(2.60904; 0.0807)" 8 g, (bs, bs)=(3.0358;0.101811)".

Remark that the second estimate 9(2) equals the ML estimate.
Consideration of the first p moments may lead to a substantial loss of in-
formation so that the estimators of @ become asymptotically inefficient. Thus

3Since there are four moment restrictions and two parameters of interest (:) = (;) =6
MoM estimators are obtained.
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it may be preferable to retain a number & of moments (i.c. & is the number of
moment. restrictions) that is larger than the number p of parameters of interest.
Then the main difficulty is to find a suitable method for solving approximately
the system of {imoment) equations relating the parameters of interest to the esti-
mates of the auxiliary parameters since this system has more equations (k) than
wiknowns (p} then. An appropriate estimation method for sach overidentified
system is the generalized MoM or GMM estimator (see also (2.5}).

2.3 Generalized method of moments

Recall the orthogonality or moment conditions (2.1) for observation ¢ (i =

I(g.) = 0. {2.7)

where g, == z,{y; — x.08), z; being the & dunensional vector of IVs and
x! Btz (1 = L2 . n)withx; anin dimensional vector of explanatory variables.
The idva of GMAI is to estimate 3 € RP by the solution of the sample

analogue to the moment condition {2.7). Le. § =0, where g = rla * g The
vahie of @ that imakes this sample mean as close to zero as possible is called the

GMA estimator of 8.

o When & = m(= p). an exact solution is possible by [Vs,

\ -1
o | rn I 1 it I
Z z —1
1611" = (_ —1 B ; i=1 Z = S:.‘r: Szy-

where B,y is called the TV estimator. Tt can also be written as Gy =
(Z' X} 'Z'y. where X is the nox . regressor matrix and Z the n < k
instrument. matrix.’

e When & > . an exact solution of g = 0 is in general not possible. The
idea is to estimate 3 by the solution, 8. obtained from minimizing the
following ohjective where we take account of the definition for g;:

ng W, E—1 (Ssy — 8.8 W, (s, ~8..8) (2.4)

with W, a k x k weighting matrix (W, depends on the data but has to
be symmetric. positive definite, and should converge in probability to a
synunetric, positive definite matrix W), The resulting first order condition
for a minimum of this weighted sum is:

Slrz:cwn{s;:y - Sz;ra) =0,

so that solving for B yields the GMM estimator {for given Wo,).

PO serve i g = 0 3s a svatem of & egnations in e{ P} nnknowins.
Note that QLY is 1 with =, 1= x,.
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ﬁ ﬁ(W,,)—(S Wn z:c) lsianszy-

Hence, the GMM estimator solves, for a given W,,, either exactly (if k = m)
or approximately (if k£ > ), the sample orthogonality condition:

k. = ‘m: B=PBn=S ien=(0X) Zy. (2.9)
k> m: B(Win)=(S., WnS::) '8, W,s.,=(X'Z W, Z2'X) ' X'ZW, Zy.

Naturally, we wish to choose from the GMM estimators indexed by W, one
that has the least asymptotic variance. This efficient or optimal GMM estima-
tor is found by taking the optimal weighting matrix as the Cramér-Rao lower
bound (see 1.11) for the asymptotic variance-covariance matrix for the GMM
estimators. The optimal weighting matrix in this lower bound is given by:

W= (8,,81s.)" = (X'Z8S'ZX)?, (2.10)
where the covariance matrix S is estimated by its sample analogue S =<y &2z,2..
A more mathematical formulation of the GMM estimators is given in Ap-
pendix B.

2.3.1 Example: GMM estimators based on Euler equa-
tions

Euler equations are the first order conditions of dynamic optimization problems
(often with future rational expectations). GMM treats these first order condi-
tions as moment conditions. In response to the Lucas policy critique, models
are now often formulated as rational expectations models with taste and tech-
nology parameters,” which are believed to be constant over time (see e.g. Hall
(1993)). Suppose e.g., following the original example in Hansen and Singleton
(1982). that the representative consumer has an expected utility function over
current and future consumption and tries to solve the following problem:

max B, {23:9(1 + 5)"'U(Cz+r)}

[

subject to the intertemporal budget constraints:

Copr + Grir = Weir + (1 + Pepr )Geir—1,

where E, is the mathematical expectation given the information available at
time £, & the (constant) rate of subjective time preference, ¢y, the per capita
(real) consumption in period ¢ + 7. g¢y, the financial wealth at the end of
period t + 7, wy,, the wage earnings at period ¢ + 7, and 7~ the return on
financial wealth (invested in a portfolio of assets during t+7). Hence, the budget
constraint says that individual labor income plus individual asset income should

9A conditional expectation is said to be rational if its difference \uth respect to the

observation is a white noise error term, i.e. Bi—1(yt) — yr = €4, where gp '~ (0 a?).
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be spent on constunption or saved in g; .. Note that this maximization problem
is hard to be solved analyticallyv. Nevertheless. it is still possible to estimate the
unknown parameters through the first order conditions, Tt is straightforward to
show that solving the above expected utility maxitmization problem leads to the
following Fuler equation or first order condition:

(1+8) s (1 b U (e 0} = T ed)

where U7(-} is the marginal utility of consumption, or. in other words:

_l.ﬁ‘r{ e e i _ ].} =0,

T+d i)

To see the intiition beliind this elaiin, suppose that this condition failed to
hold. Say. c.g.. that the conditional expeetation where the sequential marginal
utilities are involved were larger than one. Suppose that the representative
stockholder saves one more currency unil. (dollars. enros. pounds,.. ) at date ¢
and piles that unit i assets. using the return to hoost. period £+ 1 consump-
tion, Following this strategy would canse consumption at date 4 to Lall by one
currency unit. (which reduces the objective function by an amount given by the
mumerator}. while consumption at date £+ 1 would rise by {1+, ) currency
units {increasing the objective function by an amnownt given in the numerator).
If. as assumed. the marginal utility were larger than the future discounted value.
then the representative stockliolder’s objective would be improved uneler this
change. Only when the above restriction is exactly satisfied. the represeutative
stockholder is as well off as possible.

The above condition is essentially a ‘conditional” moment restriction. which
can be exploited to estinate the unknown parameters if we make some {regular-
ity ) assumptions abont the utility function 7 Since for any [unction g(-} we have
that E{E @] x2]glan)) = E{eglea}}. Kl aee} = 0 implies £ [riglan)} =
0. so that the above ‘conditional” moment condition can be transtormed nto a
et of ‘uconditional” moment conditions. Suppose, 1herefore, that 2, is nchuded
in the information set at period £, we can write (hat:

] (= 38 e 1)
ﬁE{{—I_It£1—_i ) 1] Z’} -

so that z; can be interpreted as a vector of IVs. Parmneterizing the per capita
utility function in a risk averse way as .

Ufes) = {1 -7) Tel ¥ fory >0and 4 # 1
=log « for ~ = 1.

where = is the constant relative risk aversion parameter. Thern. the above set of
nnconditional mowment restrictions can be rewriften as:

ﬁﬁ{[(l Fray) ((f) K - 11| Zr} = (.
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This set of unconditional moment restrictions is derived, which can iden-
tify the unknown (‘taste’) parameters § and v, given sample observations on
!

Xip1 = ( %’;i.rgﬂ) and z;. Notice, however, that these unconditional mo-

ment restrictions contain conditional expectations, which may be rational ex-
pectations. Hence, GMM can be applied using IVs.

2.3.2 Three empirical examples
Example 2.4 An empirical example based on the gamma pdf

From the unweighted objective (2.6) in Example 2.3, the dbjective function for
the GMM estimator satisfies:

{ [y, N]I' (3°3] [ (v, V)] }

with J a diagonal matrix with diagonal elements (weights) A, A%, 1, (y — 1) re-
spectively. Using the data in Table 2.1 initial weighted LS estimates are found as
YLs= 2.0583 and Apg=0.065799 (compare to the ML estimates 4,,; = 2.4106
and :\ML= 0.07707). These initial estimates are consistent but not (asymptot-
ically) efficient. Using these estimates the best GMM estimator with (2.10) as
optimal weighting matrix can now be derived by solving:

min [8(y, V] [FIWI|13] [y, 1)

This minimization yields as ‘best’ GMM estimators 5, = 3.3589(0.44967)
and Agymum = 0.12449 (0.0291) with the (asymptotically efficient) standard er-
rors between brackets.

Example 2.5 Intertemporal asset pricing models

Virtually all known asset pricing models (including the capital asset pricing
model (CAPM)) can be written as:

E; {mH.l (1 +Tj'g+1)} = (J — i e A ,K},

with j an index for the assets (stocks, bonds,...) and where m,.; is a stochastic
discount factor. Replacing the return of the risky asset in Example 2.3.1 by the
return on a portfolio of assets (with optimally chosen weights), the first order
Euler conditions lead to the conditional and unconditional moment restrictions
in that example.

Hansen and Singleton (1982) estimated these unconditional moment equa-
tions using real aggregate US consumption divided by the US population as a
measure of per capita consumption ¢;. For ry ¢, they used the inflation-adjusted
return that an investor would earn if one currency unit was invested in each
stock listed at the New York Stock Exchange, while o, was a value-weighted
inflation-adjusted return corresponding to the return an investor would earn if
the investor owned the entire stock of each company listed. They estimated
as IVs a constant term, lagged consumption growth rates, and lagged rates of
return and for the explanatory variables:
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f
. IS £ L | . e . e .
x,:—(l.%.——— ,,,,, . N A TR A T FIRY AP S S I A L TN S SRR Tz.r—fu)

and they estimated the two-asset pricing model in a lincar way. using 7 lags of
variables,

Cochrane (1996) has investigated a range of assct pricing models using GMBI
as estimarion procedure. Ite uses 10 portfolios of the New York Stock Exchange
sorted by market value and the return on a riskless asset, approximated by the
3-month Treasury Bill returm,

Example 2.6 4n cxemple for the impact of financial asset veturns on the
LA CTOECOTOMY.

A slightly alternative formulation of first order Euler conditions with the related
GMM estimator for Japanese and US data is provided in Valckx and Plasmans
(1998):

Ly [m (@8] =1 or Iy mg (615, — 1]=0

with i {) denoting the intertemporal marginal rate of substitution and [ the
gross assel returns (as endogenons variable} at time t. The parameter vector
8. containing among others, the discount rate and the relative sk aversion
parameter (see Examples 2.3.1 and 2.5) is to be estimated. As before. this
expression is called a moment condition since if shows thuat the statistic w (@)1,
will converge in probability to some constant. here one.

GMAIL exploits the idea that the disturbances in By (£:(8)] = U are derived
from a rational expectations model. and are uncorrelated with any information
available at time £, Denoting z; as a vector of [¥s that are orthogoual 1o the
disturbances g, at time ¢ (sco (2.7).7 lagged values of m and R are taken as
IVs. The mumber of lags is usnally chosen relatively small. since an increase of
it leads to an inerease in bias {soe Tanchen (198G} ).

2.3.3 Exercises

Consider the data on schooling available at htt p://www.ua.ac be/joseph.plasmans.
containing observations from the 2003 honschold survey of Encuesta Perma-
nente de Hogares for Argentina. Estinate the returns io education: fogiw,) =

TGiven intta] parameter estint s wsing warhitrary hiclad weighting matrix, vg Iyl
siven o correspoinding initial QML esthoaror &, anof her weipliting niatrix is oltained. citlier
s i rolist White estimatoer ol The asvniprotic varignee-covarinnee matrix (see White {19040
o an A Newer-West fweteroskedistieity and antocorrelation consistent cewnrianee estitator
Psee Newoy and Weat THST] and Section 3L in Appembix B):

Db _ 1 [ AT s
S _f[_—-_>_“, lmz,._,]
RN —Wear r 52 f. (N
ur fw TR -,— L b Y wll) 3 2iE [zpz: o z;__fz;-‘ .
F

-._l_.
--.|_.

LA

where w(fy: 1 =104+ 1) and Loche miaximun lag lenaih of the antoceorrelations in g
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B) + B985+ By By + B Bl + v'x; + ;. where log(w;) is the log of individual earn-
ings. S; the years of schooling, E; the years of (working) experience measured as
age —5; —6, x; contains the control dummy variables: gender, household head,
smsa (living a metropolitan area).

i} Make descriptive statistics of the wage variables. Create the variable E;
and make a scatterplot of log(w;) versus F;.

ii) Estimate the earnings function and interpret.

iii) Why is there an endogeneity problem with $;? As an instrumental
variable use the dummy variable 'nearc’ indicating whether the person lives
near a college or not. Is this a suitable instrument?

iv) Estimate the earnings equation using the IV estimator. Do the coefhi-
cients have the expected sign? Which variables are significant?

v) Compare the standard errors of the estimates of 3, with OLS and with
IVs and comment on the goodness of fit.

2.4 Some concluding remarks

Hall (1993) points out two advantages of GMM. First, it is computationally
convenient, and second, it avoids potential bias due to misspecification of the
distribution of the sample observations (e.g. of m and R in the empirical exam-
ple 2.6).

Moreover, the GMM estimator encempasses (many/almost all) other esti-
mators. Furthermore, it can allow for heteroskedasticity and autocorrelation
and it can estimate parameters even if ML estimators do not exist.

It bas to be stressed that the validity of the instruments in {z}. ¢ =
1,2,....7T is beyond doubt if the model leads to a conditional moment restric-
tion as put forward in Subsection 2.3.1 and if they are in the conditioning set.
Hence, if at period £ a representative agent maximizes expected utility given all
publicly available information, then any variable that is observed to the agent
at period t provides a valid instrument. An explicit test on the validity of TV
(GMM) moinent restrictions is given in the next chapter.



Chapter 3

Testing in Linear and
Nonlinear Models

In gencral we can distinguish neséed and nonnested (Lesting) models. Tests are
called nounested if there are separate or non-encompassing families of hypothe-
ses. I other words. Lests are nested when the null lypothesis can be written as
a special case of a general hypothesis and are nonnested when the null cannot
be encompassed by a general hypothesis. Henee. nonnested models may arise
if two alternative economic theories lead to different models for thie same phe-
nomenon. Bxamples of nested model tests are the Lagrange Multiplier test (if
the null hypotliesis is simpler than the alternative hypothesis so that the null i
used). the Wald test (if the reverse is true) and the Likelihood Ratio test (where
both hypotheses are utilized).

An example of a nonnested model test is the Cor test which was first for-
mulated by Pesaran {1974} for single equation lincar regression models, bot h
with antocorrelated and nonautocorrelated disturbances. Pesaran and Deaton
(197%) extended this analysis to nonlinear regression models.

Refore applying nested and nonnested tests. consider the loglikelihood fune-

tion:
Ligy) = lf{@y)=Iu f(y.0}.

A necessary condition for the maximization of this loglikelibood function
dL18:y]
oo

An estimate of the [asymptotic) variance-covariance matrix of the correspotud-
ing maximum likelihood estimator is given by the estimated Cramér-Rao lower
bound for (J{))™! where the estimated inforimation matrix J(@} % obtained
from the evaluation of the partial derivatives in the covariance matrix {1.11) at
g — §. Remark ihat this covariance matrix only involves first order partial detiv-
atives. Since for complicated nonlinear functions this inverse information mat rix
is not easily computed, an alternative for the Information matrix conld bhe con-
sidered. As indicated before, such an alternative is the inverse Hessian {(marrix)

. =8 (é:y) = 0, whore s (G:y) is known as the secore vector.
-8

33
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of the loglikelihood function, or J(8) = — ié{i%uh—i Another alternative is

the BHHH estimator proposed by Berndt, Hall. Hall, and Hausman (1974),
which is based on the result that the matrix of the expected negative second
order partial derivatives is the variance-covariance matrix of the vector of the
first order partial derivatives, or from Section 1.1 the fo]lox.j:ing estimate may be

considered when the expectations are difficult to compute 3(&) = ((Z(8))Z(8))
with the n x p Jacobian matrix Z(8) := %Ie:é‘ so that only the regression
parameters are involved here (0 := 3).This estimator is extremely convenient in
most cases, because it only needs first order partial derivatives, which are also
needed for deriving ML estimators, and it is always nonnegative definite.

3.1 Nested model tests

First consider the simple case of a null hypothesis that the parameters are
equal, or Hy : 6 = 0", where 0" is the value of the unknown @ under the null.
This hypothesis will be generalized later to the nonlinear hypothesis testing
Hy : q(8)=q(8") = 0, where q(-) is generally a nonlinear and differentiable
function of @ (R? = R).

3.1.1 Lagrange multiplier test

The Lagrange Multiplier (LM) test for Hy : @ = 6" is derived from a constrained
maximization problem. Consider therefore the Lagrange function:

L:=L(6;y)—X(0-6"),

with A the Lagrange parameter measuring the shadow price of the constraint
(if this price is low, the constraint must be rejected as being inconsistent with
the data). Then the first order condition is:

9L —2° and8=6" or A\’ =5(68"y),

i.e. the Lagrange parameter is equal to the score vector at the null, so that the
LM test is (sometimes) also called the score test. This test tests the null of the
restricted score vector being equal to zero. More specifically, using the central
limit theorem, the score vector is asymptotically normally distributed if the
null is true, or s (8%y) = N(0,avar (s(6";y))), where avar (s(6";y)) is the
asymptotic variance-covariance matrix of the score vector. Then the normalized
score vector at the null is asymptotically standard normally distributed, or
(avar (s(ﬂn;y))ﬂlﬂs (8°;y) = (3(6°)"'/?s (6°;y) © N(0,I,), and since the
sum of mutually independent squared standard normally distributed random
variables is y2-distributed, the following LM statistic satisfies:

v = (5(6%)) (3(6°))'s (6%) % x;, (3.1)
so that the LM test statistic is asymptotically x%-distributed with p degrees of
freedom (being the number of the components in 8°).
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3.1.2 Wald test

Consider the unconstrained ML estimator 8, which is according to the central
limit theorem and under certain regularity conditions under the null asymptot-
ically normally distributed as & =~ N(8,3;) so that it can be normalized as
(25)"1/2(8 — 8) % N(0,1,). Testing under the null that 8 = 6°, the Wald test
statistic results then as:

ew = (8- e")' ;' (0-6°) = (b- 9“)'3 (8) (8-6")%xi (32
or with J(8) or 5(9) instead of J(8).

3.1.3 Likelihood ratio test

The Likelihood Ratio (LR) test statistic is based on the difference between the
maximum of the loglikelihood function under Hy and the maximum of the log-
likelihood function under H4. The idea behind this test is to test whether the
difference between the restricted and the unrestricted maxima of the loglikeli-
hood function is small. Hence, the LR test statistic is:

£(6%y) _
£ (é; y)

Theorem 3.1 The Likelihood Ratio test of the linear regression problem; con-

: £ Evaz;ysx a s .
sider the LR & := Tk where 0 S A <1 and 8 and & are the restricted

ML estimators (under the null), then: —2Inx % 2.

£,n=—2lnA=—2In ~2 (L(B“; y)— L (9; y)) Ly (33)

Proof For known o2 and a linear model:
9m——""7 = 2In¢ (B;y,x) —2in¢ (,"a';y,x)
n n 1 - o~
= - Y — — 2_ _- . ? _

-2 [—E ln2r - 2 Ino? — 5}2(3; ~XB)(y - Xﬁ)]

- -~ ! -
with § (ﬁ) - (y - xa) (y - xg) :
Then the LR test statistic satisfies {using plim X'e = 0):

L de vl

—2lnX= % [(y— XZ’?)} (v- xB) - (v - XB)’ (v- Xﬁ)}
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s = — = o =
;‘; (y’y - 2)8’)(’3( +B8X'XB—yy+ 2,3;X'y - B’X’Xﬁ)

R & (-2BX'XB+ 2B XXB + BX'XB - FX'XP)
7 = -~ ~ f - -~ _-— - P -~ -~

R & (28X XB+BXXB+BX'XB) = % (B-B) XX (B-B)
a_aY o S
(B-B) (2xx)") (B-B),
which is the Wald test statistic since under the null 3 ~ N(0, 02 (X'X)7"), or
—2InA < X;m

All three test statistics measure the distance between Hy and H 4: the Wald
test statistic in terms of (9“ - é) . the LR test statistic in terms of L (9“) —
L (9) and the LM test statistic in terms of s(6°%; y).

Theorem 3.2 If L is given by a quadratic function, i.e. if the underlying model
is linear in the parameters, then the three nested test statistics are equivalent.

Proof (for known variance and simple H;):
Rewriting the loglikelihood function L for the linear model y = £ (X; 8)+¢ =
X3 + € as a quadratic function L:

0, Ll B g LI o g

L(;:y) = 21!1271' 211m‘E 20_32551
L4 _i 0 _ 7 4 0 3

= b 263(5 B) A(8°-5),

then the three nested test statistics satisfy:

ty =B —BYAB -B=tun
Eom = (s(B ;y))A's(8 ;y) = (B —B)A(B - B),

so that the three nested test statistics are equal to each other.g

If the nonlinear model y = f(X;/3) + & can be approximated well by a
linear function, this equivalence result will largely stay valid but if the nonlinear
regression function f (X;3) cannot conveniently be linearized the equivalence
property will break down and the three nested test statistics will differ from
each other.

3.1.4 Confidence intervals and hypotheses tests

Consider the nonlinear regression model y; = f (x;, 3) + &; with the error terms
following an iid normal distribution &; YN (0,02) or, applying the central limit
theorem, under certain regularity conditions the NLLS and NLML estimators
are asymptotically normally distributed.

In the sequel, equality of individual coefficients, parameter vectors and gen-
eral nonlinear restrictions are tested.
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Test of individual cocflicients

. . RSN ) B W) Tiere brsct bl Subies e = e = ,-'-i;—,-'*l” e
If we test under the mull 3, = 37, the familiar test statistic is z; o= \/TL ~
N (1) and the corresponding 100{1 — «) per cent (asvniptotic) conlidence in-
terval for ;'3’? satisfies from Section 1.1:

2 T L. "
.'_')),'_ — zf!’,"’) IIFIIG—_;.I_.\.' '([L‘r{zuﬂ_:j:- + T2 IIII{'.TL._J\:' LL_&.,'-VM
\" ML \' RN

l

with 2% the i diagonal element of [(Z(8)(Z (8)]) ' and 67y, 1« the NLLS

residual varianee and &7y Deing the NLML residual variance.

Test of parameter vector

a. Ti a lincar model testing under the null whether 8 = 8" - 0. leads to the
familiar test statistie:

(5181 S(B)})/p sy L _
@~ el

with @ being the LLS {or ML) estimator,
I, In a nonlinear model there are three alternatives:

(S\'.@]—f‘-' (ﬁ N )
R

& (f" N )a’r” r
Sronrg
estimator of 8 and B, ;. 18 the NLML estimator of 3;

. a second ovder Taylor approxinution of 5{3) around 3 := By, ;4 such
Sl

fp , -
= ¢~ F,p ,{e). where Bu, ¢ 18 the NLLS

that: ) .
(Aspp:-8) it (Bsrss #)ra
AR YRS R g AT N
WAt s
N ~ Fj:.u—p(o")
5 (ﬁ N )_f'f”' I
R R
i1, based on the psendo-linear model {1.2):
(.B Nt ﬁ) (zig"1) z{a”) (fi AL —ﬁ) ip
MNLATL RTINS

(?fﬁ“] ZIBB v ) (?l'ﬁ" FABYIB ) frn—p
AT ML

X Fus pla), where Z (,@“) is

the n x p Jacobian matrix evaluated at the null, 18 .
f)ﬁ ﬂ__ﬁll

Examples of nested hypothesis tests (conjugate confidence intervals)
1. ,BU —oamd ff ,@“ 2 . are tested with a conventional F-test statistic:

Siei- S{A w1
{ o) {Ba0))in R
(A n-p fetr

{ce}
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2. Hy: q(B") =0and H, : q(8") #0.

For example, we can introduce in the CES production function InQ; =
By + B, In [BQL‘?“ +(1—385) Kfs] + £; of Example 1.3 the null hypothesis that
there are constant returns to scale, or

ngﬁgz-ﬁ—lgorq(ﬁ")=ﬁ?—ﬁlg:0.

Note that in general q (3) is not arbitrary, e.g. for y; = 3, +ﬁlx‘?° +e; the
Hy : 8, = 0 leads to singularity (not defined).

3.1.5 Recapitulating and extending nested hypotheses

First, assume linear constraints so that under the null Hy : R3 = b and H, :
R # b. This leads to a constrained ML estimator for both linear and nonlinear
models. However, in general we have a set of k nonlinear and differentiable
restrictions q (3) = 0.

To begin with, assume that you have to determine the variance-covariance

matrix of & in g (f?) = &, where B is the underlying LLS estimator of 8 and
its variance-covariance matrix is known from this linear LLS estimation.

Lemma3.1 If3 and & 3 are known, thevariance-covariance matriz of a (non)linear

transformation of B is given by H(a)ﬁﬂ(ﬂ(ﬁ))', where TI(B) is the k x p Ja-
cobian matriz of the restrictions.

Proof Asymptotically, under the null that q (fj’n) = a'= 0, i.e. by applying
the central limit theorem under the null g (ﬁ) = N(0, Zq(ﬂ)J' where Eq(ﬁ) can

be estimated through a linearization of q (E)) at the null:

a(B)=a=a"+ (—%—H‘;ﬁ ’a ﬁu) (B-8°) +..
so that & —a’ ~ IT (B") (ﬁ - ﬁ”), where IT is the k x p Jacobian matrix of q or
[ 2a(B
I (g) = ( Sl

of the ML estimator, a consistent estimate of the asymptotic variance-covariance
matrix of & = q (f')) is given by $g ~ H(B)ﬁa(ﬂ(ﬁ))’..

The three nested test statistics (3.1), (3.2), and (3.3) can, taking account of
Lemma 3.1, be extended to the case of general restrictions q(8)= 0, with q(-)
a continuously differentiable function of @:

a. an LM test statistic (see (3.1)), where the Lagrange function becomes now
L = L(6;y) + N'q(8) so that the necessary maximization condition under the

n) , so that, taking account of the asymptotic properties
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null satisfies 2 55 ’ b = 31’ | o—p T (%’1) X = 0 and the restricted score vector
7

results as s(@;y) = _ -2 ,\ where @ is the restricted estimator
Y ae 6=0 ]

of the unknown parameter {under the null}; hence, the LM (also called RAQ)
test statistic is now given under the null from (3.1) by:

AL 2, (3.4)

where the restricted estimated covariance matrix X satisfies ﬁé =(J (é) )1

b. testing the null g (@) = 0, the Wald test statistic satisfies from (3.2) and
Lemma 3.1:

tw = (a(8)) (800) " a(9)

-1
= (0 (5,%(5,,)) «@* oo

c. the LR test statistic (see (3.3)}:
Erg=—2 (lnf (,C_'], = y. x)) —In¢ (f'}, f};y,x) ~ X3 (3.6)

where 3, T and 3, 3 are the restricted and unrestricted estimators of 3 and X,
respectively.

Note that for testing the null Hy : q(8") := 8 — 8" = 0, the test statis-
ties (3.1), (3.2), and (3.3) can directly be derived from (3.4), (3.5), and (3.6),
respectively. This is also the case for testing individual coefficients.

For example, the Wald test statistic {3.5) implies for a single restriction and
a univariate parameter:

Ew= ( 9”)(@1}&7‘(9 90))_1(9 8")= L;L =22, which is asymptotically x*-

war(8)
distributed with one degree of freedom and which is also the asymptotic distri-
. i a-e"
bution of the square of the standard normal test statistic z = T

3.1.6 Examples of nested model tests

In this section, several examples of nested model tests will be presented.

Example 1. LM, Wald, and LR tests based on a gamma pdf. The
gamma pdf used here is slightly different from that in Example 2.3

Flzivi B.p) = Biz) 7,01 1Jl—

Tip) Vi



40 CHAPTER 3. TESTING IN LINEAR AND NONLINEAR MODELS

with @; education and y; income as in Table 2.1 of Example 2.3 with I' (p) ==
fff t?~le~tdt = (p—1)!, p € N. Test whether the null hypothesis Ho: p =1 is
valid.

1. Calculate ML estimates of the parameters.

The joint loglikelihood function for n éid observations is:

0t (8,p) = —p ¥ In (B + ) —nlal (p) — 3y 7 + (p— 1) X, lngs or

e __ 1 4 =
%IIB_ " —pZi Bta; +Zi (in—ljllllar:,-]2 =0and

-%!;—’ =Y . In(B+ =) — —’ﬂ%ﬂ + 3, Iny; = 0. Given the data, the un-

restricted ML estimates are 3 = —4.719 and p = 3.151, where we need the
derivative of the restriction g (0) = p — 1 = 0 for the Wald test, or -gg = 1. The
restricted estimators satisfy p = 1 and B = 15.603.
2. For the Wald test we need the information matrix J () for 8 = (8, p)’
Direct evaluation of the second order partial derivatives of the loglikelihood
as in Section 1.1.2 yields:
8L _ R I i
887 — PLi (Brzi): 2% (B4+=¢)

a
gL _ ., (TP ()-T(p) r'(p)
8p* TP’

E T

=

gL e [ 5 ) ¢
'éa'ﬁap e Btz; — Op 0B
3. The test statistics

The LM test statistic from (3.1) i8 £,y = (%?—) (3(0))! (%?)-) . or

0.02166 0.6689] "' [0.000
& (000 T84 [0.6689 32.834] [7.914]=

The Wald test statistic from (3.5) is:

‘] -1
0 0 5.495 —1.652 '
Sw = [3.151 ) 1] [H [—1.652 0.6309] P 1 } o s =1]
= (3.151 — 1) [1-0.6309 - 1]~} (3.151 — 1) = 7.3384 > x} = 3.842
The LR test statistic from (3.6) is:

&l =2 (ln L (5) Y (9}) — _9(—88.436 —(—82.916))=11.04 >x3(0.05)=3.842

Hence, all three statistics reject the null at the 5 per cent level, but in a
different intensity!

5.120 > x3(0.05)=3.842.

Example 2. Test on a subset of parameters According to Breusch
and Pagan (1980), we assume a partitioning of the parameter vector 6, where

the possible restriction is only analyzed for the first subvector 19(” 5 OE8 =
(6D, (8®)) with Ho : 8Y) = @19, Hy : 8'") # 6,9, and 8 and 6 are the unre-

stricted and restricted estimators, respectively. In other words, ( B 0)(3::: )=
an

( ac.'.,) and partitioning the information matrix and the score vector accordingly:

s pal 9L = 8211‘1" ~{1)
. ( Jor I )’ 519:5" 9{;' =0 )
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the LM or Rao score test satisfies from (3.1) :

!

oL
st

oL
a6 30

Erm = (311 - 3125521321)_1

g =gt gin=p't

Example 3. Test on an arbitrary degrece of autocorrelation Assume
the linear autocorrelation model: y = Xg+u, u = pju_; + & with & ~
Nr (0,0217), so that by substituting we get a nonlinear model:

y=XB+pu_jte=py;+{X-p,X ;) B+e=1f(X,8)+¢,

with & := (,6',,03.-)’.
Test now Hy : p; = 0 using the LM test. Since & ~ Nr (0,0217):

L(®)=-FIn2n - FInol — 55 (y—£(X,0)) (y - £(X,6)),

with necessary maximization conditions under Hy:

a4 (10) (v (x9)) - 25

£

-1
—
IE';

with the T x p Jacobian matrix defined under the null as Z(

§:= 10 (OLS) and , Z (9) - (y_j ~X_ B=t_;X- pjx_j) = (a_;,X).

Define now the estimated autocorrelation coefficient as 7; := (4')”" @’ ;4.
which is in fact the OLS estimator of l ini_; = lﬁ— 7! Since &2 =56 = ﬁ;ﬁ
and 7#; = ‘?‘1;- the score vector Sa.tl‘:ﬁe‘i

L i ,&  TokF
on| T8 o gy, 39)
'aJ 8:6 a. £
Now the LM test statistic is derived from (3.7) and (3.8) as
, 7-l
€12 = T2 [a (@l — ;X (XX ) XLJ*_J)}
L not 1 - _ . _ PR -1
=T¢2 [T—lafﬁ_ju_j — AT X (XX )y (TR )]
or £y — TP X %3, ie. VTR N(0,1). (3.9)

Example 4. Testing for a structural break The detection of a structural
break in a linear model is analyzed for a known break point by Chow (1960},
Rao {1952) and Kullback and Rosenblatt (1957) leading to a conventional F-
test statistic and for an unknown break point e.g. by Quandt (1960} and Brown
et al. (1975) leading to the Cumulated Sum {or CUSUM) and Moving Sum (or
MOSUM) tests.
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a. Test with known break points: Chow test with different para-
meter vectors and equal variances In the economic literature the earliest
tests for structural breaks are the tests in Chow (1960) for a single break. The
model is a linear regression model with m variables and two regimes with T'
observations divided over two subperiods, with known break point. Hence, we

have the model:
( 1) ( 1 ) ( ) ( 1)
Yo 0 X, 52 [

leading to the unrestricted OLS estimator:

B coumpen oy S RS 0 w1\ _ B]
p-axrxy= (%8 x5 ) i) - (a)

with corresponding residual vector & := (
The restricted coefficient vector can be obtamed either indirectly by intro-
ducing the restrictions H, : B; = B, or RB = q, with R := [I,-L,],8 :=

(8 ,ﬁ;)'and q := 0, or directly by estimating
£1
Eo 3

yi Xy
= +
(n) (Kz) K
From the resulting restricted residual sum of squares ' the appropriate test
statistic is the LM test statistic (under the null there is no change of structure

and therefore no different parameters), which implies the traditional F-test
statistic to test the constancy of the parameter vectors:

r (e —&\e, —&48)) /p
T2 = (@18, + 2,)/(T — 2p)

(3.10)

If there are insufficient observations to run the two separate regressions, a similar
procedure is possible with a specific treatment of the shorter time period.

For example, consider an empirical example involving the years (1973 and
1979) of the oil crises. To study whether the market never actually fundamen-
tally changed or that it only changed temporarily you might consider the same
(Chow) test as before, but now only single out the four years 1974, 1975, 1980,
and 1981 for special treatment. Fisher (1970) has shown that in such a situation,
we can proceed as follows:

i. Estimate the regression with the complete database and compute the re-
stricted residual sum of squares &'€;

ii. Estimate the regression using the longer subperiod, with T} observations and
compute the unrestricted residual sum of squares &’;

ili. Compute the F-statistic as:

(3.11)

EE &) /T:
Frot—p= _(_é_.._..)_.f..%

'€/(Th — p)
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Cowmparing (3.11) with (3.10}. we observe that the numerator’s degrees of free-
dow in the former test statistic is Ty and not p (because only T < p coefficients
are needed to obtain a perfect fit); otherwise p would be the appropiate nunber
of degrees of freedom.

b. Structural break test with different parameter vectors and un-
cqual variances An important assumption made in using the above Chow
test is that the (theoretical) residual variance is the same in both (or all) re-
eressions. With unecual variances for the two subperiods. ot and o3, we have
ro test under the null whether the residual variances are egual. From (3.5) and

= [I,. - L] (ﬁ )= {;)). this leads to the Wald test statistic:

G- (B -8.) Ss 5, (B - B.) B (3.12)

where Lﬁ -a. Lﬁ + E 2c0v(f3| B.z) with cov(ﬁl.,@._g) = 0 if the two
samples arc a.asumed to be 111(1(’p(‘11(1011t

¢. Structural break test with unknown break points Quandt (1960)
discnsses testing the null of coustant coefficients against the alternative where
a styuctural change has occurred at some unknown time point and the error
variance is also allowed to change. He considerad a switching regression where
the obscrvations arc assumed to be generated by two distinct regression regimes:
for some subset of observations y; = X8, +¢1, ( € J) and for the complementary
subset, y; = X8, té; (7 € J). The essence of this formulation is the fact that
all first observations up to the (unknown) break point 7% come from one of the
regimes. and after the break point. all observations come from the other regine.
In order to test the null that there is no change in regimes against the alternative
of change in regimes, the appropriate test statistic is an LR test statistic:

l - I. . ] ]. -y
=T loga] + 5 (T = 1"V log &3 - 5T logé. (3.13)

A rough procedure to determine the break point T* is to take that value
for which &, attains its minimum. Quandt (1960} showed cmpiric ally thdt
(3.13) for finite samples yields a poor approximation of the {asymptotic) x?
distributiow.

Brown ef al. (1975) suggest the CUSUM test based on recursive residuals:
this test is for general alternatives, including the case of a single bl(‘dk I'he
CUSUM test involves considering a plot of the statistic W,, = Zm L W
withm=p+1..... T and w the recursive residual. The aim of thl‘? test is to
detect systematic movements of cocflicients.

Example 5. Validity tests of moment restrictions  As we saw In Sections
2.2 and 2.3, we can define various types of moment restrictions: these restrictions
can be tested by conditional moment tests. e.g. the moment conditions (2.2}
can directly be tested from their empirical versions {2.3), with the restricted
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estimator @ instead of @, by an LM test, testing the nullity of the involved
moment condition, which under normality boils down to a conventional ¢-test
statistic. More specxﬁcally for IVs in Subsection 2.2.2, we have as empirical
moment conditions + +(2'€) = 0. Considering Theorem 3.2, this LM test statistic
can also be formulated as a Wald test statistic.

Validity test of the IV restrictions Given a consistent estimate of
the asymptoptic covariance matrix of %Z’(y — XJ3), the appropiate minimand
of (2.5) in the linear IV case in Section 2.2.2, with more instruments than
parameters (k > p),' is a Wald test statistic for the validity of the & moment
restrictions. Then testing whether the null that these moment restrictions are
valid is made by the Wald test statistic from (2.5) and ¥ is an estimate of
E(c’e):?

&w = [Z(y - XB)[Z'22)"\[2'(y - XB)| £ X}, (3.14)

Note that if the error terms in the underlying linear model under the null
are homoskedastic and serially unoorrelated the Wald test statistic simply boils

down to the LM test statistic { L M = nk?, where the uncentered R? is involved
from the regression of the remduals & := y— X3 on the IV matrix Z: & = ZO + n
(check this; see also (3.9)). Since 4 (Z €) = 0, the IVs should be suspected to be
approximately orthogonal to the IV residuals (the OLS residuals are ortogonal
to the explanatory variables by construction). In this case the above uncentered
R? will be low and we will accept the null that the restrictions (2.4) are valid.

Hansen'’s test of overidentifying restrictions Referring to the GMM
objective in (2.8), where the number of restrictions is larger than the number
of parameters (k > p), Hansen’s (1982) test of overidentifying restrictions boils
down to the Wald test statistic for the efficient GMM estimator of an arbi-
trary nonlinear model, or for the weighting matrices approaching the optimal
weighting matrix W as in (2.10) we have:

G MM

bw =ngW,BXxi_,for W, W (3.15)

where g = 7 351, i = 7 i, Zi(w — X(B).

If Hansen's test in (3.15) leads to rejection, it indicates that E(g;) # 0, but
this does not tell us which of these & moment conditions in (2.7) are likely to
be violated. In fact any subset of p of these conditions 'hold’ for the (non)linear
parameter vector 3 it defines.

'Hence, the IV estimator is 4 GMM estimator then.
*The appropiate Wald test statistic for nonlinear IV models as NL2SLS in Section B.3 of
Appendix B is directly derived from the quadratic objective in (B.2);

E:: = (y - f(x;@)),Z(Z'Z)—lzf ( — £(X: 6))) as 2
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However. if a subset of & moment conditions hold beyond any doubt and
[ERYIRYS

1
Ey 2 p.t the remaining A — & conditions can be tested. Let VMM and £ be

the &,,-statistics associated with Ihf‘ k| and k moment conditions. respectively.

f M as
Then. if all & conditions hold. fu - (E(L“' XD ok

Example 6. White test on heteroskedasticity  Since the unll is absence
of heteroskedasticity (i.c. homoskedasticity) or H, o7 = o= Wi, an appropriate
tost statistic shonld test under the null whether F 2xix,} = ol E{xix,). Since
nnder the nl the best estimation is QLS. this test is ot the rype of an LAL test,
This LM test statistic is cotuputed on the basix of a regression of the squared
estimated OLS arror terms on all possible cross products. that is eg. for the
model y, = 3, + 3,7, 4 Fuz, H e, the test statistic is hased on the regression.
E‘f B N T +r'13;r‘ff+n_-‘3,- +ix ;.‘;;“’ §ema,z,+ 1. with the LM test statistic nnder

1N - - . -
the vull £, ,, = nf? < y7 | where & is the number of regressors {excluding

. . S - - . .
the constant term) in the regression of 27 (k = 5 in this example) and ¢ s the
nmltiple determination cocfficient of this regression (sce also Lxamnple 5}

Example 7. Hausman test on endogeneity  We wonld like to test the
endogeneity of a variable &; being for example otal expenditnre in the model:

g A, A4 Fag = dalog ey 43y log™ x4 + =,

The Hausman (1978) test compares the GLS estimator Beip (corrected for
livteroskedasticity} with the IV estimator ,63“. {also corrected for heteroskedas-
ticity). The instruments for this example are e.g. incone. logaritlinic income,
and squared logarithniic income. respectively.

The test iy as {ollows:

H,: total mpvndmnv is exogenous if and ouly if By s and By are both
consistent, Le. plim ,@( gy 7 oplim ,6“ =3

H— . T
H,: total expenditure is endogenons if and only if B,y s consistent and Beirs
15 not.
The HBanstan test is an example of the Wald test becanse. under the null, it
follows from the central limit theorem that. under certain regularity conditions,
asvinptotically

,@Hv — a(;;.s < ;\’(O.a\«'ar(,@“.. 3(:;,3)}- where avar(,@“- - :é(:.r,.s')

is the asvmmptotic variance-covariance mairix of the dilference vector By
By Hence. from the definition of the Wald test stat istic in (3.2). the (Haus-
man} test statistic under ihe null for this test statistic 15

£ = (IBH' - ra(?;,:;)j (3""5}@1\' - 6(:;,5))_] (Bu' Q(:f,s) = \f {3.16}

cara
ST e £
I'he £y, i
conditinons 1o ulent iy the paranuters.

Vesst cat never Lesl wll B ntontent conditions heesnse we sl (ot leastd p
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where k is the number of regressors in the regression for y;. Hausman (1978)
works out the inverted asymptotic variance-covariance matrix of the difference
between the two estimators (the GLS and the IV estimators), where he selects
an asymptotically more efficient estimator. In particular:

avar (Bw == BGLS) = avar(,aw) it ﬂ"a-"(acf,s) T 2acov(fiw,6abs),

but Hausman’s (1978) essential result is that the (asymptotic) covariance be-
tween an asymptotically efficient estimator and its difference from an asymptot-
ically inefficient estimator is zero, which implies that under the null that GLS is
the asymptotically efficient estimator (although both estimators are consistent,
the GLS estimator is asymptotically efficient because of the Cramér-Rao lower
bound property):

acov [(BIV = BGLS) sf"czs] = acov(B;y,Bars) — avar(Bgrs) =0
or that acov(B,y, Bars) = avar (B, ¢), such that:

avar (B:v = f"aLs) = avar(B3,y) — avar(Bgs). (3.17)

This result is generally proven by the following lemma.

Lemma 3.2 Let B be an estimator of B that is consistent and asymptotically
efficient when Hy is true, but inconsistent when Hy is false. Let B be an esti-
mator that is consistent under both null and alternative hypotheses. Under Hy:

avar(8 — B) = avar(B) — avar(B).

Proof. Since both 3 and B3 are consistent under Hy, so is AB+(1 - N)B,
for any A € [0, 1]. Asymptotic efficiency of 3 means that this composite estima-
tor has maximum asymptotic efficiency when A = 0. Its asymptotic variance-
covariance matrix is 1 B
avar(\3+(1 — \)3) = Aavar(8)+(1 — A)2avar(3) + 2\(1 — N)acov(3, 3)
and being a function of one variable we obtain: by
Lavar(A\3+(1 — A)B) = 2 avar(B) — 2(1 — A)avar(B3) + 2(1 — 2))acov (3, B).
Minimizing avar(A3-+(1 — \)3) requires equating the above equation to 0 at
A =0 to obtain: i . i
2avar(3) = 2acov(3. )= avar(B) + avar(B) — avar(3 — )
and the lemma follows. m

For B:=3;, and B:= Bers the above Lemma 3.2 proves the equality
(3.17), where the asymptotic variance-covariance matrices of the IV and GLS
estimators are avar(8;y) = o2((X'2)(Z2'Z)""(Z'X)]"! and avar(Bg.g) =
(X'E-1X)"!, respectively.
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3.2 Nonnested model tests

If there are separate or non-cncompassing families of hvpotheses of null and
alternative hypotheses the following test situation can be assumed. where it is
tested under the null that the simultaneous pdf of the sample equals the joint
likelihood function £, and under the aliernative that another joint likelihood
function €4 is valid:

Hy: fly.a)=f. o € §ln 18 true
Hiy:gly:8)=:f4. 8¢ Qg is true

with 25 Nl # Qg or Qg and Qe LUNg # N or g, Parameterizing, using a
single parameter 4. we can write a new pdf as a (log}linear combination of f {
and ¢(-) @ A{yie.8) = (f{yia)) (g(y: ﬁ))l_q' with normalizing constant

T (f iy a)) {gly:8) }'= 7 dy. Hence, the simultaneous pdf of y can be

- %
-1
written as A{y: a. 8} = (]+:: AT dg) {'?;Ffll_ﬂ".
‘Taking logarithms Inh ~ Iné=Iné+(L—~)néy—Inf ';’“ FLEN dy the

score for the LAT test statistic can be written under the null as:

alnf

B ‘” =sp=¢ (Fiy)=lnfp-ln€a-Fp, (Infy-Infy).

Proving this score relation. we can rewrite

t e il
dlué ¢ 1
a: = Infy-Iné A5 /f F‘ ‘dy=Infy-Inf f-—— / \q'dg
| S ff”{ d’t,! Tx

\_V_._/

¢

) ') L3 . . . oTEL fj
111{.[]—111!_.\—;—’}./_x ('!I’Jfllll Ay clufy-In (_,1—fm ('(;} f“f by

{ o
— Infp-lnf - / (r:fﬁ {ln£,) f_l_‘ ""-r:.f_]_,’ nf FG) ey

Inf-1n £ 4- (Info-né e 6 T dy—nfy-In € -(E{ln ) -£ (In€,q) ).
afa

or s,= 0{;’\.”{ L =In f“—lnfa.—f “(nfy—In ) Edy=Infy-Tnfa-Fyg (lnfy-huf 4).

Now. two eramples of nonnested tests will be treated:
e Cox test statistic for two linear models;

o (ox test statistic for two nonlincar models.



48 CHAPTER 3. TESTING IN LINEAR AND NONLINEAR MODELS

3.2.1 Cox test for two different linear models
Assume the following testing problem:
Hy:y=XoBy+€ €0~ Nn(0,03L,)
HA=Y=x1ﬁ1+€1 €1~ N, (01‘7?171)
with the corresponding logarithmic likelihood functions:
Ly (Bua U%?Y- X—u) = —% In2m— % In oﬁ > ﬁ‘{ (y — X{IBUY (¥ — Xo0By)
Ly (B, 0ty X1) = —§In2r — §Inof — 5= (v — XuB8)) (y — X4y)

leading to the (unrestricted) ML estimators 3, = (X4 X)X,y and
-2 Q—Xuﬁu (y -XoB,) [(1 xt){xéxu)']x:ﬂ)"] [(1 Xn(x:.xu —13‘-:,!}'] 1 ’M i

wrth ldempoteut matrix My = L,-Xo (X} XU) X} and B, = (X' 1) Ky

with 67=1y’M,y and idempotent projection matrix M, := I,-X; (XX, ) 1XE.
The score hecomes under the null:

so=Lo (éu;yfxu -Ly (él;y‘x])'EH.; {Lu (én:y.xn) -L, (gl;y‘xl)}
with 8 := (B:,,érf,)'and 0, := (f');,&f f
Taking account of the asymptotic properties of the ML estimators:
0=Lo(B0:y,X0)-L1(81; y,X1)-n [p]jm “,",{%L[I(éﬂ;y|Xll)‘Ll(él;yexl)}:I
n—o0

At the point 6,=6,, [plim {HD,{;I;Ln(én;y.xo)}] :Ln(ég;y, Xy), such that the
—+00

score becomes 59=-L(8;:y,X;)+n | plim ',,U.,{-,%Ll(@;:y.xi)}].
n—oc
The concentrated loglikelihood function for H; becomes:
Li(@i;y, X[, =4 n2r-§ Inod-gh(y-X1B,) (v-Xu )
(1]

n ] A - 3 = e
=§(n2m +1)- 56| or plim B, = plim ,,,B, = B5. Thus B, can be

—£L Inai,
obtained fr0311 reestimating H,, where X,.B[, can be interpreted as a dependent
variable or JBI :(X,i X4 )X'; Xg,G(,:(X'l X, ) A X‘; X(](X;}X{))_ A Xny.
Substituted in the formula for the residual variance of H, under Hy:

7 = -~ (v-%B) (y-XiB,)
(y Xm@;) =t Xnﬁg XIEI)J (y — Xm@u e XUJB{J = Xlal)

’

5= XoB0) (v = XoB) + (X080 - X, (318)

S|—= 3|~

(Kuﬁn — X151) +2(y - X[lﬁ[l)’ (Xnﬁn = le"])

Ep
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Substituting in the score:

22
n -
Gy = %111 53 — 3 [plim {lnﬁfu}] s Fh— 9
— o0 By="0y pliln&‘fﬂ
o Bu=8y

Since plim&f0 has to be computed, consider Xu,@u - Xl,(_il instead of

—20

Xo8, — X18,. ie.

) Xﬂau'xl()?lxl)_I)F;Xllan=(1n‘xl(x,lxl)_lel)xﬂf?ﬂ )
=M, X08,=M,; Xo(X;X0) X (XoBy+e0)=M; XoBy+M; X0 (X, Xo) ™ 'X,€0
N Ny

¥

8p=Ho

so that plim (XoB3,-X18,)=M; X8, and plim{Ley(XoB,-X18,)}=0.
Hence, the estimator for the probability limit of 53, in formuta (3.18) can
be split in two parts:
e an estimator of the variance of the true model under Hp;

» an estimator of the extra variance according to the difference between Hy

and H1:
22 s 2 .2 1 = =\ P -
gy = plimoy, =0y + Py (Xuﬁo - Xlﬁl) (Xnﬂu - Xlﬁl)
s Bo=0y

iy 1/, - ~t N o~ -~
645+ n (ﬁnxnxilﬁndﬁlx(’mxﬂﬂu + ﬁlxixlfh)

—o3+1 |y X (X Xo) X5 Xo(XpXo) ' Xiy-2y Xo(XoXo) ' X)X, (X1 X0)
Sn fi:,

By
X, Xo(X5Xo)  Xpy+y'Xo(XhXo) " XX (X{ X)X Xo(X)Xo) Xpy
Ay
L 1 st s ot ' - Fa
orf-)', + - [ﬁuxgxnﬂu — BpXoX (X1 Xy) lxrlx"ﬁtl]

w 1. .
= oyt Hﬁllx{)MlXUr@O'
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Hence, the score (3.19) becomes:

-2 ~2
,_ n a n o
Jp = Ehl("—"‘:;):?m‘? Y IJ >
T10 a6 + B8 XuM; X 3,
-l e n y'M;y

h] 3¢ a"ﬂr a o A 4 7 s
. Eﬂné_o +J£nh:'¢'°’ 2 ¥ Moy + B, XM, X0,

The LM test statistic satisfies then from (3.1) that &, ,, = 82avar(3,) = x2

so that under Hy : 55 & N (0,avar (3)), where avar (89) is the asymptotic
variance of .

A significant (negative/positive) value means that we have to reject Hy and
an insignificant 8, value means that we do not have to reject Hy. Hence, the fi-
nite sample distribution of the test statistic 5, depends on unknown parameters,
and cannot be derived. If, however, M; X, = 0 (X, orthogonal on Xy) then

both models are nested and an exact test (statistic) exists, i.e. §; = 3 In g:—ﬁg{,

which is equal to an F-test statistic for Hy : R? = 0. Given the estimate @var (3,)
the ti i §0), —pm EN(0,1).
of the asymptotic variance avar(sg) 753%”?:3 (0,1)

Pesaran (1974) has shown that @oar(é,) = ;—"jiﬁ;)x;,M'l MoM; X083, .
0

1
In practice, two tests are performed (with §, and §; ), with both linear models
respectively as the H; (‘true model’). A significant value of the test statistic
T,%T_—)- points to the rejection of Hy (if §) is significantly smaller than zero,
avar(&g

H is rejected in the direction of Hy = H,  if 4, is significantly larger than zero,
H is rejected in a direction away from H, ).

The outcome of these two tests points out that:

e either the data is consistent with H;

e or the data is consistent with Hy = H,;

e or the data is not consistent with Hy, nor with H4 = H;;

e or the data is consistent with both Hy and H4 = H,!

The test of the difference between linear models in Subsection 3.2.1 can be
extended to nonlinear models

3.2.2 Cox test for two different nonlinear models

Assume the following testing problem for two nonlinear models :

H[] o f (XU! )Gl]) 0 =] €p ~ N‘n (01 0(2}111)
Hy:y=g(X1,8)) +& g1 ~ N, (0,0%1,).
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Testing Hy against H 4, the underlying LM test statistic for the Cox test leads
to the direct analogne of the score (3.19) for the linear case & ~ N (0, avar{5;))
under Hy, where, according to Pesaran and Deaton (1978), for the above non-
linear models:

mféu):;&% [f (X, 80) -8 (Xls:@m)]! (In‘z(ﬁ’z)_lzf) [f (X0, 8y)-& (Xhﬁm)} )

where the n x p Jacobian matrix Z = 2(3(,) = %ﬂl‘ . and E]m is

8,=8,
the ML estimator of @, if the null were true, so that avar(sy) is calculated

by regressing on 7 the residuals from the regression of f (X(], f‘io) on H4 and
calculating the residual sum of squares.

Example 3.1 A linear versus loglinear specification

Hy (linear model): y = Y 1, aix; + &g, with g9 «~ Ny (0, o3l,) against
H;(loglinear model) log v = Z;ﬂ B, log x; + £, with g, «~ N, (0 ok, )
for linear models there are constant marginal rates —Y——a, (i=1,2,....%) and

xi
so that the marginal rates change with the average rates then. A mixed form
between loglinear and linear models is the Boz-Cozx transformation.

P -1
for loglinear models there are constant elasticities Tll':z— a—‘i’_{%:g){—_ (l) =8,

Example 3.2 Consider the following model (Boz-Coz transformation):

A Ai
y:(i): lai( )+53

with yj)‘) JT_ and x('\')——i—— (i =1,2,...,m) , which imnplies the following
test Hy: A=1 (A, =1) (hnear model) and H1 LA Flor A#1
Note that, if A = 00, we have a loglinear model because (according to the
Taylor expansion around A =0 (X; =0)):
A 4
2-7'—1 =logy; + %(logyj)z )_;—.(logyj) +.orifA=0, —-‘-'— = log y; and

A'l
”—3— log z;;. Hence, 0S A< 1 (02 XA £1). Now, Aand X (=1,2,..,m)

are to be estimated with ML:

n " 2
azrcrrla::!\c’\L(o'E,a,,/\ Aiiy, X) =max {—%1In27 -~ Zno;
1 Y Rl Lk J
1 n 1 " ::'.\."-—] 2
“Tp? 2 - W
# j=1 i=1

which yields the ML estimators c"r?, &, A (£==1,2,..,m).
If A();) is close to zero, the corresponding variable occurs multiplicativelys if,
on the contrary, A(};) is close to 1, the corresponding varizble occurs additively.
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Figure 3.1: Demand of rent buildings

v Number of Number of private | Total number of
ear ; oy L
corporation houses rentbuildings rentbuildings
1962 1832]
1963 17474
1964 13355
1965 14004
1966 17039
1967 9550 25027 34577
1968 11992 11957 23949
1969 11399 23888 35287
1970 14259 25553 40082
1971 13300 26674 39974
1972 12100 23209 35309
1973 7247 22314 29561
1974 4946 24322 29268
1975 2250 19671 21921
1976 732 16211 16943
1977 358 4842 5200
1978 861 5610 6471
1979 354 6932 7286
1980 1952 8523 20382
1981 4151 15971 20122
1982 5542 14502 20044

Example 3.3 Dutch rent buildings (empirical example).

Given the number of rent buildings, which were subsidized in the Netherlands
during the period 1962 — 1982 and the following specification for the desired
demand of rent buildings:

vph® = anyb + az (Ayb)_, + az (%f) + oy (ﬁ%) +m

uph* = the desired demand of rent buildings

yb =the real available income (National Accounts, CBS)

hip = the rent of rent buildings (Monthly Statistics, CBS)

pe = the cost of heating and lighting (Statistical Pocket, CBS)

pe = the price index of the family consumption (National Accounts, CBS)
n = time that passes by before a change in income is perceived as permanent.
For the investors’ supply function:

Aaph = B'x + 1y = dy Avph* + (1 — dy) Aaph_, + dyAeww_; + p,
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where the vector x contains the variables which are important for the investors
to invest in rent buildings, aww the supply of social private buildings (“woning-
wetwoningen”) and aph the number of private rent buildings in Figure 3.1. We
obtain the following function to be estimated:

Baph=pitB; Bub+8, (AAYS)_, +65A (12 )48, (12 ) +B5 Aaph_1-+Bs Aawurteo,

with Aaph the increase in supply of rent buildings (Figure 3.1}, Aacww the
surplus in demand on the market of social private buildings and AAyb_,, the
presumed permanent real income.

Under Hy we estimate, with OLS, the following linear relation:

Aaph = —0.459 + 11.07TAAyb_3 5 + 0.702Aaph_ + 0.710 Aaww_,
(t—ratio)  (—1.853)  (2.038) (5.382) {2.438)

R} =0.956, 6., = 0.265, p=-0.076, DW =2.237.

If we look at the above relation it strikes that neither the rent nor the
cost of the complementary good energy (lighting, gas and heating) are included
in the regression because they are not significant. An cxplanation for this is
presumably the fact that we used real rents and real costs of cuergy. After all,
the nominal rents and nominal cost of energy stick closely to the price-index
figure. As a result. both real components imply an approximately constant
evolution in time of the two real price variables. The influence of these two
variables is captured in the constant term which is significant. despite of the
fact that we explain the first order differences in the supply of rent buildings.

Under H;. we estimate a corresponding relation in logarithms:

A h) = —0. 40 b)_, - H44A
In (aph) (_(31%515?+3.75%AAIH(31 )_2"’+(0-1.§u.1) In(aph)_, +

1.010A In (eww)_,
{2.435)

BRI =0.775, 8., = 0.63, 5=0236, DW =1439

The linear model is preferred to the logli del b 2 =
e linear model is preferred to oglinear model because ﬁﬁ%’(s‘rﬂ
1.255, which means that Hy (i.e. the linear model) is not rejected.

3.3 Theoretical and empirical exercises

1. Demonstrate that the score test can be formulated as a conditional moment
test.

2. Apply an LM test on the Box-Cox model.

3. Suppose n independent observations ¢1. 42, ..., Yn, sy, incomes, drawn
by simple random sampling from a Pareto distribution which has the following
pdf P(y|o) = 2100007 4 > 10000, « > 0.

What is the Mi estimator of a? Test whether & = 6 for the sample ¢ =
10000, y; = 11000, y3 = 12000, y, = 13000, 35 = 14000 using LR, LM and Wald
tests.
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4. Test the validity of the choice for various instruments and of the implied
moment conditions when using the data underlying Exercises 2.3.3.
5. Suppose that y follows a Weibull pdf as defined by Greene(2003), pp.522-
523: _
fy)=apy’~'e ",  y>0,a,8>0.

(a) Obtain the ML estimators of & and 3 for a random sample of n obser-
vations. Note that 3, cannot be found analytically.

(b) Obtain the information matrix and the (asymptotic) covariance matrix
of the ML estimators.

(¢) The following data were generated by the above Weibull pdf:
1.3043, 1.0878, 0.33453, 0.49254, 1.9461, 1.1227, 1.2742, 0.47615, 2.0296, 1.4019,
3.6454, 1.2797, 0.32556, 0.15344, 0.96080, 0.29965, 1.2357, 2.0070, 0.26423,
0.96381.

i. Obtain the ML estimates of & and 3 based on this sample, and estimate
the covariance matrix of the estimates.

ii. Obtain the ML estimate of a under the hypothesis that 3 = 1.

ili. Carry out an LM, a Wald, and an LR test for the hypothesis that 8 = 1.



Part 11

Time Series Analysis



falin §
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Time plays an important role in economics, It takes for example time for
a firmn to implement new investinent plans in response to a rise in the demand
for its product. or for a houseliold to adjust its consumption to a decline in its
income. Fronomic ageuls may also delay their decisions because of imperfect
information. Mereover. it is often {ruitful to analyze data over time. e.g. to
study business cvele effects. The analysis of time series is an important tool
to capture mueh of these dynamics into economic modeling. The scope of this
part is twofold. It serves as a thorough introduction into most ly linear time
series analysis for readers with a quantitative background. For more practical
purposes. it further provides extensively documented guidelines that incorporate
major new developments in the ficld, including several real world exercises and
CAses.

Chapter 4 provides o typology of linear dynamic models to become ac-
guainted with terms. such as e.g. antoregressive distributed lag. partial ad-
justient and error correction, often used in the fliekl. In Chapter 5 nnivariate
ARIMA models and their specific characteristics are disenssed. 1o the sanme
chapter the standard Box-Jenkins procedure is extended to include tosts for unit
rools and for aberrant chservations. Moreover, point and interval forecasting
of ARIM A models. but also density forecasting e.g. tor underlving asyinmet-
ric probability distributions. and theoretical and cmpirical exercises as well ag
solved and wnsolved (computer) cases based on real-world economic time series
databases for ARIAA models are provided. Chapter § deals with univariate
cointegration and causality which have been proved very useful in modern time
series analvsis (cf. the shared Nobel prize in economics for Clive W.J. Granger
in 2003). After establishing the direcetion of causality. an overview is given in this
chapter of how to implemnent the identilication-estimation-forecasting procedure
of transfer function models.

Aultivariate modeling including feedback relations between cconomic vari-
ables are introduced in Chapter 7 on nmultivariate time series {(inchiding multi-
variate cointegration, causality. vector autoregressions and dynamic structural
cconometrie models). Finally, since means. variances and covariances of eco-
nomie and especially financial data are not titne-invariant (cf. the shared Nobel
prize in cconomics for Robert F. Fngle in 2003) much attention in the (ield
went. to regime switching models in returns. volatility modeling and conditional
heteroskedasticity {((G)ARCH modeling). This is the subject of Chapter 8.



Chapter 4

A Typology of Dynamic
Models

This introductory chapter is meant to bridge each reader’s basic knowledge
in time scries to an in-depth analysis in time series in the next chapter{s).
Therefore. simple linear dynamic models known to most of the readers. as a
linear autoregressive distributed lng model. where the dyvnamics are explained
through a sequence of lagged values of an explanatory variable (or of explanatory
variables) are discussed. Starting from such a simple model. one can directly
verify that there are cight special types of such a simple model. Several of these
simple models are {probably) well known such as the partial adjustment maodel
and the error correction model.

4.1 Autoregressive distributed lag models

Define a gencral lincar dynamic transfor fanction model, where it is assutned
that m 1ypes of cxplanatory variables o, determine a dependent variable y for.
in principle. varions periods of time withiout any feedback from  to one or more
8, 0T

(1-(.-',) Y = zm | "_Ir'_*-{L)ff.‘u -+~ .,;‘(L) g t=1.2..T (41}

t

with lag polynomials in the lag (or backward) operator L (L =)
' ! f . PR AL ' . . it . ]
WD) = L= S0 ali (D) = T L (L) = 0 g,
fid ) . AT
where @, = 1, and error terms £ w [(J,_o*;) {+¢. white noise or WHN with

variance o2}
For the very simple case that p=m, == Lom; =0, ¢=0.m =2 and for

the unity vector:

b = -3[} —+ D’I.T,‘_ - _.'"'Zf‘szfg_[ + _ig;;(?}t—l + &y, (12)

59
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which is called the class of linear autoregressive (y—,) distributed lag (x¢, ;1)
or linear AD(1,1) model.

In general one can discern the following (eight!) special types of linear an-
toregressive distributed lag models from the simple model (4.2):

e the static (linear) regression model, which is an AD(0,0) model obtained
from model (4.2) with 8y = B3 =0:y, = B, + Bzt +&;

e the univariate (linear) time series model, which is an AD(1.0) model
obtained from (4.2) with 8; = 8, = 0 : y, = By + Baye—1 + & (with
the random walk model as a special case, i.e. G, :=0, 3, :=1);

e the (linear) partial adjustment model, which is an AD(1,0) model obtained
from substituting 5, = 0 in (4.2):

=B+ Byze + Bayi—1 + €¢; (4.3)

e the (linear) leading indicator model, which is an AD(0,1) model obtained
from substituting 3, = 83 = 0 in (4.2) so that y; = ) + Boz1—1 + & (e.g.
unemployment in the capital goods sector as a recession indicator);

e the (linear) finite distributed lag model, which is (also) an AD(0,1) model
derived from model (4.2) with 35 = 0: 4, = By + B3¢ + Bowe—1 +£4;

e the (linear) difference data/growth rate model, which is an AD(1,1) model
derived from model (4.2) for 8 := 3, = —f, and B3 = 1: Ay, = By +
;3A-’I-' t + E¢;

e the (linear) ‘dead start’ model, being an AD(1,1) model obtained from
(4.2) with By = 0: yr = By + o1 + Bays—1 + €1

e the (linear) error correction model, which also an AD(1,1) model derived
from (4.2) with Zle B; = 1 (‘homogeneity restriction’).

Out of these eight special AD cases, the most popular submodels are the par-
tial adjustment (PA) model and the error correction mechanism (ECM) model,
will be discussed more comprehensively in the next sections.

4.2 The partial adjustment model

Given a proportionality steady state or equilibrium relationship between a de-
pendent variable ¥ and an independent variable X as in Y = CX, where C is
a constant of proportionality, logarithms can be taken: logY = log C' + log X,
so that:

y=c+m, (4.4)

where y :=logY, x :=log X, and ¢ := log C. Now, it could be thought of that
economic agents would like to adjust their costs because there are ‘disequilibrium
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costs’ (if the static relation (1.4) is not satistied) and ‘adjustment costs’. Tf hoth
kinds of costs are assumed to be quadratic, the following intertemporal cost
function could be minimized with respeet to the planed values of the dependont
variable:

Lo=3 7" Reh l —e @) + er—n rede (=)’ {(4.5)
S S e
Slisevprilihieinen enst” Sdiustient cost”

with unitary disequilibrin and adjustment costs Aj. Az > 0 and discount factor:

gpi= 1 (E=0) and kg = HL___” (l%m) (£ >0,

Unconstrained minimization of (1.5) leads to:

wl = Ay 4 3w+ Sy (1.6
with 3, = A:—AL)\— g3 = /\_1\:])\_ and 3, - A.’\:)\-_\ =1 .

I 7 is unknown al tine & the cconomic agents have to minimize £ (L)
instead of £,. According to the cerfainty equivalence property (4.6} beconies:

y o= 3y 0 S E{weiy o) + By on

y=3aF 303U - ?}f) -3 = Elrg g }l (4.7)

which is precisely the AD(1,0) partial adjustment {PA) wodel in {(1.3).
The mean lag of a PA model

Given a normalized lag stracture A i= {a i = W12, .ca; 200 3, a; = 1}
and the corresponding lag generating function A (p) 1= >, a0 with p € =1+l
the mean fag of an arbitrary linear dynamic model is defined as the first order
derivative of the lag generating function at the point p = L: in other words. the
mean lag is equal to A (1)

This definition Las 10 be applied on the PA model (4.3). Therefore. a stan-

dardized lag stmeture has first to be derived from solving (1.7} by successive
substitntion:

w = Sy+dr bdamoat e
. t—1 i . E S B e m
= By, o BN+ 8 oy Sy T 20, Ly Fage 3.
I 0 < 3, < 1 (which is always the case for the PA model since 3, = —L—AI'\_' -
with Ay Ar > 0) and if £ — oc. them:
3 - o
Y —“3-; 3y 3 e+ 2 B {1.4)

from which it is clear that {a; := 3,3} } is a normalized lag structnre {a, > 0.

Z:ﬁ_” a; = T—i?_ = 1). Hence. the mean lag of the oo dimensional distributed
: [

lag function (1.8) may be derived either disectly or inddireetly (by means of o lag

generating function).
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Explicit or direct derivation of the mean lag of a PA model
Consider the distributed lag function:

Y = a+ BoTy + B1Te—1 + BoTi—2 + ... + BpTi—n + &1,

where;

e the long run multiplier is defined as 3, + 3, + ...+ 3,, and should be finite
(i.e. z;’;’{, ]ﬁj| < 0); hence 3; — 0 as j — oo (f, = impact multiplier);

e the mean lag is a weighted average of the lags in which the j-period lag
enters with weight 3; or with relative weight \:3@3—; hence, the mean lag
i=( t

2 jendBy .
cauals T2,

e the median lag is the number of periods required for half of the long run
adjustment to be completed.

Now suppose e.g. a geometrically declining lag with coefficients 3 = N, j=
0.1,4..., 0< XN 1
The corresponding oo dimensional distributed lag equation becomes:

pw=a+/ (Ig + Az + /\2.’5;_2 -+ ) !

which is similar to (4.8), and where 3 is called the impact multiplier. Then, the
long run multiplier can be calculated as Y77, 8; = 8372, ¥ = 125 and the
mean lag can be computed as:

N

TradBy S BYEa 3§ o 00
Tholy - ISV T TRoN T
with S:=A +2\% + 323 + ... and AS=A2 + 203 +- 32 + ... or

S —AS=A+ A%+ N’ + .=12;, such that § =

hence, the mean lag equals Ll_‘lfx’—n =25

S
(1-A)""

Indirect derivation of the mean lag (with a lag generating function)
The lag generating funct;io_n can be derived from the normalized lag structure
in (4.8) A(p) = B, 3.2, 830" = :T_‘-i“; and the mean lag equals:

e | o s

A (1) =8 = 4
O =g | “T R

(4.9)

where (1 — ;) is the adjustment coefficient so that the lower the adjustment
coefficient the higher the mean lag; if 8, is large (e.g. 0.9) there is slow adjust-
ment to equilibrium since the mean lag is %55 = 9 periods and the adjustment
coefficient is low (0.1) then (flexible prices require a large adjustment coefficient).
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Rewriting the PA model (4.7) as
Aye = Bo+ B (@ —y—1)te
= 60+ﬁ1AIt+ﬁl (I—y)t_1+€¢,

so that the PA model is a special case of the error correction mechanism (ECM}

model {¢f. infra):
Ay = Bo+ BBz + (1-f4) (@ -y),, e (4.10)
e, et -l

impael response nlisuquilihium ndjustment

According to Friedman {1976), the costs of an increasing number of assets
y owing to an extension of the total portfolio  is smaller than the costs of
misallocation of stocks within a given portfolio. Hence, for the equilibrium
relationship y = dz (0 < § < 1}, a PA model is found from:

2 2
min 35320 [h @F —820)" + X2 (0 — -]
which leads to 3} = Tf%\‘é +535 + Y15 OT by the certainty equivalence theorem:

yo = $UBC 4 ey e = B10me + (L- B p-1 + 6 de

Ay =81 (0xy — 1) + &2
= B, A (Bz,) + By (6xe—1 — ye—1) + ¢
= .515A$t + 51 (Bxze—1 — Y—1) + €2

0-’1
Hence, the r&su.ltlng optimal PA model can be rewritten as an example of

an ECM model.

4.3 The error correction mechanism

From the basic linear AD(1,1) model (4.2} with 8, := 0 and 2?:1 3; =1 the
ECM model results, or:

ye =012+ (1 =8 — By} &1 + Baye—1 + &1, Le.

Ay, = B Az +(1— B3) {z —y),_, + ¢, (4.11)

which is the simple first order ECM model. The ECM model was first introduced
into the econometric literature by Sargan (1964} and it was popularized by
Davidson et al. (1978).

Remark 4.1 It is possible to test the homogeneity restriction from:
Ay = ‘51 Az + (1 - 3. ) {x - y)t_l + (ﬁl + By + By — Dz s + &
N , N - s
9 82 9:3
with Hy : 03 =0 EI__ ,8‘ =1.
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The mean lag of an ECM model
Apply successive substitution to (4.2) with 3, := 0 and 0 < |3;] < 1:

Y = Bixe+ Powr1 + By + &
Bixt + Baxe—1 + B3 (ByZe—1 + BaZe—2 + Baye—2 +&1-1) + &4

I

= 1—(] (B lﬁz 4 5 116 )Tt gl= 18—371‘ = E,_U 1336: it 3390

Yo Bs (ﬁz 7+ 31) Tpoi — ﬁ—It + Y720 BaEe—i-
B B3

Now a normalized lag structure is obtained since all the weights are positive
(if B, > 0) and sum to one (E:Uﬂi (-gf +Bl) = -gf — 1)‘ so that the lag
generating function satisfies:

A(p) @ =B
(524'.31) E?ZUB;P{ By

-
(+8) 5,
1—Byp By

and the mean lag of an ECM model amounts to:

(ﬁ ! ) ;@ 'f'ﬁ

’ Hy ( 2 183)
ALy = =2 Ceg —f3) = =PI/
( ) (1 33 2 ( )( 3 . (1 :33.0)2

_ (Ba+BiBs) _1-=pBy By+Bs (4.12)
- 2 = - . :
(1—B8,) o= 1-B;
so that the mean lag of an ECM model is always higher than that in a PA model
(see (4.9)). Hence, the ECM model gives less flexible yet more accurate results.




Chapter 5

Univariate ARIM A Models

This chapter investigates the identification. estimation and forecast of autore-
gressive { AIR). moving average (A7) and autoregressive moving average (A 14
time series. [F these thme series are not stationary. at least one unit root will
be present and the widerlving timne series is called an integrated antoregressive
woving average (ARTALA) thoe series model. Finally, a discussion onaberrant
observations is included iu this chapter.

Ouly discrete-time time series observations will be considered here and betore
starting the time series analysis it is of paramount importance to attribute the
riglit dimension Lo the daa.

For example, i Finance, the data g may be defined as returns on assets
expressed as either ordinary returns. compound returns, or simple returns. We
prefer compound returns hecause aggregate compound returns over several pe-
riods ave just the sum of individual compound returns and the generalization
of discrete-time compound returns to continuous-time ones is straight forward.
To illustrate this consider three defimitions of retwrns: 1. ovdinary returns
e = 24y — 2 g0 20 compound returns g o= log{s + di) - log 2.
3. simple retuns ysy l@ witli z; the closing price {spor rate] of an

-

f
asset and dy the dividend paid ac period £ The advantage of nsing the compound
returns definition becomes clear when comparing. without loss ol generality for
d, = . aggregale returns, first over two periods for compound and sinple ve-

turns. respect ively:

2)

p =logs - logay =logay .y - logz Flogz, —loga 1= yauvi e
{2) 1= 3i—1 _ fmeoi—milelEi a3 =3 B Feomoo, ,
Paor =" : e R A -1+

_, P
T+ Yaeo 0 H Wt 1-
In general, for k-period returns:
[k} . .
Yopyy TOMk T HL k-1 L
ik ,
Unioy =Wty R ko Fa e LT - a2t
i kW ko2 Wi
so that nonlinear termns enter in the aggregate of simple returns.
Sinee the first definition of ordinary returns is not dimensionless. it is clear
that the second defiuition of compound returns is (by far) the most preferable

60
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one.

5.1 Stationary processes

After formal definitions of time series and stationary processes, several examples
of stationary processes will be presented in this section.

Definition 5.1 A discrete time series (or stochastic process) is defined as a set
{y 1} of observations, being taken at equidistant time points(t = 0, +1, +2,+3, ...or
Z:={0,+1,+2,43,...}).

For linear models, first and second order moments are very characteristic, if
they exist:

E(y:) = p, (expected value)

El(y. — m)*] = o (variance) _

El(ye — ) (ye+x — #esx)] = 7ex ((auto)covariance).

Definition 5.2 A stochastic process is called strictly (‘strongly’) stationary if
the simultaneous pdf of the vector (Ys, Yes1, Yes2, ... Yts k) is independent of t for
every kelN.

Definition 5.3 A stochastic process {y,,t € Z} is called (covariance, second
order, weak or wide) stationary if E () and E (y,ys+x) are finite and do not
depend on t, for every keN.

It is clear that a strictly stationary time series with finite second order mo-
ments is also stationary.

Examples of stationary processes

1. White noise (W N) process describing an iid stochastic variable with ex-

pectation zero and constant variance, or &, o (0,02). For the WN sto-
chastic process {£;,t € Z}: E(g) = p = 0 and E[(e, — p) (g5 — p)] =
0t,s02 (with 8y s := 1 if t = s and ¢, := 0 if t # s) Vi, 5.

2. Noise is a stationary process with constant expected value (e.g. zero) and
cov (€4, E4k) = V-

3. The deterministic trigonometric series y; = Acos(t\) + Bsin(t)), where
A and B are known uncorrelated random variables with mean zero and
variance o and where A is a known number, is a stationary time series.
Indeed, E (y;) = 0 and

T = cov(y, Yesn)
cos(tA)cos((t+h)A)var(A)+sin(t\)sin((t+h)\)var(B)=c>cos(h))
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&
o

Even though A and B are random variables, this type of time series is
called deterministic in time series theory. Once A and B have been deter-
mined (at time —oo say), the process behaves as a deterministic trigono-
metric function. This type of time series is an important building block
when modeling cyclic events in a system, but it is not a typical example
of a time series that will be studied in this book. Predicting the future
would be too easy in this case.
4. AR(1) process y; = ays;—1 + € is stationary if |a| < 1, because then:

(a) E(w) = E (z:;; atey_s + a*yo) — 0 provided that E (y,) = 0;
)03 = ) = B (Sl et o) (Eich o +fse) s oy

finite for increasing ¢ if |o| < 1 (then o2 = 322 0*E (g} ;) = 1257 < 00); !
(¢) the autocovariance only depends on the length of the time period between
two observations:

cov (Yo yerrx) = Elye (0yers—1 + i)
E [‘yt (akyt + Z?;lt Qj€t+k—j)}

afol = v = vog (h=0,%1,£2,..).

I

In general, the random walk model Ay, := y — y5-1 = & with & v (0,02)

is not stationary because the belonging variances are not finite:
t—1 t—1 9,
var (y)=var (Ea:n £¢—i T yﬂ) =3 i var (&) +var (yo)=to2+o3,.
Clearly, increases in t lead to exploding values of var ().

Definition 5.4 The autocovariance function of a stationary process {iy,t € Z}
is a row {7V}, k=0,£1,£2,...

Definition 5.5 Autocorrelation is e normalized autocovariance, or py = %ﬁ,
k=0,£1,%£2,..

ko2
E.g., the k** autocorrelation of an AR (1) process is p), = “—a;& = aF.
"

Definition 5.6 The autocorrelation function (ACF) of a stetionary process
{ye,t € Z} is a row {pi}, k=0,£1,%2,... for which py = p_; and pp = 1.

1If we substitute furwardly, the appropiate stationarity condition is || = 1 mince the
AR{1) model implies that gr—1 = %y; - %a; then.
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5.2 Autoregressive (time series) processes

5.2.1 Stationary autoregressive processes

Definition 5.7 A stationary process {y,,t € Z} is called an autoregressive
(AR) process of order p if there exists a WN error process {sy,t € Z} such
that & (L) ye = yr — 1y4—1 — @alf—2 — .. — OplYp—p =&, t € Z.

Stationarity (or stability) condition:

An AR(p) process {y.t € Z} is stationary if all roots z of the equation
a(z) == 1— a1z — @2® — ... — a,zP = 0 have a modulus |z| > 1, where the
modulus of a complex number z = 2 + iz is defined as zp := \/z? + 25
(Euclidean length).

Comparing this definition to Proposition C.1 in Appendix C or a()\) =
(—1)" (W —an P71 — o™ — ... — @) =0, it is logic that the characteristic
roots z should lie outside the unit circle because they are just the inverse of the
corresponding eigenvalues A, or z = 31\—

Property Invertibility of an AR process (with lag or backward operator L
(Lys = y¢—1, then L'y, = y,_;) and identity operator I (Iy; := ;).

If (L) and 3 (L) are two polynomials in L such that a (L) 3 (L) = I, where
the pelynomial orders p and/or g can be infinite, then 3 (L) is called the inverse
of a(L) or B(L)=a1(L).

In general, a (L) is said to be invertible if the characteristic roots z of
a(z) := 3, aiz' = 0 are larger than one in absolute value. An AR (p)
process {y,t € Z} is stationary if and only if o (L) is invertible.

Example: Suppose a stationary AR (1) model y, = ay,—; + &, with & %
(0,02) then a~! (L) = I + aL + aL® + ... because

a(lya ' (L)=(T —aL)(I+aL+a’L?>+..) =1
Computation of the autocorrelations of an AR process: Yule-Walker equa-
tions
Premultiplying an AR (p) process with y,_j, taking expectations and divid-
ing by the variance v, of {y}:

E(yr—sye) E(ye—kve-1) E(ye—xti—p) E(ye—xetr)
Yo =G To g+ Q‘p Yo + Yo

and since E (y;—r&:) = E (y) = 0 for all £, k > 0:
Pr = 1Py +Q2pg_g + ... + appy_,, for k>0,
or as a system:

pL—py — 2Py — ... —Qppy,_y =0
P2 —@1py — @2y — .. —Qpp,_5 =0

Pp—CQ1Pp_ 1 — Q2P 5 — ... — appy = 0,
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Defining:
Ao /S P Pyt Ppod 2] £1
4] Py £1 Py Pposn 89 P2
R:=] # P1 2y P Ppes |, en=]| W |, p=] P3|,
Pp_ Py—a Pp 3 Pp—4 = Po Oy Pp

the above system, which is called the system of Yule-Walker equations, can be
written in matrix notation as R« = p with general solution:

pr = @1 Af + 0 + .+ oA for k>0,

where the eigenvalues A; ( = 1,2,...,p) are the inverse of the roots z of the
characteristic equation 1 — a2z — 0!222 — P =0

The k" component of e is the k** partial autocorrelation coefficient (denoted
as py;.), which is directly computed according to Cramer’s rule as ay = gy =
Jl%l where R* is the matrix R (being a nonnegative definite Laurent matrlx)
with the last column replaced by the vector p. In general o = R 1p, so
that the autoregressive parameters can be expressed as a function of the p

autocorrelations.

5.2.2 Estimation and identification of AR processes

Two alternative measures exist for the identification of an AR (p) process, i.e.
for the determination of the unknown value of p (and the estimation of the
partial autocorrelations). These measures are based on the ‘regression’ method
and the sample Yule-Walker equations, respectively.

The ‘regression’ method

If a sample is indeed generated by an AR (p) process, we have to determine p
and the corresponding parameters o, &, ..., &¢p describing the AR {p) process.
Knowing p, a; (i = 1,2,...,p) can be found from the regression with stochastic

TEEressors ¢ = aiys—1 + Qa2 + ... + Qplt—p + E-

Since the first p observations in an AR(p) model are unknown, the AR(p)
model is rewritten for the remaining T — p observations:

Ypsl = O1lp + O2¥p—1 + . T OpYi +Ept1
Up+2 = Q1 ¥p+1 + Qalfp + o T OpY2 T+ Epy

yr = o yr—1 + o¥r_2 + ... + Op¥yr—p + €T

or in mairix notation y = Ya + & with ¥ 1= (yp+1.¥pr2, .- )
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Yp Yp=1 ‘- n Ep+1
Yp+1 Y i Y2 Ep+42
= p, ,p i and € := p, , 5o that the OLS
Yr-1 Yr-2 7 Yr—p ET

estimator & = (Y'Y) ' Y'y is consistent and asymptotically normally distrib-
uted with estimated variance-covariance matrix $5 = 2 (YY) and esti-

¢
mated variance 67 = ¥=Y& y-Y&)

T-2p
The order of the AR (p) process is equal to the last significant regression
coefficient &), of & (&, = p,,).

Definition 5.8 The row {p..}, k = 1,2, ... of partial autocorrelations is called
the partial autocorrelation function (PACF).

Hence we adopt as identification rule for the choice of an AR (p) model if
Pix 7 0 for k=pand p,. =0 for k > p.

