

PHYSICAL CHEMISTRYfor JEE (MAIN & ADVANCED)

PHYSICAL CHEMISTRY-I for JEE (MAIN & ADVANCED)

About the Author

Ranveer Singh has an M.Sc. in Chemistry and has been mentoring and teaching Chemistry to JEE aspirants for more than 15 years. He aims for perfection and has an enormous passion when it comes to applying new methods to create solutions. These are the qualities that make him stand out from the crowd as a teacher and instructor.

PHYSICAL CHEMISTRY-I for JEE (MAIN & ADVANCED)

Ranveer Singh

McGraw Hill Education (India) Private Limited

McGraw Hill Education Offices Chennai New York St Louis San Francisco Auckland Bogotá Caracas Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal San Juan Santiago Singapore Sydney Tokyo Toronto

Published by McGraw Hill Education (India) Private Limited 444/1, Sri Ekambara Naicker Industrial Estate, Alapakkam, Porur, Chennai - 600 116

Physical Chemistry for JEE (Main & Advanced) Module-I

Copyright © 2017, McGraw Hill Education (India) Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission of the publishers. The program listings (if any) may be entered, stored and executed in a computer system, but they may not be reproduced for publication.

This edition can be exported from India only by the publishers, McGraw Hill Education (India) Private Limited

ISBN (13): 978-93-5260-528-6 ISBN (10): 93-5260-528-4

Information contained in this work has been obtained by McGraw Hill Education (India), from sources believed to be reliable. However, neither McGraw Hill Education (India) nor its authors guarantee the accuracy or completeness of any information published herein, and neither McGraw Hill Education (India) nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw Hill Education (India) and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.

Typeset at The Composers, 260, C.A. Apt., Paschim Vihar, New Delhi 110 063 and text and cover printed at

Cover Designer: Creative Designer

visit us at: www.mheducation.co.in

Dedicated to Shri Amar Chand Ji Maharaj

Chemistry forms an important part of all entrance tests. In my teaching career, spanning over a decade and half, I have felt that a chemistry book based on the changing perceptions, needs, feedback and the experiences of the students and educators is needed by the engineering aspirants. It is with this vision that the present book has been written.

This book is not a textbook. It is a refresher text to help students revise their lessons in the quickest possible way and in the most effective manner. It does not over emphasise theories, as has been done in several other competitive books available in the market. However, every care has been taken to ensure that no important theory is left out. This book has several new features: coverage of the syllabus of JEE (Main + Advanced); a great number of solved numerical examples to acquaint students with the application of several theories, solution at the end of each exercise and two levels of questions at the end of the chapters to give readers an opportunity to assess their understanding of the chapters. The use of easily understandable language is at the core of the author's efforts.

The exercises given at the end of every chapter is further categorised into three difficulty level of questions and their patterns asked in JEE along with the previous year questions with solutions.

- Level-I has the questions mainly suitable for JEE Main exam.
- Level-II contains slightly difficult questions suitable for JEE Advanced.
- Level-III has the highest questions of various patterns asked in JEEAdvanced (such as more than one correct answer, comprehension, match the column and single digit integer).

I hope this book will help in motivating and encouraging the students towards the preparation for the Chemistry portion of the examinations. Every care has been taken to make the book error-free. However, some mistakes may have been crept in inadvertently. Constructive suggestions and comments from students and teachers would encourage me to make the book more authentic and acceptable in the next edition. We wish our young readers a great success at the engineering entrance examinations.

Ranveer Singh

I express my gratitude towards the publisher and the members of the editorial team. I would be failing in my duty if I don't express my thankfulness to Mr. Sanjay Agrawal for encouraging me to start writing this book and helping me step by step while preparing the manuscript.

Contents

Preface	vii
Acknowledgements	ix
 Mole Concepts Key Concepts 1.1 Solved Examples 1.7 Exercise 1.12 Level I 1.12 Level II 1.17 Level III 1.20 Previous Years' Questions of JEE (Main & Advanced) Answer Key 1.25 Hints and Solutions 1.26 	1.1–1.45
 Atomic Structure Key Concepts 2.1 Solved Examples 2.9 Exercise 2.12 Level I 2.12 Level II 2.19 Level III 2.21 Previous Years' Questions of JEE (Main & Advanced) Answer Key 2.30 Hints and Solutions 2.31 	2.28
 3. Gaseous State Key Concepts 3.1 Solved Examples 3.19 Exercise 3.28 Level I 3.28 Level II 3.33 Level III 3.35 Previous Years' Questions of JEE (Main & Advanced) Answer Key 3.42 Hints and Solutions 3.43 	3.1–3.63

4. Chemical Equilibrium

- Key Concepts 4.1
- Solved Examples 4.6
- Exercise 4.9
 - Level I 4.9
 - Level II 4.12
 - Level III 4.14
- Previous Years' Questions of JEE (Main & Advanced) 4.18
- Answer Key 4.19
- Hints and Solutions 4.20

5. Ionic Equilibrium

- Key Concepts 5.1
- Solved Examples 5.13
- Exercise 5.18
 - Level I 5.18
 - Level II 5.20
 - Level III 5.22
- Previous Years' Questions of JEE (Main & Advanced) 5.27
- Answer Key 5.29
- Hints and Solutions 5.30

4.1-4.32

5.1-5.52

Mole Concept

Key Concepts

Mole in Latin means 'heap' or 'mass' or 'pile'. A mole of atoms is a collection of atoms whose total weight is the number of grams equal to the atomic weight.

The mole is defined as the amount of a substance containing as many atoms, molecules, ions, electrons or other elementary entities as there are carbon atoms in exactly 12 g of C¹². Hence, 1 mole is a collection of 6.022×10^{23} particles which is known as the Avogadro Number

 $1 N_A = 6.022 \times 10^{23}$

METHOD OF CALCULATION OF MOLE

(i) If the number of species is given then Number of moles = $\frac{\text{Number of atom}}{(1 + 1)^2}$

$$es = \frac{1}{6.022 \times 10^{23}}$$

(ii) If the weight of an element is given then Number of moles = $\frac{\text{Weight in gram}}{\text{Atomia weight}}$

Atomic weight

- (iii) If the weight of a molecule is given Number of moles = $\frac{\text{Weight in gram}}{\text{Molecular weight}}$
- (iv) Calculation of moles for ideal gases. We know PV = nRT

$$n = \frac{P_{\text{atm}} \times V_{\text{liter}}}{0.0821 \times T}$$

be-

1 atm = 760 mm Hg or 76 cm Hg

V = Volume of gas (free volume available for the motion of gas molecule

1 Liter = 10^{-3} m³

- T = Temperature in Kelvin
- R =Universal gas constant
- $= 0.0821 \text{ L atom } \text{K}^{-1} \text{ mol}^{-1}$
- $= 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$
- $= 1.987 \text{ cal } \text{K}^{-1} \text{ mol}^{-1}$

STP or NTP \Rightarrow Temperature 273 k and P = 1 atm but in thermodynamics, T = 298 k.

- \Rightarrow Volume of 1 mole of gas at STP is 22.4 L
- \Rightarrow Volume of 1 mole of gas at 300 k is 24.63 L

Chapter

⇒ Number of moles of solute = Molarity × Volume of solution in Liter

It is defined as the mass of all atoms divided by number of atoms.

It is defined as the total mass of molecules divided by number of molecules

Average molecular mass = $\frac{x_1M_1 + x_2M_2 + x_3M_3...}{x_1 + x_2 + x_3 + ...}$

where M_1 , M_2 , M_3 are the molecular masses of compound whose abundance $x_1, x_2, x_3 \dots$

- \Rightarrow It is in terms of number of moles or in terms of molecules

1.2 Physical Chemistry-I for JEE (Main & Advanced)

MOLECULAR FORMULAE AND EMPIRICAL FORMULAE

Molecular formulae: The actual number of atoms of various elements present in the compound, e.g., $C_6H_{12}O_6$.

Empirical formulae: The simplest whole number ratio of atom in element present in compound, e.g., E.F. of glucose $(C_6H_{12}O_6)$ is CH_2O which shows that carbon, hydrogen and oxygen combined in simple ratio 1:2:1.

Relation between M.F. and E.F.

Molecular Formula = n[Empirical formula]

$$n = 1, 2, 3, \dots$$

$$n = \frac{\text{Molecular weight}}{\text{Empirical formula weight}}$$

Step for Determination of Empirical Formulae

- (i) Divide % of atom by its atomic mass. It gives relative number of moles of various elements present in the compound.
- (ii) Divide relative number of moles obtained in Step (i) by the smallest mole so as to get simple ratio of moles of various elements present in compound.
- (iii) If simple ratio of mole is a fractional value, then the value of simple ratio of moles of each element is multiplied by smallest integer so as to get simplest whole number ratio of each element present in the compound.

Determination of Molecular Formulae

- (i) When the molecular mass is given
 - Suppose Empirical formula = C_3H_6O and Molecular mass = 174

$$n = \frac{174}{58} = 3$$

then M.M. = $3[C_3H_6O] = C_9H_{18}O_3$

(ii) When number of any atom is given Suppose EF is C_3H_6O and given that number of oxygen atom is 2.

then MF =
$$[C_3H_6O] \times 2 = C_6H_{12}O_6$$

(iii) When the vapour density is given (only for gas and vapour)

$$n = \frac{2 \times \text{VD}}{\text{Molecular weight}}$$

STOICHIOMETRY

It deals with the calculation of quantities of various reactants and products in a chemical reaction.

The numerical used to balance a chemical reaction is known as *stoichiometric coefficient*.

Balanced equations gives the qualitative and quantitative information.

N ₂	+	3H ₂	\rightarrow	2 NH_3
Nitrogen		Hydrogen		Ammonia
1 mole		3 mole		2 mole
28 gram		6 gram		34 gram
N _A molecules	5	3 N _A		2 N _A
22.4 litre		3×22.4 litre	;	2×22.4 litre

Steps for Using Mole Method in Problem_

- (i) Write down a balanced chemical reaction.
- (ii) Calculate the number of moles known substance.
- (iii) Write down the number of moles of known substance under the chemical reaction and relate them.

SOLUTION AND CONCENTRATION TERM

Solution is defined at a homogenous mixture of more than one substance in which one is solvent and rest solute.

Which substance is solute or solvent is controversial and can be concluded in the following cases:

Case I: When substances forming solution are in different states, the final state of solution will be solvent irrespective of substances.

Case II: When substances forming solution are in the same state, then the solvent is one which is present in large amount.

Amounts compared should be in mass and mole. Some hints are given in the question like *A* in *B*. Then *A* is

solute and B is solvent.

All the concentrated terms defined are applicable only for homogenous mixture and not for heterogeneous mixture.

1. Density =
$$\frac{\text{Weight of solute}}{\frac{1}{1}}$$

Volume of solution

Unit is either in g/mL or g/litre Temperature is dependent because Mass $\not < T$ but volume is depend upon temperature (T < V).

 \therefore T inversily proportional to

2. Mass percentage or percentage mass $\frac{W}{W}$ %

$$\frac{W}{W}\% = \frac{\text{Weight of Solute}}{\text{Weight of solution}} \times 100$$

Temperature independent

For example, 20% mass of NaOH solution means 100 g of solution contains 20 g of NaOH and mass of solvent is 80 g.

3. % weight by volume or $\frac{W}{V}$ % or % by volume.

$$\frac{W}{V}\% = \frac{Weight of Solute}{Volume of solution} \times 100$$

4. % volume by volume or $\frac{V}{V}$ % or % by volume.

$$\frac{V}{V}\% = \frac{Volume of Solute}{Volume of solution} \times 100$$

 0^{6}

Molarity

 $M = \frac{Moles of solute}{Volume in liter}$ Temperature dependent

For example, 2 M NaCl solution means 1 L solution contains 2 moles of NaCl.

MOLARITY OF PURE SUBSTANCE

1 mL = 1 g1000 mL = 1000 g = 55.56 moles: moles in 1 L pure solution

weight

Volume in liter 1 liter

MOLALITY [m]

Number of moles of solute in 1 kg solvent.

So temperature is independent.

For example, 2 m solution of NaCl means 2 moles of NaCl present in 1000 g of solvent.

MOLE FRACTION

Ratio of moles of one component to the total number of moles of solution.

$$A \qquad B \qquad C$$

$$n_A \qquad n_B \qquad n_C \qquad \text{Number of moles}$$

$$X_A \qquad X_B \qquad X_C \qquad \text{mole fraction}$$

$$X_A = \frac{n_A}{n_A + n_B + n_C}$$
and
$$\Sigma x = 1$$

an

 $x_A + x_B + x_C = 1$ or For binary solution $x_A + x_B = 1$

 $X_B = 1 - x_A$ $\log_{10}[x_A + x_B + x_C] = \log_{10} 1 = 0$ $\Sigma n = 1$ If $X_A = n_A$

It means MF of A = mole of A.

PPM and PPB (Parts per million and Parts per billion)

$$\mathbf{PPM} = \frac{\text{Parts of solute}}{\text{Parts of solution}} \times 10^{6}$$
$$\mathbf{PPB} = \frac{\text{Parts of solute}}{\text{Parts of solution}} \times 10^{9}$$

For gases

$$\mathbf{PPM} = \frac{\text{Volume of solute}}{\text{Volume of solution}} \times 10$$
$$\mathbf{PPB} = \frac{\text{Moles of solute}}{\text{Moles of solution}} \times 10^9$$
For gases parts = volume = moles

For solid/liquid parts = weight \rightarrow

For solid/liquid

$$PPM = \frac{\text{weight of solute}}{\text{weight of solution}} \times 10^{6}$$
$$PPB = \frac{\text{weight of solute}}{\text{weight of solution}} \times 10^{9}$$
For dilute solution
(Weight of Solute ~ Weight of Solution)

$$\mathbf{PPM} = \frac{\text{weight of solute}}{\text{weight of solvent}} \times 10^6$$

 \rightarrow

TYPICAL CONCENTRATION TERMS

These concentrated terms are typical because they are defined exclusively for the substance concerned depending on what purpose those substances are used.

Concentration of H_2O_2: H_2O_2 is used as a source of oxygen gas and hence the typical concentration of H₂O₂ gives the value of oxygen obtained from the given solution. Since it decomposes according to following reaction:

$$2\mathrm{H}_{2}\mathrm{O}_{2} \rightarrow 2\mathrm{H}_{2}\mathrm{O} + \mathrm{O}_{2}$$

Definition of concentration term of H₂O₂: "x volume H_2O_2 " means 1 L of H_2O_2 gives x L of O_2 gas at STP.

For example, 20 volume H₂O₂ means 1 L of H₂O₂ gives 20 L of O₂ at STP. It can be converted to normal concentration.

Oleum is considered as a solution of SO₃ gas dissolved in H₂SO₄. H₂S₂O₇ is a type of oleum and 1 mole of SO₃ and 1 mole of H₂SO₄.

H_2SO_4	SO_3	$H_2S_2O_7$	
Liquid	Gas		
Solvent	solute	solution	
~			

Concentration of oleum is defined in such a way that it gives an idea of amount of H_2SO_4 it can give.

Concentration of oleum is given by x % oleum. It means 100 g of oleum sample can maxima give x g of H_2SO_4 by the addition of (x - 100) g of water.

For example, **109 % oleum** means 100 g oleum is capable of giving 109 g H₂SO₄ by adding 9 g of H₂O in 100 g of oleum.

An oleum sample labelled as x % implies the (x - 100) g of H_2O will be required to react with all the SO₃ present in 100 g of oleum according to the following reaction:

$$H_2O + SO_3 \rightarrow H_2SO_4$$
 in 100 g oleum

1.4 Physical Chemistry-I for JEE (Main & Advanced)

So, number of mole of water required = number of moles of SO_3 gas present in Oleum

x % Oleum	Max. H ₂ SO ₄	<i>w</i> _{H₂O}	$n_{\rm H_2O} = n_{\rm SO_3}$	w _{SO3}	w _{H2} SO ₄
104.5%	104.5	4.5	0.25	$0.25 \times 80 = 20$	100 - 20 = 80
109%	109	9	0.5	$0.5 \times 80 = 40$	60
118%	118	18	1	$1 \times 80 = 80$	20

ANALYSIS OF GASEOUS REACTION [EUDIOMETRY]

This method is used to determine the composition of gaseous mixture or to find out the M.F. of an unknown compound.

It is based on 'Gay Lussac Law of combining volume'.

This law states that gaseous reaction volume of reactant consumed and volume of product obtained [at fixed T and P] are in a simple whole number ratio [which is same as the ratio of Stoichiometric coefficient of balanced reaction].

For example, from experiment it was found that 10 L of N_2 require 30 L of H_2 to produce 20 L NH₃.

 \therefore volume ratio = 1 : 3 : 2 [Stoichiometric coefficient]

Since the reaction is carried out at constant T and P, then, volume of gaseous mixture is directly proportional to number of moles of gases and change in volume is proportional to change in number of moles of gases.

$$V \propto \kappa$$

$$\therefore \qquad \Delta V \propto \Delta n$$

This expression can be used if pressure of individual species used [at constant T and V]

$$P \propto n$$
$$\Delta P \propto \Delta n$$

Hence, for N_2 + $3H_2 \rightarrow 2NH_3$ 1 mole 3 mole 2 mole 1 atm of N_2 3 atm of N_2 2 atm of NH_3 So $V \propto n$ [at constant T and P] $P \propto n$ [at constant T and V]

Example: 10 mL of alkane on complete combustion gives 30 mL of CO₂. Calculate molecular formula?

$$C_{x}H_{y} + \left[x + \frac{y}{4}\right]O_{2} \rightarrow xCO_{2} + \frac{y}{2}H_{2}O$$

1 mole gives x mole
1 mL give x mL

and

mL
$$10\left[x+\frac{y}{2}\right]$$
ml $10x$ mL $10 \times \frac{y}{2}$ mL

x = 3

 $10 \times x \text{ mL} = 30 \text{ mL given}$

Since, molecular formula of alkane $C_x H_{2x+2} = C_x H_y$

So, y = 8

10

10 mL

Therefore, molecular formula = C_3H_8

Gaseous reactions are studied in this tube. After the completion of reaction, the reaction is brought back to original temperature.

To estimate the volume of each gas, certain solvents are used.

	Solvent	Gases absorbed
1.	КОН	CO_2 , SO_2 , Cl_2
2.	CuSO ₄ /CaCl ₂	$H_2O(g)$
3.	H ₂ O	NH ₃ , HCl
4.	Terpentine oil	O_3
5.	Alk. Pyrogallol	O_2
6.	Ammonical Cu ₂ Cl ₂	СО

We will consider only the volume of gases and not of solid and liquid as they have very less volume compared to gas. Hence, the volume of solids and liquids is neglected with respect to gases.

Whenever water is formed inside the eudiometric tube, it is always assumed to be liquid until a minimum temperature of 100°C.

- It is used in the following combinations:
- (i) Combustion of all organic compound.
- (ii) Reaction of H_2 with O_2 .
- (iii) Dissociation or formation of NH₃.
- (iv) Reaction between N_2 and O_2 never occur inside the eudiometric tube as it requires very high temperature.
- (v) H_2 when reacts with certain oxide gives H_2O .
- (vi) Whenever a substance is added in eudiometric tube for a particular reaction, it is always assumed to be taken in excess.

A sample of organic compound on qualitative analysis (with elements present) was found to contain C S H N P O X. The following experiment were performed. Calculate % composition of each element.

Mole Concept 1.5

A w g sample was burned in the presence of CuO to cause oxidation of C, H and N only (CO₂, H₂O, N₂). The gaseous mixture was passed through a solution of KOH weighing w_1 g. The final weight after passing the gases was w_2 . The remaining gases on passing through white CuSO₄ crystal to convert into blue crystal (hydrated CuSO₄) caused a weight rise of w_3 g.

The remaining gas was collected over H_2O at *T* Kelvin. [Any gas collected over H_2O is present with some water vapour]. Total pressure observed was 'P atm'. Value of displaced liquid was *V* mL and *T*. If aq. tension of H_2O at *T* is P_1 atm [aq. tension at any temperature is defined as maximum pressure which can be exerted by water vapour in equilibrium with water in liquid form], calculate the composition of each element. From first experiment

[Liebig Method]

Organic Compound
$$\xrightarrow{\text{CuO}} \text{CO}_2 + \text{H}_2\text{O} + \text{N}_2$$

 W_{gram}
Absorbed
by
 W_1 $\underbrace{\text{KOH}}_{\text{before}} w_2 (\text{after})$
before $\underbrace{\text{CuSO}_4}_{w_3 \text{ gm}}$

Weight rise in KOH = $w_2 - w_1 = w_{CO_2}$ Since all CO₂ obtain from Organic Compound

$$\therefore \qquad n_{\rm C} = n_{\rm CO_2} \Rightarrow \frac{w_2 - w_1}{44}$$

$$\therefore \qquad \% \text{ of Carbon in Organic Compound}$$
$$= \frac{1}{2} \frac{w_2 - w_1}{44} \times 12 \times 100$$

44 W A12 × 100
Moles of H₂O =
$$\frac{w_3}{18} = n_{H_2O} = n_{H_2}$$

$$\therefore \qquad \text{moles of H}_2 = \frac{w_3}{18}$$

$$\therefore \qquad \text{weight of } H_2 = \frac{w_3}{18} \times 2$$

 $\therefore \qquad \% \text{ of H in Organic Compound} = \frac{w_3}{18} \times \frac{2}{W} \times 100$

From second experiment : [Duma Method]

$$n_{N_2} = \frac{P_{N_2} \cdot V_{N_2}}{R \cdot T_{N_2}} \quad \text{but} \quad \% \text{ N in Organic Compound}$$
$$= \frac{w_{N_2}}{W} \times 100$$
$$\% \text{N} = \frac{n_{N_2} \times 28 \times 100}{W}$$

and
$$n_{N_2} = \frac{[P - P']V \operatorname{ml} \times 10^{-3}}{RT}$$

 $\therefore \qquad \% \operatorname{N} = \left[\frac{(P - P')V \operatorname{ml} \times 10^{-3}}{RT}\right] \times \frac{28}{W} \times 100$

W g sample was reacted with concentrated H₂SO₄ to cause conversion of all N₂ present in the compound. Ammonium sulphate (NH₄)₂SO₄ solution was then added with excess of NaOH and all NH₃ librated was reacted with H₂SO₄ solution having molarity M_1 and volume V_1 liter. The residual acid was reacted with NaOH solution and it was observed that V_2 liter of NaOH molarity M_2 was required to complete naturalization of residual acid. Calculate % composition of N₂ from above data?

Sol. Organic Compound
$$\frac{-\operatorname{con}H_2\mathrm{SO}_4}{M_1V_1} (\mathrm{NH}_4)_2\mathrm{SO}_4$$
$$\xrightarrow{\mathrm{NaOH} (\text{for neutralisation of excess } H_2\mathrm{SO}_4)}_{M_2V_2} \mathrm{NH}_3$$
$$2\mathrm{NH}_3 + \mathrm{H}_2\mathrm{SO}_4 \to (\mathrm{NH}_4)_2 \mathrm{SO}_4$$
and
$$\mathrm{H}_2\mathrm{SO}_4 + 2 \mathrm{NaOH} \to \mathrm{Na}_2\mathrm{SO}_4 + 2\mathrm{H}_2\mathrm{O}$$
$$\frac{1}{2}\mathrm{M}_2\mathrm{V}_2 \mathrm{M}_2\mathrm{V}_2$$
(i) $n_{\mathrm{H}_2\mathrm{SO}_4} = \frac{M_2V_2}{2}$ (i) $n_{\mathrm{H}_2\mathrm{SO}_4} = \left[M_1V_1 - \frac{M_2V_2}{2}\right]$ (ii) $n_{\mathrm{H}_2\mathrm{SO}_4} = \left[M_1V_1 - \frac{M_2V_2}{2}\right]$ (iii) $\therefore n_{\mathrm{NH}_3} = 2\left[M_1V_1 - \frac{M_2V_2}{2}\right]$ (iv) % N in OC = $\left[\frac{1 \times n_{\mathrm{NH}_3} \times 14}{W}\right] \times 100$
$$= \frac{\left\{2\left[M_1V_1 - \frac{M_2V_2}{2}\right] \times 14\right\}}{W} \times 100$$

Organic Compound $W_{\text{gram}} \xrightarrow{\text{HNO}_3} X^{-1}$ ion in solution $\xrightarrow{\text{AgNO}_3} \text{AgX}$

W Gram

W g of Organic Compound is reacted with concentrated HNO₃, then AgNO₃ solution is added in the remaining solu-

1.6 Physical Chemistry-I for JEE (Main & Advanced)

tion (containing halide ion solution which is obtained by reaction between Organic Compound and concentrated HNO₃). Weight of residue will be formed if w_1 g white precipitate, w_2 g of AgBr (pale yellow precipitate) and w_3 g of AgI (bright yellow precipitate) are formed. Then calculate % composition of Cl, Br and iodine.

%
$$W_{Cl}$$
 in Organic Compound = $\frac{W_{Cl}}{W} \times 100$
= $\frac{1 \times n[AgCl] \times 35.5 \times 100}{W}$ (using POAC)
% W_{Cl} in Organic Compound = $\frac{1 \times w_1 \times 35.5}{143.5 \times W} \times 100$
as same
% W_{Br} in Organic Compound = $\frac{1 \times w_2}{188} \times \frac{80}{W} \times 100$
% W_{I} in Organic Compound = $\frac{1 \times w_3}{225 \times W} \times 127 \times 100$

 $235 \times W$

W g sample of Organic Compound was reacted with concentrated HNO₃. The remaining solution containing H₂SO₄ (obtained after all the sulphure gets oxidised to SO₃ and then to H₂SO₄) was reacted with excess of BaCl₂ solution and w_1 g of white ppt of BaSO₄ was obtained. Calculate % composition of sulphur.

% S =
$$\frac{w_S}{W} \times 100 = \frac{1 \times w_1 \times 32}{W \times 233} \times 100$$

ESTIMATION OF PHOSPHORUS

Organic Compound $\xrightarrow{\text{III} \text{NO}_3}$ $H_3\text{PO}_4 \xrightarrow{\text{IIII} \text{IIII} \text{IIIII}}$ $Mg(\text{NH}_4)\text{PO}_4 \xrightarrow{\Delta} Mg_2\text{P}_2\text{O}_7 \text{ (white ppt)}$

W g sample of Organic Compound was reacted with HNO₃. All phosphorous after being oxidised to H_3PO_4 was reacted with magnesia mixture and a yellow precipitate was obtained, which on heating gives w_1 g of white precipitate of Mg₂P₂O₇. Calculate % of P in Organic Compound.

% of *P* in Organic Compound =
$$\frac{w_P}{W} \times 100$$

= $\frac{2 \times w_1}{222} \times \frac{31}{W} \times 100$

From

2

$$\frac{2[n_{\mathrm{Mg}_{2}\mathrm{P}_{2}\mathrm{O}_{7}}]}{W} \times 31 \times 100$$

ESTIMATION OF OXYGEN

Weight of oxygen in Organic Compound

= Weight of organic compound -W'[sum of weight of all element]

Dulong Petit's law

Atomic weight \times Specific heat of compound ≥ 6.4

- (i) This is experimental law.
- (ii) Specific heat should be measured in calorie/gram.
- (iii) The above expression given is approximately Atomic weight.

1 g of metal at 30° was immersed in 10 g of water at 19.886 °C. If the final temperature is 20°C then predict that metal could be iron (Specific heat of $H_2O = 1$ cal/g).

Heat lost by metal = Heat gained by water

$$m_1 C_1 \Delta t_1 = m_2 C_2 \Delta t_2$$

1 × C_1 × [30 - 20] = 10 × 1[20 - 19.886]

:. $C_1 = 0.114$

.

Atomic mass =
$$\frac{6.4}{0.114}$$
 = 56.2

$$PV = nRT = \frac{\text{Weight}}{\text{Molar Mass}} \times RT$$
$$M \text{ Mass} = \frac{WRT}{(P - P')V}$$
$$V_{\text{air displaced}} = V_{\text{vapour}}$$

and P_{air} displaced = P_{vapour}

Vapour of volatile substance are collected over water and measured by the method as Duma's method.

DETERMINATION OF MOLECULAR MASS OF ORGANIC ACID SILVER SALT METHOD

Hydrogen connected to a more electronegative atom is acidic. Basicity is defined as the number moles of hydrogen ion in 1 mole of given acid.

Organic Acid $\xrightarrow{\text{AgNO}_3 \text{ soluton}}$ Silver salt $\xrightarrow{\Delta}$ Ag For monobasic Acid (CH₃COOH)

HX $\xrightarrow{\text{AgNO}_3} \text{AgX} \xrightarrow{\Delta} \text{Ag}$ CH₃COOH w_1 w_2

Applying POAC on Ag Atom

$$\frac{w_1}{\text{Molar Mass of AgX}} = \frac{w_2}{\text{Atomic Mass of Ag}}$$

 $\therefore \qquad \text{Molar Mass of AgX} = \frac{w_1}{w_2} \times \text{Atomic Mass of Ag}$

$$=\frac{w_1}{w_2}\times 108$$

Solved Examples

1. Calculate the volume of 1 mole gas exerting pressure of 1 atm at a temperature of 273 K.

Sol. $V = \frac{nRT}{P} = 0.0821 \times 273 = 22.4 L$

- **2.** Calculate the volume of 1 mole of gas exerting pressure of 1 atm at a temperature of 300 K.
- **Sol.** PV = nRT

:.
$$V = \frac{nRT}{P} = 1 \times 0.0821 \times 300 = 24.3 \text{ L}$$

- **3.** 44.8 L of oxygen contains how many moles of O_2 ?
- **Sol.** Since *T* and *P* are not given, so number of mole cannot be calculated.

4. 22.4 L of aq. $\{H_2O\}$ at STP contains how many moles? Sol. 1 mL = 1 g

1 litre = 1000 g =
$$\frac{1000}{18}$$
 moles

Calculation of number of atoms and molecules in a given mass of substance.

5. How many atoms and molecules of sulphur are present in 64 g of S₈?

and Molar Mass of AgX = Atomic Mass of Ag + Molecular Mass of X

$$\frac{w_1}{w_2} \times 108 = 108 + \text{Molecular Mass of X}$$

Molecular mass of X = $\left[\frac{w_1}{w_2} \times 108 - 108\right]$

Molecular mass of HX = Atomic Mass of H + Molecular Mass of X

$$= 1 + M.M. of X$$

Molecular mass of HX or Organic Acid = 1 + Molar Mass of X

For dibasic Acid H_2X

Molecular mass of H₂X = 2 + $\left\{ \left[\frac{w_1}{w_2} \times 108 - 108 \right] \right\} \times 2$ For tribasic Acid H₃X = 3 + $\left\{ \left[\frac{w_1}{w_2} \times 108 - 108 \right] \right\} \times 3$ = $\left[\frac{w}{w_2} \times 108 - 107 \right] \times 3$

Sol. 1 mole of $S_8 = N_A$ molecules of $S_8 = 8 \times 32$ g

$$\therefore \text{ number of molecules} = \frac{64}{8 \times 32} = \frac{N_A}{4}$$
$$\therefore \text{ number of atom of sulphur} = 8 \times \frac{N_A}{4} = 2 N_A$$

- 6. Calculate the number of molecules in
 - (i) 34.2 g of cone sugar $(C_{12}H_{22}O_{11})$
 - (ii) 1 L of water assuming density 1 g
 - (iii) 1 drop of water having mass 0.05 g

Sol. (i)
$$\frac{34.2}{342} \times N_A = \frac{N_A}{12}$$

11) 1 mL = 1 g

$$\therefore 1000 \text{ mL} = \frac{1000 \text{ g}}{18} N_A$$

(iii)
$$\frac{0.05}{18} \times N_A = \frac{N_A}{360}$$

 Elemental analysis of an organic compound containing C, H, N and O and weighing 7.3 g was found to contain 3.6 g of carbon, 0.7 g of H and 1.4 g of nitrogen. Calculate Empirical formula. 1.8

Sol.

- H 0.7 $\frac{0.7}{1} = 0.7$ 7 C 3.6 $\frac{3.6}{12} = 0.3$ 3 N 1.4 $\frac{1.4}{14} = 0.1$ 1 O 1.6 $\frac{1.6}{1.6} = 0.1$ 1
- $\therefore \quad \text{Empirical formula} = \text{C}_{3}\text{H}_{7}\text{NO}$ OR

$$C \frac{\text{weight}}{\text{Atomic weight}} H \frac{\text{weight}}{\text{Atomic weight}}$$
$$N \frac{\text{weight}}{\text{Atomic weight}} O \frac{\text{weight}}{\text{Atomic weight}}$$
$$C \frac{\frac{1.6}{12}H_{0.7}}{12}N_{1.4}O_{1.6} = C_3H_7NO$$

- 8. Calculate the Empirical formula of the following minerals that have the following composition: $ZnSO_4 = 56.14 H_2O = 43.86$.
- Sol. $ZnSO_4$ 56.14 $\frac{56.14}{161.4} = 0.35$ $\frac{0.35}{0.35} = 1$ H₂O 43.86 $\frac{43.86}{18} = 2.44$ $\frac{2.44}{0.35} = 7$ ZnSO₄.7H₂O
 - 9. Calculate Empirical formula of hydrocarbon if 1.4 g of this compound is on complete combustion. Gives 4.4 g of CO₂ and 1.8 g of H₂O.

Sol.
$$C_x H_y + O_2 \rightarrow x CO_2 + \frac{y}{2} H_2 O$$

- \therefore 1 mole of CO₂ contains 1 mole of C
- \therefore 44 g of CO₂ contains 12 gram of C
- $\therefore \quad 4.4 \text{ g of CO}_2 \text{ contain } 1.2 \text{ g of C} \\ 1 \text{ mole } H_2O \text{ contains } 2 \text{ mole of H.} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ mole } = 2 \text{ g} \\ 18 \text{ gram } H_2O \text{ contains } 2 \text{ m$
- \therefore 1.8 gram H₂O contains 2 mole = 0.2 g

C 1.2
$$\frac{1.2}{1.2}$$
 0.1 1
H 0.2 $\frac{0.2}{1}$ 0.2 2
CH₂ = EF

10. Calculate the weight of $KClO_3$ required and the weight of oxygen in product. If 1.49 g of KCl is obtained on heating, calculate the volume of oxygen at STP.

Sol.
$$2\text{KClO}_3 \rightarrow 2\text{ KCl} + 3\text{O}_2$$

Number of moles of KCl = $\frac{1.49}{74.5}$ 2 moles of KCl produced from 2 moles of KClO₃. \therefore mass of KClO₃ = $n \times$ molecular weight

$$=\frac{1.49}{74.5}$$
 × 122.5

and 2 moles of KClO₃ is required for 3 moles of O₂.

 \therefore number of moles of O₂ obtained

$$= \frac{3}{2}[n] = \frac{3}{2} \times \left[\frac{1.49}{74.5}\right]$$

mass of O₂ = $\frac{3}{2}\left[\frac{1.49}{74.5}\right] \times 32$

 \therefore volume of oxygen at STP

....

$$= \frac{3}{2} \times \frac{1.49}{74.5} \times 22.4 \text{ L} = 0.672 \text{ L}$$

- 11. When 4 g of CaCO₃ and sand mixture is treated with excess of HCl, 0.88 g of CO₂ is produced. Calculate % weight of CaCO₃.
- **Sol.** $CaCO_3 + 2HCl \rightarrow CO_2 + H_2O + CaCl_2$

Sand + HCl \rightarrow No reaction Number of moles of CO = 0.88 = 0.02

∴ number of moles of
$$CO_2 = \frac{1}{44} = 0.02$$
 moles

$$\therefore \% \text{ mass of CaCO}_3 = \frac{0.02 \times 100}{\text{Weight of mixture}} \times 100$$
$$= \frac{0.02 \times 100}{4} \times 100 = 50\%$$

- 12. A sample of 5 g of natural gas consisting of methane and ethylene was burnt in excess of O_2 yielding 14.5 g of CO_2 . Calculate the weight % of ethylene.
- Sol. $CH_4 = x g$ $C_2H_4 = 5 - x g$ Number of Moles of $CH_4 = x/16$ Number of Moles of $C_2H_4 = 5 - x/28$ $CH_4 + O_2 \rightarrow CO_2 + 2 H_2O$ $C_2H_4 + O_2 \rightarrow 2 CO_2 + 2 H_2O$ Number of Moles of $CO_2 = \frac{14.5}{44}$ [from methane and ethylene]

$$\frac{14.5}{44} = \left\lfloor \frac{5-x}{28} \times 2 \right\rfloor + \left\lfloor \frac{x}{16} \times 1 \right\rfloor$$

$$\therefore \% \text{ weight of ethylene} = \frac{5-x}{5} \times 100$$

13. In a rocket motor filled with butane, how many kg of liquid oxygen should be provided for each kg of butane for its complete combustion?

Sol.
$$C_4H_{10} + \frac{13}{2}O_2 \rightarrow 4CO_2 + 5 H_2O$$

[1 × 10³ g]
∴ number of moles of $C_4H_{10} = \frac{1000}{58}$
∴ number of moles of $O_2 = \left[\frac{1000}{58}\right] \times \frac{13}{2}$
∴ Mass of $O_2 = \left[\frac{1000}{58}\right] \times \frac{13}{2} \times 32$ gram = 3.586 Kg

14. In a sample of NaCl and KCl weight of mixture is 20.75 g. This was dissolved in water and heated with excess of AgNO₃. If weight of white precipitate of AgNO₃ is 43.05 g, calculate the weight of each component.

Sol. Weight of
$$NaCl = x g$$

...

weight of KCl = 20.75 - x g
NaCl
$$\xrightarrow{AgNO_3}_{H_2O}$$
 AgCl
 $\frac{x}{58.5}$ = (a mole)
KCl $\xrightarrow{AgNO_3}_{H_2O}$ AgCl
 $\frac{20.75 - x}{143.5}$ = (b mole)
 $a + b = \frac{43.05}{143.5} = \frac{x}{58.5} + \frac{20.75 - x}{74.5}$

If chemical reaction are not balanced [Principle of Atomic conservation] [POAC]

According to this theory, if atoms are conserved, then moles of atoms shall also be conserved [POAC].

This concept is used when chemical reaction is not balanced and atleast one of the atoms is such that it is present only in one given compound and required compound.

$$KClO_3 \rightarrow KCl + O_2$$

Applied POAC on K atom

 $\frac{\text{Weight of KClO}_3}{\text{Molar Mass of KClO}_3} = \frac{\text{Weight of KCl}}{\text{Molar Mass of KCl}}$

Applied POAC on oxygen atom

$$3 \times \text{moles of KCIO}_{3} = 2 \times \text{moles of O}_{2}$$

$$3 \times \frac{\text{Weight of KCIO}_{3}}{\text{MM of KCIO}_{3}} = 2 \times \frac{\text{Weight of O}_{2}}{\text{MM of O}_{2}}$$
15. CaCO₃ \longrightarrow CaO + CO₂
1000 g weight of CO₂ = ?
POAC on C atom
1 × mole of CaCO₃ = 1 mole of CO₂
 $\frac{\text{Weight of CaCO}_{3}}{\text{MM of CaCO}_{3}} = \frac{\text{Weight of CO}_{2}}{\text{MM of CO}_{2}}$
 $\frac{1000}{100} = \frac{\text{weight of CO}_{2}}{44}$
Weight of CO₂ = 440 g

16. Calculate the mass of compound $[K_2Zn_3[Fe(CN)_6]_2$ when 2.76 g of K_2CO_3 undergoes series of reaction such that all carbons convert into this complex. Given Molar Mass of complex compound (C.C) = 698.2 and MM of $K_2CO_3 = 138$.

Sol. $K_2CO_3 \rightarrow K_2Zn_3[Fe(CN)_6]_2$ Applied POAC on carbon 1 mole of $K_2CO_3 = 12 \times moles$ of complex

$$\frac{\text{Weight of } K_2\text{CO}_3}{\text{MM of } K_2\text{CO}_3} = 12 \left[\frac{\text{Weight of } C.C}{\text{MM of } C.C}\right]$$

$$\frac{2.76}{138} = 12 \left[\frac{\text{Weight}}{698.2} \right] \therefore \text{ Weight} = 1.163 \text{ gram}$$

17. For preparation of H_2SO_4 from iron pyrite [FeS₂] involves following set of reaction:

$$FeS_2 + O_2 \longrightarrow Fe_2O_3 + SO_2$$
$$SO_2 + O_2 \longrightarrow SO_3$$
$$SO_3 + H_2O \longrightarrow H_2SO_4$$

Calculate the weight of \tilde{H}_2SO_4 which can be obtained when 240 kg of FeS₂ is used.

2 moles of
$$\text{FeS}_2 = 1 \times \text{moles of H}_2\text{SO}_4$$

$$2\left[\frac{\text{Weight of FeS}_2}{\text{MM of FeS}_2}\right] = 1 \times \left[\frac{\text{Weight of H}_2\text{SO}_4}{\text{MM of H}_2\text{SO}_4}\right]$$
$$2\left[\frac{240 \times 10^3}{\text{MM of FeS}_2}\right] = 1 \times \left[\frac{\text{weight}}{98}\right]$$

Weight of $H_2SO_4 = 392 \text{ kg}$

18. If 20 % $\frac{v}{V}$ is given then convert into % $\frac{w}{W}$ and % $\frac{w}{V}$.

If d is the density of solution.

Sol. 100 mL of solution contains 20 mL of NaOH and 80 mL of H_2O .

$$\% \frac{w}{W} = \frac{\text{Mass of solution} - \text{Mass of solvent}}{\text{Mass of solution}} \times 100$$
$$= \left[\frac{100d - 80 \times 1}{100d}\right] \times 100 = \left[\frac{100d - 80}{d}\right]\%$$
$$\frac{w}{V}\% = \left[\frac{100d - 80 \times 1}{100 \text{ (Volume of solution)}}\right] \times 100 = [100d - 80]\%$$

- **19.** Given 20 % $\frac{w}{V}$ of aq. NaOH. Then find its molarity.
- Sol. 100 mL solution contains 20 g NaOH.

:. number of moles =
$$\frac{200}{40}$$
 = 5 moles

and
$$1000 \text{ mL} = 1 \text{ L}$$

$$\therefore \quad \text{molarity} = \frac{5}{1} = 5 \text{ M}.$$

- **20.** Convert 40% $\frac{w}{W}$ NaOH solution into molarity. If density of solution is *d* g/mL.
- Sol. 100 g solution contains 40 g NaOH. 40 g of NaOH = 1 mole Volume of solution = $\frac{100}{d \times 1000} = \frac{1}{10d} L$ $\left[\text{Since } V = \frac{\text{Mass}}{\text{density}} \right]$ $\therefore \frac{1}{10d} L$ solution contains 1 mole of NaOH

: 1 L solution contains 1 mole of NaOH

$$=\frac{1}{\frac{1}{10d}}=10 \text{ dM}$$

 \therefore Molarity = 10 dM

- 21. Calculate molality of 20% by mass NaOH solution.
- **Sol.** 20 % by mass means 20 g NaOH present in 80 g of solvent.

:. Molality
$$m = \frac{20/40}{80/1000} = \frac{20}{40} \times \frac{1000}{80}$$

- **22.** A solution of I_2 in benzene has a mole fraction of $I_2 = 0.2$. If density of solute is 1.2 g/mL, calculate (i) Molality (ii) Molarity
- Sol. I_2 in benzene means I_2 solute and benzene solvent

and
$$X_{I_2} = \frac{n_{I_2}}{\Sigma n}$$

 $n_{I_2} = X_{I_2} \times \Sigma n$
 $\therefore \quad n_{C_6H_6} = x_{C_6H_6} \times \Sigma n$
 $X_{I_2} = 0.2 \qquad \therefore \quad X_{C_6H_6} = 1 - 0.2 = 0.8$
 $m = \frac{x_{I_2} \times \Sigma n}{x_{C_6H_6} \times \Sigma n \times 78} \times 1000$
 $M = \left[\frac{x_{I_2} \times \Sigma n}{\frac{[(x_{I_2} \times \Sigma n) \times 254] + (x_{C_6H_6} \cdot \Sigma n) \times 78}{1.2 \text{ gram/ml}} \right] \times 1000$

23. Calculate molality of all ions present in 1 molar $Al_2(SO_4)_3$ solution. Given that density of solution = 2.34 g/mL.

Sol.
$$m_{Al_2(SO_4)_3} = \frac{1}{1000 \times 2.342 - 1 \times 342} \times 1000$$

 $m_{Al^{+3}} = \frac{2}{2000} \times 1000 = 1 \text{ m}$
 $m_{SO_4^{--}} = \frac{3}{2000} \times 100 = \frac{3}{2} \text{ m}$

Case II: Degree of Dissociation

$$= \frac{\text{Moles dissociated}(x)}{\text{Total number of moles before dissociation}}$$
$$\alpha = \frac{x}{a}$$
$$\therefore \quad x = a\alpha$$
For $A \longrightarrow 3B + C$
$$a \quad 0 \quad 0$$
$$a - x \quad 3x \quad x$$
$$(a - a\alpha) \quad (3a\alpha) \quad (a\alpha)$$
Find the molarity of each ion in 0.1 M BaCl₂ conside

24. Find the molarity of each ion in 0.1 M BaCl₂ considering degree of dissociation = 80 %

.: molarity after ionisation

$$\begin{array}{ccc} 0.1 - \frac{0.1 \times 80}{100} & a\alpha & 2a\alpha \\ & & = \frac{0.1 \times 80}{100} & \frac{2 \times 0.1 \times 80}{100} \\ M_{\mathrm{Be}^{+2}} = 0.08 \mathrm{\,M} & \frac{2 \times 0.1 \times 80}{100} \\ \text{and} & M_{\mathrm{CI}^{-}} = 0.16 \mathrm{\,M} \\ & \mathrm{pH} = -\log[\mathrm{H}^{+}] \\ & & [\mathrm{H}^{+}] \rightarrow [1] & 10^{-7} & 10^{-14} \\ & & \mathrm{PH} \quad \mathrm{O} \xleftarrow{\mathrm{Acidic}} & \overset{\mathrm{Neutral}}{7} & \overset{\mathrm{Basic}}{\longrightarrow} 14 \end{array}$$

25. Calculate the degree of dissociation of pure water at 298 K if it is known that pH = 7.

Sol.
$$H_2O \longrightarrow H^+ + OH^-$$

 $55.55 M = 0$
 $[55.55 - 55.55\alpha] = 55.55\alpha = 55.55\alpha$
but $[H^+] = 55.55\alpha = 1 \times 10^{-7}$
 $\therefore \alpha = \frac{1 \times 10^{-7}}{55.55} = \frac{1}{55.55 \times 10^7} = 1.8 \times 10^{-9}$
Hence, out of 55.55×10^7 molecule of water, onl

Hence, out of $55.55 \times 10'$ molecule of water, only one molecule dissociate.

Note:
$$\alpha = \frac{\text{concentration of any ion}}{\text{concentration of that ion (theoritically)}}$$

(complete ionisation)

- **26.** If Molarity of Na₃PO₄ is 1 molar and concentration of Na ion is 0.2 M. Calculate % dissociation of Na₃PO₄.
- Sol. Na₃PO₄ \longrightarrow 3Na⁺ + PO₄⁻⁻ 1 0 0 1-x 3x x If complete ionisation actually
 - 1 mole gives 3 mole Na⁺ and 1 mole PO_4^{--} Given that 3x = 0.2

$$\alpha = \frac{0.2}{3} \times 100 = \frac{20}{3} = 6.6 \%$$

27. (i) 200 mL of 1 M HCl solution is mixed with 800 mL of 2 M HCl solution. Calculate the molarity of final solution.

Sol. Molarity =
$$\frac{\text{Number of moles of solute}}{\text{Total volume}(V_1 + V_2)}$$
$$= \left[\frac{1 \times 200}{1000} + \frac{2 \times 800}{1000}}{800 + 200}\right] \times 1000$$

...

(ii) If density of solution is 1.2 g/mL, calculate molality.

Sol.
$$m = \frac{1000 \text{ M}}{1000d - \text{Molar Mass of solute}}$$

= $\frac{1.8 \times 1000}{1000 \times 1.2 - 1.8 \times 36.5} \text{ m}$

(iii) If sample of H_2SO_4 in 1.8 g/mL is 98% wt. What is the volume of acid that has to be taken to form 1 L of 0.2 M H_2SO_4 solution?

Sol.
$$\begin{array}{c} 98 \% \text{ wt.} \\ 1.8 \text{ g/mL} \end{array} \xrightarrow{\text{diluted}} \begin{array}{c} 1L \text{ of } 0.2 \text{ M} \\ H_2 \text{SO}_4 \text{ solvent} \end{array}$$

Number of mole of solute before dilution = Number of mole of solute after dilution

$$V \times M = 1 \times 0.2 = \left[\frac{98/98}{\frac{100}{1.8}}\right] \times 1000$$

- **28.** 10 mL of $H_2O[d = 1 \text{ g/mL}]$ and 4 mL of CH_3OH [d = 0.8 g/mL) is mixed to form a solution. If the density of final solution is 1.1 g/mL, calculate the molarity of final solution.
- **Sol.** $W_{\rm H_2O} = 10 \times 1 = 10 \text{ g}$

$$W_{\rm CH_3OH} = 4 \times 0.8 = 3.2 \text{ g}$$

Fotal weight of solution =
$$10 + 3.2 = 13.2$$
 g

∴ volume of solution =
$$\frac{13.2}{1.1} = 12 \text{ mL}$$

∴ molarity of solution = $\left[\frac{3.2/32}{12}\right] \times 100$

Note:

1. If during mixing of solution, mass of final solution and density of final solution is given then volume of solution should be calculated by Total mass

$$V = \frac{1 \text{ otal mass}}{\text{Density of solution}}$$

- 2. If any one data of the following is not given: (a) mass of any mixing substance (b) density of resultant solution, then it has to be assumed that there is no volume contraction or expansion taking place and $V = V_1 + V_2 + \dots$
- **29.** 100 mL of 0.1 M of $Al_2(SO_4)_3$ is mixed with 100 mL of 0.1 M AlCl₃. Calculate molarity of Al^{+3} ion if final solution has density of 1.2 g/mL.

Sol.
$$n_{Al_2(SO_4)_3} = \frac{100 \times 0.1}{1000} = 0.01$$
 mole
 $n_{AlCl_3} = \frac{100 \times 0.1}{1000} = 0.01$ mole
 \therefore *n* of Al⁺³

0.02 mole + 0.01 mole = 0.03 mole

From Al₂(SO₄)₃ and AlCl₃

 \therefore molarity of Al⁺³

$$= \frac{n_{AI^{+3}}}{\text{Total volume}}$$
$$= \left[\frac{0.03}{200}\right] \times 1000$$
$$= 1.5 \times 10^{-1} \text{ M}$$

- **30.** Calculate $[H^+]$ concentration if 0.2 M of H_2SO_4 solution having volume 100 mL is mixed with 0.1 M of 300 mL of NaOH.
- Sol. $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2 H_2O$ before reaction No. of moles of NaOH = 0.1×0.300 No. of moles of $H_2SO_4 = 0.2 \times 0.100$ No. of moles of H_2SO_4 after reaction

$$= 0.02 - \frac{0.005}{2} = .005$$

∴ [H⁺] = 2 × 0.005 Mole = 0.01 mole
[0.01]

:. molarity =
$$\left[\frac{0.01}{400}\right] \times 1000 = 0.025 \text{ M}$$

31. 200 mL of 0.1 M NaCl is mixed with 100 mL of 0.2 M $AgNO_3$ solution. Calculate molarity of all the ions in final solution.

Sol. NaCl + AgNO₃
$$\rightarrow$$
 AgCl + NaNO₃
0.2 × 0.1 0.1 × 0.2 ppt
0.02 0.02 \therefore if no ion is formed
0 0 0.02 0.02 \therefore
 $\therefore M_{Na^+} = \frac{0.02}{300} \times 1000$ and
 $M_{NO_3^-} = \frac{0.02}{300} \times 1000$

32. 10 L mixture of C_2H_6 and C_3H_8 at STP on complete combustion gives 22 L of CO_2 at STP. Find the molar concentration of the mixture in molar ratio.

Sol.
$$C_2H_6 + \frac{7}{2}O_2 \rightarrow 2CO_2 + 3H_2O$$

 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

Since $V \propto$ Number of moles of gas

and
$$V_{CO_2} = 22 L = [V_{CO_2}]_{C_2H_6} + [V_{CO_2}]_{C_3H_8}$$

 $= 2V + 3(10 - V) = 22$
 $\therefore -V = -8$
 $V = 8 L$
 $\therefore \frac{V_{C_2H_6}}{V_{C_3H_8}} = \frac{n_{C_2H_6}}{n_{C_3H_8}} = \frac{8}{2} = 4:1$

33. If volume of CO_2 is 24 L at 1 atm and 300 K in Q32, then calculate the molar composition of initial mixture.

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$\therefore \quad V_2 = \frac{P_1V_1T_2}{P_2T_1} = \frac{1 \times 24 \times 273}{1 \times 300}$$

$$V_2 = 2V + 3[10 - V]$$

Note:

If in a question [volume or pressure] is given in different conditions then it is better to convert at STP condition by using $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$

- 1.12 Physical Chemistry-I for JEE (Main & Advanced)
- **34.** A mixture of C_2H_6 and C_3H_8 at 200 mm of Hg on complete combustion gives CO_2 at 450 mm Hg. Calculate molar ratio of initial mixture.
- Sol. Since $P \propto$ Number of moles of gas $450 \text{ mm} = (P_{\text{CO}_2})_{\text{C}_2\text{H}_6} + (P_{\text{CO}_2})_{\text{C}_3\text{H}_8}$ $C_2\text{H}_6 + \frac{7}{2}\text{O}_2 \rightarrow 2\text{CO}_2 + 3\text{H}_2\text{O}$ $C_3\text{H}_8 + 5\text{O}_2 \rightarrow 3\text{CO}_2 + 4\text{H}_2\text{O}$ $\vdots_{1200-x]}$ $\therefore 450 = 2x + 3[200 - x]$ $X = 150 = P_{\text{C}_2\text{H}_6}$ $\therefore P_{\text{C}_3\text{H}_8} = 200 - 150 = 50$ $\therefore \frac{n_{\text{C}_2\text{H}_6}}{n_{\text{C}_3\text{H}_8}} = \frac{3}{1}$
- **35.** 1 g of metal at 30° was immersed in 10 g of water at 19.886 °C. If the final temperature is 20°C then predict that metal could be iron (Specific heat of $H_2O = 1$ cal/g).

Heat lost by metal = Heat gained by water

$$m_1 C_1 \Delta t_1 = m_2 C_2 \Delta t_2$$

1 × C_1 × [30 - 20] = 10 × 1[20 - 19.886]

= 56.2

$$\therefore \quad C_1 = 0.114$$

$$\therefore \quad \text{atomic mass} = \frac{6.4}{0.114}$$

36. A sample of Organic Compound weight 10 g in Victor mayer process was found to displace 2.463 mL at 1 atm and 300 K. Calculate Molar Mass of volatile substance.

Sol.
$$n = \frac{\text{Weight}}{\text{Molar Mass}} = \frac{10}{\text{Molar Mass}} = \frac{P_{\text{atm}} \times V_{\text{Liter}}}{0.0821 \times T_{\text{Kelvin}}}$$

 $10 \text{ g} \rightarrow 2.463 \text{ mL} [\text{At } P = 1 \text{ atm and } T = 300 \text{ K}]$
 $\frac{10}{\text{Molar mass}} = \frac{1 \times 2.463 \times 10^{-3}}{0.0821 \times 300}$
 $\therefore \text{ molar mass} = 10^5 \text{ g}$

- **37.** The vapour of *W* g sample of Organic Compound occupy *V* mL at STP in Victor mayer process. Calculate Molar mass of compound?
- **Sol.** From V mL = W gram at STP

$$\therefore \quad 22400 \text{ mL} = \frac{W}{V} \times 22400 = \text{Molar mass}$$

38. 0.41 g of silver salt is obtained after reaction between dibasic acid and silver nitrate solution, which on heating gives 0.216 g of residue. Calculate MM of acid.

Sol. $w_1 = 0.41$ g, $w_2 = 0.216$ g Acid \Rightarrow dibasic then

$$MM = \left\{ \frac{w_1}{w_2} \times 108 - 107 \right\} \times 2$$
$$= \left\{ \frac{0.410}{0.216} \times 108 - 107 \right\} \times 2 = 196$$

♠

39. Estimation of Molar Mass of silver salt, acid graph of the residue obtained and the weight of silver salt was plotted as shown in following graph. If the acid is known to be monobasic, calculate Molar Mass of salt and Molar Mass of acid.

Ag

$$(w_2)$$
 $\theta = 30^{\circ}$
Silver salt
 (w_1)
Fig. 1.4

Sol. We know
$$\frac{w_1}{\text{Molar Mass of AgX}} = \frac{w_2}{\text{Molar Mass of Ag}}$$

Slope =
$$\tan 30^\circ = \frac{w_1}{w_2} = \frac{1}{\sqrt{3}}$$

$$\therefore \quad \frac{w_2}{w_1} = \frac{1}{\sqrt{3}} = \frac{\text{Molar Mass of Ag}}{\text{Molar Mass of AgX}}$$
$$\frac{1}{\sqrt{3}} = \frac{108}{\text{Molar Mass of AgX}}$$

Molar Mass of AgX = $108\sqrt{3}$

- $\therefore \quad \text{Molar Mass of HX} = [108\sqrt{3} 107]$
- Exercise

C LEVEL I

- 1. Select the correct statement(s) for $(NH_4)_3PO_4$.
 - (a) Ratio of number of oxygen atom to number of hydrogen atom is 1 : 3.
 - (b) Ratio of number of cation to number of anion is 3:1.
- (c) Ratio of number of nitrogen atom to number of oxygen atom is 3 : 4.
- (d) Total number of atoms in one mole of (NH₄)₃PO₄ is 20.

(a) ab (b) abc (c) bc (d) All

2. What volume (in mL) of liquid H₂O₂ has same number of atoms as there are number of atoms in 22.4 mL H₂O gas at 2 atm and 546 K?

[Given: Density of liquid $H_2O_2 = 5.1 \times 10^{-3}$ g/mL; Density of liquid $H_2O = 1 \text{ g} / \text{mL}$]

(b) 5 (d) 4.2 (a) 2 (c) 3.5

- **3.** A sample of $Mg_3(PO_4)_2$ contains 72 g Mg in the sample. Calculate the number of g molecule of oxygen in the sample.
 - (a) 2 (b) 3 (c) 3.5 (d) 4
- 4. What mass (in gram) of Na_2SO_4 would contain the same number of total ions as present in 930 g of $Ca_3(PO_4)_2$? (b) 800 (c) 200 (d) 500 (a) 710
- 5. A sample of Cl contains 80% Cl³⁵ and 20% Cl³⁷ isotopes. The average number of neutrons per atom is (d) 20.4 (a) 18.4 (b) 19.4 (c) 35.4
- 6. A sample of K_2SO_4 . Al₂(SO₄)₃. 24 H₂O contains 6.4 kg oxygen. Calculate mass of sulphur (in gram) in same sample.
 - (a) 1280 (b) 1000 (c) 128 (d) 12.8
- 7. A 448 L vessel contains $O_2(g)$ and $CO_2(g)$ in 2 : 3 ratio at 1 atm and 0°C. Calculate the number of moles of CO_2 (g) present in the vessel.
 - (a) 12 (b) 1.1 (c) 1.2 (d) 120
- 8. Find the value of 'x', if hydrated salt A_2SO_4 . xH₂O undergoes 45% loss in mass on heating and becomes anhydrous (where atomic weight of 'A' is 7). (a) 8 (b) 9 (d) 5 (c) 10
- 9. Calculate the volume of Cl_2 gas (in mL) liberated at 1 atm and 273 K when 1.74 g MnO₂ reacts with 2.19 g HCl according to the following reaction with % yield 40:

 $MnO_2 + HCl \longrightarrow MnCl_2 + Cl_2 + H_2O$

(a) 336 mL (b) 112 mL (c) 134.4 mL(d) 44.8 mL 10. Calculate the mass % of CaCO₃ in the 103 g mixture containing CaCO3 and Na2CO3, which produces 24 L

of CO₂ at 1 atm and 300 K with excess of HCl.

[Given : R = 0.08 atm. lit / mol/ K]

- (a) 50% (b) 48.5% (c) 53%(d) 40%
- 11. Calculate the mass of HCl (in g) produced if 2 g H_2 is mixed with 71 g Cl_2 .

 $H_2 + Cl_2 \longrightarrow 2HCl$

- **12.** Select the correct statement(s):
 - (a) Number of oxygen atoms are same in 1 g O_2 and 1 g O₃.
 - (b) 1 g molecule of any substance contains equal number of atoms.
 - (c) Reactant having minimum number of moles, acts as limiting reagent.
 - (d) During a chemical reaction total number of moles may increase or constant.
- 13. Calculate the volume (in mL) of NO_2 at 1 atm and 273 K obtained by treating 12.7 g of Cu with excess of concentrated nitric acid from the following reaction:

Cu(s) + HNO₃ (aq)
$$\longrightarrow$$
 Cu(NO₃)₂ (aq) + H₂O (l) + NO₂
(a) 8960 (b) 896 (c) 89.3 (d) 6900

14. X is molecular substance containing 21 atoms of carbon per molecule. The weight % of C in X is 50.4%. What is the molecular weight of X in amu?

(a) 500 (b) 200 (c) 300 (d) 400

- 15. Calculate pressure (in atm) exerted by gas at 27°C, which is produced by the complete decomposition of 162.5 g of FeCl₃ in 0.0821 L container according to the following reaction: (Assume volume occupied by the solid substances is negligible.) $FeCl_3(s) \longrightarrow FeCl_2(s) + Cl_2(g)$ (d) 300 (a) 250 (b) 150 (c) 15
- 16. A term 'P' is defined as $P = 294 \times (\text{Ratio of masses of Al}_2 (\text{SO}_4)_3 \text{ and } \text{H}_2 \text{SO}_4 \text{ in}$ g each containing 96 g of sulphur). Calculate P. (b) 294 (a) 342 (c) 684 (d) 171
- 17. Calculate molality(m) of pure water if its density is 0.936 g/mL.

(a) 50 (b) 55.56 (c) 57.56 (d) 56.56

18. The volume (in mL) of 0.5 M NaOH required for the complete reaction with 150 mL of 1.5M H₃PO₃ solution is

(a) 1350 (b) 900 (c) 1250 (d) 1150 **19.** For the reaction,

 $AlCl_3 + NaOH \longrightarrow Al(OH)_3 + NaCl$ if initially, 1 mole of each reactant is taken, then the number of moles of AlCl₃ remaining after the completion of reaction is

(a) 1 (b)
$$\frac{1}{3}$$

(c) $\frac{2}{3}$ (d) None of these

- 20. A mixture of CaCO₃ and CaO on heating gives off 22.4 L of CO₂ gas at 273 K and 1 atm. If the same mass of mixture when treated with HCl required 219 g of HCl for complete reaction, then the mole % of CaCO₃ in the mixture is
 - (b) 33.33% (a) 50%
 - (c) 25% (d) None of these
- **21.** The relative density of a mixture of $CO_2(g)$ and $H_2O(g)$ w.r.t. gaseous hydrogen atoms is 30. The molecular % of the CO₂ is

(a)
$$\frac{600}{13}$$
 (b) $\frac{2400}{13}$ %
(c) $\frac{1200}{13}$ (d) None of these

- 22. Molar mass of electron is nearly $(N_A = 6 \times 10^{23})$ (a) 9.1×10^{-31} kg mol⁻¹ (b) 9.1×10^{-31} g mol⁻¹ (c) 54.6×10^{-8} g mol⁻¹ (d) 54.6×10^{-8} kg mol⁻¹
- 23. Calculate the number of moles of compound (KH- $(C_2O_4)_{0.95}$ $H_2C_2O_4$ in its pure sample if sample contains 4 moles of oxygen atoms.
 - (a) 0.5 (b) 0.5×0.95

(c)
$$\frac{4}{(4+0.95\times4)}$$
 (d) $\frac{4}{0.95}$

24. What is the relationship between mole fraction of of a solute (X_A) and its molality (m). If molar mass of solvent is 100. (g/mol).

(a)
$$\frac{(X_A)}{10(1-X_A)}$$
 (b) $\frac{(X_A)}{100(1-X_A)}$
(c) $\frac{10(1-X_A)}{(X_A)}$ (d) $\frac{10(X_A)}{(1-X_A)}$

- **25.** 100 mL of 0.1 M ammonium phosphite solution is mixed with 200 mL of 0.2 M sodium pyrophosphate solution. Assuming complete dissociation of each salt and no reaction occurs between the ions produced, calculate the concentration of total positive ions in millimoles per litre.
 - (a) 600 (b) 200 (c) 500 (d) 60
- 26. A mixture of C_2H_4 , CO and N_2 gases having total pressure 250 mm of Hg in which 250 mm Hg of O_2 is added at 27°C and then sparked. After the system is brought to the original temperature, the total pressure becomes 370 mm of Hg. If the partial pressure of CO₂ is 200 mm of Hg, then calculate the sum of initial pressure of CO and O_2 in mm of Hg before the sparking

Given : At 27°C aqueous tension is 20 mm of Hg. (a) 100 (b) 200 (c) 300 (d) 350

- 27. Human lungs can absorb 8 g O_2 per hour by respiration. If all oxygen atoms are converted to carbohydrates ($C_6H_{12}O_6$), how long will it take to produce 180 g $C_6H_{12}O_6$?
 - (a) 8 hr (b) 12 hr (c) 10 hr (d) 6 hr
- **28.** If in a sample of oleum, mole fraction of SO_3 is 0.5, label the oleum sample.

(a) 109 %	(b)	110	.11	%
-----------	-----	-----	-----	---

- (c) 104.5 % (d) 114.22
- **29.** Manganese oxide (MnO_2) is heated in a stream of hydrogen to give water and new oxide Mn_xO_y . If 17.4 g of MnO_2 produces 12.6 g of Mn_xO_y then y : x will be

(a) 1 (b)
$$\frac{1}{2}$$
 (c) $\frac{3}{2}$ (d) $\frac{5}{2}$

30. A pure sample of an element 'E' is cut by knife into perfect cubes. If 7.5×10^{22} atoms are present in one such cube and 'a' is edge length of cube in cm, then what will be the value of a^6 (in cm⁶)?

[Given : Atomic mass of E = 32, $N_A = 6 \times 10^{23}$, Density of element = 4/3 g/cm³]

- (b) 4 (c) 16 (d) 25
- **31.** Which of the following option(s) is incorrect? [Take H₂O to be solvent in every case and solute is completely soluble]

(a) 9

- (a) If mass fraction of CaBr₂ and H₂O are same then molality of CaBr₂ is 5 m.
- (b) If equal moles of NaCl and H_2O are taken then molality of NaCl is 55.55 m.
- (c) If in place of NaCl we use NaBr as solute in option (2) then molality of NaCl changes.
- (d) If mole fraction of NaCl is same as that of H_2O then molality of NaCl will be 55.55 m.

- **32.** One of the major uses of H_2O_2 is for artificial respiration. It is stored in cylinder of 3 L capacity completely filled with H_2O_2 solution of '44.8 V'. In a hospital, patient under artificial respiration takes 200 mL O_2 per min at 1 atm at 273 K for 2.8 hours from cylinder. [Assume volume of solution and rate of decomposition remain constant.]
 - Then which of the following statements is incorrect?
 - (a) Initial moles of H_2O_2 in a cylinder are 12.
 - (b) Volume of oxygen used for respiration is 33.6 L.
 - (c) Volume strength of H_2O_2 left in solution is 11.2 V.
 - (d) Volume strength of H_2O_2 left in solution is 33.6 V.
- 33. Two gases N₂ and H₂ are allowed to react completely to form mixture of N₂H₂(*l*) and N₂H₄ (g) leaving no reactants. Formation of N₂H₂ (*l*) does not create any energy change whereas formation of 1 mL N₂H₄ (g) absorbs 2 J energy. Ratio of volume contraction to energy change (in mL / Joule) when 30 mL N₂ and 40 mL H₂ react under similar conditions of temperature and pressure.
 (a) 3mL/J
 (b) 5mL/J
 - (c) 6mL/J (d) None of these
- **34.** 150 mL mixture of CO and CO_2 is passed through a tube containing excess of red hot charcoal. The volume becomes 200 mL due to reaction.

 $CO_2(g) + C(s) \longrightarrow 2CO(g)$

Select the correct statement(s).

- (a) Mole percent of CO_2 in the original mixture is 50.
- (b) Mole fraction of CO in the original mixture is 0.56.
- (c) Original mixture contains 50 mL of CO₂.
- (d) Original mixture contain 50 mL of CO.
- **35.** A mixture of formic acid and oxalic acid is heated in the presence of H_2SO_4 .

$$HCOOH \longrightarrow H_2O + CO$$

$$H_2C_2O_4 \longrightarrow H_2O + CO_2 + CO$$

The produced gaseous mixture is collected and cooled. On its treatment with KOH solution, the volume of gaseous mixture decreases by one-tenth. Calculate the molar ratio of the two acid in original mixture. [If the simplest ratio is a : b then find a + b.]

36. In a tyre of a 'ferrari' car, a tube having a volume of 12.3 L is filled with air at a pressure of 4 atm at 300 K. Due to travelling, the temperature of the tube and air inside it is raised to 360 K. The porosity (number of pores per unit area) of the tube material is 5×10^5 pores/cm² and each pore can transfer air from inside to outside of tube at the rate of 6.023×10^8 molecules per minute. Due to above factors, pressure reduces to 3.6 atm in 20 min. Calculate the total surface area (m²) of the tube, assuming volume of tube to be constant. (R = 0.082 lit-atm/mole-K)

(a) 5000 (b) 500 (c) 4000 (d) 400

37. Calculate the number of milligrams of SO_2 in a sample of air, if in the following reaction 9 mL of 0.008 M KMnO₄ solution is required for titration.

- $SO_2 + MnO_4 \longrightarrow SO_4^{-2} + Mn^{+2}$ (a) 11.52 mg
 (b) 0.18 mg
 (c) 0.072
- (c) 0.072 mg (d) None of these
- **38.** Two acids H_2SO_4 and H_3PO_4 are neutralised separately by the same amount of base, producing sulphate and dihydrogen phosphates respectively. The ratio of mass of H_2SO_4 and H_3PO_4 reacted with base respectively is (a) 1 : 1 (b) 2 : 1
 - (c) 1:2 (d) Data insufficient
- **39.** Calculate mass % of oxygen in water
 - (a) 88.88% (b) 73.68%
 - (c) 20.61% (d) 25.63%
- **40.** 100 g '118% oleum' sample is mixed with 9 g of H_2O . The final solution has
 - (a) mass % of H_2SO_4 is 2.7.
 - (b) Mass % of combined SO₃ is 16.3.
 - (c) New labelling as 108.25% oleum.
 - (d) Mass % of free SO_3 is 80.
- 41. The two solutions of NaOH having molarity $\frac{M}{10}$ and $\frac{M}{30}$ are mixed to prepare 1 L of NaOH solution in such

 $\frac{1}{30}$ a way that 300 mL of final solution is completely neu-

tralised by 10 mL of 0.5 M H_3PO_4 solution. Calculate

the volume (in mL) of $\frac{M}{10}$ NaOH solution used.

[Assuming 100% dissociation]

(a) 250 mL (b) 350 mL (c) 50 mL (d) 500 mL

- **42.** 1 mole of ammonium phosphite will contain
 - (a) 2 moles of nitrogen atoms.
 - (b) 8 moles of hydrogen atoms.
 - (c) 12 moles of hydrogen atoms.
 - (d) 6 moles of hydrogen atoms.
- **43.** In a container $6 L N_2$ and $30 L H_2$ are taken which react according to the following reactions and N_2H_2 reacts with H_2 to give N_2H_4 .

$$N_2(g) + H_2(g) \longrightarrow N_2H_2(g)$$

$$N_2H_2(g) + H_2(g) \longrightarrow N_2H_4(l)$$

Find percentage of volume contracted.

(a) 50 (b) 40 (c) 30 (d) 60
44. Find the total number of carbon atom present in one molecule, if 0.078 g hydrocarbon having simplest formula unit CH, occupy 22.4 mL of volume at 1 atm and 0°C.

(a) 5 (b) 4 (c) 2 (d) 6

- **45.** Find the % mass of Ca in 10 g of pure CaCO₃. (a) 40 (b) 30 (c) 60 (d) 50
- **46.** Find volume occupied by 1 molecule of $CH_3CH_2OCH_3$ having density of 0.8 g/cm³.

[Given : $N_A = 6 \times 10^{23}$]

(a) $1.25 \times 10^{-22} \text{ cm}^3$ (b) $2.25 \times 10^{-22} \text{ cm}^3$

(c)
$$3.25 \times 10^{-22} \text{ cm}^3$$
 (d) $1.00 \times 10^{-22} \text{ cm}^3$

47. Calculate the number of Na⁺ ion present in 142 amu of Na₂SO₄ in aqueous solution.

(a) 5 (b) 2 (c) 1 (d) 4

48. 1 mole of diatomic gas A_2 contains 32 and 36 moles of electrons and neutrons respectively. Find the mass number of element A.

- 49. Find the number of moles of Na₃PO₄ which contain as many ions as present in 6840 g of Al₂(SO₄)₃.
 (a) 20 (b) 25 (c) 30 (d) 60
- **50.** An equimolar mixture of ${}^{19}_{9}$ F, ${}^{39}_{19}$ K and ${}_{32}$ X^A have average number of neutron of 25. Find average mass number of mixture.
 - (a) 22.5 (b) 21.5 (c) 45 (d) None
- **51.** Find the correct option for 36 g $C_6H_{12}O_6$.
 - (a) 4.8 N_A molecules of $C_6H_{12}O_6$
 - (b) $19.2 \text{ N}_{\text{A}}$ electrons
 - (c) 0.8 moles

(

(

- (d) 0.6 g molecules of oxygen
- **52.** To obtain maximum mass of NO_2 from a given mass of a mixture of NH_3 and O_2 , the ratio of mass of NH_3 to O_2 should be

$$2NH_3 + \frac{7}{2}O_2 \longrightarrow 2NO_2 + 3H_2O$$
a)
$$\frac{17}{40}$$
(b)
$$\frac{4}{7}$$
c)
$$\frac{17}{56}$$
(d) None of these

53. Find the mass (in g) of P_4O_{10} produced if 31 g of phosphorus (P_4) is mixed with 32 g of O_2 .

(a) 26.8 (b) 56.8 (c) 568 (d) 5.68

- 54. If 200 mL of 0.1 M Na₂SO₄ is mixed with 100 mL of 0.2 M Na₃PO₄ solution, what is the molarity of Na⁺ in the final solution, if final solution has a density of 1.2 g/mL.
 (a) 0.196 M
 (b) 0.33 M
 - (c) 1.5 M (d) 0.66 M
- **55.** Mark the option containing temperature-independent concentration terms.
 - (I) ppm
 - (II) %w/w
 - (III) Volume strength of H_2O_2
 - (IV) % labelling (V) %w/v
 - (a) All except V (b) I, II, IV
 - (c) I, II only (d) Only II
- 56. Total number of electrons present in ${}_{8}{}^{18}\text{O}^{-2}$ is 1.2×10^{22} then the number of moles of oxide ion present is
 - (a) 2×10^{-3} mole (b) 10^{-3} mole
 - (c) 10 mole (d) 0.02 mole
- 57. Ratio of number of protons to neutrons in 3.011×10^{22} molecules of D_3O^+ is

58. 80 g of SO_x gas occupies 14 L at 2 atm and 273 K. The value of x is

(Use R = 0.0821L-atm/K-mole)

(a) 3 (b) 2 (c) 1 (d) None

1.16 Physical Chemistry-I for JEE (Main & Advanced)

- **59.** Haemoglobin contains 0.25% iron by mass. The molecular mass of haemoglobin is 89600 then the number of iron atoms per molecule of haemoglobin (Atomic mass of Fe = 56) is
 - (a) 8 (b) 4 (c) 12 (d) 160
- **60.** 12 g of mg was burnt in a closed vessel containing 32 g oxygen. Which of the following statements is not correct?
 - (a) 2 g of mg will be left unburnt.
 - (b) 0.75 gram-molecule of O_2 will be left unreacted.
 - (c) 20 g of MgO will be formed.
 - (d) The mixture at the end will weight 44 g.
- **61.** Calculate maximum mass of $CaCl_2$ produced when 2.4×10^{24} atoms of calcium is taken with 96 L of Cl_2 gas at 380 mm pressure and at 27°C.
 - [R : 0.08 atm L/mole-K and $N_A = 6 \times 10^{23}$]
 - (a) 111 g (b) 444 g
 - (c) 61 g (d) 222 g
- **62.** A mixture containing 3 moles each of C_4H_8 and C_6H_6 undergoes complete combustion with O_2 to form CO_2 and H_2O . Calculate the total mass of CO_2 produced.
 - (a) 1320 g (b) 610 g
 - (c) 528 g (d) 792 g
- 63. An impure sample of KClO₃ of 50% purity on decomposition produces 67.2 L of oxygen at 0°C and 1 atm. The other product of decomposition is KCl. The initial mass of impure original sample (in gram) taken is
 (a) 245
 (b) 122.5
 - (c) 490 (d) None of these
- **64.** A cylinder of compressed gas contains nitrogen and oxygen gas in the mole ratio 3 : 1. If the cylinder is known to contain 2.40 g of oxygen, what is the total mass of gas mixture?
- (a) 8.7 g
 (b) 7.2 g
 (c) 6.8 g
 (d) 6.3 g
 65. If in urea [CO(NH₂)₂] there are 20 g atoms of nitrogen present then the mass of urea will be
 - (a) 600 g (b) 60 g (c) 63 g (b) 120 g
 - (c) 6 g (d) 120 g
- **66.** The weight of 2.8 liter of gas at NTP is 3.50 g. Its vapour density is

67. If nickel oxide has the formula $Ni_{0.98} O_{1.00}$, then what fraction of nickel exist as Ni^{+3} ?

(a) 96% (b) 4% (c) 98% (d) 2%

- **68.** Find the number of iodine atoms present in 40 mL of its 0.1 M solution.
 - (a) 48.1×10^{20} (b) 4.81×10^{20}
 - (c) 6.02×10^{23} (d) None of these
- **69.** Assuming complete ionisation, the pH of 0.1 M HCl is 1. The molarity of H_2SO_4 with same pH is
 - (a) 0.1 (b) 0.2 (c) 0.05 (d) 2
- 70. The mole fraction of solute in one molal aqueous solution is

- **71.** If one million atoms of silver weight is 1.79×10^{-16} g, the gram atomic mass of silver is
 - (a) 107 g (b) 107.2 g
 - (c) 107.8 g (d) 108.2 g
- 72. How many g-atoms are present in 1.4 g of Nitrogen?(a) 1(b) 0.1(c) 0.01(d) 0.5
- **73.** On heating a given mass of blue vitrol 95.7 g, anhydrous copper sulphate is obtained. The number of water molecules lost are
 - (a) 3 (b) 5 (c) 10.06×10^{23} (c) 10.06×10^{23}
 - (c) 18.06×10^{23} (d) 30.10×10^{23}
- 74. The amount of zinc needed to produce 112 mL of H_2 at STP on reaction with dil H_2SO_4 will be
 - (a) 0.65 g (b) 0.325 g
 - (c) 6.5 g (d) 3.25 g
- **75.** Calculate the number of electrons present in 18 mL of H_2O at 25°C.
 - (a) 6.023×10^{23}
 - (b) 6.023×10^{24}

(c)
$$\frac{180}{22400} \times 6.023 \times 10^{23}$$

(d)
$$\frac{180}{22.4} \times 6.023 \times 10^{23}$$

- 76. Experimentally it is found that a metal oxide has formula M_{0.98}O₁. Metal M is present as M⁺² and M⁺³ in its oxide. Fraction of metal which exist as M⁺³ would be
 (a) 7.01%
 (b) 4.08%
 (c) 6.05%
 (d) 5.08%
- 77. The ratio of masses of O_2 and N_2 in a particular gaseous mixture is 1 : 4. The ratio of number of their molecules is

(a) 1:8 (b) 3:16 (c) 1:4 (d) 7:32

- **78.** A solution of H_2O_2 is labelled as 11.2 V. If the density of solution is 1.034 g/mL then identity the correct option.
 - (a) Molarity of solution = 2M

(b) Molality of solution =
$$\frac{1}{1.034}$$

(c)
$$\% \frac{w}{w} = \frac{3400}{1034}$$

(d) $\% \frac{w}{v} = \frac{34}{1000}$

79. A gaseous mixture of CO and CO_2 having total volume 150 mL is passed through a tube containing excess of red hot charcoal to cause the following reaction:

$$\mathrm{CO}_{2(g)} + \mathrm{C}_{(s)} \longrightarrow 2\mathrm{CO}_{(g)}$$

The volume increases to 250 mL. Identify the correct statement.

- (a) Original mixture contains 50% by moles CO.
- (b) Original mixture contains 33.33% by moles CO.
- (c) Original mixture contains 33.33% by moles CO_2 .
- (d) Mole fraction of CO_2 in the original mixture is 0.4.

80. Hydrogen gas is prepared in the laboratory by reacting dilute HCl granulated zinc. Following reaction takes place:

$$Zn + 2HCl \longrightarrow ZnCl_2 + H_2$$

Calculate the volume of H_2 evolved at STP when 130.6 g of zinc reacts with HCl.

[Atomic mass of Zn = 65.3]

- (a) 22.4 L (b) 44.8 L (c) 11.35 L (d) 68.1 L
- (c) 11.35 L
 (d) 68.1 L
 81. For a mixture of KCl and KNO₃ which of the following is possible percentage of K by mass?

(a) 10% (b) 45% (c) 70% (d) 90%

82. In 200 mL of aqueous HCl solution, excess of MnO_2 is added. If the liberated gas occupies 164.2 mL at 127°C and 38 cm-Hg, then the molarity of HCl solution is (R = 0.0821 L atm/K mol)

$MnO_2(s) + 4HCl(aq) -$	\longrightarrow
	$MnCl_2(aq) + Cl_2(g) + 2H_2O(l)$
(a) 0.1 M	(b) 0.2 M
(c) 0.4 M	(d) 0.05 M

🔀 LEVEL II

- 1. Select the correct option for increasing order of number of atoms.
 - (I) 2 g of hydrogen (II) 16 g of sulphur
 - (III) 4 g of oxygen (IV) 31 g of phosphorus

(a) II > III > IV > I (b) IV > II > III > I

(c) I > IV > II > III (d) I = IV > II > III

2. Two elements *C* and *D* combine to form two compounds; C_xD_y and C_yD_x . 0.5 mole of C_yD_x weigh 40 g and 1 molecule of C_xD_y weigh 1.66 × 10⁻²⁵ kg. The atomic weight of *C* and *D* are 20 and 40 respectively. What are 'x' and 'y'?

- 3. To form one molecule of Mg₃N₂, the total number of electron transferred from metal to non-metal is
 (a) 6 N_A
 (b) 3 N_A
 (c) 3
 (d) 6
- 4. A gaseous mixture contains SO₃ (g) and CH₄(g) in 5 : 1 ratio by mass. Calculate Q where Q = $200 \times$ ratio of total number of atoms present in SO₃(g) to total number of atoms present in CH₄(g). (a) 160 (b) 16 (c) 320 (d) 32
- 5. Select the correct statement(s) for the following reaction:

 $2 A(s) + B(g) \rightarrow 3 C (g) + 4 D (l)$

- (a) 2 moles of A always produce 3 moles of *C* and 4 moles of *D*
- (b) 22.4 *l* of *B* (g) produces 3 moles of C at 1 atm and 273 K in excess of *A*.
- (c) B will always remain in excess because volume of gas is very high than solid.
- (d) Moles of *D* produced is always less than *C* because volume of liquid is less than gas.

An ore of iron contains FeS and some non-volatile im-					
purity. On roasting this ore converts all FeS into Fe_2O_3					
and 8% loss in weight was observed. Calculate mass					
percentage of FeS in ore?					
$FeS + O_2 \rightarrow Fe_2O_3 + SO_2$					
(a) 20 (b) 60 (c) 88 (d) 44					
For the reaction,					
$7 A + 13 B + 15 C \rightarrow 17 P$					
if 15 moles of A, 26 moles of B and 30.5 moles of C are					
taken initially then limiting reactant is					
(a) A (b) B					
(c) C (d) None of these					

8. The number of moles of KOH required for complete neutralisation of H_2SO_4 produced from dissolution of 500 g of 118% oleum in water is nearly

- (a) 12 (b) 10 (c) 13 (d) 15
- 9. $Zn + O_2 \xrightarrow{90\%} ZnO$... (i) $ZnO + H_2O \rightarrow Zn(OH)_2$... (ii)

If on taking 130 g of Zn with 100 g of O_2 and 50 g of H_2O afterwards 178.2 g Zn(OH)₂ is obtained, calculate the % yield of second reaction.

$$[Take Zn = 65]$$

(a) 100 (b) 75 (c) 10 (d) 80

10. A mixture of C_2H_4 , CO and N_2 gases having total pressure 250 mm of Hg in which 250 mm Hg of O_2 is added at 27°C and then sparked. After the system was brought to the original temperature, the total pressure becomes 370 mm of Hg. If the partial pressure of CO_2 is 200 mm of Hg, then calculate the initial partial pressure of C_2H_4 (in mm of Hg)

[Given : At 27°C aqueous tension is 20 mm of Hg.] (a) 40 (b) 50 (c) 60 (d) 75

- 11. A mixture of C_2H_4 , CO and N_2 gases having total pressure 250 mm of Hg in which 250 mm Hg of O_2 is added at 27°C and then sparked. After the system was brought to the original temperature the total pressure becomes 370 mm of Hg. If the partial pressure of CO₂ is 200 mm of Hg, then calculate total O_2 consumed in mm of Hg. [Given: At 27°C aqueous tension is 20 mm of Hg.] (a) 150 (b) 170 (c) 200 (d) 220
- 12. To a 100 g an oleum sample labelled as '118% oleum', 9 g of water is added. Select the correct option(s).
 - (a) It contains only H_2SO_4 , SO_3 and SO_2 .
 - (b) It contains H_2SO_4 , SO_3 and H_2O .
 - (c) New solution will have labelling 109 %.
 - (d) % w/w of SO₃ is nearly 36.7 %.
- 13. Acid sample is prepared using HCl, H_2SO_4 , H_2SO_3 and H_3PO_4 separately or as a mixture of any two or more. Calculate the minimum volume of 4% w/v NaOH add-ed (in mL) to 294 g sample, in order to ensure complete neutralisation in every possible case.

(a) 9000 (b) 6000 (c) 4000 (d) 900

14. 30 mL gaseous mixture of methane and ethylene in volume ratio X : Y requires 350 mL air, containing 20% of O₂ by volume for complete combustion. If ratio of

methane and ethylene is changed to Y : X, what will be the volume of air (in mL) required for complete reaction under similar condition of temperature and pressure?

(a) 400 (b) 200 (c) 300 (d) 800

15. The Haber's process for preparing ammonia involves direct conversion of hydrogen and nitrogen gases into NH₃ at high temperature and pressure using a catalyst

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

If air [consider it to contain 80% N₂, 20% O₂ by volume] is used as source for nitrogen, O₂ present in the air will oxidise NH₃ to NO as per the following reaction:

 $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$

Air and H_2 are taken in equal volumes in the beginning. Assume that both above reactions get completed and no other reaction is taking place. Select the correct statement(s).

- (a) O_2 is completely exhausted.
- (b) H_2 is not completely exhausted.
- (c) N_2 is completely exhausted.
- (d) NH_3 is completely exhausted.
- 16. Calcium phosphide Ca_3P_2 formed by reacting magnesium with excess calcium orthophosphate $Ca_3(PO_4)_2$, was hydrolysed by excess water. The evolved phosphine PH₃ was burnt in air to yield phosphrous pentoxide (P₂O₅). How many grams of magnesium metaphosphate would be obtained if 192 gram Mg were used? (Atomic weight of Mg = 24, P = 31)

$$Ca_3(PO_4)_2 + Mg \rightarrow Ca_3P_2 + MgO$$

$$Ca_{3}P_{2} + H_{2}O \rightarrow Ca(OH)_{2} + PH_{3}$$

$$\mathrm{PH}_3 + \mathrm{O}_2 \to \mathrm{P}_2\mathrm{O}_5 + \mathrm{H}_2\mathrm{C}$$

$$MgO + P_2O_5 \rightarrow Mg(PO_3)_2$$

(a) 11.52 g (b) 182 g

- (c) 18.2 g (d) 24
- 17. A solution contains substances A and B in H₂O (solvent). The mole fraction of 'A' is 0.05 and molarity of 'B' is 7 M. The solution has a density of 1.14 g/mL. Calculate molarity of 'A'.

[Molecular weight of A = 10 g/mol; molecular weight of B = 30 g/mol]

(a)	2 M	(b)	3	М

(c) 0.5 M (d) None of these

18. If 200 mL of 0.1 M Na_2SO_4 is mixed with 100 mL of 0.2 M Na_3PO_4 solution. Find molarity of Na^+ in the final solution, if final solution has density 1.2 g/mL.

(a) 0.196 M (b) 0.33 M

(c) 0.5 M (d) None of these

19. A solution of H_2O_2 , labelled as '32V', was left open. Due to this, some H_2O_2 decomposed and the volume strength of the solution decreased. To determine the volume strength of the remaining H_2O_2 solution, 10 mL of this solution was taken and it was diluted to 100 mL. 10 mL of this diluted solution was titrated against 25 mL of 0.2 M KMnO₄ solution under acidic conditions. Calculate the volume strength of the diluted H_2O_2 solution.

(a) 28 V (b) 14 V (c) 32 V (d) 16.8 V

- **20.** The number of oxygen atoms present in 24.5 g of H_3PO_4 is equal to
 - (a) Number of electrons present in 1.6 g methane (CH_4) .
 - (b) Number of molecule of CO₂ present in 11.2 L at 1 atm and 546 K.
 - (c) Number of moles of proton present in N_A gram-atom of Hydrogen.
 - (d) Number of total atoms present in 4/3 mol of CO₂.
 - (a) a, c and d (b) a and c
 - (c) Only c (d) a and b
- **21.** 25 mL of a solution containing HCl and H_2SO_4 required 10 mL of 1M NaOH solution for complete neutralisation. 20 mL of the same acid mixture on being treated with excess of AgNO₃ gives 0.1435 g of AgCl. If molarity of HCl is 'x' and that of H_2SO_4 is 'y' (x+y) will be

(a) 0.225 (b) 0.125 (c) 1.25 (d) 0.05 **22.** Consider the given reaction.

2. Consider the given reaction. $H_4P_2O_7 + 2NaOH \rightarrow Na_2H_2P_2O_7 + 2H_2O$ If 534 g of $H_4P_2O_7$ is reacted with 30 × 10²³ molecules of NaOH then total number of molecules produced in the product is (a) $2.5 \times N_4$ (b) $5 \times N_4$

(c)
$$7.5 \times N_A$$
 (d) $75 \times N_A$

- 23. The phosphorus pentaoxide used to produce phosphoric acid for cola soft drinks is prepared by burning phosphorus in oxygen. What is the % yield if 10 g of P₄O₁₀ is isolated from the reaction P₄ + 5O₂ → P₄O₁₀. Initially 0.2 mole of each P₄ and O₂ each are taken.
 (a) 88.13 % (b) 98.1 %
 - (a) 88.13 % (b) 98.1 % (c) 68.1 % (d) 95.1%
- Automotive air bags are inflated when a sample of sodium azide (NaN₃) is rapidly decomposed [2NaN₃(s) → 2Na(s) + 3N₂(g)]. What mass of sodium azide is required to produce 368 L of N₂(g) with density 1.12 g/L?

- **25.** A mixture of AgCl and AgBr undergoes a loss in weight by 8.9% when exposed to excess chlorination. The % by mass of AgCl in the original mixture is
 - (a) 37.6% (b) 17.8%
 - (c) 62.4% (d) 82.2%
- **26.** Which of the following options does not represent concentration of semi-molal aqueous solution of NaOH having $d_{\text{solution}} = 1.02 \text{ g/mL}$?

(a) Molarity =
$$\frac{1}{2}$$
 M (b) $X_{NaOH} = \frac{9}{1009}$

(c) % w/w = 10% (d) % w/v = 2%

27. Statement 1: During the reaction: $N_2(g) + 2H_2(g) \rightarrow$ $N_2H_4(l)$ volume contraction takes place.

Statement 2: Volume contraction always takes place when one of the product is in liquid state.

- (a) Statements 1 and 2 are true. Statement 2 is the correct explanation for statement 1.
- (b) Statements 1 and 2 are true. Statement 2 is NOT the correct explanation for statement 1.
- (c) Statement 1 is true, statement 2 is false.
- (d) Statement 1 is false, statement 2 is true.
- 28. Statement 1: For a very dilute solution, molality and molarity are always approximately equal **Statement 2:** Mass of solution is always approximately equal to mass of solvent for a very dilute solution.
 - (a) Statements 1 and 2 are true. Statement 2 is the correct explanation for statement 1.
 - (b) Statements 1 and 2 are true. Statement 2 is NOT the correct explanation for statement 1.
 - (c) Statement 1 is false, statement 2 is true.
 - (d) Statement 1 is true, statement 2 is false.
- 29. Statement 1: As temperature increases, molality of solution decreases.

Statement 2: Molality of a solution is dependent on the mass of solute and solvent.

- (a) Statements 1 and 2 are true. Statement 2 is the correct explanation for statement 1.
- (b) Statements 1 and 2 are true. Statement 2 is NOT the correct explanation for statement 1.
- (c) Statement 1 is true, statement 2 is false.
- (d) Statement 1 is false, statement 2 is true.
- **30.** SO_3 can be produced by the following two reactions: $S_8 + O_2(g) \rightarrow SO_2(g)$

 $SO_2(g) + O_2(g) \rightarrow SO_3(g)$

How many moles of S₈ are required to produce 20 mole of SO₃?

(a) $\frac{5}{2}$ mole (b) $\frac{5}{4}$ mole

(c)
$$10 \text{ mole}$$
 (d) 5 mole

31. When $CH_4(g)$ is burnt in oxygen, it forms carbon dioxide and water. If 16 g of methane is mixed with 6.022×10^{24} molecules of oxygen at 1 atm, 300 K maximum volume of water that can be produced can be [Given : R = 0.0821 L-atm/mole K, $d_{H_2O(l)} = 1$ g/mL] (a) 49.26 L (b) 44.8 L (c) 90 mL (d) 36 mL

32. Percentage loss in mass heating mixture of Na_2CO_3 and CaCO₃ containing equal masses of Na₂CO₃ and CaCO₃ is

(a) 44% (b) 25% (c) 22% (d) 50%

33. To an Eudiometry tube 10 mL of P, 30 mL of Q, 20 mL of R and 15 mL of S are added and subjected to sparking to cause the following reactions:

 $2P_{(g)} + 3Q_{(g)} \rightarrow 2A_{(g)} + B_{(l)}$ $R_{(g)} + 2S_{(g)} \rightarrow 3A_{(g)} + 2C_{(g)}$ The volume change is given by

(a) 0 mL (b) 30 mL (c) 5 mL (d) 10 mL

- 34. 112.0 mL of gaseous NO₂ at 1 atm and 273 K was liquefied, the density of the liquid being 1.15 g/mL. Calculate the volume of and the number of molecules in the liquid NO₂.
 - (a) 0.10 mL and 3.01×10^{22}
 - (b) 0.20 mL and 3.01×10^{21}
 - (c) 0.20 mL and 6.02×10^{23}
 - (d) 0.40 mL and 6.02×10^{21}
- **35.** Adipic acid HOOC– $(CH_2)_4$ COOH is used in making nylon. Calculate the weight of hydrogen atom present in 58.4 g of adipic acid.

- **36.** A gaseous mixture contains SO_3 (g) and C_2H_6 (g) in a 16 : 15 ratio by mass. The ratio of total number of atoms present in $C_2H_6(g)$ and $SO_3(g)$ is (a) 2:5 (b) 1:5 (c) 5:1 (d) 5:2
- 37. What amount of heat (in kJ) is released during formation of 31.2 g AsH₃ by the following reaction? [Given: Atomic weight As = 75, H = 1 $2As(s) + 3H_2(g) \rightarrow 2AsH_3; \Delta H = -770 \text{ kJ}$ (b) 350 (a) 250 (c) 154 (d) 35
- **38.** 5 mole of N_2 gas is added in a vessel at 1 atm and 300 K. Find the change in volume (in litre) of gas when 2 mole of He gas is added in it at same temperature and new pressure of 1.05 atm. [Given: R = 0.08 atm L]

(b) 40 L (d) 54 L (c) 100 L

39. 1 atom of X, 2 atoms of Y and 3 atoms of Z combine together to give a molecule XY_2Z_3 . Now we take 10 g of X and 2×10^{23} atoms of Y and 0.06 moles of Z in a container, to give 5.6 g of XY_2Z_3 . What is the molar mass of Z.

[Given: $M_X = 60$ g/mol $M_{y} = 80 \text{ g/mol}$] (c) 32 (a) 25 (b) 24 (d) 20

40. Hydrogen sulphide reacts with chloric acid in an aqueous solution liberating chlorine by the following reaction: $H_2S + HClO_3 \rightarrow Cl_2 + H_2SO_4 + H_2O$ In an experiment, 40 mL of solution of chloric acid was

allowed to react with sufficient amount of H_2S .

Cl₂ formed were reduced by 20 mL H₂O₂ by the following reaction:

 $H_2O_2 + Cl_2 \rightarrow HCl + O_2\uparrow$

In the above reaction, 896 mL of O₂ was evolved at 1 atm and 273 K.

Which of the following option is incorrect for aforementioned experiment?

- (a) Normality of H_2O_2 solution used is 4 N.
- (b) Molarity of original HClO₃ solution used is 2 M.
- (c) Equivalents of H_2S reacted with $HClO_3$ is 0.05.
- (d) Moles of Cl_2 produced is 0.04.

1.20 Physical Chemistry-I for JEE (Main & Advanced)

Paragraph for Q. Nos. 1 to 3

24 g pure sample of magnesium is burned in air to form magnesium oxide and magnesium nitride. When products are treated with excess of H_2O , 3.4 g of gaseous NH_3 is generated according to given reactions.

 $Mg + O_2 \rightarrow MgO$

 $Mg + N_2 \rightarrow Mg_3N_2$

 $Mg_3N_2 + 6H_2O \rightarrow 3Mg (OH)_2 + 2NH_3$

1. Calculate the amount of magnesium oxide (in g) in products.

(a) 28 (b) 20 (c) 16.8 (d) 32

- **2.** Calculate the amount of $Mg(OH)_2$ (in g) produced in the above reaction.
 - (a) 11.6 (b) 17.4 (c) 23.2 (d) 15.8
- 3. Calculate the mass % of Mg converted into Mg_3N_2 . (a) 20 (b) 30 (c) 35 (d) 40

Paragraph for Q. Nos. 4 to 5

12 mL gaseous mixture of an alkane and an alkene (containing same number of carbon atoms) require exactly 285 mL of air (containing 20% v/v O_2 and rest N_2) for complete combustion at 200 K. After combustion when gaseous mixture is passed through KOH solution it shows volume contraction of 36 mL.

- 4. Formula of alkane is
- (a) C_5H_{12} (b) C_3H_8 (c) C_2H_6 (d) C_4H_{10} 5. Mole fraction of CO_2 in final gaseous sample is

(a) $\frac{6}{51}$ (b) $\frac{6}{44}$ (c) $\frac{6}{45}$ (d) $\frac{6}{13}$

Paragraph for Q. Nos. 6 to 7

1292.5 g of aquesous solution of '5 m' NaCl is kept in a large bucket. The bucket is placed under a tap from which '2 m' aqueous solution of NaCl is flowing. Rate of flow of solution from tap is 0.5 g/sec.

6. The total amount of solution (in g) finally present in bucket when solution present in bucket have concentration of NaCl 4 m is

(a)	558.5			(b)	185	1
(c)	1351			(d)	193	8.75
		1	> 0			1 1

7. The time (in seconds) after which the bucket will have '4m' concentration of NaCl.

(a) 117 (b) 2000 (c) 1117 (d) 1292.5

Paragraph for Q. Nos. 8 to 10

Analysis of dissolved oxygen in river water is very essential to ensure that aquatic life is safe. As per European standards, dissolved oxygen should never be less than 6.4 mg/L and preferably should be greater than 9.6 mg/lit. A water body having value less than 6.4 mg/L is considered 'heavily polluted' and a water body having value greater than 9.6 mg/L is considered optimum fit for aquatic life. One method to measure dissolved oxygen is through Winkler titration. The method involves three stages:

Stage 1: The water sample is treated with excess of Mn^{2+} (aq) solution along with a base to cause the following reaction:

$$\operatorname{Mn}^{2^+}(\operatorname{aq}) + 2\operatorname{OH}^-(\operatorname{aq}) \to \operatorname{Mn}(\operatorname{OH})_2(\operatorname{s}) \qquad \dots(\operatorname{i})$$

The precipitate then reacts with dissolved oxygen as shown below.

$$2Mn(OH)_2(s) + \frac{1}{2}O_2(aq) + H_2O(l) \rightarrow 2Mn(OH)_3(s)...(ii)$$

Stage 2: The solution is added with excess of acidified solution of KI to cause the following reaction:

$$\begin{split} & 2Mn(OH)_{3}\left(s\right) + 2KI + 3H_{2}SO_{4} \\ & \longrightarrow 2MnSO_{4} + K_{2}SO_{4} + I_{2}(aq) + 6H_{2}O \qquad \dots (iii) \end{split}$$

Stage 3: The I_2 produced is calculated by the following reaction by calculating the amount of $Na_2S_2O_3$ consumed.

$$I_2 + 2Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6$$
 ...(iv)

Using the above information answer the following questions:

- 8. If 1 L of water sample is taken then calculate the maximum volume of 0.01 M Na₂S₂O₃ solution required if the sample is considered 'heavily polluted'.
 (a) 80 mL
 (b) 80 L
 (c) 120 mL
 (d) 120 L
- 9. If 1 L of water sample is taken then calculate maximum volume of 0.1 M Na₂S₂O₃ solution required if the sample is considered 'optimum fit' for aquatic life.
 (a) 8 mL
 (b) 80 mL
 (c) 12 mL
 (d) 120 mL
- **10.** Which of the following statements is correct w.r.t. above method?
 - (a) Greater the amount of dissolved oxygen, lesser will be moles of Na₂S₂O₃ required.
 - (b) Excess solution in Stage 1 ensure all dissolved oxygen reacts.
 - (c) Moles of Mn(OH)₂(s) reacted and moles of Mn(OH)₃ formed will be different.
 - (d) 1 mole of dissolved oxygen will require 2 moles of Na₂S₂O₃ for estimation.

(One or more than one correct type)

- **11.** Which of the following solutions will be definitely basic?
 - (a) 400 mL of 0.1 M NaOH is mixed with 100 mL of 0.4 M CH₃COOH.
 - (b) Equal volumes of same % w/v of NaOH and H₂SO₄ solutions are mixed.
 - (c) Different volumes of 0.2 M NaOH and 0.1 M HCl solutions are mixed.
 - (d) Equal masses of same % w/w NaOH and HCl solutions are mixed.
- 12. In the formation reaction of NH_3 from N_2 and H_2 , 140 g of N_2 and 40 g H_2 were mixed. Select the option(s) which is are not correct.
 - (a) Maximum mass of NH_3 which can be formed is 180 g.
 - (b) If % yield of reaction is 80%, then H₂ consumed will be 32 g.

- (c) Some N_2 (g) will be left after the reaction.
- (d) If NH_3 formed is 85 g then % yield will be 50%.
- **13.** 500 g of 109% labelled oleum is taken. Which of the following statement(s) is/are correct regarding this oleum sample?
 - (a) The maximum mass of H_2SO_4 which may be obtained from the sample is 509 g.
 - (b) When 100 g water is added in it, the sample finally contains 545 g H_2SO_4 and 55 g water.
 - (c) When 100 L water is added in it, the approximate molarity of H_2SO_4 solution obtained will be 0.056M.
 - (d) When 20 g water is added to it, the sample finally contains 520 g pure H_2SO_4 .
- 14. When taken in an Eudiometer tube operating at room temperature and pressure and subjected to complete reaction, in which of the following options the contraction in volume is greater than or equal to 30% of original volume.
 - (a) CO(g) and $O_2(g)$ taken in a molar ratio of 2 : 1.
 - (b) 10 mL of $CH_4(g)$ and 30 mL of $O_2(g)$.
 - (c) $N_2(g)$ and $H_2(g)$ taken in a molar ratio of 3 : 1.
 - (d) N_2 and H_2 taken in a molar ratio of 1 : 3
- **15.** Which of the following is/are correct statement(s)?
 - (a) For the production of equimolar mixture of CO and CO₂ gases, 12 g carbon must be burnt with 24 g oxygen (assuming 100% yield of reactions).
 - (b) Molarity of any aqueous solution will be equal to its molality if the volume of solution (in mL) and the mass of solvent (in gram) are numerically same.
 - (c) Gases behave ideally in the conditions of their very low molar volumes and force of attraction between them.
 - (d) all of the above.
- 16. A gaseous organic compound $C_x H_{2y}O_y$ (M = 150) was burnt with four times the amount of O_2 gas as required for complete combustion. The resulting gases when cooled to 1 atm pressure and 300 K were found to occupy (4.926) L along with 0.9 g of water. Identify the correct option(s).
 - (a) If 10 mL of organic compounds is taken then oxygen taken should be 200 mL.
 - (b) Fraction of O by number in the compound is $\frac{2}{3}$.
 - (c) The compound should be $C_4H_6O_3$.
 - (d) Percent of H by mass in the compound will be $\frac{100}{15}$ %.
- 17. The sample(s) containing same number of 'Na' atom as there are 'Na' atoms in 5.3 g of Na₂CO₃, is/are
 - (a) 4 g of NaOH
 - (b) 5.85 g of NaCl
 - (c) 0.25 mole of Na₂SO₄
 - (d) $5.6 \text{ g of } \text{Na}_3\text{PO}_4$

- **18.** For the following reactions:
 - I. $(NH_4)_2SO_4+2NaOH \xrightarrow{40\%} Na_2SO_4+2H_2O+$ 2NH₃
 - II. $NH_3 + HC1 \xrightarrow{80\%} NH_4C1$
 - If 4 g of NaOH is taken then
 - (a) produced moles of NH_4Cl (in IInd reaction) are 1.6 times of produced moles of Na_2SO_4 (in reaction I).
 - (b) reacting moles of HCl (in reaction II) is 20 % lesser than original $(NH_4)_2SO_4$ moles.
 - (c) reacting moles of HCl (in reaction II) is lesser than reacting moles NaOH (in reaction I).
 - (d) produced mass of NH_4Cl is 2.71 g.
- 19. Choose incorrect options.
 - (a) 225×10^{-22} g of Ca(OH)₂ containing 32 amu of O.
 - (b) If one atom of an element weighs 1.8×10^{-22} g, then its atomic mass is 108.36.
 - (c) 10 g of CaCO_3 contains 0.3 g atom of oxygen.
 - (d) Number of atoms in 2 moles of S_8 is greater than 5.5 moles of SO_2 .
- **20.** Which of the following is/are correct?
 - (a) The density of a gas depends upon pressure and temperature.
 - (b) The relative density of a gas depends upon pressure and temperature.
 - (c) The vapour density of a gas depends upon pressure and temperature.
 - (d) The relative density of SO_3 with respect to oxygen is 2.5 at 1 atm and 273 K.
- **21.** A mixture of H_2 and O_2 having total volume 55 mL is sparked in an eudiometry tube and contraction of 45 mL is observed after cooling. What can be the composition of reacting mixture?
 - (a) 30 mL H_2 and 25 mL O_2
 - (b) 10 mL H_2 and 45 mL O_2
 - (c) 40 mL H_2 and 15 mL O_2
 - (d) 35 mL $\rm H_2$ and 20 mL $\rm O_2$
- 22. Which of the following is/are incorrect statement(s)?
 - (a) Vapour density of gaseous mixture decreases during the progress of
 (a) + Cl (c) + 2UC(c) reaction
 - $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$ reaction.
 - (b) 22.4 L of H₂O at 1 atm and 273 K contains 6.02×10^{23} molecules of H₂O.
 - (c) 10 g of 104.5 % labelling oleum sample contains 2 g of free SO₃.
 - (d) Volume of solution is always equal to the sum of volume of solute and solvent.
- **23.** Choose the correct statement(s).
 - (a) The mole is the amount of substance containing the same number of chemical units as there are atoms in exactly 12 g of 12 C.
 - (b) Avoggadro's number is the number of units in a mole.
 - (c) The weight of one gram-atom of an element means its atomic weight in g.
 - (d) One g-atom of each element contains the same number of atoms.

- 1.22 Physical Chemistry-I for JEE (Main & Advanced)
- **24.** Select the incorrect statement(s).
 - (a) Mass of 6.022×10^{25} molecule of SO₃ is 8 kg.
 - (b) Number of oxygen atoms in 4.8 g of O_3 are 18.06 $\times 10^{23}$.
 - (c) Mass of 22.7 mL of C_2H_6 at 1 bar pressure and 273 K is 30 g.
 - (d) Volume of 51 mg of NH_3 at 1 bar pressure and 273 K is 68.1 *l*.
- **25.** Choose the incorrect option(s).
 - (a) 2.25×10^{-22} g of Ca(OH)₂ containing 32 amu of O.
 - (b) One atom of an element weighs 1.8×10^{-22} g, then its atomic mass is 108.36.
 - (c) 10 g of CaCO_3 contains 1 g atom of C.
 - (d) Number of atoms in 2 moles of S₈ is greater than 5.5 moles of SO₂.
- **26.** Identify the incorrect statement(s).
 - (a) Molarity of very dilute solution with CCl_4 as solvent is greater than its molality if density of CCl_4 is 1.6 g/cm³.
 - (b) An oleum with labelling $\frac{196}{178} \times 100$ will have mass % combined SO₃ equal to $\frac{160}{178} \times 100\%$.
 - (c) The value of universal gas constant is $(0.0821 \times 100)^{-1}$
 - 0.76) in mm of Hg m^3 /mole Kelvin.
 - (d) For an all gaseous reaction if volume changes during reaction at constant temperature and pressure then vapour density may remain constant.

(Column matching)

27. A_2 reacts with B_2 in either of the following ways depending upon supply of B_2 :

 $A_2 + B_2 \rightarrow 2AB$

$$A_2 + 3B_2 \rightarrow 2AB_3$$

Also, the products formed may also react with appropriate reactant remaining to form other product. Using this information, match composition of the final mixture for initial amount of reactants.

	Column I (Initial reactants)		Column II (Final Products)
(A)	4 moles of A_2 are mixed with 8 moles of B_2	(P)	None of the reactant is left
(B)	2 moles of A_2 are mixed with 5 moles of B_2	(Q)	Product contains both AB and AB ₃
(C)	2 moles of A_2 are mixed with 1 moles of B_2	(R)	One of the reactant is left
(D)		(S)	Equal moles of AB and AB_3 are formed

28. Match the expressions/statements in **Column I** with expressions/Statements in **Column II**.

	Column I		Column II
(A)	1 mole of O_2	(P)	occupies 22.4 L at 1 atm and 0°C
(B)	1 mole of SO_2	(Q)	weighs 32 g
(C)	4 g of He	(R)	collection of N _A smallest existing independent spe- cies
(D)	1 g of H ₂	(S)	occupies 12.3 L at 1 atm and 300 k

29. Match the expressions/statements **Column–I** with expressions/Statements in **Column–II**.

	Column I Atomic masses Isotope-I, Isotope-II,		Column II % composition of heavier isotope
(A)	Avg $(z-1), (z+2), z$	(P)	33.33 % by moles
(B)	(z+1), (z+3), (z+2)	(Q)	50 % by moles
(C)	z, 3z, 2z	(R)	% by mass depen-
(D)	(z-1), (z+1), z	(S)	75 % by mass

30. Match the expressions/statements in **Column I** with expressions/Statements in **Column II**.

	Column I		Column II
(A)	1.0 g-ion of Na ⁺	(P)	6.02×10^{24} electron
(B)	23.0 g of Na	(Q)	7.224×10^{24} neutron
(C)	1.0 g-ion of Mg ⁺²	(R)	$6.02 \times 10^{23} \times 2 \times 1.6 \times$
			10 ⁻¹⁹ columb charge
(D)	24 g of Mg	(S)	7.224×10^{24} proton

31. Match the expressions/statements in **Column I** with expressions/Statements in **Column II**.

	Column I		Column II
(A)	$0.5 \operatorname{mol} \operatorname{of} \operatorname{CO}_2(g)$	(P)	Occupy 11.2 L at 1 atm and 273 K
(B)	2 g of helium (g)	(Q)	mass = 24 g
(C)	0.5 g molecule of $O_3(g)$	(R)	total number of atoms = $1.5 \times 6.02 \times 10^{23}$
(D)	4.515×10^{23} mol- ecules O ₂	(S)	mass = 22 g of oxygen (g)
		(T)	3.01×10^{23} molecules

32. Match the expressions/statements in **Column I** with expressions/Statements in **Column II**.

	Column I		Column II (No. of moles)
(A)	Oxygen atoms in 0.5 mol $Ca_3(PO_4)_2$	(P)	8
(B)	Carbon atoms in 89.6 L CH_3 at 1 atm and 273 K.	(Q)	4

(C)	Sulphur atoms in 192 g of	(R)	5
	SO_2		
(D)	'Cl' in 15×10^{23} molecules	(S)	3
	Cl_2O [Take N _A = 6 × 10 ²³]		
		(T)	6

33. Match the expressions/statements in Column I with expressions/Statements in Column II.

	Column I (No. of moles)		Column II
(A)	1 mole of O ₂	(P)	Occupies 22.4 L at 1 atm and 0°C
(B)	1 mole of SO ₂	(Q)	Weighs 32 g
(C)	4 g of He	(R)	Collection of N _A units of given substance
(D)	1 g of H ₂	(S)	Occupies 12.3 L at 1 atm and 300 K
		(T)	Contains 2 g-atom of oxygen

(Integer type)

34. KClO₄ can be prepared by Cl_2 and KOH by a series of reactions as given below:

 $Cl_2 + 2KOH \rightarrow KCl + KClO + H_2O$

 $3KClO \rightarrow 2KCl + KClO_3$

 $4KClO_3 \rightarrow 3KClO_4 + KCl$

If 10 moles of Cl₂ are mixed with 22 moles of KOH, calculate total moles of all the substance at the end of reaction. (Assuming 100% yield of all the reactions.)

35. Four identical bottles numbered from 1 to 4 are arbitrarily filled with four substances : C₆H₁₂O₆ (Glucose), CH₃COOH (Acetic acid), CH₃-COCH₃ (Acetone) and HCHO (Formaldehyde) (No specific order). Based on following information given, identify the substances filled.

Information-I: Percentage of C is same in compounds filled in bottles 1, 3, 4 but different in 2.

Information-II: Vapour density of compound filled in bottle $4 = 3 \times$ vapour density of compound filled in bottle 1.

After identifying the substances filled in different bottles, arrange them in decreasing order of their molecular masses.

[For example, If molecular mass order is 4 > 3 > 2 >1 then answer is 4321]

[Assuming normal behaviour of all the substances.]

36. 1000 g of a mixture of Na_2CO_3 , Na_2SO_4 and NaOHfor complete neutralisation requires 511 g of HCl. The same mixture when reacted with excess of BaCl₂ solution, produced 466 g of white precipitate of BaSO₄. Calculate mass % of NaOH in mixture.

Mole Concept

1.23

- was subjected to heating to obtain 3.9 g of white shining residue. Molar mass of the organic base is given by (a) 1048 (b) 228 (c) 114 (d) 72
- **38.** Different acid samples are prepared by using H_2SO_4 , HCl, HNO₃, H₃PO₂ and HClO₄ separately or as a mixture. Calculate minimum volume of 20% w/v NaOH solution required (in mL) to completely neutralise any sample which can be prepared if mass of the sample cannot exceed 292 g.

[Round-off answer to nearest integer if required]

39. Calculate a four-digit number "abcd" from the following information. ab = Volume of water (in L) required to obtain 3 L

of 17% w/v AgNO₃ solution from a stock solution of AgNO₃ having molarity 3 M.

cd = Mole percentage of ethane in a mixture of ethane

and argon having mass fraction of Argon equal to $\frac{4}{7}$.

[if your answers are 6 and 25 fill 0625]

- **40.** 10 mL of a gaseous organic compound $C_r H_v O_z N_p$ (molar mass = 61) is taken in an eudiometry tube and mixed with sufficient oxygen gas such that volume becomes 42.5 mL. On sparking, some contraction was observed. On passing the residual gas through alcoholic KOH, a contraction of 20 mL was observed. The volume of the residual gas is 5 mL. All volumes are measured at room temperature and pressure. Calculate the value of the four digit number 'xyzp'.
- **41.** 10 mL of a mixture of CO (g) and CH₄(g) was mixed with 22 mL of O₂ gas and subjected to sparking. The contraction observed when the residual gases are passed through alc. KOH is given by x mL. Find x? [All volumes are measured at same temperature and pressure]

42. Compositions

- (a) 100 g SO_3 and $200 \text{ g H}_2\text{SO}_4$
- (b) 80 g SO₃ and 80 g H_2SO_4
- (c) 5 moles SO_3 and 5 moles H_2SO_4
- 2 (d) 6 moles SO_3 and 5 moles H_2SO_4

Calculate a four-digit number 'abcd' which is obtained by writing solution codes of above compositions in the increasing order of % labelling of above oleum.

Solution codes

8

6

4

43. Three substances A, B and C can react to form C and D as shown below.

$$2A + 3B + C \rightarrow 4D + 2E$$

If molar masses of A, B, C and D are 40, 30, 20 and 15 respectively and 570 g of mixture of A, B, and C is reacted then calculate maximum mass of E which can be obtained (in gram).

- **44.** If 246 g of a triatomic ideal gas having only one type of atoms is found to occupy 44.8 L at 2 atm and 546 K then what will be the atomic weight of the element?
- **45.** 100 mL of $0.2M H_2SO_4$ solution is mixed with 400 mL of 0.05M Ba₃(PO₄)₂. The concentration of $[Ba^{+2}]$ ion in resulting solution is xM. Find the value of $100 \times x$?
1.24 Physical Chemistry-I for JEE (Main & Advanced)

46. Acrylonitrile, C_3H_3N , is the starting material for the production of a kind of synthetic fibre (acrylies). It can be made from propylene, C_3H_6 , by reaction with nitric oxide, NO as

 $\mathrm{C_3H_6}(g) + \mathrm{NO}(g) \rightarrow \mathrm{C_3H_3N}(g) + \mathrm{H_2O}(g) + \mathrm{N_2}(g) \text{ (Unbalanced)}$

How many kilograms acrylonitrile are obtained from 420 kg of propylene and excess NO?

- **47.** 10 mL gaseous C_4H_x requires exactly 55 mL O_2 for complete combustion. What is the value of 'x'.
- **48.** In 1200 g solution, 12 g urea (NH_2CONH_2) is present. If density of the solution is 1.2 g/mL, then the molarity of the solution is *x*M. Find 10*x*?
- **49.** In the following reactions if initially 100 moles of A were taken then calculate sum of moles of D and C after the reaction.

$$A \xrightarrow{40\%} 3B + D$$
$$2B \xrightarrow{50\%} 4C$$

- **50.** Calculate the sum of molality and molarity of a pure liquid (molar mass M = 50) having density d = 2 g/mL.
- **51.** What would be the maximum volume (in mL) of 3 M HCl solution that can be prepared by using 2 M, 1 L HCl and 5 M, 2 L HCl kept in separate vessels.
- **52.** 20 mL of a mixture of C_2H_6 and C_3H_8 gases in X : Y mole ratio, is burnt completely by which 52 mL CO_2 gas is evolved. If 20 mL of a mixture of CH_4 and C_4H_{10} gases in Y : X mole ratio is burnt completely, then what is the volume (in mL) of CO_2 gas evolved?

PREVIOUS YEARS' QUESTIONS OF JEE (MAIN & ADVANCED)

JEE Main

1. How many moles magnesium phosphate, $Mg_3(PO_4)_2$, will contain 0.25 mole of oxygen atoms?

[AIEEE 2006]

(a)
$$2.5 \times 10^{-2}$$
 (b) 0.02
(c) 2.125×10^{-2} (d) 1.25×10^{-2}

- (c) 3.125×10^{-2} (d) 1.25×10^{-2}
- **2.** Density of a 2.05 M solution of acetic acid in water is 1.02 g/mL. The molality of the solution is

[AIEEE 2006]

- (a) $0.44 \text{ mol } \text{kg}^{-1}$ (b) $1.14 \text{ mol } \text{kg}^{-1}$ (c) $3.28 \text{ mol } \text{kg}^{-1}$ (d) $2.28 \text{ mol } \text{kg}^{-1}$
- 3. In the reaction : $2Al(s) + 6HCl (aq) \rightarrow 2Al^{3+} (aq) + 6Cl^{-}(aq) + 3H_{2} (g)$ [AIEEE 2007]
 - (a) 6 L HCl(aq) is consumed for every 3 L H₂(g) produced.
 - (b) 33.6 L $H_2(g)$ produced regardless of temperature and pressure for every mole Al that reacts.
 - (c) $67.2 \text{ L H}_2(\text{g})$ at STP is produced for every mole Al that reacts.
 - (d) 11.2 L H₂(g) at STP is produced for every mole HCl(aq) consumed.

- 4. The density (in g mL⁻¹) of a 3.6 M sulphuric acid solution that is 29 % H₂SO₄ (molar mass = 98 g mol⁻¹) by mass will be [AIEEE 2007]

 (a) 1.64
 (b) 1.88
 (c) 1.22
 (d) 1.45
- 5. Amount of oxalic acid present in a solution can be determined by its titration with $KMnO_4$ solution in the presence of H_2SO_4 . The titration gives unsatisfactory result when carried out in the presence of HCl because HCl [AIEEE 2008]
 - (a) gets oxidised by oxalic acid to chlorine.
 - (b) furnishes H⁺ ions in addition to those from oxalic acid.
 - (c) reduces permanganate to Mn^{2+} .
 - (d) oxidises oxalic acid to carbon dioxide and water.
- 6. The mass of potassium dichromate crystals required to oxidise 750 cm³ of 0.6 M. Mohr's salt solution is (molar mass = 392)
 - (a) 0.49 g (b) 0.45 g (c) 22.05 g (d) 2.2 g
- (c) 22.05 g
 (d) 2.2 g
 7. The molality of a urea solution in which 0.0100 g of urea, [(NH₂)₂CO] is added to 0.3000 dm³ of water at STP is [AIEEE 2011]
 (a) 5.55 × 10⁻⁴ m
 (b) 33.3 m
 - (c) 3.33×10^{-2} m (d) 0.555 m
- 8. The density of a solution prepared by dissolving 120 g of urea (mol. mass = 60 u) in 1000 g of water is 1.15 g/mL. The molarity if this solution is [AIEEE 2012]
 (a) 0.50 M
 (b) 1.78 M
 (c) 1.02 M
 (d) 2.05 M
- **9.** The molarity of a solution obtained by mixing 750 mL of 0.5 M HCl with 250 mL of 2 M HCl will be

[JEE Main 2013]

- (a) 0.875 M (b) 1.00 M (c) 1.75 M (d) 0.0975 M
- 10. A gaseous hydrocarbon gives 0.72 g of water and 3.08 g of CO₂ upon combustion. The empirical formula of hydrocarbon is [JEE Main 2013]
 (a) C₂H₄
 (b) C₃H₄
 - (c) C_6H_5 (d) C_7H_8
- 11. The ratio of masses of oxygen and nitrogen in a particular gaseous mixture is 1 : 4. The ratio of number of their molecule is [JEE Main 2014]
 (a) 1 : 4 (b) 1 : 8 (c) 7 : 32 (d) 3 : 16

JEE Advanced

Single Correct Answer Type

- 12. Consider a titration of potassium dichromate solution with acidified Mohr's salt solution using diphenyl-amine as indicator. The number of moles of Mohr's salt required per mole of dichromate is [IIT JEE 2007]

 (a) 3
 (b) 4
 (c) 5
 (d) 6
- 13. Given that the abundance of isotopes ⁵⁴Fe, ⁵⁶Fe and ⁵⁷Fe is 5%, 90% and 5% respectively. The atomic mass of Fe is [IIT JEE 2009]

(a)	55.85	(b)	55.95
(c)	55.75	(d)	55.05

14. Dissolving 120 g of urea [Mw = 60) in 1000 g of water gave a solution of density 1.15 g mL⁻¹. The molarity of solution is [IIT JEE 2011]

(a) 1.78 M	(b) 2.00 M
(c) 2.05 M	(d) 2.22 M

Integer Answer Type

- 15. A student performs a titration with different burettes and finds titre values of 25.2 mL, 25.25 mL and 25.0 mL. Find the number of significant figures in the average titre value. [IIT JEE 2010]
- **16.** Silver (atomic weight = 108 g mol⁻¹) has a density of 10.5 g cm⁻³. The number of silver atoms on a surface of area 10^{-12} m² can be expressed in scientific notation as $y \times 10^x$. Find the value of *x*. [IIT JEE 2010]
- **17.** Find the value of n in the molecular formula Be_nAl- $_2Si_6O_{18}$. **[IIT JEE 2010]**
- 18. Among the following, what is the number of elements showing only one non-zero oxidation state ? O, Cl, F, N, P, Sn, Tl, Na, Ti [IIT JEE 2010]
- **19.** 29.2 % (w/w) HCl stock solution has a density of 1.25 g mL⁻¹. The molecular weight of HCl is 36.5 g mol⁻¹.

Find the volume of (mL) of stock solution required to prepare a 200 mL solution of 0.4 M HCl.

[IIT JEE 2012]

20. If the value of Avogadro number is $6.023 \times 10^{23} \text{ mol}^{-1}$ and the value of Boltzmann constant is $1.380 \times 10^{28} \text{ J}$ K⁻¹, then find the number of significant digits in the calculated value of the universal gas constant.

[JEE Advanced 2014]

21. The molecular formula of a commercial resin used for exchanging ions in water softening is $C_8H_7SO_3Na$ (molecular weight = 206). What would be the maximum uptake of Ca^{2+} ions by the resin when expressed in mole per gram resin? [2015 JEE Main]

(a)	$\frac{1}{103}$	(b)	$\frac{1}{206}$
(c)	$\frac{2}{309}$	(d)	$\frac{1}{412}$

22. 3g of activated charcoal was added to 50 mL of acetic acid solution (0.06 N) in a flask. After an hour it was filtered and the strength of the filtrate was found to be 0.042 N. The amount of acetic acid adsorbed (per gram of charcoal) is [2015 JEE Main]

1 01	iarcour)	15	[#v
(a)	18 mg	(b)	36 mg
(c)	42 mg	(d)	54 mg

Answer	Key	
--------	-----	--

	EVEL I								
1. (b) 11. (d) 21. (a) 31. (c) 41. (a) 51. (b) 61. (d) 71. (c) 81. (b)	2. (b) 12. (a) 22. (d) 32. (c) 42. (a) 52. (c) 62. (a) 72. (b) 82. (d)	3. (d) 13. (a) 23. (c) 33. (a) 43. (a) 53. (b) 63. (c) 73. (c)	4. (a) 14. (a) 24. (d) 34. (c) 44. (d) 54. (b) 64. (a) 74. (b)	5. (a) 15. (b) 25. (a) 35. (b) 45. (a) 55. (b) 65. (a) 75. (b)	6. (a) 16. (a) 26. (d) 36. (a) 46. (a) 56. (a) 66. (a) 76. (b)	7. (a) 17. (b) 27. (b) 37. (a) 47. (b) 57. (b) 57. (b) 77. (d)	8. (d) 18. (b) 28. (b) 38. (c) 48. (d) 58. (b) 68. (a) 78. (c)	9. (c) 19. (c) 29. (b) 39. (a) 49. (b) 59. (b) 69. (c) 79. (b)	10. (b) 20. (b) 30. (a) 40. (c) 50. (c) 60. (a) 70. (b) 80. (b)
	EVEL II	[
1. (c) 11. (c) 21. (a) 31. (d)	2. (c) 12. (d) 22. (c) 32. (c)	3. (d) 13. (a) 23. (a) 33. (a)	4. (a) 14. (a) 24. (a) 34. (b)	5. (b) 15. (a) 25. (c) 35. (a)	6. (c) 16. (b) 26. (c) 36. (c)	7. (b) 17. (b) 27. (c) 37. (c)	8. (a) 18. (b) 28. (c) 38. (b)	9. (a) 19. (b) 29. (d) 39. (d)	10. (b) 20. (b) 30. (a) 40. (c)
	EVEL II	I							
1. (a) 11. (a, b)	2. (b) 12. (a, b,	3. (b) c)	4. (b) 13. (b, c)	5. (b) 14. (a, b, c	6. (b) d)	7. (c) 15. (a, b)	8. (a) 16. (a, d)	9. (c) 17. (a, b,	10. (b) d)

18.	(a, b)	19.	(a, d)	20.	(a, d)	21.	(a, c)	22.	(a, b, d)		23.	(a, b, c,	d)	24.	(b, c, d)		
25.	(a, c, d)			26.	(b, d)			27.	$(\mathbf{A}) \rightarrow$	P, Q,	S; (B) -	\rightarrow P,	Q; (C) ·	$\rightarrow R$				
28.	$(A) \rightarrow F$	P , Q,	R; (B)	$\rightarrow P$,	R; (C)	$) \rightarrow P$,	R; (D)	$\rightarrow S$		29.	$(A) \rightarrow$	P, R;	$(\mathrm{B}) \rightarrow$	Q, R; (C)	$\rightarrow Q, S$	$S;(D) \rightarrow$	Q, R	_
30.	$(A) \rightarrow F$? , Q;	$(B) \rightarrow$	Q; (0	$C) \rightarrow F$	P, Q, R	, S; (D)	\rightarrow (), S	31.	$(A) \rightarrow$	P, R,	S, T; (E	$B) \rightarrow P; ($	$\mathbf{C}) \to \mathbf{P},$	Q, T; (D)	$) \rightarrow 0$	Q, R
32.	$(A) \rightarrow C$	<mark>); (</mark> В	$() \rightarrow Q;$	(C)	\rightarrow S; ($(D) \rightarrow$	R			33.	$(A) \rightarrow$	P, Q,	R, T; (I	$(B) \rightarrow P, F$	R, T; (C)	\rightarrow P, R;	(D) ·	$\rightarrow S$
34.	(32)	35.	(4123)	36.	(8)	37.	(114)	38.	(1600)	39.	(0251)	40.	(2711)	41. (10)) 42.	(8426) 4	13. ((390)
44.	(41)	45.	(8)	46.	(530)	47.	(6)	48.	(2)	49.	(160)	50.	(60)	51. (150	00) 52.	(44)		

PREVIOUS YEARS' QUESTIONS OF JEE (MAIN & ADVANCED)

1. (c)	2. (d)	3. (d)	4. (c)	5. (c)	6. (c)	7. (a)	8. (d)	9. (a)	10. (d)
11. (c)	12. (d)	13. (b)	14. (c)	15. (3)	16. (7)	17. (2)	18. (2)	19. (8)	20. (4)
21. (d)	22. (d)								

Hints and Solutions

6.