To test the significance of py. we have to know the probability distribution
of py = éy. Hence, under Hj that ee = 0, (at least) the variance of the estima-
tors ¢y is needed.

Example 5.1 AR (1) versus AR (2) processes:

AR(1): yi=ay1 +e56 % (0,62) ,teZ

AR (2): gy = oyl + a2 + 1, with g, & (0.07) and t € Z.

Minimizing 32,7 = ¥, (% — ave—1)” w.r.t. o we find as OLS estimator
& = B with variance
3 - -1 L3
var (&) = op (B{Z,4i1}) =02 (. E (441))

) =1 2
1 —=
= a'gT"l ( Te ) = 24 (la] < 1)

1—a? P

Hence, under Hy: a=p=0, VTa < N (0,1).
Alternatively, when minimizing ¥, nf = 3, (yx — a1ye—1 — ngg..g)g w.r.t.
ay and as, we find as OLS estimator:

~ -1
( ffl ) dl ( 2:3&2—1 Ee Yt—1Ut—2 ) ( Z: YtYt—1
Qg Za Yt-1Y1—2 Et yf—z 2: YtlYe—2
and corresponding variance-covariance matrix:

&1\ _ af B E (T iv-1ma) \
var (&1 ) o] @ T E(%,7s) )

— 7142 ( E(y,) E(w-1m-) )_l
"\ E(y-1m-2) E(yi,)
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_ 1,2 E (ytz—l) E ((aiyt—2+azyt—3+‘fh_1)yt—z))_l
=T ( E ({caye—atosy—s+n,_1) ye—2) E(y? )

- E{yl,) mE(@#,) )_l
_ p-ig2 t—1 Y
Tu ( o E(y2y) E{vi,)

I I A T S 1 -—-a
_ 1.2 e 1 el 1
—ra () (a0 ) e (L )

Hence, under Hy : o) = az = 0,

()= ((0) (G 1))

By induction. we have for a general AR (p) model under Hy (o) = aa =

L=a, =0)
& 0 1 0 --- 0
Al e {010 )
&y o/ \o o 1

or, in general, the (asymptotic) variance of & = py; {partial autocorrelation
coefficient) is estimated as 767 (py) = = (Vk > 0) and VT & N (0,1) under
H[].

Sample Yule-Walker equations

Given a consistent estimator ry = & (k=0,1,2,...,K) of the autocorrelation

coefficients with s; := ¢ Z::lk (zi4x — T) (&¢ — T), the partial autocorrelation
coefficients p,, can consistently be estimated by Cramer’s Rule as:

ék=rkk=%li k:1,2,...

with R the estimated nonnegative definite Laurent matrix:

1 r rz - Th—1
. r 1 Lt Tk
R:=
Th-1 Tk-2 Tk-3 - 1

and R* the matrix R with the last column replaced by p := (r1,72,.. .,*rk)' .
Notice that both methods (i.e. the regression method and the sample Yule-
Walker equations) are asymptotically equivalent.

Example 5.2 The following estimated autocorrelations are obtained from a
row of T=200 observations, originating from a stochastic process for which
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py=—-04 and p, =0, k = 2.

k ] ! 2 ¥ i 3 .3 7 A 7 1

rk I 38 UNIES LB inos N a.on .00 o, o 007 .08

Since 67, = & = 5= = 0.005, the standard deviation of the autocorrelations
is 0.07 and since ry = —0.38, being in modulus more than 5 times the standard
deviation, it can directly be concluded that p, # 0; p, = 0 for k = 2.

Example 5.3 Suppose a row of T=50 observations with as estimated autocor-
relations rp = py.:

k | ! | .'a‘ ' & L 7 L] L 1 ] 2

Tk ' 0.8 0.7 61 0.54 P .46 0.18 0,29 7 005 .6 0.0

According to Cramer’s rule solutions of the Yule-Walker equations, the es-
timated partial autocorrelations satisfy:

1 084
0.84 0.73

084 1 0.73
0.73 0.84 0.61

1 084 0.84 }

r = 084. Tay = = (.08, Tag = 1 0.84 0.73 = —0.075.
0.8 1 0.84
0.73 084 1
Since, under Hy : pi. =0 (k=1,2,...):
T11 0 1 0 0
v 0 o -4
vT .2 X Ni S TEEeE . . I ;
Thk 0 oo .- 1

var (rik) = T—! = 0.02, or 2%6,,, = 0.28 and ry2 and r33 are not significant.

5.3 Moving average (time series) processes
Suppose the following AR (o0) time series process:
Y= —aYp-1 — Y2 — Y _3— ... + &
with &, &4 (0,02), or with lag operator L:
(I+aL+a®L?+ oL+ ..)y = 2t =5,

Yy 18 stationary if |a| < 1. Then, y = (I — aL)&;.
Hence, the above stationary AR (o0) stochastic process for y; can be rewrit-

ten as a weighted sum of a W process, and so as a moving average of order
one (MA(1)).
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5.3.1 Definition

An M A stochastic process can be interpreted as the output of a linear filter
on an input process of WA terms (see Wold's decomposition theorem,” Wold
{1938)). or. more precisely:

Definition 5.9 A stochastic process {y;, ¢ € Z} is called an MA process of order
q, if there exists a WN process {e,,t € Z) such that:

b= Z?:u ©ie—jy tEZ
with F(z) := j=“ cpjzi" #0and [z] < 1., # 0 and ¢, 1= 1.
Proposition 5.1 Any stationary AR process can be written as an M A process

In general, we have an M A{qg) process:
Yt =€ T @161+ Pagi—2+ oo + Puft—g
= (It L+e L+t Li)e=p(L)e

Such an A{ A {q) process can be written as an AR {o0) process if all charac-
teristic roots z of ¢ (2) = 1+ 2+ w22 +... +,2% = 0 lie outside the {complex)
unit circle (|z| > 1). Then the polynomial ¢ {z) is said to be invertible. In this
case the Af A{g) process can be written as an AR (0co) process uniquely.

Remark that, alternatively formmlated, the inwvertibility condifion on g, =
[ {L}Y 'y can be argued from:

y=(1+o L+el?+. . +ypLf)e = H(I — miL)es.

where 7. 72, ..., m, are the roots of the equation 3_7_ 277" = 0 {, := 1)
then, the condition for invertibility is that |7;] < 1 foralli=1,2,....q.

Example 5.4 For the MA(2) process 3 = (1 + o, L + @, L%) e;, 7y and 13 are
roots of the quadmrz’c equation 22 + @1z + @, = 0 and the invertibility condition
|mi| < 1 implies 5 ‘ —p; £ i — 4992‘ < 1, which yields the result that ¢, and
oy must satisfy o, + o > —1. v, —; > =1, and [y < L

The last condition in this example is derived from the fact that @, is equal
to the product of the roots, or (,92 = mmy. and the first two COIldltIOIl‘:I are
derived from the fact that if ¢? — 4w, > 0, then ¥ — 4, < (2+(,91 or

Wi —dypy, < (2 cpl) Under the above three conditions, the example A/ A(2)
model can uniquely be written as an AR (oc) model.

IThis theorem states that Tor any stationary stochastic process, for a given choice of p.
there is a Wold represcutation of the stationary series:

»
W= Ez—1ﬂﬂyn—z + g wiEr—i

with ¥2F_ | ey o Hnearly “deferministic’ component and PR wier—i a tincarly nondetor
ministie {stochastic) component.
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5.3.2 Identification of an MA process

Identifying an Af A process is equivalent to determining the appropriate number
g of lags.

Proposition 5.2 The order ¢ of an M A process is the marimum value of k for
which the autocorrelation coefficient py is different from zero

Proof
In the cuse of the AL A (1) process i = &; — o€y with {y.t € Z} (equivalent
to a stationary AR (1) process). then:

E(y) = E(g)—aE{ga)=0
<oV (Ut Yrak) E{yyrr) = E(eigran) —oE (61181 11)
—aE{gcrip-1) + B (61— 1Epk—1)
al+a*sl  ifk=0
= —ao? if k= t1
0 elsewhere

Hence, cov (3, y4x) ouly depends on k, or the process {y.t € Z} is stationary:
oV (Yo Yrrk) = Vi

For a general Af A (q) process:
E(g) = E(@E)+wmEl_ )+ . +e,Ela_g) =0
cov(ye vk} = E(yeyer)
= E{(Er+@|5t ) +---+‘Pq5f-q)
(6&;- P15k ot Pq€t+k—q)}
= b {(Z?-_-vu ©i€1—i) (Z?:n ‘P;;'Et'w—;i)}
- E{ I Zj.—.u @i»ﬁjst-fEHk-;}
= Zg::ll Zj‘—:l’] \I"‘:i‘l‘?JE {Et"‘.sf-"'k_j}
25—k =
ol i fork=0,1,..¢q
0 fork >q,

whicli illustrates the stationarity of an A A (q) process.
Thus. in general, the autecoveriances of an A A(q) process are:

B v for k=01 g uwith, =1
= { (IJ for k > g (5.1)

and its auwtocorrelations are:

P =

T :{ Zizu Pk for k=01, ... q with g = 1 (52

Tiza vt ls
Yo 0 elsewhere
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If & sample is available {y,, ¢ = 1.2, 7T} consistent. and unbiased estima-
tors of the autocovariances {5.1) and the autocorrelations (5.2} can directly be
provided. g

5.3.3 Parameter estimation of an MA(y) process

If & data generating process (DGE) of a time series {y .t = 1.2.... 7} is M A (g].
then the 37 A parameters are estintated by OLS. minimizing the residual sum
of squares:

2

£

3__ N S . s . -
ic o1 (yf—-.,,--‘cr__l-'\j,,?cr 2"‘"‘1"—’r;c-|’--f,*)

=3

- ! 1 rar - -
with respect 10 @ 1= (). e ;q) . Siuece the WN process {e,.f € 2} 1s not
observable, we have to replace it by observations {y1.yo. ... gy b {0 process).

Example 5.5 Assume an MA(L} process gy — 5 — 250 {lo] < 14 which can
be rewrition as an AR {oc) process:

; _
(Tl T p I R PR
50 that the residual sim of squares Is rewritten as:
ki
N t—1. 2
S(pl= 21—1 5= Z,r (gr + 0 14 % o+ b T )

wlich can be minimized by procedures as quasi-Newton {¢.g. Davidon-Fletcher-
Powell). Marquardt. ete. from Chapter 1 and Appendix A or by a siiple grid
search for e {—1.1).

5.4 ARMA models

Combine an AfA process of order ¢ with a linear difference equarion of order p

o obtall:
_ lfi (,f P -
= F Y i T Y Wi i (5.3)

which is an autoregressive moving average model of order (poy) oran ARAA (p. 4q)
model (tvpically 2, 1= 1). 1f ¢ = 0 we have a pure AR (p) model and ilp 0
we have a pure M A (y) process. Both p and ¢ can be inflnite.

In 1he sequel of this section, the bupact of stationarity restrietions for ARATA
nodels will be analyzed.

5.4.1 Stationarity restrictions

In general. a stationary finite order process AR (p) can be written as an i-
finite order A4 with restricted [mmnwtvn and a fnite order AL A (¢} can be
represented as a restricted infinite order AR Hence. If the AR polynomial
@ (L) is invertible, the process {y.f € Z) iy stationary and can be written as an
M A {oc) process. On the other hand, if the ALA polynomial 2 (L) s invertible.
the {y .1 € Z} process can be written as au AR {>) process.
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Definition 5.10 A stationary process {y;.t € Z} is called a (finite) ARM A
process if there exists a WN process {g,,t € Z} such that for p,q = 1:

Y= Ef:; il —i + Z:‘;u pi€t—j tEZL, py:=1, (5.4)

where for the polynomials a(z) :==1— 3" | a;z* and ¢ (2) := 1+ Y107,
with & (2) # 0, (2) # 0 for |2| < 1, and (a(z),¢(2)) # (0,0) Yz € C. This
process {y,t € Z} is of order (p,q), i.e. ARMA (p,q), if:

ap, ?QO,QP.H =0 Vi O‘If,q 9‘50,(,9,1_‘_;; = OVJ >0,

which can be shortly written as: @ (L)y = ¢ (L)e; and is called invertible if
there exists a row of constants {Y;, j = 0,1,2,...} such that 3% || < co
and

ytza_I (L)(,O(L)Et:T(L)Ef_=z?g=n'rj55_j, teZ (55)

or, alternatively, a row of constants {m;, i = 0,1,2, ...} such that 7% |m;| < o0
and

ee =" (L) (L) ye=m (L) ye=y¢ — 3 mith—i, t € Z. (5.6)

i=1

Remark 5.1 Pay attention to the common roots problem

In ARM A (p, q) models, M A and AR parts might cancel out. This is known
as the common roots problem.
For example, the ARMA (2,1) model y; = v — 0.25¢;_2 + £, — 0.5, or

(I —0.5L)(I —05L)y, = (I —0.5L) &,

is the same as the AR (1) model y = 0.5y;—; + ;. This implies that it will
sometimes be difficult to estimate higher order ARM A (p, ¢) models when the
AR and M A roots are almost identical.

5.4.2 The ARMA(1,1) model
Consider the process for {y, — pu, t € Z} : a (L) (ye — p) = ¢ (L) &y, or:
Yo —pn=a(ye—1 —p) +& + gy with (5.7)

|| < 1: stationarity or invertibility condition (Y j-weights convergence); if
laf < 1, then (I — L) is invertible and y, is stationary

SIf the mean of y is p, {yt — p.t € Z} is (also) an ARMA (p, q) process.
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I < 10 invertibility condition {7-weights convergence): if the invertibility
condition @ < 1 ix satistied, the A/ A (1) process can he wriften as an AR ()
pProcess.

Hence. the stationarity condition for ARM A (1. 1) is the same as for AR (1)
andd the fnvertibility condition for ARALA (I, 1) is the same as for ALA (1. For
financial series we have. typicallv. o > 0. 2 < 00 and o = [2] (see Mills {1993].
p. 22)

A pure A/ A wodel {34 ()] is given byt
I+l
F—aol'

= Z;};u(”"t)l (e + o5 1)

= fp s vl | bengEou b TS TSI + ..

= s H{at YT a0 e {(5.8)

=20 {”'L)é (Ft 2L)z

oM

A pure AR model (AR (2¢]) can be obtained as:

I «of. e ; _
1{ i {}'L (yf - ;”} = (I - (}:L) {L.’, It ( - 'QL} } (?)rf - JH‘J

= g ) —aly g — )=l — 1)
e (Y0 — B T

which vields:
g =+ )T (=) T (e — ) e (5.9)

If we {postinudtiply (g — p) i (5.7) by (g—s — ) and take expectations
(for stationary processes v, — o) (A =012, K]

Elp -y — 1) = 7
= aF{y 1 — ) (e —p) FE a0y w — 1))
SR A CIEN TN T ) {5.10)

T N

o fork > 1: v =ay, | = afy or g = 25 = o
= o

o fork=1: v = oyt ok (201 (s Hla k) 2070 07 e 1= ) )=y +pots

o for k=0 v— av_(+FE (5, (£,+ {rv+ 2] Z ot ey ,))

=1

+2 K (s;_l (5,4 (et 2) Z o' ls,_,)) =y ot by () ol

Solving for 7, and v,in the equations for & = 1 and & = 0 leads to:
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Yo = ‘(Hf_cfjﬂag and v, = LH_TE%?MGE-

Hence, p, = -;!J- = ll‘:_“,_,ww and p, = ap,_, = a¥p, for k > 1. Thus

the ACF of an ARMA (1,1) process is therefore similar to that of an AR (1)

process, being characterized by an exponential decay but this decay starts from

the above value p, and not from p, = a as in the AR (1) case. The

PACF behaves like that of an MA (1) process after an initial value 911 = £
and will therefore be dominated by an exponential decay.

For many financial series. a will be positive and ¢ will be negative; with
a > |g|, p can be much smaller than « if a — |¢| is small. However, unlike
pure AR or M A models, the mixed ARM A model is characterized by both an
ACF and a PACF that tail off to infinity, rather than that they are cut off at a
particular lag.

The general ARM A (p, q) model:

(e —p) = a1 (-1 — ) + . +0p (Ye—p — 1) + &6 + 01601 + .. + Q E1—g

can be multiplied by (y;—x — p) and expectations can be taken so that the
autocovariances and autocorrelations are obtained from the p* order difference
equations (Yule-Walker equations) v — a7 _; —@2Y_s =Y =0, k>
q, or:

P = 1Pk — Q2Pp—g — - — Opp_p =0, k>q. (5.11)

Initial values Comparing (5.11) to the Yule-Walker equations for AR processes
in Subsection 5.2.1, it is observed that the ACF of an ARM A (p, q) process will
follow the same pattern as that of an AR (p) process, being described by combi-
nations of damped exponentials and /or damped sine waves. Since the p starting
values (pg, py—1, -+ Py—p+1) have to lie on the solution of (5.11), the solution it-
self holds for k > ¢ — p. The initial (¢ — p + 1) starting values pg, p;, ..., p hs
however, will not follow this pattern. For k > ¢ — p the ACF of ARM A (p q)
model follows the same pattern as that of an AR (p) process after ¢ —p + 1
initial values while the PACF for k > p— g behaves like that of an M A (q)

process. Some special cases are the following:

¢ ARMA(1.1) : g—p+1 = 1= one starting value, p,; exponential decay
from k= 1;

o ARMA(2,2) : g—p+1= 1= one starting value, p,; exponential decay
or damped sine wave from k = 1;

o ARMA(1,2) : q— p+1 =2 == two starting values, p,, p,; exponential
decay from k = 2;

o ARMA(2,1): q—p+1 =0 = no different starting values; all auto-
correlations (for k = 0) are described by either a sum of two damped
exponentials or a damped sine wave.
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More generally, the PACF of an ARM A {(p,q) process eventually behaves
like that of an M A (g) process for k > p — ¢. For k £ p — ¢ the PACF does not
follow this general pattern.

Summary 5.1 Both the ACF and the PACF of o mized ARM A process will
be infinite in extent and tail off as k increases. Eventually (for k > g —p), the
ACF is determined by the AR part of the model, while for k > p — g the PACF
is determined by the M A part of the model.

5.5 Testing for unit roots

In order to avoid spurious regressions we have to get rid of unit roots. To intro-
duce testing procedures whether a unit root is present we concentrate on AR
models. The statistical theory related to AR(1) processes where the AR parame-
ter is equal to one (unstable process) and greater than one {explosive process)
was developed by Anderson (1959), White (1958 and 1959) and Rao (1961).
Fuller (1976) and Dickey and Fuller (1979) derived the asymptotic distribution
of the estimated AR(1) parameters under the assumption of WX errors and
the initial condition of the dependent variable equal to zero. Phillips (1987)
derived this asymptotic distribution under more general assumptions about the
error terms and the initial condition. However, as indicated by Maddala and
Kim (1998, p. 3) “the econometric literature on unit roots took off after the
publication of the paper by Nelson and Plosser (1982) that argued that most
macroeconomic series have unit roots and that this is important for the analysis
of macroeconomic policies”. Although an AR(1} model is restrictive, an ar-
bitrary AR model is not particularly restrictive since any ARM A model will
always have an AR representation, provided that the AfA polynomial ¢ (L) is
invertible.

5.5.1 Testing for unit roots in a first order autoregressive
model

It is said that a series is integrated of order 1, or y; ~ I (1), if y; has a unit rot
or Ay; = ¢&; (6. € WN).
Following Verbeek (2000), let us consider, first of all, the AR(1) process:

y =ay_1 +& withe, e WN, L€ Z

A test for a unit root is a test for @ = 1 and it seems obvious to use the
estimate & for o from an OLS procedure {which is consistent, irrespective of the
true value of a) and the corresponding standard error to test the null hypothesis.
However, as was shown in the seminal paper by Dickey and Fuller (1979), under
the null that & = 1 the standard t¢-ratio does not have a f-distribution, not
even asymptotically. The reason for this is the nonstationarity of the process,
invalidating standard results on the distribution of the OLS estimator &. For
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example, if @ = 1 the variance of y,. denoted by 7,, is not finite. For any
finite sample size T, however, a finite estimate of the variance for 1, should
be obtained. To test the null that a = 1 it is possible to use either the test
statistic K :=T (a@—1) or the normalized test statistic for &, i.e. the t-ratio
7= Oﬂ,—:l where G4 denotes the standard error of &. Critical values, however,
have to be taken from the appropriate distribution, which under the null hypo-
thesis of nonstationarity, is nonstandard. In particular, the distribution is skew
to the right so that critical values are smaller than those for (the normal appro-
ximation of ) the t-distribution. Using a 5 percent significance level in a one-tailed
test of Hy : a = 1 (a unit root) against H, : |a| < 1 (stationarity) the correct
critical value is —1.95, rather than —1.65 for the normal approximation to the
Student ¢-distribution. Consequently, if you use the standard t-tables you may
reject a unit root too often. Selected percentiles of the appropriate distribution
are published in several works by Dickey and Fuller (see Fuller (1976 and 1996),
and Dickey and Fuller (1979 and 1981)). In Figure 5.1," reproduced from Maddala
and Kim (1998), p.64, we present 1 per cent and 5 per cent critical values for
this test (under the heading “AR (1) without a drift”), usually referred to as
the Dickey-Fuller (DF) test, for a range of different sample sizes T.

Usually, a slightly more convenient regression procedure is used:

Aye = (@ —1)ye—1 +e (5.12)

In this case the model is rewritten as from which the DF test statistic for the
nul: @ — 1 =0, ";— is equivalent to 7 above. The reason for this is that the
OLS method is invariant to linear transformations of the model. Under the null
hypothesis applied on (5.12), y; is deseribed by a random walk, while under the
alternative y; is an AR(1) model with zero mean. If we consider the series g,
that may have nonzero mean, it is appropriate to include a constant term. As
the constant in a stationary AR(1) model satisfies o := (1 — o) . (see Section
5.2 on AR processes). where p is the mean of the series, the null hypothesis
of a unit root also implies that the intercept term should be zero. The testing
regression is thus:

Ay =ap+ (@ —1)y—1 + 5 withe, € WN, t € Z, (5.13)

where the null hypothesis is the joint hypothesis Hy : ay = 0,00 — 1 = 0.
Although it is possible to test these two restrictions jointly (cf. infra), it is
easier (and more common) to test only that o — 1 = (. The distribution of the
t-ratio for this hypothesis, denoted 7, under the assumption that Hy : a—1 = 0

1Notes to Figure 5.1

F-test a. is for Hs : « = 0,p = Liin g4 = o+ pyr—1 + & and H, : & =0,p= 1in
Yt =+t +pyr—y +e¢: F¥-test (b)isfor Hy : =0, =0,p=1in y; = a+0t+ pyr—1 +5¢

- sources Fuller (1976) for K-test and f-test, Dickey and Fuller (1981) for F*-test with 2
and T' — p — 3 degrees of freedom

- the traditional F-values are much lower than the F* or Dickey-Fuller test statitics in the
ligure, e.g. in the case of a drift and time trend under the 5% level for a sample size of 25:
3.42 compared to 7.24, for a sample size of 50: 3.20 compared to 6.73 and for a sample size of
o0: 3.00 compared to 6.25 (sce Hasza and Fuller (1979)).
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Figure 5.1: Dickey - Fuller critical values

Sample
size K-test o ttest F~test (a) F*-test(b}
e 1% 5% 1% 5% 1% 5% 1% 5%
AR(1Y without a drift
23 -119 770 262 -1.95
100 -13.3 -1.9 -2.60 -195
250 -13.6 -8.0 -2.58 -1.95
500 -13.7 -8.0 -2.58 -1.95
infinity -13.8 -8.1 -2.58 -1.95
AR(1) with a drift
25 -172 -12.5 -3.75 -3.00 7.88 518
50 -189 -13.3 -3.58 -2.93 7.06 486
100 -19.8 -13.7 -3.51 -2.89 6.7 471
250 -20.3 -14.0 -3.46  -2.88 6.52 4.63
500 -20.5 -14.0 -3.44 -2.87 6.47 4.61
infinity -20.7 i4.1 -343 -2.36 6.43 4.59
AR(1) with drift and time trend
25 -22.5 -17.9 438 360 10610 7.24 8.21 5.68
50 2257 -19.8 -4.15 -3.50 9351 6.73 702 313
100 274 -20.7 -4.04 -3.45 8.73 6.43 6.50 4.88
250 -28.4 -21.3 2399 343 843 6.34 622 473
500 -289  -21.3 -3.98 -3.42 834 6.30 6.15 4.71
infinity 29.5 -21.8 -3.96 -3.41 8.27 6.25 6.09 4.68

&1
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is correct, is also nonstandard. The critical values for 7, ;= 2=L also presented
it = p

in Figure 5.1 (under the heading “AR (1) with a drift”), are smaller than those
for 7. For large samples sizes, the unit root hypothesis is rejected at the 5 per
cent level if 7, < —2.86.

It is possible that (5.13) holds with o« = 1 and a nonzero intercept aq # 0.
Because in this case o cannot equal (1 — a) p, (5.13) cannot be derived from a
pure AR (1) model. This is seen by considering the resulting process:

Ay = ag + &4, (5.14)

which is known as a random walk with drift, where oy is the drift parameter. In
the model for the level variable y;, ag corresponds to a linear time trend, since

Y = Y—1 +0p+E&;
Ye—2 + g+ Er—1 + ag + €t
= Y-z tag+e2+taygte—1+ay+s

= Yo+ tag+ Zf;{i Epei.

Hence, for some given starting value yo, E (y;) = yo + tayp is found. This shows
that the interpretation of the intercept term in (5.13) heavily depends upon the
presence of a unit root. In the stationary case, ag reflects the nonzero mean of
the series; in the unit root case, it reflects a deterministic trend in y;,. Because in
the latter case first differencing produces a stationary time series, the process for
Y¢ is referred to as difference stationary then. In general, a difference stationary
process is a process that can be made stationary by differencing.

It is also possible that nonstationarity is caused by the presence of a deter-
ministic time trend in the process, rather than by the presence of a unit root.
It is said that a process is driven by a deterministic trend rather than by a
stochastic trend then. This happens when the AR(1) model (5.13) is extended
to:

Yt = o +ayp—y + 0t + &4 (5.15)

with [a| < 1 and ¢ # 0. In this case, we have a nonstationary process because
of the linear trend §t. This deterministic nonstationarity can be removed by
regressing 3y upon a constant and f, and then considering the residuals of this
regression, or by simply including # as an additional variable in the model. The
process for y; in this case is referred to as being trend stationary. Nonstationary
processes may thus be characterized by the presence of a deterministic trend,
like 6t, a stochastic trend implied by the presence of a unit root, or both.?

%In this respect, the DGPs for a trend and difference stationary process can be written as
Yt = Yo + 0t +£¢ and ye = ap + ayr—1 + &1, respectively (with e, a stationary error process,
say ARMA or WN). We can nest these two models in the following model: y¢ = g -+ 8t +us
with ur = pur—y + ¢, so that g2 = v + 0t + plyr—1 —vo — (¢ — 1)] +&¢.
If |p] < 1, gt is trend stationary and if |p| = 1, 3 is difference stationary.
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It is possible 1o test whether gy follows a random walk against the alternative
that it follows the trend stationary process in {5.15). This can be tested by
subtracting g _ from hath sides of (5.15) and applying GLS on:

Ay g+ {ov— Lly 4 8+ 2, {5.16)

The null hypothesis (o be tested is that the process is a random walk rat her
than a trend stationary one and corresponds to Hy @ = 4 a 1 =10
Instead of testing this joint hypothesis, it is gnite common io use the f-ratio
corresponding to & - 1 denoted 7, 0 — ":J“] cassuning that the other restrictions
in the null hypotheses are satistied (¢f. infra for joint test statistios). Although
the null hypothesis is still the same as in the previous two unit root tests, the

testing regression is different and thus we have, again, a different distribution
of the test statistic. The eritical values for 750 given in Figure 5.1 under the
heading “AR{1) witll a drift and a time trend” are still smaller than those
for 7, {L.e. still more skewed to the right). In fact. with an intercept amd a
deterministic trend ineluded the probability that & — 1 is positive (given that
the true value ¢ - 1 oquals zoro) is in many cases negligibly small. 1t shonld be
nated. however, that if the unit root hvpothesis o — 1 = 0 s rejected. we cannot
conclude that the process for ¢ is likely to be stationary. Under the alternative
hypothesis 8 may be nonzero so that the process for gy is not stationary (bu
only trend stationary).

Notice that il we reject the null hvpothesis of a single nnit root, we do not
vet know whether the model is stationary or has more than one unit root. This
has to do with the possible event thai two (or even three} nnit roots might
exist. This will be investigated Later in this section. To proceed consider first
the occeurrence of unit roots in higher order antoregressive models.

5.5.2 Testing for unit roots in higher order A R modecls

A test for a single umit root in ligher order AR processes can casily he ob-
tained by extending the Dickey-Fuller test procedure 1o the so-called augmenied
Dickey- Fulier tests (ADF tests). Assume that we consider the following AR(2)
maodel:

o=y o esfiea b & {(5.17)

which ean be rowritten in factorized form and using lag and identity operators

a4
{!‘ _G[LJ [:1r 9‘5!:}9} Iy

The stationarity condition requires that #, and 8, are both less than one in
absolute value, but if @, - 1 and [#5 < 1. we have a single unit root. oy 5 ey = 1
and ay #,. Vquation (5.17) can be used to test the unit root hypothesis
by testing a + o L. given ing| < 1. This is conveniently done e rowriting
{(5.17) as

Ayr={on by — )y -l o ey (5.18)
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The coefficients in (5.18) can consistently be estimated by OLS and the
estimate of the coefficient for y,_; serves for testing the null hypothesis 7 :=
@) +ay — 1 = 0. The resulting f-ratio, 7/0#, has the same distribution as
== %;‘:i above. In the spirit of the Dickey-Fuller procedure, one might add an
intercept term or an intercept and a time trend to equation (5.18). Depending
on which variant is used, the resulting test statistic has to be compared with a
critical value taken from the appropriate row of Figure 5.1.

This procedure can easily be generalized to the testing of a single unit root in
an AR(p) process by rewriting any AR(p) process y, = ag+8t+3> 5, ayr—i+&¢
for {y,t € Z} with p 2 2, 5, € WN as an ECM model. For example, from
(5.18) where a drift o and a time trend 6t have to be added and repeating it
for p = 3,4,.. .the following ECM model is derived for general p:

Ay = YoYe1 + L0 Vidye—i + ag + 0t + &4, (5.19)

where 7 :=3F i —1=—a(l) and v, := — Z?=i+l g

If v = a(1) = 0 there is one unit root in (5.19). Thus, as before, the
null that v, = 0 corresponds to a unit root, which can again be tested using t-
ratios. If the AR(p) assumption is correct and under the null of a unit root, the
asymptotic distributions of the 7.7, and 7, statistics, calculated from (5.19)
are the same as in Figure 5.1. The small sample critical values are somewhat
different from the tabulated ones and are provided by, for example, MacKinnon
(1991).

As mentioned before, the joint F-type (or F*-) statistics should be applied
for testing joint null hypotheses in the drift case (5.13) and the drift and trend
case (5.16). The joint null hypotheses are then Hy : (ap.v,) = (0,0) and
Hy : (ag, 6, 79) = (0,0,0)", respectively. Critical values of F*-statistics can be
found in the last four columns of Figure 5.1.

Phillips and Perron (1988) have suggested an alternative to the augmented
Dickey-Fuller tests. Instead of adding additional lags in the regressions to obtain
an error term that has no autocorrelation, they stick to the original Dickey-Fuller
regressions, but adjust the 7-statisties to take into account the (potential) au-
tocorrelation pattern in the errors. The (asymptotic) critical values are again
the same as those reported in Figure 5.1. The Phillips-Perron (PP) test, some-
times referred to as a nonparametric test for a unit root, is, like the ADF test,
applicable for general ARM A models (see Hamilton (1994), pp.506-515, and
Maddala and Kim (1998), pp.78-81 for more details), Monte Carlo studies do
not show a clear ranking of the two tests regarding their power (probability to
reject the null if it is false) in finite samples.

To circumvent the problem that unit root tests often havelow power, Kwiatkowski,
Philips, Schmidt, and Shin (1992) propose an alternative test where stationarity
is the null hypothesis and the existence of a unit root is the alternative. This
test is usually referred to as the K PSS test. The basic idea is that a time series
is decomposed into the sum of a deterministic time trend, a random walk and
a stationary error term (not necessarily WN). The null (of trend stationarity)
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gpecifies that the vartance of the random walk component s zero. The test s ac-
fually an LM test and computation of the test statistic is fairly simple and rins
as follows, Kwiatkowski ¢f af. (1992) start from the wuodel 4 8t {, § opowhere
£ 18 a stationary process and ¢, is a random walk process given by §; — ¢, |+
with u; € WN with variance (Ti The null of stationarity is 1hen formulaied as
Hy o2 =0 for ¢ is a comtant}. The PSS test is a special case of a test
for parmneter constancy. against ff) that the parameters follow a random walk.
Nabeva and Tanaka (1988} constructed a similar test for the regression model
Yy G+ Eme b with 3=, |+ 1, so that 1he K PS5 1est 15 a special case
with zp = Tand z, £ The Nabeva and Tanaka LM test statistic for the K 255

- T ot

case is &y = —%Q where ¢, are the residuals from the auxiliary regression
of 3 on a coustart and a time trend, nf is the estitnaced residual varinnee from
this regression (67 % Zf_l ¢; )" and 8 s the partial sum of ¢ defined as
S - x: LG for b= 12, T If ¢, ¢ WA, the asvmptotic distniibntion of
£; 4 has been derived in Nabeva and Tanaka (1988). However. Kwiatkowski of
al. (1992) cousider the case of a general stationary error process and {abulate
the eritical values of the asymptotic distribution by simulation. For example.
the 5 per cont eritical value of £ 4, is 0.116. If the unll is stationarity tather
than trend stationary, the trend ferm should be omitted from the suxiliary re-
gression. The test statistic is then contputed in the same fashion. but the b per
cent eritical value is 0,163,

5.5.3 Multiple unit roots
Double unit roots

I praciice, some econoic variables are 1{2). that s, they have two or double
wnid roots. Known examples are money supply and prices. Tence guestions
arise as to how to tost for more than one unit. root. There are two approaches:
the first. a bottoin-up epproach is the one discussed in Choi and Yu (1997) and
sugeests testing sequentially: T{0} versus 7(1) ad /(1) versus 7{(2) if the first
hvpothesis is rejected. The second approach. suggested in Dickey and Pantula
(1987). is a Lop-down approach. Test fivst T{2) versus £ (1) and il the hypothesis
of 1(2) is rejected. then test (1} versus 7{0). This procedure is appropriate
for tests of nonstatiouarity as the null, whercas the hottom-up approach is
appropriate for tests of stationarity as the ull

5ol he Tter estinator @2 may iwvolve corvections for amtocorrelation Trinsea] a1l Newey

Went Toruiulda.
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How to test the occurrence of two unit roots?

Disentangling (5.19) once more, the a (L) polynomial satisfies:

a(l) : =I-YF eult=a(1)L+~(L)(I-L)
= a()L+y()L{I - L)+¢(L)(I-L)?, (5.20)

so that a second order ECM model emerges:
Ay = B1ye1 + BoAyeos + TIT E:A i + 0o + Ot + &4, (5.21)

with 8, := —a(l) and 8, := —(1). The null hypothesis of two unit roots
(8, = By = 0) can be tested with an F*-distribution as in Figure 5.1.

Hence, if the ADF test does not allow rejection of the null of one unit root,
the presence of a second unit root may be tested by estimating the regression
A%y on Ayy—y, A%y, ..., A%y _p 41 and comparing the t-ratio of the coefficient
on Ay, with the appropriate critical value from the above table. Alternatively,
the presence of two unit roots may be tested jointly, by estimating the regression
of A%y, on yp—1, Ayy—1, A%y, ..., A%y, 1 and computing the usual F-ratio
for testing the joint significance of y;_, and Ay, ;. Again, though, this test
statistic has a distribution under the null hypothesis of a double unit root that
is not the usual F-distribution; critical values of this distribution are given in
Figure 5.1.

Triple unit roots

Dickey and Pantula (1987) consider the case of three unit roots which is pretty
rarely the case with economic variables. For completeness. we shall review their
procedure here. The standard (A)DF unit root tests assume that there is at
most one unit root in the series. Dickey and Pantula (1987) proposed t*- and
F*-tests that compare a null hypothesis of k unit roots with an alternative of
k — 1 unit roots.

Consider y; = 3°7_, a;jyt—; + &, where {&,} is a sequence of iid random
variables with mean () and variance u";’ =landy p1=..=y=0forp=3
and three possible unit roots. By disentangling (5.20) one step further:

a(l) = a()L+~Q)L(I-L)
+E MBI = L)* + 9 (L) (T - L)*. (5.22)

The AR (3) model can then be rewritten according to (5.21):
Alyy = 01911 + 028y—1 + 030,y + ap + 0t + &
with 0 := —a(1),02 := —y(1) and 03 := —£(1).

Let 21,z and z3 denote the roots of the corresponding characteristic equa-
tion:
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22— p2t —paz—py =0

where |z;| <1 & |p;] = 1
Following Maddala and Kim (1998), pp. 131-133, consider the hypotheses:

e no unit root Hy : |z1] < 1 or Hy : 8; < 0 and some restrictions on 6
and 8, e.g., the restrictions on #2 and @3 are —12 < ¢ +26; < 0 and
—2 < 6;; < 0

e one unit root Hy : 21 =1, |z < Lor Ho: 6 =0, 8; < 0 and some
restrictions on f; and @5; the restrictions on @, and 8 are: 0 < 448, +28;,
—2 < 93 <

o two unit roots Hy: 2 = 22 = 1, |Z3|<101' Hy:0,=8,=0, 8; <
o threeunitroots Hy 121 =z =zz=1lor Hy: 81 =0 =03 =0.

Dickey and Pantula (1987) showed that applying F*-statistics for testing
from the higher number of unit roots to the lower number of unit roots is valid,
while the reverse order of applying F*-statistics is not valid. Based on the
asymptotic distributions of F*-statistics derived by Dickey and Pantula, it is
suggested to test the hypotheses sequentially in the order Hy, Hy, and Hy:

1. if H; is rejected by the F*-test, then go to step 2; otherwise conclude that
H3 is not rejected;

2. if H, is rejected by the F*-test, then go to step 3; otherwise conclude that
Hy is not rejected;

3. if H, is rejected by the F¥-test, then conclude that Hy is true; otherwise
conclude that H, is not rejected.

Dickey and Pantula (1987) proposed alternative testing procedures based on
t-ratios. However, the ¢-ratios from the regression of x, on y_1. z¢—1. and wi—)
have different asymptotic distributions depending on the numnber of unit roots.
And thus they argue that a sequential procedure based on these statistics is not
consistent. They suggest to use alternative ¢*-statistics:

1. for Hs against H;, obtain the t*-statistic from the regression =, on w;—1;

2. for H, against Hj, use the ¢¥-statistic in the regression z; on 21 and
awy_1 for testing the coefficient of 2, is 0;

3. for H, against Hy, use the t*-statistic in the regression T; on -1, Z—1
and w;_1 for testing the coefficient of y;_; is 0.

Their results of a Monte Carlo power study show that the procedure based
on £*_statistics is more powerful than that based on F*-statistics in most cases.
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5.5.4 Seasonal unit roots

If seasonal data are available, a seasonal AR (SAR) model can be defined as
e.g. in Osborn et al. (1988)

a;iA1As Yp—j+uy,

S5-1 P
A\ Asyi=70+ X V:iDit+B1As Yr—1+B82A1 Yi-s+
==] =1

4

where D;; i = 1,2,...,S are seasonal dummies (e.g. S = 4 for quarterly effects,
S = 5 for working days effects, S = 12 for monthly effects and so on); hence, the
deterministic seasonal part of this equation implies that the seasonal coefficients
satisfy zf=—ll v, = —7g. However, dummy variables should not (necessarily) be
used to correct for seasonality. This can better be done by considering either
seasonal unit roots testing and/or direct seasonal autoregressive modeling.

A time series is said to be seasonally integrated if the seasonal difference Ag
filter is needed to make the series stationary and the time series can be said to
have seasonal unit roots then. Known examples of seasonal unit root tests are
the DHF test of Dickey, Hasza, and Fuller (1984), the HEGY test of Hylleberg,
Engle, Granger. and Yoo (1990) and the CH test of Canova and Hansen (1995).
The DHF test is based on the SAR(1) model y; = asy;_s +u; where u, is some
stationary invertible ARM A(p, q) model. Consider testing the null hypothesis
as = 1 against the alternative ag < 1. The filter Ag has S roots, one of which
is a unit root. The DHF test rules out the possibility that the time series y;
can be made stationary by using the simple A = A, filter to take care of the
unit root and seasonality can be taken care of by seasonal dummies. The DHF
test tests, as in Subsection 5.5.1 for a single unit root, the null hypothesis that
all the S roots implied by the filter Ag are unity (one nonseasonal and S — 1
seasonal unit roots) against the alternative of no unit roots.

Explanation of the HEGY and CH tests can be found in Maddala and Kim
(1998), pp. 367 — 376.

Example 5.6 Test for a unit root

In their 1981 paper, Dickey and Fuller apply their methodology to a model
for the logarithms of a quarterly series on output, the Federal Reserve Board
Production Index. The model used is:

Yy = p+ 0t + ayi—1 + YAY—1 + &4

The test is carried out by testing the joint hypothesis that both § and ~ are
zero in model (5.19) with p = 2. The example in Greene (2000), pp.784-785,
uses quarterly US real GNP from 1950// to 1983'Y. Normally one would test
for seasonal integration, but the simple AR (1) regression is directly analyzed
here (estiamtes of asymptotic #-ratios in brackets):

Adj = 0.0256 — 0.0075y,_, with y; := ln SN
% = a.60) (_02940]% 1, Vb gfie= b g
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Dased on the five per conl conventional eritical point of the Student #-
distribuwiion (-1.615}. the null of nonstationarity (» unit root) s rejected. Bur
the interpolated critical value for 134 ohservations with a drift from Figore 5.1
wonld Le =280 (3% significance levell. So the hypothesis of a unit root is not
rejected. The augmented regressions {5.18) witle drife and with drift and trend
tertn. respectively produce.

Afyy o 00043 + G018 Ay _ . 17?2 = 0.24829

FRRION LHL

and A = 0.1120 + 0.00065¢ = 0.0813ye- 1 + 0. 19260y, 1. B = 031749,

[BAIN]] [ EREN
For a sample of 134 obser \-dtmm. the following F*-stalistic s oblained for
the first cquation:

TG T =g i
AL T —

™= = f.633.

whicl is (slightlv} Liwger than the Dickev-Fuller F¥value of 6.49 in Figure 5.1
Therefore the imll of 4 unir reot in the DGP for the quarterly logs of US real
GNP s rejoected,

5.6 ARIAM A models

It this section. some guidelines for *liow 1o work in practice?’ for a nonstationary
DGP {y ). £ = L2004 will be sununarized.

1. First determine a possible deterministic (time) trened from { g} and remove
this trend by considering the residuals g — g = ¢ g7 where e in the case
ol a third order deterministic frend g = &g + @t + Aol ekt

2. Verily whether there is a possible stochwtic trend el determine the num-
ber of uuit roots. o, by following the top-down procedure wentioned above,
1o deterninioe & in A”‘;;; =: xy by testing siationarity using a{o) {A)DE.
PP or IKPSS test; if the series is not stationary, take an appropriate nuni-
ber of differences d (take an appropriate number of seasonal differences if
seasonal unit roots are presem . An ARM A{pog) model that s nonsta-
tionary is called an ARIA A{p.d.g) model (in the case of seasonal unit
roots a nonstationary AR AP Q) model is a scasonal ARTALA(F. D). Q)
{or SARIATA(L. D.Q)} model where D is the appropriate nuniber of sea-
soual differences).

3. Apply an ARMA or possibly a seasonal ARAA (model on the -now
stationary- series oy inorder 1o arrive at o fual estimate of the time series
model. The specific (seasonall ARALA model is tound front the ACE and
PACF. which gives in theoverical notation [pe} and {o 1



90 CHAPTER 5. UNIVARIATE ARIM A MODELS

| ACF {p} PACF {py }
AR (p) |py| exponentially decaying Hy: py. = 0,k > p
MA(q) Hy:p =0,k >q |pkx| exponentially decaying

ARMA (p,q) | |pg| exponentially decaying  |py| exponentially decaying
(or damped sine waves)

In the presence of seasonal effects (with S the seasonal length, eg. S =
4. 5212 ..):

ACF {p,} PACF {p}
SAR(T) (P) | autocorrelations pgon S,2S,3S,...  pg. on S,28,38, ...
are exponentially decaying break down after S x P
SMA(T) (Q) | autocorrelations py on S,25,3S,... pu. on S,28,38S, ...
break down after S x Q slowly go to zero

In the next section the identification and estimation steps of ARI M A models
is further documented.

5.7 Box-Jenkins approach for ARIM A models

The Box-Jenkins (BJ) approach for a time series model is an empirical procedure
to compute an ARIMA model for a certain database, which describes this
database as good as possible (see e.g. Box and Jenkins (1970)). In general, there
are three steps in the BJ analysis: identification, estimation, and diagnostic
checking.

5.7.1 Identification of a tentative time series model

The correlogram of a stationary series cuts off (at a certain significance level)
after a certain (finite) number of lags. This is not the case with nonstationary
series. To decide upon the number of differences one plots the correlogram of a
series y, Ay, A%y, ... and evaluates the correlogram at each stage. The series
should be differenced until the correlogram dampens (usually not more than
once or twice).

Identification is based on the estimated autocorrelations and the estimated
partial autocorrelations.

¢ If the autocorrelations have a slow decay or do not die out at all, the time
series is nonstationary and it is suggested to take differences until station-
arity is obtained; then an ARM A model is identified for the ‘differentiated’
series (ARIM A model of the original series).

e If the autocorrelations p, = 0 for k > ¢ and the partial autocorrelations
dampen slowly, an M A (¢) model is obtained; hence ¢ is the largest value
of k for which the estimated autocorrelations r (or p,) lie outside the

99% confidence interval (:tl.%/ VT )



5.7. BOX-JENKINS APPROACH FOR ARIAM A MODELS 91

e If the partial autocorrelations g, = 0 for & > p and the autocorrelations
die out slowly, an AR (p) model is attained; hence p is the largest value of
k for which the estimated partial autocorrelations ri; (or py,.) lie outside

the 99% confidence interval (:i:1.96/ \/T)

o If both the partial autocorrelations and the autocorrelations die out slowly,
an ARMA (p.q) model is obtained, and the identification procedure is
started according to the highest absolute values of the estimated autocor-
relations and partial autocorrelations.

5.7.2 Estimation of a time series model

The parameters of a pure AR process can be estimated by the regression methed
or by the sample Yule-Walker equations, as described in Section 5.2. If there are
also M A terms. the minimization of the sum of squared errors or the maximiza-
tion of the sample likelihood function requires nonlinear estimation methods as
e.g. Newton, Davidon-Fletcher-Powell, Marquardt, etc.

An OLS estimate for the ARA A model e (L) y¢ = y (L) g; + o is found from
the minimization of Z;T:M ) €7 witlk:

_ L B
ecr=a(l)e ! (Dy— (Pt o2+ +o,) b (5.23)

Application of OLS on the AR (o0) model (5.23) yields consistent estimators
since E (7:—j5¢) = O for § > 0. The OLS residuals are used as approximations
to the error terms and, either the ¢ starting values {&p,€,_1,..,&p 41} are set
equal to the unconditional expectations of {€p Epat, ooy £p—q+1 | which are cqual
to zero (‘conditional estimation’) or these residuals are backforecasted (yielding
the generally better ‘unconditional ecstimation’). Backforecasting and its impact
on parameter estimations are illustrated as follows:

Assume the ARM A (p,q) model with & i {0,02):
Y= ontr-1 +oti-z + .. Fopl—p T &1 + @81 o T PeEL -y

Assume also that @, @z, ..., ¢, and &j, &, ..., &, are initial estimates of the
corresponding parameters. Rewriting the ARAA (p,q) model as g, = 4y —
Zle Qle—i — Z;’-’zl PiEt—j. We observe that we need values for vy, 1. .- Y1-ps
£0,E—1.....£1—¢ In order to compute £. The problem of low to determine the
initial values as a function of ¥.%z.....¥r is known as the starting value prob-
lem. ‘Backward forecasting’ is a procedure that gives a solution to this problem.

Assume that 1, satisfies the above ARAS A model, then there exists a WN
process {¢} } such that y, also satisfies the forward equation:

_ =F g *
Ye — @\ Yerl — - — Oplryp = €5 Zj:l Wi
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where £ can be expressed in terms of y;, ¥¢11, ... in the following way:
ef = Dm0 yer; (65 :=1), (5.24)
where the parameters #] can be determined from the power series of

0" (2) == 7' (2) A(2) with|2| S land a(2):=1—a12—..—apz? #0
and ¢ (2) =1+ @z + ... +p,29 #0.

From (5.24) y = &} — 32, Ojues; % & — 25— 0yr+; and by setting
t =0, yo = ey~ 0jy; and if €] ! (0.02.). then &j is independent
of ¥1,¥2,...,yr and the best linear estimator for y,, using y1,y2, ..., yr. is the
conditional expectation:

E (yolyr, Y2, syr) = — X8 _, 07y

Setting t=-1,-2, ... forecasts of y_;,9-2, ..., y—p+1 can be obtained. Problems
arise, however, when p is large with respect to the sample size T. E.g. y =
(1 =0.5L%") &, is to be represented as:

€ = Y+ 0.5y 04 + 0.26y 48 + 0.125y 172 + 0.06251; 106 + ...
= Yt + 0.5Y¢+24 + 0.20y 148 + 0.125y; 172, (5.25)

which means that many observations are necessary for the AR representation
to be useful.

It is also possible to use (approximate) ML besides OLS to estimate an
ARM A (p, ) model. Recall that the intuition of the ML principle is as follows.
First, the likelihood of observing the sample under consideration is determined
as a function of some unknown parameters that characterize the (assumed)
distribution of the data. There are various ways to express the joint likelihood
function, but typically some nonlinear function of the unknown parameters (that
need to be optimized) will be obtained. Next, the values for the unknown
parameters that maximize this function (i.e. that give us the highest likelihood)
are retained as our ML estimates. Consider an ARM A (p, ¢) model, with AR
parameters in a p variate vector & and M A parameters in a ¢ variate vector

and assume &, <N (0,02) . In order to estimate the parameters we have to solve
the following maximization problem:’

maxInf (a, @, 0%) = maxIn {p (Y1, y2. ..., yr (Yo y_1, ...; . @, 0?)} (5.26)

T 0
= max ’:lﬂp (yl ) ol ‘22 In {p (y!.|y£-l- e Y0, Y15 -5 O W!Jﬁ)}]

conditional ML (CML) is obtained if only the summation term in (5.26) with
the parameters and the initial conditions is maximized; an exact ML (EML) is

For computational convenience, the (natural) logarithm of the likelihood function is max-
imized.
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obtained if the complete loglikelihood function is niaximized. Asvinptotically,
CML and FAL are equivalent in this case.

C'onsider now fonr models in tarn:
e AR{1) modcl:
oy + <. with g N {, r‘!')] b =120 or dts pdf satisfies:

p(nlye ey @ 0t) = fa {ply—pioeo?) for t = 12,7,

Precise values are not known, but assnme that the time series process has
been going on Jong enough to be in stationary states e will have the
stationary distribution. This implies that
E{y) =0 and var (y)=var (327 g oder )= 023070 afi=gZ/ (1 o).
where for normally distributed »; the loglikelihood function to be maximized
satisfies:

L{o.o?) = lply)+ Xinplwle 1) (5.27)
T ., L . -o¢) , 1 £ B
- 3 In (‘.Zfrcr;.) +§ In (l-az) -%m’_m ,Z_, (-t 1)

o This is often simplificd by assuming y1 as fnown, in which case (5.27)
hecomes:

e 2

5 -1 L g 1 ¥ 5 .
Lico;)= 5 l (2707) — Pyl S L (g —ayo) (5.28)

which is simply maximized by minimizing the s of squares (OLS of
on e .1). Note that the difference between (5.27) and (5.24) tends to zero
as T prows,

e M A({1} model
= = e | with g 1w Nl t-12..T
If < is known, {e;} can be constructed from {y } and .

-y

So then p (M|t 1+ Yoy—112 U:’) = fa (gelsr 10pol) and:

. T : 1 4 3

- 2y —— —f . . “ P

L (ir"ﬂet) ——31112.1-05. _;;Lf::] (_I}f_(,:z:,g [} . (-]29)
Again L is maximized by minjmizing the sum of squares. Note that now
g1 s in the sum of squarces. which depends on yz and one obtains a
nonlinear function to be mintmized. This NLLS estimator will be the

: . = —1

CML estimator. since g = 357 (

To obtain the JML estimator. remewber that e.g. (5.29) with g4 = 0
implies ear () = o2, whereas the actnal stationary variance {(not fixing

—\,9)} Yo, - L,Z'ti‘:;] with = = .
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<o) is equal to var(y;) = o2 (1 + %) . Including all this makes it more
complicated; however, the importance of the difference between CML and
EML vanishes with 7' (CML and EML are asymptotically equivalent).

e ARMA(1,1) model:
Yo = o1 + & + pee—q with 5, ¥ N (0,02), t=1,2,...,T.

Exercise 5.1 Show that an ARMA (1,1) model has the following loglikelihood
funetion:

2 T l 1
Ll oc) = g = 5 1n (22| - 559 (ov0) (5.30)
—a2)(1- AN
with 2'2] = (=M o e g
a8
S (@ p) = E (<3ly) + =) [E (woly) — E (coly)® + X7, B (e3ly)

o ARIMA (p,d,q) model:

. jid .
w=aye-1 +eay—a+ .. +E+ 9161 +@oEr_2+ ..., with & ~N(0,0),
t=1,2,...,T, has a joint likelihood function which is of the following form:

{Q,¥,02) = gy (2, ¥,02) exp {_%EV (o, t,:')}with V(a,p) = anzl—p—q
E (cfly) .

5.7.3 Diagnostic Checking

A fundamental issue is whether you want a model that gives the most adequate
description of the data or a model that gives you the most accurate forecasts.
For forecasting the idea of parsimony is important, i.e. one opts for a relatively
small model because such a model usually forecasts better in the sense that
it has smaller confidence intervals around the forecasts. The aim is in fact to
approximate the true DGP, but not to pin down the exact process. Forecast-
ing often becomes worse if supplementary statistical significant regressors are
included that are economically unimportant and are thus not really needed for
forecasting. Since these parameters are estimated with an error, confidence in-
tervals will become wider. Most of the time it is not difficult to find statistical
significant regressors of high(er) lag order.® Although the inclusion of these
regressors in the model might give you a more adequate statistical description
of the fit of data, think e.g. of the R* which usually goes up if more regressors
are included, a large and complicated lag structure often hampers the economic
interpretation (in addition to forecasting). Such overfitting can occur when one
tries to obtain a correlogram of the residuals that displays a ‘perfect’ W N pat-
tern. The following model selection criteria were developed that incorporate

8Clearly, the interpretation of high depends on the nature and frequency of the data and
on the researcher’s judgement.
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this idea:

Akaike Information Criterion (AIC):

AIC (p.q) =W (6]) +2(p+ @) /T, (5.31)

Schwartz (Bayesian) Information Criterion (BIC, SC, SBC):
BIC(pg) = (62) + T Ty, (5.32)
where 67 is the estimated error varjance, i.e. 67 = -E% for ML and &7 = Tf;f_q

for LS. T is the sample size and p+gq is the total number of estimated parameters
(ARM A(p, ¢) example in this case).

Increasing p or g by one the fit (measured by the lack of fit in 62y will
increase, but the penalty for lack of parsimeny is equal to 2/T for AIC and
In(T) /T for BIC. BIC has a higher penalty. and is consistent as T' — oo. AlIC
will tend to result in models that are asymptotically overparameterized This
suggests to prefer the model for which AIC and BIC are smallest. Usually all
models up to a certain order are compared. Note that it is possible that the
two eriteria lead to a different conclusion. The latter, in combination with the
idea of parsimony, implies that the researcher will have to make a judgement at
some point and that two equally skilled econometricians might come up with a
different model.

The analysis of the residuals is mostly based on the hypothesis that the
resulting model should have W N residuals. Assume the ARMA (p, q) process:

o= Doy i =1 + ijl ©j€i—j

with g := y; — 4 then & = (¢ (LY ' & (L)% (G =y — &) are the residuals.
Assume now that the model is correct and that the real parameters are

X
known; then it can be shown that the estimated autocorrelations ry(g)= -E'—E"-?-‘i#
[ EN T |

are not significantly different from zero, and are asymptotically normally dis-
tributed with variance % {see Example 5.1 in Section 5.2.2). In practice the
parameters are not known. but the estimates (&, &2. ..., 0p. @1 2. s Pg) can
be obtained, and the resulting residuals &; can be computed. Since the estimated
autocorrelation r (;) can give information on the model adjustment, a test sta-

tistic has been developed to test whether the residuals still display autocorrela-
tion or can be classified as WN. Under Hy 7y () N (0‘ %) , the Boz-Pierce
portmantequ test statistic (see Box and Jenkins (1970)) is (T :=T —d, d is the
nutnber of differences}:

K 9 ray 085
Q=T" Ek:l Tf‘ (&) ~ Xfx’—p—-q

presents the basis for the decision on the model. Davies ct al. (1977) have shown
from asymptotic theory, however, that even for reasonably large sample sizes,
the expectation and the variance of Q can significantly differ from K —p —gq.
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It seems that E(Q) << K — p — q. Therefore, Ljung and Box (1978) have
proposed an adjusted portmanteau test statistic:

Q =T (T"+2) i, (T" - k) '} @), (5.33)

which is asymptotically y2distributed with K — p — q degrees of freedom for not
too large T. However, the low power of the Q- and Q*-statistics has been widely
documented in the literature. In addition, Maddala and Kim (1998, p. 19) argue
that the Q-statistics are even not appropriate in autoregressive models because
the OLS estimates of the coefficients of lagged dependent variables are inconsi-
stent under the presence of serially correlated errors (cf. the arguments against
the use of the Durbin-Watson statistic with lagged dependent variables ;% note
that this does not imply that a correlogram should not be used for identification).
The Box-Jenkins approach is summarized in Figure 5.2.

9The Durbin-Watson test is a two-sided test that rejects the null of no first order autocor-
relation if the DW-statistic is outside of the range (DW;,4—DW,), where the interval bounds
are available in DW tables (see Durbin and Watson (1950 and 1951)). More specifically, the
T N 2
statistic is given by DW := E—‘-ii—(:-'éT"’)—. where & is the estimated OLS residual. If the
=] Tk

mlzm(hler qf)t;ljservatimls is large, DW =~ 1 + 23;2 g2/ E?.":l 82 -2 EE:: 141/ E;’;I £
~2(1—p).

If there are lagged dependent variables among the explanatory variables, the DW-statistic
is no longer valid and is given by Durbin (1970),
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Figure 5.2: Summarizing flow chart of the Box-Jenkins approach
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5.8 Time series with aberrant observations

5.8.1 Definition and problems

Sometimes, when a time series is considered, one or more observations can be
strikingly different from the other observations. Such observations are called
aberrant. Inspecting for example a graph of the series, it seems as if these aber-
rant observations do not fit the general pattern observed. A value that shows
an unexpectedly large (positive or negative) difference is also called an outlier.
The more general terminology aberrant observations refers to different types
of outliers. In general one or more extreme value(s)in economic time series are
not expected. There are important exceptions, however, such as financial data
and micro data. Stocks are for example very sensitive to (principally negative)
news or to the external economic situation. Since more volatile periods imply
more uncertainty about the future as well, large fluctuations in stock prices are
likely to be clustered in time. To examine (and exploit) this type of volatility
clustering consult Section 8.2. In this part the focus lies on the presence of
isolated outliers. Imagine for example that the president of the Federal Reserve
Bank faints at an important announcement after a meeting of the Federal Funds
Board, but later turns out to be fine. This event is likely to show up as a spike
or one time outlier in some financial series.

To put things in an ARM A framework suppose there is a series z, which is
generated by an AR (1) process.This process can be written as z; = a1z +&4,

fort =1,2,...,T, where ¢; N (0,1). Suppose a series is generated with g = 0,
a; = 0.7 (< 1 to assure stationarity) and T = 200. A value of 10.5 at t = 100
is not expected to be observed (while the true value is 0.5). Should this value
occur (possibly due to an error when noting the series for example), it is called
an outlier. Then, instead of the series z;, a new series y; would be:

Y = x4 + wfg[i = T] = 1‘ 2. .‘.,T, (534)

with I;[t = 7] an indicator dummy variable taking the value 1 when ¢ = 7 and
0 otherwise. The size of the outlier is denoted by w. This type of outlier is
called an additive outlier. In our numerical example y; equals z; except at time
t = 7 = 100 when y = 10.5 and the original series z; = 0.5 (thus w = 10);
Figure (5.3) plots the series ;.

Using this example the consequences of neglecting the presence of an outlier
can be illustrated:

1. When estimating, the observed series y; is used and thus the AR (1) model
estimated looks like yy = a1 + 2.

Using y; instead of the unobserved z; a value that can significantly differ
from the true value @} is obtained. Table 5.1 illustrates an example for
different values of w. The larger the value of w, the more the estimate of
ay deviates towards zero, the estimated standard error is increasing in w.
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Figure 5.3: Series y, with outlier at time f = 100
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Table 5.1: Fffeat of an additive outlier of magnitude w on the estimated &)

w s3] SK K Ji2

0 0707 {0.050) -0.021 2997 04014
5 D6TI (0053} (1.20343 1600 236547
N 0581 (0.058) 1.7G1 145831 2102562
200 0375 (0.066) 5799 671138 35203018

Stawlard errors within hrackers, SK—akewness, K- kurtosiso JB. - Jarque-Bera,
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Figure 5.4: Effect of neglecting a single additive outlier on residuals of an AR (1)

model (w = 10)
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Moreover, observe that additive outliers generate large values of skewness
and kurtosis and hence, significant values for the Jarque-Bera (JB) test
for normality.'"" Large values of the JB statistic can be an indication of
the presence of one or more outliers (rejection of the null hypothesis is not
sufficient, the value of the JB statistic must be large). Figure 5.4 indicates
that due to the additive outlier a large positive error at t = 7 = 100 and a
large negative error at ¢t = 7 + 1 = 101 (due to the AR (1)) are obtained.

. To use the model for forecasting, our forecast clearly suffers from the

fact that &; is not accurate. If the aberrant observation is close to our
forecasting period, there is an additional problem. Suppose one wants to
forecast yjo; in the example, using yio0 -the aberrant observation- fo;
will be highly inaccurate.

Estimating the AR (1) model using y;, the estimated variance of the error
terms &2 can be expected to be larger than the true value o (based on
). Thm implies that forecast confidence intervals will be t.oo wide.

Next to the additive outlier, there are also innovational outliers, temporary

changes and level shifts.

10 0 Ak A Aol . l SK2 g!(—:sg’) :  Eltu—w)?
The JB statistic is defined as JB ‘ T (—5 oy with SK := W, the
skewness coefficient, and K := M,l the kurtosis coefficient.

(varfy:])
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To illustrate these diﬂ(’l(‘ilt types consider the following general expression
for @y = "'IELJ_E for ¢ = 1.2,....7T where (L) and « {L) are polynomials in L,
with all roots of w{z}) =0 an(l those of e {z) = 0 outside the unil circle. The
time series subject to the influence of an aberrant observation g can in general

terms be described as follows:

G (L)
o =as b w L= 5.35
Y ¢ LLH(L) el 7] {5.35)
with I, = 1 if £ = 7. An aberrant observation impact can now be classifled

by imposing a special structure on G (L) /H (L). The different types are: an
innorational outlier, represented by an ARAS A model written in the form of an

: e dimensional A A o (G ety oo GHL)
infinite dimensional A A model (mm == -’:))' an additine ontlicr (m_ = 1).

a level shift with a unit root iu the AR polynomial 11 (1), (% = [T_—lﬁ) cand

a temporary change (if‘\—‘;\\ = m.u e (0. ]}) .

5.8.2 Testing for and dealing with aberrant observations

Suppose ne inlormation is availuble on external events so that there is no idea
about. whether there are aberrant observations and when they oceur.

As already noted before, the presence of an outlier causes a violation of the
normality assumption for the residuals. Therefore, the JI statistic is used to
test for normality. A rejection of the null might be an indication of aberrant
observations. Note that -in practice- the JB statistic should have a large value
(¢f. Table 5.1). If this is the case a closer lock at the residuals is useful and
residuals exceeding four times the standard deviation are considered as outliers
then. Once the extreme value is localed, several statistical methods can be used.
Here the method of Chen and Lin (1993) is disenussed.

Starting from a univariate time series {r;} generated by an ARM A (p. g)
process (1 — mL — e oy LYy (L Lov o+, L) g where g 1s WN
with variance o2 Ih{‘ actually observed series {frmfammq an additive ouflier)
can again be ri(‘.b(.rlhed as:

worayFwht =7 (5.36)

with J; a dummy variable equal to one if £+ 7 and zerc otherwise.
To examine the effects of aberrant observations {the case of additive cutliers
licre) on the estimated residuals, the time series parameters are assumed to

be known and the series is observed from ¢ = —J to t = T, where J js an
integer larger than p - ¢ (md that 1 £ 7 £ T. Define the polynomial (L}
as w{L) = :}':;: =1- — o L? — .. so that the ARM A (p.g) model can

be written from (5.6) as an infinite dimensional autoregressive model, or for
t=1.2
ey =z 4+ m{LYwhk[t = 7] =7 {L) . (5.37)
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which, using (5.36), can be interpreted as a regression model for e; on z, given
by:

€ = wz + &4 (5.38)
where (for our case of an additive outlier):
zt = 0&ot#r,exceptfor zip=—m St>7T
2 = lat=1 . (5.39)

Using possibly contaminated estimated residuals, é;, the AR(co) model
(5.37) can be expressed as:

ér=rn (Bl fort=1,2...,
so that in that case the OLS estimator for the effect of a single outlier at t = 7
can simply be computed as:

e ., éid
@=d0(r) = =ZF—, (5.40)
5

where the ‘regressor’ Z; is given by (5.39) with 7, replaced by 7.
Chang et al. (1988) show that a possible approach for detecting additive

outliers is to examine the maximum value of the standardized statistic of the
outlier effect:

Cao (1) =@ao (1) /SE(@ao (7)) (5.41)
=1/2
where SE(wao (7)) := 6 ( ;‘;T s ; this test statistic is approximately

normally distributed. To calculate (5.41) 6: has to be known. The residual
standard error of the estimated ARM A (p, q) process cannot be used, because
in the presence of outliers the residuals are contaminated. Hence o: may be
overestimated if the sample standard deviation is used. Chen and Liu (1993)
propose three different methods to calculate a better o::

1. The Mean Absolute Deviation method. The standard deviation can then
be calculated as 6: = 1.483 x median{|é;, — €|}, where & is the median
of the estimated residuals.

2. The (100 x «) per cent ‘trimmed’ method. To compute the (100 x &) per
cent trimmed standard deviation, first take absolute values of the residuals
and then remove the (100 x ) per cent largest values. Compute then the
standard deviation based on this trimmed sample.

3. The last method is the ‘omit-one’ method. This method implies calcu-
lating the standard deviation of the estimated residuals, leaving out the
residual at period ¢ = 7.

If 4 (7) exceeds a critical value C (since C 40 (7) follows an asymptotically
normal distribution, the usual critical value of 4 can be applied), we conclude
that the impact of the AO at period ¢ = 7 is significant. The observed series 1,
is then adjusted as follows:

¥Y =y — ao(r)ht = 7] (5.42)
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5.8.3 Detecting and estimating aberrant observations

Chen and Liu {1993) offer the following joint estimation procedure in the pres-
ence of outliers. There are three steps in the estimation. First, we estimate an
ARAMA model and ook for outliers. Afterwards the parameters of the model
and the outliers are estimated simuitaneously. The fival step consists in detect-
ing extreme values based on the {inal model obtained in step two. Bvery step
contains several substeps. The detailed procedure for AOs goes as follows.

1. Stage I: Initial parameter estimnation and detection of outliers

fa} Estimate the model and obtain the residuals,
What follows is an ilerative procedure. Use the observed series {y, }
for the first iteration. H you already went throngh an iteration. nse
the series that is adjusted based on the findings in this iteration,

(b} Calculate é,-‘l() {7} using the residuals obtaied in step (a). If;",”-, (r) =
¢’ = 4. the outlier is signilicant.

{¢} If there is no significant outhier. go to (d). If there is a significant
outlier remove its effect from the residuals and the observations ac-
cording 10 (5.42). Retirn to (b) to test whetlier there are more
outliers present.

(dy If no outliers are found during the first iteration. stop here. The
series is not affected by aberrant observations. I outliers are found
under the given parameter estimates, go hack to {a) to revise our
cstimates. Proceed with (D) to test whether any outlier is present
under the revised parameter estimates. Go to stage [ no additional
significant outliers are detected after parameter revising.

2. Stage 11: Simultancous estimation of outlier effects and model
parameters

{a) Suppose m. time points 7y, Ta..... T, that are possible outliers were
detected.  The outlier effects w; 1= wao(7;) can be estinated as
follows. If the series {y} is affected by s outliers 7y 7o, Ty

1 A 7
-y . T N
{5.36) can be rewritien as y = a1 + ZJ-”_ L B[t =T
The residuals (5.37) then become:

co= 0w (L) Ll — 7]+ = (5-13)

(b) Calenlate ¢y, (7,) for the estimated w,s where:

/ - LT, —l_ IR 5.4
Cao (Ty) SE@)) jo=1.o..n (5.4.4)

If miin a0 (7). = Cao (7o) = € (same crivical value as at the cned
i



104 CHAPTER 5. UNIVARIATE ARIMA MODELS

of the previous paragraph and in step (b) of stage I) then remove
the outlier at time point 7, from the series of outliers 71,79, ..., Tm
detected in stage I. Return to step (a) of stage II with the remaining
m — 1 outliers. If m;n[éAo (1) | = a0 (1) > C, proceed to step c.

(c) Obtain the adjusted series by removing the outlier effects according
to (5.42), using the most recent estimates of w; at step (a) of stage
I1. Thus adjust only for the outlier effects that are significant based
on the iterations in steps (a) and (b) of stage II.

(d) Estimate the model parameters based on the adjusted series obtained
at step (c) of stage II.
If the relative change of the standard error of the residuals from the
previous step is greater than ¢, go to step (a) of stage II for further
iterations. otherwise go to stage IIl. ¢, a predetermined constant, is
the tolerance level chosen by the user to control the accuracy of the
parameter estimates. An appropriate tolerance value could e.g. be

0.001.

3. Stage III: Detection of outliers based on the final parameter
estimates

(a) Compute the residuals by filtering the originally observed series {y; }
based on the parameters estimates obtained in stage I1, step (d).

(b) Use the residuals obtained in step (a) and iterate through stages I
and II with the following modifications:

i. the parameter estimates used in the ‘inner loop’ of stage I are
fixed to those obtained in step (d) of stage II;

ii. steps (c) and (d) are omitted in stage II; the estimated ;s of
the last iteration at step a. of stage II are the final estimates of
the effects of the detected outliers.

5.9 Forecasting of ARIM A models

One of the most important uses of AR, M A and AR(I)M A models is to forecast
future values of the {1, } series. The objective is e.g. to predict the value of y for
the period t + h based on the information assembled until period t; ¢ can then
be called the origin and h the lead time or forecast horizon and y,(h) is then the
h-period or h-step (ahead) forecast of ;.. Most of the time one is interested in
out-of-sample forecasts, i.e. ye4p, is not used (or even not observed) to estimate
the parameters of our ARIM A model. An in-sample forecast, Yt is obtained
when ;4 is used to estimate the parameters of the model. If not mentioned
otherwise, throughout this chapter the focus will be on out-of-sample forecast-
ing. To simplify the discussion, it is assumed in this chapter that the actual
DGP is known. In this case, there is no uncertainty about the model choice, the
parameter values or the errors {&;} (note that by doing this the uncertainty of
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the forecasts is underestimatad). Furthermore. the prime focus is on stationary
{and invertible) processes. AR, A4 and ARM A forecasts will be dealt with
separately and the issue of forceasting ARIA A models will be inclnded as an
extension. As forecast criterion the minimization of the conditional expected
(rmean) squared forecast error fi (i) or the {conditional) forecast variance {the
variance of the forecast error), given the information available up to period ¢ is
chosen. or

win F 4 (geen w00 [gen vopr—ae o 3 (5.15}
Hen o o o
Frided Y

Le. ye(h) is chosen as to minimize the expected value of (g g g (B)) . given
the information available up io time ¢ gathered in the information set 3y, In
general nsing E (4.5, )} as a shorthand notatiop to write the conditional expec-
tation of e, given the information available at period £ the solution to (5.15)
is:

H (h) =k (yf | fr-:‘:)!.) = El’{?)'f . h)'

5.9.1 Forecasting AR processes
Tterative forecasts

Assume one wants to foreeast from the AR (1) model ¢ — o+ oy | + 5 with
g € WA, Updating one period: 4, = g + 0y + 2441

Since by assumption the parameters ey and g are known. gy can be fore-
cast. conditional upon the available information at period #. as Fp{y . 1} —on F
ey or formally Eelwe i) = Flmiam s & gim.00 ).

Sinee yr.2 =y + o1 — 2442, the foreeast of g, conditional upon the
information available at period £ is E (152 = oy + oo By o). Substituting
E Ay 1) by the above lorecast, E,(y,.2) = oy — ayap + aly is obtained. By
continning this forward sabstitution, one can see that in general the forecast
function is:

Eiliin) g+ oy for h = |
— (L= taf+. a7 ) —aly for i 22, (5.46)

Expression (5.46) is called the forecast function and viclds the h-step ahead
forecast lor each y—y,. lutroducing now the assuption of stationarity of the
AR{1) model. e |og; < 1. (5.46) yields a converging sequence of forecasts.
Taking the lmit of Fy(y .5} as b — 2. one obtains:
4 -

: (5.47)

lim I‘:r(f}tdr.} = .
Lo [ — 23]

which is the unconditional mean (forecast].
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Forecasting using the M A (00) representation

For a stationary AR process, optimal forecasts can also be obtained by using
the M A representation. Consider the following AR (1) process:

Ye— p =0y (Y1 — p) +&¢

with p := ;24 the mean of the series, &, € WN, and |a| < 1. Some rewriting
yields (with L and I as lag and identity operators):

(ye —p) —an (-1 — ) = (I — L) (g — p) =
The pure M A (oo) representation is then (see (5.5)):
n—-p = ([—al) 'er=Y20 (L) e
= gt +ale o+ aer3+ ... (5.48)
Based on (5.48) the one-period forecast is:
Ei(yis1) = p+ Eileesr) + anee +adei + adep s + ... (5.49)

Except for Fy(£:41), the error terms prevailing in (5.49) are known at time ¢ and
can be replaced by the observed values; £, is however not known or observed
at time ¢, therefore the expected error Ey(g,4,) is used. Because of the WN
assumption, the best expectation of £, is simply zero.

Remark 5.2 Nearly always, only y; is observed in practice. Therefore consis-
tent estimators for the parameters a; and the error terms g4 have to be found.

Equation (5.49) can be rewritten as B, (y;..1) =u~+~a;(§¢ + 161 + ader—a + ..;);

Ye—H

similarly, the two-period forecast is
Ey(yes2) = p+ Bilera) + anEees) + e+ ofer1 + ...
= p+ao] (ee+aige—1 +ajer—a+...).
For a general h-period (ahead) forecast:
Ei(yesn) = p+ Eileesn) + a1 Ei(ersn—1) + 5 EBy(eein—2) + -
= pt+al (etarei-1+aieia+...) = (1 - alt) pt+aly.. (5.50)

Notice again that for h — oo, Ey(y+n) converges to the series’ (unconditional)
mean fL.

Proposition 5.3 For any stationary AR model, the conditional forecast of
Yetns Ei(yesn), converges to the unconditional mean as h — cc.

The terms y; — p = g4+ @151 + Q&4 +... are also called impulse responses.
The impulse response function is the path that y, follows if it is kicked by a single
unit shock &, ie. g; =0, =1, 54, =0 (V j # 0) (Cochrane (1997))."!
This is interesting because it allows to start thinking about ‘causes’ and ‘effects’.

Y 8ee http://www-gsb.uchicago. edu/fac /john.cochrane /research/Papers/timeser!.pdf
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Forecast errors

Forecasts are unfortunately not perfect. Define the h-period (ahead) forecast
error (for an AR (1) model} based on information available at periad £, f; (h).
as the difference between the realized valne of y;y; and the forecast value or
fo (k) i=yeon - By n). Hence, the one-step forecast. error is

Fll) =y — Bl ) = 2001

so that g, ;1 Is the unforecastable portion of i1 given the information available
at ihne £ By substituting 1. 10 o0 = a0 + g H &

e = vy + ¥+ r?r'f-y; e+ 8-
Reeulling Fyyeay from this subscetion:

fel2)y = oo — By 2)
= (ﬂ:tl f’(l’|(1‘i]+ﬂ'$y1 + Zfy2 } (1‘1Ef__1}

3
((l'n Loy + (Y‘ffl'j;) = EpLp 1 Ep- (r}SlJ
In general. for an AR (1) model:
- 2 . K] h—1 i
.ft (h:]z:f+h+(11£‘;.”i_ ] -{‘(’.}1:;.};__;2'1-(1‘18“14 T +—G‘1i i1 (E)FIZ)

Note that exactly the same result is obtained by subtracting the second line in
(5.50) from (5.18) {for £ + h instead of ¢):

, - 2. 3, .
wan- Elyean) = pAsiont aisiino F O E r—2 T OTE g E
h 3
—p— oy (20 +are 1 Fage o b )

- 2. 4 =1
= . e Ro1 TS p—u T E s T BT SRy

Since Elzy ) = Elerono1) = . = By 1) = O the conditional expecta-
tion of (5.52) is E¢(f; (h)) = 0. Since the expected value of the forecast error is
zero. the forecasts based on (5.46) are unbiased.

To measure the inaccuracy of our forecasts the variance of the forecast error
can be caleulated, Under (he WA assumption. the variance of the one-step fore-
cast ervor is simply a2, From (5.51) the two-step forecast variance isa? (1 + r_r'fj,

Based on (5.52) the following general expression for the variance of the h-step
{ahicad) forecast error is:

var fi (k)] = o".f. {for h = 1)
(1- r}:f“)
{1 -t}

LA/ N

L

(5.53)

i

[1 +ofral+ .+ (\‘f[h_l}] =0

where the property of stationarity is only used at the very enel 2

2] i olwiuns from (50061 il {5837 that the foreesst varibees for nonstationary AR

models can be votnputel.
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Notice from (5.53) that the variance of the forecast error is an increasing
function of h. This implies that one can have more confidence in short-term
rather than long-term forecasts, because the variance of the former is smaller.
Taking the limit as h — oo :

: o?
= e
the forecast error variance converges to the unconditional variance of the {ye,t €
Z} series. Under the WN assumption and the application of the central limit
theorem or under normally distributed forecast errors, (asymptotic) confidence
intervals around the forecasts can be calculated. For a general forecast hori-
zon h, the following 95% confidence interval is found ap Y1) ol + oy, +

1.960:\/ Y1) a?.
Note that, if there is any uncertainty concerning the parameters (which is

generally the case since they have to be estimated) the confidence intervals will
be wider than those reported here.

5.9.2 Forecasting M A processes

The ideas behind forecasting AR models and MA models are very similar.
Consider the following invertible MA (1) representation y, — u = (I + ¢L) &,
with || < 1 and g, & (0,02). Rewriting this M A (1) process as a pure AR (oc)
process:

TraL =W =5 (oD (-

= (e — 1) We-1-1) +¢° Ye—2-1) ¢° (Ye—3 — p) +...  (5.54)
The formula for the one-period forecast is:
Ei(Yt+1) = p+ Ei(ery1) + 2o (5.55)

Again the best guess for the conditional expectation of &, ;, Ei(2441), is simply
zero because of the W assumption; the forecast is then calculated as (based
on (5.54)):

Ey(yt+1) = rtely —p) - [pg (Ye—1 — 1)
+0° (-2 — 1) — ¢ (Ye—3 — 1) + ...

From (5.55) one immediately sees that a two (and more) period forecast is
the (unconditional) mean  of the series {y,,t € Z}.

Alternatively the WN error term can be seen as the outcome of the infinite
recursion & = (Y, — p1) — pe¢—1, which eventually brings us to the same result.

Forecasting from a more general invertible M A (g) process,
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(g — g0y = 2 (Lyzr = (L + o L 4o L? 4+, L) =0
poes by the sawe principle. This results in the h-period forecast {for A =)
Eolyeon) =t {en+on bt wnol® + o+, Lt ")er (5.56)
with gy = (yr — ¢) — w180 1| FaSi—z + o 9,80 ¢ Tor h > g, Ef{ye.p) equals

the {(unconditional} mean g

5.9.3 TForecasting ARA A processes

From the above, it is possible to use forward iterations to derive the forecast
fanetion. This can directly be extended to a general ABM A (p.g) process. To
keep the algebra as simple as possible. consider an ARAA (2, 1) model y =
o = ryio1 T O 2 1 £ 4 8o, Updatiug one period vields g1 = o+
oy - ety o ) =51+ @ 5. Under the assamptions that /) all cocflicients are
known. i) all variables are known up to period £, and i) Ee,. ) - 0 for
7 > 0. the one-step (ahead) forecast is

Edyi) = g + o + el + 97 8¢
and sinee pgros = Gu S0y i ¢ St S8 the two-step lorecast is

e 0) = an+a By} + aayr

‘)
an = e + QY by o b a2 & s

a1+ o)~ ((rf + o)yt ey 1+ P&
Exercise 5.2 Show that the three-period foreeast s
Efoa) = o ('l boa, + Qf + r.rz) + (a:f + 2()5.0‘2) i
+ (afas 4 W) Y1+ (o] Faa)e,
A general A-step (alicad) forecast (for A Z 2} can be found from
Folyron)= cg+ar By no1) + ok on=n) (5.57)

This forecast rule {5.57) and the solution for the three-step forecast indicate
that the forecasis will satisfy a second order difference equation: as long as the
characteristic roots of (5.57) lie within the unit circle. the forecasts will converge

to the unconditional mean ?ti’;-“—“—_,,”

Example 5.7 Optimal forecasting from a vandom walk and noise tnodel

AN ernatively, uie can il tle geveral <olution by combining hotogeneons soliutions aud

the partienlar sobntion and hoposing the initial voudit i,
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First, consider an ordinary random walk vy, — ;1 = =;. Given initial condi-
tion yu recursive substitution yields:

W = 1 te=m-o+e-1+te=
= Yo+ T i
The unconditional expected values or means of a random walk are constant:
E(yt41) = ... = F(y+s) = yo. Conditional expectations are formed as:

Ey4118t) = Ei(ye+1) = E (Yt +£0413¢) = Ey (4 + £041) = y¢ and, simi-
larly. E(yﬁsl\?g) = Ei (Ye+s) = o+ Ey (3], €1+:) = ye and var (y;) = to? and
ps = (52 /2 (the autocorrelation function of a random walk will thus show a
slight tendency to decay)!

Consider now a random walk and noise (n): y = Y., & + 7,. Let the
forecast of y; be a linear function of the past values or E (y:|3) = E¢ () =
Z;— v;Ys—i, with v; selected such that the mean squared forecast error is min-
imized. Substituting gives:

Ei(y:) = v (Z:;; & + ’?:-1) + v (Zi;fsi =+ 71:—2) e

The optimization problem is to select the v;s so as to minimize the mean squared
error:

2
= .
Ep—-E (W) = E [2:=1 Eithh— 0 (EL} & + ??t—l) i ]
i 2 —
= g3 +cr,2?+o§ . Tl (1 '2}:1’”1’) +a§ Z;=lv§.

The first order condition for minimizing the mean squared error is (for k =
1.29...):

AE (y, — E, % = ; _
(e aykt ()" _ 20kvy — 202 I (1 =% 4 v,;) =0 (i)

For k=1:2050 — 202572 (1 - v ) 0}
For k =2 : 202u, — 202 gj_z( ~¥iiu)=0
Subtracting vields:

o(l—m)+op (v —v) =0 (i)

The second difference of (i) yields (for k =2,3,..): —vk_1 + (2+ —§) v
Ui+ which is a homogeneous second order difference equation with a solution
of the following form: v, = A z\l +A2A2. where A, and A, are the characteristic

roots. The smaller root satisfies: A7 — (2+ ;;fr) A1 +1 = 0. Substituting
v = A\ and vy = Alz\f into (1):

o2 (1= A\) +024; (A\] — A1) =0 (iid)
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Solving (#ii) we find A = '—i%l or the 1, are determined by w, = (1 - A }/\I{’ b

Hence. the one-step ahead forecast of e is K (g) = (1 — A]}Zj‘.‘_l Al Lo e
With [ < 1 (1= A 27, A=

Thus the optimal lincar forecast is the geometrically weighted average of the
past realizations of 3.

5.9.4 Forecasting an ARIAM A process

Suppose the observed time scrics {y|f = 1.2, ..., T} is regarded as a realization
of the general ARIA A (p.d. ¢} process o (L) Ady, = p(L)g, and the future
value ¥y, has to be forecast. The linear filter representation of yr.p is

Yreh = Er—n Y TIETan. | F et T 6T 1 TRET F T8, 1+ where T (L) =
a V(LYA g (L), Again the forecast of yren will be a linear cowbination of
the past and present values of i so Lhat it can be regarded as the conditional
expectation of yr. s given yr.yr—i. ... Hence the A-step (ahead) forecast
made at origin T is denoted as Fp{yr va):

Flyrin) = Elyromyr-yr=1. . i)

=k (E'I'.—h T S W e T S L TRET A T 185 L Wl -...yj).

Now, E{spa; yr-yr-1..-41) = €r4j. for j < 0 and equal to G if 37 > 0, ie
past values of 4. ; are known and future values. although nnknown. have zero
expectation. Hence, E{yryn) = Tasr + Tho18r 1+ ... which is the mininmm
mean squared error forecast of yp.p, made at origin 7. The h-step (ahead)
forecast error for origin 1 is:

frth) = yran— Erlyrsa)
2 Epan P TIEFsh—1 F s T Tho IS4, {5.58)

so that the forecast error is a lincar combination of the unobservable future
shocks entering the system after time 77 in particular. the one-step {ahcad)
forecast eyror (h = 1) is fiy (1) = yr=1 — ¥ = £r.1. From {5.58) again an unbi-
ased forecast is obtained since F {fr (&) |yr yr—1.....45) == O and the variance
of the forecast error satisfies: var (fr () =o? (1 +7i+ 75+ ..+ 717 ).

For a minimmn mean squared forecast error. Lhe one-step {ahead) forecast
errors at different origins must be uncorrelated. However, it is not the case that
h-step (ahead) forccast errors, made at different origins. will be uncorrelated,
nor will be forecasts for different lead titnes made at the same origin. According
to Box and Jenkins {1970} the autocorrelations hetween A-step (ahead) forecasts
made at origins T and T — § (7 > ) are given by:

S e
p(frih) fr ;1) = %ﬁx@;fn

= 0 elsewhere. (5.
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The correlation coefficient between the T-origin forecast errors at lead times
h and h+ j is:

Zfl-l ” .
i=j TiTh+i

: 1/2°
h—1 h+j3—1
[(Zh=i2) (i)

Further examples of forecasting with ARIM A models

p(fr(h), fr (h+3)) = (5.60)

1. Forecast ARIMA(0,1,1) model Ay, = (1 —¢L)s;. From this model
YT+h = YT+h—1 + ET+h — PET+h—1; for h = 1: Er(yria) = Br(yr+1) =
yr — ger and for h = 2: Er(yry2) = Er(yr+1) = yr, or in general:
Er(yr+n) = Er(yrin-1) = yr (h > 1). Hence, for all lead times, the
forecasts from origin T will follow a straight line parallel to the time
axis passing through Ep(yr. ). Note that, since Er (yrin)= yr — ger
and er = (1—L)(1— L) ' yp, the h-step forecast can be written as:

Er(yren) = (1=9)(1—oL)  yr
(1 =) (yr + eyr—1 + oyr—2+...),

i.e. the forecast of all future values of y is an exponentially weighted
moving average of current and past values. Since for this model 7, := 1—¢
(7 = 1,2,...), the expression for the variance of the h-step (ahead) forecast

error is: var (fr (h)) = o2 (1 +(h—-1)(1— go)r”). which is increasing in
the forecast horizon h.

2. Forecast ARM A(p, q) model:
(1—auL—al? - ... —apl®) gy = (1 + 9, L+ 0o L2 + ... + @, L1) e with
e % (0,02).
- If all characteristic roots z satisfying 1 — oz — ap2? — ... — 2P = 0 lie
outside the unit circle the M A (co) representation (5.5) has coefficients

Ty : =@+
Ty @ =@ +ar+am
min(rn,p)
Tn - =0 + Zi::l AiTn—i for n = 11 2'! wn P

min(n.p)
= Z'—1 @iTp—; form > p.

- Moreover, if the process is invertible, i.e., if all characteristic roots w
satisfying 1 + ¢ w + gow? + ... + paw? = 0 lie outside the unit circle, the
AR (00) representation is (5.6). Forecasts for the {y,} process can now be
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derived:

Eyfya) = Z;L Tith o1
£ty .0} Tiko{ye )t 3:?'3 Tyt e2—
Elye. 3} mi By, 2) + moF{y 1) )_:? ST 4. oo

3. This result can also be used for forecasting with an ARIAM A (p.d.g)
maodel; 10 operator fornu

a{Lyx(LYy  w(L)oy

with v (LY Aty = Lj " (':] ( l}j ¢ oo such thai:

g
woo= {1 x{L)) i+
e I
; 3
~d .
ory = 5 (W g e

Since Felwe ) Elw oy ooremon ).

. o o \
E{yen) 21 (}) (=140, 4 B
As {rf € Z} follows an ARMA(p.q) process. the forecasts Fy(uy, ;) can
be obtained as discussed above, This eventually vields the forecasts tor the
ARIA A {p.d.q) model.

5.9.5 Ad hoc forecasting methods

This section briefly deals with a munber of furecasting methods which are not
explicitly based on a probability model {see also Chatfield (2001)). For this
reason they might be regarded as being of ad hoe nature. Generally, they will,
however, be based on a preliminary exawination of the data, c.g. for answering,
the question: “Ts it necessary to use a seasonal method or not?”

Simple exponential siuoothing

Simple erponential smoothing (SES) is the simplest version of a variety of meth-
ods that produce forecasts by simply updating formulae (with newly available
data). SES computes L-siep {ahead) forecasts by a formula that is equivalen
to cotnpuling 4 geometric smn of past observations:

yr (1) -ayr + ol ayyr 1+ o (d (.t'}zy';' S (5.61)

with e denoting a smoothing parameter (0 < o < 1) and yp (1) the one-step
forecast of vy ..

In practice the above equation is rewritten in an updating format. There are
two cquivalent updating formats: the reewrrence form and the error correelion

form:
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e Recurrence form:

yr (1) = ayr + (1 — a)yr-1 (1), (5.62)

which can be illustrated by rewriting (5.62) as a first order moving average
model in growth rates (verify!);

e Error correction form:
yr (1) = yr-1 (1) + aer (5.63)
with ez := yr — yr—1 (1), i.e. the prediction error at time T

The original motivation for SES (Brown (1962)) comes from applying dis-
counted least squares to a model with constant local mean p and WN errors
{z¢} such that y = p + &, where yu was estimated, not by least squares, but
by applying geometrically decaying weights to the squared prediction errors. In
other words, j is estimated by minimizing S := Y1) A7 (yr—; — p)°. It turns
out that the resulting estimate of p -using data up to period T- is such that
it can be updated by SES (e.g. Kendall and Ord (1990), Section 8.19). This
procedure is intuitively reasonable, but theoretically dubious in that if one re-
ally believes that the underlying mean is constant then OLS should be used. In
fact, it can be shown that SES is optimal for several underlying models when
the form of the ’drift’ is mathematically specified, e.g. for an ARIM A (0,1,1)
model.

Holt’s linear trend method (local linear trend)

This method is a generalization of the SES method. It is helpful to first recast
the SES by regarding it as a method for producing an estimate of the local level
at time t (=: L;). Then (5.62) can be written as:

yT(1)=LT=ayT+(l—a)LT_1 (564)

where Ly is an estimate of the ‘local level’ at time T'.

The generalization with respect to SES is to introduce a local trend term 7,
which measures the expected increase or decrease per unit time period in the
local mean level. The updating equation for the local level is obtained as a gen-
eralization of (5.64): Ly = ayr+(1 — a) (Ly—; + Tr—1) . In addition we update
the local estimate of the growth rate by: Tp = v (Ly — Lr—1) + (1 — ) Tr—1,
where « is another smoothing parameter. The h-step ahead forecast is then
given by: yr (h) = Ly + hip.

Holt’s linear trend procedure is optimal when the underlying process is either
ARIMA (0,2,2) or a linear growth state-space model (there are two smoothing
parameters now). A useful variant of Holt’s linear trend method is to include a
damping parameter, say # (0 < @ < 1), such that the estimate of the trend or
growth rate at time ¢, say T, is damped to 87} in the subsequent time period.
The h-step ahead forecast at time T is then:

yri(h) i & (22;1 9") Ty (5.65)
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This method involves estimating 1 more parameter ¢ and is optimal {or a par-
ticular ARIALA(1.1.2) model.

Double exponential smoothing

In the previous subsections the SES was shown to be suitable for a time series
which could be approximated by a horizontal line near the forecast origin 7.
A straightforward gencralization can be obtained 1f the time se l‘i(“-; # can be
approximated by a line iu the neighborhood of T : yy = juy + {t - 1Yo, which
suggests that the forecast function gy (A) -= oy (1) + Bpy (T} can be usad. whore
w (N rllld iy f) are the valu("-, of yt, and g, mininiizing the expression S :
Zj _Ul Flyr - py J;L,) Necessary conditions for this minimum are

C(;Tt_:’. = ZJ nl & (yr 3R ,?-1“-2)2 =0

28 oY yr ) =0,

and dppl()\mm‘rmg the finite sumﬁ of C(){‘[‘h(‘l(‘lll’% by their 111[1111t(’ suts, .8
Z; o ' is approximated by 1—7 ZJ 0 j‘f approximated by —-77 and
Zj‘_—u 723 approximated by {i][—L_'—{:-r the above systent of two equations  can
now be writtew as:

3

avs—f 1o -
{1- J'-’))ZJ'_U Fyr—; — i ‘H*Jl —3 - 0
a(l+3 :
(1= 3]y d e — w3+ ;n—~——§ — 3) = 0. (5.66)

Denoling the smoothed series by s (£):=(1-3 )y~ 351 (-1} = (1-3) Z;_':l Fye
and the doubly smoothed series
"1;{ ) {l )’) ( }-’—)’5 ;(f ]_ = (1—,3)23)’;‘9‘,53(l—ﬁ)b‘lU.-l) -4 ,"J)H-z(!--l}
=(1-4) Z; 0 35 (t— 7). it is imnediately seen from substitution that:

o) = Q-3 e = (- AT e+ D%y
(1- .‘3)2 Z.i.-. -n k.dk'?}'f' Al - Vs (1),

so that (5.66) can be rewritten as:

12

si{d) — gy~ ﬂ--)ﬁ 0

(14 5)
1 -7

$o(T) — (1 = 8381 (1) — g0 3+ 1y Q.

Solving for s, and ,u,z. updating formulas are Ul)tdlll(d

_IL f)““Zsl{T 5) = 2{1 7’)?};—}-23‘:1(1’ 1} (1 '('f 1,“ 3(1 ‘}}‘\](Tl ﬁ.‘i)(T—l)
{I-— 3} p+3{3’-+l)al(f—l]—inf—l)rmd

(1 = 22 AT - s2(T)) = 252 (301 — Byyr + Fsi (T — 1) = dsa(T = 1))

Alt(’.rna.t.n(‘.l}. ‘51(11 ) anc l o1} ¢ an al'«o he expressed as a function of g () and
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#a(T) : 1(T) = uy(T) ~ 1Z55(T) and s5(T) & py(T) — 2:L51y(T), s0 that:
#a(T) = (1 - B)%yr + B2 (4 (T — 1) = piy(T — 1)) and using g (h) for h— 1.4
simple updating is obtained:
i (T) =y (T = 1) + po (T — 1) + (1= 8)* (yr — yr—1(1)),
#2(T) = (1-5) -+ B(1-) iy (T-1)<5 iy (T-1)- (1-B)pty (T-1) +2 B (T-1)

= (-6)%yr = (1= B2 (T~ 1) + (26 - 5°) py( - 1)

= #o(T — 1) + (1 - 8)? (yr — yr_,(1)).

From the updating formulas #1(T) and p,(T) it may be assumed that yr
was perfectly forecast at period 7'—1 (Le. yr—1(1) = yr), so that these formulas
become: pu,(T') = pu, (T — 1)+ p5(T—1) and #o(T) = py(T'— 1) and the forecast
lines are the same at period (T"— 1) and at period T,

Remark 5.3 Double exponential smoothing can also be viewed as a special case
of Holt’s linear trend method. First SES is used to update the local estimate of
the level. Then the same operation. with the same smoothing parameter, is
applied to the sequence of estimates of the level. It is possible to show that this
method arises if the underlying ARIMA (0,2,2) model has equal roots. With
this method the number of smoothing parameters is reduced to 1.

Holt-Winters forecasting procedure

This method is a further generalization. Now seasonal variation of either an
additive or multiplicative form is introduced into (5.64). Therefore, let SI,
denote a seasonal index in time period #, s the number of periods in one year
(e.g. s =4), and § the smoothing parameter for updating the seasonal indices.
In the additive case, the seasonal indices are constrained to sum to zero over
a full year, in the multiplicative case, the y should average to unity. E.g. the
recurrence form of the updating equations for the local level Ly in the additive
case is:

Ly =a(yr — SIp_,) + (1 - @) (Ly—y + Tr_y), (5.67)
with a local trend term T and a seasonal index SIy satisfying:
SIy =6 (yr — Lr) + (1 - 0) SIp_,. (5.68)
The h-step (ahead) forecast at period T' is then given by:
yr (k) = Ly + hTr + SIp_, ), (5.69)

for h = 1,2,..,s. Alternative error correction formulae are also available to
update Ly, Tr and I, though, as for Holt's linear trend method, they make the
smoothing parameters appear to be different. The seasonal form of exponential
smoothing is usually called Holt- Winters seasonal forecasting.

Generalized exponential smoothing (GES)

Generalized exponential smoothing (GES) originates from Brown (1962). Sup-
pose that the previous methods can be generalized to fitting an arbitrary fune-
tion in the neighborhood of the forecast horizon T'. Such a function can represent
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a time series it ters of polvnomials and sinnseids. In the form
L 7 N - =
o o f () e () e (5.70}

where {j2;} denotes a set of constants and f; () 18 a known function of time
(g = ey fly o gty) and £(2) = (fi(t). folt). ... Fr (Y. The time varying
veetor £ (t) can be defined with a regular fixed transition matrix A as £{f) :=
Af{t — 1), Although the components of f{#) are deterministic functions, the
method recognizes that, the cocfficients {pr;} can also change thirough time as for
the double exponential smoothing model so that the model (5.70) only applies
locally, Thus. estimates of {7} can be updated through time as more dala
observations become available. As the model ouly holds locally it is natural
to estimate the parameters not by least squares. but by giving move weight
to recent observations. 1his suggests using discounted least squares. where the
discounted sum of squared errors at time £ is

o= F ey = X0 i W (=) (571)

This sum is minimized w.or.t. {g, (0} In practice the GES method is usually
formulated so that the { £ (1)} are lunetions of the time difference from the end
of thie series rather than from the origin.

Example 5.8 If f, (1) in (5.70) are just simple functions of tine, as e.g. for
the simple Unear function == g + pot,

so that f(£) := (L.#)". which can be defined with a fixed transition niad rix A
as £() = AF(f - 1) with A = } 2 .
with the double exponential smoothing roethod.

In this case the GES method coincides

In general, GES rednces to SES if the only function fitted is a constant {then
F{t) = 1 and A=1); when a constant and a linear term are fitted. then GES
reduces 1o donble exponential smoothing. 1f data is seasonal. however. then
GES iy very different from the Holt-Winters method. The latter fits only oue
seasonal index for each period, while GES fits several sine awd cosiie terms.

5.9.6 Forecasts with density functions

Densily forecasts are forecasts of the complete probability distribution or of the
complete pdf of the stochustic variables under investigation. As suppleents to
point forecasts. both inferval forecasts and density {or pdf} forecasts provide a
description of forecast uncertainty, about which no wformation is available if
only point forecasts are available.

To date -contrary to point and even interval forecasts- little attention has
been paid to forecasts of complete pdfs instead of just the first two moments.
There are several reasons for this observation:

1. The analytic construction of density forccasts requires restrictive and
sometimes dubious assunptions {e.g. Gaussian innovations, no parameter
estimatiion uncertainty).
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2. Until recently, there was little demand for density forecasts, whereas now
there is a large need for pdf forecasts (e.g. for portfolio values).

3. The problem of density forecast evaluation appears difficult (e.g. correct
simultaneous conditional calibration of prediction intervals at various con-
fidence intervals).

Evaluating the accuracy of interval and density forecasts is receiving increas-
ing attention nowadays.

For interval forecasts the first question is whether the coverage (e.g. 95 or
99 per cent) is correct ex post, i.e. whether the relative frequency with which
outcomes are observed to fall in their respective forecast intervals is equal to their
announced probability. Christoffersen (1998) argues that this unconditional
hypothesis is inadequate in a time series context and defines an efficient sequence
of interval forecasts with respect to a given information set as one which has
correct conditional coverage. He presents an LR test statistic for conditional
coverage testing, which combines a test of unconditional coverage with a test of
independence.

For density forecasts, the first question again concerns forecast evaluation
by goodness-of-fit statistics as LR test statistics. As also indicated by Wal-
lis (2003) and Clements (2004), an alternative group of goodness-of-fit tests is
based on the probability integral transform(ation). For density forecasts for the
observed stochastic variable y; with corresponding distribution function P; (i)
this probability integral transform(ation) is simply defined as z, := P, (). so
that z; is the forecast probability of observing an outcome no larger than that
actually realized. If P, (y) is correct, i.e. if it is the same as the theoretical
distribution function F; (), following Diebold et al. (1998) it will be shown
later in this section that the 2;-sequence follows an iid uniform distribution on
the closed interval [0, 1]. Diebold ef al. (1998) also present histograms of z, for
visual assesment of unconditional uniformity. Diebold et al. (1999) use the (non-
parametric) Kolmogorov-Smirnov test on the sample distribution function of z,
when evaluating the US Survey of Professional Forecasters’ density forecasts of
inflation. In Clements’s (2004) evaluation of the UK inflation density forecasts
an assessment is given of how closely the forecasts densities match the true den-
sities. Specifically, the null that the observed sample of UK inflation rates could
have been generated by the set of proposed forecasts densities is tested. The
rationale for this approach to density forecast evaluation is provided by Diebold
et al. (1998) while showing that the ranking of two density forecasts depends on
the user’s loss functions measuring the deviation between the density forecast
and the true density. In the sequel these ideas will be formalized and somewhat
extended.

Given that the problem of density forecast evaluation is intrinsically linked
to the forecasts user’s loss function, let {f, (yti%;)}:‘zl = fi (y) be a sequence
of pdfs for y, with h the forecast horizon and with the available information
set Sy = {Yr—1,Y—2,...} and let py () = {p (yd%t)}:’zl be a corresponding
sequence of 1-step (ahead) density forecasts (estimates of f;), with {we :l=1
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A serios of realizations. Each forecast user has a loss hwetion L {a.y). with
@ the action choice or forecast. 1f the nser believes that the density forecast
ply) = pe () is a correct density, or pr (g} = Jf (4}, then she chooses an
action a* such that:
@ {p(y)) =argmin { L{e.y)p(y)dy
il A

i.c. minimizing the expected loss. The action choice deflines the loss L{a*.y)
faced for every realization of the process y ~ f{y). This mplics that the loss
distribution depends only on the action chioice. The expected loss w.r.t. the Lrue
DGP i

E{L{o” )= [ Lia* ) f () day.

lence. w density forecast trausiates into a loss distribution. “Two different
forecasts lead to 2 dillerent action choices. and hence. 1o two different loss
distributions. The hetter is the density forecast, the lower is its expected loss
{w.r.t. the true DGEP).

Ranking two forecasts

Suppose the user has the option of choosing between two forecasts {p; (y) and
pe (1)) i a given period. The nser will weakly prefer forecast p; (i) to forecast
pi (g if

FLlap.y) fndy 2 [ L{a.y) fy)dy

with a'. the action that minimizes expected loss when the user bases the action
choice on forecast p; (y) . Tdeally, onie would like Lo find a ranking of forecasts
with which all users would agree. regardless of their loss funcrion. Unfortunately,
such a rauking does not exist.

Following Dichold ef al. (1398}, the next two propositions ¢an now be for-
mudated.

Proposition 5.4 Lel f(y) be the densily of 4. of be the optimal aclion based
on forecast p;, o, be the optimal action bused on forecast pr. Then therve docs
not exist @ ranking v (from bad to good) of arbitrury density forecasts p; erhidl
(£ f), such that for all loss functions Lia.y):

1, T 4y /L (ay.y) [ dy = / Liag. y) fly)dy

Howeuer, if o forecast coincides with the trice DGP, then it wil be preferred by
all forecast users, vegardless of thewr loss function.

Proposition 5.5 Suppose that pj (y)  fly) so tha! @} mingrizes the expected
loss wnr.f. the true probability density function. Then

[ L iwdnz [ 107 @
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So, a forecast evaluating procedure has to be established by assessing whether the
forecast densities are corvect, i.e. whether {p, (ydi)‘t)}i;l = {fs (yg]%,,)}i;l
not, some users, depending on their loss functions, could potentially be better
served by a different density forecast.

Evaluating density forecasts

The task of determining whether {p; (1|3, )}t 1 ={fea (Jf|3¢)}£ | appears diffi-
cult, because { f; (y;!&t)}t , 18 never observed (!), even after the fact. Moreover,
and importantly, the true density f; (|3¢) may exhibit structural changes (as
indicated by its time subscript). But, given that the relationship between the
sequence of pdfs, {f; (y)}, and the sequence of density forecasts, {p; ()}, is
given by the probability integral transform(ation), z:

2 = Y pe (u) du= P, (y;)

the following lemma describes the pdf g¢; (z;) of the probablity integral trans-
form(ation):

Lemma 5.1 Let f; (y;) be the true density of y, let py (y:) be a density forecast
of yg, let z; be the pmbablity integral transform(ation) of y, w.r.t. p; (), then,

asswming that —‘# 18 continuous and # 0 over the support of y;, z has
support on the unit interval with density:

fe (P! () = 20,

q‘ [Zt) (ze)

Zr

Corollary 5.1 If p (ye) = fi (we), then g, (z) = 1 for z € (0,1), ie. 2z ~
U (0,1).

Even though the actual conditional densities may change over time, provided
that the forecast densities match the actual densities at each t, z, ~ U (0,1) for
each ¢ so that the time subscript on g (z) is in fact redundant. Moreover, the
raudom variables z; are iid for any previous time period, so that the time series

{zt}f 1 is a random independently drawn sample from the U(0, 1) distribution,

ie. z ®u (0, 1). Formally. going bevond the 1-period characterization of the

pdf of z; when py (y;) = f; (y¢), both the density and dependence structures of
the entire z;-sequence can be characterized for p; (1) = fi () as:

Proposition 5.6 Suppose {yt}:' 1 8 generated from { f; (| %f)}: . when 3 =

{Yt—1,Yt-2,...}. If a sequence of density forecasts {p, (yf]]»t , coincides with
{fela J;l%’g]}t 1+ then under the usual conditions of a nonzero Jacobian with
continuous partial derivatives, the sequence of probablity integral transforms of
{yc}: , wrt. {p, (ﬂ:)}g y s ud U(0,1); ie. {Zs}t 1 L1iEEU(U 1). This implies
that if a sequence of density forecasts is correctly conditionally calibrated, then

every interval will be correctly conditionally calibrated and will generate an iid
Bernouilli hit sequence.
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5.10 Cases and exercises about ARIM A models

In this section. a number of cases and theoretical and cmpirical exercises on
ARIMA models, including identification, estimation, testing. and foreeasting
will be presented. Since the reader is stimulated 1o follow a process of learning
by doing. both practical cases and elaborated exercises and unsolved cases and
excreises will be presented.

5.10.1 Theoretical exercises

“I'his section begins by solving some simple theoretical exercises. Afterwards a
number of nnsolved theoretical exercises will be preseuted.

Solved theorctical exercises

Excrcise 5.3 Find the mean, variance and autocovariance function of the fol-
lowing M .A(2) process yp = ¢ + 028, — Qdes . where 24 95 0 purely random
process with zevo mean and oF = 1.

Applying the unconditional expectation operator. E{). to the above AMLA (2)
process. the mean of the process is obtained:

E(y)=E(e)+0.2E (e, )-0.4E(e, 2)=0+0.2 x 0+0.4 U 0=0. Vt € Z.

The autocovariance nction of this A/ A(2) process is then:
covlye. i 1 )=0=F - Ky ye—s-E (o) |} =T en—r )
=F{{e40.22, -0z ) (5540220 4 1-0.de, g_2)}
:F;(Etfr_1~)+(_].2E(5f 1€g_j,-_)+(],22b(5t_gvg ;,-_[) 0.2 x (]1.&1(_ I— 15 k_'_]}
S0AFRler weim )04 X 0.28(2y wzi_p )+0ATE{geagy gou).
so that for k= 0.
cot{m. ) = {0y = var (r;,} = g2+ 0.04ol + 01607 - 1.2, for k= L.
covr(a ) = ~(1) = 0267 - 0.0%g7 = 0.12. for k= 2.
cov(yr. yr2) = ¥(2) = { -0.4)o7 = =04, and for & > 2.
cor(y yrx) - 3(K) = 0.

Exercise 5.4 Define an MA{q) process by = 37 ja7 e . where o € {0.1)
it g constant, < is a purely random process wnth zero wmean and (r* = 1. and
t € 7. Compute the auntocovariance function of y. Check whether your answer
is correct for k = g, where v(g) =a 9.

Since E (y) = £ (3 f ga =y i) =0and & ! {0, 1), for all & € [U.g]:
cov{y. yr- )= EQnn 1) =F {(Zf peer ) (Zf ne e —k—;‘)}

TR e, i J 4 i b1 _ t,r ko2
=30 -'{vf—r- (ZJ -t e &—:)} =Yl feTTI=0 0 et
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so that var(y,)=3_{_,a=%, cov(ys, ye—x)=7 (k)=37_, a*~% for 0 < k < g and
cov(ys, ye—k )=0 for k > q. Hence, fork=gq:v(q) = a —m

Exercise 5.5 Compute the autocorrelation function of the autoregressive process
Y = 0.5Y—1 + &4, with &, 1 (0,1) and t € Z.

Since the AR(1) process is stationary it can be represented as the M A(c0)
Process Y = =gy =210 (0.5)" £—i- Hence, E(y;) = 0 and

cov(Ye, Ye—i )= (K)=E(yeys—x)=E {2’;’3 (0.5)% &, i) =0 (0.5)7 et_k_,-}}

=02 (0.5)° £, (0.5) =7 %25 =1 (0.5)",
so that p(k)=2( = 0.5* W

Exercise 5.6 Compute the autocon'elatmﬂ Jfunction of the AR(2) process y; =
Jyt—l + th 2 TiEly with £t & (0 1) and t € Z.

Construct the Yule-Walker equations by multiplying the second order sto-
chastic difference equation by y,—x for k = 0,1,2,... and taking expectations
and take account of the property that the AR(2) process is statlona.ry (verify!):

E (yye)=7 (0)=3E (ye—19)+ 3 E(ur—2v)+E (e ) =37 (1)+27 (2) + 1
E (yeye—1)=7 (1)=3E (Yr-19-1)+ 5 EWe—291—1)+E (Eeye—1)=37 [0)+g’7(1)
E(myt 2)= 7(2) E (ye-19e- 2)+§E(y¢ 2—2)+E (Exye- z}— ,T[IH- 7{0)

E (?Jtyt-k)=')’ (k)Z%E (!h~:yc—k)‘l‘%E(yr.—zyt—kHE (E:ye—k)Z%‘r (k'1)+%’1’ (k-2).
From the above covariances for k = 0,1,2 a deterministic system of three

equations and three unknowns (7(0),7(1) and 4(2)) can be defined. By the

method of substitution, the solution of this system is: ‘r(O (21 / 16),~(1) =

(9/16), ..., so that the autocorrelations are given by {1, 2, 2.1,

Exercise 5.7 Suppose the stationary process {z;} has autocovariance function
Y. (k). Define a new stationary process {y:} by y, := x4 —x,_. Find the autoco-
variance function of {y. } in terms of v, (k) and obtain v, (k) when v, (k) = vl*l.

This exercise investigates the link between a stationary level process and
its first differences for the autocovariance and autocorrelation functions. The
Yule-Walker equations of the differenced process are:

E () =E(@020)+ B(2e 1201 ) 2B(@e01-1) =7, (0)+7,(0)-27, (1)=27, (0)-2v, (1)
E(py—1)=E(x12¢-1)-E (2434—2)-B (#4181 )+E (21-17¢—2)=27, (1)-7, (2)-7, (0)
E (.?Js!h._z):E (ILJ::-—z)'E(Irﬁ?:ha}-E(ﬂ—1Ir—z)+E (It—I$f~:1)=2'Ya; (2)-7 (33"']’-; (1)

E(yey: k)=E (Erfﬂr k)- E(-Tr-'!-z k1) (T 120 a)+E (Te1%4-5- 1) 29, (k)=7, (k+1)
7z (k-1), so that it follows from v, (k) = v/*l that v, (k) = 20k — ylk+1] —

vkl m
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Exercise 5.8 Assume o time series consisting of T real numbers (y1. 42, ..., Y1)
and assume that one wants to forecast the out-of-sample value yryn by yr(h),
where h is the forecast horizon. Then, consider that the value yr(h), obtained
by the simple exponential smoothing (SES) method, can be written as yr(h} =

(1-58) Zj:ﬂl Blyr_;, with B the smoothing paremeter satisfying 0 < 8 < 1.

(a) Supposing that y is a random variable with expectation zero, variance
one and cov(yy, yean) = p'*l for all integers ¢ and h and |p| < 1; show that
the influence of an optimal choice of the smoothing parameter {obtained by
minimizing the expected squared prediction error for an SES forecast based on
an infinite sum: hence, for sufficiently large T') on the results is not too strong
for positive values of p and fairly large intervals of 5.

(b) Consider that in the SES model the mean lag between the observations
and the forecast based on them is measurable by:

r={1-B) ;5 BT — )

Simplify this expression of 7 as a function of 8 and 7. What happens to the
expression when the number of observations increases indefinitely?

{c} Suppose now that y, = Z:;(l, M€e—i, o # 0 for positive t, where the
exror process is assutned to be a WN process:

e Is the process {<;} stationary? Show that one can always normalize A) =1
and that g can be put in the form ¥ = Z;;'l a;yi—; +&. How can a;s
as a function of the A;s be computed?

e Compute E(yri1|y1, Y2, - yr). For which values of }; it is verified that
E(yralyn va,vr) = (1= B 50 Fyr—;?

e Compute now E(yrin|tn. 2. ... y7) and yr —yr—1.

Regarding question (a) of this exercise. the optimal choice of 3 is determined
by minimizing the expected squared forecast error (sce (5.45}):

mgn E(yrin —yr(h))}* he N
st yr(h) = (1-B) 352 Fyr—-
Redefining the objective as:
or(h B.0):=E(yrsn — yr(R)?=EW} 1) 2E(yr+1yr (R)+E(y7 (b))

the right-hand side terms can be simplified as follows:
E{y,,) = var(yrn) = 1;
2E(yr+nir(h))=E [yTM(l-ﬁ) PR 5J’UT—;E] =(1-8) 252 B E (yr4nyr—5)
=0 ] ; X = L _ L1
= (18) T3, B o =(1-p)pl* 32 70 =2

E(§3(h)=E ((1-ﬁ)2 (= ﬁfyT-j.)z) —(1-8) 0% T, 576 Elyr—syr—s)



124 CHAPTER 5. UNIVARIATE ARIMA MODELS

=(1-4)2 3 3 B pliil=(1-p)? Z 8% +2(1-6) 3 Z g

i=03=0 i=03=0

2
_1_ﬂ;_+213)2 Z B+ pi-i— LE;_+215)225212[3!
j=0i=j+1 j
_(-8)* 2(1-8)5,
=T + ey I
Substituting these three terms in the redefinition . of the objective:
(-p)p" , (1-p)% | 201-8)*p _ 2 , 20-8)(Bp—p!—Bp!"])
er(h, B, p)=1- =+ gt ama g Bt A
This expression for the expected squared forecast error can be used to de-
termine the optimal value of the smoothing parameter. Illustrating this for

hi=lk

2 20-Bp __ 201-p)
1+8 (1+B8)(1-8p) (1+5)(1-Bp)’
the optimal 3°(1) satisfies:

: 21— - 1
A" (1)=arg min log wém’é’a—mzargﬂgn log (a7

where the logarithm is taken because it is a monotonic transformation of the
objective function and the logarithm of the numerator is independent of 3.
Hence, the optimal g is derived from equating the derivative of the squared
forecast error:

wr(1,8, p)= (5.72)

dlog Fr(1,8,p) _ d[~log(1+8)—log(1-fp)] _ 28p+p
7 R pr Tt B =ty to Zero, or
B 14
=1z

Since § € (0,1), B* = th , when p € (3,1) (notice that [p| < 1). When,

on the other hand, p € (-1, 3] then M < 0 such that the expected

squared forecast error decreases if one mcreases the smoothing parameter. Thus,

in this case the expected quadratic forecast error is minimized for 4*(1) = 1.
Summarizing, the optimal choice of the smoothing parameter satisfies:

B*(1) = Lif p€ (~1,3] and B*(1) = FL if p € (3,1).

Hence, for relative big intervals of #°(1) and a positive value of p the optimal
choice of the smoothing parameter has little impact on the expected quadratic
forecast error (5.72), which answers question (a) of this exercise.

Regarding question (b) of this exercise, the mean lag 7 can be rewritten as:
—gT —_ gliss
r=(1-6) =y B (T-§)=(-8)T - (1-8) == A3
the weighted sum Z — A3 can be derived from:

1T his optimal value of 8 corresponds to a minimum of the squared forecast error because

2{1—
d2 log Fp(1,8.p) _ “(T_éﬁﬂa—w (= ,,,) _ 1428752 428p° 1% —28p S 0if L
dp? = a8 e (1+8)2(1—Fp)2 ifp€(5:1).
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147

(1‘&) Z’f ”1 .-','fjj :Zjl__ll 3.)’._(’1‘-_1 ),JJ.I - _."}1

) . N B O T ST A DI B Uy D L 0 BRI 7 -
so that 3 0 #j = e = T .

Substituting this weighted swm in the above mean lag expression:

N L TR I N IR L i A EAR:
- =7 .

which is a simple expression of the mean lag 7 as a finction of & and 7'

When the muuber 7' of observations increases indefinitely and since % € (0.1}

YAt
. . pn ; 1 )

for the mean lag it results & = 'r'hm {J’ I —i]_—i’} = ¢, or the mean lag
of the SES model goes to influity when the wnmber of chsorvations inereases
indefimitely.

Regarding the first part of question {¢) of this exercise. ope may check
whether the {y ) process is stationary:

Fly)=E (Z.j | ,\,5,_;):2:_(', A (Fer =0
2 ., ., B
‘”r(?lr}— F(Zi_—rl; =] -::) :Zi.ill /\;E(E? a.) = 32:—(!:)‘"

Hence. the varianee of the {y;} process inereases with increasing £. such that
the process is nonstationary.
Iu the following, it will be demonstrated that a normalization to Ay = 1 1s
possible if there are invariant stochastic properties of the {y; } process.
Assume a normalization as follows, by redefining new Ays A; %_ Then.
il
-7 N N . . . - -
aoo=s /\“(‘I and Ay == 1. so that considering the normalized {i:} process g =
i - . - s
Z. Xigs.; we liave for the stationarity conditions:

L

E(p) = E (X0 At —%“*"/\FM )= 0,
var(iy)= E(Zr_l /\!-\:f_r)_ > /\ E(=f.,)= 52 j_”}\ =a; L:___,], AL

so that the new {#} process is again nonstationary with the same stochastic
properties as the eriginal {y} process. Hence, it Is possible to make a nornal-
ization of Ay = L.

In the sequel. assume that the {y} process is normalized or,

= Xl:_:{ll Al (5.?:5)

. . £l . . .

with Ay = Lic, y = Z:_l Mici; + 2. Now it will be shown that this A7A
) . P

process can be rewrilen as an ARL(f — 1) process g, = Z:‘---J ey + < by

computing the rs as a funetion ol the A5 Therefore. egnating both expressions

and substituting {(5.73) fov ye—;:

Lol L xi-1 e R e LA R
W=D_; o Aife—ite= Z,j—l “Jﬁh---,f"-'ti_zj a2 g A i ke

Bv comparing the corresponding coefficients of the gps the a8 must result {rom
the following system:
A | = {¥) )\(]
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Az = a1\ + ag)h
Az = 1Az + Otzf\l + azAg

A= E.—a Ag_‘a,, Yt € N.
This system can be solved with an indefinite number of equations in the a;s.
This can be done by redefining the system in matrix notation and substituting
for the normalization \g = 1:

Al i 0 0 - A (a5}
Az /\1 1 0 0 oy
/\g._l /\t._g wee /\1 1 0 ¥p_1
f\t Ag.._]_ /\t_g )q 1 g

Since the determinant of the undertriangular matrix is 1, this matrix is
regular so that directly solving for the a;s as a function of the \;s:

-1

(e 5] : § 0 0 0 A[
(2 %) /\1 1 (4] 0 A2
g /\g._z = /\1 1 0 /\1_]
kg /\g_]_ Ag_g wisls /\1 1 )\g

Regarding the second part of question (c) of this exercise one can start from
the MA(t — 1) model (5.73) with Ay # 0 and ¢t € N. First, computing and
taking account of the propemes of the error terms put forward in Sect:on 5.9.1:
E(yri1lu, v, .- wyr)=E Z A 5T+1—;|yt Y2, .- ny) 2 AiET 41— .—Z Aip1ET—i-

In order to check for wluch values of A; the equatlou

E(yrlyn, 42, nyr) = (1 - B) T1 -0 Blyr—;

is valid, it is necessary to equate the last two relations when taking account of
(5.73):

T-1 T-1 T=3-1
Zija Aip1€r—i-=(1— Z Byr_j=(1-B) ZU B Z MET—j—45

so that the A;s can be solved from the following system by equating the corre-
sponding coefficients for similar zs:
=(1-8)\
A2 = (1= 58) (BAo + A1)=(1 = B) (BAg + (1 — B)Xo)=(1 - B)Ag

At=(1—-B)X VteHN.
Hence, for all values of A\, = (1 — §)Aq, V& € N, the requested equation for
the conditional forecast is satisfied. For the normalization Ay = 1, it is clear
that Ay = 1 and the conditional forecast satisfies then:
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E(yr+1lvr. vz, .--.yr)=E?;;1 Aiv1ET—i=(1 — 8) 2 o Byr—;.

Regarding the last part of question (c) of this exercise, the A-step (ahead)
conditional forecast E{yr_alv, ¥2, - y7) = E7 (y7+4) can be computed from
the previous equation, from {5.73} and from the principles put forward in Section
5.9.1:

Er (y7ia)= E'T(Zp:lﬂh_l MET+h— ) foh ¥ Tt :+ET(Z£:ul AET+h—i)
_ZT+ Y ET+h—'—-Z,_g i+hET—i —E —B)roer—i, VR e N.

The h-step conditional forecast in the last equatmn is independent of the
time horizon %, such that the conditional forecast is equal for any time horizon.

Finally. AyT can be computed from (5.73) and /\t ( — By as:
yr-yr—1= Z AiET—im Z Aier—1—i= (1-5} ( 3. er—i E eT-1 ¢)+)~r>8r-z\051 1

=0
=Xo(l —5)81" i +f\05.' —AoEr—_1 = 1\067 —ﬂ)msf 1.

Unsolved theoretical exercises

1. Derive the auntocorrelation function for the ARM A (2,1) model
Ye = Qi¥e_1 + aYr—o + & + B for t € Z.

2. Consider the following AR (1) model: ¥ = a+By—1+ous {t=1,2,..},
where wu; is a sequence of independent standard normal random variables
and ¢t € Z. Assume that ¢y = g + éup, where uy is standard normal and
independent of {u;,u2,...}.

a. When a = 0 and the regression has no intercept. discuss the behavior
of B when 8 approaches one. Distinguish carefully between three cases.
b. In a regression with intercept, assume that:

8180 0 and 2208, x5 8 1.

Derive the behavior of A (the LS estimator for g in the model with inter-
cept) for the case A # 0.

c. Also for the case A=0.

3. Consider the AR (2) process 4 = 1.1ys—1 — 0.184, 2 + €;,with E (g6;) =
lforé=-r
0 otherwise
autocovariances.

and t € Z. Is this process stationary? If so calculate its

4, Verify that the functions
&(t) = ay sinw £ + ay coswt + agsinwset +aq sinw,t or
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o(t) = (a1 + ast) sinwt + (as + ayt) cos wt
can be written in the form (5.70).

Optimality conditions for SES. Suppose that 3 = Ej_:ll Ai€t—i; Ao #
0.t > 0, where the process {g;; t € N} is an independent process with
zero expectation and constant variance o2,

(a) Is the process {y} stationary? Show that it is always possible to
normalize A = 0 and to put 3 in the form y, = z;;ll D;Yt—; + Et.
How can the ¢;s be computed as a function of the \;s?

(b) Compute E (yr41| y1,¥2,-...yr). For which values of \; is it verified
that E(yry1|y,92,....97) = (1 - B) Z;:ul Byr_;?

Suppose two stationary ARM A(p, q) processes {y;,t € Z} and {x,t € Z}
defined as a(L)y; = ¢(L)e; and a(L)z; = p(L)n,, where &, and n, are
W N processes with unit variance. Denoting the autocovariance functions
by 7, (-) and 7, (+), respectively.

(a) Show that for all £ # 0: 35°° v, (t—3)7,(j) = 0and 35
Yy (=3) 7. (j) = 1. Interprete this.

(b) Assuming that now (L) := 1 and considering an r x r square matrix
I’ with typical elements v, ;; =7,(j—14),4,j = 1,2,...,r, show that
the elements a;; of the matrix A := ;! are given by a;; = v(j — i)
forg+1=<i<r—gand1 < j < r. This result can be used to get an
approximated form for the inverse of the variance-covariance matrix
of an autorregressive process.

Consider the process {z t € Z} : 2 = 22, +uy with {uy, t € Z} € WN
with o7 = Z. Assume that this process is affected by a measurement error
and that we observe y; = 2 + 7, with {n,, t € Z} € WN with 02 = {,
but uncorrelated with u;. Show that y; can be written as an ARMA(1,1)
process. Derive a representation of 3, of the type y, = — 2:’:? Tilfe—i +E&;
with {&,, t € Z} € WN such that E(&,y,_;) = 0, for all i > 0 and all ¢.
What is the usefulness of such a representation?

Consider a stationary process {z; t € Z} defined as (1 — 0.5L)z; = (1 —
4L)et, where {,, t€ Z} € WN with zero mean and o7 =

(a) Compute the innovation 5, of z; as a function of the &,’s. Provide
the standard deviation of 1,.

(b) What is the autocovariance function of the sum of the two white
noises £; and 7,7

(c) Compute the linear regressionx; ofz,onthe future values of 2,1 1, 2;4.....
What is the standaard deviation of x, — a}?

9. Consider the stationary process {z ; t € Z} defined as (1 — 4L)z; = 3 +

(1 —0.5L)&¢, where {g4, t € Z} € WN with zero mean and o2 = 1.



a1

CASES AND EXERCISES ABOUT ARIA A MODELS 129

(a) Express x; as a function of the ¢, ;5. What is the covariance between
ae and g5_;7
{(b) What is Lhe one-step ahead forecast error variance?

{¢) What is the autocorrelation function of the process?

5.10.2 Solved (empirical) cases

In practice, it is very rarc to Lave a data series which exactly or even nicely
matches a theoretical ACE or PACF. Therefore one shonld nse the estimated
ACFs and PACFs to identify the underlving time series model {see Section 5.2).
Recall that the evaluation of such a titne series model runs as follows:

1.

9.

10,

Verify whether there is a deterministic trend of a certain degree and correct
for it. if necessary.
Test for unit roots {stochastic trend) and. if necessary, take the appropri-

ate number of differences of the data {procedure described at the end of
Section 5.5).

Identify a candidate AR(I)M A-model from the ACF and PACF of the
series under consideration in order to detect aberrant observations.

Choose an appropriate A R{(1}A7 A-model and estimate the nnknown pa-
rameters.

Analyze the ACF and PACF of the residnals to test whether the AR{T)ATA-
model] is adjusted.

. If ot return to step 3.

Detect aberrant observations and. if necessary, adjust for them (procedure
explained in Subsection 5.8.2} and verify the AR{T}M A-model underlying
to the adjusted time series.

Compare the output of the estimated models, the AICs, BICs, Ljung-Box
Qand Q*)-statistics and the sun of squared residuals.

Select. the most appropriate mocdel.

Forecast with the most appropriate model.

In this section we try to construct and estimate quarterly models for Dutch
GDP. for {consumer price) inflation in Belgium and the unemployment rate in
The Netherlands, @Q-statistics are reported to confirm the findings. but recall
their low power’ and the eriticism of Maddala & Kim (1998} (cf. the Box-
Jenkins approach). Note also that in practice models will also use observations
on fundamentals. rather than purely focusing on historical observatious of the
variable to model.
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Figure 5.5: Dutch GDP (Volume Index)
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Case 1.The volume index of Dutch GDP

A time series analysis based on Dutch GDP levels and Dutch GDP growth rates
will be presented in this case.

(a) Analysis based on GDP levels The quarterly data, ranging from 1977/
to 2004’7, are taken from the OECD Statistical Compendium (http: //www.oecd.org).
From Figure 5.5 it seems reasonable to try to fit a second order deterministic
trend on the volume index of Dutch GDP for the (assumed) sample period
19777-2000"Y (see Table 5.2: the period 2001/-20047" will be used for fore-
casting), where from the resulting Durbin-Watson test statistic a (very) strong
positive autocorrelation of the residuals is observed.!”

In order to determine the possible existence of a stochastic trend an ADF
test on the residuals (see Figure 5.6) of this second order deterministic trend is
carried out. The BIC (defined in (5.32)) indicates that only one lag is used in
caleulating this test (see Table 5.3). Hence, the null of a unit root hypothesis is
rejected.'® Therefore, an ARM A model of these deterministic-trend-adjusted
level-values will be built.

Observing the graph of the adjusted level-series we see that a potential aber-
rant observation can occur in 1963:Q1. Following the procedure in Section 5.4,

1 Gince this volume index largely moyes between zero and one it is not advisable to take
logarithms.

'8When introducing a constant term in the ADF test, the rejection rate of the null of a
unit root is lower (verify!), although the mean of the OLS residuals is always zero.
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Table 5.2: Second order deterministic trend estimation
Sample: 19777-20007Y
Included observations: 96
Dependent Variable: GDPNL
Method: Least Squares
Variable Coeflicient Std. Error t-Statistic Prob.
C 0.570414 0.003751 152.0683 0
T 0.000835 0.000182 4576937 O
T2 3.93E-05 1.86E-06 21.14089 O
R-squared 0.991037 Mean dependent var  0.728927

Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat

0.990844 S.D. dependent var  0.130707
0.012507 Akaike info criterion  -5.89431

0.014547 Schwarz criterion -5.81418
285.927 F-statistic 5141.381
0.366094 Prob(F-statistic) 0

Figure 5.6: Plot of the second order trend residuals
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Table 5.3: Unit root test on the values adjusted for deterministic trend
Null Hypothesis: RESGDPT12 has a unit root
Exogenous: None
Lag Length: 0 (Automatic based on SIC, MAXLAG=11)
t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -3.10139  0.0022
Test critical values: 1% level -2.58953
5% level -1.94425
10% level -1.61451

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(RESGDPTI12)

Method: Least Squares

Sample(adjusted): 19771-2000"

Included observations: 95 after adjusting endpoints

Variable Coefficient  Std. Error {-Statistic  Prob.
RESGDPTlZ(-l] —0.18448 (.059483 _3.10139 __ 0.0025
R-squared 0.092569 Mean dependent var 0.000126

Adjusted R-squared 0.092569 3.D. dependent var 0.007526
S.E. of regression 0.007169 Akaike info criterion —7.02758
Sum squared resid 0.004831 Schwarz criterion —7.0007

Log likelihood 334.8099 Durbin-Watson stat 2.355178

an appropriate ARM A model is estimated after considering the correlogram in
Figure 5.7.

This clearly indicates an AR (1) model as presented in Table 5.4, which
produces residuals without sizable correlations (no autocorrelation left; see also
Figure 5.8).

Using this model three types of forecasts (see Figure 5.9) are built. The
first one is the second order trend forecast:

gr(h) =% T AT+ h) + 72T + h)*.
The second is a dynamic forecast:
gr(h) =%+ 4,(T +h) + AT+ h)? + &y -
And the third forecast is:
gr(h) =40 + (T +h) 4 #,(T + h)? + Gdir+h-1s

where lipsh—1 = YT+h—1 —§r4n—1 and & = 0.815521; this forecast is also called
the static forecast since it uses the previously observed data in the forecast period
(so that it will almost always be better than the dynamic forecast).
Assembling these three forecasts for the Dutch GDP levels in Figure 5.9,
it is clear that the strong slowdown of Dutch GDP in the first years of this
decade (after September 11. 2001 shock) is very difficult to forecast. Given
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Figurc 5.7: Correlogram of the residnals

Sample: 1877:1 2000:4
Included observations: 86

Auiocorrelation Partial Correlation AC  PAC Q-Stat Prob

0814 0814 65673 0000
0.734 0209 119.52 0.000
0.6842 -0.003 161.16 0.000
0.561 -0.015 193.33 0.000
0.490 -0.004 21818 0.000
0.379 -0.154 23317 0.000
_ . 0.238 0231 239.15 0.000
o R 8 0.132 -D.070 241.02 0.000
. R § 0015 -0.112 241.04 0.000
N c1 10 -0.080 -0.069 241.74 0.000
S A 11 -0.168 -0.043 24487 0.000
M ] 12 -0.288 -0.161_254.13 0.000
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Table 5.4: AR(1) model of the residuals

Dependent Variable: RESGDPTL2
Method: Least Squares
Samplef{adjusted}: 197771220007
Inclueded observations: 95 after adjnstiog endpoints
Convergence achieved after 2 iterations

Variable Coefiicient  Sta. Trror t-Statistic  Prob,
AR{D (1815521 0.0549:183 13.71018 0
R-sequared (L.O66G1T Mean dependent var 7.80E-05

Adjusted R-squared  0.666617 S.I). dependent var - 0.012116
S. . of regression 0.007169 Akaike info eriterion -7.02758

Suin squared resid 0004831 Schwarz criterion -7.0007
Log likelihood 334.8099 Durbin-Watson stat 2.355178

Inverted ATR Rools  0.82
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Figure 5.8: Correlogram of the residuals of the AR(1) model

Sample: 1977:1 2000:4
Included observations: 95

Autocorrelation  Partial Correlation AC PAC Q-Stat Prob

1-0.179 -0.179 3.1275 0.077
2 0.105 0.076 4.2206 0.121
3 0.045 0.079 4.4243 0.219
4 0.034 0.048 4.5385 0.338
5
6

0.156 0.165 7.0329 0.218

0.120 0.177 8.5270 0.202
7 -0.047 -0.027 8.7557 0.271
8 0.004 -0.063 8.7578 0.363
9 -0.012 -0.055 8.7736 0.458
10 -0.017 -0.072 8.8049 0.551
11 0.076 0.023 9.4428 0.581
12 -0.297 -0.303 19.235 0.083

this strong shock effect and also the very strong positive autocorrelation of the
deterministic trend residuals of the GDP levels, it may be recommendable to
analyze the growth rates of Dutch GDP rather than their levels,

(b)Analysis based on GDP growth. Estimations and forecasts the GDP
growth in The Netherlands (Figure 5.10) are presented below.

Examining the correlogram of the growth rates of Dutch GDP for the com-
plete period 19977-2004!/ in Figure 5.11. it is observed that an AR(1) is a good
candidate for estimation,

Starting from the identified AR (1) model for the Dutch GDP growth rates in
Table 5.5 for the sample period (1977/-20007Y) it is observed that the large value
for the JB statistic (47.9598) for the corresponding AR(1) residuals reveals the
possibility of one or more outliers. The plot in Figure 5.12 shows the possibility
of an outlier in the first and second quarter of 1979 (at the beginning of the
sample).

It is important to determine whether the possible outlier at 19797/ is sig-
nificant or not. Calculate @40 (1979"7) from (5.40) for 7 = 19791, ¢, the
estimated residuals from the AR (1) model and Z1979.0 = 1, Z1979:3 = 0.19724
and zero otherwise, so that @40 (1979'7) = 0.020912 (see Table 5.6).

Compute now ¢ 4o (7) in (5.41) where 6;: is computed with the ‘omit-one’
method so that SE(@a0 (7)) = 0.00726 and C,4p (1) = 0.020912/0.00726 =
2.8804, which is slightly significant at the 5 per cent level. Removing then its
effect from the original growth series, a new value for 1979’/ is obtained (as
given in (5.42)), i.e. 0.01109.

Examining now the correlogram of the adjusted growth rate series in Figure
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Figure 3.9 Different forecasts of Dutch GDI?
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Figure 3.10: Dutch GDP growth rates
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Figure 5.11: Correlogram of Dutch GDP growth rates

Sample: 1997:1 2004:2
Included observations: 30

Autocorrelation  Partial Correlation AC PAC Q-Stat Prob

SiRE N | 0.575 0.575 10.940 0.001
0.470 0.209 18.520 0.000
0.303 -0.048 21.789 0.000
0.350 0.201 26.310 0.000
0.284 0.022 29.415 0.000
0.323 0.108 33.600 0.000
0.256 0.005 36.344 0.000
0.028 -0.350 36.378 0.000
0.086 0.187 36.716 0.000
10 -0.039 -0.194 36.790 0.000
11 -0.038 -0.101 36.864 0.000
12 -0.258 -0.254 40.401 0.000

Il'l'.l - ln I

| W
: | S
2t | o |t

|

|

WO~ HWN =

-
*

Table 5.5: AR(1) model for the Dutch GDP growth

Dependent Variable: DGDP

Method: Least Squares

Sample(adjusted): 19777120007V

Included observations: 94 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic  Prob.
C 0.004734 0.000666 7.108095 0
AR(1) -0.19724 0.102019 -1.93342 0.0563
R-squared 0.039045 Mean dependent var  0.004745

Adjusted R-squared 0.0286 S5.D. dependent var  0.007844

S.E. of regression 0.007731 Alkaike info criterion -6.86615

Sum squared resid  0.005498 Schwarz criterion -6.81204

Log likelihood 324.7091 F-statistic 3.738092

Durbin-Watson stat  1.973724 Prob(F-statistic) 0.05626
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Figure 5.12: Residuals of the AR{1) model for Dutch GDP growth
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Table 5.6: Regression of the residuals against Z for outlier correction

Dependent Variable: RESDGDPAR1L

Method: Least Squares

Sample(adjusted): 1977/71-20007V

Included observations: 94 after adjusting endpoints

Variable Coeflicient  Std. Error t-Statistic  Prob.

Z 0.020912 0.007225 2.894163  0.0047

R-squared 0.082625 Mean dependent var  2.78E-18

Adjusted R-squared (0.082623 5.D. dependent var  0.007689

S.E. of regression 0.007365 Akaike info criterion  -6.97367

Sum squared resid  0.005044 Schwarz criterion -6.94661
Durbin-Watson stat  1.755269

Log likelihood 328.7623
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Figure 5.13: Correlogram of the adjusted Dutch GDP growth

Sample: 1977:1 2004:2
Included observations: 95

Autocorrelation  Partial Correlation AC PAC Q-Stat Prob

. . 1 -0.087 -0.087 0.7432 0.389
0.074 0.067 1.2906 0525
0.077 0.090 1.8855 0.597
0.138 0.150 3.B062 0.433
0.251 0277 10.241 0.069
0.123 0.179 11.810 0.066
0.032 0030 11.920 0.103
0.084 0.020 12671 0.124
0.090 0.002 13.537 0.140
10 0.074 -0.040 14.138 0.167
11 0.172 0.094 17.370 0.097
12 -0.174 -0.219 20.712 0,055

=
Woo~NdO0bEwr

|

|

I

|
| i
4| |-

i

|
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5.13 neither further significant (partial) autocorrelations nor (other) outliers are
observed.

As no ARM A model is applicable for the adjusted Dutch GDP growth, the
best forecast for future growth rates is the average observed growth obtained
from the adjusted series ji = 0.004475. The implied dynamic forecast values for
the Dutch GDP levels are given by:

yr(h) = yr + hjis, (5.74)
while the static forecast for Dutch GDP is specified as

yr(h) = yrin—1 + it (5.75)

Finally, assembling all the forecasts for the Dutch GDP levels in Figure
5.14, from which it is clear that compared to Figure 5.9, the forecast of the
GDP level may be improved by considering the GDP growth rates rather than
GDP levels.'

Case 2. A model for inflation based on the consumer price index in
Belgium

In this section a quarterly model for the consumer price index and inflation
in Belgium from the OECD Statistical Compendium (http://www.oecd.org) is
constructed, estimated and used for forecasting future inflation. The original
database consists of quarterly observations of the Belgian consumer price index
for the period 1963’ to 2004/, The inflation rate is modeled as the first

1"Mind also the very strong positive autocorrelation in the deterministic trend residuals of
the Dutch GDP levels.
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Figure 5.14: Comparison of different forecasts for Dutch GDP
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Figure 5.15: Consumer Price Infiation in Belgium
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difference of this series.'® Figure 5.15 depicts the consumer price inflation. For
estimation a subsample for the period 19637 to 20007" will be used.

The correlogram of the inflation rate presented in Figure 5.16 shows that an
AR(1,2,4) model could be applied to this data (see Table 5.7).

The JB test for the residuals of this estimation does not indicate the presence
of aberrant observations.

Both dynamic and static forecasts are calculated for this model presented in
Table 5.8 and Figure 5.17.

A model for the unemployment rate in The Netherlands

Quarterly data in this section is taken from the OECD Statistical Compendium
(http://www.oecd.org). The sample range is 19707 to 2004’/. Figure 5.18
plots the quarterly unemployment rate in The Netherlands. Estimations are
conducted for the subsample of 19707 to 20007V .

The first step is to examine the correlogram (see Figure 5.19):

The correlogram shows that there is a strong probability that a unit root is
present. The results of the ADF unit root test are given in Table 5.9.

Figure 5.16: Correlogram of the inflation rate

Sample: 1963’ -2004"
Observations: 166

Autocorrelation _Partial Correlation AC __PAC Q-Stat Prob

0.436 0.436 32102 0.000
0.515 0.402 77.250 0.000
0.452 0.209 112.14 0.000
0.557 0.319 165.58 0.000
0.285 -0.173 179.66 0.000
0434 0.096 212.51 0.000
0.261 -0.119 224.46 0.000
0.318 -0.009 242.28 0.000
0.193 -0.020 248.89 0.000
10 0.174 -0.166 254.31 0.000
11 0.068 -0.068 255.13 0.000
12 0.226 0.166 264.36 0.000

o~ sWLMN =

18 Given that almost all price data is defined around unity, inflation rates were considered
as absolute price differences rather than differences in logarithms.
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Table 5.7: AR{1,2,4) estimation results for Belgian inflation

Dependent Variable: INF

Method: Least Squares

Sample{adjusted): 19647/-2000""

Included observations: 147 after adjusting endpoints

Convergence achieved after 3 iterations

Variable Coefficient  Std. Error t-Statistic Prob.

C 0.005823 0.001359 4286208 0

AR(1) 0.198542 0.073074 2.716988  0.0074

AR(2) 0.295324 0.0797 3.705461  0.0003

AR(4) 0.333091 0.078138 4.262885 0

R-squared 0.493075 Mean dependent var 0.005463

Adjusted R-squared 0.48244

S.E. of regression 0.002825
Sum squared resid  0.001141
Log likelihood 656.2138
Durbin-Watson stat  1.879441

5.D. dependent var  0.003927
Akaike info criterion -8.87366

Schwarz criterion -8.79229
F-statistic 46.36436
Prob(F-statistic) 0

Table 5.8: Observations and forecasts for the Belgian inflation rates

Observed Forecast

Inflation Dynamic Static

20017 0.0019 0.011478° 0.011478
200141 0.0166 0.012037 0.010136
2000147 0.0035 0.014101 0.012178
20017V 0.0004 0.01331  0.012553
20021 0.0071 0.016453  0.007569
200277 0.0028 0.01703  0.01288

2002717 0.0028 0.01876  0.009642
2002V 0.0002 0.01901  0.007339
20037 0.0105 0.020618 0.009055
20037 0.0009 0.021203 0.008899
2003741 0.006 0.02237  0.010035
2003’V 0.0006 0.022858  0.007347
20041 0.0065 0.023836 0.011212
20047 0.0107 0.024369  0.00759

2004747 0.0059 0.025152  0.011866



CHAPTER 50 UNIVARIATE ARIA A MODELS

I'igure 5.17: Belgian mflation forecasts
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Fignre 5.19: Correlogram of the Dutch unetiployment rate
Sample: 1570:1 2000:4
included cbservations: 124
Autocorrelation  Partial Correlation AC  PAC {Q-Stat Prob
N i e 1 0.963 0963 117.81 D.000
e *. | 2 0914 -0.180 224.50 0.000
N ki - | 3 0859 -0.101 32013 0.000
N i *]- j 4 0.797 -0092 402.85 0.000
) - ! 5 0.730 -0.089 472.77 0.000
N - | 6 0663 0.001 531.03 0.000
N - | 7 0597 -0.028 57868 0.000
N | . | 8 0536 0030 617.39 0.000
) Lol 9 0478 -0.010 64845 0.000
A7 i} | 10 0.424 -0.006 673.11 0.000
N . | 11 0.373 -0.026 692.31 0.000
[ ] | 12 0.324 0023 706.85 0.000
Table 5.9; Unit root tests of Dutch unemployment,
Null Hypothesis: UNNL has a unit root
Exogenous: Coustant
Lag Length: 1 {Antomatic based on SIC. MAXLAG=12)
F-Statistic  Prob.*
Angmented Dickey-Fuller test statistic -2.07488 (.25352
Test critical values: 19 level -3.48465
5% level -2.88025
1097 level -2.57949
Augmented Dickey-Fuller Test Eguatiou
Dependent Variable: D{UNNL)
Method: Least Sonares
Smunple{adjusted): 1970777 — 20007
[ncluded observations: 122 after adjusting endpoints
Variable Clocthicient.  Sid. Error t-Statistic  Proh.
LNNL{-1} -0L02897 0.013963 -2,074%% 0.0402
D{UNXNL(-1)) 0373257 (1083516 4469281 {1
¢ 0171778 0.082397 2081762 0.0:392
R-squared (3. 168551 Mean dependent var 0.016G967
Adjusted R-squared  (0015:158 §.10. dependent var 0.312885
S.E. of regression (.315272 Alaike info criterion 0553518
Sum sguared resid 11.82811 Scliware criterion (1.6224649

Log, likeliliood
Thachin-Watson stat

-30.76.16
2133223

Fosiatistic

Prob(F-statistic)

1206201
0.000017
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Figure 5.20: Changes in the Dutch unemployment rate

1970 1975 1980 1985 1990 1995 2000

— First difference in the Dutch unemployment

The ADF unit root test supports the existence of a unit root in the Dutch
unemployment rate. Therefore one must use the change in the unemployment
rate for estimation and forecasting.

The JB statistic of this series is very high (1324.349), strongly indicating the
presence of abberant observations. The maximum observation is 2.1 at 1975:1
and the minimum is —1.83 at 1980:1 which are definitely larger than four times
the standard deviation (0.34).

The correlogram of the changes in the Dutch unemployment rate calls for
using the AR(1) model (as shown in Table 5.10).

Further analysis of the residuals shows that there is no (partial) autocorre-
lation left in the series.

Similar to the first case on Duteh GDP correction for an outlier at 19757
has to be applied as in (5.42), which after correction takes up new value 0.1998.
Yet the JB statistic (849.6795) still points at another outlier at 1980:1. The
new AR(1) coefficient is 0.420880 so that the adjusted value becomes —1.83 +
1.8586 = 0.0286. Finally the adjusted series looks like in Figure 5.22.

The correlogram of the adjusted series is given in Figure 5.23 and indicates
that an AR(2) model would be appropiate.

After estimating such an AR(2) model in Table 5.11 it is observed that there
is no further (partial) autocorrelation detected, so that one can proceed with
forecasting.

Forecasts for the changes in the Dutch unemployment rate are presented in
Table 5.12 and Figure 5.24. Based on these forecasts of the changes then the
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Figure 5.21: Correlogram of changes in the Duteh mnemployment rate

Sample: 1970:1 2000:4
Included cbservations: 123

Autocorrelation  Partial Corrélation AC PAC Q-Stat

Prob

N | N | 0372 0.372 17.406
0.273 0157 26.804
0.260 0.138 35544
0.213 0.0586 41.383
0.069 -0.082 42008
0.007 -0.076 42014
0.020 0.002 42.068
0.011 0015 42.085
9 0.072 -0.068 42792
10 -0.045 0.005 43.068
11 -0.042 -0.014 43311
12 -0.083 -0.053 44262

|l-t
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|M¢

-
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|

il
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I I
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I 1
[ |
I I
I I
| ]
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0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0600
0.000

Table 5.10: AR(1) model of the changes in the Duteh unemploviment rate

Dependent Variable: DUNNL

Method: Least Squarces

Sample(adjusted): 1970774 200008

Tnchuded observations: 122 after adjusting endpoints
Convergence achieved after 2 iterations

Variable Cocflicient  Std. Error t-Statistic . Prob.
AR(D) 0.373240  0.08:4279 1A28653 0
R-sepuared 0.137357 Mean dependent var 02016967 -
Adjisted Resquared 00137357 S.0D. dependent war (0.312880

S.E. of regression (0.318H7 Akaike info criterion  0.50756:1

Sum squared resid 12.27193 Schware criterion ().D80548

Log likelihood -33.0114 Durhin-Watson stat

2112891
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Figure 5.22: Adjusted series
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Figure 5.23: Correlogram of the corrected Dutch unemployment rate

Sample: 1970:1 2000:4
Included observations: 123

Autocorrelation  Partial Correlation AC PAC Q-Stat Prob

e H s 0.656 0.656 54.207 0.000
0.638 0.364 105.90 0.000
0.532 0.055 142.15 0.000
0.452 -0.026 168.56 0.000

| 0.296 -0.192 180.00 0.000

| 0.218 -0.082 186.27 0.000

| 0.169 0.056 180.07 0.000
! | 0.096 0.001 191.31 0.000
i | 9 -0.007 -0.125 191.31 0.000

|

|

|

|**m | I‘-*i I

OO AWK =

10 0.006 0.056 191.32 0.000
11 0.010 0.108 191.33 0.000
12 -0.101 -0.182 192.76 0.000
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Table 5.11: AR(1.2) madel of the corrected changes in the Dudel nuemployvinent
rate

Depencenr Variabler DUNNL2

Method: Least Squares

Sample(adjusted): 19707Y — 20007

Inehuded observations: 121 afier adjusting endpoints
Convergence achieved after 2 iterations

Variable Coeflicient  Std. Error t-Statistic  Prob.
AR(1) (1.423952 (.08H07 4.08301%8 ()
AR(2) (1.361539 {.081927 1257012 0
R-seqnared (.010652 Mean dependent var 0016185
Adjnsted R-squared  G.0065-1 S.D. dependent var (0.232851

S.1 of regression 0.16357 Akalke info criterion 076670

Sum sauared resid 3183871 Sehwarz criterion (1.72050

Log likelihood IR ARERG Durbin-Watson stat 2001217

forecasts for levels of the Dutel wsemplovinent rare are shown in Table 513 and
Fignre 5.25,

5.10.3 Empirical execrcises

1. A researchier uses a smuple of 200 gnarterly observations. The sample anro-
correlation function {ACF) is computed with the following results:

k 1 2 3 4 5 6 7 8 9 10

e DE3 071 0600 0.1 0. .55 0.2 020 W11 -0l
The sample pariial autocorrelation function (PACE) is determined as:

IS 1 2 3 1 5 f3 7 8 9 10

B 083 006 -0.00 005 004 005 001 010 -0.03 -0.01

o What is meant by the sample ACE? Does the pattern indicate that an an-
toregressive or oving average representation is more appropriate? Why?

e What is meant by the satple PACF? Why is the first partial autocorre-
lation coellicient cgual 1o the first autocorretation coefficient?

e Do the ACT and PACF patterns indicate that an antoregressive ot moving
average representation is more appropriate? Why?

Suppose now that the researcher estimates the following AR {2} model:
o= B0+ O0Tdye g + W16y, o — %

YA LI [KERA]

e How would vou check whether an AR4 (2, 1) model is more appropriate?

e Compute from the above estimates an estimate for E ().
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Table 5.12: Forecast values and observations of the changes in the Dutch un-
employment rate

Observed Forecast

Inflation  Dynamic Static
20017 -0.320000 0.059851 0.059851
200177 -0.270000 0.057914 -0.103136
2001777 0.030000 0.046193 -0.230168
20017V -0.010000 0.040523 -0.084896
20021 0.020000 0.033882  0.006606
20027 0.210000 0.029016 0.004864
2002777 0.120000 0.024552  0.096267
2002V 0.170000  0.020900 0.126801
20037 0.390000 0.017738 0.115462
2003’7 0.370000 0.015076 0.226815
200317 0.120000 0.012805 0.297873
2003V 0.300000 0.010880 0.184647
20047 0.380000  0.009242 0.170579
200417 0.230000 0.007852 0.269575

Figure 5.24: Forecasts of changes in the Dutch unemployment rate

2000 2001 2002 2003 2004

— Observed changes in Dutch unemployment
----- Dynamic forecast
——— Static forecast
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Table 5.13: Forecast values and abservations of the Dutch unemployment rate

Figure 5.25: Foreeasts for levels of the Dutch unemiployment rate

50

Ohserved  Forecast

Iuflation  Dynamnic  Static
20017 2.69 3.06985  3.06985
200177 242 274701 2.58686
200171 2.45 246615 218983
20V 244 209052  2.3651
2002f 2.46 2A7IRE 2.11661
200277 2.67 248902 2.46486
2002777 279 269455  2.76627
200247 2,96 2.8109 2.9168
2003¢ 3.35 207771 307516
20038 3.72 336508  3.57681
2003877 3.84 3.7328 1.01787
2003V L1 385088 L0263
20047 1.52 4.14924  4.31058
200444 175 152785 L7807
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e Suppose the last two quarterly observations (e.g. the 3rd and 4th quarter
of 1999) were 550 and 600 respectively, compute predictions for the next
two quarters (i.e. 2000-1 and 2000-2).

o Can you say anything sensible about the predicted value for the first quar-
ter of 2025 (and its accuracy)?

2. Density forecasts are evaluated by assessing whether z, is iid U (0,1) and
simple tests of éid U (0,1) behavior are Kolmogorov-Smirnov tests. But such
tests are not very practical since they are not constructive i.e. when rejection
occurs, the tests generally provide no guidance as to why. If e.g. such a sta-
tistic rejects the Hy of iid U (0, 1), is it because of violation of unconditional
uniformity, violation of 7id, or both? Moreover even if one knows that rejection
comes from a violation of uniformity, one would like to know more:

e What, precisely, is the nature of the violation of uniformity, and how
important is it?

e Similarly, even knowing that rejection comes from a violation of iid, what
precisely is its nature?, or

e Is z; heterogenous but independent, or is z; dependent? If 2; is dependent,
is the dependence operational primarily through the conditional mean, or
are higher-ordered conditional moments, such as the variance, relevant?.

e Is the dependence strong and important, or is iid an adequate approxi-
mation, even if it is strictly false?

Because of the nonconstructive nature of tests of #id U (0,1) and the non-
constructive nature of related separate tests of iid and U (0, 1), more revealing
methods of explorative data analysis are needed.

Evaluating unconditional uniformity:
Suggestion: visual assessment by means of graphical density estimates (e.g.
histograms). The estimated pdf can be visually compared to a U (0,1) and
confidence intervals under Hy are easy to compute (see also Diebold et al. (1998).
Evaluating whether z; is iid:
Visual assessment using the (graphical) correlogram supplemented with the
usual confidence intervals. This allows for detection of particular dependence
patterns in 2z and supplies useful information about deficiencies of density
forecasts (e.g. serial correlation in z-series may indicate that mean dynamics
are ill modeled); see Wallis (2003) and Clements (2004) for additional empirical
issues on UK inflation.

5.10.4 Unsolved cases
Case 1: Stock market quotations

The idea of this exercise is to estimate the best possible model for the four
series in the database. The database contains daily data from 03/01/1994 until
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31/12/2004 for the stock market quotations of BASF, Danone, KBC, Telinfo
( Telindus) (Brussels Stock Exchange; Data source: http://finance.yahoo.com /)
Before going through the different model selection steps, you should ereate four
series of (logarithmic) returns. Take into account the following steps (compare
with the summarizing chart in Figure 5.2 of the Box-Jenkins approach).

1. Detect aberrant observations and, if necessary, correct for them (procedure
explained in Subsection 5.8.2).

2. Test for unit roots and, if necessary, correct the data for deterministic or
stochastic trends (procedure described at the end of Section 5.5).

3. Identify a candidate model from the ACF and PACF of the series under
consideration.

4. Choose an appropriate model and estimate the unknown parameters.

5. Analyze the ACF and PACF of the residuals to test whether the model is
adjusted.

6. If not return to step 3.

7. Compare the output of the estimated models, the AICs, BICs, Ljung-Box
()-statistics and the sum of squared residuals.

8. Select the most appropriate model.

Case 2: Gross Domestic Product

Select an as recent as possible time scries of quartexly data on real GDP of an
OECD member country (except for The Netherlands and New Zealand}. e.g.
using Datastream or the CD-ROM of the OECD Statistical Compendium. The
idea is to use part of the observations, e.g. until the final quarter of 2000, to
estimate an ARIMA model or a seasonal ARIMA model. Starting from the most
appropriate time series model, estitnate 1-step, 4-step and 8-step predictions for
the period after 2000 (that is from 2001, first quarter. until e.g. 2006) and
compare (part of) the forecast data with the actual ones. Try to minimize the
average squared forecast error could be used and compare the predicted values
with the actual recent data using AIC and BIC. Do not forget to perform a
graphical analysis! Schiff and Phillips {2000) can be used as a guideline.



Chapter 6

Cointegration and Transfer
Functions

In this chapter, cointegration and causalily tests will be analyzed. Ouce causal-
ity is established. a transfer function model as in {4.1) could be formulated.
These three steps will be undertaken in this chapter. divided over three sec-
tions.

6.1 Cointegration

Yule (1926} suggested that regressions based on trending time series data can be
spurions. This problem of spurious regresstons was further pursued by Granger
and Newbold {1974). which also led to the development of the coucept of coin-
tegration. The pathibreaking paper is Granger (1981). that was fully recoguized
only several years later,

To demonstrate the ocenrrence of cointegration, consider a shinple two-
equation nodel used in Fngle and Granger (1987). Later. formal delinitions
and proper .es will be added.

6.1.1 A simple example

Suppose that two time series y; and z, are cach integrated of order 1. Le. they
both have one unit root or iy, ~ I{1). and the corresponding errors arc
possibly correlated WA errors. From these two series it is asswned that two
new DGPs can be built:

Fl Sy = o owg = 5y (kW)

T4 oy = o e = peor +en ([ph < L) (6.1)

ot Txy Tay

. g wal . e A D) . Lo
with ( i ) N(0.Y), where X = ( H ? ] . This model is internally
- \
consistent only if @ % 3¢ the reason for this constraint is that if a3, 1t Iy

153
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impossible to find any values of 3 and z; that satisfy both equations simulta-
neously in (6.1).

Note that the second equation in (6.1) implies that e, is I (0). Solving this
system for a # [

T+ ‘g(t?g — &) = w = (@ — B) z¢ + Ber = auy,
the reduced form relations for y; and z, satisfy:
z=ale—B8)"u—pBa-p""e (6.2)

and
yt:—(a—ﬁ)_lut+(a—,(3)"1(:¢. (63)

In general, linear combinations of the integrated variables g, and z; also
have unit roots. In the above case it is logic that {z;} and {y,} are I(1), since
{u} is an RW process and {z;} and {3} depend linearly on the common 7 (1)
process {u;}. However, if there exists some linear combination, say z;, — ayy,
that is stationary, z; and y; are said to be cointegrated, and (1 ,—a)’ is the
cointegrating vector; xy — ay, is then the long run (equilibrium) relationship.
Note that if p = 1, then ¢; is also I (1) and thus there is no cointegration.
Hence, the null hypothesis p = 1 is a test of the hypothesis of no cointegration
so that the Engle-Granger test is based on the second equation in (6.1).

There is also an autoregressive representation for system (6.1), by rewiting
it as

Azy = [Orey + affye_1 + vy
Ay = =0z — afy—y + vy,

where 6 := ;—:% and vy, and vy, are linear combinations of the error terms uy
and e;. Writing 2, := x, + ay; it can be observed from the second equation in
(6.1) that z; = pzi—1 + &2, or Azg = (p— 1) 21 + €2t ie.,

Ary = Az —alAy = —aly + (p— 1) 21 + €24,
which is in the form of an ECM model, as in (4.11), where z;_; represents past
disequilibrium.
Now, a formal definition will be presented, as well as the conditions for the
existence of cointegration.

6.1.2 Definition and properties

Definition 6.1 In general, if {xy,t € Z} and {y,,t € Z} are integrated processes,
then, if there exists a linear combination which is integrated of a lower order,
both variables are said to be cointegrated.
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The Granger Representatzon Theorem (Granger (1983) and Engle and Granger
(1987}) states that if a set of variables are cointegrated. then there exists an error
correction representation of the data. Thus, if y, and ry are Dotl /(1) and have
a cointegrating vector (1, =Y. there exists an error correclion representation
of the form:

a{IYAy =0+ o (L) Aw =~y — 30 )4 6(L) 2, {6.1)

where 2, s WAN with constant vaviance g2 and o (L), o {L) and 0{L) are
polynomials in the lag operator L {with ay =: 1). Cousidering the following
special case of {6.1):

Ay =84+ ¢ Ay 1 — (e~ e+ e {6.5)

where the error term has no meving average part and the systematic dynamics
are kept as simple as possible. Intuitively. it is clear why the Granger Repre-
sentation Theorem should hold. If y and &, are both J{1) bul have a long run
relationship. there must be some force which pulls the equilibrium error back
towards zoro. The ECM model docs exactly this: it describes how g, aaud o
behave in the short run consistently with a long run relationship. If the cointe-
grating parameter 3 is known, all terms in (6.5) are stationary and no inferential
problems arise so that it can be estimated by OLS.

Note that the precise lag structure in {6.4) is not specified by the Granger
Representation Theorem, so that some specification analysis will probably be
needed. Morcover. the theory is synnnetric in its treatment of g and .z, so that
there shonld also exist an ECM model representation with Agy as the left-hand
side variable. Because at least one of the variables has 1o adjust to deviations
from the long run equilibrium. at least one of the adjustment parameters v in
the two BCM equations has to be nonzero.

The Granger Representation Theorem also holds conversely. Le. it y, and .y
are both F{1}) and have an ECM model representation. then they are necessarily
cointegrated.

Assume c.g. that both the short and the long term interest rates are in-
tegrated of order 1. i.e. rog.7ry ~ I{1}. Then a simple TNCM for the term
structure of interest rates exists, with £, and 25, € WA and «, and oy larger
than zero:

AT,,-\{ = (¥: (Tj‘(_] — _i'g'f'_q‘(_|) T+ Eaf Ly 0
S~ N et et

fiuy preevions perildiseng £

Argy = —oglrg—y — 31l + S v < 0
S, o’ ——.

finy Ty

Note that the ECA terin could have been written as ('.tt; (3 r1em1 — Sore s
normalization w.r.t. the long term interest rate vields e, (riy ) - Jree y) with
(ry 1= u-;;)’] and 3 := 3,/3,. The long term equilibrium is rre = #r. {with
cointegrating vector [1 — 3]
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This basic model can be further extended with lagged variables of each in-
terest rate as follows:

Ars: = aj+a;, (Tl,t—l = 57'3,:—1) 5o Zi ayy (f) A'rs‘t—i
N ~ 3 -
1{0) prev. period diseq.=1(0)
o Zj a2 U) An,r—j + Es,t
Aryy = ag—aq(re—y — Brse—1) + Y ;a0 (1) Argp—;
\’J S —~ v
I(0)

5 Z_, aga (7) Aryi—j + €1y

Once cointegration has been established, it is of paramount importance to
identify the direction of causality of the variables. In this section, no feedback
relations will be considered given the univariate analysis framework.

6.2 Causality

Describing the conditional pdf of a stochastic variable y; given its previous value
and the previous ocurrence of another variable by f(y|yi—1,:—1), Granger
causality is absent when f(y:|ye—1,20-1) = f(y:| y1—1). Granger causality states
that in the conditional pdf lagged values of &, add no information to the expla-
nation of movements of y; beyond that provided by lagged values of y, itself.
This concept is useful in the construction of forecasting models.

Formally, Granger’s (1969) concept of causality implies that the future can-
not predict the past and x causes y if, taking account of prior values of z,
better forecasts of y can be obtained. More formally. following Gouriéroux and
Monfort (1997):

Definition 6.2 Defining the information sets 3,(t) == {ye, Ye—1.Yt—2....} and
Se(t) := {oe, @41, 3¢—2,...} then i) z is said to cause y at period t if and
only if E(y:| Sy(t —1),3.(t — 1)) # E(y|Sy(t —1)); ii) x is said to cause y
instantaneously at period t if and only if

E(3] Syt — 1), 3 (t)) # Blu| Syt~ 1), St — 1)),

Since the variable forecast based on the most recent information is always
the best one, the variance of the forecast error from (5.45) satisfies:

var( fe ()| Sy(t = 1),Sz(t — 1)) < var(fy (h)] 3y (t - 1)).
This leads to the following theorem of noncausality:

Theorem 6.1 z does not cause y at period t if and only if
var( fy (h)| Sy (t = 1), St — 1)) = var( fy (h)| Sy(t — 1))

and = does not cause y instantaneously at period t if and only if
var( fe (h)[ Sy (t — 1), Sz (t)) = var( fe (h)| Sy (t — 1), S (t — 1)).
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Thus 2 causes y at period #if the past of . provides additional information
{for the forecast of 4 with respect to considering the past of y alone.

There are various tests to determine the (direction of ) causality:

e Sims (1972): If (2. ) is a 2 dimensional time series. then Sims’s test is
Based on the regression of i on previous and future values of xy: oy =
L___”,l[ ~ ,;f_? 4. A test that y does not cause @ is an F-test with

Hy v = = ... =%, = but there may be serial correlation in the

2
3 (})lclh in F-test)

error ter ¢
o Cewcke ef al. (1083): it is assumed that v, can he approximated by an

" ; -mn A 1.0, A reptess
AR (p) process y, = Z, L@ Moy oo, Yo s Lo aregression
of i on p past values of y. m futwee values of & and (7 + p} past values of
#owith [y that y does not canse . or Mo vy =, = . - 7, = 0. which

can be tested by an ordinary F-test.

6.3 Transfer function modeling

Cp to now. univariate time series have been considered aud trends and in-
tercepts have been treated as explanatory variables, besides own lags. Omne
can. of eourse. also include other erogenous variables. If these exogenons vari-
ables take the form of dummies we often talk of infervention models. If these
exogenous variables are other variables than deterministic dummies. they are
called h'amfr-r function medels, c.g. an ARM A(p. ¢) model can be extended to
y=cn oLy ~v(Lhy +9{L)e. 5, e WN and t € 72 The polynomial
~{(L) 1= 7+ L+, L% +. .. ‘transfers’ movement in {2, } into the {e } process
but not. viee versa. i.c. there is no feedback or reverse effect of {y} on {=}!