LEVEL 1

1. (a) (1) Oxygen atom : Hydrogen atom 4 : 12 [1:3] $: 1 PO_4^{3-}$ (2) $3NH_4^+$ [3:1] : Oxygen atom (3) N atom [3:4] (4) $(NH_4)_3PO_4 | 3N + 12 H + P + 4 O$ 1 mole 1 mole of (NH₄)₃PO₄ having 20-Mole of atoms and or $(20 \times N_A)$ atoms. **2.** (b) PV = nRT= 1×10^{-3} number of moles No of moles of of atom = 3×10^{-3} *:*. Let volume of H_2O_2 is V mL Mass of $H_2O_2 = V \times d = V \times 5.1 \times 10^{-3}$ Moles of $H_2O_2 = \frac{V \times 5.1 \times 10^{-3}}{34}$ Number of moles of atoms = $\frac{V \times 5.1 \times 10^{-3}}{34} \times 4$ $= 3 \times 10^{-3}$ $V \text{ of } H_2O_2 = 5 \text{ mL}$ 3. (d) 72 g Mg is present in 1 mole $Mg_3(PO_4)_2$ 8 moles of O atoms 4 moles of O₂ molecules 4 gm molecules of O_2 are present 4. (a) 930 gm of $Ca_3(PO_4)_2 = 3$ mole of $Ca_3(PO_4)_2$ = 15 moles of ions 5 moles of $Na_2SO_4 = 15$ mole of ions weight of $Na_2SO_4 = 5 \times 142$ = 710 g 5. (a) Average atomic weight = $\Sigma X_i M_i$ $= 35 \times 0.8 + 37 \times 0.2$ = 35.4

Average number of neutrons

$$= \frac{18 \times 80 + 20 \times 20}{100} = 18.4$$

6. (a) K₂SO₄. Al₂(SO₄)₃ · 24 H₂O
6.4 kg oxygen
[moles of substance × 40] = number of mole

[m of oxygen $40 \times x \times 16 = 6400$ g= wt of oxygen x = 10 moles number of moles of $S = 4 \times 10$ moles = 40 moles weight of sulphur = $40 \times 32 = 1280$ g

7. (a) 448 l O₂ and CO₂(g) 2 : 3

Volume of $CO_2 = \frac{3}{5} \times 448 = 268.8 l$ Number of moles of $CO_2 = \frac{268.8L}{22.4L} = 12$ mole

8. (d)
$$A_2SO_4 \cdot xH_2O$$

 $A_2SO_4 \cdot xH_2O \longrightarrow A_2SO_4 + xH_2O$
% of $H_2O = \frac{x \times 18}{110 + x \times 18} \times 100 = 45$
 $1800 x = 4950 + 810 x$
 $1800 x - 810 x = 4950$
 $990 x = 4950$
 $x = 5$
9. (c) $hxO_2 + 4HCI_2 \longrightarrow MxCI_2 + CI_2 + 2$

9. (c) $MnO_2 + 4HCl \longrightarrow MnCl_2 + Cl_2 + 2H_2O$

$$n_{\rm MnO_2} = \frac{1.74}{87} = 0.02$$
$$n_{\rm HC1} = \frac{2.19}{36.5} = 0.06$$

No of moles /stoichiometric cofficient least for HCl *.*.. HCl is limiting reagent

- 4 mole of HCl gives 1 mole of Cl₂
- 1 mole of HCl gives 1/4 mole of Cl_2

0.06 mole of HCl gives $1/4 \times 0.06$ mole of Cl₂ = 0.015 Mole

% yield = $\frac{\text{Actual product formed}}{\text{theoritical product formed}} \times 100$ $40 = \frac{x}{0.015} \times 100$ $x = 40 \times \frac{0.015}{100} = 0.006$ moles Cl₂ Volume of Cl₂ at 1 atm, 273 K = 0.006×22.4 (lit.) = 134.4 ml **10.** (b) $(CaCO_3 + Na_2CO_3)$ mixture = 103 g Let moles of $CaCO_3 = x$ moles of $Na_2CO_3 = y$ 1 х v $CaCO_3 + Na_2CO_3 + HCl \longrightarrow CO_2$ and other products. CO₂ produced have C atoms from Na₂CO₃ and CaCO₃ moles of CO₂ produce = PV = nRT $1 \times 24.63 = n \times 0.0821 \times 300$ *n* = 1 Apply POAC on C atom $1 \times x + y \times 1 = 1$ x + y = 1100 x + 106 y = 103 =wt of mixture 6x = 3; x = 0.5; y = 0.5weight of $CaCO_3 = 50$ g weight of $Na_2CO_3 = 53$ g % CaCO₃ = $\frac{50}{103} \times 100 = 48.54$ % **11. (d)** H₂ + Cl₂ \longrightarrow 2HCl 2 g 71 g 1 mole of H₂ react with 1 mole Cl₂ gives 2 mole HCl : No of moles of HCl produced $= 2 \text{ moles} = 2 \times 36.5 \text{ g} = 73 \text{ g}$ 12. (a) Conceptual 13. (a) $Cu + 4 HNO_3 \longrightarrow Cu(NO_3)_2 + 2H_2O + 2NO_2$ 1 mole Cu Provide 2 moles NO₂ $\frac{12.7}{63.5}$ Mole Cu provide = $2 \times \frac{12.7}{63.5}$ Mole NO₂ $n_{\rm NO_2} = 0.4$ Volume = $0.4 \times 22.4 \times 1000 \text{ mL} = 8960 \text{ mL}$... 14. (a) Mass of carbon in 1 molecule of $X=21\times12=252$ amu if % weight of carbon is 50.4 % in molecule then Molecular mass of $X = \frac{252 \times 100}{50.4} = 500$ amu 15. (b) $\operatorname{FeCl}_3(s) \longrightarrow \operatorname{FeCl}_2(s) + \frac{1}{2}\operatorname{Cl}_2(g)$ 1 mol FeCl₃(s) given $0.5 \mod Cl_2(g)$ $P = \frac{0.5 \times 0.0821 \times 300}{0.0021} = 150 \text{ atm}$

$$16. (a) P = 294 \left[\frac{54 + 96 \times 3}{98 \times 3} \right] = 294 \left[\frac{342}{294} \right] = 342$$

17. (b) $m = \frac{\left(\frac{936}{18}\right)}{\left(\frac{936}{1202}\right)} \Rightarrow \frac{(52 \times 1000)}{936} \Rightarrow 55.56$ 18. (b) $H_3PO_4 + 2NaOH \longrightarrow Na_2HPO_3 + 2H_2O$ Number of moles of $H_3PO_4 = \frac{1}{2}$ No of moles of NaOH $\frac{150 \times 1.5}{1000} = \frac{1}{2} \times \frac{V}{1000} \times \frac{0.5}{1}$ $V = 900 \, \text{mL}$ 19. (c) $AlCl_3 + 3NaOH \longrightarrow Al(OH)_3 + 3NaCl$ 1 1 mole AlCl₃ Require 3 mole NaOH for Completion of Reaction \therefore No of moles of AlCl₃ react with 1 mole NaOH = $\frac{1}{3}$ Mole :. Moles of AlCl₃ left = $1 - \frac{1}{2} = \frac{2}{2}$ Mole **20.** (b) a mole CaCO₃ + b mole CaO $\begin{array}{rcl} \text{CaCO}_3 \longrightarrow & \text{CaO} & + & \text{CO}_2 \\ a \text{ mole CaCO}_3 \text{ give } 22.4 \text{ litre or } 1 \text{ mole CO}_2 \end{array}$ \longrightarrow CaCl₂ + CO₂ + H₂O $CaCO_3 + 2HCl$ 1×100 gram CaCO₃ React with $2 \times 36.5 = 73$ gram HCl $CaO + 2HCl \longrightarrow CaCl_2 + H_2O$: Wt of HCl react with CaO = 219 - 73 = 146 gram $n_{\rm HCl} = \frac{146}{36.5} = 2b = 4$ mole b = 2 mole *:*.. $= 2 \times 56 = 112$ gram Mole % of CaCO₃ $\frac{1}{3} \times 100 = 33.33\%$ 21. (a) $RD = \frac{d_{\text{gas}}}{d_{\text{rad gas}}} = \frac{M_{\text{gas}}}{M_{\text{rad gas}}} \left[\because d = \frac{PM}{RT} \right]$ $RD = \frac{M_{gas}}{1} \Rightarrow M_{gas} = 30$ $M_{\rm avg} = \frac{W_T}{n_T}$ CO_2 : H₂O Mole *a* $30 = \frac{a \times 44 + b \times 18}{a+b} \Rightarrow 30a + 30b = 44a + 10b$ $14a = 12b \Rightarrow \frac{a}{b} = \frac{6}{7}$ Mole % of CO₂ = $\frac{a}{a+b} \times 100 = \frac{6}{12} \times 100 = \frac{600}{12}$ 22. (d) Mass of 1 electron = 9.1×10^{-31} kg Molar mass of Electron mean mass of NAe-

 $= 9.1 \times 10^{-31} \times 6.022 \times 10^{23} = 54.8 \times 10^{-8}$ kg/ mole **23.** (c) $(KHC_2O_4)_{0.95} \cdot HC_2O_4$ $[4 + 0.95 \times 4]$ mole oxygen atom present in 1 mole compound \therefore 1 mole oxygen atom present in $\frac{1}{[4+0.95\times4]}$ Mole compound \therefore 4 mole oxygen atom present in $\frac{1}{[4+0.95\times 4]}$ Mole compound 24. (d) $M = \frac{\text{No of moles of solute } (W_A)}{\text{Wt of solvent (gm)}} \times 1000$ (i) $x_A = \frac{n_A}{\Sigma n}$ $n_A = x_A \Sigma n$ $\frac{W_A}{M_A} = X_A \Sigma n$ \therefore $W_A = X_A \Sigma_n M_A = \text{wt of solute}$ $W_B = X_B \Sigma_n M_B = \text{wt of solute}$ From equation (1) $m = \frac{x_A \Sigma n M_A}{x_B \Sigma n M_B} \times 1000$ $=\frac{x_A}{x_B} \times \frac{1000}{M_B}$ $=\frac{x_A}{(1-x_A)} \times \frac{1000}{100} = \frac{10X_A}{1-X_A}$ **25.** (a) 100 mL of 0.1 M (NH₄)₂HPO₃ 10 mm of (NH₄)₂HPO₄ H_4^{-1} HPO₄²⁻ 20 mm 10 mm × 0.2 M = 40 mm $Na_4P_2O_7 \longrightarrow 200 \text{ mL} + 0.2 \text{ M} = 40 \text{ mm}$ $Na^{+} P_2O_7^{4-}$ $4 \times 40 \text{ mm} 40 \text{ mm}$ Total millimoles of positive ions = 180Conc. (mm/litre) = $\frac{180}{0.31} = \frac{1800}{2} = 600$

26. (d)
$$y \leftarrow C_2H_4$$

 $z \leftarrow N_2$
 $x + y + z = 250$
 $c_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O(l)$
 $(2x + y) + z + [(250 - (3x + y/2)] + 20 = 370$
 $CO + O_2 \rightarrow CO_2(g)$
 $2x + y = 200$
 $-x + y/2 + z = 100$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $(10 + 10)$
 $($

From (i), (ii) and (iii) x = 50, y = 100 and z = 100 $\therefore P_{CO} + Po_2 = 100 + 250 = 350 \text{ mmHg}$ 27. (b) $3O_2 \longrightarrow C_6H_{12}O_6$ For 1 mole Glucose requires 3 mole O_2 $\frac{8}{32}$ mole (O₂) in 1 hour is taken 1 mole (O₂) in taken in $\frac{1}{8/32}$ hour = $\frac{32}{8}$ hour \therefore 3 mole (O₂) in taken in $\frac{32 \times 3}{8} = 12$ hours. **28.** (b) If total moles = 1moles of SO_3 = mole of H_2SO_4 = 0.5 mass of $SO_3 + H_2SO_4 = 40 + 49 = 89 g$ $SO_3 + H_2O \longrightarrow H_2SO_4$ 0.5 0.5 mass of H_2O require = $0.5 \times 18 = 9$ g 89 g require 9 g H₂O 100 g require = 10.11 g% Labelling = (100 + 10.11) = 110.11%**29.** (b) $MnO_2 + H_2 \longrightarrow Mn_xO_v + H_2O$ 17.4 g 17.4 $\overline{55x + 16y}$ 87 Applying POAC on Mn atom $\frac{1}{5} = \frac{12.6x}{55x + 16y}$ 63x = 55x + 16y8x = 16y $\left[\frac{y}{x}=\frac{1}{2}\right]$ **30.** (a) Moles of element in cube $=\frac{7.5 \times 10^{22}}{6 \times 10^{23}} = \frac{1}{8}$ Mass of element in cube = $\frac{1}{8} \times 32$ g = 4 g Volume of cube = $\frac{4}{4/3}$ = 3 cm³ = $\frac{\text{Mass}}{\text{density}}$ $a^3 = 3 \text{ cm}^3$: $a^6 = 9 \text{ cm}^6$ **31.** (c) (1) $m = \frac{\text{mass of CaBr}_2}{\text{M.W.} \times \text{mass of H}_2\text{O}} \times 1000$ $m = \frac{1000}{200} = 5m$ (2) $m = \frac{0.5}{0.5 \times 18} \times 1000 = 55.5$ (3) $m = \frac{0.5}{0.5 \times 18} \times 1000 = 55.5$

(4) As mole fraction of NaCl and H_2O are same which means both have same moles hence m will be 55.5.

32. (c)
$$M = 44.8/11.2=4$$

(1) moles of H₂O₂ in 3L = 3 × 4 = 12
(2) volume of H₂O₂ (used) = $(60 \times 0.2 \times 2.8) = 33.6$ L
Mole of O₂ used = $\frac{33.6}{22.4} = 1.5$
Mole of H₂O₂ used = 2 × 1.5 = 3.0
(3) 2H₂O₂ \longrightarrow H₂O + O₂
moles of H₂O₂ left = 12 - 3 = 9
 M (H₂O₂) = 9 mole/3L = 3M
(4) V.S. = 3 × 11.2 = 33.6 V
33. (a) N₂ + H₂ \longrightarrow N₂H₂(*l*) + N₂H₄(g)
POAC on N *a* mole *b* mole
 $30 \times 2 = 2a + 2b \Rightarrow a + b = 30$
POAC on H $40 \times 2 = 2a + 4b \Rightarrow a + 2b = 40$
 $b = 10, a = 20$
V.C. = (30 + 40) - 10 = 60 mL
Energy change = 10 × 2 = 20
 $60/20 = 3$
34. (c) When mixture is pass through hot graphite CO₂ will
be converted into CO as C is present in excess
 $CO_2(g) + C(s) \longrightarrow 2CO$ (g)
 x mL $2x$ mL
Initial mixture 150 mL
Volume of CO₂ = x mL
Volume of CO = 150 - x
Which is already present in mixture
Total volume after reaction = 150 - x + 2x = 200
 $x = 50$ mL Volume of CO₂ in original mixture = 100
Mole fraction of CO in original mixture = 100
Mole fraction of CO in original mixture = 100
Mole fraction of CO in original mixture = 100
Mole fraction of CO in original mixture = 100
Mole fraction of CO in original mixture = 100
Mole fraction of CO in original mixture = 100
Mole fraction of CO in original mixture = 100
 $150 = 0.66$
35. (b) HCOOH \longrightarrow H₂O + CO
 a mole gives a a
H₂C₂O₄ \longrightarrow H₂O + CO
 b mole gives b b b b
Since H₂O exist in liquid state.
 $\frac{volume of CO_2}{total volume (CO + CO_2)} = \frac{b}{a+b+b} = \frac{1}{10}$
 $10b = a + 2b$
 $8b = a$
mole ratio $8: 1$ $8 + 1 = 9$
36. (a) Initial moles of air $= \frac{4 \times 12.3}{0.082 \times 300} = 2$
mole of air after 20 minutes $= \frac{3.6 \times 12.3}{0.082 \times 300} = 1.5$
mole of air leaked in 20 min. 0.5
molecule escape = 0.5 N_A
Let surface area A cm²
Total molecule escape in 20 min.
 $0.5 \times 10^5 \times A \times 6.023 \times 10^8 \times 20 = 0.5 N_A$

 $A = 5 \times 10^7 \text{ cm}^2$

Mole Concept 1.29

$$A = 5000 \text{ m}^{2}$$
37. (a) $\underset{n_{f}=2}{\overset{+4}{\text{ m}_{0}} \xrightarrow{+7}{\text{ m}_{f}=5}} \text{SO}_{4}^{-2} + \text{Mn}^{+2}$

$$\underset{n_{f}=2}{\overset{n_{f}=5}{\text{ m}_{f}=5}} \text{Let } x \text{ mole of SO}_{2} \text{ (equivalent of SO}_{2} = \text{equivalent of KMnO}_{4})$$

$$x \times 2 = \frac{9 \times 0.008 \times 5}{1000}$$

$$x = \frac{9 \times 0.008 \times 5}{1000 \times 2}$$
weight of SO₂, = x × 64

$$= \left(\frac{9 \times 0.008 \times 5 \times 1000 \times 64}{1000 \times 2}\right) \text{mg} = 11.52 \text{ mg}$$
38. (c) 98 gram 80 gram

$$H_{2}\text{SO}_{4} + 2\text{NaOH} \longrightarrow \text{Na}_{2}\text{SO}_{4} + 2\text{H}_{2}\text{O}$$

$$H_{3}\text{PO}_{4} + \text{NaOH} \longrightarrow \text{Na}_{1}\text{PO}_{4} + \text{H}_{2}\text{O}$$
98 gram 40 gram
40 gram NaOH reacts with 49 gram H_{2}\text{SO}_{4} \text{ and 98}
gram H₃PO₄ to form sulphate and dihydrogen phosphate.wt. ratio
H SO \rightarrow H PO

$$H_2SO_4$$
 . H_3PO_4
49 98
1 · 2 Ans

39. (a) Mol % of oxygen Present in

$$H_2O = \frac{16}{18} \times 100 = 88.88\%$$

- (1) % H_2SO_4 by wt. = 63.30 %
- (2) Mass % of combined SO₃ \Rightarrow = 51.67%
- (3) with 109 g New oleum water can react = 9 g \therefore with 100 g New oleum water can react = new labelling = $100 + 8.25 \Rightarrow 108.25 \%$ 10

(4) Mass % of free SO₃ =
$$\frac{40}{109} \times 100 \Rightarrow 36.69\%$$

- 41. (a) $3NaOH + H_3PO_4 \longrightarrow Na_3PO_4 + 3H_2O$ Total *m* moles of $H_3PO_4 = (10 \times 0.5) = 5$ Require NaOH = 15 m moles
 - *:*..

for Molarity of NaOH required = $\frac{15}{300} \Rightarrow \frac{1}{20}$

$$\frac{V_{1}\left(\frac{1}{10}\right) + V_{2}\left(\frac{1}{30}\right)}{V_{1}+V_{2}} = \frac{1}{20}$$

$$\frac{2}{3}V_{2} + 2V_{1} = V_{1} + V_{2}$$

$$V_{1} = \frac{1}{3}V_{2}$$

$$V_{1} = \frac{V_{2}}{3}$$

$$V_{2} = 3V_{1}$$

$$V_{1} + V_{2} = 1000 \text{ mL}$$

$$4V_{1} = 1000 \text{ mL} = V_{1} = 250 \text{ mL}$$
42. (a) (NH_{4})_{2}HPO_{3}
43. (a) N_{2}(g) + H_{2}(g) \longrightarrow N_{2}H_{2}(g)
6 30 \longrightarrow N_{2}H_{2}(g) + H_{2}(g) \longrightarrow N_{2}H_{4}(l)
6 24 \longrightarrow 0
LR
0 18 6
Volume contraction = (30 + 6) - 18 = 18 L
% of volume contracted = $\frac{18}{36} \times 100 = 50\%$
44. (d) wt = 0.078 gram
 $PV = nRT$
 $1 \times \frac{22.4}{1000} = n \times 0.0821 \times 273$
 $= \frac{0.078}{M \text{ mass}} \times 0.0821 \times 273$
 $R = \frac{0.078}{M \text{ mass}} \times 0.0821 \times 273$
 $H = \frac{0.078}{M \text{ mass}} + 100 = 40\%$
45. (a) 10 gm CaCO₃ contains 4 g Ca
% mass = $\frac{4}{10} \times 100 = 40\%$
46. (a) Volume of 1 mole of CH₃CH₂OCH₃ $\frac{M \text{ mass}}{\text{density}}$
 $= \frac{60}{0.8} = 75 \text{ cm}^{3}$
Volume occupied by 1 molecule = $\frac{75}{6 \times 10^{23}}$
 $= 1.25 \times 10^{-22} \text{ cm}^{3}$
47. (b) Na₂SO₄ $\longrightarrow 2Na^{4} + SO_{4}^{2-}$
1 molecule gives 2 ions of Na⁺
48. (d) One mole A₂ contain 32 mole electron and 36 mole
neutrons.
So, Number of electron in one atom = $\frac{32}{2} = 16$

Number of neutron in one molecule = 36Number of neutron in one atom = $\frac{36}{2} = 18$ Mass number = number of proton + number of neutron = 16 + 18 = 34**49.** (b) Mol. wt. of $Al_2(SO_4)_3 = 342$ No. of moles of $Al_2(SO_4)_3 = \frac{6840}{342} = 20$ moles no. of moles of ions in it = $20 \times 5 = 100$ mole \therefore 4 moles of ions are present in 1 mole Na₃PO₄ \therefore 100 moles of ions are present in $\frac{100}{4}$ mole Na₃PO₄ **50.** (c) ${}_{9}F^{19}{}_{19}K^{39}{}_{32}X^{A}$ 1:1:1 Mole ratio 10:20:(A-32) Number of neutron Average number of neutron $=\frac{10\times1+20\times1+(A-32)}{3}=25$ $A - 2 = 75 \quad \therefore \quad A = 77$ $\therefore \quad \text{av. mass} = \frac{1 \times 19 + 1 \times 39 + 1 \times 77}{3}$ Average Mass = 45**51.** (b) Molecular weight of $C_6H_{12}O_6 = 180$ Number of mole of $C_6H_{12}O_6 = \frac{36}{180} = 0.2$ mole Number of electron in one molecule of C₆H₁₂O₆ $= 6 \times 6 + 12 \times 1 + 6 \times 8 = 96$ Number of electron in 0.2 mole $C_6H_{12}O_6 = 0.2 \times 96 \times$ $N_A = 19.2 N_A$ **52.** (c) $2NH_3 + \frac{7}{2}O_2 \longrightarrow 2NO_2 + 3H_2O_2$ w_1 W_2 $\frac{\frac{w_1}{17}}{2} = \frac{\frac{w_2}{32}}{\frac{7}{2}}; \frac{w_1}{w_2} = \frac{2}{32 \times 7} \times 2 \times 17; = \frac{17}{56}$ Ans **53.** (b) $P_4 + 5O_2 \longrightarrow P_4O_{10}$ $\frac{31}{4 \times 31}$ mole $\frac{32}{32}$ mole \therefore O₂ is limiting reagent So, Number of mole of P_4O_{10} formed = $\frac{1}{5}$ mole wt. of P_4O_{10} formed = $\frac{1}{5} \times 284 = 56.8$ gm 54. (b) Moles of $Na_2SO_4 = 200 \times 0.1 \times 10^{-3}$ Moles of Na⁺ = $(200 \times 0.1 \times 10^{-3}) \times 2 = (2 \times 10^{-2}) \times 2$ Moles of Na₃PO₄ = $100 \times 0.2 \times 10^{-3}$ Moles of Na⁺ = $(100 \times 0.2 \times 10^{-3}) \times 3 = 2 \times 10^{-2} \times 3$ Total moles of Na⁺ = $5 \times 2 \times 10^{-2} = 10^{-1}$

$$M_{\rm Na^+} = \frac{10^{-1}}{300} \times 1000 = \frac{1}{3} = 0.33 \,\mathrm{M}$$
 Ans

55. (b) PPM = $\frac{\text{Parts of solute}}{\text{Part of solution}} \times 10^6 = \frac{\text{wt of solute}}{\text{wt of solution}} \times 10^6$

 $\frac{w}{w}\% = \frac{\text{wt of solute}}{\text{wt of solution}} \times 100$

% Labeling of OLEUM = 100 + wt of water added for obtaining maximum wt of H₂SO₄ in 100 gram Oleum. Since $V \propto T$ So above concentration term independent of temperature or volume.

56. (a) No of e^{-1} in one O^{-1} ion = 8 + 2 = 10e 10 e^{-1} present in one O^{-1} ion

$$\therefore \quad 1 e^{-} \text{ present in one } \frac{1}{10} O^{--} \text{ ion}$$

$$\therefore \quad 1.2 \times 10^{22} \text{ present in one } \frac{1}{10} \times 1.2 \times 10^{22}$$

$$= 1.2 \times 10^{21} \text{ oxideion}$$

$$=\frac{1.2 \times 10^{21}}{6 \times 10^{23}}$$
 mole

$$= 2 \times 10^{-3}$$
 Mole

57. (b) No of proton in one $D_3O^+ = 3 + 8 = 11$ No of neutron in one $D_3O^+ = 3 + 8 = 11$

$$\therefore$$
 ratio of $\frac{n}{p} = \frac{11}{11} = 1:1$ any amount

Since Deuterium have 1P, ln and l e^- Oxygen atom have 8P, 8n and 8 e^-

58. (b)
$$n = \frac{PV}{RT} = \frac{wt}{Mwt}$$

 $\frac{2 \times 14}{0.0821 \times 273} = \frac{80}{Mwt}$
 $\frac{28}{22.4} = \frac{80}{Mwt}$
 $Mwt = \frac{80 \times 22.4}{28} = 64$
 $64 = 32 + x [16]$
 $\therefore x = 2$
59. (b) $\frac{\text{wt of iron}}{M \text{ Mass}} \times 100 = 0.25$
 $= \frac{x \times 56}{89600} = \frac{0.25}{100}$
 $x = \frac{89600 \times 0.25}{56 \times 100} = 4$
60. (a) Mg + $\frac{1}{2}$ O₂ \longrightarrow MgO
Here Mg L.R. \therefore 12 g = $\frac{1}{2}$ mole Mg gives
 $\frac{1}{2}$ mole MgO

∴ wt of MgO =
$$\frac{1}{2} \times 40 = 20$$
 g
12 + 32 = 44 g (Mass conservation)
61. (d) $n_{C_a} = \frac{2.4 \times 10^{24}}{6 \times 10^{23}} = 4$ Mole
 $n_{CI_2} = \frac{Pv}{RT} = \frac{\frac{380}{760} \times 96}{0.0800 \times 300} = \frac{0.5 \times 96}{24.00} = \frac{48}{24} = 2$ Mole
Ca + Cl₂ → CaCl₂
4 2 0
2 0 2 Mole = 2 × 111 = 222 g
62. (a) C₄H₈ + 6O₂ → 4 CO₂ + 4H₂O
3 mole C₄H₈ give → 3 × 4 CO₂ = 12 Mole CO₂
C₆H₆ + O₂ → 6 CO₂ + 3H₂O
3 Mole C₆H₆ gives → 6 × 3 CO₂ = 18 Mole CO₂
12 + 18 = 30 Mole CO₂ = 30 × 44 = 1320 gram.
63. (c) 2KClO₃ = $\frac{50\%}{22.4} = 3$ Mole
3 Mole O₂ produced from 50% impure KClO₃
∴ Moles of pure KClO₃ in impure Sample
 $= 2 \times \frac{2}{3} \times 3 = 4$ Mole
 $= 4 \times [39 + 35.5 + 48] = 490$ gram.
64. (a) No of moles of N₂ = 3*a*
No of moles of O₂ = *a*
 $a = \frac{2.4}{32}$
∴ No of moles of N₂ = $3 \times \frac{2.4}{32}$
Wt of N₂ = $3 \times \frac{2.4}{32} \times 28 = 6.3$ gram
∴ Total Mass = $6.3 + 2.4 = 8.7$ gram
65. (a) Urea NH₂ CONH₂ have 2 atom of Nitrogen in one
Molecule or 2 gram atom in 1 Mole
∴ 20 gram atom in 10 Mole urea = $10 \times 60 = 600$ gram

66. (a)
$$\frac{2.8}{22.4} = \frac{3.5}{M \text{ Mass}}$$

 $M \text{ Mass} = \frac{22.4 \times 3.5}{2.8}$
 $\therefore VD = \frac{M \text{ Mass}}{2} = 14$
67. (b) Ni_{0.98} O₁₀₀ \Rightarrow Ni₉₈ O₁₀₀
 $x [+3] + (98 - x) \times 2 + 100 (-2) = 0$
 $3x + 196 - 2x = 200$
 $x = 4$
 $\frac{4}{98} \times 100 \approx 4\%$

68. (a) No of moles
$$I_2 = \frac{40}{1000} \times 0.1$$

∴ No of atom = $\left[\frac{40}{1000} \times 0.1 \times 6.022 \times 10^{23}\right] \times 2$
= 48.17 × 10²⁰
69. (c) [H⁺] = 0.1 M
H₂SO₄ → 2H⁺ + SO₄
[H⁺] = 0.1 M
∴ M_{H2SO4} = $\frac{0.1M}{2}$ = 0.05 M
70. (b) 1 Molal aq solution means
1 Mole in 1000 gram = 55.5 mole water
∴ Mole fraction = $\frac{1}{1+55.5} = \frac{1}{56.5} = 0.0179 = 0.018$
71. (c) 1 Million = 10⁶
Wt of 10⁶ atom = 1.79×10^{-16} g
∴ Wt of 1 atom = $\frac{1.79 \times 10^{-16}}{10^6}$
∴ wt of N₄ atom = $\frac{1.79 \times 10^{-16}}{10^6}$
∴ wt of N₄ atom = $\frac{1.79 \times 10^{-16}}{10^6}$
% to cluSO₄ = 51.7
No of Moles of CuSO₄ + 5H₂O
wt of CuSO₄ = 95.7
No of Moles of CuSO₄ = No of moles of blue vitriol
 $= \frac{95.7}{63.5+96} = \frac{95.7}{159.5}$
∴ No of water Molecule
 $= \frac{95.7}{159.5} \times 6.022 \times 10^{23} \times 5 = 18.06 \times 10^{23}$
74. (b) Zn + H₂SO₄ → ZnSO₄ + H₂
No of moles of H₂ = $\frac{112}{22400} = \frac{1}{200}$ moles
no of moles of H₂ = No of moles of Zn
 $= \frac{1}{200}$ × 65 = 0.325 g

75. (b) No of moles =
$$\frac{18 \text{ mL} \times 1 \text{ g/mL}}{18} = 1 \text{ mole}$$

No of e^- in one molecule of $H_2O = 2 + 8 = 10$
 \therefore Total No of e^- in 1 Mole = $10 \times 6.022 \times 10^{23}$
 $= 6.022 \times 10^{24}$
76. (b) $n \times 2 + (0.98 - n) \times 3 = 1 \times (-2)$
 $n = 0.94$

$$\therefore \text{ number of } M^{+3} = 0.04$$
Percentage of $M^{+3} = \frac{0.04}{0.98} \times 100 = 4.08\%$
77. (d) $\frac{n_{O_2}}{n_{N_2}} = \frac{\frac{1}{32}}{\frac{4}{28}} = \frac{7}{32}$
78. (c) $M = \frac{V}{11.2} = \frac{11.2}{11.2} = 1 \text{ M}$
 $M = \frac{w}{v} \% \frac{10}{M_A}$
 $1 = \frac{w}{v} \% \times \frac{10}{34}$
 $\frac{w}{v} \% = 3.4\%$
 $M = \frac{w}{v} \% \frac{10 \times 1.034}{34}$
 $\therefore \frac{w}{v} \% = \frac{34}{10.34} = \frac{3400}{1034}$
79. (b) $CO(a \text{ mL}) + CO_2 (150 - a \text{ mL}) = 150 \text{ mL initially}$
 $CO_2 + C(s) \rightarrow 2CO$
 $(150 - a) \text{ mL CO}_2 \text{ gives } 2 [150 - a] \text{ mL CO}$
Total volume after reaction
 $a + 2 [150 - a] = 250$
 $300 - a = 250$
 $a = 50 \text{ mL} = V_{CO}$
 $V_{CO_2} = 100 \text{ mI}$ jinoriginal mixture
 $\frac{50}{150} \times 100 = 33.33\%$
80. (b) $Zn + 2HCI \rightarrow ZnCl_2 + H_2$
 $\frac{130.6}{65.3} = \text{No of moles of } Zn = \text{No of mole of } H_2$
 $\therefore V_{H_2} = \frac{130.6}{65.3} \times 22.4 = 44.8 \text{ L}$
81. (b) % wt of K in KCl = $\frac{39}{74.5} \times 100 = 52.34\%$
% wt of K in KNO₃ = $\frac{39}{101} \times 100 = 39\%$
 $\therefore \%$ of K vary between 39% to 52.34% in mixture of KCl and KNO₃
82. (d) MnO_2 + 4HCl → MnCl_2 (g) + Cl_2 + 2H_2O
 164.2 mL
 $n_{Cl_2} = \frac{PV}{RT} = \frac{\frac{38}{76} \times \frac{164.2}{1000}}{100} = \frac{1}{400} \text{ mole}$
 $\therefore n_{HCl} = \frac{1}{100} \text{ mole} = M \times 0.2$

H₂O_(Vapour)

$$Molarity = \frac{1}{20} = 0.05 M$$

LEVEL II

1. (c) (I) 2 g of hydrogen

number of moles = $\frac{2}{1} = 2 \times N_A$ number of at-

(II) 16 g of sulphur number of moles

$$=\frac{16}{32}=\frac{1}{2}\times N_A$$
 number of atoms

(III) 4 g of oxygen

number of moles = $\frac{4}{16} = \frac{1}{4} \times N_A$ number of atom

(IV) 31 g of phosphorus

number of moles = $\frac{31}{31} = 1 \times N_A$ number of atoms

2. (c) Weight of 1 molecule of $C_x D_y = 1.66 \times 10^{-25}$ kg weight of 1 mole $C_x D_v = 100$ g $x \times 20 + y \times 40 = 100$ weight of 1 mole $C_v D_x = 80$ g 20y + 40x = 80or 40y + 80x = 16040y + 20x = 100

$$60x = 60$$

$$x = 1 \text{ and } y = 2$$

3. (d) In one molecule of $Mg_3N_2 \cdot 3Mg^{+2}$ are present : total number of electron transferred = $3 \times 2 = 6$

4. (a) Weight ratio = 5:1

5.

$$\therefore \quad \text{Molar ratio} = \frac{5}{80} : \frac{1}{16}$$

... ratio of atoms $N_A \times 4: 5 \times N_A$ number of atoms

$$Q = \frac{200 \times \frac{5}{80} \times N_A \times 4}{\frac{1}{16} \times N_A \times 5}$$

$$Q = 200 \times \frac{4}{5} \quad 1(\text{SO}_3) : 1(\text{CH}_4) \text{ mole ratio}$$

$$Q = 160$$
(b) $2A(\text{s}) + B(\text{g}) \longrightarrow 3C(\text{g}) + 4D(1)$

$$\frac{22.4 \text{ L}}{2} = 1 \text{ mole } B \text{ gives } 3 \text{ moles of } C \text{ in excess}$$

B gives 3 moles of C in excess of A22.4 L here B is L. R.

6. (b) Let the mass of sample is 100 Let the mass of FeS is x \therefore Mass of impurities will be 100 - xAfter reaction, Loss = 8 gmRemaining mass of sample = 92 gSince loss is due to FeS converting into Fe₂O₃ \therefore Mass of impurities still remain same = 100 - x: Mass of Fe₂O₃ formed = x - 8 $2\text{FeS} + \frac{7}{2}\text{O}_2 \longrightarrow \text{Fe}_2\text{O}_3 + 2\text{SO}_2$ Apply POAC on Fe atom $\frac{x}{88} = \frac{x-8}{160} \times 2$ x = 88 gram or 88% 7. (b) 7 A + 13 B + $\frac{15}{7}$ $\frac{26}{13}$ $15 \text{ C} \longrightarrow 17 \text{ P}$ 30.5 15 2.1428 2 2.033 LR = BIf $\frac{\text{No of moles}}{\text{Stoichimetric coefficient}}$ Least behave as L.R. $SO_3 \rightarrow 80 \times 5 = 400 \text{ g}$ $H_2SO_4 \rightarrow 20 \times 5 = 100 \text{ g}$ 8. (a) 118% < 100 OLEUM given = 118 g H_2SO_4 500 OLEUM given = 590 g = $\frac{590}{98}$ Mole $H_2SO_4 = 6$ moles $H_2SO_4 + 2KOH \longrightarrow K_2SO_4 + H_2O$ \therefore No. of moles of KOH required $6 \times 2 = 12$ mole for complete neutralisation. 9. (a) $2 \operatorname{Zn} + O_2 \xrightarrow{90\%} 2 \operatorname{ZnO}$ No. of moles of $Zn = \frac{130}{65} = 2$ moles No. of moles of $O_2 = \frac{100}{32} = 2$ moles Zn (LR) *.*.. No. of moles of ZnO = $\frac{90}{100} \times n_{Zn} = 2$ moles $2ZnO + H_2O \rightarrow 2Zn (OH)_2$ Since 1.8 mole ZnO Produced 1.8 mole Zn (OH)₂ \therefore % yield of reaction 100% C_2H_4 $H_2O(l)$ 10. (b) *x* ← C_2H_4 CO_2 Sparking CO N_2 CO N_2 O_2 O_2

1.34 Physical Chemistry-I for JEE (Main & Advanced)

$$\begin{array}{c} x + y + z = 250 & \dots \text{ (i)} \\ C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O \text{ (l)} \\ (2x + y) + z + \left[(250 - (3x + y/2)\right] + 20 = 370 \\ CO + O_2 \longrightarrow CO_2(g) \\ -x + y/2 + z = 100 & \dots \text{ (iii)} \end{array}$$

$$2x + y = 200$$
 ...(ii)
From (i), (ii) and (iii)

$$x = 50, y = 100 \text{ and } z = 100$$

Partial Pressure of C₂H₄ = 50 mmHg

11. (c)
$$y \leftarrow C_2H_4$$

 $z \leftarrow C_2H_4$
 $z \leftarrow C_0$
 $x + y + z = 250$
 $C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O(l)$
 $(2x + y) + z + [(250 - (3x + y/2)] + 20 = 370$
 $CO + O_2 \longrightarrow CO_2(g)$
 $-x + y/2 + z = 100$
 $2x + y = 200$
From (i), (ii) and (iii)

$$x = 50, y = 100 \text{ and } z = 100$$

- Total Oxygen consume = 200 mmHg
- 12. (d) 118% oleum means in 100 gram oleum by adding 18 gram water it gives 118 gram H_2SO_4 n_{H_2O} added = n_{SO_3} Present in 100 gram Oleum by adding 9 gram or $\frac{1}{2}$ mole water $\frac{1}{2}$ mole SO₃ change into H₂SO₄ and $\frac{1}{2}$ mole $SO_3 = 40$ gram SO_3 present in 109 gram Oleum :. % wt of SO₃ = $\frac{40}{109} \times 100 = 36.7\%$ H_2SO_4 H_2SO_3 H_3PO_4 13. (a) HCl 36.5 98 82 $4\% \text{ w/v} \Rightarrow 1 \text{ Molar NaOH}$ $H_3PO_4 + 3NaOH \longrightarrow Na_3PO_4 + 3H_2O$ 3 9 moles Moles of NaOH required = $9 = M_1 V_1 \Rightarrow V_1 = 9$ litres $V_1 = 9000 \text{ mL}$ 14. (a) $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$ x mL $C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O_2$ y mL Volume of hydrocarbon (x + y)20 Va

Volume of
$$O_2 = \frac{20}{100} \times 350 = 2x + 3y$$

 $x + y = 30$...(1)
 $2x + 3y = 70$...(2)
 $2x + 2y = 60$
 $y = 10$
Thus volume of $C_2H_4 = 10$ mL

volume of
$$CH_4 = 20 \text{ mL}$$

If ratio changed $y : x$ then

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$

$$C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O$$

Total $O_2 = 10 \times 2 + 20 \times 3 = 80 \text{ mL}$ Volume of $O_2 = \frac{20}{100} \times \text{volume of air} = 80 \text{ mL}$ Volume of air = 400 mL.

- 15. (a) Let 100 mL of air and 100 mL of H_2 is taken 100 mL air contain 80 mL N_2 and 20 mL O_2
- $N_{2}(g) + 3H_{2}(g) \longrightarrow 2NH_{3}(g)$ $80 \quad 100 \qquad \frac{2}{3} \times 100 = 66.67$ L.R. $4NH_{3} + 5O_{2} \longrightarrow 4NO + 6H_{2}O$ $66.67 \quad 20 \text{ L.R.}$ $H_{2} \text{ and } O_{2} \text{ Limiting regent}$ $\therefore \text{ Completely exhausted.}$ 16. (b) $Ca_{3}(PO_{4})_{2} + 8Mg \longrightarrow Ca_{3}P_{2} + 8MgO$
- Excess 8 mole 1 mole 8 mole $Ca_3P_2 + 6H_2O \longrightarrow 3Ca(OH)_2 + 2PH_3$ 1 mole Excess 3 mole 2 mole $2PH_3 + 4O_2 \longrightarrow P_2O_5 + 3H_2O$ 2 mole Excess 1 mole 3 mole $MgO + P_2O_5 \longrightarrow Mg(PO_3)_2$ 8 mole 1 mole 1 mole LR wt = 182 gram.
- **17.** (b) In 1 Liter or 1000 mL $w_{sol.} = V \times d = 1140 \text{ gram}$ $w_B = 7 \times 30 = 210 \text{ gram}$ $w_A + w_{solvent} = 930$ $10n_A + w_{solvent} = 930$ $x_A = 0.05 = \frac{n_A}{n_A + 7 + \frac{W_{H_2O}}{18}}$
- **18.** (b) Moles of $Na_2SO_4 = 200 \times 0.1 \times 10^{-3}$ Moles of $Na^+ = (200 \times 0.1 \times 10^{-3}) \times 2 = (2 \times 10^{-2}) \times 2$ Moles of $Na_3PO_4 = 100 \times 0.2 \times 10^{-3}$ Moles of $Na^+ = (100 \times 0.2 \times 10^{-3}) \times 3 = 2 \times 10^{-2} \times 3$ Total moles of $Na^+ = 5 \times 2 \times 10^{-2} = 10^{-1}$

$$M_{\rm Na^+} = \frac{10^{-1}}{300} \times 1000 = \frac{1}{3} = 0.33 \,\rm M$$
 Ans

19. (b) Milli equivalent of H_2O_2 = Milli equivalent of $KMnO_4$

$$2 \times M \times 10 = 25 \times 0.2 \times 5$$
$$M = 1.25$$

/olume strength of
$$H_2O_2 = 11.2 \times molarity$$

 \Rightarrow 11.2 × 1.25 = 14 V

$$O = \frac{24.5}{98} \times 4 = 1 \text{ mol atom} = N_A \text{ atoms}$$

number of electrons = $\frac{1.6}{16} \times 10 \times N_A$ electrons
= N_A electrons

Number of molecules

$$= \frac{PV}{RT} \times N_A = \frac{1 \times 11.2 \times N_A}{0.0821 \times 546} = \frac{N_A}{4}$$

 N_A moles of H = N_A moles of P⁺

Total number of atoms = $\frac{4}{3} \times 3 \times N_A = 4 N_A$ atoms

21. (a) Let molarity of HCl is x and H₂SO₄ is ym mole m mole

$$\underbrace{x \times 25 + 2y \times 25}_{m \text{ mole of } [\text{H}^+]} = 10 \times 1$$

Applying POAC on Cl Atom

$$\frac{20 \times x}{1000} = \frac{0.1435}{143.5} = 10^{-3}$$
$$x = \frac{1}{20} = 0.05 \text{ M}$$
$$y = \frac{8.75}{50} = 0.175 \text{ M}$$

22. (c) $H_4P_2O_7 + 2 \text{ NaOH} \longrightarrow \text{Na}_2H_2P_2O_7 + 2H_2O_7$

$$\frac{534}{178} \qquad \frac{30 \times 10^{23}}{6 \times 10^{23}}$$

3 Mole 5 Mole (L.R.)

No of moles of $Na_2H_2P_2O_7 = \frac{5}{2}$ moles = 2.5 no. of moles of $H_2O = 5$ Mole

- Total No. of Moles of product = 5 + 2.5 = 7.5Total No. of molecules of product = $7.5 N_A$
- **23.** (a) $P_4 + 5 O_2 \rightarrow P_4 O_{10}$ 0.2

L.R. expected No of moles $P_4O_{10} = \frac{0.2}{5} = 0.04$ mole expected wt of $P_4O_{10} = 0.04 \times 284 = 11.36$ % yield = $\frac{\text{actual wt}}{\text{expected wt}} \times 100$ $=\frac{10}{11.36}\times 100 = 88.13\%$ 24. (a) $2NaN_3(s) \longrightarrow 2Na(s) + 3N_2(g)$ wt of $N_2 = Vxd = 368 \times 1.12$

No. of moles of N₂ =
$$\frac{368 \times 1.12}{28}$$

 \therefore No. of moles of NaN₃ = $\frac{2}{3} \times \left(\frac{368 \times 1.12}{28}\right)$

:. wt of NaN₃ =
$$\frac{2}{3} \times \left[\frac{368 \times 1.12}{28}\right] \times (23 + 42)$$
 gram
= 0.638 Kg

- 25. (c) During excess chlorination All Ag Br change into AgCl.
- 26. (c) Semimolal = $\frac{1}{2}$ m means $\frac{1}{2}$ mole NaOH in 1000 gram water

 \therefore wt of solution = $\frac{1}{2} \times 40 + 1000 = 1020$ gram

$$\therefore \qquad \frac{w}{w}\% = \frac{20}{1020} \times 100 = 1.96\%$$

27. (c) Volume contraction occur if No of moles of gaseous product less than No of moles of gaseous reactant

30. (a)
$$S_8 \longrightarrow SO_3$$

Apply POAC on S atom

$$8 \times n_{\mathrm{S}_8} = 1 \times 20$$

$$\therefore \qquad n_{\mathrm{S}_8} = \frac{20}{8} = \frac{5}{2} \text{ moles}$$

31. (d) CH₄ + 2O₂ \rightarrow CO₂ + 1 mole 10 mole 0 $2H_2O$ 0 LR

$$\therefore \quad n_{H_2O} \text{ Produced} = 2 \times 1 = 2 \text{ moles}$$
$$2 \times 18 \text{ g} = 36 \text{ g} = 36 \text{ mL.}$$
(at 27°C water exist in liquid state)

32. (c) Na₂ CO_{3w gram} \rightarrow Melt (Do not decompose) $CaCO_3 \rightarrow CaO + CO_2$

wgramCaCO₃ or
$$\frac{w}{100}$$
 moleCaCO₃ gives $\frac{w}{100}$ molesCO₂

$$n_{\rm CO_2} = \frac{w}{100}$$

wt of
$$CO_2 = \frac{w}{100} \times 44 = 0.44 \text{ w}$$

 $\therefore \% \text{ loss in wt} = \frac{\text{wt of } CO_2}{\text{wt of reactant taken}} \times 100$

$$=\frac{0.44W}{W+W} \times 100 = 22\%$$

33. (a) Conceptual

34. (b) No of moles of NO₂ =
$$\frac{112}{22400} = \frac{1}{200}$$
 mole
∴ wt of NO₂ = $\frac{1}{200} \times 46$ g = 0.23
∴ Volume = $\frac{\text{wt}}{\text{density}} = \frac{0.23}{1.15} = 0.2$ mL

1.36 Physical Chemistry-I for JEE (Main & Advanced)

No of molecules = n. N_A $=\frac{1}{200} \times 6.022 \times 10^{23}$ $= 3.01 \times 10^{21}$ molecules **35.** (a) Mol. wt. of adipic acid = 146No. of mole of adipic acid = $\frac{58.4 \text{ g}}{146 \text{ g}} = 0.4 \text{ mole}$: One molecule of adipic acid contains 10 H-atoms. : No. of mole of H-atom in given adipic acid $= 0.4 \times 10$ mole = 4 mole. wt. of H-atom = 4 g = 4000 mg**36.** (c) SO₃ $: C_2H_6$ 16 15 30 80 . 1 1 5 $\overline{2}$ Mole 2 : 5 Atom 8 : 40 \therefore ratio of No atoms in C₂H₆ and SO₃ $40:8 \Rightarrow 5:1$ 37. (c) Given: $2As(s) + 3H_2(g) \longrightarrow 2AsH_3$; $\Delta H = -770 \text{ kJ}$: Heat of formation of AsH₃ $=\frac{-770}{2}=-385$ kJ/mole. no. of mole of AsH₃ given = $\frac{31.2}{78}$ = 0.4 mole then heat released = $385 \times 0.4 = 154$ kJ. **38.** (b) Initial volume = $\frac{n_1 RT}{P_1} = \frac{5 \times R \times 300}{1} = 1500 R L$ Final volume = $\frac{(n_1 + n_2)RT}{P_2} = \frac{(5+2)R \times 300}{1.05}$ = 2000 R LChange in volume = 2000 R - 1500 R= 500 R $= 500 \times 0.08$ = 40 L39. (d) X 2v+ 3z $\rightarrow xy_2z_3$ $\frac{2 \times 10^{23}}{6 \times 10^{23}}$ $\frac{10}{60}$ 0.6 1 1 $\frac{6}{100}$ mole

Here Z(L R) because Number of moles/Stoichiometry coefficient minimum

$$\therefore \text{ Moles of } XY_2 Z_3 = \frac{1}{3} \text{ Moles of } z$$
$$= \frac{1}{3} \times \frac{6}{100} = \frac{1}{50} \text{ mole}$$

$$\frac{1}{50} = \frac{5.6}{M \text{ mass}}$$

$$\frac{1}{50} = \frac{5.6}{60 + 160 + 3z}$$

$$220 + 3Z = 280$$

$$3Z = 60$$

$$Z = 20$$
40. (c) $N_{\text{H}_2\text{O}_2} = \frac{V}{5.6}$

$$V = \text{volume of O}_2 \text{ evolved at STP from 1 L H}_2\text{O}_2 \text{ solution}$$
Moles of Cl₂ = moles of O₂ = $\frac{896}{22400} = 0.04$
equivalent of H₂S = equivalent of HClO₃

$$= \text{equivalent of Cl}_2 = n_f \cdot \text{N}$$

$$= 10 \times 0.04 = 0.4$$
H₂S + 8HClO₃ \longrightarrow 4Cl₂ + H₂SO₄ + H₂O
No of moles of HClO₃ = $\frac{1}{2}$ moles of Cl₂

$$= \frac{1}{2} \times 0.04 = 0.02 \text{ moles}$$

$$M = \frac{0.02}{40 \times 10^{-3}} = \frac{20}{40} = \frac{1}{2} \text{M} = 0.5 \text{ M}$$

LEVEL III

1

1. (a)
$$2 \text{ Mg} + \text{O}_2 \longrightarrow 2\text{MgO}$$

 $3 \text{ Mg} + \text{N}_2 \longrightarrow \text{Mg}_3\text{N}_2$
 $\text{Mg}_3\text{N}_2 + 6\text{H}_2\text{O} \longrightarrow 3\text{Mg}(\text{OH})_2 + 2\text{NH}_3$
 3.4 g
Wt of $\text{NH}_3 = 3.4 \text{ g}$
 $n_{\text{NH}_3} = [n_{\text{Mg}}] \left[\frac{1}{3}\right] \left[\frac{2}{1}\right]$
 $n_{\text{NH}_3} = \frac{2}{3} \times n_{\text{Mg}}$
 $\frac{w_{\text{Mg}}}{24} \times \frac{2}{3} = \frac{3.4}{17}$

 $w_{\rm Mg}$ = 7.2 gm which converted into 3.4 g NH₃ wt. of Mg left = 24 - 7.2 = 16.8 g 2 mole Mg gives = 2 mole MgO

$$\frac{16.8}{24}$$
 mole Mg give $\frac{16.8}{24}$ mole MgO
wt of MgO = $\frac{16.8}{24} \times 40 \times 28$ g

2. (b) Factor level method in $3 \text{ Mg} + \text{N}_2 \longrightarrow \text{Mg}_3\text{N}_2$ $Mg_3N_2 + 6H_2O \longrightarrow 3Mg(OH)_2 + 2NH_3$

:..

$$n_{Mg(OH)_{2}} = [n_{Mg}] \left[\frac{1}{3} \right] \left[\frac{3}{1} \right]$$

$$\frac{7.2}{24} = \frac{w_{Mg(OH)_{2}}}{58}$$

$$w_{Mg(OH)_{2}} = 17.4 \text{ g}$$
3. (b) % Mg = $\frac{7.2}{24} \times 100 = 30 \%$
4. (b) $C_n H_{2n+2} + \frac{3n+1}{2} O_2 \longrightarrow nCO_2 + (n+1) H_2O$

$$nx \text{ mL } CO_2 \text{ gas}$$

$$C_n H_{2n} + \frac{3n}{2} O_2 \longrightarrow nCO_2 + nH_2O$$

$$n(12 - x) \text{ mL } CO_2 \text{ gas}$$

$$\left(\frac{3n+1}{2} \right) x + \frac{3n}{2} (12 - x) = \frac{285}{100} \times 20$$
Total volume of $CO_2 = nx + (12 - x)n = 36$

$$\Rightarrow nx + 12x - nx = 36$$

$$12n = 36 \therefore n = 3$$

$$3nx + x + 36n - 3nx = 114$$

$$36n + x = 114 \qquad \dots(1)$$

$$12n = 36$$

$$n = 3 \qquad \dots(2)$$

$$x = 6 \text{ mL}$$

$$\therefore \text{ Alkane is } C_3H_8$$

5. (b)
$$C_{3}H_{8}(g) + 5 \overset{\circ}{O}_{2}(g) \longrightarrow 3 CO_{2}(g) + 4H_{2}O(l)$$

 $6 \text{ mL} 30 \text{ mL} 18 \text{ mL} 24 \text{ mL}$
9

$$C_{3}H_{6}(g) + \frac{9}{2}O_{2}(g) \longrightarrow 3 CO_{2}(g) + 3H_{2}O(l)$$

6 mL 27 mL 18 mL 18 mL
a fraction of CO

mole fraction of CO₂

$$= \frac{V_{\rm CO_2}}{V_{\rm N_2} + V_{\rm CO_2}} = \frac{36}{228 + 36} \Longrightarrow \frac{36}{264} = \frac{6}{44}$$

6. (b) 1292.5 gram solution of bucket contains
5 mole NaCl in 1 kg water
Let *x* moles of NaCl and *y* kg of water is added to bucket from tap

$$\frac{x}{y} = 2, \qquad \frac{5+x}{1+y} = 4$$

$$\Rightarrow x = 1 \text{ mol.}$$

$$y = \frac{1}{2}$$
kg

amount of solution finally present

$$= 1292.5 + x \times 58.5 + y \times 1000$$
$$= 1292.5 + 58.5 + 500$$

7. (c) Total wt of NaCl and water added to bucket from tap = 58.5 + 500 = 558.5 gram

Time taken
$$\frac{558.5}{0.5} = 1117$$
 sec.

8, 9, 10.

$$2 \text{ Mn } (\text{OH})_{2} + \frac{1}{2} \text{ O}_{2} + \text{H}_{2} \text{ O}(1) \rightarrow 2 \text{ Mn } (\text{OH})_{3}$$

$$n_{\text{Mn}(\text{OH})_{3}} = \frac{2}{1/2} \text{no}_{2}$$

$$2 \text{ Mn } (\text{OH})_{3} + 2 \text{ KI} + 3\text{H}_{2}\text{SO}_{4} \rightarrow 2\text{MnSO}_{4} + \text{K}_{2}\text{SO}_{4} + \text{H}_{2 (\text{aq})} + 6\text{H}_{2}\text{O}$$

$$n_{\text{I}_{2}} = \frac{1}{2} n_{\text{Mn}(\text{OH})_{3}}$$

$$\text{I}_{2} + 2\text{Na}_{2} \text{ S}_{2}\text{O}_{3} \rightarrow 2 \text{ NaI} + \text{Na}_{2} \text{ S}_{4} \text{ O}_{6}$$

$$n_{\text{Na}_{2}\text{S}_{2}\text{O}_{3} = \frac{2}{1} \times \frac{1}{2} \times \frac{4}{1} \times \text{no}_{2}$$

$$n_{\text{Na}_{2}\text{S}_{2}\text{O}_{3} = 4 \times \text{no}_{2}}$$
In heavily polluted water = 6.4 mg / Liter O₂ is present
$$n_{\text{Na}_{2}\text{S}_{2}\text{O}_{3} = 4 \times \text{no}_{2}$$

$$0.01 \times \text{ML} = 4 \times 664$$

$$0.01 \times VL = 4 \times \frac{0.4}{1000 \times 32}$$

V = 0.08 L = 80 mL

For optimum fit water = 9.6 mg/Liter O_2 is present

$$0.1 \times V/L = 4 \times \frac{9.6}{1000 \times 32}$$

$$V = 0.012 L = 12 mL$$

In order to react with O_2 in Stage I solution of Mn^{+2} should be excess

11. (a, b)

(i) NaOH + CH₃COOH \rightarrow CH₃COONa + H₂O 0.4 × 0.1 0.100 × 0.4 0.04 mole 0.04 mole 0 0 0 0 0 0.04 mole 0.04 mole Salt of weak acid and strong base formed \therefore basic

(ii)
$$M = \frac{W}{V} \% \frac{10}{M_A} = \frac{x \times 10}{40}$$
 for NaOH
 $M = \frac{x \times 10}{98}$ for H₂SO₄
 $(n_f \text{MV})_{\text{NaOH}} > (n_f \text{MV})_{\text{H_2SO_4}} \therefore$ basic

(iii) If volume of NaOH $< \frac{\text{Volume of HCl}}{2}$ then basic

(iv) 40 gram NaOH means 1 mole NaOH and 40 gram

HCl means
$$\frac{40}{36.5} > 1$$

∴ Solution acidic in nature 12. (a, b. c)

$$\begin{array}{ccc} (\mathbf{a}, \mathbf{b}, \mathbf{c}) \\ N_2 + & 3H_2 \rightarrow & 2NH_3 \\ \hline \frac{140}{28} & \frac{40}{2} & 0 \end{array}$$

5 mole 20 mole 0
0 5 mole 10 mole
10 × 17 = 170 gram
⇒ % Yield = 80 =
$$\frac{Actual wt}{expeted wt}$$
 × 100
 $\frac{80}{100} = \frac{w}{30}$
∴ w = 24 gram.
⇒ N₂ (L. R) completely consumed in reaction
⇒ $\frac{50}{100} = \frac{w}{170}$
∴ w = 85 gram.
13. (b, c) 109% OLEUM by adding 9 gram water in 100
gram OLEUM of water required = $\frac{500}{100} \times 9 = 45$
∴ Total wt = 545 gram
∴ by adding 100 gram water 545 gram H₂SO₄ and 55
gram water present in solution
 $M = \frac{nH_2SO_4}{VL} = \frac{545}{98 \times 100} L = 0.056 M$
14. (a, b, d)
(i) 2 CO + O₂ → 2 CO₂
2a a 0
0 0 2a
 $V_i = 3a V_f = 2a$
 $\Delta v = 3a - 2a = a$
 $\frac{a}{3a} \times 100 = 33.3\%$
(ii) CH_{4(g)} + 2O_{2(g)} → CO_{2(g)} + 2H₂O₍₁₎
10 30
0 10 10
 $V_f = 40 \text{ mL}$
 $V_f = 20 \text{ mL}$
∴ $\frac{\Delta v}{v} \times 100 = \frac{20}{40} \times 100 = 50\%$
15. (a, b) C + O₂ → CO + CO₂
POAC on C atom
 $1 \times \frac{12}{12} = 1 \times n_{CO} + 1 \times n_{CO_2} = a + b$ (i)
POAC on oxygen atom
 $2 \times \frac{24}{32} = 1 \times a + 2b$
 $\frac{3}{2} = a + 2b$ (ii)
(ii) -(i)
 $b = \frac{1}{2}$ mole and $a = \frac{1}{2}$ mole.
⇒ If mass = Volume means
density = 1 m/mL

M = m

....

17. (a,b,d) $\frac{5.3}{106} \times 2N_A = \frac{4}{40} \times N_A$ $=\frac{5.85}{585}N_{A}=\frac{5.6}{164}\times 3N_{A}\neq 2\times 0.25N_{A}$ **18.** (a, b) $n \text{Na}_2 \text{SO}_4 = \frac{1}{2} \times \frac{40}{100} \times \frac{4}{40} = \frac{2}{100} = 2 \times 10^{-2}$ $nNH_3 = \frac{1}{2} \times \frac{40}{100} \times \frac{4}{40} \times 2 = \frac{40}{100} \times \frac{4}{40}$ $nNH_4Cl = \frac{40}{100} \times \frac{4}{40} \times \frac{80}{100} = 32 \times 10^{-3}$ $\frac{32 \times 10^{-3}}{2 \times 10^{-2}} = 1.6$ times \Rightarrow $n_{\rm NaOH} > n_{\rm HCl}$ always in above reaction If % yield 100% Then $n_{\text{NaOH}} = n_{\text{HCl}}$ mass of NH₄Cl = $32 \times 10^{-3} \times 53.5 = 1.712$ g. \Rightarrow **19.** (a, d) $\frac{225 \times 10^{-22}}{74} = 3 \times 10^{-22}$ mole $= 3 \times 10^{-22} \times 6 \times 10^{23}$ = 180 molecule $= 2 \times 180$ Oxygen atom $= 2 \times 180 \times 16 \text{ amu}$ $\Rightarrow \quad 1.8 \times 10^{-22} \times 6.022 \times 10^{23} = 108.396$ $\Rightarrow \frac{10}{100} = 0.1 \text{ mole CaCO}_3$ 0.1 mole CaCO₃ contains 0.3 gram atom of oxygen $\Rightarrow 2 \times 8 \times N_{A}^{2} < 5.5 \times 3 \times N_{A} = 16 N_{A} < 16.5 N_{A}$ **20.** (a, d) $P = \frac{nRT}{V}$ $P = \frac{w}{V} \times \frac{RT}{M_{\text{mass}}}$ $P = \frac{dRT}{M_{\text{mass}}}$ $\frac{P \times M_{\text{mass}}}{RT} = d$ \rightarrow relative density independent of *P* and *T* \rightarrow V.D = $\frac{M_{\text{mass}}}{2}$ which is independent of P or T $\rightarrow \frac{M_{\text{mass}} \text{ of } SO_3}{M_{\text{mass}} \text{ of } O_2} = \frac{80}{32} = 2.5$ 21. (a, c) $\begin{array}{c} H_2 + \frac{1}{2} & O_2 \rightarrow & H_2O(l) \\ \Rightarrow & 30 & 25 & - \\ 0 & 10 & - \end{array}$ Volume contraction = 55 - 10 = 45

16. (a, d) Conceptual

55

(i)

$$\therefore \text{ volume contraction} = 55 - 5 = 50 \text{ mL}$$

$$H_2 + \frac{1}{2} \quad O_2 \rightarrow H_2O(1)$$

$$\Rightarrow 40 \quad 15 \quad 0$$

$$10 \quad 0 \quad --$$

$$\therefore \text{ Volume contraction } 55 - 10 = 45$$

$$H_2 + \frac{1}{2} \quad O_2 \rightarrow H_2O(l)$$

$$\Rightarrow 35 \quad 20 \quad 0$$

$$0 \quad 2.5 \quad --$$

$$55 \quad -2.5 \quad = 52.5 \text{ mL}$$

$$\text{volume contraction } 55 - 2.5 = 52.5 \text{ mL}$$

$$\text{volume contraction } 55 - 2.5 = 52.5 \text{ mL}$$

$$22.4 \text{ L} = \frac{22400 \text{ ml} \times 1 \text{ gm/ml}}{18} \times 6.02 \times 10^{23} \text{ molecules}$$

$$\Rightarrow \text{ in } 100 \text{ gram OLEUM } \frac{4.5}{18} = \frac{1}{4} \text{ mole } \text{ SO}_3 \text{ Perfect}$$

$$\therefore \text{ in } 10 \text{ gram OLEUM } = \frac{1}{10} \times \frac{1}{4} = \frac{1}{40} \text{ mole}$$

$$= \frac{1}{40} \times 80 = 2 \text{ gram } \text{SO}_3$$

$$\Rightarrow V_{\text{Solution}} = \frac{V_1 d_1 + V_2 d_2}{10}$$

$$V_{\text{Solution}} = \frac{V_1 u_1 + V_2 u_2}{(d) \text{ solution}}$$

:. Volume contraction and volume expansion possible.

23. (a, b, c, d)

- \Rightarrow Both have N_A particle
- \Rightarrow N_A particle means 1 mole
- \Rightarrow 1 gram atom = Atomic wt in gram = 1 mole
- \Rightarrow 1 gm atom have N_A atom

24. (b, c, d)
$$\frac{6.022 \times 10^{23}}{6.022 \times 10^{23}} \times 80 \text{ gm} = 8 \text{ kg}$$

$$\Rightarrow \frac{4.8}{48} = 0.1 \text{ mole}$$

= 0.1 N_A molecule
= 0.3 N_A Oxygen atom
= 0.3 × 6.02 × 10²³ = 1.806 × 10²³
$$\Rightarrow \frac{22.7}{22400} × 30 \text{ gram}$$

$$\Rightarrow \frac{51 \times 10^{-3}}{17} = \frac{V}{22.4} = 67.2 \times 10^{-3} \text{ L}$$

25. (a, c, d) $\frac{2.25 \times 10^{-22}}{74} = 3 \times 10^{-24} \text{ mole}$

$$= 3 \times 10^{-22} \times 6 \times 10^{23}$$

= 1.80 molecule
= 2 × 1.80 Oxygen atom
= 2 × 1.80 × 16 amu
$$\Rightarrow 1.8 \times 10^{-22} \times 6.022 \times 10^{23} = 108.396$$

$$\Rightarrow \frac{10}{100} = 0.1 \text{ mole CaCO}_3 \text{ contains } 0.1 \text{ gram atom C}$$

$$\Rightarrow 2 \times 8 \times N_A < 5.5 \times 3 \times N_A = 16 N_A < 16.5 N_A$$

26. (b, d)

(A) Molarity = $\frac{\text{Mole}}{\text{Liter}}$ In case of very dilute solution Volume of solution = Volume of solvent molality = mole/kg 1 kg of solvent = 1000 gramas density of solvent $CCl_4 = 1.6 \text{ g/mL}$ \therefore Volume of solvent = $\frac{1000}{1.6}$ ml *:*.. molarity > molality (B) $\frac{196}{178} \times 100\%$ OLEUM 178 gm oleum means 80 g SO_3 and 98 gm H_2SO_4 % of combine SO₃ = $\frac{\frac{80}{98} \times 100}{178}$ (C) $0.0821 \text{ L} \text{ atm } \text{K}^{-1} \text{ mol}^{-1}$ $0.0821 \times 10^{-3} \text{m}^3 \times 760 \text{ mm Hg K}^{-1} \text{ mol}^{-1}$ $0.0821 \times 10^{-3} \times 760 \text{ Hg m}^3 \text{ mol}^{-1} \text{ K}^{-1}$ $0.0821 \times 0.76 \text{ Hg m}^3 \text{ mol}^{-1} \text{ K}^{-1}$ (D) Volume change as $\Delta ng \neq O$ So vapour density will change A, C are correct and B D are incorrect 27. (A - p, q, s); (B - p, q); (C - r) (A) $A_2 \rightarrow B_2 \rightarrow$ 2 AB4 8 0 0 4 8 $2AB_3$ 0 4 0 4 (B) $A_2 + B_2 \rightarrow$ 2AB5 2 0 0 3 4 $\begin{array}{ccc}
2AB & + & 2B_2 \rightarrow \\
4 & & 3
\end{array}$ $2AB_3$ 0 1 0 3 (C) $A_2 + B_2 \rightarrow$ 2AB2 1 0 0 2 1 28. (A - p, q, r); (B - p, r); (C - p, r); (D - s) (A) 1 Mole $O_2 = 22.4$ Liter at STP $= 1 \times 32$ gram = $1 \times N_A$ O₂ Molecules (B) 1 Mole $SO_2 = 22.4$ Liter at STP $= 1 \times 64$ gram = $1 \times N_A SO_2$ Molecules (C) 4 gram He = 1 mole = 22.4 Liter at STP $= N_A atom$

1.40 Physical Chemistry-I for JEE (Main & Advanced)

(D) 1 gram H₂ =
$$\frac{1}{2}$$
 Mole
= $\frac{1}{2} \times 22.4 = 11.2$ Liter at STP or 12.3
L at 1 atm and 300 K
= $\frac{1}{2} \times N_A$ (H₂ Molecule.)

29. (A - p, r); (B - q, r); (C - p, s); (D - q, r) Isotope-I = M_1 Isotope-II = M_2 % by mole = $\frac{M_{\text{avg}} - M_1}{M_2 - M_1} \times 100$ % by mass = % by mole $\times \frac{M_2}{M_{ave}}$ (A) $\frac{(Z) - (Z - 1)}{(Z + 2) - (Z - 1)} \times 100 = \frac{1}{3} \times 100 = 33.33\%$ % by mass = $33.33 \times \frac{(Z+2)}{Z}$ (B) $\frac{(Z+2) - (Z+1)}{(Z+3) - (Z+1)} \times 100 = \frac{1}{2} \times 100 = 50\%$ $50 \times \frac{(Z+3)}{(Z+2)} = \frac{50Z+150}{Z+2}$ (C) $\frac{2Z-Z}{3Z-Z} \times 100$ $=\frac{Z}{2Z} \times 100 = 50$ $=50 \times \frac{3Z}{2Z} = 75\%$ (D) $\frac{(Z) - (Z - 1)}{(Z + 1) - (Z - 1)} \times 100$ $=\frac{1}{2} \times 100 = 50$ $=\frac{50\times(Z+1)}{Z}$ $=\frac{50Z+50}{7}$ **30.** (A - p, q); (B - q); (C - p, q, r, s); (D - q, s) (A) 1 g ion Na⁺ = 1 Mole Na⁺ $= 10 \times N_A$ electron $= 11 \times N_A$ Proton $= 1.6 \times 10^{-19} \times 6.022 \times 10^{23}$ coulomb Charge $= 12 \times N_A$ neutron (B) 23 g Na = 1 Mole Na Atom

$$= 11 \times N_A \text{ electron}$$
$$= 11 \times N_A \text{ Proton}$$

$$= 12 \times N_A$$
 Neutron

(C) 1 g ion $Mg^{+2} = 1$ Mole Mg^{+2} ion $= 10 \times N_A$ electron = $12 \times N_A$ Proton $= 12 \times N_A$ Neutron $= 2 \times 1.6 \times 10^{-19} \times 6.022 \times 10^{23}$ Coulomb charge (D) 24 g Mg = 1 Mole Mg $= 12 N_A$ electron $= 12 N_A Proton$ $= 12 N_A$ neutron 31. (A - p, r, s, t); (B - p); (C - p, q, t); (D - q, r) $0.5 \text{ mole CO}_2 = 0.5 \times 22.4 = 11.2 \text{ L}$ $= 0.5 \times 44 = 22$ g = $0.5 \times 3N_A = 1.5 \times 6.022 \times 10^{23}$ atom = $0.5 \times N_A = 3.01 \times 10^{23}$ Molecule (B) 2 gram He = $\frac{1}{2}$ Mole = 11.2 Liter at STP (C) 0.5 gm molecule $O_3 = 0.5$ mole O_3 = 11.2 L at STP $= 0.5 N_A$ Molecule $= 0.5 \text{ N}_{\text{A}} \times 3 = 1.5 \times 6.02 \times 10^{23} \text{ atom}$ $= 0.5 \times 48 \text{ g}$ = 24 g(D) $\frac{4.515}{6.02} \times \frac{10^{23}}{10^{23}} = 0.75$ mole $= 0.75 \times 32 = 24$ gram $= 0.75 \times N_A \times 2$ atom 32. (A - q); (B - q); (C - s); (D - r) (A) No of oxygen atom = $0.5 \times 8 N_A = 4 N_A$

- (B) No of carbon atom in CH₃ radical = $\frac{89.6}{22.4}$ = 4 N_A
- (C) No of S atom in 192 gm of $SO_2 = \frac{192}{64} = 3 N_A$
- (D) No of Cl atom in 15 × 10²³ Molecule = $\frac{15 \times 10^{23}}{6 \times 10^{23}} \times 2 = 5 N_A$
- 33. (A p, q, r, t); (B p, r, t); (C p, r); (D s)
 (A) 1 mole of O₂ :- Occupies 22.4 lit at 1 atm and 0°C weighs 32 gm. Contains 2 mole of (O), oxygen atom Collection of N_A units of given substance.
 (B) 1 mole of SO₂ :- Weight 64 gm, occupies 22.4 lit at 1 atm and 0°C

1 atm and 0°C, Collection of N_A units of given substance.

- (C) 4 g of He :- Occupies 22.4 lit at 1 atm and 0°C.
 Collection of N_A units of given substance.
- (D) 1 g of H_2 :- Occupies 12.3 lit at 1 atm and 300 K.
- **34.** $[Cl_2 + 2 \text{ KOH} \rightarrow \text{KCl} + \text{KClO} + \text{H}_2\text{O}] \times 12$ $[3\text{KClO} \rightarrow 2\text{KCl} + \text{KClO}_3] \times 4$ $4 \text{ KClO}_3 \rightarrow 3 \text{ KClO}_4 + \text{KCl}]$

Mole Concept 1.41

 $12 \text{ Cl}_2 + 24 \text{ KOH} \rightarrow 3 \text{ KClO}_4 + 21 \text{ KCl} + 12 \text{ H}_2\text{O}$ 10 22 2 gives $\frac{3}{12} \times 10 = \frac{21}{12} \times 10 = 10$ 0 After reaction KOH = 2 $KClO_4 = 2.5$ = 17.5 KCl = 10H₂O = 32.0 mole substance after Total reaction **35.** % of C same (40%) for C : H : O \Rightarrow 1 : 2 : 1 $C_6H_{12}O_6H - C - H$ and $CH_3 - C - OH$ V. D of $C_6H_{12} O_6 = 6 \times V$. D. of $CH_2O = 3 \times V$. D. of CH₃CO₂H \therefore in bottle 4 is C₆H₁₂O₆ (M mass = 180) and in bottle 1 is CH_3CO_2H (M mass = 60) in bottle (2) $CH_3 COCH_3 (M mass = 58)$ M mass $C_6H_{12}O_6 > CH_3COOH > CH_3COCH_3 > HCHO$ or V. D. (4) (1)(2)(3) Since V.D = $\frac{M_{\text{mass}}}{2}$ **36.** If No of moles of $Na_2CO_3 = a$ mole No of moles of $Na_2SO_4 = b$ mole No of moles of NaOH = c mole $a \times 106 + b \times 142 + c \times 40 = 1000$ gram. No of moles of HCl required for neutralisation of mixture $2a + c = \frac{511}{36.5} = 14$ No of moles of $BaCl_2 = No$ of moles of $BaSO_4$

= No of moles of Na₂SO₄ (b)
=
$$\frac{466}{137 + 96} = \frac{466}{233} = 2 \text{ moles}$$

 $106a + 40c = 1000 - 284 = 716$
 $80a + 40c = 14 \times 40 = 560$
 $a = \frac{156}{26} = 6$
 $c = 14 - 12 = 2$
so wt of NaOH = $2 \times 40 = 80 \text{ gm}$
% of NaOH = $\frac{80}{1000} \times 100 = 8\%$
B $\xrightarrow{\text{nH}_2\text{PICl}_6} \text{B}_2[\text{H}_2\text{PtCl}_6]_n \xrightarrow{\Delta} n\text{Pt}_{\frac{w_2 \text{ gram}}{(10.48 \text{ gm})}} \xrightarrow{w_2 \text{ gram}} (10.48 \text{ gm})$
POAC on Pt atom
 $M \text{ mass of } \left[\frac{w_1}{w_2} \times 195 - 410\right] \times \frac{n}{2}$

37.

$$=\left[\left(\frac{10.48}{3.9}\right) \times 195 - 410\right] \times \frac{2}{2} = 114$$

38. Molar mass of H₂SO₄ = 98 ⇒ require 80 gram NaOH for neutralization
 Molar mass of HCl = 36.5 = require 40 gram Na OH for

neutralisation

Molar mass of $HNO_3 = 63 =$ require 40 gram Na OH for neutralisation

Molar mass of $H_3 PO_2 = 3 + 31 + 32 = 66 =$ require 40 gram Na OH for neutralisation

Molar mass of $HClO_4 = 1$ 35.5 + 64 = 100.5 = require 40 gram NaOH neutralisation

: minimum volume of NaOH neutralise by HClO₄

No of moles of $HClO_4 = \frac{292}{100.5} = No$ of moles of NaOH = M.V

$$= \left(\frac{w}{v}\%\frac{10}{M_A}\right) V$$
$$\frac{292}{100.5} = 20 \times \frac{10}{40} \times V$$
$$V = \frac{292}{502.5} = 581 \text{ml}$$

....

Maximum value of NaOH required if only HCl present in solution

$$\frac{292}{36.5} = 20 \times \frac{10}{40} \times V$$
$$V = \frac{292}{36.5 \times 5} = 1.6 \text{ L} = 1600 \text{ ml}$$

 \therefore To neatralise mixture or any separate solution V_{NaOH} used From 581 mL to 1600 mL \therefore Ans. 1600 mL

39. 17% $\frac{w}{v}$ means 17 gram AgNO₃ in 100 mL in 100 mL solution weight of AgNO₃ = 17 gram \therefore In 1 mL solution weight of AgNO₃ $\frac{17}{100}$ \therefore in 3000 mL solution weight of AgNO₃ $= \frac{17}{100} \times 3000 = 510$ gram No of moles of AgNO₃ $= \frac{510}{170} = 3$ moles \therefore $M_2 = \frac{3}{3} = 1$ M $M_1V_1 = M_2V_2$ $3 \times V_1 = 1 \times 3$ $V_1 = 1$ Liter \therefore $V_{H2O} = 3 - 1 = 2$ Liter \therefore ab = 02Mass of Ar = 4a

Mass of etnane = 7a

Mole percentage of ethane
$$\frac{7a}{30} \times 100$$

$$= \frac{0.233}{0.233 + 0.222} \times 100 = 51\%$$

$$Cd = 51$$

$$\therefore abcd = 0251$$
40. $C_x H_Y O_Z N_P \xrightarrow{+O_2} xco_2 + \frac{y}{2} H_2 O + \frac{P}{2} N_2$

$$12x + y + 16z + 14P = 61$$
Compound (10 mL) on combustion gives 20 mL CO₂
means

$$\therefore 10x = 20$$

$$x = 2$$
Volume of residual gas N₂ = 5 mL

$$\therefore \frac{P}{2} \times 10 = 5$$

$$P = 1$$
Y and Z can not be – Ve or fraction

$$\therefore y = 7 \text{ and } z = 1$$

$$\therefore 12 \times 2 + 7 + 16 + 14 = 61 \text{ M mass}$$

$$\therefore \text{ correct and } 2711$$
41. CO $\xrightarrow{+O_2}$ CO₂

 $CH_4 \xrightarrow{+O_2} CO_2 + H_2O(l)$ volume of (CO + CH₄) = 10 mL Since 1 mol CO gives 1 mol CO₂ and 1 mol CH₄ gives 1 mol CO₂ ∴ Volume of CO₂ released = 10 mL ∴ Volume contraction = 10 mL (since all CO₂ absorbed by KOH)

42. If No of moles of SO₃ or (mass of SO₃) Per 100 gram Oleum or (Per 100 gram H₂SO₄) high than % Labelling of Oleum high

(1) In 200 gram
$$H_2SO_4$$
 wt of $SO_3 = 100$ gram
 \therefore in 100 gram H_2SO_4 wt of $SO_3 = 50$ gram

- (2) In 80 gram H_2SO_4 wt of $SO_3 = 80$ gram \therefore In 100 gram H_2SO_4 wt of $SO_3 = 100$ gram
- (3) In $5 \times 98 = 490$ gram H₂SO₄ wt of SO₃ = $5 \times 80 = 400$ gram

$$\therefore \quad \text{In 100 gram H}_2\text{SO}_4 \text{ wt of SO}_3 = \frac{400}{490} \times 100$$

$$= 81.6$$
(4) In 5 × 98 = 490 gram H₂SO₄ wt of SO₃ = 6 × 80

$$= 480$$
In 100 gram H₂SO₄ wt of SO₃ = $\frac{480}{490} \times 100$

$$= 98 \text{ gram}$$
100 > 98 > 81.6 > 50
Solution code 6 > 2 > 4 > 8 \therefore correct Ans 8426
43. 2A + 3B + C \rightarrow 4D + 2 E
2a moles 3a moles a moles

for obtaining maximum mass of E there should be no reactant after reaction

iteration
∴ 2a × 40 + 3a × 30 + a × 20 = 570
80a + 90a + 20a = 570
190a = 570
a = 3
∴ n_A = 6 mole
n_B = 9 mole
n_C = 3 mole
gives 4 × 3 mole of D and 2 × 3 moles of E
∴ Mass of D = 12 × 15 = 180 g
Mass of A + B + C = mass of (D) + (E) (mass conservation)
570 = 180 + mass of E
mass of E = 390 g
44. n =
$$\frac{PV}{RT}$$
= $\frac{2 × 44.8}{0.821 × 546} = \frac{2 × 22.4 × 2}{0.0821 × 273 × 2} = 2 moles
wt of 2 mole of triatomic gas = 246
∴ Molar mass = $\frac{123}{3} = 41$
45. 3H₂SO₄ + Ba₃ (PO₄)₂ → 3BaSO₄↓ + 2H₃PO₄
0.2 × 0.1 0.4 × 0.05
0.02 mole 0.02 mole
Here H₂SO₄ L. R
∴ remaing moles of Ba₃ (PO₄)₂ = 0.02 - $\frac{0.02}{3}$
= $\frac{0.04}{3}$ Mole
∴ No of moles of Ba⁺² ion = $3 × \frac{0.04}{3} = 0.04$ Mole
Volume of solution = 0.1 + 0.4 = 0.5 L
∴ $M = \frac{0.04}{0.5} = 0.08M = x$
∴ 100x = 0.08 × 100 = 8
46. C₃H₆ + NO → C₃H₃N + H₂O + N₂
POAC on C atom
 $3 × \frac{420 × 10^3}{42} = 3 × \frac{wt}{53}$
∴ wt of C₃H₃N = 530 Kg$

47.
$$C_4Hx + \left(4 + \frac{x}{4}\right)O_2 \rightarrow 4CO_2 + \frac{x}{2}H_2O$$

10 ml $\left(4 + \frac{x}{4}\right) \times 10$

$$\left(4 + \frac{x}{4}\right) \times 10 = 55$$
$$4 + \frac{x}{4} = 5.5$$
$$\frac{x}{4} = 1.5$$

x = 6**48.** Wt of solution = 1200 gwt of solute = 12 gdensity solution = 1.2 g/ mL \therefore Volume of solution = $\frac{1200}{12}$ = 1000 mL $M = \frac{\text{No of moles of solute}}{\text{volume of solution}} = \frac{12/60}{1 \text{ L}}$ $x = \frac{1}{5}$ $\therefore \quad 10x = \frac{1}{5} \times 10 = 2$ **49.** $A \xrightarrow{40\%} 3B + D_{1\times100\times0.4=40}$ $2B \xrightarrow{50\%} 4C$ $120 \quad \frac{4}{2} \times 120 \times 0.5$ 120 + 40 = 160**50.** $M = \frac{d \times 1000}{50} = \frac{2 \times 1000}{50} = 40$ 40 Mole in 1 Liter or in 2 kg \therefore No of moles in 1 kg = 20 mole = m 40 + 20 = 60**51.** $5 \times x + 2 \times 1 = 3 (1 + x)$ 5x - 3x = 1 $x = \frac{1}{2}L$ \therefore Total volume = 1000 mL + 500 mL = 1500 mL. 52. $C_2H_6 + O_2 \rightarrow 2 CO_2 + 3H_2O_2$ $x \text{ mL } C_2H_6$ gives $2x \text{ ml } CO_2$ $C_3H_8 + O_2 \rightarrow 3CO_2 + 4H_2O_2$ (20 - x) mL C₃H₈ gives 3(20 - x) mL CO₂ 2x + 60 - 3x = 52x = 8, y = 128:12=2:3 $CH_4 \rightarrow CO_2 + H_2O$ 12 mL CH₄ gives 12 mL CO₂ $C_4H_{10} \rightarrow 4CO_2$ 8 mL C₄H₁₀ gives 4×8 mL CO₂

:. $Vco_2 Total = 12 + 32 = 44 mL$

OF JEE (MAIN & ADVANCED)

1. (c) 8 mol O atom present in 1 mol $Mg_3 (PO_4)_2$. \therefore 25 mol of 'O' atoms are in $\frac{1}{8} \times 0.25 = 3.125 \times 10^{-2}$ 10⁻² mole 2. (d) Molality = $\frac{\text{moles of the solute}}{\text{mass of the solvent in kg}}$ Weight of acetic acid = $2.05 \times 60 = 123$ Weight of solution = $1000 \times 1.02 = 1020$: Weight of water = (1020 - 123) = 897 g Molality = $\frac{2.05 \times 1000}{897}$ = 2.28 m 3. (d) $2Al(s) + 6HCl (aq) \rightarrow 2Al^{3+}(aq) + 6Cl^{-}(aq) +$ $3H_2(g)$ \therefore 6 moles of HCl produces = 3 moles of H₂ $= 3 \times 22.4 \text{ L of H}_2$ at STP :. 1 mole of HCl produces = $\frac{3 \times 22.4}{6}$ L of H₂ at STP $= 11.2 \text{ L of H}_2 \text{ at STP}$ 4. (c) $M = \frac{W_A}{M_A} \times \frac{100}{V}$ $M = \frac{W_A}{V} \times 100 \times \frac{10}{M_A}$ $\frac{W}{V}\% \times \frac{10}{M_A} = \frac{W}{W}\% \frac{10d}{M_A}$ $3.6 = \frac{29 \times 10 \times d}{98}$ d = 1.21 gm/mL5. (c) Titration of oxalic acid by $KMnO_4$ in the presence of HCl gives unsatisfactory result because HCl is a better reducing agent than oxalic acid and HCl reduces preferably MnO_4^- to Mn^{2+} . 6. (c) Mohr's salt is $FeSO_4 \cdot (NH_4)_2SO_4 \cdot 6H_2O$ Only oxidizable part Fe²⁺ is $[\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+} + e^{-}] \times 6$ $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$ $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$ Millimoles of $Fe^{2+} = 750 \times 0.6 = 450$ Moles of $Fe^{2+} = \frac{450}{1000} = 0.450 \text{ mol}$ 6 mol of Fe²⁺ react with 1 mol $Cr_2O_7^{2-}$:. 0.450 mol Fe²⁺ = $\frac{0.450}{6}$ = 0.075 mol Cr₂O₇²⁻

$$= 0.075 \times 294 \text{ g} = 22.05 \text{ g}$$

7. (a) Molality = $\frac{\text{moles of the solute}}{\text{mass of the solvent in kg}}$ $W_B = WH_2 = V \cdot d = 0.3 \text{ L} \times 1 = 300 \text{ mL} \times 1 = 300 \text{ gram}$ 1.44 Physical Chemistry-I for JEE (Main & Advanced)

$$m = \frac{W_A}{M_A} \times \frac{1000}{W_B} = \frac{0.01}{60} \times \frac{1000}{60}$$
$$= 5.55 \times 10^{-4} \,\text{mol kg}^{-1}$$

8. (d) Total mass of solution = 1000 g water + 120 g urea= 1120 g

Density of solution = 1.15 g/mL
Thus, volume of solution =
$$\frac{\text{mass}}{\text{density}} = \frac{1120 \text{ g}}{1.15 \text{ g/mL}}$$

= 973.91 mL = 0.974 L
Moles of solute = $\frac{120}{60} = 2 \text{ mol}$
Molarity = $\frac{\text{moles of solute}}{\text{volume (L) of solution}}$

$$=\frac{2 \text{ mor}}{0.974 \text{ L}}=2.05 \text{ mol } \text{L}^{-1}$$

9. (a) The molarity of a resulting solution is given by

$$M = \frac{M_1 V_1 + M_2 V_2}{V_1 + V_2}$$
$$= \frac{750 \times 0.5 + 250 \times 2}{750 + 250} = \frac{875}{1000} = 0.875 \text{ M}$$

- **10.** (d) 18 g H₂O contains 2 gH ∴ 0.72 g H₂O contains 0.08 g H. 44 g CO₂ contains 12 g C. ∴ 3.08 g CO₂ contains 0.84 g C. ∴ C : H = $\frac{0.84}{12}$: $\frac{0.08}{1}$ = 0.07 : 0.08 = 7 : 8
 - \therefore Empirical formula = C₇H₈
- 11. (c) The number of moles is given by

Number of moles =
$$\frac{\text{weight (W)}}{\text{molecular weight (M)}}$$

Thus, ratio of moles of O_2 and N_2 is given by

$$\frac{n_{O_2}}{n_{N_2}} = \left(\frac{\frac{W_{O_2}}{M_{O_2}}}{\frac{W_{N_2}}{M_{N_2}}}\right) = \left(\frac{W_{O_2}}{W_{N_2}}\right) \left(\frac{M_{N_2}}{M_{O_2}}\right)$$
$$= \left(\frac{1}{4}\right) \times \left(\frac{28}{32}\right) = \frac{7}{32}$$

Hence, ratio of n_{O_2} and n_{N_2} is 7 : 32

12. (d) The following reaction occurs:

 $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$ From the above equation, we find that Mohr's salt (FeSO₄ · (NH₄)₂SO₄ · 6H₂O) and dichromatic reacts in 6 : 1 molar ratio.

13. (b) The atomic mass of iron is

$$=\frac{(5\times54)+(90\times56)+(5\times57)}{100}=55.95$$

14. (c) Total mass of solution = 1000 + 120 = 1120 g Total volume of solution in (L) = $\frac{1120}{1.15} \times 10^3$

$$M = \frac{W}{M} \times \frac{1}{V(\text{in }L)} = \frac{120}{60} \times \frac{1.15 \times 10^3}{1120} = 2.05 \text{ M}$$

- **15.** (c) The least significant figure in titre values is 3. Average titre value = $\frac{25.2 + 25.25 + 25}{3} = \frac{75.4}{3} = 25.1$ The number of significant in average titre value will also be 3.
- 16. (7) $d = \frac{\text{mass}}{V} \Rightarrow 10.5 \text{ g/cc means in 1 cc}$ \Rightarrow 10.5 g of Ag is present Number of atoms of Ag in 1 cc $\Rightarrow \frac{10.5}{108} \times N_A$ In 1 cm number of Ag atom = $3\sqrt{\frac{10.5 \times N_A}{108}}$ In 1 cm², number of atoms of Ag = $\left(\frac{10.5}{108}N_A\right)^{2/3}$ In 10^{-12} m² or 10^{-8} cm², number of atoms of Ag $= \left(\frac{10.5}{108}N_A\right)^{2/3} \times 10^{-8}$ $= \left(\frac{10.5 \times 6.022 \times 10^{23}}{108}\right)^{2/3} \times 10^{-8} = 1.5 \times 10^{7}$ Hence x = 7. 17. (2) $Be_nAl_2Si_6O_{18}$ $(2n) + (3 \times 2) + (4 \times 6) + (-2 \times 18) = 0$ 2n + 30 - 36 = 0or 2*n* = 6 or or n = 3**18.** (2) Na shows only +1 F shows only -1
- **19.** (8) Stock solution of HCl = 29.2 % (w/w)

$$M = \frac{W_A}{M_A} \times \frac{1000}{V}$$
$$M = \frac{W_A}{V} \times 100 \times \frac{10}{M_A}$$
$$\frac{W}{V} \% \times \frac{10}{M_A} = \frac{W}{W} \% \frac{10d}{M_A}$$

Molarity of stock solution of HCl = $M = \frac{w}{w} \frac{10d}{M_A}$

$$=\frac{29.2\times10\times1.25}{36.5}=10$$

If volume of stock solution required = V mL then $10 \times V = 0.4 \times 200$ V = 8 mL **20.** (4) $\frac{R}{N}$ = Boltznann constant

 $\Rightarrow R = \text{Boltzann constant} \times N$ 6.023 × 10²³ × 1.380 × 10⁻²³ = 8.312 It has four significant figures.

21. (d)
$$2C_8H_7SO_3Na + Ca^{2+} \rightarrow (C_8H_7SO_3)_2Ca + 2Na^+$$

- \therefore 2 moles of C₈H₇SO₃Na combines with 1 mol Ca²⁺
- \therefore 1 mole of C₈H₇SO₃Na will combine with $\frac{1}{2}$ mol Ca²⁺

$$\therefore \quad \frac{1}{206} \text{ mole of } C_8 H_7 SO_3 Na \text{ will combine with}$$
$$\frac{1}{2} \times \frac{1}{206} \text{ mol } Ca^{2+} = \frac{1}{412} Ca^{2+}$$

22. (d) Given, initial strength of acetic acid = 0.06 N Final strength = 0.042 N; Volume given = 50 mL
∴ Initial millimoles of CH₃COOH = 0.06 × 50 = 3 Final millimoles of CH₃COOH = 0.042 × 50 = 2.1
∴ Millimoles of CH₃COOH adsorbed = 3 - 2.1 = 0.9 mmol

$$= 0.9 \times 60 \text{ mg} = 54 \text{ mg}$$

Key Concepts

Atom was considered as a hard, dense and smallest indivisible particle of matter. It cannot be destroyed or created.

Drawbacks

The discovery of various sub. atomic particle *e*, *p*, *n*, *x*-ray.

MODELS OF ATOM

Thomson's Model

Atom is electrically neutral. It contains positive as well as negative charges. According to Thomson, atom is a uniform sphere of positive charge with electron embedded in it. This was known as *plum pudding modle* at that time.

Rutherford's Scattering Experiments

Result

- 1. Most of the α -particle passed through the foil.
- 2. Some of them were deflected through small angles.
- 3. Very few (1 in 20,000) were deflected at large angles (180°).

Rutherford Model

- 1. The atom of an element consist of a small positively charged nucleus which is situated at the centre of the atom and carries almost the entire mass of the atom.
- 2. An electron rotates arround the nucleus. Since very few α -particles (1 out of 20,000) are returned back it means the size of the nucleus is very small and is very rigid.
- 3. The order of diameter of an atom is 10^{-10} m or 1 Å and
- of the nucleus is 10⁻¹⁵ m = 1 fm.
 r_n = (1.33 × 10⁻¹⁵) A^{1/3} m. A = mass number r_n = radius of Nucleus of any element having mass number A.

Failure of Rutherford Model

1. According to electromagnetic theory, when a charged particle moves with acceleration, they emit energy in the form of electromagnetic radiation. According to Rutherford model electrons are revolving around nu-

cleus and emit energy in the form of electromagnetic radiation. As a result of which electron loses energy continuously and should collapse on nucleus following a spherical path. Rutherford model failed to explain the stability of atom.

2. If electrons loose energy continuously the observed spectrum may be continuous but it will consist of welldefined line of definite frequency. Hence the loss of energy by the electron is not continuous in an atom.

Calculation of distance between α particle and centre of nucleus:

Total energy at initial point

$$T_i = \text{K.E.} + \text{P.E.} = \frac{1}{2}mv^2 + 0$$
 ...(i)

Total energy at final point

$$T_f = 0 + \frac{K \cdot q_1 q_2}{r} \qquad \dots (ii)$$

By energy conservation law

 $T_i = T_f$ q_2 = charge on Nucleus of an element q_1 = charge and particle = $2 \times 1.6 \times 10^{-19}$ C $m = \text{mass of} \propto \text{particle} = 4 \times 1.6 \times 10^{-27} \text{ Kg}$

$$\frac{1}{2}mv^{2} = \frac{K \cdot q_{1}q_{2}}{r}$$

$$r = \frac{2K \cdot q_{1}q_{2}}{mv^{2}}$$

$$= \frac{2 \times 9 \times 10^{9} \times (2 \times 1.6 \times 10^{-19})(Z \times 1.6 \times 10^{-19})}{4 \times 1.6 \times 10^{-27} \cdot v^{2}}$$

Wave: It is a disturbance in medium through which transfer of energy takes place from one place to other without the transfer of matter. Parameters:

- (i) Wavelength: Distance covered by the wave in completion of one cvcle.
- (ii) Frequency (v): The number of cycles completed in 1 sec
- (iii) **Time period:** Time taken by the wave in one cycle completion where $T = \frac{1}{v}$

(iv) Wave No. $\overline{v} = \frac{1}{\lambda}$

Electromagnetic waves do not require any medium to

propagate from one place to

another place. It has two components: (i) Electric field and

(ii) Magnetic field. They are

Magnetic field

perpendicular to one another and to the direction of propagation. Light is an electromagnetic wave.

When white light is passed through prism it get dispersed into different colours. It is called spectrum of white light.

Types of Spectrum

1. Emmision spectrum: When any substance absorbs energy or radiation, its atoms get excited to higher energy state. After some time when they return to their original state, they emit radiation and spectrum. This is called emission spectrum.

2. Absorption spectrum: When radiation is passed through a substance, certain wavelength absorbed and when this outcoming radiation is analysed at the photographic plate we observe dark line at plane of observed wave length. This is called absorption spectrum.

It may be continuous, band or line.

Quantum theory of radiation: According to Max Plank, radiation emitted from hot bodies, radiant energy (light or heat) is not emitted continuously but discontinuously in the form of small packets called Quanta. It means atoms or molecules emit or absorb the energy in the form of Quanta [E =hv]. They absorb or emit energy as hv, 2hv ... not in the form of 1/2 hv, 3/2hv, etc., i.e., fraction of Quanta is not possible. $E = hv [h = Plank constant = 6.63 \times 10^{-34} J.S.]$

and TE = n (hv) n is the number of Quanta of particular frequency.

Bohr's atomic model

1. According to Bohr's atomic model, e^- rotate around the nucleus in a circular orbit. The required centripetal force is provided by electrostatic force of attraction between the electron and nucleus.

$$\frac{mv^2}{r} = \frac{Ke \times Ze}{r^2}$$

2. Electrons revolve in those orbit which have angular momentum equal to $\frac{nh}{2\pi}$ (where *n* is an integer 1, 2, 3,...)

$$mvr = \frac{nh}{2\pi}$$

- 3. Each allowed orbit have definite energy. These are called *stationary orbit*. Electrons when revolve in stationary orbit do not radiate energy. The energy of stationary orbit increases as we move farther from the nucleus.
- 4. Electrons emits energy only when it transitions from higher energy states to lower energy states.

First line α Line [minimum energy line]

$$\frac{1}{\lambda} = Rz^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] R = 1.097 \times 10^7$$

Second line β line.

Calculation of radius, energy and velocity of e^- in n^{th} Bohr atom

Electrostatic force of attraction provide required centripetal force

$$F = \frac{K(Ze)e}{r^2} = \frac{mv^2}{r} \qquad \dots (i)$$

$$mvr = \frac{nh}{2\pi} \qquad \dots (ii)$$

$$\therefore \qquad m^2 v^2 r^2 = \frac{n^2 h^2}{4\pi^2}$$

$$\therefore \qquad r = \left[\frac{n^2 h^2}{4\pi^2 m \times KZ e^2}\right]$$

$$r = \frac{h^2}{4\pi^2 m K e^2} \times \frac{n^2}{Z} \text{ and } v^2 = \frac{n^2 h^2}{4\pi^2 m^2 r^2}$$

= $\frac{[6.63 \times 10^{-34}]^2}{4 \times (3.14)^2 \times 9.1 \times 10^{-31} \times 9 \times 10^9 \times (1.6 \times 10^{-19})^2}$
 $\times \frac{n^2}{z} \text{ m/sec.}$
 $\boxed{r = 0.529 \frac{n^2}{Z} \text{ Å}}$
 $mvr = mv \times \left(0.529 \frac{n^2}{z} \text{ A}^\circ\right) = \frac{nh}{2\pi}$
 $\varpi = 2.18 \times 10^6 \frac{Z}{n} \text{ m/sec.}$

Total energy = K.E. + P.E.

P.E. =
$$-\frac{KZe^2}{r}$$
 and K.E. = $\frac{1}{2}mv^2$

We know
$$\frac{mv^2}{r} = \frac{KZe^2}{r^2}$$

$$\therefore \qquad \text{K.E.} = \frac{1}{2}mv^2 = \frac{1}{2}\left[\frac{KZe^2}{r}\right]$$

$$\therefore \qquad \text{T.E.} = \text{K.E.} + \text{P.E.} = \frac{1}{2} \left[\frac{KZe^2}{r} \right] + \left[-\frac{KZe^2}{r} \right]$$

$$T.E. = -\frac{1}{2} \frac{KZe}{r}$$
$$= -\frac{1}{2} \frac{9 \times 10^9 \times (1.6 \times 10^{-19})^2 Z}{0.529 \times 10^{-10} \frac{n^2}{Z}}$$
$$T.E. = -13.6 \left(\frac{z^2}{n^2}\right) \text{ev/atom}$$
$$T.E. = -313.6 \left(\frac{z^2}{n^2}\right) \text{Kcal/mole}$$

 $1 \text{ eV} = 1.6 \times 10^{-19} \text{ joule}$

Result Species having only one electron system around nucleus in any orbit

- (i) Total Energy = -Kinetic Energy of electron
- (ii) Potential Energy = 2 Total Energy
- (iii) Ionisation Energy = Kinetic energy = -Total Energy

Drawbacks of Bohr's Model

 It explains the spectrum of species having only one electron H atom, He⁺ ion and Li⁺⁺ ion. It does not explain the spectral of atoms having more than one electron. 2.4 Physical Chemistry-I for JEE (Main & Advanced)

- 2. When a resolving power spectroscope is used it was observed that the spectral line in H spectrum is not a single line but a collection of several lines which are very close to one another. Bohr's theory does not explain the fine spectrum of H atom.
- 3. It does not explain the splitting of spectral lines into a group of finite lines under the influence of magnetic field [Zeman effect] and electric field [Stark effect]. Justification of quantisation angular momentum.
- 4. Spectrum of isotope of H was expected to be same by Bohr's theory but it is different by experiment.

Ionisation energy: Minimum amount of energy which is required to eject the electron from the atom from its ground state.

$$E_{\infty} = 0$$

$$:: \qquad IE = E_{\infty} - E_n = 0 - [E_n]$$

$$\boxed{IE = -E_n}$$

Total number of spectral line that can be obtained when electron in n^{th} energy state gets transitioned.

$$\Delta E = E_{n_2} - E_{n_1} = \frac{hc}{\lambda} = 13.6 \frac{z^2}{n_2^2} - \left[-\frac{13.6z^2}{n_1^2} \right] = \frac{hc}{\lambda}$$
$$= 13.6 \ ev Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = \frac{hc}{\lambda} \Longrightarrow \frac{1}{\lambda} = \frac{13.6}{hc} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] ev$$
$$\frac{1}{\lambda} = R_h Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \quad R_H = 1.097 \times 10^7 \text{ m}^{-1}$$

 $R_h =$ Rydberg constant

Frequency of revolution: Distance travelled in 1 revolution = $2\pi r$ (-)-meter.

Distance travelled in $2\pi r$ meter $\longrightarrow 1$ revolution

 \therefore Distance travelled in 1 metre $\longrightarrow \frac{1}{2\pi r}$ revolution

$$\therefore$$
 Distance travelled in V meter $\longrightarrow \frac{V}{2\pi r}$ = Frequency

$$\therefore$$
 Time taken = $\left[\frac{2\pi r}{V}\right]$ second

De Broglie Equation _

According to this theory, small particles like electrons, protons, neutron, α particle, etc., behave as particle nature as well as wave nature. The wavelength of particle is given by

2 -	_h	h
<i>n</i> –	mv	P(momentum)

Proof of Bohr's Theory by De broglie Relationship

When electrons rotate around nucleus in any orbit, the number of completed wave is equal to the number of orbit. It means No. of waves = No. of orbital

 $\begin{bmatrix} h \end{bmatrix}$

Some relations:

- 1. Between Momentum (P) and Kinetic Energy (K.E.)
- 2. Between K.E. and Wave length (λ)

$$\lambda = \frac{h}{P} = \frac{h}{\sqrt{2KE.m}} = \frac{h}{\sqrt{2q \times V \times m}}$$

for Electron

$$\lambda = \frac{6.625 \times 10^{-34}}{\sqrt{2 \times 1.6 \times 10^{-19} \times 9.1 \times 10^{-31} \times V}} = \sqrt{\frac{150}{V}} \,\text{\AA}$$

Since

K.E. =
$$\frac{1}{2}mv^2 \Rightarrow 2K.E. = mv^2$$

 $\Rightarrow 2K.E. \cdot m = (mv)^2 = (P)$
 $\therefore P = \sqrt{2KE \cdot m}$

3. Relation between K.E. and mass of particle for same value of de broglie wavelength.

We know
$$\lambda = \frac{h}{\sqrt{2(\text{KE}).m}}$$
 \therefore $\lambda^2 = \frac{h^2}{2\text{KE}.m}$

 \therefore for same λ (Wave length)

$$\therefore \qquad \text{KE} \propto \frac{1}{m}$$

mass of e^- < Proton < Neutron < α particle

 \therefore for same de-Brogile Wave length order of kinetic energy

 e^- > Proton > Neutron > α particle

Heisenberg Uncertainity Principle

It is impossible to measure both the position and velocity (or momentum) of a microscopic particle simultaneously with absolute accuracy.

According to this theory, product of uncertainity in position and uncertainity in momentum is always greater than or equal $\frac{h}{d}$.

$$4\pi$$

$$(\Delta p) (\Delta x) \ge \frac{h}{4\pi}$$

$$\Delta x \times m \cdot \Delta V = \frac{h}{4\pi}$$

$$\Delta x \times \Delta V = \frac{h}{4\pi m}$$

Photoelectric effect: Hertz (1887) discovered that when a beam of light of suitable wavelength falls on a clean metal plate (such as cesium) in vacuum, electrons are emitted from the surface of the metal plate. This phenomenon involving the emission of electrons

from the surface of a metal by the action of light is known as *photoelectric effect*. The electrons so emitted are called *photoelectrons*.

Photon energy = K.E. of e^- + threshold energy. K.E. of e^- = photon energy – threshold energy.

$$\frac{1}{2}mv^{2} = hv - hv_{0} = hc\left[\frac{1}{\lambda} - \frac{1}{\lambda_{0}}\right] = hv - \phi$$

 v_0 = Threshold frequency or critical frequency.

 λ_0 = Threshold wavelength or critical wavelength.

Experimental Result

- 1. If $v < v_0 \Rightarrow$ Photoelectric effect does not occur. What ever intensity is high.
- 2. If $v > v_0 \Rightarrow$ Photoelectric effect. If intensity Increases number of ejected electron Increases and K.E. remain same.
- 3. If v Increases then K.E. of ejected e Increases since K.E. = $hv hv_0$

We know K.E. =
$$hv - hv_0 \equiv v = mx - C$$
.

Note:

- 1. Current depends on intensity. $i \propto I$ (intensity)
- 2. K.E. depends upon frequency and K.E. \propto frequency.

Stopping potential: It is the minimum required potential to stop moving electrons.

K.E. =
$$\frac{1}{2}mv^2 = hv - W$$

= Applied voltage × charge $[q \times V]$

V = stopping potential

Stopping potential is same.

The set of four integers required to define an electron completely in an atom are called *quantum number*.

1. **Principle quantum number:** It was proposed by Bohr. It is called orbit, shell or energy level.

It is denoted by *n*. value of *n* is positive integer. It is denoted by KLMNOP......

It shows the average distance from the nucleus

$$r = 0.529 \frac{n^2}{7} \text{ Å}.$$

It show the average energy of electron

$$E = -13.6 \frac{z^2}{n^2}$$
 eV.

Maximum number of electron in any orbit is given by $2n^2$

It has maximum number of subshell = n

Maximum number of orbital = n^2 .

2. Azimuthal quantum number:

It was proposed by Sommer Field.

It is donated by *l*.

It shows the shape of orbital.

Value of *l* for any value of $n = 0, 1, 2, 3 \dots (n-1)$

$$l = 0 \Rightarrow s$$
 subshell

 $l = 1 \Rightarrow p$ subshell

$$l = 2 \Rightarrow d$$
 subshell

$$l = 3 \Rightarrow f$$
 subshell

It has maximum no. of electron In any subshell = 2(2l + 1)

2.6 Physical Chemistry-I for JEE (Main & Advanced)

	l	Naming	l	subshell	shape
1	0	S	0	S	spherical
2	0, 1	sp	1	р	dumble
3	0, 1, 2	spd	2	d	double dumble
4	0, 1, 2, 3	spdf	3	f	complex

Maximum no. of orbital In any subshell = (2l + 1)

The value of Azimuthal angular momentum

$$=\frac{h}{2\pi}\sqrt{l(l+1)}$$
 = orbital angular moment

3. Magnetic quantum number:

It shows the orientation of electron around nucleus. It is represented by 'm'.

The value of *m* for any value of *l* is [-l...0...+l]Total number of orbital in any subshell = (2l + 1)

Spin quantum number:

It shows the rotation of electron on its self axis.

It has value $+\frac{1}{2}$ and $-\frac{1}{2}$ where +ve sign shows a clockwise and -ve sign shows anticlockwise rotation.

Spin angular moment = $\frac{h}{2\pi}\sqrt{s(s+1)}$

SHAPE OF ORBITAL

Pauli rule: According to this rule, 2 electron in an atom cannot have same set for all four quantum numbers. In other words, we can say an orbital cannot have more than two electron.

Hund's rule of maximum multiplicity: Electrons are distributed among the orbital of the subshell in such a way as to give the maximum number of unpaired electron with a parallel spin. Pairing of electrons in the orbitals belonging to the same subshell does not take place until each orbital belonging to that subshell has got one electron each.

Auf bau principle: The electrons are added progresively to various subshell in the order of increasing energies starting with the subshell of the lowest energy.

the order of ascending energy of subshell can be calculated from (n + l).

Lower the value of (n + l) for an subshell having lower energy. If two subshell have same the value of (n + l) then the subshell which has low value of 'n' will have low energy.

Orbital	п	l	n+l
1 <i>s</i>	1	0	1
2 <i>s</i>	2	0	2
2 <i>p</i>	2	1	3
35	3	0	3
3р	3	1	4
3 <i>d</i>	3	2	5
4 <i>s</i>	4	0	4
4 <i>p</i>	4	1	5
4 <i>d</i>	4	2	6
4 <i>f</i>	4	3	7
5.5	5	0	5
5 <i>p</i>	5	1	6

Multiplicity: 2|S| + 1

S = total spin.for ns^2np^3

 $S = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{3}{2}$

Multiplicity =
$$2\left|\frac{3}{2}\right| + 1 = 4$$

Exchange energy = It is the number of possible transition of electron in the same subshell.

Node and nodal plane: It is the space where probability of finding electron is zero. The plane where probability of finding electron is zero is called nodal plane.

Schrödinger Wave Equation

This model is based on particle and wave nature of electrons known as *wave mechanical model of an atom*.

$$\frac{\partial^2 x}{\partial x^2} + \frac{\partial^2 y}{\partial y^2} + \frac{\partial^2 z}{\partial z^2} + \frac{8\pi^2 m}{h^2} (E - V)\psi = 0$$

h = Plank constant, E = Potential electron V = Potential energy, m = Mass of electron

 ψ = Wave function

Significance of ψ : The wave function may be regarded as the amplitude of vibration expressed in terms of coordinate *x*, *y*, *z*. The wave function may have positive or negative values depending on the values of coordinate.

Significance of ψ^2 : For electromagnetic radiation, the square of amplitude is proportional to the intensity of light. ψ^2 at any point is proportional to the probability of finding of electron.

Orbital: Region or space where probability of finding electron is maximum (90 - 95%).

Probability curve: It was found that wave function ψ can be expressed as a product of two functions.

$$(\theta \phi) = R(r) + f(\theta \phi)$$

 $\downarrow \qquad \downarrow$
radial angular
function function

wave function of different Hydrogen orbital

for
$$1s = R(r) = \frac{2}{a^{3/2}} e^{-\sigma}$$

 $\psi[r]$

for
$$2s = R(r) = \frac{1}{2\sqrt{2} a_0^{3/2}} (2 - \sigma) e^{-\sigma/2}$$

for
$$2p = R(r) = \frac{1}{2\sqrt{6}a_0^{3/2}}\sigma e^{-\sigma/2}$$

 e^{-x} = Hyperbola curve

when
$$a_0 = \frac{h^2}{4\pi^2 m k e^2} = 0.529 \text{ Å}$$

$$\sigma = \frac{r}{a_0}$$

R = wave function r = distance from nucleus $R^2 = \text{intensity of wave function}$ Angular node = l Radial node = n - l - 1Total node in a shell (n - l - 1) + l = n - 1

Radial Probability Density

The square of the radial wave function for an orbital gives the radial probability density of finding an electron at a point at distance 'r' per unit volume.

Radial Probability Distributed Function $(4\pi r^2 R^2)$

The radial probability density at a radial distance 'r' is R^2 . Therefore, radial probability of finding the electron in a volume dv will be $R^2 dv$.

Radial probability is the probability of finding electron in a radial shell between spheres of radius 'r' and 'r + dr' where dr is small radial distance volume (dv) of spherical shape of thickness 'dr'.

2.8 Physical Chemistry-I for JEE (Main & Advanced)

$$dv = \frac{4}{3}\pi(r+dr)^3 - \frac{4}{3}\pi r^3$$

= $\frac{4}{3}\pi[(r+dr)^3 - r^3]$
= $\pi[(r^3 + dr^3 + 3r^2dr + 3rdr^2 - r^3]$
 $\downarrow \qquad \downarrow \qquad \downarrow$

neglect neglect

$$dv = \frac{4}{3}\pi[3r^2dr], \qquad dv = 4\pi r^2dr$$

Total probability distribution = $R^2 \cdot dv = R^2(4\pi r^2 dr)$

= $(4\pi r^2) dr$ = radical distribution function

$$Z_{\text{effective}} = Z - \sigma$$

 σ can be calculated by Slater Rule

- (i) σ for 1*s* or $1s^2 = 0.30$
- (ii) σ for *ns* and *ns np* electron = [Valance electron 1] × 0.35 + [(*n* 1) Shells electron] × 0.85 + [Rest electron from (*n* 1) shell and nucleus] × 1
- (iii) σ for d/f electron = [given d/f electron 1] × 0.35 + [Rest electron from given d/f and nucleus] × 1

for

Solved Examples

1. Find the ratio of frequencies of violet light ($\lambda = 4.10 \times 10^{-5}$ cm) to that of red light ($\lambda = 6.56 \times 10^{-5}$ cm). Also determine the ratio of energies carried by them.

We know
$$E = \frac{hc}{\lambda} = hv$$

 $C = v\lambda$ and $E = \frac{hc}{\lambda} = hv$
 $\frac{v_v}{v_R} = \frac{\lambda_R}{\lambda_v} = 1:1.6 \quad \frac{E_V}{E_R} = \frac{v_V}{v_R} = \frac{\lambda_R}{\lambda_V} = 1:1.6 = 0.625:10$

2. A 100 W power source emits green light at a wavelength $\lambda = 5000$ A. How many photons per minute are emitted by the source?

$$T.E. = P \times t = 100 \times 60$$

Sol.

- Energy emitted by source (T.E.) = power × time = Number of photon × Energy of one photon
- Energy of one photon = $\frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{5 \times 10^3 \times 10^{-10}}$ \therefore Number of photons emitted = $\frac{\text{T.E.}}{\text{Energy of one photon}} = \frac{100 \times 60 \times 5 \times 10^3 \times 10^{-10}}{6.63 \times 10^{-34} \times 3 \times 10^8}$
- $\frac{-1}{\text{Energy of one photon}} = \frac{-1}{6.63 \times 10^{-34} \times 3 \times 10^8}$ $= 1.5 \times 10^{22}$
- **3.** Find the ionisation energy of H, He^+ , Li^{++} .

Sol.
$$E_H = -13.6 \left[\frac{Z^2}{n^2} \right]$$
 ev/atom
 $E_1 = -13.6 \left[\frac{1}{1} \right] = -13.6$ eV
 $E_{\infty} = 0$
∴ $\Delta E = E_{\infty} - E_1 = 13.6$ eV for hydrogen atom
 $= 0 - \left[-\frac{13.6[2]^2}{1} \right] = 13.6 \times 4$ eV for He⁺
 $\begin{bmatrix} 13.6[2]^2 \end{bmatrix}$

= 0 - \begin{bmatrix} 13.6 \sqrt{3} \end{bmatrix} = 13.6 \times 9 eV for Li⁺⁺
 4. Find the wavelength of the radiation which is required for the very first transition of H atom?

Sol.
$$E_2 - E_1 = \frac{hc}{\lambda}$$
 very first transition means $n(2)$ to $n(1)$
 $-13.6 \times \frac{1}{2^2} - \left[-\frac{13.6 \times 1}{1^2}\right] = \frac{hc}{\lambda} = 10.2 \text{ eV} = \frac{hc}{\lambda}$
 $\therefore \qquad \lambda = \frac{10.2 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34} \times 3 \times 10^8} \text{ metre}$

5. A radiation of wavelength 50 nm incident on H atom in ground state. Find the kinetic energy of ejected electron.

Sol.
$$\Delta E(\text{joul}) = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{\lambda(\text{meter})}$$

$$\Delta E(\text{ev}) = \frac{1242}{\lambda(\text{nm})} = \Delta E(\text{ev})$$

T.E. = $\frac{1242}{50(\text{nm})}$ eV = 24.84 eV and I.E. = 13.6 eV

- K.E. = T.E. I.E. = 24.84 13.6 = 11.24 eV
- **6.** Find the longest wavelength of the radiation which is required to pickout the electron from the first excited state of Paschan series?
- **Sol.** First excited state of Paschan series means n = 4

$$\therefore \quad E_4 = -13.6 \left[\frac{1}{4^2} \right] = -0.85 = \frac{hc}{\lambda}$$
$$E_{\infty} = 0 \quad \therefore \Delta E = 0.85 = \frac{hc}{\lambda} \quad \therefore \lambda = \frac{1242}{0.85} \text{ nm}$$

7. The frequency of series limit of Lyman series is v_1 and series, limit of Paschan series is v_2 , and frequency of emission of electronic energy from 3 to 1 is v_3 . Find the relation between v_1 , v_2 and v_3 .

Sol.
$$E_{\infty} - E_1 = hv_1$$
 $E_{\infty} - E_3 = hv_2$
 $E_3 - E_1 = hv_3$
From the figure
 $hv_3 = hv_1 - hv_2$
 $v_3 = v_1 - v_2$

8. Find the magnitude of the current flowing in fourth Bohr orbit in hydrogen atom in one revolution.

Sol.
$$i = \frac{q}{T} = \frac{e}{\frac{2\pi r}{V}} = \frac{eV}{2\pi r}$$

We know $V = 2.18 \times 10^6 \left[\frac{1}{n}\right]$ and $r = 0.529 \times 10^{-10}$
 $\frac{[n^2]}{Z}$, $n = 4$
 $\therefore \qquad i = \frac{[1.6 \times 10^{-19}] \times \left[2.18 \times 10^6 \times \frac{1}{4}\right]}{0.529 \times 10^{-10} \left[\frac{1}{4^2}\right]}$ amp.

9. A particle having K.E. 5 eV collides with the atom at ground state. Predict the collision: Elastic or non-elastic?

- Sol. We know minimum energy required would be 10.2 eV for the transition since it is only 5 eV. So collission will be perfectly elastic. -13.6/4 eV10.2 eV-13.6 eV
- 10. A hydrogen-like species is observed to emit six radiation originating from all possible transition between a group of level. These levels have energy between -0.85 eV to -0.544 eV eV including both level. Find (a) Quantum numbers and (b) Atomic number.

Sol.
$$E_n = -13.6 \frac{z^2}{n^2} = -0.85 \text{ eV}$$

6 radiation means $\Delta n = 3$

$$E_{(n+3)} = -13.6 \frac{z^2}{(n+3)^2} \qquad \qquad n+3$$

$$= -0.54 \qquad \qquad n+2$$

$$\frac{E_n}{E_{(n+3)}} = \frac{(n+3)^2}{(n)^2} \qquad \qquad n$$

$$\therefore \quad \frac{n+3}{n} = \sqrt{\frac{85}{54}} = 1.25, \qquad n = 12$$

$$\therefore \quad E_n = -13.6 \frac{Z^2}{n^2} = -0.85 \quad Z \text{ can be calculated}$$

11. Calculate the wavelength of photo electron which is ejected from ground state of hydrogen atom by absorbing 14 eV photon?

Sol. K.E. = T.E. - I.E.

here $\Delta E = \text{K.E.} = 14 - 13.6 = 0.4 \text{ eV}$ e^- eject from atom if given Total Energy (T.E.) > Ionisation Energy (I.E.)

$$\therefore \qquad \lambda = \frac{6.625 \times 10^{-34}}{\sqrt{2[0.4 \times 1.6 \times 10^{-19}).9.1 \times 10^{-31}}}$$

- 12. Arrange in increasing order K.E. of electron, protons neutron and α particle.
- **Sol.** When All have the same *de broglie* wavelength. \therefore for same λ (Wave length)

$$\therefore \qquad \text{KE} \propto \frac{1}{m}$$

K.E.
$$\propto \frac{1}{m}$$
 for same wavelength

- Since order of mass $m_e < m_p < m_n < m_{\alpha}$
- \therefore Order of Kinetic Energy $\alpha < n < P < e$
- 13. Show that *de broglie* wavelength of electron accelera-

tion through V volt is nearly given by $\lambda = \left(\frac{150}{V}\right)^{\frac{1}{2}}$ A.

Sol. We know for $\lambda = \frac{h}{p}$ $\therefore \quad \lambda = \frac{h}{\sqrt{2(\text{KE})m}} = \frac{h}{\sqrt{2(q.V)m}}$ For charge Particle $KE = Charge \times Voltage$ For electron

$$\lambda = \frac{6.625 \times 10^{-34}}{\sqrt{2 \times V \times 1.6 \times 10^{-19} \times 9.1 \times 10^{-31}}}$$
$$= \frac{12.27 \times 10^{-10}}{\sqrt{V}} \text{ meter}$$
$$= \frac{12.27}{\sqrt{V}} \text{ Å} \approx \sqrt{\frac{150}{V}} \text{ Å}$$

14. Calculate *de broglie* wavelength of an electron accelerated through a potential difference of(a) 75 volt(b) 300 volt

Sol. (a)
$$\lambda = \sqrt{\frac{150}{V}} \text{ Å} = 1.414 \text{ Å}$$

(b) $\lambda = \sqrt{\frac{150}{300}} \text{ Å} = 0.7 \text{ Å}$

- **15.** Calculate the uncertainity of position of electron if it is equal to uncertainity of distance travelled by electron in 1 sec.
- **Sol.** $\Delta x = \Delta V$ (Heisen berg)

$$\therefore \quad (\Delta x) \cdot (\Delta x) = \frac{h}{4\pi m}$$
$$\therefore \quad \Delta x = \sqrt{\frac{h}{4\pi m}}$$

If the velocity of electron in third orbit of He⁺ ion is 'x', calculate the velocity of electron in second orbit of Li⁺² ion.

Sol. We know
$$v = 2.18 \times 10^6 \frac{Z}{n}$$
 m/sec

For $\operatorname{He}^+ Z = 2$ and n = 3

$$2.18 \times 10^6 \times \frac{2}{3} = x$$
 ...(i)
For He⁺ z = 2 and n = 3

$$2.18 \times 10^6 \times \frac{3}{2} = V$$
 ...(ii)

Equation (ii)/(i)

$$\therefore \qquad \frac{V}{x} = \frac{3}{2} \times \frac{3}{2} = \frac{9}{4}$$
$$v = \frac{9}{4}x$$

- **17.** Calculate K.E. and P.E. of electron in third orbit of H atom.
- **Sol.** We know T.E. = -K.E. and P.E. = $2 \times \text{Total Energy}$

and T.E. =
$$-13.6 \frac{z^2}{n^2} = \frac{-13.6 \times 1}{3^2} = \frac{-13.6}{9} = -1.51 \text{ eV}$$

 \therefore K.E. = 1.51 eV and P.E. = $2 \times 1.51 = -3.02 \text{ eV}$

18. Suppose the potential energy between electron and proton at a particular distance *r* is given by $\frac{-Ke^2}{3r^3}$. Use Bohr's theory to obtain energy of such a hypothetical atom. Sol. $d(U) = F \times dr$

$$F = \frac{dU}{dr} = \frac{d\left[\frac{-Ke^2}{3r^3}\right]}{dr} = \frac{-Ke^2}{3} \left[\frac{dr^{-3}}{dr}\right] = \frac{Ke^2}{3} \times 3r^{-4}$$

$$F = Ke^2r^{-4} = \text{electrostatic force of attraction}$$
and we know $F = \frac{mv^2}{r}$ (from Bohr's theory)
 $\frac{Ke^2}{r^4} = \frac{mv^2}{r}$...(i)
 $\therefore \quad \text{K.E.} = \frac{1}{2}mv^2$
 $\boxed{\text{KE} = \frac{1}{2}\frac{Ke^2}{r^3}}$
We know $mvr = \frac{nh}{2\pi} \implies m^2v^2r^2 = \frac{n^2h^2}{4\pi^2}$
 $\Rightarrow \quad m(mv^2)r^2 = \frac{n^2h^2}{4\pi^2}$
From (1)
 $m\left[\frac{Ke^2}{r^3}\right]r^2 = \frac{n^2h^2}{4\pi^2} \therefore \frac{4\pi^2Ke^2m}{n^2h^2}$
 $T.E. = \text{K.E.} + \text{P.E.} = \frac{1}{2}\frac{Ke^2}{r^3} + \left[\frac{Ke^2}{3r^3}\right]\overline{\text{T.E.} = \frac{Ke^2}{6r^3}}$

- **20.** If the ratio of K. photo frequency old frequency o We know K.E. =
- 19. Suppose P.E. between electron and proton at a separation 'r' is given by $u = K \ln r$. K is a constant. For such a hypothetical atom, calculate the radius of n^{th} Bohr orbit and energy.

I[*V*]...]

Sol.
$$u = K \ln r$$

$$F = \frac{du}{dr} = \frac{d[K \text{ In } r]}{dr}$$
$$F = \frac{d[\ln r]}{dr} = \frac{K}{r} = F$$

1

 $=\frac{Ke^2}{6\left[\frac{4\pi^2 mKe^2}{n^2h^2}\right]^3}$

T.E. = $\frac{n^6 h^6}{384\pi^6 K^2 e^4 m}$

(Electrostatic force of attraction) Provide centripetal force

$$\frac{mv^2}{r} = \frac{K}{r} \quad \therefore \quad v = \sqrt{\frac{K}{m}}$$

$$K = mv^2$$
know
$$mvr = \frac{nh}{2\pi}$$

$$v = \frac{nh}{2\pi mr}$$

$$\sqrt{\frac{K}{m}} = \frac{nh}{2\pi mr}$$

$$r = \frac{nh}{2\pi \sqrt{\frac{m}{K}}}$$

$$\overline{r} = \frac{nh}{2\pi \sqrt{\sqrt{Km}}}$$
T.E. = K.E. + P.E.
$$= \frac{1}{2}mv^2 + K \ln r$$

$$= \frac{1}{2}K + K \ln r$$

$$= K\left[\frac{1}{2} + \ln r\right]$$

$$\overline{T.E.} = K\left[\frac{1}{2} + \ln r\right]$$

We

20. If the ratio of K.E. of ejected photoelectron is $\frac{1}{K}$ when photo frequency v_1 and v_2 given. The calculate threshold frequency of metal? We know K.E. = $h(v - v_0)$

Kinetic Energy (K.E.₁) = $h(v_1 - v_0)$ $v_2 - v_0 = K[v_1 - v_0]$ Kinetic Energy (K.E.₂) = $h(v_2 - v_0)$ $v_2 - v_0 = Kv_1 - Kv_0$

$$\frac{\text{K.E.}_{1}}{\text{K.E.}_{2}} = \frac{1}{K} = \frac{v_{1} - v_{0}}{v_{2} - v_{0}} \quad v_{0}(K-1) = Kv_{1} - v_{2}$$

:
$$v_0 = \frac{[kv_1 - v_2]}{(k-1)}$$

Exercise

C LEVEL I

- 1. The energy of hydrogen atom in its ground state is -13.6 eV. The energy of the level corresponding to n = 5
 - (a) -0.54 eV (b) -5.40 eV
 - (c) -0.85 eV (d) -2.72 eV
- 2. The spectrum of He⁺ is expected to be similar to that of -
 - (a) Li^+ (b) He (c) H (d) Na
- 3. What possibly can be the ratio of the *de Broglie* wavelength for two electrons having the same initial energy and accelerated through 50 volts and 200 volts?
 (a) 3:10 (b) 10:3 (c) 1:2 (d) 2:1
- 4. The uncertainty in the momentum of an electron is 1.0×10^{-5} kg m s⁻¹. The uncertainty of its position will be $(h = 6.626 \times 10^{-34}$ kg m² s⁻¹)
 - (a) 1.05×10^{-28} m (b) 1.05×10^{-26} m
 - (c) 5.27×10^{-30} m (d) 5.25×10^{-28} m
- 5. The orbital with zero angular momentum is (a) s (b) p (c) d (d) f
- 6. The electronic configuration of the Mn⁴⁺ ion is (a) $3d^44s^0$ (b) $3d^24s^1$ (c) $3d^14s^2$ (d) $3d^34s^0$
- 7. Which of the following ions has the maximum number of unpaired *d*-electrons?
 - (a) Zn^{2+} (b) Fe^{2+} (c) Ni^{3+} (d) Cu^{+}
- 8. The total spin resulting from a d^7 configuration is (a) 1 (b) 2 (c) 5/2 (d) 3/2
- 9. $\begin{bmatrix} \text{Given: } K & L & M & N \\ 2 & 8 & 11 & 2 \end{bmatrix}$ The number of electrons present in l = 2 is (a) 3 (b) 6 (c) 5 (d) 4
- 10. The value *l* and m for the last electron in the Cl⁻ ion are
 (a) 1 and 2
 (b) 2 and +1
 - (c) 3 and -1 (d) 1 and -1
- 11. The maximum energy is present in any electron at (a) Nucleus
 - (b) Ground state
 - (c) First excited state
 - (d) Infinite distance from the nucleus
- **12.** Which electronic level would allow the hydrogen atom to absorb a photon but not to emit a photon?

(a) 3s (b) 2p (c) 2s (d) 1s

13. The third line in Balmer series corresponds to an electronic transition between which Bohr's orbits in hydrogen?

(a) $5 \rightarrow 3$ (b) $5 \rightarrow 2$ (c) $4 \rightarrow 3$ (d) $4 \rightarrow 2$

14. Correct set of four quantum numbers for valence electron of rubidium (Z = 37) is

(a) 5, 0, 0,
$$+\frac{1}{2}$$

(b) 5, 1, 0, $+\frac{1}{2}$
(c) 5, 1, 1, $+\frac{1}{2}$
(d) 6, 0, 0, $+\frac{1}{2}$

15. The orbital diagram in which the Aufbau's principle is violated is

(a)
$$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$$
 (b) $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$

(c)
$$\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow$$
 (d) $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$

16. The total number of neutrons in dipositive zinc ions with mass number 70 is

(a) 34 (b) 40 (c) 36 (d) 38

17. Which of the following sets of quantum numbers represents an impossible arrangement

п	l	т	S
(a) 3	2	-2	$\frac{1}{2}$
(b) 4	0	0	$\frac{1}{2}$
(c) 3	2	-3	$\frac{1}{2}$
(d) 5	3	0	$\frac{1}{2}$

- **18.** The explanation for the presence of three unpaired electrons in the nitrogen atom can be given by
 - (a) Pauli's exclusions principle
 - (b) Hund's rule
 - (c) Aufbau's principle
 - (d) Uncertainty principle
- **19.** The electronic configuration of an element is $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$. This represents its
 - (a) Excited state
 - (b) Ground state or cationic form
 - (c) Cationic form only
 - (d) None of these
- **20.** Which of the following has the maximum number of unpaired electron (atomic number of Fe 26)?

(a) Fe (b) Fe (II) (c) Fe (III) (d) Fe (IV)

21. Which quantum number is not related with Schrodinger equation?

(a) Principal (b) Azimuthal

- (c) Magnetic (d) Spin
- 22. If λ_0 is the threshold wavelength for photoelectric emission, λ wavelength of light falling on the surface of metal, and *m* mass of electron, then *de Broglie* wavelength of emitted electron is

(a)
$$\left[\frac{h(\lambda\lambda_0)}{2mc(\lambda_0 - \lambda)}\right]^{\frac{1}{2}}$$
 (b) $\left[\frac{h(\lambda_0 - \lambda)}{2mc\lambda\lambda_0}\right]^{\frac{1}{2}}$
(c) $\left[\frac{h(\lambda - \lambda_0)}{2mc\lambda\lambda_0}\right]^{\frac{1}{2}}$ (d) $\left[\frac{h\lambda\lambda_0}{2mc}\right]^{\frac{1}{2}}$

- 23. It is known that atoms contain protons, neutrons and electrons. If the mass of neutron is assumed to half of its original value whereas that of proton is assumed to be twice of its original value then the atomic mass of $^{14}_{6}C$ will be
 - (a) Same (b) 25 % more
 - (c) 14.28 % more (d) 28.5 % less
- 24. The shortest wavelength of He^+ in Balmer series is x. Then longest wavelength in the Paschene series of Li⁺² is

(a)
$$\frac{36x}{5}$$
 (b) $\frac{16x}{7}$ (c) $\frac{9x}{5}$ (d) $\frac{5x}{9}$

- 25. An electron in a hydrogen atom in its ground state absorbs energy equal to ionisation energy of Li⁺². The wavelength of the emitted electron is
 - (a) 3.32×10^{-10} m (b) 1.17 Å
 - (c) 2.32×10^{-9} nm (d) 3.33 pm
- 26. In compound FeCl₂, the orbital angular momentum of last electron in its cation and magnetic moment (in Bohr Magneton) of this compound are

(a)
$$(\sqrt{6})\hbar, \sqrt{35}$$
 (b) $(\sqrt{6})\hbar, \sqrt{24}$
(c) 0 (d) None of these

27. An electron, a proton and an alpha particle have kinetic energy of 16 E, 4E and E respectively. What is the qualitative order of their de Broglie wavelengths?

(b) $\lambda_p = \lambda_{\alpha} > \lambda_e$ (d) $\lambda < \lambda >> \lambda$ (a) $\lambda_e > \lambda_p = \lambda_\alpha$ (c) $\lambda > \lambda > \lambda > \lambda$

(c)
$$\lambda_p > \lambda_e > \lambda_\alpha$$
 (d) $\lambda_\alpha < \lambda_e >> \lambda_p$
Given ΔH for the process Li (g) \longrightarrow Li⁺³ (g) + 3e⁻ is

- 28. 19800 kJ/mole and IE₁ for Li is 520 then IE₂ and IE₁ of Li^+ are respectively (approx value)
 - (a) 11775, 7505 (b) 19280, 520
 - (c) 11775, 19280 (d) Data insufficient
- **29.** The ratio of difference in wavelengths of first and second lines of Lyman series in H-like atom to difference in wavelength for second and third lines of same series is (a) 2.5:1 (b) 3.5:1 (c) 4.5:1 (d) 5.5:1
- 30. Which of the following statements is INCORRECT?
 - (a) $\frac{e}{m}$ ratio for canal rays is maximum for hydrogen ion
 - (b) $\frac{e}{m}$ ratio for cathode rays is independent of the gas taken.
 - (c) The nature of canal rays is dependent on the electrode material.
 - (d) The $\frac{e}{m}$ ratio for electron is expressed as $\frac{E^2}{2B^2 V}$, when the cathode rays go undeflected under the

influence of electric field (E), magnetic field (B)and V is potential difference applied across electrodes.

- 31. The quantum numbers of four electrons (e1 to e4) are given below.
 - п 1 т S 3 0 0 +1/2el е2 4 0 1 1/2e3 3 2 2 -1/2*e*4 3 1 -11/2

The correct order of decreasing energy of these electrons is

- (a) e4 > e3 > e2 > e1(b) $e^2 > e^3 > e^4 > e^1$
- (c) e3 > e2 > e4 > e1(d) none
- 32. If radius of second stationary orbit (in Bohr's atom) is *R*. Then radius of third orbit will be (d) 2.25 R(a) D/2(h) 0 p(a) D/0

(a)
$$R/3$$
 (b) $9R$ (c) $R/9$ (d) 2.25 R

33. The wavelength associated with a gold weighing 200 g and moving at a speed of 5 m/h is of the order

(a)
$$10^{-10}$$
 m (b) 10^{-20} m (c) 10^{-30} m (d) 10^{-40} m

- **34.** If the nitrogen atom had electronic configuration $1s^7$, it would have energy lower than that of normal ground state configuration $1s^2 2s^2 2p^3$, because the electrons would be closer to the nucleus. Yet 1 s^7 is not observed because it violates
 - (a) Heisenberg uncertainty principle
 - (b) Hunds rule
 - (c) Pauli's exclusion principle
 - (d) Bohr postulate of stationary orbits
- 35. The total number of electrons in 'Cu' atom having magnetic quantum number (m = 0) will be

- 36. Find the number of electrons with the value of azimuthal quantum number 'l' = 1 for Cd²⁺.
 - (a) 18 (b) 20 (c) 22 (d) 24
- **37.** Two bulbs A and B are emitting monochromatic light of wavelength such that A can just ionise H atoms and B can just ionise He^+ ions. If the power of A and B are 30 W and 40 W respectively, calculate the ratio of number of photons emitted per second by bulb A to bulb B. (a) 4 (b) 5 (c) 3 (d) 7
- **38.** In a sample of hydrogen atoms, electrons jump from 10^{th} excited state to ground state. If x is the number of different ultraviolet radiations, y is the number of different visible radiations and z is the number of different infrared radiations. The value of z - (x + y) is [Assume all the Balmer lines lie within visible region.] (a) 17 (b) 18 (c) 19 (d) 36
- **39.** A $4\pi r^2 \psi^2(r)$ vs r plotted for a H-orbital curve contains '3' maxima. If orbital contains 2 angular node then orbital is
 - (a) 5d (b) 4*d* (c) 5p (d) 4*p*

2.14 Physical Chemistry-I for JEE (Main & Advanced)

- **40.** In a hydrogen atom, in transition of electron, a photon of energy 2.55 eV is emitted. Then the change in wavelength of the electron is
 - (a) 3.32 Å (b) 6.64 Å

(c) 9.97 Å (d) None of these

- 41. The ratio of the wavelength of a proton and α -particle will be 1 : 2 if their
 - (a) velocity of proton to velocity of α particle is in the ratio 1 : 8.
 - (b) velocity of proton to velocity of α particle is in the ratio 8 : 1.
 - (c) kinetic energy of proton to kinetic energy of α particle is in the ratio 64 : 1.
 - (d) kinetic energy of proton to kinetic energy of α particle is in the ratio 6 : 1.
- **42.** Choose the correct statement.
 - (I) d_{vz} orbital lies in the xz plane.
 - (II) p_z orbital lies along x-axis.
 - (III) Lobes of Px orbital are at 90° with z-axis
 - (IV) Lobes of d_{xv} orbital are at 90° with z-axis.

(c) I, II (d) All of these

43. Choose the correct option regarding energy of empty orbitals.

	п	l	т	S	
(I)	4	0	0	$+\frac{1}{2}$	
(II)	3	2	0	$-\frac{1}{2}$	
(III)	3	1	1	$+\frac{1}{2}$	
(IV)	3	0	0	$-\frac{1}{2}$	
(a) $I > IV$				(b)	II > I
(c)	$\Pi > \Pi \Pi$			(d)	$\mathbf{I} = \mathbf{III}$
(a)	a, b, c			(b)	b, c
(c)	b, c, d	l		(d)	All of these

- 44. Find the product of multiplication of number of electrons corresponding to (n + l) = 3 and l = 2 in Cu (29). (a) 80 (b) 90 (c) 70 (d) 60
- **45.** Which of the following may represent the possible quantum numbers for the last electron of Ga?

(I) 3, 1, +1, $+\frac{1}{2}$	(II) 4, 0, +1, $+\frac{1}{2}$
(III) 4, 1, 0, $-\frac{1}{2}$	(IV) 4, 1, +1, + $\frac{1}{2}$
(a) III, IV	(b) II, III

- (c) III, IV (d) All of these
- **46.** For which of the following species, Bohr's theory is not applicable?

(a) Be^{+3} (b) Li^{+2} (c) He^{+2} (d) H

47. Which of the following postulates does not belong to Bohr's model of the atom?

(a) Angular momentum is an integral multiple of *h*

$$2\pi^{\cdot}$$

- (b) The electron stationed in the orbit is stable.
- (c) The path of an electron is circular.
- (d) The change in the energy levels of electron is continuous.
- **48.** In which orbit of the hydrogen atom is the speed of the electron maximum?

(a) n=2 (b) n=1 (c) n=3 (d) n=4

- **49.** For an electron, the product vn (velocity \times principal quantum number) will be independent of the
 - (a) principal quantum number
 - (b) velocity of the electron
 - (c) energy of the electron
 - (d) frequency of its revolution
- **50.** Assume that the potential energy of a hydrogen atom in its ground state is zero. Then its energy in the first excited state will be
 - (a) 13.6 eV (b) 27.2 eV
 - (c) 23.8 eV (d) 10.2 eV
- **51.** In an atom, two electrons move around the nucleus in circular orbits of radii R and 4R. The ratio of the time taken by them to complete one revolution is
 - (a) 1:4 (b) 4:1 (c) 1:8 (d) 8:7
- **52.** The wavelength of a spectral line for an electronic transition is inversely related to
 - (a) the number of electrons undergoing the transition.
 - (b) the nuclear charge of the atom.
 - (c) the difference in the energy of the energy levels involved in the transition.
 - (d) the velocity of electron undergoing the transition.
- 53. When the electron of a hydrogen atom jumps from n = 4 to n = 1 state, the number of spectral lines emitted is
 - (a) 15 (b) 6 (c) 3 (d) 4
- **54.** When the frequency of light incident on a metallic plate is doubled, the K.E. of the emitted photoelectron will be
 - (a) doubled
 - (b) halved
 - (c) increased but more than doubled of the previous K.E.
 - (d) Quantum number remains unchanged.
- **55.** The electrons, identified by quantum numbers *n* and l, (i) n = 4, l = 1, (ii) n = 4, l = 0, (iii) n = 3, l = 2, and (iv) n = 3, l = 1 can be placed in order of increasing energy, from the lowest to highest, as
 - (a) (iv) < (ii) < (iii) < (i) (b) (ii) < (iv) < (i) < (iii)
 - (c) (i) < (iii) < (ii) < (iv) (d) (iii) < (i) < (iv) < (ii)
- 56. The correct set of four quantum number for the outermost electrons of rubidium (z = 37) is

(a) 5, 0, 0,
$$+\frac{1}{2}$$
 (b) 5, 1, 0, $+\frac{1}{2}$
(c) 5, 1, 1,
$$+\frac{1}{2}$$
 (d) 6, 0, 0, $+\frac{1}{2}$

57. The number of electrons in sulphur atom having n + l = 3 is

- **58.** The orbital angular momentum of an electron in 2*s*-orbital is
 - (a) h/4p (b) zero
 - (c) h/2p (d) $\sqrt{2}h/2\pi$
- **59.** Magnetic moments of V(Z = 23), Cr(Z = 24), Mn(Z = 25) are *x*, *y*, *z*. Hence
 - (a) x = y = z (b) x < y < z
 - (c) x < z < y (d) z y < x
- **60.** The radial distribution curve of the orbital with double dumbbell shape in the fourth principle shell consists of '*n*' nodes, *n* is
 - (a) 2 (b) 0 (c) 1 (d) 3
- **61.** The increasing order (lowest first) for the values of e/m (charge/mass) for electron (*e*), proton (*p*), neutron (*n*) and alpha particle (α) is
 - (a) e, p, n, α (b) n, p, e, α
 - (c) n, p, α, e (d) n, α, p, e
- 62. The ratio of charge and mass would be greater for
 - (a) Proton (b) Electron
 - (c) Neutron (d) Alpha
- **63.** Calcium (Ca) has atomic number 20 and mass number 40. Which of the following statements is not correct about Ca atom?
 - (a) The number of protons is same as the number of neutrons.
 - (b) The number of electrons is same as the number of neutrons.
 - (c) The number of protons is half of the number of neutrons.
 - (d) The number of nucleons is double the number of neutrons.
- **64.** The triad of nuclei that is isotonic is

(a)
$${}^{14}_{6}C, {}^{15}_{7}N, {}^{17}_{9}F$$
 (b) ${}^{12}_{6}C, {}^{14}_{7}N, {}^{19}_{9}F$

(c)
$${}^{14}_{6}$$
C, ${}^{14}_{7}$ N, ${}^{17}_{9}$ F (d) ${}^{14}_{6}$ C, ${}^{14}_{7}$ N, ${}^{19}_{9}$ F

- **65.** Rutherford's experiment on scattering of particles showed for the first time that the atom has
 - (a) electrons (b) protons
 - (c) nucleus (d) neutrons
- 66. The value of Bohr radius of hydrogen atom is
 - (a) 0.529×10^{-8} cm (b) 0.529×10^{-10} cm
 - (c) 0.529×10^{-12} cm (d) 0.529×10^{-6} cm
- **67.** Ratio of radii of second and first Bohr orbits of H-atom is

68. The radius of which of the following orbit is same as that of the first Bohr's orbit of hydrogen atom (a) He⁺ (n = 2) (b) Li⁺² (n = 2)

(a) He
$$(n=2)$$
 (b) L1⁻ $(n=2)$
(c) L1²⁺ $(n=3)$ (d) Be³⁺ $(n=2)$

69. Of the following transitions in hydrogen atom, the one which gives an absorption line of maximum wavelength is

(a)
$$n = 1$$
 to $n = 2$
(b) $n = 3$ to $n = 8$
(c) $n = 2$ to $n = 1$
(d) $n = 8$ to $n = 3$

- **70.** Electromagnetic radiation with maximum wavelength is
 - (a) ultraviolet (b) radiowave
 - (c) X-ray (d) infrared
- 71. The wave number of the first line in the Balmer series of hydrogen atom is 15200 cm⁻¹. What is the wave number of the first line in the Balmer series of Be³⁺?
 (a) 2.432 × 10⁵ cm⁻¹
 (b) 15200 cm⁻¹
 (c) 415200 cm⁻¹
 (d) 215200 cm⁻¹
- 72. The wavelength associated with a golf ball weighing 200 g and moving at a speed of 5 m/h is of which order
 (a) 10⁻¹⁰ m
 (b) 10⁻²⁰ m
 (c) 10⁻³⁰ m
 (d) 10⁻⁴⁰ m
- **73.** If the following matter waves travel with equal velocity, the longest wavelength is that of
 - (a) electron (b) proton
 - (c) neutron (d) alpha particle
- 74. If the velocity of hydrogen molecule is 5×10^4 cm sec⁻¹, then its *de Broglie* wavelength is
 - (a) 2 Å (b) 4 Å (c) 8 Å (d) 100 Å
- **75.** Correct set of four quantum numbers for the valence (outermost) electron of Ca
 - (a) 4, 0, 0, +1/2 (b) 5, 1, 0, +1/2(c) 4, 1, 1, +1/2 (d) 6, 0, 0, +1/2
- 76. The quantum numbers of most energetic electron in Ar atom when it is in first excited state is
 (a) 2, 1, 0, 1/2
 (b) 4, 1, 1, 1/2
 - (c) 4, 0, 0, 1/2 (d) 4, 1, 0, 1/2
- 77. The outermost electronic configuration of the most electronegative element is
 - (a) ns^2np^3 (b) ns^2np^4 (c) ns^2np^5 (d) ns^2np^6
- **78.** Which of the following orbitals is associated with the angular nodes?
 - (a) *s*-orbials (b) *p*-orbitals
 - (c) *d*-orbitals (d) *f*-orbitals
- **79.** The energy of the second Bohr orbit in the hydrogen atom is -3.41 eV. The energy of the second Bohr orbit of He⁺ ion would be
 - (a) -0.85 eV (b) -13.64 eV
- (c) -1.70 eV
 (d) -6.82 eV
 80. The ratio of energy of the electron in ground state of
 - hydrogen to the electron in first excited state of Be^{+3} is (a) 4 : 1 (b) 1 : 4 (c) 1 : 8 (d) 8 : 1
- 81. The ratio of the difference in energy of electron between the first and second Bohr's orbit to that between second and third Bohr's orbit is

(a)
$$\frac{1}{3}$$
 (b) $\frac{27}{5}$ (c) $\frac{9}{4}$ (d) $\frac{4}{9}$

82. The first emission line in the atomic spectrum of hydrogen in the Balmer series appears at

2.16Physical Chemistry-I for JEE (Main & Advanced)

(a)
$$\frac{9R_H}{400}$$
 cm⁻¹
(b) $\frac{7R_H}{144}$ cm⁻¹
(c) $\frac{3R_H}{4}$ cm⁻¹
(d) $\frac{5R_H}{36}$ cm⁻¹

83. What element has a H-like spectrum and whose lines have wavelengths four times shorter than those of atomic hydrogen?

(d) Li⁺² (a) He (b) He^+ (c) H

- 84. The second line of Lyman series of H coincides with the sixth line of Paschen series of an ionic species X. Find X assuming R to be same for both H and X? (b) Li^{+2} (c) Li^+ (a) He^+ (d) H
- 85. The work function for a metal is 4 eV. To emit a photo electron of zero velocity from the surface of the metal, the wavelength of incident light will be

(a) 2700 Å	(b)) 1700 Å
(**		(0	,

(c) 5900 Å (d) 3100 Å

86. If λ_1 and λ_2 denote the *de Broglie* wavelength of two particles with same masses but charges in the ratio of 1 : 2 after they are accelerated from rest through the same potential difference, then

(a) $\lambda_1 = \lambda_2$ (b) $\lambda_1 < \lambda_2$

- (c) $\lambda_1 > \lambda_2$ (d) None of these
- 87. The velocity of electron of H-atom in its ground state is 2.2×10^6 m/s. The *de Broglie* wavelength of this electron will be

(a)	0.33 nm	(b)) 23.3 nm
•	,		1-	/

(d) 100 nm (c) 45.6 nm

88. The wavelength associated with a golf ball weighing 0.200 g and moving at a speed of 5 m/h is of the order (a) 10^{-10} m (b) 10^{-27} m

()		(~)	
(c)	10^{-30} m	(d)	10^{-40} m

- 89. An electron in a H-like atom is in an excited state. It has a total energy of -3.4 eV. Calculate the *de Broglie's* wavelength?
 - (a) 66.5 Å (b) 6.66 Å (c) 60.6 Å (d) 6.06 Å
- 90. Non-directional orbital is (a) 3s (b) 4*f*
- (c) 4*d* (d) 4*p* 91. The ionisation energy of a hydrogen atom in terms of Rydberg constant (R_H) is given by the expression (a) $R_{\mu}hc$ (b) $R_{\mu}c$

()	- Hue	(0)	- He
(c)	$2R_Hhc$	(d)	$R_H h c N_A$

92. The ratio of the energies of photons of 2000 Å to that of 4000 Å is

(a) 2 (b) 4 (c)
$$\frac{1}{2}$$
 (d) $\frac{1}{2}$

93. For a 'd' electron, the orbital angular momentum is (a

a)
$$\sqrt{6\hbar}$$
 (b) $\sqrt{2\hbar}$ (c) \hbar (d) $2\hbar$

94. The energy of an electron in the first Bohr orbit of Hatom is -13.6 eV. The possible energy value of the excited state in the Bohr orbit of H-atom is

(a)
$$-4.2 \text{ eV}$$
 (b) -3.4 eV
(c) 6.8 eV (d) $\pm 6.8 \text{ eV}$

(d) +6.8 eV(c) -6.8 eV

95. If uncertainty in position of an electron was zero, the uncertainty in its momentum will be

(a) zero (b)
$$\frac{h}{2\pi}$$
 (c) $\frac{h}{4\pi}$ (d) Infinity

96. Which of the following represents the correct set of the four quantum numbers of 4d-electrons?

(a)
$$4, 3, 2, +\frac{1}{2}$$
 (b) $4, 2, 1, 0$
(c) $4, 3, -2, \frac{1}{2}$ (d) $4, 2, 1, -\frac{1}{2}$

97. The first emission line in the atomic spectrum of hydrogen in the Balmer Series appears at

(a)
$$\frac{9R_H}{400}$$
 cm⁻¹
(b) $\frac{7R_H}{144}$ cm⁻¹
(c) $\frac{3R_H}{4}$ cm⁻¹
(d) $\frac{5R_H}{36}$ cm⁻¹

98. The fourth line of the Balmer series corresponds to electron transition between which energy levels

(a)	6 and 2	(b)	5 and 2
(c)	4 and 1	(d)	5 and 1

- 99. The ionisation potential of hydrogen atom is 13.6 eV. The ionisation potential of Be³⁺ ion is
 - (b) 109.8 eV (a) 217.6 eV
 - (c) 54.4 eV (d) 136.0 eV
- **100.** If 10^{-17} J of light energy is needed by the interior of human eye to see an object, the photons of green light $(\lambda = 550 \text{ nm})$ needed to see the object are (a) 27
- (c) 29 (b) 28 (d) 30 101. The energy of a photon having wavelength 700 nm is (a) 1.77 eV (b) 2.47 eV

(c)
$$700 \text{ eV}$$
 (d) 3.57 eV

- **102.** A 1-kW radio transmitter operates at a frequency of 880 Hz. How many photons per second does it emit? (a) 1.71×10^{21} (b) 1.71×10^{30} (c) 6.02×10^{23} (d) 2.85×10^{26}
- 103. The ratio of the e/m values of a proton and an *a*-particle is

(a)
$$2:1$$
 (b) $1:1$ (c) $1:2$ (d) $1:4$

- 104. Which particle among the following will have the smallest de Broglie wavelength, assuming that they have the same velocity?
 - (a) A positron (b) A photon
 - (c) An *a*-particle (d) A neutron
- 105. The energy needed to excite a hydrogen atom from its ground state to its third excited state is
 - (a) 12.1 eV (b) 10.2 eV
 - (c) 0.85 eV (d) 12.75 eV
- 106. The wavelength of the third line of the Balmer series for a hydrogen atom is

(a)
$$\frac{21}{100R_{\infty}}$$
 (b) $\frac{100}{21R_{\infty}}$
(c) $\frac{21R_{\infty}}{100}$ (d) $\frac{100R_{\infty}}{21}$

107. When the value of the azimuthal quantum number is 3, the maximum and the minimum values of the spin multiplicities are

(a) 4, 3 (b) 8, 1 (c) 1, 3 (d) 8, 2

- 108. The energy of an electron in the first Bohr orbit of Hatom is -13.6 eV. The possible energy value of the 3rd excited state for electron in Bohr orbit of hydrogen is (b) -0.85 eV(a) -3.4 eV(c) -6.8 eV(d) + 6.8 eV
- 109. For the hydrogen atom, the energy of the electron is defined by the factor $E_n = -13.58/n^2$ eV. Here *n* is positive integer. The minimum quantity of energy which it can absorb in its primitive stage is
 - (a) 1.00 eV (b) 3.39 eV
 - (c) 6.79 eV (d) 10.19 eV
- 110. The radius of Bohr's first orbit in hydrogen atom is 0.053 nm. The radius of second orbit in He^+ can be
 - (a) 0.0265 nm (b) 0.0530 nm
 - (c) 0.106 nm (d) 0.2120 nm
- 111. The ratio of the radii of the first three Bohr orbits is (a) 1:0.5:0.33 (b) 1:2:3
 - (c) 1:4:9 (d) 1:8:27
- 112. An electron has wavelength 1 Å. The potential by which the electron is accelerated will be (a) 0.0926 V (b) 0.0502 V
 - (c) 0.0826 V (d) 150 V
- **113.** Atomic number of chromium is 24, then Cr^{3+} will be (a) diamagnetic (b) paramagnetic
 - (c) ferromagnetic (d) None of these
- 114. Which of the following arrangement of two electrons in two degenerated orbitals is not possible at all?

(a)	Ļ	(b)	
(c)		(d)	All

115. A compound of vanadium possesses a magnetic moment of 1.73 BM. The oxidation state of vanadium in this compounds is

- (c) 4 (d) Cannot be predicted
- 116. Uncertainty in position and momentum are equal. Uncertainty in velocity is
 - (a) $\sqrt{h/\pi}$ (b) $\sqrt{h/2\pi}$
 - (c) $1/2m\sqrt{h/\pi}$ (d) None of these
- 117. The second line of Lyman series of H coincides with the sixth line of Paschen series of an ionic species X. Find X assuming Rydberg constant to be same for both H and X?
 - (a) Li^{+2} -ion (b) Li⁺-ion
 - (c) He⁺-ion (d) None of these
- **118.** Two particles A and B are in motion. If the wavelengths associated with particle A is 5×10^{-8} m, calculate the wavelength of particle *B* if momentum of *B* is half of *A*. (a) 10^{-8} m (b) 10^{-7} m (c) 10^{-5} m (d) 10^{-3} m

- 119. The energy for an electron is an orbit of hydrogen atom is given by, $E_n = -\frac{13.6}{n^2} Z^2 \text{ eV}$. Calculate the energy of the orbit having a radius $9r_1$ where r_1 is the radius of the first orbit? (a) -1.51 eV (b) 10.2 eV (d) 1.36 eV (c) 13.6 eV
- 120. An electron in a Bohr orbit of hydrogen atom with the quantum number n_2 has an angular momentum 4.2176 $\times 10^{-34}$ kg m² s⁻¹. If electron drops from this level to the next lower level, find the wavelength of this line. (a) 18.75×10^{-7} m (b) 1.87×10^{-7} m
 - (c) 187.5×10^{-7} m (d) 0.187×10^{-7} m
- 121. The maximum wavelength of light that can excite an electron from first to third orbit of hydrogen atom is
 - (b) 170 nm (a) 487 nm
 - (c) 103 nm (d) 17 nm
- **122.** The work function for a metal is 4 eV. To emit a photo electron of zero velocity from the surface of the metal, the wavelength of incident light should be (nearly)
 - (a) 2700 Å (b) 1700 Å
 - (c) 5900 Å (d) 3100 Å
- **123.** The total energy of the electron in the hydrogen atom in the ground state is -13.6 eV. The K.E. of this electron is (a) 13.6 eV (b) Zero (c) -13.6 eV (d) 6.8 eV
- 124. Which of the following sets of quantum numbers represents the highest energy of an atom?

(a)
$$n = 4, l = 0, m = 0, s = +\frac{1}{2}$$

(b) $n = 3, l = 0, m = 0, s = +\frac{1}{2}$
(c) $n = 3, l = 1, m = 1, s = +\frac{1}{2}$
(d) $n = 3, l = 2, m = 1, s = +\frac{1}{2}$

125. Which option gives the values of the quantum numbers for the 21st electron of scandium (Z = 21)?

(a) 3, 1, 1,
$$+\frac{1}{2}$$
 (b) 3, 2, 2, $+\frac{1}{2}$
(c) 3, 2, $-3, -\frac{1}{2}$ (d) 3, 1, 2, $-\frac{1}{2}$

- **126.** The number of unpaired electrons in Mn^{4+} (Z = 25) is (a) four (b) two (c) five (d) three
- 127. The value of the magnetic moment of a particular ion is 2.83 Bohr magneton. The ion is (d) Co³⁺
 - (a) Fe^{2+} (b) Ni²⁺ (c) Mn^{2+}
- **128.** The number of spherical nodes in 3*p* orbitals is (c) two (b) three (a) one (d) zero
- 129. Which of the following electronic configurations have zero spin multiplicity?

- **130.** The fraction of volume occupied by the nucleus with respect to the total volume of an atom is
- (a) 10^{-15} (b) 10^{-5} (c) 10^{-30} (d) 10^{-10} **131.** Which of the following is iso-electronic with neon-(a) O^{2-} (b) F^+ (c) Mg (d) Na
- **132.** The MRI (magnetic resonance imaging) body scanners used in hospitals operate with 400 MHz radio frequency energy. The wavelength corresponding to this radio frequency is
 - (a) 0.75 m (b) 0.75 cm (c) 1.5 m (d) 2 cm
- **133.** Radius of Nucleus of atom having Atomic mass = 64 will be

(a)	5 fm	(b)	9 fm
(c)	10 fm	(d)	85 fm

134. What is likely to be principal quantum number for a circular orbit of diameter 20 nm of the hydrogen atom if we assume Bohr orbit be the same as that represented by the principal quantum number?

(a) 10 (b) 14 (c) 12 (d) 16

135. Choose the correct relationship.

- (a) E_1 of H = 1/2 E_2 of He⁺ = 1/3 E_3 of Li²⁺ = 1/4 E_4 of Be³⁺
- (b) $E_1(H) = E_2(He^+) = E_3(Li^{2+}) = E_4(Be^{3+})$

(c)
$$E_1(H) = 2E_2(He^+) = 3E_3(Li^{2+}) = 4E_4(Be^{3+})$$

- (d) No relation
- **136.** If the value of E = -78.4 kcal/mole, the order of the orbit in hydrogen atom is

(a) 4 (b) 3 (c) 2 (d) 1

- **137.** If velocity of an electron in first orbit of H atom is V, what will be the velocity of 3^{rd} orbit of Li^{+2} ? (a) V (b) V/3 (c) 3 V (d) 9 V
- 138. In a certain electronic transition in the hydrogen atoms from an initial state (A) to a final state (B), the difference in the orbit radius |r₁ r₂| is 624 times the first Bohr radius. Identify the transition.
 (a) 5 → 1
 (b) 25 → 1
 (c) 8 → 3
 (d) 7 → 5

(a) $5 \rightarrow 1$ (b) $25 \rightarrow 1$ (c) $8 \rightarrow 3$ **139.** Match the following:

- (a) Energy of ground state of (i) $-6.04 \mbox{ eV} \ \mbox{He}^+$
- (b) Potential energy of I orbit (ii) −27.2 eV of H-atom
- (c) Kinetic energy of II excit- (iii) 8.7×10^{-18} J ed state of He⁺
- (d) Ionisation potential of He^+ (iv) -54.4 eV
- (a) A (i), B (ii), C (iii), D (iv)
- (b) A (iv), B (iii), C (ii), D (i)
- (c) A (iv), B (ii), C (i), D (iii)
- (d) A (ii), B (iii), C (i), D (iv)

140. From the following observations, predict the type of orbital.

Observation 1: x y plane acts as nodal plane.

Observation 2: The angular function of the orbital intersect the three axis at origin only.

Observation 3: $R^2(r)v/s r$ curve obtained for the orbital is

(a)
$$5p_z$$
 (b) $6d_{xy}$ (c) $6d_x^2 - y^2$ (d) $6d_{yz}$

141. Consider the following nuclear reactions involving *X* and *Y*:

$$X \longrightarrow Y + \frac{4}{2} \text{He}$$

Y

$$\longrightarrow_{8}O^{18} + {}_{1}H^{1}$$

If both neutrons as well as protons in both sides are conserved in nuclear reaction then identify period number of X and moles of neutrons in 4.6 g of X.

(a)
$$3, 2.4 N_A$$
 (b) $3, 2.4$
(c) $2, 4.6$ (d) $3, 0.2 N$

- 142. Electromagnetic radiations having $\lambda = 310$ Å are subjected to a metal sheet having work function = 12.8 eV. What will be the velocity of photoelectrons with maximum kinetic energy.
 - (a) 0, no emission will occur
 - (b) 2.18×10^6 m/s

(c)
$$2.18\sqrt{2} \times 10^6$$
 m/s

- (d) 8.72×10^6 m/s
- 143. If in Bohr's model, for unielectronic atom, time period of revolution is represented as $T_{n,z}$ where *n* represents shell number and *z* represents atomic number then the value of $T_{1,2}$: $T_{2,1}$ will be
 - (a) 8:1 (b) 1:8
 - (c) 1:1 (d) None of these
- 144. Which of the following orbital is non-directional?(a) s(b) p

) s (b)
$$p$$

- (c) d (d) All of these
- **145.** Uncertainty in position is twice the uncertainty in momentum Uncertainty in velocity is

(a)
$$\sqrt{\frac{h}{\pi}}$$
 (b) $\frac{1}{2m}\sqrt{\frac{h}{\pi}}$
(c) $\frac{1}{2m}\sqrt{h}$ (d) $\frac{h}{4\pi}$

146. For which orbital angular probability distribution is maximum at an angle of 45° to the axial direction?

(a)
$$d_x^2 - y^2$$
 (b) d_z^2

- (c) d_{xy} (d) P_x
- 147. Which orbit will be the first to have 'g' subshell? (a) 3^{rd} (b) 4^{th} (c) 5^{th} (d) 6^{th}

(a)
$$\frac{2\pi r}{V}$$
 (b) $\frac{\frac{4}{3}\pi r^3}{V}$
(c) $\frac{V}{2\pi r}$ (d) $\frac{qV}{2\pi r}$

149. The decreasing order of energy of the 3d, 4s, 3p, 3s orbitals is

(a) 3d > 3s > 4s > 3p (b) 3s > 4s > 3p > 3d

(c) 3d > 4s > 3p > 3s (d) 4s > 3d > 3s > 3p

150. If *n* and l are respectively the principle and azimuthal quantum numbers, then the expression for calculating the total number of electrons in any orbit is

(a)
$$\sum_{l=1}^{l=n} 2(2l+1)$$
 (b) $\sum_{l=1}^{l=n-1} 2(2l+1)$
(c) $\sum_{l=0}^{l=n+1} 2(2l+1)$ (d) $\sum_{l=0}^{l=n-1} 2(2l+1)$

C LEVEL II

- **1.** Select the correct statement for Ne.
 - (a) It is not isoelectronic with H_2O .
 - (b) Last electron enters in *s*-orbital.
 - (c) The value of 'm' must be zero for last electron.
 - (d) The value of 'l' must be '1' for last electron.
- **2.** Give the correct order of initials True (T) or False (F) for the following statements:
 - (I) Number of electrons having l = 0 is 10 in Pd.
 - (II) The value of Z_{eff} for 3*d* electron of Cr and 3*d* electron of Mn is same as the number of electron in '*d*' subshell of Cr and Mn are same.
 - (III) Multiplicity of Fe is equal to Ni⁺².
 - (IV) Value of $\left(\frac{l}{n}\right)$ for last electron of element having
 - atomic number 57 is 0.4.
 - (a) T T T T (b) F T T T
 - (c) T F T F (d) F F F T
- **3.** 'A⁺²' is isoelectronic with 'CO₂' and has (Z+2) neutron (Z is atomic number of A), then select the correct option(s).
 - (I) Mass number of A^{+2} is 50.
 - (II) Last electron enters in 's' orbital in element 'A'.
 - (III) Number of unpaired electron in 'A' is 4.
 - (IV) During formation of A^{+2} , electron(s) are removed from 's' as well as 'd' subshell.

- 4. Calculate 'Q' for last electron of Ga where Q = n + l + maximum possible value of 'm'.
 (a) 6 (b) 8 (c) 7 (d) 5
- 5. Which of the following is / are true?
 (I) Multiplicity in Fe³⁺ is greater than that in Co³⁺.

(d) 5

- (II) Ti^{3+} , Cr^+ , Sc^{2+} ions are diamagnetic.
- (III) Value of (n + l + m) for last electron of Mg is 3.
- (IV) The value of Z_{eff} for 3s electron of Cl is 10.9.
 - (a) I, IV (b) I, III
- (c) III, IV (d) All of these
- 6. An element has mass number of 23 and its unipositive ion has electronic configuration $1s^2 2s^2 2p^6$. Select the correct statement(s).
 - (I) It is isotonic with Mg^{24} .
 - (II) The ratio of *n* to *l* for last electron in atom of above element is 2.
 - (III) Atom of the above element is isoelectronic with H_2O .
 - (IV) Atom of the above element is paramagnetic.(a) I, IV(b) II, III(c) III, IV(d) All
- 7. If the Aufbau principle is not followed and subshells of a shell are progressively filled according to their energy, which of the following elements is paramagnetic?
 (a) Mg
 (b) Ca
 (c) Ni
 (d) Zn
- Find the total number of species having magnetic moment value of 2.84 B.M. from following species: Fe⁺², Cr. Cr³⁺, Ti²⁺, Mn²⁺, V³⁺

- **9.** Select the correct statement(s).
 - (I) Maximum number of electrons having $s = +\frac{1}{2}$ in sulphur is 9.
 - (II) If electron has zero magnetic quantum number then it must be present in *s*-orbital.
 - (III) All isoelectronic ions have same value of Z_{eff} .
 - (IV) Number of subshell present in a n^{th} shell is equal to 'n'.
 - (a) I, IV(b) II, III(c) III, IV(d) All of these
- **10.** Total number of electrons having l = 2 in Fe⁺² according to Aufbau principle (n + l rule) is
 - (a) 5 (b) 4 (c) 3 (d) 6
- 11. Similar to quantum number *n*, *l*, *m* a set of new quantum numbers was introduced with similar logic but different values defined as
 - x = 1, 2, 3... all (+ve) integral values
 - y = (x 1) (x 2)(x 3)... No (-ve) value
 - z = +(y + 1/2) to -(y + 1/2) in integral steps For each value of (z), there will be two electrons, if (x+y)rule is followed similar to (n + l) rule then number of electron in third shell for Zn (Atomic number = 30) is (a) 12 (b) 13 (c) 14 (d) 15
- 12. Select the incorrect statement(s) (According to Bohr model).

(a) Total energy =
$$\frac{-2\pi^2 K^2 Z^2 e^4 m}{n^2 h^2}$$

(b) Radius of orbit =
$$\frac{n^2 h^2}{4\pi^2 KZe^2 m}$$

(c) Velocity of electron in an orbit = $\frac{2\pi KZe^2}{nh}$

(d) Frequency of revolution of an electron in an orbit $n^3 h^3$

$$=\frac{n n}{4\pi K^2 Z^2 e^4 m}$$

13. The electrons in a sample of gaseous Li²⁺ ions which are initially present in a particular excited state makes a transition to a lower level. The emitted photons are absorbed by a sample of H-atoms which are present in their ground state. This sample of H-atoms on deexcitation gives maximum 6 different types of spectral lines. Find the quantum number of initial excited state of Li²⁺ ions.

14. The radial wave function for 1s electron in H-atom is $R = \frac{2}{a_0^{3/2}}e^{-r/a_0} \text{ where } a_0 = \text{radius of first orbit of H-at-}$

om. The ratio of probability of 1s electron in hydrogen

atom at distance a_0 from nucleus to that at distance $\frac{a_0}{2}$

(a) equal (b) $\frac{1}{e}$ times 4 e

(c)
$$\frac{4}{e}$$
 times (d) $\frac{e}{4}$ times

15. Which of the following has correct the matching of curve and orbital?

 $\frac{h}{2\pi a_0}$, where a_0 is 0.529 Å, find the ratio of minimum

uncertainty in momentum to given momentum. $[h = 6.626 \times 10^{-34}]$

(a) 2423 (b) 2645 (c) 2768 (d) 2357

17. An unknown particle having double charge as proton moves with wavelength λ . It is accelerated from the rest through a potential difference of $\frac{V}{8}$ volts, while proton itself moves with same wavelength λ when accelerated from rest through a potential difference 'V' volts. The particle is

(a) He^+ (b) Li^{2+} ion (c) He^{2+} (d) Be^{2+}

18. When photons of wavelength $\lambda = 253.7$ nm is subjected on Cu plate (work function = 4.65 eV) then photoelectrons are emitted. The magnitude of potential required to stop photocurrent completely is 0.24 V. The kinetic energy of ejected electron is

- (I)
 0.24 eV
 (II)
 0.20 eV

 (III)
 0.10 eV
 (IV)
 2.4 eV

 (a)
 I, II, III
 (b)
 II, III, IV

 (c)
 I, III, IV
 (d)
 All of these
- **19.** The distance of spherical nodes from nucleus for the given orbital are

$$\Psi_{\text{radial}} = \frac{1}{9\sqrt{2}} \left(\frac{Z}{a_0}\right)^{3/2} \left[(\sigma^2 - 4\sigma + 3)\right] \exp(-\sigma/2)$$

where a_0 and Z are the constants and $\sigma = \frac{2Zr}{a_0}$.

(a) Zero, infinity (b)
$$\frac{a_0}{Z}, \frac{1}{2}\frac{a_0}{Z}$$

(c)
$$\frac{1}{2}\frac{0}{Z}, \frac{1}{2}\frac{0}{Z}$$
 (d) $\frac{1}{2}\frac{0}{Z}, \frac{1}{2}\frac{0}{Z}$

20. The difference in angular momentum associated with the electron in two successive orbits of hydrogen atoms is

(a)
$$\frac{h}{\pi}$$
 (b) $\frac{h}{2\pi}$ (c) $\frac{h}{2}$ (d) $\frac{(n-1)h}{2\pi}$

- **21.** The shortest λ for the Lyman series of hydrogen atom is ... (Given: $R_H = 109678 \text{ cm}^{-1}$)
 - (a) 911.7 Å (b) 700 Å

(c) 600 Å (d) 811 Å

22. The velocity of an electron in the first Bohr orbit of a hydrogen atom is $2.19 \times 10^6 \text{ ms}^{-1}$. Its velocity in the second orbit would be

(a)
$$1.10 \times 10^{6} \text{ ms}^{-1}$$
 (b) $4.38 \times 10^{6} \text{ ms}^{-1}$

(c)
$$5.5 \times 10^5 \text{ ms}^{-1}$$
 (d) $8.76 \times 10^6 \text{ ms}^{-1}$

23. The atomic spectrum of Li^{+2} – ion arises due to the transition of an electron from n_2 to n_1 . If $n_1 + n_2 = 4$ and $(n_2 - n_1) = 2$, find the wavelength of the third line of this series in Li^{+2} -ion.

- (c) 108 nm (d) 1080 nm
- **24.** If the wavelength is equal to the distance travelled by the electron in one second, then

(a)
$$\lambda = \frac{h}{p}$$

(b) $\lambda = \frac{h}{p}$
(c) $\lambda = \sqrt{\frac{h}{p}}$
(d) $\lambda = \sqrt{\frac{h}{m}}$

- **25.** According to the Schrodinger model, nature of electron in an atom is
 - (a) Particles only
 - (b) Wave only
 - (c) Both simultaneously
 - (d) Sometimes waves and sometimes particle
- **26.** Which of the following describes orbital?
 - (a) ψ (b) ψ^2
 - (c) $|\psi^2|\psi$ (d) All of these
- 27. In order to have the same wavelength for the electron (mass m_e) and the neutron (mass m_n), their velocities

Atomic Structure 2.21

should be in the ratio (electron velocity/neutron velocitv)

- (a) m_n/m_e (b) $m_n \times m_e$ (c) m_e/m_n (d) one
- **28.** Which of the following is true about ψ
 - (a) ψ represents the probability of finding an electron around the nucleus.
 - (b) ψ represent the amplitude of the electron wave.
 - (c) Both A and B
 - (d) None of these
- **29.** Consider an electron in the n^{th} orbit of a hydrogen atom in the Bohr model. The circumference of the orbit can be expressed in terms of the *de Broglie* wavelength λ of the electron as
 - (b) $\sqrt{n\lambda}$ (a) $(0.529) n\lambda$
 - (d) $n\lambda$ (c) $(13.6) \lambda$
- **30.** A particle X moving with a certain velocity has a de Broglie wavelength of 1A°. If particle Y has a mass of 25% that of X and velocity 75% that of X, de Broglie's wavelength of Y will be

(a) $3 A^{\circ}$ (b) 5.33 A° (c) 6.88 A° (d) 48 A°

- 31. What are the values of the orbital angular momentum of an electron in the orbitals 1s, 3s, 3d and 2p?
 - (b) 1, 1, $\sqrt{4}\hbar, \sqrt{2}\hbar$ (a) 0, 0, $\sqrt{6}\hbar, \sqrt{2}\hbar$ (c) 0, 1, $\sqrt{6}\hbar, \sqrt{3}\hbar$ (d) 0, 0, $\sqrt{20}\hbar, \sqrt{6}$
- **32.** If m = magnetic quantum number and l = azimuthal quantum number, then

(a)
$$m = l + 2$$

(b) $m = 2l^2 + 1$
(c) $l = \frac{m-1}{2}$
(d) $l = 2m + 1$

- **33.** The number of unpaired electrons in Mn^{4+} (Z = 25) is (a) Four (b) Two (c) Five (d) Three
- 34. After *np* orbitals are filled, the next orbital filled will be (a) (n+1)s(b) (n+2)p

(c) (n+1) d(d) (n+2)s

35. The value of the magnetic moment of a particular ion is 2.83 Bohr magneton. The ion is

(a) Fe^{2+} (d) Co³⁺ (b) Ti (c) Mn^{2+}

36. In Bohr's model of the hydrogen atom, the ratio between the period of revolution of an electron in the orbit of n = 1 to the period of the revolution of the electron in the orbit n = 2 is

(a) 1:2 (b) 2:1 (c) 1:4(d) 1:8

37. Let v_1 be the frequency of the series limit of the Lyman series, v_2 be the frequency of the first line of the Lyman series, and v_3 be the frequency of the series limit of the Balmer series.

(a)
$$v_1 - v_2 = v_3$$
 (b) $v_2 - v_1 = v_3$
(c) $v_3 = 1/2 (v_1 - v_3)$ (d) $v_1 + v_2 = v_3$

38. The energies of energy levels A, B and C for a given atom are in the sequence $E_A < E_B < E_C$. If the radiations of wavelengths λ_1 , λ_2 and λ_3 are emitted due to the atomic transitions C to B, B to A and C to A respectively then which of the following relations is correct?

(a)
$$\lambda_1 + \lambda_2 + \lambda_3 = 0$$
 (b) $\lambda_3 = \lambda_1 + \lambda_{22}$
(c) $\lambda_3 = \lambda_1 + \lambda_2$ (d) $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$

39. The wavelengths of photons emitted by electron transition between two similar levels in H and He⁺ are λ_1 and λ_2 respectively. Then (a) $\lambda_2 = \lambda_1$ (b) 1 - 21

(b)
$$\lambda_2 = \lambda_1$$

(c) $\lambda_2 = \lambda_1/2$
(d) $\lambda_2 = \lambda_1/2$

- (c) $\lambda_2 = \lambda_1/2$ (d) $\lambda_2 = \lambda_1/4$ 40. If first ionisation potential of an atom is 16 V, then the first excitation potential will be
- (a) 10.2 V (b) 12 V (c) 14 V (d) 16 V
- **41.** In which transition minimum energy is emitted?
 - (a) $\infty \rightarrow 1$ (b) $2 \rightarrow 1$ (c) $3 \rightarrow 2$ (d) $n \rightarrow (n-1) \ (n \ge 4)$
- 42. Number of visible lines when an electron returns from fifth orbit to ground state in H spectrum is

(a) 5 (b) 4 (c) 3 (d) 10

LEVEL III

1	

- 2.22 Physical Chemistry-I for JEE (Main & Advanced)
 - (a) (I) P (II) P, Q, R, S, T (III) Q, R, S (IV) P
 - (b) (I) Q (II) Q, R, S, T (III) P, Q, R, S (IV) P
 - (c) (I) P, R (II) P, Q, R, S (III) Q, R (IV) S
 - (d) (I) P, Q, R (II) Q, S, T (III) P, Q, S (IV) R
 - 2. Matrix matching

Column-I		Colum	n-II
(A)	Lyman series	(p)	Visible region
(B)	Balmer series	(q)	Infrared region
(C)	Paschen series	(r)	Utraviolet region
(D)	Brackett series	(s)	$n_2 = 4$ to $n_2 = 3$
		(t)	$n_2 = 5$ to $n_2 = 1$

3. Matrix matching

Column-I		Column-II	
(A)	2 <i>p</i> orbital	(p)	Number of spherical nodes = 0
(B)	3 <i>d</i> orbital	(q)	Number of nodal plane $= 0$
(C)	2s orbital	(r)	Orbital angular momentum number = 0
(D)	4 <i>f</i> orbital	(s)	Azimuthal quantum num- ber = 0

4. Matrix matching

Colu	mn-I	Column-II	
(A)	Radius of n^{th} orbit	(p)	Inversely propor- tional to z
(B)	Energy of n^{th} orbit	(q)	Integral multiple of $\frac{h}{2\pi}$
(C)	Velocity of electron in the n^{th} orbit	(r)	Proportional to n^2
(D)	Angular momentum of electron	(s)	Inversely propor- tional to <i>n</i>
		(t)	Proportional to Z^2

5. Matrix matching

Column-I		Colu	umn-II
(A)	Н	(p)	Radius of 4^{th} orbit 0.53×4 Å
(B)	He ⁺	(q)	Energy of second orbit = -13.6 eV
(C)	Be ³⁺	(r)	Radius of second orbit = $0.53 \times > 4$ Å
(D)	Li ²⁺	(s)	Velocity of electron in the third orbit
		(t)	Energy of fourth orbit = -13.6 eV

6.

Colu	nn-I	Col	umn-II			
(A)	Aufbau principle	(p) Line spectrum in				
			visible region			
(B)	de Broglie	(q)	Orientation of an			
			electron in an orbital			
(C)	Angular	(r)	(r) Photon			
	momentum					
(D)	Hund's rule	(s)	$\lambda = h/mv$			
(E)	Balmer series	(t)	Electronic			
			configuration			
(F)	Planck's law	(u)	mvr			

7.

Column-I		Col	umn-II	
(A)	Cathode rays	(p) Helium nuclei		
(B)	dumb bell	(q) Uncertainty principle		
(C)	Alpha particles	(r)	Electromagnetic radiation	
(D)	Moseley	(s)	<i>p</i> -orbital	
(E)	Heisenberg	(t) Atomic number		
(F)	X-ray	(u)	Electrons	

8. Frequency = f, Time period = T, Energy of n^{th} orbit = E_n , radius of n^{th} orbit = r_n , Atomic number = Z, Orbit number = n:

Colu	Column-I		nn-II
(A)	f	(p)	n^3
(B)	Т	(q)	Z^2
(C)	E_n	(r)	$\frac{1}{n^2}$
(D)	$\frac{1}{r_n}$	(s)	Ζ

9.

Colu	ımn-I	Colu	mn-II				
(A)	Lyman series	(p)	Maximum number of spectral line ob- served = 6				
(B)	Balmer series	(q)	Maximum number of spectral line ob- served = 2				
(C)	In a sample $5 \rightarrow 2$	(r)	Second line has wave number $\frac{8R}{9}$				
(D)	In a single isolat- ed H-atom for 3 \rightarrow 1 transition	(s)	Second line has wave number $\frac{3R}{4}$				
		(t)	Total number of spectral line is 10				

10. Column I and Column II contain data on Schrodinger Wave-Mechanical model, where symbols have their usual meanings. Match the columns.

Colur	nn-I	Column-II	
(A)	'm'	(p)	4 <i>s</i>
(B)	ψ ² _r 4π ²	(q)	5px
(C)	Y(q, f) = K (independent of q and f)	(r)	3 <i>s</i>
(D)	atleast one angular node is present	(s)	6 <i>dxy</i>

Passage 1

In an atom, when an electron jumps from higher energy level to lower energy level, it emits energy in the form of electromagnetic radiations. When these electromagnetic radiations are passed through a prism and received on a photographic film, some lines are observed and those lines are called spectral lines.

For hydrogen-like species when jump takes from any excited state to ground state (n = 1), line produced in that case is called a Lyman series line.

If transition occurs from third or above levels to second level, then corresponding lines produced are called Balmer lines.

Similarly for next level, it is called Paschen series line.

11. In a gaseous sample 3 atoms of a Hydrogen-like species are present and all atoms are in fourth excited state then calculate the maximum number of different spectral lines that can be produced.

(a) 10 (b) 7 (c) 12 (d) 8

12. If there are 3 atoms of a Hydrogen like specie in second, third and fourth excited state respectively, then how many maximum total different Balmer and Paschen lines can be produced?

Passage 2

Alpha particles capture free moving electrons having wavelength 0.25 nm and form excited H-like species. In this excited state, electron has circumference 6 times the wavelength of electron. Bohr's quantisation rule is applicable.

13. The energy of photon emitted in this process will be

- (c) 25.51 eV (d) 27.51 eV
- 14. What is the number of maximum possible spectral lines obtained in Balmer series, when electron makes transition to ground state?

(a)
$$15$$
 (b) 4 (c) 6 (d) 10

15. When electrons make transition to ground state, the largest wavelength (in nm) in the emitted radiations is [Given : "*E*" represents energy level in eV]

(a)
$$\frac{1240}{|E_6 - E_5|}$$
 (b) $\frac{1240}{|E_2 - E_1|}$
(c) $\frac{1240}{|E_6 - E_1|}$ (d) $\frac{1240}{|E_5 - E_4|}$

Passage 3

The magnetic quantum number is denoted by letter *m*, and for a given value of *l*, it can have all the values ranging from -l to +l including zero of *l*, *m* has 2l + 1 values. For example, if l = 2, *m* can values, i.e., m = -2, -1, 0, +1, +2. This implies that there are five different orientations of the *d*-subshell. In other words, *d*-subshell has five *d*-orbitals.

16. How many electrons can fit into the orbitals that comprise the third quantum shell n = 3?

(a)
$$2$$
 (b) 8 (c) 18 (d) 32

- **17.** The maximum number of electron that can be accommodated in *f*-shell is
- (a) 2 (b) 8 (c) 18 (d) 14 **18.** Which of the following is correct for 2p-orbitals?
 - (a) n = 1, l = 2(b) n = 1, l = 0(c) n = 2, l = 0(d) n = 2, l = 1
 - (c) n=2, l=0 (d) n=2, l=1

Passage 4

A German physicist gave a principle about the uncertainties in simultaneous measurement of position and momentum of small particles. According to that physicist, it is impossible to measure simultaneously the position and momentum of small particle simultaneously with absolute accuracy or certainty. If an attempt is made to measure any one of these two quantities with higher accuracy, the other becomes less accurate. The product of the uncertainty in position (Δx) and uncertainty momentum (Δp) is always constant and is equal to or greater

than
$$\frac{h}{4\pi}$$
, where *h* is Plank's constant, i.e.,
 $(\Delta x)(\Delta p) \ge \frac{h}{4\pi}$

19. Uncertainty in position is twice the uncertainty in momentum. Uncertainty velocity is

(a)
$$\sqrt{\frac{h}{\pi}}$$
 (b) $\frac{1}{2m}\sqrt{\frac{h}{\pi}}$
(c) $\frac{1}{2m}\sqrt{h}$ (d) $\frac{1}{2\sqrt{2m}}\sqrt{\frac{h}{\pi}}$

- **20.** The uncertainty in position of an electron $(m = 9.1 \times 10^{-28} \text{ gm})$ moving with a velocity 3×10^4 cm/s accurate up to 0.001% will be
 - (a) 3.84 cm (b) 1.92 cm
 - (c) 7.68 cm (d) 5.76 cm
- **21.** If uncertainty in the position of an electron is zero, the uncertainty in its momentum would be
 - (a) zero (b) $< h/4\pi$
 - (c) $> h/4\pi$ (d) Infinite

2.24 Physical Chemistry-I for JEE (Main & Advanced)

Passage 5

It is tempting to think that all possible transitions are permissible, and that an atomic spectrum arises from the transition of an electron from any initial orbital to any other orbital. However, this is not so, because a photon has an intrinsic spin angular momentum of $\sqrt{2} \frac{h}{2\pi}$ corresponding to S = 1 although it has no charge and no rest mass. On the other hand, an electron has two types of angular momentum: orbital angular momentum, $L = \sqrt{l(l+1)} \frac{h}{2\pi}$ and spin angular momentum, $L_s \left(= \sqrt{s(s+1)} \frac{h}{2\pi} \right)$ arising from orbital motion and spin motion of electron, respectively. The change in angular momentum of the electron during any electronic transition must compensate for the angular momentum car-

In algular momentum of the electron during any electronic transition must compensate for the angular momentum carried away by the photon. To satisfy this condition, the difference between the azimuthal quantum numbers of the orbitals within which transition takes place must differ by one. Thus, an electron in a *d*-orbital (l = 2) cannot make a transition into an *s*-orbital (l = 0) because the photon cannot carry away enough angular momentum. An electron as is well known, possesses four quantum numbers *n*, *l*, *m* and *s*. Out of these four, *l* determines the magnitude of orbital angular momentum (mentioned above) while *m* determines its *Z*-component

as $m\left(\frac{h}{2\pi}\right)$. The permissible values of only integers from -l

to +*l*. While those for *l* are also integers starting from 0 to (n - 1). The values of *l* denotes the subshell. For l = 0, 1, 2, 3, 4... the sub-shells are denoted by the symbols *s*, *p*, *d*, *f*, *g*.... respectively.

22. The maximum orbital angular momentum of an electron with n = 5 is

(a)
$$\sqrt{6} \frac{h}{2\pi}$$
 (b) $\sqrt{12} \frac{h}{2\pi}$
(c) $\sqrt{42} \frac{h}{2\pi}$ (d) $\sqrt{20} \frac{h}{2\pi}$

23. The orbital angular momentum of an electron in *p*-orbital makes an angle of 45° from *Z*-axis. Hence *Z*-component of orbital angular momentum of electron is

(a)
$$\frac{h}{\pi}$$
 (b) $\left(\frac{h}{2\pi}\right)$ (c) $-\frac{h}{\pi}$ (d) $-\left(\frac{h}{2\pi}\right)$

24. The spin-only magnetic moment of a free ion is $\sqrt{8}$ B.M. The spin angular momentum of electron will be

(a)
$$\sqrt{2} \frac{h}{2\pi}$$
 (b) $\sqrt{8} \frac{h}{2\pi}$ (c) $\sqrt{6} \frac{h}{2\pi}$ (d) $\sqrt{\frac{3}{4} \frac{h}{2\pi}}$

Passage 6

For a single electron atom or ion, the wave number of radiation emitted during the transition of electron from a higher energy state $(n = n_2)$ to a lower energy state $(n = n_1)$ is given by the expression:

$$\overline{v} = \frac{1}{\lambda} = R_H \cdot z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \qquad \dots (i)$$

where $R_H = \frac{2\pi^2 m k^2 e^4}{h^3 c}$ = Rydberg constant for H-atom

where the terms have their usual meanings.

Considering the nuclear motion, the most accurate would have been to replace mass of electron (m) by the reduced mass (m) in the above expression, defined as

$$\mu = \frac{m' \cdot m}{m' + m}$$

where $m\phi = mass$ of nucleus.

For Lyman series: $n_1 = 1$ (fixed for all the lines) while $n_2 = 2, 3, 4, ...$ infinite for successive lines, i.e., first, second, third ... infinite lines, respectively. For Balmer series: $n_1 = 2$ (fixed for all the lines) while $n_2 = 3, 4, 5$... infinite for successive lines.

- **25.** The ratio of the wave numbers for the highest energy transition of e^- in Lyman and Balmer series of H-atom is
 - (a) 4:1 (b) 6:1 (c) 9:1 (d) 3:1
- **26.** If proton in H-nucleus be replaced by positron having the same mass as that of proton but same charge as that of proton, then considering the nuclear motion, the wave number of the lowest energy transition of He⁺ ion in Lyman series will be equal to

(a) $2 R_H$ (b) $3 R_H$ (c) $4 R_H$ (d) R_H

Passage 7

The sum of spins of all electrons is the total spin(S) and 2S + 1 and is called spin multiplicity of the electronic configuration. Hund's rule defines the ground state configuration of electrons in degenerate orbitals, i.e., orbitals within the same subshell which have the same values of *n* and 1, states that in degenerate orbitals pairing of electrons does not occur unless and until all such orbitals are filled singly with their parallel spin. However, degeneracy of orbitals of a given subshell may be destroyed in an inhomogeneous magnetic field like Octahedral field, tetrahedral field, etc. For example, *d*-orbital is five-fold degenerate and degeneracy is destroyed in an applied magnetic field provided that it is in homogenous condition. This is called splitting of d-orbital. In an octahedral field (O_h), splitting of *d*-orbital takes place such that d_{xy} , and d_{xz} orbitals (triply degenerate) have lower energy than $d_{r^2-v^2}$ and (doubly degenerate) d_{z^2} which may again split into two levels: $d_{x^2-v^2}$ and the former having higher energy than the latter. The pairing of electron in lower energy may occur if the energy difference between the two level called splitting energy (D.E.) is greater than the pairing energy, E_p , i.e., the increase in energy resulting from interelectronic repulsion during pairing so as to yield an electronic configuration of the lowest possible energy state, i.e., the ground state. This condition is met only in the strong magnetic field. In tetrahedral field (T_d) , the splitting is just the reverse of the O_h field. A spinning electron behaves as though it were a tiny bar magnet with poles lying on the axis of spin. The magnetic moment of any atom, ion or molecule due to spin called spin-only magnetic moment (m_s) is given by the formula:

 $\mu_s = \sqrt{n(n+2)}$ B.M where n = number of unpaired electron(s).

27. The spin-only magnetic moment of Cr^{3+} (EC [Ar] $3d^3$) in strong O_h magnetic field is equal to

(a) $\sqrt{3}$ B.M (b) $\sqrt{8}$ B.M

(c) $\sqrt{15}$ B.M (d) Zero

28. The spin-multiplicity of Fe^{3+} (Ec[Ar] $3d^{5}$) in its ground state but placed in a strong O_h magnetic field is

(a) 6 (b) 2 (c) 3 (d) 4

- **29.** Statement 1: The kinetic energy of an electron is greater than α -particle having same momentum. Statement 2: Mass of α -particle is greater than the mass of electron.
 - (a) Statements 1 and 2 are true. Statement 2 is the correct explanation for statement 1.
 - (b) Statements 1 and 2 are true. Statement 2 is NOT the correct explanation for Statement 1.
 - (c) Statement 1 is true, Statement 2 is false.
 - (d) Statement 1 is false, Statement 2 is true.
- **30.** Statement 1: For hydrogen orbital energy increases as $1s < 2s < 2p < 3s < 3p < 3d < 4s < 4p \dots$ Statement 2: The orbital with lower (n + l) value has lesser energy and hence filled up first.
- **31. Statement 1:** When two or more empty orbitals of equal energy are available. One electron must be placed in each until they are all half-filled.

Statement 2: The pairing of electron is an unfavourable phenomenon.

- 32. Statement 1: The Paschen series in the spectrum of hydrogen lies in the infra-red region.Statement 2: The Paschen series is born of transition of electrons onto the second orbit from higher orbits.
- 33. Statement 1: The principal quantum number, *n*, can have whole number values 1, 2, 3, ... etc.Statement 2: The angular momentum quantum number can never be equal to *n*.
- 34. Question: Is the specie paramagnetic?Statement 1: The atomic number of specie is 29.Statement 2: The charge on the specie is +1.
 - (a) Statement (1) alone is sufficient but statement (2) is not sufficient.
 - (b) Statement (2) alone is sufficient but statement (1) is not sufficient.
 - (c) Both statements together are sufficient but neither statement alone is sufficient.
 - (d) Statements (1) and (2) together are not sufficient.

(Assersion and Reason)

These questions contains, Statement I (assertion) and Statement II (reason).

- (a) Statement I is true, Statement II is true; Statement II is the correct explanation for Statement I.
- (b) Statement I is true, Statement II is true; Statement II is NOT a correct explanation for statement-I
- (c) Statement I is true, Statement II is false.
- (d) Statement I is false, Statement II is true.
- **35. Statement I:** Nodal plane of p_x atomic orbital in yz plane.

Statement II: In p_x , atomic orbital electron density is zero in the *yz* plane.

- 36. Statement I: No two electrons in an atom can have the same values of four quantum numbers.Statement II: No two electrons in an atom can be simultaneously in the same shell, same subshell, same orbitals and have the same spin.
- 37. Statement I: *p*-orbital has dumb-bell shape. Because
 Statement II: Electrons present in *p*-orbital can have one of three values for '*m*', i.e., 0, +1, -1
- **38. Statement I:** The ground state configuration of Cr is $3d^5 4s^1$.

Statement II: A set of exactly half-filled orbitals containing parallel spin arrangement provide extra stability.

39. Statement I: Mass numbers of the elements may be-fractional.

Statement II: Mass numbers are obtained by the sum of mass of electron and neutron.

40. Statement I: Limiting line in the Balmer series has a wavelength of 36.4 mm.

Statement II: Limiting lines is obtained for a jump of electron from $n = \infty$ to n = 2 for Balmer series.

41. Statement I: The electronic configuration of nitrogen atom is represented as

Statement II: The configuration of ground state of an atom is the one which has the greatest multiplicity.

42. Statement I: The configuration of *B* atom cannot be $1s^2 2s^3$.

Statement II: Hund's rule demands that the configuration should display maximum multiplicity.

- **43.** Statement I: 2p orbitals do not have spherical nodes. Statement II: The number of spherical nodes in *p*-orbitals is given by (n - 2).
- 44. Statement I: In Rutherford's gold foil experiment, very few α-particles are deflected back.Statement II: Nucleus present inside the atom is heavy.
- 45. Statement I: Each electron in an atom either +¹/₂ or -¹/₂ spin quantum number
 Statement II: Spin quantum numbers are obtained by

Statement II: Spin quantum numbers are obtained by Bohr's Theory.

46. Statement I: There are two spherical nodes in 3s-orbital.

Statement II: There is no angular node in 3s-orbital.

47. Choose the correct relation on the basis of Bohr's theory.

(a) Velocity of electron
$$\propto \frac{1}{n}$$

(b) Frequency of revolution
$$\propto \frac{Z^2}{n^3}$$

(c) Radius of orbit
$$\propto n^2 Z$$

(d) Force on electron
$$\propto \frac{Z^3}{n^4}$$

- **48.** A hydrogen like atom has ground state binding energy 122.4 eV. Then
 - (a) its atomic number is 3.
 - (b) an electron of 90 eV can excite it to a higher state.
 - (c) an 80 eV electron cannot excite it to a higher state.
 - (d) an electron of 8.2 eV and a photon of 91.8 eV are emitted when a 100 eV electron interacts with it.
- **49.** Energy equivalent of 10.00 cm^{-1} is
 - (a) 2×10^{-22} J per photon
 - (b) $2.9 \times 10^{-2} \text{ kcal mol}^{-1} \text{ photon}$
 - (c) 1.2×10^{-1} kJ mol⁻¹ photon (d) 2×10^{-15} ergs per photon
- 50. Radiation of wavelength 200 Å falls on a platinum surface. If the work function of the metal is 5 eV, which of the following results are correct about experiment?
 - (a) The velocity of photoelectrons increases with increase in intensity of radiation.
 - (b) Photo-emission of electrons takes place.
 - (c) The threshold frequency of the metal is $1.21 \times$ 10^{15} sec^{-1} .
 - (d) The velocity of the photo-electrons is $4.48 \times$ 10^6 m/sec.
- **51.** Which of the following statement (s) is/are correct?
 - (a) Fe^{3+} and Mn^{2+} have equal paramagnetic character.
 - (b) Cu_2Cl_2 and $CuCl_2$ are coloured.
 - (c) MnO_4^- is purple in colour because of unpair d electrons.
 - (d) The magnetic moment of Fe^{2+} and Co^{3+} is equal to $2\sqrt{6}$ B.M.
- 52. What is the number of waves made by an electron moving in an orbit having maximum magnetic quantum number +3?
- 53. What is the number of spectral lines produced when an electron jumps from fifth orbit to second orbit in the hydrogen atom?
- 54. What is the orbital angular momentum of 2s electron?
- 55. The angular momentum of an electron is $\frac{h}{\pi}$. The Bohr's orbit in which the electron is revolving is.
- 56. What is the the number of radial nodes of 2*p* orbital?
- 57. An oil drop has -6.39×10^{-19} Coulomb charge. What is the number of electrons in the oil drop?

- **58.** What is the number of waves made by a Bohr electron in Hydrogen atom in one complete revolution in the third orbit?
- **59.** The number of nodal plane in d_{xy} orbital.
- 60. What is the number of nodes in the radial distribution curve of 2s orbital?
- 61. Magnetic moment of M^{x+} is $\sqrt{24}BM$. What is the number of unpaired electrons in M^{x+2} ?
- **62.** The wave function of an orbital is represented as ψ_{420} . What is the azimuthal quantum number of that orbital?
- 63. The number of concentric spherical surfaces for 3s orbital at which the probability of finding electron is zero, are
- 64. What is the number of electrons with l = 2 in the ground state of Chromium atom?
- 65. What is the value of 'n' of the highest excited state that an electron of hydrogen atom in the ground state can reach when 12.09 eV energy is given to the hydrogen atom?
- 66. A transition metal cation M⁺³ has magnetic moment $\sqrt{35} BM$. What is the number of unpaired electrons in *ns* orbital of M^{+3} ? (Note: Transition metal exhibit ferromagnetic property)
- 67. The circumference of the second, orbit of electron in hydrogen atom is 400 nm, the de Broglie wavelength of electron corresponding to the circumference of same orbit is 200 nm. What is the number of waves made by an electron?
- 68. What is the number of waves made by a Bohr electron in an orbit of maximum magnetic quantum 3?
- 69. How many elements does the last electron have the quantum numbers of n = 4 and l = 1?
- 70. What is the orbital angular momentum of an electron in 3s - orbital?
- 71. How many d electrons in Cu⁺(At.No = 29) can have the spin quantum $\left(-\frac{1}{2}\right)$?
- 72. What is the maximum number of electrons in an atom that can have the quantum numbers n = 4, $m_e = \pm 1$?
- **73.** What is the number of radial nodes for 3P orbital?
- 74. How long would it take a radio wave of frequency 6×10^3 sec⁻¹ to travel from Mars to Earth, a distance of 8×10^7 km?
- 75. The energy levels of hypothetical one electron atom are shown below.
 - $0 \text{ eV} n = \infty$
 - -0.50 eV n = 5
 - -1.45 eV n = 4
 - -3.08 eV n = 3
 - -5.3 eV n = 2-15.6 eV n = 1

 - (a) Find the ionisation potential of atom?
 - (b) Find the short wavelength limit of the series terminating at n = 2?

- (c) Find the wave number of photon emitted for the transition made by the electron from third orbit to first orbit?
- (d) Find the minimum energy that an electron will have after interacting with this atom in the ground state, if the initial kinetic energy of the electron is(i) 6 eV and (ii) 11 eV?
- **76.** Suppose 10^{-17} J of light energy is needed by the interior of the human eye to see an object. How many photons of green light ($\lambda = 550$ nm) are needed to generate this minimum amount of energy?
- 77. Find the number of photons of radiation of frequency 5×10^{13} s⁻¹ that must be absorbed in order to melt one g ice when the latent heat of fusion of ice is 330 J/g.
- **78.** The eyes of certain member of the reptile family pass a single visual signal to the brain when the visual receptors are struck by photons of wavelength 850 nm. If the total energy of 3.15×10^{-14} J is required to trip the signal, what is the minimum number of photons that must strike the receptor?
- **79.** The wavelength of a certain line in the Paschen series is 1093.6 nm. What is the value of n_{high} for this line $[R_H = 1.0973 \times 10^{+7} \text{ m}^{-1}]$?
- **80.** Wavelength of the Balmer H_{α} line (first line) is 6565 Å. Calculate the wavelength of H_{β} (second line).
- **81.** Calculate the Rydberg constant R if He⁺ ions are known to have the wavelength difference between the first (of the longest wavelength) lines of Balmer and Lyman series equal to 133.7 nm.
- **82.** Calculate the energy emitted when electrons of 1.0 g atom of hydrogen undergo transition giving the spectral line of lowest energy in the visible region of its atomic spectrum.
- 83. A photon having $\lambda = 854$ Å causes ionisation of a nitrogen atom. Give the I.E. per mole of nitrogen in KJ.
- **84.** Calculate energy of electron which is moving in the orbit that has its radius, 16 times the radius of first Bohr orbit for H-atom.
- 85. The electron energy in hydrogen atom is given by -21.7×10^{-12}

 $E_n = \frac{-21.7 \times 10^{-12}}{n^2}$ ergs. Calculate the energy required

to remove an e^- completely from n = 2 orbit. What is the largest wavelength in cm of light that can be used to cause this transition?

- **86.** Calculate the wavelength in angstrom of photon that is emitted when an e^- in Bohr orbit n = 2 returns to the orbit n = 1. The ionisation potential of the ground state of hydrogen atom is 2.17×10^{-11} erg/atom.
- **87.** The velocity of e^- in a certain Bohr orbit of the hydrogen atom bears the ratio of 1 : 275 to the velocity of light. What is the quantum number "*n*" of the orbit.
- **88.** A doubly ionised lithium atom is hydrogen like with atomic number Z = 3. Find the wavelength of the radiation required to excite the electron in Li^{2+} from the first to the third Bohr orbit.

- 89. Estimate the difference in energy between I and II Bohr orbit for a hydrogen atom. At what minimum atomic number a transition from n = 2 to n = 1 energy level would result in the emission of X-rays with $\lambda = 3.0 \times 10^{-8}$ m? Which hydrogen-like species does this atomic number correspond to?
- **90.** 1.8 g atoms of hydrogen are excited to radiations. The study of spectra indicates that 27% of the atoms are in third energy level and 15% of atoms in second energy level and the rest in ground state. If I.P. of H is 21.7×10^{-12} erg. Calculate
 - (i) number of atoms present in third and second energy level.
 - (ii) total energy evolved when all the atoms return to ground state.
- **91.** One mole He⁺ ions are excited. Spectral analysis showed existence of 50% ions in 3rd orbit, 25% in 2nd and rest in ground state. Calculate total energy evolved when all the ions return to the ground state in terms of N_A and ΔE .
- **92.** The energy of an excited H-atom is -3.4 eV. Calculate angular momentum of e^{-1} .
- **93.** The vapours of Hg absorb some electrons accelerated by a potential difference of 4.5 volt. As a result of it, light is emitted. If the full energy of single incident e^- is to be converted into light emitted by single Hg atom, find the wave number of the light.
- **94.** The hydrogen atom in the ground state is excited by means of monochromatic radiation of wavelength $x A^0$. The resulting spectrum consists of 15 different lines. Calculate the value of *x*.
- **95.** A plot of P(r) of 1s electron of H-atom versus distance from the nucleus (*r*) is shown in the figure given below. Find the value of *r* corresponding to the maximum in terms of a_0 where the maximum occurs. Given:

- **96.** Absorption of energy by an atom of hydrogen in the ground state results in the ejection of electron with *de-Broglie* wavelength $\lambda = 4.7 \times 10^{-10}$ m. Given that the ionisation energy is 13.6 eV, calculate the energy of photon which caused the ejection of electron.
- **97.** Photo-chemical dissociation of oxygen results in the production of two oxygen atoms, one in the ground state and one in the excited state.

$$O_2 \xrightarrow{hv} O + O^*$$

The maximum wavelength needed for this is 174 nm. If the excitation energy $O \rightarrow O^*$ is 3.15×10^{-19} J. How

much energy in kJ/mole is needed for the dissociation of one mole of oxygen into normal atoms in ground state?

- **98.** If the average lifetime of an excited state of H atom is of order 10^{-8} sec, estimate how many orbits an e^{-1} makes when it is in the state n = 2 and before it suffers a transition to n = 1 state.
- **99.** Calculate the frequency of e^- in the first Bohr orbit in a H-atom.
- **100.** A single electron orbits around a stationary nucleus of charge +Ze where Z is a constant from the nucleus and e is the magnitude of the electric charge. The hydrogen like species required 47.2 eV to excite the electron from the second Bohr orbit to the third Bohr orbit. Find the value of Z give the hydrogen like species formed.
- **101.** A stationary He⁺ ion emitted a photon corresponding to a first line of the Lyman series. The photon liberated a photoelectron from a stationary H atom in ground state. What is the velocity of photoelectron ?
- **102.** Calculate the threshold frequency of metal if the binding energy is 180.69 kJ mol⁻¹ of electron.
- **103.** Calculate the binding energy per mole when threshold wavelength of photon is 240 nm.

PREVIOUS YEARS' QUESTIONS OF JEE (MAIN & ADVANCED)

1. The increasing order (lowest first) for the values of e/m (charge/mass) for electron (e), proton (p), neutron (n) and alpha particle (α) is [IIT-JEE 1984]

(a)	e, p, n, α	(b) <i>n</i> , <i>p</i> , <i>e</i> ,α

(c) n, p, α, e (d) n, α, p, e **2.** The triad of nuclei that is isotonic is [IIT-JEE 1988]

(a)	${}^{14}_{6}$ C, ${}^{15}_{7}$ N, ${}^{17}_{9}$ F	(b)	¹² ₆ C, ¹⁴ ₇ N, ¹⁹ ₉ F
(c)	¹⁴ ₆ C, ¹⁴ ₇ N, ¹⁷ ₉ F	(d)	¹⁴ ₆ C, ¹⁴ ₇ N, ¹⁹ ₉ F

3. Rutherford's experiment on scattering of particles showed for the first time that the atom has

			L
(a) elec	trons	(b)	protons
(c) nucl	eus	(d)	neutrons

4. The wavelength associated with a golf ball weighing 200 g and moving at a speed of 5 m/h is of the order [IIT-JEE 2000]

(a)
$$10^{-10}$$
 m (b) 10^{-20} m (c) 10^{-30} m (d) 10^{-40} m

5. Correct set of four quantum numbers for the valence (outermost) electron of rubidium (Z = 37) is

```
[IIT-JEE 1984]
```

(a)	5,0	, 0,	+	$\frac{1}{2}$	(b)	5,	1,	0,	+	1/2
1	- 1			1 /	(1)		0	0		1 /

- (c) 5, 1, 1, $+\frac{1}{2}$ (d) 6, 0, 0, $+\frac{1}{2}$
- 6. The outermost electronic configuration of the most electronegative element is [IIT-JEE 1988] (a) ns^2np^3 (b) ns^2np^4 (c) ns^2np^5 (d) ns^2np^6
- 7. Naturally occurring boron consists of two isotopes whose atomic weights are 10.01 and 11.01. The atomic

weight of natural boron is 10.81. Calculate the percentage of each isotope in natural boron. [IIT-JEE 1978]

- 8. The energy of the electron in the second and the third Bohr's orbits of the hydrogen atom is -5.42×10^{-12} erg and -2.41×10^{-12} erg respectively. Calculate the wavelength of the emitted radiation when the electron drops from the third to the second orbit. **[IIT-JEE 1981]**
- **9.** Calculate the wavelength in Angstroms of the photon that is emitted when an electron in the Bohr orbit, n = 2 returns to the orbit, n = 1 in the hydrogen atom. The ionisation potential of the ground state hydrogen atom is 2.17×10^{-11} erg per atom. [IIT-JEE 1982]
- 10. The electron energy in hydrogen atom is given by $E = (-21.7 \times 10^{-12})/n^2$ ergs. (a) Calculate the energy required to remove an electron completely from the n = 2 orbit. What is the longest wavelength (in cm) of light that can be used to cause this transition?

[IIT-JEE 1984]

11. What is the maximum number of electrons that my be present in all the atomic orbitals with principle quantum number 3 and azimuthal quantum number 2?

[IIT-JEE 1985]

12. According to Bohr's theory, the electronic energy of hydrogen atom in the n^{th} Bohr's orbit is given by

$$E_n = \frac{-21.76 \times 10^{-19}}{n^2}$$
 J. Calculate the longest wave-

length of light that will be needed to remove an electron from the third Bohr orbit of the He^+ ion.

[IIT-JEE 1990]

- A ball of mass 100 g is moving with 100 ms⁻¹. Find its wavelength. [IIT-JEE 2004]
- 14. Find the velocity (ms^{-1}) of electron in first Bohr's orbit of radius a_0 . Also find the de Broglie's wavelength (in m). Find the orbital angular momentum of 2p orbital of hydrogen atom in units of h/2p. [IIT-JEE 2005]
- **15.** Estimate the difference in energy between first and second Bohr orbit for a hydrogen atom. At what minimum atomic number, a transition from n = 2 to n = 1 energy level would result in the emission of X-rays with = 3.0 $\times 10^{-8}$ m? Which hydrogen atom-like species does this atomic number correspond to? [IIT-JEE 1993]
- 16. What transition in the hydrogen spectrum would have the same wavelength as the Balmer transition n = 4 to n = 2 of He⁺ spectrum? [IIT-JEE 1993]
- **17.** Find out the number of waves made by a Bohr electron in one complete revolution in its third orbit.

[IIT-JEE 1994]

18. Iodine molecule dissociates into after absorbing light of 4500 Å. If one quantum of radiation is absorbed by each molecule, calculate the kinetic energy of iodine atoms. (Bond energy of $I_2 = 240$ kJ mol⁻¹.)

[IIT-JEE 1995]

 Calculate the wave number for the shortest wavelength transition in the Balmer series of atomic hydrogen. [IIT-JEE 1996]

- **20.** With what velocity should an *a*-particle travel towards the nucleus of a copper atom so as to arrive at a distance 10^{-13} metre from the nucleus of a copper atom? [IIT-JEE 1997]
- 21. An electron beam can undergo diffraction by crystals. Through what potential should a beam of electrons be accelerated so that its wavelength becomes equal to 1.54 Å? [IIT-JEE 1997]
- 22. Calculate the energy required to excite one litre of hydrogen gas at 1 atm and 298 K to the first excited state of atomic hydrogen. The energy for the dissociation of H-H bond is 436 kJ mol⁻¹. [IIT-JEE 2000]
- 23. Wavelength of high energy transition of H-atoms is 91.2 nm. Calculate the corresponding wavelength of He atoms. [IIT-JEE 2003]
- 24. The Schrodinger wave equation for hydrogen atom is [IIT-JEE 2004]

$$\Psi_{2s} = \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_0}\right)^{3/2} \left(2 - \frac{r_0}{a_0}\right) e^{-r_0/a_0}$$

where a_0 is Bohr's radius. If the radial node in 2s be at r_0 , find r_0 in terms of a_0 .

25. Match the columns according the Boh's theory.

 E_n = Total energy

 $K_n =$ Kinetic energy

 V_n = Potential energy

$$r^n =$$
Radius of n^{th} orbit (2006, 6M)

Colı	Column I		Column II		
(A)	$V_n/K_n = ?$	(p)	0		
(B)	If radius of n^{th} orbit $\propto E_n^x$, $x = ?$	(q)	-1		
(C)	Angular momentum in lowest or- bital	(r)	-2		
(D)	$\frac{1}{r^n} \propto z^y, \ y = ?$	(s)	1		

26. Match the entries in column I with the related quantum number(s) in Column II. (2008, 6M)

Colu	ımn I	Column II				
(A)	Orbital angular momentum of the electron in a hy- drogen-like atomic orbital	(p)	Principal quantum number			
(B)	A hydrogen – like one electron wave function obeying Pauli's principle	(q)	Azimuthal quan- tum number			
(C)	Shape, size and orientation of hy- drogen-like atomic orbitals	(r)	Magnetic quantum number			

(D)	Probability density	(s)	Electron	spin
	of electron at the		quantum nu	imber
	nucleus in hydro-			
	gen – like atom			

Comprehension-Based Questions

The hydrogen-like species Li^{2+} is in a spherically symmetric state S_1 with one radial node. Upon absorbing light, the ion undergoes transition to a state S_2 . The state S_2 has one radial node and its energy is equal to the ground state energy of the hydrogen atom.

- **27.** The state S_1 is (2010)
- (a) 1s (b) 2s (c) 2p (d) 3s **28.** Energy of the state S_1 in units of the hydrogen atom ground state energy is (2010) (a) 0.75 (b) 1.50 (c) 2.25 (d) 4.50
- **29.** The orbital angular momentum quantum number of the state S_2 is (2010) (a) 0 (b) 1 (c) 2 (d) 3

Integer-Type Questions

30. The maximum number of electrons that can have principal quantum number, n = 3 and spin quantum num-

ber,
$$m_s = -\frac{1}{2}$$
, is (2011)

- 31. Which of the following is the energy of a possible excited state of hydrogen? [2015 Main]
 (a) +13.6 eV
 (b) -6.8 eV
 (c) -3.4 eV
 (d) +6.8 eV
- **32.** The correct set of four quantum numbers for the valence electrons of rubidium atm (Z = 37) is

[2013 Main]

(a)	$5, 0, 0, +\frac{1}{2}$	(b)	5, 1, 0, $+\frac{1}{2}$
(c)	5, 1, 1, $+\frac{1}{2}$	(d)	5, 0, 1, $+\frac{1}{2}$

33. Energy of an electron is given by $E = -2.78 \times 10^{-18}$ J $\left(\frac{Z^2}{n^2}\right)$. Wavelength of light required to excite an electron in an hydrogen atom from level n = 1 to n = 2 will be [2013 Main] (h = 6.62 \times 10^{-34} Js and c = 3.0 × 10⁸ ms⁻¹)

(a)
$$1.214 \times 10^{-7}$$
 m (b) 2.816×10^{-7} m (c) 6.500×10^{-7} m (d) 8.500×10^{-7} m

34. The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is $[a_0$ is Bohr radius]

(a)
$$\frac{h^2}{4\pi^2 m a_0^2}$$
 (b) $\frac{h^2}{16\pi^2 m a_0^2}$

(c)
$$\frac{h^2}{32\pi^2 m a_0^2}$$
 (d) $\frac{h^2}{64\pi^2 m a_0^2}$

2.30 Physical Chemistry-I for JEE (Main & Advanced)

35. In an atom, the total number of electrons having quantum numbers n = 4, |m| = 1 and $m_2 = -\frac{1}{2}$ is

= 4,
$$|m| = 1$$
 and $m_2 = -\frac{1}{2}$ is
[2014 Adv.]

- **36.** The atomic masses of He and Ne are 4 and 20 amu, respectively. The value of the de-Broglie wavelength of He gas at -73° C is '*M*' times that of the de-Broglie wavelength of Ne at 727°C M is **[2013 Adv.]**
- **Answer Key**

	LEVEL I	[
1. (a) 11. (d) 21. (d) 31. (c) 41. (b) 51. (c) 61. (d) 71. (a) 81. (b) 91. (a) 101. (a) 111. (c) 121. (c) 131. (a) 141. (b)	2. (c) 12. (d) 22. (a) 32. (d) 42. (a) 52. (c) 62. (b) 72. (c) 82. (d) 92. (a) 102. (b) 112. (d) 122. (d) 132. (a) 142. (c)	3. (d) 13. (b) 23. (c) 33. (c) 43. (a) 53. (b) 63. (c) 73. (a) 83. (b) 93. (a) 103. (a) 113. (b) 123. (a) 133. (a)	4. (c) 14. (a) 24. (b) 34. (c) 44. (a) 54. (c) 64. (a) 74. (b) 84. (b) 94. (b) 104. (c) 114. (b) 124. (d) 134. (b) 144. (a)	5. (a) 15. (b) 25. (b) 35. (a) 45. (c) 55. (a) 65. (c) 75. (a) 85. (d) 95. (d) 105. (d) 115. (c) 125. (b) 135. (b) 145. (c)	6. 16. 26. 36. 46. 56. 66. 76. 86. 96. 106. 116. 126. 136. 146.	 (d) (b) (c) (a) (c) (d) (c) (d) (c) (d) (c) (d) (c) (c) (c) 	7. 17. 27. 37. 47. 57. 67. 77. 87. 97. 107. 117. 127. 137. 147.	 (b) (c) (d) (d) (b) (c) (a) (d) (a) (b) (c) 	8. 18. 28. 38. 48. 58. 68. 78. 88. 98. 108. 118. 128. 138. 148.	(d) (b) (a) (b) (d) (a) (b) (a) (b) (a) (b) (c)	9. 19. 29. 39. 49. 59. 69. 79. 89. 99. 109. 119. 129. 139. 149.	 (a) (b) (c) (c) (b) (b) (b) (c) (d) (d) (c) (c) (c) 	10. 20. 30. 40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150.	(d) (c) (c) (b) (c) (b) (b) (b) (c) (a) (b) (c) (a) (d) (d)
	LEVEL I	т												
~														
1. (d) 11. (a) 21. (a) 31. (a) 41. (d)	2. (d) 12. (d) 22. (a) 32. (c) 42. (c)	3. (a) 13. (b) 23. (d) 33. (d)	4. (a) 14. (c) 24. (d) 34. (a)	5. (b) 15. (a) 25. (b) 35. (b)	6. 16. 26. 36.	(a) (b) (b) (d)	7. 17. 27. 37.	(b) (c) (a) (a)	8. 18. 28. 38.	(a) (a) (b) (d)	9. 19. 29. 39.	(a) (c) (d) (d)	10. 20. 30. 40.	(d) (b) (b) (b)
	LEVEL I	II												
1. (A) - 3. $A \rightarrow$ 5. $A \rightarrow$ 7. (A) - 8. (A) - 9. (A) - 10. $A \rightarrow$ 11. (b) 21. (d) 31. (c) 41. (a)	$\rightarrow P; (B) \rightarrow P; (B) \rightarrow p; B \rightarrow p; C$ r; B \rightarrow q; C \rightarrow u; (B) \rightarrow \rightarrow q; (B) \rightarrow \rightarrow r; (B) \rightarrow P, B \rightarrow p, q, s 12. (b) 22. (d) 32. (c) 42. (b)	P, Q, R, S, T; \rightarrow p, q, r, s; \rightarrow p, t; D \rightarrow s; (C) \rightarrow p; (p p; (C) \rightarrow q, s; (C) \rightarrow p; (0 s, C \rightarrow p, r, D 13. (c) 23. (b) 33. (b) 43. (a)	$(C) \rightarrow Q, R$ $D \rightarrow p$ s $(D) \rightarrow t; (E)$ r; (D) $\rightarrow r,$ D) $\rightarrow q$ $\rightarrow q, s$ 14. (b) 24. (a) 34. (c) 44. (b)	(F) → q; (F) → q; (F) (F) → q; (F) (F) ($P = 2.$ $4.$ $6.$ $r \rightarrow r$ $16.$ $26.$ $36.$	$\begin{array}{c} A \rightarrow \\ A \rightarrow \\ (A) - \end{array}$ (c) (b) (a)	r, t; B r, p; B → t; (B 17. 27. 37.		$ \rightarrow q C \rightarrow (C) - 18. 28. 38. $	(d) (b) (a)		q;(E) (d) (a) (e)	20. 30. 40.	$(F) \rightarrow r$ (b) (d) (a)
46. (b) 51. (a, d) 61. (4) 71. (5)	52. (4) 62. (2) 72. (12)	47. (a, b, 53. (6) 63. (2) 73. (1)	d) 54. (0) 64. (5) 74. (2.66	48. (a, c 55. (2) 65. (3) $5 \times 10^2 \text{ sec.}$	c, d) 56. 66.	(0) (0)	49. 57. 67.	(a, b, c (4) (2)	, d) 58. 68.	(3) (4)	50. 59. 69.	(b, c, (2) (6)	d) 60. 70.	(1) (0)

75. (a) [15.6] (b) [233.9 nm] (c) [1.808 × 10⁷ m⁻¹] (d) [-9.6 eV and -4.6 eV] 76. [28] 77. [10²²] 78. [1.35 × 10⁵] 79. [6] 80. [4863 Å] 81. [1.096 × 10⁷m⁻¹] 82. [1.827 × 10⁵J/m] 83. [1400 KJ/mole] 84. [-0.85 eV] 85. [5.425 × 10⁻¹² ergs. $3.66 × 10^{-5}$ cm] 86. [1220 Å] 87. [2] 88. [108.8 eV] 89. [10.2 eV, He] 90. [0.486 N_A, 0.27 N_A, 56.65 × 10¹¹ erg] 91. [0.5 NA ($E_2 - E_1$) + 0.25 N_A($E_2 - E_1$)] 92. $\frac{h}{\pi}$ 93. [0.0036 nm⁻¹] 94. 932 Å 95. $r = a_0$ 96. [3.271 × 10⁻¹⁸ J] 97. [498.3 KJ/mole] 98. [8 × 10⁶] 99. [2.3 × 10¹³Hz] 100. [5] 101. [3.09 × 10⁶ m/sec.] 102. [$v_0 = 6.626 × 10^{-34}$] 103. 318.9 Kj/mole]

PREVIOUS YEARS' QUESTIONS OF JEE (MAIN & ADVANCED)

7. $[B - 11.01 \ 80\%, 20\% \text{ and } B \ 10.01]$ 6. (c) 1. (d) 2. (a) 3. (c) 4. (c) 5. (a) 11. (10) 12. [2055 Å] 8. [6603 Å] 9. [12220 Å] 10. $[3.67 \times 10^{-5} \text{ cm}]$ 13. $[6.62 \times 10^{-25} \text{ Å}]$ 14. $[2.18 \times 10^6 \text{ m sec}^{-1}, 3.3 \text{ Å}, \sqrt{2} \frac{h}{\pi}]$ 15. [He⁺] 16. $[n \to 2 \text{ to } n \to 1]$ 17. [3] 18. $[2.16 \times 10^{-20} \text{J}]$ 19. 27419.25 cm^{-1}] 20. $[6.3 \times 10^{6} \text{m sec}^{-1}]$ 21. [63.3 volt]22. [98.18 KJ] 25. $A \rightarrow r; B \rightarrow q, C \rightarrow p, D \rightarrow s$ 23. [22.8 nm] 24. $[r_0 = 2a_0]$ 26. $A \rightarrow q$; $B \rightarrow p$, q, r, s; $C \rightarrow p$, q, r; $D \rightarrow p$, q, r27. (b) 28. (c) 29. (b) 30. (9) 31. (c) 34. (c) 32. (a) 33. (a) 35. (6) 36. (5)

Hints and Solutions

1. (a)
$$E_5 = -13.6 \times \frac{1}{(5)^2} = -0.54 \text{ eV}$$

2. (c) Li⁺² and He⁺ both have same number of electron so spectrum pattern will be similar.

3. (d)
$$\lambda = \frac{h}{\sqrt{2mqV}}$$
 $\lambda \propto \frac{1}{\sqrt{V}}$
 $\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{V_2}{V_1}} = \sqrt{\frac{200}{50}} = \frac{2}{1}$

- 4. (c) $\Delta x \cdot \Delta p = \frac{h}{4\pi}$
- put value $\Delta p = 1.0 \times 10^{-5} \text{ kg ms}^{-1}$ 5. (a) Orbital angular momentum

$$=\sqrt{l(l+1)} \cdot \frac{h}{2\pi} \qquad \text{for } l = 0$$

- 6. (d) $_{25}$ Mn = $1s^2$, $2s^2 2p^6$, $3s^2 3p^6 3d^5$, $4s^2$ Mn⁺⁴ = $1s^2$, $2s^2 2p^6$, $3s^2 3p^6 3d^3$, $4s^0$
- 7. (b) ${}_{30}Zn^{2+} = 1s^2$, $2s^2 2p^6$, $3s^2 3p^6 3d^{10}$ (unpaired de⁻ = 0) ${}_{26}Fe^{2+} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$ (unpaired de⁻ = 4) ${}_{28}Ni^{3+} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^7$ (unpaired de⁻ = 3) ${}_{29}Cu^+ = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^9$ (unpaired de⁻ = 1)

8. (d) $d^7 = 1 | 1 | 1 | 1 | 1 | 1$ Total spin = $+\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{3}{2}$

9. (a)
$$K = 2e^{-} = 1s^{2}$$

 $L = 8e^{-} = 2s^{2} 2p^{4}$
 $M = 11e^{-} = 3s^{2} 3p^{6} 3d^{3}$
 $N = 2e^{-} = 4s^{2}$

l = 2 for *d* \therefore *e*⁻ = 3 **10.** (d) Cl⁻ = 1*s*² 2*s*² 2*p*⁶ 3*s*² 3*p*⁶ For last *e*⁻ *n* = 3, *l* = 1, *m* = ±1 or 0 or -1

11. (d)
$$E_n = -\frac{13.6z^2}{n^2} \text{eV}$$

as move away from the nucleus, the energy increases, hence, energy is maximum at infinite distance from the nucleus.

12. (d) When an electron jump from higher level to lower level, it emits the photon and lower level to higher level. It absorbs photon. Hence, '1s' only absorbs photon because it is lowest energy level.

13. (b)
$$\frac{1}{\lambda} = R_H \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

In Balmer series, electron jumps from higher energy level to second energy level. Hence third line form when electrons jump from fifth energy level to 2 energy level. $5 \rightarrow 2$

14. (a)
$${}_{37}Rb = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 5s^1$$

 $n l m s$
 $5 0 0 + 1/2$

15. (b) Aufbau's principle : electron fills in orbital increasing order of energy level.

16. (b)
$${}^{70}_{30}$$
Zn²⁺ = $n = A - Z = 70 - 30 = 40$

17. (c)
$$n > l$$
, $m = -l$ to $+l$
 n l s
 3 2 $\frac{1}{2}$
The value of (m) is wrong
 $l = 2$ $m = -2$ -1 0 $+1$ -1

l = 2, *m* = -2, -1, 0, +1, +2 **18.** (b) Hund's rule **19.** (b) $Cr = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$; $Mn^+ = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$ i.e., it represents both ground state and cationic form.

20. (c)
$$\operatorname{Fe}^{3+}=1s^2 2s^2 2p^6 3s^2 3p^6 3d^5$$

21. (d) Schrödinger's equation gives only *n*, *l* and *m* quantum number. Spin quantum number is not related to Schrödinger equation.

22. (a)
$$hv = hv_0 + \frac{1}{2}mv^2$$

 $\frac{hc}{\lambda} = \frac{hc}{\lambda_0} + \frac{1}{2}mv^2$
K.E. $= hc\left(\frac{\lambda_0 - \lambda}{\lambda_{\lambda_0}}\right) = \frac{1}{2}mv^2$
 $\left(\frac{h^2}{2m\lambda_e^2}\right) = hc\left(\frac{\lambda_0 - \lambda}{\lambda_{\lambda_0}}\right) (\therefore \lambda = \frac{h}{\sqrt{2mK \cdot E}})$
 $\lambda_e^2 = \frac{\lambda \lambda_0 h}{[\lambda_0 - \lambda]2mc}$
 $\lambda_e = \left[\frac{h\lambda \lambda_0}{2mc[\lambda_0 - \lambda]}\right]^{\frac{1}{2}}$

23. (c) $m_n = \text{mass of neutron}; m_p = \text{mass of proton}$

$$\frac{m_n}{2}$$
 $2m_p$

atomic mass
$$\Rightarrow (m_n + m_p) \quad [m_n \sim m_p]$$

 $\Rightarrow (8+6) = 14 m_p$
new atomic mass $\Rightarrow (4+12) = 16 m_p$
% increase $= \frac{16-14}{14} \times 100 = 14.28 \%$
24. (b) $\frac{1}{\lambda} = R_H Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$
for shortest unsulangth $n = n, n = 2$

for shortest wavelength $n_2 = \infty$, $n_1 = 2$

$$\frac{1}{\lambda} = R_H 2^2 \left\lfloor \frac{1}{4} - \frac{1}{\infty} \right\rfloor \quad \lambda = \frac{4}{4R_H} = \frac{1}{R_H} = x$$

for longest wavelength of Parchan series $n_2 = 4$, $n_1 = 3$

$$\frac{1}{\lambda} = R_H \neq 2 \left[\frac{1}{9} - \frac{1}{16} \right] \quad \frac{1}{\lambda} = R_H 3^2 \left[\frac{7}{9 \times 16} \right]$$
$$\lambda = \frac{9 \times 16}{9 \times 7} \times \frac{1}{R_H} \Rightarrow \lambda = \frac{16}{7} x$$

25. (b)
$$(IE)_{Li^{2+}} = (IE)_H \times Z^2$$

$$= 21.8 \times 10^{-19} \times 9 \text{ J/atom}$$

$$\therefore \text{ Kinetic energy of ejected electron}$$

$$= 8 \times 21.8 \times 10^{-19} \text{ J atom}$$

$$\lambda = \frac{h}{\sqrt{2\text{KE} \cdot m}} = \frac{h}{\sqrt{2qV \cdot m}}$$

$$\lambda = \frac{6.62 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 2.18 \times 10^{-19} \times 8}}$$

$$\lambda = 1.17 \text{ Å}$$

26. (b) Fe²⁺ = 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶

|1|| † | † | † | † |

Unpaired electron
$$(n) = 4$$

Magnatic moment

$$=\sqrt{n(n+2)} BM = \sqrt{4(6)} = \sqrt{24} BM$$

Orbital angular momentum

$$= \sqrt{l \times (l+1)} \,\hbar = \sqrt{2(3)} \,\hbar \Longrightarrow \sqrt{6} \,\hbar$$

27. (a)
$$\lambda = \frac{h}{\sqrt{2KE \cdot m}}$$
 $\lambda \propto \frac{1}{\sqrt{2qV \cdot m}}$
 $\lambda_e \propto \frac{1}{\sqrt{M_e \times 16E}}$; $\lambda_{p^+} = \frac{1}{\sqrt{M_p \times 4E}}$
 $\lambda_\alpha \propto \frac{1}{\sqrt{4M_p \times 4E}}$; hence $\lambda_e > \lambda_{p^+} = \lambda_\infty$

28. (a) Li (g)
$$\longrightarrow$$
 Li⁺ + e⁻; Δ H = 520
Li⁺ (g) \longrightarrow Li⁺² + e; Δ H = a KJ/mol
Li²⁺ (g) \longrightarrow Li²⁺ + e; Δ H = b KJ/mol
b = (IE₂)_{Li⁺} and (IE)_{Li²⁺} = (IE)_n × z² = 1313 × 9
b = (IE₂)_{Li⁺} = 11817 KJ/mol
520 + a + 11817 = 19800
(IE₂)_{Li⁺} = a = 7463 KJ/mol

29. (b)
$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \Longrightarrow R_H \left(\frac{n_2^2 - n_1^2}{n_1^2 n_2^2} \right)$$

$$\lambda = \frac{(n_2^2 n_1^2)}{(n_2^2 - n_1^2)} \times \frac{1}{R_H}$$

First line of Lymen series $n_2=2$, $n_1=1$ Second line of Lymen series $n_2=3$, $n_1=1$ Third line of Lymen series $n_2=4$, $n_1=1$

30. (c) The anode ray/canal ray is independent to the electrode material.

31. (c) Energy order decide from (n + l) rule; (n + l) is minimum, energy is minimum. If (n + l) value is equal, lower the value of 'n', lower the energy. $e_3 > e_2 > e_4 > e_1$

32. (d)
$$r_1 = \frac{r_2}{n^2} r_1 = \frac{r}{4}$$
; $r_3 = r_1 \times n_2$
 $r_3 = r/4 \times 9$ $r_3 = 2.25R$
33. (c) $\lambda = \frac{h}{mv} = \frac{6.62 \times 10^{-34} \times 3600}{0.2 \times 5}$
 $\lambda = 2.38 \times 10^{-30}$ metre

- **34.** (c) According to Paulis, an orbital can accomdate maximum two electrons. Hence Paulis exclusion principle violates.
- **35.** Cu(29) = $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^{10}$ Form (m = 0) = 2 + 2 + 2 + 2 + 2 + 1 + 2= 13 electron
- **36.** Cd^{+2} [z = 48] Azimuthal l = 1 only for *p*-orbital upto $48 \rightarrow 2p^6 \ 3p^6 \ 4p^6 = 18e$
- 37. $A \longrightarrow 30 \text{ W}$ $E_A \text{ (photon)} = 13.6 \text{ eV}$ $B \longrightarrow 40 \text{ W}$ $E_B \text{ (photon)} = 13.6 \times 2^2 = 4 \times 13.6 \text{ eV}$ For $A(13.6 \times 1.6 \times 10^{-19}) \times n_A = 30$ For $B (4 \times 13.6 \times 1.6 \times 10^{-19}) \times n_B = 40$ $n_A = 3$

$$\frac{n_A}{4n_B} = \frac{3}{4}$$
$$\frac{n_A}{1} = \frac{3}{1}$$

 \Rightarrow

- *n_B* 1 **38.** *n*₂ = 11 higher state *n*₁ = 1 lowest state U.V. = 11 - 1 = 10 Visible = 11 - 2 = 9 Remaining = $\frac{11 \times 10}{2}$ - 19 = 55 - 19
 - (z) I.R. = 36
 - Hence, z (x + y) = 36 (9 + 10) = 17
- **39.** Number of angular nodes = l = 2 (*d*-orbitals) and number of maxima = $n - l = 3 \Rightarrow n = 5$
- **40.** $2\pi r_n = n\lambda$

$$\lambda_{4} = \frac{2\pi r_{4}}{4} \qquad \lambda_{2} = \frac{2\pi r_{2}}{2}$$

$$\lambda_{4} - \lambda_{2} = 2\pi \left[\frac{0.529(4)^{2}}{1 \times 4} - \frac{0.529(2)^{2}}{2}\right] \mathring{A}$$

$$= 2\pi (0.529) \times 2$$

$$= 4\pi r_{1} = 6.64 \ \mathring{A}$$
41.
$$\frac{\lambda_{p}}{\lambda_{\alpha}} = \left(\frac{1}{2}\right) = \frac{\frac{h}{m_{p} \cdot v_{p}}}{\frac{h}{m_{\alpha} v_{\alpha}}} = \frac{m_{\alpha} v_{\alpha}}{m_{p} \cdot v_{p}}$$

$$\frac{m_P}{m_{\alpha}} = \frac{1}{4} \quad ; \quad \text{or } \frac{1}{2} = \frac{4}{1} \cdot \frac{v_{\alpha}}{v_p}$$
$$\frac{v_p}{v_{\alpha}} = \frac{8}{1} \quad ; \quad \text{or } \lambda = \frac{h}{p} = \frac{h}{\sqrt{2mKE}}$$

Now,

$$\frac{\lambda_p}{\lambda_{\alpha}} = \frac{1}{2} = \frac{\frac{n}{\sqrt{2m_p \cdot KE_p}}}{\frac{h}{\sqrt{2m_\alpha \cdot KE_\alpha}}} \quad ; \quad \operatorname{or}\left(\frac{1}{2}\right)^2 = \frac{2m_\alpha \cdot KE_\alpha}{2m_p \cdot KE_p} = \frac{1}{4}$$

or,
$$\frac{4}{1} \cdot \frac{\text{K.E}_{\cdot \alpha}}{\text{K.E}_{\cdot p}} = \frac{1}{4}$$
; $\therefore \frac{\text{K.E}_{\cdot p}}{\text{K.E}_{\cdot \alpha}} = \frac{16}{1}$

1.

44. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$ (n + l) = 3 means $2p^6$ and $3S^2$ l = 2 means $3d^{10}$ $n + l = 3 \implies 8$ electron $l = 2 \implies 10$ electron $8 \times 10 = 80$ 45. Ga last e^{-1} in $4P^1$ ∴ n = 4, l = 1m = -1 or Q or ± 1

$$m = -1$$
 or O or $+1$
 $S = +\frac{1}{2}$ or $-\frac{1}{2}$
or single e^{-1} system.

- 46. Bohr's theory is applicable to H and H-like species.
- **47.** Conceptual
- 48. $V_n = 2.18 \times 10^8 \times \frac{Z}{n} \text{ cms}^{-1}$ for V_n to be maximum; for hydrogen atom $Z = 1, n = 1 \therefore V = 2.18 \times 10^8 \text{ cms}^{-1}$
- **49.** We know that $v \propto \frac{1}{n}$ and n = principal quantum number. Therefore, *vn* will be independent of the principal
- quantum number. 50. –P.E. = 2K.E. = 2 × (+13.6) = 27.2 eV.
- So. -P.E. = 2K.E. = 2 × (+13.6) = 27.2 eV. ∴ P.E. = -27.2 eV

P.E. with respect to ground state = 27.2 eV, which we assume to be zero.

$$\text{K.E.} = -\frac{13.6}{n^2} \text{eV}$$

For the first excited state, n = 2.

:. K.E. =
$$-\frac{13.6}{2^2}$$
 eV = -3.4 eV

Total energy = (27.2 - 3.4)eV = 23.8eV.

51.
$$T = \frac{2\pi r_n}{u_n} = \frac{2\pi r_1 \times n^2}{u_1/n}$$
 or $T \propto n^3$; $n = 2$ here
52. $\Delta E = E_2 - E_1$; $E_2 - E_1$ or $\lambda \propto \frac{1}{(E_2 - E_1)}$

53. N = number of lines emitted

$$= \frac{\text{diff.} \times (\text{diff.} + 1)}{2} = \frac{3(3+1)}{2} = \frac{12}{2} = 6$$

54. $hv_1 = hv_0 + \text{K.E.}_1$

 $2hv_1 = hv_0 + K.E._1$ K.E. = $hv_1 - hv_0$

The value of K.E. will increase but more than double of the previous K.E.

55. Aufbau's principle

=

- **56.** For outermost electron of Rb, the configuration is $5s^1$.
- **57.** The electronic configuration of sulphur atoms $1s^2s^22p^{-6}3s^23p^4$, the orbitals with (n + l) = 3 are 2p and 3s, therefore 8 electrons in sulphur atom have (n + l) = 3.
- 58. Orbital angular momentum

$$\sqrt{l(l+1)}\frac{h}{2\pi} = \sqrt{0(0+1)}\frac{h}{2\pi} = 0$$

- **59.** Number of unpaired electrons in *V*, Cr and Mn is 3, 6 and 5.
- **60.** Double dumb bell shaped in 4^{th} principle quantum number means 4d

$$n - l - 1 = 4 - 2 - 1 = 1$$

- 61. Charge/mass for n = 0, $\alpha = \frac{2}{4}$, $p = \frac{1}{1}$, $e = \frac{1}{1/1837}$ So, order is n, α , p, e.
- **62.** Charge/mass for

$$n = 0, \ \alpha = 2/4, \ p = 1/1 \text{ and } e = \frac{1}{1/1837}$$

- **63.** Number of *p*, *n* and *e* are 20, 20 and 20.
- 64. Isotonic : same number of neutrons
- 65. Conceptual

66.
$$r = r_0 \frac{n^2}{Z} = 0.529 \times 10^{-8} \text{ cm}$$

67.
$$\frac{\text{Radius of second Bohr orbit}}{\text{Radius of first Bohr orbit}} = \frac{0.529}{0.529} \times \frac{2^2}{1} = 4$$

68.
$$r_{\rm Be}^{3+} = \frac{0.529 \times (2)^2}{4} = 0.529$$

- **69.** Absorption line in the spectra arise when energy is absorbed, i.e., electron shifts from lower to higher orbit. Maximum wavelength means minimum energy so, the transition involving minimum energy is the right option.
- 70. Conceptual

71.
$$\overline{V}_{H} = R_{H} \left[\frac{1}{2^{2}} - \frac{1}{3^{2}} \right]$$
; Z = 1 for H-atom
 $\overline{V}_{Be^{3+}} = R_{H} \times 16 \left[\frac{1}{2^{2}} - \frac{1}{3^{2}} \right]$; Z = 4 for Be³⁺
Thus, $\overline{V}_{Be^{3+}} = 16\overline{V}_{H} = 16 \times 15200$ cm
 $= 2.432 \times 10^{5}$ cm⁻¹.
72. $\lambda = \frac{h}{mv} = \frac{6.6 \times 10^{-34}}{(0.2) \times 5/(60 \times 60)} = 2.37 \times 10^{-30}$ m
73. $\lambda = \frac{h}{mv} \lambda$ will be large if m is small.

74. According to de Broglie

$$\lambda = \frac{h}{mv} = \frac{6.62 \times 10^{-27} \text{ erg sec}}{\frac{2}{6.023 \times 10^{23}} \times 5 \times 10^4 \text{ cm/sec}}$$
$$= 4 \times 10^{-8} \text{ cm} = 4 \text{ Å}$$

75. Z = 20, so electronic configuration is

$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$$

- ∴ for outer most electron 4*s* electron n = 4, l = 0, m = 0, $s = +\frac{1}{2}$
- **76.** The electronic configuration of Ar atom is $1s^2 2s^2 2p^6$ $3s^2 3p^6$. In its first excitation state, the electron from 3p will unpair and shift to 4s where its quantum numbers will be 4, 0, $0, \pm \frac{1}{2}$.
- 77. Most electro-negative element is F. \therefore electronic configuration: ns^2np^5
- **78.** Angular nodes are only associated with directional orbital.

79.
$$E_{2(\text{He}^+)} = \frac{E_1}{n^2} = -13.6 \times \frac{2^2}{n^2} = -13.6 \times \frac{4}{4} = -13.6 \text{ eV}$$

80.
$$E_n = -13.6 \times \frac{Z^2}{n^2}$$

 $\frac{E_{n(\text{H})}}{E_{n(\text{Be}^{+3})}} = \frac{1}{\frac{4^2}{4}} = \frac{1}{4} = 1:4$

81. Ratio =
$$E_2 - E_1/E_3 - E_2 = \frac{3}{4} / \frac{5}{36} = \frac{27}{5}$$

82.
$$\frac{1}{\lambda} = R_H Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$
 for Balmer series
 $\frac{1}{\lambda} = R_H \times 1^2 \left[\frac{1}{2^2} - \frac{1}{3^2} \right] = \frac{R_H 5}{36} \text{ cm}^{-1}$
83. $\frac{1}{\lambda} = R_H \times 1^2 \left[\frac{1}{2} - \frac{1}{3^2} \right]$

83.
$$\frac{1}{\lambda_H} = R_H \times 1^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$
 ...(A)
 $\frac{1}{n_1^2} = R_H \times 7^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$ (B)

$$\frac{1}{\lambda_X} = R_H \times Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \qquad \dots (B)$$

Dividing (A) by (B), we get

$$\frac{\lambda_X}{\lambda_H} = \frac{1}{Z^2}$$
$$\frac{1}{4} = \frac{1}{Z^2}$$
$$Z = 2 \text{ (He}^+\text{)}$$

84. for hydrogen

$$Z_H^2 \times \left(\frac{1}{1} - \frac{1}{3^2}\right) = Z_X^2 \left(\frac{1}{3^2} - \frac{1}{9^2}\right)$$

sixth line of Paschen series = 9

 \times

$$\frac{8}{9} = Z_x^2 \left(\frac{1}{9} - \frac{1}{81}\right)$$

$$\frac{8}{9} = Z^2 \frac{8}{81}$$

$$Z^2 = 9$$

$$Z = 3 (Li^{+2})$$
85. $hv = hv_0$ zero velocity K.E. = 0
 $hv = hv_0$
 $hv = 4 eV$
 $\frac{hc}{\lambda} = 4 eV$
 $\lambda = \frac{h \times c}{4 eV} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{4 \times 1.6 \times 10^{-19}} = 3100 \text{ Å}$
86. $\lambda = \frac{h}{\sqrt{2mKE}}$ K.E. = eV K.E. = eV = qV
same mass
 $\frac{\lambda_1}{\lambda_2} = \frac{\sqrt{KE_2}}{\sqrt{KE_1}} = \frac{\sqrt{2}}{1}$
 $\therefore \quad \lambda_1 = \sqrt{2}\lambda_2$
87. $\lambda = \frac{h}{mV} = \frac{6.626 \times 10^{-34}}{9.1 \times 10^{-31} \times 2.2 \times 10^6}$
 $= 0.33 \times 10^{-9}$
 $= 0.33 \text{ nm}$
88. $\lambda = \frac{h}{mV} = \frac{6.626 \times 10^{-34}}{0.200 \times 10^{-3} \times 5/3600}$
 $= 2.3853 \times 10^{-27} \text{ m}$
89. Total energy $= -\frac{e^2}{2r_n} = -3.4 \text{ eV} = \frac{E_1}{n^2}$
 $\therefore \quad n^2 = \frac{-13.6}{-3.4} = 4$

The velocity in second orbit

$$= \frac{U_1}{2} = \frac{2.18 \times 10^8}{2} \text{ (cm sec}^{-1)}$$
$$\lambda = \frac{h}{mu} = \frac{6.626 \times 10^{-27} \times 2}{9.1 \times 10^{-28} \times 2.18 \times 10^8}$$
$$= 6.6 \times 10^{-10} = 6.6 \text{ Å}$$

90. Shape of *s*-orbital is spherical, so it is non–directional orbital.

91.
$$\frac{1}{\lambda} = R_H Z^2 \left(\frac{1}{1^2} - \frac{1}{\infty} \right)$$
$$E = \frac{hc}{\lambda} = \frac{R_H hc Z^2}{1}$$

92.
$$E = \frac{hc}{\lambda}$$

 $\Rightarrow \lambda \propto \frac{1}{E}$
 $\therefore \frac{\lambda_1}{\lambda_2} = \frac{E_2}{E_1} = \frac{4000 \text{ Å}}{2000 \text{ Å}}$
 $\therefore \lambda_1 : \lambda_2 = 2 : 1$
93. For a 'd' electron, $l = 2$
Orbital angular momentum
 $= \sqrt{l(l+1)} \frac{h}{2\pi} = \sqrt{6} \frac{h}{2\pi} \text{ or } \sqrt{6}h$
94. $E = -13.6 eV \times \frac{1^2}{2^2} = -3.4 \text{ eV}$
95. $\Delta P \cdot \Delta x \ge \frac{h}{4\pi}$
96. $n = 4$
 $l = 2$
 $m = -2, -1, 0, +1, +2$
 $s = \pm \frac{1}{2}$
97. $\frac{1}{\lambda} = R_H (1)^2 \left(\frac{1}{2^2} - \frac{1}{3^2}\right)$
 $= R_H \cdot \left(\frac{5}{36}\right) \text{cm}^{-1} \text{ or } \overline{v} = \left(\frac{5R_H}{36}\right) \text{cm}^{-1}$
98. For Balmer series $n_2 = 2$
Fourth line is 6 to 2
99. I.P. $= -E_1 = -13.6 \times \frac{2^2}{n^2} = -\frac{-13.6 \times 4^2}{l^2}$ (for I.P., n
always = 1)
 $= 217.6 \text{ eV}$
100. Required energy $= 10^{-17} \text{ J} = n \times \frac{hc}{\lambda}$
 $\Rightarrow n \times \frac{6.625 \times 10^{-34} \times 3 \times 10^8}{550 \times 10^{-9}} \text{ J} = 10^{-17} \text{ J}$
 $\therefore n = 28$
101. $E(eV) = \frac{hc}{\lambda} = \frac{1242}{\lambda(nm)} = \frac{1242}{700 \text{ nm}} = 1.77 \text{ eV}$
102. $E = hv$
 $= (6.62 \times 10^{-34} \text{ Js}) (880 \text{ s}^{-1})$
 $= 5.831 \times 10^{-31} \text{ J}.$
Number of photons emitted $= \frac{1}{5.831} \times 10^{+31} = 1.71$
 $10^{30} \text{ per second.}$
103. For a proton $\binom{1}{1}$ H), $\frac{e}{m} = \frac{1}{4}$
For an *a*-particle $\binom{2}{2}$ He), $\frac{e}{m} = \frac{2}{4} = \frac{1}{2}$
 $\frac{(e^{m}n)_p}{(e^{m}n)_a} = \frac{1/1}{1/2} = 2:1$

104. The *de Broglie* equation is $\lambda = \frac{h}{p} = \frac{h}{mv}$ Here *h* and *v* are constant. So $\lambda \propto \frac{1}{m}$.

Since the *a*-particle has the highest mass among the given entities, it has the smallest *de Broglie* wavelengths.

105. $E_n = -\frac{13.6}{n^2}Z^2$, where n = 1 for ground state, 2 for first

excited state, and so on. Z = 1 for hydrogen.

106.
$$\frac{1}{\lambda} = R_{\infty} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$
 for H atom.

For the Balmer series,

$$n_1 = 2$$
 and $n_2 = 5$ (for the third line).

$$\frac{1}{\lambda} = R_{\infty} \left(\frac{1}{2^2} - \frac{1}{5^2}\right) = \frac{21}{100} R_{\infty}$$
$$\lambda = \frac{100}{21R_{\infty}}$$

107. l = 3 mean f subshell have 7 orbital. Maximum multiplicity for the f orbitals (7 electrons) $= 2s + 1 = 2 \times 7/2 + 1 = 8$ Minimum multiplicity for the f orbital (1 electron) $= 2s + 1 = 2 \times 1/2 + 1 = 2$

108.
$$E_n = -13.6 \times \frac{Z^2}{n^2} \text{eV}$$

For the 3rd excited Bohr's orbit of H atom $\Rightarrow Z = 1, n = 4$

$$E_1 = -13.6 \text{ eV}$$

For 3rd excited state of hydrogen

$$E_2 = -13.6 \times \frac{1^2}{4^2} = -0.85 \text{ eV}$$

109.
$$E_n = \frac{-13.58}{n^2}$$

at $n = 1, E_1 = -13.58 \text{ eV}$
(In primitive stage) $n = 2, E_2 = -3.395 \text{ eV}$
Energy absorbed = $-3.395 + 13.58 = 10.19 \text{ eV}$

110.
$$r_n = r_1 \times \frac{n^2}{Z}$$

 $r_2 = r_1 \times \frac{4^2}{2} = 0.106 \text{ nm}$

111.
$$r_n = r_0 \times \frac{n^2}{Z}$$
, here $Z = 1$
So $r_1 \approx n^2$
 $r_1 : r_2 : r_3 \dots = n_1^2 : n_2^2 : n_3^2 \dots$
 $= 1^2 : 2^2 : 3^2$
 $= 1:4:9$

112. If electron is accelerated by V volt

$$\text{K.E.} = \text{eV} = \frac{1}{2}mv^2$$

$$\lambda = \frac{h}{mv}$$

$$\lambda = \frac{h}{\sqrt{2eVm}}; \lambda = 1 \text{ Å}$$
On solving $\lambda = \sqrt{\frac{150}{V}} \text{ Å}$ for electron
$$\lambda = 1 \text{ Å} = \sqrt{\frac{150}{V}} \quad \therefore \quad V = 150 \text{ Volt}$$
Number of unpaired electrons in $\text{Cr}^{3+} = 3$

114. Violates Hund's law

113.

115.
$$1.73 = \sqrt{n(n+2)} \quad V = 3d^3 \ 4S^2$$
$$n = 1$$
Oxidation state = 4
116.
$$\Delta p \cdot \Delta x \ge \frac{h}{4\pi}$$
Given $\Delta p = \Delta x$

$$(m\Delta v)^2 \ge \frac{h}{4\pi}$$
$$\Delta v \ge \frac{1}{2m} \sqrt{\frac{h}{\pi}}$$

117. For the second line of Lyman series of H, $n_1 = 1, n_2 = 3$ $\frac{1}{\lambda_H} = R \times 1^2 \left[\frac{1}{1^2} - \frac{1}{3^2} \right] = \frac{8R}{9}$ $\therefore \quad \lambda_H = \frac{9}{8R}$

For the sixth line of Paschen series,

$$n_1 = 3, n_2 = \infty$$

$$\frac{1}{\lambda_x} = RZ^2 \left[\frac{1}{3^2} - \frac{1}{\infty^2} \right] = RZ^2 \left[\frac{1}{9} - \frac{1}{0} \right] = \frac{RZ^2}{9}$$

$$\therefore \quad \lambda_x = \frac{9}{RZ^2} \qquad \dots (ii)$$
But, $\lambda_H = \lambda_X$

...(i)

i.e.;
$$\frac{9}{8R} = \frac{9}{RZ^2}$$
 $\therefore Z^2 = 8$
 $Z = \sqrt{8} \approx 3$

i.e., $Li^{+2} - ion$.