A transter function can also have tore than one exogenous variable as in
model (4.1). Ilence, a distinction can be made herween Simgle Outpnt Sin-
gle Inpur (SOST) (transfer function) wodels and Single Output Multiple In-
put (SOATY (transter function} models. SOAMT models are a stralghtforward
{vector) extension of SOST models; therefore the forus in this section 1s on
S0OST models.

6.3.1 Single output single input models
As the basic model. consider the following SOST model:
i = @p +0x (L} Y1t ":‘"(L)Zf + [L) S (f)f])

where. as also for AR ALA models, it is assummed that the error terms are WV, or
£, € WN. and ~ (L} is a transfer function polynomial v (L} = n+ v L LT+

. where the «;5 are the transfer function weights; 7 is stochastic. but there is
1o ieedhd(k of {?,rf} to {22 b and {2} is also exogenons with (25} = 0. ¥s. .
If -, = 0. there is no instantaneous effect of {2} on {1} and {z;} is then called
a leading indicator. The exogenous variable {21} can also be used to predict
furure values of {1}
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Definition 6.3 Cross (auto)correlations between y, and various z,_; are de-
fined as p,. (i) = %::“), which give rise to a cross autocorrelation function

(CACF) or a cross-correlogram {p,. (i) }.

Example 6.1 Consider the following example y; = cyye—1 + Vg2t—a + &1, with
z and € € WN, E (z£,-4) =0, log| < 1

From this example, it follows that using L and I operators:

YdZt—d Eq
= =}
vt I- a L I—&LL
= v (2t-a+ ez e P R L T
d \2t— 1%t—d—1 1%t —d— = ouL‘

so that the Yule-Walker equations can be constructed from the cross-products
as:

Yezr = Ya(22—a+ 120241 + i zze-go + o) + .
I— alL
2 Zt—1&¢
Ytzt—1 = Y4 (2:—1zt—d + oz 1 2-g-1 + 02 12t—g2 + ) + T—al

Zt—d—2E¢

2
ViZt—d—2 = Ya (zt—d—'zzt—d + &12—g—221-d—1 + Z:—d—zze-d_z+...)+ o
- 1

Now, taking expectations, E (y2:) = 0, E (y121-1) = 0, ..., B (Y12z¢-a41) = 0,

E (Yezt-a) = 7403, E (Yezt-d-1) = ¥a@102, E (Ye24—a—2) = 740302, or:

E(pz—) = 0 (i< d)
= y40i %3 (i24d)

Tyo=

Properties
1. py. (i) = 0 until the first nonzero element in y (L);

2. ag and ¢ (L) &y in the basic model do not affect the cross-correlogram as
E (zt—ig¢) = 0 Vt,3;

3. a spike at lag d means that there is an impact of 2;_,4 on the endogenous
variable 1;

4. the decay pattern is dictated by o (L);

9. usually, however, z; ¢ WN, but has an ARM A specification according to
6 (L) 2 = ¢ (L)€, where e,y € WN. Then, prewhitening the basic model,
Le. filtering the output variable y, with the ARM A input filter § (L) z; =
¢ (L) &4 so that the output variable is not (necessarily) ‘whitened’, vields
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from multiplying each side of the basic SOST model (6.6} by the ratio

S{L},
e{L}"
g (L)1 d{L) d{Lyo(L (L)~ (L 6{L)e (L
(L) . (L) | diL) )yE_IJr { _) ( )Zr, ( I)v( )., (6.7)
o (L) o (L) ¢ (L) o(L) ¢ (L)
—— v . - .
Mi.y Wi - LfaTE
where 5’% are the impulse response weighis or the fransfer function
weights: note that g and v (L} z; have the same correlograms as gy and
N (LJ Ezf-
Multiplving both sides of (6.7) by £, ;— aud taking expectations oue obtaing
Yores (Y= "--- ﬁkcrgc . or the transfer function weights are determined hy:
a
g A Tay
T = gy (RS (6.8)

Identification and cstimation of the transfer function model

The following identification rules should be followed:

1. Fit ARMA: §(L) 2z = @ (L) 2., and obtain Z.
2. Check the cross-correlogram {é%‘l}y, = ﬁf_f.?;‘t}. spikes are an iudicator
el
of a nouzero ~ (L) element and a decay pattern of e (L) coefficients prompt

to a search for the best fitting (I — « (L) = v(L}z +en
3, Use ¢, to obtain a first estimate of & (L) :

4. Estimate yr = ao+a (L)1 +v (L) 2 + & (L) =, by nonlinear least squares
{i.e. minimizing > &7 iu {6.7) with respect to the unknown parameters) or
by nonlinear maximunt likelihood (i.c. maximizing a loglikelihood function
in the unknown parameters).

6.3.2 Intervention analysis

Interventions can affect a time series in several ways: they can change the level,
either abruptly or alter some delay. change the trend. or lead to other. more
complicated, response patterns. Following Box and Tiao (1975) breaks in the
mean or in the trend are represented as a consequence of exogenous shocks on
the time series. These shocks may have a permanent or a transitory effect.
Starting from the general transfer function model as in (1.1):

e = Zf'_l FilL) e + 1y (6.9)

with v, (L) := :”—{[i—; where 7, is an ARTAL A(p.d.q) process and wn (L) and
v,{L) are polynomials in the lag operator L. An interrention variahle 1, can
assumce one of the following three characterizations:
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I (X A : , .
Tip = { 1ift> T, so that @ is a jump (or a step) variable used to
describe the influence of a phenomenon starting at 7; (e.g. a change in

regulations);
0if t # T}

Wz = .0, S0 that @y is an (im)pulse variable used to describe
1ift="T,

the influence on y; of a phenomenon which happened just at period 7}
(e.g. a strike);

- 0ift <Ty;ort>Ty e .
Tip = 1 Ty <t < Ty so that x;; is a step variable used to de-

scribe the influence on y; of a transitory phenomenon happening between
Ty; and T5; (e.g. a temporary change in regulations).

When the form of the polynomials w;(L) and v;(L) is chosen, i.e. when their
degrees are selected. and possibly the number of unit roots in v;(L) is detected,
then one can estimate the various parameters by OLS or by ML. Transforming
the elementary functions in 1. and 2. by rational polynomials .:i%.)l a sizable
set of appropiate set of functions is obtained.

Various choices for intervention models for different ~, (L) polynomials are
presented in Figure 6.1.

Figure 6.1: Various intervention models for v, (L) := —‘-‘:(ﬁ
TR o1
L. 1. pure jump @y =) ¥ Eapihs
>t > ¢
T % ri(L) A %
o S| S, transitory prolonged impulse @y
Yo Oy
1-yL 1L
- GRS (R e
> ¢ :
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6.3.3 Theoretical and empirical examples and exercises

Example 6.2 Consider the thme sevies processes i = & + iy + by, and
xy = 7y, where €., € WNL then

Elap| 3,06 =10 3.0t - 1)) =bny y=bre 1.

Since this expression involves »,_ | 1t is immediately observed that r causes y
at period ¢ if and only il & # 0. Moreover, By, 3,(f—=1). 3,0} = an,+ by, | =
ar; + by 1. o that there is instantaneous causality of » to y at period ¢ if
and only if ¢ # 0. This example involves two expressions of cangality and it is
concluded that these two concepts of causality have ne link, shice the parameters
g and b are not functionally related.

Example 6.3 As a theoretical example. consider a transfer function similar lo
(6.6):
th = o+ a1 Hens + gy

where 2, is now an intervention dummy and ey, the impact effect for intervention.
According to Figure 6.1 a distinction can be nuade Detween a temporary
change (pulse) and a permanent change {step). with ¢, € WA, < L.

The Tong run effect of intervention is now #= — 24 = 0 and ihe
. . - - - ! - ;
transitional effects of intervention are ( -a,; L)y = an + cozp + 5 00 gy =
iy . e IR s [
T T PIPRPYSETNNE S D LR

. 4 i By,
Henee, the impubse responses are equal to 2% = ¢ and i = (i~ and
-t i ’ -

.= u = 1w = (.

T by 4 tus . - -
5]11]11&1]’1_\-’.L3r?—'| = d—f_"”—l = cptepa and S :d—'_ff‘”—:(:;,(l Lap Fai4 o+ a.{)
: ) ey EP
.. tyi . .
so that for 7 — . %—* = l—(‘j:
)

Example 6.4 Bilaferal cachange vates bosed on Uncovered Interest vole Pavity
(UIP) hypothesis (Data source: QOECD Statistical Compendium ).

Consider now a UIP* model of bilateral exchange rates where a bilateral exchange
rate is assumed to change according to the interest rate differential between two
countries. The underlying model is:

s = +a(L)sio + 0 — 7"y +e(L)ee (6.10)

Tn this example the data on the USD/EURQ exchange rate is analyzed and
the {overnight) interest rate difference between the United States and the EMU
short term interest rate.!

First. the stationarity behavior of the input variable will be investigated.
The ADFE statistics (sce Section 5.5) of the interest rate differential variable
indicate mixed results: a weak aceeptance (P{|7 = r{a)) = 0.07} of the wll of

LSiper 175 dollin—enrn nominal exclinge rade data i in the aeighborhood of 1 lemarithins

wrrr el L z'll\'['T].
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nonstationarity in the (probable) case of zero mean and a strong acceptance in
a (non-probable) cases of a nonzero mean or a trend.

Therefore, first a detection of an appropriate ARMA model for the in-
put is undertaken: the interest rate differential is conveniently described by
an AR(1,3) process (estimated by ML with standard errors between brackets):

(r—r"), = —0.3753+1.2653(r —r*)s_; — 0.2829(r — r*)¢_s. (6.11)
(0.918)  (0.065) (0.065)

Although this is a stable third order AR process (the eigenvalues of the matrix A
as in Appendix C all lie within the unit circle: (0.955,0.721, —0.411)) and there
is no significant residual (partial) autocorrelation, the estimated coefficients in
(6.11) are not very reliable since the AR(1) and AR(3) coefficients are highly
correlated (pg, 4, = —0.982). Hence, an AR(1) model should be analyzed.

Since the AR(1) residuals showed significant autocorrelation at lag 2, the
following final input filter was selected (estimated by ML without an intercept
term):

(I — 0.9830L)(r — r*), = (I + 0.3491L2)z,. (6.12)
(0.016) (0.113)

There is no residual (partial) autocorrelation left and the residual variance is
estimated as 6% = 0.0356. The AR(1) and M A(2) parameters are not correlated
either. Therefore, (6.12) is selected as the input filter with which the bilateral
nominal USD/EURO exchange rate has to be prewhitened.

But we find that the output variable has one unit root (P(|7] < 7(a)) = 0.93
with zero mean and, applied on the exchange rate differences, P(|7| < 7(a)) <
0.01), so that before estimating the final model, we must take the first differences
of the nominal exchange rate.

After prewhitening we calculate the crosscorrelations between the output
and the input variables and we observe that there is a (slightly) significant
crosscorrelation at lag 6 so that during the analyzed sample period the interest
rate differentials seem to have an impact on the nominal USD/EUR exchange
rate after 6 months.

The output variabale can best be modeled by an ARM A(3, 1) process. Fi-
nally we obtain the following transfer function specification (following (6.10))
by ML:
Agy SPTEUR _ 0,00485-0.2718 A8 SP/EVR 10 00575(rEMY_1US), _g+1i,+0.2597ik ;.

(0.0028) (0.126) (0.0017) (0.123)

The residual variance &% = 0.00053, there is no correlation among the es-
timated parameters, and the resulting residuals show no significant (partial)
autocorrelation. We conclude that the UIP hypothesis is not rejected for the
USD/EUR exchange rate with a 6 months lag in the observed sample period.
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Exercise 6.1 Consider the bivariale coinfegrated system:

Py o= pAre_g &

Y = AT+

where the stochastic disturbances are assmned to follow mutually independent
WA processes with variances o2 and o7, respectively.

o Write the one-step (nhead) and. generally. the f-step (ahcad} forecasts
with the corresponding forecast error variances of the iniplied univariate
represent ations for the variables o and j.

o Write the one-step {aliead) and, generally, the A-step (abead) forecasts
with the corresponding forecast error variances of the above bivariate coin-
tegrated systen,

o Compare the foreeast error variances based ou the univariate representa-
tion. discuss this forecast aceuracy comparisoit.

Excrcise 6.2 7} Show fhat r may couse y if it does nol cause {y,2): @) show
that (x.z) does not cause y if and only if & does not cavse y and 2 does not
cause 3 i) consider the ime sevies processes iy = £+ . Ty 1 1= £ — Ty
2oy = Ay, where g mp € WN with the same variance; vertfy that 1l . possible
thal & cawses (y. z) .even if it does not canse cither y or =



Chapter 7

Multivariate Time Series

In the previous chapters we considered the explanation of a single {economic)
time series, possibly by other (economic).time series, but without any feedback
from the former to the latter ones. For several reasons (estimation and fore-
cast efficiency, the nature of the economic problem itself) it may be necessary
to consider several time series simultanecusly. Therefore, in this chapter the
dynamics of the various {economic) time series are really interlinked. which is
often the case in economic practice. In this multivariate time series analysis the
following principles are taken into consideration:

¢ always keep parsimony
¢ restrictions needed to increase statistical power
e feedback should be studied {which is not present in transfer functions).

In general a multivariate time series model in inputs z; and outputs y; can
be written as:

B(L)y:+T(L)z + ®{L)e, =0, (7.1)

where the outputs {y:.¢ € Z}, which are often called endogenous variables, and
the errors {€;,¢ € Z} are elements of R and the inputs {z;,f € Z} , which are
often called ezogenous variables, are elements of R™. Further, B (L), T' (L), and
® (L) are appropiate matrix polynomials in the lag operator L:

B(L):=By-37 B,L'T (L):=ZLU I;Lf, and ® (L):=3"] , B; L

with @[]:-_—In.

The nxn matrix By, is supposed to be nonsingular so that system (7.1) allows
for a unique determination of the current values of the endogenous variables.

In order to illustrate the multivariate time series modeling as in (7.1), fol-
lowing Gouriéroux and Monfort (1997), a simplified Keynesian model will be
presented.

165
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Example 7.1 Consider the following simple Keynesian system of three equa-
tions:

GDP, = Ci+ 1L +Gy
Cy = iGDP_ 1 +e1
I; = ¢2(GDP,_, —GDP,_») +¢ex,

where the endogenous variables are gross domestic product (GDP ), consumption
(C), and investment (I), and the government expenditure (G,) is the only
erogenous variable. The parameters are ¢y (the marginal propensity to consume;
0 < ¢; < 1) and ¢y (the marginal propensity to invest in a period of growth;
co > 0).

Substituting the GD P identity in the second and third equations and rewrit-
ing the resulting system in vector form:

Cel e el |Gy 0 0 | |Ci-2]| , |e 0 €1t
which is a simple special case of system (7.1) withp =2, k=2, and ¢ = 0.

I T(L) =0 and ®(L) = 0 in model (7.1), a pure vector autoregressive
(VAR) model of the order p results.

If I'(L) = 0, a vector autoregressive moving average (VARM A) model of
the order (p, q) results. If there are integrated variables, a vector autoregressive
integrated moving average (VARIM A) model results.

In this chapter, VAR models, VAR(I')M A models and multivariate (struc-
tural) time series models as in (7.1) are analyzed.

7.1 Vector autoregressive models

7.1.1 A simple bivariate VVAR(1)

A vector autoregressive (VAR) model describes the dynamic evolution of a
nurnber of variables from their own history. Following Enders (1995) VAR
models will be introduced using a simple example of a first order VAR.

Example 7.2 Consider, e.g., the following bivariate VAR (1) with 10 struc-
tural parameters, where both variables affect each other’s time path (e.g. the
relation between advertising expenditures and sales):

zr = bo—beznt+cnzi— ez +en (7.2)
2 = bapo—ba®+enzioy + ez +en (7.3)

with @¢,2; € I(0), e,2.¢ € WN with variances o2 and o2 and covariance
cov (ep.€2¢) = 0.
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A structural and reduced form bivariate VAR(1)

Rewriting this VAR (1) in structural form:

By, =co+Ciyi-1 + 4. (7.4)

. 1 by o _{ b _ e ¢
where B := ( by 1 )J’: = ( 2 )scﬂ = ( by )‘Cl " ( Cy]  Coo )'

£: 1= (€2.4.€24) , 50 that the standard or reduced form VAR (1) model of the
above structural form V AR {1} satisfies (provided that the structural matrix B
is a regular matrix):

ye=ao+ A1y tey (7.5)
with a = B_IC(; = (&1[],&.2”) , Ay = B-1 Cl, and e; := B_l.‘.‘t = {6”‘62,:).
Hence, (7.5) can be written as:

Ty = aptandi-) T 1221+ ey {(7.6)

g + G ¥i—) + a0z + ey (7.7)

L
with e, := 50125 and eqy 1= sumboren g that F (ey) = 0 for i = 1,2 and

1—&y2bs; 1—b12ba;
forte=1,2,...,T.

ol +bl,a?l a2 +b2, ai,
vor (e1) = (750,56 var (ea) = 5y
The covariance terms are computed as:

o J{Em—DroeasMEw s BrzEsa o) |
Fleye)1-r)=E { {1=tpby ) }—0 for 7 # 0 and

. (é'xr—bmg.‘._fl (€1 =ba1€.4r) —(b“c,r +b|gdl_
E(ﬁltezt)—E{ Tbrebe 1brebar) }— Top o T —Cov (e eat)

so that the reduced form shocks are found to be contemporaneously correlated
unless b2 = by, = 0 in the (very) unlikely case that there are no conterpora-
neous effects of z; on x; and of &, on 2.

The reduced form residual variance-covariance matrix is defined as % :=

c g2 R b .
( 0211 o2 ) with 6? := var {es), 1 = 1,2; and o12 = 03, = cov (e, €2:)-
2

Stationarity and stability of a bivariate VAR(1)

Joint stationarity of the {z;,t € Z} and {z:.t € Z} processes requires that the
solutions (roots) z of [I, — Ayz| = (} lie outside the unit circle, which means that
the two roots of {1 — a112) (1 — azz) — —agiae2? = 0 lie outside the unit circle.'

Another way of looking at this stationarity issue is through explicitly solving the
reduced form relations (7.6} and (7.7). which can be made by rewriting these
equations in operator form: (I — a1 L)z =a10+a12Lz + e and (F — ax L)z
=auy + a3 Lxg + ey with I the identity operator (fz; := ;) and L the lag or

UThis stalionarity condition is equivalent 1o the condition that the chiaracteristic roots A,
i=1,2 0 |A — Alz| = X2 — (a1 + az2)A + ar1a22 — ajzazr = 0. are lying within the unit
cirele,
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backward operator (L, := ;1), 50 that z, = 220taulsiten and replacing for
Lz in the first equation in operator form:

! 20 o Bkt
(I —ayn L) x¢ = ayo + aaL [u (;a_af;i) - ] + ey,

which leads to:

_ @10(1 — a2) + aizaz + (I — axl) ey + ajpes
(I —an L) (I —axl) — ajpas L?

(7.8)

and similarly for z;:

_ ao (1 —au) +aaa + (I —anL)ex +aner

't (I —an L) (I — ayL) — aypas, L? i

(7.9)

which are infinite lag polynomials, converging under the condition of stability
(stationarity). As also argued before convergence requires that the (real or
complex) roots of the second order polynomial corresponding to the denominator
of (7.8) and (7.9), (1 — a112) (1 — agez)—asia;122° = 0, lie outside the unit circle.
This is called the stability condition, which is also verified from direct recursive
substitution in (7.5):

vi=ao+Ai(a,+A1yi—2+ei—1)+e=--=( Z A})ag+ Z Ale j+AT 'y pny

i=0 J==0

with lim A7 =0, or in that case
n—og

NE= ﬂ‘l‘z A191—31 with p = (Z; (}A Jag = (I. — Ay)'a,
j=0

so that, if the stability condition is satisfied, the particular solution for y; is
ye = p+ Z?iu Ae;_;. Rewriting this particular solution in terms of shocks
onx; and z; as yy = p+ Z:‘iu @ili)er—;.* where ¢, (0) is the instantaneous
effect of a unit change in the shock e, or the impact multiplier, ¢, (i) are the
impulse response weights or the delay multipliers for period i > 0, 377 @ (7)
are the cumulative multipliers for T periods and Y % @, (i) is the long run
multiplier.

i=

Estimation and identification in a bivariate VAR(1)

Direct estimation of the structural bivariate VAR (1) model (7.4) raises prob-
lems. Indeed, due to the feedback inherent in this system (b9 # 0 and by # 0),
these equations cannot be estimated directly by OLS. The reason is that z; is
correlated with the error term &, and , with the error term £.,." Since such a

2Hence. we have transformed the first order VAR in the {z¢,t € Z} and{z,t € Z} se-
quences in (7.5) into a second order stochastic difference equation in the {x,t € Z} sequence.

! o i) fl
*Recall that e = (Spighijat, Seobayen )’

1A simultaneous equations or a GMM estimator can resolve this problem (see infra).
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problem does not exist for the standard or reduced form VAR (1) model (7.5),
OLS can provide (consistent) estimates of the two unknown parameters in ay
and the four unknown parameters in A;. Moreover, by obtaining the OLS
residuals from the two reduced form regressions (7.6) and (7.7), it is possible
to calculate estimates of var (e1:), var (ey;), and cov (e, es). Hence, while
the structural form (7.4) has 10 unknowns (unknown parameters), the standard
or reduced form (7.5} has only 9 unknown parameters (6 regression coefficients
and 3 parameters in X), so that the structural form V AR(1) parameters are not
identifiable or estimable from the reduced form VAR(1) parameters and (an)
identifying restriction{s} is (are) needed to be imposed to recover the structural
form parameters from the reduced form parameters. Adding one restriction, ex-
act identification results; adding more restrictions, overidentification. Following
Sims {1980) a recursive structure may be imposed by restricting that by = 0
in the original structural bivariate V AR({1) equation (7.3), which implies that
s has no contemporaneous effect on z. only a lagged effect!” Imposing this
restriction the structural form bivariate VAR(1) in (7.4) is identified since the
error terms of the reduced form VAR(1) {(7.5) then become e1; = £z — b1ugs
and esy = £,;, 50 that both structural form shocks £,; and £,; affect x; contem-
poraneously, but z; is only affected by €.:.° Decomposing the residuals in this
triangular fashion is called a Cholesky decomposition. Although this decomposi-
tion constrains the system such that an €, shock has no direct effect on z;, there
is an indirect effect in that lagged values of x, affect the contemporaneous value
of z;. The key point is that the Cholesky decomposition imposes a potentially
important asymmetry on the system since an €., shock has contemporaneous
effects on both x; and z;, so that the Cholesky decomposition implies an order-
ing of the variables: z; is ‘prior’ to or predetermined with respect to x;. In the
following, a small numerical example is considered.

Example 7.3 The effects of unit shocks in €, and £,; on the variables x; and
z can be examined.

For example, substituting a0 = a20 = 0, a11 = ass = 0.7, and a12 = @z, =
0.2 in (7.6-7.7) with mean of each series equal to zero, var (e1;) = var (ez) and
p (e, ex) = 0.8 (implying that &9 = —0.8), so that the decomposed errors
are represented by e,; = e, + 0.8¢;; and ey = £,; and we can examine these
effects of unit shocks in £,; and £,; on = and z variables, where the roots of
[Ty — Az| = 0 are 1.11 and 2 so that the underlying VAR(1) is stationary and
the series have a tendency to move together, due to positive values of ay
and a;g; this is also verified from the fact that the characteristic roots, being
the solution of |A — Az| = A (@11 + @22) A + g11020 — arza21 = 0 yielding
A1 = 0.9 and )z = 0.5, lie within the unit circle.

3 0me could also introduce an additional restriction as o.g. ¢21 = 0. Such an overidentifying
restriction can have huportant economic implications: if by = 0 end en1 = 0, conlempora-
neous £x¢ shocks end lagaed values @;—1 do not affeet 2. Honee, the (joint} oull hypothesis
Ba1 = £21 = D is eguivalent to the hypothesis that {z/} is exogenous Lo the model.

Then also: var (e1¢) = a2 + b3,62, var (ex) = a2, and cov (14, €2¢) = —biaa.
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7.1.2 VAR(p) models
Consider the general VAR (p) model in standard (or reduced) form:

Yyt =ag+A1yi—1 + Agyio+ ... + Ayyrp te, (7.10)

where the A;s are nxn matrices and e, € WN with E (e;e}) = X and E (e;ep) =
092 (i.e. d4p = 0 for t # @), or in operator form:

(I, — AL — AsL? — ... — AyLP) y, = A(L)y: = ag + e, (7.11)
where A(L) is the matrix polynomial I, — Y% | A;L*.

How can (covariance) stationarity be imposed in a VAR(p)?

From the standard VAR (p) model (7.10) in deviations from the means gives
ve—p=3"_Ai(yi—i— p) + e, with p defined as:
w=E(y)=ap+Ap+Asp+.. + A p=(1,-A-As-.. .-Ap)_l ag, so that the co-
variance matrices are defined as:
Fsi‘;E{(Yt*ﬂ- Vi-s-1t) }-E {30 [Ai (yi-in) +ed] [Ai (ye—i-p)+ee]'}, sothat
Ty = E [(ye+s — ) (ye — p)'] and

TL, = E[(ye— (ym 1) |=E [(yi-s — 1) (y¢ — p)'] from which T, #
I_, and Ty = I‘_s

Stationarity requires, similar to the univariate case of an AR(p) in Section
5.2, that the solutions (roots) 2 of |I, — Az — Ayz® — ... — A,2P| = 0 lie outside
the unit circle.

Estimation and identification

The standard VAR (p) model (7.10) directly counts n + pn? unknown para-
meters to be estimated. Unquestionably, a VAR (p) model will in general be
overparameterized in that many of these unknown parameters can be properly
excluded from the model. However, improperly imposing zero restrictions may
waste important information. Moreover, the regressors are likely to be highly
collinear, so that the t-ratio tests on individual coefficients may not be reliable
guides for paring down the model. Nevertheless, the choice of the appropriate
lag length p is very crucial. If p is too small, the model is misspecified; if p is
too large, degrees of freedom are wasted. To check the lag length in practice, it
is always better to follow the general to specific method (see e.g. Maddala and
Kim (1998), p. 164). Therefore, we begin with the longest feasible or plausible
lag length given a sufficient remaining number of degrees of freedom. Using
quarterly data for example, you might start with a lag length of p = 12 quarters
based on the a priori notion that 3 years is sufficiently long to capture (most of)
the system’s dynamics. Afterwards, you may want to verify whether a lag length
considerably below 12 is (still) appropriate using an LR test statistic. Assume
e.g. that you want to verify whether in the case of quarterly data a lag length of
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p = & suffices. Consider the residual (reduced form) variance-covariance matrix
for p = 12. By, and for p = 8. L. Since X pertams to a system of n equations
and reducing the lag length from 12 to 8 implies -In restrictions in each equation
for a total of 4n? cross-eguation restrictions, the LR test staiistic satisfies:

€, =T x| = In Bpo') or & =7 - )(In|Bx| - W [Za))

with Sims's {1980} correction, where T is the number of usable observations and
¢ is the number of parameters estimated in each eqnation of the unrestricted
system (¢ = 1274 1 i our example sinee cacli equation of the unrestricted model
has 12 lags for each variable plus an intercept). As known from Subsection
3.1.3 in Chapter 3 £, and ELH are asymptotically y7-distributed with degrees
of freedom equal to the number of restrictions in the systomn. e 4n? in the
example. IF the caleulated value of the test statistic £, were lower than the
critical y2valie at a certain size. the null of only 8 lags wonld be rejected.
At that point. one could seck to detenmnine whether 1 lags were appropriate by
coustructing the LR test statistic (T —¢){lu |2 —In|Zxi). Often. this procedure
will not reject the null of 8 versus 12 lags and 4 versus 8 lags, althongh it will
reject the null of 4 versus 12 lags because vou may lose a small amount of
explanatory power at cach stage. but. overall, the total loss in explanatory
power may be significant. In such a situation. it may e safer to use the longer
lag length.

‘This type of LR test is applicaple to any type of cross-equation restrictions.
Let in general By and X be the variance-covariance matrices of the unre-
stricted and restricted rednced fortns svstems. respectively. If the equations of
the unrestricted model contain different regressors {and not an cqual mimber as
usnal). let ¢ denote the maximum muuber of regressors contained in the longest
equation. Then. asvinptotically. the LR test statistic (T — ¢) (In|3pi- In 2 )
follows a y2-distribution with degrees of freedom equal to the mimber of restric-
tions in the systen’

Notice that. since LR tests are based on asymptotic theory. finite sample
applications in cconomics cau gain from using alternative criteria to detennine
appropriate lag lengths as the multivariate generalizations of the AIC and BIC
eriteria in (5.31) and (5.32]:

A,-’(_Z.‘:Tln‘f] FON and BIC = Tl:l‘ﬁ‘4-;\-" n(7T)

where 13 is again the determinant of the estimated residual variance-covariance
jmatrix and N is Lhe total mmmber of parameters estimated in all equations. which

T Another example when sing goarterly ditecis ot capnring seasola] effeers by inelnd-
ine 3 seasonnd dumnties i each of the o regressions of 4 VAR, Fslinide then the nuresteieted
model by inelading the dunany varinbles and estimate the restricted woodel by exehnding the
Qe varishles, The toral mnmber of restrictions i the svstem I da D he T leupt e is
2. the eoquations of 1le anrest ricted mode] bave ¢ - oap 1 noknown parneiers [np laaged
varialles, the intercept. aud he three seasonal cocthicients), I 1he resatdiing LIT test statistic
pxcceds the critival vidue of the asvuptotic w2 clistrilmtion with 3n dearees of feedom. the
restriction ol no seasunal clects can be rejected.
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is 7+ pn? in an n-variate VAR(p). As in the univariate case, select the model
with the lowest AIC or BIC value.

Since the right-hand side of the standard V AR (p) model in (7.10) contains
only predetermined variables and W N error terms each equation in that system
may be estimated by OLS. Because of the (initial) stationarity assumption of
all yys (1=1,2,...,nand t = 1,2,...,T), these OLS estimators are consistent
and asymptotically efficient.®

Impulse response function(s)

Just as a stationary AR(p) model has an M A(oc) representation, a stationary
VAR (p) model can be written as an infinite dimensional vector moving average
(VM A(o0)) model. Indeed, if the standard reduced form VAR (p) model in
(7.11) is stationary, one may directly invert the VAR (p) specification as:

Ye=(In =30 Ai) lag+(Tn- 30 AiLY) ey =p+ Yoo Wieri=p+ 'I‘(L)e;},

(7.12
which is a multivariate linear filter expression of the {y,,t € Z} process in the
time path of the various reduced form shocks. The elements of (L) give
the response on y; from unit impulses to each of the elements of the reduced
form residuals e;. Therefore, the VM A(~) model (7.12) is called the impulse
response function derived from the standard VAR (p) model (7.10).

Example 7.4 For the stationary standard bivariate VAR (1) model (7.5) the
impulse response function is derived from the bivariate VM A(co) model y, =
o+ E?___n A{et_j with p defined as:

az (1-a(y) -az1a10

Although this impulse response function expresses z; and z in terms of
the reduced form error sequences {ey,t € Z} and {ey, ¢ € Z}, it may be very
insightful to rewrite this impulse response function in terms of the structural
disturbances {e;4,t € Z} and {£,;.¢ € Z}. The vector of reduced form error
terms can be written as:
eg:=( Z: )=m ( _;21 —31?12 ) ( if: ) so that substituted in the
above impulse response function this can be expressed as a function of the
sequences {e.,t € Z} and {e.4,t € Z} of structural disturbances:

o j
| B Y A ] i aypp  app 1 by Ex,t-5
y"-( “ )_( Hey )+“'b“fm Jgﬂ( a1 a2 ) ( by 1 ) ( Ea,tej

00 A & ayp (1-ass) -asa;
=037 Al)ag=(I,—A,) 18{1=“_n“}(1_;22)_u1m21( 10 (1-a22) -a12020 )

SEven though the reduced form errors are correlated across equations. these seemingly
unrelated regressions (cf. infra in Chapter 11) do not add to the efficiency of the estimation
procedure since the regressions have identical right-hand side variables,
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p Y s dull) enl) (€
_f # 11 12 2,t-j =
(12 )2 (5 &) ) (& ) or more compuet
(o o)
fTEs Z ®,;e;_;. The elements of ®; can be used to generate effects of ¢, and
j=0
¢,: shocks on the entire time paths of the {z¢,t € Z} and {2,t € Z} sequences.
The four elements of ¢, (0) are structural impact multipliers, e.g. ¢(0) is
the instantaneous impact of a one-unit change in the £,; shock on x;. Simi-
larly, structural cumulative multipliers E;:o ¢, (1) and the structural long run
multiplier Y7~ ¢;(j) can be defined. Referring to the four sets of coefficients
(11}, {612(3)}, {621()}, and {$y,(4)} as the struciural impulse response
coefficients, these coefficients can be plotted against j as a practical way to vi-
sually represent the behavior of the {zy,¢ € Z} and {2, € Z] series in response
to the various structural shocks,
The structural impulse response coefficients will now be examined for (nu-
merical} Example 7.3.

Example 7.5 Effects of one-unit shocks in {ez:,t € Z} and {e.:,t € Z}.

A one-unit shock in €,; causes z; to jump by one unit and ¢ by 0.8 units.
In the next period, £,,411 returns to zero but the autoregressive nature of the
system is such that z,y, and z;41 do not immediately return to their long run
values. Since 741 = 0.22;40.7234€ 441,E¢ {2e41) = 0.2x0.840.7x1 = 0.86 and
since Typ1 = 0.72;+0.22s + €5 041 +0.86, 4141, Bt {Te41) = 0.76. Since the system
is stable, the subsequent values of {z;} and {z} will converge to their long-run
levels.

On the contrary, a one-unit shock in £, causes the value of z; to increase
by one unit; however, according to the specification in Example 7.3, there is
no contemporaneous effect on the value of z; so that 2z, =1 and z; = 0. In the
following period, the shock 541 Teturns to zero and the values for the variables
are forecasted as Ey (z¢41) = 0.72: +0.22; = 0.7 and By (2141) = 0.2z, + 0.7 =
0.2

The impulse response coefficients for the periods from ¢ + 2 onwards decay
since the system is stationary.

Variance decompeosition

Since unrestricted V AR models are in general overparameterized, these models
are not particularly useful for short term forecasts. However, understanding the
properties of the forecast errors is very helpful in detecting interrelationships
among the variables in the system. For reasons of pedagogical exposition the
bivariate standard V AR(1) example in (7.5) will be continued.

Example 7.6 Suppose the coefficients of ay and Ay in (7.5 } are known and
that one is interested in conditional forecasts E; (Yivn) -

Proceeding in a way similar as in Subsection 3.9.1 on forecasting AR processes
and (5.52) in particular, the h-step {(ahead) forecast error amounts to:
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fi(h) := Yisn — Bt (Yesn) = €en + Arerin1 + Alepn o +... Al ey,

or, equivalently, in terms of the structural disturbances in the impulse response
function from Subsection 7.1.2 (see also Proposition 5.3):

£i(h) := yesn — Bt (Yeen) = €t4n + Pr&esnr + Plerino+... BF ey,

Focusing solely on the h-step (ahead) forecast error and the corresponding
forecast variance of the {z;,f € Z} sequence (see (5.53)):

var [fa(h)]=02, [61,(0)+¢1)(1)+. ..+, (h — 1)] +02, [61,(0)+7,(1)+. .. +0F,(h — 1)].

Since all values of ¢%.(j) are necessarily nonnegative, the variance of the
forecast error increases as the forecast horizon increases.

This h-step (ahead) forecast error variance can now be decomposed according
to each of the (structural) shocks so that the proportions of var [f.¢(h)] due to
shocks in the {e,.t € Z} and {e.4,t € Z} sequences are, respectively:

o2, (611 (0)+¢3: (1)+ ..+ 3, (h=1)] and Zeleia @+ ela(D+. .+l (h-1)]
var|fee(h)] var|fee(h)]

Definition 7.1 The variance decomposition measures the relative contribution
to the forecast error variance of each shock as a function of the forecast horizon.

If e.g. {c.¢} shocks do not explain anything of the forecast error variance
of the {z,t € Z} sequence at all forecast horizons, i.e. that this {z,,t € Z}
sequence is exogenous. In such a situation the {z;,t € Z} sequence would evolve
independently of the {e.,} shocks and the {2;,t € Z} sequence. At the other
extreme, {z.,} shocks could explain the whole forecast error variance in the
{x¢,t € Z} sequence at all forecast horizons. Then, the {z;,t € Z} sequence
would be entirely endogenous.

In applied economic research it is typical for a variable to explain almost all
its forecast error variance at short forecast horizons and smaller proportions at
longer forecast horizons. We would expect this pattern if {¢.,} shocks had little
contemporaneous effect on x, but affected the {z,,t € Z} sequence with a lag.
In practice it is useful to examine the variance decomposition at various forecast
horizons. As the forecast horizon h increases the variance decomposition should
converge. Moreover, if the contemporaneous correlation coefficient p (ey, €s)
between the bivariate reduced form errors is significantly different from zero,
it is advisable to calculate the variance decompositions under various orderings
(zerv parameter restrictions).

Summary 7.1 Summarizing, impulse response analysis and variance decompo-
sitton (together called innovation accounting) can be useful tools to examine
the relationships between economic variables. If the correlations among the var-
1ous innovations are small, the identification problem is not so important and
the alternative orderings should yield similar impulse response functions and
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variance decompositions. However, the contemporaneous movements of many
economic variables are highly correlated so that alternative orderings of vari-
ables will generally matter!

Instead of analyzing the impulse response functions (and variance decom-
positions) from the disturbances ; or £, we could analyze the responses on y;
from new shocks in v, that are linear combinations of the ‘old shocks’ in e, {or
€;). This issue, important for several economic applications, will be studied in
the following section on erthogonalization of shocks.

Orthogonalization

Example 7.7 Consider the responses of the elements of y; to unit movements
in new shoeks that are linear combinations of the old shocks in e, in the bivariate

+— €1y
CASE Vy 1= (ez,+u.5e”) -

Calling these new shocks v, with v1e 1= ¢4 and vy = ex + 0.5ey; or vy =
Qe, with Q := 015 {1) ) , the V M A(oo) representation (7.12) of a VAR(p)

madel can be written in terms of these new shocks as:

ye = p+¥(L)Q7'Qe, = p+Y (L) vi,
—
T(L)

where Y (L) gives the response of y; to the new shock vy, or Y (L) is a linear
combination of the original impulse responses ¥ (L). So, which lincar cornbina-
tions matter? Dala is of no help, so one should look alter the most interesting
linear combination. In order to do this orthogonalizalion assumptions, that
uniquely determine the lincar combinations which we find most inferesting, are
needed.

Orthogonal shocks We want to find erthonormal shocks, i.e. shocks with
unit variance and zero covariances or the orthonormal matrix Q is determined
as:

E(viv)) = E{Qee,Q) = Q5Q' =1, (7.13)

such that & = Q! (Q")'. Note, however, that there are very many matri-

ces F that satisfy FF' = Q! (Q“)’, which becomes clear from the Cholesky
decomposition that finds a Q* such that Q* = RQ. with R an orthonormal
maltrix, i.e.

RR’=I, and Q*Q"=RQQ'R’=RR’=I or £=Q~'RR’ (Q"!)'=(RQ)~! [(RQ}"']"
Which Q should we choose? Since Y (L) := ¥ (L) Q~!, specifying a desired
property on T (L) can determine Q. This brings us to Sims’s orthogonalization
(this orthogonalization is specific for Y (0)). Sims (1980) suggests to specify
properties of Y (0} (i.e. the instantaneous response of each variable to each
orthogonalized shock v;). Since ¥ (0) = I, (each shock only affects its own
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variable contemporaneously) and A (0) = I, (no variable appears contempora-
neously in the other variable’s regression), then, unless X is diagonal (orthogonal
shocks to start with), every diagonalizing matrix Q will have off-diagonal ele-
ments, thus Y (0) cannot be equal to I. This means that some shocks will
have effects on more than one variable! Sims (1980) suggests to choose a lower
triangular Y (0), that gives for the bivariate case:

()-(3 &) (3)omoe-

Zt Tozz TDzz U

where 7., involves the contemporaneous correlation between the original shocks
e, and the second shock. vg;, does not affect the first variable z; contempora-
neously, but both shocks can affect 2; contemporaneously (also on the implied
autoregressive representation).

In summary, one can uniquely specify Q and, hence, which linear combina-
tion of the original shocks e; will be used to plot impulse responses by requiring
that: i) the errors are orthogonal; ii) the instanteneous response of one variable
to the other shock is zero? This second requirement is equivalent to iii) the
VAR is estimated by OLS with contemporaneous = in the z equation, but not
vice versa.

Luckily, the Cholesky decomposition produces a lower triangular Q. Since
Y0 = ¥(0)Q ' = Q ', the Cholesky decomposition produces the Sims
orthogonalization already. Ideally, one should use economic theory to determine
the order of orthogonalization (e.g. GDP is later published, so many other
variables cannot respond within the same period to a GDP shock).

Blanchard and Quah (1989) suggest that, instead of restricting immediate
response, it is interesting to examine shocks such that the long term response
of one variable to a shock equals zero (i.e. a restricted long run response); e.g.
demand shocks have no long run impact on GDP (which is at least I(1)) so
that they are called transitory shocks. The impact of permanent and transitory
shocks will be analyzed in the next section, using an example of nominal and
real wage shocks.

Permanent and transitory shocks

Based on Blanchard and Quah (1989), assume that:

e two uncorrelated structural shocks occur in a model, e.g. real and nominal
shocks on wages;

e since the components of y, are assumed to be integrated of order 1, the
differenced vector is stationary or Ay; «~ I(0); in this example:

A i ( Arwy ) & ( Alog (real wages), );

Anawy Alog (nominal wages),
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e the linear dynamic structural model satisfies a V AR(p} (see also (7.4) for
the bivariate VAR(1)} model):

BAy: =Y 1, CiAy,; + ¢ (7.14)
with e, € WN;

s normalizing restrictions are imposed on B and on the structural residual
covariance matrix, or B := ( 1o bn )and Ele;g)) == (w“ 0 )

b21 1 0 Lt
(it is assumed that there is no correlation between permanent and tran-
sitory structural shocks), with C,,--- ,C, being unrestricted parameter
matrices.

The data can recover only in the {unrestricted) reduced form of the structural
form model {7.14). which yields the standard V. AR(p) representation with two
structural shocks:

Ay,=B~'¥F | CAy,—i+B 'e;=3"7_ | AiAyi—i +e=A(L)Ay,+e; (7.15)

2
a7 [+ 8D

. N o
with Elee]) = = ( on o)

estimated straightforwardly to obtain estimators for A;, Ay,---, A, 3 with
S =E(ee}) = E{B 'e,eiB~V) = B 'QB Y or BEB' =11. ie.

r_ 1 blfg i.'J"]J Ty 1 b?] _ Wi 0
BEB_(bzl 1)(021 0’3)(512 1)_(0 wzz)'

_( (02 + blooo +bi2o2 +b1203) (o2 + b1205 + by1o7 + barb12012)
T\ (021 4 52103 + bi20d + bizbnory) (03 4 bayoie + baioz + b5,07)
_( (Cr% + 2b120 12 +b{'2(7§) (0'12 (1+bglb|3)+b120% +bg10%) -0

(12 (1 + biabo1) + bo10% + b1203) (0% + 2by1012 + b3,0%) -
where the equality o2 = 021 was used in the last line. Hence, the following
system of three nonlinear equations (restrictions) is obtained:

)A The reduced form {7.15) can now be

0% + 2b1202 + 05,05 = wi
o12 {1+ barbia) + b120% + boroy] = 0
aé + 2811012 + 5310% = Wan (7.16)

where b2.521.0%.and o3 are four unknown parameters in three equations. For
this systemn to have (a} solution(s), onc more equation is needed. As also pro-
posed by Blanchard and Quah (1989). this additional equation is a long run
restriction that nominal shocks do not affect real variables for £ — oo, But
even with such a restriction that we are going to discuss imnediately the nonlin-
earity in the above three equations is not solved. In other words, the solution of
the nonlinear system will be subject to the occurrence of ‘local minima’ (unless
some ‘grid search’ over the relevant paramieter space could be possible): for each
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different set of initial values for by2, bay, 07, and o2 a different solution will come
up and each different solution will generate a different impulse response func-
tion. Such an impulse response function, derived from VAR(p) model (7.15),
can be written similar to (7.12):

_( Arwe \ _ (¥1(L) ¥io(L) efe Y
Aye= ( Anw ) ? (%I(L) '1‘22(L)) ( ex ) T |
where W(L) consists of polynomials in the lag operator L. The time paths of
the effects of the various shocks on the real and nominal wage rates are implied
by the coefficients in ¥(L).

The two residuals in (7.15) have been effectively transformed into two shocks
in (7.17). Consider two types of orthogonal shocks, each of which could be
the source of variation in the observed movements in real and nominal wage
rates. The structural form disturbance e, in (7.14) is a real exogenous shock
which reflects changes in economic variables such as endowment, productivity
and technology. The shock may affect the real and nominal exchange rates in
the short and long run. The other structural form disturbance £,; in (7.14) is
assumed to be a nominal exogenous shock, which is caused by e.g. nominal
money supply shocks or devaluation of the exchange rate. By assumption the
nominal shocks have only a temporary effect on the value of the real rate but may
have permanent effect on the nominal rate. The assumption of the temporary
effect on the real wage rate acts as an identifying restriction.

How can now this long run restriction be determined? The long run neu-
trality of nominal shocks is represented by the restriction that the sum of the
coefficients in W1»(L) is zero, i.e.3°7% ¥i2(j) = 0, where ¥;5(j) is the j** co-
efficient in W2(L), or the effect of e; on Arw after j periods.; Yo, Wia(j) is
the cumulative effect of e; on Arw over time and the long run el'i'ect of es on
Arw is zero. The restriction that aggregate demand has no long run impact on
the logarithmic real wages has been imposed. This restriction follows from the

assumption that the natural rate of unemployment hypothesis holds in the long
rin.

7.1.3 Structural VAR models
Introductory remarks

The original meaning of a ‘structural’ model in econometrics is explained in
Hurwicz (1962): “A model is structural if it allows us to predict the effect of
‘interventions’ - deliberate policy actions, or changes in the economy or in na-
ture of known types”. To make such a prediction, the model must tell us how
the intervention correspond to changes in some elements of the model (para-
meters, equations, observable or unobservable random variables) and it must
be true that the changed model is an accurate characterization of the behav-
ior being modeled after the intervention. There is no sharp distinction among
interventions that change equations, change parameters in equations, change
disturbance terms in equations, or change the value of variables in a system.
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According to Sims (2002) nowadays a model is often called ‘structural” when
its paramecters have behavioral mterpretations. regardless of whether the old
(above) definition applies. and on the other hand models that are in fact struc-
tural in the old sense are thouglit of as reduced form because they contain
parameters or equations that do not have nnique belavioral iuterpretations. As
seenn in Subsection 7.1.2 a structural VAR or SV AR model can be defined but
identifying restrictions have to introduced.

Specification of an SVAR(p) model

From the structural equations (7.4) of the bivariate VAR(1) model the struc-
tural VAR(p) or S‘V AR(p) model can be written as B{L}y, = c -+ g, where

B(L) := By - 37 B,L' and &, is a WN process with covarlance niatrix
Fleie)) = 2 Sinee it is dssume(l that By, hds full rank so thdt as in the bivariate
case (7.5) the reduced form B[, B(lL)y; = A{L)y, = B, ‘e i—BU g€, =an+ &

exists so that the system can be solved to determine yy from past values of y
and current shocks €, In the SVAR(p} model the conditional distribution of
yi glven past ys is thomff)l ¢ dete 1mm(~(l b\« 1110 cocflicients in the Iodu(od form
lag polvnomial A(L) := B, 'B(L) = 1, - By ' 31 BiL*. by ay = B, 'c. and
by the parameters of the conditional dls‘rrlbutl()n of e; := By e, given past ys.

Structural VMA specifications and SV AR models  Consideriig a strue-
tural’ VAL A(>) model derived from the above structural form as:

ye = (B(1)) e (B(L) & = p+D{L)e
wiih the infinite dimensional polynomial D{{) defined as:
D(L) = (B(L)™' - (B, - BL) ' =37 DL

‘a kind of a reduced form VAR(~c)' can be considered by redefining the Dj-
cocHicient matrices when comparing the coefficients for equal lags n:

Vi = jL+D||Ef‘?‘D1€f-|+D2€f-2+- L= e bwy FV W FVawe et .. (7.18)

From the rewriting in (7.18) w; = Dye, . Viw, | = Dig;_ . Vaow,_y 1=
Dse,_y. ote. Hence, Viw,y = V| Dygy | = Dies_|. so that by equating
coefficients corresponding to the same ldgg.,(*d error: V Dy = Dy or the new
coctficient. matrix 'V satisfies V| = DlD Proceeding in a similar way for
Vowi_s. Vaw, _y. the sequence of matrices {V,_ D, D[, a=1,2.3,. } is ob-
Lained.

Once one has an SVAR(p) model this type of reduced form expression
can uniguely be derived.  However. in many prac tical cases the econometri-
cian will not have the SV AR(p) representation at her disposal but only the
so-called ‘reduced form representation’ on the ngllt hand side of (7.18): p +
wes Viw,_ +Vow, o +....=p+ V(L)w,. cg when the effects of various
types of shocks have to be studl(‘d In such d case extra restrictions should be
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imposed such that a unique SV AR representation can be obtained. In Section
7.1.2 Blanchard and Quah’s (1989) model was introduced with long-term restric-
tions which, however, were not sufficient for deriving a unique representation of
the SV AR model, but in Lastrapes (2002) the problem of uniqueness is solved
via the estimation of the (unique) Cholesky factor D(1) of the ‘long run covari-
ance matrix’ V(1)E[V(1)]’ = D(1) [D(1)]', where E is the covariance matrix of
the {wy,t € Z} process, or & :=FE(w;w}) (see also Cholesky decomposition in
(7.13)).

Orthogonal shocks on SVARs As implied by the subsection on orthogonal
shocLs the covariance matrix of n variate orthonormal shocks v, := Qe, =
QBg 'e,, which are shocks with unit variance and zero covariances, satisfies
from (7.13) for an arbitrary n x n orthonormal matrix Q (or Q' = Q') in
Sims’s orthogonalization procedure (see Sims (1980)):

E(viv)) = QEQ’ = QB;'0(B;1)Q =1,., (7.19)

with the reduced form covariance matrix given by E=FE(e;e;)=Q ' (Q~')'=Q'Q.

Notice that expression (7.19) is not unique at all since another orthonormal
transformation such that the covariance matrix remains the same can always
be found.” This could also be argued from the fact that the number of free
elements in the orthonormal matrix Q is n(n + 1)/2 while By has n? unknown
elements. Hence, we could never derive the structural form parameters in By
from the reduced form covariance matrix X because there are fewer equations
than unknowns so that additional covariance restrictions should be introduced
as in (7.16) for the bivariate VAR(1) case. Also contemporaneous identifying
restrictions on the matrix By will be necessary.

Identifying restrictions in SVAR models: contemporaneous and co-
variance restrictions

Since A(0) = I, from the specification of the reduced form lag polynomial above
and, otherwise and except for By, from the construction of this reduced form
polynomial A(L) it is clear that the number of parameters in A(L) (exactly)
matches the number of parameters in B(L) (A; :=-B;'B; fori=1,2,...,p),
the reduced form VAR(p) as a whole has n* —n(n+1)/2 = (n? —n)/2 =n(n—

1)/2 parameters less than the SV AR(p) model. Since the properties of the data
are determined by the reduced form parameters, any attempt to determine the
structural (form) parameters from properties of the data will face indeterminacy,
unless we can find (n” —n)/2 identifying restrictions. Remind that this was just
one restriction in the bivariate case in (7.5), but the restriction in that section
is in the tradition of Blanchard and Quah (1989) a long run restriction, i.e. on
the sum of coefficients in B~'(L) =: ¥(L) in the bivariate impulse response
function (7.17) and not on the contemporaneous By matrix. Notice that these

*According to the Cholesky decomposition, one can always find a Q* such that Q* = RQ,
with B another orthonormal matrix RR' =1, and Q*Q* = RQQ'R’' = RR’' =1
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restrictions are derived from a more elegant economice theory than the ~delayed
reaction’ theory underlying niost zero restrictions on By in Sis’s tradition. bat
that the Blauchard Quah {1989) tvpes of restrictions generally apply on gnite
simple VAR models with low dimension (generallv with ondy 1two orthogonal
shocks. “aggrepate demand shocks” and “aggregate supply shiocks™y. "

7.2 VARMA models

A VARAM A(p. ¢) model can directly be defined (rom (7.1) B{L)y; + ® (L) &,
0. which ¢an be sritten as a VA A{) as in (7.12).

The identification. estimation, derivation of impulse response funetions, and
forecasting of VARM Alp. ¢) models can be derived from the direct extension
of the univaciate ARM A{p. ¢) wodels in Section 321 and Subsection 593 Also
multivariate cointegration can be extended from the univariate approach in
Chapter 6. but this is not straighforward. Hence. it will be discussed in the

next section.

7.2.1 Multivariale cointegration
Definition

If all the components of a vector x; are integrated of order o > 0, or x4 ~ T {d}.
then if there exists a linear combination which is integrated of o lower order
B. boih variables are said to be comdfegrated of order o B owith & < o or
Xy ~ CT(d. b, In this case, there exists a nonzero vector o such that o' x; o~
F{d — b) and the vector a is then called the cointegrafmg vector (if x, has n > 2
components. there may be more than one cointegrating vector),

The velationship o'z, = 0 s called o fong ferm relotionship.

Proposition 7.1 If a long term velationship exists in the bivaviote case. ths
long term velationship i3 wnigue,

Proof. This can easily be proven by contradiction. Suppose there exist two
distinet cointegrating vectors {parameters) oo and ¥ sueh that {7 + oy} and
{z; 4 ey} are both T(0). Then also {0 ~) g is 7{0) because subtracting one
F{d) process from another cannot lead to a series integrated of order (d 1 1) or
higher. Hence. (e - Ay ~ £ (1) and cury ~ 1{0). =

~p . _ A

Lemma 7.1 Any VAR(p) model xp = p+ >0 ALx, ;1 ey wifh ep € WA

with varionce-covarionce mafriv X can be vewritten m an cvror corveclion form
(ECM)

RV : .

Axy TIxy (4320 [ ©Ax 1 e (7.20)

Vipnr example. i1 might e argued that The long run effecls of a menetary pelicy inoa 1liree-

dimensionat VAR on ey stack. prices. and wapes should a1l be the sanwee This might

ihen be taken o et e, s svateln wlere tiese vavinbles appear nolifereaeed o,

e elements e cobiron of B W) comesponding 1o these tluee saeiahles shonld all e the

mildLLe,
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with IT equal to the long run matriz —XI(1) and ©; := —(My+M3+...+11;),i =
1,2,...,p—1.

Proof By induction:
For p=2:X—X—1 =p+ (l'I1 = I") X1 —Hz(—-xtug)'i'et:#“i‘ (II1 —In) R —

LA +TIox g + e= i+ (II1 +1II; — In)x:_z — Tl Axi_1 + .

Forp=3:Ax = p+ (I = L,)x¢ 1 — Hp(—%¢-1) — TMa(—x—3) + &=
pt (I + I — X)) x¢ o T A%y — g (—x¢—3)+ep=p+ (II; + I —1,) x; 1 —
A%, —I3A%, o —I3(—%;—9) + €= p+ (I + Xy — L) xp— —TIoAX—y —
I3A%¢ o —TI3(—xX¢-2)+er= p+ (I + T + I3 — I,) x¢— — (Do +T13) Axy— —
II3Ax%, o +e.

Proceeding for a general p > 3, we can rewrite the VAR(p) as the vector
error correction (VECM) model (7.20).g

If in the above multivariate cointegration there exist exactly r linearly inde-
pendent cointegrating vectors with r < n — 1, then these can be gathered into
an n x r matrix a: the rank of e will be r and is called the cointegrating rank.

For the case where d = b = 1 with cointegrating rank r, the Granger repre-
sentation theorem holds (see also Chapter 6 on univariate cointegration).

Theorem 7.1 The Granger Representation Theorem for the multivariate
case proves that if there is an n x 1 vector x, ~ CI (1,1) with cointegrating rank
r <mn, then 3 B (n x r matriz) such that B'x; ~ I(0), and x; has a VARMA
representation, which is a direct extension of (7.10):

I (L)%, = pu+D(L)e (7.21)

with i) e, € WN, ii) rank (IX(1)) = 7, and iii) I1(1) = B with o and B nxr
matrices of rank r (for the proof see Engle and Granger (1987)).

Three cases can now be distinguished:

Case 1: TI(1) is of full rank (# = n) and any linear combination of x;_,, is
stationary; in this case a usual VAR(p) can be run in levels;

Case 2: TI(1) has less than full rank but at least a rank of 1 (0 < r < n); in
this case there are some linear combinations of x;_,, (or of x;) that are stationary
so that x; is cointegrated; in this case the VAR(p) in levels is consistent but
inefficient (if yon know the cointegrating vector) and the V AR(p) in differences
Axy is misspecified;

Case 3: TI(1) has rank zero (r = 0) so that no linear combination of x; is

stationary; then Ax, is stationary with no cointegration; in this case we run a
usual VAR(p) in first differences Ax;.

Testing multivariate cointegration

Johansen’s method (1988) tests the rank of II (or, equivalently, the number of
columns in the n x r matrix 3 of cointegrating vectors) by means of an LR test
statistic (see Subsection 3.1.3).
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This test about the dimension of a subspace of the cointegrating vectors
can be derived as follows: consider a VAR(p) process {X,.t € Z} as in (7.11)
with polynomial matrices TI(L} instead of A{L). the components of which are
nonstationary 1{1) and e; € WN with variance-covariance matrix 2. Consider
the null [y the dimension of the subspace of the coiutegrating vectors is 7.

Under the assumption of normality of the errors e, the conditional loglikeli-
hood can be written as:

]]11‘?:—7?% In(27) — %ln 12|
!

i p-l =1
-% Z (Ax;-HXg_]— Z G).;A)q_i) ) ! (AXE—HXE_r Z @)tAX;_J) sothat
t—1 i=1 i—1

an ML estimator can be derived from maximizing the coneentrated loglikelihood

function with respect to the parameter matrices IT . I, .. .. II, ;. From the
Granger Representation Theorem 7.1 H = —a3 . where e is the nox v matrix of
error correction terms. 3 is the v x n matrix of cocfficients of the cointegrating
vectors, and B'x,  are the v cointegrated variables. Since the interest 5 in
a and . an auxiliary QLS regression of Axy on AX_ ). A% AX_p 1 18
performed and the resulting residuals are called ry: regressing x,—, on these
variables the resulting OLS residuals are called ry,. Referring to the VECA
equation (7.20). the regression equation is thus reduced to ry = —aB'ry, + e,
with the same variance-covariance matrix 3. Taking e as fixed. the loglikeli-
hood can alse be concentrated with respect to 8 and . For solving the nmnlti-

variate regression problem of ry; on ry. the 7 x n matrices of sum of squares

Sun Sm

and sums of products of ry; and ryy can be defined as p } . Maximizing
10

b1
the loglikelihood function with respect to a holding 8 constant and then max-
imizing with respect to 3 in a sccond step, &!2(6;511;6) ! 3’8, so that the
conditional maxinmun of the loglikelihood function (which is the maximum of
the concentrated likelihood) is:

[LoA3)) T ‘Sm] —-Smg (,GFS] 1,3)_] ,@!Sm\ . which can be maximized

with respect to B (implying the minimization of the determinant with respect to
. A L 1@'S A5 .8, 8318,
8). Following Johansen (1991) this problem reduces to ngnlﬁ ' Iiﬁ’s..ﬁ | .

which is a problem of eigenvalues and cigenvectors becanse the maximum of the
loglikelihood function is found by finding the eigenvalies of S10851 Sa — AS | --
0. These eigenvalues are canonical correlations between ryy and rgp. Le.  af-
ter conditioning on the lagged variables AX, 1 A%y o AXy -1 those lin-
ear combinations of x,_, that are highly correlated with lincar combinations
of Ax, are look for. If A; are the canonical corrclations front the solution of
lS]_115|[)S['},,1 Sy, — AL} = 0. then 12, are the eigenvalnes of (I-8] 810840 Sui ) -
Since the value of a determinant of a matrix is equal to the produet of the

eigenvalues one has

it g 1 .- ™ . L
] 1 1 S, =SS, |_!5-_.c|—5"1ms f‘3lu|
H{l )\‘):|I - Sl' SIUSU“ S{”l: = IS B |f'3||||ll .
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Table 7.1: Trace and maximum eigenvalue tests without intercept and deter-
ministic trend

n—r 1 2 3 4 5

99% 6.51 16.31 29.75 45.58 66.52
95% 3.84 1253 24.31 39.80 59.46
90% 2.86 10.47 21.63 36.58 55.44

Test: order r versus order r + 1

99% 6.51 15.69 2299 2882 35.17
95% 3.84 1144 17.89 23.80 30.04
90% 2.86 9.52 1559 21.58 27.62

Theorem 7.2 The LR test statistic of the null (the dimension of the subspace
of the cointegrating vectors is r) is

§r=2(Inf -t (B)) = ~TTf, ., In(1 - Ax), where the Ais are the

n — r smallest eigenvalues of |SmSE,},ISm — A8y | = 0 (see Johansen (1988) for
the proof).

The LR test statistics make use of the fact if there are r cointegrating vectors,
then these n —r smallest eigenvalues are zero. The corresponding r eigenvectors
are chosen as cointegrating vectors. This way of imposing n — r restrictions
yields an asymptotically efficient estimator of the cointegrating vectors.

Another interesting test tests the null that the cointegration subspace is of
order r versus r + 1. The LR test statistic is then —7'In(1 — A.4). The latter
test is called the mazimum eigenvalue test based on (r + 1) largest estimated
eigenvalue testing and the former test is called the trace test testing whether
the smallest n — r estimated eigenvalues are significantly different from zero.

Although these test statistics are both LR test statistics, they are not (as-
ymptotically) distributed as the usual y*-distribution! Instead, the appropriate
(asymptotic) distributions are multivariate extensions of the Dickey-Fuller dis-
tributions (with critical values in Figure 5.1). These asymptotic distributions
depend on the assumptions about deterministic trends in the data. Johansen
(1988) computes the 99%, 95%, and 90% quantiles of this multivariate extension
of the DF distribution.

An excerpt of it is presented in Table 7.1, where the upper part gives the
critical values of the trace test at the levels 1%, 5%, and 10%, and the lower part
the corresponding critical values of the mazimum eigenvalue test, both under
the assumption of no deterministic trend and no intercept. As you can observe,
the critical values depend on the number (n — r) of nonstationary components
under the null.!!

If an intercept is present without any deterministic trend another set of
critical values is used (see Table 7.2).

" Note that when n —r = 1 the two test statistics are identical and thus have the same
distribution.
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Table 7.2: Trace and maximum cigenvalue fests with intercept and no deter-
ministic trend

n—r 1 2 3 4 2

a9% 6.65  20.04  35.65 b446  76.07
954 376 1541 29.68  A7.21  68.52
aos. 2.69 1333 26.79 4395  64.84

Test: order r versus order v + 1

909 6.65  18.63 2552 3224 3877V
954 .76 14.07 0 2097 2707 3346
9O 2.69 12.07  18.60 24.60 3090

To use these tests we denote the estimated eigenvalues of the long run matrix
I1 in non-increasing order as A 2 hZ .2 A, where a nonzero eigenvalue
correspond to a cointegrating vector and the cointegration tests boil down to
testing that the corresponding As are significantly different from zero. If the
test is Hy @ rank < v oversus Hy @ v < rank £ n, we have the trace test in
Theorem 7.2, testing whether the smallest 7 — r eigenvalues are significantly
different from zero. Tt the test is J7, @ rank = ¢ versus the more restrictive

alternative H, : renk = r 4 1 we have the maxinum eigenvalie test based on

the {r+ D" largest cigenvalue.

Remark 7.1 To see how cotndegration affects the lmiting fmpulse response of
the levels of the wector x, where all clemenis are assumed to be infegrated of
order one, consider fhe implied M A vepresentation of the stetionary differences
of x¢ - (J = L)x; = B(L)m,. Sinve under comtegration a'xy ~ 1{0) is an czlra
yestriction, il must imply o restriction on B{L): the elements of X, are said to
be: cointegrated with coinfegrating vectors ac ; if and only if &/B(1) = 0, which
anplies thoet the vank of B(1) is equal fo the number of clements of X manus the
wumber of cotntegrating vectors o, (this is called the reduced vank property of
B(1) in the case of coinfegrafion). Since B(1) 4s the Iimiting impulse response
of the levels of x¢ so that. for cxample, B(1),; s the long run response of y to
@ unit = shock, here it is considered the very simple and common bivariale case
a=(1. 1Y to study the cffect of coindegration on B(1). The reduced rank of
B(l-}” B(1)y: 0. #0 that B{1},, =
B(ljzy B{})z: k4
B(l1)., and B{l},. = B(l)... In other words, each variable’s long run response
fo o shock must be the same. The reason is infuitive: if y and &z hod different
fong run responses io a shock, the difference y —z would not be stalionary. Sinee
this difference must be staltonary from the { asswned) comtegration property, fhe
response of this difference must vanish then.

B(1) means then: aiB{1) = {1.-1)

7.2.2 Mhultivariate causality

Suppose two varfables similar to Section 6.2, Oune variable Lias no response to
the shocks in the other variable. The shock variable fails to Granger cause the
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variable that does not respond.

Definition 7.2 Granger causality can be defined as follows: z; Granger causes
xy if z; helps to forecast x; given the past of x;.

Example 7.8 z; does not Granger cause x; if b(L) = 0 in the following bivari-
ate VAR(1) model:

t = a(L)ye—1+b(L)z—1+ 6,
Zy = c(L)y¢*1+d(L)zh1+w¢

In autoregressive representation the above VAR(1) model becomes:
o T a(L) b(L) ) Te-1 | oy )
2 c(L) d(L) Zp—1 Wy
I—-La(L) -—Lb(L) zi Ny
—Le(L) I-Ld(L) 2 T
a* (L) b* (L) ze \ _ [ O :
or ( e (L) d* (L) 2t TR ) Thus z does not Granger cause = <>
b* (L) = 0, or if the autoregressive matrix lag polynomial is lower triangular.
The setting in this example can be directly extended to vector processes

{x¢,t € Z} and {2zt € Z}. Further details can be found in Gouriéroux and
Monfort (1997), pp. 369-382.

Hence, Granger causality is defined as the presence of feedback from one
variable to the another, with Granger noncausality defined as the absence of
such feedback. Following Granger (1969) and Section 6.2, the following theorem
can be formulated.

Theorem 7.3 The variable y does not Granger causethe variable z if the mar-
ginal pdff. (-) does not depend on 3, (t=1), i.e. f.(z|Se(t —1),-) = f- (2] S:(t = 1),-).

7.2.3 Dynamic simultaneous equations models

Consider the following V ARM A(p, ¢) model B (L) y; = ® (L) €, with the matrix
(valued) polynomials B(L) := I — Y%, B;L" and ®(L) := I + >5-1®;L7 , and
where y; can be partitioned as y; := (::).where x: € R? and z; € R'. Corre-
spondingly, the VARM A(p, ¢) model can be partitioned as:

(50 Ba® ) (3)=(0® 228)(2) o

i iid
with Eqt ~ Eap.
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Suppose that the following restrictions are Imposed Boy (L) = 0 @, (L) =0
and @, (£) 0 which means that x; s endogenous and 2z is exogenous. This
leadds to the set of structural equations:

[3[1(1";))(; f B|-_J{L_\}Zg 'p“ (_.-"..)Eu‘ {723)

which is called a dynamic simufianeous cquations wmodel or DSEM . and 10 a
VARAM A process generating the exogenous variables:

Ba(lz,  ®opi{l)es. (7.21)

The structural equations (7.23) can be expressed as:
>, oo Buiexe it EJ_.}-_“BIL’._;ZF—_;:‘I’H (ireyn ;.

Note that the simullaneity’ of the madel 1s a consequence of the property
that By g # I,. The reduced form from these stroctural equations satisfios

Xt Bl_ll.{] Ziﬂnlhixf i Br, 20 o Biegze }BI“II.U'”:. {7.25}

12,
and the final form satishies
x,=-B LB (L)z — B, (Ln,. (7.26)

where —T3, 1| (IYB1y {1} is an x dimensional matrix polynemial containing dy-
namic multipliers that deseribe the responses of x, to unit shocks in the exoge-
nens variables »,.

Premultiplyving the final form (726} by |B (L) and denoting the adjoint
maliix associated with B (L) as BY (L) yields the set of fundamental diparniie

cuations.

EB“(L”X( = —BT|(LJB[2 (L) Z t BT]{!‘)T?P' (727)

in which each endogenous variable depends only on ity own lagged values and
on the exogenous variables.

7.2.4 DSFEAMsand SV AFRs

DSEMs and SV ARs can both be thought of as versions of the general linear
stochastic differeuce equation model, that do not consider the M A part in the
ahove VARAM A(p.g) model, both models can he viewed as speeial cases of
B{L)y; = € { g;. The usual DSEAM has two standard forms. In one standard
form. the system satisties a Granger causal ordering. Le. (7.22) can be expressed

s ( BH(}(L) gijig ) ( ‘j: ) c+ ( Z;: ) wliere the z;5 arc evogenous,

while in the other standard form. only By, is assumed to be block-triangular 50
that the {z.. s < £} are predetermined. Tor hotli types of wodels the usnal claim
for a struciural interpretation is that an equation or block of equations can be
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altered or replaced to represent a particular intervention (as e.g. a change in
policy behavior).

The most important difference between DSEM s and SV ARs is that SV ARs
usually possess a diagonal variance-covariance matrix E(e.e}) =: £ (see Sub-
sections 7.1.1- 7.1.3) and DSEM s usually not. Hence, one can also incorporate
restrictions in  into a DSEM framework similar to (7.16) in Section 7.1.2
for the simple bivariate SV AR(1) framework and the exogeneity and predeter-
minedness assumptions in an SV AR framework can also be used.

7.3 Exercises and cases

In this section theoretical and empirical exercises and also three solved empirical
cases will be presented.

7.3.1 Solved theoretical exercises

Exercise 7.1 Consider the simple bivariate VAR(1) model: y = ay,—, +
bzi_1+v and z = ey_1 + dze—y + we, or in matriz notation:
areh l—a —b
02l ]
An example of a singular TI(1) is b = 1 —a and ¢ = 1 — d because then

(1) = [ —bc _cb ] The ECM representation is from (7.20) and the Granger
Representation Theorem 7.1: Az, = —af'x,_, + Zf:_ll ©;Ax;_; + e; with
TI(1)= [ —{’c ] [1 —1] leads to ax[ _bc] and 3 = [_IJ , or the ECM

representation becomes:

Ay = =b(yr—1 + ze—1) + v,
Az = (Y1 — 21-1) + wy.

Subtracting these two equations.
Ay —2z) =(-b+e)(g—1 — z-1) + (ve —wy) , or
Ye— 2= (1—(b+¢)) (-1 — 2e-1) + (v —wy),

so that y; — z follows a stationary AR(1) model (since 0 < (b+¢) < 2).

It is very easy to derive the M A (o0) representation from the system in Ay,
and Az, because from the latter equation.y,—z, = (I — (I=@b+)L) " (v - wy)=:
(I —6L)~" (v, — wy) and substituting this into the above system:

{i?:: ] = (I = L) {U‘Gf"b (1_3‘;)_4 [ i ] with §:= 1 -

b—c. Evaluating the right-hand side at L = 1 to get: (b+¢c)~1 [2 g] . Denoting

the last matrix TI(L) the following long term restrictions are obtained: B'II(1) =
0 and II(1)cx = 0.M
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ey

. . . L . I -09L 0115 N
Exercise 7.2 Write the bivariale VAR process ( 014 I_ ﬂ.(iL) (

€, as o VECAM and perform o cointegration anolysis.

The determinant of B{L) is given by {I — LY{I — 0.5L). Then. the VECA

sallsfies
) YN _;r - (I -06L  —01L
U L}(mf)_{r 05L) ( 0 T—09L) 50

Hence: the process {yy+.t € £} is J{1). The matrix
: I -06L —0.1L o4 -0l
— _ r, -1 S e . _ :
H{L) = (- D.5L) ( 04l ] — (].E}L) is such that H(1) = 2 (—U,-'l 01 ) .

. . 1
H({1) has rank equal to 1 and its nullspace s spanned by o = (l) . A

cointegrating vector. Thew. the ECAL vepresentation in (7.20) and in Theorem

. 0.1y .
7.1 can be written as ((; Il) (o1 gy )+ Ay =& B

7.3.2 Solved empirical exercise
Exercise 7.3 Multilateral {effective) veal erehange rale.

The wtivariate long run purchasing power parity (PPP) hypothesis is given
by s+ p; — pe —~ 1{0). with s, the logarithiic nominal exchange rate., py is the
logarithmic domestic price. and py the logarithmic foreign price for the economy
in whiclt s; is expressed, The multivariate PPE hypothesis can now be written
as the stationary representation of the effective real exchange rate:

=, Wl (s;-f’ +p-;') S H0) (i) = L2 )

where s is the logarithmic nomiunal exchange rate between currencies atd 7
(ie.. the unit price of currency j in terns of cwreney 1), pp Is the logaritlnnic
domestic price level in conmtry i, and wf is the relative importance of country
§ for conntry i measured for example by the share of country 3 in the imports
T o

of country ¢ with 37 ..« = 1.

3

1

The effective Dollar exchange rates of the Euro (the currency unit of 12
countries-members of the European Mouctary Union (EMUY). the British Pound.
and the Japanese Yen can for example be tested by {principally) considering the
stationarity of g (i = EMU UK, Japan) with variables contained in the noul-
tivariate vector of 7 variables
Xpom (WM SFME UK WK TP M BT pl R T Sl sy

In the following. cointegration tests for pf ™ will he conducted. In this exam-
ple monthly data from January 1999 to November 2004 is analvzed. so that the
length of the serics is relatively small {71 observations). Therefore the cholce

of parameter & must be made prudently in order to avoid wasting degrees of

-
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Table 7.3: Trace statistic cointegration test

Trace 5% 1%
Hypotheses Eigenvalue  Statistic

Hy :rank =0 vs A
H,: 0(?‘(171’957
Hy :rank = 0,1 vs
Hy: 1<ranks7
Hy:rank =0,1,2 vs
My & 2 rank S

0.698803 158.2771 124.24 133.57
0.429797 76.67769  94.15 103.18

0.255526 38.47779 68.52  76.07

Table 7.4: Maximum eigen value statistic cointegration test
Max-Eigenvalue 5% 1%

Hypotheses Eigenvalue Statistic
Ho trigilar O 0.698803 81.50943 4528 51.57
H;: rank=1
Hoj: rank 0,1 ¥ 0.429797 38.1999 39.37 45.1
Hy: rank =2
Hoamenk =N 1236 0.255526 20.06526 33.46 38.77
H; : rank=3

freedom. To put ourselves on the safe side we choose to limit the lag length to
;

The trace statistic cointegration test (with an intercept and without a deter-
ministic trend) is given in Table 7.3 and the maximum eigen value statistic is
presented in Table 7.4 accompanied by the corresponding 5% and 1% critical
values (see Table 7.2).

Both tests indicate the existence of one cointegrating equation with a high de-
gree of statistical significance.

The results of the cointegration estimation produce the following cointegrat-
ing or long term relationship (being the cointegrating vector from 3) normalized
with respect to pV/S:

A = wPMY(-0.002705 - sPMYU 4+ 0.07201 - pFMY) 4
(0.00055) (0.00604)
w{¥(~0.001948 - sVK + 0.09629 - pU%) +
(0.00294) (0.01536)

IP Jp JP Us
“4(0.00028 - 0. . - :
i ((u‘nuoza) 5t +(0%§§551% % )—F
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7.3.3 Solved empirical cases

Case 1

Corsetti of al. (2004) show that incomplete asset markets and a low price elas-
ticity of {radables can account cuamtitatively for the volatility of real exchange
rates and their negative correlation with ¢ross-country consumption ratios. It
is found that two different patterns of the international transmission of prodie-
tivity improvements generates the observed degree of international risk sharing:
one associated with a strengthening. the other with a deterioration of the terms
of trade and real exchange rate. There is evidence of the effect of technology
shocks to US mamifaciuring. which questions the presumption that terms of
trade movements foster international risk pooling.

Case 2

In Bruneau and De Bandt (2003} SV 412 models and the corresponding inpulse
response functions of monetary and fiscal policy in France. Germany and the
ewro area for the period 19797 — 200077 are estimated and tested. During these
two decades monetary shocks exhibited significant correlation while fiscal shocks
are found to be uncorrelated between France and Germany. At the same tine,
enro area fiscal shocks are largely inpulsed by Germany. However. it is difficult
to conclude that the latter shocks reflect purely idiosyncratic shocks. as they
often reveal differences in the timing of fiscal adjustment.

Casc 3

Peersinan and Straub (2004) provide evidence for the impact of technology.
labor supply. monctary policy and aggregate spending shocks on hours worked
in the euro area. The empirics are derived from an SV AR model consistent with
both sticky prices and real busitess cycle models. Positive responses of hours
to teelmology shocks are observed and technology shocks are found to explain
buginess cyvele fluctuations.

7.3.4 Unsolved exercises

Exercise T.4 Consider three I(1) variables ye. xy. and 2¢. Assume that g and
#p are cointegrated and that &y and 2y are also cointegrated. Does this imply thal
ye and =y are also coinfegraled? Why (not)?

Exercise 7.5 Show that in Exercise 7.1 with cointegration the standard VAR in
differences Ay, = alLYAy 1 +6(L) Az 14 vy, Az = ol LYAy o +d( LA T

ty 1% misspecified,

Excrcise 7.6 Consider a nonstationary time sevies y; ~ I(1) and a noncentral
momend mofriz My = ngi_] Y1y Assume that the (.ofﬂpﬂﬁ{.ﬂi:: of ¥ are
cointegraited, that the subspace of the coinfegrating vectors 1s of ovder one, and
that 95 spanned by a vector of the form (—1l.axo. . ... an) = o Defining a
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-1
(89
solution ér of the problem: min (—1,a9,...,a,)My | . | .i) Show that
[« £ {2 9 .
Oy

this problem is equivalent to performing OLS on the static model y1; = asys +
oo Opne +¢. 11) Verify that the estimator & is a consistent estimator of the
cointegrating vector in which the first component is equal to —1.

Exercise 7.7 Consider a static simultaneous equation model defined as Byy; +
Loz = &, where it is assumed that the disturbance term follows a normal
distribution with mean zero and variance-covariance €. The diagonal elements
of Bq are equal to one. i) Derive the pdf of y:; ii) Verify that it is not possible
to derive the elements of By, Ty, and § as functions of this pdf unambigously.

Exercise 7.8 Consider Case 2 on Gross Domestic Product in Section 5.10.4.
Check whether the point forecasts can be significantly improved by including GDP
of the two or three most important trading partners of the OECD country under
investigation by using a VAR model.

Exercise 7.9 Univariate Long-Run Purchasing Power Parity (PPP). Ezamine
the quarterly data on the US Dollar/UK Pound exchange rate, US and UK inter-
est rates (downloadable from the OECD’s Statistical Compendium hitp://
www.oeed. oryg).

1) Test for a unit root in these three series.

2) Consider the US/UK univariate PPP model (as in Exercise 7.3) and test the
corresponding regression for cointegration.

Exercise 7.10 French GDP, wages, and unemployment. Ezamine the quar-
terly data about French GDP, wage rate, and standardized unemployment rate
(downloadable from the OECD’s Statistical Compendium hittp://www.oecd.org).
1) Test for a unit root in the series.

2) Consider the regression model of French GDP on the wage rate. Test for
cointegration.

3) Consider the regression model of wage rate on the French GDP. Test for
cointegration.

4) Compare the estimation results in 2) and 3) and provide an economic inter-
pretation.

6) Consider also the multivariate relationship among GDP, wages, and unem-
ployment rate. Test for the existence of multivariate cointegration. Interpret
the results.

5) Test for causality in the GDP-wage-unemployment relationship.



Chapter 8

Varying Parameter Models

Two types of varying parameier models will be analyzed. On the one hand. the
specification and estimation of models with regimes determined by observable
variables and regimes determined by unobservable variables and on the other
hand. estimation. testing and forecasting of models with varying volatility. The
former type of models concentrate on the conditional nican and are called regime
switching models while the latter type concentrate on the conditional variance
and are called voletility models.

8.1 Regime switching models

As put forward in Priestley (1988) and Franses and van Dijk (2000). p. 69,
“a natural approach to modeling economic time series with nonlinear models
scems to be to define different sfates of the world or regimes, and to allow for
the possibility that the dynamic behavior of economic variables depends on the
regime that oceurs at anv given point iu time”™. For example. the means and
autocorrelations of returns and squared returns on stock market indexes may
vary during a time pericd, say a week. 50 that we can say that ecach day of
the week constitutes a different reginme.  In this example seasonal effects are
represented by a delerministic regime process in the sense that the regime that
oreurs at any given point in time is known with certainty in advance. This is in
contrast to situations in which the regime process is stochastic. The relevance
for such stochastic regime switching behavior in financial time series has been
stressed by various authors. For example, LeBaron (1992) demonstrates that
the antocorrelations of stock returns are related to (he volatility of these returns:
in particular. sutocorrelations tend to be larger during periods of low volatility
and smaller during periods of high volatility. The periods of low and high
volatility can be interpreted as different regimes. Kriiger and Kugler (1993)
argue that exchange rates might show regime switching belavior, in particular

193
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under a regime of managed floating such as occurred in the 1980s when it was
attempted to stabilize the US dollar exchange rate. Alternatively, the level of
the exchange rate rather than its change may determine the regimes as in the
target zone literature of the Exchange Rate Mechanism (ERM) area.

Nowadays, there is a growing literature about the occurrence of various
regimes generated by a stochastic process. These stochastic regime switching
models differ in the way the regimes evolve over time: they are determined
either by (an) observable variable(s) or by an unobservable stochastic process.
This will be discussed in the following sections.

8.1.1 Specification and estimation of regime switching mod-
els based on observables

The most representative model, which assumes that the regime occurring at
period t is determined by an observable variable q;, is the Threshold Autore-
gressive (TTAR) model (see Tong (1978) and (1990)). The TAR model assumes
that the regime is determined by the value of the threshold variable ¢; relative
to a threshold value ¢. The Self-Ezciting TAR or SET AR model arises as a
special case of the TAR model when ¢, is a lagged value of the time series itself
(or g; = y;—q for any positive integer d).

Example 8.1 An example of a 2-regime SETAR model with d = 1 and an
underlying AR(1) process is:

yu = anteaeny—+e if yp-1Sc
= appt+apy-1t+e if w1 >e,

with e, € WN and constant variance, or alternatively expressed using an indi-
cator function:

ye=(an+anye—1) [1-I(ye-1 > )] +(aoa+aiaye—1) I(ye—1 > €)+&y,

where I(y,—1 > ¢) is an indicator function with I(y,—; >¢) =1if y,_; > ¢ and
I{yr—1 > ¢) = 0if y4—1 < . A more gradual transition between the different
regimes can be obtained by replacing the indicator function I(y;—, > ¢) by a
continuous function G (y;—1:7,¢), which changes smoothly from (regime) 1 to
(regime) 0 as y,—; increases, resulting in a Smooth Transition AR or STAR
model (see Terdsvirta (1994)):!

ye=(ao1+a11ye-1) [1-G (ye—137, €)]+(@oz+a12i-1) G (Yr—1; 7, €)+&¢.