118. According to the question L

$$\lambda = \frac{h}{p}$$
$$\lambda_A = \frac{h}{p_A} \qquad \dots (i)$$

$$\lambda_B = \frac{h}{p_B} \qquad \dots (ii)$$

$$\lambda_A = \frac{p_B}{p_A} \qquad \lambda_B = 10^{-7} \,\mathrm{m}$$

119. We know that $r_n = r_1 \times n^2$ $9r_1 = r_1 \times n^2$ $\therefore n^2 = 9$ $\therefore n = 3$ $\therefore E_3 = -\frac{13.6}{3^2} = -1.51 \text{ eV}$

120. According to Bohr's atomic model $mvr = nh/2\pi$

$$4.2176 \times 10^{-34} = n_2 \times \frac{6.62 \times 10^{-34}}{2 \times 3.14}$$

$$\therefore \quad n_2 = 4$$

$$\frac{1}{\lambda} = R \times 1^2 \left[\frac{1}{3^2} - \frac{1}{4^2} \right]$$

$$\therefore \quad \lambda = 18.75 \times 10^{-7} \text{ m}$$

121. $E_2 - E_1 = \Delta E = \frac{hc}{4}$

$$\lambda = \frac{hc}{\Delta E} \text{ or } \lambda(\text{nm}) = \frac{1242}{\Delta E(\text{rev})} = \frac{1242}{12.4 \text{ ev}}$$
$$\lambda = 1030 \text{ Å} = 103 \text{ nm}$$

122. hv = work function + K.E.;Given K.E. = 0;

Thus,
$$hv = 4$$
 eV or $4 = \frac{1242}{\lambda(\text{nm})}$

123. K.E.
$$=\frac{1}{2}mu^2 = \frac{Ze^2}{2r}$$
, T.E. $=-\frac{Ze^2}{2r}$... (A)

- **124.** The state corresponds to the 3d atomic orbitals.
- **125.** The 21^{st} electron corresponds to $3d^1$. For this orbital,

 $n = 3, l = 2, m = 2, s = +\frac{1}{2}.$

- **126.** Mn^{4+} (21 electrons) = $[Ar]3d^3$ contains three unpaired electrons.
- **127.** The spin-only formula is given by $m_{\text{spin only}} = \sqrt{n(n+2)} BM$

$$n = No of unpaired e^{-1}$$

The value of m = 2.83 BM corresponds to the presence of two unpaired electrons. So the ion is Ni²⁺ (3d⁸).

- **128.** For the 3*p* orbital, n = 3, l = 1. The number of spherical nodes = n - l - 1 = 3 - 1 - 1 = 1
- **129.** Spin multiplicity = (2S + 1).

130. (a)
$$\frac{r_A}{r_N} = 10^5$$

 $\frac{V_A}{V_N} = \left(\frac{r_A}{r_N}\right)^3 = (10^5)^3 = 10^{-15}$

131. (a) neon and O^{-2} have 10 electron

132. (a)
$$\lambda = \frac{C}{v} = \frac{3 \times 10^8}{400 \times 10^6} = 0.75 \text{ m}$$

133. (a) $R = R_0 A^{1/3} = 1.33 \times 10^{-13} \times (64)^{1/3} \text{ cm}$
 $= 5.32 \times 10^{-13} \approx 5 \text{ fm}$

$$\therefore 1 \text{ fm} = 10^{-15} \text{ m} \approx 5 \text{ fm}$$
134. (b) $d = 20 \text{ nm}$
 $r = \frac{20}{2} = 10 \text{ nm} = 100 \text{ A}^{\circ}$
 $\therefore r = 0.529 \times \frac{n^2}{Z} \text{ A}^{\circ} \text{ For H atom } Z = 1$
 $100 = 0.529 \times n2$ $n = 14$
135. (b) $E_n = -13.6 \times \frac{Z^2}{n^2}$
 $E_1(\text{H}) = -13.6 \times \frac{1}{1} = -13.6 \text{ eV}$
 $E_2(\text{He}^+) = -13.6 \times \frac{4}{4} = -13.6 \text{ eV}$
 $E_3(\text{Li}^{2+}) = -13.6 \times = \frac{3^2}{3^2} -13.6 \text{ eV}$
 $E_4(\text{Be}^{3+}) = -13.6 \times = \frac{4^2}{4^2} -13.6 \text{ eV}$
 $\therefore \text{ B is the answer.}$
136. (c) $E = -78.4 \text{ kcal/mol}$

$$E_n = -313.6 \times \frac{2}{n^2} \text{ kcal/mol}$$

for H atom Z = 1
 $n^2 = \frac{313.6}{78.4} = 313.6 \times \frac{1}{n^2}$
 $n^2 = \frac{313.6}{78.4}$ $n = 2$

137. (a) $V_n = 2.188 \times 10^6 \times \text{m/sec.}$

$$\frac{V_3(\text{Li}^{2^+})}{V_1(\text{H})} = \frac{Z_3/n_3}{Z_1/n_1} = \frac{3/3}{1/1} \qquad V(\text{Li}^{2^+}) = V$$

138. (a) Let state (A) =
$$n_1$$

State (B) = n_2
 $r_1 - r_2 = 624 r_0$
 $0.529 \times \frac{n_1^2}{Z} - \frac{0.529n_2^2}{Z} = 624 \times \frac{0.529 \times 1}{Z}$
 $n_1^2 - n_2^2 = 624$
 $n_1 = 25$
 $n_2 = 1$
 $25 \rightarrow 1$

139. (c)

- (a) Energy of ground state $He^+ = -13.6 \times 4 \text{ eV} = -54.4 \text{ eV}$
- (b) P.E. of first orbit of H-atom $\frac{0.529 \times 1}{Z} = 2T.E. = -2 \times 13.6 \text{ eV} = -27.2 \text{ eV}$
- (c) Energy of second excited state

$$= -13.6 \times \frac{Z^2}{n^2} = -13.6 \times \frac{(2)^2}{(3)^2}$$
$$= -13.6 \times \frac{4}{9} = -6.03 \text{ eV}$$

(d) I.E.=
$$-E_1 = 21.8 \times 10^{-19} \times 4$$
J = 8.7×10^{-18} J

< LEVEL II

1. (d) last e^- enter in 2P subshell
l = 1 2 (d)
Pd $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^0 4d^{10}$ (I) $l = 0$ \downarrow
(II) Z is different, therefore, Z_{eff} will be different. (III) Configuration of ${}_{26}Fe \rightarrow [Ar] 4s^2 3d^5$ Configuration of Ni ⁺² \rightarrow [Ar] $3d^8 4s^0$ Number of unpaired electrons are different. (IV) 57 electron (La) $5d^1$ n = 5 l = 2 $\left(\frac{l}{n}\right) = 0.4$
3. (a) A^{+2} have 22 electron
A has 24 electron / $24 p^+$
$n^0 = 26$
(i) Mass number of $A = 50$
Atomic number is 24 $3d^5As^1$
(iv) A^{+2} 1 electron is removed from s and 1 from d.
4. (a) Ga (31) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^1$
n = 4
l = 1 n + l + m = 6
m = 1
5. (b) (a) $Ee^{+3} [\Delta r] 3d^5$
$(a) 10^{-1} [Ar] 3d^{6}$
More the number of unnaired electron more will be
multiplicity.
Ti^{+3} [Ar]3d ¹]
(b) $Cr^{+}[\Lambda r]^2 d^5$ are peramagnetic
(0) CI [AI]Su are paramagnetic
Sc ⁺² [Ar]ed ⁺]
(c) Mg [Ne] $3s^2$
n = 3, l = 0, m = 0
$\therefore n+l+m=3$
(d) $\operatorname{Cl}(1s^2)(2s^2 2p^6)(3s^2 3p^3)$
$\sigma = 6 \times 0.35 + 8 \times 0.85 + 2 \times 1 = 10.9$
$Z_{\rm eff} = 1 / -10.9 = /.1$
u. (a) Element is ina : number of neutron = 12
$\therefore \text{ number of neuron} = 12$

- (a) Mg^{24} also has 12 neutrons
- (b) $3s^1$ is last electron
- (c) H_2O has 10 electrons
- (d) Since atoms have 1 unpaired electron ∴ it is paramagnetic.

14. (c) Probability of finding and electron at a particular distance = $4\pi r^2 R^2$

$$P_{1} = 4\pi r^{2}R^{2} = 4\pi r^{2} \times \frac{4}{a_{0}^{3}}e^{-2r/a_{0}}$$

at $r = a_{0}$ $p_{1} = 4\pi a_{0}^{2} \times \frac{4}{a_{0}^{3}}e^{-2a_{0}/a_{0}}$
at $r = a_{0/2}$ $p_{2} = 4\pi \frac{a_{0}^{2}}{4} \times \frac{4}{a_{0}^{3}}e^{\frac{-2a_{0}}{2a_{0}}}$

$$\frac{p_{1}}{P_{2}} = \frac{4\pi a_{0}^{2} \times \frac{4}{a_{0}^{3}} e^{-a_{0}/a_{0}}}{4\pi \frac{a_{0}^{2}}{a_{0}^{2}} + \frac{4}{a_{0}^{3}} e^{-2a_{0}/2a_{0}}}$$

$$\frac{p_{1}}{P_{2}} = \frac{e^{-2}}{\frac{1}{4} e^{-1}} = \frac{4}{e}$$
15. (a) See graph in theory
16. (b) $\Delta x = 0.0001 \text{ Å}$
 $\Delta P = ?$
 $\Delta x \times \Delta p \ge \frac{h}{4\pi}$; $\Delta P = \frac{h}{4\pi \times 0.0001 \text{ Å}}$
 $a_{0} = 0.529 \text{ Å}$
 $P = \frac{h}{2\pi \times 0.529 \text{ Å}}$
 $\frac{\Delta P}{P} = \frac{\frac{4}{2 \times 0.529 \text{ Å}}}{\frac{h}{2\pi \times 0.529 \text{ Å}}}$
 $\frac{\Delta P}{P} = \frac{2 \times 0.529 \text{ Å}}{4 \times 0.0001} = 2645$
17. (c) $\lambda = \frac{h}{\sqrt{2m \times e \times V}}$
 $\lambda = \frac{h}{\sqrt{2 \times m' \times 2e \times \frac{V}{8}}}$
 $m' \times 2e \times \frac{V}{8} = m \times e \times V$
 $m' = 4 \text{ m}$
18. (a) Maximum KE of Ejected $e^{-1} = \frac{1242}{253.7} - 4.65$
 $= 0.245 \text{ ev}$
19. (c) Spherical node : $\Psi^{2} = 0$
 $\sigma^{2} - 4\sigma + 3 = 0$; $\sigma^{2} - 3\sigma - \sigma + 3 = 0$
 $\sigma(\sigma - 3) - 1(\sigma - 3) = 0$; $(\sigma - 1)(\sigma - 3) = 0$
 $\sigma = 1, 3$; $\sigma = \frac{2Zr}{a_{0}} = 1, 3$
 $r = \frac{3}{2} \frac{a_{0}}{Z}, \frac{1}{2} \frac{a_{0}}{Z}$

20. (b) Let the orbits are *n* and $(n + 1) mv_1r_1 = \frac{n}{2}\frac{h}{\pi}$...(i) $mv_2r_2 = \frac{(n+1)h}{2\pi}$...(ii)

The difference in angular momentum will be
$$(ii) - (i)$$

or
$$(mv_2r_2 - mv_1r_1) = \frac{(n+1)h}{2\pi} - \frac{nh}{2\pi} = \left(\frac{h}{2\pi}\right)$$

21. (a) $\frac{1}{\lambda_{\min}} = R \times (1)^2 \times \left(\frac{1}{1^2} \times \frac{1}{\infty}\right); \lambda_{\min} = 911.7 \text{ Å}$

$$\lambda^2 = \Rightarrow \lambda = \sqrt{\frac{h}{m}}$$

- **25.** (b) According to Schrodinger's model e^- behave as wave only.
- 26. (b) The maximum probability of finding an electron is described by the orbital, which is denoted by Ψ^2 .

1

27. (a)
$$\lambda_m = \lambda_e$$
 $\lambda = \frac{h}{mv}$
 $\frac{h}{m_c v_c} = \frac{h}{m_n v_n}$ $\frac{v_e}{v_n} = \frac{m_n}{m_c}$

- **28.** (b) (Ψ) is the solution of Schrodinger wave equation.
- **29.** (d) $2\pi r = n\lambda$ [as per de Broglie theory]
- **30.** (b) $m_y = 0.25 m_x$, $v_y = 0.75 v_x$

$$\lambda = \frac{h}{mv} \qquad \qquad \lambda_x = \frac{h}{m_x v_x}, \ \lambda_y = \frac{h}{m_y v_y}$$
$$\lambda_y = \frac{h}{0.25M_x \times 0.75v_x} \qquad \lambda_y = 5.33 \text{ A}$$

31. (a) Orbital angular momentum = $\sqrt{l(l+1)}\hbar$

$$s p d f$$

 $l=0 1 2 3$

- 32. (c) $m = (2l+1) \Rightarrow l = \frac{m-1}{2}$ 33. (d) $Mn^{4+} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^3$
- **34.** (a) According to (n + l) rule, after np, (n + l) s always filled.

35. (b) Ti =
$$1s^2 2s^2 2p^6 3s^2 3p^6 3d^2$$

 $1 1 1$
 $n = 2$
Magnetic moment = $\sqrt{n(n+2)} \Rightarrow \sqrt{2(4)} = \sqrt{8} = 2.83$ BM

36. (d)
$$T \propto \frac{n^3}{z^2}$$
 $\frac{T_1}{T_2} = \frac{n_1^3}{n_2^3} = 1/8$
37. (a) $E_{\infty} - E_1 = hv_1$, $\Rightarrow E_1 \Rightarrow hv_1$
 $E_2 - E_1 = hv_2$
 $E_{\infty} - E_2 = hv_3$, $\Rightarrow E_2 \Rightarrow hv_3$
 $-hv_3 + hv_1 = hv_2$
 $\boxed{v_2 = v_1 - v_3}$
 $\boxed{v_3 = v_1 - v_2}$

38. (d)
$$E_C - E_B = \frac{hc}{\lambda_1}$$
 ...(i)

$$E_B - E_A = \frac{hc}{\lambda_2} \qquad \dots (ii)$$

$$E_C - E_A = \frac{hc}{\lambda_3} \qquad \dots (iii)$$

add equations (i) and (ii)

$$E_{C} - E_{A} = hc \left(\frac{1}{\lambda_{1}} + \frac{1}{\lambda_{2}}\right)$$

put in equation (iii)
$$hc \left(\frac{1}{\lambda_{1}} + \frac{1}{\lambda_{2}}\right) = \frac{hc}{\lambda_{3}}$$
$$\frac{1}{\lambda_{3}} = \frac{\lambda_{1} + \lambda_{2}}{\lambda_{1}\lambda_{2}} \Rightarrow \boxed{\lambda_{3} = \frac{\lambda_{1}\lambda_{2}}{\lambda_{1} + \lambda_{2}}}$$
39. (d) $\Delta E = \frac{hc}{\lambda_{3}}$

$$\Delta E = \frac{hc}{\lambda_1} \qquad \text{(for H atom)}$$
$$\Delta E \times z^2 = \frac{hc}{\lambda_2} \qquad \text{(for He}^+ \text{ ion)}$$
$$\frac{hc}{\lambda_1} \times 4 = \frac{hc}{\lambda_2} \implies \boxed{\lambda_2 = \frac{\lambda_1}{4}}$$

- **40.** (b) First excitation potential
- $=E_2 E_1 \Rightarrow -4 + 16 \Rightarrow 12 \text{ eV}$ 41. (d) $n_2 = 4$, $n_1 = 3$; $n_2 = 5$, $n_1 = 4$; $n_2 = 6$, $n_1 = 5$; $n \rightarrow (n-1)$, $(n \ge 4)$ 42. (c) $n_2 = 5$, $n_1 = 1$ Total number of spectrum line are $\frac{\Delta n(\Delta n + 1)}{2}$ OR $\Sigma (5-1) \Rightarrow \Sigma 4$ OR $\Sigma 4 \Rightarrow 4 + 3 + 2 + 1$ lyman Balmer Paschen brackett Three line in visible reigon.

(Match the Column)

1. [(A) P (B) P, Q, R, S, T (C) Q, R, S (D) P] 2. A – r.t B-p C-q, s D – q 3. A – p B- p C-p, q, r, s D – p 4. A - r, p B - r, t C - s D - q Conceptual 5. A - r B - q C - p, t D - s(A) for H, radius of second orbit $= 0.53 \times \frac{2^2}{1} = 0.53 \times 4$ Å 6. (A) \rightarrow t; (B) \rightarrow s; (C) \rightarrow u; (D) \rightarrow q; (E) \rightarrow p; (F) \rightarrow r 7. (A) \rightarrow u; (B) \rightarrow s; (C) \rightarrow p; (D) \rightarrow t; (E) \rightarrow q; (F) \rightarrow r 8. (A) \rightarrow q ; (B) \rightarrow p ; (C) \rightarrow q, r ; (D) \rightarrow r, s 9. (A) \rightarrow r; (B) \rightarrow s; (C) \rightarrow p; (D) \rightarrow q 10. $A \rightarrow P, B \rightarrow p, q, s, C \rightarrow p, r, D \rightarrow q, s$ Radial node = (n - l - 1)Angular node = l4s, $5p_x$, 6_{dxy} having 3 radial node. angular node in all 's' orbital in zero.

Passage-1

13. (c)
$$\lambda = \sqrt{\frac{150}{V}}$$

V = 24 volt \therefore energy of free electron = 24 eV,

$$\Delta E = 13.6 \times (Z)^2 \left[\frac{1}{6^2} - \frac{1}{\infty} \right]$$
$$= 1.51 \text{ eV}$$

Total energy released = 24 - (-1.51) = 25.51**14.** (b) (n - 2)

$$6 - 2 = 4$$

15. (a) Minimum energy transition for $6 \rightarrow 5$

Passage 3

- 16. (c) Maximum number of electrons in an orbit is $=2n^2=2$ $\times 3^2 = 18$
- **17.** (d) Maximum number of electrons in a subshell = $2[2l + 1] = 4l + 2 = 4 \times 3 + 2 = 14$
- **18.** (d) For 2p orbital n = 2, l = 1

Passage 4

19. (d)
$$\Delta x = 2\Delta p$$

$$\Delta x \times \Delta p = \frac{h}{4\pi}$$
$$2(\Delta p)^2 = \frac{h}{4\pi}$$

$$\Delta p = \frac{1}{\sqrt{2} \times 2} \sqrt{\frac{h}{\pi}}$$
$$\Delta v = \frac{1}{2\sqrt{2}m} \sqrt{\frac{h}{\pi}}$$

20. (b)
$$\Delta v = 0.3$$

$$\Delta x = \frac{h}{4\pi m \Delta v} = \frac{6.6 \times 10^{-27}}{4 \times 3.14 \times 9.1 \times 10^{-28} \times 0.3} = 1.92 \text{ cm}$$

21. (d) When
$$\Delta x = 0$$
, $\Delta p = \infty$

Passage 5

22. (d) Orbital angular momentum (O.A.M) = $\sqrt{l(l+1)} \frac{h}{2\pi}$ n = 5, So l = 1,2,3,4. For maximum

O.A.M =
$$\sqrt{4(5)} \frac{h}{2\pi} = \sqrt{20} \frac{h}{2\pi}$$

23. (b) $m = \sqrt{l(l+1)} \cos \theta \times \frac{h}{2\pi}$
 $l = 1$ for *p*-orbital
 $m = \sqrt{1(2)} \cos 45^{\circ} \times \frac{h}{2\pi}$
 $Z - \text{component of O.A.M} = \frac{h}{2\pi}$

24. (a) $\sqrt{8} = \sqrt{n(n+2)}$; n = 2Number of unpaired electrons = 2

$$s = \frac{1}{2} + \frac{1}{2} = 1$$

$$L_s = \sqrt{s(s+1)} \frac{h}{2\pi} = \sqrt{2} \frac{h}{2\pi}$$

25. (a) Lyman series

$$\frac{1}{\lambda_1} = \overline{\nu}_1 = R_H \cdot 1^2 \left[\frac{1}{1^2} - \frac{1}{n_2^2} \right]$$

Balmer series

$$\frac{1}{\lambda_2} = \overline{\nu}_2 = R_H \cdot 1^2 \left[\frac{1}{2^2} - \frac{1}{n_2^2} \right]$$

For highest energy transition For Lyman series $n_2 = \infty$ For Balmer series $n_2 = \infty$

$$\therefore \qquad \frac{\overline{v}_1}{\overline{v}_2} = \frac{4}{1}$$
26. (b) $\frac{1}{\lambda} = \overline{v} = R_H Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$

For lowest energy transition of ion in Lyman series

$$\overline{v} = R_H 2^2 \left[\frac{1}{1^2} - \frac{1}{2^2} \right] = 3R_H$$

Passage 7

27. (c) $Cr^{3+} = 3d^3$ (Valance shell). n = 3 (Unpaired electrons)

= 3 (Unpaired electr
$$\mu_s = \sqrt{15} \,\text{BM}$$

$$Fe^{3+} = 3d^5$$
 (Valance shell)

$$s = \frac{1}{2}$$
 in strong O_h magnetic field

Spin multiplicity =
$$2(s) + 1 = 2$$

29. (a) Momentum = $\sqrt{2mK.E.}$

$$P_e = P_{\alpha}$$

$$\sqrt{2m_e \cdot \text{K.E.}_e} = \sqrt{2m_{\alpha} \cdot \text{K.E.}_{\alpha}}$$

$$m_e \text{K.E.}_e = m_{\alpha} \text{K.E.}_{\alpha}$$

$$\frac{\text{K.E.}_e}{\text{K.E.}_{\alpha}} = \frac{m_{\alpha}}{m_e}$$

Mass of a particle is more than mass of electron.

Thus,
$$\frac{m_{\alpha}}{m_e} > 1$$
; thus $\frac{\text{K.E.}_e}{\text{K.E.}_{\alpha}} > 1$

Thus statement 1 is true.

- Statement 2 is also true.
- **30.** (d) Aufbau principle
- 31. (c) Pairing is favourable when all orbitals are half filled.
- 32. (c) The Balmer series is born of transition of electron into the second orbit from higher orbits.
- **33.** (b) Both statements are independently true.

34. (c) $Cu^+ = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$

- All the electrons are paried; hence it is paramagnatic.
- (b) For energy of second orbit **^**2

$$= -13.6 \times \frac{2^2}{2^2} = -13.6 \text{ eV}$$

(c) For radius of fourth orbit = $0.53 \times \frac{4^2}{4} = 0.53 \times 4$ Å Also, energy of fourth orbit

$$= -13.6 \times \frac{4^2}{4^2} = -13.6 \text{ eV}$$

(d) For, velocity of electron in third orbit = $2.18 \times 10^8 \times \frac{3}{3} = 2.18 \times 10^8 \text{ Å}$

Assertion and Reason

35. (a) Nodal plane in
$$yz$$
 plane
36. (a) Pauli rule
37. (b) Lobes = $2l$

38. (a) Conceptual

- **39.** (c) mass number is the sum of n + p40. (a) $\frac{1242}{3.4}$ nm = 365.3 nm 41. (a) Hund's Rule 42. (b) (n + 1) Rule and Hund's Rule
- 43. (a) Spherical nodes = n l 1
 - 2 1 1 = 0for *p* orbital l = 1
 - :. Spherical node for p orbital = n 2
- 44. (b) Ruther ford's experiment
- **45.** (e) concept
- **46.** (b) Spherical nodes = n l 1angular node = l
- 47. (a, b, d)

(a)
$$v = 2.18 \times 10^6 \times \frac{Z}{n} \Rightarrow v \propto \frac{Z}{n} \text{ or } v \propto \frac{1}{n}$$

(b) $f = \frac{v}{2\pi r} \text{ or } f = \frac{v}{r} \propto \frac{Z/n}{n^2/Z} f \propto \frac{Z^2}{n^3}$

(c)
$$r \propto n^2/Z \quad \left[T \propto \frac{n^3}{Z^2}\right]$$

 $mv^2 \qquad v^2 \quad (Z^2/n^2) \qquad Z^2$

(d)
$$F = \frac{mv^2}{r} \therefore F \propto \frac{v^2}{r} \propto \frac{(Z^2/n^2)}{n^2/Z} \quad F \propto \frac{Z^3}{n^4}$$

So ans
$$(A, B, D)$$

48 (a c d) $BE = IE$

48. (**a**, **c**, **d**) **b**.**b**. = 1.**b**.
(I.E.)_{any atom} = (I.E.)_H ×
$$z^2$$

 $\frac{122.4}{13.6} = z^2$
 $z^2 = 9z = 3$
 $E_2 - E_1 = 122.4 - 30.6 = 91.8 \text{ eV}$
49. [**a**, **b**, **c**, **d**] 10 cm⁻¹ = 1000 m⁻¹

$$\therefore E = hv = \frac{hc}{\lambda} = hc^{-1}$$

$$= 6.66 \times 10^{-34} \text{ (Js)} \times 3 \times 10^8 \text{ (ms}^{-1}) \times 1000 \text{ (m}^{-1})$$

$$= 2 \times 10^{-22} \text{ J per photon}$$

$$= 2 \times 10^{-15} \text{ ergs per photon}$$

$$= 2 \times 10^{-22} \times 6.02 \times 10^{23} \text{ J mol}^{-1}$$

$$= 1.2 \times 10^{-1} \text{ kJ mol}^{-1}$$

$$= 2.9 \times 10^{-2} \text{ kcal mol}^{-1}$$

50. [b, c, d] According to emission photoelectric effect

$$hv = hv_0 + \frac{1}{2}mV^2$$

E of incident radiation = $\frac{hc}{\lambda}$
= $\frac{6.626 \times 10^{-34} \times 3 \times 10^8}{200 \times 10^{-10}}$
= 9.94×10^{-18} J
 $v_0 = \frac{5 \times 1.6 \times 10^{-19}}{6.626 \times 10^{-34}} = 1.2 \times 10^{15} \text{ sec}^{-1}$
 $\frac{1}{2}mv^2 = 9.94 \times 10^{-18} - 8 \times 10^{-19} = 9.14 \times 10^{-18}$

$$v = \sqrt{\frac{2 \times 9.14 \times 10^{-18}}{9.1 \times 10^{-31}}} = 4.47 \times 10^6 \,\mathrm{m/sec}$$

 (A, D) Both Fe³⁺ and Mn²⁺ have 5 unpair electrons. Cu₂Cl₂ is colourless because Cu⁺ has no unpair electrons.

 MnO_4^- has no unpair electrons in Mn^{+7} , due to charge transfer spectra it is coloured.

$$\mu = \sqrt{n(n+2)} BM$$
 and $n = 4$
for Fe⁺² and CO⁺³

- 52. (4) If m = +3 (maximum), then l = 3 and n = 4Number of waves in an orbit = n
- 53. (6) Number of spherical lines produced = $\frac{(n_2 - n_1)(n_2 - n_1 + 1)}{2} = \frac{(5 - 2)(5 - 2 + 1)}{2} = 6$
- **54. (0)** Orbital angular momentum

$$= \sqrt{l(l+1)} \frac{h}{2\pi} = \sqrt{0(0+1)} \frac{h}{2\pi} = 0$$

55. (2) $mvr = n\frac{h}{2\pi}$ $h_{-n}h$

$$\frac{n}{\pi} = n \frac{n}{2\pi}, n = 2$$

Number of radial mo

56. (0) Number of radial modes = n - l - 1 2 - l - 1 = 057. (4) Number of electron $= \frac{-6.39 \times 10^{-19}}{-1.60 \times 10^{-19}} = 4$ 58. (3) Number of waves = n60. (1) Number of radial nodes = n - l - 1 = 2 - 0 - 1 = 161. (4) $\sqrt{n(n+2)} = \sqrt{24}$ n(n+2) = 24, n = 462. (2) ψ 420 is 4*d* orbital l = 2**63.** (2) n - l - 1 = 3 - 0 - 1 = 264. (5) l = 2Number of d-electrons = 5 **65.** (3) $E_n = -13.6 + 12.09 = -1.51$ $E_n = \frac{E_1}{n^2}$: $n^2 = \frac{-13.6}{-1.51} = 9, n = 3$ **66.** (0) Hint: $\mu = \sqrt{n(n+2)} = \sqrt{35}$ BM n = 5i.e., 5 unpaired e^e are present in (n-1)dshell of M⁺³ transition metal cation so it is Fe⁺³ $_{26}$ Fe \rightarrow [Ar] $3d^{6}4s^{2}$ $Fe \rightarrow [Ar] 3d^5 4s^0$ 67. (2) Hint: Number of waves $n = \frac{\text{Circumference}}{\text{Wavelength}}$ $n = \frac{400}{200} = 2$ (or) $n\lambda = 2\pi r$ $n \times 200 = 400$ n = 2**68.** (4) Hint: m = 3, l = 3, n = 4For n = 4 number of waves will be 4.

- 69. (6) Hint: n = 4, l = 1 represents 4P subshell containing six electrons. Thus, three will be six elements having 4P¹ to 4P⁶ electronic configuration.
 70. (0) Hint: μ_l = h/(2π)√l(l+1) (l = 0 for *s*-orbital)
- 71. (5) Hint: $Cu^+ = [Ar]3d^{10}4s^0$ Five d - electrons have $+\frac{1}{2}$ spin Five d - electrons have $-\frac{1}{2}$ spin 72. (12) Hint: n = 4 l = 0 $m_e = 0$ l = 1 $m_e = -1, 0, +1$ l = 2 $m_e = -2, -1, 0, +1, +2$ l = 3 $m_e = -3, -2, -1, 0, +1, +2, +3$ There are three orbitals having $m_e = +1$, and three orbitals having $m_e = -1$, Thus maximum number of electrons in them will be 12. 73. (1) Hint: Number of radial nodes = n - l - 1 = 3 - 1 - 1 (for 3P, n = 3, l = 1). 74. Distance to be travelled from Mars to Earth $= 8 \times 10^7$ km $= 8 \times 10^{10}$ m

:. velocity =
$$3 \times 10^8$$
 m/sec
:. Time = Distance/Velocity = $\frac{8 \times 10^{10}}{3 \times 10^8}$
= 2.66×10^2 sec.
75. (a) I.P. = $\Delta E = E_{\infty} - E_1 = 0$ -(-15.6) = 15.6 l.v.

(b)
$$n = \infty n = 2$$

 $\Delta E = [0 - (-5.3)] = 5.3 \text{ l.v.}$
 $\Delta E = \frac{1240}{\lambda(\text{nm})} \quad \lambda = \frac{1240}{5.3} = 233.9 \text{ nm}$

(c)
$$|\Delta E_{3 \to 1}| = |-3.08 - (-15.6)|$$

= 15.6 - 3.08 = 12.52 e.v.
= $\frac{1240}{\lambda} = \frac{12.52}{1240} = \frac{1}{\lambda}$ (n.m)
 $\lambda = 1.808 \times 10^7 \text{ m}^{-1}$
(d) (i) $E = -15.6 - (-6) = -15.6 + 6 = -9.6$

(ii)
$$E = -15.6 - (-11) = -15.6 + 11 = -4.6$$

nhc

76.
$$E = \frac{n\pi c}{\lambda}$$

$$10^{-17} = \frac{n \times 6.625 \times 10^{-34} \times 3 \times 10^8}{550 \times 10^{-9}}$$

$$n = 27.67 \quad \therefore \quad 28$$
77. 330 J = n(hn)
330 J = n [6.62 × 10^{-34} × 5 × 10^{13}]

$$\frac{330}{6.62 \times 10^{-34} \times 5 \times 10^{13}} = n = 10^{22}$$
78. $E = \frac{nhC}{\lambda}$

$$n = \frac{3.15 \times 10^{-14} \times 850 \times 10^{-5}}{6.62 \times 10^{-34} \times 3 \times 10^8}$$

$$n = 134.8 \times 10^3$$
 $n = 1.35 \times 10^5$

2.44 Physical Chemistry-I for JEE (Main & Advanced)

79.
$$\frac{1}{\lambda} = R_h Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

$$n_1 = 3 \text{ for paschan}$$
80.
$$n_2 = 3 n_1 = 2 \quad \text{[first line]}$$

$$n_2 = 4 n_1 = 2 \quad \text{[second line]}$$

$$\frac{1}{\lambda} = R_H \left[\frac{1}{4} - \frac{1}{9} \right]$$

$$\frac{1}{6565} \text{ Å} = R_H \left[\frac{1}{4} - \frac{1}{9} \right]$$

$$\frac{1}{\lambda} = R_H \left[\frac{1}{4} - \frac{1}{16} \right] \tag{ii}$$

(i)

$$\frac{\lambda}{6565} = \frac{\frac{5}{36}}{\frac{3}{16}} = \frac{5 \times 16}{36 \times 3} \lambda = 4863 \text{ Å}$$

81. $3 \rightarrow 2$

$$\frac{1}{\lambda_1} = R_H \times Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = R_H \times \left[\frac{1}{4} - \frac{1}{9} \right] \quad \dots(i)$$
$$2 \to 1 \frac{1}{\lambda_1} = R_H \times 4 \left[\frac{1}{4} - \frac{1}{4} \right] \qquad \dots(ii)$$

$$\begin{array}{c} \lambda_{2} \\ \lambda_{2} \\ \lambda_{1} \\ \lambda_{2} \end{array} \qquad \begin{array}{c} \lambda_{1} \\ \lambda_{2} \\ \lambda_{1} \\ \lambda_{2} \end{array} \qquad \begin{array}{c} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \\ \lambda_{4} \\ \lambda_{5} \end{array} \qquad \begin{array}{c} \lambda_{1} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \\ \lambda_{5} \\ \lambda_{5} \end{array}$$

We solve the three equations and we get $R = 1.096 \times 10^7 \text{ m}^{-1}$

82.
$$\Delta E = 13.6 \left[\frac{1}{9} - \frac{1}{4} \right] \times 96.3368 \text{ kJ/mole}$$

= $13.6 \left[\frac{4-9}{36} \right] \times 96.368 = 182.074$
= $1.827 \times 10^5 \text{ J/mole}$

83. IE per mole = $N_A \times \frac{hc}{\lambda}$

$$=\frac{6.022 \times 10^{23} \times 6.625 \times 10^{-34} \times 3 \times 10^8}{854 \times 10^{-10}} J$$
$$= 0.14 \times 10^7 = 14 \times 10^5 J = 1400 \text{ KJ/Mole}$$

84. Radius = $16 \times$ radius of H in ground state = 16×0.529

$$16 \times 0529 = 0.0529 \times \frac{n^2}{Z}$$

$$16 = \frac{n^2}{1} \qquad \boxed{n=4}$$
T.E. = -13.6 × $\frac{Z^2}{n^2}$ e.v. = -0.85 e.v.
85. $E_n = \frac{-21.7 \times 10^{-12}}{n^2}$ 1 erg = 10⁻⁷ Joule
 $E_n = \frac{-21.7 \times 10^{-12}}{4}$
J.E. = $0 - \left[\frac{-21.7 \times 10^{-12}}{4}\right] = \frac{21.7 \times 10^{-12}}{4}$

$$= 5.425 \times 10^{-12} \text{ ergs}$$
(b) $\lambda = \frac{6.625 \times 10^{-34} \times 3 \times 10^8}{5.425 \times 10^{-19}}$

$$= 3.66 \times 10^{-7} \text{ meter} = 3.7 \times 10^{-5} \text{ cm}$$
86. $\Delta E = 1.E \cdot \left[\frac{1}{4} - \frac{1}{1}\right]$
2.17 × 10⁻¹¹ erg/atom $\left[\frac{1}{4} - \frac{1}{1}\right] = \frac{hc}{\lambda(m)}$
2.17 × 10⁻¹¹ × 10⁻⁷ J $\left[\frac{1}{4} - \frac{1}{1}\right] = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{\lambda}$
 $\lambda = \frac{6.626 \times 10^{34} \times 3 \times 10^8 \times 4}{2.17 \times 10^{-18} \times 3} = \frac{6.626 \times 4 \times 10^8}{2.17}$

$$= 12.20 \times 10^{-8} \text{ m} = 1220 \text{ Å}$$
87. $V_n = 2.18 \times 10^6 \times \frac{Z}{n} = \frac{2.18 \times 10^6}{n}$
 $\frac{2.18 \times 10^6}{n} = \frac{3 \times 10^8}{275}$
 $n = 1.99 = 2$
88. $Z = 3, n_1 = 1, n_2 = 3$
 $E_n = 13.6 \times (Z^2) \left[\frac{1}{n_1^2} - \frac{1}{n_2^2}\right] = 13.6 \times 9 \left[\frac{1}{1} - \frac{1}{9}\right]$
 $= 13.6 \times 9 \times \frac{8}{9} = 108.8 \text{ eV}$
89. (i) $E_{n_2 \to n_1} = 13.6 \times Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2}\right] = 13.6 [1]^2 \left[\frac{1}{1} - \frac{1}{4}\right]$
 $= 13.6 \times 1 \times \frac{3}{4} = 10.2 \text{ eV}$
(ii) $\frac{1}{\lambda} = R_{H}Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2}\right]$
 $\frac{1}{3 \times 10^8} = 1.09 \times 10^7 \times Z^2 \times \frac{3}{4}$
 $\therefore Z = 2$
90. 1.8 mole = (1.8 N_A) atoms
 $27\% = \text{IInd energy level} = 1.8 \times N_A \times 0.27 = 0.486 \text{ N}_A$
 $\Delta E = \Delta E_1 + \Delta E_2$
 $\rightarrow 1 \quad 2 \rightarrow 1$
 $= 1.8 \times N_A \times 0.27 \times \text{IE} + \left[\frac{1}{9} - \frac{1}{1}\right]$

$$= (0.432 N_A + 0.20 N_A) \times IE = 56.65 \times 10^{11} \text{ erg.}$$

- **91.** Number of atom in third orbit = 0.5 NA Number of atom in second orbit = 0.25 NA Total energy evolve = $0.5 N_A (E_3 - E_1) + 0.25 N_A (E_2 - E_1)$
- 92. Angular momentum = $n\left(\frac{h}{2\pi}\right)$ $\left(\frac{hc}{\lambda}\right) = -3.4 \text{ eV} \quad -3.4 = -13.6 \times \frac{(1)^2}{n^2}$ $\frac{-3.4}{-13.6} = \frac{1}{n^2} \quad n^2 = \frac{13.6}{3.4} = 4$ $n^2 = 4 \Rightarrow n = 2$ $= 2\left(\frac{6.626 \times 10^{-34} \times 7}{2 \times 22}\right) = \frac{h}{\pi} \text{ or } \frac{6.62 \times 10^{-39} \times 7}{2}$ 93. $4.5 \text{ eV} = \frac{1240}{\lambda(\text{nm})} \quad \frac{1}{\lambda} = \frac{4.5}{1240} = 0.0036 \text{ nm}^{-1}$ 94. $\frac{\Delta n(\Delta n + 1)}{2} = 15$ $\Delta n (\Delta n + 1) = 30 = 5 \times 6$ $\therefore \quad n_1 = 1 \text{ and } n_2 = 6$ $\frac{1}{\lambda \hat{A}} = R_H \times \left[\frac{1}{1} - \frac{1}{36}\right]$ $\frac{1}{x} = \frac{1}{912} \times \frac{35}{36} = \frac{35 \times 2496}{32832}$ $\overline{\lambda} = 932 \hat{A}$
- **95.** The condition can be met by taking first derivative P(r) w.r.t *r* and setting the same equal to zero, i.e.,

$$\frac{dP(r)}{dr} = \frac{1}{dr} \left[\left(\frac{1}{\pi a_0^3} \right)^{\nu_2} e^{-r/a_0} \right] = 0$$

$$\therefore \quad r = a_0 \qquad (\because e^{-2r/a_0} \neq 0)$$

96. The energy of photon which can cause ejection of electron = kinetic energy of ejected electron + ionisation energy(i) Ionisation energy = 13.6 eV

$$= \frac{13.6}{6.24 \times 10^{18}} \text{ J} = 2.179 \times 10^{-18} \text{ J} \qquad \dots \text{(ii)}$$

Here $6.24 \times 10^{18} \text{ eV} = 1 \text{ J}$

$$de \ Broglie \ wavelength = \lambda = \frac{h}{mv}$$

$$\therefore \qquad v = \frac{h}{m\lambda} = \frac{6.626 \times 10^{-34}}{9.1 \times 10^{-31} \times 4.7 \times 10^{-10}}$$

$$= 0.15492 \times 10^{7} \text{ m/sec}$$

K.E. = $\frac{1}{2}mv^{2}$

$$= \frac{1}{2} \times 9.1 \times 10^{-31} \times (0.15492 \times 10^{7})^{2}$$

$$= 1.092 \times 10^{-18} \text{J} \qquad \dots (iii)$$

Now from Eq. (i)

The energy of photon which can cause ejection of electron

$$= 2.179 \times 10^{18} + 1.092 \times 10^{-18}$$
$$= 3.271 \times 10^{-18} J$$

97. Energy required per molecule in the following process is given as

$$O_{2} \xrightarrow{hv} O + O^{*}$$

$$E = \frac{h \times c}{\lambda} = \frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{174 \times 10^{-9}}$$

$$= 11.424 \times 10^{-19} \text{ J/molecule}$$
Energy for O \rightarrow O* is 3.15×10^{-19} Joule
Thus, energy O₂ \rightarrow 2O will be

$$= 11.424 \times 10^{-19} - 3.1 \times 10^{-19}$$

$$= 8.274 \times 10^{-19} \text{ J/molecule}$$

$$= 8.274 \times 10^{-19} \times 6.023 \times 10^{23} \times 10^{-3} \text{ kJ/mole}$$

$$= 498.3 \text{ kJ/mole}$$

98.
$$V_2 = V_0 \times \frac{1}{2} = \frac{V_0}{2}$$

 $x = v \times t$
 $x = \frac{V_0}{2} \times 10^{-8} \sec = \left(\frac{V_0 \times 10^{-8}}{2}\right) m$

 $2\pi r$ distance covered in 1 round

$$\therefore \qquad \frac{V_0 \times 10^{-8}}{2} \text{ distance covered in } \frac{V_0 \times 10^{-8}}{2} \times \frac{1}{2\pi r}$$
$$r_2 = r_0 \times n_2 = 4r_0$$

so, number of revolutions = $\frac{V_0/2 \times 10^{-8}}{2\pi \times 4r_0} = \frac{V_0 \times 10^{-8} \times 1}{2 \times 2\pi \times 4r_0}$

$$= \frac{2.18 \times 10^{6} \times 10^{-18}}{2 \times 2 \times 3.14 \times 4 \times 0.529}$$
$$= \frac{2.18 \times 10^{-12}}{2.6 \times 10^{-21}} = 0.838 \times 10^{19} = \boxed{8 \times 10^{6}}$$

99. $v = \frac{V}{\lambda}$

E of Ist Bohr orbit = -13.6

$$-13.6 = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{\lambda}$$

or
$$-13.6 = \frac{1240}{\lambda \text{ (in nm)}}$$
$$\lambda = \frac{1240}{136} \times 10$$
$$\lambda = 91.17 \text{ (nm)} = 912 \text{ Å}$$
$$v = \frac{2.18 \times 10^6 \times \frac{1}{1}}{912 \times 10^{-10}} = 2.3 \times 10^{13} \text{ Hz}$$

100.
$$\Delta E = 47.2 \text{ eV} = 13.6 Z^2 \left(\frac{1}{4} - \frac{1}{9}\right)$$

 $\frac{47.2}{13.6} = \frac{5}{36} Z^2$
 $Z^2 = 25$
 $\therefore \quad Z = 5$
101. $\Delta E = Z^2 \times 10.2 \text{ eV} = 4 \times 10.2 \text{ eV}$

K.E. =
$$\frac{1}{2}mV^2$$
 = 4 × 10.2 − 13.6 eV

$$\therefore \qquad V = \sqrt{\frac{2 \times 27.2 \times 1.6 \times 10^{-19}}{9.1 \times 10^{-31}}} = 3.09 \times 10^6 \text{ m/sec.}$$

102. B.E. = 180.69 kJ/mole \Rightarrow w = hv_0

$$\frac{180.69}{96.368} \text{ eV/atom} = hv_0$$

$$\frac{180.69}{96.368} \times 1.6 \times 10^{-19} = 6.6 \times 10^{-34} \times v_0$$

$$v_0 = 6.626 \times 10^{-34}$$

103.
$$hv_1 = hv_0 + 2E_1$$
 and $hv_2 = hv_0 + E_1$
 $hv_1 - hv_0 = 2E_1$ and $hv_2 - w_0 = E_1$
 $2 = \frac{hv_1 - w_0}{hv_2 - w_0}$ \therefore $2hv_2 - 2w_0 = hv_1 - w_0$
 $h[2v_2 - v_1] = w_0$
 $w_0 = 6.62 \times 10^{-34} (4 \times 10^{15} - 3.2 \times 10^{15})$
 $w_0 = 6.62 \times 10^{-34} \times 0.8 \times 10^{15}$
 $w_0 = 5.29 \times 10^{-19}$ $w_0 = 318.9$ kJ/mol

PREVIOUS YEARS' QUESTIONS OF JEE (MAIN & ADVANCED)

- 1. (d) Charge/mass for $n = 0, \alpha = \frac{2}{4}, p = \frac{1}{1}, e = \frac{1}{1/1837}$ So, order is *n*, *\alpha*, *p*, *e*
- 2. (a) Isotonic : same number of neutrons
- 3. (c) Conceptual

4. (c)
$$\lambda = \frac{h}{mv} = \frac{6.6 \times 10^{-34}}{(0.2) \times 5/(60 \times 60)} = 2.37 \times 10^{-30} \text{ m}$$

5. (a) Z = 37, so electronic configuration is $1s^2 2s^2 2p 3s^2 3p^6 4s^2 3s^{10} 4p^6 5s^1$

: for outermost electron

- 6. (c) Most electro-negative element is *F*. \therefore electronic configuration: ns^2np^5
- 7. Average mass = Mass of isotopes × Mole fraction + Mass of isotopes × Mole fraction

$$10.81 = 11.01 \times x + 10.01 (1 - x)$$

$$10.81 = 11.01 x + 10.01 - 10.01 x$$

$$x = 10.81 - 10.01 = 0.80$$

$$\% = 0.80 \times 100 = 80\%$$

8.
$$\Delta E = E_3 - E_2 = \frac{nc}{\lambda}$$

 $= -2.41 \times 10^{-12} - (5.42 \times 10^{-12}) = \frac{hc}{\lambda}$
 $= 3.01 \times 10^{-12} \times 10^{-7} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{\lambda}$
 $\lambda = \frac{6.626 \times 10^{-26} \times 3}{3.01 \times 10^{-19}} = \frac{6.626 \times 10^{-7} \times 3}{3.01}$
 $= 6603 \text{ Å} = 6.603 \times 10^{-7} \text{ m}$
9. $\Delta E = 2.17 \times 10^{-18} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$
 $\frac{hc}{\lambda} = 2.17 \times 10^{-18} \left[1 - \frac{1}{4} \right]$
 $\frac{6.62 \times 10^{-34} \times 3 \times 10^8}{\lambda} = 2.17 \times 10^{-18} \times \frac{3}{4}$
 $\lambda = \frac{4 \times 6.62 \times 3 \times 10^{-26}}{6.51 \times 10^{-18}} = 12.20 \times 10^{-8} \text{ m} = 1220 \text{ Å}$
10. $\Delta E = \frac{2.17 \times 10^{-18}}{n^2} \times Z^2 = \frac{2.17 \times 10^{-18}}{4} = 5.42 \times 10^{-19}$
or $5.42 \times 10^{-12} \text{ erg}$
 $\therefore \Delta E = \frac{hc}{\lambda}$
 $\lambda = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{5.42 \times 10^{-19}} = 3.67 \times 10^{-7} \text{ meter}$

hc

or
$$3.67 \times 10^{-5}$$
 cm

11. For n = 3 and l = 2 (i.e., 3*d* orbital), the values of *m* varies from -2 to +2, i.e., -2, -1, 0, +2 and for each '*m*' there are 2 values of '*s*', i.e., +1/2 and -1/2. Maximum number of electrons in all the five *d*-orbitals is 10.

12.
$$E_{3^{rd}} = \frac{-21.76 \times 10^{-19} \times 4}{9} J$$

 $= \frac{87.04}{9} \times 10^{-19} = 9.67 \times 10^{-19} J$
 $\therefore \quad \Delta E = \frac{hc}{\lambda}$
 $\lambda = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{9.67 \times 10^{-19}}$
 $= 2.0556 \times 10^{-7} M = 2055 Å$
13. $\lambda = \frac{h}{mu} = \frac{6.62 \times 10^{-34}}{0.1 \times 100}$
or $\lambda = 6.62 \times 10^{-35} m = 6.62 \times 10^{-25} Å$

14. For hydrogen atom, Z = 1, n = 1

$$V = 2.18 \times 10^6 \times \frac{Z}{n} \text{ms}^{-1} = 2.18 \times 10^6 \text{ ms}^{-1}$$

de Broglie wavelength,

$$\lambda = \frac{h}{mv} = \frac{6.26 \times 10^{-34}}{9.1 \times 10^{-31} \times 2.18 \times 10^{6}}$$

$$= 3.34 \times 10^{-10} \text{ m} = 3.3 \text{ Å}$$
For 2p, $l = 1$

$$\therefore \text{ Orbital angular momentum } \sqrt{2} \frac{h}{2\pi}$$
15. From $\Delta E = E_{f} - E_{i} = \frac{hc}{\lambda}$

$$2.18 \times 10^{-18} \times Z^{2} \left[\frac{1}{(1)^{2}} - \frac{1}{(2)^{2}} \right]$$

$$= \frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{3 \times 10^{-8}}$$
or $-2.18 \times 10^{-18} \times Z^{2} \times \frac{3}{4} = 6.626 \times 10^{-18}$

$$Z^{2} = \frac{6.626 \times 10^{-18} \times 4}{2.18 \times 10^{-18} \times 3} \approx 4$$

$$Z = 2$$
for $\text{He}^{+} Z = 2$
16. $\Delta E_{\text{He}^{+}} = \Delta E_{\text{H}}$
or $-2.18 \times 10^{-18} \times Z^{2} \left[\frac{1}{4} - \frac{1}{16} \right]$

$$= -2.18 \times 10^{-18} \left[\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right]$$

$$4 \left[\frac{1}{4} - \frac{1}{16} \right] = \left[\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right]$$

$$\therefore n_{1} = 1 \text{ and } n_{2} = 2$$
17. $r_{n} \text{ for } H = r_{1} \times n^{2}$

$$R_{3} \text{ for } H = 0.529 \times 9 \times 10^{-8} \text{ cm} = 529 \times 9 \times 10^{-10} \text{ m}$$

$$(\because r_{1} = 0.529 \text{ A}^{\circ})$$
Also $u_{n} = Z \frac{u_{1}}{n}$

$$\therefore u_{3} = \frac{2.19 \times 10^{8}}{3} \text{ cm} \sec^{-1} \frac{2.19 \times 10^{6}}{3} \text{ m} \sec^{-1}$$

$$(\because u_{1} = 2.19 \times 10^{8} \text{ cm} \sec^{-1})$$

$$\therefore \text{ Number of waves in one round}$$

$$= \frac{2\pi r_{3}}{\lambda} = \frac{2\pi r_{3}}{h/mu_{3}} = \frac{2\pi r_{3} \times u_{3} \times m}{h}$$

$$2 \times 22 \times 0.529 \times 9 \times 10^{-10} \times 2.19$$

$$= \frac{\times 10^{6} \times 9.108 \times 10^{-31}}{7 \times 3 \times 6.62 \times 10^{-34}} = 3$$
18. Bond energy of $I_{2} = 240 \text{ kJ mol}^{-1} = 240 \times 10^{3} \text{ J mol}^{-1}$

$$= \frac{240 \times 10^{3}}{0} \text{ J mol}^{-1} = 3.984 \times 10^{-19} \text{ J mol}^{-1}$$

Energy absorbed =
$$\frac{hc}{\lambda} = \frac{6.626 \times 10^{-34} \text{ Js} \times 3 \times 10^8 \text{ ms}}{4500 \times 10^{-10} \text{ m}}$$

= 4.417 × 10⁻¹⁹ J

Kinetic energy = Absorbed energy – Bond energy

:. kinetic energy =
$$4.417 \times 10^{-19} - 3.984 \times 10^{-19} \text{ J}$$

= $4.33 \times 10^{-20} \text{ J}$
:. kinetic energy of each atom
= $\frac{4.33 \times 10^{-20}}{2} = 2.165 \times 10^{-20} \text{ J}$

19. The shortest wavelength transition in the Balmer series corresponds to the transition

$$n = 2 \rightarrow n = \infty$$
. Hence, $n_1 = 2, n_2 = \infty$

$$\overline{v} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) = (109677 \text{ cm}^{-1}) \times \left(\frac{1}{2^2} - \frac{1}{\infty^2} \right)$$

= 27419.25 cm⁻¹

20. As the α particle travelling with velocity, 'u' stops at a distance 10⁻¹³ m, its K.E. becomes zero and gets converted in to P.E.

$$\frac{1}{2}mu^2 = \frac{1}{4\pi\varepsilon_0} \times \frac{2Ze^2}{r} \text{ or } u^2 = \frac{Ze^2}{\pi\varepsilon_0 \cdot m.r}$$

Here,
$$Z = 29$$
 for Cu atom

$$\Rightarrow u^{2} = \frac{29 \times (1.6 \times 10^{-19})^{2}}{3.14 \times 8.85 \times 10^{-12}} \times (4 \times 1.672 \times 10^{-27}) \times 10^{-13}$$

$$\therefore u = 6.3 \times 10^{6} \text{ m sec}^{-1}$$
21. $\frac{1}{2}mu^{2} = \text{eV}$; also $\lambda = \frac{h}{mu}$

$$\therefore \frac{1}{2}m\frac{h^{2}}{m^{2}\lambda^{2}}\text{eV or } V = \frac{1}{2}\frac{h^{2}}{m\lambda^{2}e}$$

$$V = \frac{1 \times (6.62 \times 10^{-34})^{2}}{2 \times 9.108 \times 10^{-31} \times (1.54 \times 10^{-10})^{2} \times 1.602 \times 10^{-19}}$$

$$= 63.3 \text{ yolt}$$

22. Determination of number of moles of hydrogen gas,

$$n = \frac{PV}{RT} = \frac{1 \times 1}{0.082 \times 298} = 0.0409$$

The concerned reaction is $H_2 \rightarrow 2H$; $\Delta H = 436 \text{ kJ mol}^{-1}$. Energy required to bring 0.0409 moles of hydrogen gas to atomic state = $436 \times 0.0409 = 17.83$ kJ.

Calculation of total number of hydrogen atoms in 0.0409 mole of H_2 gas. 1 mole of H_2 gas has 6.02×10^{23} molecules

 (02×10^{23})

0.0409 mole of H₂ gas =
$$\frac{6.02 \times 10^{23}}{1} \times 0.0409$$

Since 1 molecule of H₂ gas has 2 hydrogen atoms, 6.02 $\times 10^{23} \times 0.0409$ molecules of H₂ gas = $2 \times 6.02 \times 10^{23} \times 0.0409 = 4.92 \times 10^{22}$ atoms.

Energy required to excited an electron from the ground state to the next excited state

$$= 13.6 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) eV = 13.6 \times \left(\frac{1}{1} - \frac{1}{4}\right)$$
$$= 13.6 \times \frac{3}{4} = 10.2 eV = 10.2 \times \frac{1.6 \times 10^{-19}}{1000} KJ$$

Therefore, energy required to excite 4.92×10^{22} electrons

=
$$1.632 \times 10^{-21} 4.92 \times 10^{22} \text{ kJ}$$

= $8.03 \times 10 = 80.3 \text{ kJ}$
erefore total energy required= 17.8

Therefore, total energy required= 17.83 + 80.3= 98.17 kJ

23. For maximum energy, $n_1 = 1$ and $n_2 = \infty$

$$\frac{1}{\lambda} = R_H Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

Since R_H is a constant and transition remains the same

$$\frac{1}{\lambda} \propto Z^2; \frac{\lambda_{\text{He}}}{\lambda_{\text{H}}} = \frac{Z_{\text{H}}^2}{Z_{\text{He}}^2} = \frac{1}{4}$$

Hence, $\lambda_{\text{He}} = \frac{1}{4} \times 91.2 = 22.8 \text{ nm}$

24. ψ_{2s}^2 = Probability of finding electron within 2*s* sphere $\psi_{2s}^2 = 0$ (at node)

(:: probability of finding an electron is zero at node)

$$\therefore \qquad 0 = \left[\frac{1}{4} \frac{1}{\sqrt{2\pi}} \left(\frac{1}{a_0}\right)^{3/2} \left(2 - \frac{r_0}{a_0}\right)^2 \times e^{-r_0/a_0}\right]^2$$
$$\implies \qquad \left[2 - \frac{r_0}{a_0}\right] = 0; \ \therefore \ 2 = \frac{r_0}{a_0}; \ 2a_0 = r_0$$

25. $A \rightarrow r$; $B \rightarrow q$, $C \rightarrow p$, $D \rightarrow s$

(a) Potential Energy

$$= -\frac{1}{4\pi\varepsilon_0} \left(\frac{Ze^2}{r}\right) = -13.6 \times 2\frac{z^2}{n^2} \text{ev}$$

Kinetic energy = $+13.6\frac{z^2}{n^2} \text{ev}$

$$K_n = \frac{1}{8\pi\varepsilon_0} \left(\frac{2e^2}{r} \right) \Longrightarrow \frac{V_n}{K_n} = -2(R)$$

(b)
$$E_n = -\frac{Ze^2}{8\pi\varepsilon_0 r} = -13.6\frac{Z^2}{n^2} \text{ ev } \propto r^{-1} \Rightarrow x = -1$$

(c) Angular momentum = $\sqrt{l(l+1)} \frac{h}{2\pi}$ = 0 in *S* orbital

(d)
$$r_n = \frac{a_0 n^2}{z} = 0.529 \frac{n^2}{z} \text{\AA}$$

26.
$$A \rightarrow q$$
; $B \rightarrow p$, q , r , s ; $C \rightarrow p$, q , r ; $D \rightarrow p$, q , r
(a) Orbital angular momentum (L) = $\sqrt{l + (l+1)} \frac{h}{2\pi}$

i.e., depends on azimuthal quantum number only.

- (b) To describe a one electron wave function, three quantum numbers n, l and m are needed. Further to abide by Pauli exclusion principle, spin quantum number (s) is also needed.
- (c) For shape, size and orientation, only *n*, *l* and *m* are needed.
- (d) Probability density (ψ^2) can be determined if *n*, *l* and *m* are known.

Comprehension-Based Questions

27. \Rightarrow *n* = 2, i.e., *S*₁ = 2*s* orbital.

28. Ground state energy of electron in H –atom. (E_H)

$$\frac{(E_{\text{Li}^{+2}})S_1}{E_H} = \frac{-13.6\frac{[3]^2}{[2]^2}\text{ev}}{-13.6\times\frac{[1]^2}{[1]^2}\text{ev}} = \frac{9}{4} = 2.25$$

29. In S_2 state, $E(Li^{2+}) = k$ (given)

$$E_{\text{Li}^{+2}} = -13.6 \frac{(3)^2}{n_2^2} \text{ ev} = 13.6 \times \frac{(1)^2}{(1)^2} \text{ ev}$$

 $\therefore \quad n_2 = 3 = S_2$

Integer-Type Questions

30. When n = 3, l = 0, 1, 2, i.e., there are 3s, 3p and 3d orbitals. If all these orbitals are completely occupied as

Total 18 electrons, 9 electrons with
$$s = +\frac{1}{2}$$
 and 9 with $s = -\frac{1}{2}$.

31.
$$\therefore E_n = -\frac{13.6}{n^2} \text{ eV}$$
 where, $n = 1, 2, 3$

In excited states, $E_2 = \frac{-13.6}{4} = -3.4 \text{ eV}$

- 32. (a) Given, atomic number of Rb, Z = 37Thus, its electronic configuration is $[Kr]5s^1$. Since, the last electron or valence electron enter is 5s subshell. So, the quantum numbers, are n = 5, l = 0, (for *s*-orbital) m = 0 :: m = +l to -l, s = +1/2 or -1/2.
- **33.** (a) Given, in the question $E = -2.178 \times 10^{-18} \text{ J} \left[\frac{Z^2}{n^2} \right]$ For hydrogen Z = 1,

So,
$$E_1 = -2.178 \times 10^{-18} \,\mathrm{J} \left[\frac{1}{n^2} \right]$$

 $E_2 = -2.178 \times 10^{-18} \,\mathrm{J} \left[\frac{1}{2^2} \right]$

Now, $E_1 - E_2$ i.e.

$$\Delta E = 2.178 \times 10^{-18} \left(\frac{1}{1^2} - \frac{1}{2^2} \right) = \frac{hc}{\lambda}$$

2.178 \times 10^{-18} \left(\frac{1}{1^2} - \frac{1}{2^2} \right) = \frac{6.62 \times 10^{-34} \times 3.0 \times 10^8}{\lambda}
\left\lambda = 1.21 \times 10^{-7} \text{ m}

34. (c) According to Bohr's model,

....

$$mvr = \frac{nh}{2\pi} \Rightarrow (mv)^2 = \frac{n^2h^2}{4\pi^2r^2}$$
$$\Rightarrow \quad \text{Kinetc Energy} = \frac{1}{2}mv^2 = \frac{n^2h^2}{8\pi^2r^2m^2}$$

Also, Bohr's radius for H-atom is, $r = n^2 a_0$ Substituting 'r' in Eq. (i) gives

K.E. =
$$\frac{h^2}{8\pi^2 n^2 a_0^2 m}$$
 when $n = 2$, K.E. = $\frac{h^2}{32\pi^2 a_0^2 m}$

35. (6) Hint: This problem is based on correct of quantum number. Follow the following steps to solve this problem. Write all possible orbital's having combination of same principal, azimuthal, magnetic and spin quantum number. Then count the all possible electrons having given set of quantum numbers. For n = 4, the total number of possible orbitals are

According to question $|m_1| = 1$, i.e. there are two possible values of m_1 , i.e. +1 and -1 and one orbital can contain maximum two electrons one having $s = +\frac{1}{2}$ and other having s = -1/2. So, total number of orbitals having $\{|m_1| = 1\} = 6$ Total number of electrons having

$$|m_1| = 1$$
 and $m_2 = \frac{1}{2} = 6$

36. (5) Hint: K.E. $=\frac{1}{2}MV^2 = \frac{3}{2}RT$ $\therefore m^2v^2 = 2mKE \therefore mv = \sqrt{2mKE}$ λ (wavelength) $=\frac{h}{m} = \frac{h}{m} \propto \frac{h}{m}$

$$\chi$$
(wavelength) = $\frac{1}{mv} - \frac{1}{\sqrt{2mKE}} \propto \frac{1}{\sqrt{2m(T)}}$

Where,
$$T =$$
 Temperature in Kelvin

$$\lambda(\text{He at} - 73^{\circ}\text{C} = 200 \text{ K}) = \frac{h}{\sqrt{2 \times 20 \times 1000}}$$
$$\therefore \qquad \frac{\lambda(\text{He})}{\lambda(\text{Ne})} = M = \sqrt{\frac{2 \times 20 \times 1000}{2 \times 4 \times 200}} = 5$$

Thus, M = 5

Key Concepts

In this chapter, we will study about physical classification of matter. State in which a matter exists depends upon two factors:

- 1. Intermolecular force: This gives an idea of binding force between constituents particles.
- 2. Kinetic energy or thermal or heat: It gives the idea of velocity of constituent particles.

These two factors at a given temperature decide the state of aggregate matter.

	Property	Solid	Liquid	Gas			
1.	Shape	Fixed	Not fixed	Not fixed			
2.	Intermolecular	High	Lower	Least			
	force of attractio	n	than solid				
3.	Volume	Fixed	Fixed	Not fixed			
4.	Density	High	Intermediate	Low			
5.	Kinetic energy	Least	Higher than	High			
			solid				
6.	Diffusibility	Less	Medium	High			
7.	Compressibility	Low	Medium	High			
	Gas						
	Ideal		Real				
1.	No intermolecula	ar force	Exist				
	of attraction or re	epulsion					
2.	The volume of g	aseous	Molecular				
	molecules is neg	ligable	volume exist				
	in comparison to	the					
	volume of contai	iner eg.					
	It is a theoretical	concept,	For examp	le, all gases			
	there is no ideal	gas	around us.				

Measurable properties of gases:

- 1. Number of moles of gases or amount of gas (n)
- 2. Volume of gas V

- 3. Pressure of gas P
- 4. Temperature of gas T

Temperature determines the direction of heat flow. There are three scales for temperature measurement.

- (i) Celcius scale (°C)
- (ii) Kelvin scale (K)
- (iii) Fahrenheit scale (°F)

$$\frac{T_{\text{anyscale}} - \text{F.P.}_{(\text{water})}}{(\text{BP} - \text{FP})_{\text{water}}} = \text{constan}$$

00

BP = Boiling Point

This equation is used to convert temperature from 1 scale to another scale.

(BP)_{water} °C₁₀₀ K₃₇₃ F₂₁₂

$$\begin{vmatrix} & & \\ & & \\ & & \\ \end{vmatrix}$$
(FP)_{water} 0 273 32

$$\boxed{\frac{t^{\circ C} - 0}{100 - 0} = \frac{t_k - 273}{373 - 273} = \frac{T_F - 32}{212 - 32}}$$
1. $t^{\circ C} = \frac{5}{9} [t_f - 32]$
2. $T_k = \frac{5}{9} t_{(f)} + 255.2$
3. $T_k = 273 + ^{\circ C}$
Pressure :
$$P = \frac{F}{A} = \frac{mg}{A}$$

It is the force exerted by the gas per unit area on the walls of a container. Pressure exerted because of collision and causing change in momentum assuming no intermolecular force of attraction.

Device:

- 1. Baromater (Atmospheric pressure)
- 2. Monometer (Other than atmospheric pressure)

Unit:

1

$$atm = 76 \text{ cm of Hg} = 760 \text{ mm Hg} = 760 \text{ torm}$$

= 1.013 × 10⁵ N/m² or pascal

This formula is applicable only when d is constant throughout vertical height.

 $P_B = P_C$ because *h* is same.

Barometer:

Case I

 $P_A = 0$ $P_B = P_A + \Delta P$ $P_B = 0 + hdg$ $d = 13.6 \text{ gm/cm}^3 = 13.6 \times 9.8$ $g = 9.8 \text{ m/sec}^2 \text{ and } h = 76 \text{ cm}$ $P_B = hdg$ $= 0.76 \times 13.6 \times 10^3 \times 9.8$ $= 1.01325 \times 10^5 \text{ pascal}$ $P_B = 1 \text{ atm}$

Hg is preferred in barometer because density is high, length of tube small and non volatile.

For other liquid

Other liquid Hg

$$h_1d_1g$$
 h_2d_2g
 $\boxed{h_1d_1 = h_2d_2}$
or $hd = \text{constant}$
 Hg H_2O
 $0.76 \times 13.6 \times 10^3 = h_2 \times 1 \times 10^3$
 $h_1 = \frac{0.76 \times 13.6}{1} = 10.33 \text{ meter}$

It means $d\uparrow$ then $h\downarrow$

Case II

- Q.1 (i) An open tank is filled with Hg upto a height of 76 cm. Find pressure at the bottom and middle of the
 - tank. If atmospheric pressure is 1 atm.(ii) Find the height of water up to which water must be filled to create same pressure at the bottom.
- **Q.2** What will be the pressure
 - (i) at the bottom of the tank?
 - (ii) at middle of the bottom layer? If two immiscible liquids are filled as shown in the above figure.

- **Q.3** What will be the pressure
 - (i) at the bottom of the tank?
 - (ii) at $h_1/2$ height from bottom if two completely miscible liquids densities are d_1 and d_2 are filled as shown in the following diagram assuming cross-section area is same.

(Discussed in Solved Examples)

If level of Hg is same in both limb. $P_{gas} = P_{atm}$

$$\begin{array}{ll} P_{\rm gas} > P_{\rm atm} & P_{\rm gas} < P_{\rm atm} \\ P_{\rm gas} = P_{\rm atm} + hdg & P_{\rm gas} = P_{\rm atm} - hdg \\ P_{\rm gas} = 1 + h({\rm cm})/76 \ {\rm atm} & P_{\rm gas} = 1 - h({\rm cm})/76 \ {\rm atm} \end{array}$$

Q4. Find pressure of the gas inside the container if manometer attached to the container show a difference of 60 mm as shown in figure?

Common equation for graph

(i) y = mx + C

Gas Laws

Assumption

- 1. All gases are assumed to have no molecular attraction and volume of gas molecule is negligible.
- 2. In any gas law, relation between any two parameter are studied and other two are kept constant.
- 3. All gas laws are based on experiment.

Boyle's Law

This law states that for a fixed amount of gas kept at fixed temperature the pressure exerted by gaseous molecule is inversaly proportional to the volume of the gas.

$$P \propto \frac{1}{V}$$
 [*n* and *T* constant]
 $P = \frac{K}{V}$

3.4 Physical Chemistry-I for JEE (Main & Advanced)

$$PV = K$$

$$P = y$$

$$V = x$$

$$yx = K \text{ constant.}$$

$$PV = nRT = K \quad \therefore P = \frac{K}{V} \qquad P_2 > P_1$$

$$(nRT)_2 > (nRT)_1 \qquad \qquad \left(\frac{K}{V}\right)_2 > \left(\frac{K}{V}\right)_1$$
(i) If $T_1 = T_2 \qquad \therefore n_2 > n_1$
(ii) If $n_1 = n_2 \qquad \therefore T_2 > T_1$
(1)

Charle's Law

(

This law states that for a fixed amount of gas at constant pressure, volume occupied by two gases is directly proportional to absolute temperature.

 $V \propto T$ [*n* and *p* constant]

$$\boxed{\frac{V}{T} = K = \frac{nR}{P}}$$
or
$$\boxed{V = KT}$$

$$= y = mx$$
(i) If $n_1 = n_2$
 $P_1 > P_2$
(KT)_2 > (KT)_1
(ii) If $P_1 = P_2$
 $K_2 > K_1$ or
$$\left(\frac{nR}{P}\right)_2 > \left(\frac{nR}{P}\right)_1$$
(2) Gas
(2

 \therefore $n_2 > n_1$ At constant pressure, the volume of a given amount of a gas increases or decreases by $\frac{1}{273.15}$ th of volume at 0°C per degree rise or fall of temperature

If V_0 is the volume of gas at 0°C then at t°C

$$V_t^{\circ C} = \left\{ V_0 + \frac{V_0}{273.15} t \right\}$$
$$y = C + mx$$

Note:

 \Rightarrow

Temperature lower than -273.15°C is not possible because volume of gas cannot be negative.

1. Boyle's law:
$$P \propto \frac{1}{V}$$
 and $[K = nRT]$
2. Charle's law: $V \propto T$ and $\left[K = \frac{nR}{P}\right]$

3. Gaylussac law:
$$P \propto T$$
 and $\left[K = \frac{nR}{V}\right]$
4. Avogadro's law: $V \propto n$ and $\left[K = \frac{RT}{P}\right]$

Graph's for Boyl's law _____

1.
$$P \bigvee_{S} \frac{1}{V}$$

$$P = \frac{K}{V}$$

$$P = K \cdot \frac{1}{V}$$

$$y = mx$$

$$P_{2} > P_{1}$$

$$\left(\frac{K}{V}\right)_{2} > \left(\frac{K}{V}\right)_{1} \quad \left\{\frac{1}{V} \text{ is same}\right\}$$

$$K_{2} > K_{1}$$

$$(nRT)_{2} > (nRT)_{1}$$
(i) If $n_{1} = n_{2} \qquad \therefore \quad T_{2} > T_{1}$
(ii) If $T_{1} = T_{2} \qquad \therefore \quad n_{2} > n_{1}$
2.
$$PV \bigvee_{S} P$$

$$y = PV$$

$$x = P$$
From Boyl's law
$$PV = K = y$$

$$P^{\uparrow} \text{ then } V \downarrow$$

$$K_{2} > K_{1}$$

$$(nRT)_{2} > (nRT)_{1}$$
(1)
$$(nRT)_{2} > (nRT)_{1}$$
3.
$$\log P \bigvee_{S} \log V$$

$$y = \log P$$

$$x = \log V$$

$$\int_{C} \log F = \log (nRT)$$

 $\log V \rightarrow$

Combining Law or Ideal Gas Equation _____

Ideal gas equation

$$V \propto \frac{1}{P}$$
 Boyle's Law (1)

 $V \propto T$ Charle's Law (2) $V \propto n$ Avogadro's Law (3)

 $V \propto n$ Avogadro's Law Combining (i), (ii) and (iii)

$$V \propto \frac{nT}{P}$$
$$PV \propto nT$$
$$PV = nRT$$

R = universal gas constant.

 $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1} \text{ when } P \text{ sin Pa or N/m}^2$ and $V \text{ in m}^3$ $R = 0.0821 \text{ atm lit mol}^{-1} \text{ K}^{-1}$ P in atm and V in litre $R = 1.987 \text{ cal/mol K}^{-1}$ We know

$$PV = nRT$$
$$PV = \frac{\omega t}{Mwt}RT$$
$$P Mwt = \frac{\omega t}{V}RT$$
$$\boxed{PMwt = dRT}$$
$$\boxed{PM = dRT}$$

or

Dalton's Law of Partial Pressure

$$P_A = \frac{1}{V} \quad P_B = \frac{1}{V} \quad P_T = \frac{1}{V} + \frac{1}{V}$$

Partial pressure of gas $A = P_A$ and partial pressure of gas $B = P_B$.

$$P_T = P_A + P_B$$

$$P_A = X_A P_T \text{ and } P_B = X_B P_T$$

This law states that total pressure exerted by the mixture of gas is equal to the sum of partial pressure of each gas.

$$P_T = P_A + P_B$$

Partial pressure of any gas is defined as pressure exerted by moles of that particular gas only in same condition of temperature and volume.

The above law is applied only for non-reacting gas at given condition.

Graham's Law of Diffusion and Effusion

According to this law, rate of diffusion and effusion of any gas is inversaly proportional to the square root of molecular mass of gas.

$$R \propto \frac{1}{\sqrt{M_{\text{mass}}}} \qquad [\text{T.P. and } n \text{ are constant}]$$
$$\frac{R_A}{R_B} = \sqrt{\frac{M_B}{M_A}} \qquad [\text{T.P. } n \text{ are constant}]$$
$$\frac{R_A}{R_B} = \frac{P_A}{P_B} \sqrt{\frac{M_B}{M_A}} \qquad [\text{Dfferent partial pressure}]$$

Since mole \propto Partial pressure

$$\begin{split} \frac{R_A}{R_B} &= \frac{n_A}{n_B} \sqrt{\frac{M_B}{M_A}} \\ \frac{R_A}{R_B} &= \frac{\left(\frac{\Delta V}{\Delta t}\right)_A}{\left(\frac{\Delta V}{\Delta t}\right)_A} = \frac{\left(A \cdot \frac{\Delta L}{\Delta T}\right)_A}{\left(A \cdot \frac{\Delta L}{\Delta t}\right)_B} \end{split}$$

Enrichment of a lighter gas in given gaseous mixture (i) For single diffusion system

$$\begin{array}{c|c}
A \to n_A & & & n'_A \\
B \to n_B & & & n'_B \\
\end{array}$$

$$\frac{n_A'}{n_B'} = \frac{n_A}{n_B} \sqrt{\frac{M_B}{M_A}}$$

(ii) Double diffusion system

for 1st
$$\frac{n'_A}{n'_B} = \frac{n_A}{n_B} \sqrt{\frac{M_B}{M_A}}$$
 (i)

for 2nd
$$\frac{n''_A}{n''_B} = \frac{n'_A}{n'_B} \sqrt{\frac{M_B}{M_A}}$$
 (ii)

$$= \left[\frac{n_A}{n_B} \sqrt{\frac{M_B}{M_A}}\right] \cdot \sqrt{\frac{M_B}{M_A}}$$
$$\frac{n_A^{\prime\prime}}{n_B^{\prime\prime}} = \left[\frac{n_A}{n_B}\right] \left\{\sqrt{\frac{M_B}{M_A}}\right\}^2$$

(iii) For multiple diffusion

$$\left[\frac{n_A}{n_B}\right]_{\text{final}} = \left[\frac{n_A}{n_B}\right]_{\text{initial}} \left\{\sqrt{\frac{M_B}{M_A}}\right\}^n$$

n is also known as isotopic separation factor or number of diffusion step.

Application of Concept of Gaseous State

Connected Container

Cylinder- and Balloon-Type Problem _____

Rules

- 1. $P_{\text{final}} = 1 \text{ atm}$ 2. $V_{\text{initial}} = V_{\text{cylinder}}$

[Because volume of balloon initially
$$= 0$$
]

3.
$$V_{\text{final}} = V_{\text{cylinder}} + V_{\text{balloons}}$$

= $V_{\text{cylinder}} + n$ [volume of 1 balloon]

Note:

- 1. In this type of problem, volume of system increases.
- 2. Number of moles of gas present in cylinder at initial position is equal to moles of cylinder and moles of balloon finally.

$$\frac{\overline{n_{\text{initial}} = n_{\text{cylinder}} + n_{\text{balloon}}}}{\frac{P_1 V_{\text{cylinder}}}{T_1}} = 1 \times \frac{[V_{\text{cylinder}} + V_{\text{balloon}}]}{T_2}$$

Capillary Tube-Type Problem _

Rules

1. In this type of problem, we assume all the forces are balanced at equilibrium position. In other words, we can say total downward force is equal to total upward force.

Hg always applies force in downward direction whereas atmospheric pressure and pressure of gas is applied on surface of mercury (Hg)

Total upward directive force = Total downward directive force

h = height of Hg column in mm Hg. (2) This type of problem obeys Boyle's law

$$P_1V_1 = P_2V_2$$

Case I:

$$P_{\text{gas}} = P_{\text{atm}} + P_{\text{Hg}}$$
$$P_{\text{gas}} = 1 + \frac{h}{760} \text{ atm}$$

Air or gas
$$\uparrow$$
 \uparrow \uparrow \uparrow $P_{atm} \downarrow$
 $P_{Hg} \downarrow$
 $P_{gas} \uparrow$

$$P_{\text{gas}} = P_{\text{atm}} - P_{\text{Hg}}$$
$$P_{\text{gas}} = 1 - \frac{h}{760} \text{ atm}$$

Air or gas
$$P_{atm}$$

Case III:

Case IV:

Borometic distribution: To calculate the pressure difference for a vertical height 'h' for any fluid where density is dependent on pressure.

$$-dp = dh(\rho g) \tag{i}$$

Negative sign shows that decrease in pressure with increase in height.

or

 $PM = dRT = \rho RT$ m = M = molar mass of air

$$\rho = \frac{PM}{RT} \tag{ii}$$

From Eqs. (i) and (ii)

$$-dp = \frac{PMg}{RT}dh$$

$$\frac{dp}{P} = -\frac{mg}{RT}dh$$

$$\int_{P_0}^{P_h} \frac{dP}{P} = -\frac{mg}{RT}\int_{0}^{h}dh$$

$$\boxed{\ln\frac{P_h}{P_0} = -\frac{mgh}{RT}}$$

$$2.303\log\frac{P_0}{P_h} = \frac{mgh}{RT}$$
(iii)

From Eq. (iii)

$$\frac{P_h}{P_0} = e^{-\frac{mgh}{RT}}$$
$$P_h = P_0 e^{-\frac{mgh}{RT}}$$

or
$$P_h = P_0 10^{-\frac{mgh}{2.303\,RT}}$$

Assumption:

1. Composition of air does not change with increase in height.

- 2. Temperature remains constant through the vertical height.
- 3. If molar temperature is constant.

$$P_1V_1 = P_2V_2$$

$$P_0V_0 = P_hV_h$$

$$\frac{P_0}{P_h} = \frac{V_h}{V_0} = e^{\frac{mgh}{RT}}$$

$$\therefore \qquad V_h = V_0 e^{\frac{mgh}{RT}}$$

$$\log \frac{V_h}{V_0} = \frac{Mgh}{2.303RT}$$

4. Since $P \propto d$ (density)

$$\frac{P_h}{P_0} = \frac{d_h}{d_0} = e^{-\frac{mgh}{RT}}$$
$$d_h = d_0 e^{-\frac{mgh}{RT}}$$

5.
$$M_{\text{dis.air}} = M_{\text{pay.load}} + M_{\text{balloon}}$$

 $\therefore M_{\text{Payload}} = V \times d_h - M_{\text{balloon}}$
 $M_{\text{Payload}} = V d_0 e^{-\frac{mgh}{RT}} - M_{\text{balloor}}$

Pay load: It is defined as the maximum weight that can be lifted by a gas filled balloon.

$$F_{\text{Buoyancy}} = Mg + m_{\text{balloon}}g$$

$$M_{\text{displaced air}} \times g = W_{\text{Pay load}} + W_{\text{balloon}}$$

$$[M_{\text{displaced air}} \times g]$$

$$= [M_{\text{payload}} \times g] + [M_{\text{gas}} \times g + M_{\text{balloon}} \cdot g]$$

$$\therefore \quad [V_{\text{balloon}} \cdot d_{\text{air}} \cdot g] =$$

$$[M_{\text{pay load}} \cdot g] + [V_{\text{balloon}} \cdot d_{\text{gas}} \cdot g + M_{\text{balloon}} \cdot g]$$

Problems Related with Piston

Final pressure is equal at both sides of movable massless piston.

Semi-permeable membrane (SPM)

S.P.M. allows the movement of some particular molecules through itself.

(ii) Partial pressure of diffusable gas is same in non-movable or fixed S.P.M.

$H_2O(l) \rightleftharpoons H_2O_{(vap)}$

K = equilibrium constant. It depends only on temperature. It does not depend on quantity of water, volume or any other gaseous pressure.

At equilibrium position quantity of water in air is maximum. So we can say equilibrium is a saturation point.

At equilibrium (saturation) point, partial pressure of water is called aqueous tension.

and

 $P_{\text{total}} = P_{\text{dry air}} + P_{\text{H}_2\text{O vapour}}$ R.H. relative humidity

$$\frac{P.P._{H_2O} \text{ in air}}{A.T. = V.P. = P.P._{H_2O} (\text{at equi.})} \times 100$$

if

 $(P.P._{H_2O})_{air} > A.T.$ (condensation)

(Microscopic model)

KTG is a theoretical model which can correlate the experimental facts.

Assumptions:

- 1. Gas consists of small particles (molecules or atoms) identical in size, shape and mass.
- 2. The volume of molecules itself is considered negligible w.r.t. to the total volume of the gas (total volume of container).
- 3. There is no force of interaction (attraction or repulsion) in between the gas particles, i.e., each molecule can move independently.
- 4. The gaseous molecules move in rapid motion and collide randomly with each other as well as the walls of container. (The pressure of gas is due to the collision of molecules with the walls of container.)
- The collisions are perfectly elastic in nature (no energy loss). Hence there is no net loss of kinetic energy. Kinetic energy is transferred from one molecule to another but it is not converted into any other form of energy such as heat.
- 6. At any instant, given molecules can have energy range from small to large but the average kinetic energy of the molecules is directly proportional to absolute tem-

perature
$$\left(\frac{3}{2}RT\right)$$
.

7. The law of classical mechanics (Newton's law of motion) are applicable to the molecules.

Consider there are total 'N' particles in a cubic container having volume 'V' and side length 'l'.

Consider a particle having velocity 'v' moves on X-direction then momentum of that particle before collision = mv_{x} .

Momentum of particle after collision = $-mv_x$. Therefore, change in momentum $mv_x - (-mv_x) = 2mv_x$. The molecules collide with opposite wall as the time

$$= \frac{l}{v_x} \left[\because v_x = \frac{l}{t} \right]$$

It is the time of one collision.

Total collisions are per unit time = $\frac{1}{T} = \frac{v_x}{L}$

Change in momentum per unit time in *x*-direction by a single particles is

$$= 2mv_x \times \frac{v_x}{l} = \frac{2mv_x^2}{l}$$

Similarly in y-direction and z-direction

$$y = \frac{2mv_y^2}{l}$$
$$z = \frac{2m_2v_z^2}{l}$$

Total rate of change of momentum by single particle in all direction:

$$\frac{2m}{l}(v_x^2 + v_y^2 + y_z^2)$$

$$v = v_x\hat{i} + v_y\hat{j} + v_z\hat{k}$$

$$v^2 = v_x^2 + v_y^2 + v_z^2$$

$$= \frac{2m}{l}v^2$$

There are 'N' particles present in a container. Therefore, force exerted by them is equal to

$$= \frac{2m}{l} (N_1 v_1^2 + N_2 v_2^2 + \dots + N_N v_N^2)$$

= $\frac{2m}{l} [N u_{\rm rms}^2]$
 $\frac{2m}{l} [N u_{\rm rms}^2]$

...

Applied pressure = $\frac{-l^2 N u_r^2}{6l^2}$

$$P = \frac{1}{3l^3} m[Nu_{\rm rms}^2]$$
$$l^3 = V$$
$$P = \frac{1}{3V} m[Nu_{\rm rms}^2]$$

for 1 mole m. N. = M mass

$$PV = \frac{1}{3}M_{\text{Mass}}U_{\text{rms}}^2$$

K.E. $= \frac{1}{2}mu^2 = \frac{3}{2}PV.$
 $= \frac{3}{2}nRT$

for 1 mole KE = $\frac{3}{2}RT$

for 1 molecule $KE = \frac{3}{2}KT$

$$K = \frac{R}{N_A} = 1.38 \times 10^{-23}$$

Boltzmann constant

Calculation of Root, Mean, square velocity Represented as $V_{\rm rms}$ or $U_{\rm rms}$ and $C_{\rm rms}$

$$V_{\rm rms} = \sqrt{\frac{N_1 v_1^2 + N_2 v_2^2 + N_2 v_3^2 + N_n v_N^2}{N}}$$
$$PV = \frac{1}{3} M U_{\rm rms}^2$$
$$U_{\rm RMS} = \sqrt{\frac{3PV}{M}}$$
$$U_{\rm RMS} = \sqrt{\frac{3RT}{M}} \Rightarrow \text{ for mole gas}$$

$$PV = RT$$

Data in MKS
 $P = N/m^2$
 $M = kg/mol$
 $R = 8.314$

Proof of Various Gas Laws_ Boyle's law

$$PV = \frac{1}{3} \text{m} C_{\text{rms}}^2$$

if *T* in Kelvin (Constant)

$$C = \sqrt{\frac{3RT}{M}}$$

$$P \propto \frac{1}{V}$$

$$PV = \frac{2}{3} \cdot \frac{1}{2}MC^{2}$$

$$= \frac{2}{3} \times \frac{3}{2} \cdot RT$$

$$\boxed{PV = RT}$$

$$PV = nRT$$

Maxwell's distribution of velocities.

According to the kinetic theory of gases velocity of a molecule continuously change as a result of collision with other molecules as well as the walls of container.

Net result cannot comment about the velocity of 'a' single molecule but we consider that the average of velocity of all molecules remains constant at constant temperatures.

Since the observed properties such as volume pressure and temperature of an isolated gaseous sample do not change with time, so it is expected that the same is also true for the distribution of molecular velocities, i.e., the fraction of the total number of molecules having velocity in between any definite range must be constant.

Maxwell gave the expression by the theory of probability:

$$d_{\rm Nu} = 4\pi N \left(\frac{M}{2\pi RT}\right)^{3/2} U^2 e^{-\frac{Mv^2}{2RT}} \cdot du$$

 $d_{Nu} \rightarrow \text{total nmber of molecules in velocity range}$ from *u* to (u + du)

 $N \rightarrow$ total number of particles in collection

 $M \rightarrow \text{molar mass of gas (kg/mole)}$

- $T \rightarrow$ temperature in kelvin
- $u \rightarrow \text{starting speed}$

 $du \rightarrow difference of speed$

 $R \rightarrow \text{gas constant}$

$$\frac{d_{\rm Nu}}{N} = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} u^2 e^{-\frac{Mu^2}{2RT}} \cdot du$$
(i)

 $\frac{d_{\text{Nu}}}{N} \rightarrow \text{fraction of molecules having velocity is be$ $tween u to (u + du)}$

Note: According to Eq. (1)

 $\frac{d_{\text{Nu}}}{N}$ (fraction of molecules) depends only on temperature for a given gas (having molecular mass *M*) Characteristics of Maxwell's distribution

Curve

The parameter which were selected by Maxwell such that the area under the graph (curve) give the value of fraction of molecules between two speeds.

Finally,

1. Most probable speed

The values of speed for which is $\frac{1}{N} \frac{d_N}{du}$ maximum is called most probable speed, i.e., the speed possessed by maximum number of molecule or maximum fraction of molecules is called the most probable speed. $(U_{amp} \text{ or } v_{mp})$

$$\left(\frac{1}{N}\right)\left(\frac{d_N}{du}\right) = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} u^2 e^{-\frac{Mv^2}{2RT}}$$

$$\frac{d}{du} \left(\frac{1}{N} \frac{d_N}{du}\right) = k \left[2ue^{-\frac{Mv^2}{2RT}} + u^2 e^{-\frac{Mv^2}{2RT}} \times (-)\frac{2mv}{2RT} \right]$$

$$K = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2}$$

$$= K \times ue^{-\frac{Mv^2}{RT}} \left[2 - \frac{Mv^2}{RT} \right]$$
For maximisation, put $\frac{d}{du} \left(\frac{1}{N} \frac{d_N}{du}\right) = 0$

$$\Rightarrow \qquad 2 = \frac{Mv^2}{RT}$$

It can be derived by condition of maxima.

 $v_{\rm mp} = \sqrt{1}$

$$\frac{d\left[\frac{1}{N}\frac{dNu}{du}\right]}{du} = 0$$

$$= \frac{d}{du} \left[4\pi \left[\frac{M}{2\pi RT}\right]^{3/2} u^2 e^{-\frac{Mu^2}{2RT}}\right] = 0$$

$$= 4\pi \left[\frac{M}{2\pi RT}\right]^{\frac{3}{2}} \frac{d}{du} \left[\frac{u^2 e^{-\frac{mu^2}{2RT}}}{(i)(ii)}\right] = 0$$

$$= 4\pi \left[\frac{M}{2\pi RT}\right]^{\frac{3}{2}} \left[2u e^{-\frac{mu^2}{2RT}} + u^2 e^{-\frac{mu^2}{2RT}} \times (-)\frac{2mu}{2RT}\right]$$

$$= 4\pi \left[\frac{M}{2\pi RT}\right]^{\frac{3}{2}} u e^{-\frac{mu^2}{2RT}} \left[2 - \frac{mu^2}{RT}\right] = 0$$

$$2 - \frac{MV^2}{RT} = 0$$

$$\frac{Mu^2}{RT} = 2$$

$$u_{mp} = \sqrt{\frac{2RT}{M}}$$

M = molecular mass in kg T = Temperature in Kelvin R = 8.314 J K⁻¹ mol⁻¹

2. Average molecular speed

$$u_{\rm av} = \frac{N_1 V_1 + N_2 V_2 + N_3 V_3 + --}{N_1 + N_2 + N_3 + --}$$

We can also derive this by Maxwell distribution theory.

3.12 Physical Chemistry-I for JEE (Main & Advanced)

$$u\left(\frac{dNu}{N}\right) = 4\pi \left(\frac{M}{2\pi RT}\right)^{\frac{3}{2}} u^{3} e^{-\frac{mu^{2}}{RT}} du.$$
$$= 4\pi \left(\frac{M}{2\pi RT}\right)^{\frac{3}{2}} \int_{0}^{\infty} u^{3} e^{-\frac{mu^{2}}{RT}} du.$$
$$u_{av} = 4\pi \left(\frac{M}{2\pi RT}\right)^{\frac{3}{2}} \left[2\left(\frac{RT}{M}\right)^{2}\right]$$
$$u_{av} = 4\pi \left(\frac{M}{2\pi RT}\right) \left[\sqrt{\frac{M}{2\pi RT}}\right] \left[2\left(\frac{RT}{M}\right)^{2}\right]$$
$$u_{av} = \sqrt{\frac{8RT}{\pi M}}$$

3. Root mean square velocity

$$u_{\rm rms} = \sqrt{\frac{M_1 V_1^2 + M_2 V_1^2 + M_3 V_3^2}{M_{\rm total}}}$$
$$u_{\rm rms} = \sqrt{\frac{3RT}{M}}$$

Note:			
The relative ratio			
u _{av} :	$U_{\rm mp}$:	$u_{\rm rms}$
$\sqrt{\frac{8RT}{\pi M}}$:	$\sqrt{\frac{2RT}{M}}$:	$\sqrt{3}$
$\sqrt{\frac{8}{\pi}}$:	$\sqrt{2}$:	$\sqrt{3}$
$\sqrt{\frac{56}{22}}$:	$\sqrt{2}$:	$\sqrt{3}$

Consequence of Distribution of Speed

It is the average kinetic energy of gas at a given time that is constant.

From Eq. (i)

We can say that for a particular gas at constant temprature for fraction, $\frac{d_N}{N}$ is constant. So the average kinetic energy of gas is only and only the function of temperature.

Conclusions

- 1. The fraction of molecules having very low or very high speed are small in number.
- 2. Majority of molecules have speed near the most probable speed.
- 3. Total area under the curve is the major of total number of fraction of molecules (or total number of molecules in collection).
- 4. Since with increase in temperature kinetic energy of molecules increases by which fraction of molecules have low speed range decreases whereas the fraction of molecules having high speed range increases.

- 5. With the increase in temperature, $U_{\rm mp}$ also increases but corresponding fraction of molecules will decrease.
- 6. Speed distribution also depends on molar mass of gas and the gas having high molar mass has higher fraction (corresponding to $U_{\rm mp}$).

Hence the distribution depends on the value of $\frac{M}{T}$. It means the distribution will be same for gas having '2M' molecular mass at 2T temperature because $\frac{M}{T}$ ratio remains same.

Example 1. The temperature at which Maxwell distribution curve of SO_2 will be same as O_2 at 300 K.

$$M_{O_2} = 32$$
 $M_{SO_2} = 64$
Mass is double \therefore temperature is doubled $T = 600$ K.

 \Rightarrow

Ratio of speeds

$$u_{\rm mp}: v_{\rm av}: v_{\rm rms} :: \sqrt{2}: \sqrt{\frac{8}{\pi}}:: \sqrt{3} = 1.14: 1.6: 1.732$$

$$\frac{1}{N} \frac{dN}{du}$$

$$u_{\rm mp}: u_{\rm mv}: u_{\rm rms}$$

If the speeds are written in terms of pressure and volume then number of moles of gas are also required but if temperature is given then number of moles number is not required.

$$PV = \frac{1}{3}mNu_{rms}^2$$

mass of gas = $m \times N$ = total weight and M molar mass

$$nRT = \frac{1}{3}mNu_{rms}^{2}$$

$$\frac{\text{weight}}{\text{Molar Mass}(M)}RT = \frac{1}{3}mNu_{rms}^{2}$$

$$u_{\rm rms} = \sqrt{\frac{3RT}{M}}$$

$$\sqrt{\frac{3PV}{nM}} = u_{\rm rms}$$

$$\sqrt{\frac{3PV}{\left(\frac{W}{M}\right)M}}$$

$$\sqrt{\frac{3P}{d}} = u_{\rm rms}$$

Molecular collision

Assumptions

- (i) Molecular are considered perfectly rigid and spherical in shape.
- (ii) All the particles are moving with u_{avg} speed.

Collision Diameter (σ)

It is the distance between centres of two-diameter colliding particles, i.e. the distance between particles is 2R, the particles will collide.

Collision cross-section area

It is the cross-sectional area of imaginary sphere surrounding a molecule into which centre of another molecule cannot penetrate.

When the molecules arrive a circumference of 2r, then the molecules will collide.

Collision frequency

It is equal to the number of collision occuring in per unit volume per unit time under the specific conditions.

Case 1: Consider only one particle is moving and others are stationary

- (i) A molecule will collide if centre will lie inside the collision cross has a section.
- (ii) If a moving particle speed of u_{avg} , then the imaginary volume swept by moving particle per unit time is equal to $v' = \pi \sigma^2 V_{avg}$.

$$v' = \pi \sigma^2 V_{\text{avg}}$$
$$v' = A \times \ell$$

(iii) If N^* is the number of molecules of gas per unit volume, then the total number of molecules within the swept volume is equal to $\pi \sigma^2 v_{avg} \times N^* = Z =$ collision frequency.

$$N^* = \frac{N}{V}$$

Total number of particles = $N^* \times V'$

Therefore, Z is the number of collisions made by a single moving particle in per unit time, when all others are considered to be stationary.

Case 2: Consider all molecules are moving.

(i) Two particles can collide at angle anywhere 0 to 180°. It means the chances of collision at each angle are same. Therefore, average angle of collision is 90° and the relative velocity = $\sqrt{2} v_{avg}$

3.14 Physical Chemistry-I for JEE (Main & Advanced)

$$Z_1 = \sqrt{2}\pi\sigma^2 v_{\rm avg} \times N^*$$

 Z_1 is the number of collisions made by a single molecule in per unit time when all particles are moving.

Bimolecular collision

Case I:

When molecular collision in between two molecules of same gas (Z_{11}) .

Bimolecular collision frequency = $\frac{1}{2} \times$ (number of particle per unit volume) × (number of collisions made by 1 particle in per unit time)

$$Z_{11} = \frac{1}{2} \times (N^*) \times (Z_1)$$
$$= \frac{1}{2} \times (N^*) \times (\sqrt{2} \pi \sigma^2 v_{avg}) \times N^3$$
$$Z_{11} = \frac{1}{\sqrt{2}} \pi \sigma^2 v_{avg} (N^*)^2$$

Note:

Division by 2 is essential since the simple multiplication of Z_1 by N^* would count every collision twice.

Case 2:

•.•

When collision occurs in between the molecules of two different gases (Z_{12}) . $\sigma_{12} = r_A + r_B$

$$\frac{1}{4} + \frac{\sigma_B}{2}$$

$$(\mu_{m}) A$$

В

 r_B

A

$$u_{\text{relative}} = \sqrt{\left(\frac{8}{\pi}RT\right)\left(\frac{1}{M_A} + \frac{1}{M_B}\right)} = \sqrt{\left(u_{\text{avg}}\right)_A^2 + \left(u_{\text{avg}}\right)_B^2}$$
$$u_{\text{relative}} = \sqrt{\frac{8RT}{\pi M}}$$
$$\frac{1}{M} = \frac{1}{M_A} + \frac{1}{M_B}$$

(i) The volume swept by moving molecule A per unit time is equal to $\pi\sigma^2 u_{\text{relative}}$.

- (ii) If N_B^{*} is the number of molecules of gas B per unit volume, then the total number of molecules within the swept volume = πσ² u_{relative} × N_B^{*}
 (iii) Then the total number of collision made by gas A per
- (iii) Then the total number of collision made by gas A per unit volume per unit time is equal to

$$N_A^* \times N_B^* \times \pi \sigma^2 v_{\text{relative}} = Z_{12}$$

Mean free path (λ):

It is defined as the average distance travelled by molecules between two successive collissions.

Then distance travelled by 1 molecule in per unit time

$$v_{\text{avg}} = \frac{l}{t = 1 \text{ sec.}}$$

:..

Total collision made by a molecule in per unit time $Z_1 = \sqrt{2} \pi \sigma^2 u_{avg} \cdot N^*$

 λ distance travelled in one collision.

 \therefore 1 unit distance travelled in $\frac{1}{\lambda}$ collision.

Then, u_{avg} distance travelled in $\frac{1}{\lambda} \times u_{avg}$ collision.

$$\frac{\frac{1}{\lambda} \times u_{\text{avg}} \text{ collission} = Z_1}{\lambda = \frac{u_{\text{avg}}}{Z_1}}$$
$$= \frac{u_{\text{avg}}}{\sqrt{2\pi\sigma^2} u_{\text{avg}} N^*}$$
$$\lambda = \frac{1}{\sqrt{2\pi\sigma^2} N^*}$$

Effect of temperature, pressure and volume on λ , Z_1 , Z_{11}

$$\lambda = \frac{1}{\sqrt{2\pi\sigma^2 N^*}}$$
(i)

$$Z_1 = \sqrt{2} \pi \sigma^2 u_{avg} N^*$$

$$Z_{11} = \frac{1}{\sqrt{2}} \pi \sigma^2 (N^*)^2 u_{avg}$$

$$PV = \left(\frac{N}{N_A}\right) RT$$

$$P = \left(\frac{N}{V}\right) \left(\frac{R}{N_A}\right) T$$

$$P = N^* KT$$

$$\boxed{\frac{P}{KT} = N^*}$$

From Eq. (i)

$$\begin{split} \lambda &\propto \frac{T}{P} \\ Z_1 &\propto \sqrt{\frac{8}{\pi} \frac{RT}{M}} \times \frac{P}{kT} \\ \hline Z_1 &\propto \frac{P}{\sqrt{T}} \\ Z_{11} &\propto \sqrt{\frac{8}{\pi} \frac{RT}{M}} \times \frac{P^2}{k^2 T^2} \\ \hline Z_{11} &\propto \frac{P^2}{(T)^{3/2}} \end{split}$$

At constant (T)

$$\begin{split} \lambda &\propto \frac{T}{P} \qquad Z_1 &\propto \frac{P}{\sqrt{T}} \qquad Z_{11} &\propto \frac{P^2}{T^{3/2}} \\ \uparrow &\lambda &\propto \frac{1}{P \downarrow} \quad \uparrow & Z_1 &\propto P \uparrow \quad Z_{11} &\propto P^2 \end{split}$$

At constant (P)
$$\lambda \propto T$$
 $Z_1 \propto \frac{1}{\sqrt{T}}$ $Z_{11} \propto \frac{1}{T^{3/2}}$

At constant (V)

· du

 $\lambda = \text{constant} \text{ [when volume is constant]}$ $V = \frac{P}{T} = \text{constant}$

Maxwell distribution in terms of kinetic energy

$$\frac{d_{Nu}}{N} = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} U^2 e^{-\frac{MU^2}{2RT}}$$

$$KE = E = \frac{1}{2}mu^2$$

$$u = \sqrt{\frac{2E}{M}}$$

$$dE = \frac{1}{2}m \times 2Udu$$

$$= \frac{dE}{MU} = du$$

$$\frac{dE}{M\sqrt{\frac{2E}{M}}} = du \Rightarrow \frac{dE}{\sqrt{2EM}}$$

$$\frac{dN_E}{NdE} = \frac{2\sqrt{E}}{\sqrt{\pi} (RT)^{3/2}} e^{-\frac{E}{RT}}$$

$$\frac{V}{N} = \sqrt{x} e^{-x}$$

Gases which do not obey ideal gas law is called *real gas*. A real gas is different from ideal gas from 2 factor.

(i) According to K.T.G., the intermolecular attraction negligible for an ideal gas. However in reality, the attraction are significant enough. Therefore, the pressure observed will be less than pressure that would have been obtained under similar condition by an ideal gas. Therefore a correction factor ${}^{\circ}P_{C.F.}$ is to be added.

$$P = P_{\rm obs} + P_{\rm C.F.}$$

(ii) According to K.T.G., the volume occupied by particle is negligible hence total free volume for ideal gas is same as volume of container. However for real gas since size of molecule is significant, therefore, free volume available for the moment is less than volume of container.

$$V = V_{obs} - V_{C.E.}$$

Gas equation for real gas $(P + P_{C,F}) (V - V_{C,F}) = RT$

Calculation for correction factor

(1) Calculation of pressure correction:

The pressure correction factor depends on 2 factor.

- (i) Number of molecules attracting the striking molecules.
- (ii) Number of molecules striking the wall of container.

 $P_{\text{C.F.}} \propto [\text{Attracting molecules}] \times [\text{String molecules}]$

PC.F.
$$\propto [N^*] [N^*]$$
 and $N^* = \frac{N}{V}$ and $N = nN_A$

$$\begin{split} P_{C.F.} &\propto \left[\frac{N}{V}\right] \left[\frac{N}{V}\right] \\ P_{\text{C.F.}} &\propto \left[\frac{n \times N_A}{V}\right] \left[\frac{n \times N_A}{V}\right] \end{split}$$

Unit = atm lit^2 mol⁻² a = Vanderwall const.

Correction Factor for Volume

The shaded part show the excluded volume for the pair of particle.

 $=\frac{32}{2}\pi R^3$

Excluded volume for a pair of molecule = $\frac{4}{3}\pi [2R]^3$

- excluded volume for one molecule = $\frac{16}{3}\pi R^3$ *.*.. $=4\left|\frac{4}{3}\pi r^3\right|=4$ [volume of 1 molecule]
 - excluded volume for 1 mole molecule = 4 [Volume of 1 molecule] $\times N_A$ $= 4 \cdot V_1 N_A = b$
- for *n* mole molecule = $n \times 4V_1N_A = nb$...

$$\therefore \qquad \left[P + \frac{n^2 a}{V^2}\right] \left[V - nb\right] = nRT$$

This is called Van der wall equation for real gas for *n* mole.

Physical significance of a and b

...

(i) a depends on force of at- $\begin{array}{c} F_2\\ Cl_2\\ Br_2 \end{array}$ He traction between mole-Ne a increases cules. Ar F.A. \propto (i) At wt. or Mwt. I_2 F.A. \propto (ii) polarity of compound ... $a_{\rm NH_3} > a_{\rm N_2}$ Polar Nonnolar

$$\begin{bmatrix} \text{HCl}, \text{NH}_3 \\ \text{H}_2\text{O} \end{bmatrix} \begin{bmatrix} \text{N}_2, \text{Cl}_2 \\ \text{H}_2, \text{O}_2 \end{bmatrix}$$

(ii) b depends on size of molecules $b \propto$ size of molecule

So
$$b_{\mathrm{H}_2} < b_{\mathrm{Cl}_2}$$

Q. One way of writing the equation of state for real gases

 $PV = RT \left[1 + \frac{B}{V} + \frac{C}{V^2} + \frac{D}{V^3} \right]$ where B is a constant.

Derive an expression for 'B' in terms of Van der wall constant.

Ans. We know that Van der wall gas equation for real gas is

$$\begin{bmatrix} P + \frac{a}{V^2} \end{bmatrix} [V - b] = RT$$

$$\begin{bmatrix} P + \frac{a}{V^2} \end{bmatrix} = \frac{RT}{V - b}$$

$$P = \frac{RT}{V - b} - \frac{a}{V^2}$$

$$PV = \frac{RTV}{V - b} - \frac{a}{V}$$

$$PV = RT \begin{bmatrix} \frac{V}{V - b} - \frac{a}{VRT} \end{bmatrix}$$

$$PV = RT \begin{bmatrix} \frac{1}{1 - \frac{b}{V}} - \frac{a}{VRT} \end{bmatrix}$$

$$PV = RT \begin{bmatrix} \left(1 - \frac{b}{V}\right)^{-1} - \frac{a}{VRT} \end{bmatrix}$$
We know $(1 - x)^{-1} = 1 + x + x^2 + x^3 + \dots$
if $x << 1$

$$x = \frac{b}{V} << 1$$

$$PV = RT \begin{bmatrix} 1 + \frac{b}{V} + \left(\frac{b}{V}\right)^2 + \left(\frac{b}{V}\right)^3 + -\frac{a}{VRT}$$

$$PV = RT \begin{bmatrix} 1 + \frac{b}{V} \begin{bmatrix} b - \frac{a}{RT} \end{bmatrix} + \left(\frac{b}{V}\right)^2 + \left(\frac{b}{V}\right)$$

This equation is compared by the given equation then we can find the value of 'B'.

$$B = \left[b - \frac{a}{RT} \right] \quad C = b^2 D = b^3$$

Note:

if

A temperature above which real gases have a ideal gas nature is called Boyle's temperature.

Calculate the Value of Boyle's Temperature We find

$$PV = RT \left[1 + \frac{1}{V} \left[b - \frac{a}{RT} \right] + \left(\frac{b}{V} \right)^2 + \left(\frac{b}{V} \right)^3 + \dots \right]$$

Since $\frac{b}{V} <<< 1$
So we can neglect the heigher value of $\frac{b}{V}$ for eq. $\left(\frac{b}{V} \right)^2$, $\left(\frac{b}{V} \right)$

... etc.

So

For ideal nature

$$b - \frac{a}{RT} = 0$$

$$\boxed{T = \frac{a}{Rb}}$$
Boyle's temperature
$$PV = RT$$

Compressibility Factor

It is defined as the ratio of actual volume of gas and volume occupied by ideal gas under similar condition of temperature pressure and mole.

$$\begin{bmatrix} Z = \frac{V_{\text{actual}}}{V_{\text{ideal}}} \end{bmatrix} \text{ Same condition of } P, T \text{ and } n$$

$$V_{\text{ideal}} = \frac{nRT}{P}$$

$$Z = \frac{V_{\text{act.}}}{nRT}$$

$$Z = \frac{PV_{\text{act.}}}{nRT}$$

$$\boxed{PV_{\text{act.}} = Z \cdot nRT} \qquad Z = 1 \text{ for ideal gas}$$

$$Z = Z \cdot nRT \qquad Z = 1 \text{ for ideal gas}$$

For 1 mole

 $PV_{act.} = ZRT$ $Z > 1 \Rightarrow$ Less compressible than expected. $Z = \frac{PV}{RT}$

Variation of Compressibility factor with **Respect to Pressure**

(a) At low pressure

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$
At low P volume V^\uparrow so $V - b \approx V$

$$\left(P + \frac{a}{V^2}\right)V = RT$$

$$PV + \frac{a}{V} = RT$$

$$\frac{PV}{RT} + \frac{a}{RVT} = 1$$

$$\frac{PV}{RT} = 1 - \frac{a}{RVT}$$

$$\therefore \quad Z = 1 - \frac{a}{RVT}$$
if $a^\uparrow z \downarrow$,
$$\rightarrow \quad a_{N_2} < a_{CO_2}$$

$$\therefore \quad z_{N_2} > z_{CO_2}$$

$$\rightarrow \qquad z_{\rm N_2} < z_{\rm NH_3} \\ \therefore \qquad z_{\rm N_2} > z_{\rm NH_3}$$

(b) At high pressure

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$

The value can be neglected with respect to pressure but at high pressure the volume of gas is low hence 'b' cannot be neglected with respect to 'V'.

$$(V-b) = RT$$
$$P[V-b] = RT$$
$$PV-Pb = RT$$
$$\frac{PV}{RT} - \frac{Pb}{RT} = 1$$
$$\frac{PV}{RT} = 1 + \frac{Pb}{RT}$$
$$Z = 1 + \frac{Pb}{RT}$$

Since size of $N_2 <$ size of NH_3 $bN_2 < bNH_3$ *:*. $ZN_2 < NH_3$

 $b\uparrow z\uparrow$ if

For lighter gases like H_2 and He having low value of Molar Mass and both are non-polar gases so that attraction between molecule is much less compared to other gases.

It means we can assume that the value of a = 0. [Both for high pressure and low pressure.]

So
$$\begin{bmatrix} P + \frac{a}{V^2} \end{bmatrix} [V - b] = RT$$
$$P(V - b) = RT$$
$$\frac{PV}{RT} - \frac{Pb}{RT} = 1$$
$$\frac{PV}{RT} = 1 + \frac{Pb}{RT}$$
$$Z = 1 + \frac{Pb}{RT}$$
$$\therefore \qquad Z > 1$$
We know $b \uparrow z \uparrow$

We know $b_{{
m H}_2} > b_{{
m H}_e}$

So $[Z_{\text{H}_2} > Z_{\text{He}}]_P$ of constant pressure.

Critical temperature (T_C) : Temperature above which gases cannot be liquified by any applied pressure of 'p' is called critical temperature (T_C)

Critical pressure (P_C) : Minimum pressure which is required to liquify the gas at critical temperature.

Critical volume (V_C): Volume of 1 mole of gas at critical temperature and pressure is called critical volume (V_C)

We know Van der wall equation

/

$$\left(P + \frac{a}{V_m^2}\right)(V_m - b) = RT$$

$$\left(PV_m^2 + a\right)(V_m - b) = RTV_m^2$$

$$PV_m^3 - PbV_m^2 + aV_m - ab = RTV_m^2$$

$$PV_m^3 - V_m^2 \left[Pb + RT\right] + aV_m - ab = 0$$

$$V_m^3 - V_m^2 \left[b + \frac{RT}{P}\right] + \frac{a}{P}V_m - \frac{ab}{P} = 0$$

At critical conditions-

$$V_m^3 - V_m^2 \left[b + \frac{RT_C}{P_C} \right] + \frac{aV_m}{P_C} - \frac{ab}{P_C} = 0$$
 (i)

Equation (i) should have only one value of volume and should be 'Vc'.

The roots of equation will be

$$(V_m - V_C) (V_m - V_C) (V_m - V_C) = 0$$

or
$$V_m^3 - 3V_m^2 V_C + 3V_m V_C^2 - V_C^3 = 0$$
 (ii)

Equations (ii) and (i) are similar so we can compare their coefficient.

$$\therefore \qquad b + \frac{RT_C}{P_C} = 3V_C \tag{iii}$$

$$\frac{a}{P_C} = 3V_C^2 \tag{iv}$$

$$\frac{ab}{P_C} = V_C^3 \tag{v}$$

$$\frac{(5)}{(4)} = \frac{V_C^3}{3V_C^2} = \frac{ab}{P_C} \times \frac{P_C}{a}$$
$$\frac{V_C}{3} = b$$

$$\therefore \qquad V_C = 3b$$

By Eq. (iv)

$$\frac{a}{P_C} = 3V_C^2$$
$$\frac{a}{P_C} = 3[3b]^2$$
$$\therefore \qquad P_C = \frac{a}{27b^2}$$

From Eq. (iii)

...

$$b + \frac{RT_C}{P_C} = 3V_C$$

$$b + \frac{RT_C}{\left[\frac{a}{27b^2}\right]} = 3V_C$$

$$b + \frac{RT_C}{\left[\frac{a}{27b^2}\right]} = 3[3b]$$

$$\frac{RT_C}{\frac{a}{27b^2}} = 8b$$

$$\frac{RT_C}{\frac{a}{27b^2}} = 8b$$

$$T_C = \frac{8b}{R} \times \frac{a}{27b^2}$$

$$T_C = \frac{8a}{27Rb}$$

The law of corresponding states P_r = Reduced pressure.

$$P_{r} = \frac{P}{P_{C}} \quad T_{r} = \frac{T}{T_{C}} \quad V_{r} = \frac{V_{m}}{V_{C}}$$

$$\left(P + \frac{a}{V_{m}^{2}}\right) \quad (V_{m} - b) = RT$$

$$\left[P_{r}P_{C} + \frac{a}{(V_{r}V_{C})^{2}}\right] [V_{r}V_{C} - b] = RT_{r}T_{C}$$

$$\left[P_{r} \frac{a}{27b^{2}} + \frac{a}{V_{r}^{2}(3b)^{2}}\right] [V_{r}(3b) - b] = RT_{r}\left[\frac{8a}{27Rb}\right]$$

$$\frac{a}{27b} \left[\frac{P_{r}}{b} + \frac{3}{V_{r}^{2}b}\right] b[3V_{r} - 1] = 8T_{r}\left[\frac{a}{27b}\right]$$

$$\left[\frac{P_{r}}{RT} + \frac{3}{V_{r}^{2}}\right] [3V_{r} - 1] = 8T_{r}$$

$$Z = \frac{PV_{m}}{RT} = \frac{(P_{r}P_{C})(V_{r}V_{C})}{R[T_{r}T_{C}]}$$

$$\left[Z = \frac{3}{8} \left[\frac{P_{r}V_{r}}{T_{r}}\right]\right]$$

Molar Heat Capacity

It is the required heat to rise 1°C temperature of 1mole substance.

1. In case of gaseous state molar heat capacity is a function of pressure and volume so that it has two different values C_P and C_V .

C_P: molar heat capacity at constant pressure:

It is the required heat to rise 1°C temperature of 1 mole of gas at constant pressure.

C_V : Molar heat capicity at constant volume:

It is the required heat to rise 1°C of temperature of 1mole of gas at constant volume.

- 2. For liquid and solid $C_P = C_V$
- 3. For ideal gas $C_P C_V = R$ and $C_P > C_V$ R = 2 cal mol⁻¹K⁻¹

and
$$\gamma = \frac{C_P}{C_V} = \text{constant} = \text{poisson ratio}$$

 $\gamma > 1$

4. Value of C_P and C_V for different gases.

Gas	C_V	$C_P = C_V + R$	$r = \frac{C_P}{C_V}$
Monoatomic	$\frac{3}{2}R$	$\frac{5}{2}R$	$\frac{5}{3}$
Diatomic	$\frac{5}{2}R$	$\frac{7}{R}R$	$\frac{7}{5}$
Triatomic	7 _P	9 p	9
linear (L)	$\overline{2}^{\kappa}$	$\frac{1}{2}^{K}$	7
Triatomic	3.2	A R	4
non linear (NL)	JA	4/	3

5. Normally C_P and C_V are constant and it does not depend on temperature. But in case of high temperature, it is a function of temperature and it varies with temperature.

 $C_V = a + bt + ct^2$ where a, b and c are constant.

Solved Examples

- 1. (i) An open tank is filled with Hg up to a height of 76 cm. Find pressure at the bottom and middle of the tank, if atmospheric pressure is 1 atm.
 - (ii) Find the height of water up to which water must be filled to create same pressure at the bottom.

Degree of freedom:

Translational degree of freedom

Movement of molecules in all 3(x, y, z) directions.

Value of translational degree (max.) is 3[for mono, di or triatomic]

Degree of rotation is possible due to the rotation of atoms in molecule and the value of rotation degree of freedom is

for linear molecules (L) = 2

for non linear molecules (NL) = 3

Vibration degree of freedom:

It is possible due to the vibration in molecules

(3N-5) for linear molecule (L)

(3N-6) for non-linear molecule (NL).

where N is number of atoms.Degree of freedomLinear (L)Non-linear (NL)Translation33

Vibrational 3N-5 3N-6

Q. Determine the various degree of freedom for CH₄ Comp. Trans. Rot. Vib. Total

$$3 3 9 15$$

$$3 \times N 2rot [L] 12KT$$

$$3 \times N 2rot [N.L] 12KT$$

$$3 \times N (3n-5) vib[L] KT$$

$$(3n-6) vib [N.L] - KT$$

For one molecule of benzene number of atom 12 (Non linear) so total degree of freedom $3 \times 12 = 36 = 3$ Rotational + 3 Translation + 30 vibrational

: Energy of one molecule

 CH_4

$$\frac{3}{2}$$
 KT + $\frac{3}{2}$ KT + 30 KT = 33 KT for C₆H₆

$$P_B = P_{atm} + \frac{h}{76}$$

= 1 + $\frac{76}{76}$ = 2 atm
$$P_A = P_{atm} + \frac{h}{76}$$

= 1 + $\frac{38}{76}$ = 1.5 atm

- (ii) $(h_1d_1g)_{H_2O} = (h_2d_2g)_{Hg}$ $h_1 \times 1 \times 10^3 = 0.76 \times 13.6 \times 10^3$ h = 10.33 meter
- 2. What will the pressure

- (i) at the bottom of the tank?
- (ii) at the middle of the bottom layer if two immiscible liquids are filled as shown in figure?
- **Sol.** $P_B = P_{atm} + Pressure due to liquid (2) + Pressure due to liquid (1)$

$$P_B = P_{\text{atm}} + \frac{h_2 d_2 g}{1.013 \times 10^5} + \frac{h_1 d_1 g}{1.013 \times 10^5}$$

If *h* in metre *d* in kg/m³ and *g* in m/sec²] or in M.K.S. $1 \text{ atm} = 1.013 \times 10^{5} \text{ Pa}$

$$P_C = P_{\text{atm}} + \frac{h_2 d_2 g}{1.013 \times 10^5} + \frac{\frac{n_1}{2} d_1 g}{1.013 \times 10^5}$$

3. Find the pressure of gas inside the container if manometer attached to the container shows a difference of 60 mm as shown in the figure?

Sol.
$$P = P_{\text{atm}} + \frac{60}{760} = 1 + \frac{6}{76} \text{ atm}$$

4. At a constant temperature of 273K, $\frac{1}{V}$ vs P is plotted

for two ideal gases A and B as shown in the figure. Find out the number of moles of gases A and B.

Sol.
$$PV = nRT$$
, $P = \frac{1}{V}nRT$
 $\frac{1}{V} = \frac{1}{nRT}P$
Comparing by above equation,
 $y = mx + C$
 $C = 0$
 $m = \frac{1}{nRT}$ $(m = \tan \theta)$

$$\tan \theta = \frac{1}{nRT} \quad nA = \frac{1}{RT \tan \theta}$$
$$n_A = \frac{1}{0.0821 \times 273 \times \tan 45^\circ} \Rightarrow n_A = \frac{1}{22.4} \text{ mole}$$
$$n_B = \frac{1}{RT \tan 60^\circ} = \frac{1}{22.4\sqrt{3}} \text{ mole}$$

5. At constant P of 0.0821 atm log V vs log T graph was plotted for three sample of ideal gases. Calculate the number of moles of each gas.

Sol. $V \propto T$

$$V \propto T$$

$$\frac{V}{T} = K = \frac{nR}{P}$$

$$\log V = \log T + \log K$$

$$y = mx + C$$

$$C = \log K = \log\left(\frac{nR}{P}\right)$$

$$0.4771$$

$$0.30$$

$$\log T$$

$$C = \log\left[n \times \frac{0.0821}{0.0821}\right]$$
For (1) $C = \log n$

$$0.4771 = \log n = \log 3$$

$$n = 3$$
For gas (2) $0 = \log n = \log 1$

$$n = 1$$
For gas (3) $-\log x = 0.30$

$$-\log 2 = \log n$$

$$\log\left[\frac{1}{2}\right] = \log n$$

$$n = \frac{1}{2}$$
 mole

6. Radius of a bubble at the bottom of the tank shown below was found to be 1 cm. Find the radius of the bubble at the surface of water at same temperature.

Pressure at bottom = $P_{\text{atm}} + \frac{m_B}{1.013 \times 10^5}$

$$=1+\frac{10.336\times1\times10^{3}\times9.8}{1.013\times10^{5}}=2 \text{ atm}$$

Since temperature is constant and *n* constant

$$\therefore \qquad \frac{P_1 V_1}{n_1 T_1} = \frac{P_2 V_2}{n_2 T_2}$$
$$\therefore \qquad P_1 V_1 = P_2 V_2$$

$$2 \times \frac{4}{3}\pi (1)^3 = 1 \times \frac{4}{3}\pi r^3$$
$$r = \sqrt[3]{2 \text{ cm}}$$

(b) If the absolute temperature at surface is 4 times to that at the bottom. Find the radius of bubble at surface? **Sol.** $T_2 = 4T$

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$
$$\frac{2 \times \frac{4}{3}\pi(1)^3}{T} = \frac{1 \times \frac{4}{3}\pi r^3}{4T}$$
$$8 = r^3$$
$$r = 2 \text{ cm}$$

7. If 2 liter of gas A at 1.5 atm and 3 liter of gas B at 2 atm are mixed in a 5 liter container find the final pressure.

Sol.
$$n_1 + n_2 = n$$

$$\frac{P_1V_1}{RT} + \frac{P_2V_2}{RT} = \frac{PV}{RT}$$

$$P_1V_1 + P_2V_2 = PV$$

$$1.5 \times 2 + 2 \times 3 = P \times 5$$

$$P = \frac{9}{5} \text{ atm} = 1.8 \text{ atm}$$

8. Two moles of NH₃ and one mole of HCl gas are taken in a container of capacity 8.21 L at 300 K to produce NH₄Cl. Find total pressure after reaction.

Sol. $NH_3 + HCl \longrightarrow NH_4Cl$

(g)	(g)	(S)
2	1	0
1	0	1

 $n_g = n_{\rm NH_3} = 1$ mole (after reaction)

$$P = \frac{n_g RT}{v} = \frac{1 \times 0.821 \times 300}{8.21} = 3 \text{ atm}$$

- **9.** A closed container containing O_2 and some liquid water was found to exert 740 mm pressure at 27°C.
 - (a) Calculate the pressure exerted by O_2 if aqueous tension at 27°C is 20 mm of Hg.
 - (b) What will be the final pressure if volume is reduced to half; assuming volume of liquid water is negligible?
 - (c) What will be the final pressure when volume is doubled?

Sol. (a) $P_T = P_g + P_{aq.tension}$ $740 = P_{gas} + P_{aq.tension}$ $P_{aq.tension} = 20 \text{ mm Hg}$ $\therefore P_{gas} = 720 \text{ mm Hg}$ Gas law applicable for gas only (b) $(P_{aq.tension} \text{ change with temp. only})$ Gas law applicable for gas only $P_1V_1 = P_2V_2$

$$720 \times V = P_2 \times \frac{V}{2}$$

 $P_2 = 1440 = P_{\text{gas}}$ $\therefore P_T = P_g + P_{\text{aq.ten}} = 1440 + 20 = 1460 \text{ mm-Hg}$ (Aqueous tension change with temperature only) (c) $P_1V_1 = P_2V_2$ $720 \times V = P_2 \times 2V$ $P_1 = 260$

$$P_2 = 360$$

 $P_T = P_2 + P_{aq,ten}$
 $= 360 + 20 = 380 \text{ mm-Hg}$

- **10.** An iron tank contains helium at a pressure of 3.0 atm at 27°C. The tank can withstand a maximum pressure of 10 atm. The building in which tank has been placed catches fire. Will the tank blow up first or melt. (Melting point of iron is 1535°C.)
- **Sol.** $P_1 = 3.0, T_1 = 300 \text{ K}$

$$\frac{P_1}{T_1} = \frac{P_2}{T_2} \implies \frac{3.0}{300} = \frac{P_2}{1808}$$
$$P_2 = \frac{3.0 \times 1808}{300} = 18.08 \text{ atm}$$

Since at melting point, it is greater than the maximum pressure, therefore it will blow up.

- 11. An open vessel at 27°C is heated until 3/5th of the air in it has been expelled. Assuming that the volume of the vessel remains constant, find
 - (a) the temperature at which vessel was heated.
 - (b) the air that escaped if vessel is heated to 900 K.
 - (c) temperature at which half of the air escaped out.
- **Sol.** Note the fact that on heating a gas in a vessel, the number of moles of gas which go out, the volume of vessel remains constant.

Let initial moles of air at 300 K be '*n*'. On heating 3/5 moles of air are escaped out at temperature *T*.

$$\therefore$$
 moles of air left at temperature $T = \left(n - \frac{3}{5}n\right) = \frac{2n}{5}$

(a) Under simillar conditions of P and V

$$n_1 I_1 = n_2 I_2$$
$$n \times 300 = \frac{2n}{5} \times T \implies T = 750 \text{ K}$$

(b) On heating vessel to 900 K, let n_1 moles be left again $n_1T_1 = n_2T_2$

$$n_1 \times 900 = 300 \times n \implies n_1 = \frac{1}{3}n$$

$$\therefore$$
 moles escaped out = $n - \frac{n}{3} = \frac{2}{3}n$ moles

(c) Assume n/2 moles are escaped at temperature *T*, then

$$n_1 T_1 = n_2 T_2$$

$$n/2 \times T = n \times 300$$

$$T = 600 \text{ K}$$

- 12. A balloon is inflated to $\frac{7}{8}$ of its maximum volume at 27°C.
 - (a) Will it burst at 30°C?

3.22 Physical Chemistry-I for JEE (Main & Advanced)

- (b) Calculate the minimum temperature above which it will brust.
- **Sol.** (a) Balloon will burst if $V' \ge maximum$ volume Maximum volume = V

Initial volume of balloon =
$$\frac{7}{8}V$$

at 27°C or at 300 K

$$\frac{7}{8}V \times 300 = V^1 \times 303$$
$$V' = \frac{2100}{2424}V$$

: ballon will not burst.

(b)
$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

 $\frac{7}{8}V/300 = V/T_2$
 $\frac{7}{9 \times 300} = \frac{1}{T_2}$
 $T_2 = \frac{2400}{T_2} = 342.85 \text{ K.}$

- **13.** An open flask contains air at 27°C. Calculate the temperature at which it should be heated so that
 - (i) $\frac{1}{3}$ of air measured in the container at 27°C escapes out.
 - (ii) $\frac{1}{3}$ of air measured in the container if final tem-

perature escapes out. Sol Hint: n - n = n expelled

Sol. Hint:
$$h_i - h_f = h$$
 experied
(i) $\frac{PV}{R.300} - \frac{PV}{RT} = \frac{1}{3} \left[\frac{PV}{R.300} \right]$
(ii) and $\frac{PV}{R.300} - \frac{PV}{RT} = \frac{1}{3} \frac{PV}{RT}$
14. N_2
 P
Find $\frac{L_{N_2}}{L_{H_2}} = ?$ If P is same for both gases
Sol. $\frac{\Delta V}{\Delta t} = \frac{A \cdot \frac{L_{N_2}}{\Delta t}}{A \cdot \frac{L_{H_2}}{\Delta t}} = \sqrt{\frac{M_B}{M_A}} = \sqrt{\frac{2}{28}}$
15. NH_3
Find x .

Sol.
$$\frac{L_{\text{NH}_3}}{L_{\text{HCI}}} = \sqrt{\frac{M_B}{M_A}} = \sqrt{\frac{36.5}{17}}$$
$$\frac{x}{100 - x} = \frac{6}{4.1}$$
$$\therefore \quad x = 60 \text{ cm}$$

16. A container consist of $H_2 \& O_2$ gas having same no of moles. If the volume of H_2 gas is collected after half an-hour is 30 ml. Then calculate the volume of O_2 collected under similar condition.

Sol.
$$\frac{R_{\text{H}_2}}{R_{\text{O}_2}} = \sqrt{\frac{\text{MM of O}_2}{\text{MM of H}_2}} = \frac{R_{\text{H}_2}}{R_{\text{O}_2}} = \sqrt{\frac{32}{2}} = \frac{V_{\text{H}_2}}{V_{\text{O}_2}} = \frac{30}{V_{\text{O}_2}} = 4$$

 $\therefore \quad V_{\text{O}_2} = \frac{30}{4} = 7.5 \text{ ml}$
In 30 minute V_{O_2} collected = 7.5 ml

Note:

In any diffusion and effusion process, the rate of diffusion and effusion do not remain constant throughout the given time interval. (Generally it decreases) However, for solving a problem, the rate is assumed to be constant during specific interval of time and this constant rate of diffusion or effusion is taken as initial rate of diffusion or effusion.

17. A container consists of H_2 and O_2 gases having same number of moles. If the volume of H_2 gas is collected after half an-hour is 30 ml. Then calculate the volume of O_2 collected in 15 minutes taking diffusion rate constant.

Sol.
$$\frac{R_{\text{H}_2}}{R_{\text{O}_2}} = \sqrt{\frac{\text{MM of O}_2}{\text{MM of H}_2}} = \frac{R_{\text{H}_2}}{R_{\text{O}_2}} = \sqrt{\frac{32}{2}} = \frac{V_{\text{H}_2}}{V_{\text{O}_2}} = \frac{30}{V_{\text{O}_2}} = 4$$

 $\therefore \quad V_{\text{O}_2} = \frac{30}{4} = 7.5 \text{ ml}$

In 30 minutes V_{O_2} collected = 7.5 mL

In 15 minutes
$$V_{\text{O}_2}$$
 collected = $7.5 \times \frac{15}{30} = 3.75 \text{ mL}$

18. A container consists of H_2 and O_2 in 2 : 1 molar ratio. If the volume of H_2 gas collected after 10 minutes is 15 mL at same *T* and *P*. What will be the volume of O_2 gas collected at minute and 20 minute?

Sol.
$$\frac{R_A}{R_B} = \frac{V_A}{V_B} = \frac{n_A}{n_B} \times \sqrt{\frac{M_B}{M_A}} = \frac{n_A}{n_B} \sqrt{\frac{32}{2}} = 16$$
$$\frac{V_{H_2}}{V_{O_2}} = \frac{2}{1} \times 4$$
$$\therefore \quad V_{O_2} = \frac{15}{8} \text{ at } t = 10 \text{ minute}$$
$$\text{at } t = 20 \text{ minute}$$
$$\frac{15}{8} \times \frac{20}{10} = \frac{30}{8} \text{ mL}$$

19. A container consists of $\frac{1}{20}$ moles of D_2 gas and $\frac{1}{10}$ mole of H_2 is collected through a nozzle to a large container. After 10 minute 0.1 gm of D_2 was collected in the second container, then calculate

- (i) initial rate of diffusion of both gases.
- (ii) Moles of H₂ obtained in second container after 10 minute.

Sol. (i)
$$\frac{R_{\text{H}_2}}{R_{\text{D}_2}} = \frac{n_{\text{H}_2}}{n_{\text{D}_2}} \sqrt{\frac{4}{2}} = \frac{1}{10} \times \frac{20}{1} \sqrt{2}$$

 $\therefore \qquad R_{\text{H}_2} = 2\sqrt{2} R_{\text{D}_2} \quad \text{or} \quad R_{\text{D}_2} = \frac{1}{2\sqrt{2}} R_{\text{H}_2}$
(ii) $\frac{n'_{\text{H}_2}}{n'_{\text{D}_2}} = \frac{n_{\text{H}_2}}{n_{\text{D}_2}} \sqrt{\frac{4}{2}} \implies \frac{1/10}{1/20} \times \sqrt{2}$
 $\frac{n'_{\text{H}_2}}{n'_{\text{D}_2}} = 2\sqrt{2}$
 $n'_{\text{H}_2} = 2\sqrt{2} n'_{\text{D}_2}$
 $W_{\text{H}_2} = 2\sqrt{2} \times \frac{0.1}{4} \times 2$
 $= 0.1414 \text{ gram}$

20. A closed container having molar ratio H₂ and N₂ of 1 :
9. After *n* diffusion this ratio changed up to 9 : 1. Calculate what is the value of 'n'?

Sol.
$$\left(\frac{n_A}{n_B}\right)_{\text{initial}} = \frac{1}{9} \text{ and } \left(\frac{n_A}{n_B}\right)_{\text{final}} = \frac{9}{1}$$

 $\left(\frac{n_A}{n_B}\right)_{\text{final}} = \left(\frac{n_A}{n_B}\right)_{\text{initial}} \left(\sqrt{\frac{M_B}{M_B}}\right)^n$
 $9 = \frac{1}{9} \left(\sqrt{\frac{28}{2}}\right)^n$
 $81 = (14)^{\frac{n}{2}}$
 $\log (9)^2 = \frac{n}{2} \log (14)$
 $2 \times 2[\log 3] = \frac{n}{2} [\log 2 + \log 7]$
 $4[0.4771] = \frac{n}{2} [0.3 + 0.85]$
 $n = \frac{1.9084 \times 2}{1.15} = 3.31$

∴ after 4 diffusion.
 21. A sample of ²³⁵UF₆ and ²³⁸UF₆ is present in ratio 3 : 5 motar ratio after *n* diffusion this ratio become 5 : 3 then calculate value of *n*.

Sol.
$$\left[\frac{n^{235} \text{UF}_6}{n^{238} \text{UF}_6}\right]_{\text{final}} = \left[\frac{n^{235} \text{UF}_6}{n^{238} \text{UF}_6}\right]_{\text{initial}} \times \left[\sqrt{\frac{M^{238} \text{UF}_6}{M^{235} \text{UF}_6}}\right]$$

$$\frac{5}{3} = \frac{3}{5} \left[\sqrt{\frac{352}{349}} \right]$$
$$\frac{25}{9} = \left[\frac{352}{349} \right]^{\frac{n}{2}}$$
$$\log 25 - \log 9 = \frac{n}{2} \log[1.0086]$$
$$1.397 - 0.954 = \frac{n}{2} [0.0037]$$
$$n = 240$$

- *n*

-

22. Given figure shows 2 Identical *A* and *B* with rigid walls containing ideal gas. The pressure, volume and temperature in vessel *A* are T_A , V_A and P_A whereas in second container pressure is P_B , volume is V_B and temperature is T_B . Vessels second are now connected through a narrow tube. Show that the final ratio of '*P*' and temperature

ture T satisfy the equation
$$\frac{P}{T} = \frac{1}{2} \left[\frac{P_A}{T_A} + \frac{P_B}{T_B} \right]$$

Sol. $\begin{array}{c} P_A \\ V_A \\ T_A \\ n_A \end{array} \xrightarrow{P_B} V_B \\ T_B \\ n_B \end{array} \Rightarrow \begin{array}{c} P \\ T \\ V \\ V_A \\ T_B \\ N_A \end{array} \xrightarrow{P_A V} V_A = V_B = V (\text{Same vessel}) \\ n_A = \frac{P_A V}{RT_A} \quad n'_A = \frac{PV}{RT} \\ n_B = \frac{P_B V}{RT_B} \quad n'_B = \frac{PV}{RT} \\ (n'_A + n'_B) = n_A + n_B \\ \frac{PV}{RT} + \frac{PV}{RT} = \left[\frac{P_A V}{RT_A} + \frac{P_B V}{RT_B} \right] \\ \frac{2PV}{RT} = \frac{V}{R} \left[\frac{P_A}{T_A} + \frac{P_B}{T_B} \right] \\ \frac{P}{T} = \frac{1}{2} \left[\frac{P_A}{T_A} + \frac{P_B}{T_B} \right]$

23. Two flasks of equal volume connected by a narrow tube are at 27°C and container has 0.7 moles of H_2 and 0.5 atm. One of the flasks is then emerged into a bath kept at 127°C while the other remains at 27°C. Calculate the final pressure and number of mole of H_2 in each flask.

Sol.
$$V = \frac{nRT}{P} = \frac{0.35 \times 0.082 \times 300}{0.5} = 11.2 \text{ L}$$

Case - I
 $\begin{bmatrix} n = 0.35 \\ P = 5 \text{ atm} \end{bmatrix}$
 $T = 300 \\ V = 11.2 \\ A \end{bmatrix}$
 $T = 300 \\ V = 11.2 \\ B \end{bmatrix}$

24. A mixture of 0.5 moles of CO and 0.5 moles of CO₂ is taken in a vessel and allowed to effuse in another container which has vacuum. If total 'A' moles have effused out in time 't', show that $M_1A + M_2 (1 - A) = 36 M_1, M_2$ are mean molar masses of mixture that are effused out and mixture still remaining.

Sol. Initial mass =
$$0.5 \times 28 + 0.5 \times 44 = 36$$

Final mass = $(1 - A) M_2 + AM_1 = 36$
= $M_2 - M_2A + AM_1 = 36$

or

25. A 2 L cylinder has 10 mole at 300 K. This container is connected to a 1 L vaccum container by a narrow tube. If final temperature is remain same, then calculate the final pressure of the system.

Sol.
$$P_1V_1 = n_1RT_1$$

Calculate L_1 and L_2

100 cm

Sol. $L_1 + L_2 = 90$ cm (Hg does not expand) and $P_1 = P_2 + P_{Hg}$

$$= P_{2} + \frac{10}{76}$$

for A $P_{i}V_{i} = P_{f}V_{f}$ for B $P_{i}V_{i} = P_{f}V_{f}$
 $P_{i}h_{i} = P_{f}h_{f}$ $1 \times 45 = P_{2}[90 - 1_{1}]$ (i)
 $1 \times 45 = \left[P_{2} + \frac{10}{76}\right]L_{1}$ (ii)
 $\left(P_{i} + \frac{10}{76}\right)L_{1}$

$$\frac{(\text{ii})}{(\text{i})} = \frac{\left(P_2 + \frac{10}{76}\right)L_1}{P_2[90 - L_1]} = 1$$

 L_1 and L_2 can be calculated.

27. Calculate L_2 .

Sol. $P_2 = P_{gas} = P_{atm} + P_{Hg} + P_{liq}$

$$P_{\text{gas}} = \begin{bmatrix} 1 + \frac{2}{76} + \frac{\frac{6}{100} \times 10.2 \times 10^3 \times 9.8}{1.01 \times 10^5} \end{bmatrix} \text{atm}$$

$$P_1 = 1 \text{ atm}, \qquad V_1 = A \times L_1 = A \times 20$$

$$P_2 = P_{\text{gas}}, \qquad V_2 = A \times L_2$$

$$P_1 V_1 = P_2 V_2$$

$$1 \times 20 = P_{\text{gas}} \times l_2$$

$$l_2 = \frac{20}{\left[1 + \frac{2}{76} + \frac{6}{100}\right]} \text{CM}$$

- **28.** 10 cm column of air is trapped by a column of Hg 8 cm. If capillary tube is fixed horizontally as shown in the figure at 1 atm, calculate the length of air column when the tube is fixed at same temperature.
 - (a) Vertically with open end up.
 - (b) Vertically with opened down.
 - (c) At 45° from horizontal with open end up.

Sol. (a)
$$P_{\text{gas}} = P_{\text{atm}} = 1$$
 atm
Let the area be A

$$P_{1}V_{1} = P_{2}V_{2}$$

$$P_{2} = P_{gas} + P_{Hg} = 1 + \frac{8}{76}$$

$$P_{gas} - P_{atm}$$

$$P_{Hg}$$

$$1 \times 10 \times A = \left[1 + \frac{8}{76}\right] \times h \times A$$

$$h = 9.04 \text{ cm}$$
(b) $P_1 = 1 \text{ atm}, \quad V_1 = 10 \times A$

$$P_2 = \left[P_{gas} - \frac{h}{76}\right] = \left[1 - \frac{8}{76}\right]$$

$$V_2 = h \times A$$

$$P_1V_1 = P_2V_2$$

$$1 \times 10 \times A = \left[1 - \frac{8}{76}\right] \times h \times A$$

$$h = 11.18 \text{ cm}$$
(c) $P_1 = 1 \text{ atm}, V_1 = 10 \times A$

$$P_2 = \left[1 + \frac{h}{76} \sin 45^\circ\right]$$

$$V_2 = h \times A$$

$$P_1V_1 = P_2V_2$$

$$h = 9.3 \text{ cm}$$

29. Mr. Gupta weights 72.15 kg and wants to fly in the sky with balloon whose weight is 20 kg and each containing 50 moles of H_2 gas at 0.05 atm and 27°C. Density of air at given condition is 1.25 gm/ltr. How many such types of balloon is needed to fly in the sky?

Sol.
$$M_{\text{Payload}} = M_{\text{dip. air}} - M_{\text{Balloon}}$$

 $N[V_{\text{balloon}} \times d_{\text{air}}] - [d_{\text{gas}} \cdot V_{\text{balloon}} + M_{\text{balloon}}] = M_{\text{pay load.}}$
 $N\left[\frac{nRT}{P}\right] \times 1.25 - N [20 \times 10^3 + 100] = 75.15 \times 10^3$
 $N = \frac{75.15 \times 10^3}{\left[\frac{50 \times 0.0821 \times 300 \times 1.25}{0.05}\right] - [20 \times 10^3 + 100]} = 7$
∴ $N = 7$

- **30.** Figure below shows initial conditions of a uniform cylinder with frictionless piston *A* and *B* held in position by mechanical stoppers. If the mechanical stoppers holding piston *A* and *B* are removed, (assume that temperature remains constant)
 - (i) What will be the pressure developed in each compartment in final state?
 - (ii) What will be the final position of piston A with respect to for left end of container?
 - (iii) What will be the final position of piston *B* with respect to for left end of container?

Sol. (i)
$$n_T = n_{He} + n_{Ar} + n_{Ne}$$

$$\frac{P_f V_f}{RT} = \frac{10 \times 25 \times A}{RT} + \frac{\frac{30}{7} \times A \times 35}{RT} + \frac{5}{2} \times A \times 40}{RT}$$

$$P_f \times A \times 100 = 10 \times 25 \times A + \frac{30}{7}$$

$$\times A \times 35 + \frac{5}{2} \times 40 \times A$$

$$P_f \times 100 = 250 + 150 + 100$$

$$Pf = \frac{500}{100} = 5 \text{ atm}$$
(ii) (a) $P_1 V_1 = P_2 V_2 \implies 10 \times 25 = 5 \times l_2$

$$\boxed{l_2 = 50 \text{ m}}$$
(b) $P_1 V_1 = P_2 V_2$

$$\frac{30}{7} \times 35 = 5 \times l_2$$

$$\boxed{l_2 = 30 \text{ m}}$$

- Final position = 80 meter
- **31.** Few gases are filled as air in the container as shown in the figure and allowed to attain equilibrium (assuming temperature remains constant) throughout the process. Select the correct option:
 - (i) Total moles of gas in compartment III will be 12.
 - (ii) The moles of hydrogen in compartment II will be 2.
 - (iii) The length of compartment containing only hydrogen will be after equilibrium is attained?
 - (iv) Distance of movable piston from left end is 50 cm after equilibrium is attained.

Sol. At S.P.M. compartment II and III

$$P_{\rm H_2} = P_2 = P'_{H_2}$$

Let (x) moles of H_2 are deffused from II \rightarrow III (By S.P.M.)

P. Pressure of H_2 in II = III

$$\frac{x}{40-y} = \frac{(10-x)}{40}$$
$$P_2 = P'_{H_2}$$
$$\frac{nRT}{V}$$

At Piston in compartment I and II

$$P_{1} = P_{2}$$

$$\frac{10RT}{(20 + y)R} = \frac{xRT}{(40 - y)A}$$

$$\frac{10}{20 + y} = \frac{x}{40 - y}$$

$$\boxed{x = 2}{y = 30}$$

32. Calculate $V_{\rm rms}$ speed of oxygen at 300 K.

Sol.
$$V_{\rm rms} = \sqrt{\frac{3 \times 8.314 \times 300}{32 \times 10^{-3}}} = 483.12 \text{ m/sec}$$

33. Calculate the fraction of N₂ molecules at 1 atm pressure and 300 K⁻ whose speeds are in the range of $u_{\rm mp} \pm 0.005$.

By Maxwell distribution theory

$$\frac{dNu}{N} = 4\pi \left[\frac{M}{2\pi RT}\right]^{3/2} u^2 e^{-\frac{mu^2}{2RT}} du$$

$$= 4 \times 3.14 \left[\frac{28 \times 10^{-3}}{2 \times 8.314 \times 300 \times 3.14}\right]^{\frac{3}{2}}$$

$$\left[\frac{2RT}{M}\right] e^{-\frac{M}{2RT} \times \frac{2RT}{M}} \times 0.01 \sqrt{\frac{2RT}{M}}$$

$$= 4 \times 3.14 \left[\frac{28 \times 10^{-3}}{2 \times 8.314 \times 300 \times 3.14}\right]^{\frac{3}{2}}$$

$$\times [422]^2 e^{-1} \times 0.01 \times 422$$

$$= 8.303 \times 10^{-3} \text{ Ans}$$

34. What is the ratio of the number of molecules having speeds in the range of $2 u_{mp}$ and $2u_{mp} + du$ to the Number of molecules having speed in the range of u_{mp} and $u_{mp} + du$.

- **35.** Calculate $v_{\rm rms}$ speed of H₂ molecule under the following conditions?
 - (i) 2 moles of H_2 gas at 27°C.
 - (ii) 3 moles of H_2 gas in 5 l container at 10⁵ Pa.
 - (iii) 4 moles of H_2 having density 1 g/mL at 10⁵ Pa.

Sol. We know

$$V_{\rm rms} = \sqrt{\frac{3RT}{\text{Molar mass in kg}}}$$
$$= \sqrt{\frac{3PV}{\text{Total mass in kg}}} = \sqrt{\frac{3P}{d}}$$

P in Pascal, *V* in m³, molar mass in kg and density *d* or ρ in kg/m³

(i)
$$v_{\rm rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3 \times 8.314 \times 300}{2 \times 10^{-3}}}$$

 $= \sqrt{\frac{3 \times 83.14 \times 3 \times 10^4}{2}} = 19.34 \times 10^2 \,\text{m/sec.}$
(ii) $\sqrt{\frac{3PV}{nM}} = \sqrt{\frac{3 \times 10^5 \times 5 \times 10^{-3}}{3 \times 2 \times 10^{-3}}} = \sqrt{25 \times 10^4}$
 $= 500 \,\text{m/sec}$
(iii) $\sqrt{\frac{3P}{d}} = \sqrt{\frac{3 \times 10^5}{10^3}} = 17.32 \,\text{m/sec.}$
 $1 \,\text{g/ml} = \frac{10^{-3} \,\text{kg}}{10^{-6} \,\text{m}^3} = 10^3 \,\text{kg/m}^3$

36. What is the density of moist air with 90% relative humidity under the condition of 1 atm pressure and 21°C. The vapour pressure of water at 25°C is 23.7 torr and dry air has 76% N_2 and 24% O_2 . Also find the difference in the density of dry air and moist air at the given condition.

Sol. (V.P. of
$$H_2O$$
 at 25°C is 23.7 mm of Hg)
(Mav)dry air = (0.76 × 28) + (0.24 × 32)
= 21.28 + 7.68 = 28.96 g/mol.

$$\therefore \quad \text{R.H.} = \frac{\text{Partial Pressure of } \text{H}_2\text{O}}{\text{V.P. of } \text{H}_2\text{O}} \times 100 \text{ ;}$$

Density $(\rho) = \frac{PM_{\text{air}}}{\text{RT}}$

:.
$$P_{\text{H}_2\text{O}} = 23.7 \times 0.9 = 21.33 \text{ mmHg} = 0.028 \text{ atm.}$$

(Now) Moist air = $(28.96 \times 0.972) + (18 \times 0.028)$
= $28.147 + 0.504 = 28.65 \text{ gm/mol.}$

$$\rho_{\text{moist air}} = \frac{PM_{\text{moist air}}}{RT} = \frac{1 \times 28.65}{0.0821 \times 298} = 1.17 \text{ gm/L}$$
$$\Delta \rho = \rho_{\text{dry air}} - \rho_{\text{moist air}}$$
$$= \frac{P}{RT} [M_{\text{dry air}} - M_{\text{moist air}}]$$
$$= \frac{1}{0.0821 \times 298} (28.96 - 28.65) = 0.1267$$

37. Calculate the payload when a balloon of radius 10 meter mass 100 kg is filled with helium at 1.66 bar at 27°C. (Density of air 1.2 kgm⁻³ and R = 0.083 bar dm^3k^{-1} mol⁻¹)

Sol. Volume of balloon

$$= \frac{4}{3}\pi r^{3} = \frac{4}{3} \left(\frac{22}{7}\right) (10)^{3} = 4190.47 \text{ m}^{3}$$

= 4190.47 × 10³ L
Mass of dry air = $d \times v = 1.2 \times 4190.47 = 5028.56 \text{ kg}$
Mass of the helium = $W = \frac{PV}{RT} \times 4 \times 10^{-3} \text{ kg}$
= $\frac{1.66 \times 4190.47 \times 10^{3} \times 4 \times 10^{-3}}{0.083 \times 300} = 1117.45 \text{ kg}$
Mass of balloon with helium
= 1117.45 + 100 = 1217.45 kg

Pay load = mass of air displaced – mass of filled balloon = 5028.56 - 1217.45 = 3811 kg

38. The compressibility factor for 1 mole of a Van der Walls gas at 0°C and 100 atm pressure is found to be 0.5. Assuming that volume of a gas molecule is 'negligible', calculate the Van der Walls constant 'a'.

Sol. For 1 mole of the gas
$$Z = \frac{PV}{RT}$$

 $0.5 = \frac{100 \times V}{0.0821 \times 273}$
 $V = 0.112 L$
Neglecting b, the equation is $\left(P + \frac{a}{V^2}\right)V = RT$
or $PV + \frac{a}{V} = RT, a = 1.25L^2$ atm mol⁻²

- **39.** Calculate the pressure exerted by 22 g of carbon dioxide in 0.5 dm³ at 298 15 K using:
 - (a) the ideal gas law and
 - (b) Van der waals equation. Given: $[a = 363.76 \text{ kPa } \text{dm}^6 \text{ mol}^{-2} \text{ and } b = 42.67 \text{ cm}^3 \text{ mol}^{-1}]$

Sol. (a)
$$P = \left(\frac{22}{44}\right) \times \frac{0.0821 \times 298.15}{0.5} \text{ atm} = 2.479 \times 10^3 \text{ kPa}$$

(b) $\left(P + \frac{\left(\frac{1}{2}\right)^2 \times 363.76}{(0.5)^2}\right) \times \left(0.5 - \frac{1}{2} \times \frac{42.67}{1000}\right)$
 $= \frac{1}{2} \times 8.3187 \times 298.15 \text{ kPa}$
 $P = 2225.55 \text{ kPa}$

- **40.** The Van der waals, constants for gases *A*, *B* and *C* are as follows:
 - Gasa/dm6 kPa mol-2b/dm3 mol-1A405.30.027B1215.90.030C607.950.032

Which gas has

- (i) the highest critical temperature,
- (ii) the largest molecular volume, and
- (iii) most ideal behaviour around STP?

3.28 Physical Chemistry-I for JEE (Main & Advanced)

Sol. (i) find
$$T_C = \frac{8a}{27Rb}$$
 : gas *B*

- (ii) Large value of $b \alpha$ largest molecular volume. \therefore gas C
- (iii) Least value of a and b : gas A
- **41.** A commercial cylinder contains 6.91 m^3 of O_2 at 15.18 M Pa and 21°C. The critical constants for O_2 are $T_C =$ -118.4° C, $P_{C} = 50.1$ atm. Determine the reduced pressure and reduced temperature for O₂ under these conditions.

Sol. Reduced pressure.
$$P_r = \frac{P}{P_C} = 2.99$$

Reduced temperature
$$T_r = \frac{T}{T_C} = 1.90$$

- 42. Calculate the volume occupied by 14.0 g N_2 at 200 K and 8.21 atm pressure if $\frac{P_C V_C}{RT_C} = \frac{3}{8}$ and $\frac{P_r V_r}{T_r} = 2.2$.
- **Sol.** 14 g $N_2 \rightarrow 0.5$ mole

$$T = 200 \text{ k}, \qquad P = 8.21 \text{ atm}$$

$$\frac{P_C V_C}{RT_C} = \frac{3}{8}, \qquad \frac{P_r V_r}{T_r} = 2.2$$

$$P_r = \frac{P}{P_c}, \qquad V_r = \frac{V}{V_c}, \qquad T_r = T/T_c \text{ so,}$$

$$\frac{(P_c P_r)(V_c V_r)}{R(T_c T_r)} = \frac{3}{8} \times 2.2 \Rightarrow \frac{PV}{RT} = \frac{3}{2} \times 2.2$$

$$V = \frac{3}{8} \times \frac{2.2 \times 0.0821 \times 200}{8.21} = 1.65 \text{ L}$$

so volume of 0.5 mole $N_2 = 1.65 \times 0.5 = 0.825$ L

43. The critical temperature and pressure of CO_2 gas are 304.2 K and 72.9 atm respectively. What is the radius of CO₂ molecule assuming it to behave as Van der Waal's gas?

Sol.
$$T_C = 304.2 \text{ K}$$
 $P_C = 72.9 \text{ atm}$
 $T_C = \frac{8a}{27Rb}$ $P_C = \frac{a}{27b^2}$
 $\therefore \frac{T_C}{P_C} = \frac{\frac{8a}{27Rb}}{\frac{a}{27b^2}} = \frac{8a}{27Rb} \times \frac{27b^2}{a} = \frac{8b}{R}$
or $b = \frac{RT_C}{8P_C} = \frac{1}{8} \times \frac{0.082 \times 304.2}{72.9}$
 $= 0.04277 \text{ lit mol}^{-1} = 42.77 \text{ cm}^3/\text{mole}$
 $b = 4 N_A \times \frac{4}{3}\pi r^3 = 42.77 \text{ cm}^3$
 $\therefore 4 \times N_A \times \frac{4}{3}\pi r^3 = 42.77$
or $r^3 = r^3 = \frac{3 \times 42.77 \times 10^{-23}}{16 \times 6.023 \times 3.14}$

or
$$r^3 = 0.424 \times {}^{-23} = 4.24 \times {}^{-24}$$

- $r = (4.24)^{1/3} \times {}^{-8} \text{ cm} = 1.62 \times {}^{-8} \text{ cm}$ or
- radius of CO_2 molecule = 1.62 Å ...

Exercise

LEVEL I

1. Pressure of 1g of an ideal gas A at 27° C is found to be 2 bar. When 2 g of another ideal gas B is introduced in the same flask at the same temperature, the pressure becomes 3 bar. Find the relationship between their molecular masses.

(a)
$$M_A = 4M_B$$
 (b) $M_B = 4M_A$

(c)
$$M_A = 2M_B$$
 (d) $M_B = 2M_B$

- 2. Density of a gas is found to be 5.46 g/dm^3 at 27°C at 2 bar pressure. What will be its density at STP?
- (a) 6 gm/l (b) 8 gm/l (c) 3 gm/l (d) 1.5 gm/l3. Calculate the temperature of 4.0 mole of a gas occupying 5 dm³ at 3.32 bar. (R = 0.83 bar dm³ K⁻¹ mol⁻¹). (a) 100 K (b) 50 K (c) 150 K (d) 200 K
- 4. Calculate the volume occupied by 8.8 g of CO_2 at 31.1°C and 1 bar pressure. R = 0.083 bar LK⁻¹mol⁻¹. (1-) 0 (ltr (a)

a)
$$10.1$$
 ltr (b) 8.0 lt

5. 380 mL of a gas at 27°C, 800 mm of Hg weights 0.455 g. The molecular weight of gas is (c) 20(a) 27(b) 28(d) 30

- 6. At what temperature will be the rate of effusion of N_2 be 1.625 times the rate of effusion of SO₂ at 500°C? (a) 273 K (b) 830 K (c) 110 K (d) 173 K
- 7. What is the ratio of the rate of diffusion of O_2 and H_2 at same P and T?

(a)
$$1:4$$
 (b) $1:8$ (c) $1:16$ (d) $4:1$

8. Equal weights of methane and oxygen are mixed in an empty container at 25°C. What is the fraction of the total pressure exerted by oxygen?

(a)
$$\frac{1}{3}$$
 (b) $\frac{1}{2}$ (c) $\frac{2}{3}$ (d) $\frac{1}{3} \times \frac{273}{298}$

9. What will be the pressure of the gaseous mixture when 0.5 L of H₂ at 0.8 bar and 2.0 L of dioxygen at 0.7 bar are introduced in a 1 L vessel at 27°C?

(c) 0.9 bar (d) 3.6 bar

- **10.** Calculate the total pressure in a mixture of 8 g of dioxygen and 4 g of dihydrogen confined in a vessel of 1 dm³ at 27°C. R = 0.083 bar dm³ K⁻¹ mol⁻¹.
 - (a) 28.5 bar (b) 56.025 bar

(c) 112.5 bar (d) 14.25 bar

- **11.** 2.9 g of gas at 95°C occupied the same volume as 0.184 g of dihydrogen at 17°C, at the same pressure. What is the molar mass of the gas?
 - (a) 120 g mol^{-1} (b) 20 g mol^{-1}
 - (c) 80 g mol^{-1} (d) 40 g mol^{-1}
- **12.** The average velocity of an ideal gas molecule at 27°C is 0.3 m/sec. What will be the average velocity at 927°C?
 - (a) 0.6 m/sec (b) 0.3 m/sec
 - (c) 0.9 m/sec (d) 3.0 m/sec
- **13.** The root mean square velocity of one mole of a monoatomic gas having molar mass *M* is Ur.m.s. What is the relation between the average kinetic energy (E) of the gas and Ur.m.s.?

(a)
$$u_{r.m.s.} = \sqrt{\frac{3E}{2M}}$$
 (b) $u_{r.m.s.} = \sqrt{\frac{2E}{3M}}$
(c) $u_{r.m.s.} = \sqrt{\frac{2E}{M}}$ (d) $u_{r.m.s.} = \sqrt{\frac{E}{3M}}$

14. The compressibility of a gas is less than unity at STP. Therefore,

(a)	Vm > 22.4 ltr	(b)	Vm < 22.4 ltr
-----	---------------	-----	---------------

(c) Vm = 22.4 ltr (d) Vm = 44.8 ltr

15. In Van der Waals equation of state for a non-ideal gas, what is the term that accounts for intermolecular forces?

(a) (V-b) (b) RT

(c)
$$\left(P + \frac{a}{V^2}\right)$$
 (d) $(RT)^{-1}$

16. 4.0 g of argon has pressure P at temperature T K in a vessel. On keeping the sample at 50° higher temperature, 0.8 g gas was given out to maintain the pressure P. What was the original temperature?

(a) 73 K (b) 100 K (c) 200 K (d) 510 K

- 17. The temperature of an ideal gas is increased from 140 K to 560 K. If at 140 K the root mean square velocity of the gas molecules is *u*, at 560 K it becomes
 (a) 5u
 (b) 2u
 (c) u/2
 (d) u/4
- 18. 40 mL of mixture of H₂ and O₂ was placed in a gas burette at 18°C and 1 atm. A spark was produced so that the formation of water was complete. The remaining pure gas had a volume of 10 mL at 18°C and 1 atm. If the remaining gas was H₂, what was the initial mole % of H₂ in mixture?

(a) 75% (b) 25% (c) 60% (d) 45%

19. A flask of capacity of 1 ltr contains NH_3 at 1 atm and 25°C. A spark is passed through until all the NH_3 is decomposed into N_2 and H_2 . Calculate the pressure of gases left at 25°C.

(a) 2 atm (b) 0.5 atm (c) 1.5 atm (d) 1 atm

- **20.** The density of CO₂ at 100°C and 800 mm Hg pressure would be
 - (a) $1.212 \text{ g } \text{ltr}^{-1}$ (b) $1.5124 \text{ g } \text{ltr}^{-1}$ (c) $2.1124 \text{ g } \text{ltr}^{-1}$ (d) $1.012 \text{ g } \text{ltr}^{-1}$
- 21. Pressure remaining the same, the volume of given mass of an ideal gas increases for every degree centigrade rise in temperature by definite fraction of its volume at (a) 0°C (b) its critical temperature
 - (c) absolute zero (d) its Boyle temperature
- **22.** If 20 cm³ gas at 1 atm is expanded to 50 cm³ at constant T, then what is the final pressure?

(a)
$$20 \times \frac{1}{50}$$
 (b) $50 \times \frac{1}{200}$

(c)
$$1 \times \frac{1}{20} \times 50$$
 (d) None of these

- **23.** The volume of 1 g each of methane (CH₄), ethane (C_2H_6) , propane (C_3H_8) and butane (C_4H_{10}) was measured at 350K and 1 atm. What is the volume of butane?
 - (a) 495 cm^3 (b) 600 cm^3
 - (c) 900 cm^3 (d) 1700 cm^3
- 24. A sample of gas occupies 100 mL at 27°C and 740 mm pressure. When its volume is changed to 80 mL at 740 mm pressure, what will be the temperature of gas?
 (a) 21.6°C
 (b) 240°C
 (c) -33°C
 (d) 89.5°C
- **25.** At S.T.P., the density of nitrogen monoxide is? (a) 3.0 gL^{-1} (b) 30 gL^{-1}

(c)
$$1.34 \text{ gL}^{-1}$$
 (d) 2.68 gL^{-1}

26. The rate of effusion of a gas is proportional to?

(a)
$$\frac{P}{\sqrt{d}}$$
 (b) $\frac{P}{d}$
(c) $\sqrt{\frac{P}{d}}$ (d) $\frac{\sqrt{P}}{d}$

- **27.** If 4 g of oxygen diffuse through a very narrow hole, how much hydrogen would have diffused under identical conditions?
- (a) 16 g (b) 1 g (c) 1/4 g (d) 64 g **28.** The rate of diffusion of SO₂ and O₂ are in the ratio
 - (a) $1:\sqrt{2}$ (b) 1:32 (c) 1:2 (d) 1:4
- **29.** A cylinder is filled with a gaseous mixture containing equal masses of CO and N₂. The partial pressure ratio is

(a)
$$P_{N_2} = P_{CO}$$
 (b) $P_{CO} = 0.875 P_{N_2}$

- (c) $P_{\rm CO} = 2 P_{\rm N_2}$ (d) $P_{\rm CO} = 1/2 P_{\rm N_2}$
- **30.** Which of the following is correct relation for root mean square velocity?

(a)
$$V_{\rm rms} = \sqrt{\frac{8RT}{\pi M_w}}$$
 (b) $V_{\rm rms} = \sqrt{\frac{3RT}{M_w}}$
(c) $V_{\rm rms} = \sqrt{\frac{2RT}{M_w}}$ (d) $V_{\rm rms} = \sqrt{\frac{3RT}{M_w}}$

31. The average velocity of gas molecules is equal to

(a)	$\left(\frac{8RT}{M_w}\right)^{\frac{1}{2}}$	(b)	$\left(\frac{3RT}{M_w}\right)^{\frac{1}{2}}$
(c)	$\left(\frac{8RT}{\pi M_w}\right)^{\frac{1}{2}}$	(d)	$\left(\frac{8RT}{\pi M_w}\right)$

32. A gas occupies 300 mL volume at 27°C temperature and 730 mm pressure. Its volume at STP is

(\mathbf{a})	$162.2 \mathrm{mI}$	(h)) 262.2 mI
a) 102.2 mL	(D) 202.2 mi

- (c) 362.2 mL (d) 462.2 mL
- **33.** A truck having oxygen cylinders is coming from Shrinagar. The gas in cylinder is at -23°C temperature and 3 atm pressure when truck passes from Madras. What will be the pressure of oxygen gas when temperature is 30°C?

(a)	2.64 atm	(b)	1.64 atm
(a)	1 atm	(\mathbf{A})	2 61 atma

- (c) 1 atm (d) 3.64 atm
- 34. Find out the density of CO_2 at 100°C temperature and 400 mm Hg pressure.
 - (a) 0.75 g L^{-1} (b) 2.5 g L^{-1}

(c) 0.5 g L^{-1} (d) 0.2 g L^{-1}

35. The density of a gas at -23° C temperature and 780 torr pressure is 1.40 g L^{-1} . Identify the gas.

(b) SO_2 (c) Cl_2 (a) CO_2 (d) N_2

36. Calculate the weight of CH_4 gas when the applied pressure is 16 atm, temperature is 27°C and its volume is 9 litre (R = 0.08 L atm K⁻¹).

(d) 90 g (a) 96 g (b) 86 g (c) 80 g

- **37.** The density of SO_2 at STP is (a) $2.86 \text{ g } \text{L}^{-1}$ (b) 1.76 g L⁻¹ (c) 1.86 g L^{-1}
 - (d) None of these
- **38.** The volume occupied by 7 g N_2 gas at 27°C temperature and 750 mm Hg pressure is

(a)	6.3 ltr	(b)	7.3 ltr
(c)	6.8 ltr	(d)	5.3 ltr

39. 5 g XeF₄ gas is filled in a 6 ltr vessel at 80°C temperature, the applied pressure on gas is

(a)	0.21 atm	(b)	0.31 atm
(a)	0.11 atm	(\mathbf{A})	0.11 otro

- (c) 0.11 atm (d) 0.41 atm
- **40.** 5.75 g of gas at 55°C temperature and 0.940 atm pressure occupies 3.5 ltr volume. Identify the molecular weight of gas.

(a) 45 (b) 47 (c) 49 (d) 51

41. 28 g of a N₂ gas occupies 10 ltr volume at 2.46 atm pressure. Identify the temperature.

	5	1	
(a) 300 K		(b)	320 K

(d) 280 K (c) 340 K

- **42.** A gas occupies 1.5 ltr, volume at 75 cm Hg pressure. At the same temperature, what will be the volume of gas at 50 cm, Hg pressure?
 - (a) 1.25 ltr (b) 3.25 ltr (c) 4.25 ltr (d) 2.25 ltr
- **43.** A mixture of gases at 760 mm Hg contains 65% N_2 , $15\% O_2$ and $20\% CO_2$ by volume, then partial pressure of each gas in mm is (a) 494, 114, 252 (b) 494, 224, 152
 - (c) 494, 114, 152 (d) None of these
- 44. 0.45 g of a gas having mole weight is 60 and 0.22 g of another gas has 44 mole weight. The total pressure on these gases is 75 cm Hg, then partial pressure of another gas is
 - (a) 30 cm of Hg(b) 20 cm of Hg
 - (c) 10 cm of Hg(d) 40 cm of Hg
- **45.** If the density of a gas A is 1.5 times that of B then the molecular mass of A is M. The molecular mass of B will be

(a)	1.5 M	(b)	$\frac{M}{1.5}$
(c)	3M	(d)	$\frac{M}{3}$

46. A certain mass of a gas occupies a volume of 2 ltr at STP. Keeping the pressure constant at what temperature would the gas occupy a volume of 4 ltr? (a) 546°C (b) 273°C

(4)	0.00	(0)	-10 0
(c)	100°C	(d)	50°C

48

47. 8.2 L of an ideal gas weighs 9.0 g at 300 K and 1 atm pressure. The molecular mass of gas is (1) 01 (h) 27(a) 0

(a) 9 (b)
$$27$$
 (c) 54 (d) 81
. One litre of an unknown gas weighs 1.25 g at N.T.P.

- Which of the following gas pertains to the above data? (b) NO_2 (a) CO_2 (c) N_2 (d) O_2
- **49.** If pressure of a gas contained in a closed vessel is increased by 0.4% when heated by 1°C, what is its initial temperature?
 - (a) 250 K (b) 250°C (c) 2500 K (d) 25°C
- **50.** A football bladder contains equimolar proportions of H_2 and O_2 . The composition by mass of the mixture effusing out of punctured football is in which ratio (H₂) $: O_2)?$

(a)
$$1:4$$
 (b) $2\sqrt{2}:1$ (c) $1:2\sqrt{2}$ (d) $4:1$

51. At low pressure compressibility factor is equal to:

(a)
$$\left(1 - \frac{a}{RTV}\right)$$
 (b) $\left(1 - \frac{RTV}{a}\right)$
(c) $\left(1 + \frac{a}{RTV}\right)$ (d) $\left(1 + \frac{RTV}{a}\right)$

52. If a mixture containing 3 moles of hydrogen and 1 mole of nitrogen is converted completely into ammonia, what will be the ratio of initial and final volume under the same temperature and pressure?

(a) 3 : 1 (b) 1:3 (c) 2:1(d) 1:2

- **53.** SO_2 at STP contained in a flask was replaced by O_2 under identical conditions of pressure, temperature and volume. Then the weight of O_2 will be of SO_2 ? (b) one fourth
 - (a) half
 - (d) four times (c) twice
- 54. According to Charle's law, (a) $\left(\frac{dV}{dT}\right)_{P} = k$ (constant) (b) $\left(\frac{dV}{dT}\right)_{P} = P$
 - (c) $\left(\frac{dV}{dT}\right)_P = V$ (d) $\left(\frac{dV}{dT}\right) = T$
- 55. A sample of gas at 35°C and 1 atm pressure occupies a volume of 3.75 ltr. At what temperature should the gas be kept if it is required to reduce the volume to 3 ltr at the same pressure?
 - (a) −26.6°C (b) 0°C

(c)
$$3.98^{\circ}$$
C (d) 28° C

- 56. Equal weights of methane and hydrogen are mixed in an empty container at 25°C. The fraction of total pressure exerted by hydrogen is
 - (b) 8/9 (a) 1/2(c) 16/19 (d) 1/9
- **57.** The best vaccum so far attained in laboratory is 10^{-10} mm of Hg. The number of molecules of gas remain per cm³ at 20°C in this vaccum is
 - (a) 3.29×10^4 molecules
 - (b) 3.29×10^5 molecules
 - (c) 3.29×10^6 molecules
 - (d) 3.29×10^7 molecules
- 58. A hydrocarbon contains 10.5 g of carbon per gm of H. One litre vapours of hydrocarbon at 127°C and 1 atm pressure weighs 2.8 g. The molecular formula of hydrocarbon is

(a) C_6H_8 (b) C_7H_8 (c) C_5H_{12} (d) C_8H_4

59. A 0.5 dm³ flask contains gas A and 1 dm³ flask contains gas B at the same temperature. If density of $A = 3 \text{ g/dm}^3$ and that of B = 1.5 g/dm³ and the molar mass of A = 1/2of B, the ratio of pressure exerted by gases is

(a)
$$\frac{P_A}{P_B} = 2$$
 (b) $\frac{P_A}{P_B} = 1$
(c) $\frac{P_A}{P_B} = 4$ (d) $\frac{P_A}{P_B} = 3$

60. 120 g of an ideal gas of molecular weight 40 are confined to a volume of 20 ltr at 400 K. What is the pressure of gas is?

(a)	490 atm	(b) 4.92 atm
< >		

- (c) 2236 atm (d) 22.4 atm
- 61. A cylinder contains acetylene gas at 27°C and 4.05 M Pa. The pressure in the cylinder after half the mass of gas is used up and the temperature that has fallen to 12°C will be
 - (a) 4.05 M Pa (b) 2.025 M Pa (c) 3.84 M Pa (d) 1.92 M Pa

- 62. The weight of 350 mL of a diatomic gas at 0°C and 2 atm pressure is 1 g. The weight in g of one atom at NTP is
 - (a) 2.64×10^{-23} g (b) 2.64×10^{-22} g (c) 5.28×10^{-23} g (D) 0.82×10^{-22} g
- 63. Oxygen is present in a litre flask at a pressure of $7.6 \times$ 10^{-10} mm of Hg. The number of oxygen molecules in the flask at 0°C is

(a) 2.7×10^9 molecules (b) 2.7×10^{10} molecules

- (c) 2.7×10^{11} molecules (d) 2.7×10^{12} molecules
- 64 The r.m.s. velocity of hydrogen at 27°C, R = 8.314 J mol⁻¹ K⁻¹ is
 - (a) 1.934 m/s (b) 19.34 m/s
 - (c) 193.4 m/s (d) 1934 m/s
- 65. Temperature at which R.M.S. speed of O_2 is equal to that of neon at 300 K is
 - (a) 280 K (b) 480 K
 - (d) 180 K (c) 680 K
- 66. The most probable velocity of a neutron at 20°C is nearby
 - (a) 220 m/s (b) 2200 m/s
 - (c) 22200 m/s (d) 22 m/s
- 67. The R.M.S. speed of the molecules of a gas of density 4 kg m⁻³ and pressure 1.2×10^5 N m⁻² is (a) 120 m s^{-1} (b) 300 m s^{-1}
 - (c) 600 m s^{-1} (d) 900 m s⁻¹
- 68. The R.M.S. velocity of a gas whose each molecule weighs 10^{-12} g and at temperature 27°C is (a) 0.70 cm/s(b) 0.35 cm/s (c) 0.35 m/s(d) 0.70 m/s
- 69. The average speed of an ideal gas molecule at 27°C is 0.3 m sec^{-1} . The average speed at 927°C is
 - (a) 0.15 m sec^{-1} (b) 0.6 m sec^{-1}
 - (c) 1.2 m sec^{-1} (d) 0.6 cm sec^{-1}
- 70. The temperature at which CO_2 has the same R.M.S. speed to that of O_2 at S.T.P. is/are
 - (a) 375.38 K (b) 102.38 °C
 - (c) 275.38 K (d) 202.38 °C
- 71. The temperature at which the most probable speed of CO₂ molecules be twice as that of 50°C is

(a)	200°C	(b)	1292 K
(c)	100°C	(d)	646 K

72. What is the total translational and rotational energy of 1 mole of oxygen at 300 K?

(a) 6235.5 J (b) 623.25 J

(c)	62.	.325 J		(d)	6.23	25.
			-			-

73. The kinetic energy of N molecules of O_2 is x Joule at -123°C. Another sample of O₂ at 27°C has a kinetic energy of 2 x. The later sample contains molecules of O₂.

(a) N (b) N/2(c) 2 N (d) 3 N

74. The average kinetic energy in joules of molecules in 8.0 gm of methan at 27°C is

3.32 Physical Chemistry-I for JEE (Main & Advanced)

(a) 6.21×10^{-20} J/molecule

- (b) 6.21×10^{-21} J/molecule
- (c) 6.21×10^{-22} J/molecule
- (d) 3.1×10^{-22} J/molecule
- **75.** The ratio of rates of diffusion of CO_2 and SO_2 at the same pressure and temperature is

(a) 4 : •	/11	(b)	11:4
		~ ~	

(c) $1:4$	(d)	1:	Ć
-----------	-----	----	---

- **76.** 20 L of SO_2 diffuses through a porous partition in 60 seconds. Volume of O2 diffuse under similar conditions in 30 seconds will be
 - (a) 12.14 L (b) 14.14 L
 - (c) 18.14 L (d) 28.14 L
- 77. Three footballs are respectively filled with nitrogen, hydrogen and helium. If the leaking of the gas occurs with time from the filling hole, then the ratio of the rate of leaking of gases $(r_{N_2}: r_{H_2}: r_{H_e})$ from three footballs (in equal time interval) is
 - (a) $(1:\sqrt{14}:\sqrt{7})$ (b) $(\sqrt{14}:\sqrt{7}:1)$

(c) $(\sqrt{7}:1:\sqrt{14})$ (d) $(1:\sqrt{7}:\sqrt{14})$

- **78.** NH_3 and SO_2 gases are being prepared in two corners of a laboratory. The gas that will be detected first in the middle of the laboratory is
 - (a) NH_2 (b) SO_2
 - (c) Both at the same time(d) Cannot determine
- **79.** 10 mL of gaseous hydrocarbon on combustion gives 40 mL of CO_2 and 50 mL of H_2O . The hydrocarbon is
- (a) C_4H_6 (b) C_4H_8 (c) C_8H_{10} (d) C_4H_{10} 80. The volume of oxygen required for complete oxidation of 2 ltr of methane at NTP is

 - (a) 12.25 L (b) 4 L (c) 1 L (d) 3 L
- 81. LPG is a mixture of *n*-butane and iso-butane. The vol-
- ume of oxygen needed to burn 1 kg of LPG at NTP would be
 - (a) 2240 L (b) 2510 L
 - (c) 1000 L (d) 500 L
- **82.** The viscosity of a which liquid is the maximum?

(a) Water	(b)	Glycol
-----------	-----	--------

(c)	Acetone	(d)	Ethanol
-----	---------	-----	---------

- 83. Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of the total pressure exerted by methane is
 - (a) 1/3 (b) 1/2
 - (c) 2/3(d) (1/3) (273/298)
- 84. Helium atom is two times heavier than a hydrogen molecule. At 298 K, the average kinetic energy of a helium atom is
 - (a) Two times that of a hydrogen molecules
 - (b) Same as that of a hydrogen molecules
 - (c) Four times that of a hydrogen molecules
 - (d) Half that of a hydrogen molecules
- **85.** The compressibility of a gas is more than unity at STP. Therefore,

- (a) $V_m > 22.4 L$ (b) $V_m < 22.4 L$ (c) $V_m = 22.4 L$ (d) $V_m \ge 44.8 L$
- 86. If two moles of an ideal gas at 546 K occupies a volume of 44.8 ltr, the pressure must be

(a) 2 atm (b) 3 atm (c) 4 atm (d) 1 atm

- 87. At STP, the order of root mean square velocity of molecules of H₂, N₂, O₂ and HBr is:
 - (a) $H_2 > N_2 > O_2 > HBr$ (b) $HBr > O_2 > N_2 > H_2$
 - (c) $HBr > H_2 > O_2 > N_2$ (d) $N_2 > O_2 > H_2 > HBr$
- **88.** The density of a gas at 27° C and 1 atm is *d*. Pressure remaining constant at which of the following temperatures will its density become 0.75 d?
 - (a) 20°C (b) 30°C (c) 400 K (d) 300 K
- 89. At 27°C the ratio of R.M.S velocities of ozone to oxygen is

(a)
$$\sqrt{3/5}$$
 (b) $\sqrt{4/3}$

- (c) $\sqrt{2/3}$ (d) 0.25
- **90.** A real gas most closely approaches the behaviour of an ideal gas at
 - (a) 15 atm and 200 K (b) 1 atm and 273 K
 - (c) 0.5 atm and 500 K (d) 15 atm and 500 K
- 91. At STP, 2.8 ltr of hydrogen sulphide were mixed with 1.6 ltr of sulphur dioxide and the reaction occurred according to the equation,

 $2H_2S(g) + SO_2(g) \longrightarrow 2H_2O(l) + 3S(s)$ Which of the following shows the volume of the gas remaining after the reaction?

- (b) 0.4 ltr of H_2 (g) (a) $0.2 \text{ ltr of } SO_2(g)$
- (c) 1.2 ltr of H_2S (g) (d) 1.2 ltr of SO_2 (g)
- 92. The rates of diffusion of SO₃, CO₂, PCl₃ and SO₂ are in the following order:
 - (a) $PCl_3 > SO_3 > SO_2 > CO_2$
 - (b) $CO_2 > SO_2 > PCl_3 > SO_3$
 - (c) $SO_2 > SO_3 > PCl_3 > CO_2$
 - (d) $CO_2 > SO_2 > SO_3 > PCl_3$
- 93. A closed vessel contains equal number of nitrogen and oxygen molecules at pressure of P mm. If nitrogen is removed from the system, then the pressure will be (d) P^2 (a) *P* (b) 2P (c) P/2
- 94. The rate of diffusion of methane at a given temperature is twice that of gas X. The molecule weight of X is (a) 64.0 (b) 32.0 (c) 4.0 (d) 8.0
- 95. The ratio, $\frac{\text{R.M.S velocity of SO}_2}{\text{R.M.S velocity of He}}$, of sulphur dioxide

and helium gases at 30°C is equal to

- (b) 0.25 (c) 0.10 (d) 8 (a) 4
- 96. A certain volume of argon gas (Mol. Wt. 40) requires 45 s to effuse through a hole at a certain pressure and temperature. The same volume of another gas of unknown molecular weight requires 60 s to pass through the same hole under the same conditions of temperature and pressure. The molecular weight of the gas is (a) 53 (b) 35 (c) 71 (d) 120

- **97.** A chemist has synthesised a greenish yellow gaseous compound of chlorine and oxygen and finds that its density is 7.71 g/L at 36°C and 2.88 atm. Then the molecular formula of the compound will be
- (a) ClO_3 (b) ClO_2 (c) ClO (d) Cl_2O_2
- **98.** When a gas is expanded at constant temperature,
 - (a) the pressure decreases.
 - (b) the kinetic energy of the molecules remains the same.
 - (c) the kinetic energy of the molecules decreases.
 - (d) the number of molecules of the gas decreases.
- **99.** At what temperature will the total K.E. of 0.3 mol of He be the same as the total K.E. of 0.40 mol of Ar at 400 K
 - (a) 533 K (b) 400 K (c) 346 K (d) 300 K
- 100. If molecules of the gas are spherical of radius 1 Å, the volume occupied by the molecules in 1 mol of a gas is:
 (a) 22400 mL
 (b) 22.4 L
 - (c) 2.52 mL (d) 4.22 mL

LEVEL II

- 1. The drain cleaner, Drainex contains small bits of aluminum which react with caustic soda to produce dihydrogen. What volume of dihydrogen at 20°C and one bar will be released when 0.15g aluminum reacts?
 - (a) 200.4 mL (b) 102.5 mL
 - (c) 101.25 mL (d) 405.0 mL
- **2.** A mixture of dihydrogen and dioxygen at one bar pressure contains 20% by weight of dihydrogen. Calculate the partial pressure of dihydrogen.
 - (a) 0.8 bar (b) 0.4 bar (c) 1.6 bar (d) 3.2 bar
- **3.** How much time would it take to distribute one Avogadro number of wheat grains, if 10¹⁰ grains are distributed in each second?
 - (a) 4×10^2 year (b) 9×10^6 year
 - (c) 6×10^4 year (d) 2×10^6 year
- **4.** What will be the pressure exerted by a mixture of 3.2 g of methane and 4.4 g of carbon dioxide contained in a 9 dm³ flask at 27°C?

(a)	8.314 Pa	(b)	8.314×10^2 Pa
(c)	2×10^2 Pa	(d)	8.314×10^4 Pa

- (c) 2×10^2 Pa (d) 8.314×10^4 Pa 5. 34.05 mL of phosphorus vapour weighs 0.0625 g at
- 546 °C and 0.1 bar pressure. What is the molar mass of phosphorus?
 - (a) 1247.7 g (b) 1147.0 g
 - (c) 1047 g (d) None of these
- **6.** A student forgot to add the reaction mixture to the round bottom flask at 27°C but instead he/she placed the flask on the flame. After a lapse of time, he realised his mistake and using a pyrometer he found the temperature of the flask was 477°C. What fraction of air would have been expelled out?

- 7. The circulation of blood in human body supplies O_2 and releases CO_2 . The concentration of O_2 and CO_2 is variable but on the average, 100 mL blood contains 0.02 g of O_2 and 0.08 g of CO_2 . The volume of O_2 and CO_2 at 1 atm and at body temperature of 37°C, assuming 10 ltr blood in human body, would be
 - (a) 2 ltr, 4 ltr (b) 1.5 ltr, 4.5 ltr
 - (c) 1.59 ltr, 4.62 ltr (d) 3.82 ltr, 4.62 ltr
- 8. When 2 g of a gas 'A' is introduced into an evacuated flask kept at 25°C, the pressure is found to be 1 atm. If 3 g of another gas 'B' is then added to the same flask, the total pressure becomes 1.5 atm. Assuming ideal gas behaviour, calculate the ratio of molar masses $M_A : M_B$ (a) 1:3 (b) 1:4 (c) 4:1 (d) 3:1
- **9.** 5 mL of a gaseous hydrocarbon was exposed to 30 mL of O₂. The resultant gas, on cooling is found to measure 25 mL, of which 10 mL was absorbed by NaOH and the remainder by pyrogallol. All measurements are made at constant pressure and temperature. The molecular formula of the hydrocarbon is

(a) C_2H_2 (b) C_3H_8 (c) C_2H_4 (d) C_2H_6

- 10. A gaseous compound X contained 44.4% C, 51.9% N and 3.7% H. Under like conditions 30 cm³ of X diffused through a pinhole in 25 sec and the same volume of H_2 diffused in 4.81 sec. The molecular formula of X is
 - (a) C_2H_2N (b) $C_2H_4N_2$
 - (c) $C_2H_2N_2$ (d) $C_4H_2N_2I_2$.
- 11. The density of the gaseous mixture (He and N_2) is 10

 $\frac{10}{22.4}$ g/ltr at NTP. What is the percentage composition

of He and N_2 by volume in this mixture respectively?

- (a) 75%, 25% (b) 25%, 75%
- (c) 30%, 70% (d) 40%, 60%
- 12. A gas bulb containing air is connected to an open limb manometer at 27°C and at 750 mm Hg. Assuming that initially the level of Hg in the both limbs were same. The bulb was heated to 77°C, what will be difference in the levels of Hg in two limbs? (Assuming the volume difference of the gas produced is negligible at higher temperature).

(a)	7.5 cm Hg	(b)	8 cm Hg
(c)	6 cm Hg	(d)	12.5 cm Hg

13. In the following graph of Maxwell-Boltzmann distribution of molecular velocities

Which of the following is the correct order of temperature?

(a) $T_1 < T_2 < T_3$	(b) $T_3 < T_2 < T_1$
(c) $T_2 < T_1 < T_3$	(d) None of these

14. CH_4 gas is collected over water vapour having total pressure = 735 torr and temperature = 29°C. If the pressure of water vapour is 30 at 29°C temperature, the applied pressure of dry methane gas is

(a)	605 torr	(b)	205 torr
$\langle \rangle$	105 1	(1)	705 4

(c)	40	5 tc	orr		(d)	705	torr
				-			

- **15.** What is the density of oxygen gas at 1.0 atm. pressure and 27°C temperature?
 - (a) 0.8 g L^{-1} (b) 1.3 g L^{-1}
 - (c) 1.8 g L^{-1} (d) 2.3 g L^{-1}
- 16. The van der Waal's constant 'b' of a gas is $4\pi \times 10^{-4}$ L/mol. How near can the centres of the two molecules approach each other?

 $[\text{Use}: N_A = 6 \times 1023]$

(a)
$$10^{-7}$$
 m (b) 10^{-10} m

(c) 10^{-11} m (d) 10^{-9} m

17. A box of 1L capacity is divided into two equal compartments by a thin partition which are filled with 2 g H₂ and 16g CH₄ respectively. The pressure in each compartment is recorded as P atm. The total pressure when partition is removed will be

(a)
$$P$$
 (b) $2P$ (c) $P/2$ (d) $P/4$

18. A 2.24 L cylinder of oxygen at N.T.P. is found to develop a leakage. When the leakage was plugged, the pressure dropped to 570 mm of Hg. The number of moles of gas that escaped will be

(a) 0.025	(b)	0.050
-----------	-----	-------

(0) 0.075 (u)) 0.075	(d)	0.09
---------------	---------	-----	------

19. An open vessel containing air is heated from 27°C to 127°C. The fraction of air originally present which goes out of it is

(a) 3/4 (b) 1/4 (c) 2/3 (d) 1/8

20. At a constant pressure, what should be the percentage increase in the temperature in Kelvin for a 10% increase in volume

(a) 10% (b) 20% (c) 5% (d) 50%

21. Assuming that O_2 molecule is spherical in shape with radius 2Å, the percentage of the volume of O_2 molecules to the total volume of gas at S.T.P. is

(a) 0.09% (b) 0.9% (c) 0.009% (d) 0.045%

22. The mass of molecule *A* is twice that of molecule *B*. The root mean square velocity of molecule *A* is twice that of molecule *B*. If two containers of equal volume have same number of molecules, the ratio of pressure P_A/P_B will be

(a) 8:1 (b) 1:8 (c) 4:1 (d) 1:4

- **23.** Calculate the compressibility factor for CO_2 , if one mole of it occupies 0.4 ltr at 300 K and 40 atm. Comment on the result.
 - (a) 0.40, CO₂ is more compressible than ideal gas.
 - (b) 0.65, CO₂ is more compressible than ideal gas.

(c) 0.55, CO₂ is more compressible than ideal gas.

- (d) 0.62, CO₂ is more compressible than ideal gas.
- 24. On the surface of the Earth at 1 atm pressure, a balloon filled with H_2 gas occupies 500 mL. This volume 5/6 of its maximum capacity. The balloon is left in air. It starts rising. The height above which the balloon will burst if temperature of the atmosphere remains constant and the pressure decreases 1 mm for every 100 cm rise of height is

- (c) 126.67 m (d) 100 m
- **25.** 11 moles N_2 and 12 moles of H_2 mixture reacted in 20 litre vessel at 800 K. After equilibrium was reached, 6 mole of H_2 was present. 3.58 ltr of liquid water is injected in equilibrium mixture and resultant gaseous mixture suddenly cooled to 300 K. What is the final pressure of gaseous mixture? Negative vapour pressure of liquid solution. Assume (i) all NH₃ dissolved in water, (ii) no change in volume of liquid and (iii) no reaction of N_2 and H_2 at 300 K.

N₂: 11 moles
$$T = 800 \text{ K}$$
 N₂H₂ $T = 300 \text{ K}; P = ?$
H₂: 12 moles $V = 20 \text{ L}$ NH₃(aq) solution

Initial conditiion

26. Two closed vessel *A* and *B* of equal volume containing air at pressure P_1 and temperature T_1 are connected to each other through a narrow open tube. If the temperature of one is now maintained at T_1 and other at T_2 (where $T_1 > T_2$) then what will be the final pressure?

(a)
$$\frac{T_1}{2P_1T_2}$$
 (b) $\frac{2P_1T_2}{T_1 + T_2}$
(c) $\frac{2P_1T_2}{T_1 - T_2}$ (d) $\frac{2P_1}{T_1 + T_2}$

27. A balloon containing 1 mole air at 1 atm initially is filled further with air till pressure increases to 4 atm. The initial diameter of the balloon is 1 m and the pressure at each stage is proportion to diameter of the balloon. How many number of moles of air added to change the pressure from 1 atm to 4 atm?

28. What is the density of wet air with 75% relative humidity at 1 atm and 300 K? Given : vapour pressure of H₂O is 30 torr and average molar mass of air is 29 g mol⁻¹.
(a) 1.614 g/L
(b) 0.96 g/L

29. Calculate minimum number of balloons each of volume 82.1 L required to lift a mass of 1 kg to a height of 831 m. Given : molar mass of air = 29 g/mol, temperature is constant at 290 K and mass of each balloons is 40 g. [Use $e^{-0.1} = 0.9$, pressure at sea level = 1 atm, acceleration due to gravity (g) = 10 m/s²].

(a) 10 (b) 20 (c) 25 (d) 50

1. Match the columns:

Column I		Column II	
(A)	T_c/P_c	(P)	Ζ
(B)	T_c/V_c	(Q)	a/Rb
(C)	T_B	(R)	8b/ <i>R</i>
(D)	T_i/T_B	(S)	$8a/81Rb^2$

2. Four different gases and their Van der Waal's constant are given below.

Gas	a in atm L ² mol ⁻²	b in L/mol
A_2	1.5	0.05
<i>B</i> ₂	2.0	0.08
C_2	4.2	0.025
D_2	5.0	0.1

	Column I Column II					
(A)	Gas having highest intermolecular force of attraction.	(P)	A_2			
(B)	Gas having smallest size of mol- ecules.	(Q)	<i>B</i> ₂			
(C)	Gas that can't be liquefied at 90 K.	(R)	C_2			
(D)	Gas resembles with ideal gas at the boiling point of water	(S)	D_2			

3.

	Column I		Column II
(A)	At definite volume and temperature total pres- sure of gas.	(P)	Changes with the change in temperature.
(B)	The ratio of densities of moist air to the den- sity of dry air at the definite temperature and pressure.	(Q)	Changes with change in num- ber of moles.
(C)	The value of $\frac{p_{\rm H_2O}}{p^{\circ}_{\rm H_2O}}$.	(R)	Ideal gases
(D)	Dalton's law of partial pressures.	(S)	Lesser than one.

4.

Column I		Column II		
(A)	Не	(P)	Greatest $u_{\rm rms}$ at temper- ature T	
(B)	H ₂	(Q)	Lowest $u_{\rm rms}$ at temperature T	

(C)	CO ₂	(R)	Highest value of C_P/C_V at temperature T
(D)	SO ₂	(S)	Vibrational energies equal to $4RT$ per mole at temperature T

Comprehension

Passage #1 (Ques. 5 to 7)

Measuring the molar mass of gases is an important application of the ideal gas law. Before the development of mass spectroscopy, the molar mass of many substances were determined using the ideal gas law. The ideal gas law is used to calculate the number of moles in a sample of known mass then molar mass can be found.

- **5.** What is the molar mass of a gas if 0.495 g sample of the gas occupies 127 mL at 754 torr pressure and 98°C temperature?
 - (a) 120 (b) 160 (c) 190 (d) 200
- 6. Calculate the molar mass of the gas that has a density of 0.714 g/L at STP
 - (a) 12 (b) 16 (c) 20 (d) 26
- 7. A 3 ltr container is rated to hold a gas at a pressure not higher than 100 atm. What is the maximum number of moles of the gas that container can hold at 27°C?
 - (a) 13.6 (b) 11.4 (c) 12.2 (d) 15.8

Passage # 2 (Qus. 8 to 10)

Real gas obey the equation of state PV = nRT under conditions of low pressure and high temperature. In general, the most easily liquefiable gases, like CO₂, SO₂ and ammonia show much longer deviations from ideal behaviour than gases like H₂, N₂, Or, O₂. This can be seen from the compressibility factor (Z) – pressure diagram for various gases. The deviation from ideal behaviour is attributed to two factors: (i) The volume occupied by gas molecules is not negligible in comparison to the total volume of gas and (ii) The intermolecular forces between gas molecules are significant. To account for these deviation, the Van der Waals equation has been proposed.

- **8.** The Van der Waals constant "a" for SO₂, ethylene, HCl and CO₂ are 6.71, 4.47, 13.67 and (3.59) L² atm mol⁻² respectively. The order of liquefaction of the gases in increasing order will be:
 - (a) $CO_2 < HCl < C_2H_4 < SO_2$
 - (b) $SO_2 < C_2H_4 < HCl < CO_2$
 - (c) $C_2H_2 < SO_2 < CO_2 < HCl$
 - (d) $HCl > SO_2 > C_2H_4 > CO_2$
- 9. The critical compressibility factor Z_C for O_2 is 0.308 and its critical pressure and critical volume are 50.1 atm and 7.8×10^{-2} ltr mol⁻¹ respectively. The Boyle temperature of O_2 is (in deg K)

(a) 348.6 (b) 215.4 (c) 154.5 (d) 521.4

10. At extremely low pressures, the Van der Waals equation for one mole of a gas may be expressed as

(a)
$$PV = RT - \frac{a}{V}$$
 (b) $P(V-b) = RT$
(c) $(P+a)(V-b) = RT$ (d) $PV = 1.2RT$

Integer-Types Questions

- 11. One mole of nitrogen gas at 0.8 atm takes 38 seconds to diffuse through a pinhole, whereas one mole of an unknown compound of xenon with fluorine XeFx at 1.6 atm takes 57 seconds to diffuse through the same hole. Find out the value of x.
- 12. 9 mL of a gaseous mixture consisting of a gaseous compound A and just sufficient amount of oxygen required for complete combustion, yielded on burning, 4 mL of CO_2 , 6 mL of water vapour and 2 mL of N_2 , all volumes measured at the same temperature and pressure. If compound A contained only C, H and N, how many volumes of oxygen are required for complete combustion.
- 13. 0.9 gm of an organic compound (Mol. wt. = 90) contains carbon, hydrogen and oxygen requires 224 mL of oxygen at STP for complete combustion. After the combustion, the gases occupy 556 mL at STP. On passing it through KOH solution, the volume reduced to 112 mL. If the compound has formula $C_XH_XO_{2X}$, then find out the value of X.
- 14. At 400 K, the root mean square (rms) speed of a gas X (Mol. wt. = 40) is equal to the most probable speed of gas Y at 60 K. What is the molecular weight of the gas *Y*?
- **15.** Two flasks *A* and *B* have equal volumes. A is maintained at 300 K and *B* at 600 K. While *A* contains H_2 gas, *B* has an equal mass of CH_4 gas. Assuming ideal behaviour for the both gases, find the ratio of (uav)A: (uav)B.
- 16. A flask of capacity of 1 L containing NH_3 at 1atm and 25°C. A spark is passed through until all the NH_3 is decomposed in N_2 and H_2 . Calculate the pressure of gases left at 25°C after the reaction.
- 17. A compound exists in the gaseous phase both as monomer (A) and dimer (A₂). The atomic weight of A is 48. In an experiment 96 g of compound was confined in vessel of volume 33.6 L and heated to 273°C. Calculate the pressure developed if the compound exists as dimer to the extent of 50% by weight under these conditions.
- 18. The compressibility factor for nitrogen at 330 K and 800 atm is 1.90 and at 570 K and 200 atm is 1.10 A certain mass of N_2 occupies a volume of 1 dm³ at 330 K and 800 atm. Volume occupied by same quantity of N_2 gas at 750 K and 200 atm in litre is
- **19.** If the slope of Z (compressibility factor) v/s p curve is constant (slope = $\pi/492.6 \text{ atm}^{-1}$) at a particular temperature (300 k) and very high pressure, then calculate diameter of the molecules in Å, (Given $N_A = 6.0 \times 10^{23}$, R = 0.0821 atm lit mol⁻¹ K⁻¹)

- **20.** Two moles of a gas are confined to a 5 ltr flask at 27°C. Calculate its pressure using Van der Waals equation. For ammonia a = 6.25 atm lit⁻² mol⁻² and b = 0.037 lit mol⁻¹.
- **21.** What will be the temperature difference needed in a hot air balloon to lift 1.0 kg weight? Assume that the volume of balloon is 100 m³, the temperature of atmosphere is 25°C and pressure is 1.0 atm. Average molar mass of air is 29 amu.
- **22.** 4 g of an ideal gas was introduced into a bulb of volume of 0.821 dm³ at certain pressure, *P* and temperature *T*. The above bulb was placed in a thermostat maintained at temperature (T + 125) K of 0.8 gm of the gas was left off to keep the original pressure. Calculate the pressure in atmospheres. [Molecular weight of the gas is 40 g mole⁻¹ and R value is 0.0821 lit-atm- K⁻¹ mol.
- **23.** Pressure in a bulb dropped from 2000 to 1500 mm in 47 minute when the oxygen leaked through a small hole. The bulb was then completely evacuated. A mixture of oxygen and another gas of molecular weight 79 in molar ratio 1:1 at a total pressure of 4000 mm was introduced. Find the molar ratio of two gases remaining in the bulb after a period of 74 minute.
- 24. The composition of the equilibrium mixture, (Cl₂ → 2Cl) which is attained at 1200°C, is determined by measuring the rate of effusion through a pinhole. It is observed that at 1.80 mm Hg pressure, the mixture effuses 1.16 times as fast a krypton effuses under the same conditions. Calculate the fraction of chlorine molecules dissociated into atoms. (At. wt. of Kr = 84).
- **25.** A mixture of ethane and ethene occupies 40 ltr at 1.00 atm and at 400 K. The mixture reacts completely with 130 gm of O_2 to produce CO_2 and H_2O . Assuming ideal behavior, calculate the mole fraction of C_2H_4 and C_2H_6 in the mixture?
- **26.** The total pressure of a mixture of H_2 and O_2 is 1.00 bar. The mixture is allowed to react to form water which is completely removed to leave only pure at a pressure of 0.35 bar. Assuming ideal gas behavior and that all pressure measurements we made under the same conditions of temperature and volume, calculate the composition of the original mixture.
- 27. The degree of dissociation is 0.4 at 400 K and 1.0 atm for the gaseous reaction $PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$. Assuming ideal behavior of all gases, calculate the density of equilibrium mixture at 400 K and 1.0 atm. (P = 31, Cl = 35.5)
- **28.** The pressure exerted by 12 gm of an ideal gas at t°C in a vessel of volume *v* ltr is one atm. When the temperature is increased by 10°C at the same volume the pressure increased by 10%. Calculate the temperature *t* and volume *v*? (Mol. Wt. = 120)
- **29.** The density of the vapour of a substance at 1 atm pressure and 500 K is 0.36 kg m⁻³. The vapour effuses through a small hole at a rate of 1.33 times faster than oxygen under the same condition.

Determine (i) molecular weight, (ii) molar volume, (iii) compression factor (Z) of the vapour and (iv) which forces among the gas molecules are dominating: the attractive or the repulsive?

- **30.** At 27°C, H_2 gas is leaked through a tiny hole into a vessel for 20 mts. Another unknown gas, at the same temperature and pressure, as that of H_2 , is leaked through the same hole for 20 mts. After the effusion of the gases the mixture exerts a pressure of 6 atm. If H_2 is 0.7 mol and volume of vessel is 3 ltr, calculate molecular weight of the unknown gas.
- **31.** 1 ltr flask contains O_2 at 0°C and 7.6 × 10⁻¹⁰ mm Hg. Calculate the number of molecules of O^2 present.
- 32. Assuming that N2 molecules is spherical and its radius is 2×10^{-10} metre, calculate the empty space in one mole of N2 gas at NTP.
- **33.** A glass bulb of 1 ltr contains 2×1021 molecules of nitrogen exerting pressure of 7.57×103 Nm⁻². Calculate (a) the root mean square velocity and temperature of the gas molecules and (b) Umpv of gas molecules at this temperature.
- **34.** Two grams of gas A are introduced in an evacuated flask at 25°C. The pressure of the gas is 1 atm. Now 3 g of another gas B is introduced in the same flask, the total pressure becomes 1.5 atm. Calculate (a) the ratio of molecular mass MA and MB and (b) volume of the vessel, if A is O².
- 35. 1 ltr O² and 1 ltr H² are taken in a vessel of 2 ltr at STP. These gases are made to react to form water. Calculate (a) moles and weight of water formed (b) amount of gas left in the vessel and (c) total pressure of the gas at 100°C.
- **36.** A long rectangular box is filled with chlorine (at.wt. 35.45) which is known to contain only ³⁵Cl and ³⁷Cl. If the box can be divided by a partition and the two types of chlorine molecules put in the two compartiments respectively, calcualte where should the partition be made if the pressure on both side are to be equal.
- **37** 3.6 g of an ideal gas was injected into a bulb of internal volume of 8 L at pressure *P* atm and temp *T* K. The bulb was then placed in a thermostat maintained at (T + 15)K 0.6 g of the gas was let off to keep the original pressure. Find *P* and *T* if molecular weight of is 44.
- **38.** A toy balloon originally held 1.0 g of He gas and had a radius 10 cm. During the night, 0.25 g of the gas effused from the balloon. Assuming ideal gas behaviour, under these constant P and T conditions, what was the radius of the balloon the next morning?
- **39.** If a scuba diver is to remain submerged for 1 hr, what pressure must be applied to force sufficient air into the tank to be used. Assume 0.5 dm³ of air per breath at standard atmospheric pressure, a respiration rate of 38 breaths per minute, and a tank capacity of 30 dm³.
- **40.** While resting, the average human male uses 0.2 dm^3 of O_2 per hour at STP for each kg of body mass. Assume

that all this O_2 is used to produce energy by oxidising glucose in the body. What is the mass of glucose required per hour by a resting male having mass 60 kg. What volume, at STP of CO_2 would be produced?

- **41.** 12 g N₂, 4 g H₂ and 9 g O₂ are put into a 1 ltr container at 27°C. What is the total pressure?
- **42.** 1.0×10^{-2} kg of hydrogen and 6.4×10^{-2} kg of oxygen are contained in a 10×10^{-3} m³ flask at 473 K. Calculate the total pressure of the mixture. If a spark ignities the mixture, what will be the final pressure?
- **43.** At room temperature, NH_3 gas at one atm and HCl gas at "P" atm are allowed to effuse through identical pin holes to the opposite ends of a glass tube 1 m long and uniform cross section. A white deposit is observed at a distance of 60 cm from the HCl end. What is P.
- 44. A gas mixture contains equal number of molecules of N_2 and SF_6 , some of it is passed through a gaseous effusion apparatus. Calculate how many molecules of N_2 are present in the product gas for every 100 molecules of SF_6 .
- **45.** Two gases NO and O_2 were introduced at the two ends of a 1 mtr long tube simultaneously (tube of uniform cross section). At what distance from NO gas end, brown fumes will be seen?
- **46.** At 20°C two balloons of equal volume and porosity are filled to a pressure of 2 atm, one with 14 kg N_2 and other with 1 kg H_2 . The N_2 balloon leaks to a pressure

of $\frac{1}{2}$ atm in one hour. How long will it take for H₂ balloop to leak to a pressure of $\frac{1}{2}$ atm?

So to leak to a pressure of
$$\frac{1}{2}$$
 atm?

- **47.** Pure O_2 diffuses through an aperture in 224 sec, whereas mixture of O_2 and another gas containing 80% O_2 diffuses from the same in 234 sec. What is molecular weight of the gas?
- **48.** A space capsule is filled with neon gas 1.00 atm and 290 K. The gas effuses through a pin hole into outer space at such a rate that the pressure drops by 0.3 torr/ sec.
 - (a) If the capsule were filled with ammonia at the same temperature and pressure, what will be the rate of pressure drop?
 - (b) If the capsule were filled with 30.0 mol % helium, 20.0 mol% oxygen and 50.0 mol% nitrogen at a total pressure of 1.00 atm and a temperature of 290 K, what will be the corresponding rate of pressure drop?
- **49.** Show that the height at which the atmospheric pressure is reduced to half its value is given by $h = \frac{0.693RT}{Mg}$.
- **50.** Calculate the pressure of a barometer on an aeroplane which is at an altitude of 10 km. Assume the pressure to be 101.325 kPa at sea level and the mean temperature 243 K. Use the average molar mass of air (80% N_2 , 20% O_2).
3.38 Physical Chemistry-I for JEE (Main & Advanced)

- **51.** An iron cylinder contains helium at a pressure of 250 kPa and 27°C. The cylinder can withstand a pressure of 1×10^6 Pa. The room in which cylinder is placed catches fire. Predict whether the cylinder will blow up before it metls or not. [Melting point of cylinder = 1800 K]
- **52.** Determine the molar mass of a gas if its pressure is to fall to one-half of its value in a vertical distance of one metre at 298 K.
- 53. The time taken for a given volume of gas E to effuse through a hole is 75 sec. Under identical conditions, the same volume of a mix of CO and N_2 (containing 40% of N_2 by volume) is effused in 70 sec. Calculate
 - (i) the relative molecular mass of E, and
 - (ii) the R.M.S velocity (in ms^{-1} units) of E at 0°C.
- 54. At what temperature in °C, the Urms of SO₂ is equal to the average velocity of O_2 at 27°C?
- **55.** The density of CO at 273 K and 1 atm is 1.2504 kg m⁻³. Calculate (a) root mean square speed, (b) the average speed and (c) most probable speed.
- **56.** Calculate the temperature values at which the molecules of the first two members of the homologous series C_nH_{2n+2} will have the same R.M.S speed as CO_2 gas at 770 K. The normal b.p. of *n*-butane is 273 K. Assuming ideal gas behaviour of *n*-butane up to this temperature, calculate the mean velocity and the most probable velocity of its molecules at this temperature.
- **57.** Calculate the temperature at which the root mean square velocity, average velocity and most probable velocity of oxygen gas are all equal to 1500 ms^{-1} .
- **58.** The compressibility factor for N_2 at $-50^{\circ}C$ and 800 atm pressure is 1.95 and at 100°C and 200 atm, it is 1.10. A certain mass of nitrogen occupied 1 ltr at $-50^{\circ}C$ and 800 atm. Calculate the volume occupied by the same quantity of N_2 at 100°C and 200 atm.
- **59.** At 273.15 K and under a pressure of 10.1325 MPa, the compressibility factor of O_2 is 0.927. Calculate the mass of O_2 necessary to fill a gas cylinder of 100 dm³ capacity under the given conditions.
- **60.** The Van der Waals constant for O_2 are a = 1.36 atm L^2 mol⁻² and b = 0.0318 L mol⁻¹. Calculate the temperature at which O_2 gas behaves, ideally for longer range of pressure.
- 61 Show that at low densities, the Van der Waals equation $\left(p + \frac{a}{V_m^2}\right)(V_m b) = RT$

and the Dieterici's equation $P(V_m - b) = RT \exp(-a/RTV_m)$ given essential the same value of p.

- **62.** Calculate from the Van der Waal's equation, the temperature at which 192 g of SO₂ will occupy a volume of 10 dm³ at 15 atm pressure. [a = 6.7 atm L² mol², b = 0.0564 L mol⁻¹]
- **63.** Calculate the pressure of 15 mol neon at 30°C in a 12 ltr container using

- (i) the ideal gas equation
- (ii) the Vander Waal's equation

 $[a = 0.2107 \text{ atm } \text{L}^2 \text{ mol}^2, b = 0.0171 \text{ L mol}^{-1}]$

- **64.** What will be the temperature difference needed in a hot air balloon to lift 1.0 kg of mass? Assume that the volume of balloons is 100 m³, the temperature of ambient air is 25°C, the pressure is 1 bar, and air is an ideal gas with an average molar mass of 29 g mol⁻¹ (hot and cold both).
- **65.** One mole of a non-linear triatomic gas is heatted in a closed rigid container from 500°C to 1500°C. Calculate the amount of energy required if vibrational degree of freedom become effective only above 1000°C.
- **66.** The respiration of a suspension of yeast cells was measured by determining the decrease in pressure of the gas above the cell suspension. The apparatus was arranged so that the gas was confined to a constant volume, 16 cm^3 and the entire pressure change was caused by uptake of oxygen by the cells. The pressure was measured in a monometer, the fluid of which had density of 1.034 g/cm^3 . The entire apparatus was immersed in a thermostat at 37° C. In a 30 mts observation period, the fluid in the open side of the manometer dropped 37 mm. Neglecting the solubility of oxygen in the yeast suspension, compute the rate oxygen consumption by the cells in mm3 of O₂ (STP) per hour.
- **67.** In a basal metabolism measurement timed at 6 mts, a patient exhaled 52.5 L of air measured over water at 20°C. The vapour pressure of water at 20°C is 17.5 torr. The barometric pressure was 750 torr. The exhaled air analysed 16.75 volume % oxygen and the inhald air 20.32 volume % oxygen. Both on a dry basis neglecting any solubility of the gases in water and any difference in the total volumes of inhaled and exhaled air, calculate the rate of oxygen consumption by the patient in mL (STP) per minute.
- 68. The temperature and the relative humidity of air are 20°C and 80% on a certain day. Find the fraction of the mass of water vapour that will condense if the temperature falls to 5°C. Saturation vapour pressures at 20°C and 5°C are 17.5 mm and 6.5 mm of Hg respectively.
- **69.** 6.0 g of He having average velocity 4×10^2 ms⁻¹ is mixed with 12.0 g of Ne²⁰ having the same average velocity. What is the average kinetic energy per mole in the mixture?
- **70.** Molar volume of He at 10.1325 MPa and 273 K is 0.011075 times its molar volume at 101.325 kPa. Calculate radius of He atom assuming negligible 'a'.
- 71. The viral equation for ethane gas is given by PV = RT + BP. At 0°C, B = -0.1814 L/mol. Calculate volume of one mole of ethane at 10 atm, and 'a'.
- **72.** Pressure of He gas confined in a steel chamber drops from 4.0 to 1.0 atmosphere in 4 hrs due to diffusion through a pin hole in the steel chamber. If an equimolar mixture of He and methane gas at 20 atmosphere and the same temperature are confined in the same cham-

ber, what will be the parital pressure of He and methane after 1 hr. Assume rate of diffusion to be linear function of gas pressure and inverse function of square root of molar masses.

73. A 1 ltr flask containing NH_3 (g) at 2.0 atmosphere and 300 K is connected to another 800 mL flask containing HCl (g) at 8.0 atmosphere and 300 K by means of a narrow tube of negligible volume and gases were allowed to react quantitatively as

 $NH_3(g) + HCl(g) \longrightarrow NH_4Cl(s); DH = -43 \text{ kJ/mol}$ If heat capacity of HCl (g) CV is 20 JK⁻¹ mol⁻¹, determine final pressure inside the flask assuming negligible heat capacity of flask and negligible volume of solid NH₄Cl.

- **74.** Calculate the value of σ , λ , Z_1 and Z_{11} for nitrogen molecules at 25°C and at pressure of 10⁻³ mm Hg. Given that b for nitrogen is 39.1 cm³ mol⁻¹.
- 75. The mean free path of the molecule of a certain gas at 300 K is 2.6×10^{-5} m. The collision diameter of the molecule is 0.26 nm. Calculate
 - (a) pressure of the gas, and
 - (b) number of molecules per unit volume of the gas.
- 76. There are two vessels of same consisting same number of moles of two different gases at same temperature. One of the gas is CH₄ and the other is unknown X. Assuming that all the molecules of X are under random motion whereas in CH₄ except one all are stationary. Calculate Z_1 for X in terms of Z_1 of CH₄. Given that the collision diameter for both gases are same and $(U_{\rm rms})x$

$$=\frac{1}{\sqrt{6}}(U_{\rm av})_{\rm CH_2}$$

- 77. A mixture of CH_4 and O_2 is used as an optimal fuel if O_2 is present in thrice the amount required theoretically for combustion of CH₄. Calculate number of effusion steps required to convert a mixture containing one part of CH₄ in 193 parts mixture (parts by volume). If calorific value (heat evolved when 1 mole is burnt) of CH_4 is 100 cal/mole and if after each effusion 90% of CH_4 is collected, find out what initial mole of each gas in initial mixture required for producing 1000 cal of energy after processing?
 - [Given $(0.9)^5 = 0.6$]
- 78. A closed vessel of known volume containing known amount of ideal gaseous substance 'A' was observed for variation of pressure with temperature. The expected graph was to be like (i) However actual observations revealed the graph to be like. (ii) The deviation was attributed to polymerisation of gas molecules as $nA(g) \Longrightarrow An(g)$. If it is known that the above reac
 - tion gave only 50% yield,
 - (a) calculate the ratio of $\frac{n_{\text{experiment}}}{n_{\text{theoritical}}}$ (where nexp.=

Total number of gaseous mole actually present ntheoritical = Total number of mole original taken) (b) Find the value of *n* to which the gas A is being polymerised into.

79. During one of his adventures, Chacha Chaudhary got trapped in an underground cave which was sealed 200 yrs back. The air inside the cave was poisonous, having some amount of carbon monoxide in addition to O_2 and N_2 . Sabu, being huge could not enter into the cave, so in order to save Chacha Choudhary he started sucking the poisonous air out of the cave by mouth. Each time, he filled his lunge with cave air and exhaled it out in the surroundings. In the mean time, fresh air from surrounding effused into the cave till the pressure was again one atmosphere. Each time Sabu sucked out some air, the pressure in the cave dropped to half of its initial value of one atmosphere.

If the initial sample of air from the cave contained 5% by volume CO. If the safe level of CO in the atmosphere is less than 0.001% by volume, how many times does Sabu need to such out air in order to save Chacha Choudhary.

- **80.** A closed vertical cylinder is divided into two parts by a frictionless piston, each part contains 1 mole of air. At 27°C, the volume of the upper part is four times than that of the lower part. Calculate the temperature when volume of the upper part will be three times that of the lower part.
- 81. A water gas mixture has the composition by volume of 50% H₂, 40% CO and 5% CO₂.
 - (i) Calculate the volume in litres at STP of the mixture which on treatment with excess steam will contain 5 ltrs of H₂. The stoichiometry for the water gas shift reaction is
 - $CO + H_2O \rightarrow CO_2 + H_2$
 - (ii) Find the density of the water gas mixture in kg/m^3 .
 - (iii) Calculate the moles of the absorbants KOH, $Ca(OH)_2$ and ethanolamine. $HO - CH_2 - CH_2 - NH_2$ required respectively to collect the CO₂ gas obtained.
- 82. A gas present in a container connected to frictionless, weightless piston operating always at one atmosphere pressure such that it permits flow of gas outside (with no adding of gas). The graph of n vs T (Kelvin) was plotted and was found to be a straight line with coordinates of extreme points as (300, 2) and (200, 3). Calculate:

3.40 Physical Chemistry-I for JEE (Main & Advanced)

- (i) relationship between n and T
- (ii) relationship between V and T
- (iii) Maxima or minima value of 'V'
- 83. Find the critical constant (Pc, Vc and Tc) in terms of A and B. Also find compressibility factor (z) for the following equation of state:

$$PV = RT - \frac{A}{V} + \frac{2B}{V^2}$$

where A and B are constant, P = pressure and V = molar volume.

- 84. Calculate the mass of mercury in a uniform column 760 mm high and 1.00 cm^2 in cross-sectional area. Is there any change in
 - (a) mass and
 - (b) pressure of column of same height but with 2.00 cm² cross-sectional area is taken? (Density of Hg = 13.6 g/cm^3)
- 85. The diameters of a bubble at the surface of a lake is 4 mm and at the bottom of the lake is 1 mm. If atmospheric pressure is 1 atm and the temperature of the lake water and the atmosphere are equal, what is the depth of the lake? (The density of lake water and Hg are 1 gm/mL and 13.6 gm/mL respectively. Also neglect the contribution of pressure due to surface tension).
- 86. At room temperature, following reaction goes to completion:

$$2NO + O_2 \longrightarrow 2NO_2 \longrightarrow N_2O_4$$

Dimer N₂O₄ at 262 K is solid. A 250 mL flask and a 100 mL flask are separated by a stop cock. At 300 K, the nitric oxide in the large flask exerts a pressure of 1.053 atm and the smaller one contains O_2 at 0.789 atm. The gases are mixed by opening the stop cock and after the end of the reaction, the flasks are cooled to 220 K. Neglecting the vapour pressure of dimer. Find out the pressure and composition of gas remaining at 220 K (Assume gases behave ideally).

- 87. 1 mole of N_2 and 3 moles of H_2 are mixed in 8.21 ltr container at 300 K to form NH₃. If equilibrium average molecular mass was found to be 34/3 gram then find partial pressure of each component.
- 88. One litre flask contains air, water vapour and a small amount of liquid water at a pressure of 200 mm-Hg. If this is connected to another 1 ltr evacuated flask, what will be the final pressure of the gas mixture at equilibrium? Assume the temperature to be 50°C. Aqueous tension at $50^{\circ}C = 93$ mm-Hg.
- **89.** A 500 mL bulb is filled with CH_4 at a pressure of 1 atm and oxygen at a pressure of 4 atm at 27°C. The mixture is then exploded, when the reaction $CH_4 + 2O_2 \longrightarrow$ $CO_2 + 2H_2O(l)$ occurs. Calculate the pressure if the final temperature is 27°C. Aqueous tension at 27°C is 26.7 mm.

- **90.** What is the difference in the density of dry air at 1 atm and 25°C and moist air with 50% relative humidity under the same condition? The vapour pressure of water at 25°C is 23.7 Torr and dry air has 75.5% N₂ and 24.5% O₂.
- 91. A sample of butane gas C_4H_{10} of unknown mass is contained in a vessel of unknown volume V at 25°C and a pressure of 760 mm-Hg. To this vessel, 8.6787 g of neon gas is added in such a way that no butane is lost from the vessel. The final pressure in the vessel is 1920 mm-Hg at the same temperature. Calculate the volume of the vessel and the mass of butane.
- **92.** A mixture of CO and CO_2 is found to have a density of 1.50 g/ltr at 30°C and 730 mm. Calculate the composition of mixture.
- 93. The pressure in a bulb dropped from 2000 to 1500 mm of mercury in 47 minutes when the contained oxygen leaked through a small hole. The bulb was then completely evacuated. A mixture of oxygen and another gas of molecular weight 79 in the molar ratio of 1 : 1 at a total pressure of 4000 mm of mercury was introduced. Find the molar ratio of the two gases remaining in the bulb after a period of 74 minutes.
- 94. 1 mole of CCl₄ vapours at 77°C occupies a volume of 35.0 L. If vander waal's constants are $a = 20.39 \text{ L}^2$ atm mol^{-2} and b = 0.1383 L mol^{-1} , calculate compressibility factor Z under, (a) low pressure region and (b) high pressure region.
- 94. One mole of nitrogen gas at 0.8 atm takes 38 sec to diffuse through a pinhole, whereas one mole of an unknown compound of xenon with fluorine at 1.6 atm takes 57 sec to diffuse through the same hole. Determine the molecular formula of the compound.
- **95.** Which of the following statements is correct?
 - (a) He diffuses at a rate of 8.65 times as much as CO does
 - (b) He escapes at a rate of 2.65 times as fast as CO does
 - (c) He escapes at a rate of 4 times as CO_2 does
 - (d) He escapes at a rate 4 times as fast as SO_2 does
- **96.** The pressure of an ideal gas is increased isothermally at 298 K in a 5 L vessal from 1 bar to 2 bar. The correct option (s) is /are

(a)
$$\Delta G = 2.7 \text{ kJ/mol}$$
 (b) $\Delta G = 1.7 \text{ kJ/mol}$

- (c) $\Delta S_{\text{gas}} < 0$ (d) $\Delta S_{\text{surroundings}} = 0$ 97. One mole triatomic vapours of an unknown substance effuses $\frac{4}{3}$ times faster than 1 mole O₂ under same con-

ditions. If the density of unknown vapours at pressure *P* and temperature *T* is *d*, which of the following holds true for the unknown substance?

- (a) $d_{\text{N.T.P}} = 0.8035 \text{ g/l}$
- (b) Z(atomic number) = 6
- (c) $Z(\text{compress ibility factor}) = \frac{18P}{dRT}$
- (d) Vapour density = 9

Gaseous State 3.41

PREVIOUS YEARS' QUESTIONS OF JEE (MAIN & ADVANCED)

1. The number of moles per litre in the equation PV = nRTis expressed by [AIEEE-02]

PV

RT

[AIEEE-02]

(a)
$$\frac{P}{RT}$$
 (b)

(c) $\frac{RT}{PV}$ (d) None of these

2. The correct value of *R* is

(a) R = 0.082 litre atm (b) $R = 8.314 \times 10^7$ erg $-K^{-1}$ mol⁻¹

- (c) $R = 2K^{-1} \text{ mol}^{-1}$
- (d) None of the above
- As the temperature is raised from 20°C to 40°C, the average kinetic energy of neon atoms changes by factor of which of the following ? [AIEEE-04]

(a)
$$1/2$$
 (b) $\sqrt{(313/293)}$

- (c) 313/293 (d) 2 4. In Van der Waal's equation of state of the gas law, the
 - constant *b* is a measure of [AIEEE-04] (a) intermolecular repulsions
 - (b) intermolecular attraction
 - (b) intermolecular attraction
 - (c) volume occupied by the molecules(d) intermolecular collisions per unit volume
- 5. The ratio between the R.M.S. velocity of H_2 at 50 K
- and that of O_2 at 800 K is [JEE 1996] (a) 4 (b) 2

(c) 1 (d) 1/4

X mL H₂ gas effuses through a hole in a container in 5 sec. The time taken for the effusion of the same volume of the gas specified below under identical conditions is
 [JEE 1996]

(a)	10 sec, He	(b)	20 sec, 9	O_2
(a)	25 see CO	(\mathbf{A})	55 000	CO

- (c) 25 sec, CO (d) 55 sec, CO_2
- 7. One mole of N₂O₄ (g) at 300 K is kept in a closed container under 1 atm. It is heated to 600 K when 20% by mass of N₂O₄ (g) decomposes to NO₂ (g). The resultant pressure is [JEE 1996]
 (a) 1.2 atm

(a)	1.2 aum	(0)	2.4 aum
(c)	2.0 atm	(d)	1.0 atm

- 8. One way of writing the equation for state for real gases
 - is, $P\overline{V} = RT\left[1 + \frac{B}{\overline{V}} + \dots\right]$ where *B* is constant. [JEE 1997]

Derive an approximate expression for 'B' in terms of Van der Waals constant 'a' and 'b'.

9. According to Graham's law, at a given temperature the

ratio of the rates of diffusion $\frac{r_A}{r_B}$ of gases *A* and *B* is given by [JEE 1997]

(a)
$$\frac{P_A}{P_B} \left(\frac{M_A}{M_B}\right)^{1/2}$$
 (b) $\left(\frac{M_A}{M_B}\right) \left(\frac{P_A}{P_B}\right)^{1/2}$

(c)
$$\frac{P_A}{P_B} \left(\frac{M_B}{M_A}\right)^{1/2}$$
 (D) $\frac{M_A}{M_B} \left(\frac{P_B}{P_A}\right)^{1/2}$

- 10. An evacuated glass vessel weighs 50.0 g when empty, 148.0 g when filled with a liquid of density 0.98 g /mL and 50.5 g when filled with an ideal gas at 760 mm Hg at 300 K. Determine the molecular weight of the gas.
- 11. Using Van der Waals equation, calculate the constant "*a*" when 2 moles of a gas confined in a 4 ltr flask exerts a pressure of 11.0 atm at a temperature of 300 K. The value of "*b*" is 0.05 ltr mol⁻¹. [JEE 1998]
- 12. One mole of N₂ gas at 0.8 atm takes 38 sec to diffuse through a pin hole, whereas one mole of an unknown compound of Xenon with F at 1.6 atm takes 57 sec to diffuse through the same hole. Calculate the molecular formula of the compound. [JEE 1999]
- **13.** A gas will approach ideal behaviour at [JEE 1999]
 - (a) low temperature and low pressure
 - (b) low temperature and high pressure
 - (c) low pressure and high temperature
 - (d) high temperature and high pressure
- 14. The compressibility of a gas is less than unity at STP. Therefore [JEE 2000] (a) $K \ge 22.4$ [b) $K \le 22.4$ [c)
 - (a) $V_m > 22.4 L$ (b) $V_m < 22.4 L$ (c) $V_m = 22.4 L$ (d) $V_m = 44.8 L$
- **15.** The R.M.S. velocity of hydrogen is $\sqrt{7}$ times the R.M.S. velocity of nitrogen. If *T* is the temperature of the gas, [JEE 2000] (a) $T(H_2) = T(N_2)$ (B) $T(H_2) > T(N_2)$

(c)
$$T(H_2) < T(N_2)$$
 (D) $T(H_2) = \sqrt{7} T(N_2)$

- 16. Calculate the pressure exerted by one mole of CO_2 gas at 273 K, if the Van der Waals constant a = 3.592 dm⁶ atm mol⁻². Assume that the volume occupied by CO_2 molecules is negligible. [JEE 2000]
- 17. The compression factor (compressibility factor) for one mole of a Van der Waals gas at 0°C and 100 atmosphere pressure is found to be 0.5. Assuming that the volume of a gas molecule is negligible, calculate the Van der waals constant 'a'. [JEE 2001]
- 18. The density of the vapour of a substance at 1 atm pressure and 500 K is 0.36 Kg m⁻³. The vapour effuse through a small hole at a rate of 1.33 times faster than oxygen under the same condition. [JEE 2002]
 (a) Determine
 - (i) Molecular weight ; (ii) Molar volume ; (iii) compressibility factor (z) of the vapour
 - (iv) Which forces among the gas molecules are dominating the attractive or the repulsive?
 - (b) If the vapour behaves ideally at 1000 K, determine the average translational K.E. of a molecule.
- **19.** The average velocity of gas molecules is 400 m/sec. Calculate its (R.M.S) velocity at the same temperature.

[JEE 2003]

- 20. Positive deviation from ideal behaviour takes place because of [JEE 2003]
 - (a) molecular interaction between atoms and

$$\frac{PV}{nRT} > 1$$

(b) molecular interaction between atoms and
$$\frac{PV}{nRT} < 1$$

(c) finite size of atoms and $\frac{PV}{nRT} > 1$

(d) finite size of atoms and
$$\frac{PV}{nRT} < 1$$

21. For a real gas obeying Van der Waal's equation a graph is plotted between PV_m (y-axis) and P(x-axis) where V_m is molar volume. Find y-intercept of the graph.

[JEE 2005]

DT7

22. The ratio of the rate of diffusion of helium and methane under identical condition of pressure and temperature will be [JEE 2005]
(a) 4 (b) 2 (c) 1 (d) 0.5

- a = Van der Waal's constant for pressure correction
- b = Van der Waal's constant for volume correction Pick the incorrect statement only. [JEE 2006]
- Pick the incorrect statement only. [JEE 2006]
 (a) For gas A, if a = 0, the compressibility factor is directly proportional to pressure.
- (b) For gas B, if b = 0, the compressibility factor is directly proportional to pressure.
- (c) For gas $C, a \neq 0, b \neq 0$, it can be used to calculate a and b by giving lowest P value and its intercept with Z = 1.
- (d) Slope for all three gases at high pressure (not shown in graph) is positive.

	LEVEL I								
1. (b) 11. (d) 21. (a) 31. (c) 41. (a) 51. (a) 61. (d) 71. (b) 81. (b)	2. (c) 12. (a) 22. (a) 32. (b) 42. (d) 52. (c) 62. (a) 72. (a) 82. (b)	3. (b) 13. (c) 23. (a) 33. (d) 43. (c) 53. (a) 63. (b) 73. (a) 83. (c)	4. (d) 14. (b) 24. (c) 34. (a) 44. (a) 54. (a) 64. (d) 74. (b) 84. (b)	5. (b) 15. (c) 25. (c) 35. (d) 45. (b) 55. (a) 65. (b) 75. (a) 85. (a)	 6. (b) 16. (c) 26. (a) 36. (a) 46. (b) 56. (b) 66. (a) 76. (b) 86. (a) 	7. (a) 17. (b) 27. (b) 37. (a) 47. (b) 57. (c) 67. (b) 77. (a) 87. (a)	8. (a) 18. (a) 28. (a) 38. (a) 48. (c) 58. (b) 68. (b) 78. (a) 88. (c)	9. (b) 19. (a) 29. (a) 39. (c) 49. (a) 59. (c) 69. (b) 79. (d) 89. (c)	10. (b) 20. (b) 30. (b) 40. (b) 50. (a) 60. (b) 70. (a) 80. (b) 90. (c)
91. (a)	92. (d)	93. (c)	94. (a)	95. (b)	96. (c)	97. (b)	98. (a)	99. (a)	100. (c)
	LEVEL I	[
1. (a) 11. (a) 21. (a)	2. (a) 12. (d) 22. (a)	3. (d) 13. (a) 23. (b)	4. (d) 14. (d) 24. (c)	5. (a) 15. (b) 25. (c)	6. (c) 16. (b) 26. (b)	7. (c) 17. (a) 27. (c)	8. (a) 18. (a) 28. (d)	9. (c) 19. (b) 29. (b)	10. (c) 20. (a)

🚫 LEVEL III

1. (A) \rightarrow r; (B) \rightarrow s; (C) \rightarrow q; (D) \rightarrow p 2. (A) \rightarrow s; (B) \rightarrow r; (C) \rightarrow p, q; (D) \rightarrow p, q 3. (A) \rightarrow q; (B) \rightarrow s; (C) \rightarrow p, s; (D) \rightarrow p, q, r 4. (A) \rightarrow r; (B) \rightarrow p; (C) \rightarrow s; (D) \rightarrow q 5. (a) 7. (c) 8. (d) 9. (d) 10. (d) 11. (6) 12. (7 ml) 13. (2) 6. (b) 14. (4) 19. (5 Å) 20. (9) 15. (2) 16. (2 atm) 17. (2 atm) 18. (4) 21. (3) 22. (5 atm) 23. (1.236) 24. (0.138) 25. $(X_{C_{2}H_{6}} = 0.66)$ 26. $(X_{H_{2}} = 0.78)$ 27. (4.46 g/L) 28. (100 K and 0.82 L) 29. (i) [M = 18.1], (ii) $[50.27 \times 10^{-3} \text{ m}^3]$, (iii) [1.225], (iv) [Z > 1 repulsive] 30. $(M = 1033 \text{ g Mol}^{-1})$

31. (2.68×10^{10}) 32. (99.9%) 33. (494.2 m/sec. and 405.26 m/sec.) 34. (a) 1/3 (b) (1.53 lit.) 35. (a) [0.803 gram], (b) [0.71 gram], (c) [1.02 atm] 36. [3.44 : 1] 37. [0.062 atm, 75 K] 38. [r = 9.0856 cm]39. [P = 38 atm]40. [11.999 L] 41. [66.74 atm] 42. $[19.66 \times 10^5 \text{ N/m}^2]$ 43. [*P* = 2.1979atm] 44. [x = 228]45. [50.8 cm] 47. [46.6] 46. [16 min] 48. (a) [3.25 torr/sec.] (b) [0.3387 torr/sec.] 50. [25.027 kPa] 49. [Conceptual] 51. [Blow Up] 52. $[M = 175.133 \text{ kg mole}^{-1}]$ 53. (i) [32.1428 gm/mole], (ii) [460.28 m/s] 54. [236.29°C] 55. (a) [493.03 m/s] (b) [454.259356] (c) [403 m/s] 56. [Conceptual] 57. [2886 K, 3399 K, 4330 K for rms, average, most probable] 58. [3.77 L] 61. [Derivation] 62. $T = 350.5^{\circ}C$ 59. [15.40 kgm] 60. (Conceptual) 63. (i) [31.1 atm] (ii) [31.4 atm] 66. $[0.104 \text{ cm}^3/\text{m}]$ 64. [Conceptual] 65. [4500 R] 68. [0.509] 69. [807.84 J] 67. [280 mL/min.] 70. [134 pm] 71. $[\alpha = 3.77 \text{ bar } L^2 \text{mol}^{-2}]$ 72. [8.4 atm] 73. [10.3 atmosphere] 74. $[314 \text{ pm}, 7.05 \text{ cm}, 6739.4 \text{ sec}^{-1}, 1.09 \times 10^{17} \text{ cm}^{-3} \text{ sec}^{-1}]$ 75. $[530.3 \text{ Pa}, 1.281 \times 10^{23} \text{ m}^{-3}]$ 76. $(Z_1(x) = Z_1(CH_4))$ 77. [5333.3 mole O₂ and 28.78 mole CH₄] 78. (a) [0.625] (b) [n = 4]79. [n = 13]81. (i) [V = 5.263 L], (ii) $[\rho = 0.7 \text{ g/L}]$, (iii) [0.2349 Mole]80. [421.9 K] 82. (i) $\left[n = \frac{-T}{100} + 5 \right]$ (ii) $\left[V = -\frac{RT^2}{100} + 5RT \right]$, (iii) [51.3125 L] 83. $\left[P_C = \frac{A^3}{108B^2}, V_C = \frac{6B}{A}, T_C = \frac{A^2}{6RB} \text{ and } Z = \frac{1}{3} \right]$ 84. (i) [2067.2 g] (ii) This mass would rest on twice the area and exert the same pressure.] 85. [65116.8 cm] 86. $[P_{NO} (left) = 0.221 atm]$ 87. $[P_{N2} = 1.5 \text{ atm}, P_{H2} = 4.5 \text{ atm}]$ 89. [3.0513 atm] 90. $[0.007 \text{ kg m}^{-3}]$ 91. [6.85 L and 6.24 g] 88. [146.5 mm-Hg] 92. [mole % of CO_2 , CO = 67.81%, 32.19%] 93. [1.236 : 1] 94. (a) [0.98], (b) [1.004] 96. (a, c, d) 97. (a, c, d) 95. (b,d) PREVIOUS YEARS' QUESTIONS OF JEE (MAIN & ADVANCED)

 1. (a)
 2. (b)
 3. (c)
 4. (c)
 5. (c)
 6. (b)
 7. (b)
 8. $B = b - \frac{a}{RT}$ 9. (c)

 10. [123]
 11. (6.46 atm ltr² mol⁻²])
 12. [XeF₆]
 13. (c)
 14. (b)
 15. (c)
 16. [0.9922 atm]

 17. [1.253 atm L² mol⁻²]
 12. [XeF₆]
 13. (c)
 14. (b)
 15. (c)
 16. [0.9922 atm]

18. (a) (i) [18.09] (ii) [41.05 L] (iii) [1.224] (iv) [repulsive force] (b) $[2.07 \times 10^{-20} \text{ J molecule}^{-1}]$

19. [434 m/s] 20. (a) 21. [intercept = RT] 22. (b) 23. (b)

Hints and Solutions

C LEVEL I

1. (b)
$$P_A = 2$$
 bar $P_{\text{Total}} = P_A + P_B$ $PV = nRT$
 $P_{\text{Total}} = 3$ bar $P_B = 3 - 2 = 1$ bar $PV = W/M$ RT
 $\frac{P_A M_A}{W_A} = \frac{P_B M_B}{W_B}$ or $\frac{2 \times M_A}{1} = \frac{1 \times M_B}{2}$ or $\frac{M_A}{M_B} = \frac{1}{4}$
or $M_B = 4M_A$
2. (c) $P = \left(\frac{W}{W}\right) \frac{RT}{M_B}$

$$P = \left(\frac{w}{v}\right) \frac{KI}{M}$$
$$\frac{P_1 M_1}{d_1 T_1} = \frac{P_2 M_2}{d_2 T_2} (\because M_1 = M_2)$$

$$\frac{2}{5.46 \times 300} = \frac{1}{d_2 \times 273}$$
$$d_2 = \frac{5.46 \times 300}{2 \times 273} = 3 \text{ gm/dm}^3$$

3. (b) ::
$$PV = nRT$$

 $T = \frac{PV}{nR} = \frac{3.32 \times 5}{4 \times 0.083} = 50 \text{ K}$
4. (d) $PV = nRT$
 $V = \frac{nRT}{P} = \frac{wRT}{MP} = \frac{8.8 \times 0.083 \times 304.1}{44 \times 1} = 5.05 \text{ ltr}$

Gaseous State

3.43

5. (b) From
$$PV = \frac{w}{M}RT = \frac{800}{760} \times \frac{380}{1000} = \frac{0.455}{M} \times 0.0821 \times 300$$

 $= \frac{800}{760} \times \frac{380}{1000} = \frac{0.455}{M} \times 0.0821 \times 300$
6. (b) $\frac{r_{SO_2}}{r_{N_2}} = \sqrt{\frac{M_{N_2}}{M_{SO_2}}} \times \frac{T_{SO_2}}{T_{N_2}} \text{ or } \frac{x}{1.625x} = \sqrt{\frac{28}{64}} \times \frac{773}{T_{N_2}}$
or $T_{N_2} = \sqrt{\frac{28}{64}} \times 773 \times 1.625$
 $= \sqrt{7} \times \frac{773 \times 1.625}{4} = 830 \text{ K}$
7. (a) $\frac{r_{O_2}}{n_{O_2}} = \sqrt{\frac{M_{H_2}}{M_{O_2}}} = \sqrt{\frac{2}{32}} = \frac{1}{4}$
8. (a) $\frac{n_{\text{methane}}}{n_{O_2}} = \frac{w_{CH_4}}{w_{O_2}} \times \frac{M_{O_2}}{M_{CH_4}} = \frac{32}{16} = 2$
 $x_{CH_4} = \frac{2}{3}x_{O_2} = \frac{1}{3}$
 $\therefore P_{O_2} = x_{O_2} \times P_{\text{total}} = \frac{1}{3}P_{\text{total}}$
9. (b) For H_2
 $P_1V_1 = P_2V_2$
 $0.8 \times 0.5 = P_3 \times 1$
 $\therefore P_3 = 0.40 \text{ bar}$
For O_2
 $P_1V_1 = P_4 \times 1$
 $0.7 \times 2 = P_4 \times 1$
 $P_4 = 1.4 \text{ bar}$
 $\therefore P_T = P_3 + P_4 = (0.4 + 1.4) \text{ bar} = 1.8 \text{ bar}$
10. (b) $P_TV = nRT$
 $P_T = \frac{n_TRT}{V}$ $n_T = n_{O_2} + n_{H_2} = \frac{8}{32} + \frac{4}{2} = 2.25$
 $= \frac{2.5 \times 0.083 \times 300}{1} = 56.025 \text{ bar}$
11. (d) For gas $V_{gas} = \frac{nRT}{P}$ (i)
For H₂ $V_{H_2} = \frac{n_{H_2}RT_{H_2}}{P_{H_2}}$ (ii)
From Eqs. (i) and (ii)
 $\frac{2.9 \times 368}{M_{gas}} = \frac{0.184 \times 290}{2}$ (since volume and pressure
of both gases are same)
 $M_{gas} = 40 \text{ g mol}^{-1}$
12. (a) $U_{av} \ll \sqrt{T}$ or $\frac{U_1}{U_2} = \sqrt{\frac{T_1}{T_2}} = \sqrt{\frac{300}{1200}} = \frac{1}{2}$
 $U_2 = 2 \times U_1 = 2 \times 0.3 = 0.6 \text{ m/sec}$

13. (c) Since K.E. = $\frac{1}{2}M u_{\text{rms}}^2 \therefore u_{\text{rms}} = \sqrt{\frac{2E}{M}}$

14. (b)
$$Z < 1$$
 then $V_m < 22.4$
Since, $PV = ZRT$ or $V = \frac{ZRT}{P}$
15. (c) Pcorection $= \frac{an^2}{V^2}$ $P_{ideal} = \left(P + \frac{an^2}{V^2}\right)$
for 1 mole $P_{ideal} = \left(P + \frac{a}{V^2}\right)$
responsible for intermolecular force.
16. (c) At constant P and V, $n_1T_1 = n_2T_2$
 $4 \times T_1 = 3.2 \times (T_1 + 50)$
On solving,
 $T_1 = 200$ K

17. (b) The ratio of $V_{\rm rms}$ of gas at two different temperatures is given by

$$\frac{(V_{\rm rms})_2}{(V_{\rm rms})_1} = \sqrt{\frac{T_2}{T_1}}; (V_{\rm rms})_2$$
$$= \sqrt{\frac{560}{140}} \times V = 2V \because (V_{\rm rms})_1 = V$$

18. (a) Let the volume of O_2 is the mixture be x mL

+ $1/2O_2 \longrightarrow H_2O(l)$ H_2 Initial volume (40 - x)x Final volume (40 - 3x)0 Final volume of $H_2 = 10 \text{ mL}$ (Given) \therefore 40 - 3x = 10; x = 10 mL : initial volume of $H_2 = 30 \text{ mL}$; Initial mole % of $H_2 = \frac{30}{40} \times 100 = 75\%$

19. (a) Ammonia decomposes into N_2 and H_2 completely when a spark is passed through it.

$$NH_3(g) \longrightarrow \frac{1}{2}N_2g + \frac{3}{2}H_2g$$

$$1 \qquad 0 \qquad 0$$

$$0 \qquad \frac{1}{2} \qquad \frac{3}{2}$$

The total pressure of N_2 and H_2 after complete decomposition is given by

$$P_T = P_{N_2} + P_{H_2} = 0.5 + 1.5 = 2 \text{ atm}$$

20. (b) Given:
$$P = (800/760)$$
 atm
 $T = 100 + 273 = 373$ K; $m_{CO_2} = 44$
 $PV = (w/m)$ RT
 $w/V = d = (Pm/RT)$
 $d = \frac{800 \times 44}{760 \times 0.0821 \times 373} = 1.5124$ g litre⁻¹

21. (a)
$$V_{t^\circ} = V_0 + \frac{V_0}{273.15}t$$

Initial

Final

(i)

For every 1°C increase in temperature, the volume of a given mass of an ideal gas increases by a definite

fraction
$$\frac{1}{273.15}$$
 of V_0 .