'The logistic function is often chosen as an example of this continuous function G, which
leads to the Logistic STAR or LSTAR model G (y1—1;7,¢) = ﬁm' where the
parameter ¢ can be interpreted as the threshold between the two regimes corresponding to
G (y1—1;7,¢) = 0 and G (y1—1;7.¢) = 1, because the logistic function changes monotonically
from 0 to 1 as yp—1 increases, while G (e;, ¢) = 0.5; the parameter 4 determines the smooth-
ness of the change in the value of the logistic function, and thus the transition from one regime
to the other.
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8.1.2 Specification and estimation of regime switching mod-
els based on unobservables

Disequilibrium models for one market

When only one market is considered a typical model consists of an unobservable
demand. an unobservable supply and an observable transaction equation. Prices
may be exogenous or endogenous. These two types of one-market disequilibrium
models will be considered.

Model I: Brogenous prices Assume the following market model for one
product:

D; = Bixp+aPitun (8.1)
S = Bixo + anP +un (8.2)
@ : =min{D;, S5}, (8.3)

where by assumption ui¢ ~ N (0,03) and ux ~ N (0,03}
Counsider then the probability that the observation @ belongs to the demand
function:

7 1 =P(Dy< 8) = P{Bxu+ o1 P+ uy < Byxo + 2Py + tizg }
= P {‘Hlt — uy < Byxar — B X1e + (02 — o)) P}
.B.’,x.gt—ﬁ';x”+(a2—n]”’(

1 :
= e~ du 8.4
. T (8.4)

with ¢ := /07 + 03 (or 0 1= /o1 + 03 — 2c0v {u1e. Une))-

Now, define the pdfs for a transaction on the demand function and supply
function, respectively:

H(@Q) = 21” ex P{ (Q: — Brxie — G1Pt)2}
f2(Qe) = m;exp {_F" (Q: — Byxat —ﬂ'sz)z} .

with the associated complementary distribution functions:
F Q)= # fé‘: exp {-—ly Dt-ﬁ’lxu-ale)z} dD; (exccss demand)
F(Q:) = 75; th exp{ (St ,GJXR-C.!)P:) }dS’t {excess supply) -

Then, under the hypothems that @; is an element of the demand function,
the conditional pdf of Q. is given by:

D) = IG, 9(Qe.50dSe SR Fa(Q4)
t) = P(D;<5) ff: FIQ I FA{Q)dQy [

h{Q:| Qe =

and under the hypothesis that @; is an element of the supply function. the
conditional pdf of @, is given by:
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_ §,) = J9;906Q0dD: _ f2(Qu)F1(Q0)
B(Qil Qs = 5) = “prml— = (f_*:: 12(Q0F (@173,

Since @; is an element of the demand function with probability 7, and an
element of the supply function with probability 1 — 7;, the unconditional pdf of
Q@ is given by:

R(Q) = h(QQ=D)P(Dy<S)+h(QilQ = Si) P (S: < Dy)
- f g{Q:.sf)dswf 9(De,Q:)dDs.
' Q¢

If Ly is the loglikelihood function based on T observations, then:
LT::ZE;I In by with he:=h (Q:)=/f1 (Q¢) F2 (Q¢)+f2 (Q¢) F1(Qy).

How to maximize? E.g. according to Section A.2.2 in Appendix A, the
Newton (Raphson) iteration step is:

52 (ke
6(k+1) = 6”‘) — (mﬁ}lg:alﬂ) (%%lla___gtm)s

where the estimation of the asymptotic variance-covariance matrix X5 e =
" e [ R EANT
115“&{ [ E (56 H
1

} can be given by the inverted Hessian matrix:
6=0

) or by the estimate of the Crameér-Rao lower bound (1.12).
=8

Elaboration (with independent u;, and uy,) Assume hy, := M’:‘l;"‘?‘

and hy = giﬂ—";ﬂ and from the pdfs f; (Q;) and f5(Q:), fi =

~h3 -h3
Loe—7" and fy := —=e—7" and, correspondingly from the associated com-
;21r ;.;

plementary distribution functions F (@) and F (Q,), Fi, (Q;) : fh 7—e“T du

and th Q;) LL;, '\7-2—#6'1_0{1&
Since Ly := Yo, Inhe = 30y In(fieFae + forFie), we get %Qf = fiehisXye,

G = frehr P, %E“ 7_3:“9"53;1‘ = fuxy and 5‘“‘ = fitP; (similarly for
fgt,Fzg). Then also:

ay := Oy /OB, = [fiehieFar + frefor] X1t
ay = O/ 0By = [farharFre + fuufae] X2
azt := Ohy/ Oy = [freh1tFar + frefor] Pr
ayt = Ohy/ Oy = [farhot Fie + fit for] P,

so that the elements of the score vector satisfy: %5'531 EE 23—1 gt %%1‘- =
1 3 2

T ag aL T
Zt:lah‘ "33‘,' Zt 175',‘ E:f=2t=l Tk
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Madel II: Endogenous prices  Consider now a struetural model for a mar-
ket of one product with endogenous prices:

P, Bxi o P+ ougy (8.5)
S - Blxa Pt ony (8.6}
Qo cmiuf2, 5 (8.7}
AR (L, Se) 4+ Bixar 1o, (8.8)

. . -3 ar 7 ~ 3
where it is assumed that wy, ~ N ((Lo{), wg ~ N ((),J;), and uyy ~ N (0.0%)
s0 that we have three endogenous variables 13,5 1% and 1wo observable en-
dogenonus variables ¢y and By Henee, from the convolntion rule:

EICRND )‘

DS B = Wpgo Hap .
gl 50 P xy) g (et X0} (5)@”.?:-:”-"-:”)

= gluy e oay'x )V +7loe o) " (%.9)

It follows from transaction function (8.7) that:
1. ithe conditional pdf of ¢y and Fi. given that @y is an element of the
dewand function, is given by:
. ; % gled S b X, IS
GuiQe, P %) JQ, Y —
with &, the ‘normalizing factor’ given the integral of pairs of g (. Py %)
wot. (Qp.or Ny PPy < 5). and
2. the conditioual pdf of Q; and Py given that {2y is an element of the supply
function:
e T 0 P X D
g2 {Qe. Py |xy ) = ,IQ, o J]r ~, =
Henee. the unconditional pedf of the {observable) endogenons variables (Q,. £
is given by:”

FUQ Frix) Nog (Qr. Plxe) 1 (1 N ga (Q. P xy)

= [ fj(()f..slf. ,;IXI}(LS: f / _('J’(Dn.(gr,-‘uf JY()(I{),); .
g, J.
The simulraneous loglikelihood function satisbes L = )::_l In f{CQ. 1] %)
or:
max Fop max }_:: VI fLQ Py ) (8.10)

fevsoeen 3y 0,00, 1.3
The M. estimators from the solution of (8.10) are derived in Appendix D

far wncorrelated and correlated structural disturbances.

Ixnate that, i there ave ot her eodogenons viriables o the svstone bestdes £ ol Frobe
yoo then (€ 2| %) becomes:

f(();.f’;.y;lxr}—'/ fj(f?r-_sf,fﬁ.yf}xdd,f_‘:'r—!—[ (f)r\{);..l"r\y,rl)(a)(”)r
[ dide
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8.1.3 Solved empirical case for regime switching models

Regime switching model of cash flow in and out of hedge investment
funds. Hedge funds are ‘skill-based’ asset management firms that, for differ-
ent reasons, do not qualify as mutual funds. While the mutual fund industry is
well regulated and fairly transparent, the hedge fund industry is not. For exam-
ple, reporting of historical returns and other information is not obligatory for
hedge funds. On the other hand, access to hedge funds is typically restricted to
investors with ’sophisticated understanding’ and investing large sums of money.
So-called fund-of-funds pool investments in different hedge funds and allow for
smaller investments to attract a larger group of individual investors.

The data is given in a database, which was presented in the 2003 Econo-
metric Game in Amsterdam (see http://www.vsae.nl/econometricgame/ and
http: //www.ua.ac.be/joseph.plasmans).

The key variables in the database are;: REF - the fund’s ID code; Quarter -
quarter (1=94Q4); CFlows- cash flows (%), (inflow-outflow)/net asset value x
100%; CF1—4 - cash flows, lagged 1...4 quarters; Returns - raw return; B1 —6
- raw return, lagged 1...6 quarters; Rank— cross-sectional ranking between 0
and 1 (0 =best, 1 =worst); RNK1 — 6 - rank, lagged 1...6 quarters; NAV- net
asset value; Age- age of fund (in months); O f fshore - Offshore/Onshore location
dummy (1 = Offshore); Inecfee - incentive fees (%): Mngfee- management fees
(%), FOF— fund of funds dummy (1 =fund of funds); Pcapinv - personal
capital invested dummy; and Leverage- dummy indicating whether the fund
uses leverage. '

Solution In the first part we estimate and test the regime switching behavior
of the cash flows in and out of funds nsing the SET AR equation as in Example
8.1. It is possible to have a higher order AR model in the different regimes.
Assuming that we have a two-regime case, the AR orders might be set to p,
and ps in the upper and lower regimes respectively.

y=ag+anl—1+ .o+ Pult-p +e if e >c;
=g +aYi-1+ -+ PY—p, +Eif Y1 S

In order to define the regimes as net inflows and net outflows we assume
that if cash flows are positive or ¢flows > 0 then cflows is used in the first
equation or if ¢flows < 0 then cflows is in the second equation. The stock
returns are related to the level of volatility of these returns. In particular,
as mentioned before, autocorrelation tends to be higher during periods of low
volatility and lower during periods of higher volatility. Besides, periods of low
and high volatility can be interpreted as distinct regimes. However, we cannot
be certain that a particular regime has occurred at a particular point in time.

Identification of lag orders. We start by specifying a linear AR(p) model for
ye and assume that the order p is based on information criterion based on AIC
(see (5.31)) and specified for this regime switching model as:

AIC(pl,p2) = Ty Iné3 + ToIn 62 + 2(py + 1) + 2(p2 + 1).
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Running different 48 specilications in various regimes the corresponding
information criteria are obtained for significant coetlicients of AR models (see
Table 8.1).

Table 3.1 AIC(PL.P2)

ATC(1.1) = —26080.6 AIC{2.3) = - 26093
ATC(1,2) = —26000  AJC{2.4) = —26093
ATC(L.3) = —26090  ATC{3. 1) = -26085.7
AIC(L A} = —26000  ATC(3.2) = —26005.1
AIC(2.1) = —26083.6  AIC(3.3) = —26095.1
AIC(2.2) = 26093 AIC(3.4) = 26095.1

The AIC eriterion 1inust be minimized over choices of AR, Since the lowest
ATIC value is oblained for the several AR(3) combinatious and we look for a
parsitonions model. the (AR{3), AR(2)) combination is selected:

Bo= 018038 T 0300890y L + 00205701y, Ly 4 0.0124365 "y if gy > 0,
wo= =015 LG S L0161 70— + 001778y, . il <0

8.2 Volatility modeling

Until the heginning of the cighties the modeling of macroecononiic and finan-
cial time series was based principally on time-invariant conditional expectations.
More specifically, variances and covariances were usually assuned to be time-
invariant. Even highly volatile processes as the pricing of options were modeled
under time-invariancy of the {colvarianees (sce e.g. Black and Scholes (1973)].
It is. however. generally known that highly frequent data as e.g. asset returns
show. not only changing volatility. i.c. a time-varving conditional variance {or a
variance which is conditional on time ¢ information). but also volatility cluster-
ing. Volatility clustering, or in other words conditional heteroskedasticity. means
that (positive and/or negative) shocks in asset returns succeed cach other. A
carly as in 1963 Mandelbrot described this phenomenon as: =... Large changes
tend o be foHo-u'(’d by large changes, and small chonges tend Lo be followed by
small changes . ..". This means that e.g. if the volatility of an asset price is high
today. it will aIS() bu Ligh tomorrow. A distinetion can be made bhetween periods
of high volatility anc periods where this volatility is generally low. In reality the
volatility of Lighly frequent asset retirns is certainly not time-invariaut . Two

I Npalecting (he existence of vieving conditiona] variances and covarianees af ereor termes
Teads 10 under- or everestintation of the size of confidence Infervals when tine series fare-
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Figure 8.1: Daily returns of ING assets from 01/04/1994 till 31/12/2004

different examples of volatility clustering are observed in the time series of two
Dutch asset returns, i.e. the daily ING returns and the daily Philips returns
between 1/4/1994 and 31/12/2004 (see Figures 8.1 and 8.2). Note, however, by
visual inspection, the occurrence of some outliers in both time series of asset
returns.

Through the increased importance of uncertainty and risk new stochastic
time series models have been developed since the beginning of the eighties which
take account of time-varying (co)variances. These models offer the possibility
to make forecasts w.r.t. the future volatility. Nevertheless the efficient market
hypothesis, a forecast of volatility is sometimes possible and may be important
for fast acting asset allocation, calculating the Value at Risk (VaR) of a new
investment, pricing financial derivatives (e.g. pricing an option for hedging the
portfolio risk,! etc...). Forecasts conditional on recent information are more
efficient than forecasts which do not use this information. The class of au-
toregressive conditional heteroskedastic (ARC H) models, introduced by Engle
(1982), is based on this assumption. In this kind of models it is assumed that
the variance depends on the values of the process in the past (AR). Various
other formulations to model conditional heteroskedasticity have been proposed
and used in the literature, the principal being the class of generalized autoregres-
stve conditional heteroskedasticity (GARCH) models. Notice that, although it
is sometimes possible to predict the size of volatility, the sign of volatility is

casts are made. Hence, the risk to which the (return) variables are subject in the future is
misinterpreted.

"For example, when hedging the downward risk of a portfolio, a put option could be
bought at the value of the underlying portfolio.
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Figure 8.2: Daily returus of Philips assets from 0L/04/1990 1111 3171272001
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usually very diffieult to prediet due 1o asynnmetric effects.” Moreover, although

conventionally in the Markowitz tradition. where an investor has to make a
tracle-off hetween expected asset veturns and carrent volatility, it might also be
that current volarility is iimnmediately of mfuence on the enrrent asset retnrns®
Both nnivariate and multivariate types of (GYARCH models will e dis
eussed in the following subscctions.
The pre-GARCH literature on changing volatility discussed three concepts:

Moving ov volling variances of asset refurns, ov if v is denoted as the
{logarithunic) asset return at period £ then the moving variance over a
sib-sawmple which moves lorward through time {as an approxdimation to
the population moving variance a'fJ can be written as s7 - % :f | r"f__r
which les the particular leai ares that all observations frot 0 4 1o & are
given equal weight, that all observations before # T (and after ) arce
siven no weight. and thar the cholee of T is left to the investor (see e.g.

Officer (1973) who uses the rolling standard deviation):

Trme spans (or ranges). c.g. the difference hetsween the high aud low spot
prices on a given day to estimate volatility for that day' {see Garman
and Klass (1980} and Parkinson (1980)). where, as in the above case,

e Nolsan s (10 Toaponentianl ARCHT o FCARCH mdel, whoeve positive shoeks
and newative shocks have a clitferenr incpaet.
A mwdel witle =uele a festnee will T called o " GARCH in-MMean” or AR -3 inadel

INGle it s ]Jl1|lli:'il|l\' aseunned Teere that volatility is conslaul over sorne interval nf

e
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volatility estimates are extracted from asset returns data before specifying
a parametric time-series model for volatility;

3. Exponential smoothing, which may be written for a known adjustment
parameter \, satisfying 0 < A < 1, as: 07 = Xop_, + (1 = A\rf, =
(LE=) D XA ;» Which is a moving variance model with declining
weights, no truncation point, and fixed A; this model predicts that all
future variances will be the same as the current variance (moving-average

character)®.

Moreover, as indicated by Campbell et al. (1997), p. 481, Merton (1980)
observed that, if an asset price follows a diffusion with constant volatility (as
e.g. a geometric Brownian motion), the volatility can be estimated arbitrarily
accurately with an arbitrarily short sample period if asset prices are measured
sufficiently frequently. Nelson (1992) has shown that a similar argument can be
made even when the volatility changes through time, provided that the condi-
tional distribution of asset returns is not too fat-tailed and that the volatility
changes are sufficiently gradual. Notice, however, that it is always more effi-
cient to directly model the time-varying character of volatility and to estimate
it together with the equation for asset returns,

In general, a distinction can be made between discrete-time volatility as
discussed above and continuous-time volatility; the latter concept of volatility
involves three types of volatility (see e.g. Anderson et al. (2002)): notional
volatility corresponding to ex-post sample return volatility (variability) over a
fixed time interval, ex-ante ewpected volatility over a fixed time interval, and in-
stantaneous volatility corresponding to the strength of the volatility process at
a point in time. In this book we concentrate on discrete-time volatility, where
also three types can be distinguished: historical volatility measured by the con-
ditional variance (which in Finance can e.g. be estimated by the squared (daily)
returns) or the conditional standard deviation, realized volatility because it was
observed (by Anderson and Bollerslev (1998)) that squared daily returns pro-
vide a poor approximation of actual daily volatility so that summing squared
intraday returns yields a better measure for daily volatility, and implied volatil-
ity: i.e. the implied volatitlity in an option price, which is the inverse function
of the price (value) of an option-pricing contract according to Black-Scholes,
Hull and White (1987), among others. Regarding the latter concept, it is clear
that the value of an option is determined in a strong measure by the volatility
of the underlying asset.

In this section, two basic models will be analyzed: univariate ARCH and
GARCH models, and multivariate ARCH and GARCH models, with several
variations for nonstationarity, asymmetry, among others.

"Recall that the SES model is in fact an ARIMA(D, 1,1) model.
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8.2.1 Univariate ARC'H models

Introductory remarks

As said before the (conditional) variances need not be constant over tine: in
many cases. certainly in Finance, periods of low and high volatility succeed
each other over time.” Before analyzing various univariate ARCH models. some
introductory remarks will be given.

Asstine a discrete-time stochastic process {g,.+ € Z} with conditional mo-
ments Ey_y (g¢) = 0 and var,_, (e:) = B¢y {€f) = gt = 1,2.3. ... respec-
tively. The conditional variance depends in a nontrivial way ou past observa-
tions. Lo, o2 = Wler 1.6 »...:%e 1. b). where V() is & nontrivial function
and x;_; a vector of lagged regressors {e.g. lags of conditional variances)'.

In most applications g; is the innovation in the mean tor an other stochiastic
process of logarithmic asset retwrns, say 7. where r, = ((z¢_,.a) + £ with
({z;_|.a) a function of z; yaud the parameter vector a (z; | is in the infor-
mmation set at time ¢ — 1), If the asset returns are subject to autocorrelation,
these can be modeled by means of & antocorrelation parameters, In this case
the function ({2, .;.a) models an AR{k) process. The process for the asset
returns together with the process for the conditional variances ol these satisfy
then: r, = ({z;_1.a) = ¢t + Zf, p,Fr-y + 2p With £ a noise process with zero
mean and time-varying conditional variance o} = W(g_ogg-n.. .1 X1 b

In fact. appropriate methods of econometric inference estunate and test the
asset returns process and the volatility process simultancously. Various ways to
model the innovation process {£:.1 € Z} are discussed in the next (subjsections.

The ARC I class of models

These models nse historical data to determine the weighting and allow for
the possibility of richer information sets. In particular. the importance of
ARCII models is derived from the difference between conditional and uncon-
ditional variances. While the wiconditional variauces are assumed to be time-
independent, the conditional variaices are assumed to depend on past events
which are contained in the information set at time # — 1. As Engle (1982) pro-
poses the conditional variance is assunmieed to depend linearly on the quadratic
innovations from the past and ou a stochastic process. £, := ayr,. where !
N{0.1). meaning that all are identically and independently distributed as a
standard normal distribution. The resulting ARCT (¢) model satisfies:
ol=w+ Il e, =Wt a(L)g? [ withw > 0and o, 20.0=1.... q.

1=l

T vnlatiline Is constant over time, we often have white noise provesses (i also thee data
aree mutadly idependent]y distributed ).
Wy AREH models xp 1 3% cinpiy, sueh that e comditional variaones v b writtew s o

linear funetion ol past guadratic innovations.
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where L is the lag operator, i.e. L'zy = z;_; and a(L) the corresponding lag
polynomial of order ¢.'!

The ARCH (q) process is stationary if the sum of the parameters of the
autoregressive part is smaller than one, ie. if 3! , a; < 1. The (constant)
unconditional variance equals then:

- (I ' 4
ol=var{e,}=E [E,_,(})] =E‘{u.*+z:1 aie;_J=w+al Y7 cv,-:—I E: =
1= - (L8

i.e. the shock dies out in g periods (if the shock has ‘to live’ long, ¢ is very high).

Note that the OLS regression with ARCH errors is still valid. but more
efficient nonlinear (ML) estimators exist.

Finally, how do we test for ARC'H effects?

ARCH effects are tested by considering auxiliary regressions of the squared
OLS residuals &} upon & _,,27_,,... ,E‘f_q and a constant:

=2 - ~ =2 s =2 - =2
& =ag+ a1,y +G2E;_o+ ... + Qg€ _g (8.11)

and the LM test statistic £, = TR* ¥ x2 should be computed, with R? the
multiple determination coefficient of the regression in (8.11), to test the null of
no ARCH effects Hy. oy = @z = ..., = 0 (thus rejecting the null if R? is too
high).

Parametric ARC'H models were designed to parsimoniously model the ex-
pected volatility as an explicit function of discretely observed returns. Also
nonparametric methods, principally regarding the assummed continuity of prices
and volatility processes are studied for ARCH effects by Anderson et al. (2002).

8.2.2 The symmetric GARCH class of models

Definition 8.1 Empirical applications of the ARCH (q) model often find a high
value for g, i.e. one needs a large number of lagged innovations to describe the
innovation process. Hence, a more flevible lag structure has been proposed by
Bollersiev (1986), where an autoregressive term has been added. The resulting
generalized ARCH or GARCH (p.q) model satisfies for the conditional vari-
anees

o} =w+ E?:] 5;“73—; + il = w+B(L)o}_; + a(L)e}_,

withw > 0,0; 20,i=1,...,q and 8, 20,j=1,...,p.

YA variant of the ARCH(1) model (the above model with ¢ = 1) is the model (see
Gouriéroux (1997), pp. 29-32): rn = g + pre—y + e, Vi ol < 1, E[e|Si-1] = 0,
e? = g4 ag?_; + ue. For this model, we find from the law of iterated expectations that
E[e| S _n] = 0,¥h > 0 (since the information set J¢—p, is a subset of the information set
S¢—1 and cannot contain more information), cov [(et,80%)| Dt —n] = 0 (so that there is no con-

. . - - —_ 'h .
ditional covariance between current and future innovations), var(e:| Sy_p) = cﬁ +a"‘6f_h.

var(er) = ==, and var(st| S¢—y) — var(s,) = a” [e'f_,, - E{ef__,,)].

-a
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Example 8.2 The most commonly used model in the class of GARCH({p,q)
models is the simple GARCH (1,1) model for the asset returns ry, where the
conditional varience of vy is assumed to be a weighted average of three compo-
nents: (i) a constant variance w, the past forecast o?_,, and the past (squared)
news £3_,. Hence, the news impact curve of the GARCH(1,1) model is perfectly
symmetric.

The conditional variance in this simple GARCH{1,1) model is:

or=w+po?_+ael_ =w+{atf)ot ) talel -0t )=wH{atBoi_ tooi_ (7
1), where the term (c7_, — 0?_;) has (conditional) mean zero and can be inter-
preted as the shock to volatility. The parameter « measures the extent to which

a current volatility shock feeds through into next period’s volatility, while (a+8)
measures the rate at which this effect dies out over time {generally very slowly).
Notice that the volatility shock is finally rewritten as ag?_(nf_; — 1), i.e. as a
demeaned x2- distributed random variable multiplied by the past volatility.

Unconditional variance

Taking account of the properties of the unconditional expectation operator, the
unconditional expectation of the conditional variance in a GARCH (p, ¢) model
satisfies:
E (0?)=E {var:_, (e)}=Er-1 {Et_l(5?)}=w+a(L)E(sf_l)+,6(L)E(o‘f_1)4=b
[1-a(L)-B(L)] o2=w.
Hence, the unconditional variance of the GARCH{p, ¢) process is given by:
ol =E(e}) = w/(l -8 - $°% | @), which is independent of time.
From this time-independent unconditional variance expression it is immedi-
ately clear that the GARCH (p, ¢) model is stationary if 357 a;+3°7_, 8; < 1.

A GARCH process rewritten as an ARCH(co) process
The very popular GARCH(1.1)} model can be rewritten as:

o} = wtog | +Poi =w+ ag? 4+ B(wtasl ,+Boiy) = ..

w4+ B+ B2 +.. ) +alel | + B8l + 8% 5+ ..
= p+rayR, A, i B<1,

which is an ARC H{oo) model with declining weights. Hence, the GARCH(1,1)
process is a very parsimonious alternative to an higher order ARC H model.

In general, the conditional variance of a GARCH(p, q) model can be writ-
ten as an ARCH(oco) model if the sum of the coefiicients belonging to the

lagged conditional variances is smaller than one (which is always the case if the
GARCH (p, ) model is stationary: see also Bollerslev (1996)):

-1 )
iz (1-50_18) +XZibiel
Si=oi+ Y5 Bibinj zl:l,‘..,q;n:=mz'n{p,i—1}
51:2;,::15_1‘51?—1 i=qg+1,...
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GARCH models rewritten as ARM A models

The simple GARCH (1, 1) model can also be written in terms of its implications
for squared innovations &7

& =w+ (a+ B)el_, + (67 — af) — B(e?_, — 07_,), which makes clear that
this GARCH(1,1) model can be rewritten as an ARM A(1,1) model for the
squared innovations £7.'?

By appropriate 1nduct10n, it can be verified that the general GARCH (p, q)
model can be rewritten as an ARM A(p, ¢) model in the quadratic innovations:
&f = w+ 3L (o +B)ef_; — X5 Bjvi—; +vr, where a; == 0 for i > q,5; :=0

for ¢ > p, m := maz {p,q}, v = & — o7 = (i} — 1)o?, n, ¥ D(0,1) with

D a probability distribution function to be specified: in GARCH modeling

usually either a normal distribution or a Student ¢-distribution is chosen, such

that n, * N(0,1) or 1, ~ t, where v is the number of degrees of freedom

in the t-distribution. This ARM A(m, p) process for the quadratic innovations
can be used to determine the optimal values of p and ¢ in the GARCH (p, q)
process. After rewriting the GARC'H (p, ) process into an ARM A(p. q) process
traditional Box-Jenkins analysis can be used to determine m, p and possibly ¢
with m > p.!3

Fat tails

The (unconditional) kurtosis should be equal to 3 when the error terms g, :=

oy, satisfy 7, “N (0,1). GARCH, however, generally leads to a kurtosis larger
than 3, because:

E(}) _E[Bi(e)] _E[oiBii(ni)] _E[o!E@m})] _E(e})E®])

B (B [E})]° [E(E)]” [E(sf)i
=3E(ofJ[E(n?)] 3 Eed) _JE([Ei1(d)]") _g[EE (e2)]* +var(Ei_1(c2))
[EE)] [E(e iy [E(e?)] (B(=3)]®
=3[E(£f)] +var(E;_i(g?)) 3+“var(E', 1(g3)) _aiq var(cr'f_']h (8.12)
[B(e2)) [B(e2) [E())?

where the second part of the (last) right-hand side of equality (8.12) is called the
excess kurtosis, which is a measure of the fat-tailed characteristic of a GARCH
provess.

¥ Notice, however. that a standard ARMA(1,1) model has homoscedastic shocks. while
he r- the shocks (g7 — o7) are heteroscedastic.

1% An alternative for this is to estimate the GARCH (p, q) model for various combinations
of p and g by a maximum likelihood method. Using an appropriate selection criterion the
optimal orders can be determined then. This procedure will be followed in this book.
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Volatility forecasts

Consider the simple GARC H{1,1) model for asset returns again:

(1—a—Muw(l—a~-B)"'+ Boi_, +asi_,
= o2+ B} —oB)+alel, —od),

2 _ 2 2
o =w+oaeg;_ + fBoy_,

where, under stationary (o + 8 < 1), the unconditional variance satisfies from
above: 02 = w(l —a — B8)~' and the conditional variances and quadratic in-
novations are expressed as deviations from their ‘long-term mean’. Rewriting
the conditional variances for future periods t + s: 0%, = 02 + a(ef _ —
o) + B(o2,,_, — o2), the best guess as to what &? will be in the future is
o2, Hence, under a stationary volatility model we get by substitution: ol =
o2 + (o + B)(o2, ,_, — o2), which can be repeated back to &, which is observed.
More precisely, using the law of iterated expectations, the conditional expec-
tation s periods ahead is then given by recursive substitution as E, (c2,.,) =
62 + (o + By~ o}, — 02), or the future conditional variance depends on the
deviation of the conditional variance at period ¢t + 1 from the unconditional
variance (being equal to the long term mean). In other words, the multiperiod
volatility forecast reverés to its unconditional mean at rate (o + 5): if the fore-
cast horizon increases, the current information becomes less important and the
forecast converges to the unconditional variance o7,, — o7 if s — oo with a
decay rate (o + 8)."' Hence, the stationary GARCH(1,1) model will mean
revert to the unconditional variance o? = H_:—ﬁ and the volatility may be

temporarily above or below the long run mean as shown in figure 8.3. '° Notice
that these forecasts also represent the ‘term structure of the conditional vari-
ance’ in the (stationary) GARCH(1,1) model {volatility forecasts with varying
forecast horizons).

Notice also that, instead of convergence to the constant unconditional mean
o2, the component mode! allows mean reversion to a varying variance level de-
fined by g, :

or=qtalel_; — q-1)+B(ci_y — g-1); ge=w+p(g-1 — w)+¢(5_f—1 — i)
Here, o7 is still the volatility while g, takes the place of o2, the long run

volatility. The transitory component is crf — g, which will converge to zero with

e lis relation between single-period and multiperiod forecasts is (he same as inoa linear
ARMA(1, 1) model with antoregressive parameter (@ + 5).

P he long-run conditional vavianee o2 is estimated for the Philips and ING asset retarns
in example 8.6. under an underlying normal and Stulem t-distribution respectively, as LT9
anl G.08 respectively for the Philips ceturns. and as 349 and 2.67 for the ING returns. Notice
alse that it s frequent ly found that estinted residuals from GARCH madels still show exeess
kurtosis. even when one allows for conditional Studoent. $-distributed innovations. respectively.
This festure may often be due tu the consideration of some extreme return chsoervations as
additive outliers. Negleeting these extrene observations, however, leals Lo blased parameter
estimations and. lenee, to biased forocasts. Franses and Ghijsels {1999) domwonstrated that
assel return models corrected for strong additive outliers generally yield snbstantial (lorecast}
improvement over GARCH models with normally and Student t-distributed innovations for
the original asset returns.
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Figure 8.3: Term structure of volatility for GARCH(1,1)

Forecast period

a3

powers of (a + ). The long run component g, will converge to w with powers
of p (0 < p < 1, usually being just smaller than 1; very slow convergence).

Forecasting in higher order GARCH models can be analyzed in a similar
fashion (see Appendix E).

Estimating and testing a GARCH process

For the econometric estimation and testing of the unknown parameters in the
GARCH (p,q) model, historical sample information is used to determine the
weights for such a volatility model. Intuitively, as a general rule, choose these
weights so that the conditional variance is big whenever the squared returns
are big and the conditional variance is small when returns are near zero. In
practice. maximum likelihood (ML) estimation procedure for various underlying
probability distributions of the returns (normal, Student, Laplace) is used.

i) Volatility clustering based on normality The appropriate test for these
returns (r, =: y¢) is provided by the familiar Jarque-Bera (JB) test statistic:

JBi= T (%- = L%“) ~ Y} , where the estimates for the skewness, ¢, and

5 x )3 T _and
the kurtosis, &, are defined as £ := %Z;'E‘E%Q‘)—aud R = :}:Z-E"gi, re-

spectively. If the model is good, then the standardized asset residual returns
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&, /6 will no longer have autocorrelation in the squares,'® which can directly be
checked by the corresponding Ljung-Box statistic (see (5.33)). where the esti-
mated squared autocorrelations are autocorrelations among the squared resid-
nals now.!” A similar test can be designed on the validity of the AR part by
testing ARCH(q) = GARCHI(0. ¢) under the null against GARCH (p. q).

If the conditional normality assumption for the asset returns is accepted by
the above JB statistic, then the loglikelihood function for one observation t for
the modet y, = &', + =4 is given by:

In ¢ (8) = —1/2In(27) — 1/2In (07) — 1/2e}07"
with sample loglikelihood function:
L(0)=X" It (@)=—1/2T7_ [n(2r) +In(0?) + o))

The ML estimator results from the first order conditions of the maximization
of this loglikelihood:

1 T 0'} 1 L &F 50‘ L e; 1 do
oL(0)/00=-4 - LG +4 T A TE=1 % [ - ];;7; 0
In the above derivations 8 is defined as: 8:=( 6 w o B )V =1{8.%7Y

where - is the vector of the unknown GARCH parameters; in this formula the
gradient of the loglikelihood function with respect to the GARCH parameters
can be 9valua,ted follows
dlnf’ _1{(1 da e“ -1 1
== B () 9 (5 1) =4 () oo
Note that, since E{Ur = (1, the matrix of second order partial delwatwes
of the logllkellhood function SdtlSﬁeb. '
ool 13T (S-1) 2% -1x, (25 1) o %
where the part dependmg on the GARCH parameters can be evaluated as:

e 1 /e g 1 Oies fot)—
Bvee 3Vt | T ey | T3 -

r'
'

il 155 (5.

N otiee that, if there is volatility elustering in the asset returns, then there will be anto-
corrclation in the squares of these asset returns,

LI he nnbl is rejected. then nonlinear dependence, such as GARCH, may he present.
According to Dichold snd Lopez {1995), pp. 17-1# the Ljung-Box test statistic for tesiing
the existence of aulocorrelation of Ilm residnal squares s adinsted for GARCH innovations
as follows: @) = T{T +2) E -1 (T S FTr: D r:f;)pr‘z‘ which is asvimptoiically distribuated as
X;. In this test statistic 4,2 (3} is the estimated antocovarianee of rZoat lag 7, &% the squared
uncewditional varianee of ry.oand p the sample antocorrelalion at lag §. 1 the test statistic is
not adjusted, it is (uneh) larger mul one will snspeet e exisbence of serial correladion wch
quicker than nevessary,
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Under general regularity conditions the ML estimator is consistent, asymp-
totically efficient (Cramer-Rao lower bound) and asymptotically normally dis-
tributed. Suppose that the assumption of conditional normality is weakened
only to E {e| It} =0, B {(e}/o})| It} =1, E{(c}/o})| It} = K. where & is a fi-
nite value and where the conditional variance is as defined earlier. Now the (con-
ditionally) normal loglikelihood function is inappropriate, but the ML estimator
may still be consistent! It has been shown by White (1982) that the pseudo-MLE
(or quasi-MLE or QML estimator), obtained by maximizing the same loglikeli-
hood function as above, produces a consistent estimate, despite the misspecifi-
cation, since the first order conditions of ML are still valid. Only the asymptotic
covariance matrices for the parameter estimators must be adjusted, however (see
Gouriéroux et al. (1984)). They demonbstrated that the QML estimators are
consistent and asymptotically normal with asymptotic variance-covariance ma-

trix: asvar(vT (0 — 0)=J-'IJ-!, where J := lim { [—E (z,f;—,i%)] [G:é} and

1= Tli_J.]g;D {-EB(%4L) |g_s } and L is the used but inappropriate conditionally
normal loglikelihood function. When the true conditional distribution is nor-
mal, I = J. Notice, however, that the QML estimator can be (asymptotically)
inefficient (e.g. in the presence of asymmetries).

How to test for GARCH? The occurrence of GARCH effects is tested in a
similar way as for ARCH effects. The LM test statistic for ARC H(q) against
GARCH (p,q), €1 = TR* = xZ from the auxiliary regression (8.11), can be
used for testing the GARCH effects. There is, unfortunately, an indeterminacy
in this test procedure. The test for ARCH (q) against GARCH (p, q) is exactly
the same as that for ARCH(p) against ARCH(p + q). For carrying out this
test, one can use as starting values a set of estimates that includes 8 = 0 and
any consistent estimators for the nonGARCH parameter § and for the ARCH
parameter . Then the T'R? for the regression at the initial iteration provides
the test statistic.

Example 8.3 An empirical exzample on inflation

Bollerslev (1986) reports the results of a study of the implicit price deflator
for GNP made by Engle and Kraft (1983) using an ARCH(8) model and his
extension of it based on a GARCH(1,1) model. Table 8.2 reports three sets of
estimates for the model: my = B, + B1m—1 + Bomi—2 + Bame—3 + ByTi—1 + &
where m; := 1001n (P;/P;_;). The data used in the regressions are quarterly
observations on the implicit price deflator for GNP from 194877 to 19831V,

The first set of results is obtained by OLS. The OLS residuals give no ev-
idence of autocorrelation up to lag 10, but the squares of the residuals show
significant autocorrelations at lags 1,3,7,9, and 10. The LM test statistics for
ARCH(1), ARCH(4), and ARCH(8) are all highly significant.

The declining linear lag model specified by Engle and Kraft (1983) is shown
second. Note that there is a linear restriction in the model; the eight terms
in the ARCH part of the model are actually functions of a single parameter.
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The values decline linearly from 0.179 to 0.022. The normalized residuals ;/5;
from the ARCH(8) model show, again, no evidence of autocorrelation, nor do
their squares. The linear restriction of the linear lag model on the unrestricted
ARCH(8) model appears not to be significant; the x? value is 8.87, whereas
x2(0.05) = 14.01. The ARCH(8) model therefore appears to have accounted
adequately for the lagged effects in the conditional variance. But the LM test
statistic for the inclusion of oZ_; in the conditional variance is 4.57, which is
significant at the 5 percent level.

Table 8.2: An example on inflation

B, 81 B2 B B,
QLS 0.240 0.552 0.177 0.232 -0.209
(0.080) (0.083) (0.089) (0.090) (0.080)
o? = 0.282(0.034)
ARCH(8) 0138 0423 0222 0377  0.175
(0.059) (0.081) (0.108) (0.078) (0.104)

2 _ 8 0-i
oy = (((}]{(]}?% + (%%958) 2i=1 56 Cii
GARCH(1,1} 0.151 0.433 0.229 0.349 0.162
(0.060) (0.081) (0.110) (0.077) (0.104)

2 = 0.007 + 0.135¢7_| + 0.82907_,
(CLous)  {0.070) {1118}

Source: This example is considered 1o Greene (2000}, pp.809-810.

Therefore, the third set of estimmates is on the GARCH(1, 1) model. The
normalized residuals and their squares once again appear to be nonautocorre-
lated to lags up to 10 periods. The GARCH(1,1) specification appears to be
adequate.

Plots of the actual inflation rate and asymptotic confidence intervals for the
one-step (ahead) forecast errors are given in Bollerslev’s (1986) paper for the
predictions of the model estimated by OLS and by the GARCH {1,1} model.
The clear pattern is that in periods of very volatile inflation (the later 19405 and
early to mid 1950s), the simple OLS regression is a visibly better predictor. The
effect is reversed in the more stable period of the late 1950s and early 1970s.

ii} Case of a conditional Student ¢-distribution If the JB statistic rejects
the normality assumption, a good choice of the underlying returns distribution
might be the Student ¢-distribution. The Student t-distribution roughly corre-
sponds to the normal distribution, except that the kurtosis is larger than that
of the normal distribution. Hence, fat-tailed empirical distributions are often
well described by this distribution.!®

IS Notice thal the Student t-distribution has a higher kurtosis than the normal distribu-
Lion. berause the kurtosis of a conditional Student t-distribution with v degrees of freedom is
equal to 3{v — 2}/{v — 4). which is larger than 3 {heing the knrtosis of the underlying condi-
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Consider the following model for the mean equation and suppose that the
innovations follow now a conditional Student ¢-distribution with a conditional
variance equal to o?:

e=C(2-1:0) +er =p+e

where the conditional pdf for the innovations is f, (£ 3¢—1) which is given by:

= 9 oy —1/% —n _y\—(v+1)/2
fo (@] S)=T (w4+1)/2T (/) 72 (@-2)03) " (14e07? @) )
where v is the number of the degrees of freedom and T is the so called I-function
defined as:

I(y) := [5° 2¥~'e~*dz,[(1/2) = /7, T(1) = 1, and T(n + 1) = nl(n).

The Student ¢-distribution is symmetric around zero and the second and
fourth (conditional) moments are given by:

UGT{EgI%f__]} = 0’?. v >2
{E?l%g_l}=3(U—2)('l?-‘4)_’]0’#‘ v>4

When v = 1, the density has the fattest tails with no expectation and when
v — 00, the standard normal density is obtained.

The logarithmic likelihood function to be maximized for ML estimators of
an arbitrary GARCH (p, q¢) model is:

e (6) = Y, In fy (8 Se-1) = h(v) —1/2%  Ino?

— DS In (1 + €20, % (v — 2,
where h(v) := Tl [[ (22)] - TIn[['(3)] = LInm — Lin(v - 2).

This function can also be maximized with restrictions on the parameters.
Note however that in addition to the three parameters in the GARCH(1, 1)
model the vector @, a fourth parameter, i.e. the degrees of freedom parameter
v, is also estimated.

iii) Case of a conditional Laplace distribution. The Laplace or double
exponential distribution can also be used to model the conditional distribu-
tion of the innovations. Let u, be a random variable that follows the Laplace
distribution, its density is then given by: frapiace = 3 exp(— [u|)

The expectation of u; is zero, the variance equals 2 and the kurtosis coeffi-

cient equals 6. The innovation has pdf: &, < Fraptace (;ﬁ';) ;}:;with expectation

zero and variance 2074°. Restricting v = 1/v/2 suffices to get a variance of o?
for ;. The loglikelihood function associated with the Laplace pdf then reads

as:
T .
lnf(ﬂ)=—§ln2—%23=llnaf—\/§z?=lg. (8.13)
t

tional normal distribution) for v > 4. This property makes the Student f-distribution highly
attractive for fat-tailed asset returns, as is often occurring in practice. Only if this number of
the degrees of freedom increases indefinitely, both probability distributions will coincide.
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Possible alternative conditional distributions of the asset returns are: the
generalized error distribution and the generalized Student t-distribution (see
Sections E.3 and E.4 in Appendix E).

Three examples:
Example 8.4 If 7, #d N(0,1), the ML method may be used to estimate the
unknoum paremeters in the two equations of an ARMA-GARCH model. Deluails
of this model are given in Bollerslev (1986) and Bera and Higgins (1993). Given
appropriate choices for the starting values, the number of iterations can usually
be kept at e moderate level.

For an AR(D)-GARCH(1,1) model for the logarithmic weekly returns of the
Dow-Jones index for the period 1980'-1994%° the following estimation results
based on the standard normal distribution of 5, can be obtained.!”

gy = - = 71,0 5 — L. . & . 52
b= OB = 6 and o= Q00+ DIGIEL L+ T2

where estimated standard errors are given between parentheses and & + ﬁ 1=
0.891 < 1.

Example 8.5 Estimating by ML a normal GARCH (1, 1) for weekly US Trea-
sury Bills on three months for the period 1962-1393:

&y =y — 0.000803 = 7,84, with &, = 0.0000116 + 0.126 £, | + 0.864 a‘rf_l
(9.00047) (0.00000196)  (0.0118) (0.0122)

with estimated standard errors between brackets.

The JB statistic on the assumed normality of the residuals ameounts 646.8022
which is (much) higher than its 1 per cent critical x? value with 2 degrees
of freedom. The standardized residuals in the estimated conditional variance
equation show the following estimated autocorrelation coeflicients up to order
fifteen :

(-027 -.013 -.047 -.032 .004 .000 -.009.014-.010-.033-.012 .011 -.002 -.034 -.023),
with corresponding LB statistic 12.6213, which is less than the 5% critical x35-
value, so that the null hypothesis of no residual autocorrelation is not rejected.

Example 8.8 In this example, we estimate and test the simple GARCH (1.1)
model for asset returns as in Exemple 8.2, applied on spot prices of the Dutch
Philips and ING Group stocks.

198ep Franses (1998) who considers the 770 vonscentive logarithmic returns on the Dow-
Jones index. from week 1 in 1980 to weeck 39 in 1994, These returns concern the end-of-the-
week returns. where a woek is assumed to un from Thursday to Wednesday. Observation 408
corresponds to the week connnencing Monday, October 19, 1987. Around ihal su-ealled Black
Manday. the returns on the Dow-Jones index decreased by abont 17%.. Immediately after that
observation. several data points that are lacge in ahsolute value can be found, Additionally,
in ether parts of the sample, we can observe “bubbles’, i.e. clusters of obsorvations with Jarge
variances. As mentioned before this phenomenon is called volatility clustering or. otherwise,
conditional heteroskedasticity,
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Consider, first, the 1010 observations on the Philips asset returns for the
period 01/04/1994 — 30/12/1997, as pictured in Figure 8.2. Some stylized facts
of this time series are summarized in Table 8.3 with the figures between brack-

ets being the p-values or excess probability values of the corresponding test
statistics.?"

Table 8.3: Philips returns

Sample mean:0.1276 Sample standard deviation: 2.0630

Sample skewness: -0.1385 Sample kurtosis:6.7509

LB-statistic of returns, based on 5 sample autocorrelations: 11.2081 (0.0474)
LB-statistic of squared returns based on 5 autocorrelations: 76.9610 (0.0000)
JB-test statistic on the (assumed) normality of asset returns: 583.3092 (0.0000)

From the summary LB and JB test statistics it follows that:

1. the Philips asset returns are subject to (somewhat slight) autocorrelation
at the 95 per cent confidence level, but that the squared asset returns
show strong autocorrelation, so that conditional heteroskedasticity seems
to be present in the Philips asset returns,

2. the sample kurtosis is higher than that of the normal distribution leading
to a rejection of the null hypothesis that the sample Philips asset returns
are normally distributed.

Similarly, for the (nonindustrial) Dutch ING Group, some stylized facts on
the asset returns over the same sample period are presented in Table 8.4.

Table 8.4: ING returns

Sample mean : 0.0883 Sample standard deviation: 1.4500

Sample skewness: 0.2884 Sample kurtosis: 8.1435

LB-statistic, based on 5 sample autocorrelations: 3.0136 (0.6979)

LB-statistic of squared returns based on 5 autocorrelations: 107.4423 (0.0000)
JB-test statistic on the (assumed) normality of asset returns: 1127.4 (0.0000)

20A very low p-value points to the rejection of the underlying null hypothesis. Notice that
the 5% critical value for the LB-test statistic is 11.07.
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This time. both skewness and kurtosis deviate from those of the normal
distribution and conditional heteroskedasticity 18 also strongly present in the
assel returns series of the ING Group.

Based on the above empirical findings the simple GARCH (1. 1) model of Ex-
ample 8.2. based as well on an underlying normal as on a Student t-distribution
of the sample returns. can convenieutly be applied to the Philips and ING assct
returns respectively. This leads to the empirical results in Table 8.5.

Table 8.5: Empirical results: Philips and ING-Group

Philips ING Group
Normal Student ¢ Normal Student ¢
o= 01276 jr=0.1276 jo = 00383 ji = 0.0383
(00010 (.06 1) (.0 1561 (001361
w = 0.2501 = 1.1356 w = (LS8 w = (L0985
(.0163) {L0ERG) (L0071 LIS )
& = (.1271 = 0.11412 & = {).0654 a = 0.1900
o203 o 2T o {nones) o 0.0882)
3 -= (L8207 i3 = ().8635 g = 09292 3 =0.8132
(A5G0 [{URIRIVAY [RLNIERY] IQIR{R I
1= 5.086 == 56453
(TD0G 0.8261)

A4 3=008478 &+ 3=09777 &+5=09%6 &+ 3=09632

All estimated GARCH(1. 1) parameters are significant at the 95% confidence
level. Also stationarity is accepted for each model. although sometimes by the
narrowest margin. as e.g. for the ING asset returns under normally distributed
innovations.

Agpregation of GARCH processes

Usually, in order to prevent high transaction costs and due to the availability
of financial managers. financial decisions are taken weekly in inany enterprises,
although many G ARCH models are estimated ou a daily basis. In geueral. daily
expected asset returns are trausformed to another time horizon. say i by just
multiplving these reiurns by A, Similarly. tine-varying conditional standard
deviations are multiplied by vA.?'

In general, if z; is the logarithinic spot price at time t. and if changes in this
logarithmic spot price are mutually independently and normally distributed
with zero mean and variance a:_f-_ ie, zp = 231 + &, with é‘— N the h-daily
return is given by 2, — 2.0 = Zf’___[}l gy 5 with standard deviation oI This
is the simple “sealing rule’s mmltiply with to transform from a 1-daily standard
deviation to a h-daily standard deviation. This simple time-aggregation may

2 enee. when the volatilioy is measuved in moving conditionad stndard devintions. 1l
weekly vl ility is obtained by maltiplying the daily volatility I /5.
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only be applied under strict conditions, which are generally not satisfied for high-
frequent financial data. Rescaling of the data in this sense is only valid if the
data is independently and identically distributed. which is contradictory to many
empirical findings. Luckily, Drost and Nijman (1993) have found a method to
scale volatilities to another time horizon, which are robust for three types of
stationary GARC'H processes. Defining {g,¢ € Z} as a stochastic process with
finite fourth order moments, strong, semi-strong and weak stationary GARCH
processes are defined, respectively. In the first case rescaled innovations are
independent, in the second case rescaled innovations are uncorrelated, and, in
the third case, o7 is the best linear predictor of =7 based on lagged innovations
solely.

Drost and Nijman (1993) prove the following theorem: If the stochastic
process {y;,t =1,2,...} is a symmetrically weak GARCH (p, q) process, then
the stochastic process {y{ bt =1,2,.. } is a symmetrically weak GARCH (r,r)
process with r := max(p, ). Some aggegation results are assembled in Section
E.5 of Appendix E.

Example 8.7 Assume that mid-of-week asset returns (based on Wednesday spot
prices) are of primary interest to financial managers. Usually, there is a very
limited direct GARCH effect left on a weekly basis. Therefore, it is more effi-
cient to look at aggregated GARCH processes. The time-aggregation results of
the normal GARCH (1,1) applied on the Philips asset returns of the previous
example could be summarized as follows (see Section E.5):

Conditional pdf h (.:iu,) Oy ,B(h)
Normal pdf i 0218 013 0:83
5 1.00 0.16 0.62
Student t-pdf 1 014 0.11 0.86
5 0.65 0.18 0.71

From these time-aggregation results it seems that the conditional variances
depend to a lesser extent on a weekly basis (lower ﬁ{h)s and higher as).
This is to be expected since aggregation leads to a slowly extinction of volatility
fluctnations. When h grows indefinitely, both & ;s and 3(;)s approximate zero.

8.2.3 Other functional forms of GARC H models

According to Subsection 8.2.2, the standard (stationary) GARCH model yields
forecasts of future conditional variances, which are linear in current and past
conditional variances and squared returns drive revisions in the forecasts. Vari-
ous variants of the standard GARCH model can now be defined, some important
ones will be discussed in this section.

Integrated GARC'H (or IGARCH) models

If a+ 3 is close to one in the simple GARCH(1, 1) model there exists high per-
sistence in the conditional variance so that its convergence to the unconditional
variance is very slow. If a + 8 = 1, the expectation of volatility in this model s
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periods ahead becornes from the expression in the subsection on volatility fore-
casts of the previous section: Fy(o?,,) = of isw. Henee, the GARCH{1.1)
model with o + 3 = 1 has a unit avtoregressive root so that the current volatility
affecls forecasts of volatility into the indefinite future. 1t is therefore called -
tegraled GARCH{1.1} or TGARCIH{1.1) model. The IGARCI(], 1} process
for the conditional varianee a3 looks like a linear random walk with drift w. Bt
Nelson (1990) has correctly remarked that a conventional lincar random walk
mnodel is nonstationary in two senses. Ou the one side, it has no stationary prob-
ability distribution so that it is not strictly stationary and. on the other side, it
has no unconditional first or second order moments so that it is not {covariance
or second order) stationary. Ou the contrary, TGARCH(1.1) is generally not
{eovariance} stationary, but is strictly stationary?®, Arbitrary JGARCH{p.q)
can be studied ceteris paribns.

Absolute value (GARCITIT models

Such models make forecasts of the future conditional standard deviation. The
lutter is assumed 1o be linear in the current. and past standard deviations and has
absolute values of asset returns driving revisions in the forecasts. An example
of an absolute vidue GCARCII(1.1) model is 0y = w + 8o, +aoy 1|5 8

Exponcntial GARCH or EGARCIH (p.q) models

Black (L976) was oue of the first persons to study the plienomenon that (in
several cagses) current returns and future volatility are negatively correlated.
this in contradiction to the Markowitz tradition, where a trade-off between
future expected assel returns and current volatility is studied.  As possible
explanation for this phenomenon he suggested the so-called leverage effect. This
effect stipulates a negative correlation between current return innovations and
future expected cotditional variances.

Inn this spirit Nelson (1991) described two important problems with the clas-
sic CARCH models: (1) Garch models have symmetric shock eflects (“signs
of innovatious are not important, only the sizes™), but as indicated above. this
seemed ta be oo restrictive: (i) GARCIT requires nonnegativity restrictions on
the parameters {to guarantee positive conditional varianees), so 1hat cach in-
crease of £; results in an increase of cach future oy, .. which excludes any form of
oscillation! To take account of these disadvantages. Nelson {1991} proposed the
exponeitial GARCH (EGARCI) model . In the KGARCH model the condi-
tional variance depends on both the size and the sign of the innovations, This
implies that the conditional variance is an asymmetric funetion of the lagged

2 ean easily be shown that the FGARCH (L 1) model s i stationars probaliliny distri-
bation when w — 00 When w = 00 Nelson (19907 has showo that there exists wnoodepgeneral e
stationary probability distribiution for the volatility ai. but that this probability distribution
Tits no [inite inoments.

e Neloon anul Foster (1991 for the econometric mfereace of absohae valune CARCHLE]

el els.
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Figure 8.4: The news Impact Curve: ‘Negative news has a bigger effect than
positive news’

innovations or that negative and positive innovations have a different impact
on volatility. Also, for equities, it is often observed that downward movements
in the market are followed by higher volatilities than upward movements of the
same magnitude. This is illustrated in Figure 8.4.%4

Nelson’s EGARCH (p, q) model, which takes account of the asymmetric im-
pact of news illustrated above, can be written as:2

In(of) =w+ 115 In ("t—g) ) e o [9m B (l'?:—sl E |'?t|)]
=g Zj:l ﬁj In ("'t—j) T Ei:l aig ("h—i) v Th W N(0,1),

where the conditional variance s always positive by constructiono?=exp|in(o7)] >

24See also Acker (1998), who studied the reaction of stock return volatility to annual profit
announcements in the UK and even concluded that ‘good news was no news’.

2% An alternative formulation that allows for a different treatment of positive and negative
shocks is the so-called Threshold ARCH, or TARCH, model, proposed in Glosten et al.
(1993) and Rabemananjara and Zakoian (1993). The conditional variance equation for this
model is: 0f =w+ae]_; +86—y [er—1 < 02, +Ba?_,, where I;_; is an indicator dummy
variable that takes a value of 1 when &;_1i§ negative, and a value of 0 when &, = 0, and
where & > 0. If 8 is significantly larger than zero, then the average effect seems important.
Franses (1998), p. 172, notes that when the parameters in the above equation are estimated
for the weekly Dow-Jones mdex. the estimation results are:

= 0000123 + 0.042 0.418 T3 [e¢—1 < 0 -2
(unuo024)+mg§7}€3 1+(D 31': 1[ee—1 < ]5,_1+(0492)a,_1,

Com]mnug these results with t.lmse ol' the GARCH(1,1) model in Section 8.2.1, it is clear
that 3 is much lower in the EGARCH model and that & is now insignificant. Since & is
significantly positive in this TARCH model, negative shocks to the Dow-Jones index show
quite an important role.
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0. The last part in the EGARCIH formnlation must catch the leverage of-
feet. T4 is an asyminetric relation between the equity retwrn and volatility
changes. The sign of this leverage effect depends on the sign of # and g (h_y) =
[Om_f + (|Th -a| -

in the conditional variance (recall that #,_; = ;: = and Elpy = v2x) if

ot )] lias a news impact representing the effects of shocks

o~ N (0.1)). If § < 0 the future conditional variances will increase more
than proportionally as a cousequence of a negative shock than for a positive
shoek of the same size. One of the most popular EGARCH models is the
EGARCII(1.1) model: In{0?) = w+ Sn(osf) + v+ ’l + 6= -—. where the
coefficient of the asymmetric effect is again (“cpert(‘cl to satlsf\ ¢ < 0. This
EGARCH(1.1) model can also be written as:

ln{ci) = w4+ 8n{o; Sl gy >0
=w+ 3lufo}) + (9— r) - ]| if g <0
Fmpirically it has been shown that with this EGARCH formulation for the
conditional variance negative innovations have a significantly more Increasing
effect on volatility than positive shocks.

Example 8.8 [n this cmpirical erample, an FGARCH(1,1) model 1s applicd
on the sammple Philips assel returns:

yr= pte, with In (o7 )=w+31n (o} |)+aby, _ +v (|ne_1| - Elme 1]} and ud
N(0.1) the following ML estimates are found {for v = 0):
i =10.1276 w = 00777 a=10.2141 3 = 0.9504 # = —0.1840

(110649 (0L0290) (1.0 188] (02107 [0.U%13]

These ML estimates show that asyinmetric effects are prosent for the Philips
asset returns: the parameter # is significantly negatively estimated so that the
future conditional variances will increase more than proportionally for negative
shocks (as compared to positive shocks of equal size). Again a high parameter
estimate for 4 is found so that shocks in the conditional variance will remain
present for a while in its further evolution in the future.

Note that Nelson (1991) also specified an alternative EGARCH(1.1) model
In{my) = w+ 3lnfoy 1) +a|7—|+ 7.:__]? which has asymmetry if v # (.
Becanse of the logarithmic transformation, there is no possibility of negative
variance in this GARCH equation. The news impact is now exponential rather
than quadratic. Therc is some evidence that this s too strong for large shocks
and that the likelibood is a little more difficult to maximize, but that this is a
very good model. Nevertlieless, it is more difficult to forecast.

GARCH-in-Mean (GARCIH-M} models

Another important model in the GARCH literature is the GA RC H-in-Mean,
or GARCH-M, model. In this model the conditional variance divectly influences
the conditional expectation of the process in the asset returns equation:
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Yt =C(zt-—h0'fsa) + &4

An initial specification for the conditional mean equation is for example
Yo = p+ 0oy + Zle pi€t—i + &¢.The choice for the conditional standard devi-
ation represents the assumption that changes in the conditional variance are
represented less than proportional in the mean. In this model an increase in the
conditional variance is associated with an increase or decrease of the conditional
returns. Hence, the idea of the GARC H-M model is based on the trade-off be-
tween risk and expected return (see e.g. Capital Asset Pricing Model (CAPM)).
An intertemporal formulation of this CAPM suggests an approximate linear re-
lationship between the return and the variance of the market portfolio. One of
the possible flows in this model is its assumption of a constant variance of the
market portfolio. In this connection, the ARC H-M model is a natural extension.
This model states that y, = 'z, + 807 + &, with 0f =w + 37 | ase?_;.

Among the interesting implications of this modification of the standard
model is that under certain assumptions, d is the coefficient of relative risk
aversion. If we use a GARCH (p, q) process for the variance equation, the fol-
lowing GARC H-M model is obtained:

Yt = C (zt—1,07,a)+&, with a? = WY 5y Biot i+ Y Bigd s

Twao additional examples:

Example 8.9 A simple example of the GARCH-M(1,1) model is: y; — ju —
801 = £ = 1400 with n, ¢ N(0,1) distributed and 0? = w + arel_y + Biof_,.

When the parameters in this model are estimated for the weekly Dow-Jones
index, Franses (1998) p.171, gets that i = —0.0035 with standard error 0.004
and & = 0.317 with standard error 0.206. Hence, the previously significant
growth rate in the Dow-Jones index in the AR(0) — GARCH(1,1) model (see
Example 8.4) seems to be offset by the §, which is however only significant at
the 12% level. Since 4 is positive, these estimation results show that returns are
positively correlated with large volatility.

Example 8.10 Test the following GARCH-M model for the Philips asset re-
turns:

Yt = p+0f(07) + &

with the conditional variance o7 assumed to follow a GARCH(1,1) model and
the function f(o7) defined as oy , 07 , and Ino? respectively.

The following parameter estimates are obtained for these three GARC H-M
models for the Philips asset returns, under normal as well as under Student
t-distributed innovations in Table 8.6.%

2670 save place the empirical results of this third model are not represented here.
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Table 8.6: Two GARCH-M models for Philips returns

First Model Second Model
Normal Student t Normal Student t
p=01276 4=0.1276 4=0.1276 j=0.1276

{0.0649) {0.0649) {0.0649) (0.0619)
& = 0.2377 w(.1172 0.2479 0.127

{0.0148) {0.0524) {0.0164) (0.0557)
&=01238 A=0.1081 A=0.1267 &=01114
© (ootes)  (oo283)  (0.0203)  (0.0261)
3=08267 [=0.8734 fg=08217 f[=0.8677
T o(uo249) T (D2s1) (0.0255) (0029
d=01508 6=01410 6=0.0256 & =10.0231

(0.1448} (0.1113) (0.0321) {0.0254)

Obviously, the parameter estimates for § are not significant at all; this is
also the case for the third model where & is estimated as 0.1854 and 0.1719
for normally and Student t-distributed innovations respectively with standard
errors 0.1480 and 0.1086 respectively. Hence, the GARCH-M(1,1) model is
rejected for the Philips asset returns, as is mostly the case for all kinds of asset
returns.

The GARCH-M model can also be combined with the EGARCH(p,q)
model in order to get an EGARCH-in-Mean, or EGARCH-M(p,q), model:
= C (21-1,0%,a) + e, with In(o?) = w + 35, B;n(af_;) + X1 cug{ne_.)
with 7, YN {0,1), where account has been taken of the asymmetric impact of
the conditional variance on the asset returns; shocks in 7, have different effects
on the volatility: if there is negative news the volatility tends to increase and
the reverse with positive news.

Applying an EGARCH-M(1,1) model on the Philips asset returns, again
insignificant § estimates are found, so that also this model is rejected for these
asset returns. 27

8.2.4 Multivariate GARCH processes

Modeling the volatility of » time series individually by univariate GARCH(1,1)
models would only be justified if these were independent of each other. However,
this is often not the case in volatility applications. For example, stock returns
in equity portfolios will undoubtedly exhibit some order of correlation over indi-
viduals (assets) and through time, an unexpected event in a certain sector has
(often) an effect on all portfolios in that sector (e.g. ‘financials’, ‘chemicals’,
etc...), certain developments, e.g. in the USA, have an effect on returns de-
velopment, e.g. in Europe, etc. This so-called volatility spillover and volatility

2T Nptice that the EGARCH modal implies that current asset returns and future volatility
are negatively correlated. while the GARCH-A model implics that a high volatility direetly
leads to periods of high expected assel returns. Generally, these two theories do ceonomically
exclude cach ather. so that BEGARCH AL models for asset returns will not oceur often in
practice.
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propagation effect are not modeled in univariate GARCH processes. Hence,
modeling the n time series jointly should intuitively improve (co)variance pre-
dictability, thus probably improving the accuracy of estimates (a multivariate
extension of volatility is also of great importance to the risk profile of a portfolio
and the corresponding Value-at-Risk (VaR) values).

d
Assuming that g; | S 2 (0,%,) for any &, € R" (¢t = 1,2,---,T), the
direct multivariate extension of the univariate GARCH process can generally
be formulated as:

Eo_1(€:) = 0 and 3 = var,_; (&) = Er, (stsi) fort=1,2,...,T,

with ¥; the conditional covariance matrix of size n x n.

Since this straightforward generalization of univariate GARCH processes
contains too many parameters, (e.g. symmetry) restrictions will be applied
on the generating process of ;. A first restriction is involved by the vector
GARCH model (using the so-called vee operator which is an operator that puts
columns of a matrix under each other, deleting symmetric elements). Further
restrictions lead to the diagonal vee operator.

Vee models

Start by focusing on X, the n x n covariance matrix. As is clear from the
reasoning above n variate GARCH models imply that s = n(n + 1)/2 different
equations for the conditional covariance matrices should be estimated, as all
covariance terms appear twice in ;. Denote the vec operator, which stacks
the columns of some matrix, by vee(:), i.e. the columns are put in a vector
where column i + 1 is put directly below column i for i = 1,...,n — 1 and all
second covariance terms are omitted (thus omiting the symmetric elements in
the under-triangular part of the covariance matrix). So, only covariance terms,
dijts J > 1 will be part of the resulting vector. The vec GARCH (p, q) model
looks like:

vec(Z;) = vec(R) + 3°°_, Bjvec(T,_;) + 3.0, Aivec(ei_ic;_;),

7=1

so that this vec GARCH (p, q) is stationary if all the eigenvalues of (3.7_, A; +

=1
Y-? | B;) are less than one in modulus. For the GARCH(1,1) model there

are ﬂ‘-";—ll unknown parameters in £2 and fﬂ';iﬁ unknown parameters in B
and A, respectively (still 465 unknown parameters for n = 5 and 21 unknown
parameters for n = 2). Hence, the vec GARC'H model results in too many
unknown parameters, and, moreover, the positive definiteness of the conditional
variance-covariance matrix 3, is not guaranteed. To visualize the vec model,

the bivariate vee GARCH(1, 1) model is shown below:

2 2 2
97,t+1 w11 Bu Bz P |1 @11 012 Qi3 €1

241 | =|wiz |+ [Bar B Bag| 12|+ a2 a2 ass| |e1s50s
2 2
U%J--H W22 Ba1 Baz Baa] [ o3, 31 Qg Qa3 Ea4
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Diagonal vec models

To overcome the waterfall of parameters in the wee model, letting variances
solely depend on past own squared disturbances and covariances solely on past
own covariances and cross prodncts of disturbauces can restrict the model as
n: Tijt.1 = Wiy + ;':'.J’,:J,-O'-,;J‘f + (4 SR T-E N = for TJ = 1. 2, ceovnnand £=1.2.--. . T.
so that we can predict the (conditional) covariances in this model without wor-
rying about the {conditional) variances. This logic implies that all off-diagonal
clements in the paramecter matrices equal zero, i.e. diagonal muatrices remain,
Tor the bivariate GARCH{(1.1) case. the diagonal vec representation is:

Y - - )
oty Wiy 3, 0 0 oty a;p 00 1,
Groe 1| = w4+ ] 0 Fey 0 ogrdl+] 0 an 0 .80t

. s € i
Ué.f.-!—! IR ] {} 0 ,L"f:i‘-; Ty 0 i} [ R 54

Since there is no guarantee that correlations derived [rom this model will be
between -1 and +1, we have to restrict the conditional covariance matrix e.g.
to positive definiteness. The necessary conditions for the conditional covariance
matrix of the diagonal vee model to be positive definite ave: wy > 0. wp > 0,
W — w'fg =0, arp > 00 oagy > 00 o — (.r'fj;._, = (). and conditions for
stationarity are o + 3, < 1. a2+ #,, < 1. and asy + 344 < 1. Now only 9
parameters remain to be estimated in this bivariate case (instead of 21 for the
rec model). Although the diagonal wee model econoinizes on parameters, both
goneral and diagonal vee models share a statistical problem. In order to have a
plausible paraneterization of the models, the conditional covariance matrix 2
should be positive definite. But the conditions herefore are often hard to justify
(certainly for n > 2} for both models and difficult Lo impose during estimnation.
Therefore. Bollorslev, Engle. Kraft and Kroner (1993) came up with the BEKK
model 1o ensure positive definiteness of the covariance matrix.

DEKE model

The BEKK model is an alternative parameierization. which takes explicitly
account of the positive definiteness of the conditional covariance matrix (with
) = C’C. with C an nudertriangular matrix}:*"

E=0C"C +zﬂ—1 Zz—l 1;& £i—i€y g Au ZA -1 Zp ;;A Y Gk,
with n x n parameter matrices A, and Gy
As an illustration of the BEK K model the simple GARCH (1. 1) model with
K =1 can be written as the following BEKK(1,1) model:
=C'C+ A'gp_ygf A+ GG

which counts %n( n+1) unknown parameters in ¢ and n? unknown parameters in

an? . . .
A and G respectively, or 24522 unknowt parameters in total {c.g. 65 unknown

S Bogle and Wroner [1995).
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parameters in the 5 dimensional case and 11 unknown parameters for n =

2), which implies a serious reduction compared to the vec model. Hence, the

GARCH equations in the BEKK model become for the bivariate case (for
2 .

0§y = 04ip , 1 =1,2):

gy = C‘fl i CLIJE T “%1%,:-1 + 2a11a2161 ¢ —1€2,0—1 + a§1s§'t_1 + Qlfldll,t—i'l'
+2011921012,6-1 + g2,022.41

Ti2¢ = CiaCaz+ 011“125.‘;’.:—1 + (a21012 + a11a29)e1 418201 + a2102065 ,_+
+9119120 11,01 + (921912 + §11922) 012,01 + 921922022 1

g5 = ng L “?25%,:-1 + 2a12a99€1 ¢—162,0—1 + aggeg‘,_l + 91220'11,1_1 -

& 2
+29120200 1241 + 3209241,

which indeed results in 11 parameters (cf. 21 for the vec GARCH model). It is
also very clear that the BEK K model is much more general than the diagonal
vec model because the conditional variances and covariances do not depend only
on their own past but also on the previous values of the other variances and
covariances and on the other squared (and cross) innovations.

In general, for the n variate BEK K (I,1) model, s+ 2n? parameters must be
estimated (with s = n(n — 1)/2). The certainty of positive definiteness has un-
fortunately increased the number of parameters when compared to the diagonal
vec model, but the thriftiness of the BEK K model is very high in comparison
with the vec model, thereby having eliminated just a few, if any interesting, vec
models, although it is much more general as indicated earlier. Engle and Kro-
ner (1995) show that every vec model that is implied by some BEK K model is
unique, while the converse is not true. Furthermore, all positive definite diago-
nal vec models can be written in BEK K representation. Stationarity is assured
if and only if all the eigenvalues of A& A + B ® B are less than one in modulus.
When the parameter matrices, except for C, in the BEK K model are assumed
to be diagonal, the diagonal BEK K model is obtained. This model contains
s + 2n parameters.

Estimating multivariate GARCH models

The leap from estimating univariate GARCH models to estimating multivariate
GARCH models is theoretically as straightforward as the modeling design it-
self. While there are several innovation distributions for the univariate GARC H
models, the normal and Student t-distribution for the multivariate versions will
be considered. Assume that the conditional distribution of each individual vec-
tor in the sample £, ..., ey is now given by the n variate conditionally normal
distribution (we consider n assets). This leads to the following loglikelihood
equation for the general multivariate GARC H model with n variate (condition-
ally) normally distributed innovations:

L(6) = 2L In(27) — 1 327 In || — L&, 27 e
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Inr the bivariate m.ao this becomes:
I SN a2 a

_nt 2 1 EY T =28y Sy My —EL T
L{@)=—"In(27) — 3 Zl“ a14+93, T2a) =3 2. P :
= o .
For notational (,onvemen('e the parameter space for each variance and co-
variance has been omitted. For example. in the bivariate diagonal vec model.

the following parameter space would apply for o3 (B1). ar(f2) and O’%Er_{f";;):

9[2(1.«..‘||.(}f[|.__-';)’11)lr
8= [Br=(wina.80) | = lwiriwinowe, o upa . 810 Py L ) or
9;;:{w32.(l’;g;;.ﬁ_—g;;)’

B =(. . 3F)erR".
In the case of an 1 variate student ¢-distribution. the loglikelibood for the
sample £, ..., 27 is defined as:

Le.8) - Tl (22) - TInT () — L In(r) — 222 (o)
—~—ln {1 — 2)- Zr I |2, -5 Z, In ('H-ﬁs;ﬂ, ]E;_),

An important remark here is that ML estimation is quite hard when a ol of
parameters have to be estimated as the loglikelihood function can be relatively
flat in this case. Moreover, the function might not be globally concave, so that a
local optimn is a possible cutcotne. This implies that it is important to choose
a suitable maximization algorithm fromw Chapter 1.

Conditional correlation

The class of conditional correlation models tries to capture covariance dynamics
by making assumptions on the conditional correlation between thne series. This
class can be split up in two maodels. The first model is known as the constant
conditional correlation (CCC) model, developed by Bollerslev (1990). The sec-
ond model is the dynamic conditional correlation (DCC). designated by Engle
{2000).

Constant conditional eorrelation (CCC)  The conditional correlation be-
tween innovations £; and g, for time # given information available up to and
including time ¢ — 1 is defined by:

Ey igig 1) i

p“r L \/Er—l{f'.f_!\]El—l(Ff;] - T adT g0

Note that this definition entails that the standardized innovations share the
same correlation as the original innovations. We can readily define the n x n
conditional corrclation matrix Ry = {p?_j‘t}, Using the conditional covariance
matrix ;. and introducing the n x n diagonal matrix Dy :== diag{o 4. . ... Tl
i¢. a matrix with standard deviations on the diagonal and zeros on the off-
diagonals. we can decompose the correlation matrix as:

R, =D;'E,D; . (8.14)
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Pre and post multiplying the correlation matrix by Dy in equation (8.14), yields:
¥, = DyR;Dy. This equation is the foundation on which the class of conditional
correlation models is built. The conditional variances are modeled via univariate
GARCH models, ie. 0}, = w; 05, ; + a;e7,_, for i = 1,2,..,n. The CCC

model is defined by a.ssuﬁung that the correlation matrix is constant, i.e. Ry =

R , Vt. Additionally, under the assumption that &]S¢_; ~ N,(0,%,), the

CCC loglikelihood function of observation t (while ignoring the constant part)
becomes:

1

]_nf{e} = —511] }Egl = 55,2: €y
1 ’
= ——5 In LD;R&D:' 2 §'€tDt_lR.}l_1Dt_IEg

1 1 L3 SR SR .
& —51'3'[3-11 3 EZ::[I'“J?J = EEth 'R;'Di'e

For a general n variate CCC model with GARC H (1, 1) characterizations for the
conditional variances, this model requires the estimation of s + 2n parameters.
Bollerslev (1990) argues that, under the assumption of a constant correlation
matrix, the maximum likelihood estimator of the correlation matrix equals the
sample correlation matrix. The covariance matrix in the loglikelihood function
will be positive definitive during optimization since the sample correlation ma-
trix is positive definite and the conditional variances are positive. Filtering out
the correlation matrix further simplifies optimization.

Dynamic Conditional Correlation (DCC) Tse and Tsui (2001) create the
DCC' model by introducing a recursive formula for the conditional correlation
matrix:

Ri=(1-0—60:)R+ 6, R +62%;_;.

Here, R is some time invariant n x n matrix with s — n parameters to be
estimated and ¥,_, is an n x n matrix which elements are functions of lagged
observations of ;. The length of the estimation sample used, 7', should be
larger than the number of variables, n, to guarantee positive definiteness of
W, ;. Tse and Tsui (2001) propose to let ¥, _; be the correlation matrix in
which the innovations are scaled by appropriate standard deviations. So, a
typical element of ¥, . is given by:

: B h _e2 )
'I'ij.t—l = Zf=1 5:,1— J,t—-r/\/z-rﬂ :,t—'r Z‘r 1 _;t-—‘r

The restrictions #; 2 0 for i = 1,2 and 6, + 6, < 1 are imposed so that the
conditional correlation matrix is a weighted average of R, R;_,, and ¥,_,. Note
that by restricting #; = 6, = 0 the CC'C model is obtained. This restriction can
serve in an LR test as the null of constant conditional correlations versus the
alternative of time varying correlations. Tse (2000) suggests testing the same
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hepothesis via an LM test. in which only the estimation of the CCC model 1
required. The w variate DOC model encompasses s 1 2n+ 2 parameters.
Estimation of the DO model is straightforwardly accomplished by replac-
ing R.in the above loglikelihood function hy Ry. Tse and Tsin {2001 ) recogmae
that the constraints posed on ) and 8o give rise to problems when Lrying to
optimize the loglikelihood function as these parameters are restricted to certain
values. To tackle this problenm. they suggest to define 8; = Xf;’(l + )\f + A3)
for ¢ 1.2, where the parameters A; aud A, are wrestricted,  Optimization
shonld be conducted with these new parameters in the Joglikelihood function.
After convergence to a solution, transformation ro the original parameters can
be exeented. Engle (2000) estimates the model via QML. a lwo step estimation
procedure (hat is not efficient. Since the estimation procediore suggested by Tse
and Tsul (2001) is efficient. Fagle's (2000) approach will not be discussed..

Asymmetric cffects

Asviumetric effeets may be introduced. e.g. as an alfernative fornmlation for
the multivariate Exponential (G ARCH models, since bad news is nmch more
important than good news (see Acker {1998}). Negative news generally inereases
the volatility considerably, while good news has the tendency not to inerease it
sizeably.

According to Bollerslev ef af. {1988}, the asymmetric vee GARCH{L 1)
modlel can be written as:

vee(X,) - vec(£2) | Bvee(X; 1) + Avec(e, 1ej_,) + Nvec{n,_,7; )

withn, & il g < 0and g, = 0 elsewhere, and where 2 and B are symmetric
. . . [ I L+ 11
n % n matrices, while {he matrices A and N are of order 55— pinell
Kroner {199%) has introduced asvimnetric offects in the BEAK model. so

that il can be written for a GARCH (1,11 model as (Generalized BEKK )
2, §1+BoZ . +GoAls, g (A N'n, m (N

where £2.B and G are svimetric n x nomadrices, and A and N oare square
matrices of order n: o stands for component wise multiplication.

Remark 8.1 A partienlar type of BEKE model has o G matvic whuel i de-
fined as a malriz of ones, or 2y = Ot A's, e, (At BoX, . If thes model is
stationary (i.c. if all the cigenvatues of A~ DB are smaller than one i modulus ),
then the unconditional covariance matriz can be written as 3. S{I- A B!
and also the {oplimal) predictor for 3y, con be wridten m a semedar style as
in Section 8.2.2: E(2y.4) N4 (A +B)Y HZ - Be) and By~ Be f

& = L

B raner (1995) has prograomued dese mnltivariate (CARCEE models To Ganss: e pro
s can be foned oo hrpe s Fwebor nestbedad Depts FeonfSoftware sk ARCH
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Empirical example: A bivariate BEKK model of ABN-AMRO and ING
asset returns will be considered. The GARCH (1, 1) results for the ING asset
returns can be found in Example 8.6. Similar ML estimates, based on (condi-
tionally) normally distributed errors. are for the ABN-AMRO asset returns and
the ING asset returns, respectively (with standard errors between parentheses):
for ABN-AMRO: & = 0.10591(0.037), & =0.014185(0.0069), &= 0.07235(0.0127),
A = 0.924446(0.01276) and

for ING: ji = 0.083352(0.03765), @ = 0.029062(0.00928), & = 0.077322(0.0079),
3 = 0.912118(0.008).

Now, the Mean Squared Forecast Error (MSFE) for univariate models is:
[Cr, (&f —87)]/T\and for multivariate models, [7_ (&2, — 5,) (€42, — 5)]/T-
The MSFEs for the conditional variances in the univariate models are: for
the ABN-AMRO asset returns 23.28757 for (conditionally) normally distributed
errors and 23.36498 for (conditionally) Student ¢-distributed errors, respectively
and for the ING asset returns 30.49373 and 30.14669.

Applying Kroner’s (1995) BEK K program, a bivariately estimated model
with MSFEs based on normally distributed errors is obtained: 25.598 and 34.464
for the respective conditional variances, and 14.123 for the conditional covari-
ance 013 (measuring the volatility spillover). Remark that, owing to the restric-
tions implied by the BEK K model, the within-sample MSFEs of the conditional
variances did not decrease in the bivariate GARCH (1, 1) model, although the
MSFE of the conditional covariance is pretty small,

Multivariate Component GARCH(1,1) model

A special type of a multivariate GARC'H model is the Multivariate Component
GARCH(1,1) model. This model can be written as:

Ti=Qi+Al(er—18)_y — Qi-1))A+B'(Z;-; —Q;—1)B

with Q; = 2+ R/(Qi—; — Q)R + F'(gy_1¢,_; — Z1)F.

Thismodelis a direct generalization of the univarate component GARCH(1,1)
model and the BEKK GARCH(1.1) model, and has the property that if A
and B have all eigenvalues substantially less than one, then £, — Q; will be a
transitory covariance matrix and will be forecast to rapidly approach zero. If
R has eigenvalues close to one, then Q will be the permanent component of
volatility, which will gradually approach £ as the forecast horizon increases.
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8.2.5 Exercises and cases
Solved theoretical exercise
How does the kurtosis look like for the ARCH (1) model with o] = a, +ag;_
and for the GARCII(1.1) model with 07 = o, + o155 | + 81077
From the definition var(c?) = E (o}) - [E {07)] ? we have for the stationary

ARCH (1) model (a; < 1) thaL E{(0}) = E(Fiilef)) = Ele}f) o2 = 125
Then, in order to detennine

1 T ey 2 Y2 . . 2.1
E(o}) o) = (e, + a1ef |} = + Qo0+ aje]l .
or for a ﬂtationdn 1}? CII{ 1) modo

E (o})=ad+20,0) 72 +u 1E(s{ )= o-g—i—2a“a1——l e +ed B{FE,_ (g} )}
=+ 20,00 TR —Hu E([ O 1)] =04 20,00 72430l B0y

--""il

sy tiandeg

_ _-_g ) cx 2y T, ol (Lo ) o 2 |
=ar,+20v, 0 704 30 Elo})= ar =ToaaTd an) if Jof < 1.
Then it can be written:
afilga L
af — "
EFle IESHE 1—cxs . . .
- ( ') = = A f a'f < % Hence. the kurtosis [or the stationary
[Eiery ] ].. L By . -
T

ARCH(1) model is found from {8.12) as:
k=331 —343 {ﬂ”—r 1} —3 0l g ifad <

B ]|* 1 Sy
|
= oC if af Z 3.
The derivation of the kurtosis for the stationary GARCH({1.1) model (a| +
3, < 1) is similar to the previous analysis. or:

E{e}) =E(Fei(f)) = E{e}y=0? = T, and

1—iv

R IR I R T ] ,
{od)= b1 ot 18 .
B (Gt)_ 'Il_";“‘l?) “2en @ A7) (1—01—1‘ )(l—ht, :rzui’J—’.-'ﬁ%] if

30:{-} 2(‘1‘]:.]’1 +,1.?1<l

Similarly as for the ARCH()) case. we have:

f{(aj?- = 11—;;{ 2:”:3 ':I-;. so that the kurtosis of the stationary GARCH (1. 1)
L L A PN Bt
model satisfies:
(i
K= ’il Efo 3 =3+ m;_;—_%f]—r]fﬂﬂ +201 8,43 <1
=x if 3034200 8,43 2 1

Solved empirical cases

Case 8.1 Four servies of daily stock market quotations for the period 471 /1994
to 23/12/2000 of the following companics: BASE. Danone, KBC and Telinfo
(Telindus), obloined from the Brussels Stock Exchange, are analyzed for various
types of GARCH processes.
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Figure 8.5: Logarithmic returns
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Source: hitpiiffinance.yahoo.com

The price quotations are transformed into series of logarithmic returns ac-
cording to: r;, = In % =InP, — InF;_;. Daily returns up to the end of 2004
are plotted in Figure 8.5. Despite the fact that all four series means are very
near to zero, visual examination suggests that the series are not WN: there is
volatility clustering, because there are periods of both small and large changes.

The moments of the series are presented in Table 8.7. Examining the values
of both skewness and kurtosis one may conclude that these series of returns are
not normally distributed. The kurtosis of the normal distribution is 3; given
that the kurtosis exceeds 3 in all four cases, the distribution presents fat tails
(leptokurtic distribution) relative to the normal. Finally, to complement this
analysis, we compute the JB test statistic, for testing whether the series are
normally distributed or not. Since the critical value of x3 at the 1 percent level
is 9.2, we conclude that the various series are not normal (see Table 8.7).

Although no significant (partial) autocorrelations could be found, there is
sizable (partial) autocorrelation of squared returns that indicates volatility clus-
tering, which is also confirmed by the LB statistics up to order 36. This calls
for estimation of the returns series using GARCH models.