22. (a)
$$P_1V_1 = P_2V_2$$
 or $1 \times 20 = P_2 \times 50$
or $P_2 = 20 \times \frac{1}{50}$ atm
23. (a) $PV = nRT = \frac{w}{M_w} RT$
or $V = \frac{wRT}{PM_w} = \frac{1 \times 0.0821 \times 350}{1 \times 58} = 0.495 L = 495 mL$
24. (c) $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ or $\frac{740 \times 100}{300} = \frac{740 \times 80}{T_2}$
or $T_2 = 240 \text{ K} = -33^{\circ}\text{C}$
25. (c) $d = \frac{w}{V} = \frac{P \cdot M}{RT} = \frac{1 \times 30}{.0821 \times 273} = 1.34 \text{ gm/L}$
26. (a) Rate of effusion $\approx \frac{1}{\sqrt{d}} \propto P$
 \therefore rate of effusion $\approx \frac{1}{\sqrt{d}} \propto P$
 \therefore rate of effusion $\approx \frac{1}{\sqrt{d}}$
27. (b) $\frac{r_{02}}{r_{12}} = \frac{V_{02}}{V_{12}}$
 $\frac{n_{02}}{r_{12}} = \sqrt{\frac{Mw_{H_2}}{Mw_{02}}}$
or $\frac{4/32}{w/2} = \sqrt{\frac{2}{32}}$ or $\frac{1}{4w} = \frac{1}{4}$ or $w = 1$ g
28. (a) $\frac{r_{S02}}{r_{02}} = \sqrt{\frac{M_w \text{ of } O_2}{M_w \text{ of } SO_2}} = \sqrt{\frac{32}{64}} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}}$
29. (a) Let weight of CO = Weight of N₂ = w g,
 \therefore $n_{CO} = \frac{w}{28}$ and $n_{N_2} = \frac{w}{28}$, Hence $P_{N_2} = P_{CO}$]
30. (b) $V_{rms} = \sqrt{\frac{3RT}{M}}$
31. (c) $V_{avg} = \sqrt{\frac{8RT}{M}}$
32. (b) Given: $T_1 = 300 \text{ K}$, $T_2 = 273 \text{ K}$ (STP)
 $V_1 = 300 \text{ mL} = \left(\frac{300}{1000}\right)$ ltr,
 $P_2 = 1 \text{ atm}$, $P_1 = \left(\frac{730}{760}\right)$ atm, $V_2 = ?$
 \therefore $\frac{RV_1}{T_1} = \frac{P_2V_2}{T_2} \cdot \frac{730 \times 300}{760 \times 1000 \times 300} = \frac{1 \times V_2}{273}$
 \therefore $V_2 = 0.2622 \text{ Ltr} = 262.2 \text{ mL}$
33. (d) $P_1 = 3 \text{ atm}, P_2 = ?$,
 $T_1 = -23 + 273 = 250 \text{ K}$,
 $T_2 = 273 + 30 = 303 \text{ K}$
 $\frac{P_1}{T_1} = \frac{P_2}{T_2} \Rightarrow \frac{3}{350} = \frac{P_2}{303} \Rightarrow P_2 = \frac{3 \times 303}{250} = 3.64 \text{ atm}.$

34. (a) Given:
$$P = \left(\frac{400}{760}\right)$$
 atm, $T = 100 + 273 = 373$ K
 $d = \frac{PM_w}{RT} \Rightarrow d = \frac{400 \times 44}{760 \times 0.0821 \times 373} = 0.75 \text{ g L}^{-1}$
35. (d) $d = \frac{PM_w}{RT} \Rightarrow 1.40 = \frac{780}{760} \times M_w}{0.0821 \times 250}$
 $\Rightarrow M_w = 28$ \therefore gas is N₂
36. (a) Given: $P = 16$ atm, $V = 9$ ltr, $T = 300$ K, $M_{wCH_4} = 16, R = 0.08$ atm K⁻¹
 $PV = \frac{W}{M_w} \times R \times T$
 $16 \times 9 = \frac{W}{16} \times 0.08 \times 300, w = 96 \text{ g}$
37. (a) Molecular weight of SO₂ = 64
Volume occupied by 1 mole SO₂ gas = 22.4 ltr
Density of SO₂ = $\frac{64}{22.4} = 2.86 \text{ g L}^{-1}$
38. (a) Given: $W_{N_2} = 7 \text{ g}$,
 $P = \left(\frac{750}{760}\right)$ atm. $M_{wN_2} = 28$,
 $T = 300$ K
 $\therefore PV = \left(\frac{W}{M_w}\right)RT \Rightarrow$
 $\therefore \frac{750}{760} \times V = \frac{7}{28} \times 0.0821 \times 300$
 $\Rightarrow V = 6.29 \approx 6.3 \text{ ltr}$
39. (c) $PV = \frac{\text{weight}}{M_w} RT$ or $P \times 6 = \frac{5}{207.3} \times 0.0821 \times (273 + 80)$
or $P = \frac{5 \times 0.0821 \times 353}{6 \times 207.3} = 0.11 \text{ atm}$
40. (b) Using gas equation
 $M_w = \frac{wRT}{PV} = \frac{5.75 \times 0.0821 \times (273 + 55)}{0.940 \times 3.5} = 47.0$
41. (a) Given: $w_{N_2} = 28 \text{ g}$, $P = 2.46 \text{ atm}$, $M_{wN_2} = 28$,
 $V = 10 \text{ ltr}$
 $\therefore PV = \left(\frac{W}{M_w}\right)RT$
or $2.46 \times 10 = \left(\frac{28}{28}\right) \times 0.0821 \times T$
or $T = 300$ K
42. (d) According to Boyle's law
 $P_1V_1 = P_2V_2$ or $1.5 \times 75 = 50 \times V_2$
or $V_2 = \frac{1.5 \times 75}{50} = 2.25 \text{ ltr}$

43. (c)
$$P'_{N_2} = 760 \times \frac{65}{100} = 494 \text{ mm},$$

 $P'_{O_2} = 760 \times \frac{15}{100} = 114 \text{ mm},$
 $P'_{CO_2} = 760 \times \frac{20}{100} = 152 \text{ mm},$
44. (a) Moles of first gas $= n_1 = \frac{w_1}{m_1} = \frac{0.45}{60} = 0.0075$
Moles of second gas $= n_2 = \frac{w_2}{m_2} = \frac{0.22}{44} = 0.0050$
So the total moles $= n_1 + n_2 = 0.0075 + 0.0050 = 0.0125$

So partial pressure of second gas $P_2 = \frac{0.0050}{0.0125} \times 75$ = 30 cm of Hg 45. (b) $d_A = 1.5 d_B$

$$d = \frac{PM_{w}}{RT}$$

$$\frac{d_{A}}{d_{B}} = \frac{M_{w_{A}}}{M_{w_{B}}} = 1.5 = \frac{M}{M_{w_{B}}}$$
or
$$M_{w_{B}} = \frac{M}{1.5}$$
46. (b)
$$\frac{V_{2}}{V_{1}} = \frac{T_{2}}{T_{1}}$$
or
$$\frac{4}{2} = \frac{T_{2}}{273}$$
or
$$T_{2} = 2 \times 273 \text{ K}$$
or
$$T_{2} = 273^{\circ}\text{C}$$
47. (b)
$$PV = \frac{\text{wt.}}{M_{w}}RT$$

$$1 \times 8.2 = \frac{9}{M_{w}} \times 0.0821 \times 300$$
or
$$M_{w} = 27$$
48. (c) N.T.P. means
$$T = 0^{\circ}\text{C} = 273 \text{ K}$$

$$P = 1 \text{ atm.}$$

$$PV = \frac{\text{wt.}}{M_{w}}RT$$
or
$$M_{w} = \text{wt.} \times \frac{RT}{PV} = \frac{1.25 \times 0.0821 \times 273}{1 \times 1}$$

$$M_{w} = 28 \text{ gm mol}^{-1}$$
So gas is N₂
49. (a)
$$P_{1} = P$$

$$P_{2} = P + 0.004 P = (1.004)P$$

$$T_{1} = T \text{ K}$$

$$T_{2} = (T + 1)\text{ K}$$

$$\frac{T_{2}}{T_{1}} = \frac{P_{2}}{P_{1}}$$

or
$$\frac{T+1}{T} = \frac{1.004P}{P} = 1.0044$$

or $T = 250 \text{ K}$
50. (a) $\frac{r_{\text{H}_2}}{r_{0_2}} = \sqrt{\frac{M_{w_{0_2}}}{M_{w_{\text{H}_2}}}} = \frac{n_{\text{H}_2}}{n_{0_2}} = \frac{w_{\text{H}_2}/2}{w_{0_2}/32}}$
or $\sqrt{\frac{32}{2}} = 4 = \frac{w_{\text{H}_2}}{w_{0_2}} \times \frac{32}{2}$
or $\frac{w_{\text{H}_2}}{w_{0_2}} = \frac{4}{16} = 1:4$
51. (a) at low pressure
 $\left(P + \frac{a}{V^2}\right)V = RT$
 $PV + \frac{a}{V} = RT$
 $Z + \frac{a}{VRT} = 1$
 $\therefore Z = 1 - \frac{a}{VRT}$
52. (c) $N_2 + 3H_2 \longrightarrow 2NH_3$
 $1 \quad 0 \quad 0 \quad 2$
 $\frac{V_{\text{initial}}}{V_{\text{final}}} = \frac{4}{2} \Rightarrow \frac{2}{1}$
53. SO₂ replaced by O₂
 $P, V, T \Rightarrow$ same
 $n \Rightarrow \text{constant} \quad n_{02} = n_{\text{SO2}}$
 $\frac{w_{02}}{32} = \frac{w_{\text{SO2}}}{64} \quad w_{02} = \frac{1}{2}w_{\text{SO2}}$
54. At constant pressure $V \approx T$
55. (a) $V \approx T$ $\therefore \frac{V_2}{V_1} = \frac{T_2}{T_1}$
 $T_2 = \frac{3}{3.75} \times 3.8 \times 3.8 \Rightarrow 246.4 \text{ K} T_2 = -26.6^{\circ}\text{C}$
56. (b) $P_{n2} \approx n_{\text{H}2} \quad P_{\text{total}} \approx (n_{\text{H}2} + n_{\text{CH}4})$
 $\frac{P_{\text{H}_2}}{P_{\text{total}}} = \frac{10^{-10}}{\pi(2 + w/16} \Rightarrow \frac{8}{9}$
57. $PV = nRT \quad n = \frac{10^{-10}}{760} \times \frac{10^{-3}}{0.082 \times 293}$
Number of molecules
 $= \frac{10^{-10} \times 10^{-3}}{760 \times 0.082 \times 293} \times 6.023 \times 10^{23} = 3.29 \times 10^{6}$
58. (b) $PV = \frac{w}{M_w}RT$
 $M_w = \frac{wRT}{PV} \Rightarrow \frac{2.8 \times 0.082 \times 400}{1 \times 1}$
 $M_w = 91.84 = 92 \quad C_7H_8$

Gaseous State 3.47

59.
$$V_A = 0.5 \text{ dm}^3$$
, $V_B = 1 \text{ dm}^3$
 $d_A = 3 \text{ g/dm}^3$, $d_B = 1.5 \text{ g/dm}^3$
 $M_A = \frac{1}{2}M_B$ $P_A = \frac{d_A RT}{M_A}, P_B = \frac{d_B RT}{M_B}$
 $\frac{P_A}{P_B} = \frac{d_A}{d_B} \times \frac{M_B}{M_A} \Rightarrow \frac{3}{1.5} \times 2 = 4$
60. (b) $P = \frac{3 \times 0.082 \times 400}{20} \therefore P = 4.92 \text{ atm}$
61. (d) $PV = \frac{W}{M_w} RT$ $\frac{P}{wT} = \text{constant}$
 $\frac{R}{w_1 T_1} = \frac{P_2}{w_2 T_2}$ $\frac{4.05}{w \times 300} = \frac{P_2}{\frac{W}{2} \times 285}$
 $P_2 = 1.92 \text{ MPa}$
62 (a) $PV = \frac{W}{M_w} RT$
 $M_w = \frac{wRT}{PV} \Rightarrow \frac{1 \times 0.082 \times 273}{2 \times 0.350} = 32$
The mass of one atom
 $= 16 \text{ anu} \Rightarrow 2.64 \times 10^{-23} \text{ g}$
63. (b) $PV = nRT$
 $n = \frac{PV}{RT} \Rightarrow \frac{7.6 \times 10^{-10}}{760} \times \frac{1}{0.082 \times 273}$
 $n \Rightarrow 0.0446 \times 10^{-12}$
The no. of oxygen molecule = $0.0446 \times 10^{-12} \times N_A$
 $= 2.7 \times 10^{10}$
64. (d) $U_{\text{rms}} = \sqrt{\frac{3RT}{M_w}} \Rightarrow \sqrt{\frac{3 \times 8.314 \times 300}{2 \times 10^{-3}}}$
 $U_{\text{rms}} = 1934 \text{ m/sec.}$
65. (b) $(V_{\text{rms}})_{O_2} = (\sqrt{\frac{3RT}{M}})_{Ne}$
 $\frac{T}{32} = \frac{300}{20} \therefore T = 480 \text{ K}$
66. $U_{\text{mp}} = \sqrt{\frac{2RT}{M}}$
 $= \sqrt{\frac{2 \times 8.314 \times 293}{1.67 \times 10^{-27} \times 6.023 \times 10^{23}}} = 220 \text{ m/sec.}$
67. (b) $U_{\text{rms}} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3P}{4}}$
 $= \sqrt{\frac{3 \times 1.2 \times 10^5}{4}} = 300 \text{ m/sec.}$
68. (b) $U_{\text{rms}} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{32}{10^5} \text{ m/sec.}} \Rightarrow \frac{3.52}{10} \text{ cm/sec.}$

$$\Rightarrow 0.352 \text{ cm/sec.}$$
69. (b) $U_{\text{Avg.}} = \sqrt{\frac{8RT}{\pi M}} \frac{U_{\text{Avg.}}}{0.3} = \sqrt{\frac{1200}{300}}$
 $U_{\text{Avg.}} = 0.6 \text{ m/sec.}$
70. $U_{\text{rms}} = \sqrt{\frac{3RT}{M}} T \propto M$
 $\left(\frac{T}{M}\right)_{\text{CO}_2} = \left(\frac{T}{M}\right)_{\text{O}_2}$
 $\frac{T}{44} = \frac{273}{32} \therefore T = 375.37 \text{ K}$
71. $U_{\text{mp}} = \sqrt{\frac{2RT}{M}}$
 $\frac{u_1}{u_2} = \sqrt{\frac{T}{12}}$
 $\frac{1}{u_2} = \sqrt{\frac{T}{12}}$
 $\frac{1}{u_2} = \sqrt{\frac{T}{12}}$
 $\frac{1}{(2)^2} = \frac{273 + 50}{T_2}$
 $T_2 = 4 \times 323 = 1292 \text{ K}$
72. (a) $E_T = \frac{3}{2}RT, E_R = RT$
 $E_{\text{total}} = \frac{3}{2}RT + RT = \frac{5}{2}RT = \frac{5}{2} \times 300 \times 8.314$
 $= 6235.5 \text{ J}$
73. (a) K.E. $= \frac{3}{2}nRT$ $x = \frac{3}{2} \times \frac{N}{N_A} \times 150 \times R$
 $2x = \frac{3}{2} \times \frac{N'}{N_A} \times 300 \times R \therefore N' = N$
74. (b) K.E. $= \frac{3}{2}nRT$
 $\frac{\text{K.E}}{\text{Molecule}} = \frac{3}{2} \times \frac{8}{16} \times \frac{300 \times 8.314}{N_A}$
 $= 6.21 \times 10^{-21} \text{ J/molecule}$
75. $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}} = \sqrt{\frac{64}{44}} = \frac{4}{\sqrt{11}}$
76. (b) $\frac{V_1}{V_2} \times \frac{t_2}{t_1} = \sqrt{\frac{M_2}{M_1}}$
 $\frac{20}{V_1} \times \frac{30}{60} = \sqrt{\frac{32}{64}}$
 $V_2 = 14.14 \text{ Itr}$
77. (a) $r \approx \frac{1}{\sqrt{M}}$
 $r_{N_2} : r_{H_2} : r_{He} :: \frac{1}{\sqrt{14}} : \frac{1}{\sqrt{14}} : \frac{1}{\sqrt{11}} : \frac{1}{\sqrt{2}}$

78. Rate of diffusion
$$\approx \frac{1}{\sqrt{\text{molecular mass}}}$$

79. (d)
 $C_x H_y + (x + y/4)O_2 \longrightarrow xCO_2 + y/2 H_2O_{1.0} \\ 10x = 40 \\ C_4 H_{10} \end{bmatrix}$
80. $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O_{1.0} \\ x = 4 \\ C_4 H_{10} \end{bmatrix}$
81. (b) $C_4 H_{10} + \frac{13}{2}O_2 \longrightarrow 4CO_2 + 5H_2O_{10} \\ 58 \text{ gm} \frac{13}{2} \times 32_{10} \\ 58 \text{ g CH}_4 \text{ required volume of } O_2 \text{ at} \\ NTP = \frac{13}{2} \times 22.4 \text{ lit}$

1000 g CH₄ required volume of O₂ at NTP

$$= \frac{13}{2} \times \frac{22.4}{58} \times 1000 = 2510 \text{ ltr}$$

82. Extent of intermolecular hydrogen bonding increasing the viscosity.

83. (a)
$$P_{\text{total}} = \frac{3W}{32} \frac{RT}{V} P_{\text{CH}_4} = \frac{W}{16} \frac{RT}{V} \cdot \frac{P_{\text{CH}_4}}{P_{\text{total}}} \Rightarrow \frac{2}{3}$$

84. K.E. $\propto T$
85. (b) $Z = \frac{PV_m}{PV} \cdot \frac{V_m}{22.4} > 1$ $V_m > 22.4 \text{ L}$
86. (a) $PV = nRTP = \frac{2 \times 0.82 \times 546}{44.8}P = 2 \text{ atm}$
87. $U_{\text{rms}} = \sqrt{\frac{3RT}{M_w}}$
88. (c) $P = \frac{dRT}{M_w}$
 $dT = \text{const } d_1T_1 = d_2T_2$
 $d \times 300 = 0.75 \ d \times T_2$

$$T_2 = 100 \times 4 \Rightarrow 400 \,\mathrm{K}$$
89. (c) $U_{\mathrm{rms}} = \sqrt{\frac{3RT}{M_w}} \cdot \frac{(U_{\mathrm{rms}})_{\mathrm{O}_3}}{(U_{\mathrm{rms}})_{\mathrm{O}_2}} = \sqrt{\frac{32}{48}} \Rightarrow \sqrt{\frac{2}{3}}$

90. Lowest pressure and highest temperature.
91. 2H₂S (g) + SO₂ (g) → 2H₂O (l) + 3S (s) 2.8 1.6 H₂S is limiting reagent

$$SO_2$$
 remaining = 1.6 - 1.4 \Rightarrow 0.2 ltr

92. Rates of diffusion
$$\propto \frac{1}{\sqrt{\text{Molar Mass}}}$$

93. (c) $PV = nRTP'V = \frac{n}{2}RT$ $P' = \frac{P}{2}$
94. (a) $r \propto \frac{1}{\sqrt{M}}$ $r_{\text{CH}_4} = 2r_x$

$$\frac{r_{\text{CH}_4}}{r_x} = \sqrt{\frac{M_x}{M_{\text{CH}_4}}} \cdot 4 = \frac{M_x}{16}$$

$$M_x \Rightarrow 64$$
95. (b) $\frac{(U_{\text{rms}})_{\text{SO}_2}}{(U_{\text{rms}})_{\text{He}}} = \sqrt{\frac{M_{\text{He}}}{M_{\text{SO}_2}}} = \sqrt{\frac{4}{64}} = \frac{1}{4} = 0.25$
96. (c) $r \propto \frac{1}{\sqrt{M}} \frac{t_2}{t_1} = \sqrt{\frac{M_2}{M_1}}$

$$\frac{60}{45} = \sqrt{\frac{X}{40}} \Rightarrow \sqrt{\frac{X}{40}} = \frac{4}{3} \Rightarrow \frac{X}{40} = \frac{16}{9}$$

$$x = 71.11$$
97. (b) $P = \frac{dRT}{M_w} \qquad M_w = \frac{7.71 \times 0.082 \times 309}{2.88}$

$$M_w = 67.83 \qquad \text{Molecular formula} = \text{CIO}_2$$
98. $P \propto \frac{1}{V}$
if *n* and *T* constant.
99. (a) K.E. $= \frac{3}{2}nRT \qquad nT = \text{constant}$

$$0.3 \times T = 0.4 \times 400 \qquad T = 533.33 \text{ K}$$
100. (c) $V = \frac{4}{3}\pi r^3$

$$V_m = \frac{4}{3} \times \pi \times (10^{-10})^3 \times 6.023 \times 10^{23}$$

$$V_m = \frac{3}{3} \times \pi \times (10^{-6} \text{ m}^3) \times 0.023 \times 10^{-6} \text{ m}^3$$

 $V_m = 2.52 \times 10^{-6} \text{ m}^3$
 $V_m = 2.52 \text{ mL}$

C LEVEL II

1. (a) $2AI + 2NaOH + 2H_2O \rightarrow 2NaAIO_2 + 3H_2 \uparrow$ According to the reaction 2×27 g of AI releasing = 3 moles of H₂ 0.15 g of AI releasing = $\frac{3 \times 0.15}{2 \times 27}$ moles of H₂ From PV = nRT $V = \frac{nRT}{P} = \frac{3 \times 0.15 \times 0.082 \times 293}{2 \times 27}$ V = 200.4 mL 2. (a) Let the weight of mixture = 100 g $P_{H_2} = P_{total} \cdot X_{H_2} = P_{total} \times \frac{n_{H_2}}{n + n}$

$$= P_{\text{total}} \cdot X_{\text{H}_{2}} = P_{\text{total}} \times \frac{n_{2}}{n_{\text{H}_{2}} + n_{\text{O}_{2}}}$$
$$= 1 \times \frac{20/2}{\frac{20}{2} + \frac{80}{32}} \text{bar} = 0.8 \text{ bar}$$

- 3. (d) :: time taken to be distributed the 10^{10} Wheat grains = 1 sec
 - \therefore time taken to distributed the 6.023 × 10²³

$$= \frac{1 \times 6.022 \times 10^{23}}{10^{10}}$$

= 6.022 × 10¹³ sec.
= $\frac{6.022 \times 10^{13}}{60 \times 60 \times 24 \times 365}$ years
= 1.90956 × 10⁶ year
4. (d) $\because PV = nRT \therefore n_T = n$ Methane + nCO_2

$$\therefore \qquad P = \frac{n_T K I}{v} = \frac{5.2}{16} + \frac{4.4}{44} = 0.3$$
$$= \frac{0.3 \times 8.314 \times 300}{9 \times 10^{-3}} = 8.2 \times 10^4 \text{ Pa}$$

5. (a)
$$:: PV = nRT$$

or
$$P = \frac{n}{V}RT = \frac{W}{M \times V}RT$$
 [M = Molar mass of P]
 $\therefore M = \frac{WRT}{M} = \frac{0.0625 \times 0.082 \times 819}{M}$

$$PV = 0.1 \times 34.05 \times 10^{-3}$$

M = 1247.7 g

6. (c) Let initially x moles are present at 27° C.

$$P_1 V_1 = n_1 R T_1 \text{ (Initially)} \tag{i}$$

 $P_2V_2 = n_2RT_2$ (Finally) from Eqs. (i) and (ii) (ii)

...

$$\frac{T_1}{T_2} = \frac{n_2}{n_1} \qquad [\because V_1 = V_2, P_1 = P_2]$$
$$\frac{300}{750} = \frac{n_2}{x}$$
$$n_2 = \frac{2}{5}x$$

: fraction of air which have been expelled out

$$=\left(x-\frac{2}{5}x\right)/x=\frac{3}{5}$$

7. (c) Number of moles of O_2 in 10 L blood

$$= \frac{0.02 \times 10}{0.1 \times 32} = \frac{1}{16}$$

Number of moles of CO₂ in 10 L blood = $\frac{0.08 \times 10}{0.1 \times 44} = \frac{2}{11}$

Volume of O₂ at 1 atm and 37°C = $\frac{0.0821 \times 310}{16 \times 1}$ = 1.59 L

Volume of
$$CO_2$$
 at atm and 37°C

$$= \frac{2 \times 0.0821 \times 310}{11 \times 1} = 4.63 \,\mathrm{L}$$

8. (a) Partial pressure of gas A in the mixture = 1 atm Partial pressure of gas B in the mixture = 0.5 atm We know that

$$\frac{P_A}{P_B} = \frac{X_A}{X_B} = \frac{n_A}{n_B}$$

$$\frac{1}{0.5} = \frac{2 \times M_B}{M_A \times 3}; \frac{M_A}{M_B} = \frac{0.5 \times 2}{3} = \frac{1}{3}$$

$$MA: MB = 1:3$$

$$CxHy(g) + \left(x + \frac{y}{4}\right)O_2(g) \rightarrow xCO_2(g) + \frac{y}{2}H_2O(l)$$

Initial 5 30 0 0

Final 0
$$30 - \left(x + \frac{y}{4}\right)5 \quad 5x \quad 0$$

Out of 25 mL of resultant gas, 10 mL was CO_2 (absorbed by NaOH) and the remaining 15 mL was oxygen (absorbed by pyrogallol). *.*..

$$5x = 10; x = 2$$
$$30 - \left(x + \frac{y}{4}\right)5 = 15$$

On solving, y = 4formula of gaseous hydrocarbon is C₂H₄. *.*..

10. (c)

...

Element	Mass %	Mole %	Relative molar ratio
С	44.4	3.7	1
Ν	51.9	3.7	1
Н	3.7	3.7	1

empirical formula of
$$X = CNH$$

Ratio of rate of diffusion of X and that of H_2 is given by

$$\frac{r_x}{r_{\rm H_2}} = \frac{30 \times 4.81}{25 \times 30} = \sqrt{\frac{2}{M}}$$

On solving, M = 54

$$\therefore$$
 molecular formula of x is C₂H₂N₂

11. (a) ::
$$M_{\text{mix}} = \frac{10}{22.4} \times 22.4 = 0$$

∴ let the volume of He = V_1 mL
Let the volume of $N_2 = V_2$ mL
∴ $V_1 + V_2 = 100$:: $n \propto V$
∴ $10 = \left(\frac{V_1}{100}\right) \times 4 + \frac{V_2}{100} \times 28$
 $10 + \frac{V_1}{100} \times 4 + \left(\frac{100 - V_1}{100}\right) \times 28$
Solving, $V_1 = 75\%$
12. (d) :: $\frac{P_1}{T_1} = \frac{P_2}{T_2}$
 $\frac{750}{200} = \frac{P_2}{250}$

300 350
∴
$$P_2 = 875 \text{ mm Hg}$$

∴ difference in height = $875 - 750 = 125 \text{ mm}$
Hg = 12.5 cm of Hg

13 (a) As the peak of the curve decreases, temperature increases.

14. (D)
$$P_{\text{total}} = P_{\text{dry}} + P_{\text{water vapour}}$$

 $735 = P_{\text{dry}} + 30$
so $P_{\text{dry}} = 735 - 30 = 705$ torr
15. (B) $d = \frac{PM_w}{RT}$
 $d = \frac{1 \times 32}{0.0821 \times 300} = 1.3 \text{ g L}^{-1}$
16. $b = 4 \times \frac{4}{3} \times \pi r^3 \times N_A$;
 $= 4 \times \pi \times 10^{-4} \times 1000$
 $= 4 \times \frac{4}{3} \times \pi \times r^3 \times 6 \times 10^{23}$
 $r = 5 \times 10^{-9}$ cm

Distance of closest approach = $2r = 10^{-8}$ cm = 10^{-10} m

17.
First Second
2 gmH₂
$$Patm.$$
 $0.5 lit.$
 $n_{H_2} = \frac{2}{2} = 1 \mod$
 $n_{H_2} = n_{CH_4}$
 $P_{mix} V_{mix} = P_1V_1 + P_2V_2$
or $P_{mix} (0.5 + 0.5) = P \times 0.5 + P \times 0.5$
 $= P \times 0.5 \times 2$
or $P_{mix} \times 1 = P \times 1$
or $P_{mix} = P$
18. (A) $PV = nRT$ at NTP
 $1 \times 2.24 = n_i \times 22.4$
or $n_i = 0.1 \mod$
 $\frac{P_2}{P_1} = \frac{n_2}{n_1} \operatorname{or} \frac{570/760}{1} = \frac{n_2}{0.1}$
Remaining moles $= n_2 = \frac{5.7}{76} \mod$
Escaped moles $= n_1 - n_2 = 0.1 - \frac{5.7}{76} = 0.025 \mod$.
19. (B) $n_1T_1 = n_2T_2$
or $n_1 \times 300 = n_2 \times (400)$
or $\frac{n_2}{n_1} = \frac{3}{4}$
or $\frac{n_1 - n_2}{n_1} = \frac{4 - 3}{4} = \frac{1}{4}$
20. (A)
 $V_1 = V$
 $V_2 = V + 0.1 V = 1.1 V$
 $\frac{T_2}{T_1} = \frac{V_2}{V_1} = \frac{1.1V}{V} = \frac{1.1}{1}$

 \therefore Number of moles of air added = 255 moles

- **28.** (**D**) % relative humidity $= \frac{\text{Partial pressure of H}_2\text{O}}{\text{Vapour pressure of H}_2\text{O}} \times 100$ $75 = \frac{P_{\text{H}_2\text{O}}}{20} \times 100 \implies P_{\text{H}_2\text{O}} = 22.5 \text{ torr};$ % of H₂O vapour in air = $\frac{(22.5)}{760} \times 100 = 2.96$ molar mass of wet air = $\frac{29 \times 97.04 + 2.96 \times 18}{100}$ $=\frac{2814.16+53.28}{100}=28.67$ Density of wet air = $\frac{PM}{RT} = \frac{1 \times 28.67}{0.0821 \times 300} = 1.164$ g/L 29. (B) Density of air at sea level $d_0 = \frac{29 \times 1}{0.0821 \times 290} = \frac{1}{0.821} \text{g/L}$ density at 831 m = d $d_0 e^{-Mgh/RT} = \frac{1}{0.821} \times e^{-\left(\frac{29 \times 10^{-3} \times 10 \times 831}{8.31 \times 290}\right)}$ $\frac{1}{0.821} \times e^{-0.1} = \frac{.9}{0.821}$ g/L \Rightarrow Let *x* be the number of balloons $10^3 \times g + x \times 40g = hdg$ *.*.. $=\frac{0.9}{0.821}$ × 8.21 × g × x = 20 balloons.
 - \therefore x = 20 balloons

(Match the Column)

1.
$$[\mathbf{A} \rightarrow \mathbf{R}, \mathbf{B} \rightarrow \mathbf{S}, \mathbf{C} \rightarrow \mathbf{Q}, \mathbf{D} \rightarrow \mathbf{P}]$$

 $\mathbf{A} \rightarrow \mathbf{R};$
 $T_c = \frac{8a}{27bR}, P_c = \frac{a}{27b^2}$
 $\frac{T_c}{P_c} = \frac{8a}{27bR} \times \frac{27b^2}{a} = \frac{8b}{R}$
 $\mathbf{B} \rightarrow \mathbf{S};$
 $\frac{T_c}{V_c} = \frac{8a}{27bR \times 3b} = \frac{8a}{81Rb^2}$
 $\mathbf{C} \rightarrow \mathbf{Q};$
 $T_B = \frac{a}{bR}$
 $\mathbf{D} \rightarrow \mathbf{P};$
 $\frac{T_i}{T_B} = \frac{2a}{bR} \times \frac{bR}{a} = 2.$

2. $[A \rightarrow S; B \rightarrow R; C \rightarrow P, Q, R, S; D \rightarrow P, Q]$ Gas T_c T_b 108.4 K 365 K A_{2} B_2 90.33 K 304.8 K C_2 607 K 2048.6 K 180.67 K 607.7 K D_{2} **3.** PV = nRTWhen *V* and *T* are constant then $P \propto n$ $(A) \longrightarrow (Q)$ (B) $d = \frac{PM}{RT}$ \therefore $\frac{d_{\text{moist}}}{d_{\text{dry}}} = \frac{M_{\text{moist}}}{M_{\text{dry}}} < 1$ $(B) \longrightarrow (S)$ (C) $p^{\circ}_{H_2O} > p_{H_2O}$, hence $\frac{p_{H_2O}}{p^{\circ}_{H_2O}} < 1$ and $p^{\circ}_{H_2O}$ is also a function of temperature. $(C) \longrightarrow (P, S)$ Dalton's law of partial pressures are applicable for only ideal gases. $(D) \longrightarrow (P, Q, R)$ 4. (A) $\longrightarrow R$ Since He is monoatomic, therefore, $C_P/C_V = 5/3 = 1.66$ $(B) \longrightarrow (P)$ Since Molecular weight of H₂ is least. $(C) \longrightarrow (S)$ Since CO_2 is a linear triatomic molecule, therefore, vibrational energy = (3N - 5) RT = (9 - 5) RT = 4RT $(D) \longrightarrow (Q)$

Since Molecular weight of SO_2 is highest.

Comprehension

Passage 1 (For Q. 5-7) 5. (a) $P = 754 \text{ torr} = \frac{754}{760} = 0.992 \text{ atm}$ PV = nRT $0.992 \times 0.127 = n \times 0.0821 \times 371$ $n = 4.14 \times 10^{-3} \text{ mole} \Rightarrow n = \frac{\text{Weight}}{\text{Molar mass}}$ Molar mass = Weight/ $n = \frac{0.495}{4.14 \times 10^{-3}} = 120 \text{ g/mol}$ 6. (b) PV = nRT $1 \times 1 = n \times 0.0821 \times 273 \Rightarrow n = 4.46 \times 10^{-2} \text{ mol}$ Mole = $\frac{\text{Weight}}{\text{Molar mass}}$

$$\therefore \text{ Molar mass} = \frac{\text{weight}}{\text{No. of mole}} = \frac{0.714}{4.46 \times 10^{-2}}$$
$$= 16 \text{ g/mole}$$

7. (c)
$$PV = nRT$$

3.52 Physical Chemistry-I for JEE (Main & Advanced)

 $100 \times 3 = n \times 0.0821 \times 300$ n = 12.2 mol

Passage 2 (For Q. 8-10)

8. (d)

Greater the 'a', more easily liquefiable is the gas.

9. (d)

$$Z_{C} = \frac{P_{C}V_{C}}{RT_{C}} \therefore T_{C} = \frac{P_{C}V_{C}}{Z_{C}R}$$
$$= \frac{50.1 \times 0.078}{0.308 \times 0.0821} = 154.5 \text{ K}$$
$$T_{B} = \left(\frac{27}{8}\right) \cdot T_{C} = \frac{27}{8} \times 154.5 = 521.4 \text{ K}$$

10. (d)

At very low pressure, $\frac{a}{V}$ will be very small in the term $\left[P + \frac{a}{V^2}\right]$. Similarly *b* will be small compared to *v* in the term (V-b) \therefore Van der Waal equation reduce to PV = RT.

Integer-Types Questions

11.
$$\frac{P_{N_2}}{P_{gas}} = \frac{57}{38} = 57/38$$

$$\Rightarrow \frac{0.8}{21.6} \sqrt{\frac{N_{gas}}{28}} = \frac{57}{38}$$

$$N_{gas} = 9 \times 28 = 252$$

$$X eFx = 131 + 19x = 252$$

$$19x = 252 - 131 = 121$$

$$x = \frac{121}{19} \approx 6.5 \qquad x = 6$$

XeF

12. Suppose the compound A is CxHyNz.
(i) CxHyNz +
$$O_2 \longrightarrow CO_2$$
 + H_2O

$$(vapour)$$

 $(9-v)$ mL.v. mL. 4 mL 6 mL 2 mL
or $(9-v)$ v moles 4 6 2
moles moles moles moles moles
for O atoms.

+ N₂

 $2 \times \text{moles of O}_2 = 2 \times \text{moles of CO}_2 + 1 \times \text{moles of H}^2\text{O}$ $2v = 2 \times 4 + 1 \times 6 = 14$; v = 7 mL

13. Let formula in $C_x H_y O_z$.

$$C_{x}H_{y}O_{z} + \frac{1}{2}\left(2x + \frac{y}{2} - z\right)O_{2} \longrightarrow xCO_{2} + \frac{y}{2}H_{2}O$$
Volume of CO₂ = 556 - 112 = 448 mL
Moles = 0.02
Moles of C_xH_yO_z = $\frac{0.9}{90} = 0.01$
 $x = 2 (1)$
 $y = 2; z = 4$
Formula C₂H₂O₄

14.
$$U_{\rm rms} = \sqrt{\frac{3RT}{M}} U_{\rm mp} = \sqrt{\frac{2RT}{M}}$$

∴ from questions $\sqrt{\frac{3R \times 400}{40}} = \sqrt{\frac{2R \times 60}{M}} = 4 \text{ gmol}^{-1}$
 $M = 4$

15. Since
$$(u_{av})_A = (u_{av})_A = \sqrt{\frac{8RT_A}{\pi M_A}} = \sqrt{\frac{8R(300 \text{ K})}{\pi (0.002 \text{ kg mol}^{-1})}}$$

 $(u_{av})_B = \sqrt{\frac{8RT_B}{\pi M_B}} = \sqrt{\frac{8R(600 \text{ K})}{\pi (0.016 \text{ kg mol}^{-1})}}$
Therefore, $\frac{(u_{av})_A}{(u_{av})_B} = \sqrt{\frac{300}{2}} \times \sqrt{\frac{16}{600}} = 2$

 $(u_{av})_B = \sqrt{2} = \sqrt{600}$ 16. $2NH_3 \longrightarrow N_2 + 3H_2$ Since number of moles after reaction (n_2) $= 2 \times$ number of moles before reaction (n_1) at same *T* and *V*, $P \propto n$

:
$$\frac{P_1}{P_2} = \frac{n_1}{n_2} = \frac{1}{2}$$

Hence pressure after reaction = 2 atm.

17. Since A and A_2 are two states in gasoues phase having their weight ratio 50%, i.e., 1 : 1

$$\therefore \text{ mole of } A = \frac{96}{2} \times \frac{1}{48} = 1 \left(n = \frac{w}{m} \right)$$

$$\text{mole of } A_2 = \frac{96}{2} \times \frac{1}{96} = \frac{1}{2}$$

$$\therefore \text{ total mole of } A \text{ and } A_2 \text{ are } = 1 + \frac{1}{2} = \frac{3}{2}$$

$$\text{Thus, from } PV = nRT$$

$$P \times 33.6 = \frac{3}{2} \times 0.0821 \times 546$$

$$P = 2 \text{ atm}$$

$$18. \quad z = \frac{PV}{nRT}, \quad n_{330K} = \frac{1 \times 800}{1.90 \times R \times 330},$$

$$n_{570K} = \frac{V \times 200}{1.10 \times R \times 570}, \text{ by equalising the two, we get}$$

$$V = 4$$

$$19. \quad z = 1 + \frac{pb}{RT} \text{ at high pressure, slope } = \frac{b}{RT} = \frac{\pi}{492.6},$$

$$b = \frac{\pi}{492.6} \times 0.0821 \times 30 \text{ and}$$

$$b = \frac{4}{3}\pi r^3 \times 4N_A$$

$$R = 2.5A0, d = 5A0$$

$$20. \quad P = \frac{nRT}{V - nb} - \frac{an^2}{v^2} = 10^{-1} = 9$$

$$21. \quad \Delta m = m_{\text{cold}} - m_{\text{hot}} = (n_{\text{cold}} - n_{\text{hot}})$$

$$M = \frac{PVM}{R} \left[\frac{1}{T_2} - \frac{1}{T_1} \right], T_2 - T_1 = 3$$

22. Initial number of moles = $\frac{4}{40} = 0.1$ Final number of moles = $\frac{3.2}{40} = 0.08$ Since P and V are constant $n_1T_1 = n_2T_2$ $0.1T_1 = 0.07T_1 + 125$ $T_1 = 500 \text{ K}$ From PV = nRT $P = \frac{0.1 \times 0.082 \times 500}{0.821} = 5$ atm. 23. $R_{\rm O_2} = \frac{2000 - 1500}{47} = \frac{500}{47} \,\mathrm{mm \ min^{-1}}$ $\frac{R_{O_2}}{R_{\rm cas}} = \sqrt{\frac{79}{32}} = 1.57 R_{\rm gas} = R_{\rm O_2}/1.57$ Change in pressure of gas in 74 min = $\frac{500}{47} \times \frac{74}{157}$ = 501.92 Change in pressure of $O_2 = \frac{500 \times 74}{47} = 787.234$ $\frac{V_{\text{gas}}}{V_{\text{O}_2}} = \frac{P_{\text{gas}}}{P_{\text{O}_2}} = \frac{2000 - 80/42}{2000 - 787.234} = 1.236$ 24. $\frac{R_{\text{mix}}}{R_{kr}} = 1.16 = \sqrt{\frac{84}{M_{\text{mix}}}}$ $R_{\rm mix} = 62.43$ $t = 0 \qquad \begin{array}{c} \text{Cl}_2 \rightleftharpoons 2\text{Cl} \\ 1 \text{ mole} \end{array} \qquad 0$ 1 - x2xnT = 1 + x $x = \frac{M_T - M_O}{M_O} = \frac{71 - 62.4}{62.4} = 0.138$ **25.** $C_2H_6 + \frac{7}{2}O_2 \longrightarrow 2CO_2 + 3H_2O$ $x \qquad 7/2x \qquad 2x \qquad 3x$ $C_2H_4 + 3O_2 \qquad \longrightarrow 2CO_2 + 2H_2O$ $40-x \qquad 3x \qquad 2(40-x) \qquad 2(40-x)$ $n_{\rm O_2} = \frac{65}{16}$ mole $V = \frac{nRT}{P} = \frac{\frac{65}{16} \times 0.0821 \times 400}{1 \text{ atm}} L$ $\frac{7}{2}x + 3x = \frac{65 \times 0.0821 \times 400}{16}$ Calculate *x* and find the ratio $x_{C_2H_6} = 0.66$. **26.** $2H_2 + O_2$ (1-x) + X-2x -x1-3x = 0 $2H_2O$ 0 1

$$X_{02} = 0.217 \gg 22$$

$$X_{H_2} = 0.78$$
27. PCl₅(g) \implies PCl₃(g) + Cl₂(g)
a 0 0
teq. 0.6a 0.4a 0.4a
nT = 1.4a

$$V = \frac{1.4a \times R \times 420}{P}$$
Mass = 0.6a × $\frac{0.4a \times 137.5 + 0.4a \times 71}{208.5}$
 $d = \frac{m}{V} = \frac{208.5a \times 208.5g}{a[1.4 \times 0.821 \times 420]} = 4.46 \text{ g/L}$
28. Case - I P = 1 atm w = 12 gm T = (t + 273)K
 $V = v \text{ ltr}$
Case - II T = (t + 283)K P = 1 + $\frac{10}{100} = 1.1 \text{ atm}$
w = 12 gm V = v litre
For case I - PV = nRT
 $V = \frac{12}{m}R(t + 273)$
for Case II 1.1 V = $\frac{12}{m} \times R(t + 283)$
for cases (I) and (II)
 $\frac{1.1}{1} = \frac{t + 283}{t + 273}$
 $1.1t + 300.3 = t + 283$
 $t = -1730C = 100 \text{ K}$
Using case I V = $\frac{12}{120} \times 0.082 \times 100 = 0.82 \text{ ltr}$
29. P = 1 atm. T = 500 K d = 0.36 kg/m³
 $\frac{r_{02}}{r_{gas}} = \sqrt{\frac{M_{gas}}{M_{02}}} = \sqrt{\frac{M}{322}} = \frac{1}{1.33}$
(i) $M = \frac{32}{(1.33)^2}$
(ii) Molar volume
 $= \frac{\text{Molecular weight}}{\text{Density}} = \frac{18.1 \text{ gm}}{360 \text{ g/m}^2} = 50.27 \times 10^{-3}$
(iii) $Z = \frac{PV}{RT} = \frac{1 \text{ atm} \times 50.27}{0.0821 \times 500 \text{ K}} = 1.225$
(iv) Z > 1 repulsive
30. Mole of gaseous mixture,
 $\therefore nH_2 + \text{ unknown gas} = \frac{PV}{RT} = \frac{6 \times 3}{0.0821 \times 300} = 0.7308$ mole
 $\therefore n(\text{unknown gas}) = 0.7308 - 0.7 = 0.0308 \text{ mole}$

 $\frac{\text{Mole of H}_2 \text{ leaked}}{\text{Mole of unknown gas leaked}} = \sqrt{\frac{M_{(\text{unknown})}}{M_{\text{H}_2}}}$ $\frac{0.7}{0.0308} = \sqrt{\frac{M}{2}}$ $M = 1033 \text{ g mol}^{-1}$ **31.** PV = nRT $P = \frac{7.6 \times 10^{-10}}{760}$ atmosphere $= 10^{-12}$ atmosphere $V_1 = 1$ ltr n = ?R = 0.082 ltr L atm K⁻¹mol⁻¹, T = 273 K $10^{-12} \times 1 = n \times 0.082 \times 273$ *.*.. $n = 4.46 \times 10^{-12}$ moles Molecules = $4.46 \times 10^{-14} \times 6.02 \times 10^{23} = 2.68 \times 10^{10}$ 32. Volume of one molecule of $N_2 = \frac{4}{3}\pi r^3$ $=\frac{4\times3.14(2\times10^{-10})^3}{3}$ $= 3.35 \times 10^{-29} \text{m}^3 = 3.35 \times 10^{-23} \text{cm}^3$ Volume of one mole molecules = $6.02 \times 10^{23} \times 3.35 \times$ $10^{-23} \text{ cm}^3 = 20.167 \text{ cm}^3$ Volume of one mole N2 at NTP = 22400 cc. Hence empty space = 22400 - 22379.833 cm³ % empty space = $\frac{22379.833 \times 100}{22400} = 99.9\%$ 33. We will calculate the temperature of the gas from the given data.

PV = nRT

All values are to be taken in MKS system.

$$P = 7.57 \times 10^{3} \text{ N m}^{-2}$$

$$V = 1 \text{ L} = 1 \times 10^{-3} \text{ m}^{3}$$

$$n = \frac{2 \times 10^{21}}{6.02 \times 10^{23}} \text{ moles}, R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$$

$$7.57 \times 103 \times 10^{-3} = \frac{2 \times 10^{21} \times 8.31 \times T}{6.02 \times 10^{23}}$$

$$\text{Now, } U_{\text{rms}} = \sqrt{\frac{3RT}{M}}$$
All the values are to be taken in MKS system

All the values are to be taken in MKS system, R = 8.31, $M = 28 \times 10^{-3}$ kg for N2 T = 274.2 K $U_{\rm rms} = \sqrt{\frac{3 \times 8.31 \times 274.2}{28 \times 10^{-3}}} = 494.2 \text{ metre/sec.}$ Again, $U_{\rm mp} = 0.82 \times U_{\rm rms}$ = 494.2 × 0.82 = 405.26 metre/sec.

34. For gas A : Its mass = 2 g; PA = 1 atm T = 298 K For gas B: Its mass = 3 g, PB = 0.5 atm. T = 298 K

According to Dalton's law of partial pressure

$$P = PA + PB$$

$$1.5 = 1 + PB$$

$$PB = 0.5 \text{ atm}$$
Now, $PV = \frac{wRT}{m}$
For gas $A : P_A = 1$ atm, $m = M_A, w = 2$ g

$$1 \times V = \frac{2 \times RT}{M_A}$$
(i)
for gas $B : P_B = 0.5$ atm, $m = M_B, w = 3$ g

$$0.5 \times V = \frac{3 \times RT}{M_B}$$
(ii)
Dividing Eqs. (i) and (ii)

$$0.5 = \frac{3 \times M_A}{2 M_B} \text{ or } \frac{M_A}{M_B} = \frac{1}{3}$$
(B) If A is $T = 298$ K, $V = ?$
Put these values in Eq. (i)

$$V = \frac{2 \times 0.0821 \times 298}{32} = 1.53$$
 litres
35. $2H_2 + O_2 = 2H_2O$
Volume before reaction (L) 1 1 0
Volume after reaction (L) 0 0.5 1
(a) For : H_2O PV = nRT
At STP $P = 1$ atm, $V = 1$ litre,
 \therefore moles of H₂O(n) = 4.46 \times 10^{-2}
Weight of H₂O = 4.46 $\times 10^{-2}$ x 18 = 0.803 gram
(b) Gas left in the vessel = 0.51 tr of O2 at STP
22.4 tr at STP weigh 32 g
0.5 tr at STP weigh 32 g
0.5 ltr at STP weigh 23 g
0.5 ltr at STP weigh 23 g
0.5 ltr at STP weigh 24.46 $\times 10^{-2}$
Moles left = 0.5 1 tr of O₂ at STP = 2.23 $\times 10^{-2}$
Total moles in the vessel = Moles of H₂O + moles
of O₂ left = 6.69 $\times 10^{-2}$
 $PV = nRT$
 $P = ?, V = 2$ ltr,
 $n = 6.69 \times 10^{-2}$, $T = 373$ K
 $P \times 2 = 6.69 \times 10^{-2}$, $T = 373$ K
 $P \times 2 = 6.69 \times 10^{-2} \times 0.0821 \times 373$
 $P = 1.02$ atm
36. $\frac{35n_1 + 37n_2}{n_1 + n_2} = 35 - 45$

36.

where n_1 and n_2 are the number of moles of ³⁵Cl and ³⁷Cl respectively.

$$\therefore \quad \frac{n_1}{n_2} = 3.44 : n_1 : n_2 = 3.44 : 1$$

 \therefore ratio of the lengths is 3.44 : 1.

37.
$$P \times 8 = \left(\frac{3.6}{M}\right) \times R \times T$$
 (i)

Gaseous State 3.55

From Eq. (i)/(ii)

$$P \times 8 = \left(\frac{3.0}{M}\right) \times R (T+15)$$
 (ii)
 $3.6 \times T = 3 (T+15)$
 $= 3T+45 \Rightarrow T = \frac{45}{0.6} = 75 \text{ K}$
 $\Rightarrow P = \frac{3.6}{44} \times \frac{0.0821 \times 75}{8} = 0.062 \text{ atm}$
38. $P \times \frac{4}{3}\pi (10)^3 = \left(\frac{1}{4}\right) R \times T$ (i)

3 (4) From Eq. (i)/(ii)

$$P \times \frac{4}{3} \pi r^{3} = \frac{0.75}{4} \times RT$$
(ii)

$$\frac{(10)^{3}}{r^{3}} = \frac{1}{0.75} = \frac{4}{3} \Rightarrow r = 3\sqrt{\frac{3}{4}} \times 10$$

$$r = 9.0856 \text{ cm}$$
39. $P \times 30 = 0.5 \times 38 \times 60 \times 1$ $P = 38 \text{ atm}$
40. $C_{6}H_{12}O_{6} + 6O_{2} \longrightarrow 6CO_{2} + 6H_{2}O$
 $0.08928 \text{ mole} \left(\frac{0.2}{22.4}\right) \times 60 \text{ mole } 0.53568 \text{ mole}$
 $= 16.071 \text{ gm} = 11.999 \text{ lit}$
41. $P \times 1 = \left(\frac{12}{28} + \frac{4}{2} + \frac{9}{32}\right) \times 0.0821 \times 300 = 66.74 \text{ atm}$
 $P = 66.74 \text{ atm}$
42. $P \times 10 = \left(\frac{10}{2} + \frac{64}{32}\right) \times 0.0821 \times 473$
 $\Rightarrow P = 27.1833 \text{ atm}$
 $= 27.54 \times 10^{5} \text{ N/m}^{2}$
 $H_{2} + \frac{1}{2}O_{2} \longrightarrow H_{2}O(1)$
 $5 = 2$
 $(5-4) - 4$
 $P \times 10 = 5 \times 0.0821 \times 473$
 $P \times 19.4166 \text{ atm} = 19.66 \times 10^{5} \text{ N/m}^{2}$
43. $\frac{60}{40} = \frac{P}{1}\sqrt{\frac{17}{36.5}} \Rightarrow P = 2.1979 \text{ atm}$
44. $\frac{x}{100} = \sqrt{\frac{(32+6 \times 19)}{28}} \Rightarrow x \approx 228 \text{ Ans.}$
45. $\frac{d_{NO}}{100-d_{NO}} = \sqrt{\frac{32}{30}} \Rightarrow d_{NO} = 50.8 \text{ cm}$
46. $\frac{t_{2}}{t_{1}} = \sqrt{\frac{M_{2}}{M_{1}}} = \sqrt{\frac{2}{28}} \Rightarrow t_{2} = 0.2672 \text{ hr} \approx 16 \text{ min}$
47. $\frac{234}{224} = \sqrt{\frac{M_{\text{mix}}}{32}} \Rightarrow M_{\text{mix}} = 34.92 = \frac{100}{\frac{80}{32} + \frac{20}{M}}$
 $M = 46.6 \text{ Ans.}$

48. (a)
$$\frac{0.3}{(dP/dt)} = \sqrt{\frac{17}{20}} \Rightarrow \frac{dP}{dt} = 3.25 \text{ torr/sec.}$$

(b) $M_{avg} = 0.30 \times 4 + 0.2 \times 32 + 0.5 \times 28 = 21.6$
 $\frac{dP}{dt} = 0.3\sqrt{\frac{21.6}{17}} \Rightarrow \frac{dP}{dt} = 0.3387 \text{ torr/sec.}$
49. Hint : $P = P_0 e^{-Mgh/RT}$
50. $P = (101.325) e^{\frac{-28.8 \times 10^{-3} \times 9.8 \times 10 \times 10^{3}}{8.314 \times 243}} = 25.027 \text{ kPa}$
51. If it melts then $T > 1800 \text{ K}$
 $n = \frac{250 \times \text{V}}{R \times 300} = \frac{P \times V}{R \times 1800} \Rightarrow P = 1800 \times \frac{250}{300}$
 $P = 1500 \text{ kPa}$
 1500 kPa
 1500 kPa (or 10^{3} kPa)
so it will blow up before melting.
52. $\frac{P_0}{2} = P_0 e^{-\frac{M \times 9.8 \times 1}{8.314 \times 278}}$
 $M = 175.133 \text{ kg mole}^{-1}$
53. (i) $\frac{75}{70} = \sqrt{\frac{M}{28}} \Rightarrow M = 32.1428 \text{ gm/mole.}$
(ii) $v = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3 \times 8.314 \times 273}{32.1428 \times 10^{-3}}} = 460.28 \text{ m/s}$
54. $\sqrt{\frac{3RT}{64 \times 10^{-3}}} = \sqrt{\frac{8R \times 300}{\pi \times 32 \times 10^{-3}}}$
 $T = \frac{8 \times 300 \times 64}{3 \times 32 \times \pi} = 509.29 \text{ K} = 236.29^{\circ}\text{C}$
55. (a) $u_{ms} = \sqrt{\frac{3P}{d}} = \sqrt{\frac{3 \times 1.01325 \times 10^{5}}{1.2504}} = 493.03 \text{ m/s}$
(b) $u_{avg} = \sqrt{\frac{8}{\pi} \times \frac{1.01325 \times 10^{5}}{1.2504}} = 454.259356$
(c) $u_{mp} = 403 \text{ m/s}$
56. Use the results:
57. $\sqrt{\frac{3RT_1}{M}} = \sqrt{\frac{8RT_2}{\pi M}} = \sqrt{\frac{2RT_3}{M}} = 1500 \text{ m/s}$
 $\begin{cases} T_1 = 2886 \text{ K} \text{ rms} \\ T_2 = 3399 \text{ K} \text{ avg}. \\ T_3 = 4330 \text{ K} \text{ m.p.} \end{cases}$
58. $1.95 = \frac{800 \times 1}{nR \times 223}$ (i)
 $1.10 = \frac{200 \times V}{nR \times 373}$ (ii)

$$\Rightarrow \quad \frac{1.95}{1.10} = \frac{800}{200} \times \frac{1}{V} \times \frac{373}{223} \quad V = 3.77 \text{ lit}$$

59.
$$0.927 = \frac{10.1325 \times 10^{5} \times 100 \times 10^{-3}}{n \times 8.314 \times 273.15}$$

 $w = n \times 32 = 15.40 \times 10^{3} \text{ gm} = 15.40 \text{ kgm}$
60. Hint : At critical temperature (T_C) and critical pressure (P_C). 0_{2} will behave ideally.
61. Hint : low density ⇒ High molar volume (V_m)
 $V_{m} \lim_{m \infty} \infty$
62. $\left(15 + \frac{9 \times 6.7}{(10)^{2}}\right) (10 - 3 \times 0.0564) = 3 \times 0.0821 \times T$
 $\Rightarrow T = 623. \text{ K} \Rightarrow T = 350.5^{\circ}$
63. (i) $P \times 12 = 15 \times 0.0821 \times (273 + 30)n$
 $P = 31.1 \text{ atm}$
(ii) $\left(P + \frac{(15)^{2} \times 0.2107}{(12)^{2}}\right) (12 - 15 \times 0.0171)$
 $= 15 \times 0.0821 \times (273 + 30) P = 31.4 \text{ atm}$
64. $1000 \times g = e\left(\frac{nRT_{2}}{P} - \frac{nRT_{1}}{P}\right)g$
 $\frac{nR \times M}{RT_{1}}(T_{2} - T_{1})$
65. $Q = C_{V1}(1000 - 500) + C_{V2}(1500 - 1000)$
 $= \left(\frac{3R}{2} + \frac{3R}{2}\right) \times 500 + \left(\frac{3R}{2} + \frac{3R}{2} + 3R\right)(500)$
 $= 1500 R + 3000 R = 4500 R$
66. $\rho_{1}h_{1} = \rho_{2}h_{2}$.
In one hour $h_{1} = 37 \times 2 = 74 \text{ mm}$
 $1.034 \times 74 = 13.6 \times h_{2}$
 $h_{2} = 5.626 \text{ mm of Hg}$
 $P = \frac{5.626}{760} \text{ atm/hr}$. $PV = nRT$
 $\frac{5.626}{760} \times 0.016 = n \times 0.821 \times 310$
 $n = 4.653 \times 10^{-3} \text{ mole/hr}$.
Rate of O_{2} consumption $= n \times 22400 \text{ cm}^{3} = 0.104 \text{ cm}^{3}/\text{m}$
 $O_{2} = 104 \text{ mm}^{3}/\text{hr}$.
67. $P = 750 - 17.5 = 732.5 \text{ torr}$
 $T = 20^{\circ}\text{C} = 293 \text{ K}$
Inhaled $O_{2} = 52.5 \times 0.2032$
Exhaled $O_{2} = 52.5$

68. Let moles of water vapour initially = n_1 Let moles of water vapour finally = n_2

$$n_1 = \frac{17.5 \times 0.8 \times V}{R \times 293} \Rightarrow n_2 = \frac{6.5 \times V}{R \times 277}$$
$$\frac{n_1}{n_2} = 2.036$$
$$\frac{n_2}{n_1} = 0.491$$

So fraction of water vapour condensed

$$=1-\frac{n_2}{n_1}=0.509$$

69. Average velocity =
$$\sqrt{\frac{8RT}{\pi M}} = 4 \times 10^2$$

 $\Rightarrow \frac{RT}{\pi M} = 2 \times 10^4 \Rightarrow RT = 2.2\pi M \times 10^4$
Total K.E. of He
 $= \frac{6}{4} \times \frac{3}{2}RT = \frac{9}{4}RT = \frac{9}{4} \cdot 2\pi \times 4 \times 10^{-3} \times 10^4 = 180$
 πJ
Total K.E. of Ne
 $= \frac{12}{20} \times \frac{3}{2}RT = \frac{9}{10}RT = \frac{9}{10} \times 2\pi \times 20 \times 10^{-3} \times 10^4$
 $= 360 \pi J$
Average K.E. per mol = $\frac{(360 + 180)\pi}{1.5 + 0.5} = 807.84 J$
70. $V - b = RT = 100 (0.011075 V - b) = 1.1075$
 $V - 100b \Rightarrow V = \frac{99b}{0.0175} = 921 b$
 $\Rightarrow 920 b = RT$
 $\Rightarrow b = 24.33 \text{ cm}^3 \text{ mol}^{-1} = 4 \times \frac{4}{3}\pi r^3 \times 6.023 \times 10^{23}$
 $\Rightarrow r = 13.4 \times 10^{-9} \text{ cm} = 134 \text{ pm}$
71. $V = \frac{RT}{P} + B = 2.058 \text{ L}$. Also, for the given equation
 $Z = 1 + \frac{PB}{RT} = 1 + \frac{10(-0.1814)}{0.082 \times 273} = 0.918$
From Van der Waal's equation, for $Z < 1, Z$
 $Z = 1 - \frac{a}{VRT}$
 $\Rightarrow \frac{a}{VRT} = 0.082 \Rightarrow a = 3.77 \text{ bar } L^2 \text{ mol}^{-2}$
72. $\frac{-dP}{dt} = \frac{KP}{\sqrt{M}} \Rightarrow \int_{P_0}^{P} -\frac{dP}{P} = \frac{K}{\sqrt{M}} \int_{0}^{t} dt$
 $\Rightarrow \ln\left(\frac{P_0}{P}\right) = \frac{Kt}{\sqrt{M}} \Rightarrow \ln 4 = \frac{4K}{\sqrt{4}} = 2K$
 $\ln \frac{10}{P} = \frac{K}{2} \Rightarrow P_{\text{He}} = 7.07 \text{ atm}$
Also, $\ln\left(\frac{P_0}{P}\right)_{\text{He}} = \frac{Kt}{2} \text{ and } \ln\left(\frac{P_0}{P}\right)_{\text{CH}_4} = \frac{Kt}{4}$

$$\Rightarrow \left(\frac{P_{0}}{P}\right)_{He} = \left(\frac{P_{0}}{P}\right)_{CH_{4}}^{2} \Rightarrow \frac{10}{7.07} = \frac{100}{P_{CH_{4}}^{2}} \\ \Rightarrow P_{CH_{4}} = 8.4 \text{ atm} \\ \textbf{73. NH_{3}(g) + HCl(g) \longrightarrow NH_{4}Cl(s) \\ Moles 0.08 0.26 0 \\ 0 0.18 0.08 \\ \Rightarrow Q = 0.08 \times 4300 = 3440 \text{ J} \\ Also, Q = nC_{3}\Delta T \Rightarrow \Delta T = \frac{3440}{0.18 \times 20} = 955.55 \\ T_{final} = 1255.55 \text{ K} \\ P_{final} = \frac{0.18 \times 0.082 \times 1255.55}{1.8} \\ = 10.3 \text{ atmosphere} \\ \textbf{74. } b = 39.1 \text{ cm}^{3}\text{mole}^{-1} = 39.1 \times 10^{-6}\text{m}^{3} \text{ mole}^{-1} = 4\text{ V} \times N_{4} \\ 39.1 \times 10^{-1} = 4 \times \frac{4}{3}\pi r^{3} 6.023 \times 10^{23} \\ r = 1.57 \times 10^{-10} \text{ m} \\ \sigma = 2r = 3.14 \times 10^{-10} \text{ m} = 314 \text{ pm} \\ \mu_{avg.} = \sqrt{\frac{8RT}{\pi M}} = \sqrt{\frac{8 \times 8.314 \times 298}{3.14 \times 28 \times 10^{-3}}} = 474.8 \text{ m/sec.} \\ N^{*} = \frac{P}{kT} = \frac{10^{-3} \times 101325}{760 \times 1.38 \times 10^{-23} \times 298} = 3.24 \times 10^{19} \\ \lambda_{1} = \frac{1}{\sqrt{2}\pi\sigma^{2}N^{*}} = \frac{Z_{1}N^{*}}{2} \\ = \frac{1}{\sqrt{2} \times 3.14 \times (3.14 \times 10^{-10})^{2} \times 3.24 \times 10^{19}} \\ = 0.0705 \text{ m} = 7.05 \text{ cm} \\ Z_{11} = \frac{1}{\sqrt{2}\pi\sigma^{2}UN^{*}} = \frac{Z_{1}N^{*}}{2} = \frac{6739.4 \times 3.24 \times 10^{19}}{2} \\ z_{11} = \frac{1}{\sqrt{2}\pi\sigma^{2}N^{*}} = 0.26 \text{ m} = 2.6 \times 10^{-10} \text{ m} \\ T = 300 \text{ K} \\ \lambda = \frac{1}{\sqrt{2}\pi\sigma^{2}N^{*}} \\ 2.6 \times 10^{-5} \text{ m}, \sigma = 0.26 \text{ nm} = 2.6 \times 10^{-10} \text{ m} \\ T = 300 \text{ K} \\ \lambda = \frac{1}{\sqrt{2}\pi\sigma^{2}N^{*}} \\ 2.6 \times 10^{-5} \text{ m}, \sigma = 0.26 \text{ nm} = 2.6 \times 10^{-10} \text{ m} \\ T = 3.281 \times 10^{23} \text{ m}^{-3} \\ N^{*} = \frac{P}{KT} \\ P = 1.281 \times 10^{23} \text{ m}^{-3} \\ N^{*} = \frac{P}{KT} \\ P = 1.281 \times 10^{23} \text{ m}^{-3} \\ N^{*} = \frac{1}{\sqrt{2}} (v_{avg})_{CH4} \\ \end{cases}$$

and $v_{\rm rms} = \sqrt{\frac{3\pi}{8}} (v_{\rm avg.})$ so $\sqrt{\frac{3\pi}{8}} (v_{\text{avg.}})_x = \frac{1}{\sqrt{6}} (v_{\text{avg.}}) CH_4$ $\frac{(v_{\text{avg.}})x}{(v_{\text{avg.}})_{\text{CH}_4}} = \sqrt{\frac{8}{3\pi}} \cdot \frac{1}{\sqrt{6}} = \frac{2}{3\sqrt{\pi}}$ For $X: Z_1 = \sqrt{2\pi\sigma^2} (v_{avg.})_x N^*$ For CH₄: $Z_1 = \pi\sigma^2 (v_{avg.})_{CH4} N^*$ Since *T*, *P*, *v*, *n* are same, *N** will also be same. $\frac{Z_1(x)}{Z_1(CH_4)} = \sqrt{2} \frac{(v_{avg.})_x}{(v_{avg.})_{CH_4}} = \sqrt{2} \cdot \frac{2}{3\sqrt{\pi}}$ $Z_1(x) = Z_1(CH_4).$ 77. $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$ Initially $\frac{n_{\rm CH_4}}{n_{\rm O_2}} = \frac{1}{192}$ Finally $\frac{n_{\rm CH_4}}{n_{\rm O_2}} = \frac{1}{6}$ $\frac{1}{6} = \frac{1}{192} \left(\sqrt{\frac{32}{16}} \right)^n$ $32 = 2^{n/2}$ $5 = n/2 \implies n = 10$ steps Let initial moles of $CH_4 \rightarrow x$ so after 10 steps $x (0.9)^{10} \times 100 = 1000$ $x = \frac{10}{0.36} = 28.78$ mole Moles of O₂ initially $= 192 \times 27.78 = 5333.3$ moles **78.** (a) Slope of *P* and *T* graph is $\frac{nR}{V}$

so
$$\frac{n_{\text{Th.}}R}{V} = 3.2 - 1.54 = 1.66$$

 $\frac{n_{\text{exp.}}R}{V} = 2.2875 - 1.25 = 1.0375$
so $\frac{n_{\text{exp.}}}{n_{\text{Th.}}} = \frac{1.0375}{1.66} = 0.625$

$$1.66 - 1.66 \times 0.5 + \frac{1.66 \times 0.5}{n} = 1.0375$$
$$0.83 + \frac{0.83}{n} = 1.0375 \Rightarrow n = 4$$

79. Each time Sabu sucks air, volume of CO becomes half so

$$5\left(\frac{1}{2}\right)^{n} < 0.001 \qquad 5(0.5)^{n} < 0.001$$
$$\log 5 + n \log 0.5 < \log 10^{-3}$$
$$\log 5 - 0.3 n < -3 \qquad 0.3n > 3 + \log 5$$
$$n > 12.3 \qquad n = 13$$
80.
$$P_{\text{lower}} = P_{\text{upper}} + P_{\text{piston}}$$
$$\text{Temp.} = 300 \text{ K}$$
$$4V/5 \boxed{1 \text{ mole}}$$
$$1 \text{ mole}$$
$$V/5 \boxed{1 \text{ mole}}$$
$$1 \text{ mole}$$
$$1 \text{$$

$$1 \text{ mmp.} = 1$$

$$3 \text{V}/4 \qquad 1 \text{ mole}$$

$$V/4 \qquad 1 \text{ mole}$$
Final

From Eqs. (i) and (ii)

$$\frac{15}{4} \times \frac{R \times 300}{V} = \frac{8RT}{V} \Rightarrow T = \frac{4500}{32} = 421.9 \text{ K}$$

81. (i) Let initial volume of mixture be V L, then $\rm H_2 \,{\rightarrow}\, 0.5$ V, CO ${\rightarrow}\, 0.45$ V, CO $_2 \,{\rightarrow}\, 0.05$ V On reaction with excess steam $CO + H_2O \rightarrow$ CO_2 $^+$ H_2 0.045V - 0.05 V 0.95 V - 0.5 V 0.95 V _ 0.95 V = 5V = 5.263 L(ii) Molecular mass of initial mixture $M = 0.5 \times 2 + 0.45 \times 28 + 0.05 \times 44 = 15.8$ $PM = \rho RT$

- $1 \times 15.8 = \rho \times 0.0821 \times 273$
- $\rho = 0.7 \text{ g/L}$ (iii) Volume of $CO_2 = 0.5 V = 0.5 \times 5.263 = 2.6315 L$ Moles of $CO_2 = \frac{2.6315}{22.4} = 0.1174$

Moles of KOH required = $0.1174 \times 2 = 0.2349$

Moles of Ca(OH)₂ required = 0.1174
Moles of OH - CH₂ - CH₂ - NH₂ required
= 0.1174 × 2 = 0.2349
82. (i) Let
$$n = mT + C$$

 $2 = 300 T + C$ and $3 = 200 T + C$
On solving $m = -\frac{1}{100}$, C = 5
So $n = \frac{-T}{100} + 5$
(ii) $PV = nRT \Rightarrow 1 \times V = \left(\frac{-T}{100} + 5\right)RT$
 $\Rightarrow V = -\frac{RT^2}{100} + 5RT$
(iii) For Maximum volume
 $\frac{dv}{dT} = 0 \Rightarrow \frac{-2RT}{100} + 5R = 0, T = 250$
 $V = \frac{-R(250)^2}{100} + 5 \times 250 \text{ R} = -625 \text{ R} + 1250$
 $R = 625 \text{ R} = 625 \times 0.0821 \text{ L} = 51.3125 \text{ L}$
83. $PV = RT - \frac{A}{V} + \frac{2B}{V^2}$
 $V^3 - \frac{RTV^2}{P} + \frac{A}{P}V - \frac{2B}{P} = 0$
At critical point $(V - Vc)^3 = 0$
 $V^3 - 3V_cV^2 + 3V_c^2V - V_c^3 = 0$
so on comparision
 $3V_c^2 = A/P$ (i)
 $3V_c = RT/P$ (ii)
 $V_c^3 = 2B/P$ (iii)
On $\frac{(iii)}{(i)} \Rightarrow \frac{V_c}{3} = \frac{2B}{A}$

 $= V_c = 6 B/A$ from Eq. (i)

$$3\left(\frac{6B}{A}\right)^2 = AP_c \implies P_c = \frac{A^3}{108B^2}$$

From Eq. (ii)
$$T_c = \frac{A_c V_c}{R} = \frac{3}{2} \left(\frac{A}{108B^2} \right) \left(\frac{B}{A} \right)$$

 $T_c = \frac{A^2}{6RB} \Rightarrow Z = \frac{P_c V_c}{RT_c} = \frac{\frac{A^3}{108B^2} \cdot \frac{6B}{A}}{R \cdot \frac{A^2}{6RB}} = \frac{1}{3}$

84. 760 mm = 76 cm

- $\therefore \quad V = 76 \times 1 = 76 \text{ cm}^3$
- Mass = $V \times d$ = 76 × 13.6 = 1033.6 g .:.
- (a) If area of cross section is 2 cm^2 (doubled) then volume is also doubled hence,

:. mass = $76 \times 2 \times 13.6 = 2067.2$ g

- (b) This mass would rest on twice the area and exert the same pressure.
- **85.** The pressure on the bubble = 1 atm (when it is at the surface.)

The pressure on the bubble = P atm (say) (when it is at the bottom.)

The volume of the bubble = $\frac{1}{6}\pi(0.1)^3$ $P \times \frac{1}{6}\pi \times (0.1)^3 = 1 \times \frac{1}{6}\pi (0.4)^3$

or P = 64 atm. Thus the pressure due to water is 63 atm (:. atmospheric pressure = 1 atm)

Now, consider the depth of lake is h cm

 $\therefore \quad 63 \times 76 \times 13.6 \times g = h \times 1 \times g$

or $h = 63 \times 76 \times 13.6$ cm = 65116.8 cm. 86. For NO gas

$$nNO = \frac{PV}{RT} = \frac{1.053 \times 250}{0.0821 \times 300 \times 1000} = 1.069 \times 10^{-2}$$

For O₂ gas :-
$$n_{O_2} = \frac{0.789 \times 100}{0.0821 \times 300 \times 1000} = 0.32 \times 10^{-2}$$

Now, 2NO + $O_2 \longrightarrow N_2 O_4$ Mole before reaction: 1.069×10^{-2} 0.32×10^{-2} 0 Mole after reaction: 1.069 \times 10⁻² – 2 \times 0.32 \times 10^{-2} 0 0.32×10^{-2} $= 0.429 \times 10^{-2}$ Moles of NO left = 4.29×10^{-3} Given T = 220 K $P_{\rm NO} \times V = nRT$ $V = \frac{250 + 100}{1000} = \frac{350}{1000}$ litre $P_{\rm NO} \times \frac{350}{1000} = 4.29 \times 10^{-3} \times 0.821 \times 220$ $P_{\rm NO}$ (left) = 0.221 atm. N_2 + $3H_2$ $2NH_3$ 3 0 Initially 1 at equilibrium (1 - x)3(1-x)2xTotal moles = 1 - x + 3 - 3x + 2x = (4 - 2x) moles

Given Average molecular mass
$$=$$
 $\frac{34}{3}$
 $\frac{34}{3} = \frac{28(1-x) + 2(3-3x) + 17(2x)}{(4-2x)}$
 $\frac{34}{3}(4-2x) = 34 \implies 4-2x = 3 \implies x = 1/2$

So total number of moles = 3

87.

$$PV = nRT \implies \frac{nRT}{V} = \frac{3 \times 0.821 \times 300}{8.21} = 9 \text{ atm}$$
$$p_{N_2} = \frac{1 - x}{3} \times P = \frac{0.5}{3} \times 9 = 1.5 \text{ atm}$$
$$p_{H_2} = \frac{3 - 3x}{3} \times P = \frac{1.5}{3} \times 9 = 4.5 \text{ atm}$$

88. The aqueous tension remains same in both the flask. Also flasks are at same temperature.

:.
$$P_1V_1 = P_2V_2$$

where $P_1 = 200 - 93 = 107 \text{ mm}$
 $V_1 = 1 \text{ ltr}$
 $V_2 = 2 \text{ ltr}$
:. $107 \times 1 = P \times 2$
 $P = 53.5 \text{ mm}$

Since aqueous tension is also present in flask, it is equivalent to 93 mm.

:. pressure of gaseous mixture = 93 + 53.5 = 146.5 mm-Hg.

89. Partial pressure of CH₄, $(p_{CH_4}) = 1$ atm

Partial pressure of O_2 , $(p_{O_2}) = 4$ atm moles of CH₄ present, $(n_{\text{CH}_4}) = \frac{1 \times 0.5}{RT} = \frac{0.5}{RT}$ *.*.. moles of O₂ present $(n_{O_2}) = \frac{4 \times 0.5}{RT} = \frac{2}{RT}$ *.*.. $CH_4(g) + 2O_2(g) = CO_2(g) + 2H_2O(l)$ $\frac{0.5}{RT}$ 2 Initially RT 1 0.5 Finally RT RTAfter the reaction, moles of residual O2

$$= \frac{2}{RT} - \frac{1}{RT} = \frac{1}{RT}$$

After the reaction, moles of CO₂ produced = $\frac{0.5}{RT}$

Hence total number of moles of O_2 and $CO_2 = \frac{1.5}{RT}$

: total pressure due to
$$O_2$$
 and $CO_2 = \frac{1.5}{RT} \times \frac{RT}{0.5} = 3$ atm

 \therefore pressure exerted by the entire gaseous components

$$= 3 + \frac{26.7}{760} = 3 + 0.03513 = 3.0513$$
 atm

90. M (dry air)

$$= \frac{M_1(O_2)X_1(\% \text{ of } O_2) + M_2(N_2)X_2(\% \text{ of } N_2)}{X_1 + X_2}$$

= $\frac{32 \times 24.5 + 28 \times 75.5}{100} = 28.98 \text{ g mol}^{-1}$
 $d (\text{dry air}) = \frac{PM_{(\text{air})}}{RT} = \frac{1 \times 28.98}{0.0821 \times 298}$
= 1.184 g L⁻¹ = 1.184 kg m⁻³
 $\therefore 1 \text{ g } L^{-1} = \frac{10^{-3} \text{ kg}}{10^{-3} \text{ m}^3} = 1 \text{ kg m}^{-3}$

$$\therefore M = 38.85$$

Let n1 moles of CO and $(100 - n_1)$ moles of CO₂ be present in 100 moles.

: average molecular weight (M)

$$=\frac{n_1 \times 28 + (100 \times n_1) \times 44}{100} = 38.85 \Longrightarrow n1 = 32.19$$

 \therefore mole % of CO = 32.19, and mole % of CO₂ = 67.81.

93. The molar ratio of oxygen and the other gas in the evacuated bulb is 1 : 1 and the total pressure of the gas mixture is 4000 mm. Hence the partial pressure of each gas is 2000 mm.

The drop in the pressure of oxygen after 74 minutes,

$$=\frac{(2000-1500)\times74}{47}=787.2 \text{ mm of Hg}$$

 \therefore after 74 minutes, the pressure of oxygen = 2000 - 787.2 = 1212.8 mm of Hg.

Let the rate of diffusion of other gas be r_n , then

$$\frac{r_n}{r_{O_2}} = \sqrt{\frac{32}{79}}$$

:. drop in pressure for the other gas = $787.2 \times \sqrt{\frac{32}{79}} = 501.01 \text{ mm of Hg.}$

 \therefore pressure of the other gas after 74 minutes = 2000 - 501.01 mm = 1498.99 mm of Hg.

Molar ratio =
$$\frac{\text{Moles of unknown gas}}{\text{Moles of O}_2} = \frac{1498.99}{1212.8}$$

= 1.236 : 1

94. (a) Under low pressure region, V is high $\therefore (V-b) \approx V$

$$\left(P + \frac{a}{V^2}\right)V = RT$$
$$PV + \frac{a}{V} = RT$$

$$\frac{PV}{RT} + \frac{a}{RTV} = 1$$
$$Z = \frac{PV}{RT} = \left(1 - \frac{a}{RTV}\right) = 1 - \frac{20.39}{0.0821 \times 350 \times 35} = 0.98$$

(b) Under high pressure region, *P* is high,

$$\left(P + \frac{a}{V^2}\right) \approx P$$

$$\therefore P(V-b) = RT$$

$$PV - Pb = RT$$

$$\frac{PV}{RT} - \frac{Pb}{RT} = 1$$

$$\therefore Z = \frac{PV}{RT} = 1 + \frac{Pb}{RT} \left(\because \frac{PV}{RT} = 1, \text{ or } \frac{P}{RT} = \frac{1}{V}\right)$$

$$Z = 1 + \frac{b}{V} = 1 + \frac{0.1383}{35} = 1 + 0.004 = 1.004$$

95. (b, d)

$$\frac{\gamma_{\rm He}}{\gamma_{\rm CO}} = \sqrt{\frac{M_{\rm CO}}{M_{\rm He}}} = \sqrt{\frac{28}{4}} = \sqrt{7} = 2.65$$
$$\frac{\gamma_{\rm He}}{\gamma_{\rm SO_2}} = \sqrt{\frac{64}{4}} = \sqrt{16} = 4$$

96. (a, c, d)

$$\Delta G = RT \ln \frac{P_2}{P_1}$$

= 8.314 × 298 × 2.303 log $\frac{2}{1}$
$$\Delta S = -R \ln \frac{P_2}{P_1} < 0$$

ъ

97. (a, c, d)

$$\frac{r_{\text{vap.}}}{l_{O_2}} = \sqrt{\frac{32}{M_{\text{vap.}}}} \Rightarrow \left(\frac{4}{3}\right)^2 = \frac{32}{M_{\text{vap.}}}$$
$$M_{\text{vap.}} = 18$$
$$\Rightarrow \quad \text{V.D} = 9 \Rightarrow \text{Density} = \frac{18}{22.4} \text{ gram/ltr}$$
$$= 0.8035 \text{ gram/ltr}$$

Now,

$$Z = \frac{PV}{nRT} = \frac{P}{\frac{W}{MV}RT} = \frac{PM}{dRT} \Rightarrow Z = \frac{18P}{dRT}$$

PREVIOUS YEARS' QUESTIONS OF JEE (MAIN & ADVANCED)

1. PV = nRT (number of moles = nV) $\therefore n/V = P/RT$

$$(R) = 0.0821 L \text{ atm } \text{K}^{-1}\text{mol}^{-1}$$

= 8.314 × 10⁷ ergs K⁻¹mol⁻¹
= 8.314 JK⁻¹mol⁻¹ = 1.987 cal K⁻¹mol⁻¹

3.
$$\frac{\text{K.E. of neon at 40°C}}{\text{K.E. of neon at 20°C}} = \frac{\frac{3}{2}K \times 313}{\frac{3}{2}K \times 293} = \frac{313}{293}$$

- 4. In van der waal's equation, 'b' is for volume correction.
- 5. The expression of root mean square speed is

$$U_{\rm rms} = \sqrt{\frac{3RT}{M}}$$

Hence,

$$\frac{U_{\rm rms}({\rm H}_2)}{U_{\rm rms}({\rm O}_2)} = \left[\frac{3R(50 \text{ K})/(2\text{g mol}^{-1})}{3R(800 \text{ K})/(32\text{g mol}^{-1})}\right]^{1/2} = 1$$

6. Under identical condition, $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$

As rate of diffusion is also inversely proportional to time, we will have, $\frac{t_2}{t_1} = \sqrt{\frac{M_2}{M_2}}$ (a) This, for He, $t_2 = \sqrt{\frac{4}{2}}(5s) = 5\sqrt{2} s \neq 10 s$ (b) For O₂, $t_2 = \sqrt{\frac{32}{2}}(5s) = 20 s$ (c) For CO, $t_2 = \sqrt{\frac{28}{2}}(5s) \neq 25 s$ (d) For CO₂, $t_2 = \sqrt{\frac{44}{2}}(5s) \neq 55 s$ 7. $N_2O_4 \implies 2NO_2$ 1 - 0.2 2×0.2 0.8 mole 0.4 mole $n_T = (0.8 + 0.4)$ mole = 1.2 mole $\frac{P_1}{T_1} = \frac{P_2}{T_2}$ at 300 K $\frac{1}{300} = \frac{P_2}{600}$:. $P_2 = 2 \text{ atm} = P_{N_2O_4} \text{ at } 600 \text{ K}$ or Pressure of 1 mole N₂O₄ \therefore Pressure of 1.2 mole gas (N₂O₄ and NO₂) $= 1.2 \times 2 = 2.4$ atm

$$8. \quad B = b - \frac{a}{RT}$$

Derivation of Boyles Temperature.

9. According to Graham's law of diffusion, for two gases undergoing diffusion at different pressures throught same hole

$$\frac{r_A}{r_B} = \sqrt{\frac{M_B}{M_A}} \times \frac{P_A}{P_B}$$

$$\left(r \propto P \times \sqrt{\frac{1}{M}} \text{ At constant temperature} \right)$$

10. Weight of gas = 50.5 - 50

:.
$$V = \frac{148 - 50}{0.98} = 100 \text{ ml}$$

Using,
$$PV = nRT = \frac{w}{m}RT$$

 $\frac{760}{760} \times \frac{100}{1000} = \frac{0.5}{m} \times 0.082 \times 300 \left[n = \frac{0.5}{m} \right]$

:. molecular weight of gas (m) = 123 11. Van der Waal's equation for *n* moles of gas is

$$\left[P + \frac{n^2 a}{V^2}\right] \left[V - nb\right] = nRT$$

Given: V = 4 ltr; P = 11.0 atm, T = 300 K; b = 0.05 ltr mol⁻¹, n = 2Thus, $\left[11 + \frac{2^2 a}{4^2}\right] [4 - 2 \times 0.5] = 2 \times 0.082 \times 300$ $\therefore a = 6.46$ atm ltr² mol⁻² 12. We know that $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}} \times \frac{P_1}{P_2}$ or $\frac{n_1}{t_1} \times \frac{t_2}{n_2} = \sqrt{\frac{M_2}{M_1}} \times \frac{P_1}{P_2}$ or $\frac{1}{38} \times \frac{57}{1} = \sqrt{\frac{M}{28}} \times \frac{0.8}{1.6}$ $\therefore M = 252$ $\left[Xe + (F)_x = 252; \therefore x = 6\right]$

Thus compound of xenon with fluorine is XeF_6 .

- **13.** For an ideal gas behaviour, the molecules of a gas should be far apart. The factors favouring this condition are high in temperature and low in pressure.
- 14. Compressibility factor of ideal gas $(Z) = \frac{PV}{nRT}$ For one mole of ideal gas at STP,

$$Z = \frac{P \times 22.4}{RT}$$

For given gases Z < 1 and $Z = \frac{P \times V_m}{RT}$

 \therefore *Vm* < 22.4 ltr **Alternate solutions**

$$(PV)_{\text{Observed}}/(PV)_{\text{Ideal}} < 1$$

$$\Rightarrow V_{\text{obs}} < V_{\text{ideal}}, V_{\text{obs}} < 22.4 \text{ ltr}$$

15. We know

...

$$U_{\rm rms} = \sqrt{\frac{3RT}{M}}$$
$$\sqrt{\frac{3RT_{\rm H_2}}{2}} = \sqrt{7}\sqrt{\frac{3RT_{\rm N_2}}{28}}$$
$$T_{\rm N_2} = 2T_{\rm H_2} \quad \text{or} \quad T_{\rm N_2} > T_{\rm H_2}$$

16. Van der Waal's equation for one mole of a gas is

$$\left[P + \frac{a}{V^2}\right](V - b) = RT \tag{i}$$

Given that volume occupied by CO_2 molecules, 'b' = 0

Hence, Eq. (i) becomes

$$\left[P + \frac{a}{V^2}\right]V = RT \quad \text{or} \quad P = \frac{RT}{V} - \frac{a}{V^2}$$

Using R = 0.082, T = 273 K, V = 22.4l for 1 mole of an ideal gas at 1 atm pressure

$$\therefore P = \frac{0.082 \times 273}{22.4} - \frac{3.592}{(22.4)^2} = 0.9922 \text{ atm}$$

17. We know that, compressibility factor, $Z = \frac{PV}{RT}$

$$0.5 = \frac{0.5 \times 273}{0.082 \times 273}$$

V = 0.1119 L

•

S

Note: Further when volume of a gas molecule is negligible, Van der Waal's equation becomes

$$\left(P + \frac{a}{V^2}\right)(V - 0) = RT$$

If $PV = RT - \frac{a}{V}$ or $a = RTV - PV^2$
Substituting the values,
 $a = (0.082 \times 0.1119 \times 273)$
 $- (100 \times 0.1119 \times 0.1119)$
 $= 1.253$ and L^2 mol⁻²

18. (a) $d = 0.36 \text{ kgm}^{-3} = 0.36 \text{ g/L}$ (i) From Graham's law of diffusion

$$\frac{r_v}{r_{O_2}} = \sqrt{\frac{M_{O_2}}{M_v}}; 1.33 = \sqrt{\frac{32}{M_v}}$$
$$M_v = \frac{32}{(1.33)^2} = 18.09$$

where Mv = MW of the vapour

(ii) Thus,
$$0.36 \text{ g} = \frac{0.36}{18.09} \text{ mol}$$

 $\frac{0.36}{18.09}$ mol occupies 1 L volume, so 1 mole

occupies

...

$$\frac{18.09}{0.36} L = 40.25 L$$

Thus, molar volume of vapour = 50.25 L.

Assuming ideal behaviour the volume of the vapour can be calculated by

$$\frac{V_1}{T_1} = \frac{V_2}{T_2} \Longrightarrow V_2 = 22.4 \times \frac{500}{273} = 41.05 \text{ L}$$

(iii) Compressibility factor (Z) (BV) 1×50

$$= \frac{(PV)_{\text{obs}}}{(PV)_{\text{ideal}}} = \frac{1 \times 50.25}{1 \times 41.025} = 1.224$$

(iv) Z is greater than unity, hence it is the short range repulsive force that would dominate.(:: actual density is less than given density.)

(b)
$$E = \frac{3}{2}KT = \frac{3}{2} \times \frac{8.31}{6.02 \times 10^{23}} \times 1000$$

= 2.07 × 10⁻²⁰ J per molecule
(:: K, Boltzmann constant = R/NA)

Gaseous State 3.63

19. TIPS/Formulae:

$$V_{\rm rms} = \sqrt{\frac{3RT}{M}}, C_{\rm av} = \sqrt{\frac{8RT}{\pi M}}$$
$$\frac{V_{\rm rms}}{V_{\rm av}} = \sqrt{\frac{3RT}{M}} \times \sqrt{\frac{\pi M}{8RT}} = \sqrt{\frac{3\pi}{8}} = 1.085$$
$$V_{\rm rms} = 1.085 \times C_{\rm av} = 1.085 \times 400 = 434 \text{ ms}^{-1}$$

20. For positive deviation : PV = nRT + nPb

$$\Rightarrow \qquad Z = 1 + \frac{Pb}{RT}$$

Thus, the factor nPb is responsible for increasing the PV value. Above ideal value, b is actually the effective volume of molecule. So, it is the finite size of molecules that leads to the origin of b and hence positive deviation at high pressure.

21. The Van de Waal equation (for one mole) of a real gas is

$$\left(P + \frac{a}{V_m^2}\right)(V_m - b) = RT$$

$$PV_m - Pb + \frac{a}{V_m} - \frac{ab}{V_m^2} = RT$$

$$PV_m = RT + Pb - \frac{a}{V_m} + \frac{ab}{V_m^2}$$
(i)

Note:

To calculate the intercept $P \rightarrow 0$, hence $V_m \rightarrow \infty$ due to which the last two terms on the right side of the equation (I) can be neglected. $\therefore PV_m = RT + Pb$

When P = 0, intercept = RT

22. TIPS/Formulae:

Using Grahms' law of diffusion,

$$\frac{r_{\rm He}}{r_{\rm CH_4}} = \sqrt{\frac{M_{\rm CH_4}}{M_{\rm He}}} = \sqrt{\frac{16}{4}} = 2$$

23. For gas A, a = 0, $Z = 1 + \frac{Pb}{RT}$ implies Z varies linearly with pressure. For gas B, b = 0, $Z = 1 - \frac{a}{VRT}$. Hence, Z does not vary linearly with pressure.

Key Concepts

Г.,

$$K_{\rm eq} = \frac{K_f}{K_b} = \frac{A_f e^{-\frac{E_{af}}{RT}}}{A_b e^{-E_{ab}/RT}}$$

Arrhenius Equation

 $K = Ae^{-Ea/RT}$

- **K** = Rate constant or Velocity constant or Specific reaction rate
- A = Arrhenius constant or Frequency Factors or Preexponential factor Ea = activation energy

Significance of A

A gives us number of reactant molecules colliding in unit time in unit volume.

'A' for a particular reaction is constant and is independent of temperature.

For a particular reaction E_a is constant and is independent of temperature.

If $\Delta H^{\circ} > 0$

If $\Delta H^{\circ} < 0$

Equation (2) is known as Van't Hoff Equation (Integral) Differentiate equation (2) with respect to temperature.

$$\frac{d(\ell n K_{eq})}{dT} = \frac{+\Delta H^{\circ}}{R} \cdot \frac{1}{T^2}$$
$$\ell n \frac{K_2}{K_1} = \frac{\Delta H^{\circ}}{R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

Thermodynamics of Equilibrium constant

$$\Delta G = \Delta H - I\Delta S$$

$$-nFE \text{ cell}$$

$$= -W \text{ useful}$$

$$\Delta G = \Delta G^{\circ} + RT \ell n Q$$

$$\Delta G < 0 \implies \text{Spontaneous or Irreversible}$$

$$\Delta G = 0 \implies \text{Reversible at equilibrium}$$

$$\Delta G > 0 \implies \text{Non-Spontaneous}$$

At equilibrium

$$\Delta G = 0$$

$$Q_{eq} = K_{eq}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} \qquad ...(2)$$

$$= -nFE^{\circ} \qquad ...(3)$$

If

$$\Delta G^{\circ} > 0 \implies \ln K_{eq} < 0 \implies K_{eq} < 1 \implies K_f < K_b$$

$$\Delta G^{\circ} < 0 \implies \ln K_{eq} < 0 \implies K_{eq} = 1 \implies K_f = K_b$$

$$\Delta G^{\circ} < 0 \implies \ln K_{eq} > 0 \implies K_{eq} = 1 \implies K_f > K_b$$

Equating Equations (2) and (3);

If

$$-RT \ln K_{eq} = \Delta H^{\circ} - T\Delta S^{\circ}$$
$$\boxed{\ln K_{eq} = -\frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}} \qquad \dots (4)$$

Calculation of Equilibrium Constant

	$PCl_5(g)$	\rightleftharpoons	$PCl_3(g)$	$+Cl_2(g)$	
Initial moles:	a		_	_	
At Equilibrium	(a-x)		x	x	
Equi.[Conc] = $\frac{\text{moles}}{v}$	$\frac{a-x}{v}$		$\frac{x}{v}$	$\frac{x}{v}$	
$K_C = \frac{[\text{PCl}_3]}{[\text{PC}_3]}$	$\frac{][Cl_2]}{Cl_5]}$				
$=\frac{(x/v)}{\left(\frac{a}{v}\right)}$	$\left(\frac{x/v}{x}\right)$				
$K_C = \frac{x^2}{v(a - a)}$	<i>x</i>)				
	PCl ₅ (g) ₹	\Rightarrow PCl ₃	(g) $+Cl_2($	g)
(b) Initial moles :	а		_	_	
At Equilibrium	a(1 -	α)	ao	α αα	
Concentration	$\frac{a(1-a)}{v}$	<u>α)</u>	$\frac{a\alpha}{v}$	$\frac{a\alpha}{v}$	

v

$$\alpha = \text{degree of dissociation}$$

$$\frac{][Cl_2]}{Cl_5]}$$

$$\left(\frac{a\alpha}{v}\right)$$

$$K_{C} = \frac{[\text{PCl}_{3}][\text{Cl}_{2}]}{[\text{PCl}_{5}]}$$
$$= \frac{\left(\frac{a\alpha}{v}\right)\left(\frac{a\alpha}{v}\right)}{\left(\frac{a(1-\alpha)}{v}\right)}$$
$$K_{C} = \frac{a\alpha^{2}}{v(1-\alpha)}$$

 $K_P = K_C(RT)^1$ $PCl_5 \iff PCl_3 + Cl_2$ Initial Pressure $P_0 \qquad - \qquad -$ At equilibrium $P_0(1 - \alpha) \qquad P_0\alpha \qquad P_0\alpha$ $P_t = P_{\text{eq}} = P_{\text{PCl}_5} + P_{\text{PCl}_3} + P_{\text{Cl}_2}$ $P_t = P_{eq} = P_0(1 + \alpha)$ $P_0 = \frac{P_{\rm eq}}{(1+\alpha)}$ $K_P = \frac{P_{\text{PCl}_3} \times P_{\text{Cl}_2}}{P_{\text{PCl}_*}} = \frac{P_{0\alpha} \cdot P_{0\alpha}}{P_0(1-\alpha)} = \frac{\alpha^2}{(1-\alpha)} \cdot P_0$ $K_P = P_{eq} \cdot \frac{\alpha^2}{1 - \alpha^2}$ $\begin{array}{rcrcrc} & \operatorname{PCl}_5(g) &\rightleftharpoons & \operatorname{PCl}_3(g) &+ & \operatorname{Cl}_2(g) \\ \text{Initial moles} & a & - & - \\ \text{At Equilibrium} & (a-x) & x & x \\ \text{Mole Fraction} & \frac{(a-x)}{a+x} & \frac{x}{a+x} & \frac{x}{a+x} \end{array}$ Partial Pressure $\frac{(a-x)}{(a+x)} \cdot P_T$ $\frac{x}{(a+x)} \cdot P_T$ $\frac{x}{(a+x)} \cdot P_T$ $K_P = \frac{\left(\frac{x}{a+x}P_T\right)^2}{\left(\frac{a-x}{a+x}\right)P_T}$ $=\frac{x^2}{a^2-r^2}\cdot P_T$ $K_P = \frac{\alpha^2}{1 - \alpha^2} \cdot P_T$

Degree of Dissociation (α) and Equilibrium Vapour Density (*d*)

An(g) \rightleftharpoons nA(g) Initial concentration С 0 Equilibrium concentration $C(1 - \alpha)$ nCα D_0 = Initial vapour density, d = Equilibrium vapour density or vapour density of mixture of An and A at equilibrium

Vapour Density
$$\approx \frac{1}{\text{number of moles}}$$

 $\therefore \qquad \frac{D_0}{d} = \frac{n_{\text{eq}}}{n_0} = \frac{c(1 - \alpha + n\alpha)}{c}$
 $\frac{D_0}{d} = 1 - \alpha + n\alpha$
 $\alpha = \frac{D_0}{d} - 1$
 $* \text{ PCl}_5 \rightleftharpoons \text{PCl}_3 + \text{Cl}_2$

$$D_0 = \frac{\text{Molar Mass of PCl}_5}{2} = \frac{208.5}{2} = 104.25 \ n = 2$$
* SO₃ \iff SO₃ + $\frac{1}{2}$ O₂

$$D_0 = \frac{\text{Molar Mass of SO}_3}{2} = \frac{80}{2} = 40; \ n = \frac{3}{2}$$
* 2NH₃ \iff N₂ + 3H₂

$$D_0 = \frac{17}{2}; \ n = \frac{4}{2} = 2$$

Degree of Association (α) and Equilibrium Vapour Density (d)

 $\begin{array}{rcl} nA(g) &\rightleftharpoons An(g) \\ \hline nitial moles & C & -- \\ at Equilibrium & C(1-\alpha) & \frac{C\alpha}{n} \\ & \frac{D_0}{d} = \frac{C(1-\alpha+\alpha/n)}{C} \\ & \alpha - \frac{\alpha}{n} = 1 - \frac{D_0}{d} \\ & \alpha = \frac{\left(1 - \frac{D_0}{d}\right)}{\left(1 - \frac{1}{n}\right)} = \frac{D_0 - d}{\left(\frac{1}{n} - 1\right)d} \\ & * & PCl_3 + Cl_2 \rightleftharpoons PCl_5 & (n=2) \\ & * & N_2 + 3H_2 \rightleftharpoons 2NH_3 & (n=2) \\ & * & 2SO_2 + O_2 \rightleftharpoons 2SO_3 & (n=3/2) \end{array}$

Le Chatelier's Principle

According to *Le Chatelier's* principle when any equilibrium is subjected to change in pressure, temperature, concentration then, equilibrium shifts in a direction so as to nullify the effect.

(i) Effect of Concentration Change

When reactant concentration is increased or product concentration is decreased at equilibrium then, equilibrium always move in the forward direction and vice versa.

Addition of inert substance or in active substance has no effect on the equilibrium.

 $\begin{array}{ll} \text{CaCO}_3(s) \rightleftharpoons \text{CaO}(s) + \text{CO}_2(g) & K_{\text{eq}} = [\text{CO}_2] \\ \text{CO}_2 \text{ Add} & - \text{equilibrium shift in backward} \\ \text{CaCO}_3 \text{ add} & - \text{no effect} \\ \text{CaO add} & - \text{no effect} \\ \text{He/N}_2 \text{ add} & - \text{no effect} \\ \text{(at constant volume)} \end{array}$

(ii) Effect of Pressure

$$2R(g) \rightleftharpoons P(g)$$

 $P_T = n_T \frac{RT}{V}$

For gaseous reaction having different gaseous moles on the Left Hand Side and Right Hand Side, if volume is decreased at constant temperature or in other words, pressure is increases then, equilibrium shift in a direction where total number of gaseous moles are less.

(iii) Effect of Temperature

Case (i)

On decreasing temperature exothermic reaction proceed in forward direction

On increasing temperature exothermic reaction proceed in backward direction

Case (ii)

On decreasing temperature endothermic reaction proceed in backward direction

4.4 Physical Chemistry-I for JEE (Main & Advanced)

On increasing temperature endothermic reaction proceed in forward direction

(iv) Addition of the Inert Gas at Equilibrium

Case (i) Addition of the inert gas at equilibrium at constant pressure:-

 $\begin{array}{rcl} & \operatorname{PCl}_5 &\rightleftharpoons & \operatorname{PCl}_3 &+ & \operatorname{Cl}_2 \\ \text{Initial mole} & 1 & 0 & 0 \\ \text{at equilibrium} & (1-\alpha) & \alpha & \alpha \\ & & & & \\ K_C = & & & \\ \end{array}$

$$V(1-\alpha)$$

where α is the degree of dissociation.

Since V increases and thus to keep K_C constant, α must increases i.e., degree of dissociation of PCl₅ increases or [PCl₃] and [Cl₂] increases at equilibrium and the [PCl₅] decreases at equilibrium

Case (ii) Addition of the inert gas at equilibrium at constant volume:-

 $\begin{array}{ccccc} & \operatorname{PCl}_5 &\rightleftharpoons & \operatorname{PCl}_3 &+ & \operatorname{Cl}_2 \\ \text{Initial mole} & 1 & 0 & 0 \\ \text{at equilibrium} & (1-\alpha) & \alpha & \alpha \end{array}$

$$K_C = \frac{\alpha^2}{V(1-\alpha)}$$

where α is the degree of dissociation.

Since Volume remains constant during the change and the addition of inert gas at constant volume will also have no influence on the equilibrium concentrations for this type of equilibria

Simultaneous Equilibrium

When two or more than two equilibrium are established together in the same container then, such equilibrium are referred as *simultaneous equilibrium* provided they have atleast one active component common.

Example 1.

$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$	$KP_1 = P_{CO_2} = (P_1 + P_2)$
$MgCO_3(s) \rightleftharpoons MgO(s) + CO_2(g)$	$KP_2 = P_{CO_2} = (P_1 + P_2)$

Example 2.

N ₂ +	3H ₂	\rightleftharpoons	$2NH_3$
(P_1)	(P_2)		0
$P_1 - x - y$	$P_2 - 3x - 2y$		2x
N ₂ +	2H ₂	\rightleftharpoons	N_2H_4
$P_1 - x - y$	$P_2 - 3x - 2y$		У

Example 3.

N ₂ O ₅	\rightleftharpoons	N ₂ O ₃	+	O ₂
a		0		0
a-x		x - y		x + y
N ₂ O ₃	\rightleftharpoons	N_2O	+	O ₂
x - y		У		x + y

$$KP_{1} = \frac{x^{2} - y^{2}}{a - x}$$
$$P_{O_{2}} = x + y, P_{N_{2}O_{3}} = x - y$$

Example 4.

x(s)	\rightleftharpoons	A	+	С	$K_{P_1} = x(x+y)$	(i)
y(s)	\rightleftharpoons	x B	+	x + y C	$K_{P_2} = y(x+y)$	(ii)
		у		x + y		

$$\therefore \qquad \frac{n_A}{n_B} = \frac{P_A}{P_B} = \frac{x}{y}$$

and
$$P_T = P_A + P_B + P_C$$

= $x + y + (x + y) = 2(x + y)$

Ex. When NO and NO₂ are introduced in a container following equilibrium is simultaneously obtained.

$$2NO_2(g) \iff N_2O_4(g) \quad K_P = 6.8 \text{ atm}^{-1}$$
$$NO(g) + NO_2(g) \iff N_2O_3(g)$$

In an experiment NO and NO₂ are mixed in the molar ratio. 1 : 2, the total final pressure was 5.05 atm and the partial pressure of N₂O₄ at equilibrium was 1.7 atm. Calculate the equilibrium P_{NO_2} and Calculate K_P for 2nd reaction.

Sol.
$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

 $2P_0 \qquad -$
 $(2P_0 - x - y) \qquad x/2 \qquad \frac{x}{2} = 1.7 = x = 3.4$
 $NO + NO_2 \rightleftharpoons N_2O_3$
 $(P_0 - y) \qquad (2P_0 - x - y) \qquad y$
 $K_P = 6.8 = \frac{P_{N_2O_4}}{(P_{NO_2})^2}$
 $\Rightarrow \qquad (P_{NO_2}) = \sqrt{\frac{1.7}{6.8}} = 0.5$
 $\Rightarrow \qquad (2P_0 - 3.4 - y) = 0.5$
 $\Rightarrow \qquad (2P_0 - 3.4 - y) = 0.5$
 $\Rightarrow \qquad (5.7 - 3.4 - y = 0.5 \Rightarrow y = 1.8$
 $P_T + P_{NO_2} + P_{NO} + P_{N_2O_3} + P_{N_2O_4}$
 $5.05 = 0.5 + (P^0 - y) + y + 1.7$
 $P_0 = 2.85$
 $K_{P_2} = \frac{y}{P_{NO} \times P_{NO_2}} = \frac{1.8}{1.05 \times 0.5} = 3.43 \text{ atm}^{-1}$

Effect of Catalyst on the Equilibrium

- 1. Catalyst alters the reaction mechanism and in the new path activation energy is lowest than the previous one.
- 2. Catalyst increases the rate of forward and back reaction by same extent.
- 3. Since, catalyst increases the rate of forward as well as backward reaction, it does not alter the equilibrium concentration of reactants and products.

- 4. Catalyst does not changes the ΔH for the reaction.
- 5. Catalyst does not affect the equilibrium constant because both K_f and K_b increases.
- 6. Catalyst reduces the time taken in establishment of equilibrium.

Note:

Line in above figure Represent change due to presnce of catalyst.

teqm

Kinetic and Equilibrium constant

$$A \xrightarrow{K_f} B$$

$$\frac{-d[A]}{df} = \text{rate of disappearance of } A = K_f[A] - k_b[B]$$

teqm

at equilibrium

$$\frac{-d[A]}{df} = 0 \implies K_f[A] = K_b[B]$$
$$\implies \frac{K_f}{K_b} = \frac{[B]}{[A]} = K_{eq}$$
$$\frac{+d[B]}{dt} = K_f[A] - K_b[B]$$

rate of formation of B at equilibrium

$$\frac{d[B]}{dt} = 0$$

$$K_{f}[A] = K_{b}[B]$$
THREE PHASE DIAGRAM

$$dG = Vdp - SdT$$
for chemical reaction

 $d(\Delta G) = \Delta V \cdot dp - \Delta S \cdot dT$ at equilibrium: $\Delta G = 0$ $\Delta V dp = \Delta S dT$ $\frac{dP}{dT} = \frac{\Delta S}{\Delta V} \longrightarrow$ Claussius Claperpro

$$\frac{dT}{dT} = \frac{\Delta S}{\Delta V} \longrightarrow \text{Claussius Claperpron Equation}$$
$$H_2O(R) \rightleftharpoons H_2O(g)$$

- (1) $H_2O(1) + heat \rightleftharpoons H_2O(g)$
- (a) On increasing temperature reaction proceed in forward direction. On decreasing temperature reaction proceed in back ward direction.
- (b) On increasing pressure reaction proceed in backward direction. On decreasing temperature reaction proceed in forward direction.

The temperature at which vapour pressure of any liquid is equal to external pressure (surrounding pressure) is known as boiling point.

If external pressure is 1 atm then, boiling point is known as normal boiling point. (See figs.)

 $\frac{dP}{dt} = \frac{\Delta S}{\Delta V} \frac{(+Ve)}{(+Ve)}$

 $dt \quad \Delta V \ (+Ve)$ $\Delta G = \Delta H - T\Delta S$

$$\Delta S = \frac{\Delta H}{T}$$

$$\Delta V = V_g - V_1 \simeq Vg = \frac{ngRT}{P}$$

$$\frac{dP}{dT} = \frac{\Delta S}{\Delta V} = \frac{\Delta H}{T} \times \frac{P}{n_g RT} = \frac{\Delta H_m \cdot P}{RT^2}$$
(latm)
Solid
Triple
point
gas
273.16 K 373 (K)
T

On separting variables;

$$\int_{P_1}^{P_2} \frac{dP}{P} = \frac{\Delta H_m}{R} \int_{T_1}^{T_2} \frac{1}{T^2} \cdot dT$$
$$\ell n \frac{P_2}{P_1} = \frac{\Delta Hm}{R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

TROUTON'S RULE

1. For majority of the liquids, molar entropy change of vapours.

$$\Delta S_m \simeq 10.5R$$

$$\simeq 88 \text{ J/K-mole}$$

$$\Delta S_m = \frac{\Delta H_m}{T_B}$$

2. $H_2O(S) + heat \rightleftharpoons H_2O(l)$

On increasing pressure to a physical equilibrium, equilibrium always shifts in a direction where density increases.

On increasing Pressure melting point of ice decreases $dP = \Delta S$ (+ve)

becaus slope =
$$\frac{dT}{dT} = \frac{\Delta B}{\Delta V} = \frac{(1+Ve)}{[V_l - V_s]^{\rightarrow (-ve)}} \Rightarrow (-ve)$$

3. Na(S) + heat \rightleftharpoons Na(l) $\frac{dP}{\Delta S(+\text{ve})}$

$$dT = \Delta V (+ ve)$$

On increasing pressure, melting point will increase.

4. $H_2O(S) + heat \rightleftharpoons H_2O(g)$

$$\frac{dP}{dT} = \frac{\Delta S (+ \text{ve})}{\Delta V (+ \text{ve})}$$

- KOH(S) + H₂O(l) ⇒ KOH (aq.)
 + Heat
 on increasing temperature
 Solubility of KOH decreases
- NaCl(S) + H₂O(l) + heat ⇒ NaCl(aq.) on increasing temperature Solubility of NaCl increases
- 7. $A(g) + Solvent \rightleftharpoons A(Solution) + heat$ ($\Delta H < 0$) or Exothermic on increasing temperature solubility of gas decreases on increasing pressure solubility of gas increases

Solved Examples

1. For the reaction $H_2 + I_2 \rightleftharpoons 2HI$ at 300 K, equilibrium constant is 100. If 2 moles of H_2 and 2 moles of I_2 are taken in a 10 L vessel. Calculate the equilibrium concentration of each.

Sol.
H₂ + I₂
$$\Rightarrow$$
 2HI
Initial moles: 2 2 -
Equ. moles: (2-x) (2-x) 2x
Equ. []: $\frac{(2-x)}{10} \frac{(2-x)}{10} \frac{2x}{10}$
 $K_C = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]}$ or
 $100 = \frac{(2x/10)^2}{(2-x/10)(2-x/10)}$
 $10 = \frac{(2x/10)}{(2-x/10)}$
 $20 - 10x = 2x$

$$\therefore \quad x = \frac{5}{3}$$

$$[H_2] = [I_2] = \frac{2 - x}{10} = \frac{1}{30}M$$

$$[HI] = \frac{2x}{10} = \frac{1}{3}M$$

2. For the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ the equilibrium moles of N_2O_4 and $2NO_2$ are 2 and 1 respectively, in a 10 L container at 300 K. Calculate K_C, K_P .

Sol.

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

Equ. moles 2 1
Equ. [] $\frac{2}{10}$ $\frac{1}{10}$
 $K_C = \frac{[NO_2]^2}{[N_2O_4]} = \frac{(1/10)^2}{(2/10)} = \frac{1}{20}$ moles

$$K_P = K_C(RT) = \frac{1}{20} \times (0.0821 \times 300)$$
atm $= \frac{24.6}{20}$ atm

3. For the equilibrium $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) K_C =$ 100 at any temperature (T). If at equilibrium on same temperature T equilibrium concentration of SO₂ and SO3 are same in a 10 litre vessel. Calculate equilibrium moles of O_2 .

Sol.
$$K_C = \frac{[SO_3]^2}{[SO_2]^2[O_2]}$$

 $[O_2] = \frac{1}{K_C} = \frac{1}{100}$

Number of moles of $O_2 = \frac{10}{100} = 0.1$ mole

4. For the equilibrium $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ at 400 K and 1 atm; $\alpha = 0.4$. Calculate the density of equilibrium. mixture under given condition in gram per litre.

Sol.
$$\alpha = \frac{\frac{D_0}{d} - 1}{n - 1}$$
104.25

$$\alpha = \frac{\frac{104.25}{d} - 1}{2 - 1} \implies 0.4 = \frac{104.25}{d} - 1$$

5. For the reaction : $A(g) + B(g) \rightleftharpoons C(g) + D(g) K_C = 25$. If we take 2 moles of each gases in a 40 litre L vessel. What will be the equilibrium concentration of *B*.

Sol.
$$A(g) + B(g) \rightleftharpoons C(g) + D(g)$$

 $2 \quad 2 \quad 2 \quad 2 \quad 2$
 $2-x \quad 2-x \quad 2+x \quad 2+x$
 $25 = \frac{\left(\frac{2+x}{V}\right)^2}{\left(\frac{2-x}{V}\right)^2}$
 $5 = \frac{2+x}{2-x}$
 $10 - 5x = 2 + x$
 $8 = 7x$
 $x = \frac{8}{7}$ mole
 $[B] = \frac{2 - \frac{8}{7}}{40} = \frac{6}{280}$ M

6. Find Kp for $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ if initial pressure P_0 and degree of dissociation for reaction is α .

Sol. N₂O₄(g)
$$\rightleftharpoons$$
 2NO₂(g)
P₀ 0
P₀(1 - α) 2P₀ α
P_T = P₀(1 + α)
 $K_P = \frac{(2P_0\alpha)^2}{P_0(1 - \alpha)} = \frac{4P_0\alpha^2}{1 - \alpha} = 4P_T \frac{\alpha^2}{1 - \alpha^2}$

7. Calculate mole % of Cl at equilibrium for the reaction $PCl_5 \rightleftharpoons PCl_3 + Cl_2 K_P = 0.2$ under a total pressure of 2 atm.

Sol. PCl₅
$$\rightleftharpoons$$
 PCl₃ + Cl₂
 P_0 - - -
 $P_0(1-\alpha)$ $P_0\alpha$ $P_0\alpha$
 $K_P = \frac{P_0\alpha^2}{1-\alpha} = P_T \frac{\alpha^2}{1-\alpha^2}$
 $X_{Cl_2} = \frac{P_{Cl_2}}{P_T} = \frac{P_0\alpha}{P_0(1+\alpha)} = \frac{\alpha}{(1+\alpha)}$
mole % of Cl = $(X_{Cl_2} \times 100) = 23.07$ %

8. Calculate the equilibrium concentration of PCl_3 in a 10 L rigid container if 1 mole of PCl₅ is taken to be certain equilibrium according to the following reaction:

$$PCl_5 \rightleftharpoons PCl_3 + Cl_2$$
$$K_C = 10^{-5}$$

Sol.

9. Calculate the equilibrium concentration of PCl_3 in a 10 L rigid container if 1 mole of PCl₅ is taken to be certain equilibrium according to the following reaction:

 Cl_2

_

х

х

10

$$PCl_5 \rightleftharpoons PCl_3 + Cl_2$$

If $K_{eqm} = 10^{-2}$

Sol.

$$PCl_{5} \rightleftharpoons PCl_{3} +$$
Initial 1 -
at eq. moles $1-x$ x
active mass $\frac{1-x}{10}$ $\frac{x}{10}$
 $10^{-2} = \frac{x^{2}}{10(1-x)}$

$$x = 0.96$$

 $[PCl_3] = \frac{x}{10} = 0.096 \text{ M}$

4.8 Physical Chemistry-I for JEE (Main & Advanced)

- 23 g of N₂O₄(g) was placed in a 1 L container at 400 K and allowed to attain equilibrium N₂O₄(g) ⇒ 2NO₂(g). The total pressure at equilibrium was found to be 11.6 bar, then what will be the partial pressure of NO₂ at equilibrium?
 - (a) 9.15 bar (b) 4.98 bar (c) 6.6 bar (d) 8.2 bar
 - (c) 6.6 bar (d) 8.3 bar
- Sol. (c) $P = \frac{nRT}{V} = \frac{1}{4} \times 0.083 \times 400 = 8.3 \text{ bar}$ $\therefore \qquad N_2O_4(g) \rightleftharpoons 2NO_2(g)$ $8.3 - x \qquad 2x$ 8.3 + x = 11.6
 - $\therefore x = 3.3$
 - $\therefore P_{\rm NO_2} = 2x = 6.6 \text{ bar}$
- 11. What is the expression of K_p for the following equilibrium $2NH_3(g) \rightleftharpoons N_2(g) + 3H_2(g)$; if initially 'a' mole of NH_3 is present and at equilibrium 'x' mole of it decomposed and total equilibrium pressure is p?

(a)
$$\frac{27p^2x^4}{16(a-x)^2(a+x)^2}$$
 (b) $\frac{9px^2}{8(a-x)(a+x)}$
(c) $\frac{3px^2}{4(a-x)^2}$ (d) $\frac{3p^2x^2}{8(a^2-x^2)^2}$

Sol. (a)

 $2NH_3(g) \rightleftharpoons N_2(g) + 3H_2(g)$ Initially: *a* mole 0 0
At equilibrium: (a - x) mole $\frac{x}{2}$ mole $\frac{3x}{2}$ mole
Partial pressure $\frac{(a - x)}{(a + x)} \times P = \frac{x}{2(a + x)} \times P = \frac{3x}{2(a + x)} \times P$

$$K_P = \frac{(p_{\rm N_2})^1 \times (P_{\rm H_2})^3}{(p_{\rm NH_3})^2} = \frac{27p^2x^4}{16(a-x)^2(a+x)^2}$$

 Cl_2

0

х

12. $2lCl_{(g)} \rightleftharpoons l_{2(g)} + Cl_{2(g)}$; $K_c = 0.14$ The initial concentration of lCl is 0.78 M. What will be the equilibrium concentration of l_2 ?

	quinorium co		<i>1</i> 12!	
(a)	0.18 M	(b)	0.21	М
(c)	0.39 M	(d)	0.78	М

Sol. (b)

$$21C1 \implies l_{2} + 0.78 = 0$$

$$0.78 - 2x = x$$

$$K = \frac{x \times x}{(0.78 - 2x)^{2}}$$

$$0.14 = \frac{x^{2}}{(0.78 - 2x)^{2}}$$

x = 0.21 M

13. $A + 3B \rightleftharpoons 2C + D$

For this hypothetical reaction, initial moles of A is twice that of B. If at equilibrium moles of B and C are equal then percent of B reacted is:

(a) 10% (b) 20% (c) 40% (d) 60% Sol. (d) A+ $3B \rightleftharpoons$ 2CD 0 Initially 2aа 0 At eq^m 2a - x a - 3x2xx and a - 3x = 2x $\therefore x = \frac{a}{5}$ Moles of *B* reacted = $\frac{3x}{a} \times 100 = \frac{3}{5} \times 100 = 60\%$

14. 2.0 mol of PCl_5 were introduced in a vessel of 5.0 L capacity at a particular temperature. At equilibrium, PCl_5 was found to be 35% dissociated into PCl_3 and Cl_2 . The value of K_c for the reaction is

Sol. (c)

Moles of PCl₅ dissociated = $\frac{2 \times 35}{100} = 0.7$

Moles of PCl₅ left undissociated = 2 - 0.7 = 1.3 mol

$$[PCl_5] = \frac{1.3}{5} \text{ M}, [PCl_3] = \frac{0.7}{5} \text{ M}, [Cl_2] = \frac{0.7}{5} \text{ M}$$
$$K = \frac{[PCl_3][Cl_2]}{[PCl_5]} = \frac{\left(\frac{0.7}{5}\right)\left(\frac{0.7}{5}\right)}{\left(\frac{1.3}{5}\right)} = 0.75$$

15. HI was heated in sealed tube at 400°C till the equilibrium was reached. HI was found to be 22% decomposed. The equilibrium constant for $2HI \rightleftharpoons H_2 + I_2$ is

Sol. (b)
$$2HI \rightarrow H_2 + I_2$$

 $1 \qquad 0 \qquad 0$
 $1-x$
 $1-0.22 = 0.78 \quad 0.11 \qquad 0.11$

$$x = 22\%$$
 of 1 mole = $\frac{22}{100} \times 1 = 0.22$

$$K = \frac{[\text{H}_2][\text{I}_2]}{[\text{HI}]^2} = \frac{0.11 \times 0.11}{(0.78)^2} = 0.0199$$

Exercise

C LEVEL I

- 1. The equilibrium constant of a reaction is 20.0. At equilibrium, the rate constant of forward reaction is 10.0. The rate constant for backward reaction is
 - (a) 0.5 (b) 2.0
 - (c) 10.0 (d) 200.0
- **2.** At a given temperature, the equilibrium constant for the reactions

NO (g) +
$$\frac{1}{2}$$
 O₂ (g) \rightleftharpoons NO₂ (g) and 2 NO₂ (g) \rightleftharpoons

2 NO (g) + O₂ (g) are K_1 and K_2 respectively. If K_1 is 4 × 10⁻³, then K_2 will be

- (a) 8×10^{-3} (b) 16×10^{-3}
- (c) 6.25×10^4 (d) 6.25×10^6
- 3. Equilibrium constant for the reaction : $2NO(g) + Cl_2(g)$ $\implies 2NOCl (g)$; is correctly given by the expression

(a)
$$K = \frac{[2NOCI]}{[2NO][Cl_2]}$$
 (b) $K = \frac{[NOCI]^2}{[NO]^2[Cl_2]}$
(c) $K = \frac{[NO]^2[Cl]^2}{[NO]^2 + [Cl_2]}$ (d) $K = \frac{[NO]^2 + [Cl]^2}{[NOCI]}$

- 4. Molar concentration of 96 g of O_2 contained in 2 L vessel is
 - (a) $16 \mod L^{-1}$ (b) $1.5 \mod L^{-1}$
 - (c) $4 \mod L^{-1}$ (d) $24 \mod L^{-1}$
- 5. In which of the following reactions $K_P > K_C$?
 - (a) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
 - (b) $H_2(g) + I_2(g) \Longrightarrow 2HI(g)$
 - (c) $PCl_3(g) + Cl_2(g) \Longrightarrow PCl_5(g)$
 - (d) $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$
- 6. At 1000 K, the value of K_P for the reaction $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ is 20R, then K_C will be
- (a) 0.04 (b) 0.02 (c) 0.01 (d) 0.03
 7. For the reaction N₂O₄ ⇒ 2NO, degree of dissociation is α. The number of moles at equilibirum will be
 (a) (1 α)² (b) (1 + α)
 - (c) 3 (d) 1
- 8. 4 mole of *A* are mixed with 4 mole of *B*, when 2 mole of *C* are formed at equilibrium according to the reaction, $A + B \rightleftharpoons C + D$. The equilibrium constant is (a) 4 (b) 1 (c) $\sqrt{2}$ (d) $\sqrt{4}$
- 9. At a certain temperature, $2HI \rightleftharpoons H_2 + I_2$ only 50% HI is dissociated at equilibrium. The equilibrium constant is

(a) 1.0 (b) 3.0 (c) 0.5 (d) 0.25

10. One mole of ethyl alcohol was treated with one mole of acetic acid at 25°C. 2/3 of the acid changes into ester at

equilibrium. The equilibrium constant for the reaction of hydrolysis of ester will be

- (a) 1 (b) 2 (c) 3 (d) 4
- 11. For the reaction, C(s) + CO₂(g) ⇒ 2CO(g), the partial pressures of CO₂ and CO are 2.0 and 4.0 atm respectively at equilibrium. The K_P for the reaction is
 (a) 0.5 (b) 4.0 (c) 8.0 (d) 32.0
- 12. At 250°C the vapour density of PCl₅ is 100 calculate the degree of dissociation at this temperature
 (a) 4 (b) .04 (c) .02 (d) 2
- **13.** 6 gram hydrogen reacts with 9.023×10^{23} chlorine molecules to form HCl. If total pressure of the reaction is 800 mm then what will be the partial pressure of HCl? (a) 400 mm (b) 533 mm (c) 600 mm (d) 153.3 mm
- 14. 20% part of N₂O₄ is dissociated in NO₂ at 1 atmospheric pressure. What is the value of K_p?
 (a) 0.29
 (b) 16.0
- (c) 1.60 (d) None of these **15.** In the reaction, $A + B \rightleftharpoons C + D$, the equilibrium constant *K* is determined by taking 1 mole of *A* and 1 mole
 - of *B* as initial amounts. If 2 moles of *A* and three moles of *B* are taken, then the equilibrium constant will be (a) 2 times (b) 3 times
 - (c) 6 times (d) Unchanged
- 16. Vaporisation of one mole of PCl₅ is done in a 1 L container. If 0.2 mole Cl₂ is formed at equilibrium, then what will be the value of equilibrium constant?
 (a) 0.15 (b) 0.05 (c) 1.78 (d) 0.2
- 17. C(s) + H₂O(g) ⇒ H₂(g) + CO(g)
 What will be the effect of pressure on the above equilibrium process?
 - (a) Remains unaffected
 - (b) It will go in backward direction
 - (c) It will go in forward direction
 - (d) Unpredictable
- 18. If pressure is increased in the following reaction: $N_2 + 3H_2$ $\implies 2NH_3, \Delta H = -22.4$ kcal then the equilibrium will (a) Be stable
 - (b) Shift towards left side
 - (c) Shift towards right side
 - (d) Shift first towards left side, then right side
- **19.** In which case does the reaction go farthest to completion:
 - (a) K = 1 (b) $K = 10^{10}$
 - (c) $K = 10^{-10}$ (d) 10^4
- **20.** The equilibrium constant K_c for $A_{(g)} \Longrightarrow B_{(g)}$ is 1.1. means
 - (a) [A]eq > [B]eq (b) [Aeq] < [B]eq
 - (c) [Aeq] = 1.1 M (d) [Beq] = 1.1 M

21. 0.1 mole of $N_2O_{4(g)}$ was sealed in a tube under atmospheric conditions at 25°C. Calculate the number of mole of NO_{2(g)} present, if the equilibrium $N_2O_{4(g)} \rightleftharpoons$ $2NO_{2(g)}$, $(K_p = 0.14)$ is reached after some time.

(a)	0.34 mole	(b)	0.034 mol

(c) 0.14 mole (d) 0.10 mole

- **22.** What concentration of CO_2 be in equilibrium with 2.5 $\times 10^{-2}$ mol L⁻¹ of CO at 100°C for the reaction $FeO(s) + CO(g) \rightleftharpoons Fe(s) + CO_2(g)$; $K_c = 5.0$
 - (a) 0.125 M (b) 12.5 M

 - (c) 0.125 mole (d) 2.5 M
- **23.** What is the % dissociation of H_2S if 1 mole of H_2S is introduced into a 1.10 litre vessel at 1000 K? K_C for the reaction: $2H_2S_{(g)} \rightleftharpoons 2H_{2(g)} + S_{2(g)}$ is 1×10^{-6} ?
 - (b) 5% (a) 1.3%
 - (c) 10% (d) 0.1%
- 24. In the reaction, $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$, the equilibrium pressure is 12 atm. If 50% of CO₂ reacts, calculate K_P for reaction.
 - (a) 12 atm (b) 8 atm

(c) 16 atm	(d) 4 atn
------------	-----------

- **25.** When αD glucose is dissolved in water, it undergoes a partial conversion to $\beta - D$ glucose to exhibit mutarotation. This conversion stops when 63.6% of glucose is in β from. Assuming that equilibrium has been attained, calculate K_C for mutarotation.
 - (a) 1.747 (b) 2.4 (c) 3.0 (d) 1.1
- **26.** For the reaction, $A_{(g)} + 2B_{(g)} \rightleftharpoons 2C_{(g)}$, the rate constants for the forward and the reverse reactions are 1×10^{-4} and 2.5×10^{-2} respectively. The value of equilibrium constant, K for the reaction will be
 - (b) 2.5×10^{-2} (a) 1×10^{-4}
 - (d) 2.5×10^2 (c) 4×10^{-3}
- 27. At a certain temperature, the equilibrium constant K_c is 16 for the reaction, $SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) +$ NO(g). If 1.0 mol each of all the four gases is taken in a 1 L container the concentration of NO₂ at equilibrium will be

(a)
$$1.6 \text{ mol } L^{-1}$$
 (b) $0.8 \text{ mol } L^{-1}$

- (c) $0.4 \text{ mol } L^{-1}$ (d) $0.6 \text{ mol } L^{-1}$
- **28.** The following reactions are known to occur in the body: VII CO

$$\mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} \rightleftharpoons \mathrm{H}_2\mathrm{CO}_3 \rightleftharpoons \mathrm{H}^+ + \mathrm{HCO}_3^{-1}$$

If CO₂ escapes from the system

- (a) pH will decrease
- (b) Hydrogen ion concentration will diminish
- (c) H_2CO_3 concentration will remain unchanged
- (d) The forward reaction will be favoured
- **29.** For which of the following reactions, the degree of dissociation cannot be calculated from the vapour density data?
 - I. $2HI_{(g)} \rightleftharpoons H_{2(g)} + I_{2(g)}$ II. $2NH_{3(g)} \rightleftharpoons N_{2(g)} + 3H_2$

III.
$$2NO_{(q)} \rightleftharpoons N_{2(q)} + O_{2(q)}$$

III.
$$2100_{(g)} \leftarrow 10_{2(g)} + 0_{2(g)}$$

IV. $PC1 \rightarrow PC1 + C1$

IV. $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$

- (a) I and III (b) II and IV
- (c) I and II (d) III and IV
- **30.** In the reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ the value of the equilibrium constant depends on
 - (a) volume of the reaction vessel
 - (b) total pressure of the system
 - (c) the initial concentration of nitrogen and hydrogen (d) the temperature
- **31.** In the equilibrium reaction involving the dissociation of CaCO₃ CaCO₃ (s) \rightleftharpoons CaO (s) + CO₂ (g) the equilibrium constant is given by

(a)
$$\frac{P_{CaO} \times P_{CO_2}}{P_{CaCO_3}}$$
 (b) $C_{CaO} \times \frac{P_{CO_2}}{C_{CaCO_3}}$
(c) $\frac{P_{CaO}}{P_{CaCO_3}}$ (d) P_{CO_2}

- **32.** Consider the reaction, $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ in a closed container at equilibrium at a fixed temperature. What will be the effect of adding more PCl₅ on the equilibrium concentration of $Cl_2(g)$?
 - (a) It decreases
 - (b) It increases
 - (c) It remains unaffected
 - (d) It cannot be predicted without the value of K_p .
- 33. In which of the following options does the reaction go almost to completion?)3

(a)
$$K = 10^6$$
 (b) $K = 10^6$

- (d) $K = 10^{-12}$ (c) $K = 10^{-6}$
- **34.** XY₂ dissociates as $XY_2(g) \rightleftharpoons XY(g) + Y(g)$. When the initial pressure is 600 mm of Hg, the total pressure at equilibrium developed is 800 mm of Hg. Therefore pressure of Y at equilibrium is
 - (a) 200 (b) 50 (c) 100 (d) 150
- **35.** For the equilibrium $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ the concentration of each substance is $[SO_2] = 0.60M$, $[O_2]$ = 0.82M and $[SO_2] = 1.90M$, the K₂ is

(a)
$$1.2220 \text{ mol } I^{-1}$$
 (b) 12.220 mol

- (b) $12.229 \text{ mol } L^{-1}$ (a) 1.2229 mol L⁻
- (c) $6.1145 \text{ mol } L^{-1}$ (d) $18.22 \text{ mol } L^{-1}$
- **36.** Find out the value of K_C for each of the following equilibria from the value of K_P :
 - (i) 2NOCl (g) \rightleftharpoons 2NO (g) + Cl₂ (g); $K_P = 1.8 \times 10^{-2}$ at 500 K
 - (ii) CaCO₃ (s) \rightleftharpoons CaO(s) + CO₂(g); $K_p = 167$ at 1073 K

The value of K_c are respectively

- (a) 4.4×10^{-4} and 1.90 (b) 8.8×10^{-4} and 3.8
- (c) 4.4×10^4 and 1.90 (d) 8.8×10^4 and 3.8

37. For the following equilibrium, $K_c = 6.3 \times 10^{14}$ at 1000 K $NO(g) + O_3(g) \rightleftharpoons NO_2(g) + O_2(g)$

Both the forward and reverse reactions in the equilibrium are elementary bimolecular reactions. What is K_{C} , for the reverse reaction?

(a) 15.9×10^{-15} (b) 1.59×10^{-15} (c) 5×10^{-15} (d) 9×10^{-15}
- **38.** At 450 K, $K_P = 2.0 \times 10^{10}$ /bar for the given reaction at equilibrium.
 - $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$
 - What is K_C , at this temperature?
 - (a) $7.48 \times 10^{11} \text{ L mol}^{-1}$ (b) $7.48 \times 10^{-11} \text{ L mol}^{-1}$
 - (c) $3.78 \times 10^{-11} \text{ L mol}^{-1}$ (d) $3.74 \times 10^{11} \text{ L mol}^{-1}$
- **39.** A sample of HI(g) is placed in a flask at a pressure of 0.2 atm. At equilibrium, the partial pressure of HI(g) is 0.04 atm. What is K_p for the given equilibrium?

 $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$

40. A mixture of 1.57 mol of N_2 , 1.92 mol of H_2 , and 8.13 mol of NH₃ is introduced into a 20 L reaction vessel at 500 K. At this temperature, the equilibrium constant, K_C for the reaction N₂ (g) + 3H₂ (g) \rightleftharpoons 2NH₃(g) is 1.7 $\times 10^2$. Is the reaction mixture at equilibrium?

If not, what is the direction of the net reaction?

- (a) Not at equilibrium, forward shift
- (b) Not at equilibrium, backward shift
- (c) Cannot be predicted
- (d) In equilibrium

(a) 6

41. The equilibrium constant expression for a gas reaction

is,
$$K_C = \frac{[NH_3]^4 [O_2]^5}{[NO]^4 [H_2 O]^6}$$

The balanced chemical equation corresponding to this expression is

- (a) $4NO(g) + 6H_2O(g) \rightleftharpoons 4NH_3(g) + 5O_2(g)$
- (b) $4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$
- (c) Both (a) and (b)
- (d) None of these
- 42. A sample of pure PCl_5 was introduced into an evacuated vessel at 473 K. After equilibrium was attained, concentration of PC1₅ was found to be 0.5×10^{-10} mol L⁻¹. If value of K_C is 8.3×10^{-3} , what are the concentrations of PC1₃ and C1₂ at equilibrium?

 $PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)$

(a)	0.08 M	-	(b)	0.04M
(c)	0.2 M		(d)	0.02 M

43. Equilibrium constant, K_C for the reaction

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ at 500 K is 0.061

At a particular time, the analysis shows that composition of the reaction mixture is 3.0 mol L^{-1} N₂, 2.0 mol L^{-1} H₂ and 0.5 mol L^{-1} NH₃. Is the reaction at equilibrium and if not in which direction does the reaction tend to proceed to reach equilibrium?

- (a) At equilibrium
- (b) Not at equilibrium, backward shift
- (c) Not at equilibrium, forward shift
- (d) Can not be predicted
- 44. Bromine monochloride, BrCl decomposes into bromine and chlorine and reaches the equilibrium, 2

$$\operatorname{BrCl}(g) \rightleftharpoons \operatorname{Br}_2(g) + \operatorname{Cl}_2(g)$$

for which K = 32 at 500 K. If initially pure BrCl is present at a concentration of 3.3×10^{-3} mol L⁻¹, what is its molar concentration in the mixture at equilibrium?

(a)
$$3 \times 10^{-4}$$
 (b) 1×10^{-4}
(c) 1.5×10^{-4} (d) 6×10^{-4}

45. What are the values of ΔG^0 and the equilibrium constant for the formation of NO₂ from NO and O₂ at 298 Κ

$$NO(g) + \frac{1}{2} O_2(g) \rightleftharpoons NO_2(g)$$

where
$$\Delta G_f^0 \text{NO}_2 = 52.0 \text{ kJ/mol}$$

 ΔG_f^0 NO = 87.0 kJ/mol

$$G_f^0(O_2) = 0$$
 kJ/mol

- (a) 35 kJ mol^{-1} and 1.365×10^{6}
- (b) -35 kJ mol^{-1} and 1.365×10^{-6}
- (c) -350 kJ mol^{-1} and 1.3×10^{6} (d) -35 kJ mol^{-1} and 1.365×10^{6}
- 46. A reaction mixture containing H₂, N₂ and NH₃ has partial pressures 2 atm, 1 atm and 3 atm, respectively at 725 K. If the value of K_p for the reaction, $N_{2(g)} + 3H_{2(g)} \approx 2NH_{3(g)}$ is 4.28×10^{-5} atm⁻² at 725 K, in which direction the net reaction will go?
 - (a) Forward
 - (b) Backward
 - (c) No net reaction
 - (d) Direction of reaction cannot be predicted.
- 47. 2.0 mol of PCl_5 were introduced in a vessel of 5.0 L capacity at a particular temperature. At equilibrium, PCl₅ was found to be 35% dissociated into PCl₃ and Cl₂. The value of K_c for the reaction is

(a) 1.89 (b) 0.377 (c) 0.75 (d) 0.075.

48. In the reversible reaction $A + B \rightleftharpoons C + D$, initially 1 M of A and B taken the concentration of each C and D at equilibrium was 0.8 mole/ L^{-1} , then the equilibrium constant K_c will be

(a) 6.4 (b) 0.64 (c) 1.6 (d) 16.0

49. 4 moles of A are mixed with 4 moles of B. At equilibrium for the reaction

 $A + B \rightleftharpoons C + D$, 2 moles of C and D are formed. The equilibrium constant for the reaction will be

(a)
$$1/4$$
 (b) $\frac{1}{2}$ (c) 1 (d) 4

- 50. On a given condition, the equilibrium concentration of HI, H₂, I₂ are 0.80, 0.10 and 0.10 mole L^{-1} . The equilibrium constant for the reaction $H_2 + I_2 \rightleftharpoons 2HI$ will be (d) 0.8 (b) 12 (c) 8 (a) 64
- 51. In which of the following, the reaction proceeds towards completion?
 - (a) $K = 10^3$ (b) $K = 10^{-2}$
 - (c) K = 10(d) K = 1
- 52. A reversible chemical reaction having two reactants in equilibrium. If the concentration of the reactants are doubled, then the equilibrium constant will

- 4.12 Physical Chemistry-I for JEE (Main & Advanced)
 - (a) Also be doubled (b) Be halved
 - (c) Become one-fourth (d) Remain the same
- **53.** The equilibrium constant in reversible reaction at a given temperature
 - (a) depends on the initial concentration of the reactants.
 - (b) depends on the concentration of the products and reactants at equilibrium.
 - (c) does not depend on the initial concentrations.
 - (d) it is not characteristic of the reaction.
- **54.** Pure ammonia is placed in a vessel at temperature where its dissociation constant (A) is appreciable. At equilibrium
 - (a) *Kp* change with pressure.
 - (b) Kp does not change with pressure.
 - (c) Concentration of NH₃ does not change with pressure.
 - (d) Concentration of H_2 is less than that of N_2 .

C LEVEL II

1. For the equilibrium $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ the concentration of each substance is $[SO_2] = 0.60M$, $[O_2]$

= 0.82M and [SO₃] = 1.90 M, the
$$K_C$$
 is for SO₂ + $\frac{1}{2}$ O₂
 \Rightarrow SO₃
(a) 1.2229 (b) 3.5

(u)	1.222)	(0)	5.5
(c)	6.1145	(d)	18.22

- 2. For the reaction, $CO(g) + 2H_2(g) \Longrightarrow CH_3OH(g) H_2$ is introduced into a five litre flask at 327°C, containing 0.2 mole of CO (g) and a catalyst till the pressure is 4.92 atmosphere. At this point 0.1 mole of CH₃OH(g) is formed. Calculate K_p .
 - (a) 0.115 atm^{-2} (b) 1.15 atm^{-2}
 - (c) 2 atm^{-2} (d) 3.15 atm^{-2}
- **3.** If a mixture of 0.482 mol N₂ and 0.933 mol of O₂ is placed in a 10 L reaction vessel and allowed to form N₂O according to the reaction $2N_{2g} + O_{2g} \rightleftharpoons 2N_2O_g$ at a temperature for which $K_C = 2.0 \times 10^{-37}$

The composition of equilibrium mixture are

- (a) N₂ = 0.482 mol/L, O₂ = 0.0933 mol/L, N₂O = 6.6 $\times 10^{-21}$ mol/L
- (b) N₂ = 0.482 mol/L, O₂ = 0.933 mol/L, N₂O = 6.6×10^{-21} mol/L
- (c) N₂ = 0.0482 mol/L, O₂ = 0.0933 mol/L, N₂O = 6.6 $\times 10^{-21}$ mol/L
- (d) N₂ = 0.0482 mol/L, O₂ = 0.0931 mol/L, N₂O = 8.8 $\times 10^{-21}$ mol/L
- 4. When 0.087 mol of NO and 0.0437 mol of Br_2 are mixed in a closed container at constant temperature, 0.0518 mol of NOBr is obtained at equilibrium. The equilibrium amount of NO and Br_2 are:

(a) NO = 0.352 mol, Br₂ = 0.0178 mol

(b) NO = 0.0352 mol, Br₂ = 0.178 mol

- (c) NO = 0.352 mol, Br₂ = 0.178 mol
- (d) NO = 0.0352 mol, Br₂ = 0.0178 mol
- 5. At 450 K, $K_P = 2.0 \times 10^{10}$ /bar for the given reaction at equilibrium. $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3$ (g) What is K_C for $2SO_3 \rightleftharpoons 2SO_2 + O_2$

a)
$$\frac{1}{7.47 \times 10^{11}}$$
 (b) $\frac{1}{7.47 \times 10^{12}}$

(

(c)
$$\frac{1}{7.47 \times 10^{14}}$$
 (d) $\frac{1}{7.47 \times 10^8}$

6. A sample of HI(g) is placed in flask at a pressure of 0.2 atm. At equilibrium, the partial pressure of HI(g) is 0.04 atm. What is K_C for the given equilibrium at 427°C

$$2\mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_2(\mathrm{g}) + \mathrm{I}_2(\mathrm{g})$$

- (a) 6 (b) 16 (c) 4 (d) 2
- 7. In equilibrium reaction, x moles of the reactant A decompose to give 1 mole each of C and D. If the fraction of A decomposed at equilibrium is independent of initial concentration, then the value of x will be
 (a) 1 (b) 2 (c) 3 (d) 4
- (a) 1
 (b) 2
 (c) 3
 (d) 4
 8. One mole of H₂O and one mole of CO are taken in 10 L vessel and heated to 725 K. At equilibrium, 40% of water (by mass) reacts with CO according to the equation,

$$H_2O(g) + CO(g) \rightleftharpoons H_2(g) + CO_2(g)$$

What is the value of equilibrium constant (K_c) for the reaction?

9. A sample of pure PCl₅ was introduced into an evacuated vessel at 473 K. After equilibrium was attained, concentration of PCl₅ was found to be 0.5×10^{-1} mol L⁻¹. If value of K_C is 8.3×10^{-3} , what are the concentrations of PCl₃ and Cl₂ at equilibrium?

$PCl_5(g) \rightleftharpoons PC$	$\operatorname{Cl}_3(g) + \operatorname{Cl}_2(g)$
----------------------------------	---

- (a) 0.08 M (b) 0.04 M
- (c) 0.2 M (d) 0.02 M
- 10. $H_2(g) + Br_2(g) \rightleftharpoons 2HBr(g) K_C = 16 \times 10^{-6}$ Find the equilibrium pressure of H_2 gas if 10.0 bar of HBr is introduced into a sealed container at 1024 K. (a) 2.8×10^3 (b) 5.2×10^{-3}

(a)
$$2.8 \times 10^{-3}$$
 (b) 5.2×10^{-3}

- (c) 2.5×10^{-5} (d) 2×10^{-5} **11.** $X_2 + X^- \rightleftharpoons X_3^- (x = \text{iodine})$
 - This reaction is set up in aqueous medium. We start with 1 mol of X_2 and 0.5 mol of X^- in 1 L flask. After equilibrium is reached, excess of AgNO₃ gave 0.25 mol of yellow ppt. equilibrium constant is

12. 0.15 mole of CO taken in a 2.5 litre flask is maintained at 750 K alongwith a catalyst so that the following reaction can take place.

 $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$

Hydrogen is introduced until the total pressure of the system is 8.5 atm at equilibrium and 0.08 mole of methanol is formed. Calculate K_p .

(a)
$$0.05 \text{ atm}^{-2}$$
 (b) 2.15 atm^{-2}

(c)
$$2 \text{ atm}^{-2}$$
 (d) 0.005 atm^{-2}

13. ΔG° for the dissociation of the dimer $(A_2 \rightleftharpoons 2A)$ in benzene solution at 27°C is 6.909 kcal/mol. If 8 moles of A is dissolved in 10 litre of benzene at 27°C, then what is the equilibrium concentration of dimer (A_2) ? (Given : R = 2 Cal/mol K)?

d) 0.02	(d)	0.04	(c)
(L	(d)	0.04	(C)

- 14. When C_2H_5OH and CH_3COOH are mixed in equivalent proportion, equilibrium is reached when 2/3 of acid and alcohol are used. How much ester will be present when 2g molecule of acid were to react with 2g molecule of alcohol?
 - (a) 1.33 g molecule (b) 1.5 g molecule
 - (c) 2 g molecule (d) 1.8 g molecule
- 15. When sulphur in the form of S_8 is heated at 900 K, the initial pressure of one atm falls by 29% at equilibrium. This is because of conversion of some S_8 to S_2 . Find the value of equilibrium constant for the reaction $S_{8g} \rightleftharpoons$ S_{2g} . (a) 1.16 atm³

 - (b) 0.71 atm^3 (c) 2.55 atm^3 (d) 5.1 atm^3
- 16. In a system, $A(s) \rightleftharpoons 2B(g) + 3C(g)$. If the concentration of C at equilibrium is increased by a factor 2, it will cause the equilibrium concentration of B to change to
 - (a) two times of its original value.
 - (b) one-half of its original value.
 - (c) $2\sqrt{2}$ times of its original value.
 - (d) $\frac{1}{2\sqrt{2}}$ times of its original value.
- **17.** For the equilibrium:

LiCl. $3NH_3(s) \Longrightarrow$ LiCl. $NH_3(s) + 2NH_3(g)$

 $Kp = 9 atm^2$

at 40°C. A 5 litre vessel contains 0.1 mole of LiCl. NH₃. How many mole of NH₃ should be added to the flask at this temperature to derive the backward reaction for completion?

(u) 0.7057 more (0) 1.7057 more	(a)	0.7837 mole	(b) 1.7837 mol
--------------------------------------	-----	-------------	----------------

- (c) 3.2 mole (d) 2.00 mole
- **18.** For the reaction Ag $(CN)_2^- \iff Ag^+ + 2 CN^-$, the K_C at 25°C is 4×10^{-19} . Calculate [Ag⁺] in solution which was originally 0.1 M in KCN and 0.03 M in AgNO₃.
 - (a) 0.75×10^{-18} M (b) $0.50 \times 10^{-10} \text{ M}$
 - (c) 0.20×10^{-15} M (d) 0.25×10^{-20} M
- **19.** $\Delta G^{\circ} = 77.77 \text{ kJ mol}^{-1}$ at 1000 K for the reaction $\frac{1}{2}$ $N_2(g) + \frac{1}{2}O_2(g) \Longrightarrow NO(g)$. What is the partial pres-

sure of NO under equilibrium at 1000 K for air at 1 atm pressure containing 80% N₂ and 20% O₂ by volume ? (a) 3.47×10^{-5} atm (b) 2.47×10^{-8} atm

(c) 4.45×10^{-15} atm (d) 0.44×10^{-20} atm

- **20.** At 700 K, equilibrium constant for the reaction: H_2 (g) $+ I_2(g) \rightleftharpoons 2HI(g)$ is 54.8. If 0.5 mol L⁻¹ of HI(g) is

present at equilibrium at 700 K, what are the concentration of $H_2(g)$ and $I_2(g)$, assuming that we initially started with HI(g) and allowed it to reach equilibrium at 700 K?

- (a) 0.068 M (b) 0.034 M (c) 0.136 M (d) 0.68 M
- **21.** What is the equilibrium concentration of each of the substances of RHS in the equilibrium when the initial concentration of ICl was 0.78 M?

$$2ICl(g) \rightleftharpoons I_2(g) + Cl_2(g); K_C = 0.14$$

22. $K_P = 0.04$ atm at 899 K for the equilibrium shown below. What is the equilibrium concentration of C_2H_6 when it is placed in a flask at 4.0 atm pressure and allowed to come to equilibrium?

$$C_2H_6(g) \rightleftharpoons C_2H_4(g) + H_2(g)$$

(a) 7.24 atm (b) 3.62 atm

(c) 1 atm (d) 1.5 atm

- **23.** One of the reaction that takes place in producing steel from iron ore is the reduction of iron(II) oxide by carbon monoxide to give iron metal and CO₂. FeO (s) + $CO(g) \rightleftharpoons Fe(s) + CO_2(g); K_P = 0.265 \text{ atm at } 1050 \text{K}.$ What are the equilibrium partial pressures of CO and CO₂ respectively at 1050 K if the initial partial pressures are: $p_{\rm CO} = 1.4$ atm and $P_{\rm CO_2} = 0.80$ atm?
 - (a) $[P_{\rm CO}] = 1.739$ atm and $P_{\rm CO_2} = 0.461$ atm
 - (b) $[P_{CO}] = 17.39$ atm and $P_{CO_2} = 0.461$ atm
 - (c) $[P_{CO}] = 4.79$ atm and $P_{CO_2} = 0.46$ atm
 - (d) $[P_{CO}] = 2.739$ atm and $P_{CO_2} = 1.461$ atm
- 24. The equilibrium constant for the following reaction is 25 at 1024 K

$$H_2(g) + Br_2(g) \rightleftharpoons 2HBr(g)$$

Find the equilibrium pressure of H₂ gas if 10.0 bar of HBr is introduced into a sealed container at 1024 K.

- (a) 10/7 (b) 4.9 (c) 7/10 (d) 5/16
- 25. The heat of reaction for an endothermic reaction in equilibrium is 1200 cal more than at constant pressure at 300 K. Calculate the ratio of equilibrium constants K_P and K_C .

(a)
$$1.648 \times 10^{-3}$$

(b) 2.47×10^{-8}
(c) 4.45×10^{-5}
(d) 4.4×10^{-3}

26. For the reaction,

$$2\mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_2(\mathrm{g}) + \mathrm{I}_2(\mathrm{g})$$

The degree of dissociation (α) of HI(g) is related to equilibrium constant, K_p by the expression

(a)
$$\frac{1+2\sqrt{K_p}}{2}$$
 (b)
$$\sqrt{\frac{1+2K_p}{2}}$$

(c)
$$\sqrt{\frac{2K_p}{1+2K_p}}$$
 (d)
$$\frac{2\sqrt{2K_p}}{1+2\sqrt{K_p}}$$

4.14 Physical Chemistry-I for JEE (Main & Advanced)

27. At temperature *T*, a compound $AB_2(g)$ dissociates according to the reaction, $2AB_2(g) \rightleftharpoons 2AB(g) + B_2(g)$ with degree of dissociation α , which is small compared with unity. The expression for K_P , in terms of α and the total pressure, P_T is

(a)
$$\frac{P_T \alpha^3}{2}$$
 (b) $\frac{P_T \alpha^2}{3}$ (c) $\frac{P_T \alpha^3}{3}$ (d) $\frac{P_T \alpha^2}{2}$

- **28.** The value of K_p is 1×10^{-3} atm⁻¹ at 25°C for the reaction: 2NO + Cl₂ \implies 2NOCl. A flask contains NO at 0.02 atm and at 25°C. Calculate the mole of Cl₂ that must be added if 1% of the NO is to be converted to NOCl at equilibrium. The volume of the flask is such that 0.2 mole gas Produce 1 atm pressure at 25°C. (Ignore Probable association of NO to N₂O₂).
 - (a) 0.02042 (b) 2.01049
 - (c) 0.01021 (d) 0.04042

1. Match the reactions of Column I with the relations in Column II.

Column I		Column II		
(a)	$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$	(p)	$K_p = K_c(RT)$	
(b)	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	(q)	$K_p = K_c (RT)^2$	
(c)	$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$	(r)	$K_p = K_c (RT)^{-2}$	
(d)	$\operatorname{NH}_4\operatorname{HS}(s) \rightleftharpoons \operatorname{NH}_3(g) + \operatorname{H}_2\operatorname{S}(g)$	(s)	$K_p = K_c$	
		(t)	$K_p = K_c (RT)^{-1}$	

2. Match Column I with Column II.

Column I		Col	umn II	
(a)	Q = K	(p)	Reaction is nearer to completion.	
(b)	Q < K	(q)	Reaction is not at equilibrium.	
(c)	Q > K	(r)	Reaction is fast in forward direction.	
(d)	K>>1	(s)	Reaction at equilibrium.	
		(t)	Rate of forward reaction	
			= rate of back ward reaction.	

3. Match **Column I** with **Column II** and select the answers from the given codes:

Column I (Mixture)		Col	umn II (pH)
(a)	$K_{\rm eq} < 1$	(p)	Affected by temperature
(b)	Degree of disso- ciation	(q)	Affected by pressure
(c)	Equilibrium constant	(r)	$K_f < K_b$
(d)	Melting of ice	(s)	$K_f > K_b$
		(t)	K_f/K_b

4. Match the chemical reaction in equilibrium (Column I) with the pressure dependent of degree of dissociation of the reaction (Column II):

Col	umn I	Column II	
(a)	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	(p)	$x \propto \sqrt{P}$
(b)	$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$	(q)	$x \propto \sqrt{\frac{1}{P}}$
(c)	$PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)$	(r)	$x \propto P$
(d)	$N_2 + O_2 \rightleftharpoons 2NO$	(s)	$x \propto P^0$
		(t)	$K_p = K_c$

5. Match the following:

Column I			Column II		
(a)	$N_{2g} + 3H_{2g} \rightleftharpoons 2NH_{3g}$	(p)	$\Delta n_{\rm g} > 0$		
(b)	$PCl_{5g} \rightleftharpoons PCl_{3g} + Cl_{2g}$	(q)	$k_p < k_c$		
(c)	$2SO_{3g} \rightleftharpoons 2SO_{2g} + O_{2g}$	(r)	k_p not defined		
(d)	CH ₃ COOC ₂ H ₅ <i>l</i>	(s)	$k_p > k_c$		
	$+H_2Ol \rightleftharpoons CH_3COOH_l$		r		
	$+C_2H_5OH_l$				
(Assume temperature = 25° C)					

Assertion and Reason

Code:

- (a) Statements 1 and 2 are True. Statement 2 is the correct explanation for Statement 1.
- (b) Statement 1 and 2 are True. Statement 2 is **NOT** the correct explanation for Statement 1.
- (c) Statement 1 is True, Statement 2 is False.
- (d) Statement 1 is False, Statement 2 is True.
- **6. Statement 1:** A catalyst does not alter the equilibrium constant of a reaction.

Statement 2: The catalyst forms a complex with the reactants and provides an alternate path with lower energy of an activation for the reaction. The forward and reverse reaction are affected to the same extent.

7. Statement 1: Haber's synthesis of NH₃ is carried out in the presence of catalyst.

Statement 2: The catalyst shifts the position of the equilibrium of the reaction.

$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$$
 to the product side.

8. Statement 1: Addition of a non-reacting gas at constant volume and constant temperature to a container containing gas (X), does not change the partial pressure of gas (X).

Statement 2: Addition of non-reacting gas to a container at constant volume and constant temperature results in increase in total pressure of the container. **9. Statement 1:** The graph between concentration and time is as follows:

Its graph shows a reversible reaction.

Statement 2: In a reversible reaction the concentration of reactants and products becoming constant after a certain time.

10. Statement 1: Addition of an inert gas at constant pressure to dissociation equilibrium of PCl₅(g) ⇒ PCl₃(g) + Cl₂(g) favours forward reaction.

Statement 2: $K_c = \frac{\alpha^2 V}{1 - \alpha}$ for dissociation equilibrium

of PCl₅, where α is degree of dissociation of PCl₅

11. Statement 1: The reaction: $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ is favoured in the forward direction with increase in pressure.

Statement 2: When pressure is increased then the equilibrium shifts in those direction where *V* or number of moles decreases.

12. Statement 1: Addition or removal of solid reactant/ products does not alter the existing equilibrium.

Statement 2: Concentration of solid substances remains constant.

13. Statement 1: A catalyst does not affect the equilibrium constant.

Statement 2: Equilibrium constant depends on temperature.

14. Statement 1: The equilibrium constant for a reaction having positive ΔH° increase with increase of temperature.

Statement 2: The temperature dependence of the equilibrium constant is related to ΔH° and not ΔS° for the reaction.

15. Statement 1: $\Delta G = \Delta G^{\circ} + 2.303 RT \log_{10}Q$, where Q is reaction quotient.

Statement 2: *Q* may be greater or lesser than *K* or equal to *K* if $\Delta G = 0$.

- 16. Statement 1: A catalyst increased the equilibrium constant at any fixed temperature.Statement 2: By the uses of catalyst, the rate of the reaction increases.
- 17. Statement 1: In the Haber process,

 $N_2 + 3H_2 \rightleftharpoons 2NH_3; \Delta H = -ve$

Then concentration of NH₃ increases by decreasing the temperature and increasing the pressure.

Statement 2: For an exothermic reaction, equilibrium constant increases by increasing the temperature.

18. Statement 1: For the reaction $2NH_{3(g)} \rightleftharpoons N_{2(g)} + 3H_{2(g)}$, the unit of K_p will be atm. **Statement 2:** Unit of K_p is $(atm)^{\Delta n}$ **19. Statement 1:** $SO_{2(g)} + \frac{1}{2}O_{2(g)} \iff SO_{3(g)} + heat$

Forward reaction is favoured at high temperature and low pressure.

Statement 2: Reaction is exothermic in forward direction.

Comprehension I

For the reaction $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$, $K_P(1000 \text{ K}) = 0.059$ and K_P (1100 K) = 0.08. Exactly 10 g of CaCO₃ is placed in a 10 L container at 1000 K. The equilibrium is reached. Assume that air contains 10% by volume of CO₂.

20. The mass of CaCO₃ which remains unreacted at 1000 K is

21. The ratio of degree of dissociation of CaCO₃ at 1100°K and 1000 K is

(a) 4.256 (b) 1.356 (c) 5.286 (d) 3.456

22. The temperature at which CaCO₃ dissociates freely in air is

	(a) 415°C	(b)	913.2°C
	(c) 8, 05. 4°C	(d)	43°C
23.	The value of ΔH is		
	(a) 6699 cal	(b)	2399 cal
	(c) 4599 cal	(d)	2499 cal

Comprehension II

Let ΔG° be the difference in free energy of the reaction when all the reactants and products are in the standard state (1 atmospheric pressure and 298 K) and K_C and K_P be the thermodynamic equilibrium constant of the reaction. Both are related to each other at temperature *T* by the following relation:

$$\Delta G^{\circ} = -2.303 \ RT \log K_C$$

and $\Delta G^{\circ} = -2.303 \ RT \log K_P$ (incase of ideal gas)

This equation represents one of the most important results of thermodynamics and relates to the equilibrium constant of a reaction to a thermodynamic property.

It is sometimes easier to calculate the free energy in a reaction rather than to measure the equilibrium constant.

Standard free energy change can be thermodynamically calculated as

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

Here $\Delta H^\circ =$ standard enthalpy change $\Delta S^\circ =$ standard entropy change.

- **24.** Which of the following statement is correct for a reversible process in state of equilibrium?
 - (a) $\Delta G = -2.303 RT \log K$

(b)
$$\Delta G = 2.303 RT \log K$$

- (c) $\Delta G^\circ = -2.303 \ RT \log K$
- (d) $\Delta G^{\circ} = 2.303 RT \log K$
- **25.** At 490°C, the value of equilibrium constant; K_P is 45.9 the reaction

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

Calculate the value of ΔG° for the reaction at that temperature?

4.16 Physical Chemistry-I for JEE (Main & Advanced)

(a)	-3.5 kcal	(b)	3.5 kcal
(c)	5.79 kcal	(d)	-5.79 kcal

26. Calculate the equilibrium concentration ratio of *C* to *A* if 2.0 mol each of *A* and *B* were allowed to come to equilibrium at 300 K.

	A +	$B \rightleftharpoons C + D$	$\Delta G^{\circ} = 46$	60 Cal
(a)	1.0	(b) 0.5	(c) 0.8	(d) 0.679

Comprehension III

If the composition of the system does not change with time, the system is said to be in chemical equilibrium. It is the state in which net reaction of a system is zero. In other words, we can say that in reversible reactions, a stage is reached when the rate of transformation of reactants into products equals the rate of transformation of products into reactants. At this stage, the composition of reactants and products does not change with time. This does not mean that the reaction has ceased, as both reverse and forward reactions are still taking place but with equal place. Such equilibria are called dynamic equilibria.

Let us consider a reaction of the type,

$$\begin{split} A_{(\mathrm{g})} + B_{(\mathrm{g})} &\rightleftharpoons C_{(\mathrm{g})} + D_{(\mathrm{g})} \\ K_{C} &= \frac{[C][D]}{[A][B]} \end{split}$$

where K_C is equilibrium constant when the ratio of the concentrations of the product to reactants.

$$K_P = \frac{P_C \times P_D}{P_A \times P_B}$$

where K_P is the equilibrium constant for the ratio of partial pressure and of products to reactants. The relation between K_P and K_C is as follows:

 $K_P = K_C (RT)^{\Delta n}$

27. The mass ratio of steam and hydrogen is found to be 1 : 2 at equilibrium.

 $3 \text{ Fe}(s) + 4 \text{ H}_2\text{O}(g) \rightleftharpoons \text{Fe}_3\text{O}_4(s) + 4 \text{ H}_2(g)$

The value of equilibrium constant (K_C) for the above reaction is

(a) 3.05×10^3 (b) 1.05×10^5 (c) 0.75×10^2 (d) 2.42×10^7

(c)
$$0.75 \times 10^2$$
 (d) 2.42×10^7

28. K_C for the reaction $\frac{1}{2}N_2(g) + \frac{1}{2}O_2(g) + \frac{1}{2}Br_2(g) \Longrightarrow$

NOBr(g) from the following information at 298 K: $2NO_{(g)} \rightleftharpoons N_{2(g)} + O_{2(g)} \qquad K_1 = 2.4 \times 10^{30}$ $NO_{(g)} + \frac{1}{2}Br_{2(g)} \rightleftharpoons NOBr_{(g)} \quad K_2 = 1.4$ (a) 3.15×10^{-9} (b) $6.35 \times 5 \ 10^{-18}$

- (c) 9.03×10^{-16} (d) 17×10^{-17}
- 29. The equilibrium constant for the reaction 2SO₂ + O₂ ⇒ 2 SO₃ at 1000 K is 3.5. What will the partial pressure of oxygen gas have to be to give equal moles of SO₂ and SO₃?
 (a) 0.20 atm (b) 3.5 atm

(a)	0.29 atm	(b)	3.5 atm
(c)	0.53 atm	(d)	1.87 atm

30. For the reaction,

 $\text{NH}_2\text{COONH}_4(s) \rightleftharpoons 2 \text{ NH}_{3(g)} + \text{CO}_{2(g)}$ The equilibrium constant $K_P = 2.9 \times 10^{-5} \text{ atm}^3$. The total pressure of gases at equilibrium when 1 mole of reactant was heated will be

(a) 0.0194 atm (b) 0.0388 atm

(c) 0.0580 atm (d) 0.0667 atm

Comprehension IV

A chemical reaction in the laboratory is carried out under the condition of constant temperature and pressure. The condition of spontaneity in terms of enthalpy and entropy are, respectively, $\Delta H < 0$ and S > 0 whereas condition of equilibrium are, respectively, $\Delta H = 0$ and $\Delta S = 0$. An endothermic reaction is driven by increase in entropy, i.e., increase in disorderness. The two criteria combined together, the condition of reversibility and irreversibility are as follows:

 $\Delta G_{P,T} = \Delta H - T\Delta S \leq 0$, where 'equal to' sign refers to reversibility and 'less than' sign refers to irreversibility. Reversibility is the condition of equilibrium whereas irreversibility is the condition of spontaneity. A reversible reaction is characterised by equilibrium constant (K), the magnitude of which measures the position of equilibrium, i.e., how far a chemical reaction will go to completion before attainment of equilibrium. The position of equilibrium constant of a reaction with temperature is given by Van Hoff equation of thermodynamics which is as follows:

This equation can be integrated assuming ΔH to be independent of temperature. Within the short interval of temperature.

For a gaseous equilibria k can be expressed K_c and K_p related as

where the symbols have their usual meanings. Δn_g of a reaction can be found out from the unit of equilibrium, though it is not customary to write unit of equilibrium constant. Another way of finding Δn_g of a reaction is to use the equation,

$$\Delta H = \Delta E + \Delta n_g RT$$

where the terms have their usual meanings.

Knowing *K* and reaction quotient, it is possible to calculate free energy change of a reaction using the equation:

$$\Delta G = \Delta G^0 + RT \ln Q$$

At equilibrium Q = K and $\Delta G_{P, T} = 0$

So, $\Delta G^0 = -RT \ln K$ where ΔG^0 is the free energy change of the reaction in the standard state.

The standard state of a substance is defined as the state of unit activity at 25°C. In the case of solution of a substance, the activity is taken to be molar concentration while for a gas it is pressure in atm. The standard free energy of an element is taken to be zero.

- **31.** At 27°C the heat of reaction at constant pressure is 600 cals more than that at constant volume. The ratio of K_p to K_c of the reaction is
 - (a) 24.63 (b) $(24.63)^2$ (c) 0.6 (d) 0.36

 $NH_4HS_{(s)} \rightleftharpoons NH_{3(g)} + H_2S_{(g)}$

 K_p and K_c are interrelated as

(a)
$$K_p = K_c RT$$
 (b) $K_p = \frac{K_c}{(RT)^2}$
(c) $K_p = K_c (RT)^2$ (d) $K_p = K_c / RT$

33. The K_p of a reaction is 10 atm⁻² at a temperature *T* on Kelvin scale. Hence,

(a)
$$K_p = K_c$$

(b) $K_p < K_c$
(c) $K_p > K_c$
(d) Can't be predicted

- **34.** The K_c of a reaction is 4.0 mol² L⁻² at 27°C. Hence K_p of the reaction is
 - (a) $4 (0.0821 \times 300)^2 \text{ atm}^2$

(b)
$$4 (2 \times 300)^2 \text{ atm}^2$$

(c) $\frac{4}{(0.0821 \times 300)^2 \text{ atm}^{-2}}$
(d) $\frac{4}{(2 \times 300)^2 \text{ atm}^2}$

Integer-Answer-Type Questions

35. For the equilibrium $N_2O_4 \rightleftharpoons 2NO_2$

 $(G_{N_2O_4}^0)_{298K} = 100 \text{ kJ mol}^{-1} \text{ and } (G_{NO_2}^0)_{298K} = 50 \text{ kJ mol}^{-1}.$

When 5 mole/L of each in taken, calculate the value of ΔG in KJ for the reaction at 298 K.

36. When NO and NO_2 are mixed, the following equilibria are readily obtained;

$$2NO_2 \rightleftharpoons N_2O_4$$
 $K_p = 6.8 \text{ atm}^{-1}$
and $NO + NO_2 \rightleftharpoons N_2O_3$

In an experiment when NO and NO₂ are mixed in the ratio of 1 : 2, the total pressure was 5.05 atm and the partial pressure of N₂O₄ was 1.7 atm. Calculate the equilibrium partial pressure of NO in atmospheres \times 10.

- **37.** At 25°C and 1 atmospheric pressure, for the equilibrium $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ the partial pressures in equilibrium mixture of gaseous N_2O_4 and NO_2 are 0.7 and 0.3 atm respectively. Calculate the partial pressure of N_2O_4 in atm when they are in equilibrium at 25°C and the total pressure of 10 atm
- **38.** For the reaction, $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$, *K* is 0.63 at 700°C and 1.66 at 1000°C. What is the average *H*° in Kcal for the temperature range considered?
- **39.** 16 moles of H_2 and 4 moles of N_2 are sealed in a 1 L vessel. The vessel is heated at a constant temperature until the equilibrium is established, it is found that the pressure in the vessel has fallen to 9/10 of its original value. Calculate newly concentration of N_2 in mol L⁻¹

$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$$

Subjective Questions

40. At 700 K, CO₂ and H₂ react to form CO and H₂O. For this process, K is 0.11. If a mixture of 0.45 mole of CO₂ and 0.45 mole of H₂ is heated to 700 K, then

- (i) find out the amount of each gas at equilibrium.
- (ii) After equilibrium is reached, another 0.34 mole of CO_2 and 0.34 mole of H_2 are added to the reaction mixture. Find the composition of the mixture at the new equilibrium state.
- **41.** The equilibrium constant for the reaction $H_2 + I_2 \rightleftharpoons 2HI$; is found to be 64 at 450°C. If 6 mole of hydrogen are mixed with 3 mole of iodine in a litre vessel at this temperature; what will be the concentration of each of the three components, when equilibrium is attained? If the volume of reaction vessel is reduced to half; then what will be the effect on equilibrium?
- **42.** 5 gm of PCl₅ were completely vaporised at 250°C in a vessel of 1.9 L capacity. The mixture at equilibrium exerted a pressure of one atmosphere. Calculate the degree of dissociation and K_C .
- **43.** If a mixture of N_2 and H_2 in the ratio 1 : 3 at 50 atmosphere and 650°C is allowed to react till equilibrium is reached. Ammonia present at equilibrium was at 25 atm pressure. Calculate the equilibrium constant for the reaction,

$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$$

44. A mixture of SO₃, SO₂ and O₂ gases is maintained in a 10.0 L flask at a temperature at which equilibrium constant K_c for the reaction

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ is 100.

- (i) If the number of moles of SO₂ and SO₃ in the flask are equal, how many moles of O₂ are present?
- (ii) If the number of moles of SO₃ in the flask is twice the number of mole of SO₂, how many moles of O₂ are present?
- **45.** The equilibrium constant K_p of the reaction $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ is 900 atm⁻¹ at 800 K. A mixture containing SO₃ and O₂ having initial partial pressures of 1 atm and 2 atm, respectively, is heated at constant volume to equilibrate. Calculate the partial pressure of each gas at 800 K.
- **46.** H₂S dissociates according to the equation 2H₂S (g) \Rightarrow 2H₂(g) + S₂(g). If *a* is the degree of dissociation of H₂S, show that K_p of the reaction is given as

$$K_p = \frac{\alpha^3 p}{2(1-\alpha)^2 (1+\alpha/2)}$$

At 1125°C, the value of *a* is found to be 0.31 when the equilibrium pressure is 1 atm. Determine the values of K_p and K_c .

- 47. COCl_2 gas dissociates according to the equation COCl_2 $\rightleftharpoons \operatorname{CO} + \operatorname{Cl}_2$. When COCl_2 is heated to 724 K at 1atm, the density of gas mixture at equilibrium was found to be 1.162 g L⁻¹. Calculate (a) the degree of dissociation and (b) K_n of the reaction.
- **48.** The density of an equilibrium mixture of N_2O and NO_2 at 1 atm and 348 K is 1.84 g dm⁻³. Calculate the equilibrium constant of the reaction

4.18Physical Chemistry-I for JEE (Main & Advanced)

 $N_2O_4(g) \rightleftharpoons 2NO_2(g)$

- **49.** For the reaction, $N_2O_5(g) \rightleftharpoons 2NO_2(g) + 0.5O_2(g)$, calculate the mole fraction of N₂O₅(g) decomposed at constant volume and temperature, if the initial pressure is 600 mm-Hg and the pressure at any time is 960 mm Hg. Assuming ideal gas behaviour.
- **50.** When 3.06 g of solid NH_4HS is introduced into a 2 L evacuated flask at 270°C, 30% of the solid decomposes into gaseous ammonia and hydrogen sulphide. (a) Calculate K_c and K_p for the reaction at 27°C. (b) What will happen to equilibrium when more solid NH4HS is introduced into the flask?

PREVIOUS YEARS' QUESTIONS OF JEE (MAIN & ADVANCED)

1. Phosphorus pentachloride dissociates as follows, in a closed reaction vessel, $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$. If total pressure at equilibrium of the reaction mixture is P and degree of dissociation of PCl_5 is x, the partial pres-[AIEEE 2006] sure of PCl₃ will be

(a)
$$\left(\frac{x}{1-x}\right)P$$
 (b) $\left(\frac{x}{x+1}\right)P$
(c) $\left(\frac{2x}{1-x}\right)P$ (d) $\left(\frac{x}{x-1}\right)P$

2. The equilibrium constant for the reaction,

$$SO_{3(g)} \rightleftharpoons SO_{2(g)} + \frac{1}{2}O_{2(g)}$$

is $K_c = 4.9 \times 10^{-2}$. The value of K_c for the reaction

 $2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$

will be

[AIEEE 2006]

- (a) 4.9×10^{-2} (b) 416 (c) 2.40×10^{-3} (d) 9.8×10^{-2}
- **3.** The equilibrium constants K_{P1} and K_{P2} for the reactions $X \rightleftharpoons 2Y$ and $Z \rightleftharpoons P + Q$, respectively are in the ratio of 1 : 9. If the degree of dissociation of X and Z be equal, then the ratio of total pressures at these equilibria is

[AIEEE 2008]

4. For the following three reactions 1, 2, and 3, equilibrium constants are given

(a)
$$CO_{(g)} + H_2O_{(g)} \rightleftharpoons CO_{2(g)} + H_{2(g)}; K_1$$

(b)
$$CH_{4(g)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + 3H_{2(g)}; K_2$$

(c)
$$CH_{4(g)} + 2H_2O_{(g)} \rightleftharpoons CO_{2(g)} + 4H_{2(g)}; K_3$$

[AIEEE 2008]

(a)
$$K_1 \sqrt{K_2} = K_3$$
 (b) $K_2 K_3 = K_1$
(c) $K_3 = K_1 K_2$ (d) $K_3 \cdot K_2^3 = K_1$

$$K_3 = K_1 K_2$$
 (d) $K_3 \cdot K_2^3 = K_1^2$

5. A vessel at 1000 K contains CO_2 with a pressure of 0.5 atm. Some of the CO₂ is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K_P is [AIEEE 2011]

(a)	1.8 atm	(b)	3 atm
(c)	0.3 atm	(d)	0.18 atm

6. The equilibrium constant (K_c) for the reaction $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ at temperature T is 4×10^{-4} . The value of K_c for the reaction

NO(g)
$$\rightleftharpoons \frac{1}{2}$$
N₂(g) + $\frac{1}{2}$ O₂(g) at the same temperature is
[AIEEE 2012]
(a) 0.02 (b) 2.5×10^2
(c) 4×10^{-4} (d) 50

(c)
$$4 \times 10^{-4}$$
 (d)

7. For the reaction,

$$SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g),$$

If $K_P = K_c (RT)^x$ where the symbols have usual meanings, then the value of x is (assuming ideality)

[AIEEE 2014]

(a)
$$-1$$
 (b) $-1/2$ (c) $1/2$ (d) 1
8. The standard Gibbs energy change at 300 K for the reaction $2A \rightarrow B + C$ is 2494.2 J. At a given time, the composition of the reaction mixture is $[A] = \frac{1}{2}$, $[B] = 2$ and $(C) = \frac{1}{2}$. The reaction proceeds in the

[R = 8.314 J/K/mol, e = 2.718][JEE Main 2015]

- (a) Forward direction because $Q > K_C$
- (b) Reverse direction because $Q > K_C$
- (c) Forward direction because $Q < K_C$
- (d) Reverse direction because $Q < K_C$

JEE Advanced

Single-Correct-Answer Type

9. The Haber's process for the formation of NH₃ at 298 K

 $N_2 + 3H_2 \rightleftharpoons 2NH_3$; $\Delta H = -46.0$ kJ. Which of the following is the correct statement? **[IIT JEE 2006]**

- (a) The condition equilibrium for is $G_{\rm N_2} + 3G_{\rm H_2} = 2G_{\rm NH_3}$ where G is Gibbs free energy per mole of the gaseous species measured at that partial pressure.
- (b) On adding N₂, the equilibrium will shift to forward direction because according to IIsecond law of thermodynamics the entropy must increase in the direction of spontaneous reaction.
- (c) The catalyst will increase the rate of forward reaction by two times and that of backward reaction by 1.5 times.
- (d) None of these.

Multiple-Correct-Answer Type

10. The equilibrium $2Cu^1 \rightleftharpoons Cu^0 + Cu^{II}$ in aqueous medium at 25°C shift towards the left in the presence of

[IIT JEE 2011]

(a)
$$NO_3^{\ominus}$$
 (b) CI^{\ominus}
(c) SCN^{\ominus} (d) CN^{\ominus}

Chemical Equilibrium 4.19

11. The thermal dissociation equilibrium of CaCO₃ is studied under different conditions

 $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$. For this equilibrium, the correct statement(s) is (are)

[JEE Advanced 2014]

- (a) ΔH is dependent on *T*.
- (b) K is independent of the initial amount of CaCO₃.
- (c) K is dependent on the pressure of CO_2 at a given T.
- (d) ΔH is independent of the catalyst, if any.

Assertion-Reasoning Type

- (A) Both Statements 1 and 2 are correct, but Statement 2 is not the correct explanation of Statement 1.
- (B) Both Statements 1 and 2 are correct, but Statement 2 is not the correct explanation of Statement 1.
- (C) Statement 1 is correct but Statement 2 is incorrect.
- (D) Statement 1 is incorrect but Statement 2 is correct.
- 12. Statement 1: For every chemical reaction at temperature, standard Gibbs energy of reaction is zero.
 Statement 2: At constant temperature and pressure, chemical reactions are spontaneous in the direction of decreasing Gibbs energy. [IIT JEE 2008]

Answer Key

	LEVEL I								
1. (a) 11. (c) 21. (b) 31. (d) 41. (a) 51. (a)	2. (c) 12. (b) 22. (a) 32. (b) 42. (d) 52. (d)	3. (b) 13. (b) 23. (a) 33. (a) 43. (c) 53. (b)	4. (b) 14. (d) 24. (c) 34. (a) 44. (a) 54. (b)	5. (d) 15. (d) 25. (a) 35. (b) 45. (d)	6. (b) 16. (b) 26. (c) 36. (a) 46. (b)	7. (b) 17. (b) 27. (c) 37. (b) 47. (d)	8. (b) 18. (c) 28. (b) 38. (a) 48. (d)	9. (d) 19. (b) 29. (a) 39. (c) 49. (c)	10. (d) 20. (b) 30. (d) 40. (b) 50. (a)
	LEVEL I	[
1. (b) 11. (a) 21. (a)	2. (a) 12. (a) 22. (b)	3. (c) 13. (b) 23. (a)	4. (d) 14. (a) 24. (a)	5. (a) 15. (c) 25. (a)	6. (c) 16. (d) 26. (d)	7. (b) 17. (a) 27. (a)	8. (c) 18. (a) 28. (a)	9. (d) 19. (a)	10. (c) 20. (a)
	LEVEL I	Π							
1. (A) – 3. (A) – 5. (A) –	$\Rightarrow s; (B) \rightarrow r;$ $\Rightarrow r; (B) \rightarrow p,$ $\Rightarrow q: (B) \rightarrow p$	$(C) \rightarrow p; (D)$ $q; (C) \rightarrow p;$ $s: (C) \rightarrow p$	$(D) \rightarrow q$ $(D) \rightarrow p, q$ $s^{(D)} \rightarrow s$		2. (A) – 4. (A) –	\Rightarrow s, t; (B) \rightarrow \Rightarrow r; (B) \rightarrow p;	$q, r; (C) \rightarrow q$ $q; (C) \rightarrow q; (D)$	$q; (D) \to p$ $(D) \to s$	
6. (a) 16 (d)	7. (c)	8. (b)	9. (d) 10 (d)	10. (c) 20 (c)	11. (a) 21. (b)	12. (a) (22) (b)	13. (b) 23 (a)	14. (b) 24 (c)	15. (c) 25 (d)
$\begin{array}{c} 10. \ (d) \\ 26. \ (d) \\ 36. \ (18) \end{array}$	27. (b) 37. (9)	28. (c) 38. (8)	29. (a) 39. (3)	30. (c)	31. (a)	32. (c)	33. (b)	34. (a)	35. (4)
40. (i) [C 41. [HI] =	$O_2] = [H_2] =$ = 5.68 M, [H	0.34 mole, [0 $_2$] = [I $_2$] = 3.1 4 mole	$CO] = [H_2O] = [H_2O] = [H_2O] = 0$] = 0.112 mo 42. $\alpha = 0$ = 0.23 atm	ble (ii) $[CO_2]$.84, $K_C = 0.0$ $Po_2 = 2.0115$	$= [H_2] = 0.5$ = 0.5 = 0.5	594 mole, [C0 43. $K_P = 1$ 0.977 atm	$O] = [H_2O] = 1.677 \times 10^{-3}$	= 0.196 mole
44. (1) 0. $K_P =$ 46. $K_P =$ 49. $X_{N_2O_2}$	$2.71 \times 10^{-2} \text{ a}$ $_{5} = 0.407$	ttm, $K_C = 2.3^{\circ}$ 50. (i) K_C	43.730_2^{-4} mo = 8.1×10^{-4} mo	$^{-0.25}$ atil, 1 le L ⁻¹ 5 (mole L ⁻¹) ²	47. $\alpha = 0$ $K_p = 4.9 \times$	$433, K_p = 0.10^{-2} \text{ atm}^2 \text{ (ii)}$	231 atm) no effect	48. $K_P = 3$	5.206 atm
	PREVIO	US YEAR	S' QUES	STIONS	OF JEE (I	MAIN &	ADVAN	CED)	
1. (b)	2. (b)	3. (a)	4. (c)	5. (a)	6. (d)	7. (b)	8. (b)	9. (a)	10. (b, c, d)

11. (a, b, d) 12. (d)

Hints and Solutions

LEVEL I 1. (a) $K_c = 20 k_f = 10 k_b = ?$ $K_c = \frac{k_f}{k_h}$ $20 = \frac{10}{k_h}$ $\therefore K_b = \frac{10}{20} = 0.5$ 2. (c) NO(g) + $\frac{1}{2}$ O₂(g) \rightleftharpoons NO₂(g) $K_1 = \frac{[\text{NO}_2]}{[\text{NO}][\Omega_2]^{1/2}} = 4 \times 10^{-3}$ Now for reaction $2NO_2(g) \rightleftharpoons 2NO(g) + O_2(g)$ $K_2 = \frac{[\text{NO}]^2[\text{O}_2]}{[\text{NO}_2]^2} = \frac{1}{K^2}$ $=\frac{1}{(4\times10^{-3})^2}=6.25\times10^4$ 3. (b) $K_C = \frac{[\text{NOCl}]^2}{[\text{NO}]^2[\text{Cl}_2]}$ **4.** (b) Number of moles of $O_2 = \frac{96}{22} = 3 \text{ mol}$ Molar concentration = $\frac{\text{Number of moles}}{\text{Volume in litre}} = \frac{3}{2} = 1.5$ mol/ltr 5. Value of K_p is greater then K_c for those reaction in which $\Delta n > 0$. because = $K_p = K_c (RT)^{\Delta n}$ Here for the reaction $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$; $\Delta n = 3 - 2 = 1 > 0$ Therefore $K_p > K_c$ for this reaction **6.** (b) $K_p = 20\dot{R}$ (given) for the reaction $\Delta n = (2 - 1) = 1$ $K_p = K_c (RT)^{\Delta n}$ $20R = K_c (RT)^1$ $\therefore K_c = \frac{20R}{R \times 1000} = .02 \text{ mol } \text{L}^{-1}$ 7. (b) $N_2O_4 \rightleftharpoons 2NO_2$ Initially 1 0 Moles at equilibrium $1 - \alpha$ 2α \therefore total number of moles at equilibrium = $1 - \alpha + 2\alpha$ $\begin{array}{ccccc} A & + & B & \rightleftharpoons & C & + & D \\ 4 & 4 & & 0 & & 0 \end{array}$ 8. (b) Initially At equilibrium 4-x 4-xx Given at equilibrium mole of C = 2 ($\therefore x = 2$) :. [A] = 4 - 2 = 2 mole [B] = 4 - 2 = 2 mole

[D] = x = 2 mole $K_c = \frac{[C][D]}{[A][B]} = \frac{2 \times 2}{2 \times 2} = 1$ $\begin{array}{ccc} 2 HI & \rightleftharpoons & H_2 & + \\ 1 & & 0 \end{array}$ 9. (d) I_2 0 Initially Moles at equilibrium $1-\alpha$ $\alpha/2$ $\alpha/2$ 50% of HI is dissociated therefore $\alpha = .5$ [HI] = 1 - .5 = .5 $[H_2] = .5/2$ $[I_2] = .5/2$ $K_c = \frac{[H_2][I_2]}{[HI]^2} = \frac{.5/2 \times .5/2}{[.5]^2} = \frac{1}{4} = 0.25$ 10. (d) $C_2H_5OH(1) + CH_3COOH(1) \rightleftharpoons CH_3COOC_2H_35(1) + H_2O(1)$ Initially(1) (1) Moles of equilibrium $1 - \alpha = 1 - \alpha$ α α Given $\alpha = 2/3$ Therefore, $C_2H_5OH = 1 - 2/3 = 1/3$ $CH_3COOH = 1 - 2/3 = 1/3$ $CH_3COOC_2H_5 = 2/3$ $H_2O = 2/3$ $K_{c} = \frac{[CH_{3}COOC_{2}H_{5}][H_{2}O]}{[CH_{3}COOH][C_{2}H_{5}OH]} = \frac{2/3 \times 2/3}{1/3 \times 1/3} = 4$ 11. (c) $K_p = \frac{[p_{co}]^2}{[p_{co_2}]} = \frac{[4]^2}{[2]}$ $\therefore K_n = 8 \text{ atm}$ 12. (b) D for PCl₅ = $\frac{\text{Molecular mass}}{2} = \frac{208.5}{2} = 104.25$ d for $PCl_5 = 100$ $\alpha = \frac{D-d}{d} = \frac{104.25 - 100}{100} = 0.0425$ **13.** (b) $H_2 + Cl_2$ \rightleftharpoons 2HCl $\frac{9.023 \times 10^{23}}{6.023 \times 10^{23}} \quad 0 \text{ Initial mole}$ 3 mole 3 - 1.5 mole 1.5 - 1.5 mole 3.0 mole at equilibrium Total mole at equilibrium = 1.5 + 3.0 = 4.5 mole Partial pressure of HCl = $\frac{3.0}{4.5} \times 800 = \frac{1600}{3} = 533$ mm 14. (d) $N_2O_4 \rightleftharpoons 2NO_2$ 1 - x2xP = 1 atm. pressure. x = 20%, i.e., 0.2 mole $K_p = \frac{4x^2P}{1-r^2}$ $K_p = \frac{4 \times 0.2 \times 0.2 \times 1}{1 - (0.2)^2} = \frac{0.16}{0.96} = 0.17$

15. (d) Equilibrium constant (K_c) will remain unchanged.

16. (b)
$$PCl_5 \rightleftharpoons PCl_3 + Cl_2$$

Initial mole $1 \quad 0 \quad 0$
Mole at equilibrium $1 - 0.2 \quad 0.2 \quad 0.2$
 $K_p = \frac{[PCl_3][Cl_2]}{[PCl_5]} = \frac{0.2 \times 0.2}{0.8} = \frac{1}{20} = 0.5 \text{ atm}$

- **17.** (b) Volume of gases is increasing in the forward reaction. Therefore on increasing pressure, equilibrium will shift towards backward direction.
- **18.** (c) On increasing pressure in the reaction, equilibrium will shift towards the direction where volume gets decreased, i.e., towards forward (right) direction.
- **19.** The ratio $\frac{[\text{Product}]}{[\text{Reactant}]}$ is maximum when $K = 10^{10}$ and

thus reaction goes farthest to completion when $K = 10^{10}$

20. For
$$A_{(g)} \rightleftharpoons B_{(g)}$$
; $K_c = \frac{|B|}{|A|} = 1.1 \Rightarrow |B| > [A].$
If $[B] = 1$; $[A] = 0.91$
Case I 0.91 < $[A] \le 1$ Only $[B] > 1$
Case II $[A] > 1$ Both $[A]$ and $[B] > 1$
21. N₂O₄ $\rightleftharpoons 2$ NO₂
0.1 0
(0.1 - α) 2 α

$$K_p = \frac{(2\alpha)^2}{(0.1 - \alpha)} \times \left[\frac{P}{0.1 + \alpha}\right]^1 \text{ or } K_p = \frac{40\alpha^2}{(0.1 - \alpha)}$$

or $\frac{40\alpha^2}{(0.1 - \alpha)} = 0.14$

$$\therefore \alpha = 0.017 \qquad \therefore \text{ NO}_2 = 0.017 \times 2 = 0.034 \text{ mole}$$
22. $K_c = \frac{[\text{CO}_2]}{[\text{CO}]}$

$$\therefore \quad 5 = \frac{[\text{CO}_2]}{2.5 \times 10^{-2}}$$

:. [CO₂] at equilibrium = $2.5 \times 10^{-2} \times 5 = 12.5 \times 10^{-2} \text{ mol } \text{L}^{-1}$

23. Reaction $2H_2S \rightleftharpoons H_2 + S_2$ Mole before dissociation $1 \quad 0 \quad 0$ Mole after dissociation $(1 - \alpha) \quad \alpha \quad \frac{\alpha}{2}$

where α is degree of dissociation of H₂S Volume of container = 1.10 L

$$\therefore \qquad K_{C} = \frac{[H_{2}]^{2}[S_{2}]}{[H_{2}S]^{2}} = \frac{\left\lfloor \frac{\alpha}{1.1} \right\rfloor^{2} \left\lfloor \frac{\alpha}{2 \times 1.1} \right\rfloor}{\left\lfloor \frac{1-\alpha}{1.1} \right\rfloor^{2}} = 1 \times 10^{-6}$$

Assuming $1 - \alpha = 1$ since α is small because $K_c = 10^{-6}$

$$\therefore \qquad \frac{\alpha^3}{2(1.1)} = 10^{-6} \qquad \alpha = 1.3 \times 10^{-2} = 1.3\%$$

24. $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$ Gaseous mole before dissociation - 1 0 Gaseous mole after dissociation - $\left(1 - \frac{50}{2}\right) = \frac{2 \times 50}{2}$

Total pressure given at equilibrium = 12 atm

Partial pressure of CO = $\frac{1}{1.5} \times 12 = 8$ Partial pressure of CO₂ = $\frac{.5}{1.5} \times 12 = 4$ $K_p = \frac{P_{CO}^2}{P_{CO_2}} = \frac{(8)^2}{4} = 16$ atm

25.
$$\alpha - D$$
 glucose $\rightleftharpoons \beta - D$ glucose At equilibrium 36.4 63.6

:
$$K_C = \frac{63.6}{36.4} = 1.747$$

- 26. (c) Apply the formula, $K = \frac{k_f}{k_b} = \frac{1 \times 10^{-4}}{2.5 \times 10^{-2}} = 4 \times 10^{-3}.$
- 27. (c) $SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$ 1 1 1 1 Initial conc. 1-x 1-x 1+x 1+x At equilibrium $K = \frac{[SO_3][NO]}{[SO_2][NO_2]} = \frac{(1+x)(1+x)}{(1-x)(1-x)}$ $16 = \frac{(1+x)^2}{(1-x)^2} \Longrightarrow \frac{(1+x)}{(1-x)} = 4$ or x = 0.6 $[NO_2] = 1 - x = 1 - 0.6 = 0.4$ mol L⁻¹.
- 28. (b) This is according to Le-Chatelier's principle.
- **29.** (a) The degree of dissociation cannot be calculated from the vapour density data. Because here the number of moles remains unchanged before and after reaching equilibrium.
- **30.** (d) Equilibrium constant depends only on temperature and stoichiometry of the reaction.
- **31.** (d) $K_P = P_{CO_2}$ and active mass of solid is constant
- **32.** (b) On adding reactant, (PCl₅) reaction proceed in forward direction ∴ more Cl₂ formed.
- **33.** (a) Keq \propto Stability of Pdt

Initial pressure at equilibrium $\begin{array}{c} xy_{2(g)} \rightleftharpoons xy_{(g)} + y_{(g)} \\ 600 \text{ mm} \\ 600 - p^1 \quad p^1 \quad p^1 \\ \text{Total pressure at equilibrium} = 600 - p^1 + p^1 + p^1 \\ = 600 + p^1 \end{array}$

 $= 600 + p^1$ 600 + p¹ = 800

$$p^1 = 800 - 600 = 200 \text{ mm}$$

35. (b)
$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

 $K_C = \frac{[SO_3]^2}{[SO_2]^2[O_2]} = \frac{[1.9]^2}{[0.6]^2 \times [0.82]} M^{-1} = 12.237 \text{ mol } L^{-1}$
36. (a)
(i) $K_P = K_C(RT)^{\Delta n}$
 $\therefore \Delta n = 1$
 $\therefore K_C = \frac{K_P}{RT} = \frac{1.8 \times 10^{-2}}{0.0821 \times 500} = 4.4 \times 10^{-4}$
(ii) $\therefore \Delta n = 1$
 $K_C = \frac{K_P}{RT} = \frac{167}{0.0821 \times 1073} = 1.90$
37. (b) $K_{C(reverse)} = \frac{1}{K_C} = \frac{1}{6.3 \times 10^{-14}} = 1.59 \times 10^{-15}$
38. (a) $K_P = K_C(RT) \Delta n$
 $\Delta n = -1$
By putting the values and on solving
 $K_C = 7.47 \times 10^{11} \text{ M}^{-1}$
39. (c) Reaction $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$
 $t = 0$ 0.2 atm 0 0
 $\frac{\text{change} -2x + x + x}{t = t_{eq}} (0.2 - 2x) \times x \times x$
From question, $0.2 - 2x = 0.04$
 $2x = 0.2 - 0.04 = 0.16$
 $x = 0.08$
 $K_P = \frac{0.08 \times 0.08}{[0.04]^2} = 4$

40. (b)
$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

$$Q = \frac{\left(\frac{8.13}{20}\right)^2}{\frac{1.57}{20} \times \left(\frac{1.92}{20}\right)^3} = \frac{[8.13]^2 \times [20]^2}{1.57 \times [1.92]^3}$$

= $2.38 \times 10^3 Q > K_C$, so reaction proceeds in backward direction.

41. (a) $4NO(g) + 6H_2O(g) \rightleftharpoons 4NH_3(g) + 5O_2(g)$ 42. (d) $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ $t = t_{eq} \ 0.5 \times 10^{-1} \ M \ x \ x$ $K_C = 8.3 \times 10^{-3} = \frac{x^2}{0.5 \times 10^{-1}}$ $x^2 = 4.15 \ m \times 10^{-4}$ $x \simeq 0.02 \ M$ 43. (c) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ $t = t_{eq} \ 3M \ 2M \ 0.5M$ $Q = \frac{0.5 \times 0.5}{3 \times 2^3} = \frac{1}{3 \times 8 \times 4} = \frac{1}{96}$

 $\therefore Q < K$, system is not at equilibrium and equilibrium will be reached by shifting in forward direction

44. (a) 2BrCl (g)
$$\rightleftharpoons$$
 Br₂ (g) + Cl₂ (g)
 $t=0$ 3.3×10⁻³ M 0 0
change -2x x x

$$t = t_{eq} (3.3 \times 10^{-3} - 2x) \qquad x \qquad x$$

$$K_{C} = \frac{x^{2}}{(3.3 \times 10^{-3} - 2x)^{2}} = 32$$
on solving, $x = 1.5 \times 10^{-3}$
[BrCl] = $33 \times 10^{-4} - 2x = 33 \times 10^{-4} - 30 \times 10^{-4}$
= 3×10^{-4}
45. (d) $\Delta G^{0} = \Delta G^{0}_{NO_{2}} - \Delta G^{0}_{NO}$

$$= (52 - 87) \text{ kJ mol}^{-1} = -35 \text{ kJ mol}^{-1}$$
 $\therefore \Delta G^{0} = -2.303 \text{ RT log } K$

$$\log K = \frac{-35 \text{ kJ mol}^{-1}}{-8.301 \text{ Jk}^{-1} \text{ mol}^{-1} \times 298 \text{ K} \times 2.303}$$
On solving, $K = 1.365 \times 10^{6}$
46. (b) $Q_{p} = \frac{(P_{NH_{3}})^{2}}{P_{V} \times (P_{V})^{3}} = \frac{(3)^{2}}{(1)(2)^{3}} = \frac{9}{8} \text{ atm}^{-2}$

5. (b)
$$Q_p - \frac{1}{P_{N_2} \times (P_{H_2})^3} = \frac{1}{(1)(2)^3} = \frac{1}{8} \text{ and}$$

= 1.125 atm⁻².
Since value of Q is larger than K (4.28 10⁻⁵ s

Since value of Q_p is larger than K_p (4.28 10⁻⁵ atm⁻²), it indicates net reaction will proceed in backward direction.

47. (d) Moles of PCl₅ dissociated = $\frac{2 \times 35}{100} = 0.7$

Moles of PCl_5 left undissociated = 2 - 0.7 = 1.3 mol

$$[PCl_{5}] = \frac{1.3}{5} M, [PCl_{3}] = \frac{0.7}{5} M, [Cl_{2}] = \frac{0.7}{5} M$$
$$K = \frac{[PCl_{3}][Cl_{2}]}{[PCl_{5}]} = \frac{\left(\frac{0.7}{5}\right)\left(\frac{0.7}{5}\right)}{\left(\frac{1.3}{5}\right)} = 0.75$$

48. (d) Suppose 1 mole of *A* and *B* each taken then 0.8 mole L^{-1} of *C* and *D* each formed remaining concentration of *A* and *B* will be (1 - 0.8) = 0.2 mole L^{-1} each.

$$K_c = \frac{[C][D]}{[A][B]} = \frac{0.8 \times 0.8}{0.2 \times 0.2} = 16.0$$

49. (c) $A + B \rightleftharpoons C + D$ Initial concentration 4, 4 0 0 After *T* time concentration (4-2) (4-2) 2 2 Equilibrium constant $= \frac{[C][D]}{[A][B]} = \frac{2 \times 2}{2 \times 2} = 1$

50. (a)
$$H_2 + I_2 \rightleftharpoons 2HI$$
; [HI] = 0.80, [H₂] = 0.10, [I₂] = 0.10

$$K_c = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} = \frac{0.80 \times 0.80}{0.10 \times 0.10} = 64$$

- **51.** (a) Those reactions which have more value of *K* proceed towards completion.
- **52.** (d) K_c is a characteristic constant for the given reaction.
- **53.** Equilibrium constant is independent of original concentration of reactant.
- 54. K_p is constant and does not change with pressure.

LEVEL II

1. (b) $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

$$K_{C} = \frac{[SO_{3}]^{2}}{[SO_{2}]^{2}[O_{2}]} = \frac{1.9^{2}}{0.6^{2} \times 0.82} M^{-1} = 12.237 \text{ mol } L^{-1}$$

$$\therefore \qquad K_{C} = SO_{2} + \frac{1}{2}O_{2} \rightleftharpoons SO_{3}(12.237)^{\frac{1}{2}}$$

2. (a) $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ 0.2 Initial mole 0 а (0.2 - 0.1) (a - 0.2)0.1 Mole at equilibrium Now total mole at equilibrium are 0.1 + a - 0.2 + 0.1 =а Also Mole $(n) = \frac{PV}{RT} = \frac{4.92 \times 5}{0.0821 \times 600} = 0.499$ a = 0.499*.*.. $[CH_3OH] = \frac{0.1}{5}; [CO] = \frac{0.2 - 0.1}{5} = \frac{0.1}{5};$ *.*.. $[\mathrm{H}_2] = \frac{0.499 - 0.20}{5} = \frac{0.299}{5}$ $K_C = \frac{[CH_3OH]}{[CO][H_2]^2} = \frac{0.1/5}{0.1/5 \times (0.299/5)^2}$ \therefore $= 279.64 L^2 mol^{-2}$ $K_C = 279.64 \text{ litre}^2 \text{ mol}^{-2}$ $K_P = K_C (RT)^{\Delta n}$ $= 279.64 \times (0.0821 \times 600)^{-2}$ $K_P = 0.115 \text{ atm}^{-2}$ 3. (c) $2N_2(g) + O_2(g) \rightleftharpoons$ $2N_2O(g)$ t = 0 0.482 mol 0.933 mol 0 Change -2x M -x M+2x M $t = t_{eq} (0.0482 - 2x) (0.0933 - x)$ 2x $K_c = 2 \times 10^{-37} =$ Since *Kc* has small value, *x* should be low 0.0482 - 2x = 0.0482 M 0.0933 - x = 0.0933 M $2 \times 10^{-37} = \frac{(2x)^2}{[0.0482]^2 \times [0.0933]}$ On solving, $x = 3.3 \times 10^{-21}$ M $[N_2O] = 2x = 6.6 \times 10^{-21} M$ $[N_2] = 0.0482 \text{ M}$; $[O_2] = 0.0993 \text{ M}$ 4. (d) $2NO(g) + Br_2(g) \rightleftharpoons 2NOBr(g)$ $t = 0 \quad 0.087 \text{ mol}$ 0.043 mol 0 -2x2*x* -x $t = t_{\rm eq} \ \overline{0.087 - 2x}$ 0.0437 - x2xFrom equation, 2x = 0.0518 molx = 0.0259 molNumber of moles of NO = (0.087 - 0.0518) mol = 0.0352 mol

Number of moles of $Br_2 = (0.043 - 0.0259)$ mol = 0.0178 mol

5. (a)
$$K_P = K_C(RT) \Delta n$$

 $\Delta n = -1$
By putting the values and on solving
 $K_C = 7.47 \times 10^{11} \text{ M}^{-1}$
 $\therefore \quad K_C \text{ for}$
 $2\text{SO}_3 \rightleftharpoons 2\text{SO}_2 + \text{O}_2$
 $\frac{1}{7.47 \times 10^{11}}$
6. (c) 2HI(g) $\rightleftharpoons \text{H}_2(\text{g}) + \text{I}_2(\text{g})$
 $t = 0$ 0.2 atm 0 0
 $\frac{\text{change} -2x + x + x}{t = t_{eq}} (0.2 - 2x) \times x \times x$
From question, $0.2 - 2x = 0.04$
 $2x = 0.2 - 0.04 = 0.16$
 $x = 0.08$
 $K_P = \frac{0.08 \times 0.08}{0.04^2} = 4$
 $K_P = K_C (RT)^{\Delta n}$
 $\Delta n = 0$
 $\therefore \quad K_P = K_C$

6

7. (b) The fraction of A decomposed at equilibrium is independent of initial concentration. In other words, the equilibrium constant expression is free from concentration term. The equilibrium reaction is

$$xA \rightleftharpoons C + D$$
Initial conc. $c = 0$
Concentration
at equilibrium $c(1-\alpha) = \frac{c\alpha}{x} = \frac{c\alpha}{x}$

$$K_{C} = \frac{[C][D]}{[A]^{x}} = \frac{\left(\frac{c\alpha}{x}\right) \times \left(\frac{c\alpha}{x}\right)}{[c(1-\alpha)]^{x}} = \frac{(c\alpha)^{2}}{x^{2}[c(1-\alpha)]}$$

The expression of K_C will be free from concentration term only when value of x is 2. Putting x = 2, gives

$$K_{C} = \frac{c^{2} \alpha^{2}}{4[c(1-\alpha)]^{2}} = \frac{\alpha^{2}}{4(1-\alpha)^{2}}$$
8. (c) $H_{2}O(g) + CO(g) \rightleftharpoons H_{2}(g) + CO_{2}(g)$
 $t = 0$ 1 mol 1 mol 0 0 0
 $-0.4 \text{ mol } -0.4 \text{ mol } 0.4 \text{ mol } 0.4 \text{ mol}$
 $t = t_{eq}$ 0.6 0.6 0.4 0.4
 $K_{C} = \frac{0.4 \times 0.4}{0.6 \times 0.6} = \frac{4}{9} = 0.44$
9. (d) $PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)$
 $t = t_{eq}$ 0.5 × 10⁻¹ M x x x
 $K_{C} = 8.3 \times 10^{-3} = \frac{x^{2}}{0.5 \times 10^{-1}}$
 $x^{2} = 4.15 \times 10^{-4}$
 $x = 0.02 \text{ M}$

10. (c)
$$H_2(g) + Br_2(g) \rightleftharpoons 2HBr(g)$$

 $t = 0$ 0 0 10 bar
 $+x +x -2x$
 $\overline{t = t_{eq} - x} - x -10 - 2x$
 $K_C = 16 \times 10^{-6} = \frac{(10 - 2x)^2}{x^2}$
 $4 \times 10^{-3} = \frac{10 - 2x}{x} \approx \frac{10}{x}; x = \frac{10}{4 \times 10^3} = 2.5 \times 10^{-3}$
11. (a) $X_2 + X^- \rightleftharpoons X_3^-$
 $1 - x) (0.5 - x) - x$
 $(0.5 - x) = unreacted X^-$
 $X^- \equiv Ag + 0.25; x = 0.25$
 $K_c = \frac{[X_3^-]}{[X_2][X^-]} = \frac{0.25}{0.75 \times 0.25} = 1.33$
12. (b)

 $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ M before reaction 0.15 a 0 M after reaction (0.15 - x) (a - 2x) x and x = 0.08 Total mole at equilibrium = 0.15 - x + a - 2x + x = 0.15 + a - 2x = 0.15 + a - 0.16 = a - 0.01 Also total mole at equilibrium are obtained by $n = \frac{PV}{RT}$

$$n = \frac{8.5 \times 2.5}{0.0821 \times 750} \quad \because \quad V = 2.5 \text{ L} \\ T = 750 \text{ K} \end{bmatrix} \text{ at equilibrium}$$

$$\therefore \quad n = 0.345$$

 $\therefore \quad a = 0.01 = 0.345$

$$\therefore \quad a = 0.355$$

At equilibrium :

Mole of CO =
$$0.15 - 0.08 = 0.07$$

Mole of H₂ = $0.355 - 0.16 = 0.195$
Mole of CH₃OH = 0.08

$$\therefore \quad K_C = \frac{[CH_3OH]}{[H_2]^2[CO]} = \frac{0.08/2.5}{\left(\frac{0.07}{2.5}\right) \left(\frac{0.195}{2.5}\right)^2}$$

=187.85 mol⁻² L
Also
$$K_P = K_C (RT)^{\Delta n} = 187.85 \times (0.0821 \times 750)^{-2}$$

= 0.05 atm

13. (b) 6.909 K cal/mol =
$$-2.303 \times R \times 300 \log K$$

$$\frac{1000}{200} = \log\left(\frac{1}{K}\right) \quad 2A \rightleftharpoons A_2$$

$$5 = \log\left(\frac{1}{K}\right) \Rightarrow K = 10^{-5} K' = 10^5 \Rightarrow [A_2] = 0.4$$

14. (b) Case (i) $C_2H_5OH + CH_3 COOH \Longrightarrow CH_3COOC_2H_5 + H_2O$ Mole 1 before 1 0 0 reaction Mole at 1 - x1 - xх х equilibrium $\therefore x = \frac{2}{3}$ $\therefore \text{ Mole at } \left(1 - \frac{2}{3}\right) \quad \left(1 - \frac{2}{3}\right)$ equilibrium $\frac{2}{3}$ $\frac{2}{3}$

$$\therefore \qquad K_C = \frac{\frac{2}{3} \times \frac{2}{3}}{\frac{1}{3} \times \frac{1}{3}} = 4$$

Note: Volume terms are eliminated as $\Delta n = 0$ Case (ii)

$$C_2H_5OH + CH_3COOH \Longrightarrow CH_3COOC_2H_5 + H_2O$$

Mole before

reaction 1 1 0 0 Mole at 2-x 2-x x x equilibrium

$$K_C = 4 = \frac{x^2}{(2-x)} \therefore \frac{x}{(2-x)} = 2$$

x = 1.33 g molecule

15. (c)
$$S_{8(g)} \rightleftharpoons 4S_{2(g)}$$

At start 1 0
At eqbm 1-0.29 4×0.29
= 0.71 atm = 1.16 atm

$$K_p = \frac{[pS_2]^4}{[pS_8]} = \frac{(1.16)^4}{(0.71)} = 2.55 \text{ atm}^3$$

16.
$$A_{(s)} \rightleftharpoons 2B_{(g)} + 3C_{(g)}$$

$$K_{c} = 4x^{2} \times 27x^{3}$$

$$= 108x^{5}$$

$$A_{(s)} \rightleftharpoons 2B_{(g)} + 3C_{(g)}$$

$$2x \times c$$

$$108x^{5} = 4x^{2} \times c^{2} \times 216x^{3}$$

$$108 = c^{2} \times 216 \times 4$$

$$c^{2} = \frac{108}{4 \times 216}$$

$$c = \frac{1}{2\sqrt{2}}$$

17. LiCl. $3NH_3$ (s) \rightleftharpoons LiCl. NH_3 (s) $+ 2NH_3$ (g) $[K_P = 9atm^2]$

$$\therefore \quad \text{LiCl. NH}_3(s) + 2\text{NH}_3(g) \rightleftharpoons \text{LiCl. 3NH}_3(s)$$
$$\left[K_{P_1} = \frac{1}{9} (\text{atm})^{-2} \right]$$

Initial mole 0.1 *a* 0at equilibrium 0 (a - 0.2) 0.1Let initial mole of NH₃ should be a to bring in completion of reaction.

.

At eq.
$$K_{I_1} = \frac{1}{(P'_{NH_3})^2}$$

or $\frac{1}{9} = \frac{1}{(P'_{NH_3})^2}$
 $\therefore P'_{NH_3} = 3 \text{ atm}$
 $\therefore PV = nRT$
 $3 \times 5 = n \times 0.0821 \times 313$
 $\therefore n = 0.5837$
i.e., $(a - 0.2) = 0.5837$
 \therefore Initial mole of NH₃ = $a = 0.5837 + 0.2 = 0.7837$ mole
18. $2\text{KCN} + \text{AgNO}_3 \rightarrow \text{Ag}(\text{CN})_2 + \text{KNO}_3 + \text{K}^+$
 $0.1 \quad 0.03 \quad 0 \quad 0.03$
 $(0.1-0.06) \quad 0 \quad 0.03 \quad 0.03 \quad 0.03$
 $[\text{Ag}(\text{CN})_2] = 0.03 \text{ M}$
Now use $\text{Ag}(\text{CN})_2 \implies \text{Ag}^+ + 2\text{CN}^-$
 $0.03 \quad 0 \quad 0.04$
 $(0.03 - a) \quad a \quad 0.04 + 2a = 0.04$
Since K_C is too small and dissociation of $\text{Ag}(\text{CN})_2$ is
very less and thus,
 $\therefore \quad 0.04 + 2a = 0.04 \text{ and } 0.03 - a = 0.03$
 $\therefore \quad [\text{Ag}(\text{CN})_2] = 0.03; [\text{Ag}^+] = a, [\text{CN}^-] = 0.04$
Now $K_C = \frac{[\text{Ag}^+][\text{CN}^-]^2}{[\text{Ag}(\text{CN})_2]} = \frac{a \times (0.04)^2}{0.3}$
 $a = 0.75 \times 10^{-18}$
19. $\Delta G^\circ = -2.303 \times RT \log_{10} K_C$
 $\therefore \quad 77.77 \times 10^3 = -2.303 \times 8.314 \times 1000 \log_{10} K_C$
 $K_C = 8.67 \times 10^{-5}$
Reaction $\frac{1}{2}\text{N}_2 + \frac{1}{2}\text{O}_2 \implies \text{NO}$
Initial pressure $(0.8 - \frac{x}{2}) \quad (0.2 - \frac{x}{2}) \times x$
 $\therefore \quad 8.67 \times 10^{-5} = \frac{x}{(0.8 - \frac{x}{2})^{1/2}(0.2 - \frac{x}{2})^{1/2}}$
 $x = 3.47 \times 10^{-5} \text{ atm}$
 $H_2(g) + I_2(g) \implies 2\text{HI}(g)$
 $t = t_{eq} \times x \times 0.5 \text{ M}$
 $K_C = 54.8 = \frac{0.5 \times 0.5}{x^2}$
 $x^2 = \frac{0.5 \times 0.5}{54.8}$
On solving, $x = 0.068 \text{ M}$

21.
$$2ICl(g) \rightleftharpoons I_2(g) + Cl_2(g); K_C = 0.14$$

 $t = 0$ 0.78 M 0 0
 $-2x$ x x
 $t = t_{eq} (0.78 - 2x)$ x x
 $0.14 = \frac{x^2}{(0.78 - 2x)^2}$
On solving, $x = 0.21$ M
22. $C_2H_6(g) \rightleftharpoons C_2H_4(g) + H_2(g)$
 $t = 0$ 4 atm 0 0
 $\frac{-x}{t = t_{eq}} 4 - x$ x x
 $0.04 = \frac{x^2}{4 - x}$
On solving, $x = 0.38$;
 $P_{C_2H_6} = 3.62$ atm
23. FeO(s) + CO(g) \rightleftharpoons Fe (s) + CO₂(g)

t = 0		1.4 atm	 0.8 atm
	—	$+\chi$	 - <i>x</i>
At equilib	orium	(1.4 + x)	0.8 - x
	0.0		

$$Q = \frac{0.8}{1.4} = \frac{4}{7} = 0.55$$

 $\therefore Q > K$, system is not at equilibrium and to attain equilibrium it will shift in backward direction

$$K_P = 0.265 = \frac{0.8 - x}{1.4 + x}$$

On solving, x = 0.339

:.
$$[P_{CO}] = 1.739$$
 atm and $P_{CO_2} = 0.461$ atm

24.
$$H_2 + Br_2 \implies 2HBr K_P = 25$$

$$\therefore \quad \text{KP for 2HBr} \rightleftharpoons \quad \text{H}_2 + \text{Br}_2 K_P' = \frac{1}{25}$$

$$10 - 2x \qquad x \qquad x$$

$$K_P' = \frac{1}{25} = \frac{x^2}{(10 - 2x)^2} \Longrightarrow \frac{1}{5} = \frac{x}{10 - 2x} \therefore x = \frac{10}{7} \text{Bar}$$

25. (a) Given that $\Delta E - \Delta H = 1200$ cal Where ΔE is heat of reaction at constant volume and ΔH is heat of reaction at constant pressure. Also we have $\Delta H = \Delta E + \Delta nRT$ $\therefore \quad \Delta nRT = -1200$

or
$$\Delta n = \frac{-1200}{2 \times 300} = -2$$
 (*R* = 2 cal)

Now $K_P = K_C (RT)^{\Delta n}$

$$\therefore \qquad \frac{K_P}{K_C} = (0.0821 \times 300)^{-2} = 1.648 \times 10^{-3}$$

4.26 P

Physical Chemistry-I for JEE (Main & Advanced)

26. (d) 2HI(g)
$$\rightleftharpoons$$
 H₂(g) + I₂(g)-
 $1 - \alpha$ $\frac{\alpha}{2}$ $\frac{\alpha}{2}$
 $K_p = \frac{\left(\frac{\alpha}{2}P_T\right)^2}{(1-\alpha)^2 P_T^2} \Rightarrow \frac{\alpha}{1-\alpha} = 2\sqrt{K_p}$
 $\alpha = \frac{2\sqrt{K_p}}{1+2\sqrt{K_p}}$

27. (a) For the given equilibrium, the equilibrium concentration are

 $2AB_2(g) \ \rightleftharpoons \ 2AB(g) \ + \ B_2(g)$ Equilibrium

concentration
$$c(1-\alpha)$$
 $c\alpha$ $\frac{c\alpha}{2}$

$$K_{P} = \frac{(P_{B_{2}})(P_{AB})^{2}}{(P_{AB_{2}})^{2}} = \frac{\frac{c\alpha}{2} \times (c\alpha)^{2} \times P_{T}}{[c(1-\alpha)]^{2} \left[c\left(1+\frac{\alpha}{2}\right)\right]};$$

$$K_{P} = \frac{\alpha^{3} \times P_{T}}{2(1-\alpha)^{2} \left(1+\frac{\alpha}{2}\right)}$$

Since, α is small compared to unity, so $1 - \alpha = 1$ and 1

 Cl_2

0.02

2NOCl

$$+ \frac{\alpha}{2} \simeq 1 \quad K_P = \frac{\alpha^3 \times P_T}{2}$$

28. (b)

Pressure at

$$2NO + t = 0$$

at eq.
$$\frac{0.02 \times 99}{100}$$
 P $\frac{0.02 \times 99}{100}$

:
$$K_P = \frac{[P_{\text{NOCl}}]^2}{[P_{\text{NO}}]^2 [P_{\text{Cl}_2}]} = \frac{(0.02 \times 0.01)^2}{(0.99 \times 0.02)^2 \times P} = 1 \times 10^{-3}$$

 $\therefore P = 0.102 \text{ atm}$ For Cl₂ in vessel, using PV = nRT $0.102 \times V = n \times R \times T$

$$0.102 \times V = n \times R \times T$$
 (i)
For a gas in vessel, $1 \times V = 0.2 \times R \times T$ (ii)
By Eqs. (i) and (ii)

 \therefore mole of Cl₂ (*n*) at equilibrium = 0.0204

2 atm of NO reacts with 1 atm of Cl_2 (If V, T are constant)

$$\frac{0.02 \times 1 \text{ atm}}{100} \text{ NO react with } \frac{0.02 \times 1}{2 \times 100} = 0.0001 \text{ atm } \text{Cl}_2$$

Thus,
$$0.0001 \times V = n_{\text{Cl}_{2used}} \times RT$$
 (iii)

By eqs. (ii) and (iii),

- \therefore which have reacted = 2 × 10⁻⁵
- :. Total Cl₂ added = $0.0204 + 2 \times 10^{-5} = 0.02042$

C LEVEL III

Match the Columns

1.
$$(\mathbf{a} - \mathbf{s}); (\mathbf{b} - \mathbf{r}); (\mathbf{c} - \mathbf{p}); (\mathbf{d} - \mathbf{q})$$

 $K_P = K_C (RT)^{\Delta n}$
(a) $\Delta n = 0$
(b) $\Delta n = 2 - 4 = -2$
(c) $\Delta n = 2 - 1 = 1$
(d) $\Delta n = 2 - 0 = 2$

- (a s); (b q, r); (c q); (d p)
 Q = ratio of active masses of product to the active masses of reactant.
 - $Q \neq K$ reaction is not at equilibrium
 - Q = K Reaction at equilibrium $(R_f = R_b)$
 - Q > K reaction proceed in back word direction
 - Q < K Reaction proceed in forward direction.

3.
$$(a - r), (b - p, q), (c - p), (d - p, q)$$

$$K_{\rm eq} = \frac{K_f}{K_b} = Ae^{-\frac{\Delta H}{RT}}$$

If
$$K_F > K_b$$
 $K_{eq} > 1$

If
$$K_F < K_h$$
 $K_{eq} < 1$

4.
$$(a - r), (b - p), (c - q), (d - s)$$

degree of dissociation
$$\propto \left[\frac{1}{P}\right]^{\frac{2M}{2}}$$

5.
$$(\mathbf{a} - \mathbf{q}), (\mathbf{b} - \mathbf{p}, \mathbf{s}), (\mathbf{c} - \mathbf{p}, \mathbf{s}), (\mathbf{d} - \mathbf{r})$$

$$\Delta n_g = (\Sigma n_P)_g - (\Sigma n_R)_g$$

$$K_p = K_c (RT)^{\Delta n_g}$$

$$\Delta n_g > 0 \Rightarrow K_p > K_c$$

Assertion and Reason

- 6. (a) Catalyst just helps to attain equilibrium fast.
- 7. (c) Catalyst does not alter the constant of components at equilibrium.
- **8.** (b) No of moles \propto Pressure
- **9.** (d) The graph shows irreversible reaction whereas in reversible reaction, concentration of reactant and product become constant at equilibrium position.
- 10. (c) $K_p = \frac{n_{PCl_3} \times n_{Cl_2}}{n_{PCl_5}} \times \left(\frac{p}{\Sigma n}\right)^1$ with addition of more and more inert gas Σn will increase that leads to decrease in the value of $\frac{P}{\Sigma n}$ and hence to keep K_p constant moles of the product would increase, i.e., α increases.
- 11. (a) Effect of pressure Le chatlier Principle.
- **12.** (a) Active mass of solid remain constant.
- **13.** (b) A catalyst favours the forward and backward reaction equally by lowering the corresponding energy of activation by equal magnitude.

D

0

х

14. (b)
$$\log_{10} = \frac{k_2}{k_1} = \frac{\Delta H}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$

- **15** (b) $Q < K_c$ forward reaction $Q = K_c$ equilibrium $Q > K_c$ backward direction
- 16. (d) By the use of catalyst, the reaction rate increases. But equilibrium constant does not change until the temperature is varying.
- 17. (c) In exothermic reaction, equilibrium constant increases by decreasing the temperature.

18. (d)
$$K_p = \frac{p_{H_2}^3 \times p_{N_2}}{p_{NH_3}} = \frac{\text{atm}^3 \text{atm}}{(\text{atm})^2} = (\text{atm})^2$$

or $\Delta n = 4 - 2 = 2$
Unit of $K_p = (\text{atm})^2$

19. (d) Reaction is exothermic, low temperature favours forward reaction. High press favours forward reaction as it is accompanied by decrease in the number of moles.

Comprehension I

20.

 $\begin{array}{ccc} & CaCO_{3(s)} \iff CaO_{(s)} & + & CO_{2(g)} \\ \text{Initial moles} & 0.1 - & - & - \\ \text{Equilibrium moles} & 0.1 - x_1 & x_1 & x_1 \end{array}$ at 1000 K

$$K_{P_1} = P_{CO_2}^1 = \frac{n_{CO_2}^2 RT_1}{V}$$
$$= \frac{x \times 0.0821 \times 1000}{10} = 0.059$$
$$x = \frac{0.059}{8.21}$$

21.

unreacted CaCO₃ = $\left(0.1 - \frac{0.059}{8.21}\right) \times 100 = 9.282$.

 $\begin{array}{ccc} CaCO_{3(s)} & \Leftrightarrow & CaO_{(s)} & + & CO_{2(g)} \\ 0.1 - & - & - & - \\ s & 0.1 - x_1 & x_1 & x_1 \end{array}$ Initial moles Equilibrium moles $0.1 - x_1$ at 1000 K

$$K_{P_{\rm l}} = P_{\rm CO_2}^{\rm l} = \frac{n_{\rm CO_2}^{\rm l} R T_{\rm l}}{V}$$

Degree of dissociation, $\alpha_1 = \frac{x_1}{0.1} = 10x_1$ Equilibrium moles 0.1- x_2 at 1100 K $K_{P_2} = P_{CO_2}^{11} = \frac{n_{CO_2}^{11} RT_2}{V}$ x_2 x_2 $\alpha_2 = \frac{x_2}{0.1} = 10x_2$

$$\frac{\alpha_2}{\alpha_1} = \frac{x_2}{x_1} = \frac{K_{P_2}}{K_{P_1}} \times \frac{T_1}{T_2} = \frac{0.08}{0.059} \times \frac{1000}{1100} = 1.356$$

23.
$$\log \frac{K_{P_2}}{K_{P_1}} = \frac{\Delta H}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$
$$\Delta H = 6699 \text{ cal}$$

Comprehension II

24. (C*) $\Delta G^{\circ} = -2.303 \ RT \log K$ **25.** $\Delta G^0 = -2.303 RT \log K_P = -5.79$ k.cal **26.** $\Delta G^0 = -2.303 RT \log k$ $\log k = \overline{1.665}$ $K = \text{Antilog of } \overline{1.665} = 0.4625$ $A + B \iff C +$ Initial concentration 2 2 0 Equilibrium

$$2-x$$
 $2-x$ x

$$K_C = \frac{x}{(2-x)^2} = 0.4625$$
$$\frac{[C]}{[A]} = \frac{x}{2-x} = 0.68$$

 r^2

Comprehension III

concentration

27. (b) Since $\Delta n = 0$, so $K_c = K_p = K_x$

$$K_{x} = \frac{X_{H_{2}}^{4}}{X_{H_{2}O}^{4}} = \frac{(2/2)^{4}}{(1/18)^{4}} = 18^{4} = 1.05 \times 10^{5}$$
28. (c) $\frac{1}{2}N_{2}(g) + \frac{1}{2}O_{2}(g) \rightleftharpoons NO(g) \quad K_{c} = \left(\frac{1}{2.4 \times 10^{30}}\right)^{1/2}$

$$NO(g) + \frac{1}{2}Br_{2}(g) \rightleftharpoons NOBr(g) \qquad K_{2} = 1.4$$

$$\frac{1}{2}N_{2}(g) + \frac{1}{2}O_{2}(g) + \frac{1}{2}Br_{2}(g) \rightleftharpoons NOBr(g)$$

$$K = K_{C} \times K_{2} = 9.03 \times 10^{-16}$$

29. (a)
$$K_p = \frac{P_{SO_3}}{P_{SO_2}^2 \cdot P_{O_2}}$$

 $\therefore P_{O_2} = \frac{1}{K_p} = \frac{1}{3.5} \text{ atm} = 0.29 \text{ atm}$
30. (a) $K_p = (R_p)^2 \cdot R_p = (2\pi)^2 \times R = 4\pi^3$

30. (c)
$$K_p = (P_{\text{NH}_3})^2 \cdot P_{\text{CO}_2} = (2p)^2 \times P = 4p^2$$

 $P = \left(\frac{K_P}{4}\right)^{1/3} = 1.95 \times 10^{-2}$
 $\therefore P_T = 3P = 3 \times 1.96 \times 10^{-2} = 0.058$

Comprehension IV

31. From question,

- $\Delta H \Delta E = 600$ cals. $= \Delta n \times 2 \times 300$ cals.
- $\therefore \quad \Delta n = 1$ Δn

$$\therefore K_P = K_C (RT)^{\Delta}$$

:
$$K_P/K_C = (RT)^{\Delta n} = (0.821 \times 300)^1 = 24.63$$

32. $K_P = K_C (RT)^{\Delta n}$, where $\Delta n =$ total number of gaseous product molecules - total number of gaseous reactant molecules (1 + 1 - 0) = 2

$$\Delta n = (1+1-0) =$$

$$\therefore \quad K_P = K_C (RT)^2$$

33. $K_P = 10$ atm⁻². from unit of K_P , we can calculate $\Delta n = -2$

$$K_P = K_C (RT)^{\Delta n} = K_C (RT)^{-2} = \frac{K_C}{(RT)^2}$$

$$\therefore \quad K_P < K_C$$

The matrix of K_C is a matrix $A = 2$

34. The unit of K_C is mol² L^{-2} , hence $\Delta n = 2$.

:.
$$K_P = K_C (RT)^2$$

 $4 \times [0.821 - 300]^2 \text{ atm}^2$

Subjective Questions

Integer-Answer-Type Questions

35. $N_2O_4 \iff 2NO_2$; $G^0_{N_2O_4} = 100 \text{ kJ mol}^{-1}$ 0 5 5 $G^0_{NO_2} = 50 \text{ kJ mol}^{-1}$

 $\Delta G^0 \text{ for reaction} = 2 \times G^0_{\text{NO}_2} - G^0_{\text{N}_2\text{O}_4} = 2 \times 50 - 100 = 0$ $\Delta G = \Delta G^0 + 2.303 RT \log Q$

Now,
$$\Delta G = 0 + 2.303 \times 8.314 \times 10^{-3} \times 298 \log \frac{5^2}{5}$$

$$=+3.99 \text{ kJ} \approx 4 \text{kJ}$$

36. For I equilibrium $2NO_2 \rightleftharpoons N_2O_4$

$$K_P = \frac{P'_{N_2O_4}}{\left(P'_{NO_2}\right)^2} = 6.8 \qquad \dots (i)$$

 $P'_{N_2O_4} = 1.7$ atm \therefore by eq. (i) $P'_{NO_2} = 0.5$ atm The equilibria are maintained using NO and NO₂ in the

ratio 1 : 2 For II equilibria NO + NO₂ \rightleftharpoons N₂O₃ Initial pressures P 2P 0 Pressures at equi (p - x) (2P - x - 3.4) x 3.4 atm of NO₂ are used for I equilibrium to have $P'_{N_2O_4}$ = 1.7 atm.

At equilibrium (P-x) 0.5 x (: P'_{NO_2} is same for both the equilbria since both reactions are at equilibrium at a time)

Total pressure at equilibrium (Given 5.05 atm)

$$= P'_{NO} + P'_{NO_2} + P'_{N_2O_3} + P'_{N_2O_4}$$

= P - x + 0.5 + x + 1.7
5.05 = P + 2.20
P = 2.85 atm
2P - x - 3.4 = 0.5
2 × 2.85 - x - 3.4 = 0.5
x = 1.80 atm ≈ 2 atm
N₂O₄ \rightleftharpoons 2NO₂

37.

$$\therefore \qquad K_P = \frac{(P_{\rm NO_2})^2}{P_{\rm N_2O_4}} = \frac{0.3 \times 0.3}{0.7} = 0.1286 \text{ atm}$$

Now assume decomposition at 10 atm pressure

Initial mole $N_2O_4 \rightleftharpoons 2NO_2$ Mole at equilibrium (1-x) = 2x

$$K_P = \frac{(n_{\text{NO}_2})^2}{n_{\text{N}_2\text{O}_4}} \times \left(\frac{P}{\Sigma n}\right)^{\Delta n} = \frac{(2x)^2}{(1-x)} \times \left[\frac{10}{(1+x)}\right]^2$$
$$x = 0.0565$$
$$P'_{\text{NO}_2} = 1.07 \text{ atm} \approx 1$$
$$P'_{\text{N}_2\text{O}_4} = 8.93 \text{ atm} \approx 9 \text{ atm}$$

38.
$$T_1 = 700 + 273 = 973 \text{ K},$$

 $T_2 = 1000 + 273 = 1273 \text{ K},$
 $K_1 = 0.63, K_2 = 1.66$
Using the Van't Hoff equation
 $\log \frac{K_2}{K_1} = \frac{\ddot{A}H^{\circ}}{2.303R} \left(\frac{T_2 - T_1}{T_1T_2}\right)$
 $\Rightarrow \log \left(\frac{1.66}{0.63}\right) = \frac{\Delta H^{\circ}}{2.303(1.99)} \left(\frac{1273 - 973}{1273 \times 973}\right)$

$$\Rightarrow \Delta H^{\circ} = 8.0 \times 10^{3} \text{ cal} = 8.0 \text{ kcal}$$

Note: The units of *R* and ΔH must be same
39. The given equilibrium is

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ At t = 0At equilibrium 4 - x 16 - 3x 2xTotal gaseous moles at equilibrium 4 - x + 16 - 3x + 2x = (20 - 2x).

Since, pressure has fallen to 9/10 of its original value, hence number of moles will also fall up to the same extent.

$$(20 - 2x) = \frac{9}{10} \times 20 = 18$$

$$x = 1$$

$$[N_2] = \frac{4 - x}{1} = \frac{4 - 1}{1} = 3 \text{ mole/L}^{-1}$$

$$[NH_3] = \frac{2x}{1} = 2 \text{ mole/L}^{-1}$$

40. (i) The given equilibrium is

...

$$CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$$

At $t = 0$ 0.45 0.45 0 0
At equilibrium $(0.45 - x)$ $(0.45 - x)$ x x

$$K_{C} = \frac{x^{-1}}{(0.45 - x)^{2}}$$

$$0.11 = \frac{x^{2}}{(0.45 - x)^{2}}$$

$$x = 0.112$$

$$[CO_{2}] = [H_{2}] = (0.45 - x) = (0.45 - 0.112)$$

$$= 0.3379 \approx 0.34 \text{ mole each}$$

$$[CO] = [H_{2}O] = x = 0.112 \text{ mole each}$$

(ii) When 0.34 mole of CO_2 and H_2 are added in above equilibrium then following case exists.

$$\begin{array}{rcl} & \text{CO}_{2(\text{g})} & + & \text{H}_{2(\text{g})} &\rightleftharpoons & \text{CO}_{(\text{g})}^{+} & \text{H}_{2}\text{O}_{(\text{v})} \\ & \text{At } t = 0 \\ & (0.34 + 0.34) & (0.34 + 0.34) & 0.11 & 0.11 \end{array}$$

At eqbm
(0.68 -) (0.68 -) (0.11 +) (0.11 +)

$$K_C = \frac{[CO][H_2O]}{[CO_2][H_2]}$$

 $0.11 = \frac{(0.11 + \alpha)^2}{(0.68 - \alpha)^2}$
 $\alpha = 0.086$

$$[CO_2] = [H_2] = (0.68 - 0.086) = 0.594$$
 mole each
 $[CO] = [H_2O] = 0.11 + = 0.11 + 0.086 = 0.196$ mole each
41. The given equilibrium reaction is

2HI

0

2x

 $\begin{array}{c} H_2 + I_2 \\ At t = 0 \\ 6 \\ 3 \end{array} \rightleftharpoons$

At equilibrium (6-x)/1 3-xConcentration at equilibrium

$$K_C = \frac{(2x)^2}{(6-x)(3-x)}$$
$$64 = \frac{4x^2}{x^2 + 18 - 9x}$$

On solving x = 2.84

$$[HI] = \frac{2x}{1} = \frac{2 \times 2.84}{1} = 5.68;$$

$$[H_2] = \frac{6 - x}{1} = \frac{6 - 2.84}{1} = 3.16$$

$$[I_2] = \frac{6 - x}{1} = \frac{6 - 2.84}{1} = 3.16$$

In the present reaction $\Delta n = 0$ hence, volume change will not affect the equilibrium.

42. Number of moles of PCl₅

$$= \frac{\text{Weight}}{\text{Molecular weight}} = \frac{5}{208.5} = 0.024$$

The equilibrium for dissociation of PCl₅ maybe represented as

 $\begin{array}{rcl}
PCl_5 &\rightleftharpoons PCl_3 + Cl_2 \\
At t = 0 & 0.024 & 0 & 0 \\
At equilibrium & (0.024 - x) & x & x \\
Total moles of gas components = 0.024 - x + x + x \\
&= (0.024 + x)
\end{array}$

We know,
$$PV = nRT$$

 $1 \times 1.9 = (0.024 + x) \ 0.0821 \times 523$
 $(0.024 + x) = \frac{1.9}{0.0821 \times 523}$
 $x = 0.0202$

Degree of dissociation =
$$\frac{0.0202}{0.024} = 0.843$$

$$[PCl_5] = \frac{0.024 - \alpha}{1.9} = \frac{0.024 - 0.0202}{1.9} = \frac{0.0038}{1.9}$$

$$[PCl_3] = [Cl_2] = \frac{\alpha}{V} = \frac{0.0202}{1.9}$$

$$K_{c} = \frac{[\text{PCl}_{3}][\text{Cl}_{2}]}{[\text{PCl}_{5}]} = \frac{\left[\frac{0.0202}{1.9}\right]^{2}}{\frac{0.0038}{1.9}} = \frac{4.08 \times 10^{-4}}{1.9 \times 0.0038}$$

= 0.0565 mole/L⁻¹
 $K_{p} = K_{c} (RT)^{\Delta n}$ where $K_{c} = 0.0565$
 $\Delta n = 2 - 1 = 1$
43. Equilibrium of formation of NH₃ may be given as,
N₂ + 3H₂ $\Rightarrow 2\text{NH}_{3}$
At $t = 0$ 1 3 2
At equilibrium $(1 - x)$ $3(1 - x)$ $2x$
Total moles at equilibrium $= 1 - x + 3 (1 - x) + 2x = 4 - 2x$
Mole fraction of NH₃ $= \frac{2x}{(4 - 2x)}$
Partial pressure of NH₃ $= \frac{2x}{(4 - 2x)} \times p = \frac{2x}{(4 - 2x)} \times 50$
 $25 = \frac{2x \times 50}{(4 - 2x)} \therefore x = 0.666$
 $K_{p} = \frac{16x^{2}(2 - x)^{2}}{27p^{2}(1 - x)^{4}} = \frac{16 \times (0.666)^{2}(2 - 0.666)^{2}}{27 \times (50)^{2} \times (0.334)^{2}}$

44. The given equilibrium is

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

$$K_C = \frac{[SO_3]^2}{[SO_2]^2[O_2]} \qquad \dots (i)$$

 $= 1.677 \times 10^{-3}$

(i) If
$$[SO_3] = [SO_2]$$

Then $K_C = \frac{1}{[O_2]}$
 $[O_2] = \frac{1}{K_C} = \frac{1}{100} = 0.01 \text{ mole/L}^{-1}$

Total moles of O_2 present = $0.01 \times 10 = 0.1$ mole Volume of vessel is $10 L^{-1}$

(ii) When $[SO_3] = [SO_2] \times 2$

Then
$$K_C = \frac{[SO_2]^2 \times [2]^2}{[SO_2]^2 [O_2]}$$
 from Eq. (i)
 $100 = \frac{4}{[O_2]}$

 $[O_2] = 4/100 = 0.04 \text{ mole/L}^{-1}$ Total moles of O₂ in vessel at equilibrium = $0.04 \times 10 = 0.4$ mole.

45. If 2x is the partial pressure of SO₃ that is decreased at equilibrium, we will have

$$\begin{array}{cccc} & 2\mathrm{SO}_2(\mathrm{g}) \ + \ \mathrm{O}_2(\mathrm{g}) \ \rightleftharpoons \ 2\mathrm{SO}_3(\mathrm{g}) \\ t = 0 & 0 & 2 \ \mathrm{atm} & 1 \ \mathrm{atm} \\ t_{\mathrm{eq}} & 2x & 2 \ \mathrm{atm} + x & 1 \ \mathrm{atm} - 2x \end{array}$$

Hence,
$$K_p = \frac{(p_{\text{SO}_3})^2}{(p_{\text{SO}_2})^2 (p \text{O}_2)} = \frac{(1 \text{ atm} - 2x)^2}{(2x)^2 (2 \text{ atm} + x)^2}$$

= 900 atm⁻¹

Assuming $x \ll 2$ atm, we get

$$K_p = \frac{(p_{SO_3})^2}{(p_{SO_2})^2 (pO_2)} = \frac{(1 \text{ atm} - 2x)^2}{(2x)^2 (2 \text{ atm} + x)}$$
$$= 900 \text{ atm}^{-1}$$
$$= \frac{1}{4x^2 \times 2} = 900, \frac{1}{x^2} = 7200 x = \sqrt{\frac{1}{7200}}$$

= 0.0115Hence, $p(SO_2) = 2x = 0.023$ atm; $p(O_2) = 2$ atm + x = 2.0115 atm

and $p(SO_3) = 1$ atm -2x = 0.977 atm **46.** We have

$$2H_2S(g) \rightleftharpoons 2H_2(g) + S_2(g)$$

$$n(1-a) \quad na + n(a/2)$$

Total amount of gases = $n(1 + a/2)$

Hence,
$$p_{\text{H}_2\text{S}} = \frac{1-\alpha}{1+\alpha/2} p$$
; $p_{\text{H}_2} = \frac{\alpha}{1+\alpha/2} p$;
 $p_{\text{S}_2} = \frac{\alpha/2}{1+\alpha/2} p$
 $\left(\frac{\alpha}{1+\alpha/2} p\right)^2 \left(\frac{\alpha/2}{1+\alpha/2} p\right)$

Thus,
$$K_p = \frac{(pH_2)^2(ps_2)}{(p_{H_2S})^2} = \frac{\left(\frac{1+\alpha/2}{1+\alpha/2}p\right)\left(\frac{1+\alpha/2}{1+\alpha/2}p\right)^2}{\left(\frac{1-\alpha}{1+\alpha/2}p\right)^2}$$
$$= \frac{\alpha^3 p}{2(1-\alpha)^2(1+\alpha/2)}$$

Substituting the given value of a, we get

$$K_p = \frac{(0.31)^3 (1 \text{ atm})}{2(1-0.31)^2 (1+0.31/2)} = 2.71 \times 10^{-2} \text{ atm}$$

For the given reaction, $\Delta n_g = +1$ Hence, $K_c = K_p (RT)^{-\Delta ng}$ $=(2.71 \times 10^{-2} \text{ atm})$ $\{(0.0821 \text{ L atm } \text{K}^{-1} \text{ mol}^{-1}) (1380 \text{ K})\}^{-1}$ $= 2.39 \times 10^{-4} \text{ mol } \text{L}^{-1}$

47. (a) Let *n* be the initial amount of $COCl_2$ and α be its degree of dissociation. We will have

 $COCl_2 \rightleftharpoons CO + Cl_2$ t = 0п

 $t_{\rm eq} = n(1-\alpha)$ ηα ηα Total amount of gases = $n(1 - \alpha) + n\alpha + n\alpha = n(1 + \alpha)$ Now, the volume of the flask will be

$$V = \frac{n(1+\alpha)RT}{p}$$

The density of the mixture will be

or
$$\rho = \frac{nM_{\text{COCl}_2}}{V} = \frac{nM_{\text{COCl}_2}p}{n(1+\alpha)RT} = \frac{pM_{\text{COCl}_2}}{(1+\alpha)RT}$$
$$\alpha = \frac{pM_{\text{COCl}_2}}{\rho RT} - 1$$

Substituting the given values, we get

$$\alpha = \frac{(1 \text{ atm})(99 \text{ g mol}^{-1})}{(1.162 \text{ g L}^{-1}) (0.0821 \text{ L atm } \text{K}^{-1} \text{ mol}^{-1}) (724 \text{ K})} - 1$$

= 1.433 - 1 = 0.433

(b) The partial pressures of the species involved in the reactions are

$$p_{\text{COCl}_2} = \frac{1-\alpha}{1+\alpha} p; \ p_{\text{CO}} = \frac{\alpha}{1+\alpha} p; \ p_{\text{Cl}_2} = \frac{\alpha}{1+\alpha} p;$$

Hence, $K_p = \frac{p_{\text{CO}} p_{\text{Cl}_2}}{p_{\text{COCl}_2}} = \frac{\alpha^2}{1-\alpha^2} p$

Which gives $K_p = \frac{(0.433)^2}{1 - (0.433)^2} (1 \text{ atm}) = 0.231$

48. Let *n* be the amount of N_2O_4 at t = 0 and let α be the degree of dissociation of N₂O₄ at equilibrium. Then

$$N_2O_4(g) \iff 2NO_2(g)$$

$$t = 0 \qquad n \qquad 0$$

$$t_{eq} \qquad n(1-\alpha) \qquad n(2\alpha)$$

Total amount at equilibrium = $n(1 + \alpha)$ Using the ideal gas equation, we get

$$PV = n(1 + \alpha)RT = \frac{\text{mass}}{M}(1 + \alpha)RT$$

(or) $PM = r(1 + \alpha)RT$ (or) $\alpha = \frac{PM}{\rho RT} - 1$

Substituting the given data, we get

$$\alpha = \frac{(1 \text{ atm})(92 \text{ g mol}^{-1})}{(1.84 \text{ g dm}^{-3})(0.082 \text{ dm}^3 \text{ atm } \text{K}^{-1} \text{ mol}^{-1})(348 \text{ K})} - 1$$

= 1.752 - 1 = 0.752

Hence,

t

$$K_p = \frac{p_{NO_2}^2}{p_{N_2O_4}} = \frac{[2\alpha p/(1+\alpha)]^2}{(1-\alpha)p/(1+\alpha)} = \frac{4\alpha^2}{1-\alpha^2} p$$
$$= \frac{4(0.752)^2}{1-0.752^2} \times 1 \text{ atm} = 5.206 \text{ atm}$$

49. If p is the partial pressure of N_2O_5 that has decomposed,

$$N_2O_5(g) \rightleftharpoons 2NO_2(g) + \frac{1}{2}O_2$$

600 mm-Hg - pp/22pPressure at any time = (600 mm-Hg - p) + 2p + p/2 =600 mm-Hg + (3/2)p

Equating this to 960 mm-Hg, we get

p = (2/3) (960 - 600) mm Hg = 244 mm-HgThe mole fraction of N2O5 decomposed would be $x = \frac{244 \text{ mm-Hg}}{600 \text{ mm-Hg}} = 0.407$

50. The reaction along with the given data is

$$t = 0 \qquad \begin{array}{ccc} \text{NH}_4\text{HS}(s) \rightleftharpoons \text{NH}_3(g) &+ & \text{H}_2\text{S}(g) \\ 3.06g & 0 & & 0 \\ (= 0.06 \text{ mol}) \\ t_{eq} & 0.7 \times 0.06 & 0.3 \times 0.06 & 0.3 \times 0.06 \text{ mol} \\ \text{mol} & \text{mol} &= 0.018 \text{ mol} \end{array}$$

= 0.018 mol

(i) The equilibrium constant K_c is

$$K_c = [\text{NH}_3][\text{H}_2\text{S}] = \left(\frac{0.018 \text{ mol}}{2\text{L}}\right) \left(\frac{0.018 \text{ mol}}{2\text{L}}\right)$$

= 8.1 × 10⁻⁵ (mol/L)²

The equilibrium constant K_p is $K_p = K_c (RT)^{\text{Dvg}} = (8.1 \times 10^{-5} \text{ mol}^2/\text{L}^2)[(0.082 \text{ atm} \text{ L mol}^{-1}\text{K}^{-1})(300 \text{ K})]^2 = 4.90 \times 10^{-2} \text{ atm}^2$

(ii) There will not be any effect on the equilibrium by introducing more of solid NH₄HS as the equilibrium constant is independent of the quantity of solid.

PREVIOUS YEARS' QUESTIONS OF JEE (MAIN & ADVANCED)

1. (b)
$$PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$$

 $1 \quad 0 \quad 0$
 $1-x \quad x \quad x$
Also $P'_{PCl_3} = \frac{P_{eq} \cdot x}{(1+x)} = \left[\frac{x}{1+x}\right] P$
2. (b) $K'_C = \frac{[SO_3]^2}{[SO_2]^2[O_2]}$
 $K_C = 4.9 \times 10^{-2} = \frac{[SO_2][O_2]}{[SO_3]}$
 $\therefore \quad K'_C = \left[\frac{1}{K_C}\right]^2 = \left[\frac{1}{4.9 \times 10^{-2}}\right]^2 = 416$
3. (a) $X \rightleftharpoons 2Y$
 $1 \quad 0$
 $(1-x) \quad 2x$
 $\Rightarrow \quad K_{P1} = \frac{(2x)^2}{(1-x)} \left(\frac{P_1}{1+x}\right)^1$
 $Z \rightleftharpoons P + Q$
 $1 \quad 0 \quad 0$
 $(1-x) \quad x \quad x$
 $\Rightarrow \quad K_{P2} = \frac{(2x)^2}{(1-x)} \left(\frac{P_1}{1+x}\right)^1$

$$\frac{4 \times P_1}{P_2} = \frac{1}{9} = \frac{P_1}{P_2} = \frac{1}{36}$$

4. (c)

- (a) $CO_{(g)} + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g); K_1$ (A)
- (b) $CH_{4(g)} + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g); K_2$ (B) (c) $CH_4(g) + 2H_2O(g) \rightleftharpoons CO_2(g) + 4H_2(g); K_3$ (C)
- Equation (C) = Eq. (A) + Eq. (B)

Thus, $K_3 = K_1 \cdot K_2$

5. (a)
$$CO_2(g) + C(s) \rightleftharpoons 2CO(g)$$

Initial 0.5 atm -

At equilibrium (0.5 - p)2p atm Total pressure of CO₂ and CO gases

$$P_{\text{CO}_2} + P_{\text{CO}} = P_{\text{total}}$$

0.5 - (p + 2p) = 0.8, p = 0.3 atm

:
$$P_{\rm CO_2} = 0.5 - 0.3 = 0.2$$
 atm
 $P_{\rm CO} = 2p = 0.6$ atm

$$K_P = \frac{p_{\rm CO}^2}{p_{\rm CO_2}} = \frac{0.6 \times 0.6}{0.2} = 1.8$$
 atm

6. (d) For the reaction $K_{c} = 4 \times 10^{-4}$ $N_2 + O_2 \rightarrow 2NO$ Hence for the reaction

NO
$$\rightarrow \frac{1}{2}$$
N₂ + $\frac{1}{2}$ O₂
 $K'_c = \frac{1}{\sqrt{K_c}} = \frac{1}{\sqrt{4 \times 10^{-4}}} = \frac{100}{2} = 50$

7. (b) By using this formula, equilibrium constant,

$$K_P = K_c (\mathrm{RT})^{\Delta n_c}$$

where $\Delta n_{\sigma} =$ (number of moles of products) – (number of moles of reactants) For the given reaction,

$$SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$$
$$\Delta n_g = 1 - \left[\frac{1}{2} + 1\right] = 1 - \left[\frac{3}{2}\right] = -\frac{1}{2}$$

8. (b) $\Delta G = \Delta G^{\circ} + RT \ln Q$ $= 2494.2 + 8.1314 \times 300 \ln 4$

= Positive
$$\Delta G = \operatorname{RT} \ln \frac{Q}{K}$$

Since, ΔG is positive so, Q > K, so reaction shifts in reverse direction.

JEE Advanced

Single-Correct-Answer Type

9. (a)In a reversible reaction, a catalyst speeds up both forward and backward reactions to the same extent, so (C) is wrong. At equilibrium,

4.32 Physical Chemistry-I for JEE (Main & Advanced)

$$\Delta G = G_{\text{products}} - G_{\text{reactants}} = 0$$

$$\Rightarrow 2G_{\text{NH}_3} - (G_{\text{N}_2} + 3G_{\text{H}_2}) = 0 \text{ or } 2G_{\text{NH}_3} = G_{\text{N}_2} + 3G_{\text{H}_2}$$

Multiple-Correct-Answer Type

10. (b), (c), (d)

 $2Cu^1 \rightleftharpoons Cu^0 + Cu^{II}$

 Cl^{\odot} and CN^{\odot} both make precipitate with Cu^{1} and hence drive the reaction to the left.

Cupric thiocyanate $Cu(SCN)_2$, black powder, insoluble in water, readily turning into cuprous thiocyanate Cu(SCN) a whitish yellow powder, hence it also drives the equilibrium to the left.

11. (a), (b), (d)

(a) $\Delta H = C_{P(rxn)} \Delta T$

Hence enthalpy depends on temperature

(b)
$$CaCO_{3(g)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}K_P = P_{CO_2}$$

- (c) K_{eq} depends only on temperature and not on pressure.
- (d) Enthalpy of reaction is independent of the catalyst. A catalyst generally lowers activation energy

Assertion-Reasoning Type

12. (d) We know that for every chemical reaction at equilibrium. Gibb's free energy ($\Delta G = 0$) is zero. However standard Gibb's free energy (ΔG°) may or may not be zero. Thus Statement 1 is false.

For a spontaneous reaction, at constant temperature and pressure, the reaction proceed in the direction in which ΔG is < 0, i.e., in the direction of decreasing Gibb's energy (*G*) so Statement 2 is true.

Thus, the only such option is (D) which is the correct answer.

Chapter

lonic Equilibrium

Key Concepts

ELECTROLYTES

Non-electrolyte

These are the species which can dissociate into the ions in their aqueous solution or in the molten state.

For example, NaCl, KCl

These species cannot provide the ions in their molten state. For example, sucrose, glucose.

Types of Electrolyte

- 1. Strong electrolytes: These electrolyte dissociate almost completely, i.e., $\alpha \approx 1$ or 100% For example, Strong Acid, Strong Base and salts Strong Acid \rightarrow HClO₄, HCl, HBr, HI, H₂SO₄, HNO₃ Strong Base \rightarrow group I and group II, hydroxide (except Li, Be) HCl(aq.) \rightarrow H⁺(aq.) + Cl⁻(aq.) C 0 0 0 C C
- 2. Weak electrolytes: These electrolytes dissociate up to the small extent, i.e., not complete dissociation. For example, Weak Acid, Weak Base.

$CH_3COOH(aq.) \rightleftharpoons CH_3COO^-(aq.) + H^+(aq.)$

Factors affecting degree of dissociation (α)

- 1. Nature of electrolyte: Strong or Weak
- 2. Nature of solvent: More is the polarity of solvent, more will be the α (degree of dissociation)
- 3. Temperature T $\propto \alpha$ (degree of dissociation)
- 4. Concentration: $\propto 1/\alpha$ (degree of dissociation) Dilution $\propto \alpha$
- Common ion effect: Whenever common ion is added to the aqueous solution of weak electrolyte α decreases because of the increased concentration of common ion. CH₃COOH ⇒ CH₃COO⁻ + H⁺

 $HCl \longrightarrow Cl^- + H^+$

Here the common ion is H⁺. So dissociation of weak electrolyte CH₃COOH \downarrow (decreases)

Ostwald's law of dilution

Applicable for weak electrolyte.

$$\alpha' \propto \frac{1}{\sqrt{C}}$$
 α' degree of dissociation of weak electrolyte
 $c = \text{concentration}$

$$\alpha' \propto \sqrt{V}$$
 $V = \frac{1}{C} = \text{dilution}$

Ostwald's law of dilution for monobasic acid

	HA	$\stackrel{\frown}{\longrightarrow}$	H^{+}	+	A^{-}
Initial Molarity	C mole		_		—
at equilibrium	$C(1-\alpha)$		Сα		Сα

Dissociation constant of Weak Acid (K_{a})

$$K_a = \frac{C\alpha \cdot C\alpha}{C(1-\alpha)} = \frac{\alpha^2 C}{(1-\alpha)} = \alpha^2 C$$

 $\alpha << 1 \implies 1 - \alpha \simeq 1$ If

 α will be neglected when less than equal to 0.05, i.e., 5% or $10^{-3} > \frac{K_a}{M_a}$

$$C$$

$$\alpha = \sqrt{\frac{K_a}{C}} \implies `\alpha' \propto \frac{1}{\sqrt{C}}$$

$$[H^+] = C \cdot \alpha = \sqrt{K_a \cdot C}$$

For Monoacidic Base

If

BOH
$$\implies$$
 B⁺ + OH
C - - -
 $C(1 - \alpha)$ $C\alpha$ $C\alpha$
 $K_b = \frac{C\alpha \cdot C\alpha}{C(1 - \alpha)} = \frac{\alpha^2 C}{(1 - \alpha)}$

 $\alpha \ll 1 \implies 1 - \alpha \simeq 1$ α will be neglected when less than or equal to 0.05, i.e., 5%

$$K_b = \alpha^2 C \implies \alpha = \sqrt{\frac{K_b}{C}}$$

[OH⁻] = $C\alpha = \sqrt{K_b \cdot C}$

Relative Strength of Weak Acid or Weak Base For two Weak Acid

Relative strength =
$$\frac{[H^+]_1}{[H^+]_2} = \frac{\sqrt{Ka_1 \cdot C}}{\sqrt{Ka_2 \cdot C}}$$

Relative strength = $\sqrt{\frac{Ka_1}{Ka_2}}$

For weak bases:

Relative strength =
$$\sqrt{\frac{Kb_1}{Kb_2}}$$

 $K_a \uparrow \Rightarrow P^{K_a} \downarrow (P^{K_a} = -\log K_a) \Rightarrow \text{acidic strength} \uparrow$
 $K_b \uparrow \Rightarrow P^{K_b} \downarrow \Rightarrow \text{basic nature} \uparrow$

Dissociation of Polyproticacids

$$H_{3}PO_{4} \rightleftharpoons H^{+} + H_{2}PO_{4}^{-}; Ka_{1}$$

$$H_{2}PO_{4}^{-} \rightleftharpoons H^{+} + HPO_{4}^{2-}; Ka_{2}$$

$$HPO_{4}^{2-} \rightleftharpoons H^{+} + PO_{4}^{3-}; Ka_{3}$$

$$H_{3}PO_{4} \rightleftharpoons 3H^{+} + PO_{4}^{3-}; Ka = Ka_{1} \times Ka_{2} \times Ka_{3}$$

For any polyprotic acid or any polyacidic base, successive dissociation constant will go on decreasing.

Ionic Product of Water (Kw)

Water is weak electrolyte and it self-ionises. $H_2O \Longrightarrow H^+ + OH^-$

Dissociation constant (Kd) of water

$$Kd = \frac{[\mathrm{H}^+][\mathrm{OH}^-]}{[\mathrm{H}_2\mathrm{O}]}$$

then, ionic product of water or self-ionisation constant.

 $Kw = k_d [H_2O]$ $= [H^+][OH^-]$

- 1. Kw is constant at a given temperature. Kw at 25°C is 10⁻¹⁴ $P_{\rm kw}$ at 25°C = 14
- 2. Variation of *kw* with temperature is given by:

$$\ln\frac{Kw_2}{Kw_1} = \frac{\Delta H}{R} \left[\frac{1}{T_1} = \frac{1}{T_2} \right]$$

$$\Delta H \rightarrow \text{heat of ionisation of water.}$$

as ΔH is +ve $\Rightarrow Kw \uparrow \Rightarrow P_{kw} \downarrow$
 $Kw = [H^+] [OH^-]$

$$x_w = [n][0n]$$

 $[\mathrm{H}^+] = [\mathrm{OH}^-] = \sqrt{Kw}$

We know $Kw \propto$ temperature $[\mathrm{H}^+] = [\mathrm{OH}^-] = \sqrt{Kw}$ Temperature Kw $\sqrt{10 \times 10^{-16}}$ = 3.16 × 10⁻⁸ 10^{-15} 0°C $\sqrt{10^{-14}} = 10^{-7}$ $\sqrt{10 \times 10^{-14}} = 3.16 \times 10^{-7}$ 10^{-14} 25°C 10^{-13} 60°C 10^{-12} $\sqrt{10^{-12}}$ $= 10^{-6}$

90°C

Ph scale at different temperature

$$0 - \frac{7.5}{15} (At 0^{\circ}C)$$
Neutral
$$0 - \frac{7.0}{1} 14 (At 25^{\circ}C)$$
Neutral
$$0 - \frac{6.5}{13} (At 60^{\circ}C)$$
Neutral
$$0 - \frac{6.0}{12} (At 90^{\circ}C)$$
Neutral

3. In neutral solution: $[H^+] = [OH^-] = \sqrt{Kw} = 10^{-7} \text{ mol/L} (\text{at } T = 25^{\circ}\text{C})$ $[H^+][OH^-] = Kw$ (for any solution) at 25°C, neutral pH = 7

Relationship between Ka and Kb of conjugate acid base pair

$$HA(aq.) + H_2O(l) \rightleftharpoons H_3O^+(aq.) + A^-(aq.)$$
$$Ka = \frac{[H_3O^+][A^-]}{[HA]} \qquad \dots (i)$$

For conjugate base:

$$A^{-}(aq.) + H_{2}O(e) \rightleftharpoons HA(aq.) + OH^{-}(aq.)$$
$$Kb(A^{-}) = \frac{[HA][OH^{-}]}{[A^{-}]} \qquad \dots (ii)$$

From Eqs (i) and (ii);

$$Ka(HA) \times Kb(A^{-}) = [H_{3}O^{+}][OH^{-}]$$

$$Ka(HA) \times Kb(A^{-}) = Kw$$

$$p^{Ka}(HA) + p^{Kb(A^{-})} = p^{Kw}$$

$$pH = -\log(a_{H^{+}}) \quad a \to activity$$

$$= -\log[H^{+}]$$

$$[H^{+}] = 10^{-pH}$$

$$p^{OH} = -\log[OH^{-}]$$

$$[OH^{-}] = 10^{-POH}$$

$$[H^{+}] [OH^{-}] = Kw$$

$$\Rightarrow \quad -\log[H^{+}] - \log[OH^{-}] = -\log Kw$$

$$\Rightarrow \quad pH + p^{OH} = p^{Kw} = 14(at T = 25^{\circ}C)$$

$$pH \text{ scale: (at 25^{\circ}C)}$$

$$acidic \longleftarrow 7 \longrightarrow basic$$

$$\begin{array}{c} \begin{array}{c} \text{acture} & \swarrow & \rho \\ \hline & & & \downarrow \\ 0 & \text{neutral point} & 14 \\ \text{pH} \uparrow \implies p^{\text{OH}} \downarrow \implies \text{basic strength} \uparrow \end{array}$$

Q. At 20°C, pH of a solution is 7, what will be its nature? *Ans.* Since temperature 20°C and less than 25° C

 \therefore [H⁺] Neutral less than 10⁻⁷. \therefore Solution acidic in nature.

1. p^{H} calculation for strong acids: $[H^{+}] = Normality of acid = N$ $= M \times basicity = nf. M$ 2. p^{H} calculation for strong base: $[OH^{-}] = Normality of base = N$ $= M \times acidity. = nf. M$ Ph = 14 - POHQ. Find p_{H} of 10^{-7} MHCl. Ans. $[H^{+}] = 10^{-7} + \{10^{-7}\}$ due to self-ionisation of H_2O . $= 2 \times 10^{-7}$ $pH = 7 - \log 2 = 6.7$ OR

Note:

For very diluted solution, i.e., when $[H^+]$ or $[OH^-]$ is $<10^{-6}M,$ while calculating the $p^H\,H^+$ or OH^- due to self-ionisation of water are taken.

If we consider, the common ion effect of water.

H ₂ O	$\stackrel{\checkmark}{\longrightarrow}$	H^+ +	OH-
		$(x + 10^{-7})$	x
HC1	\longrightarrow	H^+ +	Cl⁻
		$(x + 10^{-7})$	10 ⁻⁷

$$K_W = [H^+][OH^-] = 10^{-14}$$

 $(x + 10^{-7})x = 10^{-14}$

$$x^{2} + 10^{-7} x - 10^{-14} = 0$$

$$x = 0.618 \times 10^{-7}$$

$$[H^{+}] = 10^{-7} + 0.618 \times 10^{-7} = 1.618 \times 10^{-7}$$

$$pH = 6.79$$

3. pH calculation for weak acids

 $[\mathrm{H}^+] = C \cdot \alpha$: C = Normality α = degree of dissociation

For monoprotic Weak Acide:-

$$[H^{+}] = C \cdot \alpha = \sqrt{K_a \cdot C}$$
$$pH = \frac{-1}{2} \log K_a - \frac{1}{2} \log C$$
$$pH = \frac{1}{2} [p^{Ka} - \log C]$$

4. pH calculation For weak base

$$[OH^{-}] = C \cdot \alpha] \qquad C = Normality \alpha = degree of dissociation$$

For monoacidic base

$$[OH^{-}] = C\alpha = \sqrt{Kb \cdot C}$$
$$P^{OH} = \frac{1}{2} [P^{kb} - \log C]$$

5. pH calculation of mixing of Strong Acid and Strong Base Resultant normality of solution (N_R)

$$N_{R} = \frac{|\Sigma(NV)acid - \Sigma(NV)base|}{V \text{ final}}$$

- (i) If $\Sigma(NV)$ acid > $\Sigma(NV)$ base \Rightarrow Acidic solution. \Rightarrow [H+] = N_R
- (ii) If $\Sigma(NV)$ acid $\langle \Sigma(NV)$ base \Rightarrow Basic solution. $\Rightarrow [OH^{-}] = N_R$
- (iii) If $\Sigma(NV)$ acid = $\Sigma(NV)$ base \Rightarrow Neutral solution = $[H^+] = [OH^-] = 10^{-7}$

$$\Rightarrow$$
 pH = 7

6. pH calculation of Mixture of Weak Acid and Strong Acid

			Str	ong	acio	ł			
	HA	 H^{+}	+	A^{-}	HB	\rightarrow	H^+	+	B^{-}
Initial	C_1	_		_	C_2		_		-
Final	$C_1 - x$	$(x + C_2)$		x	_		C_2		C_2

$$K_a = \frac{(C_2 + x)x}{C_1 - x}$$

Due to common ion effect of Strong Acid for Weak Acid $x \ll C_1$

$$\Rightarrow \qquad C_1 - x \approx C_1$$
$$K_a = \frac{(C_2 + x) \cdot x}{C_1}$$

5.4Physical Chemistry-I for JEE (Main & Advanced)

If Strong Acid is highly concentrated

$$C_2 + x \approx C_2$$
$$K_a = \frac{C_2 \cdot x}{C_1}$$

7. pH for mixing of weak acids

HA	\rightarrow	H^{+}	+	A^{-}	HB	$ \longrightarrow$	H^{+}	+	B^{-}
C_1		_		_	C ₂		_		-
$C_1 - x$		(x + y)		x	$C_2 - y$		(x + y)		у
	Ka ₁ =	$=\frac{(x+y)}{C_1-}$	$\frac{x}{x}$	<u>.</u>	Ka ₂ =	$=\frac{(x+y)}{C_2}$	$\frac{y}{y}$		

Due to common ion effect, x, y will be negligible.

$$C_1 - x \approx C_1 \qquad C_2 - y \approx C_2$$

$$Ka_1 = \frac{(x+y) \cdot x}{C_1}; Ka_2 = \frac{(x+y) \cdot y}{C_2}$$

$$Ka_1C_1 = (x+y) \cdot x \qquad \dots(i)$$

$$Ka_2C_2 = (x+y) \cdot y \qquad \dots(ii)$$

$$(i) + (ii); \Rightarrow (x + y)^2 = Ka_1C_1 + Ka_2C_2 \Rightarrow [H^+] = \sqrt{Ka_1C_1 + Ka_2C_2}$$

8. pH for mixing of weak bases

 $[OH^-] = \sqrt{Kb_1C_1 + Kb_2C_2 + \cdots}$

9.
$$p^{H}$$
 of polyprotic acids:
For H₂S if $Ka_1 = 10^{-7}$; $Ka_2 = 10^{-14}$
H₂S \implies H⁺ + HS⁻; Ka_1
C - - - -
C-x $(x+y)$ $x-y$
HS⁻ \implies H⁺ + S²⁻; Ka_2
 $(x-y)$ $(x+y)$ y
 $Ka_1 = \frac{(x+y)(x-y)}{(c-x)} = \frac{x^2}{(c-x)} = \frac{x^2}{c}$
 $Ka_2 = \frac{(x+y)y}{(x-y)} = \frac{xy}{x} = y$
 $Ka_1 >> Ka_2 \Rightarrow x >> y$
 $x + y = x, x - y \Rightarrow x$
as Ka_1 is very low $\Rightarrow c - x \Rightarrow c$.

Note: $H_2S \rightleftharpoons 2H^+ + S^{2-}$; $Ka = Ka_1 \times Ka_2$

The formula is used only when $[H^+]$ in the solution of H_2S is given and sulphide ion is asked or vice versa.

$$Ka_1 \times Ka_2 = \frac{[\mathrm{H}^+]^2 \times [\mathrm{S}^{2-}]}{[\mathrm{H}_2 \mathrm{S}]}$$

Example 1: H₃PO₄;

$$\begin{array}{cccc} Ka_1 = 7 \times 10^{-3} & Ka_2 = 6 \times 10^{-8} & Ka_3 = 8 \times 10^{-13} \\ H_3 PO_4 & & H^+ & + & H_2 PO_4^-; Ka_1 \\ c & & - & - \\ (c - x) & & (x + y + z) & x - y \end{array}$$

$$H_{3}PO_{4}^{-} \rightleftharpoons H^{+} + HPO_{4}^{2-}; Ka_{2}$$

$$(x-y) \qquad (x+y+z) \qquad y-z$$

$$H_{3}PO_{4}^{2-} \rightleftharpoons H^{+} + PO_{4}^{3-}; Ka_{3}$$

$$(y-z) \qquad (x+z+y) \qquad z$$

$$Ka_{1} = \frac{(x+y+z)(x-y)}{c-x} \qquad Ka_{3} = \frac{(x+y+z)z}{(y-z)}$$

$$Ka_{2} = \frac{(x+y+z)(y-z)}{x-y}$$

$$Ka_{1} \gg Ka_{2} \gg Ka_{3}$$

$$\Rightarrow \qquad x \gg y \gg z$$

$$\Rightarrow \qquad x+y+z \approx x \quad \text{and} \quad x-y \approx x \quad \text{and} \quad y-z \approx y$$

$$Ka_{1} = \frac{x \cdot x}{c-x} = \frac{x^{2}}{c-x} \quad \text{as} \quad Ka_{1} \text{ is significant } x \text{ is not negligible}$$

for
$$\frac{Ka}{c} > 10^{-3}$$
.
 $Ka_2 = y$
 $Ka_3 = \frac{x \cdot z}{y}$

 \Rightarrow \Rightarrow

(i) Complete salts or normal salts

These are the salts which cannot provide H⁺ or OH⁻ ions in their aqueous solution. K₂SO₄, Na₂HPO₃ (salt of H₃PO₃ (Basicity-2), NaH₂PO₂

(ii) Incomplete salts

Salts which can provide H⁺ and OH⁻ in their aqueous solution.

(a) Acidic salts: provides H^+ in their aqueous solution.

For example, NaHCO₃, KHSO₄, NaH₂PO₃

(b) Basic salts: provide OH⁻ in their aqueous solution.

Ex. Ca(OH)Cl

Salt Hydrolysis

It is the reverse process of naturalisation in which ions of the salt react with water and form acid and base.

 $Salt + Water \Longrightarrow Acid + Base$

Types of salt hydrolysis

1. Salt of Strong Acid and Strong Base.

 $NaCl+H_2O \Longrightarrow NaOH + HCl$

 $Na^+ + Cl^- + H_2O \Longrightarrow Na^+ + OH^- + H^+ + Cl^-$

 $H_2O \Longrightarrow OH^- + H^+$

Salt of strong acid and Strong Base are not hy- \Rightarrow drolysed.

- \Rightarrow Their aqueous solution are neutral in nature.
- 2. Salt of Strong Acid and Weak Base.