Estimating first the most common GARCH ((1,1) model for the four series,
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Table 8.7: Moments of the return series. and Jarque-Bera test statistic

BASE  Danonc KDBC Telinfo
Alean (0007 0.0003 {1.000 0.001
Std. Dev, 0.019 0.016 0.017 0.021
Skoewness -0.185 0.401 0.478 0.571
Kurtosis 5.339 5.063 11.173 7.512
Jarque-Bera 308491 2724428 4334357 1404484
according to vy = g+ & with 07 = w + 307_, + agf | {sec Table 8.8).

Table 8.8: GARCH (1.1} estiination

g ~ N(0.o7) BASF Danone KB(C Telinfo

it 0.00081! 0.0001 0.00034* 0.0010™
w 1.62E-06*1  1.52E-06'** 1.21E-06 ! 9 45E-050"*1
¢ (0.0362"* 003791 0).0648++! 0.2111*!
3 0 G5081*+! 0.95671++! 0.93441+%) (.5901"
Ljung-Box Qu;  57.9050 48.059 50,268 48.059

[ecision n‘]ul mll no rejection no rejection ar L9 o rejection
gy~ t(w)

ft (.00084! -.00001 0.0005+! 0.00011
w 8.03E-07 3.68E-06 3.30-07 0.00017
& 0.0:3151**] 0.0405** 0.04591+*) 4.1397

3 0.96761+*! 0.00981**) (0.9582!> 069070+
& 0. 15740 (12037 (.25290%+) 04861

Statistical significance: *)p < 0.05. ¥y < 0.01.

Examining the Ljung-Box statistics for the autocorrelations in the squared
residuals it can be concluded that the common GZARCII(1,1) fits well for all
stocks except for those of BASF (and to a somewhat lesser extent (5% confidence
level) for KBC stocks}). Higher order models (GARCH(2.1). ete.} could not
be found. The returns of BASE stocks could be described by other forms of
GARCH models, as e.g. asymmetric ones.

In Table 8.9, we have also computed the GARCIH in means {GARCH-M},
exponential GARCH (EGARCH). and the integrated GARCH (IGARCH)
models for normally and Student #-distributed conditional errors. The & ARCH-
M niodel is nowhere relevant since the estimated 8 is not s1gjmhc ant for all serics.
On the contrary, the EGARCH model is very relevant since @ for KBC stocks
is significant at the 1% level and for BASE stocks at the 5% l(zvv.l_
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Table 8.9: GARCH-M(1,1), EGARCH and IGARCH estimations
GARCH—M(1,1) estimation

£ w N(0, r:rf) BASF Danone KBC Telinfo
il 0.0005 -0.0004 0.00028 -0.0008
@ 1.38E-06*) 1.05E-06'*) 1.27E-06**) 9.86E-05(**)
a 0.0332C*)  0.0325(**)  0.0674(**) 0.2142(*%)
B 0.9635(*)  0.9635**)  0.9318(**) 0.5875(**)
h) 1.0305 03.1717 0.7357 4.9519
R w t(v)

it -0.00017 -0.00131 0.0011) -0.0008
@ 8.38E-7 3.72E-7 2.82E-7(*) 0.00011
& 0.0322(**)  0.0406(**) 0.0437(+*) 2.4827
B 0.96680**)  0.9617**)  0.9604¢**)  0.6792(**)
) 0.0663 0.0986 -0.0536 0.0265
v 0.1583**)  0.2058(**)  (.2539(**) 0.4758(**)

EGARCH(1,1) estimation
|81 ~ N(0,0?)  BASF Danone KBC Telinfo
i 0.0006 0.0001 0.0006™) 0.00140%)
@ -0.1551)  -0.2009(*) -0.1415 -2.'1291{*)
& 0.0958**)  0.0969**)  0.1265(**) 0.3716(**)
B 0.9896(**)  0.9844(**)  .9939(**) 0.6816(**)
) -0.0322(*) -0.0203 0.03110**) 0.00799
IGARCH(1,1) estimation

|81 " N(0,02)  BASF Danone KBC Telinfo
i 0.0008 0.0001 0.0003 0.00078
@ 5.79E-7 4.25E-7 1.22E-6**)  0.00006(**)
& 0.0300%**)  0.0309**)  0.0680(**) 0.3908**)
B 0.9700**)  0.9691(**)  0.9320**) 0.6092(+*)
€)1 e t(v)

it 0.0008™) -4.02E-6 0.0005*) 0.00023
@ 6.25E-7 6.22E-7 5.01E-7 0.00004(**)
a 0.0308**)  0.0390¢*)  0.0427(**) 0.3317(+)
B 0.9692(**)  0.9610**)  0.9573(**) 0.6683(**)
0] 0.1609**)  0.1954(**)  (.2359(**) 0.3268(**)

Statistical significance: **)p < 0.01, (*)p < 0.05.
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Casc 8.2 Bala end Premaraine (2004), “Stock Markel Volafility: Evamining
North Amevica. Buropr and dsia”.

Abstract An understanding of volatility in stock markets is important for
determining the cost of capital and for assessing investment and leverage deci-
sions as volatility is synonymons with risk. Substantial changes in volatility of
financial markets are capable of having significant negative effects on risk averse
mvestors. Using daily returns from 1992 to 2002, volatility comovement hetween
the Singapore stock market and the markets of US. UK. Hong Kong and Japan
is investigated. In order to gauge volatility comovement. cconometric models
of (i) Univariate GARCH (ii) VAR and {ili) a multivariate and asymmetric
nmiltivariate € ARCH model are employved. The empirical results indicate that
there is a high degree of volatility comovement between Singapore stock market
and that of Hong Kong. US. Japan and UK {in that order). Results support
small but significant volatility spillover from Singapore inte Hong Kong. Japan
and US markets despite the latter three being dominant markets. Most of the
previons research concludes that spillover effects are significant only [rom the
dominant market to the smaller market and that the volatility spillover effects
arce unidirectional. The study evidences that it is plausible for volatility to spill
over from the smaller market to the dominant market. At a substantive level,
studies on velatility comovernent. and spillover provide useful information for
risk analvsis.

[Sce full text at: Lttp://repec.org/esPEAMO1/up. 17856. 1076663719, pdf].

Case 8.3 Dalosubramanyan (2004). “Do Time-Varying Covarionces, Volotility
Comovement and Spillover Matler?”.

Abstract They investigate whether time varying volatility comovements
and spillovers impact the true variance-covariance under a dynamic conditional
correlation sel up. They find that there are statisticallv significant asynunetric
volatility spillovers and comovements between the three international markets,
The use of time-varying correlations can impact the variance-covariance matrix
from between 10 to 19 per cenl while asymmetric volatility comovements and
spillovers can impact the {ime-varying covariance from between 1 to 13 per cent.
These vesults have irpportant implications for an investor holding a portfolio of
international assets attempting to minhnize portfolio risk.

Case B.4 Koopman et al. {2004}, “Forceasting daily variability of the S&FP100
stock index using historical, realized and itnplied volatdlity wmeasurements”.

Abstract The increasing availability of financial market data at intraday
frequencies has not only led to the development of improved volatility measure-
ments but has also inspired rescarch into their potential value as an information
source for volatility forceasting. In this paper it is explored that the forecast-
ing value of historical volatility (extracted from daily return series). of implied
volatility {extracted from option pricing data) and of realized volatility (com-
puied as the sum of squared high frequency returns within a day). First they
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consider unobserved components and long memory models for realized volatility
which is regarded as an accurate estimator of volatility. The predictive abili-
ties of realized volatility models are compared with those of stochastic volatility
models and generalized autoregressive conditional heteroskedasticity models for
daily return series.

These historical volatility models are extended to include realized and im-
plied volatility measures as explanatory variables for volatility. The main focus
is on forecasting the daily variability of the Standard & Poor’s 100 stock index
series for which trading data (tick by tick) of almost seven years is analyzed. The
forecast assessment is based on the hypothesis of whether a forecast model is
outperformed by alternative models. In particular, they use superior predictive
ability tests to investigate the relative forecast performances of some models.
Since volatilities are not observed, realized volatility is taken as a proxy for
actual volatility and is used for computing the forecast error. A stationary
bootstrap procedure is required for computing the test statistic and its p-value.
The empirical results show convincingly that realized volatility models produce
far more accurate volatility forecasts compared to models based on daily returns.
Long memory models seem to provide the most accurate forecasts.

[See full text at: http://www.tinbergen.nl/discussionpapers/04016.pdf].

Unsolved Exercises
1. Consider the ARIMA(0,2,2) model A%y, =1 — @, L — p,L°.

a. Given that the error process {z;,t € Z} is a WN process (without
conditional heteroskedasticity), derive the 1-step (ahead) and the h-step
(ahead) forecasts for the {y,t € Z} process with the corresponding fore-
cast variances (which are the expected squared (conditional) forecast er-
rors).

b. Assume now that the error process {4t € Z} is subject to condi-
tional heteroskedasticity, compute (again) the above mentioned (condi-
tional) forecasts and forecast variances.

¢. Compute the h-step (ahead) forecast of the conditional variance and
the associated forecast error if the conditional variance of the error process
{1, t € Z} is described by the GARCH(1,1) process 07 = w + a&y—1 +
B,07_,. How can this forecast be written if the GARCH(1,1) model is
stationary?

d. Recalling that the forecast errors of the GARCH(1,1) conditional
variance’s forecast can be written as v, = o7 (n7 — 1), with n, i N(0,1),

compute the conditional variance of the forecast GARCH(1, 1) conditional
variance,

e. Since the restriction B ((In (a1n;_; + B8;)) < 0 can be interpreted as
a necessary condition for strict stationarity of the above GARCH(1,1)
model, show that the JGARCH(1,1) model, although not (covariance)
stationary, may still be strictly stationary.
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. a. Consider the Glosten et al. (1993} GJR — GARCH(1,1) model in

which, the coefficients depend on the sign of the corresponding return
innovations ot:

O"f =w+ alsg—l(l - J[Er--1>'ll'l) + '}’153_115,_1}0 + 1810-3—1 and a.ssuming
that the probability distribution of z in vy = o? (27 — 1) is symmetric
around zero, compute the two-step {ahead) forecasts of o?,, and the k-
step (ahead) forecasts of o7, ;.

b. In discrete ARCH models or stochastic volatility models the (esti-
mated) conditional variance depends on information till period t — 1 (in-
cluded). When realized volatility is used the (estimated) conditional vari-
ance depends on information within period ¢. If we rewrite the univariate
returns as ry = oy, with 7, standardized WN error terms, the stan-
dardized returns satisfy n», = It In the multivariate case standardized
returns should satisfy r, = Pyn,, where P, is an n x n matrix satisfying
PP, = X, and % is the conditional covariance matrix; however, this root
is not unique. A root can be obtained by an under-triangular Cholesky
decomposition. Compute the corresponding bivariate return vector and
compare to the univariate case.

c. Consider volatility spillovers and asymmetries in volatility transmis-
sion. To that end an EGARCH specification for the conditional variance
equations may be considered in a possible application where the world and
domestic interest rates are modeled as Ry ; = Quw+ 8y 0ut + 0w T 1, and
Rat = ag + Bgoar + 0dNa s respectively; n,,, and ng, are standardized
WN innovations. The vector £, represents the vector of idiosyncratic
shocls from the world and the domestic country (to be investigated). For-
mulate a bivariate EGARCH specification and interpret, assuming that
the domestic country cannot affect world volatility.

. Consider log-returns of an asset: r; := y. With g = m (% 8) + e t =

1,2,...,T, where m;{-) is a conditional mean funetion, x; an m x 1 vector
of exogenous variables which may include lagged values of the dependent
variable, 8 a vector of parameters, £; a gtochastic error term satisfying:
£; = a3y, where g is the conditional standard deviation and vy is assumed
to follow a normal WA process with unit variance. Let 3¢ denote the
(past) information set (available at the end of period £—1). Then & is said
to be generated by a GARCH (p, ) process if the conditional distribution
of &; is described by a normal distribution with zero mean and variance
o7 = Qo+ iy oigd_; + Z§=1 ﬁjdg—j'

a. Qive and show the stationarity conditions of this GARCH(p, q) process.

b. Show/illustrate that, though the conditional error distribution is as-
sumed to be normal, the unconditional error distribution is non-normal
with fatter tails than in the normal distribution.

¢. Assuming that the above conditional mean function satisfies an AR(r)
process and that the error term e, is generated by an ARCH(qg) process as
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inef=a,+Y 1, aier_;+uy, with {u,,t € Z} a WN process with variance
o2, show that the fourth moment of £, does not exist for all stationary
ARCH models; illustrate this in detail for an ARC H (1) process.

d. You can find similar results for Student f-distributed W N processes.
What do you suggest in order to capture asymmetry and excess kurtosis
in the analysis of financial returns?

. Perform volatility analysis with four series of daily market quotations for

the period January 2000-December 2004 of the following metals: gold, sil-
ver, platinum and palladinm, obtained from the London Market.*? and for
the period January 2000-September 2004 of a number of stocks as Voda-
fone, Shell Transport & Trading Company, Marks and Spencer, John-
ston Press, Lloyds TSB, Manchester United, Investment Co., Euro Dis-
ney, HSBC Holdings, Hilton Group, GlaxoSmithKline,and British Airways
from the London Stock Exchange.”!

(a) Obtain GARCH, GARC H-in-means, exponential GARCH and In-
tegrated GARCH, based on both the underlying normal as well as
on the underlying ¢ distribution.

(b) Obtain volatility forecasts for the period January 2004- March 2005
and compare them with the actual data set.

40 Available at http://www.kiteo.com/gold.londonfix.html.
31500 http://www.londonstockexchange.com /en-gb/ and http://www.axl.co.uk /LSE/.
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Categorical and Limited
Dependent Variables



239

This part focuses on qualitative and limited responses, duration and count
data, On the one hand, models for discrete choice (or qualitative response)
with binary and multiple choices, and on on the other hand, models of censored
and truncated responses (including duration and cownt data). Hence, 1his part
will he divided into two chaplers: diserete choice models and linited responses,
duration and count data.

Dscrete choice models are divided into binary choice models and maulliple
choice or mulliple response models. Multiple response models occur if the -
her of alternatives is larger than two. These models are developed to describe
the probability of cach of the possible outcomes as a fimction of speeilic char
acteristics.  Within multiple response models an Iimportant distinetion exists
between ordered (ranked) response models and unordered response models. An
ordercd response model is generally more parsimonions but can only be ap-
plied if there exists a logical order of the alternatives. T alternatives cannot be
ordered. we have nominal response or multinomicl models.

Within this framework, it muy be helptul to introduce distinetions about the
classes of variables that will be considered in this part of the book.

o Binoery variables have two categories and are used 1o indicate that an evemt
has acenrred oF that some characteristic is present; e.g. labor force par-
ticipalion. with the response variable assuming a value zero if ihe person
does not participate and a value one if she participates. The mumber is
just a coding for the dependent variable.

e Ordered or ordinal variables have categorics that can be ranked. Tor ex-
ample. surveys ask respondents to indicate agreement or disagreement to
a staterment using the choices agree. neutral and disagree so that the de-
pendent. variable is given a code zero for “agree’, one for ‘nentral” and two
for “disagree’. In this ease. the valnes of the variable merely reflect an
ordering or ranking.

o Inordered or nominal variables ocenr when there arc nultiple outcomes
that cannot be ordered: a good exaniple is to consider the oceupational
field chosen by an individual. or the dependent variable is given a code
zero if the respondent is a ‘clerk’. one if she is an ‘engineer’, two if she is
an “economist’. ete. In this latter case, the values are categories. but do
not. indicate a ranking,.

o Censored ov trunceled variables ocenr when the valne of a variable is un
known over some range ol that variable.

o Count variables indicate the number of times that the dependent variable
ocenrred. e.g. the nnber of patents, or the dependent, variable takes the

alues zero, one, fwo.

How a variable is measured is not absolute: indeed, one may say that the
lovel of measurerent of a variable cannot be made in isolation from the context
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in which the variable is to be used. Long (1997), p.2, clarifies on this point with
an example of the education variable:

“Education can be measured as a binary variable that distin-
guishes those with a high school education from others. Or, it could
be ordinal indicating the highest degree received: junior high, high
school, college, or graduate. Or, it can be a count variable indicating
the number of years of school completed. Each of these is reason-

able and appropriate, depending on the substantive purpose of the
analysis.”



Chapter 9

Discrete Choice Models

The models in which the dependent variable assumes only discrete values are
known as diserete clwice models, These models have diverse applications since
many cconomic responses are of a qualitative nature and. frequently. the depen-
dent variable is an indication of a discrete choice. such as a “yes or no’ decision.
This is an example of a binary choice model. Known types of binary choice mod-
els are the probit model. the logit model. the Weibull model. ete. When there
are more alternalives, we speak about multiple choice or mmltiple response wmod-
els. There are two types of multiple response models: ordered response models
and multinomial models. Tor the latter iype of models. two kinds of models will
e analyzed: multinomial logit model and multinomial probit models.

9.1 Binary choice models

In order to consider a model as a binary choice model. the dependent variable
may only take two values. i.e. zero or one,

Usually. a transformation approach for the probability that a certain event
oecurs is employed, which is modeled as a function of characteristics {explana-
tory variables) and nnknown parameters:

P (event j occurs| x: 8) = Py =j|x:8)
= F{rclevant variables; paameters} = F (x: 3).

where X is a vector of relevant variables determining the choice for event § and
3 is the vector of nuknown parameters.

We may distinguish two approaches: the regression approgch where the dis-
tribution function and the inder function approach. where the choice among the
alternatives is made according to one single index.

241
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9.1.1 Regression approach

Each binary decision is assumed to be represented by a dichotomous random
variable or y := 1 if event E occurs and y := 0 if event E does not occur.

In the (above) labor force participation example, the dependent variable can
be defined as y := 1 if the respondent decides to look for a job, and y := 0 if the
respondent does not want to participate.The probability that the event occurs
is assumed to depend on a vector of explanatory variables x and a vector of
unknown parameters 8. An array of factors such as age, gender, marital status,
level of education. work history, ete... explain the decision of participating in
the labor force, and are gathered in the vector x. The binary choice model can
be written as:

P(y=1{x8) = F(x;8)
P(y=0|x:8) = 1-F(x:@).
Which are now the suitable models for the function F' (x; 3)7

o The first option is to use the linear probability model (as a linear regres-
sion), where it is assumed that the general nonlinear function F' (x;3) is
linear in the variables and the parameters:

F(x;8)=F(X'B)=xB=y=E(y|x;8)+(y— E(y|x;8)) =x'B +e.

A serious drawback of this model is that x’3 is not constrained to lie in
the unit interval as a probability should. Therefore, such a model might pro-
duce nonsense probabilities.! For this reason, the linear probability model is
less frequently used except as a basis for comparison with other models. We
therefore require for a given regressor vector that x"@lim mP (y=1|x) =0 and

’lgm P (y = 1|x) = 1; in other words that the probability distribution function

property for the regressor vector is required. The most widely used frameworks
are the probit and the logit models. For asymmetric distributions, the Weibull
model is also popular.

» Probit model, which uses the standard normal distribution function, or
F (X’ﬁ)= J‘i‘-wﬁ ]éwe—%:‘-‘dt‘

® Logit model, which uses the logistic distribution, or F' (x’ﬂ)—m

» Weibull or complementary log- log model (Long (1997), pp.51-52), which
corresponds to F (x/8)=1 — e "; this probability distribution is com-
plementary to the log-log model. which is defined as F (x'8)= e~¢ &

! The linear probability model has another flaw, since it might produce negative variances.
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The regressiou approach can be studied for two basic cases: the case of re-
peated observations and the case in which the observations are not (sufficiently )
repeated.

9.1.2 Repeated observations for discrete choice

The linear probability maodel

Assuming that the behavior of N individoals (units of ohservations) has to be
imvestigated, the binary choice model for individual i 1.2, .. can {as a
starting point} be represented by the sbinple linear modael 3, x}F 4+ £; with
. - f - . . .
the classic assuniptions &, ~ (0.2} and F{g;lx;08) = 0. Then for the lincar
probability model in the binary choice model:
E(ydx:B)=1 x Ply,=1|x:8)4 0x Ply; 0'x:8) Ply,=11x:08)=x8.
so that the linear probability model implies that x{3 is a probability {shonld
alwavs lie between zero and one). Since Ply;=1x,: 8) cannot be observed in
. . N . . .
practice. a sample of n= S s considered. with n; the number of repeated
ohservations of judividual 4. Then. the sanple proportion p, or the ratio of the
number of titnes that yy=1 occurs in the sample with respect to e, s a valid
measure for £2(y; 1 x,:8). Hence, the linear probability model can be written
as:
pi xBam =Py (i 1L20N) (9.1)

where P, 1= Ply;=1]x:: 3)-

‘There are two possibilities: either repeated observations oceur with the error

- . . did g, _

tertn distributed as the binomial process 7, R0 (1 P /ng)or there are
no repeated observations with the error term following a two point distribution

sidt .
n, A B OB x8)). Under repeated observations model ($.1) becomes
for all individuals:

i©

p—F(X'Aig—XB8it7y-—D+nwih

e t.- = U T 0 x| £
fJI P—'r o i} P £

Elnn')— . H . : S5 2SI N B/ 2 PPN
0 0 RO e !fl. -\. Pt LN 5N

and p- (p1,p2. ... pa) The BLUK of 813 the GLS esthinator—(X'¢ 'X) 'Xd'p.
Since the true proportions P are generally not known, they can consistent]y be
estimated by the sample proportions. so that the estimated GLS {EGLS) or fea-
z - =1 - -

sible GLS (FGLS) is ,S:(X"I’ "X) X'd 'p with ® a consistent estimator
of & abtained by replacing P, by (i=1.2....N)

To guarantec thal the predicted proportion is in the closed interval [0.1].
(F}GLS has to be used under ineqguality restrictions. Therefore, the relevant
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minimization problem is Mé'n (P-XB)® ' (p—XB) st. 0 < XB <y,

with ¢ an N vector of ones. Construct therefore the Lagrange function £ =
(B-XB) -1 (8- XB)+A] (¢ — XB)+ A, X3, so that its unconstrained max-
imization leads to the normal equations 2X'® 'p = 2X'® ' X3+ X' A — X',
or

B=(X'®"'X)"' X' 'p— % (XB2) T (XN =SX)

-

v

- .

B if strict inequality

The disadvantage is that there are no analytical sample properties of 3 (for
estimated ®); only numerical simulation properties can be obtained.

The probit model

From the linear probability model in (9.1) we have p; = P; + &;, where the
probit model implies P, = F(x/3) = (ff;f 7127 exp (—3t?) dt). Moreover,
F(pi)=F (P;+e¢&;)or F~!(p;) = F~' (P, +¢,;), where F~! () is the inverse of
a normal distribution function. Approaching F~! (P; + ;) by a (linear) Taylor
series expansion in the neighborhood of P;, by applying the inverse function
theorem (the derivative of the inverse of a function is the inverse of the derivative
of a function in that point):
P2 (p) = P~ (P)+ 25508 | (i = P)=F~" (P)}+ prrtemmy, where £()
is the standard normal pdf at F~! (P;), or:

v =~ X\ + u;, (9.2)

with v; := F~! (p;) the observed probit and u; := Frr=treyy: Where E (u;) =0

F; P, il
i XS i
and var (u) = S St

n

In vector-matrix notation (9.2) becomes v ~ X@+u, or the EGLS (or

-

FGLS) estimator for B3 satisfies: fi = (X’@"‘X)_l X'®'v, where ® is a
diagonal matrix with the i*" diagonal element war(u;) = Wﬁ}_—jh

Forecasts for the probability of an event E (and certain x;) are given by:
pi=F (x'B) = [P £ (t)dt with f(-) the standard normal pdf.

The logit model

For the " individual (i = 1,2, ..., N), the sample proportions are defined as the
true, unknown proportion plus an error term, or p; := P; +1,, and based on the
logistic distribution function: y (z) = The= 2 =X, or:

1

P.'=F(x;ﬁ):m‘

(9.3)
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Starting from the odds ratio k; = rTI—’;ﬁ and nsing a LTaylor series of first order
in the neighborhood of B
dlu( —‘—,)
lnk;=In “f’pr]:ln P + Zr e (p; - Pt
e I
~ In l—"_"ﬁ—_‘—j,ll’ —x’ﬁ b, with g, g (U w)
Then the observed logits arew;  ln - X, B+u; or g = o0 = A

so that p; = {1 poe™ e - pie” = T‘( - = ]—Hl_?. which is the logisie

distribution function with e =b ¢ = 1.

The forecasts of the probability Py, 1]x,:3) in the logit model satisfy
| i

b — v xtH
L] e n

Example 9.1 Fomilies want fo buy a cortain product and one wonders how this
purchose decision depends on meomne.

The relative frequency of Families buying the product is p; and the odds
ratio satisfics In ]—i"p-— =1, x{B+u (x, s a vector consisting of income levels

for individual ¢}

Woeibull or complementary log-log binary choice model

The basic Weibull or complementary log-log model can be specilied as:
Plpo=1) F (x{ﬁ) S PP R, (0 L2 N with F{h = 1 ¢

:f - - . -
and f; = e < {eg the dependent variable g i an indieator that the patent
citation occurred in a particnlar industry): by taking natural logarithms of this

distribution function twice, we find that lo [— n{1-Ply; l|x.,:f‘1)] }(;B = 1.
9.1.3 Marginal effects (or ‘slopes’)

_ _ R 6 sy
a. The slape for the probit model i (f;':'_ = _f'i(.]-_l - f (xiﬁ) i3, with Fiya

standard normal pdf

— . I
::2—;;' a(1 ce et S
. The slope for the fogit model 15 {‘_fr =— - .= (—- — .
e o ]—('_'Irs)
aF(xB)

¢. The slope for the Weibnll model is —

itr,,

w, T,

f -'_",(Ai) - oTifl o7 iy the Weibull or complementary log—lr‘ag pedf caleulated at
the wean of the estimated structural part of the model. The slopes can also he

evaluated at the sample ncan .
For a binary independent variable d. the expression for the slope hecomes:

Py 1x.d=1 Py 18.d 0).



246 CHAPTER 9. DISCRETE CHOICE MODELS

However, Greene ((2000), p. 817) indicates that “simply taking the deriv-
ative with respect to the binary wvariable as if it were continuous provides an
approzimation that is often surprisingly accurate”.

9.1.4 Forecasts
Forecasts can easily be made, e.g. for the probit model p; = F (t?,) = ! (x{fﬁ) =

ff:',f #e‘i‘"dt: and for the logit model p; = (1 + e_xis)_i. The decision for

the best forecasts can be taken based e.g. on the minimal Theil’s inequality

N2
coefficient U = \/ + il (p,- - ﬁ,-) , which is a goodness of fit measure (mean

squared forecast error).

9.1.5 No repeated observations

Now, the case in which no repeated observations (or a very small number of
maximum 5) are available will be analyzed. In general, the likelihood contribu-
tion of observation ¢ with y; = 1 is given by P (y; = 1|x;;8) =: P;; similarly
for y; = 0. Hence, for N observations, the likelihood function is given as the
two-points Bernoulli distribution:

¢B) : =IhaBra-p)'™
= [LL (F&iB)” (1 - F(xiB)' ™, (9:4)
with y; = 1 if the event occurs and y; = 0 if the event does not occur, and F is,
in our case, either a standard normal distribution function (probit), a logistic
distribution function (logit), or a Weibull or complementary log-log distribution

function.
Maximizing the logarithm of (9.4):

L(B):=logt(B)=Y i, yilog F (x{B) + LI, (1—y:)log (1 — F (x;8)) (9.5)
w.r.t. B, leads to the first order conditions for optimality:*

dlogt(B) _ —N yi—F(x;8) / - N

_g‘%_l =, [F(x;,s)(bF(x;ﬂ))f(xim] x; = 0; where f(-) is the pdf (or
the derivative) of the distribution function F (-), the term between squared
braquets is often called the generalized residual of the binary choice model. *

20f course, if the objective function (9.5) is not globally concave, the algorithm vields
only local maxima.
f(xi8
F(x/8

= g
Ti‘%:’gﬁl] for the zero observations (y; = 0). For example for the logit model, this generalized
i

3T his generalized residual is equal to for the positive observations (y; = 1) and to

illin) i Etual o=@
residual is equal to |y — 525 | .
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The known parameter vector 3 is obtained by solving the first order condi-
tions, e.g. by Newton-Raphson (see Subsection A.2.2 in Appendix A}, obtaining
the following sequence of iterations:

-1
(k1) _ lk) _ a%gm\ AL(B)
o =8 ( 8308 ,g:,gu-1) o8

p=pt

Specification tests can be carried out on the use of the correct distribution
function without having to reestimate the model. The appropiate framework for
such tests is the LM framework {see Section 3.1). Similar as for the conditional
moment test in that section, LM tests for the binary choice model are based
on the first order conditions, to verify whether they are violated or not. For
example, in testing whether there are omitted variables z; it should be evaluated

whether | {F(x?ﬂi)_(f (—XF?l,s)) f{x.3)] 2 is significantly different from zero.

9.1.6 Index function models: latent variables representa-
tion

Models with discrete dependent variables are often in the form of index func-
tion models, that is, the outcome of a discrete choice is viewed as a reflection
of a latent variable model. For example, consider the decision of studying for a
graduate degree, say a master degree. The human capital theory states that the
person will analyze the expected net benefits (benefits minus costs) of under-
taking such studies and will compare this net expected income, appropriately
discounted, with the expected earnings (also discounted) if she does not follow
these studies. Normally, it is not possible to observe the exact factors that the
person included in her calculus. What is observable is the result of this calculus,
that is, the decision of undertaking or not such study.

Then, these factors can be modeled as a latent, unobserved variable y; such
that the response function for individual i is yf = (B + &, ¢ = 1,2,..., N,
where ] is not observable and, hence, is called a latent variable, and represents
in our case the individual i’s expected benefit of studying. Only the results
of y, denoted as y;, are observable. In such case, an individual chooses to
study if the utility difference exceeds a certain threshold or cutpoint 7, which
can deliberately be set at zero without loss of generality in this binary choice
context. Hence, for individual ¢ results are observed y; = 1 if 37 >0 (the person
undertook a degree) and y; = 0 if ¥} £ 0 (the person did not invest in human
capital). Thus,

P(y=1]x:; B)= P(y; > 0| xi; B)=P(xiB+e; > 0)=P(e > —x;0|x)

=1 — P{c € —x!8|x)=1 — F(—x;@), with F(-) being normal (probit), logistic
(logit), Weibull, etc. distribution function. T he unknown parameter vector 8
is estimated by ML.

In the next section, multiple choice or multiple response models will be
analyzed.
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9.2 Multiple response models

In this section, a distinction will be made between ordered (or ordinal) response
models and nominal response (or multinomial) models.

9.2.1 Ordered response models

An ordinal or order variable has categories which can be ranked from low to high
and the distances between categories is unknown. In this section, the focus will
be on ordered response models, in particular, the ordered probit and ordered
logit models.

Before considering the models with ordinal outcomes, it is noteworthy that
the fact that a variable can be ordered does not mean that the variable should be
treated as ordinal: a variable might be ordered when considered for a purpose,
but be unordered or ordered differently for another purpose. An example pro-
vided by McCullagh and Nelder (1989) is illustrative. They consider the exam-
ple of colors, which can be arranged according to the electromagnetic spectrum.
However, this ordering is not necessarily appropriate for all purpose. Consider,
e.g. customers who are about to buy a car and their preferences. There is no
reason to believe that a buyer’s preference of colors for a car can be ordered
according to the color wheel!

Latent variable model

Assume that there are m > 2 alternatives (e.g. the types of jobs) and that the
choice between these alternatives is based on one underlying latent variable, or
for individual i the model can be written y; = x!/3; + &; and the observable
variable y; = j if 7;_; < y/ = 7; for unknown 7; with the property that
o = —00,71 = 0 and 7, = oo. Hence, the probability that the alternative j
is chosen, is exactly the probability that the latent variable y! lies between two
boundaries 7;_; and 7;. For example, if there are three alternatives, we have
to check whether there exists a single index x]3 such that higher values of this
index correspond with larger values for y;. Then, an ordered response model can
be written as:

yi=x;B; +ei, yi=1if yf 0, 45=21f0 <y S7and y;=3 if y} > 7.

Assuming now that z; i N(0,1) yields the ordered probit model and if the
£; are iid according to a logistic distribution, an ordered logit model is obtained.
These models can be estimated in an ML framework which will be considered
now.

Identification To evaluate the consequences of the nonidentification of the
mean of y;, consider the univariate model y; = a + fz; +&; with thresholds 7 i
with a and 3 being the frue parameters (i.e. they are used to generate the data
that is actually observed). Define an alternative set of parameters .

a=a—cand7; =7; —¢, (9.6)
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with ¢ being an arbitrary constant. The probability that »  j Is the same.,
whether the true or alternative parameter sets are used: Py = jlare 3) Flr,—
a—dr) - F(rjo —a Jr)=F(r} -a-dz)-Fl{r; | —a- Aax). Given that
both sels of paraineters generate the same probability of an observed ontcome.

there is no way to choose among the two sets of parameters using the observed

data. since a change in the intercept in the model ean always be compensated
by a corresponding change in the thresholds: the ordered response model is
unidentificd.

There are two assumptions which are commonly nsed to ident ify the model:

1. Assune that 7 = 0, which involves setting ¢ — 73 in (9.6)
2. Assume ¢ 0 which involves setting ¢ - a in (9.6).

These two assumptions identify the model imposing a constraint on one ol
the parameters. These different identitying assunptions lead to what are known
as different parameterizations of the model. Tt is Important to note. however.
that the chaice of which parameterization is to be used is arbitrary and does
not affect the estimation of 3 {except of course for 3,), nor the tests associated
with the estimation.

Estimation Let 8 be the vector with parameters of the model {inchnding the
intereept 3, and 7 the vector containing the threshold parameters: and 3, or
71 i constrained to identify the model. The probability of ., 7=

Pl = jlxi B )= T(r, —xiB) = Flrj 1 = x/B).

it ohser-

The probability that any value of 3 was actually observed for the ¢
vation is
Ply U x.B.7) ify Lo Ply =jlx.B.r)if g Plyy=mlx. 8.7)f
Y, =71t

Provided that the observations are independent. the joint likelihood equation
becomes: )

Ha. 1) ﬁ [T Py 4% B.7)— [[ [1 Fir,—xB3)— {7 ;21— x,{3). where
; : J

gl 1y -3

[1 is the multiplication over all eases where y, is observed to be equal to § (by
o
this gperator. it is ensured that all individuals choosing a certain alternative 3

are cousidered ). The logarithm of this equation can be maximized with methods
wentioned in Chapter 1 to obtain ML estimators of 3 and 7. These estimators
are nnder somwe regularity conditions consistent. asymptotically normal. and
asymptotically cflicient.

9.2.2 Multinomial models

Wher a variable cannat be ordered. it is called nominad. "This section focuses on
mudtinomial logit aud multinomial probif models. The multinomial logit model
is (he niost frequently wsed for nominal outcomes. The characteristics of the
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outcomes are used to obtain predietions of the (multiple) choice that is made
by means of the conditional logit model

The multinomial logit model

This models considers all possible comparisons among the possible alternatives.
In this sense, the multinomial logit is an extension of the binary logit model,
which is made difficult by the large number of comparisons that are involved
(e.g., for three outcomes, the multinomial logit (model) is roughly equivalent®
to running three binary logit(s) (models) comparing outcomes 1 to 2, 1 to 3 and
2 to 3).

If there are e.g. m alternatives, which can be divided over individual ac-
cording to utility indices, e.g. the index U,; is the utility level that indi-
vidual i attaches to alternative j (i = 1,2,...,N:;j = 1,2,...,m). Now al-
ternative j is chosen by individual ¢ if it yields the highest utility, i.e. if
Uij = max{U;;,Uss, ..., U} . Assuming that this unobservable utility index
U;; is equal to a constant plus a W N error term, the problem of utility selection
boils down to a stochastic clla.ract?rization of these error terms, with e.g. the
log-log distribution F (x'B)=e ¢ ﬂ(a,lsc:- called an extreme value distribution).
Uuder this distribution assumption of 7id disturbances, it can be shown that

Bl
PY:=j]x = , so that the loglikelihood function to be maximized
Yi=jlx)= T g
with respect to B is: L(3) =2 D) [ﬁ'xu (1 + 3, eﬁ’xik)] .

=lyi=i

Multinomial probit models

A natural alternative to the multinomial logit is the multinomial probit. This
model relaxes the independence restrictions built into the multinomial logit
model. Now the utilities indices can be written as U;; = B'x;; + €;; with
(€i1.€i2,...,Eim) mutuallyiid distributed for each individual according to a
N(0,X%), where X is the m x m covariance matrix of the error terms of all
alternatives. The term in the loglikelihood that corresponds to the alternative
J is

P(yi=3|%i, B)=P(Us; > Uir)=P (€01 — &5 < B (Xir — Xij), - - ,Eim — Eij <PB'(Xim—Xij))-
Note that this multivariate normal distribution implies that the errors can be
correlated among alternatives. This is possible since it is simple to incorporate
correlations among errors in a multivariate normal distribution. For example,
the bivariate normal distribution is

F=P(X\ <z,Xa <@)= [T2 [T f(21,2,p)d21d2,

ex —’:+‘2‘2"“l‘2
with the pdf f (z;, 2z, p)= p[ _1_3(11—_8“_]

2 (1—p?) /3

, where p is the correlation between
I and To.

4Long (1997), pp. 149-150. provides the derivation of how the estimation of the linked set
of binary logits differs from the multinomial logit given the ‘no simultaneity of the samples’.
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9.3 Cases and exercises

9.3.1 Solved cases

Solved casc 1

We will consider the occupational decisions. and in particular, the factors that
would lead a student to choose to become a teacher. Gertel et al {2002)
study for twenty-nine Argentinean metropolitan areas the decision of becoming
a teacher. mcasured at the step of the educational years of university or college.

The dependent variable is a dumimny variable that reflects whether the student
chose u teaclier training course or not. The independent variables are: a dunimy
variable indicating the gender of the person. man, the age of the indivicdual.
represeuted by the variable age. the civil status, married, whether the person
has recently moved from another place in the same province. another provinee
or another country or not. migrat. and the fact that the individual lives or
not in a bigeity (mnore than a million inhabitants’ city), Labor market factors
are reflected by the variables working. that indicates whether the person is
working at present or not. and rel_wage, the teachers’ relative wage. Finally.
the study incorporated per capita income level, through four levels of income:
low. average. high and very high, according to whether the per capita income of
the family of the student falls among the following categories or not: zero and
mean level of income. mean and mean plus a standard deviation. between the
mean plus a standard deviation and mean plus two standard deviations. and
more than the mean plus two standard deviations- low_ y. avg_u. high _y and
v laghy. respectively..

Marginal effects FEstimates of the linear probability, logistic. probit and log-
log models were computed. 5 Table 9.1 shows the marginal effects discussed
in Section 9.1.3 and also known as slopes. with all the variables valued ar their
means. This can be straightforwardly done in Stata.

From the slopes in Table 9.1 it is obscrved that females are nuch more likely
to undertake teacher studies than men; being married and economically active
strengthen the likelihood of choosing this kind of studies. By contrast, living in
a bigeity and having finished the secondary school in a different city than the one
where the student lives, decreases the probability of choosing a teacher train-
ing course. The socio-economic background of the student sugpests that those
preparing for teaching tend to come from less wealthy homes. Finally, there is
a significant effect of the expected remuncration of the teacher (rel _wage) on
the studenis’ choice in Argentina.

B e estimates of e complenentary log-log regression that Stata provides coineide witl
the Guinpert 2 estimaues of the SAN software. T s Buportant to b awire of what the software
von are nsing = deing, Unlike wost programs that mode] (e prohaidlity uf a0 L SAS models
the prolability of a 0 For probit and logit models. given that their pedt are Lot syrneetvic,
all thes coeficients will have 1he epposite sign. given that o these cases holds: #{y = 0] =
1 -ply =1y=1- Flat3) = F(—ar3). This will not e the case {or asvomietrie models.
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Table 9.1: Marginal effects

Variable Probit Logit Cloglog Loglog
Age 0.0007 0.0013 0.0010 0.0008

Married 0.0404*)  0.0394**)  0.0376**)  0.0405(**)
Migrat -0.0665*)  -0.0635**) -0.0615**) -0.0689**)
Man -0.1083**)  .0.1038**) -0.1011**) _0.1126(**

Working 0.0236™)  0.0212*)  0.0195*)  0.0260*

Bigcity -0.0502(**)  -0.0470**) -0.0452(**) -0.0533(**)

Low vy 0.0454**)  0.0416%)  0.0390"**)  0.0492(**)

High_y  -0.0390**) -0.0373**) -0.0364**) -0.0406(**)

V_high  -0.0653(**) -0.0626(**) -0.0611(**) -0.0679(**)

Rel_wage 0.04220**)  0.0402**)  0.0388(**)  0.0434(**)
Statistical significance: ("'jp < 0.01, [‘)p < 0,05,

For the case of effect of a dummy variable, we compute all the variables at
their means, except the binary variable we are interested in. In particular, we
are interested in analyzing the influence of gender on the decision of undertaking
a teacher training career, therefore, the only variable that is not valued at its
mezan is the gender variable, man. This effect can be approximated by means
of the following

P { teacher = 1|X,woman = 1} — P { teacher = 1|X, woman = 0}

Considering the logit model, this marginal effect for a binary variable is
computed as follows

exp(X'B3; woman = 1) ___exp(X'B; woman = 0)
1+ exp(X'B;woman = 1) 1 + exp(X'B; woman = 0)

Plotting probabilities over a range of a variable When we have sev-
eral independent variables, examination of the effect of two variables while the
remaining variables are constant can be done graphically®.

Considering the student’s decision example and the effect that relative wage
and gender have on the probability of choosing to be a teacher, these effects
can be computed by holding constant the remaining variables at their means,
and letting wage and gender vary. To do so, first we compute the estimated
probability of being a teacher, for all the variables valued at their means, except
woman = 1, and let the adjusted salary vary. Similarly, the probability that
a man chooses to be a teacher can be calculated by letting woman = 0, while
letting the adjusted relative wage to vary.

For a thorough discussion of how to plot probabilities over a range of a variable and the
interpretation of marginal effects, see Long (1997, pp. 66-79).
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Figure 9.1: Gender effects on the probability of choosing & teacher training
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Figure 9.1 shows the effect of the gender variable, with the two funciions
plotted over adjusted relative salary for the probability models considered. The
inarginal effeet is the distance between the two functions. The figure shows that
for the models, the marginal effect increases with the higher relative wage. This
means that the probability of choosing a teacher training carcer for each level
of relative wage is higher for wornen than for men.

Forocast evaluation The first two forecast error statistics show that the
smallest prediction ervor for the sanple are hoth the logit model and the com-
plementary log-log. and hence the better the forecasting ability ol that model.
The Theil inequality coctficient always lies between zero ael one. where zero
indicates a perfect (it. Therefore, according to this criterion, there is a slight
preference for coplementary log-log over the logit.
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Table 9.2: Forecast evaluation

Linear Probit  Logit Cloglog  Loglog
Root mean sq. error  0.3285 0.3277 0.3277  0.3277 0.3278
Theil ineq. coefficient 0.6332 0.6297 0.6291 0.6290  0.6311

Solved case 2

Lukach and Plasmans (2004), measure knowledge spillovers in Belgium, analyz-
ing patent citations in patents granted to Belgian corporate applicants. They
model the probability that a patent citation occurs in the citing patent belong-
ing to a particular industry, for example, Chemistry. The dependent variable
assumes a value of 1 if the citation occurs in a patent belonging to a firm of the
Chemistry industry, and equals 0 otherwise.

The independent variables are: a dummy indicating whether patents in a
citation pair are both owned by the same firm (SameFirm), an dummy indi-
cating that the citation has oceurred between patents belonging to the same
industry (Samelndustry), and the TimeLag between the citing and the cited
patents. Finally, they include the year in which the citing patent was issued,
represented by the variable Year.

Table 9.3: Estimation results

Probit Logit Cloglog Loglog
Timelag 0.003101  0.004957  0.004369  0.002969
Samefirm 0.270239  0.479304 0.433786  0.228997
Sameindustry -0.419687 -0.770193 -0.710003 -0.343601
Year -0.014244 -0.025384 -0.023058 -0.012010
Intercept 27.6766  49.43616  44.6645  23.56793

Table 9.3 shows the estimates for the Chemistry industry for the models con-
sidered. It also includes the estimates of the complementary log-log regression
that Stata provides, which as commented before, coincide with the Gompertz
estimates of the SAS software. Finally, we have computed the marginal effects
for the models considered: probit, logit and log-log and complementary log log
(see Table 9.4). It is important to note that the sign of these marginal effects
do not vary when we consider different specifications.

Finally, Table 9.5 displays the root mean squared error, and the Theil in-
equality coefficient calculated for each one of the models. The root mean squared
error indicates that in the case of the Chemistry industry, the most accurate
model is the complementary log-log, since it has the smallest prediction error
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Table 9.4: Marginal cffects

Probit Logit Cloglog Loglog
Timelag 000081177 0.000757777  0.000735%7  0.0009400
Samefirm 0.07913107)  0.080813¢*)  0.0822420 0.07578747)
Sameindustry  -0.113836°*)  -0,1176291*1 -0.119496"! -0.108815 !
Year L0.00386307) 000387617 -0.0038800+7)  -0.003804!"*!

Statintical signifieance: ©hp < 001 ™p < 0,05,
Table 9.5: Forecast evaluation
Variable Probit Logit Cloglog Loglog

Root mean squared error 0.391712  0.391585  0.301477  0.391896
Theil inequality coefficient  0.607218  0.606741  0.606108 _ 0.608100

within the sample. Also according to the Theil ineguality coctficient. the model
that best fits the data is the complementary log-log one. since it exhibits the
smallest. coefficient. Henee. this model is chosen for ex-anfe forecasting.

In addition to ‘Chemistry’, Lukach and Plasmans (2005) analyze m their
paper seven other industries: Tpstruments’. Phannacy’, ‘Other Machinery”.
‘Paper. Printing and Publishing'. Metal Products. excluding Machines™. *Cow-
puters and Office Machines', and *Other Industries”.

9.3.2 Exercises

1.

Show that in the logit model. e raised to the power 3, is the factor by
which the odds change when the i independent variable increases In one
it.

Assmmne a lincar probability model, which is to be fit to a set of obser-
vations on a dependent variable y that assumes values zero and one. and
@. A Tegressor varying continuously across chservations. Obtain the ex-
pressions for the 1.8 slope in the regression in terms of the mean(s) and
variance of 2. Interpret the result.

With the dataset given below. estimate a logit and a probit. model and
test the hypothesis that x is not influem ial in determining the probability
that y = 1.

vy 1 0 0 1 1

x 9 2 5 4 6 7 3 5 2 6

Clonstruct the LM statistic for testing the Lypothesis that all the slopes
(but not the constamt term) are equal to zero in the binomial logit model.



256 CUAPTER & DISCRETE CHOICE MODELS
&, Give the loglikelihood function for the ordered probit model if <, &
N (l}‘ or'}) rather than =, wd N0 1y,
6. Consider a dataset that consists of 230 observations. of which the responses
are
y O 2 3 4
n 50 10 15 80 35
meters of the ordered probit mnodel.

. Obtain ML estimates of (he unknown para-



Chapter 10

Limited Responses,
Duration and Count Data

10.1 Censoring and truncation

A censored sample is a sample for which (for a known set of independent vari-
ables) a number of observatious cannot be observed, i.e., we have limited infor-
mation about the dependent variable.

A truncated sample is a sample for which the data for independent vari-
ables are only available if the dependent variable can be observed. Thetefore.
truncation limits the data more severely by excluding observations based on
characteristics of the dependent variable,

There are a varicty of methods for censoring and truncation. We will focus
on the most frequent model of censoring: the tobit model.

10.1.1 Problems raised by censoring

Being unable to observe certain values of the dependent variable y causes
problems, and a decision should be made on liow the censored observations
should be handied. prior to the acceptance of the tobit model:

o Create a truncated sample by deleting the cases in which the dependent
variable is cepsored: the model is estimated by OLS using the truncated

sample.
o Create a censored dependent variable where all censored observations are
assigned the value 7 {the threshold or cutpoint). The models are est inated

by OLS using the censored dependent. variable.

257
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10.1.2 Tobit models for censoring

The classical example of censoring is the study of Tobin (1958) for durable
consumption goods; a consumer maximizes utility by purchasing durable goods
subject to the budget constraint that total expenditures are not to exceed the in-
come. However, the expenditures in durables are subject to another constraint:
the expenditures in durables should be at least equal to the least expensive of
the durable goods. That is, if the cheapest durable good is EUR 150, and the
consumer has e.g. only EUR 149 to spend, the expenditure on durable con-
sumption goods is null. In this example, the outcome is censored since one
cannot know how much the consumer would have spent if a durable good could
be purchased by less than EUR 150,

Taking account of unobserved heterogeneity in individual utility functions
and representing this unobserved heterogeneity in the form of an error process

€ 2 B;02)8=1.2, 0 } a tobit model or a censored regression can be

defined as: y! = x/B + €;,4 = 1,2,..., N with as observed values y; = y; if
y; > 0 and equal to zero if y; < 0. Hence, the observations are censored from
below at zero and the probability that y; = 0 is given by:! ) J
P(3:=0|x;; B)=P(y; < 0|xi;8)=P(¢; < _x;ﬁ|xi;f3)=P(§:‘§ _—::E)=F(—"%‘,£)-
which is equal to 1 — F(-) for a symmetric distribution function.

Assume N observations with the last s ;s equal to zero and the first ob-
servable N — s variables (for i = 1,2,.., N — s), the conditional expectation of
the observable variables y; satisfies

E (] i, yi > 0; B)=x[B+E (ei|x:, yi > 0; B)=x/8+F (&i|e: > —x/8).,

with the truncated density:

f(ei|l&: 2 —xiB) = E% for g; > —x!.

This leads to biased and inconsistent OLS estimates, because:
E (&i|&i > —x,B) = aeAi, with \i:=f (‘—;‘é)/l —F (‘—}E) :
so that E (yi| zi,4: > 0) =z{B+o. X (i=1,2,..,N —3).
The estimation of the tobit model can be done with two different procedures:

Heckman's two-stage estimation or using the ML principle. These two cases will
be considered here.

Heckman’s two-stage estimator

Heckman (1979) assumes that the probability F ("—:*ﬂ) is standard normal.
His estimation procedure consists in two steps for

'For more details on truncation. see Maddala (1983), pp. 365-369, and Long (1997), pp.
212-213 for a discussion on upper and lower censoring.
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1. Estimation of A, by a probit model and denote them by A, @ then we regard
these estimates as “observations of an additional explanatory variable” for
the model ¥, = x/B+o A, + 5022 L2 ...V

2. Teckman (1979} estimates the latrer model by OLS {given the estimates
A, which are not correlated by construction with the error ferm ). to
obtain aun estimate for 3 and for o..

Although the resulting estimator is consistent and asymptotically normal. it
is loss efficient and not easier to compute than the ML estimator. Moreover. OLS
standard errors in this two step procedure are incorreet {unless the degenerate
case of 0. = 1) since they are heteroskedastic (see Greene (2003). pp. 780-790.
for more details).

MLE of the tobit model for an arbitrary threshold

The ML estimation of the tobit model involves subdividing the set of observa-
tions into two subsets: the first with uncensored observations and the second
with the censored observations. For the second set of observations, one does
not know the value but can proceed using the computed probability of being
censored in the likelthood eqguation.

As indicated above, it is assumed that there are N -- s uncensored observa-
tions and s consored observations (ihreshold is assuwed to be known).

For the uncensored observations, i X3+ 550 = 1.2.....N s lor

. . : : . it -
the values of the latent variable y* > 7 {the threshold) with g; ~ (ho?) the
B — LS

joglikelihood function is log é*(8.0?) = »_° [log f (y_ﬂﬁ,ﬁ) - log (r&-] . where
—log o, is vbtained from the convolution rule {(when transforming from f(;)
to f (:7' yand 557 is the st over all aucensored observations.

For censored observations. x is knowt, and about the dependent variable
it is known that * = 7. Then. it can be computed Py, <7 x,:8.0%) =

F (%é) _so that the contribution of the censored observations to the like-
. N . . " - . r—x'4 TO -
lihood function can be written as £(8.02} = [[' F (%) . where [[" is the
product over all censored observations,

Finally. the loglikeliliood for both uncensored and censored observations sal-
isfles:

L(B.o*)=In#(B.c*)=2"" {lﬂgf (y’:m) - 10%”£}+th log (%’9)

and the usual properties of the ML estimators apply if the assumptions of the
tobit model are wet.

10.2 Models for duration data

Duration data is the length of time until an event (e.g. failure) happens. Du-
ration data was already used for a long time in physical aued inedical sciences.
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Related to this is survival times, for example the length of survival after the
diagnosis of a strong desease, or after an operation as a heart transplant. Social
scientists have recently applied a similar methodology on strike duration, length
of unemployment spells, time until business failure, etc.

This section consists of two parts: the analysis of the length of time (period)
before failure and the analysis of survival times.

The crucial variable is the length of time that elapses from the beginning of
some event either until its end or until the measurement is taken (which may
precede termination). The observation is a cross section of durations ti,ts, ....t,
(the beginning may be different).

Censoring is a pervasive and usually unavoidable problem in the analysis of
duration data, because measurement is made while the process is on-going, e.g.
survival times of heart transplant patients (observations on individuals who are
still alive are always censored); a sample of spells of unemployment, drawn from
surveys, will probably include some individuals who are unemployed at the time
the survey is taken. For these individuals the duration is at least the observed
t; but not equal to it! Therefore, estimation must take account of this censored
nature.

10.2.1 Parametric models of duration

Say, the spell length (e.g. of unemployment) is assumed to be equal to a ran-
dom variable T'. Then, a simple approach is to apply regression analysis to
a sample of observed spells. Suppose this random variable T° has a continu-
ous pdf f(t), where t is a realization of 7. Then the distribution function is
F(t)=/; f(s)ds=P(T < ¢).

Generally, we are interested in the probability that the spell is of length at
least t, given by the survival function:

S({t)y=1-F(t)=P(T >1).

Given that the spell has lasted until time ¢, the probability that it will end
in the next short interval is:

I(t,A) =P[R <T=St+A|T>t%).

Finally, if one is interested in the rate at which spells are completed, the
hazard rate must be analyzed:

PE<TSt+A|T>t)

Al) = Aiglu A
F Ft+A)-F(t) _f(t) _-dinS(t) (10.1)
~ A%o  ASD e a § 1

The hazard rate is the rate at which spells are completed after the duration
t, given that they last at least until £. The hazard function is the conditional
probability of a state change given the state has achieved a duration t.
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The hazard function

The hazard function can be more interesting than the survival rate or the pdf.
Therefore, one might consider modeling the hazard function itself. Consider
e.g. the case in which the hazard rate does not vary over time, i.e. A(f) = A, a
constant, which is characteristic for a process that does not have memory. If the
process does not have memory, the conditional probability of failure in a given
interval is the same regardless of when the observation is made. Then, from
(10.1), the differential equation __dl:ilsﬂﬂ = A results with solution InS{t) =
c— M, ie. S(t) = e M = Ce~*,with C the constant of integration. The
condition that §(0) = 1 implies that C = 1, and the solution is §(¢) = ¢~**. This
solution is the exponential distribution. Since with an exponential distribution,
E(t) = 1/, the MLE of A would be the reciprocal of the sample mean.

A decaying hazard function is referred as a negatfive duration dependence,
while an increasing hazard function is referred as a positive duration dependence.
In this latter case, the likelihood of failure at time ¢, conditional upon duration
up to time ¢, is increasing in £.

Example 10.1 Given the conditional transition probebilities Fij (Dy_1), te
the probabilities of switching from sitate i to state j, given that we have been in
state i for dy_) periods (Pyj (Dy—1) = 1— Py (Dy_1) for i # j), the hazard func-
tion is Py (D) = 1+g("r1(*':'df—11+’Tz("‘]"t—‘2) (1 = 1,2) which is strongly related

to the multinomial logit in Section 9.2.2.

Maximum likelihood estimation

The parameters of these duration models can be estimated by ML. The log-
likelihood function can be formulated for observed duration data t;,%a,...,%,:
InL(@) = 3-%Inf(t/8) + Y“InS5(£|#) with @ the vector of parameters A,p,
S the sum of the uncensored observations and 3°° the sum of the censored
observations.

Formulating now the loglikelihood in terms of f(t) := A(t)S(2),

Iné =" At 8) + " 1nS(1] 6),

where Z“u is the sum over all observations.

In order to estimate the asymptotic standard errors for the estimates, either
the estimator of the variance-covariance matrix in {1.12), the inverse Hessian or
the BHHH estimator can be used.

Accelerated failure time models

In the models studied so far, external factors do not have a role in the survival
distribution. Covariates can be added to duration models in a straightforward
way; however, the interpretation of the coefficients in the medel is quite complex.

Consider an exponential expression for the hazard rate, A; = e_x:‘s, with
x; a constant term and a set of variables assurmed not to change from time
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T = 0 until T = t;, the failure time. When expressing A; as a function of a
set of regressors, it is as if one changed the units of measurement on the time
axis. This is the reason why these models are also called accelerated failure time
models.

Note that generally, the regressors do not bear on the question of duration
dependence, which is a function of the scale parameter 7.2 The loglikelihood
can be rewritten in terms of 7. Therefore, let §; = 1 if the spell is completed
and 0; = 0 if the spell is censored, and let o := L and for the above hazard

rate \; = e %8 we can define mln(Xit;) == ““—t;l‘&@ =: w;. Denoting the pdf
and survival functions as f(w;) and S(w;), respectively, the (observed) random
variable is Int; = ow; + x/.

Given that the Jacobian of the transformation from w; to Int; is dw;/dInt; =
1/ @, the density function for Int; is f(Int;|x;,8,0) = L f ('" ";x-f’) ~Ehiel s

vival function is S(Int;|x;,8,0) = 8 (l"t‘;x"ﬁ) , and the loglikelihood for the
observed data is

In{(B,oldata) = 371 [6; In f(Int;| x;, B,0) + (1 — &;) In S(Int;| x;, B,0)].

Heterogeneity

We will model heterogeneity in the parametric model. Assume a survival func-
tion conditioned on the v; (individual specific) effect. The survival function is
S(t|v;), and adding to that a model for the unobserved heterogeneity f(v;):

S(t) = BIS(t|v)] = [ S(t|v)f(v)dv.

Using now the gamma distribution to incorporate heterogeneity into the
above Weibull model, and assuming v has a gamma distribution with mean 1
and variance % we get the pdf f(v) = ﬁn—)e"“’v"*l and the survival function
S(tl) = e~ (A",

The resulting unconditional distribution is

5(t) = [ S(t|v)f(w)dv = [1+ L(M)™]~.

The limiting value for £ = 0 corresponds to var(v) = 0, which is the Weibull
survival model without heterogeneity. Finally, the hazard function for this
model is A(t) = Am(At)™1[S(t)]*.

10.3 Count data

In order to assess the impacts of the determinants on the number of a variable
like €.g. patent applications, the discreteness of this variable has to be taken

*While the exponential distribution leads to a hazard function A(t) = A and to a survival
function S(t) = e=*f, the Weibull distri?utiou leads to a hazard function A(t) = Am(At)e™ =1
and to a survival function S(t) = e= (A0,
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into account. For instance, because of difficulties and uncertainty inherent to
R&D activities, firms do not always apply for patents and hence a zero value
is a natural outcome of this variable. Because of this property, the use of
conventional linear regression models is generally inappropriate. The reasons
are that some basic assumptions such as the normality of residuals or the linear
adjustment of data are no longer fulfilled. There are a variety of ways of dealing
explicitly with the characteristic of count data; and the usual way to deal with
the discrete nonnegative nature of the patent dependent variable is to consider
the simple Poisson regression model (Cameron and Trivedi (1998) p. 279). In
this model, the probability of a count is determined by the Poisson distribution,
with the mean of the distribution being a function of the independent variables.
This model has the characteristic that the conditional mean of the outcome
is equal to the conditional variance. However, in practice, it is often the case
that the conditional variance exceeds the conditional mean. To deal with this
problem, we make use of the negative binomial regression model, which allows
for the variance to exceed the mean. Another problem is that the number of
zeros in a sample sometimes exceeds the number predicted by both the Poisson
regression model and by the negative binomial model. Zero-modified models
(e.g. zero-inflated count models) explicitly model the number of predicted zeros,
while allowing the variance to differ from the mean. These models are based on
the Poisson distribution, which is considered in the next section.

10.3.1 Poisson model

Let y; be the variable for observation i, where ¢ = 1,...,n, which represents a
discrete variable as c.g. the number of patents (or patent applications) of firm <.
The ;s are independent and assumed to have individual Poisson distributions
with parameters A;s, which depend on a set of independent variables, that in
this example are the logarithms of the firm's R&D expenditures:

L=P{Yi=y|x;B) = -7 (1=0,1,2,.),

where x; represents the set of explanatory variables and 3 is the vector of the
unknown coefficients. As a basic property of the Poisson model the (conditional)
mean and variance are equal. or E (y;| x:; 8) = var (vl %3 8) = A

Assume now an exponential {conditional} mean function, i.e. A;
which is called the loglinear model. Notice that then -O—'-E—%Lx‘:—ﬁl = 8, E (y:|x::8)
so that a one unit change in the j** regressor leads to a proportionate change
in the conditional mean E {y:|x;;3) (since 24 y*‘"‘“g;{fﬁy'l"'*ﬁ) =4,).

The unknown parameter vector 3 is estimated by the ML method through
the maximization of the loglikelihood function:

_ ‘x 3
_ oFx,

i f ‘x
L(B) = T [wsB'x: — ¢ — In(!)], (10.2)
3 A0 exponentia] mean function is taken because the nonmegativity of this {eonditional)
mean {and of the {(conditional) variance} should be assared (e, a negative mumber of patents

is not possible).
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which leads to the first order conditions:
= Y i bxiyi — ef x| =0,

from which a can be solved by using an algorithm mentioned in Chapter 1.

The ML estimation of the Poisson count model is robust to distributional
misspecification as does also OLS in the linear regression model under normality.
Given \; = ¢#™, the ML estimator 3 of the Poisson model is consistent even if
the assumption of the Poisson process cannot be applied (Cameron and Trivedi
(1998). Chapter 3). Since, however, the Poisson model implies the presence
of heteroskedasticity in the regression model (because of the property of the
Poisson model that its mean and variance are equal), the usual Poisson ML
standard errors and #-statistics need to be adjusted.! A possible correction
is var (yi| xi, 8) = a); = aeP™, which implies a generalization of the Poisson
model if & # 1. Data is called overdispersed if o > 1 and underdispersed if o« < 1.
Then the usual Poisson ML standard errors need to be multiplied by /& and
t-statistics divided by \/&. An estimate of a is obtained after ML estimation
of B; usually @ = (n — k)™ o0 (v — i) /¥ with i = eB'xi_ Tt is essential
that this correction be made for the Poisson regression model as it can make a
much bigger difference than heteroskedasticity corrections for OLS. Often data
is overdispersed and the uncorrected t-statistics are erroneously much larger
than the correct(ed) t-statistics.

The Poisson model produces no equivalent of the standard R? goodness of
fit measure for the linear regression. Greene (2003), p. 742, presents a measure
based on the standardized residuals:

where \; = exp(a’xi) and § = Z _ Ui- Although this measure has the
advantage that it compares the ﬁt of the count model with that provided by
a model with only a constant term, it can be negative and it can fall when a
variable is dropped from the model. To overcome this drawback, Cameron and
Windmeijer (1993) propose a goodness of fit measure based on the deviences

di =2 [y In (f‘:) = (e ;\,)] :

B o (3)-e=30]

2 SN AT
e T )]

#This is similar to the OLS estimates that are consistent if the errors are heteroskedastic.
but an adjustment has to be made to the standard errors then (GLS instead of OLS).
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10.3.2 Negative binomial model

‘The negative binomial regression relaxes the very restrictive equality conli-
tion betwreen conditional mean and conditional variance of the Poisson model
{through which sometimes strong heteroskedasticity is present) by including in-
dividual heterogeneity, v, in the intensity rate A% = ); and assuming that v,
is gamma distributed. This assumption allows us Lo integrate out vy from the
composite pdf. The resulting negative binomial pdf iy given by:

. ) I‘{u_] —-yr) ol 3 o
gy xiia, 'B) T Tia L -y.) (f.r o )\,) (”‘_I‘H\r‘)

where I'{-) denotes 1he gamma function. This wodel. which is particularly suited
for overdispersed data, can De estimated by ML and reduces to the Polsson
model if & = 0. We can use a simple (£)est on ¢ to discriminate between the
negative binomial and the Polsson regression model.

Although the negative binomial model is more eificient than the Polsson
model, in practice the efficiency benefits are generally not so sizable. The nega-
tive binomial model should be used, however. if probabilities have to be forecast
and not just the {conditional} mean has to be modeled. The negative hinoniial
wodel cannot be estimated if data is underdispersed.

Another general count model is the hurdle model. which treats the process for
zeros differently from that for the nonzero counts. In this case the {conditional)
mean is no longer 3% g0 that the Poisson count model is inconsistent in that
case {(and the hurdle model 1s consistent then; see Section 4.7 of Cancron and
Trivedi {1998)).

10.3.3 Zero-inflated count models

An important property of connt data is that the zero value is a natural outcome
of this variable. For example, due to difficulties of the R&D process, technolog-
ical and market nncertainty, competition and other factors. the firm can decide
not to apply for a patent. Therefore, the zero valne of the patent count has
also ils own informative meaning. The zero-inflated count wmodels {such as in
Lambert (1992)) take this property of many counts as patent data into account.

The zero-inflated count model combines two different model structures in the
application to e.g. firms' patenting data. The first part 1s e.g. the logit model,
which explains ¢.g. the decision to patent as opposite Lo the decision never to
engage in such an activity:

P(Yi=0x:8) =&, - (1 —¢;)e”

where ¢, := 12?1;[1:7[’?}5) and \; = ¢ with x; representing the set of explana-
tory variables aud 3 being the vector of coefficients 1o be estimated, and z; is
the observable vecror of covariances, ensuring the nonnegativity of ¢,.

The second part is a Poisson count data model. which explaing the positive

{patent) count outcomes:
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P(Yi = | %1 8) = (1 — ;) ZEAAE
Now proceed with specification of the joint likelihood function for this model.
Denote as Iy,—o an indicator variable, which is equal to 1 if ¥; = 0, and zero
elsewhere. The joint loglikelihood function for this model, apart from known
constants, is

L(B.y) = Y, Iy,—oIn(e? ™ +exp(—e? ™)
+ 30 (1 = Iymo) (miB'xi—€2 )= 0 In(1 + %),
It is possible to consider a different specification for any valid distribution
function F; and consider a more general count model in place of the Poisson

model (e.g. negative binomial or hurdle model, etc.; see Cameron and Trivedi
(1998)).

10.4 Exercises

1. Compute marginal effects in the censored regression model and apply for
a normal and a logistic distribution.

]

. Consider the following observations from a censored normal distribution:
3.8396 7.2040 0.00000 0.00000 4.4132 8.0230 5.7971 7.0828 0.00000 0.80260
13.0670 4.3211 0.00000 8.6801 5.4571 0.00000 &.1021 0.00000 1.2526 5.6016.

(a) Formulate the loglikelihood for a simple tobit model: y; = p + =,
with y; = y; if u+ & > 0 and zero otherwise, and with the error
Ej N (0. o g) '

(b) Compute the ML estimates of i and o.

3. Using only the nonlimit observations, repeat Exercise 1 in the context of
a censored regression model. Estimate p and o by using the method of
moments estimator.

4. Show that the estimation of the sample selection model (Amemiya’s (1984)
tobit II model), where the dependent variable is only observed if another
variable is of the binary choice type, boils down to an ML estimation of
Heckman’s ;. Comment the situation of correlated errors between the
two models.

5. The Katz family of distributions is defined by the probability recursion
ﬁ}.%l =G BB for 4y = 0,1,2,... and g+ vy = 0. Show that this yields
overdispersed distributions for 0 < 7 < 1 and underdispersed distributions
for v < 0.
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Panel Data Analysis
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Feonomic data can either arise in a time series or i a cross-section context.
It is obvious that the behavior of cross sections (e.g. cousumers, houscholds,
firmms, regions) is not necessarily constant but can change over thne. Moreover.
it is also possible that behavior in each period of time idiffers across the cross
coctions. Dutabases that combiue cross-sectional and time series data are called
panel data or fongitudinal data. Panel data econometrics is councerned with
estimating and testing an econometric model taking inte account diferences
i behavior between cross sections and differences in behavior in thme for cach
eross sectiorn.

The analysis of panel data suggests that the individuals are heterogeneous;
tine series and cross-section studies that do not control for this heterogeneity
run the risk of obtaining biased results,

I this introduetion we will briefly suunmarize the main advantages and linr-
itations of the use of panel data. but we will treat them in more det all later.

There are a number of advantages from using pancl data. First, panel data
are efficient wiien compared to random sampling of cross sections. With addi-
tional <ata on the same individuals, one can produce more reliable paraneter
estimates. Second. panel daia reduces and sometimes even clitninates estinuation
bias. This is particalarly the case for the estimation of aggregates. Consider,
for example, the estimation of the income distribution that may vary over time.
Such structural estimations using aggregate data can be accurately estimared
by means of panel data. which allows for time varyving parameters. Third, iden-
tification is ecasier. when compared to pure cross-section or pure tine series
data. ‘Through the combination of both, time series data rellecting shiort run
effects and cross-section databases emphasizing long run behavior, it is possible
to identify the individual dynamics. Fourth. one of the characteristics of panel
data is that it may alleviate the problem of multicollinearity, since when the ex
planatory variable varies in two dinensions it s less likely that they are highly
correlated. Finally, panel data analysis can account. for omitted variables due
to individual andfor time effects.

According to the specification of the underlyig model, this part will be
subdivided in two chapters: linear pancl data and nonlinear panel data.



Chapter 11

Linear Panel Data Models

The model to be studied in this chapter can be written for the it cross section
at period ¢ (7 1.2 N and ¢ = 1.2,...F) in its most general form as:
N ot
’){-(L}y,, =gy b X Ein {11.1)

with i, the observation of the A individual (country, industry. town, etc.)
at period L. g5 the correspouding error ternl, X the corresponding vector of
explanatory variables, 8;, the vector of unknown paraneters corresponding to
this veetor of explanatory variables. gy, o ft,+ A4 (;y unknown parameters that
may depend on individuals. time or may be interactive {depending both on time
and individuals) and. finally. v,{L) ;== 7 37 | ~,. L7 ap' order antoregressive
lag polynomial with unknown parameters v, with L the lag operator and [ the
identity operator.

In the first instance static Hucar panel data will be studied with (L) - L
Dynamie linear panel data models are treated in a separale section later in this
chapter.

From (11.1) it is clear that panel data characteristics can be attributed to
three different types of effects:

o Individual-specific and time-invariant effects g, which are the same for a
aiven cross section: these effects gz, represent the (direet) impact on the en-
dogenous variable y; of all thie time-invariant nonobservable characteristics
of the individual:

o Time-specific. individual-invariant effects A, that are the same for all eross
sections at a given point in tiwe but vary with time: this implies that cach
time period has a specifiec nonobservable characteristie:

o Individual-time varving effeets that are deterministic {¢;;) or stochastic
(¢} these ellects vary across cross seclions and through time -l.e. they
may vary with both @ and £
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However, next to the advantages of panel data set out in the introduction
to this part of the book, it is also important to keep in mind the limitations of
panel data. First, we have to restrict the basic model (11.1) so that a sufficient
number of degrees of freedom remain. Second, there are problems of data collec-
tion and design of a panel questionnaire. Among these problems, nonresponse,
problems of recall, that is, when the respondent does not remember exactly, and
of coverage are the most salient ones. Third, measurement errors can arise due
to unclear questions, problems of incorrect recall, inappropriate informants, de-
liberate distortions of answers, misrecording and interviewer effects. Four, there
are selectivity problems. Self selectivity, item non response and attrition prob-
lems are to be mentioned. Finally, short time span is a characteristic of most of
the panels. Hence, the asymptotic properties depend crucially on the number of
individuals tending to infinity. This causes some difficulties, in particular for the
case of limited dependent variables (the latter models, however, are examples
of nonlinear panel data models and will be discussed in the following chapter).

From (11.1), the most general static linear panel data model can be written
as:

K
Yit = By + Ekzg BruTrit + Eit,

where i = 1,2,..., N refers to the cross-section data points and t = 1,2,...,T
to the time penods Further, it is mostly assumed that F (g;;) = 0 Vi, ancl
E (&;) = o2 (but autocorrelation and heteroskedasticity will be treated in the
beginning and could be applied, sui generis, on each panel data model). In the
most general case, the parameters 3,,,, ..., f;, differ across cross sections and
time. The most common special cases are the following.

1. All coefficients are assumed to be constant across cross sections and in time
such that the error terms involve all differences (unobserved heterogeneity):

Vit =By + Zfﬂ Brrit + Eit.

2. The constant term is assumed to be cross-section-specific and the other
(slope) coefficients are assumed to be constant across cross sections and
in time:

K
Vit = By + Zkzg BrTric + €.

3. The constant term is assumed to be cross-section- and time-specific and
the other (slope) coefficients are assumed to be constant across cross sec-
tions and in time:

K
Vit = 51"1 - Zk‘——? ﬁk-rkit iz ach 7 18

4. All coefficients are cross-section-specific:

-
Yit = By + Zkzg BriTkit + it
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5. All coefficients are cross-section- and time-specific:
_ K
Yit = Brie + 2rms Brashir + it

In the sequel the above mentioned linear panel data models will be an-
alyzed. Also dynamic linear panel data models will be treated and the
issues of incomplete panels and attrition will be raised.

11.1 Panel data models with constant coefficients

In the linear panel data model with constant coefficients, it is assumed that all
cross-sectional equations have the same intercept and the same slope coefficients.
The model is 4 = 5, + Eifﬂ Bixric + £a.0r ¥i = X8 + & for individual i
withé=1,2,.... N, where ¥i'= (yﬂ'yﬂs e syiT)’-: -6 = (ABL'HB‘Z' s )rBK)"’ E; =
{€i1: €42, - - -1 &a7), and X; := (X1, X2, - .-, X7)’- Note that each submatrix or
vector of individual 7 has T observations.Since the complete variance-covariance
matrix of the residuals can be represented as:

oS ofhe - oinfhin
, onS¥1 o2l o+ oznilan

Q= Elee’| = : ’
onifdv1 onafinz o+ ONNSINN

where each element ¢;;€2;; is a T by T matrix, the wole system for all indi-
viduals together can be written as y = X8 + &, where y := (¥ ¥ YN
g :=(g],&h,...,6N), and X = (X,,Xs,...,. Xn)-

If some restrictive assumptions are made, the above model can be estimated
by pooled OLS. First, the variance of the disturbance term should be constant
and thus not be different across cross sections (cross-sectional heteroskedasticity
is not allowed then): o = o;; for i # j. Second, the disturbance terms may not
be correlated across the cross sections (no cross-sectional or contemporaneous
correlation assumed): oy = o = 0 for 4 # 7. Third, no autocorrelation may
exist: §; = It (no autocorrelation assumed here). As such, £ will have the
familiar structure with diagonal elements o;;I7 and off-diagonal elements being
zero. If all these three restrictive assumptions are satisfied simultaneously the
panel structure is actually ignored and estimation is gimilar to estimation of a
simple linear model without panel structure.

A more general model would incorporate the possibility of variances differing
across cross sections or individuals (i.e. cross-sectional heteroskedasticity). of
correlation of the disturbance terms across the cross sections (i.e. cross-sectional
or contemporaneous correlation) and of autocorrelation for each cross section. In
this case the variance-covariance matrix of the residuals would have the general
structure. For the first order autoregressive residual process AR{1}: €4 =
pi€ir_1+vs With g0 = vio/ (1- pf)lﬂ, where E(v;;) = 0 and E{v;4v55) = 61a0i5
(845 = 1 for t = s and s, = 0 for £ # 5) the element in the it* row and the 7**
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column of the residual variance-covariance matrix £2 would be from subsequent
substitution in this AR(1) error model:

i o . o5 ot
Pi 1.4 Pl o, =
2y -3
0i;§hij = lf:p Pu? Pi 1 P25
iy ¥
A e T

Obviously, the best linear unbiased estimator (BLUE) of this model is the follow-
ing GLS estimator B = (X'Q'X)~!X'Q2~'y with variance-covariance matrix
(a-2X).

As is well-known from linear estimation theory initial estimates of o;; and p;
(i,4 = 1,2,..., N) are required. These initial estimates are obtained from the LS
estimators b of B and e; of &;: 6;; = ele; /(T — K) (or divided by T instead of
(T'—- K) for ML) and p; = E;r:‘z €iei—1/ Zr{:g ef‘t_l. The resulting estimators
are in general not unbiased but consistent in 7" increasing 7" increases the infor-
mation in the sample, while increasing N increases the number of variance and
covariance parameters to be estimated. To compute the feasible GLS (FGLS)
or the estimated GLS (EGLS) estimator for this model, we require the full set
of sample moments yiy,, X;X,, and X'y; for all pairs of cross-sectional units.
Hence, the FGLS estimator of 3 satisfies:

B = (X' X)X ly.

Remark that if there is no autocorrelation (and no time-related heteroskedas-
ticity), Q7! = 81 @ Iy with 2 = =5 Y., e}, where e; is an N vector
containing all N residuals for the N individuals at period f. This estimation
technique can only be used when T' is larger than N, i.e. when the number of
time periods in the database is larger than the number of cross sections or indi-
viduals. If T' < N the residual variance-covariance matrix X is an NxN matrix
of rank T and is thus singular such that it cannot be inverted. The population
matrix §2, and hence ¥, is assumed to be positive definite, but, if there are
not enough observations the database is too short to obtain a positive definite
estimate of this covariance matrix in this (restrictive) non-autocorrelated and
homoskedastic case. If residual heteroskedasticity and/or autocorrelation occurs
the corresponding constant panel data model estimators can (almost) always be
computed, however,

11.2 Intercepts varying over individuals
In (linear) panel data models with intercepts varying over individuals it is as-

sumed that all slope coefficients are constant. This implies that the reaction
of the dependent variable to a change in one of the independent variables is
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assumed to be the sanme across cross sections and in time.  Individual hetero-
geneity is captured in the inmtercept only. The model is generally presented as
follows:

vie =B i A B e (=10 Nit= LT, (11.2)
[ —

iy,

where 3, represents the mean intercept and g, the deviation of the intercept of
the i individual from the mean.

In what follows, a distinction is made with respect 1o whether the individual
effects jt; are either fixed or random.

11.2.1  y, fixed

An assumption of the fixed eflects model is that differences across cross see-
tions can be captured in differences in the constant ternn. As such. g is con-
stant. In vector notation this vields the following model for the i unit or

Cross section y; = (,.53’1 +p;)er + X8, + e with i = L2, N, where y, =

f . . !
(i) & = (ean. . oe) e o= (1.0 1Y .3, = {Jy... . 3) and
TS I S
X.wﬁ =
Eur ot ERT

The mairix X, is a 7% (K = 1) matrix of all explanatory {or right-hand-
side) variables for individual 7 except for the constant ternm. It is assumoed that
E(e,)=0uand F (s.,;s;) = d;;02Tp where 8;; = Lfor i = jand 8;; = Ofor i # 4.
3, represents the average intercept {averaged over the cross sections) such that
- > & . H el H
3 = ;*—\J-— It is frilier assumaed that all individual-specific constant terms

N
sum to zero such that > 00y, = 0.

The appropriate estimation method of this fixed cffects model is QLS. which

is also the BLUE. This becomes clear when considering all 7 observations:

Vi e 0 o o 0 X 3, €

yu 0 o © Xe By =
N S S I
- : o0 ) n 5

¥ o - .. G vy Xewn 8. £

or rewritten in compact form: ¥ = Iy % e, X, (g' ) +g. with @ the Kronecker
product. so that the OLS estimator is represented by the BLUE:

B _ Tly (Iy @ 1) X, )"' (Inser)y )
B.)  \ X, (Iyxer) X X, Xy ‘
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where Ty results from (Iy ® ¢7) (Iy @ t7) = Iy ® tptr =In @ T = Tly.
Notice that the fixed effects model is often referred to as the dummy variables
model since the above model for all NT' observations can be rewritten as y =

[di da,...,dn, X,] (g') +e, withd; (i=1,2,.., N) a dummy variable for the

i*" individual. Hence y = DB, + X 8, +& with D := (d,,ds,...,dy) an NT x

N matrix of dummy variables. The above mentioned OLS estimator of 3, can
3 ¥ = ]

then be rewritten as B8, = (X,MDX,) (XsMDy) with the corresponding

idempotent matrix defined as

W — Soer 0 0
0 Ire S5 .. 0
Mp := Iyz — D(D'D)"'D’ = o :
0 [T_f_'{'i[:ﬂt

while the dummy variable coefficient vector 3, is estimated asg, = (D'D)”'D'(y-X.8,).

To calculate the above Least Squares Dummy Variables (LSDV) or Fized
Effects (FE) - estimator(s), the inverse of an (N + K — 1) x (N + K — 1)
matrix or an N x N matrix has to be taken, which can create problems when
N is very large. A more efficient method consists of formulating the model in
terms of deviations from means. Consider therefore the following symmetric
and idempotent matrix:

Dr : =Ip—iplerer)  or
e LT
BRL TN e :
== IT T —IT i A
L5 o il

which is sometimes called the annihilator associated with the unit vector ¢y
Hence, what this matrix does is to extract deviations from group means. For
example, multiplying the T' dimensional vector y; from the left by Dy results

Vi1 —g;.
Dry; = : =Yyi—ry;,
wir — T,

where §; = Ftryi = 3 Y7, wit is the group mean for the dependent variable.
The model in deviations from the (sample) group means becomes:

Dry; = DX, B, +Dre;
Nt ——

=¥i —-fi =X =X

or per element:

= K X "
Vit — Vi, = X p—a Br (Thit — Tii) + €10 — i (11.3)
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In matrix form this yields the following for all 4:
(Iy ®Dr)y = (In ® D7) X8, + (In ® D7) .

The COLS estimator which is also the BLUE if the residual error terms g;; are
WN (itd across individuals and time with zero expectation and constant vari-
ance g2}, is:

Bore = (X; (In @ Dt) Xs) - X, (In®Dr)y
= (T, X.DrX.:) T yY XDry: (11.4)
= (ZL Yo Oxie — %) (e — E,)’) - S Y (it — %) (s — B
with the variance-covariance matrix being:
var (Bpz) = oF (X.(IveDDX,)™
= (T T e E) e - %)) (119)
Note that to calculate the above OLS estimator, an inverse has to be taken

of a (K — 1) x (K — 1) matrix. As soon as 3, pp is known the intercepts can
directly be calculated as follows:

5 — K 3 .
Biire = Fi— 2i=aBrrede.
N
o 4 Zj:l Blj,FE
fire = Pure——

Because the FE estimator is based on deviations from group means it is also
known as the within estimator or the covariance estimator.

Unless T is large, using the standard OLS estimate for residual variance o
in the variance-covariance matrix (11.5) based upon the within regression in
(11.3) will underestimate the true residual variance. The reason is that in this
transformed regression the error variance-covariance matrix is singular (as the
T transformed errors of each individual add up to zero) and the variance of
Eit — &g, 18 (T—_,.#ﬁ rather than o2. A consistent estimator for o2 is obtained as
the within residual sum of squares divided by N{(T — 1), or:

2
£

N 1 N T . 2
GE%‘E = N (T _ 1) _ K + 1 zi:l Et=l (yit - x;!iBFE) 1 (11'6)

~ - - a ot f
. o 1
with 431:'}_:; = (Bll,pge 1612,;:'3;'" nﬁlN,FE" ﬁSFE) *

INote that uider weak regularity conditions. the FE estimator is asymptotically normal.
o that the usual stutistical tests from Chapter 3 can be applied.
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Essentially, the FE model concentrates on differences ‘within’ individuals,
i.e. it explains to what extent y;, differs from 7; and does not explain why 7,
is different from 7, . If, however, interest is in differences across groups, the
hypothesis that all individual effects are equal can be tested with a classical
F-test. Since under the null hypothesis of equality of all individual effects the
efficient estimator is pooled least squares, the F-test statistic for this test about
the joint significance of the individual effects (Hy : 8, = 815 = ... = B1x = B, )
amounts:

(BEg — Rbooica) /(N — 1)
(1——-R2FE)/(NT—N—K+1)!

FN_1\ NT-N-K+41 = (11.7)
where FE indicates the estimated fixed effects or the dummy variables, i.e.
the unrestricted, model and Pooled indicates the estimated pooled or restricted
model with only a single overall constant term.

11.2.2 y, random

Contrary to the previous section, we now assume that the individual effects
are not constant but random. First, it is assumed that the individual random
effects are distributed with zero mean and constant variance: E () = 0 and
E () = 0. Further, they are assumed not to be correlated across individuals
(cross sections); E (p;p;) = 0 (i # j). nor with the residuals of the model, i.e.
E (mcje) = 0, Vi,j,t. This can generally be summarized as 1 o (0,67) or
p; € RW with variance o2. For individual i we then have the following model:

Yi=XiB+ per+te;
N’
Error components vy
with 8 := (51.32, ...,BK)f. where [, is the mean intercept in (11.2). The ex-

pected value of the above error components term is zero, E (v;) = F (pitr + &) =
0, and its variance-covariance matrix is represented by:

®, = E(wiv)) = E((per +ei) (per +&i))
2
= oty +oilr
2 > 2
%% -gaf e, 7k
a; @pto: - o
= : . _ . . (11.8)
aﬁ o:ﬁ or;‘: +o?

In matrix notation the error components model is:

y=Xﬁ+g®zT+e, (11.9)

withy := (¥}, .., ¥h) > X 1= (Riye et X0)\ p5= (s i) s € 5= (€. ., Eh):
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The error components variance-covariance matrix is the following block di-
agonal matrix:

@zE((p@LT+s)(p®LT+e)') =1y % ®;.

If 02 and o2 are known, the GLS estimator of B has the BLUE property
and is given by the following expression:

BrEe (X'®~'X)"'X'®" 'y

= (Zi\ilx%@?lxi)_] (Z?ilxi'i'f'lyi). (11.10)

ad =z o f
Partitioning this estimator as Bgp = (ﬁ 1k Bs RE), it can be shown that

B, pe is a matrix weighted average of the within {or FE) estimator B, pp and
the between estimator. To demonstrate this, note that & = Iy =

Iy ® (%I; + %4—) with ¢2 = Toi + a2, Substituting @7, the partitions
X = (LNTaXs) and X;:= (LT,X.S,;) into (1110)

—1
. [xax. | oY xDrXs| [XQy | 55 XWDry:
Bsre = o T a2 o2 + o? '

(11.11)

where the idempotent and symmetric matrix Q; := (I N® ﬂ%L) — AL such
that:

Ty, — T2, -+ TKL —FK.
Tyy — Fo,. -+ Txz —TK.

QIX.‘; = . - @ e,
Tan. —Ta. - ErN —TK.

with .. := Zil ZLI zrie/NT.? Then, the between estimator is given by:

B. = (X.QuX,) ' X, Quy, (11.12)

which only utilizes the variation between individuals. Now, the random effects
estimator of the slope vector 3, ¢ can be rewritten as a matrix weighted average

Hence. Q. when multiplied by X or y. has the effect of caleulating the means over time
for rach individnal (Fy; ). expressing the individual nweans in terms of deviations from the
overall mean. and repeating each of these N observations T times, Conseguently. the hetween
estimator implies an QLS regression ou the basic madel {11.2) averaged over me:

_ e )
Y, = .!31 + p; +Z;‘-=2'6kfk'-' +F. {i=1,...,N).
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of the within estimator 3, rp and the between estimator Es

N N

Y XU DX Y X, DrX
Y B Ak h XX\ 7, [ & ;
B.ire= ‘Qz' h =L (Lzl)ﬂﬁ = ——— | x|

o; o? o1 a?

(11.13)
Under certain assumptions, the weights are the inverses of the variance-covariance
matrices of the respective estimators.
Next to the estimation of B or B,, one might also want to estimate the
individual stochastic components p,. According to Taub (1979), predictions of
the individual random effects p; are:

2
: T Y
Bire = —str \Yi — XiBge) , (11.14)

which can be considered as the share of the GLS residual that is allocated to
f1;,rE; the precise proportion depends on the known variances o7, and o2.!
Maddala (1971) has proposed the following (consistent) estimators for the
unknown variances o7 and oZ. Since the (consistent) FE residual variance
estimator G-y is given by (11.6) and the residual variance resulting from the

between estimator (11.12) can consistently be estimated as:

e

~3 EE
NNT K +1°

with the between residual vector & defined as € := Q;y — Q,X,/,, a consistent
estimator for the variance of the individual random effects y, is given by:”

(11.15)

~2 =2
L Ty — G e
g‘i = SSE Bl & if 0'2‘ >0
T ¥

= 0 elsewhere. (11.16)

4This may be of interest because it describes how the behavior of different individuals
varies and it provides a basis for more efficient prediction of future observations about a given
individual.

This predictor is best linear unbiased since E(fi; gg) = 0 and its variance E(p,‘ RE) 18
smaller than the prediction error variance of each other linear unbiased predictor. Remark
also that fi; ppis that value of g, that minimises the following quadratic function with respect
to Band y; (i=1,2,...,N):

N
E : 2
N Hy

;13 Z(yl X;B - Jil-‘u.l-T)‘I (vi— X8 — Potr) 54— i:l

5[1 -;]-.ouid be noted that the individual random eﬁecta (11.14) are directly computed in
Eviews as:

< a Gl 2
fi,re = *T%Ei?ﬁ ¥, (e~ Bre).

with Brp a consistent FGLS estimator derived from (11.10) with estimated variance-

covariance matrices ®; (although Eviews seems to commit an error in the computation of
Az
Th)-

I
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This procedure is called estimation of variance componends® A number of
other (consistent) variance estimators has heen sigreested in the literature. Two
of them will be presented here, e two consistent FGLS estimators disenssed
in Wooldridge (2002) aud Greene {2003). vespectively.’

Wooldridee (2002). p. 261, derives a consistent. estimator of rrj from the de-
finition of the variance-covariance matrix of the error components in {11.8). 1.c.
r,rH = Fyw) for vy = ey (l.“ ¢ £ 5. Wooldridge argues, therefore, that
for each group 1. ihm care T (T — 1) /- nonw(luml(mt error procucts 1that can be
nsed to estimate (Jr . Summing all these combinations and taking expectations.

the following (’.X]m\.hsum is obtained:

-1 LT r—1 i -l

F L Z Polis = 3 3 Elvav) Y J;:ﬂﬁ, MY 1)
P N £o1 711 fl

. . f]'."'('f— 1)
o (T D+ (T =2}t e+ 21 1)y=- 5

A consistent estimator of @ is now obtained by replacing the expectation with
an average (across groups) and replacing v with its pooled QLS residual so
that. after making a degrees-of-freedom adjustment for small- sample correction,
we obtain: - o

o~ ; :r—l Z:f—]. >—t- il ::,":f-V*"" (11 17)
o CNTH{T - 1) - K ' )

C.‘q

whore ¢ denote the pooled OLS residuals. Also considering a consistent esti-
mator of the variance of these pooled OLS residuals:

2
32_; lz_Jf lVe,f (1118)
N NT K '
-2 . - 3 . .
g0 that, given cr and &, a consistent estimator for a7 can be directly derived
from the (daaunu‘(l) mntial 1nd(‘p<‘11<len(\ ot £, a:n(l ;;,é in Mip V=L | &4, OF
_—1(_;]—L( ) B o‘;.w.n_ 5l -,

Usually, all ohamvulmm are given (‘qucl] weight (1o weighting” option), bui
cross-section weights may be considered if the residuals are cross- -sectionally
heteroskedastic and contemporancously uncorrelated, Lo if the error-covariance
matrices 9, in {11.8) can be expressed forz 120 N as

! 2 / 2
o =5 ((ﬂ, vrde) (per 1 g, ] astrtly | as I

2 2 2
f O—e.‘,; Ty o (T";,
" . 3 !
T, rrf, +al, T,
= . . . , then a cross-sectionally weighted
2 2 2y gt
T, a, R O

G5 gtiee that iF the individoal vartanee estimator ‘7;’; 1 fouwd 1o be negative, Chis may he
an inlieatiom et time effeets e been ineorreetly arnil tenl. Assmming that Uﬁ 0 feads (o
the OLS or dunnoy variables catimator.

Tuome of hese slterative consistent iudividual varianee estimators may sonnetiuies be
nore fasviptoticallv) efficient Qum the above Maddada fI9T1) iudicidnal varianee estimater.
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FGLS regression is appropriate®.

Following Greene (2003), pp. 296-298, we may reformulate this type of FGLS
procedure in a somewhat different and heuristic way (see also the FGLS proce-
dure for the constant panel data model in the previous section). Consider there-
fore the error (or variance) components model in scalar form y;; = x., 8+ p; +€it,
which can be averaged over time as J, = X, 8+ p, + ;. Taking deviations from
the group means removes the heterogeneity yie — 7, = (%t — X;.)' B+ (gis —Fi).
Since E [ZL (€5 — E.—,)ﬂ = (T'—1)o?, and if B were observed, an unbi-
ased estimator of o2 based on T' observations in group i would be &2(i) =

i (en—Ei)? - :
E'=‘=1%1—-‘—'-L.Il:l fact, however, @ must be estimated, which could be made from
the FE model with an unbiased estimator of the residual variance o2 for each

T e =
group i as 63;5(21) = z’—?‘f"(’_—f"]-,with it := Yit — X}, Bpp the residuals from

the FE (OLS) model. Averaging over all individuals we get:

Uy g2 = Ly (OR8] T2 (Ea—B)

N 4—i=1 <FE Nési=1| T-K-1 NT - NK-N
The degrees of freedom correction in this average residual variance is excessive
because it assumes that the constant term and 3, are reestimated for each
individual i. The estimated parameters are the N means 7, and the (K —
1) slopes so that the denominator in the (average) residual variance becomes
(NT'— N — K +1). An estimate of the variance of the individual effects,
a:ﬁ, can then be obtained from the pooled variance of the error components

. e'e I g 2 3 i 2 s
plimgrfe— = 0: + - Hence, an appropriate estimator for o}, is:

~2 ee 1 N =D :
S NT—E=i ﬁZi:l ocre(l)-

11.2.3 Testing for random effects

When i, = 0 or o7, = 0 individual error components do not occur and the OLS
estimator is the BLUE. This can be tested with a Lagrange Multiplier (LM) test
since the null hypothesis (classical regression model with a single constant term
and estimated with OLS) is (much) simpler than the alternative (GLS). Breusch
and Pagan (1980) have proposed such an LM test for the random effects model
based on the OLS residuals of the classical regression model y = X3 + € versus
the error components model (11.9) (where X,y, 3, and € are the matrix and
vectors mentioned there, which are stacked by cross section) and showed that

SEviews performs FGLS with c‘f.'. estimated from a first stage pooled OLS regression:

52 = Sty (vir — Bie)?

£ T ’

where g;; are the OLS fitted values.
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nunder the null hypothesis that r;rﬁ = {) the resmlting test stalistic:

2

N T :
NT Do (Zt—.l C'H-)

g = —— . — -1 {11.19)
A1 - 1) Z:\—l Z:.—] ey

is asymptotically y*-distributed with 1 degree of freedom (the ¢,8 are the pooled
OLS residuals from a regression of y on X, which are equal to the residuals by
in (11.18)}. If the test statistic exceeds the critical y2 wvalue for 1 degree of
freedom (3.84 for a = 0.05 and 6.63 for a = 0.01) the result of the test is (o
reject. the null in favor of the RE model. But. as is noticed by Greene (2003), p.
299, it is hest to reserve judgment on that. because there is another competing
specification that might induce these same results. the fixed effects model™.

11.2.4 Random effects versus fixed effects

When being confronted with both options of modeling panel data, FE or RE
panel data models, the question as to which model should be used inevitably
arises. T mnost cases it is a priori nol obvious how to model the individual ef-
fects. i.c. as being fixed or random. Sore have argued that the individual effects
should always be treated as random. since the fixed effects model is analyzed
conditionally on the effects that are actually present in the sample (see Greene
(2003). pp. 301-303). Furthermore, the dununy vaviables approach greatly re-
duces the degrees of freedont. On the other hand. the assumption in the randomn
offects model that the correlation between the individual (random) cffects and

the regressors is zero {j; ud (0.¢%) and not correlated with X,}. might not be
snited. If this asswnption is not valid. the RE estimation vields a specification
ertor due to omitted variables vielding @ blased GLS estimator because. then.
E (;1,) will ot be constant -and thus certainly not egual to zero- but will de-
pend ou x,; {see Mundlak (1978). who assumes an auxiliary lincar regression
between the individual effects and the explanatory variables). There are vea-
sons to believe that in many situations g, and X, are correlated. For example.
consider the estimation of a production function using firtn data. The output
of each firm. yi;. may be affected by unobervable managerial ability g Firms
with more efficient management tend to produce more and use more inputs X;.
Less efficient firms tend to praduce less and use fewer inputs. Jn this situa-
tion, p; and X; cannotl be independent so that ignoring this correlation leads
to binsed estimation as indicated above. The FE model, however, essentially
climinates the individual effects frotn the direct model estimat ion such that only
the shortened parameter vector is estimated in first instance by (11.4) and thus
eliminates problews that the individual effects may cause.

Whetlier the error components {or random effects) model is correct. in the
sense that no correlation exists between the random individual effects and the
regressors can be tested by the Hausman test. which is an example of the
Wald test statistic as indicated in (3.16). The Hausman test statistic is based
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on the property that under regularity conditions 7 := \/ﬁ(ﬁs FE — ,é, rE) ~
N (0,n avar(8, 5y, — Burg)): where B, ;- is the OLS dummy variables (FE)
estimator (11.4) of 8, and 53 re the GLS error components (RE) estimator
(11.11) of B, and avar (B, — ﬁsRE) the asymptotic variance-covariance ma-
trix of the difference vector between these (reduced) FE and the RE estimators
with n the total number of observations used in the sample. Hence, the Wald
- ~ i

test statistic satisfies n’ (na'"ﬁ“r(ﬂaFE-ﬁmE)) n ~ x%_, with (K —1) the
number of different elements in 3,.

According to Lemma 3.2 for the null that the RE model is the asymptotically
efficient estimator (although both estimators are consistent, the RE estimator
is asymptotically efficient because of the more general stochastic formulation of
the individual effects and the Cramér-Rao lower bound property) we obtain:’

avar(8, pp — B, i) = avar(B, ;) — avar(8, p) = My — My,

where M; and M; represent the asymptotic covariance matrices of B, pp and
3 e * =1

B s respectively, or My = o? (X, (Iy ® D) X,)  and

M, = (;’%X;Q]xs + 2 (X; (In @DT)XS)) , again with Dy := Iy — ‘LT‘&-

and Q; := (Iy® %I) = -“’—J,’;,‘?él Hence, the Hausman test statistic satisfies
under the null of the error components model that:

$n = (ﬂjsrf: —gsRE)" (M; — M,)~" (BsFE 4 ‘QSRE) ~ X - (11.2D)

-When the null is rejected, the dummy variables or FE estimator 8, ., is the
best estimator and the error components or RE estimator 3, rE is biased since
the individual effects are found to be correlated with (the) other regressors in
the model then.

Remark that FE or RE estimation can also be used for panel databases
where T is relatively small compared to N.

11.3 Intercepts varying over individuals and time
In this section the previous analysis is generalized to a linear model where next

to the cross-section-specific effects, also time-specific effects are included, as in
the following representation:

Yt = -El = ey = Ag + Z::{:? ﬁk-’rki‘l =+ Eit (Z - 1, caug N, L= 1, ,T) - (1121)
Brie

9Provided that no correlation exists between the stochastic individual effects and the
explanatory variables as assumed for this Hausman (1978) result!
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As in the previous section, a distinction can be made between F'E and RE
estimation.

11.3.1 p, and ), fixed: dummy variables model

If p; and ), are both assumed to be fixed, the following two normalizing restric-
tions are imposed without loss of generality:'?

Zi\;l #; = 0 and 2?:1 A= 0.

If we want to estimate the model by OLS and implement these restrictions,
a reparameterization of the model becomes necessary. A reparameterization can
be implemented in various ways, one way is to delete one of the time-specific
dummies by assuming that:

By + =Bi+u (i=1,.,N)
AL =M=Ar (=1L T-Del ==Y

Then the model becomes for individual i:

Ir—1) 4y«
¥i = Bytr + ( E, 1)X + Xsif3; + &
with A" = (A}, A3, AF_1)

For all individuals together it becomes:

. Ir—1 '6,1.
y={In®@erjn@{ o ) Xs X | +e, (11.22)
B,

with E () = Oand E (e¢’) = o2Inr and y := (¥},....¥%) , €= (), ex),
Xai = (xgp---sfs;\r)’, By = (B11,. "!ﬁlN)!'

Thus, the OLS estimator of the (N + T —1 + K — 1) vector (8, A", 8,)’
is the BLUE. Note that if (¥ +T7 — 1 + K — 1) is too large, it might be more
appropriate to formulate the model in terms of deviations from means as in the
previous section, which results in the following estimator for the slope vector:

B.re = (X,QX,) ' X,Qy, (11.23)

but now with Q := Iy — Iy ® ‘T — 24k @ Ty 4+ ¥4eT | This matrix Q
is idempotent and transforms the values from X, and y so that QX becomes
an NT x NT matrix with elements in the form Tg;; — Txi. — Tkt + k.., where

NT

10N ote that the normalization rule Z?_r_,l,u,; = 0 is also ymplied in the panel data model
with intercepts varying over individuals in the previous section.
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Taking the averages in equation (11.21) over ¢, 4, and t and i, respectively,
we find:

= K 3 Eq
¥i. = By + py + Zk=2 BTk, + Z—tTi
I K . E;
Ge=Bit M+ BiFki+ % (11.24)
- YT
¥ = IBI + Zk=2 ﬁkxk.. + —N?—

Subtracting the first two equations in (11.24) from the equations in (11.21)
and from the last equation in (11.24), we get:

Yit —Ti. — Yo+ 7. = Efzz Br(@kit — Thi, — Tkt + Fk.) + vie (11.25)

with vy =g — —‘—ETE“ = —'—ENE"" i ETE"‘ -
Thus, the estimator B, 5 in (11.23) can be considered as the OLS estimator
of equation (11.25). Furthermore, we can interpret 3, as the GLS estimator
of equation (11.22) where QQ = Q and Q is the (generalized) inverse of the

covariance matrix of the disturbances. Once B, is estimated as specified in
(11.23), we can then estimate the other model parameters as:

bire = (B —8%)— Zf:g Bk'FE(fEkz. =Dl

Mre = =80~ Sr B rp(@re — 3., (11.26)
3 = Eh A L

Brre = §.— Zk:z By rETk..

with Bk‘FE being an element of B, ;. and -BL,FE being an (FE) estimator of 3.
As in the previous dummy variables model, we can use a regular F-test again
to check whether the parameters 8,;, (i = 1,....N;t =1,...,T) are equal or not.

11.3.2 4, and \; random: error components model
In this subsection the individual- and time-specific effects are not assumed to be

constant but random. Assume that s, e (0,02), X g (0,02) and E (p;\) =

0 Vi, t; E (u;65¢) = 0 Vi, j, t, and that E (\ei9) = 0 Vi, ¢, 6.
For individual i we then have the following model:

Yi=XiB+ pitr +IpA +¢g,
e

grror component terms

where A = (A1, Asg, ..., A7)’ and X; contains a constant term. The covariance
matrix of the error component terms consists of the following elements:

@ﬁ = F ((“i“T + ITA + Ei) (p.iLT == ITA\ 4 E‘;‘)’)
= a:‘:upa} +o3Ir + Fod O

@,‘J = ((ﬂi'—T -+ ITA + E.":) (}.LJ-LT - ITA + EJ'),) = agIT_
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When all T observations are considered, the following model results:
y=XB8+puser+ienulr)rie
with po 0= (fe . g s fty ) The complete covariance matrix is:
® = o2 (Iy ©eptly) + 0f (ently % Ir) + o2y

As in the error components model without time-specific effects. the GLS
estimator is the BLUE and 8 is thus estimated as follows:

Bup = (X' 'X) ' X9y, (11.27)

As in the previous section. the RE estimator ﬁﬁm_j can again pe partitioned
as ,BRE ro (-dlmf ﬁ»;rz) so that it cau similarly be shown that 3,y can be

expressed as a niatrix weighted average of three other estimators. To demon-
strate this. note that:

_ Q Qz Q: l
O T AN S 13 (11.28)
gt ol of o
E 1 2 3
with Q and Q, defined as before and the syuunetric matrices Q- and @y given.
L
respectively by Qo = (%L 2 IT) - "—”\—-"‘,}J— and Q1= L—”—?—L while the
variances are given by of = Toj, + 02, 03 := Nox + ol and of = Tol +

Noi + o Substituting (11.28) and the partitioning of X :={jyr. X,) into
{11.27). we get:

. {X‘;le XQX | XiQX, }
IG.-sHE o

lu[u

o1 o2

[(B3%) e (BRXe) 5,0 (B2 B
a1 ' lag] ' a?

where 7_is the between estimator {11.12} of the slope vector. BXQeX. T XIQuy.
and ﬁer; is the FE estimator (11.4). The constant A, is divectly estimated as

51,5’.5 =7 ZL 2 j,k RETk...
The predictions for g, and A, are:

. To: _ = K 7 _ .
fti e = -0—2“ (ZU;_. -8B - Zk--'_: d;:_f{}:-’“ki.) . (11L.34)
1

. Nal o PR
)\ Kz - .
AvkE = ( (U v Bine — 2on-e ’jk.fff."rk.f) : (11.31)
5

Prediction of the individual effects g, gives information on the future behavior
of individnals and is likely to be of more interest than the prediction of Ay, which
gives inforination on past realizations.
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Again, the RE estimators (11.29), (11.30), and (11.31) depend on the un-
known variances oZ, o2, and o%. To replace these unknowns with estimates,
any of the variance estimators mentioned in the previous section, suitably mod-
ified for the time effects, can be employed. Swamy and Arora (1972) suggest
as (asymptotically) unbiased estimators the between residual variance @;° in
(11.15), the residual variance resulting from the residuals & := Qoy — Qg){sfis,
or 63 = 7£&. and the fixed effects residual variance resulting from the fixed
effects estimator (11.23) for the slope vector B,. Substitution of a set of variance
estimators into Bpp leads to an FGLS estimator in the way explained in the
previous section.

11.8.3 Specification tests

To check whether £ = 0, A = 0, or p = A = 0, we can use the dummy
variables estimator and an F-test, which compares the sums of the restricted
and unrestricted squared residuals. The test for a:ﬁ = 03 = 0 is given in Breusch
and Pagan (1980). It is shown that under the null hypothesis H : or =03 =0
the LM test statistic:

9 2
N T
 Nr i (TL i)
£ 2 T-=1 E‘- Zt €t

2

e 23;1 (Z:\;l E-il)2

N-1 Z.‘Zz Eit

is asymptotically distributed as x%; €, are, as before, the residuals of the OLS
regression of y on X (see (11.19)).

11.3.4 Fixed or random effects?

Precisely as for the linear panel data models with intercepts varying over indi-
viduals alone, we can present a test which checks whether \; and i, are or are
not correlated with ;. If such correlation exists we must choose the dummy
variables model since the error components GLS estimator suffers from omitted
variable bias then.

Hausman (1978) shows that under the null hypothesis of the RE model (no
correlation between A, and y; and (the) regressors) the test statistic:

m = (B,rg — Bsgp) (M1=Mo)~ (B, i — By i) (11.32)

is asymptotically distributed as x%_, (see (11.20), where M, is the (asymp-
totic) variance-covariance matrix of the GLS estimator /I g and M, is the (as-

ymptotic) variance-covariance matrix of the dummy variables estimator 8, FE»
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respectively:

M, = o (X.QX,)"
X'Q X, XX, XQX, -1
M, = *7(2.,."—%—'&1.; +# ]
ay 75 at

An alternative procedure is a mixed approach where. say, the A5 arc treated
as fixed wnd the s are treated as random variables, Such an approach seems
1o be wseful if 7' is small aud if the researcher wishes Lo follow soroe of the more
general (random) specifications for i, and g4 as mentioned in the previous
section(s). A Hausman test statistic, appropriately adapiced from (11.32) can
be employed then.

11.4 Al coefficients varying over individuals

In all previous pancl data models it was assnmed that all individual heterogene-
ity could be captured in the intercept, cither in a fixed ov random way, while the
stope parameters were assunied to be constant. across cross seclions or individu-
als. 1t is possible, though, thal also the slope parameters are individunal-specific.
This would imply thal different individuals react in a different. way to changes
in the regressors. [n this case. we have the following model:

'?J,'_f_ Zi\j_l .f':?.i\;-;:'t'.k'if { Lt (? ]. e A\' f = 17 (f) N

where 7, can be equal to Lorallt =1.2,....7" A distinetion can also be made
between fixed and random parameters. Seemingly Unrelated Regression {SUR)
is the appropriate technique for fixed parameters and the Swany’s random
coetlicient muodel for random parameters.

The SUR model is generally represented as:

y=2Zv t+¢ {11.33)
Or
¥i X, 0 0 3, €
¥2 0 X, : 3, €2
. _ . : n :
: : o0 : '
¥ o - - 0 X BN EN

inee each individual equation has its own parameter vector 3;. it appears
that the equations are unrelated. N evertheless, correlation across the error 1erms
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in different equations can provide links that can be exploited in the estimation
process: if E (eie;) = 0450417, the OLS estimator has the BLUE property,

but if E (e,-e;-) = oI with 3;; a; # 0, the GLS estimator is the BLUE. This
GLS estimator for a known contemporaneous covariance matrix ¥ results from
minimizing €'(27! @ I;)e with respect to . In practice, 3 is unknown so that

= = ~
the FGLS or SUR estimator is given by 4 = (Z’(E'l ® IT)Z) Z’Y ' @1Iry,

where the estimator ¥ satisfies:

&4 (11.34)

and var(y) = (Z/(£' @ 11)2) il

Remark that the SUR technique can only be used when T is larger than N,
i.e. when the number of time periods in the database is larger than the number
of cross sections or individuals. If T' < N the residual covariance matrix 3 is an
N x N matrix with rank T and is thus singular such that it cannot be inverted.
The number of cross-section-specific coefficients then gets very large relatively
to the number of available observations in time. For this purpose, the fixed and
random effects methods are more appropriate when N is large compared to 7.

A real-world case with singular error covariance matrix

The above error covariance matrix ¥ may also be singular through the defini-
tion of the problem. Consider e.g. the known application of interrelated factor
demands, based on the translog cost function (but we could equally consider
other applications as e.g. consumer demand). This cost function is a direct
generalization of the familiar Cobb-Douglas (loglinear) cost function, since it is
a second order approximation to the logarithm of an arbitrary cost function,!'
so that an attractive feature of this translog specification is that the cost min-
imizing input demand equations, if transformed into cost share equations, are
linear in the logarithms of output and factor prices, with the coefficients inher-
iting (a subset of) the cost function parameters characterizing the technology.
Those technology parameters can be estimated from a system of equations for
cost shares. To be more specific. we consider the translog or loglinear cost
function in three factor prices (for the inputs capital, labour, and materials,
respectively) for each firm i = 1,2,..., N' and for each time period t = 1,2, ....T'
(for the time being these subscripts are dropped for the clarity of the theorefical
argumentation):!?

log(C) = ao + X, & log(p;) + § 3=5_, T, v, log (p;) log (p)
+aQlog (Q) + 379 (08(Q))* + T7_, 7, log(p;) log(Q) +=.
'!The Cobb-Douglas cost function is a first order approximation.

92 1 . . . P | . + . .
'2The reasons for different input prices over individuals/states are regional variation, dif-
ferential tax systems and concessions, ete..
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Without loss of generality we can assume that the 3 x 3 matrix of quadratic
form coefficients. {"yj-k}. is symmetric: v, = vy (k= 1,2.3). The degree of
returns to scale n can be computed as the reciprocal of the elasticity of costs
with respect to output:

1 1
T 210g(CV/0108(Q)  ag + 10g 108 (@) + T i—; 1o log(ps)

Now. the link between the cost function parameters and factor demands is
given by Shephard’s lemma. To illustrate this. let z; be the cost minimizing
demand for factor input j given factor prices (p1,p2.p:) and output Q. Hence,

Z:le p;z; = C. so that Shephard’s lemma implies that: % = x;. Since the

price elasticity of total costs satisfies: g:ﬁf{% = Zii, this price elasticity for

the translog cost function amounts to:

dlog(C) 3 ' ‘
dlog(p;) =+ o v log (pe) + 7, log(Q) (5 =1.2.3).

Defining cost shares as s; := p;&;/C. we obtain the following system of cost
share equations associated with the translog cost function:

53 = a5+ h 1 Yk g (k) + 70 los(Q) (G =1,2,3). (11.35)

This system of cost share equations for capital, labor, and materials, respec-
tively. is subject to cross-equation restrictions, saying e.g. that the coefficient of
log {px) in the s; equation equals the coefficient of log (p;) in the si equation for
4§ # k. These cross-equation restrictions are also called symmetry restrictions.'™

Although the translog cost function has an (additive) crror term &. the cost
share cquations (11.35) derived from it have none. However, since, in general,
the share equations do not hold exactly for cach firm {(unlexs the long run equilib-
rium at the cost-minimizing input combination of that firn would have exactly
been reached), a random disturbance term is assumed to be added to each share
equation (11.35).""

UiNote that these symmetry restrictions are ot a conscquence of the above mentioned
symumeiry assumplion, but are 4 consegnence of ealenhis B0 symmetry were not assumed, the
coofficient of e.g. log (p2) in the sy equation would be (v + 7g.) /2. which would cqual the
log (p1) cocflicient in the sz eguation,

Moscover. the subsitufion clasticity botween inputs § and k. denoted as €4 is related Lo
the (translog) cost. function as:

Tl
. e Yk + 55k
¥ = —_— =
- o 88K

dpy

lor § # k.

2 _ 4.
vyt 8~ 8
2
J

lur =4k,
§

1ginee these cost slare cquations. measiring {relative) factor demands, do not contain Lhe
parameters ag and g, and since these parameters ocenr in Lhe expression of the degree n
of returns to svale, this degree cannot be estinated from the cost share equations.
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The resulting system of share equations contains fifteen parameters. The
adding-up restrictions (because the cost shares should add to unity):

) + g + g
T+t =
Y12 + Vo2 + V32
Y13 T+ Yag + Va3

NQ+Y0+re = 0,

(11.36)

Il
oo o =

the homogeneity restrictions (requiring that the translog cost function is homo-
geneous of degree one in factor prices):

Yin +Y2+7s = 0
Yo+ Y2 t723 = 0 (19.37)
Y1 T2+ 733 = 0,
and symmetry restrictions:
Tz = V21
TE= a1 (11.38)
T Va2

imply that there are in total eleven restrictions, but that only eight of them
are really restrictive: given the adding-up restrictions, one of the three homo-
geneity restrictions is implied by the two others, and given the adding-up and
homogeneity restrictions, two of the three symmetry restrictions are implied by
the other. Since the sum of the dependent variables (S1¢, S2¢, 83¢) adds up to
unity for all observations, the sum of the error terms (£, e,,23) is zero for all
observations, so that the 3 x 3 error covariance matrix var(e,€2,63) =: X is
singular. The common practice to deal with this singularity is to drop one of
the three equations and estimate the system composed of the remaining equa-
tions. The coefficients in the equation that was dropped can be calculated from
the parameter estimates for the included two equations by using the adding-up
restrictions. To incorporate the homogeneity restrictions ( 11.37), we have to
take account of the property that these restrictions are not cross-equation re-
strictions, so that we can directly eliminate three parameters, say (y 13+ Y23+ Y33);
from the system to obtain the following set of cost share equations:

s1. = a1+ 108 (p1/ps) + 712108 (p2/p3) + 7110 10g(Q) + &1
S2. = 02+ 10g (p1/ps) + 22108 (P2/P3) + 720 l0g(Q) + 2 (11.39)
83 = a3+ 73 log(p1/ps) + 732 log (p2/ps) + T3q 10g(@Q) + &3.

To take account of the adding-up restriction and, hence, of the singularity
of the error covariance matrix, we may drop the last equation for s3.'” Hence,

%1t would not matter which equation is to be dropped from the system if there were no
cross-equation restrictions. To verify whether such a numerical invariance holds under cross-
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only one of the three syimetry restrictions (11.38) remains, 1e. iy Yy If
this cross-equation restriction is imposed. system (11.39) becomes:
sio— o by log (/) by o (pe/ps) + g log (€} + =,
52 b 4 v dog (pLipa) + vas Jog (2o /pa) b vag togl@) 4 sae (11.40)
Since the regressors are predetermined and since the equations have comn-

mon regressors. this system can be estimated by SUR subject to the cross-
equation restriction of symmetry.  This constrained system can be cast the

S

- . . . o S
unconstrained counnon cocthicient format of y; 2o+, iy, - ( ' )

lf._ . - % : Ea) -
5--["11 T Y Yer T .'-.J.QJ-

g |10 loa(pi/pa) log(pai/ps) 0 log{€:) 0
£ 0 1 1] Jog (p1 /o) log (e /o) 0 log{€2:) |°

In this way restricted SUR estimates of the seven cost share equalion paraime-
ters may be obtained. Notice that the rest of the fifteen cost share equation pa-
FANICLETS (€ug. . Yo Tas Fans Tage Y Tag) can be calculated using the adding-
up vestrictions {11.36), the homogeneity restrictions (L1.37). and the symmetry
restrictions (11.38). For example. v44 can be computed as v = 7y - Y=
=g vas =yl (e b Yau) - v T 279 b e so that the point
estimate of 7., s given by 44 ) + 2%, + Fppowhere 11T Yoo are the
constrained SUR. estimates.

¥

11.4.2 6,

In the Swamy (1970) model it is asswimed that for cach cross section or inddivid-
ual i the coefficients 3,, are randomly distributed around a mean and have a
. g d m ned o - C g :
constant variance 3, (e ) = By ~ (,8. A) . The model for individual
. . = . (el {
is the following y; - X, (B + ;) 1+ &, with g, 0. AY and g, < {0, 5,T).
[n geveral, the model can be written as follows for all individuals y; = X3 4

random: Swamy’s random coefficient model

H

equuttion restrictions. let 3% he the 2 x 2 marrix af crror covarianees Tor the two-ecquation
~antent obtained Boam dropping one equation frow the 1lrec-cguation svstew (11300 11 s
the appropriate submatrvix of the 3 3 3 error varianee covarinnee mattiz X0 There are 1w
wavs Lo abitain an esthnale bR S

Cestimate the two cgutions separately, tins apnoring the cross-equation restriction. anid
thew wse e eesiduala to compinte B4 equivalent]v, st imate he Lhroe cquations arpmEvalely by
QLS. mse the theee-equattion residials to ealealate the Tall 320l thenw exteact 1w appropriaic
<ubrnatrix fror 3 io s way the nuowericad jovariee s guarantecd end 1 dloes ot nuater
which equation to drop:

_ ubtain B* fram sonwe teclimique that exploits the cross cquation restriction {=neli as the
pacled OLST T then, 1Te pnmerieal invariones is oot guacanteed.
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! 10 et ase
X, :
Zpte, with X := (X!, X9y X) and Z :=
> . 0
0 .- .. 0 Xn.

The covariance matrix of the compound error term Zp + £ is equal to the
following expression & — g ((Zp+e) (Zp + €)’) jor:

P, T IEr 0
0 &, ;
D — - B
: : . 0
0 i Tn L N

with ®;; = X, AX + 0iilpr. The GLS estimator for 3 is:
B = (x&ix)! x’qa-ly
= (Zjv:l X®, X ) Zi: Xi®ly
= L, W, (11.41)
i N igpineay—1] "1 1% =171
with W := {3V [A ToX)T T (A 4 ou(xix,) ]~ and
’ =1 (]
by = (x,.x,-) Xly.. (11.42)
The covariance matrix of E is:
cov(é) = (X’@*IX)*I
-1
(Zraxiesix,)”
o —1
= {21 A +0,xx,)1] !
The BLUE for an individual g, is (see Rao (1965, p.29):

= ¢ ¢ =l _
Jﬂi = ﬁ—i- Axl (X.AX -+ U,‘,‘IT) (y: = Xaﬁ)
2 (A +o;1X] x,) (a;.‘x;x‘-bf + A*lﬁ) , . (1143)
which results from the following minimization problem:

ming, B{EN LLXﬂi‘Ey, .ﬁ)_l_z 1 (B:-B) A- (8, - m}
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where variances o;; and the covariance matrix A are estimated as in Swamny
(1970).

Roth the GLS estimator for 8 in (11.41) and the BLUE for 8, in (11.43)
depend on the unknown variances A and o;,. Swamy (1970) shows how the
OLS estimator (11.42) can be used to obtain the {(asymptotically} unbiasecd
estimators:

(y: - X:b) {y; - X;b))

G = T-K
A = NSEI - % SN G (X;Xi)

with the sample inner product matrix S, = SN bbbl - L S b, TN b
Under rertain regnlarity conditions the FGLS (or estimated generalized least
squares - EGLS) estimator for B that uses these variance estimates is under
certain regularity conditions consistent and asymptotically cfficient.'"

All kinds of tests can be formulated in a similar way as before.  1If c.g,
homogeneity is tested under the null: Ay« 3, = 3, = By = 3. the {(Wald)

tost statistic: o )
(bé. - E) XX (bz - B)
9=, , : (11.44)

i

with 3 : = (Z;"_l é,-_t-'X;X.i) SN 65 X X b, is according to Swamy (1970)
asymptotically x"’K(N 1 distributed. Whether the coeflicients should be fixed or
random depends on whether the coefficients are correlated with the dependent
variables. If they are, SUR should be used. If not. the GLS estimator can be
used. The test statistic {11.44) can also be regarded as a test for aggregation
bias. but the null hypothesis in this case 1s a more restrictive one. Acceptance
of the mull suggests that aggregation bias does not exist because the coefficients

are fixed and identical.

11.5 All coefficients vary over individuals and
time
In this case we have the general model:
it = B+ Yo Bpana + g (=L Nt =1,...71) (11.45)
with 3 i= 34 + jtg; + Axe. This model can be written for individual 7 as:
yi=XiB £ Xip; + LA + e

Yoy liffeulty with the estimator A is it it may not be nonnegative definite. Then the
nnbiuseilness property is obhvionsly destroved. huat s appropriate sulutiem conld he to use the
nalral sample gquantity A = —\Elb—l ikt ease, This estinmtor will be nonnegative definite
Al consistent,
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— - - ! !
with y; = (19'-@11---«:l,»'i.’.'")r B = (ﬁ,lﬁ;() y B = (Byiy - - BKi) »

I TRe: X;] f 5 :
"1l Kil i 0 x:.:é 0 ' foN¢
x':= E E ; zl:: : o) : !A:=(Al!---.A'I‘)\
Tyt TRIT 6 oea --: xiT
Apid= (Alt'....)i.'(t)'. and x; = (-’-ﬂ'lit-ﬁ?z:ea---,éﬁmf)-

When all NT observations are considered the model can be rewritten as:

y=XB+Zpu+ZA+e

’

withy = (¥, - ., ¥n) X = XGEXL), i = (- oo 8y ) Z 2= (24, - -, ZR)

Xy ek e 0

., ;. uls Xy o+ 0
€:=(g},...,€y) ; and Z:= . .
O Xn

11.5.1 Fixed coefficients

As before the parameters B, p, and A can be estimated with OLS. Notice,
however, that the matrix [X,Z,Z] has dimension (NT X (T'+ N + 1)K) and
rank (T'+ N +1)K so that 2K parameters are redundant (K parameters Jiy; and
K parameters Ai;). A simple procedure is to scrap (1N s s R NG AT oy AKT)

by redefining the corresponding columns in Z and Z and redefining the other
parameters:

Mt == (t=1,2,...,T-1)
’J‘Ei =M — HiLN (i = = I-2v---sN == 1)

11.5.2 Stochastic coefficients: Hsiao’s model

According to Hsiao (1974, 1975) the following assumptions are made regarding
the stochastic coefficients: p; * (0,A), A, ¢ (0,A), and & * (0,0217)
with E (M) = 0 Vi, &, E(pej) = 0 Vi, 5,6 E (Mgig) = 0 Vi, t,0 and the
variance-covariance matrices A and A are assumed to be diagonal matrices
with diagonal elements ay and dy, respectively. Assume that all the variances
are known. Then, the variance-covariance matrix of the compound error term
can be written as:

®

E [(Z,u. +ZA+e) (Zp+ZX+ e)’]
Z(Iy ® A)Z +Z(Ir @ A)Z + oIy,

so that the GLS estimator for B is B = (X'®~'X) ' X'@y, being the BLUE

of it, with variance-covariance matrix var(3) = (X"I'*IX]_I. If one wants a
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prediction of the stochastic (()mponulh for cach individual, one can demonstrate

that the predictor jt — (I & A)Z d iy - Xﬁ) is the BLU predictor.

The variances «ay. d;. and O'E. however. are generally unknown.  Various
methods exist to estimate these variances. Acecording to Hildreth and Houck
(1968) the gencral equation (11.45) can be rewritten as:

Hir = Z?_L _3;1.2-3';\-1'1 + i (J =1...Nt=1... T}
with 3,, : = ?;‘ + poy; and vy = Z:‘ LAk 4o . (11.46)
whore E{v;) = 0 and var(w,) = E(vl) LL_] arpri, + ol = ¢,,. Consider

now a 1’ vector ¢é; containing all 7' variances ¢,,. then ¢, = X, with

2 L2 2
'j'_lj-il -I-I‘,:‘\'-U vy — oz
T - g
- 12 K2 2
X, = . . and a :=
Tigr TR K

Assume now that v; :=y,; - X;b, is the vector of the QLS residuals of the
] r . -
ith cross section (b; = (Xin) X,¥:): the vector of the squares of these

OLS residnals is represented by v; so that E(V,) = M;¢, = F,a. where
M consists of the squares of the elements of the idempotent matrix M, := Ty -
o, o
X, (X X; ) X, and Fy .= MX,. Repeating this for all eross seetions we got
E(v) - Fax with v : =(¥].¥5.... V)Y and F:= (F|,F5, .. F\,). When OLS
1s applied on this cquation we find the nnbiased estimator & = (F F) F'v.
According to the same procedure. but now for each time period. we find
the unbiased estimator for é.  Under certain 1'(’g111r1rity counditions & and 4
and a (‘Ol]‘:]‘:t[‘ll'[ st 1mat0r of the residual variance 2 is then found as rrz =

Zgﬂ Z, | Rt and 6l =gt - LA:—I &gzl where ¥, are the residuals from
an QLS estimation for each individual and ©, are the residuals from an QLS
estimation for each time period.

From c. §. and &2 we can directly derive consistent estimators for a and 8.
Notice also that if the panel 15 wnbelanced. Le. if there are missing observations,
we have to divide the ith sum of squared residuals by T; instead of by T.

11.6 Advantages of panel data reconsidered

Conclusively, we may tentatively take the following conclusions:

o pancl data is efficient (w.r.t. random sampling)

e pancl data is better for aggregation (e.g. income distribution may vary
over time)
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e identification is easier
e less multicollinearity .

After a general discussion in the introduction to this part of the book, the
first three advantages will now be analyzed in greater detail.

1. Panel data is efficient (w.r.t. random sampling)

When the panel data consists e.g. of a yearly reinterview of the same sample
of cross-sectional units, one could consider to draw a random sample of indi-
viduals each year.as an alternative. Additional sample variance is introduced in
this way, however, so that data based on random sampling is less efficient. This
is demonstrated by the following model in mixed form:

vie= By + N+ itea (i=1,.,N;t=1,..,T) (11.47)

with 3, and \; fixed but unknown parameters {Z: (A = 0), g a.nd €ir are
noncorrelated random variables with expectation zero and variances o2 5 and o2
For individual i(i = 1, ..., N) the model becomes:

Yi = Byer + Ird + pier + € (11.48)

with A := (A1, A2, ..., Ap)’ and ep := (1,1,...,1)". The covariance matrix of the
compound error term then consists of the following blocks ®;; = E{(puer +
i) er + €)'} = ouepey + oflp for i = j and ®;; = 0 for i # j, so that the
covariance matrix @ is block-diagonal:

Py M an 0 &) - - 0
0 ®p --- 0 0, W B D
TR, el i ] with @ '=| | o \
0 0 - SByN 0 0 oo BuE

If we represent model (11.48) for all individuals as:
y=Bitnr +itn@IrA+ p@tr +e (11.49)
with g == (f,, ftg, ..., pty)". The unknown parameter B, in (11.49) can be esti-
mated by GLS which is the BLUEE:(;’}VTQ' Lane) @ ly=(C, 22 28 v,
so that the cyclical component can be estimated as A, = (7. — 9..), with
23;1 Ag = () !
- T - -
The BLUE of y; is fi; = ﬁz—_,'_';g((yi. - B)
If we are interested in the change of the yearly means: Ay — A1, an unbiased
estimator of this change can be found from (11.47), 5, = B, + At + =% +

Z—b—"andy —5 +-Z,‘\7——+ ory,—g_—At+-;‘~3—LN—z;“ﬂ,or

the unbiased estimator of A; — /\, 1 IS

M=Ma=@e—0)— Fe-1—7.) =8¢ — Y1 (11.50)
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With a yearly reinterview of the same sample the variance of the estimator
(11.50) satisfies:

'uaf'(j\t = A1) = var(fe —F.i-1)
= var(§.) + var(g.i—1) — 2cou(. Ge-1)

L L e el

_2E{(B1 + X+ %ﬁ + Z—}vg—'i){fil + A1 +zjivf-‘vi +Za;}.t—1 )

—(B + (B + A—1)

e e{(5) (B5))

2 2 2 2
+ o} o
= 20” N 2 }\L; - 2?\? (1351

There is no covariance between ¥ and F.:—1 In the case of two random
samples, or {11.51) becomes in this case:

2 2
o, t 0

N
Hence, the estimator for (A; — A¢—1), based on panel data, is more efficient than
its estimator based on a completely new sample {both are unbiased estimators,
but the latter estimator is not efficient). This is an illustration of the efficiency
gain in the case of setting up a panel.

2. No aggregation bias in the case of panel date.

Assume & society that consists of two individuals and assume that their
consumption level at period ¢ is given by the following permanent income rela-
tionship: .

var(h — ho1) = var(fs —Gi-1) =2 (11.52)

Cy = oY+ BYir1 +oi+eu (i=12 t=12 1) (11.53)
e,

i Y,;P

with C;; the (nominal) consumption level of individual i during period £, 4 the
disposable income of individual ¢ during period t, and o4, f;, & (i =1,2) being
6 unknown parameters,

Define now the aggregate consumption level C; 1= C1; + Co; and the aggre-
gate income level Y3 := Y, + Yo; with income shares w; = %‘"—‘ (¢ =1,2). Then,
the aggregate consumption function can be rewritten as:

C, = oYitaa¥au+B Y1+ BoYa i1 +d1+ 02 +€+ 82 (11.54)
(aqwie + cowze)Y: + (Bawie—1 + Bowze-1)Ye—1 + 81 + 8z + €1+ E2e-

1
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to often occurring heterogeneity.

3. Ability to solve the identification problem,

A third advantage of the availability of panel data is that it reduces inden-
tification problems. Although this advantage may enter for different issues, in

Pp. 311 — 313, for some other issues),
Assume e.g. the estimation of a production function free of managerial
bias, When specifying production functions of small enterprises (as agricultural

variable or to use an approximating variable. But since managerial capacity is
expected to be correlated with the other exogenous variable both approaches
will lead to biased estimations. A possible solution is to use panel data and to
introduce in this way a latent variable for each firm the value of which could
represent managerial ability. There are also many other cases of identification
improvement ( e.g. through disaggregation of strongly correlated aggregate time
series).

11.7  Incomplete panels and selection bias

may be a rotating panel (where each period a fixed proportion of the units
is replaced), etc. A consequence of all these events with missing data is that
the resulting panel database has a tota) number of observations which is sub-
stantially smaller than NT" If the number of time observations differs from
individual to individual, we have Liwith NYY 7. < NT and the formu-
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lac in the previous sections are changed accordingly, ¢.¢. the contemporanecus
variatce-covariance matrix (11.34) of the SUR model can be estimated in the

first stage as: 35 = {[7‘,- K.]]f;?,:‘,,.; 7T } We call such a panel with missing
data an unbulanced panel

Missing observations may be created deliberately, as in the case of split und
rotating panels. Given that in a ot of cases panel data is not available. but
the rescarcher ean build up a pseudo panel from surveys, we will first treat this

CHse,

Finally. one undesirable consequence of using incomplete panels is that of
selection bias: if the individuals are incompletely observed because of an endoge-
nous reason. the use of this data may lead to biased estimators and misleading
tests.

11.7.1 Incomplete panels
Rotating or rolling panels

The rotating pancls are designed to keep the same nurnber of individuals in the
sample. In each period, a fixed proportion of individuals is dropped from the
sample. and is replaced by an equal number of new individuals that are freshly
surveyed, The individuals are rotated mainly to replace voluntary drop outs.
and to avoid interviewing again and again the same houschold, reducing the
degree of nonresponse. Finally. the individuals are rotated in order to maintain
representativencss of the sample. If one would use the same sample for example
over ten vears without incorporation of new individuals. the sample would loose
representativeness, especially over the younger cohort of individuals, because of
ageing of the ones included in the sample.

Split panels

The sphit panel design is partly a pancl and partly a series of nonoverlapping
cross sections. Nijman and Verbeek {1990} correctly state that “Under certain
conditions, the split panel can yield more efficient estimates than the use of a
panel or a serics of independent cross seciions” .

Pscudo panels

For some countries. panel data is not available. As an alternative. there may
be large random samples over the population that are repeated regularly {(e.g.
annually). For these repeated cross-section surveys. it might be possible to track
the same honscholds over time to obtain a panel.

It has been argned that these pseudo panels may be available over a longer
period of time compared to a genuine panel database, and that thay don't
snffer from ihe attrition problems. Moreover. pseudo panel data can provide a
relatively long time series of observations compared to panel data.
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11.7.2 Attrition and selection bias

Attrition occurs when individuals having participated in one or more waves (i.e.
the cross sections of the panel) leave the panel, and do not return in the panel
(if they leave the panel only temporarily, we have the issue of missing observa-
tions). This can be caused by removal, emigration or decease, but also by the
fact that the individual ‘gets tired’ of answering the questionnaire each time
period. Ignorable attrition can also occur, when the conditional moments of
the panel data results are the same as without attrition. If a balanced panel is
used, this leads to an efficiency loss because the information of the incompletely
observed observations is not used for the estimation. A potential consequence
of using unbalanced panels is the danger of selection or selectivity bias: if indi-
viduals are incompletely observed because of an endogenous reason, the use of
either the balanced subpanel (where each individual with incomplete informa-
tion is discarded from the panel so that the balanced subpanel is only defined
for the completely observed individuals only) or the unbalanced panel may lead
to biased estimators and misleading tests. To be more specific, consider the
(static) panel data model ¥ = x,8 + u, + =;; and define the indicator or re-
sponse variable ry = 1 if (yir, %) is observed and 7 = 0 if (yi, 23) is not
observed so that T} = 23; 1 Tit- We say that the observations on (Yit. z4¢) are
missing at random if r;; is independent of y, and £;,. This means that condition-
ing upon the outcome of the selection process does not affect the conditional
distribution of y; given zi.!" To specify estimators with randoml missing
data. the ‘available means’ can be defined as 7, := 23_;1 TitYit/ Y4y it and
% B E;r:l r,-;x,-gfzg;l Tit; so that e.g. the FE estimator (11.4) of the slope
coefficients can be rewritten as:

i N T -1 n 7T
Barg = (; t; it (Xis — X, ) (Xie -—i’,;_)') Z} :§;1 it (Xie — X0, ) (ie — T )-

Randomly missing data, however, may be unrealistic so that in many cases
the response variable r;; will be correlated with one or two unobservables in the
model, e.g. estimating the impact of the unemployment rate on individual wages
may be disturbed by the possibility that people with relatively high wages could
be more likely to leave the labor market in case of increasing unemployment. If
1yt depends upon u; or g4, selection bias may arise in the FE and RE estimators.
Selection bias will be present in the estimation of the individual effects 1, only if
rit depends on 41, and not on £i. On the contrary, if r;; depends upon &;; all the
estimators (4, and g;) will be subject to selection bias (inconsistency), except
when this dependency is purely time-invariant in the case of the FE estimator
(see Verbeek and Nijman (1992 and 1996)). Hence, the FE estimator is more
robust against selection bias than the RE estimator.

'If we want to concentrate upon the balanced sub-panel, the conditioning is upon ry =
v = Ty = Land we require that ry is independent of g, and g4, - Ei7. Then, the consistency
properties of the estimators are not affected.
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Concluding. we mnag observe that the four different estimators. FIand RE.
using either the balanced subpanel or an unbalanced panel. usually all suller
differently from selection hias. As (he estinators Using au nnbalanced panel are
(asymptotically) efficient within a particular class of estimators (wore informa-
{ive since using more relovant observations). test statistics of the Hausman type
(11.20) and (11.32) can be used to test the differences between estimators of bal-
anced sub-panels and wnbalanced panels (£ @ plim fjf-h-_m._; = plim ;Cn‘};'.-;,;.m,_-.
where the superseripts B and U7 vefer to the balanced and unbalanced sample.
respectively )

-~ . T3 ot e B — 1 =Ty P wn
Su= (!B.F'!-.'.H}-.' ﬁ!-'!-.'.ﬁ!:') (a"“r!-'h‘.h’ff - *‘Vm':-‘f-;.f.‘h') (!BI-'F'.'.H!-,' - ﬁ;-':-;.fr,r-:) ~ X§

. [F . . . .
where avary gz aud avar g, g represent (consistent ) estimates of the as-

. . . . -l L .
yimptotic variance-covariance matrices of B e and B gy in the case of an
FI2 and RE cstimation. respectively.

11.8 Dynamic linear panel data models

Up to now we have assumed that the vector of explanatory variables x,; is fixed
and does not contain random variables (striet exogencity assuniption). but we
know from daily practice that a potential feedback from gy 10 X,y for o = |
very offen oconrs. With an unobserved effect as in the case of panel data. the
most revealing form of the strict exogeneity assumption in a lincar panel data
model i

IAPPED ST ENEE ‘XJT-}”-;} = Ey ! Xu.-,fig} - X:;ﬁ-f Ely, "Xt ) (11.55]

for t = 1.2.--- T and where i, s (he unobserved individual effect i a panel
data model, be it fixed or random.

Nevertheless. in awy panel data application we should initially focus on two
(JUesTions:

i} Ts the wnobserved offect & uncorvelated with x,p for ol i

it} [s the strict exogeneity assumption reasonable?

As already indicated we should stare from real-world applications to provide
answers to these basic guestions. Nwnerous exanples can he put forward. Tt
let 15 ouly consider three:

al Distributed lag wnodel: In many applications cases {patent awards, con-
sumption expenditures....) we have a model with fdistributed) lags of (some)
explanatory variable(s). say e.g. the Hansman. Hall, and Griliches (1981} linear
model of patents awarded Lo a firn and current and past levels (up to five lags)
of R&D expenditures:

patcids, = — 726+ SRy FORD o+ R o+ + 20

where 8, denotes i time-varying intereept. B2y is spending ou R& DD for firm ¢ at
period ¢ and #;; contains exogenous variablos such as firm size: the unobservable
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variable yi; represents firm heterogeneity, that might be correlated with current,
past, and future R&D expenditures;

b) Lagged dependent variables: of course, this situation where the strict
exogeneity assumption is necessarily false is very often occurring, e.g. a very
simple model of wage determination with unobserved heterogeneity is:

log (wage;t) = vlog (wageis—1) + p; + £ (11.56)

for £ =1,2,.-- [T} in many cases people are interested to verify how persistent
wages are (as measured by the size of ) after controlling for unobserved het-
erogeneity §; (e.g. individual productivity); for y;, := log (wage;;), a standard
assumption would be E(e;; | 4 ¢—1,-- - , Yio, ;) = 0,which means that all of the
dynamics are captured by the current lag;

¢) Program evaluation: a standard model for estimating the effects of job
training or other programs on subsequent wages is:

log (wageit) = 0y + 2y 0+C, progie + pu; + €t (11.57)

where 6, is again a time-varying intercept, z;; is a vector of (exogenous) observ-
able characteristics that affect wages and may also be correlated with programn
participation. Evaluation databases are often collected at two time periods.
At t = 1, no one has participated in the program, so that progi; = 0 for all
t=1,2,--- 'N. Then, a subgroup is chosen to participate in the program (or
the individuals choose to participate), and subsequent wages are observed for
the control and treatment groups in ¢t = 2. The reason for including the indi-
vidual effect 1, in (11.57) is the case of omitted variables: if individuals choose
whether or not to participate in the program, that choice could be correlated
with individual ability. This possibility is often called the self-selection problem.
Alternatively, administrators might assign people based on characteristics that
the econometrician cannot observe. The other issue is the strict exogeneity as-
sumption of the explanatory variables, particularly prog;;. Although the error
terms e;; may generally be uncorrelated with prog;;, but what can we say about
the correlation between £, and, say, progi++1?7 Future program participation
could depend on £;; if people choose to participate in the future based on shocks
to their wage(s) in the past, or if administrators choose people as participants
at period t + 1 who had a low =;;. Another issue is that the training program
could have lasting effects; if so, then we should include lags of prog;: in model
(11.57) or the program itself might last more than one time unit, in which case
progi; can be replaced by a series of dummy variables for how long individual i
at period ¢ has been subject to the program.

A model with lagged dependent variables is called a dynamic panel data
mode! and will be discussed in this section.'®. Estimating dynamic panel data
models as in (11.56), we have to take account of the correlation between the
lagged dependent variable(s) and the residuals. A general formulation of such

"¥Nbte that almost all distributed lag models can easily be converted into models with
lagged dependent variables.
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a model 38 1111}, For the sake of shnple exposition we choose the number of
lags as one (p = 1), so that with one lagged dependent variable as a regressor,
we consider the following simple stationary AR(1) panel data model:

Vit = YWib—1 + Hy T Eh (11.58)

1

with i = 1.2,. t=1,2....T, v <1 and g, ! (U o )
Xu‘f(mgxessn £ pdn(‘l data mod( ls ean be analvzed using fixed cffects (FL)
and random effects (7)) or even mixed.

FE or dumnmy variables estimator

T this section we bave a look at the FE duwmiy variable estimator of the above
autoregressive panel data model. Tguation (11.58) in deviations from sample
means (also called the within fransformation) yields:

Vit - To =7 (wir 1 T ) e —EL)

The OLS estimator for ~ {also called the ‘within® estimator or as before the FE
estinlator) s

. E:,:\— Z!_l Wit — U :](yr'-:f i _3_)?-.!.— l)

e Fo— — 3 (11.54%)
Zv 1£at—1 (Utc 1= W J)
with %, = SSHEL 7 Y and g, D PR TNE

T
Tnvestigating the properties of 4p . we substitute (11.%8) luta (11.59). This
vields the following expression for the FE estimator:
Y

S - - _?f.} Hit— _ﬁ};'—
,j-r =y b i L«:_l._-d | Lt : ( =1 I.,' l). (ll()ﬂ}

ﬁ Z.,: 1 er] ('y'r..t—l - y'.l..—l)
For this estimator 1o be consistent. the probability limit of the second term
of the expression should be zero. such that vpp = 7. This is not the case:

pi?m (-} # 0. More specifically:
No-

pfrm Zg_ S (g = E ) (Yer 0 = T )
N ¥
e (T — 1) =Ty +n"
= = - : 0. f11.61
R TR I el

If both N —» oo and T —» oo, 4pp I8 a consistent estimator for =, but if T iy
fixed and only N —» 5. which s often the case in panel databases with a large
number of cross sections, the estimator is inconsistent (see expression (11.61)

and also Hsiao (1986)).
T'o solve this inconsistency problem. a different transformation should be

applied, namely by taking time differences:

Yie— Wi L =Y (5!1__:—1 — Mt SR I Yo d=1 L N L Y (11-62,]
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Since yi+—1 and €, are correlated (p (yi(—1.8:¢-1) # 0, even if T — c0),
OLS of equation (11.62) is not consistent. This transformation suggests an
instrumental variable (IV) approach, however, say with y; ;5 as an instrument
for yi,e—1 — Yie—2: p(Yit—2:¥Yit—1 — Yit—2) # 0 but p(yi,1—2,£i4-1) = 0 unless
£4¢ has autocorrelation. The IV estimator is:

Sy = ZiLETm Yig—2 (yi‘r—! — Yit—1)
Ef—.l E?:;g Yit—2 (Yit—1 — Yir—2)

Instead of considering y; s » as an IV for Ay, ;_;,we may also consider Ay; 4o that
also leads under regularity conditions to a consistent estimator, which however
requires one estimator more. Remember that an IV estimator is generally set
up for the simple linear regression model y = X3 + € as 8, = (Z'X) ™" (Z'Y)
with var (Bw) =0? ((X'Z)(Z'2) (2'X)) " , where the Z variables should not

be (asymptotically) correlated with the residuals: plisz" =:{)

Thus, a necessary condition for the IV estimator in (11.63) to be consistent

(11.63)

is:
: I N| T
thm D imt 2opea (Eit — Eig—1) Yit—2=0 (11.64)

for either N or T or both going to oc. In (11.62), Vit—2 — Yit—3 may be an alter-
native instrument for y; 41 — y; -2 instead of y; ;_o, but requires an additional
lag s0 that the number of sample observations is reduced (one sample period is
lost which might be very harmful in panel data cases with a small number of
time observations).

Notice that a method of moments (MoM) estimator can unify these esti-
mators and eliminate the disadvantages of reduced sample sizes. According to
(11.64) the underlying moment condition (see Section (2.2)):

E {(sit — &i0-1) yie—2} Splimgrs 7 | S, (€it — €i-1) g2 = 0,

where y; ;o is substituted by Ay -2 if we consider this variable as an IV. Hence,
for any choice of an IV we have a separate moment condition. Following Arel-
lano and Bond (1991) the list of instruments can vary over time, For example,
forT =4 we get: E {(5‘52 = Eil)ygg} =0fort=2,F {(Eg‘:i — E,ﬁz)y,'u} = 0 and
E{(si3 — ei2)yir} = 0 for t = 3. Finally, for ¢ = 4,there are three moment con-
ditions and three valid instruments: E {(zi4 — €i3)yio} = 0, E {(gi4 — €i3)¥i1 }
and E {(gis —€i3)yi}. All these moment conditions can be exploited in a
GMM framework by defining subsequent error differences as Ae; := [(gia —
€i1)s-- -, (i r—ei7-1)]" and a block diagonal matrix of IVs as Z; with the vectors
Yios (Yio, ¥i1)s(Yio, Yir, ¥i2) - - - (Yios - - - ¥i. 7—2) on the diagonal (block) which, tak-
ing account of (11.62), leads to the set of GMM moment conditions E[Z/Ag;] =
E(Z; (Ay; — vAyi.-1)] = 0. Clearly, the number of moment conditions k = m,
the number of explanatory variables, so that the resulting GMM estimator of v
can directly be derived from (2.9) as

s =} &
YoeMMm = (E:L Ayi_,Z.—W..ZZAy;_hI) 211 Ay;.—lzi\ WnZ;AYis
(11.65)
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where the optimal estiniated seighting matrix W, 1s given by the estimate of the
verse viriance-covarianee matrix of the sample monments {moments conditons)
or W ois piven by W @ =jvar(#/Ae,); ™ (F{Z:Ae; AelZ )] ' 5o that its

. . !
sample analog W, is given by W, = (' § oA Z::AQ;AE:Z,) awhere &; s the

L aryy|
residual vector forin a first step consistent estimator, for c.g. using W, 1.

Dynamic pancl data models with exogenons variables

If uther {CXOPENOUs) PRgressors are included. such as in:
!
Yo = X+ vy 0 1+ e

s instrnmental variables approach which is similar 1o the one in the previons
cubscetion can be used, if the X8 are strictly exogenous. I £ (Xis) lj
Viitos then also F{xAz) =0 Vil Ouooment conditions for s < F)r x5 i
fiest, differences should simply be added to the model i fiest differences {(11.62).

An example of this approach is found in Konings and Roodhooft (1997).
who esamine the labour detand for 3000 firms in Belgium:

log L.,y = ?1 + s log Wi 1 Sylogds e 13 oy Yir
{ .‘f_—, ]l)f_’,' li'_,; - = I(JI_L’,' L‘;_; 1 + LA I I

Note that we might expect that £7 (A oy WAz, /0

Unit. roots and cointegration in panel data models

e The principal motivation behind panel dafa unit root tests is 1o merease
the power of {classic) nuit rool tests by increasing the sample size. Lhis
i an important issne sinee it s not clear whether stretural broaks in
tie case of long tine series are more serious than the probien of cross-
sectional heterogeneity. Tt is often argaed that the communonly used noit
root tests stich as Augmented Dickev-Fuller {ADI). Phillips-Perron (PP).
and Kwintkowski ef al. (KPSS) are nor very powerful. and that nsing
panel data a more powerful test can be obiained.

e Concepts of unit roots. spurious regression and cointegration are Jong ran
concepts (e T —+ x) In many cases keeping 7 tixed but & - ox
circunvents such problams. 1Bt the possibilivy of heterogeneity implies
that it is conceivable that the variables belonging, to different individnals
have a different timne-series behavior: some may even be stat oy aned
others non-stationary (e.g, tegrated of a certain ortder). e.g. I cases as
yue o~ 1 (0) amd gy ~ T{1) To test the latter ease we might consider the
AR{1) model (11.58) with coefticients varving over individuals apd which
carl easily he rewrirten as LT TP R TS S/ A DR B Y with =, : - ;L
The nuil ix then Ty o all series liave a unit root or Hy o= oV
The alternative could be that all variables are stationary {with the same
meat-reversion paraneter). e Fyoas < 0. e
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It might oceur that, assuming for all cross sections that the variables Wit
and x;; ~ I (1) are cointegrated with common cointegrating parameter
(vector) B such that y; —x{, B ~ I(0), Vi.

* Breitung and Meyer (BM-1994), however, suggest a simple panel data
unit root valid for fixed T and N — oo. They consider a variant of the

autoregressive model (11.58) yie = Yyir—1 + (1 — 7)p; + ir with g5

iid

N(0.,02),i=1,2,..,N; t=1,2,..., T. Regressing y;; on Yit—1, ignoring
K, yields an OLS estimator 4 with asymptotic bias:

. 1-y) N3N 2
pim (== L= DN T
N=veo N- Z::l“i‘*‘u__-?‘-’i

from which it is clear that the asymptotic bias vanishes if v = 1. Hence,
the unit root hypothesis can be tested using the t-statistic for Hy, : =1
(this is e.g. the ADF’s null). However, since under H, : v < 1, the OLS
estimator 5 is biased, this test leads to a loss of power. BM-1994 suggest
estimating the equation (yit —%io) = 7(¥s.e—1 — ¥io) + (it — £i0). Denoting
the resulting OLS estimator by 7. they show that plimy ... 5= %('y +1).
Again, under the unit root hypothesis the bias disappears. Levin and Lin
(1993a and 1993b) explain why the BM-1994 approach cannot be used
to analyze the influence of individual effects or serial correlation on the
appropriate critical values at which to evaluate the t-tests.

¢ Levin and Lin (LL-1993a and 1993b) develop unit root tests for the model:

Yit = YWie—-1 + 00 + 01t + p; + vy + €4

with e 24 (0,02) ,i = L;2LEN:t = 1,2,....T; hence, this model in-
corporates a fime trend as well as individual and time specific effects.
Initially, they assume #id errors, but they showed that under serial corre-
lation of errors the test statistics have the same limiting distributions by
the inclusion of first differences of y;;. LL-1993 consider the following six

models;

(i)

(i)
(i)
(iv)

(v)
(vi)

Yit
Yit
Yit

Il

|

YYit—1 + Eit, Hy:y=1

VYit—1 + 0o + £z, Hy:v=1,6,=0
VWit-1+00+08it+¢ei, Ho:v=1,60=0,6,=0
Tit—1 + vy + &, Hy:7y=1

Vi1 + p; + €4t Ho:vy=1p,=0 Vi

Vit—1 + fip + pigt + €4

and show that for models (i) to (iv) TVN (4 — 1) = N(0,2); t, is con-
verging to a standard normal distribution and for model (v), if VN/T —
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TVN{(#-1)+3VN = N(0,10.2)
V1.25t, + V1.876N = N (0,845/112).

LL (1993a) argue that in contrast to the standard distributions of unit
root test statistics for a single time series, the panel test statistics have
limiting normal distributions. However, the convergence rates are faster
as T — oo (superconsistency) than as N — oo. The major limitation of
the LL tests is that = is the same for all observations. Thus, dencting by
#, the value of <y for the ith cross-section unit, then the LL test specifies
the null Hy and slternative H, as:

Hy @ mp=7==1m=7=1
H @ m=vwn==7w=7<l

o Im, Pesaran, and Shin (IPS-1997) relax the assumption v, =72 = - =
~x under Hy. To demonstrate it they consider model (vi) in Levin and
Lin (1993a and 1993b) and substitute -y, for . This meodel with a linear
trend for each of the N individuals is then used for separate unit root
tests fo the N cross sections. Therefore, let ¢;,4=1,2,-- , N denote the
#statistics for testing unit roots and let E (£;) = p and var(t;) = o2, then:

\/Ft—;—“:N(m).

The authors compute u and ¢ by Monte Carlo methods. Important to
note is that the IPS test is a way of combining the evidence on the unit
root hypothesis from the N unit root tests performed on the N cross-
section units. Note that implicit in the test is the assumption that T is
the same for all cross-section units, so that we are considering a balanced
panel.

A drawback of the IPS test is that, not only we have to apply it on
balanced panel data, but also that it depends on the assumption that there
is 1o cross-section unit correlation among the error terms (see SUR). This
assumption is very often violated in practice.

11.9 Empirical cases and exercises

11.9.1 Case 1. Investment and market value of firms

Part 1. Papel estimation

Use the data in Section 13.9.7 of Greene (2003), p. 335 (the Grunfeld data
Table F13.1 at
http:/ /pages.stern.nyn.edu/ ~Wgreenn'e/TeJr:t/ectmometrica.naﬁlysis.htm) to fit the
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Table 11.1: Case 1 - Part 1. Fixed Effects Model.
Dependent Variable: I

Method: Pooled Least Squares

Included observations: 20

Number of cross sections used: 5

Total panel (balanced) observations: 100

Variable Coefficient Std. Error t-Statistic Prob.

F 0.10598 0.015891 6.669182 0
C 0.34666 0.024161 14,34781 0
Fixed Effects

F1 Intercept -76.0668
F2 Intercept -29.3736
F3 Intercept -242.171
F4 Intercept -57.8994
F5 Intercept 92.53854

R-squared 0.937454 Mean dependent var ~ 248.957

Adjusted R-squared 0.933419 S.D. dependent var  267.8654
S.E. of regression 69.11798 Sum squared resid  444288.4
Log likelihood -561.847 F-statistic 232.3194
Durbin-Watson stat 0.806789 Prob(I-statistic) 0

random and fixed effect models. There are five firms and 20 years of data (1935-
1954) about the variables:
Iy = gross investment, from Moody’s Industrial Manual and annual reports of
firm i =1,2,3,4,5 and period t = e .. 20:
Fit = market value of the firm at the end of the previous year originating
from Bank and Quotation Record and Moody’s Industrial Manuel of firm i —
1,244,4.5,
Cit = value of the stock of plant and equipment at the end of the previous year
for each firm 4 =1,2,3,4.5.

Use the F, LM and/or Hausman test statistics to determine which model
(the fixed or random effects model) is preferable for these data

Fixed Effects model The estimation of the fixed effects model is presented
in Table (11.1).

Both variables F' and C are statistically significant at the 1 per cent level.

Pooled OLS with common intercept is presented in Table (11.2).
The F-test statistic (11.7) is given by:

(R%'E - Rf’oafed) /(N | 1]
(I—R%E)/(NTuJV—Kﬁ-l)’

checks whether all fixed effects are equal.

FN_ A\ NT-N-K+1 =
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Table 11.2: Case 1 - Part L. Pooled OLS.
Dependent Variable: [
Meathad: Pooled Least Squares
Ineluded observations: 20
Total panel observations L0

N Variable  Cootlicient. St Frror  1-Statistic FProb.
- Tutercept AR0297 218017 2236 0.0276
F (0.100H085 0.0 1375 4.23508 0
C (1305366 0013508 T.0186:37 0
R-squared ().775850 Mean depondent var 218957
Adjusted R-squared (.77 1206 S, dependent var 267 8631
S F. of regression 1272583 Sum squared resid  I5TORE
Log likelihood -89, 568 F-statistic 170514
Iurbin-Watson stat (1228055 PProby( F-statistic) 0

The critical values tor £ o are 216 and 3.52 ad the 5 per coit amd 1 per
cont level, respectively. The resulting Fiyog statistic 1s AR.O55T 1. 50 that we can
decisively reject the null hypothesis and there is a strong {irmn -specific offect in
the paucl data.

To control for heteroskedasticity in the data it is possible to estimate the I"E
model with the use of cross-sectional weighting. Yel in our sample only one out
of five firms exhibits heteroskedasticity, Thercfore only small differences wore
abtained when estimating the model with cross-sectional weighting and wo stay
the nonweightod specification in this case.

Randorn Effects model  The estimation of the random effects s presented
in Table (11.3).
The LM-tesi statistic (1119} is siven byv:
v T 2 2
v |EL (S e)
9 — |\ T 7 5
- DTN 0 = b
M(J' l) >—-f.’ |>—’f ]f"af

i calenlated from the Pooled QLS residuals ¢ and amonnts to 153.8221. lere
we definitely reject the iypothesis that the random cffects model is a valid way
to estimate thiis relationship. Therefore we immediately conclide that the fixed
offects model is thie best way to estimate. And there s no need to cruploy the
Haustian test o choose between the FE and RE models,

Part 2. Dynamic panel estimation

Here the extension is presented in the sense that the following dynamic panel
model is estimated (see Subsection 118}

Ly - ‘!l + .'j-_,l“:'p { 3;,(.;','( f .‘3|I,‘J_1 4 7.

3
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Table 11.3: Case 1 - Part 1. RE Model.
Dependent Variable: I

Method: GLS (Variance Components)

Sample: 1935 1954

Included observations: 20
Number of cross sections used: 5
Total panel (balanced) observations: 100

Variable Coefficient Std. Error t-Statistic Prob.
Intercept -60.2905 54.48388  -1.10658 0.2712
F 0.104886 0.014797  7.088186 0
C 0.346016 0.024254  14.26661 0
Random Effects

F1 Intercept -10.3894

F2 Intercept 31.07585

F'3 Intercept -175.667

F4 Intercept 3.112561

F5 Intercept 151.8678
GLS Transformed Regression
R-squared 0.933998 Mean dependent var ~ 248.957
Adjusted R-squared 0.932637 S.D. dependent var 267.8654
S.E. of regression 69.52289 Sum squared resid 468842.9

Durbin-Watson stat 0.762426
Unweighted Statistics including Random Effects
R-squared 0.937375 Mean dependent var ~ 248.957
Adjusted R-squared 0.936084 S.D. dependent var 267.8654
S.E. of regression 67.72058 Sum squared resid 444849.5

Durbin-Watson stat

0.803548
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Table 11.1: Case 1 - Part 2. Dynamic FE Regression.

Dependent Variable: 1

Sainple{adjusted): 1936 195

Included observations: 19 after adjusting endpoints

Number of cross sections nsed: D

Total panel (balanced) observations: 95

White Heteroskedasticity-Clonsistent Standard Frrors and Covariance

B Variable Coefficient.  Std. Error  i-Statistic 'roh.
F (1.105257 (.017075 (3.164533 0
C (0.149301 (.039311 3.795021 0.0003
I{-1} 0.620818 0.112567 B 515224 0
Fixed Efects

I'L [ntercept -2900.478%

F2 Iniercept -55.5766

3 lutercepl -225.45

F1 Intercept -6X.0335

F5 lutercept -G1.344
R-squared 0.962487 Mean dependent var 2555987
Adjusted R-squared 0.959-168 S.I3. dependent var 271.85466
S.E. of regression KA 73147 Sum squared resid  260611.4
Log likelibood -510.862 F-statistic 1116087
Durbin-Watson stat 1.3947 14 Prob{ F-statistic) 0

where I, is the gross investment, Fj, the market value of the firm at the end of
the previous year and Oy is the value of the stock of plant and equipment at

the end of the previous year.
Use the £, LA and/or Hausiman statistics to determine which modlel {the
fixed or randon) effects model. is preferable for these datra.

Dynamic Fixed Effects model  The estimation resnlts of the dynamic fived
effects mode! are presented in Table (11.4).
Dynamic pooled OLS with common intercept s shown in Figure (11.5).
The Fiyar is equal 13.59672 indicating the presense of strong individual-

specific effects.

Dynamic Random Effects model The dynamic random effeets model 1s
shown in Figure (11.4).

The LA — test = 3.472896, which leads to the conelusion that the randon:
effects model is applicable for modelling.

Therefore we must use the Hausman test to choose between two mode] spec-
ifications. The Hausman test statistic is given by:

[T

™= (Jf;,qr-'r-; g.«!{f-});(M] ~ M)~ (fé\«;ﬁ;a 5sm?) ~X(K
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Table 11.5: Case 1 - Part 2. Dynamic Pooled OLS.

Dependent Variable: I

CHAPTER 11.

Sample(adjusted): 1936 1954
Included observations: 19 after adjusting endpoints
Number of cross sections used: 5
Total panel (balanced) observations: 95

White Heteroskedasticity-Consistent Standard ErrorsCovariance

LINEAR PANEL DATA MODELS

Variable Coefficient

Std. Error t-Statistic Prob.

Intercept -32.0968 11.78124 -2.7244 0.0077
F 0.03153 0.007848 4.017609 0.0001
(@) 0.074279 0.03938 1.886214 0.0625
I(-1) 0.851202 0.07064 12.04983 0
R-squared 0.939036 Mean dependent var 255.5987
Adjusted R-squared 0.937026 ~ S.D. dependent var 271.8566
S.E. of regression 68.22145 Sum squared resid 423529.1
Log likelihood -533.918 F-statistic 467.2255
Durbin-Watson stat 1.437072 Prob(F-statistic) 0
Table 11.6: Case 1- Part 2. Dynamic RE Model.
Dependent Variable: T
Method: GLS (Variance Components)
Sample: 1936 1954
Included observations: 19
Number of cross sections used: 5
Total panel (balanced) observations: 95
Variable Coefficient Std. Error t-Statistic Prob.
Intercept -23.8074 9.250697 -2.57357 0.0117
F 0.023563 0.006885 3.422322 0.0009
C 0.0521 0.026598  1.958798 0.0532
1(-1) 0.912511 0.044999  20.27844 0
Random Effects
F1 Intercept 4.046752
F2 Intercept -12.4666
F3 Intercept 23.7157
F4 Intercept -7.91791
F5 Intercept -7.37791
R-squared  0.935089 Mean dependent var  255.5987
Adjusted R-squared  0.932949 S.D. dependent var  271.8566
S.E. of regression 70.3949 Sum squared resid  450945.2

Durbin-Watson stat

1.497437
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where ,GH g Tepresents the OLS dinnnyy variables (fixed effects) estimator (11.4)
of 3, and 4. e the GLE error components {randem effects) estimator (11.11)
ol B.. M and Mg represent the (asymptot i) covariance matrices of 8, o and
IR g vespectively. The value of the ausnian test is equal 27.13958. From Lhis
we conclude that the fixed and random effects amodels are not compatible and
it is better 1o use the dynamic fixed effects model.

11.9.2 Case 2. Moncy flows and the performance of hedge
funds

In October 2003 the alunini of the students” organization VSAL in (heantitative
Feanouties of the University of Amsterdam organized the Eeonomet rie Graune {or
the fifth time at the Duteh Central Bank {sec:ht tp:/www.vsae.nl/econome rieganme/ ).

ledge funds are “skill-based” asset management firns that., for diflerend vea-
sons. do not qualify as mutual funds. While the ntial fund industry s well
vegulated and fairly (ransparent. ithe hedge fund ndustry is not. For example,
reporting of historical returns and other information is not obligatory for hedge
frols, On the other hand, access to hedge funds is typically restricted Lo -
vestors with “sophisticated nuderstanding” and investing large sums of money.
Sopenlled (mnd-of-funds pool invest ments in different. hedge funds and allow for
srller investinents to attract a larger group of individual mvestors.

Hedge Mnds have a broad flexibility in the type of seenrities they hold and
the type of positions they take. Most of them follow a long/short strategy,
which they buy securities for which they expect a price nerease and sell {short}
securitios for which they expect a decrease. 'This way, returns are obiained
irvespective of global market movements. Accordinglyv. the typical goal of hedge
funds is formulated in terins of absolute refurns {e.g. 10 or 15% ). irrespective of
market developments. This way. hedge finnds may provide attractive vestuent
opportunities for investors that already hold a well-diversified portfolio.

[0 the mutual fund industry. the typical manager reeeives amanagement
fee that is a percentage of the total assel value mmder management {(Lvpically
| or 2%). In the hedge fund mdustry, incentives for managers are different.
First. in addition (o a management fee. most hedge funds have ineentive fees
(performance fees} of about 20% of realized protits, Second. for the majority of
funds. (he manager also invests personal money in the fund. The incentive fees
arc only paid to the manager it he is able to compensate previous losses (“high
watermarks” |

A final immportant issue is that the flows of money into and ot of hedge funes
are restricted. For example. there exist minimum investinent periods {lock up
periods}. and redemption notice periods, This allows hedge fund managers 1o
invest in dess liguid assets.

[u this game we focus on modeling the flowws into and out of hedge funds. in
relation to the historical performance of the fund. A typical finding for mutual
funds is that investors’ money fows tond to go 1o funds that recently performed
woell. even thouph there is nol much evidence of persistence in performance. In
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Table 11.7: Case 2. Pooled OLS.
Dependent Variable: CF

Method: Pooled Least Squares

Sample(adjusted): 2 22

Included observations: 21 after adjusting endpoints
Number of cross sections used: 9

Total panel (unbalanced) observations: 154

Variable Coefficient Std. Error t-Statistic Prob.

Intercept 0.253925 0.145227  1.748476 0.0824

RET(-1) 0.00056 _ 0.151514  0.003697 0.9971

LNAV(-1) -0.01198 0.008233  -1.45482 0.1478

CF(-1) 0.020274 0.081262  0.249486 0.8033

RNK(-1) -0.08718 0.082733  -1.05306 0.294

R-squared 0.023492 Mean dependent var 0.014438
Adjusted R-squared -0.00272  S.D. dependent var 0.204067
S.E. of regression 0.204344 Sum squared resid 6.22173
Log likelihood 28.56913 F-statistic 0.896145
Durbin-Watson stat 2.03756 Prob(F-statistic) 0.467946

fact, Berk and Greene (2002) in a recent paper argue that persistence in per-
formance disappears because investors compete for superior performance such
that any persistence is competed away. The purpose of this game is to examine
money flows for hedge funds.

The Data

The data contains a part of the Econometric Game 2003 data sample. In
the data we observe quarterly returns (RET), size (NAV “net asset value” in
USD), cash flows (CF %, inflow — outflow) and rankings (0 < RNK < 1) of
nine selected hedge funds.

Pooled OLS Regression is presented in Figure (11.7). As it can be
seen, the direct pooled OLS has very weak explanatory power (which was also
observed in a larger sample analyzed at the Econometric Game 2003).

Arguments for the choice of the regression setup:

Cash flows to and from a particular hedge fund in a given period of time
should depend mainly on the previous performance of this fund. It is difficults
to imagine that the investors can obtain a really up-to-date information about
the fund’s activities. Therefore, in our model we assume that the current cash
flow to and from the hedge fund depend on:

i) the fund’s returns in the previous quarter;

i) the total size of the fund in the previous quarter;

iii) the previous cash flows:

iv) the fund’s standing among other funds in the previous quarter.

There is one more adjustment we make in our data. The fund’s returns,
ranking and the cash flow are given as numbers between 0 and 1. The net asset
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Table 11.8: Case 1. FE Model.
Dependent Variable: CF
Method: Pooled Least Squares
Satuple(adjusted): 2 22
Included ohservations: 21 after adjusting endpoints
Number of cross sections used: 9
Total panel {unbalanced) obgervations: 154

_ Variable Cocfficient  Std. Error  t-Stafistic Prol.
RET{-1) (1117981 0.14203 (.8277%1 (14092
LNAV(-1} -(0.20204 0.040:37H -5.0M384 1]

CF(-1) -0.1918% 0.082548 -2.32459 00.0215
RNK{-1}) -0.00324 0.078711 -0.04115 0.9672
Fixed Effcets
F1 Intercept 3.651205
T2 Iutercept 3.662163
F3 Intercept 4.012082
4 [ntercepl 3.037331
Eh lutercept 2881177
F6 Intercept 3.500207
F7 lutercepti 3.66:1021
F& [ntercept 2.673797
F9 Intercept 3.028777
R-squared 0.223747 Aean dependent var 0.011138

Adjusted R-squarced (. 157683 $.D. dependent, var  (.204067
S E. of regression 0.157288 Suin squared resid  4.945823
Log likelihood 1624008 F-statistic  3.38G827
Durbin-Watson stat 2.102313 Prob(I-statistic)  0.000228

value is represented by much larger mnnbers (in order of billions).  Therefore,
to adjust the scale we will use the logs of the funds’ net asset value (LNAV).
Results of the fixed effects model estimation are given in Table (L1.8).
The F-test statistic based on (11.7). for an unbalanced panel 1s given Ly:

' (R;L B H’?’uoi(—'d) /(‘,\." 1)
I' S i A —

N 12 LN K+ CRL) /T, N-K+1)
i

-l

and checks whether all fixed effects are equal {the critical values for Fy o arc
194 and 2.53 at the 5 % and 1 % level, respectively).

We obtain the Fpqy—test = 4.546340. Hence. we find significant individual
fixed cftects.

Results of the random effects model are presented in Table (11.9).

The LM test statistic cquals 1.774191. The critical values of y? with 1
degree of freedom are 3.84 for e = 0.05 and 6.63 for & - 0.01. Hence, the uull
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Table 11.9: Case 2. RE Model.
Dependent Variable: CF

Method: GLS (Variance Components)
Sample: 2 22
Included observations: 21
Total panel observations 154
Variable Coefficient Std. Error t-Statistic Prob.

Intercept ~ 0.122272  0.075462  1.620309 _ 0.1073
RET(-1) -0.23225 0.152851 -1.51947 0.1308
LNAV(-1) -0.00205 0.003178 -0.64397 0.5206
CF(-1) 0.453458 0.071345  6.355885 0
RNK(-1) -0.1378 0.084719 -1.62658 0.1059
Random Effects
F1 Intercept -0.17781
F2 Intercept -0.19808
F3 Intercept -0.69121
F4 Intercept 0.13068
F5 Intercept 0.174763
F6 Intercept 0.459052
FT7 Intercept -0.22493
F8 Intercept -0.37565
F9 Intercept 0.473509

GLS Transformed Regression

R-squared -0.40759 Mean dependent var  0.014438

Adjusted R-squared -0.44538 S.D. dependent var  0.204067

S.E. of regression 0.245337 Sum squared resid  8.968339
Durbin-Watson stat 2.410672

Unweighted Statistics including Random Effects

R-squared -3.38382 Mean dependent var (.014438

Adjusted R-squared -3.5015 S.D. dependent var  0.204067

S.E. of regression 0.432963 Sum squared resid 27.93108
Durbin-Watson stat 0.774038
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of pooled regression is not rejected (and the alternative of random effects is not
accepted).

The Hausman test statistic equals 210.95. Therefore. we conclude that the
fixed effccts model is the most appropriate for explaining the cash flows to and
from the hedge funds.

11.9.3 Exercises

Consider the panel of Latin American countries and their GDP. contained in
the data file ex1.wfl (available at www.ua.ac.be/joseph.plasmans), and let the
GDP of country i for year ¢ be denoted by GDP;, and model the GDP per
capita in real terms of the countries (Rgdp) as a function of the following vari-
ables. Exchange Rate (X R). Investmuent share of GDP, in percentage (I), Real
Covernment share of GDP, in percentage {G), Population (Pop), Measurc of
Openness of the Economy (Open)

i) Estimate the FE model GDFyy = a+ BGDP; ;1 + i and interpret the
output.

ii). Estimate the same model, now with the variables in logarithmic differ-
ences. Interpret. Is there serial correlation in the residuals?

iii). Estimate the model GDPy; = a; + 8;GDF 1 + it Test whether all
FE — j3;s are equal.

iv). Estimate the panel data model Rgdpy = a; + B, * Popyt + By * Iy +
B8y * Gy + Bix X R+ 85 Openig + Ty

v). Make plots of the X R variables. Create now these variables in logarith-
mic differences and make the plots again.

vi). Estimate the model with fixed effects; analyze the residuals and their
variances. Is there cross-sectional heteroscedasticity? If it is so. what can be
doune?

vii). Compute the correlations between the residual series from different
countries,

viit}. Take a look at the standard errors for the estimated fixed effects and
test whether all fixed effects are equal.

ix). Estimate the model with random effects. Compare the individual ran-
dom effects to the individual fixed cffects and comment.

x). Which is the model that best suits the data set?

xi). Introduce a time effect in the intercept and estimate and interpret
corresponding FE and RE estimators.

xii). Can different reactions in government share and exchange rate behavior
between individual countries be detected?



Chapter 12

Nonlinear Panel Data

Models

Many nonlinear problemns studied in previous sections can he analyzed in a
panel data framework. For reasons of brevety and eofficiency. we will stick to
limited dependent variables, and more specifically to the binary choice logit and
probit models. The general binary choice models for the logistic and normal
distributions presented in Chapler 9 assume that the crror term &, is itd {or a
W A} and that is independent of the explanatory variables.

12.1 FE estimation for logit and probit

12.1.1 Logit models and conditional MLE

Assuming that the individual effects p; are fixed and unknown parameters for
cach individual and that the residuals are uncorrelated with the explanatory
variables. the model to be estimated' can be rewritten from (11.1) for the static
case and constant 3 over individuals and time as the discrete chioice model:

yh = B'xu +p, e (12.1)

with ¥, a lincar response latent variable crossing a certain threshold and the
observed ¥ given by 3 == 1if yj, > O and y = 0if g <O
We can formulate the probability of 7, = 1 as (see Section 9.1.6)

=

Pleg>—B'%i-j4,) = / flea)des =1 — F(—-@'xy — ). (12.2)

Yy
At —,

TFor a detailed disenssion o e logit and probit nwdels lor panel data. see Elstar {196 ]:
pre. 223-201.

321
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Equation (12.2) implies that both y, and B are unknown parameters for
the conditional probability P(y; = 1|x;;3); therefore the MLE is consistent
only when 7" — oc. However, for a finite T', we come across what is known as
the incidental or nuisance parameter problem: an increase in the number N of
cross section units provides no additional information about yu; (i.e., for each
individual we add to the sample a new parameter has to be estimated).

In the case of the linear model studied in Chapter 11, the incidental para-
meter problem does not constrain the estimation of B because y, and 3 are
asymptotically independent, and one can separate the estimation of the struc-
tural parameters from that of the incidental parameter ; .For nonlinear models,
on the contrary, for a fixed T, the estimation of x and 3 are not independent
from each other, and the inconsistency problem of the estimation of 1; is trans-
mitted into the estimation of 3, therefore finding inconsistent estimates for both
e and B.2

A convenient way to remove the individual effects from the logit model is
the conditional ML estimation principle: to find estimators for 8. we need to
find functions () that are independent of the y, and that have the prop-
erty that for the true values of B, the function »(y.....yn [3) converges to
zero in probability as N — oo. If a minimum sufficient statistic 7; exists for
the incidental parameter and if it does not depend on 3, the conditional pdf
FwilB.7i) = f(wlB,u;)/9(mi|B, ;) is independent of p; and we rule out the
problem by analyzing the probability of the vector y, = (yi1. %0, . . ., yir) con-
ditional on 7; = EL 1 Yit- The conditional pdf maximization problem yields a
set of functions that do not depend on y, and that for N — oo, the function
#(Y1,...,yn|B) converges to zero. Hence, the minimum sufficient statistic for
1 is obtained by taking the partial derivative of the loglikelihood function with
respect to ;.

The conditional probability of y; is for the logit model:

exp [P'g: (E;l;l y:‘t) +ﬁf (ZI__; xu‘.!jiz)]
Iy [+ exp (B'xic + ;)]

so that taking a product over all individuals and logarithmizing the loglikelihood
function is given b¥.

L(B) = - 355, Yoy log[1+exp (8% + )]+ 08, T, wie (Bxie + 1)
with necessary maximizing conditions:

L) _ <N T exp(B'xi +,) _
T, = DI [— TFepBxn ta) T yit] x; = 0.

Consistent estimates for 3 are obtained by maximizing the conditional log-
likelihood based on all possible sequences of y;; such that the sum of positive
outcomes is equal to 7; (such that the loglikelihood function is conditioned on

P(yi[xi;8) =

1

“Hsiao (1996) demonstrates the inconsistency of the MLE estimator of 8 in a logit model.
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T, = > . ) A minimum safficient statistic for g, is obtained by solving the
first order condition of this conditional maximization problen.
Following Hsino (1996} the probability of 7, 1x:

1! oxpla Y yad
>_‘r l U” - _ .' _ « _ [L{J{L!;f| o«

Cou)NT 22wt 110 —exp (8= 1 p1,)
x {Z:r( 23 exp( ' \L.-:—i Xof dé()}

where ;s equal to /(‘10 or to one secording to g, and H, is the set of all

-7
possible d sucly that Lr Cdi =20 e The probability of the vector

¥i- {thiomeo . yor ) conditional on 7, s

"
("xp(,ijif 3 X ) A ' -

g ‘_. ! 5 Wi r .]‘r - [} l

Py, 7= >J yo)- HBT)- — At L

Zu‘r I (\[)[d \] Xgr thit)

Sinee the mdividual eflects appear in a linear form, one ean easily eliminare
these oflects by grouping the sequences with the sane 7.

For example. for F - 2. the two possibilities are w, =1 il (gtr.any (L)
and vy OiF (1. p) - (1O

JU{\'AJ‘.I l!ﬁ X:'f} ('XDLBJ(‘T(.? -T?'l.};

I’ u,‘g':l 01 T 1) - .
(wistlm =y V) e T Y Pl 0B %) 1t exp B ra)]

The conditional loglikelihood function ix:
L= Zf.r_x}, {w;Iln lf‘[,@'(.r,-_-_; Fol] bl =) 11[ - F[B r,])J}

where 13y - {1/ (0.1 v (1.0} (e the sequences that are identical do nor
contribuile to the likvhhnml }and F{-) = exp(-}/ (L1 expl:)).

Lee {2002) analyzes the conditional logit for 7= 3.

[u this way. we have removed the imdividual effects from the moded (Le the
individual effects are nof extimated!).

12.1.2 FEs in probit models and a semiparametric esti-
mator

For the case of probit models, we cannot find simple functions for the parneter
that are independent of the incidental paramneter (Le. there s no mininmim
sufficiem statistie for g, in this case). Therefore. for 7 finte. there seems to e
no cousistent estimators lor the probit model. As an alternative, we may nse
the mazrnam score estimator: infevence is possible it the explanatory variables
vary enough over time.
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A conditional version of Manski's (1975 and 1985) maximum score estimator
maximizes the sample average function:

QN g ;
Hy = N Zi:l Ztﬂ sgn(wirb) (yie — yie—1), (12.3)

where wy, 1= zy — x5 sgn(wi,b) = 1 if wi,b 2 0 and sgn(wi,b) = —1 if
w;,b < 0. Since under some regularity conditions ( 12.3) converges to H(b) =
E (sgn(w;b)(¥it — yit—1)), in which H(b) is maximized when b = B. Man-
ski (1985) has demonstrated that under some general regularity conditions the
estimator that maximizes (12.3) is strongly consistent.

12.2 RE estimation

If the ;s are independent of x4 and are random samples from a univariate
distribution function G(.) (indexed by a finite number of parameters d), the
loglikelihood function becomes:

oo
N

L= 1og [ [T F(B%+ 01— (B + ] 7dGu)6).  (12.0)

The maximization of (12.4) under mild regularity conditions provides a con-
sistent and efficient estimator for 8. However, if p; is correlated with X;¢, the
maximization of (12.4) does not eliminate the bias. Similar to the omitted vari-
able case in Subsection 11.2.4, an auxiliary function, where jt; is assumed to
be linearly dependent on x;; or y; = EL 1 QX4 + &, is considered. Note that
there is an important difference with the linear case, where it was not restrictive
to decompose the p; into its linear projection on x;; and an orthogonal residual.
Here, we assume that the E(u,|xy; 83, ay) is linear and that &, has a specific
probability distribution. The loglikelihood function (12.4) becomes then:

N T T T

= ,Zl log/ tHI F(ﬁ'xsﬁtzl o +E; )V [I'F(ﬁ’xit'i“;; apxie+€;)] TV dG* (§)
(12.5)

with G*a univariate distribution function for £, In (12.5), we take account of

the dependence between the nuisance parameter 1, and x;,. The maximization

of (12.4) provides a consistent and efficient estimator of B for the case of i

independent of x;¢, while the maximization of (12.5) provides a consistent and

efficient estimator of 3 for the case of p; correlated with x;;.

12.2.1 ML estimation

In principle, according to Hsiao (1996), to obtain the MLE one has to evaluate
T' dimensional integrals. The distribution for y;; conditional on X; but marginal
on y; has the probit form:
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Ply =1z =481+ JE)_%(,B’X,:( + a’;_x.i)] . (12.6)

where 7, := (1+0§) (A% + @)x;) and F(.) is the normal distribution func-
tion. Maximizing the loglikelihood of {12.6) for all individuals at period . each
one of the cross sectional univariate probit specifications yields the ML estimates
. fort=1.2..... T.

12.3 Panel count data models

In this seetion the models which include fixed and random individual-specific
efects are considercd.  These wnodels make use of the advantages offered by the
panct data (c.g. in Cincera {1997} and (2003)}.

12.3.1 Fixed Effects Poisson models

For count panel data the origin of the analysis lies in the Polsson regression
model with exponential mean function and multiplicative individual specific
. . — e '
terin, or Ay 1= Agey = exp(x, 8 + ;).
Cocfficients B can be estimated using the conditional maxinum likelihood
method. The conditional loglikelihood function is as in (10.2):

N s '3
LB} = Z {111( > m— th In(g!)

i- 1 f—1

¥ exp(x, 3)
=+ al —7 i ’
& (zz . oxp(x:,ﬁ}ﬂ

Differentiation of this cquation with respect to 8 yields the first order con-
¢itions

N T 7
32X (;U«;r. — AHA_) =0,

i-1t-1

where 3; 1= }izf Mo andd /it- 1= %Zf Mg and Az = exp{x},3).-

12.3.2 Random Effects Poisson models

Specifying again Xat = Xysav,. with a; a random firm-specific effect. The Poisson
parameter Ay is now a random variable rather than a deterministic function
of x;;. Because A, must be positive. we write it in the form h;y == Aoy =
exp{x; B+ &, + ;). where §; is a random firm-specific effect and & is a random
commmon effect.

The Poisson probability is specified then as:

exp (= i €xp(E)) Ny PN

Yie!

P(Zf)’i:fxitifg) =
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It is obvious that different distributions of a; lead to different distributions
of Yi1, ..., yir. To derive a loglikelihood function we assume that a; = exp(§;) is
distributed as I'(d,4), so that B(a;) = 1 and Var(a;) = 1/6. By integrating
we obtain the joint pdf for the " firm

& A:Jli,t 5 é
fwayir) = [tI:]; yi:!] (Z; Ait -I-J)

Zewe T(X, Aie +96)
* (zt Ait“‘é) _—I‘(d) 2

This is the density of the Poisson random effect model with gamma dis-
tributed random effects. For this distribution E(y;) = A\ and Var(y,) =
Xit+ A%y /8. Maximizing the loglikelihood function, i.e. the logarithm of this pdf
with Ay = exp(x],3), yields the following first order conditions:

N T r
i +¢5/T)
pIpILL (“"‘ X +o/T

where, again, 7; := + 3, % and X; := % VB0,
To test the difference between the FE and RE model specifications, the
standard Hausman test can be applied.

12.4 Cases and exercises

12.4.1 Case 1. Firms’ decision to report their R&D ex-
penditures

This case analyzes R&D investment expenditures decisions of European firms
(see Hall and Oriani (2004))

The data is given in the 1995 manufacturing panel collected by Hall and Ori-
ani (http://emlab.berkeley.edu/users/bhhall /bhdata.html). The data descrip-
tion file can be obtained at
http:/ /emlab.berkeley.edu/users/bhhall /pat /panel /pan95export.doc.

Question Investigate the factors affecting the firms’ decision to report their
R&D expenditures. Make use of panel properties of your data; group the firms
by their two-digit industry classification codes (SIC2D variable, see data descrip-
tion file). Compare the performance of the FE model with the performance of
pooled regression.

Solution In this case we investigate the factors affecting the firms when taking
decisions on R&D expenditure and group the firms based on their two-digit
industry classification codes (SIC 2 D).

Each binary decision can be represented by a dichotomous variable assuming
a value of one if the event occurs and zero if the event does not occur. The
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Table 12.1: Pooled regression results

Nonlinear OLS Parameter Estimates (PROBIT Model)
Parameter  Estimate Approx Std Err  t Value Approx

Pr > |t]

a 0151038 0.0278 5.44 <.0001

bls -0.02126 0.00702 -3.03 0.0025

bli  0.187263 0.00482 38.83 <.0001

ble -0.17823 0.00644  -27.68 <.0001
Equation DF Model DF Error SSE R-Square Adj R-Sq
invevent 4 63106 15979.9 0.0282 0.0282

Nonlinear OLS Parameter Estimates (LOGIT Model)
Parameter  Estimate Approx Std Err  t Value Approx

Pr > |t|

a 0.23656 0.0452 5.24 <.,0001

bls -0.03339 0.0114 -2.92 0.0035

bli  0.306693 0.00791 38.75 <.0001

ble -0.29403 0.0105 -28.06 <.0001
Equation DF Model DF Error SSE R-Square Adj R-Sq
invevent 4 68106 15973.6 0.0286 0.0286

probability is assumed to depend on a vector of cxplanatory variables and on a
vector of unknown parameters. In this case both the probit and the logit models
for repeated observations will be used.

First. we need to defiue the variables influencing expenditure in R&D. It
is usually expocted that investment, sales and employment are positively cor-
related with R&D. Therefore. the variables considered are: ls- log of sales, le-
log of employment, fi- log of investment and the dependent variable is r- R&D
expenditure {when r = 0 it means that the firms does not invest in R&D ex-
penditure).

The resulting equation is 7 = a+bls x lns +bli x Ini +ble x Ine. We now turn
to the estimation of cacl one of these models to see which one is more suitable
for the database.The results from the estimation are presented in Table 12.1.

The logit model has a higher adjusted R? than the probit model. Therefore.
one can infer that the logit model is more appropriate for this database. In both
models sales and employment affect positively the R&D expenditure.

Our event is defined when the R&D variable equals zero, which means that
the influence of both employment and sales variables result in the firms not
investing in R&D. Both variables have more effect in the Jogit model.



328 CHAPTER 12. NONLINEAR PANEL DATA MODELS

From the negativity of the intercepts one would think a priori that the fixed
effect of firms on R&D expenditure does not exist, but this is not correct. We
investigate therefore the fixed effect between groups on SIC2D variables.

Second, we estimate the fixed effects in both probit and logit models. Fixed
effects represent the specific-effect of the firm on the R&D expenditure.

From the probit specification of the model presented in Tables (12.2) and
(12.3), one can observe that firm-specific fixed effects do exist. Moreover im-
provement in the adjusted R? is quite dramatic for both models.

In the probit estimation, the group from a20 to a27, a29 to a34, a37 and
a39 has a positive interaction, which means that specific characteristics of these
firms influence their R&D expenditure.

Also, since in our model the event is equal 1 when R&D equals zero. this im-
plies that these firms normally do not invest in R&D. Besides, all the firms that
have a positive alfa, are normally from sartorial and primary sectors. Finally,
only the employment variable influences positively the R&D expenditure.

When the logit model is considered, fixed effects also exist: between a20 to
a27, a29 to a34 and in a37, a39 (this means that some inherent characteristic
of these firms influence their R&D expenditure). The firms in group a28, a35,
a36 and a38 have a negative alfa; so that these firms invest more in Ré&D
expenditure.

12.4.2 Case 2. Count data model for patents-R&D rela-
tionship

The Hausman et al. (1984) model is specified as follows:

E(P; 1|X;t) = exp(@ + p; + By In(kie) + By In(ki ¢ 1) + ... + BsIn(ki:—5) + 1)

The estimation results are given in Table 12.4.

The model shows strong dependence between the firm’s current R&D and patent-
ing. This dependence gets substantially weaker for "older" levels of R&D. There
is a negative time trend in the model indicating "a decline in the ’effectiveness’
or productivity of R&D" according to Hausman et al. (1984).

12.4.3 Exercise

In the R&D literature there exists an opinion that the relationship between R&D
expenditures and other factors can be nonlinear. Investigate a possible nonlinear
model explaining the R&D investments of the firms taking the panel data prop-
erties into account. Use the data given in the manufacturing panel collected by
Hall and Oriani (2004) (http://emlab.berkeley.edu/users/bhhall/bhdata.html,
the description file can be obtained at

http:/ /em}ab.berkeley.edu/users/bhha.ll/pat/pauel/pangf}export.doc). Estimate
and test such a model. Does it perform better than a comparable linear model?
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Table 12.2: Fixed cffects regression results (PROBIT model)

Noulinear QLS Parameter Estimnates (PROBIT Model}
Parameter  Estimate Approx Std Err ¢ Vahie  Approx

Pr >t
420 1.132213 0.0368 30.8 <0001
a2l 0.759071 0.0826 9.19 <0001
a22 0.963656 0.0391 2465 <0001
423 1637033 0.0633 2587 < 0001
a2l 1.4009:36 0.0685 23.96 < 001
a2h 0.667693 0.0:122 15.81 <0001
a26 (.841258 (.039 21.58 <. (W01
a7 1.634082 0.0485 33.48 <001
124 -1.35378 0.0331 -10.69 <0001
229 1.128334 (10186 23.22 <.0001
a3 (1.370802 0.0358 10.34 <.0001]
adl 1.26438 (L0728 17.43 <0001
ad?2 0.364713 0.04 21.61 <0001
a33 0.94233 0.0375 25.14 <.0001
add 0.36905H6 0.033 11.19 <.0001
a3h -0).348%2 0.031% -10.97 <0001
ad6 -0.3457 0.0309 -11.2 <0001
a37 0.272086 0.034 8.0 <0001
ad8 -0.81579 0.0358 -22.76 <0001
a39 (1.325361 0.0381 ¥.4f <0001
hls -0.077752 0.00727 -10.66 <.000)
bli -0.14266 0.00513 -27.8 <. 0041
bile (1. 128665 (1.007 18.37 <000
Equation  DF Model DF Error SSE R-Square  Adj R-5q

avent 23 G087 12188.4  [.2088 {).2586
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Table 12.3: Fixed effects regression results (LOGIT model)

Nonlinear OLS Parameter Estimates (LOGIT Model)
Parameter  Estimate Approx Std Err  t Value Approx

Pr > |t
a20 1.871327 0.0616 30.36 <.0001
a2l 1.29036 0.1343 9.61 <.0001
a22 1.5956 0.0651 24.49 <.0001
a23  2.812038 0.1194 23.54 <.0001
a24 2.34704 0.1024 22.92 <.0001
a25 1.103311 0.0695 15.88 <.0001
a26 1.401789 0.0645 21.72 <.0001
a27 2.77278 0.0876 31.65 <.0001
a28 -0.59684 0.0558 -10.7 <.0001
a29 1.887968 0.0806 23.42 <.0001
a30  0.626963 0.0592 10.6 <.0001
a3l 2.146751 0.1299 16.53 <.0001
a32 1.434186 0.0662 21.65 <.0001
a33 1.562834 0.0624 25.04 <.0001
ad4d 0.623051 0.0546 11.41 <.0001
a3b -0.565 0.0534  -10.59 <.0001
a36 -0.56107 0.0517  -10.84 <.0001
a37 0476937 0.0563 8.48 <.0001
a3s -1.37911 0.0621 -22.19 <.0001
a39  0.550495 0.0632 8.71 <.0001

bls -0.13057 0.0122  -10.73 <.0001
bli -0.23545 0.00861  -27.36 <.0001
ble  0.209433 0.0117 17.84 <.0001
Equation DF Model DF Error SSE R-Square Adj R-Sq

event 23 68087 12182.8 0.2591 0.2589
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Table 12.4: Estimates of the HHG(84) Poisson regression with firm effects

Random Effects Fixed Effects

B, 0.36 (0.02) _ 0.31 (0.04)

8, 0.03 (0.04)  0.02 (6.05)

B, 0.06 (0.05)  0.04 (0.06)

Bs 0.08 {0.05)  0.07 (0.06)

8, -0.07 (0.05)  -0.07 (0.07)

Bs 0.13 (0.03)  0.07 (0.05)
t -0.04 (0.01)  -0.03 (0.003)
a 2.30 (0.16)

Log likelihood -3827.5 -3009.4



Appendix A

Nonlinear Optimization and
Estimation

A.1 General nonlinear optimization problem

Basically. we have to solve the following problem:

1}3121&_1_) £(8) subject to © = {8 € RY| g{f) < b.q{f) =d}. (A1)

where g and g are twice continuously differentiable functions {henee, g.q & o)
mapping g @ ¥ = K™ and q: B == R4 respectively.

The co-constraini qualification (CCQ) cau be defined as
BEY = lie {l.2...m} | ¢*(6*) = b;} ., so that CCQ implies that G is
active at @ (binding condition).

Consider in the first instance a simplification of (A.1):

iy S(8). R =5 R’ subject to ©:= 10 € R"g(0) < bl with B" =& R™.
(A.2)

where we assume that the CCQ is satisfied. Then the famous Kuhn Tucker
theorem can be formulated viclding necessary conditions for a local minimum
of {A.2).

Kuhn-Tucker Theorem Given hunctions o gt g% g € C'in ©. and for
8* € © a local minimum in O, and if © catisfes the CCQ in 8°. then IA" =
(A]- AT A )" of Lagrange muttiplicrs sich that A™ Z 0 and

L

A (b —g'(87)) =0 (i=12 ...m) {complementarity sleckness) and

Vo0 = (BE| o By ) = EE NVEE),

333
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Figure A.1: CES production function

L K, inQ,
0228 0.802  -1.359
0258 0.249 -1.695
0.821 0.771 0.193
0.767 0.511 -0.649
0495 0.758 -0.165
0487 0425 -0.270
0.678 0452 -0473
0.748 0.817 0.031
0.727 0.845 -0.563
10 0695 0958 -0.125
11 0458 0.084 -2218
12 0981 0.021 -3.633
13 0002 0295 -5586
14 0429 0277 -0.773
15 1 02381 ¢ 0.546 -1.315
16 0664 0.129 -1.678
17 0631 0.017 -3.879
18 0.059 0906 -2.301
192 O8N 10223 =1.377
20 0758 0.145 -2.270
21  0.050 0.161 -2.539
22 0823 0.006 -5.150
23 0483 0836 -0.324
24 0.682 0.521 -0.253
25 0116 0930 -1.530
26 0440 0495 -0.614
27 0456 0.185 -1.151
28 0342 0092 -2.089
29 0358 0485 -0.951

30 0162 0934 -1.275
Source: Tudge et al. (1990), pp. 209-210.

(-I-CIEC B- NPT SR S [

The labor and capital data are random samples from a uniform distribution
on the interval (0,1) and In Q; is computed by adding an iid error &, generated
from & normal distribution with mean zero and standard deviation 0.25, to the
CES specification -0.5In (0.3L; 2 + O.TK,__"!) for each t = 1,2, ..., 30 (see Example
1.3). Thus 8; =0, f7 = —0.5, 85 = .3, = —2 and o*2 = 0.0625.

Starting with arbitrarily chosen initial values Bo =18, =-1; 8, =05
and B3 = —1, the steepest descent algorithm terminated after 40 iterations
without reaching the global minimum of the sum of squares function. The last
20 iterations are presented in Figure A.2.

Progress is very slow although the iterations are not close to the minimum,
as we will see later. To guarantee positive arguments of the logarithm, we
restricted the values for 8, to the interval [0, 1].
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Figure A.2: Iterations of the Steepest Descent algorithm
True
Parameter B *=0.0 Bi¥=-05 %03 par=-20
Valucs
_Iterartion i _ i A il SeB)
21 0.22282869 -1.06629056 0.40915651 -1.09263870 2.14819748
22 0.22019703 -1.05781151 0.40910690 -1.08388148 2.11001625
23 0.19636534 -1.06104723 040801302 -1.08963337 2.08631253
24 0.19527758 -1.05243868% 0.40801826 -1.08077867 2.04932979
25 0.17192604 -1.05593736 0.40691240 -1.08761891 2.04780190
26 0.17225266 -1.04733044 040696972 -1.07878857 2.00689787
27 0.16037233 -1.04780308 0.40639450 -1.08165294 1.99692671
28 0.15922856 -1.04339570 0.40635495 -1.07755628 1.98908863
29 0.14813284 -1.04520171 0.40579539 -1.08227361 [.98896682
30 0.14818368 -1.03638455 0.40582105 -1.07379932 1.98637455
31 0.14264460 -1.04314485 0.40551648 -1.08221663 1.98369970
32 0.14310683 -1.03432048 040555767 -1.07378493 1.98234469
33 0.13796403 -1.04120824 0.40527184 -1.08232826 1.97973417
34 0.13878359 -1.03238385 0.40532641 -1.07394317 1.97936713
35 0.13397475 -1.03937208 040505660 -1.08258130 1.97669824
36 0.13453838 -1.03496179 0.40508958 -1.07841297 1.96586504
37 0.12338095 -1.03161520 0.40446625 -1.08178996 1.96256149
38 0.12362889 -1.02925600 040447288 -1.07989821 1.96009223
3% 0.11904837 -1.02738382 0.40415996 -1.08337737 1.95960516
40 0.11939822 -1.02494985 040416776 -1.08160696 1.95826454

337
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Figure A.3: Data for Example A.1

Ve Xy X Xi3
4284 1000 028 0645
4149 1.000 0973 0585
3877 1.000 0384 0310
0533 1000 03276 0058
2211 1000 0973 0455
2389 1000 0543 0779
2145 1000 0957 0259
3231 1.000 0. 8 0.202
1.998 1.000 0543 0028
10 1379 1.000 0.797 0.099
11 2106 1.000 0936 0.142
12 1428 1.000 0.889 0.29
13 1011 1.000 0.006 0.175
14 2179 1.000 0828 0.180
15 2858 1000 0399 0842
16 1388 1000 0617 0.039
17 1.651 1.000 0939 0.103
18 1.593 1.000 0784 0620
19 1.046  1.000 0.072 0.158

20 2,152 1.000 0.889 0.704
Source: Judge o al. (1985), pp. 956-958,
and Judge ¢t al (1990) pp, 956-958

D00~ B

A.2.2 Newton (-Raphson)

We are looking for a quicker algorithm, taking account of the curvature of the
objective function. Consider therefore a second order Taylor expansion of the
objective function around the old point; or for any iteration we get:

<p(9(k+”) o (P(e(k)) + g{k);(g(k+1)_8(k]J - %(9(&-}1)_9(&:));1_1(!:) (0(k+l}_8(k))

so that it follows from (A.3) that §%+1) — g(k) _ (H®) ™ gk,
Example A.1 Newton procedure based on Ezample 1.2 in Section 1.2.1

The data used for this example is given in Figure A.3. The 428 and T35 are
pseudo-random numbers from a uniform distribution on the unit interval and
the y;s are computed by adding normal pseudo-random numbers to 07 + 0524+
05°243, where the true parameters 6} and 63 were chosen to be 7 = 6 =1, ie.
a random error has actually been added to 1 + T2 + 243.

To determine the least squares estimates of 8 we have to minimize ¢ (8) =
[y —£(6)] [y — £(0)] using the Newton iterations for 8%V and three different
starting values, we obtained the results given in Figure A4./.

The algorithm terminates at two different points in the parameter space.
This outcome is not surprising since ¢ (@) has two different local minima 16.08
and 20.98. The example shows that an optimization algorithm does not neces-
sarily converge to the global minimum.

Newton iterations generally lead to growth convergence, but pay attention to
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Figure A.4: Iterations of the Newton algorithm

0 b B TR
T 3000000 2400000 2643918
2 -00R4ND3Z 1RII2I0 20632%
3 0625020 14231930 165103
4 DEIT2S9 1272776 160961
5 0862590 1237516 16.0R1%
& GORE4TRD 1235753 16.0K17
7 OR64TRT 1235748 160817
R 0864787 1235748 160817

| 0000000 20006000 292738
30334936 1600435 177382
3 0735040 1336953 161955
4 0.R49677 1247743 160832
5 0864541 1.235946  16.0817
6 (%64787 1235749 160817
7 ORG4TET  1.235748 160817
& DRE4TET  1.235748 160817
1 1L500000  ¢.500000 202951
7 3256853 0007135 20,7738
3 2467047 0436460 210312
4 231698 0202435 209467
5 23560743 0320579 209809
6 2334457 0319153 20,9803
72354471 0319186 209805
g 2354471 0319186 2098085

the importance of the selection of the starting vatues (multiple modt) and to the
implied positive definitess of the Hesstan in each iteration k.

Exercise A.2 Comgpare the steepest descent and Newton algorithms for the fol-
lowning rases:

Casc 1 Assume the quadratic function (8) = ‘26?—4—6934—29102 +26, +36,+3.
Rewrite this function as a quadratic form p(6) = a + b'8 + 50'Q8. with a :=

2 4 2
3;b:-_—-(3 );Q::(Q 12 )

Case 2 Assume the quadratic functione(8) = (6 — 82 + 6‘;;)2+(——6'l + 8, + 9;1)24—
(8 + 82 —83)? with the vectors of the underlying quadratic form a := 0, b := 0,
6 -2 -2
Q= -2 6 -2
-2 -2 6

A.2.3 Quasi-Newton procedures

Since the positive definiteness of the Hessian matrix in each iteration is not
auaranteed in many cases, we can propose a class of procedures to approach the
inverse of this Hessian of the objective function by a direction matrix, involving
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a variable metric P*) and a correction matrix M%) in P(k+1) .— pk) 4 ppk)
with P(*) the approximation for (H*))~! in iteration k.

A reasonable choice for P***1) can be derived from the first order a proxi-
mation of the gradient at a new point, i.e. from %11 .— g*) 4 \(B) g(k) oy
6% .= —pKgk) we find:

gk) ~ glk+1) 4 glk+1) (otkl v 9(k+1))

with (H(H”J_l =PH® 4 M*) =, plk+1) o,
M®) (gk+1) _ gk)) ~

with n®) := ¢®) _ Pk} (gkt1) _ gk)) and ¢®) .= g:+D) _ g(®) which leads

{kl ! - .
to M) ~ W?;ﬂ%w. This is the rank one correction method.

Alternatively, instead of these iterations on the correction matrices M) we
can rewrite them as:

k) ; ( i
M) ~ C( Vel 'P(k} (g{Hn = gu:}) (grk+1) _g(k)) Pk (Ad)
¢ (gte+1) — g¥) (g*+1) — g("))'P(H (gD —g®) )

which is the Davidon-Fletcher-Powell (DFP) correction method.

Example A.2 Apply the Newton and quasi-Newton algorithms on the Jollowing
numerical example:

3

F () = 307 + 363 — 610; — 20, = (=2.0) (6,,6)' + 16/ ( -

¥ ) 8. Select
as starting vector 8" := (—2,4)".

1. With the method of Newton: Iteration 1:

33(0) - 9(01 -2 —12 ‘ 3 =1
D) 1 3 (D)
g( = ( ﬂgﬂ) 29(1[” = ( 6 ) JHO = ( 1 1 so that
6(“] s _P(mng N _( {1) (1) ) ( (;2 ) 3 ( —Ifi ) -

min ¢ (9*3“’ +2050) = min [306,\(”’: — 1800 4 26] .
The first order condition (FOC) of this minimization is %‘f = 61209 —
180 = 0, or A” = & s0 that 8) = (26/17,38/17) and £© = (V) _ g(® _
(60/17, —30/17) .
Iteration 2: gV) = (6/17,12/17) and P®) = (H(M) ™",

HO = HO, o HO — ( 31 —lI ) _
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an-i_( 05 05 01 o (05 05Y (6/17)_(—0.5204
Then, (H) (0.5 15 ) andT=PHE=A o5 15 )\12/17)7\-1.2353

min ¢ (6 + AWSY = min [0.52043° — 1.0588X") 0.4705]
AlM £(0)

with FOC 2 x 0.5204)\()) — 1,0588 = 0. Then, A =1 and 6@ = (1, 1) , and
¢V = 9@ _ g = (—0.5294, -1.2953) .
Iteration 3: For g® =(0,0) and 5 = 0, the solution is ¢ (8") = —1.

2. With the method of Quasi-Newton (e.g. the DFP algorithm):

fteration 1 For 89 = (=2,4) , g® = (36, — 63 — 2,8, — 01) = (~12,6);

then
@ _ _pogm__{ L0 -12y _ (12
A (0 1)( 6 —6

min (6(”) + ,\“‘)5“‘)) = min [306,\“”2 — 1800 + 26] .
Al Aloy

The FOCis 4¢ = 6123 180 =0, then A =; o= (26/17,38/17) and £ =
gl — 9©) = (60/17,—30/17)

Tteration 2: 0 = (26/17,38/17) , g = (6/17, 12/17) , s0 that
70 = g} — g(0) = (210/17,—-90/17) and

P = PO MO
_ 10y, 417 —2/17\ _ [ 49/58 —21/58
= 01 —2/17 1/17 -21/58  9/58
_ 1 (385 241
= g6 \ 241 891 )’

so that the first direction satisfies 50 = —pWgt) = (-9/29, —21/29)" . Then,

: 1, AW i [208 3D _ 20 30
n;g}{p(g()+,\( )5 ))_%1[@)\() _m,\()_mﬁ]

The FOC is 5§ = 9306 () _ 90 — g or AV = 3. Furthermore, 8 =
(397/289,541/289) and £V = 8@ _ ¢V = (—45/289, —105/289) .

Remark: Control on conjugate gradients (orthogonality condition as a check
on the correctness of the computations) Since subsequent directions should be
orthogonal with respect to the Hessian matrix, we can always check this to verify
the correctness of the computations.
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At this stage, (6))HM5©) = 0, which is true since 5@ — ( —9/29 ) 5

—21/29
3 = 12

{2y Q) =

H! -—(_1 1).and6 _(—6)'

Iteration 3: For 6 = (397/289, 541/289)" = (1.3737,1.8720)' and g? =
(72/289,144/289)'we get: z(1) — g — g) = (—30/289, —60/289)" and

P2 = pm) + MM
1 (385 241 8 gW e i Pz 5(1) p(1)
986 \ 241 891 Eu)’zm z(1) P(1)4(1)

0.4988 0.4990
0.5083 1.5347 )

so that 6% = ~PRg(2) — (—0.3729, —0.8914)" . The (next) minimization is:

min ¢ (9(2’ +6? & A”?) = min [0.204)\(”’ ~0.5539A2) _ 1.4905]
A(0) Al0)

The FOC is 38 = 2 x 0.204A®) — 05539 = 0 50 that A — 1.3576,0)
(0.8675,0.6618)" and £ — @) _ g(2) _ (=0.5062, —1.2102)".

Iteration 4: For 6 = (08675, 0.6618)" and g® = (—0.0593, —0.2057)’,
z(2) = g3) _g(2) _ (~0.3084, —0.7040)’ and P©®) — PRLM@ — ( 0.4919 0.5104),

0.4687 1.5086
so that 6®) = _p@)g3) — (0.1342,0.3381)’ . Then:

min (6 4 ).“”6‘3-’) = min [0.0388,\(31’ —0.07742® _ 0.9613]
A(0) Al0)

with FOC 2¢ = 250.0388A*)—0,0774 = 0 or A 0.9974, 8= (1.0014, 0.9990
and €% = 9 _ 9 _ (9 1339, 0.3372) .

Iteration 5: For @4 — (1.0014,0.9990)’ and g = (0.0052, 0.0024)"we have

8) — (4)_o(3) ! 1) — p(3) 3) _ 0.4979 0.4903
that z g7 —g" = (0.0645,0.2081)' and P4 — p +M (0.4896 1.4697) °
or 8 = _p)g(e) _ (—0.0038, —0.0061)" ,

min ¢ (9‘“’” +6@W 4 A“”) = min [o.oooozx”*’ - 1]
AL0) A(0)

with FOC g2 = 280.00002\ = 0, i.e, A = 0. Hence we reach the solution (local
minimum): 6 = (1,1)’ and ©(6%) = —1 after four interations,
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A.3 Constrained nonlinear optimization meth-
ods

Constrained nonlinear optimization methods can be subdivided into three types
of procedures:

1. Transformation of independent variables, which boils down to transforma-
tion of parameters {reparameterization).

9. Transformation of the objective function into a Lagrange function, leading
to barrier function and penalty function methods.

3. Transformation of the optimization procedure itself, which gives rise to
the extended or augmented Lagrangian procedure.

A.3.1 Reparameterization

1. Consider the minimization problem:

rm'en @ (01,02;-....0p) with@ 2 0.

For solving this problem we need auziliary parameters 7; (6),fori=1,2,...p.
Several examples of this auxiliary parameters could be considered: 8; := nZ2,
. i
9;:=em, 8 :=|nl, 0 = sin? ;=1 — cos?7;, and 6; := e,—ier
The originally constrained minimization problem is now equivalent to the
unconstrained minimization problem: n{ﬂn} @ (71, M2) - ) for i =1,2,...,p.

i

The main disadvantage of this approach is that in many cases non-uniqueness
occurs.

2. For the minimization problem:
mién 0 (81,0a,....,0,) for 8, 2 o (i=1,2,...,p).
Redefine new parameters: 72 = & — as, or 7; = /0 —a; or et = 8; —a;,

then n;, = In (§; — a;) or other transformations. The above constrained problem
is equivalent to the unconstrained minimization of (N1, M2y - Mp)-

3. Consider the constrained minimization problem:

min w (91,92, ariay Bp) 5.t a4 é 6,‘ é b,f., 3= 1,2, o P-

{8:}
Reparameterize &; = a;+(b; — ai) sin® n,1=1,2,...,porny; = arcsin %‘:—:L

This leads to the unconstrained minimization of ¢ (n1,7a, - 7p):

min @(91,92} st. &;,20 (?. = 1,2), #, + 82 <1
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Reparameterize using polar coordinates (r;7):
01 = rcosy and 6, = rsin7y with0§7§-.§ and 0 < r < R. Hence, 0y + 6y =
7 (siny + cosvy) and R — m 50 that

r=0+(R-0)sin’y, = Rsin® g, e T = arcsin /&
0\ . o ' ;then:
7:0"'(“_2'9)51”27?2:%5’327?2 7y = arcsin | /22,

so that the above constrained minimization problem is equivalent to the uncon-
strained minimization of v (n;,1,) w.r.t. 7y and n,.

A.3.2 Transformation of the objective function

There are two possible transformations of the objective function: first the bar-
rier function, which is an interior point (minimization) problem and second,
the penalty function, which is an exterior point (minimization) problem. The
minimization problem migz v(B)st. q(B) 2 0is transformed as ¢ (8) + B (B).

L. Interior point method (barrier function method) with transformation:
B(B8) := 77 for one restriction (e being a small positive number),

In general B (B) := ¢ j“;[p(q, (B)) with p(-) a continuously differen-
tiable function on R with 29 (B) — oo if g (B)—0.

2. Ezterior point method (penalty function method) with transformation for

onerestriction B (8) := d {min (0,¢(8))}”. In general g (B) =d¥"  n(q; (8))
where 7 (-) is a continuously differentiable function on R, with:

1(4; (B) =0 if ¢;(8) >0
1(4; (8)) >0 if ¢;(B8) <0

Example A.3 Consider the CES production function:
Q=0+ Biln [Bo10 + (1 5) K] +,

with q (8) = A f}g”) > O,then the barrier function merhod involves
B(B):=c (‘;—2 + 1—_38—“), or alternatively, B (3) := —¢(InB, +1n(1 - B,)). The
penalty function method implies B (8) = d {[n].in (0, 52)]2 + [min (0,1 — ,82)]2}.

Summary A.1 For barrier and penalty function methods (in principle) an in-
Jinite row of ordered, positive and increasing numbers (ensdn) should be deter-
mined to obtain q feasible minimization of the objective Junction; hence, many
cases (cn,d,) have to be computed,

A disadvantage of these methods is that the Hessian of the new objective
function does not exist at the edge of the feasible region (at least not in the
barrier function method).
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A.3.3 Dual methods

Given the problem mﬁi'n{g.o(ﬂ)l g; (8) 20, for j = 1.2....} the dual prablem is

max |y, -——mgn{ﬁ(ﬂ.p,)}} with £(0.p) = 2(8) — Z;”_] 1;q; (8) the La-

grange function for which a maximin or saddle point solution should be found.
The main disadvantage is that in many cases the Hessian is not positive definite
in RATF,

A.3.4 Extended (augmented) Lagrange function method

According to Rockafellar (1976}, we first consider problem {A.1) with equality
constraints only and d = 0. The augmented {extended) Lagrangian is then:

o8, 1) =9 (8) - T iy (0)+ § 55, (4,00

with ¢ > 0.8 € RP.pu € 2F, e, L£.(0.u) is the Lugrange function of the
problem:

min 9 (6) + %c S (g 006 0)=0 G= L2k (A5

The Kuhn-Tucker conditions for (A5} are identical to those of the relevant
part of (A.1). but the interesting aspect is that the Hessian of the Lagrange
function belonging to (A.5) is positive definite in the solution (8. p) € R
for sufficiently large ¢, say ¢ > c.

Now, we consider inequality restrictions which are introduced with the help
of slack variables for the general problem :

{A.6)

Solving this problem, the conditions g, (€) > () are retransfornied in equality
conditions as ¢; (8) —z; =0, z; 20 (= + 1,....m). where z; are slack
variables, so that the augmented Lagrange function of {A.8) becomes:

Tt

Lo(B.2. 1) = 2 (0) — S0 1140 (8) — 70 (g5 (8) — 25)
TR 2] ¥ 2
ey @0 + 5e 3, 0 (4 () - 1)
This augmented Lagrangian L. (6,2, £¢) should be minimized as a function

of 8 and z and maximized as a function of g. The part of £.{8,z.u) which
depends on the slack variables z; is:

3

) 1 it 2
- ZJ'_ml rl ru‘j (q.]' {9} - ZJ) + EC Z_;'--m]—v, 1 {qj (9) - ZJ) . (A’?}
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Minimization of (A.7) w.r.t. z; (under the condition that z; 2 0):
25D = u; —c(q; (8) — 2;) = 0; then, cz; = cq; (6) — pj, or zj = q; (0) — 4

i.e. z; = max {0,q; (8) — Ej} , 80 that substitution of this z; in (A.7) yields:

2 jmmy+1 M (q,- (@) - ma.x{{),qj @) - f-‘_;})

+';_C 2 et (‘IJ' (6) — max {0' % (6) - Ecj_}) :

m 2 m m "
} Z:HM;,- _ Zﬂuf . Zﬂ.u; 2
Sy IS J=my =___J=m1 g ] Ll ¥ i
= . T £ if g;(0)> < (V)
m l m
= - Y mu@+zeld" ¢ @)
J=my+1 j=m;+1
SRR 0= 3 wa® itg@<M (v
= 3¢ Y @@= X 440 ifg( JS =L (%)
J=my+1 F=my4l
Summarizing:
] = 2 o I
L. P" J=mi+1
== () — =L - 8
2c{mm [0‘,-=mz.+1(q’m) )]} > (A8)

Substituting (A.8) for (A.7) in £, (@, z, p) yields the augmented Lagrangian
for (A.6):

Le(0,p) = F(8) — X7 1:0i () + 1e 5™ (¢: (0))?

m ) . g m 2
+3c Y {mm[U‘th(@)—'?.-'} = f;;;':
J=my+1 J=mi+1

Now we are going to minimize £, (6, u) unconditionally as a function of 6
(or maximizing it as a function of u) using the following algorithm:

1. Choose pu(® € R™ and ¢ € R,

2. For iteration k = 0,1, 2l

e step 1: determine @ (p(*), ¢¥)) as a minimand for min L. (0, )

e step 2: determine c'**¥) and pu*+V) for which p*+! is an approx-

imation to the maximand of the second order approximation of the
dual function in the neighborhood of (%), i.e. a solution of a second

order approximation to max [zp(p) = msinc“”” (0, u”")) :
I

max ¢ () =~ max @ (#*)+(gH) (u-p®)+1 (u-p®) H® (p-p®) |
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. (5) . Oz . (k) .o 2y . : :
with g% 1= 55 M__””__j(lll(l HY o= g e so that a new point

R s obtained;
e stop 3: test on convergence, and go Lo step 1. step 2....if necessary.
Try to keep ¢! as small as possible such that the condition for the problem
to be solved in step 1 becomes not too bad. Then the row p'®! converges to p”.

which is the Lagrangian multiplier belonging to (A.6) (k=12 ..}
Then & (ur‘k;'.c”")) = @°, which is the inimand of (A.6). Heuce, the row

9% converges Lo #" (from solving min Lo {0, 27)), and the row
p* = gt (maxe () = Illil){llgllﬁr_lm (9”‘",@)).
n 2

This can be forumilated as a gnadratic programuning problein where the row
of solutions {B{k}} converges to 8 {e.g. by Newton (-Raphson) if the Iessian

exists) and the row of the corresponding dual variables { pt* Y converges to T
This quadratic programuming problera is defined as:

mci" L (9(&)_+C(k}r££(k-} 1]) o I‘flcillﬁ (Q(H_‘ ‘u{ku l}) +Cr Ve I (9[}:—} I)!”(_&.; L})

Vs (gtk)”u{k—n) ¢,



Appendix B

Mathematical Formulation
of GMM

CMM s an estimation method based on moment equations {hat imposc the
nullity of the mathematical expectation of a vector funection of the observations
and the parameters of interest as

Egu[hiy.X;8%)] =0,

which is generally called the GMAM moment (or orthegonaliiy) condition. In
this condition h € % @ € & with true value 8" and k 2 p. and Ego s the
imathematical expectation operator with respect to ihe true joint probability
distribution F(y,X:8") of (¥, X). Note rhat the vector function h is geverally
a nonlincar function in 8. As also mentioned in Section 2.3 this GMM moment
condition has in general no unique solution: in effect there even exist (;‘,) possible
solutions or different sets of estimates that can be produced.

B.1 Redefining GMM

(MM selects that value of the unknown parameter € for which the saople mear
hy, =257 hly.x:0) 15 closest to zero.

UHansen (1982} has shown that just miniinizing the simple least squares crite-
rion }:;‘__1 b’ (o, %5 0y % 8) vields a consistent but not an asymptotically

efficient estimator. Therefore, we arrive at a precese defimition of GMM.
Definition B.1 Let W, be an (7 x 1) symmetric positive definite matrie, which

depends on the sample observations. Then, the GMM estimnator associated with
W, is a solution to the problent

i [0 hiyx:8) W, 500 By xi 8] .

319
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Compare this result to that of the linear IV problem in Section 2.2.2, with
Vit= %; (Z'Z)~"'.Hence, W, is an approximation to the inverse covariance ma-
trix of 377", h(y:, xi; 0) corrected for White (1984) and /or Newey-West (1987)
autocorrelation and /or heteroskedasticity consistent covariance matrix.!

B.2 Assumptions and properties

According to Gouriéroux and Monfort (1995) we may formulate the following
hypotheses:

H1: The stochastic variables (y;,%;),i = 1,2,....n are iid.

H?2: The mathematical expectation Ego{h(y, X: 0°) Jexists and is zero when
0 is equal to the true value 8° of the parameter of interest (GMM moment
condition).

H3. The sample matrix converges almost surely to a non-random matrix
Wo.

H4: The true parameter 6" is identified from the GMM moment or orthog-
onality condition, i.e. Ego{h(y,X;8)}WgEg {h(y,X; 0)}=0=0=6"

Hb5: The true parameter value is known to belong to a compact set.

H6: The sample mean h, := L 5"  h(y;. X;;6) converges almost surely
and uniquely in @ to Ego{h(y, X: 65'}.

HT: The function h(y, X;8) is continuous in 6.

Property 1 Under assumptions H1 — H7, the GMM estimator as a function
of W,,, denoted as 8(W,,), exists (asymptotically) and strongly converges to
the true value 8 of the unknown parameter.

If we assume now in addition to the above assumptions H1 — HT:

HB8: The true parameter value belongs to the interior of © (the parameter
set).

H9: The function h(y, X; @) is continuously differentiable in 6.

Then, the GMM estimator é(Wn) belongs asymptotically to a neighborhood
of the true parameter value 6°.

In particular, it satisfies the following first order conditions derived from the
quadratic minimization problem in Definition B.1:

1 n ah(yiv Xi3 6)
D

n

f
1 =
} W, [— icy h(yi, xi;0(W,)) [ =0. (B.1)
0=6(W,) i

An expression similar to this has been applied when deriving the I'V estimator
in Section 2.2.2.

!'Notice, however, that for cross-section studies, heteroskedasticity might be a serious
problem. Then heteroskedasticity consistent standard errors, or simply White standard er-
rors, might be provided, while for time-series models, residual autocorrelation might also be
a serious problem, so that, in this case, heteroskedasticity- and antocorrelation-consistent
standard errors or Newey-West standard errors might be useful. See also Example 2.6 for an
empirical application.
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In order to establish the asympfotw normality of o GMM estimator. we
imroduce the following three assmoptions:
| ihiy, x. 8

" v . 1 1 il B I bl B b O X : e R
H10: The sample quantity —> 0 T converges almost surely and

uniformly in @ to Gy 1 = Fgn { "M—”.{;’;:—GiL}_HU
2
Il Ego ||b{y. X:8")|” <0.
7712: The matrix GoWoGy 1s nonsingular. which implies that & 2 p. which

is always the case under GMML

Property 2 Under assumptions i1 - H12, 1he GMM estimator O(W,,) is
asymptotically normally distributed:

Jn (é{w,,) 9“) L N(O.S(W,)).  with
W) = (G;,wncn)“G;lw[,vn[h (4. X: 6°) [ Wy Go (G WG b

Now, we are wondering ourselves whether there exists an optimal choice tor
the sequence of matrices W,,. Since. by property 2. the asymptotic covariance
matrix of 4 GMM estiinator depends only on the pon random lnit matrix W,
this issue reduces to knowing whether there exists an optimal matrix Wy,

Property 3 There crists a best GMM estimator

It is obtained when the limit mairix satisties: W), - [Vnh (y. X: B“)J : .80
that. froi property 2, the asymplotic covariance matrix of the GAM estimator
sinplifies to:

(W= GIWGo

Note Uiat a copsistent estintator of this opt immal limit matrix Wi is given
by

1
Arr 11 " ; B L ;
W, = (L% bty x:Oh (5. %:0))
where # is a GMM estimator of the unknown parameter 8. which is obtained
using an initial arbitrary sequence of matrices, such as W, I, with I,, the
identity matrix.

B.3 Nonlinear two stage least squares

The NLS estimator of the nonlinear model g = flx;:80) 4 o, (i = 1.2, Y
i an inconsistent estimator if there is endogeneity bias. if there exist IVs
{z;} contained in an appropriate matrix Z : = (%).Z2.. ... %) A consistent esl i-
mator may result.

Sinee the IVs should be (highly) correlated with the explanatory variables
and uncorrelated with the error term. we should require that Eg. SV {y - T{X:8))) -
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0, so that the best GMM estimator has a limit matrix: W§ = [V (z’e)] ' (see
Property 3 in Section B.2).

If all the error terms &; (i = 1,2,...,n) satisfy Ego(c? | Z) = o7, then W}, =
[05Eq(Z'Z)] !, s0 that the best GMM estimator is obtained as a solution to:

- T 1 1 = L I
min {Ei:l z; (y: — f(xi;0))’ 2 (; ):Zizi) > i1 2 (i — f(xi:ﬂl)} ;
n
which can conveniently be written with the help of matrix notation as:
min {(v - £(X:0)) Z(Z'Z)"'Z' (y - £(X;0))}. (B.2)

The nonlinear GMM estimator @ is now a solution to the latter minimization
problem, with a consistent estimator of the asymptotic covariance matrix:

.2 ((10£'(X;0) i 0f(X:0) E
"(ﬂ 90 9=0Z(z i 90 |o_p '

: 2
where the residual variance 67 = % i (y,- — fxqs 8)) is involved. Hence.

the GMM estimator of this model is precisely the nonlinear 2SLS estimator.



Appendix C

Stability Criteria for AR(p)
Models

Consider the AR(p) model gy = aqye o+ 02le 2+ 4 apyr -p + 2 where
g¢ € WN with variance o2, and define a matrix A and vectors vy and §, as
follows:

(x] 3 s Lyl Oy it £y
1 0 - 0 0 Yoo 1 0
A=|0 L U O wvy== | ¥-2 Jand ¢, = U
0o 0 - 1 0 W oprl 0

so that the AR(p) model can be rewritten as a first order stochastic difference
equation v = Avi_ 1 + Gy
Eigenvalues of the matrix A arc those numbers A for which [A — ALl = 0.
For example. for p = 2, the eigenvalues are the solutions to:

| Oz A0 _ \
e e

— A — a = 0. The two eigenvalues of A for a second

a) — A @
1 -A

La~3

or = A

order difference equation are thus given by A A =

Examples
1. For the AR(2) model y; = 0.6y 1 +0.2¢_a +&¢. the eigenvalues are given
0.6 £y TG 1 1xD.2 ; .
by Ay A = R B ) A= 0.8t and Ay = —(0.24.

2. On the contrary, for the AR(2) model y = 05y 1 - 0Byp_a + & the

. ) 151 /U574 1 {—0.H) ) e _
cigenvalues arce given by Al Ag = 5 = ().25::0.867 with modulus

R = /{025y + (0.86)2 = 0.9, which impfics damped oscillations.

353
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For arbitrary p The determinant in a generalization of (C.1) is a p** order
polynomial in A whose p solutions characterize the p eigenvalues of A.

Proposition C.1 The eigenvalues of the matriz A are the values of )\ that
satisfy:

Wil — a2 ... g, X—a,=0.

Proof The eigenvalues of A are derived from |A — AL| = 0 and since by
multiplying the p** column of the matrix [A — AL] by a constant 1 and adding

the result to the (p — 1)”l column, the determinant of the matrix does not
change, we have:

X o G 2l s aiiSh 2
0 =X s PHAEE
. L R T 0 0
JASiL}=| 0@ 1 . 8 e 4 . . : .
By R R
0o S % o b o 0 Wit Ex

We now multiply the (p — 1)** column by :1{ and add the result to the (p — 2)*"
column, and continuing in this manner leads to the determinant of an upper
triangular matrix:

ARG ety 0ob S M+ by o1+ a

0 -\ 0 0

0 0 0 0

|A-AL |= : : . : 3
0 0 = 0

0 0 0 =2

Since the determinant of an upper triangular matrix is the product of the
diagenal terms, we get:

(43 (81 ¥ =
A —AL,| = (al—)\+T2+,\—g+---+Apfl)(—A}”1
= (F1)PP =N — X% ... ) =0g

The AR(p) model is considered to be stable or stationary if all the eigenvalues
defined in Proposition C.1 lie inside the unit circle.




Appendix D

MLE of the RSM with
Endogenous Prices

In this appendix we estimate (8.10) under the nornality assumption for both
independent and correlated structural error terms.
To this end we rewrite ((8.5) — (8.8)) as:

D, = X:“-_z’ﬂl +oy Py + v (1.1}
S = X3 H P tea (D.2)
Q) = wmin{y. S¢) (13.3)
AP, = y(Dy—5) + X3y b (D1}

Fither the error terms in (1.1}, (13.2) and (13.4) ave 77d ot they are correlated.

1. Casc of uncorrelated structural error terms [t1 orcder to estimate
the unknown parameters, assmne in {he first ingtance that w,, are iid normally
distributed with zero mean and variance oi {i=ds.p).

4. The error terms in the ease of excess supply (ot deniand reginwe) satisfy:

Ut o 0
Ut CN 0
0

Uy = s

Hence, representing {aeue| tean thpe - Tt }
index 1 (a| (gt - 1)) - N (g 82)

o (B |y Ty T e =T 1hes ¥

Partitioning:
o R

)] Off )] as ) = o2,

2

—nos O o

3

Ql'.f - [ () —T}G':, ] N f!‘_’k N

a; 0 0
0 o2 —no?
0 —not on ol
i,

e N {ps. ) we bave. dropping the

(-”l b Q[-_}Q._,le (?j - r”.j} . Q[[ - S![-_lQ-_;_-_,l Q'_’l)-

0
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we get:

52 =1
o+ Qe (y—puy) = 0+ (0 —noff ( ) [ " ]

0 o 71— 0
ARE —no2r
=0+[0 ——;HIJ 271 and
O'h T1 ﬂ'ﬁ

=
= o5 0 0
Q11— 00295 Q1 =02 - [0 —no?) [ : i [ —no? J
[0-9—5"'] [0.702] =02 —?‘1-—02 (I —;g-i 2 01.
Hence, the likelihood functlon can be defined for f the standard normaJ pdf
and F the standard normal distribution function:

G = o7 f () .7t (Y p( L=t
g 7d f(od oS o oy
1 1 -4 sl G (fazm)?
- _1f ¥
- i ?ud._____ezrrh l__/____'e 3 o1 dS
Od 27 Oh V2T [ J \/2‘.l'n,/a'li
= ——I e—';,f's'(Q—x:,ﬂ} _'“11:')2
V2moy i
FH72|'
e, A (o) |
- 75 (AP—x,85—ny, Q 2
1 2(02 0202 7 * 1
2,””‘3 1 -_f T-_2Trﬂle ng

o

=01(Q¢) (1 - G2(Qy)) , with o := \/(ag (1 3 n“‘gi))

b. In the case of excess demand (or supply regime), the error terms satisfy:
(ua|ts =1y, u, + ks = T2) v N (g, 03)
Ud 0 ?}O’d
Partitioning | 0 o2 0 as 2y := 03, Qyy := [0 7503 1,92 =
neg 0 o2

g
0 a2 0
B kil

we gel:

2 h ;
= 2y | s I ¥, —0 1| %2 —1ogra
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so that the likelihood function satisfies

([ = —’-f(’ ) Lz )[1—1 (—-‘—u-')] — @ (OO =G Q)] Fi-

T

nally. £ := €4+ £,

2. If covariances exist between all the structural form error terms we
assuIne:

3
it \ 0 73 Tds  Tidp
Ut - N 01 .| 7as (Ii Tap
2
Hpt 0 Fdp  Tap U;
s0 that:
r 0
Wt U G‘;} Tits lf}) ?.‘iod\
i - N 0 |.| das o2 Topm ;,ia‘
. 2 3.
thy, — Tt | ] Ty s Cup O p+n ()'_‘,_-Z?’]G'HP
N .,
o 3o (Tnu Oup ~ NWOx
Partitioning | T oy ,;;, nrrd\
)
Tap "~ ”‘7; dp — MTds 4‘ 7} U — ZT,JO' sp
for on, (=CapNGas. Tt~ + 7 (T“ 200 o aml Thy' —rrg;,—r,ao'" we can define
)
. N Fiis o5 T
1y = 02820 = { Tas Thy |~ a1 1= 4 Nand = o ool or
Thy Ty Ghy
{g| g == ¥y Uy — Tthe = 1) - N (;.' ) with
Z1 .
g oy 1y — U
_- of A 1
fhy == 0+ [ Tids Ty ] [ Ty, Th, ] [ 71 =0
| T =T h, &
= s Th | T - 2
[ P (e e ) L R Tl T
— 1 25
= M - [ TduOhy — Th Thy —Tids T, + On, T3 J
(O'-Eo"".' 7, )
_ 1 Y - 2
= v 0T . % [ FoguTh, B — Th, T a7 =TTy T + Fh, 74T ]
(Uﬂ‘mfz_d.ﬁl) i
and
o2 =)~ Q2825 Doy
. Th. -, e P
2 1 133 ] [
=gl = | Tpy Th 1 : gt {(with a: —Jfrrh - a; )
* T [ R -7, a4 T ‘. I
o 1 2T Tif
= J, — ;:_(;r__a'_‘_' [ TdsThy — Th, Thy — 7y + Fh, T, J
g fy Ty,
2 ! 2 2 )
=08~ T (08 Ohy = Ohy T Tis = TdsO Ty + T3, 0 o]
ATh T
3 1 4 ¢ P ST
=7, - ST (rT,,{_gUJ:g — 200, T, T s U;J_.{Cm) :

Ty —ay

)
L

Further: (wug|u, — s = 71}~ &V (1,.07) -

Uy . 0 :‘J"'; Ty -1 an, Tl
s - N . o Copg L e=0}- (T Tz —
andd { R } ([ 0 l { e Ths py=0+ on, (o) =5,

. . o
and g? = g4 — 221, so that:
I o I

B _1_ {1 = 1y) _1_ T _ () = piy}
Fd B J-lf ( 7 ) (Ih'2f (Uﬁz) [1 F( 7 )} |



3hs APPENDIN Do MLE OF THE RSYOWYTH ENDOCENOUS PRICES

where f (—'1;-‘#—') 5 o (standard) vormal pdf and F (~—';ri-‘—') = & {standard)

normal distrilncion funciion.



Appendix E

Volatility Modeling

E.1 Detection and reduction of additive outliers

For a (FARCH (1.1) model we have the following five steps method:

1.

We estimate the parameters a,. oy..3,0f the model:

.. 1.5

Tp = thry

fy =, + oty + 3

with 7, standard normally or student #-distributed by ML, and berewith

wo estinate the series (fp.77,) and construet the the series 3 = 7= hi!
- .. 1—(ev Y .

We have then that #{L) = ——(lT",}— For cach t = 7 we compute the

o

regression in model (5.38) and the unconditional variance of the 5 series

with the ‘omit one' method. The values of the 7-statistic can then be

calenlared.

The observation with the largest #-value is replaced by 2z, .

With this 2 we can construct r;? = PACE B, at the period t = 7. and
also the AQ corrected returns for & # 7 if vy = and for ¢ = 7 if
7= signlrg)(ry?)*7. in order to avoid sign reversal.

This procedure can be repeated till no single 7-value is still significant.
The envisaged parameters &, Gl ﬁ: with which forecasts are made are
obtained now.

Franses and Ghijsels (1999) find for their empirical applications for this AO
correction method that the adjustment of 1 number of AQs implies the intro-
duction of conditional normality in the return series. and that. sinmltancously,
the GARCH(1,1) property is preserved. They also find strong evidence that
the forecasts of the adjusted model is improved.

THere we fecopnise e ARALA(L 1) relormtation of the GARCH(L 1) model: 7 =
n, + (o] + _a.‘f])r'f__l oz — 3o, where zp s r'f -kl
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E.2 Forecasting in GARCH(p, q) models

Following Baillie and Bollerslev (1992) and considering that the GARCH (p, q)
model implies an ARM A(m, p) model for the quadratic innovations: £, = w +
>im (o +B;)ef 1 — Z?:I BVt + vy, where v, = e} — 07 = (2f — 1)o7, and
z w N(0,1), m := max(p, q),; = 0 for i > qand #; =0 for i > p.

Hence, the GARCH (p, q) model can be expressed in vector notation as:

Vi=w+e; +TVE | + (&1 +emp1)ve
For the GARCH (p, q) model the s-step minimum mean squared error forecast
for the conditional variance has the form:

Ei{el.,} = Bi{ol.,} = w,+ S8R+ Sy piel_; where w, =
e; (I+T+.. AL, 6, = —e;F*emHH fori=0,1,...,p—1; p, = e;T*(e;+1 +
enyiv1) fori=0,1,...,p—1; pi= e'll"’e,fH fori=pp+1,...,m—1.

Further, the forecast error for the s-step forecast of the conditional variance
075 in the GARCH (p, q) model is equal to:

Viis = Jf-;-s 5 Et{"';2+s} = 2::: Xs—iVt+i-

Consider for example the simple GARC H (1,1) model, then:

Efotid = w+Tisi(@+8) + (a+B) ae? + (a + )" Bo?
= W+ @+ B) + (a+B) "t + (a+ B) 1o,

which can also directly be derived from the GARCH (1,1) process:
o} =whoi,, + ol =w+ (a +B)oti +aled -0} )& (1- (a+B)L)o}
=w+alef_, —o?_,).Then:
B, {Uf—f-s} = E; {w 2 (O.' * ﬁ)o.:l‘.z—i—s—l + a(g;z+s—l i Jf?+s—l )}
= Ef{w+(a+p)of,, 1}
=wt(a+PEdotie} =w+(a+B8)(w+ (a+B)Efod,, o)

=w+ 30 (@t B) 4 @+ B ~tod,,.
If the model is stationary with 02 = w+ (1 —a — 8)~! the optimal predictor
for o, ,can be expressed as: E{ot, .} =02+ (a+ B)* 1o}, —0?)

E.3 Generalized exponential distribution

The normal and Laplace distribution are both special cases of the more general
power (or generalized) exponential distribution (GED). The standardized GED
has the following representation:

fstaep(ei k) = Wmaexp(—% %! ), where v := TTE%%
and k& 2 0.The standardized normal distribution is obtained by setting xk =
2,while the standardized Laplace distribution requires K = 1.The fatness of
the tails is negatively oriented with the value of . The kurtosis coefficient is

['(5/k)T(1/K)T(3/k)? and the loglikelihood function is given by:
I é(k.fer.. . .or)=T(k)-T(2+1) 2T II(L)-Tihy-2 $7 1n o3 T, =]
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E.4 Generalized Student t-distribution

The generalized Student -distribution ((38D) encompasses both the GED anel
the Student f-distribution due to the two shape parameters. The formula for
the standardized GSD is given by:

Tt

Wy —loF e
) . where

forep(Ehiny =cnvR) = f,—r (1+.,.-f-;9_ﬁ

C == 0.5k B(L. )=/ p(2 L) and § = (k{2 B(L.2) 22 2y L2

Y Ly

: : . CiriTiy) o .

and B s the beta function. defined as B{r.y) = —](:J},l;—jﬁ] Che kurtosis co-
L 37 s Sinlin =Dk . B . )

efficient equals 2L ’;3'}.{?:_?_‘[:f.;}Jf:}-_, DR Qatting 5 = 2 results in the student

i-istribution with v as the nsnal degrees of freedom. When v = 2 the GED
is obtained. The loglikelilivod function equals:
h')

The GSD is a speeial case of the even niore peneral skewed generalized Stu-
dent distribution (SGSD). In a SGSD a third parameter determines the skew-
ness; by setting it to zero the GSD is obtained.

£
e

[N

” -
méfv ok Bz . ..oep) =InC - i aof — =43 In (1+ /A
i1 £ 1

Note: the loglikelihood function for the multivariate {-GARCH satisfies:
Li=glv)—3In'H' - (v +1)/2 In(1+ (v — 2y=1g H; ‘e, ). where

gle) = TIn[T ()] = TInT{5)]7/21In(e - 2). or the complete sanple:
L:Zf___l L-t:;_r.g(i?)‘% 2::_1 I det I_.ﬁ—[“,—;” Z:__l In{1+(v-2) ]Elﬂf_’s,). where
the appropiate multivariate t — G TARCH model can now be substituted.

E.5 Aggregation of GARCH processes

Following Drost and Nijman (1993) we consider the simple GARCII{1. 1) process.

i.e. the fA-daily returns {y[;,-},}';ﬂ‘ follow a weak (CARCH{1.1) process with

2 ., 2 : 3 PRSI CR A8 )l ey Y
Oy =W T EY 130T he—1 where woy=hew(T=r T Yoy =l ) = d

X N gy Iee- Re] Giry, l){h—l—h{n-i;'i]-}{n-g_iﬁ]z}{fr-- Aald-arl .
and &y, =3+ 45— + TN B s g sy and |3,,| is
. . - -3[ by alev *‘.".'j]jI —b B N

the solution to the guadratic equation AT AT e AE 2 whore
4

0 = h(1=3)?+ 2 PG00 4 (et ) (d 8)') ST
a2k
and b= a — Jala + i}%
Drost and Nijman (1993) suggest that for strong GARCIH processes the dis-

tribution of the innovations is usually given. The relation between the kurtosis
e LMY and s given by ok, = & L im =)
and the imnovations s, = E{z'} and &y s given by: &, = Ko rmaims (102
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Discrete choice models, 239, see Cat-
egorical and limited depen-
dent variables
binary choice models, 239, 241
regression approach, 242
Logit model, 242, 244, 245
multiple response models, 239,
248
latent variable model, 247-
249
ordered, 239, 248
unordered, 239
unordered (multinomial) mod-
els, 239, 249, 250
Probit model, 242, 244, 245
Weibull model, 242, 245
Distributed lag model, 303
DSEMs, 187
Dynamic forecast, 132
Dynamic models, 59
Dynamic simultaneous equations mod-
els, 186

Endogeneity bias, 19, 20
Error correction mechanism, 63
Estimate, 5
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Estimated moment conditions, 22
Estimation in Linear and Nonlinear
Models. &
Least Squares estimation method.
b3
Maxinmun Likelibood estimation
method. &
Estimator, 3
asyiptotic normality of a GMM
estimator. 351
asymptotically efficient, 9
asvruptotically normally distrib-
uted. 9
asymptotically nubinsed. &
BRI, 261
inverse Hessiau, 261
consistent, 8
consistent. estimator, 8
GNIM estimator, 28
cfficient, 28
optimal. 28
IV estimalor. 27
nonlincar ML. 7
pseudo-MLE. 210
Euler equation, 28, 29
Exponential smoothing, 202
Extreme value distribution, see Log-
log distribution

Fat tails. 206
Fixed Effects estimator. 276, 305
Fixed Effects model, see Pauel data
Fixed Effects Poisson models. see Pancl
Count Data models
Forecast horizon, 104
Forceasting. see Time series
ad hoc forecasting imethods. 113
double exponentinl smooth-
ing. 115
Holt's lincar trend method (lo-
cal linear trend), 114
simple exponential smoothing,.
113
evaluating density forecasts, 120
forecast errors, 107
forecasting AR processes, 105
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forecasting ARIALA processes,
111
forecastiug ARBMA processes, 109
forecasting MA processes, 108
generalized exponcntial smoot h-
ing, 116
Holt-Winters forecasting proce-
dure. 116
ranking two forecasts. 119
with density functions, 117
Forecasts
diserete cholce models, 246
of volatility. 207
Fund-of-funds pool iuvestments. 198
Fundamental dynamic equations, 187

GARCH models. see Autoregressive
conditional heteroskedastic
mocdels

Causs estimnation method, 10

Generalized Exponential Distribution,
360

Geueralized Method of Moments, 19

definition, 27

Generalized Student C-distribution.
461

Gradient method, 10

Cradient principle. 10

Granger causality. 186

CGranger Representation Theorem. 155

Hunsen's test of overidentifying re-
strictions. <44

Hansen's test of overidentifyving re-
strictions . 44

Hausman test, see Panel data

Hazard function. 261

Iieckman's two-stage estimator, 258

Hsino's model, see Panel data niod-
els

[mpact munltiplier, 62

bupulse response functionds), 172

Tucidental or unisance parameter prab-
lem, 322

Index function models



378

latent variables representation,
247

Innovation accounting, 174
Instrumental variable, 20
Insufficient observations, 42
Interrclated factor demands, 290
Interval forecasts, 117
Intervention analysis, 159
Intervention models, 157
Invertibility condition, 73, 77

Jarque-Bera test, 100
Johansen’s method, 182

Kuhn-Tucker Theorem, 333

Lag generating function, 61
Lag orders
identification, 198
Lagrange Multiplier test, 33, 34
Laplace distribution
conditional, 212

Large sample (asymptotic) theory,
8

Large sample properties, 8

Least Squares Dummy Variables, 276

Likelihood Ratio test, 33, 35

Limiting distribution, 8

Linear probability model, 242, 243

Linearized regression model, see Pseudo-
linear model

Ljung-Box statistic, 209

Log-log distribution, 250

Log-log model, 242

Logit model, see Categorical and lim-
ited dependent variables

Loglinear model., 263

Long run multiplier, 62

Long term relationship, 181

Longitudinal data, see Panel data

Marquardt method, 14

Maximum eigenvalue test, 184

Mean lag, 61, see Partial adjustment
model, 62

Median lag, 62

INDEX

Method of Moments, 21
Generalized Least Squares, 24
instrumental variables, 23
Linear Least Squares, 23
ML estimator, 25

MLE of the RSM with Endogenous

Prices, 355

Models for duration data, 259
parametric, 260

Moment conditions, 25, 29

Moment restrictions, 21

Moving Average processes
identification of an MA process,

74
parameter estimation of an MA(q)
proces, 75

Moving average processes. 72
definition, 73

Moving variances of asset returns,

201

Multinomial models, 248
multinomial probit models, 250

Multiple choice models, see Discrete

choice models

Multiplier
cumulative, 168
delay, 168
impact, 168
long run, 168

Multipliers
structural cumulative, 173
structural impact, 173
structural long run, 173

Multivariate Time Series, see Time

series analysis

Negative binomial model, 265
Nested hypothesis tests, 37
Nested model tests, 34
Nested models, 33
News impact, 219
Newton-Raphson, 247
Nonlinear estimation

methods, 10
Nonlinear Least Squares, 6
Nonlinear Maximum Likelihood, 7
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Nonlinecar models
bilinear models, 5
exchange rate models, 5

general nonlinear regression model,

D

limited dependent variables. b
nonlinear antoregressive mod-
els. &
noplinear moving average mod-
els, 5
production models, 5
time-varying models, 5
Nonlincar optimization, 3
Neonlinear optimization methods
constrained. 10
harrier moethod. 10
penalty function method. 10
method of scoring, 13
unconstrained, 10
- Newton(-Raphson), 10
- Quasi-Newton, 10
- rank one correction, 10
- steepest descent. 10
Nonlinear two stage least squares.
351
Nomnested model tests, 47
Nonnested models, 33
Normality, sce Volatility clustering
Normalized lag structure, 61

Orthogonalization assumptions. 175

Orthogonalization of shocks, 175

Overidentifving restrictions tost, see
Hansen's test of overiden-
tifying restrictions

Panel Count Data models. see Panel
data
Panel data, 267, 269
advantages, 297
attrition. 302
ignorable, 302
Hausman test, 288
incomplete panels, 300
pseudo panels. 301
rotating or rolling pancls. 301
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split pancls, 301
Norlinear panel data, 321
nonlinear panel data
logit model, 321
ML estimation, 324
Pancl Count Data models, 325
probit model. 323
RE estimation, 324
Seemingly unrclatoed regression.
280
selection bias, 300, 302
Pancl data models
cdhynamic paunel data models. 303,
304
with exogenous variables. 307
lincar. 271
lincar with all coeflicients vary
over individuals and time,
205
Hsiao's model, 296
lincar with all coctlicients vary-
ing over individuals. 289
seemingly unrelated regression.
289
Swany's random coofficient
model. 293
linear with constant cocfficients,
273
lincar with intercepts varyving
over individuals, 274
random effects versus fixed of-
feots, 283
testing for random offects. 282
lincar with intercepts varying
over individnuals and time,
284
dumnny variables model. 285
crror components model, 286
specification tests. 288
Paratnoter space
biased, 8
vfficient, 8
unbiasod, 8
Parsimony, 94
Partial adjustment maolel. 60
Partial antocorrelation coctficient. 69
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Partial autocorrelation function, 70

Point forecasts, 117

Poisson regression model, 263

Probability limit, 8

Probit model, see Categorical and
limited dependent variables

Probit observed, 244

Program evaluation model, 304

Pseudo-linear model, 6

Quadratic hill-climbing method, 14
Quasi-Gauss method, 13
Quasi-linear, see Pseudo-linear model
Quasi-Newton procedures, 339

Random Effects model, see Panel
data
Random Effects Poisson models, see
Panel Count Data models
Randem walk with drift, 82
Recursive structure, 169
Reduced form, 167
Regime switching models, see Vary-
ing Parameters Models
disequilibrium models, 195
estimation, 194, 195
specification, 194, 195

Regression approach, see Discrete choice

models
Regressor
endogenous, 20
Repeated observations for discrete
choice, 243
Residual
generalized, 246
Rolling variances of asset returns,
see Moving variances of as-
set refurns

Sample
censored, 257
truncated, 257
Sample moment conditions, see Es-
timated moment conditions
Schwartz (Bayesian) Information Cri-
terion, 95

INDEX

Score test, 34
Seasonal AR. 88
Seasonal difference, 88
Seasonally integrated filter, 88
Seemingly unrelated regression, see
Panel data models
Shocks
orthogonal, 175, 180
permanent, 176
transitory, 176
Sims’s orthogonalization, 175
Simultaneity bias, see Endogeneity
bias
Single Output Multiple Input, 157
Single Output Single Input models,
see Time series analysis
Singular error covariance matrix, 290
Smooth Transition AR, 194
Spurious regressions, 153
Static forecast, 132
Stationarity restrictions, see ARMA
models
Stationary processes, 66
AR(1) process, 67
covariance, second order, weak
or wide, 66
deterministic trigonometric se-
ries, 66
noise, 66
stationary autoregressive processes,
68
stationarity (or stability) con-
dition, 68
strictly, 66
white noise, 66
Steepest descent, 335
Stochastic process, 193
Structural break, 43
Structural form, 167
Structural impulse response coeffi-
cients, 173
Structural VAR models, 178
specification, 179
SVARs, 187
Swamy's random coefficient model,
see Panel data models



INDEX

Tost of individuaj coeflicients, 37
Test of barameter veergr, 37
Testing in Iincar ang nonlinear nygd-
els. 33
confidenee tervaly ang bypothe-
5es tests, 36
Lagrange Multiplier tost. 34
Likelihood Ratio test, 35
nested hypotheses, 38
Hounested mode] tests, 47
test on a subset, of parametery,
40
test on an arbitrary degree of
Altocorrelation, 4
testing for structury) chiange, 4]
validity togry of momeng restrie-
tions, 43
Wald tegt. 35
Threshold Antoregressive Model, 194
Solf—Excitjng, 194
Time series analvsiy, 55
Aberrang observations, 98
cointegration and ¢a usality, 154
fm‘cc:;wtiug, in4
mnliivariage time series, 165
Transfer fanction Hiodeling
Single Output Single Input moq-
els. 157
transfor finction modeling. 157
VARBALA Models, 181
Varying Parameters Modeis, 193
VOeCtor ay toregressive models. 166
V(Jlatilit.y modeling, 199
Time spans, 201
Top-down approach, 85
Trace test, 184
Transfer function madeling, sen Time
HeTieS analysiy
Transfor finction maodels, 157, 150
Transiog cost function, 29p
Trend stationary, g2
I'mmeation, 257

mit rooty
higher-order autoregressive -
cls, 83
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i a AR(I) 79
1 panel daty models, 307
wuitiple, 85
double, 85
triple, 8¢
seasonal, 88
testing, 70

VAR(p) models, 170
estimation. 170
identification, 170
OVerparatcterizegd 170

Variahle
{im)pulse. 160
binary, 239
censored or truncated, 239
count, 2:30
endogenons, 165
exogenons, 165
jump. 160
ordered op ardinal, 24¢
step, 160
unordered o nominal, 239

Varianee d(.‘r:(mlpusition, 173

Varving Paramerory Models. gpe Titne

serics analysis

Vector AMOregressive wodels, 166
estimation, |68
idcntiﬁcatiml, 168
stability, 167
stationarity, 167
structural apd reduced for b

variate. 167
Volatility
exX-ante, 202
CX-ante expected, 209
fort_.-(:mts, 207
historical, 202
uplied, 209
inst;_i,nt.aneous, 202
Propagation offect. 222
realized, 202
spillover, 99
Volatility clustering, 199, 208
\-’olat.iJit}f modeling, spe Time seriey
analysis, 359
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Volatility models, see Varying Pa-
rameters Models

Wald test, 33. 35

Weibull model, see Discrete choice
models

White test on heteroskedasticity, see
Testing

Within estimator, see Fixed Effects
estimator

Within transformation estimator, see
Fixed Effects estimator

Yule-Walker equations, 68, 71
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