 $NH_4Cl + H_2O \rightleftharpoons NH_4OH + HCl$

$$\mathrm{NH}_4^+ + \mathrm{Cl}^- + \mathrm{H}_2\mathrm{O} \rightleftharpoons \mathrm{NH}_4\mathrm{OH} + \mathrm{H}^+ + \mathrm{Cl}^-$$

 $\mathrm{NH}_4^+ + \mathrm{H}_2\mathrm{O} \rightleftharpoons \mathrm{NH}_4\mathrm{OH} + \mathrm{H}^+$

- ⇒ Salt of Strong Acid and Weak Base show the cationic hydrolysis.
- \Rightarrow Their aqueous solution are acidic in nature.

Relation between hydrolysis constant (K_h) , K_w and K_b

$$K_h = \frac{[NH_4OH][H^+]}{[NH_4^+]}$$
 ...(i)

$$K_w = [H^+][OH^-]$$
 ...(ii)

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_4OH]}$$
 ...(iii)

$$K_h = \frac{K_w}{K_h}$$

Degree of hydrolysis (h)

$$h = \frac{\text{Moles hydrolysed}}{\text{Moles taken initially}}$$

$$NH_4^+ + H_2O \rightleftharpoons NH_4OH + H^+$$

$$C \qquad - \qquad - \qquad -$$

$$C(1-h) \qquad Ch \qquad Ch$$

$$K_h = \frac{Ch \cdot Ch}{C(1-h)} = \frac{h^2C}{(1-h)}$$

As *h* is negligible $1 - h \approx 1$.

$$K_{h} = h^{2}C$$
$$h = \sqrt{\frac{K_{h}}{C}} = \sqrt{\frac{K_{w}}{K_{b} \times C}}$$

pH calculation

$$[H^{+}] = Ch = \sqrt{K_{h} \cdot C}$$

$$[H^{+}] = \sqrt{\frac{K_{w}}{K_{b}} \times C}$$

$$pH = \frac{-1}{2} \log K_{w} + \frac{1}{2} \log K_{b} - \frac{1}{2} \log C$$

$$= \frac{1}{2} P^{kw} - \frac{1}{2} P^{Kb} - \frac{1}{2} \log C$$

$$pH = 7 - \frac{1}{2} P^{kb} - \frac{1}{2} \log C$$

- 3. Salt of Weak Acid and Strong Base:-CH₃COONa + H₂O ⇒ CH₃COOH + NaOH CH₃COO⁻ + Na⁺ + H₂O ⇒ CH₃COOH + Na⁺ + OH⁻ CH₃COO⁻ + H₂O ⇒ CH₃COOH + OH⁻
 - \Rightarrow Salt of W.A. and S.B. shows anionic hydrolysis.
 - \Rightarrow Here, cation act as the spectator ion.
 - \Rightarrow Aqueous solution of these salts are basic in nature.

Relation between
$$K_h$$
, K_w , Ka

$$K_h = \frac{[CH_3COOH][OH^-]}{[CH_3COO^-]}$$

$$Kw = [H^+][OH^-]$$

$$K_a = \frac{[CH_3COO^-][H^+]}{[CH_3COOH]}$$

$$K_h = \frac{Kw}{Ka}$$
Degree of hydrolysis(h)
 $CH_3COO^- + H_2O \iff CH_3COOH + OHCC$
 $C \qquad - - C(1-h)$

$$Kh = \frac{Ch \cdot Ch}{C(1-h)} = \frac{h^2C}{1-h}$$

$$1-h=1$$

$$Kh = h^2C \Rightarrow h = \sqrt{\frac{K_h}{C}}$$

$$h = \sqrt{\frac{Kw}{Ka \times C}}$$
Calculation of Ph:
 $[OH^-] = Ch = \sqrt{Kh \cdot C}$

$$= \sqrt{\frac{Kw \times C}{Ka}}$$

$$P^{OH} = \frac{-1}{2} \log Kw + \frac{1}{2} \log Ka - \frac{1}{2} \log C$$
$$P^{OH} = 7 - \frac{1}{2} P^{Ka} - \frac{1}{2} \log C$$
$$pH = 7 + \frac{1}{2} P^{Ka} + \frac{1}{2} \log C$$

4. Salt of Weak Acid and Weak Base: $CH_3COONH_4 + H_2O \rightleftharpoons CH_3COOH + NH_4OH$

 $CH_{3}COO^{-} + NH_{4}^{+} + H_{2}O \rightleftharpoons CH_{3}COOH + NH_{4}OH$

Salt of weak acid and Weak Base shows both anion as well as cationic hydrolysis :

Their aqueous solution are neutral (slightly acidic or basic)

- (i) If $Ka = Kb \Rightarrow P^{Ka} = P^{Kb} \Rightarrow$ neutral solution
- (ii) If $Ka > Kb \Rightarrow P^{Ka} < P^{Kb} \Rightarrow$ acidic solution
- (iii) If $Ka < Kb \Rightarrow P^{Ka} > P^{Kb} \Rightarrow$ basic solution
- For example, $NH_4CN \Rightarrow$ basic nature

Relation between Kh, Kw, Ka and Kb

$$Kh = \frac{[CH_3COOH][NH_4OH]}{[CH_3COO^-][NH_4^+]}$$
(i)

$$Kw = [H^+][OH^-]$$
(ii)

$$Ka = \frac{[CH_3COO^-][H^+]}{[CH_3COOH]}$$
(iii)

$$Kb = \frac{[\mathrm{NH}_{4}^{-}][\mathrm{OH}^{-}]}{[\mathrm{NH}_{4}\mathrm{OH}]}$$
(iv)
eq. $\frac{(\mathrm{ii})}{(\mathrm{iii}) \times (\mathrm{iv})} = \mathrm{eq.}(\mathrm{i})$
 $\therefore \qquad K_{h} = \frac{Kw}{Ka \cdot Kb}$
Degree of hydrolysis (h)

$$CH_{3}COO^{-} + NH_{4}^{+} + H_{2}O \rightleftharpoons CH_{3}COOH + NH_{4}OH$$

$$C C - - -$$

$$C(1-h) C(1-h) Ch Ch$$

$$Kh = \frac{Ch \cdot Ch}{C(1-h) \cdot C(1-h)}$$

$$= \frac{h^{2}}{(1-h)^{2}}$$

$$\Rightarrow \frac{h}{1-h} = \sqrt{Kh}$$

$$h \text{ is negligible} \Rightarrow h = \sqrt{Kh} = \sqrt{\frac{Kw}{Ka \times Kb}}$$

Hence, degree of hydrolysis '*h*' is independent of concentration or dilution for salt of Weak Acid and Weak Base pH calculation:

$$CH_{3}COOH \rightleftharpoons CH_{3}COO^{-} + H^{+}$$

$$Ka = \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]}$$

$$[H^{+}] = Ka \times \frac{[CH_{3}COOH]}{[CH_{3}COO^{-}]}$$

$$[H^{+}] = Ka \times \frac{Ch}{C(1-h)} = Ka \times \frac{h}{1-h}$$

$$[H^{+}] = Ka \times \sqrt{Kh} = \sqrt{\frac{Kw}{Kb} \times Ka}$$

$$pH = \frac{-1}{2}\log Kw - \frac{1}{2}\log Ka + \frac{1}{2}\log Kb$$

$$pH = 7 + \frac{P^{Ka}}{2} - \frac{P^{Kb}}{2}$$

 \Rightarrow pH of this solution is independent of dilution.

Hydrolysis of polyvalent anions

Example 2: Na₂S
$$\longrightarrow$$
 2Na⁺ + S²⁻ (hydrolyse)
× ✓
S²⁻ + H₂O \rightleftharpoons HS⁻ + OH⁻; Kh₁
C - - -
C-x x-y x+y
HS⁻ + H₂O \rightleftharpoons H₂S + OH⁻; Kh₂
(x-y) y y+x

$$Kh_{1} = \frac{Kw}{Ka_{2}}$$

$$= \frac{(x - y)(x + y)}{c - x}$$

$$Kh_{2} = \frac{Kw}{Ka_{1}} = \frac{y(x + y)}{x - y}$$

$$Ka_{1} \gg Ka_{2} \Rightarrow Kh_{1} \gg Kh_{2}$$

$$\Rightarrow \qquad x \gg y$$

$$\frac{Kw}{Ka_{2}} = \frac{x^{2}}{C - x} \qquad \frac{Kw}{Ka_{1}} = y$$

$$[OH^{-}] \approx x \therefore POH = -\log[x]$$

Example 3: $Na_3PO_4 \rightleftharpoons 3Na^+ + PO_{4(Hydrolyse)}^{3-}$

$$PO_{4}^{3-} + H_{2}O \rightleftharpoons HPO_{4}^{2-} + OH^{-}; Kh_{1}$$

$$C - x \qquad (x - y) \qquad (x + y + z)$$

$$HPO_{4}^{2-} + H_{2}O \rightleftharpoons H_{2}PO_{4}^{-} + OH^{-}; Kh_{2}$$

$$x - y \qquad y - z \qquad x + y + z$$

$$H_{2}PO_{4}^{-} + H_{2}O \rightleftharpoons H_{3}PO_{4} + OH^{-}; Kh_{3}$$

$$y - z \qquad z \qquad x + y + z$$

$$Kh_{1} = \frac{Kw}{Ka_{3}} = \frac{(x - y)(x + y + z)}{C - x} = \frac{x^{2}}{C - x}$$

$$\frac{Kw}{Ka_{2}} = Kh_{2} = \frac{(y - z)(x + y + z)}{(x - y)} = y$$

$$Kh_{3} = \frac{Kw}{Ka_{1}} = \frac{z(x + y + z)}{(y - z)} = \frac{x \cdot z}{y}$$

$$Ka_{1} \gg Ka_{2} \gg Ka_{3} \Rightarrow Kh_{1} \gg Kh_{2} \gg Kh_{3}$$

$$x \gg y \gg z$$

Hydrolysis of polyvalent cations

 \Rightarrow

$$Fe(NO_3)_2 \longrightarrow Fe^{+2} + 2NO_3^-$$

$$Fe^{+2} + H_2O \rightleftharpoons Fe(OH)^+ + H^+; Kh_1$$

$$(C - x) \qquad x - y \qquad x + y$$

$$Fe(OH)^+ + H_2O \Longrightarrow Fe(OH)^2 + H^+; Kh_2$$

$$(x - y) \qquad y \qquad x + y$$

$$Kh_1 = \frac{Kw}{Kb_2} = \frac{(x - y)(x + y)}{C - x}$$

$$Kh_2 = \frac{Kw}{Kb_1} = \frac{y \cdot (x + y)}{(x - y)}$$

$$Kb_1 \gg Kb_2 \Rightarrow Kh_1 \gg Kh_2 \Rightarrow x \gg y$$

$$Kh_1 = \frac{x^2}{C - x} \qquad Kh_2 = y$$

Hydrolysis of salts containing amphiprotic anion

Amphiprotic anions can provide as well as accept H^+ i.e., they can act as both acid as well as base.

For example, NaHS, KHCO₃, NaH₂PO₄, Na₂HPO₄

Acidic nature

$$HA^{-} + H_2O \Longrightarrow H_3O^{+} + A^{2-}; Ka_2$$

 $Ka_2 = \frac{[H_3O^{+}][A^{2-}]}{[M_2 - 2]}$

Basic nature

$$HA^{-} + H_2O \rightleftharpoons H_2A + OH^{-};$$

 $Kh = \frac{Kw}{Ka_1}$...(ii)

(i)/(ii);
$$\frac{Ka_1 \times Ka_2}{Kw} = \frac{[H_3O^+][A^{2^-}]}{[H_2A][OH^-]}$$
$$\frac{Ka_1 \times Ka_2}{[H_3O^+][OH^-]} = \frac{[H_3O^+][A^{2^-}]}{[H_2A][OH^-]}$$
$$[H_3O^+]^2 = Ka_1 \times Ka_2 \times \frac{[H_2A]}{[A^{2^-}]}$$

 $[HA^{-}]$

Assuming $[H_2A] \simeq [A^{2-}]$ when $Ka_2 \simeq Kh$

$$[\mathrm{H}^+] = \sqrt{Ka_1 \times Ka_2}$$
$$\mathrm{pH} = \frac{P^{Ka_1} + P^{Ka_2}}{2}$$

Note

$$\text{if } Kh > Ka_2 \implies \frac{[\text{H}_2\text{A}]}{[\text{A}^2^-]} > 1$$

$$\Rightarrow \quad [\text{H}^+]^{\uparrow}$$

$$\therefore \qquad p^{\text{H}} < \left(\frac{P^{Ka_1} + P^{Ka_2}}{2}\right)$$

$$\Rightarrow \qquad \text{If } Kh < Ka_2 \implies \frac{[\text{H}_2\text{A}]}{[\text{A}^2^-]} < 1$$

$$\Rightarrow \qquad [\text{H}^+]^{\downarrow}$$

$$p^{\text{H}} > \left(\frac{P^{Ka_1} + P^{Ka_2}}{2}\right)$$

$$(\text{i) } \text{NaH}_2\text{PO}_4 \implies \text{H}_2\text{PO}_4^- \longrightarrow \text{Ka}_2 \implies \text{pH} = \frac{P^{Ka_1} + P^{Ka_2}}{2}$$

$$(\text{ii) } \text{Na}_2\text{HPO}_4 \implies \text{HPO}_4^{2^-} \longrightarrow Ka_3 \implies \text{pH} = \frac{P^{Ka_2} + P^{Ka_2}}{2}$$

$$(\text{iii) } \text{Na}_3\text{HA} \implies \text{HA}^- \longrightarrow Ka_4 \implies \text{pH} = \frac{P^{Ka_3} + P^{Ka_4}}{2}$$

$$(\text{iv) } \text{NaH}_3\text{A} \implies \text{H}_3\text{A}^- \longrightarrow Ka_2 \implies \text{pH} = \frac{P^{Ka_1} + P^{Ka_2}}{2}$$

Buffer solutions

...(i)

These are the solution which resist pH change when small amount of acid or base is added.

These solutions can be kept for long time without changing the pH.

Due to dilution, there is no appreciable change in their pH value.

Types of buffer solutions

(a) Simple buffer solution: Salt of Weak Acid and Strong Base e.g. CH₃COONH₄

1. Acidic buffer

Weak Acid + its conjugate base or salt.

- (i) CH₃OOH + CH₃COONa
- (ii) HCN + KCN
- (iii) $NaH_2PO_4 + Na_2HPO_4$
- (iv) $H_2CO_3 + NaHCO_3$

It is found in human blood which keeps the pH 7.35.

2. Basic buffer

Weak Base + its conjugate acid or salt with strong acid.

(i) $NH_4OH + NH_4Cl$

(ii) $RNH_2 + RNH_3^+Cl^-$

Buffer action:

It is a mechanism by which buffer solution resist the pH change. Buffer action for simple buffer solution:

$$CH_3COONH_4 \longrightarrow CH_3COO^- + NH_4^+$$

On adding H⁺

$$H^+ + CH_3COO^- \longrightarrow CH_3COOH$$

(Almost unionises)

On adding OH-

*a*₂

2z

 $OH^- + NH_4^+ \longrightarrow NH_4OH$ (almost unionised) Buffer action for acidic buffer:

$$CH_2COOH + CH_2COONa$$

$$CH_{3}COOH \rightleftharpoons CH_{3}COO^{-} + H^{+}$$

$$CH_3COONa \longrightarrow CH_3COO^- + Na^+$$

On adding H⁺ or HCl

$$H^+ + CH_3COO^- \longrightarrow CH_3COOH$$

(Almost unionised)

On adding OH⁻ or NaOH

c.

$$OH^- + CH_3COOH \longrightarrow CH_3COO^- + H_2O$$

(No change in ph)

Buffer action for basic buffer:

$$NH_4OH + NH_4Cl$$

 $NH_4OH \rightleftharpoons NH_4^+ + OH^-$
 $NH_4Cl \longrightarrow NH_4^+ + Cl^-$

5.8 Physical Chemistry-I for JEE (Main & Advanced)

On adding H⁺ or HCl

 $H^+ + NH_4OH \longrightarrow NH_4^+ + H_2O$ (No change in ph) On adding OH-

$$OH^- + NH_4^+ \longrightarrow NH_4OH$$
 (Almost unionised)

pH calculation for acidic buffer

$$CH_{3}COOH + CH_{3}COONa$$

$$CH_{3}COOH \rightleftharpoons CH_{3}COO^{-} + H^{+}$$

$$CH_{3}COONa \longrightarrow CH_{3}COO^{-} + Na^{+}$$

$$Ka = \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]}$$

$$[H^{+}] = Ka \times \frac{[CH_{3}COOH]}{[CH_{3}COO^{-}]}$$

$$[H^{+}] = Ka \times \frac{[Acid]}{[Salt of conjugate base]}$$

$$pH = -\log Ka - \log \frac{[acid]}{[salt]}$$

$$pH = P^{Ka} + \log \frac{[Salt]}{[acid]}$$

Henderson equation or Henderson Hassel Baton equation,

pH calculation for basic buffer

$$[OH^{-}] = K_b \times \frac{[Base]}{[Salt \text{ or conjugate acid}]}$$

$$P^{OH} = -\log k_b - \log \frac{[Base]}{[Salt]}$$

$$P^{OH} = P^{Kb} + \log \frac{[Salt]}{[Base]}$$

$$pH = 14 - P^{kb} + \log \frac{[Base]}{[Salt]}$$

Calculate the concentration of NH₃ and NH₄Cl required to prepare 1 L solution of pH = 9. When total concentration of buffering reagent is 0.6 mL. P^{Kb} (NH₃) = 4.7

Ph = 9 means basic buffer

$$P^{OH} = 5 = 4.7 + \log \frac{\text{Salt}}{\text{base}}$$

$$\log S/b = 0.3 = \log 2$$

$$\frac{S}{b} = 2$$

$$S + b = 0.6$$

$$S = [\text{NH}_4\text{Cl}] = 0.4 \text{ M} \Rightarrow b = [\text{NH}_3] = 0.2 \text{ M}$$

Buffer capacity (ϕ)

It is the measurement of capability of buffer solution to resist the pH change.

Number of moles of acid or bases added to

$$\phi = \frac{1 \text{ litre buffer solution}}{\Delta p H}$$

$$\phi \implies \text{ buffer action}$$

Buffer capacity in terms of buffer index

$$\left(\frac{\Delta b}{\Delta \mathrm{pH}}\right)$$

Let an acidic buffer

$$pH_1 = P^{Ka} + \log \frac{s}{a} \qquad \dots(i)$$

On adding
$$\Delta b$$
 moles of base,
acid + base \rightarrow salt
 $a \quad \Delta b \qquad s$
 $a - \Delta b \qquad 0 \qquad s + \Delta b$
 $pH_2 = P^{Ka} + \log \frac{s + \Delta b}{a - \Delta b} \qquad ...(ii)$

$$\Delta pH = pH_2 - pH_1$$

$$= \log \frac{s + \Delta b}{a - \Delta b} - \log s/a$$

$$= \log \left(\frac{s + \Delta b}{a - \Delta b} \times \frac{a}{s} \right)$$

$$\log \left(\frac{1 + \Delta b/s}{1 - \Delta b/a} \right) = \frac{1}{2.303} \ln \left(\frac{1 + \Delta b/s}{1 - \Delta b/a} \right)$$

$$\ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \cdots$$

$$\ln(1 - x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} \cdots$$

$$= x \text{ (when } x \text{ is small)}$$

$$\Delta pH = \frac{1}{2.303} \left[\frac{\Delta b}{s} - \left(\frac{-\Delta b}{a} \right) \right]$$

$$= \frac{1}{2.303} \left[\frac{\Delta b}{s} + \frac{\Delta b}{a} \right]$$

$$= \frac{\Delta b}{2.303} \left(\frac{a + s}{a + s} \right)$$
Buffer index $\left(\frac{\Delta b}{\Delta pH} \right) = 2.303 \left(\frac{a \cdot s}{a + s} \right)$
We know,

$$a + s = \text{const.}(K)$$

$$\frac{\Delta b}{\Delta pH} = 2.303 \frac{a \cdot (K - a)}{K}$$

s = a

For maximum buffer capacity:

$$\frac{d}{da} \left(\frac{\Delta b}{\Delta p H} \right) = 0$$

$$\Rightarrow \qquad 0 = \frac{2.303}{K} (K - 2a) \Rightarrow a = \frac{K}{2} \Rightarrow s = \frac{K}{2}$$

For maximum buffer action a = sAt maximum buffer action For acidic buffer

[Salt] = [acid]pH = P^{Ka} For basic buffer [Salt] = [base] P^{OH} = P^{Kb}

pH range of buffer solution

It is the pH interval in which buffer solution works effectively and this pH range is $P^{Ka} + 1$ (for acidic buffer) any buffer

solution works effectively only when $\frac{[salt]}{[acid/base]}$

$$\Rightarrow \qquad \frac{1}{10} \text{ to } 10.$$

Note:

More is the concentration of buffer solution, more will be its buffer action.

In Sol. (i) a = s = 0.1 M If $\Delta b = 0.01$

$$pH_1 = P^{Ka}; pH_2 = P^{Ka} + \log \frac{0.1}{0.09}$$

 $\Delta pH = \log \frac{11}{9}$

In Sol. (ii) a = s = 0.2 M If $\Delta b = 0.01$

$$pH_1 = P^{Ka}; pH_2 = P^{Ka} + \log \frac{0.21}{0.13}$$

 $\Delta pH = \log \frac{21}{19}$

Change in pH for solution I is more, so, buffer action is less.

Indicators are the species which detect the end point in the titration by colour change.

Acid-base indicators are either weak organic acid or weak organic base.

Indicators show the colour change because of their ionisation.

Generally darker colour is associated with ionised part where as lighter colour is associated with unionised part.

Example 1: Phenophthalene (Hph)

Hph \rightleftharpoons H⁺ + Ph⁻ (Pink) (colourless) (pink) in, acidic medium \longrightarrow colourless in basic medium \longrightarrow pink

Example 2: Methyl Orange (MeOH)MeOH \longleftarrow Me⁺ + OH⁻(yellow)(red)

Red in acidic medium; yellow in basic medium

pH of indicators

HIn \rightleftharpoons H⁺ + In⁻ (coloured) (colourless) (coloured)

$$\begin{split} K_{\mathrm{In}} &= \frac{[\mathrm{H^+}][\mathrm{In^-}]}{[\mathrm{HIn}]} \\ [\mathrm{H^+}] &= K_{\mathrm{In}} \times \frac{[\mathrm{HIn}]}{[\mathrm{In^-}]} \end{split}$$

pH of indicator

$$pH = P^{KIn} + \log \frac{[In^-]}{[HIn]}$$
 Hendorson equation

pH range of indicators

It is the pH interval for indicator in which it shows transition in colour (mixed colour).

pH range = $P^{KIn} \pm 1$

In the pH range
$$\frac{[In^-]}{[HIn]}$$
 is $\frac{1}{10}$ to 10.

- Example 1: Hph: pH range = 8.3 to 10 $pH > 10 \Rightarrow dark pink$ $pH < 8.3 \Rightarrow colourless$ 8.3 to 10 \Rightarrow transition colour
- Example 2: MeOH: pH range = 3.1 to 4.4pH > $4.4 \Rightarrow$ yellow pH < $3.1 \Rightarrow$ Red 3.1 to $4.4 \Rightarrow$ transition colour
- Example 3: Bromothymol blue: (6 to 7.6) $pH < 6 \Rightarrow$ yellow $pH > 7.6 \Rightarrow$ blue

6 to 7.6
$$\Rightarrow$$
 transition colour

Example 4: Methyl Red (4.2 to 6.3) $pH < 4.2 \Rightarrow red$

$$pH > 6.3 \Rightarrow yellow$$

In pH range

% ionised part =
$$\frac{[In^-]}{[HIn] + [In^-]} \times 100$$

% unionised part = $\frac{[HIn]}{[HIn] + [In^-]} \times 100$

During the acid-base titration, there is a sudden change in pH nearby the equivalence point in certain limits called pH range of titration.

Those indicators will be suitable for the given titration whose pH lie in pH range of titration ideally. For best indicator, mid-point of the pH range is equal to the pH at equivalence point.

Titration of Strong Acid Vs Strong Base

Indicator used

MeOH \rightarrow 3.1 to 4.4 Boomothymol blue (6 to 7.6) Methylred

Titration of Weak Acid and Strong Base

 $CH_3COOH \longrightarrow 0.1 M, 50 ml$

$$NaOH \longrightarrow 0.1 M$$

1.
$$V_{\text{NaOH}} = 0 \text{ mL}$$

Since CH₃COOH is a weak acid

$$pH = \frac{1}{2}[4.74 - \log 10^{-1}] = 2.87$$

2. $V_{\rm NaOH} = 25 \text{ mL}$ $CH_3COOH + NaOH \longrightarrow CH_3COONa + H_2O$ 2.5 5 2.5 2.5 After reaction both component present \therefore buffer solution from pH = $PKa + \log \frac{[Salt]}{[Acid]}$ pH = 4.743. $V_{\text{NaOH}} = 40 \text{ mL}$ $pH = 4.74 + \log \frac{4}{1} = 5.34$ 4. $V_{\rm NaOH} = 49 \text{ mL}$ $pH = 4.74 + \log \frac{4.9}{0.1} \Rightarrow 4.74 + 2 \times (0.85) = 6.44$ 5. $V_{\text{NaOH}} = 50 \text{ mL}$; (equivalence point) $\begin{array}{c} \text{CH}_{3}\text{COOH} + \text{NaOH} \longrightarrow \text{CH}_{3}\text{COONa} + \text{H}_{2}\text{O} \\ 5 & 5 & - \\ - & - & 5 \end{array}$ After reaction only salt present : salt hydrolysis $pH = 7 + \frac{1}{2}pka + \frac{1}{2}\log C$:. $pH = 7 + \frac{1}{2} \times 4.74 + \frac{1}{2} \log(5 \times 10^{-2}) = 8.7$ 6. $V_{\text{NaOH}} = 51 \text{ mL}$ $CH_3COOH + NaOH \longrightarrow CH_3COONa + H_2O$ 5 5.1 0.1 5 $[OH^{-}] = \frac{0.1}{101} \approx 10^{-3}$ $P^{OH} = 3$ pH = 11Indicator used Hph PH' MeOH Х Methyl red Х Bromothymol blue 🗸 Base added \rightarrow

7. Titration of Strong Acid and Weak Base: as same as titration of Weak Acid and Strong Base

Titration of Weak Acid and Weak Base

Such type of titration is generally not carried out because no sharp change in the pH is observed near equivalence point.

Ionic Equilibrium 5.11

Titration of polyprotic acid with Strong Base

$$H_{3}PO_{4} \longrightarrow 0.1 \text{ M}, 50 \text{ ml}$$

$$NaOH \longrightarrow 0.1 \text{ M}$$
(i) $V_{NaOH} = 0 \text{ mL}$

$$H_{3}PO_{4} \rightleftharpoons H^{+} + H_{2}PO_{4}^{-}$$
(ii) $V_{NaOH} = 25 \text{ mL}$

$$H_{3}PO_{4} + \text{NaOH} \rightarrow \text{NaH}_{2}PO_{4} + H_{2}O$$
after reaction both component
 \therefore buffer
 $5 \quad 2.5 \quad 5 \quad -$
After reaction, amphiprotic salt formed.
 $pH = \frac{P^{Ka_1} + P^{Ka_2}}{2}$
I equivalence Point
(v) $V_{NaOH} = 75 \text{ mL}$
 $pH = P^{Ka_2}$
(vii) $V_{NaOH} = 100 \text{ mL}$
(second end point)
 $pH = \frac{P^{Ka_2} + P^{Ka_3}}{2}$
(viii) $V_{NaOH} = 110 \text{ mL}$
 $Na_2HPO_4 + NaOH \longrightarrow Na_3PO_4 + H_2O$
 $5 \quad 1 \quad - \quad 4 \quad - \quad 1 \quad 1$
 $pH = P^{Ka_3} + \log \frac{1}{4}$
(viii) $V_{NaOH} = 125 \text{ mL}$
 $pH = P^{Ka_3}$
(ix) $V_{NaOH} = 150 \text{ mL}$
 $Na_2HPO_4 + NaOH \longrightarrow Na_3PO_4 + H_2O$
 $5 \quad 5 \quad -$

$$C = \frac{5}{150 + 50} = \frac{5}{200} = 2.5 \times 10^{-2}$$

(hydrolysis of polyvalent ion)

Solubility (S)

 H_2O

5

_

5

It is the maximum amount of the solute that can be dissolved in one litre of the solution at saturation.

Solubility product (K_{SP})

$$A^{+}B^{-}(s) \iff AB(aqueous)$$

undissolved dissolved
$$AB(s) \iff A^{+}(aqueous) + B^{-}(aqueous)$$

$$K_{eq} = K_{SP} = [A^{+}][B^{-}] (at saturation)$$

Solubility product is the product of ionic concentration of the solute in its saturated solution.

- 1. $AlCl_3(s) \rightleftharpoons Al^{+3} + 3Cl^{-1}$ $K_{\rm SP} = [{\rm Al}^{+3}][{\rm Cl}^{-}]^3$
- 2. $Ag_2CrO_4(s) \rightleftharpoons 2Ag^+ + CrO_4^{2-}$ $K_{\rm SP} = [{\rm Ag}^+]^2 [{\rm CrO}_4^{2-}]$
- 3. $Sb_2S_3(s) \rightleftharpoons 2Sb^{+3} + 3S^{2-}$

$$K_{\rm SP} = [\rm Sb^{+3}]^2 [\rm S^{2-}]^3$$

 $K_{\rm SP}$ is constant at a given temperature variation of $K_{\rm SP}$ with temperature is given by

$$\ln\frac{K_{\rm SP_2}}{K_{\rm SP_1}} = \frac{\Delta H}{R} \left[\frac{1}{T_1} - \frac{1}{T_2}\right]$$

 ΔH = heat of solution

Condition for precipitation

If $Q = K_{SP} \Rightarrow$ Saturated solution

Q = Reaction quotient as per K_{SP}

If $Q < K_{SP} \Rightarrow$ unsaturated solution more solute can be dissolved

If $Q > K_{SP} \Rightarrow$ Precipitate forms super saturated solution

Q. Equal volume of 2×10^{-8} M BaCl₂ and 2×10^{-2} M Na₂SO₄ are mixed. Will there be any precipitate? K_{SP} (BaSO₄) = 10^{-10} .

Ans.
$$Q = [Ba^{+2}][SO_4^{-7}]$$

= $10^{-8} \times 10^{-2}$
= $10^{-10} K_{SP}$ \therefore No Precipitate form

5.12Physical Chemistry-I for JEE (Main & Advanced)

Note: Whenever two solutions having the concentration C_1 and C_2 respectively are mixed in the volume ratio V_1 : V_2 then, new concentration in the final solution is given by

$$C_1' = \frac{C_1 V_1}{V_1 + V_2} \quad C_2' = \frac{C_2 V_2}{V_1 + V_2}$$

Relationship between solubility product and solubility

$$AxBy(s) \rightleftharpoons xA^{+y} + yB^{-x}$$

Solubility: 'S' mol/L уS xS $K_{\rm SP} = [A^{+y}]^x [B^{-x}]^y$ $=(xS)^{x}(yS)^{y}$ $K_{\rm SP} = x^x \cdot y^y, \, s^{x+y}$ $Al_2(SO_4)_3; K_{SP} = 2^2 \cdot 3^3 \cdot S^5$ \Rightarrow

Effect of common ion on solubility of sparingly soluble salts

On adding, common ion solubility decreases

$$\operatorname{AgCl}(s) \rightleftharpoons \operatorname{Ag}^+ + \operatorname{Cl}^-; K_{\operatorname{SP}} = S^2$$

Initials: 'S' mol/L S S On adding NaCl, Conc. 'S' decreased to 'S' mole/L.

if S' solubility S'		C' + C
in 5 soluonity 5		S + C
NaCl \longrightarrow Na ⁺	+	Cl-
C gives C		C + S'

$$K_{\rm SP} = [\rm Ag^+][\rm Cl^-]$$
$$K_{\rm SP} = S'(S' + C)$$

 $S' + C \simeq C$ due to common ion effect for sparingly soluble salt.

$$S' \ll C$$

$$S' = \frac{K_{\rm SP}}{C}$$
 $C =$ Concentration of common ion.

Above formula is applicable, for AB type Salt. If solubility of AgCl in

 $H_2O \rightarrow S_1, 0.1 \text{ M BaCl}_2 \rightarrow S_2, 0.5 \text{ M AgNO}_3 \rightarrow S_3$ then order of solubility $S_1 > S_2 > S_3$ because

$$S' \times \frac{1}{C}$$

Eg. Solubility of $PbI_2 = in$

(i) 0.1 M KI

(ii) 0.1 M Pb(NO₃)₂
$$K_{SP}(PbI_2) = 7.1 \times 10^{-9}$$

Sol

(i)
$$PbI_2 \rightleftharpoons Pb^{+2} + 2I^-$$

 $S' \qquad S' \qquad (2S'+0.1) = 0.1$
 $KI \longrightarrow K^+ + I^-$
 $0.1 M \qquad 0.1 M \qquad 0.1 M$
 $K_{SP} = 7.1 \times 10^{-9} = S' \times (0.1)^2$
 $S' = 7.1 \times 10^{-7} M$
(ii) $PbI_2 \rightleftharpoons Pb^{+2} + 2I^-$
 $(S'+0.1) \qquad 2S'$

Pb(NO₃)₂
$$\longrightarrow$$
 Pb⁺² + 2NO₃⁻
0.1 0.1 0.2
 $K_{SP} = 7.1 \times 10^{-9} = 0.1 \times (2S')^2$
 $S' = \sqrt{\frac{7.1 \times 10^{-9}}{0.1 \times 4}}$
 $S' = \sqrt{\frac{7.1}{4} \times 10^{-4}}$
SIMULTANEOUS SOLUBILT

If two sparingly soluble salt having common ions are present in a solution then, solubility of both the salts decreases because of common ion effects.

For example AgCl and AgBr

$$AgCl(s) \longrightarrow Ag^{+} + Cl^{-};$$

$$x \mod/L \quad (x + y) \quad x$$

$$AgBr(s) \longrightarrow Ag^{+} + Br^{-};$$

$$y \mod/L \quad (x + y) \quad y$$

$$K_{SP}(AgCl) = (x + y)x \qquad \dots(i)$$

$$K_{SP}(AgBr) = (x + y)y \qquad \dots(ii)$$

$$(i) + (ii) \Rightarrow$$

'Y

$$K_{\rm SP}({\rm AgCl}) + K_{\rm SP}({\rm AgBr}) = (x + y)^2$$

$$[Ag^+] = (x + y) = \sqrt{K_{SP}(AgCl) + K_{SP}(AgBr)}$$
$$\frac{K_{SP}(AgCl)}{K_{SP}(AgBr)} = \frac{x}{y}$$

COMPLEX FORMAITON

 $Ag^+ + 2NH_3 \rightleftharpoons [Ag(NH_3)_2]^+$

Formation constant or stability constant for complex.

$$K_f = \frac{[\text{Ag}(\text{NH}_3)_2]^+}{[\text{Ag}^+][\text{NH}_3]^2}$$
(i)

Generally, K_f is the large value, so, reaction for the formation of complex proceeds almost completely.

Stability constant of complex

$$K_{\text{inst}} = \frac{1}{K_f}$$

$$K_f \uparrow \implies K_{\text{inst}} \downarrow \implies \text{Stability of complex} \uparrow$$

Complex formation in more than one-step process

$$Ag^{+} + NH_{3} \rightleftharpoons [Ag(NH_{3})]^{+}; K_{f_{1}}$$

$$K_{f_{1}} = \frac{[Ag(NH_{3})]^{+}}{[Ag^{+}][NH_{3}]}$$

$$[Ag(NH_{3})]^{+} + NH_{3} \rightleftharpoons [Ag(NH_{3})_{2}]^{+}; K_{f_{2}}$$
(ii)

$$K_{f_2} = \frac{[\text{Ag}(\text{NH}_3)_2]^+}{[\text{Ag}(\text{NH}_3)]^+[\text{NH}_3]}$$
(iii)

 $\therefore \qquad K_f = K_{f_1} \times K_{f_2}$

Effect of complex formation in solubility

Due to complex formation, solubility increases. Solubility of AgCl in aqueous NH₃ solution:

AgCl(s)
$$\rightleftharpoons$$
 Ag⁺ + Cl⁻; $K_{SP} = x(x - y)$
 $x \text{ mol/e}$ $x - y x$
Ag⁺ + 2NH₃ \rightleftharpoons [Ag(NH₃)₂]⁺; $K_f = \frac{x}{(x - y)(C - 2x)^2}$
 $x C - x$
 $x - y C - 2y y = x$
 $||_C - 2x$
as K_f is high, so $x = y$

On adding both equations

$$\operatorname{AgCl}(s) + 2\operatorname{NH}_{3}(\operatorname{aq.}) \rightleftharpoons [\operatorname{Ag}(\operatorname{NH}_{3})_{2}]^{+} + \operatorname{Cl}^{-}$$

$$c - 2x \qquad x \qquad x$$

$$K_{f} \times K_{SP} = \frac{x^{2}}{(C - 2x)^{2}}$$

Amphoterism

Zn(OH)₂, Cr(OH)₃, Al(OH)₃ shows amphoterism, show solubility increases because of acidic and basic behaviour.

For example, Zn(OH)₂

Solubility of $Zn(OH)_2$ is because of five forms in the aqueous solution.

Solved Examples

1. Find the pH value:

(i)
$$\frac{M}{1000}$$
 H₂SO₄ (ii) $\frac{N}{100}$ Ba(OH)₂

(iii)
$$\frac{M}{10}$$
Sr(OH)₂

Sol. (i)
$$[H^+] = 2 \times 10^{-3}$$

$$pH = 3 - \log 2 = 2.7$$

(ii) $[OH^{-1}] = 10^{-2}$

$$P^{OH} = 2$$

$$nH = 14 - 2 = 12$$

(iii)
$$[OH^-] = 2 \times 10^{-1}$$

$$P^{OH} = 1 - \log 2 = 1 - 0.3 = 0.7$$

- :. Ph = 14 0.7 = 13.3
- 2. Find the pH of 10^{-7} MHCl.
- Sol. $[H^+] = 10^{-7} + \{10^{-7}\}$ due to self-ionisation of H₂O. = 2 × 10⁻⁷ pH = 7 - log 2 = 6.7

(i) $Zn (OH)_2(s) \rightleftharpoons Zn(OH)_2(aqueous)$ $K_1 = [Zn(OH)_2](aqueous)$

Basic nature

(ii)
$$Zn(OH)_2(aqueous) \rightleftharpoons Zn(OH)^+ + OH^-;$$

$$Kb_1 = K_2 = \frac{[Zn(OH)^+][OH^-]}{[Zn(OH)_2]}$$

(iii) $Zn(OH)^+ \rightleftharpoons Zn^{+2} + OH^-$

$$Kb_2 = K_3 = \frac{[Zn^{+2}][OH^{-}]}{[Zn(OH)^{+}]}$$

Acidic nature

(iv) $Zn(OH)_2(aqueous) + H_2O \rightleftharpoons Zn(OH)_3^- + H^+$

$$K_4 = \frac{[\text{Zn}(\text{OH})_3^-][\text{H}^+]}{[\text{Zn}(\text{OH})_2]}$$

(v)
$$\operatorname{Zn}(\operatorname{OH})_{3}^{-} + \operatorname{H}_{2}\operatorname{O} \rightleftharpoons \operatorname{Zn}(\operatorname{OH})_{4}^{2-} + \operatorname{H}^{+}$$

$$K_{2} = \frac{[\operatorname{Zn}(\operatorname{OH})_{4}]^{-2}[\operatorname{H}^{+}]}{[\operatorname{Zn}(\operatorname{OH})_{4}]^{-2}[\operatorname{H}^{+}]}$$

$$[Zn(OH)_3]$$

: solubility of
$$Zn(OH)_2 = S$$

$$= [Zn(OH)_{2}]aq + [Zn(OH)^{+}] + [Zn^{+2}]$$
$$+ [Zn(OH)_{3}^{-}] + [Zn(OH)_{4}]^{-2}$$
$$= K_{1} + \frac{K_{1}K_{2}}{[OH^{-}]} + \frac{K_{1}K_{2}K_{3}}{[OH^{-}]^{2}} + \frac{K_{1}K_{4}}{[H^{+}]} + \frac{K_{1}K_{4}K_{5}}{[H^{+}]^{2}}$$

Note:

For very diluted solution, i.e., when $[H^+]$ or $[OH^-]$ is $< 10^{-6}M$, while calculating the pH H⁺ or OH⁻ due to self-ionisation of water are taken.

If we consider, the common ion effect of water.

$$\begin{array}{rcl} \mathrm{H_2O} & \Longleftrightarrow & \mathrm{H^+} & + & \mathrm{OH^-} \\ & & x + 10^{-7} & x \\ \mathrm{HCI} & \longrightarrow & \mathrm{H^+} & + & \mathrm{CI^-} \\ & & x + 10^{-7} & 10^{-7} \end{array}$$

$$\begin{array}{rcl} K_W = [\mathrm{H^+}][\mathrm{OH^-}] = 10^{-14} \\ (x + 10^{-7})x = 10^{-14} \\ (x + 10^{-7})x = 10^{-14} \\ x^2 + 10^{-7}x - 10^{-14} = 0 \\ x = 0.618 \times 10^{-7} \\ [\mathrm{H^+}] = 10^{-7} + 0.618 \times 10^{-7} = 1.618 \times 10^{-7} \\ \mathrm{pH} = 6.79 \end{array}$$

3. Find the pH of 10^{-8} M NaOH. **Sol.** $[OH^{-}] = 10^{-8} + 10^{-7}$ $= 1.1 \times 10^{-7}$ $P^{OH} = 7 - \log 1.1$ pH = 14 - 7 + log(1.1) $7 + \log(1.1)$ 4. Calculate the pH of (i) 0.1 M CH₃COOH solution $K_a = 1.8 \times 10^{-5}$ (ii) 10^{-6} M CH₃COOH solution pKa = 4.74 **Sol.** (i) $\alpha = \sqrt{\frac{Ka}{C}}$ $pH = \frac{1}{2} [4.74 - \log 10^{-1}]$ = 2.87 (ii) $[H^+] = C \cdot \alpha$ $Ka = \frac{\alpha^2 c}{1 - \alpha}$ $\Rightarrow \qquad 1.8 \times 10^{-5} = \frac{10^{-6} \times \alpha^2}{1 - \alpha}$ \Rightarrow $\alpha = 0.95$ $[\mathrm{H}^+] = 0.95 \times 10^{-6}$ pH = 6.0225. If $\alpha = 0.01$ for centimolar solution of weak acid. Find the value of P^{Ka} .

ol.
$$K_a = \alpha^2 C$$

= $(10^{-2})^2 \times 10^{-2}$
= 10^{-6}

$$P^{Ka} = 6$$

S

6. Calculate the concentration of OH^- in 10^{-4} M solution if weak acid HA4% ionised.

Sol.
$$[H^+] = 10^{-4} \times \frac{4}{100} = 4 \times 10^{-6}$$

 $[OH^-] = \frac{10^{-14}}{4 \times 10^{-6}} = 2.5 \times 10^{-9} M$

- 7. Calculate the molar concentration of NH₄OH solution that has pH = 12. Given $K_b = 1.8 \times 10^{-5}$.
- **Sol.** $pH = 12 \implies pOH = 2 \implies [OH^{-}] = 10^{-2}$

$$[OH^{-}] = 10^{-2} = \sqrt{1.8 \times 10^{-5} \times C}$$

C = 5.55

- 8. What concentration of FCH₂COOH is needed so that $[H^+]$ is 4×10^{-4} . $K_a = 4 \times 10^{-4}$?
- **Sol.** $[\mathrm{H}^+] = 4 \times 10^{-4} = \sqrt{4 \times 10^{-4} \times C}$

$$C = 4 \times 10^{-4} \Longrightarrow \alpha = \sqrt{\frac{Ka}{C}} = 1$$

 $\Rightarrow \alpha$ is not negligible. If $K_{\alpha}/C > 10^{-3}$ or $\alpha > 5\%$

FCH₂COOH
$$\implies$$
 FCH₂COO⁻ + H⁺
C - a x x = 4 × 10⁻⁴
 $K_a = 4 × 10^{-4} = \frac{(4 × 10^{-4})^2}{C - 4 × 10^{-4}}$
 $K_a = 4 × 10^{-4} M$
9. How much water must be added to 1 L of 0.2 M solution of HA, if α of acid is to be doubled, $K_a = 1.8 × 10^{-4}$
Sol. ' $\alpha' \propto \sqrt{V}$
 $V \propto (\alpha)^2 \therefore \frac{V_i}{V_f} = \left(\frac{\alpha}{2\alpha}\right)^2$
 $V_i = 1 L \Rightarrow V_f = 4 × 1 = 4L$
 \therefore water added = 3 L
10. Calculate the pH of the following solutions:
(i) 200 mL 0.1 M of H₂SO₄ + 300 mL 0.1 M NaOH
(ii) 400 mL 0.05 N H₂SO₄ + 200 mL 0.1 M KOH
(iii) 100 mL 0.1 N HCl + 100 mL 0.1 M Ba(OH)₂
Sol. (i) $[H^+] = \frac{0.1 × 2 × 200 - 0.1 × 1 × 300}{500}$
 $= \frac{10}{500} = 2 × 10^{-2}$
pH = 2 - log 2 = 1.7
(ii) pH = 7 $\therefore \Sigma N_a V_a = \Sigma N_b V_b$
(iii) $[OH^-] = \frac{0.1 \times 100 - 0.1 × 2 × 100}{200}$
 $= \frac{10}{200} = 5 × 10^{-2}$
pOH = 2 - log 5 = 14 - (2 - log 5) = 12 + log 5 = 12.7
11. Calculate the pH of the following solutions:
(i) 50 mL (pH = 1) + 50 mL (pH = 2)
(ii) 50 mL (pH = 2) + 50 mL (pH = 12)
Sol. (i) $[H^+]_1 = 10^{-1}$; 50 mL
 $[H^+]_2 = 10^{-2}$; 50 mL

$$[H^{+}] = \frac{10^{-1} \times 50 + 10^{-2} \times 50}{100}$$

= 5.5 × 10⁻²
pH = 2 - log 5.5 = 1.26
(ii) pH = 12 means basic solution
 $\therefore P_{OH} = 2$ So $[OH^{-}] = 10^{-2}$ M
and pH = 2 So $[H^{+}] = 10^{-2}$ M
Since $\Sigma(NV)$ acid = $\Sigma(NV)$ base \Rightarrow Neutral solu-
tion
= $[H^{+}] = [OH^{-}] = 10^{-7}$
 $\Rightarrow pH = 7$
2. K_{a} for acid HA is 2.5 × 10⁻⁸. Calculate for its decimolar

- 12. K_a for acid HA is 2.5×10^{-8} . Calculate for its decimolar solution at 25°C.
 - (i) % dissociation
 - (ii) pH
 - (iii) OH⁻ ion concentration
Sol. HA
$$\rightleftharpoons$$
 H⁺ + A⁻
 C 0 0
 $C(1-\alpha)$ $C\alpha$ $C\alpha$
 $K_a = \frac{[H^+][A^-]}{[HA]} \Rightarrow K_a = \frac{C\alpha \cdot C\alpha}{C(1-\alpha)} = \frac{C\alpha^2}{(1-\alpha)} \approx C\alpha^2$
(i) $\therefore \alpha = \sqrt{\frac{K_a}{C}} = \sqrt{\frac{2.5 \times 10^{-8}}{1/10}}$ (C = 1/10 M)
 $= 5 \times 10^{-4} = 0.05\%$
(ii) $[H^+] = C\alpha = \frac{1}{10} \times 5 \times 10^{-4} = 5 \times 10^{-5} \text{ mol/L}$
 $\Rightarrow \text{ So pH} = 5 - \log 5 = 4.30$
(iii) $[H^+] [OH^-] = 1 \times 10^{-14}$
 $\therefore [OH^-] = \frac{10^{-14}}{5 \times 10^{-5}} = 2 \times 10^{-10} \text{ mol/L}.$

13. Determine the degree of dissociation of 0.05 M NH₃ at 25° C in a solution of pH = 10.

Sol.
$$NH_4OH \implies NH_4^+ + OH^-$$

 $C = 0 = 0$
 $C - C\alpha = C\alpha = C\alpha$
Given: $pH = 10$
 $[H^+] = 10^{-10}$
 $[H^+] [OH^-] = 1 \times 10^{-14}$
 $\therefore = [OH^-] = \frac{1 \times 10^{-14}}{10^{-10}} = 10^{-4} = C\alpha$
 $\therefore = \alpha = \frac{[OH^-]}{C} = \frac{10^{-4}}{0.05} = 2 \times 10^{-3} \text{ or } 0.2 \%$

- 14. Two weak monobasic organic acids HA and HB have dissociation constants as 1.6×10^{-5} and 0.4×10^{-5} respectively at 25° C. If 500 mL of 1 M solution of each of these two acids are mixed to produce 1 L of mixed solution, what is the pH of the resulting solution ?
- **Sol.** In such cases, we have to consider H^+ from both HA and HB simultaneously. The concentration of HA and HB in the mixture = 0.5 M [equal volumes are mixed] = say 'c'

$$HA \rightarrow H^+ + A$$

$$HB \rightarrow H^+ + B^-$$

Let,
$$x = [H^+]$$
 from HA and $y = [H^+]$ from HB

$$\Rightarrow [H^+]_{\text{final}} = x + y$$

$$K_{\text{UA}} = \frac{(x + y)x}{x} \text{ and } K_{\text{UD}} = \frac{(x + y)y}{x}$$

$$\frac{[\mathrm{H}^+]_{\mathrm{HA}}}{[\mathrm{H}^+]_{\mathrm{HB}}} = \frac{x}{y} = \sqrt{\frac{k_{\mathrm{HA}} \times C}{k_{\mathrm{HB}} \times C}}$$

$$\frac{x}{y} = \sqrt{\frac{1.6 \times 10^{-5}}{0.4 \times 10^{-5}}} = 2$$

$$x = 2y \Rightarrow y = \frac{x}{2}$$

Substitute for
$$y = \frac{x}{2}$$
 in $K_{\text{HA}} = \frac{x^2 + xy}{c} =$
 $1.6 \times 10^{-5} = \frac{2x^2 + x^2}{2 \times 0.5}$
 $3x^2 = 1.6 \times 10^{-5} \Rightarrow x^2 = 5.33 \times 10^{-6}$
 $x = 2.30 \times 10^{-3}$ M, $y = 1.15 \times 10^{-3}$ M
 $[\text{H}^+]_{\text{Final}} = x + y = 2.30 \times 10^{-3} + 1.15 \times 10^{-3}$
 $= 3.45 \times 10^{-3}$ M
pH = $-\log_{10}(3.45 \times 10^{-3})$
pH = 2.462

15. Calculate pH of [HS⁻], [S²⁻], [Cl⁻] in a solution which is 0.1 M HCl and 0.1 M H₂S given that K_{a_1} (H₂S) = 10^{-7} , Ka₂ (H₂S) = 10^{-14} . Also calculate α_1 and α_2 .

Sol.
$$HCl + H_2S$$

0.1 0.1
 $C_1 = C_2 =$

$$C_{1} = C_{2} = 0.1$$

$$pH = 1 \quad (\text{most of } [H^{+}] \text{ comes from } HCl]$$

$$H_{2}S \implies H^{+} + HS^{-}$$

$$0.1(1 - \alpha_{1}) \quad C\alpha_{1} \quad C\alpha_{1} = 0.1 \ \alpha_{1}$$

$$Ka_{1} = \frac{C\alpha_{1} \times 10^{-1}}{C(1 - \alpha_{1})} = \frac{10^{-7}}{10^{-1}} = \alpha_{1}$$

$$\Rightarrow \quad \alpha_{1} = 10^{-6}$$

$$HS^{-} \implies S^{2-} + H^{+}$$

$$C\alpha_{1}(1 - \alpha_{2}) \quad C\alpha_{1}\alpha_{2} \qquad 0.1$$

$$10^{-14} = 0.1 \times \alpha_{2}$$

$$\Rightarrow \quad \alpha_{2} = 10^{-13}$$

$$[S^{2-}] = C\alpha_{1}\alpha_{2}$$

$$= 10^{-6} \times 10^{-1} \times 10^{-13} = 10^{-20} \text{ M}$$

16. Find out K_h at 363 K (90°C) of a salt of [strong acid – weak base] if the value of K_b is 10^{-5} [At 90°C $K_w = 10^{-12}$].

Sol.
$$K_h = \frac{K_w}{K_h} = \frac{10^{-12}}{10^{-5}} = 10^{-7}$$

- 17. How many grams of NH₄Cl should be dissolved per litre of solution to have a pH of 5.13 ? K_b for NH₃ is 1.8×10^{-5} ?
- **Sol.** NH₄Cl is a salt of strong acid and weak base for solutions of such salts.

$$pH = \frac{1}{2} \left[pK_W - \log C - pK_b \right]$$

$$\Rightarrow \quad 10.26 = 14 - \log C - 4.74$$

$$\Rightarrow \log C = 9.26 - 10.26 = -1.0$$

$$C = 10^{-1} \text{ M}$$
[NH₄Cl] = 10⁻¹ M
 $W_{\text{NH}_4\text{NO}_3} = 10^{-1} \times 53.5 \text{ gL}^{-1} = 5.35 \text{ gL}^{-1}$

18. What is the pH of 0.4 M aqueous NaCN solution? (Given: pK_b of $CN^- = 4.70$)

Sol. pK_a for HCN = 14 - 4.7 = 9.30 NaCN + H₂O \implies NaOH + HCN C 0 0 C(1-h) Ch Ch 5.16 Physical Chemistry-I for JEE (Main & Advanced)

∴
$$[OH^{-}] = Ch = C\sqrt{\frac{K_h}{C}} = \sqrt{K_hC} = \sqrt{\frac{K_wC}{K_a}}$$

 $pOH = \frac{1}{2}[pK_w - pK_a - \log C]$
 $= \frac{1}{2}[14 - 9.30 - \log (0.4)] = 2.548$
∴ $pH = 14 - 2.5 = 11.45$

- 19. The acid ionisation constant for $Zn^{2+} + H_2O \Longrightarrow Zn(OH)^+ + H^+$ is 1.0×10^{-9} . Calculate the pH of 0.10 M solution of $ZnCl_2$. Also calculate the basic dissociation constant of $Zn(OH)^+$.
- **Sol.** $Zn^{2+} + H_2O \Longrightarrow Zn(OH)^+ + H^+$

$$\therefore [\mathrm{H}^+] = C \cdot h = C \sqrt{\frac{K_h}{C}} = \sqrt{K_h C}$$
$$= \sqrt{\frac{K_w C}{K_b}} \begin{bmatrix} \text{where } K_b \text{ is the basic dissociation of} \\ \mathrm{Zn}(\mathrm{OH})^+ \\ \text{i.e., } \mathrm{Zn}(\mathrm{OH})^+ \Longrightarrow \mathrm{Zn}^{2+} + \mathrm{OH}^- \end{bmatrix}$$

We know Zn^{2+} and $Zn(OH)^+$ are conjugate acid and base.

$$\therefore \quad K_a \times K_b = 10^{-14}$$

or $K_b = \frac{10^{-14}}{10^{-9}} = 10^{-5}$
Now, $[H^+] = \sqrt{\frac{10^{-14} \times 0.1}{10^{-9}}} = \sqrt{10^{-6}} = 10^{-3}$

pH = 3

or

20. What is the pH of a mixture containing 0.2 M X⁻ (base) and 0.4 M HX with pK_b (X⁻) = 4?

Sol. HX
$$\Longrightarrow$$
 H⁺ + X⁻, $K_a = \frac{10^{-14}}{K_b} = 10^{-10}$
[H⁺] = $K_a \frac{[\text{HX}]}{[\text{X}^-]} = \frac{10^{-10} \times 0.4}{0.2}$

or $pH = 10 - \log 2$

21. The pH of a mixture of 1 M benzoic acid ($pK_a = 4.2$) and 1 M sodium benzoate is 4.5, in 150 mL buffer, benzoic acid find volume of benzoic acid.

Sol.
$$pH = pK_a + \log \frac{[salt]}{[Acid]}$$

 $4.5 = 4.2 + \log \left[\frac{(150 - x)}{x}\right]$ where x is the volume of benzoic acid

$$0.3 = \log\left[\frac{(150 - x)}{x}\right] \text{ or } 2.0 = \left[\frac{(150 - x)}{x}\right]$$
$$x = 50 \text{ mL}$$

- **22.** What is the ratio of salt to acid when the buffering action of a mixture of CH_3COOH and CH_3COONa is maximum?
- Sol. The buffer action of a buffer mixture is effective in the pH range $pK_a \pm 1$. It is maximum when pH = pK_a .
- **23.** What amount of sodium propanoate should be added to one litre of an aqueous solution containing 0.02 mole of propanoic acid to obtain a buffer solution of pH 4.74? What will be the pH if 0.01 mol HCl is dissolved in the above buffer solution ? Compare the last pH value with the pH of 0.01 molar HCl solution. Dissociation constant of propanoic acid at 25° C is 1.34×10^{-5} .
- Sol. Using Henderson's expression

$$pH = pK_a + \log \frac{[\text{salt}]}{[\text{acid}]}$$

We get 4.74 = - log (1.34 × 10⁻⁵) + log $\frac{[\text{Salt}]}{0.02}$

which gives
$$4.74 = 4.87 + \log \frac{[Salt]}{0.02}$$

or
$$\log \frac{[\text{Salt}]}{0.02} = -0.13 = \log 0.74$$

or
$$[Salt] = 1.48 \times 10^{-2} \,\mathrm{M}$$

Hence, amount of sodium propanoate to be added = $1.48 \times 10^{-2} \times 96$ g = 1.42 g.

The addition of 0.01 mol of HCl converts the equivalent amount of sodium propanoate into propanoic acid. Hence, we will have

pH = 4.87 + log
$$\frac{(0.01482 - 0.01) \text{ mol } \text{L}^{-1}}{(0.02 + 0.01) \text{ mol } \text{L}^{-1}}$$

pH = 4.87 + log (0.160) = 4.87 - 0.79 = 4.08(The pH of 0.01 molar HCl solution will be pH = -log (0.01) = 2)

24. Equal volumes of 0.04 M CaCl₂ and 0.0008 M Na₂SO₄ are mixed. Will we get a precipitate?

$$K_{sp} \text{ for } \operatorname{CaSO}_{4} = 2.4 \times 10^{-5}$$
Sol.
$$\begin{array}{c} CaCl_{2} + Na_{2}SO_{4} \rightarrow CaSO_{4} + 2NaCl \\ Millimole \ 0.04 \ V \quad 0.0008 \times V \quad 0 \quad 0 \\ added \\ Summers \ V mL \ of hoth one mixed \end{array}$$

Suppose V mL of both are mixed

$$\therefore \quad [Ca^{2+}] = \frac{0.04 \text{ V}}{2 \text{ V}}$$

$$[SO_4^{2-}] = \frac{0.0008 \text{ V}}{2 \text{ V}}$$

$$\therefore \quad [Ca^{2+}][SO_4^{2-}] = \frac{0.04 \text{ V}}{2 \text{ V}} \times \frac{0.0008 \text{ V}}{2 \text{ V}} = 8 \times 10^{-6}$$
Thus, $[Ca^{2+}][SO_4^{2-}]$ in solution $< K_{sp}$
 $8 \times 10^{-6} < 2.4 \times 10^{-5}$

$$\therefore \quad CaSO_4 \text{ will not precipitate.}$$

25. Calculate the [OH⁻] of a solution after 50.0 mL of 0.2 M MgCl₂ is added to 50.0 mL of 0.4 M NaOH. K_{sp} of Mg(OH)₂ is 1.2×10^{-11} .

Sol. $MgCl_2 + 2NaOH \rightarrow Mg(OH)_2 + 2NaCl$ initially 10 mm 20 mm 0 0 final 0 0 10 mm 20 mm Thus, 10 m mole of Mg(OH)2 are formed. The product of $[Mg^{2+}][OH^{-}]^2$ is, therefore, $\left[\frac{10}{100}\right] \times \left[\frac{20}{100}\right]^2 = 4 \times$ 10^{-3} which is more than K_{sp} of Mg(OH)₂. Now solubility (S) of $Mg(OH)_2$ can be derived by $K_{\rm sp} = 4S^3$ $S = \sqrt[3]{K_{\rm sp}} = \sqrt[3]{1.2 \times 10^{-11}} = 1.4 \times 10^{-4} \text{ M}$ *.*..

:.
$$[OH^{-}] = 2S = 2.8 \times 10^{-4} M$$

- 26. Will a precipitate of Mg(OH)₂ be formed in a 0.002 M solution of Mg(NO₃)₂, if the pH of solution is adjusted to 9? K_{sp} of Mg(OH)₂ = 8.9 × 10⁻¹².
- Sol. pH = 9
 - \therefore [H⁺] = 10⁻⁹ M
 - or $[OH^{-}] = 10^{-5} M$

Now if Mg(NO₃)₂ is present in a solution of $[OH^{-}] = 10^{-5}$ M, then,

Product of ionic conc.

- $= [Mg^{+2}] [OH^{-}]^{2} = [0.002] [[10^{-5}]^{2}$
- = 2 × 10⁻¹³ lesser than K_{sp} of Mg(OH)₂, i.e., 8.9 × 10⁻¹² ∴ Mg(OH)₂ will not precipitate.
- 27. You are given 10^{-5} M NaCl solution and 10^{-8} M AgNO₃ solution, they are mixed in 1:1 volume ratio. Predict whether AgCl will be precipitated or not, if solubility product of AgCl in 10^{-2} M AgNO₃ is = 10^{-10} mole L⁻¹?

Sol. Ionic product =
$$\frac{10^{-5}}{2} \times \frac{10^{-8}}{2} = 25 \times 10^{-15} < k_{sp}$$

Hence no precipitation will take place.

28. In the excess of NH₃(aqueous), Cu⁺² ion form a deep blue complex ion $[Cu(NH_3)_4]^{2+}$ which has $K_f = 10^{11}$. If the concentration of Cu⁺² ion in solution prepared by adding 5×10^{-3} mol. of CuSO₄ to 0.5 L of 0.4 M NH₃ (aqueous) is $\frac{A}{10^{-4}}$. Then, what is the value of A?

equeous) is
$$\frac{1}{(36)^4}$$
. Then, what is the value of A?

Sol.
$$Cu^{+2} + 4NH_3 \iff [Cu(NH_3)_4]^{+2}$$

Init.: 0.01 0.4 -
ion: $[Cu^{+2}]$ 0.4 - 4 × 0.01 0.01
= 0.36

$$10^{11} = \frac{0.01}{[Cu^{+2}][0.36]^4} \Rightarrow [Cu^{+2}] = \frac{10^{-5}}{[36]^4}$$

29 Calculate the molar solubility of AgBr in 0.1 M Na₂S₂O₃ (aqueous) solution. K_{sp} of AgBr = 5 × 10⁻¹³ and K_f [Ag(S₂O₃)³⁻] = 5 × 10¹³.

Sol. AgBr(s) \Longrightarrow Ag⁺ + Br⁻ x xAg⁺ + 2S₂O₃²⁻ \rightleftharpoons Ag(S₂O₃)₂³⁻ x - y 0.1 - 2x x

AgBr(s) + 2S₂O₃²⁻
$$\rightleftharpoons$$
 Ag(S₂O₃)₂³⁻ + Br⁻
(0.1 - 2x) x x
 $K_f \times K_{SP} = 5 \times 10^{13} \times 5 \times 10^{-13} = \frac{x^2}{(0.1 - 2x)^2}$
 $5 = \frac{x}{0.1 - 2x} \Longrightarrow x = 0.045 \text{ M}$

Selective Precipitation

30. In a solution of 10^{-3} M Cl⁻ and 10^{-2} M CrO₄²⁻, if solid AgNO₃ is gradually added, which will precipitate first AgCl, Ag₂CrO₄. Assuming no change in volume, what % of Cl⁻ ion originally present remain in solution when Ag₂CrO₄ begin to precipitate? $K_{sp}(AgCl) = 10^{-10}$, $K_{sp}(Ag_2CrO_4) = 10^{-12}$.

Sol. For ppt. of AgCl

$$10^{-10} < [Ag^+][Cl^-]$$

 $\therefore [Ag^+] > 10^{-7}M$
For ppt. of Ag₂CrO₄

$$10^{-12} < [Ag^+]^2 [CrO_4^{2-}]$$

$$Ag^{+} > 10^{-5}M$$

So AgCl Start Precipitate Before Ag₂CrO₄

To precipitate
$$Ag_2CrO_4$$
 before AgCl

$$10^{-10} = [Ag^+][Cl^-] = 10^{-5} \times [Cl^-]$$

$$[CI^{-}] = 10^{-5} M$$

% of Cl⁻ ion originally present remain in solution when Ag_2CrO_4 begin to precipitate

$$\%[Cl^{-}] = \frac{10^{-5}}{10^{-3}} \times 100 = 1\%$$

- **31.** What is the maximum volume of water required to dissolve 1 g of calcium sulphate at 25°C. For calcium sulphate, $K_{sp} = 9.0 \times 10^{-6}$.
- **Sol.** $\operatorname{CaSO}_4(\operatorname{aq}) \rightleftharpoons \operatorname{Ca}^{2^+}(\operatorname{aq}) + \operatorname{SO}_4^{2^-}(\operatorname{aq})$ If S is the solubility of CaSO_4 in moles L^{-1} $K_{sp} = [\operatorname{Ca}^{2^+}] \times [\operatorname{SO}_4^{2^-}] = \operatorname{S}^2$

$$S = \sqrt{K_{sp}} = \sqrt{9.0 \times 10^{-6}}$$

= 3 × 10⁻³ mol L⁻¹
= 3 × 10⁻³ × 136 g L⁻¹ = 0.408 g L⁻¹

For dissolving 0.408 g of $CaSO_4$ water required

$$\frac{1}{0.408}$$
L = 1 L

•

: for dissolving 1g CaSO₄ water required = 2.45 L.

- **32.** Calculate simultaneous solubility of AgCNS and AgBr in a solution of water. K_{sp} of AgBr = 25×10^{-13} and K_{sp} of AgCNS = 5×10^{-12} .
- **Sol.** Let solubility of AgCNS and AgBr in a solution be a and b mol L⁻¹ respectively.

$$\operatorname{AgCNS}(s) \rightleftharpoons \operatorname{Ag^{+}} + \operatorname{CNS^{-}}_{a \quad a}$$

AgBr (s)
$$\Longrightarrow$$
 Ag⁺ + Br⁻
 b b
 \therefore For AgCNS $K_{sp_{AgCNS}} = [Ag^+][CNS^-]$
 $5 \times 10^{-12} = (a + b)(a)$...(i)

 $K_{\rm sp_{AgBr}} = [\rm Ag^+][\rm Br^-]$

For AgBr

 $25 \times 10^{-13} = (a+b)(b)$...(ii)

By Eqs (i) and (ii),

- $\therefore \qquad \frac{a}{b} = \frac{5 \times 10^{-12}}{25 \times 10^{-13}} = 2 \quad \text{or} \quad a = 2b$
- $\therefore \quad \text{By Eq. (i), } (2b+b)(2b) = 1 \times 10^{-12}$ $6b^2 = 5 \times 10^{-12}$ $b = 0.912 \times 10^{-6} \text{ mol } \text{L}^{-1} = 9.12 \times 10^{-5} \text{ M}$ $\text{By Eq. (i), } (a + a/2) (a) = 5 \times 10^{-12}$ $a = 1.82 \times 10^{-6} \text{ mol } \text{L}^{-1}$
- **33.** What $[H^+]$ must be maintained in saturated H₂S(0.1 M) to precipitate CdS but not ZnS, if $[Cd^{2+}] = [Zn^{2+}] = 0.1$ initially ?

$$\begin{split} K_{\rm sp} &= ({\rm CdS}) = 8 \times 10^{-27} \\ K_{\rm sp} &= ({\rm ZnS}) = 1 \times 10^{-21} \\ K_a &= ({\rm H_2S}) = 1.1 \times 10^{-21} \\ \textbf{Sol.} & \text{In order to prevent precipitation of ZnS} \\ & [{\rm Zn}^{2+}][{\rm S}^{2-}] < K_{\rm sp}({\rm ZnS}) = 1 \times 10^{-21} \\ & (\text{ionic product}) \\ \text{or} & (0.1)[{\rm S}^{2-}] < 1 \times 10^{-21} \\ \text{or} & [{\rm S}^{2-}] < 1 \times 10^{-20} \\ \text{This is the maximum value of } [{\rm S}^{2-}] \text{ before ZnS will} \\ \text{precipitate. Let } [{\rm H}^+] \text{ to maintain this } [{\rm S}^{2-}] \text{ be } x. \text{ Thus} \end{split}$$

 $K_a = \frac{[\mathrm{H}^+]^2 [\mathrm{S}^{2-}]}{[\mathrm{H}_2 \mathrm{S}]} = \frac{x^2 (1 \times 10^{-20})}{0.1}$ $= 1.1 \times 10^{-21}$

$$x = [H^+] = 0.1 M$$

for $H_2S \Longrightarrow 2H^+ + S^{2-}$

 \therefore No ZnS will precipitate at a concentration of H⁺ greater than 0.1 M.

Exercise

or

C LEVEL I

1. If K_W for H₂O at 90°C is 10^{-12} M², then what would be the dissociation constant of water at the same temperature? [Assume $d_{\rm H_2O} = 1$ g/mL]

(a) 10^{-14} (b) 1.8×10^{-16}

- (c) 1.8×10^{-14} (d) 10^{-12}
- **2.** If 100 mL of 0.1 M CH₃COOH is titrated against 50 mL of 0.1 M NaOH. Calculate pH of resulting solution if p_{Ka} for CH₃COOH = 4.76.

(a) 4.76 (b) 4.46 (c) 5.06 (d) 2.76

3. What is the minimum pH required to prevent the precipitation of ZnS in a solution that is 0.01 M ZnCl₂ and saturated with 0.10 M H₂S ? [Given $K_{sp} = 10^{-21}$, $K_{a_1} \times K_{a_2} = 10^{-20}$]

4. 4 mL of HCl solution of pH = 2 is mixed with 6 mL of NaOH solution of pH = 12. What will be the final pH of solution? log 2 = 0.3

(a) 10.3 (b) 11.3 (c) 11 (d) 4.3

- 5. A solution of CuSO₄ is
 (a) acidic in nature
 (b) alkaline in nature
 (c) neutral in nature
 (d) amphoteric in nature
- 6. The pH of 0.5 (M) Ba(CN)₂ solution is [Given: pK_b of CN⁻ = 9.3]

(a)
$$8.35$$
 (b) 3.35 (c) 9.35 (d) 9.5

(a) is increased

- (b) is decreased
- (c) remain constant
- (d) changes which cannot be predicted unless dissociation constant of weak acid or weak base is provided.
- 8. 100 mL solution (I) of buffer containing 0.1(M) HA and 0.2 (M) A⁻, is mixed with another solution (II) of 100 mL containing 0.2(M) HA and 0.3(M) A⁻. After mixing, what is the pH of resulting solution? [Given: pK_a of HA = 5]
 - (a) $5 \log 5/3$ (b) $5 + \log 5/3$
 - (c) $5 + \log 2/5$ (d) $5 \log 5/2$
- 9. K_b of an acid-base indicator H In is 10⁻⁹. The pH at which its 10⁻³ (M) solution shows the colour change?
 (a) 9 (b) 7 (c) 5 (d) 3
- 10. K_{sp} of SrF₂ (s) in water is 3.2 × 10⁻¹⁴. The solubility of SrF₂ (s) in 0.1 (M) NaCl solution is
 (a) 3.2 × 10⁻⁹ (M)
 - (b) 2×10^{-5} (M)
 - (c) 4×10^{-4} (M)
 - (d) Slightly higher than 2×10^{-5} (M)
- 11. What will be the value of K_w at 90°C, if [H⁺] in pure water is 10⁻⁶ gram ion per litre?
 - (a) 10^{-10} (b) 10^{-16}
 - (c) 1×10^{-12} (d) 2×10^{-6}
- **12.** Concentration of [H⁺] will decrease on mixing which of the following salts with the solution of acetic acid?
 - (a) KCN (b) NaCl (c) NH_4Cl (d) $Al_2(SO_4)_3$

- **13.** Aqueous solution of $FeCl_3$
 - (a) turns blue litmus solution red.
 - (b) turns red litmus solution blue.
 - (c) decolourises litmus solution.
 - (d) does not affect litmus solution.
- 14. When HCl gas is passed in saturated solution of common salt, then pure NaCl is precipitated, because
 - (a) Ionic product of Na⁺ and Cl⁻ exceeds the solubility product of NaCl.
 - (b) HCl is highly soluble in water.
 - (c) ionisation of NaCl is decreased due to chloride ions of HCl.
 - (d) HCl absorbs impurities.
- 15. Which of the following has maximum value of solubility product?
 - (a) $Fe(OH)_3$ (b) $Al(OH)_3$
 - (c) $Cr(OH)_3$ (d) $Zn(OH)_2$
- 16. Which of the following is true for aqueous solution of CH₃NH₂ of 0.1 M concentration?

-	-			
(a)	$[OH^-]$	= 0.1 M	(b)	pH = 0

- (c) pH < 7(d) pH > 7
- 17. If pH of 0.1M acetic acid is 3.0, then dissociation constant of this acid will be

(a)	1×10^{-4}	(b)	1×10^{-5}
(c)	1×10^{-3}	(d)	1×10^{-8}

18. Solution of which of the following will have maximum pH value?

(a)	NaCl	(b)	Na ₂ CO ₃

(d) NaHCO₃ (c) NH_4Cl

- 19. A precipitate will be obtained on mixing equal volume of which of the following solutions, if $K_{sp} = 1.8 \times$ 10^{-10} ?
 - (a) 10^{-4} M [Ag⁺] and 10^{-4} M [Cl⁻]
 - (b) 10^{-5} M [Ag⁺] and 10^{-5} M [Cl⁻]
 - (c) 10^{-6} M [Ag⁺] and 10^{-6} M [Cl⁻]
 - (d) 10^{-10} M [Ag⁺] and 10^{-4} M [Cl⁻]
- 20. Which of the following is present in an aqueous solution of Na₂CO₃?

(a) H_2CO_3 , Na^+ , OH^- (b) H₂CO₃, OH⁻

- (c) CO_3^{-2} ion (d) Na⁺ and OH⁻ ion
- **21.** Why is NH_4Cl added before NH_4OH in qualitative analysis of third group ions?
 - (a) To increase concentration of OH⁻.
 - (b) To decrease concentration of OH⁻.
 - (c) To make solution dilute.
 - (d) For pure precipitation.
- **22.** What is the volume of water needed to make normality of the solution 3N, prepared by mixing 250 mL 6 M HCl and 350 mL 8M HNO₃?
 - (b) 933.3 mL (a) 833.3 mL
 - (c) 1000 mL (d) 500 mL
- **23.** On dilution of a solution formed from CH_3COONH_4
 - (a) pH decreases
 - (b) pH increases

- (c) pH remains unchanged
- (d) None of the above
- 24. Which of the following indicators is appropriate in the titration of NH₄OH and strong acid?
 - (a) Phenolphthalein (b) Methyl orange
 - (d) Litmus (c) Phenol red
- 25. What will be the mole fraction of acetone in the solution formed by 1.8 gram of water and 2.9 gram of acetone?

(a)
$$\frac{2}{3}$$
 (b) 2.9 (c) $\frac{1}{3}$ (d) $\frac{2.9}{4.7}$

- **26.** Value of pK_a for acetic acid at 25°C is 4.75, then what will be the pH value of the solution in which ratio of concentration of sodium acetate and acetic acid is 10? (d) 10.0 (a) 3.75 (b) 4.75 (c) 5.75
- 27. Phenophthalein gives which of the following colours in acidic medium?
 - (a) Pink (b) Red
 - (d) Violet (c) No colour
- 28. If pKa of acetic acid at 25°C is 4.75, then determine the pH of that solution in which 0.02 M sodium acetate and acetic acid are present.
 - (a) 4.75 (b) 3.75 (d) 2.75 (c) 5.75
- **29.** Which of the following ions are present in the solution of the monosodium salt of orthophosphoric acid?
 - (a) Na^+ , PO_4^{-3} , $H_2PO_4^{-2}$, HPO_4^{-1}
 - (b) Na^+ , HPO_4^{-2}
 - (c) Na^+ , $H_2PO_4^-$, HPO_4^{-2} , PO_4^{-3} (d) Na^+ , HPO_4^{-2} , PO_4^{-3}
- **30.** What is the concentration of Ag^+ ion in a 1L solution containing 0.02 mol of AgNO₃ and 0.14 mol of NH₃. For Ag(NH₃)⁺₂, $K_{\text{stab}} = 10^8$.
 - (b) 10⁻⁸(M) (a) 2×10^{-7} (M)
 - (d) 2×10^{-9} (M) (c) 2×10^{-8} (M)
- **31.** A 50 mL solution of pH = 1 is mixed with a 50 mL solution of pH = 2. then pH of the mixture will be nearly (a) 0.76 (b) 1.26 (c) 1.76 (d) 2.26
- 32. The pH of a solution is 7.00. To this solution, sufficient base is added to increase the pH to 12.0. The increase in OH- ion concentration is-
 - (a) 5 times (b) 1000 times
 - (c) 10^5 times (d) 4 times
- **33.** The dissociation constants of two acids HA_1 and HA_2 are 3.0×10^{-4} and 1.8×10^{-5} respectively. The relative strengths of the acids will be approximately

(c) 1:16 (a) 1:4 (b) 4:1 (d) 16:1

34. If 50 mL of 0.2 (M) KOH is added to 40 mL of 0.5(M) HCOOH. The pH of the resulting solution is $(K = 1.8 \times$ 10^{-4})

(a) 3.75 (d) 3.4 (b) 5.6 (c) 7.5

35. The sodium salt of a certain weak monobasic organic acid is hydrolysed to an extent of 3% in its 0.1 M solu-

tion at 25°C. Given that the ionic product of water is 10^{-14} at this temperature, what is the dissociation constant of the acid?

(a) $\approx 1 \times 10^{-10}$ (b) $\approx 1 \times 10^{-9}$

(c) 3.33×10^{-9} (d) 3.33×10^{-10}

36. When $100 \text{ mL of } 0.4 \text{ M CH}_3\text{COOH}$ are mixed with 100mL of 0.2 M NaOH, the $[H_3O^+]$ in the solution is approximately : [Ka(CH₃COOH) = 1.8×10^{-5}]

(a) 1.8×10^{-6} (b) 1.8×10^{-5}

(d) 9×10^{-5} (c) 9×10^{-6}

37. What will be the pH at the equivalence point during the titration of a 100 mL 0.2 M solution of CH₃COONa with 0.2 M solution of HCl ? $Ka = 2 \times 10^{-5}$

(a)
$$3 - \log \sqrt{2}$$
 (b) $3 + \log \sqrt{2}$

(c)
$$3 - \log 2$$
 (d) $3 + \log 2$

(c) $3 - \log 2$ (d) $3 + \log 2$ **38.** What % of the carbon in the H₂CO₃, HCO₃⁻. Buffer should be in the form of HCO_3^- so as to have a neutral solution ? ($Ka = 4 \times 10^{-7}$)

(a) 20 % (b) 40 % (c) 60 % (d) 80 %

39. 50 mL of 0.1 M NaOH is added to 60 mL of 0.15 M H₃PO₄ solution (K_1 , K_2 and K_3 may be taken as 10^{-3} , 10^{-8} and 10^{-13} respectively). The pH of the mixture would be about

(a) 3.1 (b) 5.5 (c) 4.1 (d) 6.5

40. The concentration of Mg^{2+} in the solution made by mixing 10 mL of 0.25 M Mg(NO₃)₂ and 25 mL of 0.2 M NaF will be $(K_{sp}(MgF_2 = 8 \times 10^{-8}))$

- (c) 0.0030 M (d) 0.0060 M 41. The precipitate of $CaF_2(K_{sp} = 1.7 \times 10^{-10})$ is obtained when equal volumes of which of the following are mixed?
 - (a) 10^{-4} M Ca²⁺ + 10^{-4} M F⁻

 - (b) 10^{-2} M Ca²⁺ + 10^{-3} M F⁻ (c) 10^{-5} M Ca²⁺ + 10^{-3} M F⁻
 - (d) 10^{-3} M Ca²⁺ + 10^{-5} M F⁻
- **42.** 1 CC of 0.1 N HCl is added to 99 CC solution of NaCl. The pH of the resulting solution will be

(d) 1 (a) 7 (b) 3 (c) 4

43. If pK_b for fluoride ion at 25°C is 10.83, the ionisation constant of hydrofluoric acid in water at this temperature is

(a) 1.74×10^{-5} (b) 3.52×10^{-3}

(c) 6.75×10^{-4} (d) 5.38×10^{-2}

44. The pH of 2.0×10^{-4} M H₃X solution assuming first dissociation to be 100%, second to be 50% and third to be negligible is

45. What is the pH of 10% dissociated $\frac{M}{200}$ H₂CO₃ solution tion?

(a)
$$3$$
 (b) 4 (c) 5 (d) 6

46. pH of 0.01 M solution of potassium propionate is 8. What is the pK_a of propionic acid?

LEVEL II

- 1. 100 mL of 0.02 M benzoic acid ($pK_a = 4.2$) is titrated using 0.02 M NaOH. pH after 50 mL and 100 mL of NaOH have been added are
 - (b) 4.2, 7 (a) 3.50,7
 - (d) 4.2, 8.25 (c) 4.2, 8.1
- 2. What is the difference in pH for 1/3 and 2/3 stages of neutralisation of 0.1 M CH₃COOH with 0.1 M NaOH? (a) $-2 \log 3$ (b) $2 \log(1/4)$
 - (c) $2 \log (2/3)$ (d) $-2 \log 2$
- 3. The pH of 1.0 M NaHSO₄ solution will be (given that K_1 and K_2 for H₂SO₄ equal to ∞ and 10⁻² respectively)-(b) between 2 and 3 (a) nearly 1.0
 - (c) between 1.2 and 1.8 (d) between 3 and 4
- 4. At 25 °C, the dissociation constant of HCN and HF are 4×10^{-10} and 6.7×10^{-4} . The pH of a mixture of 0.1 M HF and 0.1 M HCN.

(a)
$$2.087$$
 (b) 3.0 (c) 5.5 (d) 6.0

5. The pH of a solution prepared by mixing 50.0 mL of 0.200 M CH₃CO₂H and 50.0 mL of 0.100 M NaOH. $K_a = 1.8 \times 10^{-5}$.

6. What fraction of an indicator Hln is in the basic form at a pH of 6 if pK_a of the indicator is 5?

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{11}$ (c) $\frac{10}{11}$ (d) $\frac{1}{10}$

7. An acid-base indicator which is a weak acid has a pK_a value = 5.5. At what concentration ratio of sodium acetate to acetic acid will the indicator show a colour half-way between those of its acid and conjugate base forms ? pK_a of acetic acid = 4.75.

(a) 4.93 : 1 (b) 6.3 : 1 (c) 5.62 : 1 (d) 2.37 : 1

8. What is the percentage hydrolysis of NaCN in N/80 solution when the dissociation constant for HCN is 1.3×10^{-9} and $K_w = 1.0 \times 10^{-14}$.

(b) 5.26 (a) 2.48 (c) 8.2 (d) 9.6

- 9. The OH⁻ concentration at the equivalent point when a solution of 0.1 M acetic acid is titrated with a solution of 0.1 M NaOH. K_a for the acid = 1.9×10^{-5} . (a) 7×10^{-7} (b) 5.2×10^{-7} (c) 5.2×10^{-6} (d) 7.2×10^{-7}
- 10. A solution contains HCl, Cl₂HCCOOH and CH₃COOH at concentrations 0.09 M in HCl, 0.09 M in Cl₂HC-COOH and 0.1 M in CH₃COOH, pH for the solution is 1. K_a CH₃COOH = 10⁻⁵. What is the Ka for dichloroacetic acid?

(a)
$$1.25 \times 10^{-4}$$
 (b) 1.25×10^{-3}
(c) 1.25×10^{-6} (d) 1.25×10^{-2}

11. A solution of ammonia bought for cleaning the windows was found to be 10% ammonia by mass, having a density of 0.935 g.mL^{-1} . What is the pH of the solution. Take K_b for protonation of ammonia = 5.5×10^{-6} . (a) 10.7 (b) 2.3 (c) 11.7 (d) 6.7

12. The k_w of water at two different temperature is:-

25°C Τ 50°C

 k_w 1.08 × 10⁻¹⁴ 5.474 × 10⁻¹⁴

Assuming that ΔH of any reaction is independent of temperature. The enthalpy of neutralization of a strong acid and strong base.

- (a) 51.95 J/mole (b) 51.95 kJ/mole
- (c) 5.195 kJ/mole (d) 519.5 kJ/mole
- 13. Calculate the pH of the following solution 40 mL of $0.050 \text{ M Na}_2\text{CO}_3 + 50 \text{ mL of } 0.040 \text{ M HCl Use H}_2\text{CO}_3$; For H₂CO₃ $\rightarrow k_1 = 4.2 \times 10^{-7}, k_2 = 4.8 \times 10^{-11}$ (a) 8.35 (b) 8.0 (c) 6.65 (d) 7.0
- 14. Calculate the pH of the following solution given for $H_3PO_4 \rightarrow k_1 = 7.5 \times 10^{-3}, k_2 = 6.2 \times 10^{-8}, k_3 = 10^{-12}$ 40 mL of 0.020 M Na₃PO₄ + 40 mL of 0.040 M HCl: (a) 4.66 (b) 12.66 (c) 8.64 (d) 2.66
- 15. How many moles of HCl can be added to 1.00 L of a solution 0.1 M in NH₃ and 0.1 M in NH₄Cl without changing the pOH by more than 1.00 unit? Assume no change in volume. $K_b(NH_3) = 1.8 \times 10^{-5}$.
 - (a) 0.82 moles (b) 0.05 moles

(c) 0.082 moles (d) 0.03 moles

- 16. Calculate the OH⁻ concentration of a solution prepared by dissolving 0.1 mol of Na₃PO₄ in sufficient water to make 1 L of solution $K_1 = 7.1 \times 10^{-3}$, $K_2 = 6.3 \times 10^{-8}$, $K_3 = 4.5 \times 10^{-13}$.
 - (a) $3.73 \times 10^{-2} \,\mathrm{M}$ (b) $3.73 \times 10^{-4} \,\mathrm{M}$

(c) 3.73×10^{-6} M (d) $3.73 \times 10^{-10} \,\mathrm{M}$

- 17. Calculate the H_3PO_4 concentration of a solution prepared by dissolving 0.1 mol of Na₃PO₄ in sufficient water to make 1 L of solution $K_1 = 7.1 \times 10^{-3}$, $K_2 = 6.3 \times 10^{-8}, K_3 = 4.5 \times 10^{-13}.$ (a) 3.93×10^{-12} M (b) 5.
 - (b) $5.93 \times 10^{-18} \text{ M}$
 - (c) 4.5×10^{-13} M (d) 6. 3×10^{-8} M
- 18. A solution of weak acid HA was titrated with base NaOH. The equivalence point was reached when 36.12 mL of 0.1 M NaOH was added. Now 18.06 mL of 0.1 M HCl were added to titrated solution, the pH was found to be 4.92. What will be the pH of the solution obtained by mixing 10 mL of 0.2 M NaOH and 10 mL of 0.2 M HA?

19. A weak base BOH was titrated against a strong acid. The pH at 1/4th equivalence point was 9.24. Enough strong base was now added (6 m. eq.) to completely convert the salt. The total volume was 50 mL. Find the pH at this point.

(a) 11.2 (b) 2.8 (d) 6.8 (c) 10 **20.** Calculate pH of 1M NaHCO₃ is given

- $H_2CO_3 + H_2O \Longrightarrow HCO_3^- + H_3O^+, \quad pK_1 = 6.38$ $HCO_3^- + H_2^- O \Longrightarrow CO_3^{-2} + H_3^- O^+,$ $pK_2 = 10.26$ (d) 10.26 (a) 8.32 (b) 6.38 (c) 5.32
- **21.** At 25 °C, the solubility product values of AgCl and AgCNS are 1.7×10^{-10} and 1.0×10^{-12} respectively. When water is saturated with both solids, calculate the ratio $[Cl^-]/[CNS^-]$ and also $[Ag^+]$ in the solution.

- (a) 1.3×10^2 , 1.7×10^{-5} M (b) 1.7×10^2 , 1.308×10^{-5} M
- (c) 1.3×10^4 , 1.308×10^{-4} M
- (d) 1.7×10^3 , 1.67×10^{-6} M
- 22. If K_{sp} for HgSO₄ is 6.4×10^{-5} , then solubility of this substance in mole per m³ is (b) 6.4×10^{-5} (a) 8×10^{-3}
 - (c) 8×10^{-6} (d) None of these
- **23.** How many moles NH_3 must be added to 2.0 L of 0.80 M AgNO₃ in order to reduce the Ag⁺ concentration to 5 $\times 10^{-8}$ M. K_f of [Ag(NH₃)₂⁺] = 10⁸ (a) 0.4 (b) 2 (c) 3.52 (d) 4
- 24. Solubility of solid zinc hydroxide at a pH of 5
- $Zn(OH)_2(s) \Longrightarrow Zn(OH)_2(aq)$ $k_1 = 10^{-6} \,\mathrm{M}$ (i) $\operatorname{Zn}(\operatorname{OH})_2(\operatorname{aq}) \rightleftharpoons \operatorname{Zn}(\operatorname{OH})^+ + \operatorname{OH}^- k_2 = 10^{-7} \mathrm{M}$ (ii) $\operatorname{Zn}(\operatorname{OH})^+ \rightleftharpoons \operatorname{Zn}^{2+} + \operatorname{OH}^$ $k_3 = 10^{-4} \,\mathrm{M}$ (iii) $\operatorname{Zn}(\operatorname{OH})_2(\operatorname{aq}) + \operatorname{OH} \xrightarrow{} \operatorname{Zn}(\operatorname{OH})_3^- k_4 = 10^3 \,\mathrm{M}^{-1}$ (iv) $k_5 = 10 \text{ M}^{-1}$ $Zn(OH)_3^- + OH^- \Longrightarrow Zn(OH)_4^{2-}$ (v) (b) 2×10^{-2} M (a) 0.1 M (c) 2×10^{-6} M (d) 10M
- **25.** Calculate the solubility of solid zinc hydroxide at a pH of 13. Given:

$$\begin{aligned} &Zn(OH)_2(s) \rightleftharpoons Zn(OH)_2(aq) & k_1 = 10^{-6} M & (i) \\ &Zn(OH)_2(aq) \rightleftharpoons Zn(OH)^+ + OH^- & k_2 = 10^{-7} M & (ii) \\ &Zn(OH)^+ \rightleftharpoons Zn^{2+} + OH^- & k_3 = 10^{-4} M & (iii) \\ &Zn(OH)_2(aq) + OH^- \rightleftharpoons Zn(OH)_3^- & k_4 = 10^3 M^{-1} & (iv) \\ &Zn(OH)_3^- + OH^- \rightleftharpoons Zn(OH)_4^{2-} & k_5 = 10 M^{-1} & (v) \\ &(a) & 0.1 M & (b) & 2 \times 10^{-2} M \\ &(c) & 2 \times 10^{-4} M & (d) & 1.0 M \end{aligned}$$

- **26.** Salt mixture containing Cu₃(AsO₄)₂ ($K_{sp} = 8 \times 10^{-36}$) and Pb₃(AsO₄)₂ ($K_{sp} = 4.096 \times 10^{-36}$) is shaken with water. Find the concentration of Pb⁺² cations in the solution at equilibrium. Neglect any hydrolysis of the dissolved ions.
 - (b) 2.875×10^{-8} M (a) 7.1×10^{-8} M (c) 8.825×10^{-8} M (d) 2.3×10^{-8} M
- 27. At what minimum pH will 1.0×10^{-3} mol of Al(OH)₃ go into 1 L solution as [Al(OH)₄]⁻? Given : K_{sp} [Al(OH)₃] = 5.0 × 10⁻³³ and for $[\operatorname{Al}(\operatorname{OH})_{4}^{-1}] \iff \operatorname{Al}^{3+} + 4\operatorname{OH}^{-} K = 1.3 \times 10^{-34}.$ (b) 9.4 (c) 4.4 (D) 7.0 (a) 6.4
- **28.** What is the solubility of AgCl in 0.20 M NH₃? Given: $K_{sp}(AgCl) = 1.7 \times 10^{-10} \text{ M}^2$, $K_1 = [Ag(NH_3)^+]/$ $[Ag^+][NH_3] = 2.33 \times 10^3 \text{ M}^{-1} \text{ and } \text{K}_2 = [Ag(NH_3)_2^+] /$ $[Ag(NH_3)^+][NH_3] = 7.14 \times 10^3 M^{-1}$ (a) 9.6×10^{-5} M (b) 9.6×10^{-6} M (c) 9.6×10^{-1} M (d) 9.6×10^{-3} M
- 29. Predict whether or not AgCl will be precipitated from a solution which is 0.02 M in NaCl and 0.05 M in KAg(CN)₂. Given $K_{inst}(Ag(CN)_2) = 4.0 \times 10^{-19} \text{ M}^2$ and $K_{\rm sp} \,({\rm AgCl}) = 2.8 \times 10^{-10} \,{\rm M}^2.$
 - (a) Data insufficient
 - (b) AgCl will precipitate

- 5.22Physical Chemistry-I for JEE (Main & Advanced)
 - (c) AgCl will not precipitate
 - (d) None of these
- 30. Equal volumes of 0.02 M AgNO_3 and 0.02 M HCN were mixed. Calculate $[Ag^+]$ at equilibrium. Take $K_a(\text{HCN}) = 9 \times 10^{-10}, K_{\text{sp}}(\text{AgCN}) = 4 \times 10^{-16}.$ (a) 6.67×10^{-4} M (b) 6.00×10^{-3} M (c) 6.7×10^{-5} M (d) 4.5×10^{-8} M

LEVEL III

Match the Columns

1. Match the Columns:

Colu	ımn I	Column II	
(A)	Buffer capacity is maximum for an acid buffer is	(P)	$pH = pKa + \log\frac{1}{3}$
(B)	At the $\frac{1}{4}$ th of the equivalence point for the titration of weak acid HA	(Q)	$\frac{1}{2} (pKa + \log 3)$
(C)	At the $\frac{3}{4}$ th of the equivalence point for the titration of weak acid HA	(R)	$pH = pKa - \log \frac{1}{3}$
(D)	The pH of $\frac{1}{3}$ (M) solution of weak acid HA	(S)	рН = <i>рКа</i>

2. Match the columns:

Column I		Column II	
(A)	CH ₃ COOH (<i>pKa</i> = 4.74;0.1 M) + CH ₃ COONa (0.1 M)	(P)	Acidic buffer at its maximum ca- pacity
(B)	CH ₃ COOH (0.1 M) + HCl (0.1 M)	(Q)	Buffer solution
(C)	CH ₃ COOH ($pKa = 4.74$, (0.1 M) + NH ₄ OH ($pKa = 4.74$, 0.1 M)	(R)	pH < 7 at 25° C
(D)	CH ₃ COONa (300 mL of 0.1 M) + HCl (100 mL of 0.1 M)	(S)	pH = 7 at 25° C

3. K_a and K_b are the dissociation constant of weak acid and weak base and K_w is the ionic product of water.

Colu	Column I Column		mn II
(A)	0.1(M) KCN solu- tion	(P)	$pH \simeq 7$
(B)	0.1(M) C ₆ H ₅ NH ₃ Cl solution	(Q)	$pH = 6.5 + \frac{1}{2}pK_a$
(C)	0.1(M) KCl solution	(R)	$pH = 7.5 - \frac{1}{2}pK_b$
(D)	0.1(M) CH ₃ COONH ₄ solution	(S)	$pH = 7 + \frac{1}{2}pK_a - \frac{1}{2}pK_b$

4. Match the columns:

Column I		Column II		
(A)	NaHCO ₃ solution	(P)	Cationic hydrolysis	
(B)	CuSO ₄ solution	(Q)	Anionic hydrolysis	
(C)	Potash alum solution	(R)	Acidic	
(D)	NaCN solution	(S)	Alkaline	

5. Match the columns:

Colu	Column I		Column II	
(A)	pH of 0.1M HA ($pK_a = 5$) and 0.01 M NaA	(P)	4	
(B)	pH of 0.1 M BOH ($pK_b = 6$) and 0.1 M BCl	(Q)	7	
(C)	pH of 0.1 M salt of HA ($pK_a = 5$) and BOH ($pK_b = 7$)	(R)	6	
(D)	pH of 500 L of 0.2 M HNO ₃ and 500 L 0.2M NaOH	(S)	8	

6. Match the columns:

Colu	Column I		Column II	
(A)	Salt of weak acid and weak base $(pK_a = pK_b)$	(P)	pH of solution at 25°C is less than 7	
(B)	Salt of weak acid and strong base	(Q)	pH of solution at 25°C greater than 7	
(C)	Salt of strong acid and strong base	(R)	pH of solution at 25°C equal to 7	
(D)	Salt of strong acid and weak base	(S)	pH can not be find until the value of K_a/K_b is given	

7. Match the columns:

Colu	Column I		mn II
(A)	$pK_b \text{ of } X^- (K_a \text{ of } HX = 10^{-6})$	(P)	6.9
(B)	pH of 10 ⁻⁸ M HCl	(Q)	8
(C)	pH of 10^{-2} M acetic acid solution (Take K_a of acetic acid = 1.6×10^{-5})	(R)	10.7
(D)	pOH of a solution obtained by Mixing equal volumes of solu- tion with pH 3 and 5.	(S)	3.4

8. Match the columns:

Colu	ımn I	Column II	
(A)	The relation between K_{sp} and the solubility of Ag_2CrO_4	(P)	$\frac{[\rm{H}^+][\rm{OH}^-]}{[\rm{H}_2\rm{O}]}$
(B)	Ionisation constant of water	(Q)	$K_{\rm sp} = s^2$
(C)	The relation between K_{sp} and solubility of BaCrO ₄	(R)	pH > 7
(D)	pH of aqueous solution of potassium carbonate	(S)	$K_{\rm sp} = 4s^3$

Comprehension

Comprehension 1

The pH of blood stream (7.4) is maintained by a proper balance of H_2CO_3 and NaHCO₃ concentration.

9. What volume of 5 M NaHCO₃ solution should be mixed with a 10 mL sample of blood which is 2 M in H₂CO₃ in order to maintain its pH? : If PKa₁ 6.11 and PKa₂ 10.2

(a) 40 mL (b) 38 mL (c) 50 mL (d) 78 mL

- **10.** Following reaction occurs in the body : $CO_2 + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$
 - If CO_2 escapes from the system :
 - (a) pH will decrease
 - (b) pH will increase
 - (c) $[H_2CO_3]$ remains unchanged
 - (d) forward reaction is promoted

Comprehension 2

To the 100 mL of 10^{-2} (M) aqueous solution of HCl 0.1 (M) HA ($K_a = 10^{-2}$) is added in such a way so that the final pH of the solution become 1.7.

Given log 2 = 0.3

- 11. What volume of 0.1 (M) HA was required to add in aqueous HCl to reduced the final pH equal to 1.7?
 (a) 175 mL (b) 100 mL (c) 10⁴ mL (d) 75 mL
- **12.** Which of the following solution is isohydric with 0.1(M) aqueous solution of HA?
 - (a) 0.01(M) aqueous solution of HB ($K_a = 10^{-2}$)
 - (b) 0.01(M) aqueous solution of HC ($K_a = 10^{-5}$)

- (c) 0.01(M) aqueous solution of HNO₃
- (d) 1(M) aqueous solution of HD ($K_a = 10^{-3}$)
- **13.** 100 mL of 0.1 (M) HA and 100 mL of 1(M) HD $(K_a = 10^{-3})$ solutions are mixed. What is the final approximate pH of the solution neglecting the degree of dissociation of HA and HD?
 - (a) 2.5
 - (b) 2.0
 - (c) 1.5
 - (d) Final pH cannot be determined

Comprehension 3

50 mL of 0.1(M) Na_2CO_3 solution is titrated with 0.1(M) HCl solution

Given: $CO_3^{2-} + H^+ \xleftarrow{} HCO_3^- \qquad K_1 = 2.1 \times 10^{10}$

$$\text{HCO}_3^- + \text{H}^+ \xleftarrow{} \text{H}_2\text{CO}_3 \qquad K_2 = 2.2 \times 10^6$$

Given: $\log 3 = 0.48$

- 14. The pH of solution at the start of titration is
- (a) 6.4 (b) 7.5 (c) 8.3 (d) 11.5
- **15.** The pH of solution at the half-neutralisation point is (a) 6.4 (b) 7.5 (c) 8.3 (d) 11.50
- **16.** The pH of solution at the complete neutralisation point is about
 - (a) 4.0 (b) 6.0 (c) 7.0 (d) 8.0

Comprehension 4

A solution of paranitrophenol indicator of concentration 6×10^{-4} (M) was prepared and indicator solution was used in the spectrophotometric measurement. The experimental results are tabulated as below.

Condition	Form of Indicator	Absorbance
Strongly Acidic	H In	0.142
Strongly Alkaline	In ⁻	0.943
pH = 8	H In + In ⁻	0.527

Given: $\log 2 = 0.3$; $\log 3 = 0.48$; $\log 5 = 0.7$; $\log 7 = 0.85$

17. What is the molar concentration of In⁻ at pH = 8? (a) 3.11×10^{-4} (M) (b) 2.88×10^{-4} (M) (c) 6×10^{-4} (M) (d) None of these

- **18.** What is the $K_{\rm in}$ of the indicator ? (a) 3.117×10^{-4} (b) 6.12×10^{-9} (c) 9.25×10^{-10} (d) 9.25×10^{-9}
- 19. What will be the pH of the solution if the total absorbance is equal to 0.625 ?
 (a) 2.00 (b) 10.22 (c) 11.22 (d) 2.215
 - (a) 8.00 (b) 10.22 (c) 11.23 (d) 8.215

Subjective

- **20.** Calculate
 - (i) K_a for H₂O ($K_w = 10^{-14}$)
 - (ii) K_b^{μ} for B(OH)₄⁻, K_a (B(OH)₃) = 6 × 10⁻¹⁰
 - (iii) K_a for HCN, K_b (CN⁻) = 2.5 × 10⁻⁵
- **21.** Calculate the ratio of degree of dissociation (α_2/α_1) when 1 M spatia acid solution is diluted to $\frac{1}{\alpha_1}$ times
 - when 1 M acetic acid solution is diluted to $\frac{1}{100}$ times. (Given: $K_a = 1.8 \times 10^{-5}$)

- 22. Calculate the ratio of degree of dissociation of acetic acid and hydrocyanic acid (HCN) in 1 M their respective solution of acids (Given: $K_a = 1.8 \times 10^{-5}$; = 6.2×10^{-10}]
- **23.** Calculate: K_a for a monobasic acid whose 0.10 M solution has pH of 4.50.
- 24. Calculate pH of the following solution:
 - (i) 0.1 M CH₃COOH ($K_a = 1.8 \times 10^{-5}$)
 - (ii) 10⁻⁸ M HCl
 - (iii) 10⁻¹⁰ M NaOH
- **25.** The value of K_w at the physiological temperature (37° c) is 2.56×10^{-14} . What is the pH at the neutral point of water at this temperature, where there are equal number of H⁺ and OH⁻?
- 26. The pH of aqueous solution of ammonia is 11.5. Find molarity of solution. $K_b(\text{NH}_4\text{OH}) = 1.8 \times 10^{-5}$.
- 27. The solution of weak monoprotic acid which is 0.01 M has pH = 3. Calculate K_a of weak acid.
- **28.** Calculate [H⁺] and [CHCl₂COO⁻] in a solution that is 0.01 M in HCl and 0.01 M in CHCl₂COOH. Take $(K_a = 2.55 \times 10^{-2})$.
- **29.** Calculate [H⁺], [CH₃COO⁻] and [C₇H₅O₂⁻] in a solution that is 0.02 M in acetic acid and 0.01 M in benzoic acid. K_a (acetic) = 1.8×10^{-5} , K_a (benzoic) = 6.4×10^{-5} .
- **30.** Determine the [S^{2–}] in a saturated (0.1 M) H₂S solution to which enough HCl has been added to produce a [H⁺] of 2×10^{-4} . $K_1 = 10^{-7}$, $K_2 = 10^{-14}$
- **31.** Calculate [H⁺], [H₂PO₄⁻], [HPO₄²⁻] and [PO₄³⁻] in a 0.01 M solution of H₃PO₄. Take $K_1 = 7.225 \times 10^{-3}$, $K_2 = 6.8 \times 10^{-8}$, $K_3 = 4.5 \times 10^{-13}$.
- **32.** Determine [OH⁻] of a 0.050 M solution of ammonia to which has been added sufficient NH₄Cl to make the total [NH₄⁺] equal to 0.100. [= 1.8×10^{-5}].
- **33.** A buffer of pH 9.26 is made by dissolving *x* moles of ammonium sulphate and 0.1 mole of ammonia into 100 mL solution. If pK_b of ammonia is 4.74, calculate value of *x*.
- **34.** What is the OH⁻ concentration of a 0.08 M solution of CH₃COONa? [K_a (CH₃COOH) = 1.8×10^{-5}]
- **35.** 0.25 M solution of pyridinium chloride $C_5H_6N^+Cl^-$ was found to have a pH of 2.699. What is K_b for pyridine, C_5H_5N ?
- **36.** What is the pH of 0.1 M NaHCO₃? $K_1 = 4.5 \times 10^{-7}$, $K_2 = 4.5 \times 10^{-11}$ for carbonic acids.
- **37.** A solution of volume V contains n_1 moles of QCl and n_2 moles of RCl where QOH and ROH are two weak bases of dissociation constants k_1 and k_2 respectively. Show that the pH of the solution is given by

$$pH = \frac{1}{2} \log \left[\left(\frac{k_1 k_2}{k_W} \right) \frac{V}{(n_1 k_2 + k_1 n_2)} \right]$$

State assumptions, if any.

38. EDTA, often abbreviated as H_4Y , forms very stable complexes with almost all metal ions. Calculate the fraction of EDTA in the fully protonated form, H_4Y in

a solution obtained by dissolving 0.1 mol Na₄Y in 1 L. The acid dissociation constants of H_4Y :

 $k_1 = 1.02 \times 10^{-2}, k_2 = 2.13 \times 10^{-3}, k_3 = 6.92 \times 10^{-7}, k_4 = 5.50 \times 10^{-11}$:

39. Calculate the solubility of solid zinc hydroxide at a pH of 9. Given: $Zn(OH)_2(s) \rightleftharpoons Zn(OH)_2(aq) \qquad k_1 = 10^{-6} M$ (i)

 $Zn(OH)_{2}(3) \longleftrightarrow Zn(OH)_{2}(aq) \longrightarrow k_{1} = 10^{-7} M \quad (ii)$ $Zn(OH)_{2}(aq) \rightleftharpoons Zn(OH)^{+} + OH^{-} \quad k_{2} = 10^{-7} M \quad (iii)$ $Zn(OH)^{+} \rightleftharpoons Zn^{2+} + OH^{-} \qquad k_{3} = 10^{-4} M \quad (iii)$ $Zn(OH)_{2}(aq) + OH^{-} \rightleftharpoons Zn(OH)_{3}^{-} \quad k_{4} = 10^{3} M^{-1} \quad (iv)$ $Zn(OH)_{3}^{-} + OH^{-} \rightleftharpoons Zn(OH)_{4}^{2-} \quad k_{5} = 10 M^{-1} \quad (v)$

- **40.** The standard free energy of formation for AgCl at 298 K is -109.7 kJ mole⁻¹. $\Delta G^{\circ} (Ag^{+}) = 77.2$ kJ/mole, $\Delta G^{\circ} (Cl^{-}) = -131.2$ kJ/mole. Find the solubility of AgCl in 0.05 M KCl. Neglect any complication due to complexation.
- **41.** At what minimum pH will 1.0×10^{-3} mol of Al(OH)₃ go into 1 L solution as Al³⁺? Given: K_{sp} [Al(OH)₃] = 5.0×10^{-33} and for [Al(OH)₄⁻] \Leftrightarrow Al³⁺ + 4OH⁻. $K = 1.3 \times 10^{-34}$.
- **42.** What is the pH of a 1.0 M solution of acetic acid ? To what volume must 1 L of the solution be diluted so that the pH of the resulting solution will be twice the original value. Given $K_a = 1.8 \times 10^{-5}$.
- **43.** A handbook states that the solubility of methylamine CH_3NH_2 (g) in water at 1 atm pressure at 25°C is 959 volumes of CH_3NH_2 (g) per volume of water $(pk_b = 3.39)$:
 - (a) Estimate the maximum pH that can be attained by dissolving methylamine in water.
 - (b) What molarity NaOH (aqueous) would be required to yield the same pH?
- **44.** Mixture of solutions. Calculate the pH of the following solutions:

For H₃PO₄, $k_1 = 7.5 \times 10^{-3}$, $k_2 = 6.2 \times 10^{-8}$, $k_3 = 10^{-12}$,

- (a) 50 mL of 0.12 M $H_3PO_4 + 20$ mL of 0.15 M NaOH;
- (b) 50 mL of 0.12 M $H_3PO_4 + 40$ mL of 0.15 M NaOH;
- (c) 40 mL of 0.12 M H₃PO₄ + 40 mL of 0.18 M NaOH;
- (d) 40 mL of 0.10 M $H_3PO_4 + 40$ mL of 0.25 M NaOH.
- **45.** Mixture of solutions. Calculate the pH of the following solution:

Use data of above question for H₃PO₄

- (i) 50 mL of 0.10 M $Na_3PO_4 + 50$ mL of 0.10 M NaH_2PO_4 ;
- (ii) 40 mL of 0.10 M H_3PO_4 + 40 mL of 0.10 M Na_3PO_4 .
- **46.** When a 40 mL of a 0.1 M weak base is titrated with 0.16 M HCl, the pH of the solution at the end point is 5.23. What will be the pH if 15 mL of 0.12 M NaOH is added to the resulting solution :-

- **47.** A buffer solution was prepared by dissolving 0.05 mol formic acid and 0.06 mol sodium formate in enough water to make 1.0 L of solution. K_a for formic acid is 1.80×10^{-4} .
 - (a) Calculate the pH of the solution.
 - (b) If this solution was diluted to 10 times its volume, what will be the pH?
 - (c) If the solution in (b) was diluted to 10 times its volume, what will be the pH?
- **48.** If 0.00050 mol NaHCO₃ is added to 1 L of a buffered solution at pH 8.00. How much material will exist in each of the three forms H₂CO₃, HCO₃⁻ and CO₃²⁻? For H₂CO₃, $K_1 = 5 \times 10^{-7}$, $K_2 = 5 \times 10^{-13}$.
- **49.** Equilibrium constant for the acid ionisation of Fe^{3+} to $Fe(OH)^{+2}$ and H^+ is 6.5×10^{-3} . What is the maximum pH, which can be used so that at least 95% of the total Fe^{3+} in a dilute solution. exists as Fe^{3+} .
- **50.** How much Na₂HPO₄ must be added to one litre of 0.005 M solution of NaH₂PO₄ in order to make a 1 L of the solution of pH = $6.7? K_1 = 7.1 \times 10^{-3}, K_2 = 6.3 \times 10^{-8}, K_3 = 4.5 \times 10^{-13}$ for H₃PO₄.
- **51.** The indicator phenol red is half in the ionic form when pH is 7.2. If the ratio of the undissociated form to the ionic form is 1:5, find the pH of the solution. With the same pH for solution, if indicator is altered such that the ratio of undissociated form to dissociated form becomes 1:4, find the pH when 50% of the new indicator is in ionic form.
- **52.** A buffer solution, 0.080 M in Na_2HPO_4 and 0.020 M in Na_3PO_4 , is prepared. The electrolytic oxidation of 1.0 m mol of the organic compound RNHOH is carried out in 100 mL of the buffer. The reaction is

 $RNHOH + H_2O \longrightarrow RNO_2 + 4H^+ + 4e$

Calculate the approximate pH of the solution after the oxidation is complete ?

- **53.** SO_2 dissolves in water to form an acidic solution. Explain.
- 54. Explain the following: CaC₂O₄ is insoluble in CH₃COOH but soluble in dilute HCl
- 55. A solution of HCl has a pH = 5. If one mL of it is diluted to 1 L, what will be the pH of resulting solution?
- 56. Calculate the pH of a solution of given mixtures :
 - (a) (2g CH₃COOH + 3g CH₃COONa) in 100 mL of mixture; $K_a = 1.8 \times 10^{-5}$
 - (b) 5 mL of 0.1 M NH₄OH + 250 mL of 0.1 M NH₄Cl; $K_b = 1.8 \times 10^{-5}$
 - (c) (0.25 mole of acid + 0.35 mole of salt) in 500 mL mixture; $K_a = 3.6 \times 10^{-4}$
- **57.** Out of the following :

 $H_2PO_4^{-}$, SO_3^{2-} , ClO^- , Fe^{3+} , BCl_3 , NH_4^+ , select

- (a) Bronsted Lowry acid
- (b) Bronsted Lowry base

- (c) Lewis acid
- (d) Lewis base
- **58.** What will be the resultant pH of the solution when 200 mL of an aqueous solution of HCl (pH = 2) is mixed with 300 mL of an aqueous solution of NaOH (pH = 12.0)?
- **59.** Calculate the pH value at the equilibrium point when a solution of 0.1 M acetic acid is titrated with a solution of 0.1 M NaOH. K_a for acetic acid is 1.9×10^{-5} .
- **60.** The pH of blood stream is maintained by a proper balance of H_2CO_3 and NaHCO₃ concentrations. What volume of 5 M NaHCO₃ solution should be mixed with 10 mL of blood which is 2 M in H_2CO_3 in order to maintain pH of 7.4. K_a for H_2CO_3 in blood is 7.8 × 10^{-7} ?
- **61.** What will be the pH of a solution obtained by mixing 800 mL of 0.05 N sodium hydroxide and 200 mL of 0.1 N HCl, assuming complete ionisation of the acid and the base ?
- 62. What is the pH of the solution when 0.2 mol of hydrochloric acid is added to 1 ltr of a solution containing 1 M acetic acid and acetate ion ? Assume that the total volume is 1 ltr. K_a for CH₃COOH = 1.8×10^{-5} .
- **63.** Calculate the change in pH of one litre buffer solution containing 0.10 mol each of NH₃ and NH₄Cl upon addition of (i) 0.02 mol of dissolved gaseous HCl, (ii) 0.02 mol of dissolved NaOH. Assume no change in volume (K_b for NH₃ = 1.8×10^{-5}).
- 64. Calculate the composition of an acidic buffer solution (HA + NaA) of total molarity 0.29 having pH = 4.4 and $K_a = 1.8 \times 10^{-5}$.
- **65.** Find the pH of a 2 L solution which is 0.1 M each with respect to CH₃COOH and (CH₃COO)₂Ba.
- **66.** A solution is found to contain 0.63 g of nitric acid per 100 mL of the solution. What is the pH of the solution if the acid is completely dissociated ?
- **67.** 4.0 g of NaOH are dissolved per litre. Find (i) molarity of the solution, (ii) OH^- ion concentration, and (iii) pH value of the solution (Atomic weight: Na = 23, O = 16, H = 1).

68. If
$$\frac{N}{10}$$
, 200 mL HNO₃ and $\frac{N}{20}$, 100 mL HCl and $\frac{N}{20}$, 100 mL H₂SO₄ were mixed in 1 L vessel. Calculate the pH of resulting solution.

- 69. Determine the pH of a solution by mixing 2000 mL, $\frac{N}{10}$ HCl and 1000 mL, $\frac{N}{10}$ NaOH.
- **70.** The pOH of basic buffer [e.g., NH_4OH/NH_4Cl] is 5. If the concentration of the salt is tripled whereas that of base remains same, what is the value of new pOH? (Given log 3 = 0.48)
- **71.** Calculate the pH of a solution obtained by mixing 50 mL of 0.01 M Ba(OH)₂ solution with 50 mL water.

5.26 Physical Chemistry-I for JEE (Main & Advanced)

- **72.** How much water must be added to 300 mL of 0.2 M solution of CH_3COOH for the degree of dissociation of the acid to double ?
- **73.** Find the concentration of H⁺, HCO₃⁻ and CO₃⁻² in a 0.01 M solution of carbonic acid if the pH of this is $4.18 Ka_1 (H_2CO_3) = 4.45 \times 10^{-7}, Ka_2 (HCO_3^-) = 4.69 \times 10^{-11}.$
- 74. The self-ionisation constant for pure formic acid, $K = [\text{HCOOH}_2^+][\text{HCOO}^-]$ has been estimated as 10^{-6} at room temperature. What percentage of formic acid molecules in pure formic acid are converted to formate ion? The density of formic acid is 1.22 gcm^{-3} .
- **75.** Calculate the concentration of H_3O^+ ion in a mixture of 0.02 M of acetic acid and 0.2 M sodium acetate. Given: K_a for acetic acid is 1.8×10^{-5} .
- 76. The ionization constant of phenol is 1.0×10^{-10} . What is the concentration of phenate ion in 0.05 M solution of phenol?
- 77. Write the correctly balanced net ionic equation for the reaction whose equilibrium constant at 298 K is
 - (i) $K_a(C_6 H_5 COOH) = 6.3 \times 10^{-5}$
 - (ii) $K_a(\text{HSO}_3^-) = 2.8 \times 10^{-7}$
 - (iii) $K_b(CH_3NH_2) = 4.4 \times 10^{-5}$
 - (iv) $Ka_1(H_2S) = 1.0 \times 10^{-7}$
- **78.** The ionisation constant of dimethyl amine is 5.40×10^{-4} . Calculate the ionisation constant of its conjugate acid.
- **79.** How many grams of NaOH must be dissolved in 1 ltr of the solution to have a solution of pH = 12?
- 80. What should be the ratio of concentrations of formate ion and formic acid in a buffer solution so that its pH should be 4? Around what pH will this buffer have maximum buffer capacity? K_a for formic acid is 1.8×10^{-4} .
- **81.** Calculate the pH of a solution obtained by mixing of 100.0 mL of 0.1 M HCl with 100 mL of 0.2 M NH₃. K_b for NH₃ is 1.8×10^{-5} .
- **82.** An organic monoprotic acid [0.1 M] is titrated against 0.1 M NaOH. By how much does the pH change between 1/4 and 3/4 stages of neutralisation? If at one third stage of neutralisation, the pH is 4.45 what is the dissociation constant of the acid? Between what stages of neutralisation may the pH change by two units?

Integer Answer Type Question

83. The salt $Zn(OH)_2$ is involved in the following two equilibria:

 $Zn(OH)_2(s) \rightleftharpoons Zn^{2+}(aq) + 2OH^{-}(aq); K_{sp} = 1.2 \times 10^{-17}$ $Zn(OH)_2(s) + 2OH^{-}(aq) \rightleftharpoons [Zn(OH)_4]^{2-}(aq); K_c = 0.13$ Calculate the pH of solution at which solubility is minimum.

84. Show that solubility of a sparingly soluble salt $M^{2+}A^{2-}$ in which A^{2-} ions undergoes hydrolysis is given by

$$S = \sqrt{K_{\rm sp} \left(1 + \frac{[{\rm H}^+]}{K_2} + \frac{[{\rm H}^+]^2}{K_1 K_2}\right)}$$

where K_1 and K_2 are the dissociation constant of acid $H_2A.K_{sp}$ is solubility product of MA.

- **85.** The pH of a saturated aqueous solution of CO₂ is 5; For H_2CO_3 , $Ka_1 = 10^{-7}$ and $Ka_2 = 10^{-11}$. At the given pressure the solubility of CO₂ in water is 10^{-2} (M). What is the value of $-\log [CO_3^{2-}]$ in the nearest posssible integers ?
- **86.** 200 mL of a saturated solution of $CaC_2O_4(s)$ requires 8 mL of 5×10^{-3} (N) KMnO₄ solution for complete oxidation in the presence of acid. Determine the $-\log$ Ksp value of a saturated solution of $CaC_2O_4(s)$ in nearest possible integers.
- 87. How much water in mL must be added to 300 mL of 0.2 M solution of CH₃COOH ($K_a = 1.8 \times 10^{-5}$) for the degree of ionisation (α) of the acid to Triple.
- **88.** You have given 100 mL of buffer solution containing weak acid HA ($K_a = 10^{-5}$) and its salt with strong base NaA at the concentration of 0.1(M) each. If 5×10^{-3} moles of HCOOH ($K_a = 10^{-4}$) is added to this solution what will be value in the change in pH × 10³ in nearest possible integers.

Given: $\sqrt{76} = 8.71$; log 2.34 = 0.369

- **89.** What is the ratio of moles of Mg(OH)₂ and Al(OH)₃ in 1 L of their saturated solution. K_{sp} of Mg(OH)₂ = 4 × 10^{-12} and K_{sp} of Al(OH)₃ = 1 × 10^{-33} (give your answer by multiplying the ratio with 10^{-17}).
- **90.** A given solution is saturated with both Ag_2CrO_4 and $Ag_2C_2O_4$. The K_{sp} of $Ag_2CrO_4 = 9 \times 10^{-12}$ and K_{sp} of $Ag_2C_2O_4 = 6 \times 10^{-12}$ In the resulting solution determine $[Ag^+] \times 10^5$ in the nearest possible integers. Given: $(240)^{1/3} = 6.214$

Multiple Answer Type Question

- **91.** An acid-base indicator has a K_a of 3.0×10^{-5} . The acid form of the indicator is red and the basic form is blue. Then
 - (a) pH is 4.05 when indicator is 75% red.
 - (b) pH is 5.00 when indicator is 75% blue.
 - (c) pH is 5.00 when indicator is 75% red.
 - (d) pH is 4.05 when indicator is 75% blue.
- 92. pH of the following solution is not affected by dilution:(a) 0.01 M CH₃COONa
 - (b) 0.01 M NaHCO₃
 - (c) Buffer of 0.01 M CH₃COONa and 0.01 M CH₃COOH
 - (d) 0.01 M CH₃COONH₄
- 93. Which of the following expression(s) is/are true?
 - (a) $[H^+] = [OH^-] = \sqrt{K_W}$ for a neutral solution
 - (b) $[OH^{-}] < \sqrt{K_W}$ for an acidic solution
 - (c) pH + pOH = 14 at all temperature
 - (d) $[OH^{-}] = 10^{-7} \text{ M at } 25^{\circ}\text{C}$ for water

Ionic Equilibrium 5.27

94. In the given question K_a values of five weak acids are given. K_a for HA = 10^{-8} , HB = 10^{-6} , HC = 2×10^{-8} , HD = 10^{-10} , HE = 10^{-7} .

Select the correct statement (s) as per the information. Given: $\log 2 = 0.3$

- (a) Among NaA, NaB, NaC, NaD and NaE, the NaD is most extensively hydrolysed.
- (b) Among NaA, NaB, NaC, NaD and NaE, NaB is most extensively hydrolysed.
- (c) pH of 0.1 (M) aqueous solution of NaB is approximately 9.5.
- (d) 0.1(M) solution of HE and 0.01(M) solution of HB are isohydric to each other approximately.
- **95.** The solubility of AgCl in water, 0.01 M CaCl₂, 0.02 M NaCl and 0.05 M AgNO₃ are S_1 , S_2 , S_3 and S_4 respectively. Which of the following is true? (Neglect any complex formation).
 - (a) $S_2 > S_1$ (b) $S_2 > S_3$

(c)
$$S_3 > S_4$$
 (d) $S_1 > S_4$

- **96.** Solubility of MnS($K_{sp} = 8 \times 10^{-37}$) is S₁, of ZnS($K_{sp} = 7 \times 10^{-16}$) is S₂, of Bi₂S₃($K_{sp} = 10^{-72}$) is S₃, of Ag₃PO₄ ($K_{sp} = 1.8 \times 10^{-18}$) is S₄ in water. Which of the following is correct?

O PREVIOUS YEARS' QUESTIONS OF JEE (MAIN & ADVANCED)

JEE Main

- How many litres of water must be added to 1 L of an aqueous solution of HCl with a pH of 1 to create an aqueous solution with pH of 2? [AIEEE 2006]

 (a) 0.1 L
 (b) 0.9 L
 (c) 2.0 L
 (d) 9.0 L
- 2. The pH of a 0.1 molar solution of the acid HQ is 3. The value of the ionisation constant, K_a of the acid is

[AIEEE 2006] 0⁻³

(a)
$$3 \times 10^{-1}$$
 (b) 1×10^{-5}
(c) 1×10^{-5} (d) 1×10^{-7}

3. The first and second dissociation constant of an acid H_2A are 1.0×10^{-5} and 5.0×10^{-10} respectively. The overall dissociation constant of the acid will be

- (a) 5.0×10^{-5} (b) 5.0×10^{15} (c) 5.0×10^{-15} (d) 0.2×10^{5}
- 4. The K_{sp} for Cr(OH)₃ is 1.6×10^{-30} . The molar solubility of this compound in water is [AIEEE 2008]

(a)
$$\sqrt[2]{1.6 \times 10^{-30}}$$
 (b) $\sqrt[4]{1.6 \times 10^{-30}}$
(c) $\sqrt[4]{1.6 \times 10^{-30}/27}$ (d) $1.6 \times 10^{-30}/27$

5. An acid HA ionises as HA → H⁺ + A⁻. The pH of 1.0 M solution is 5. Its dissociation constant will be [AIEEE 2009]

(a) 1×10^{-10} (b) 5 (c) 5×10^{-8} (d) 1×10^{-5}

- 6. Three reactions involving $H_2PO_4^-$ are given below. [AIEEE 2010]
 - I. $H_3PO_4 + H_2O \rightarrow H_3O^+ + H_2PO_4^-$

II.
$$H_2PO_4^- + H_2O \rightarrow H_2PO_4^{-2} + H_3O^+$$

III. $H_2PO_4^- + OH^- \rightarrow H_3PO_4 + O^{2+}$

In which of the above does $H_2PO_4^-$ act as an acid ?

- (c) III only (d) I only
- 7. In aqueous solution, the ionisation constants for carbonic acid are

 $K_1 = 4.2 \times 10^{-7}$ and $K_2 = 4.8 \times 10^{-11}$ [AIEEE 2010] Select the correct statement for a saturated 0.034 M solution of the carbonic acid.

- (a) The concentration of CO_3^{2-} is 0.034 M.
- (b) The concentration of CO_3^{2-} is greater than that of HCO_3^{-} .
- (c) The concentration of H^+ and HCO_3^- are approximately equal.
- (d) The concentration of H^+ is double that of CO_3^{2-} .
- 8. Solubility product of silver bromide is 5.0×10^{-13} . The quantity of potassium bromide (molar mass taken as 120 gm mol⁻¹) to be added to 1 L of 0.05 M solution of silver nitrate to start the precipitation of AgBr is

[AIEEE 2011]

(a)	$1.2 \times 10^{-10} \text{ g}$	(b)	$1.2 \times 10^{-9} \text{ g}$
(c)	$6.2 \times 10^{-5} \text{ g}$	(d)	5.0×10^{-8} g

9. At 25°C, the solubility product of $Mg(OH)_2$ is 1.0×10^{-11} . At which pH, will Mg^{2+} ions start precipitating in the form of $Mg(OH)_2$ from a solution of 0.001 M Mg^{2+} ions ? [AIEEE 2012]

10. Solid Ba(NO₃)₂ is gradually dissolved in a 1.0×10^{-4} M Na₂CO₃ solution. At what concentration of Ba²⁺, will it begin to precipitate ? (K_{sp} for BaCO₃ = 5.1×10^{-9})

[AIEEE 2012]

- (a) 4.1×10^{-5} M (b) 5.1×10^{-5} M (c) 8.1×10^{-5} M (d) 8.1×10^{-7} M
- 11. Solubility product of silver bromide is 5.0×10^{-13} . The quantity of potassium bromide (molar mass taken as 120 g mol⁻¹) to be added to 1 L of 0.05 M solution of silver nitrate to start the precipitation of AgBr is

(a)
$$5.0 \times 10^{-8}$$
 g (b) 1.2×10^{-10} g (c) 1.2×10^{-9} g (d) 6.2×10^{-5} g

12. In aqueous solution the ionisation constants for carbonic acid are [AIEEE-2010]

$$K_1 = 4.2 \times 10^{-7}$$
 and $K_2 = 4.8 \times 10^{-11}$

Select the correct statement for a saturated 0.034 M solution of the carbonic acid:

- (a) The concentration of H^+ is double that of CO_3^{2-} .
- (b) The concentration of CO_3^{2-} is 4.8×10^{-11} M.
- (c) The concentration of CO_3^{2-} is greater than that of HCO_{2}^{-}
- (d) The concentrations of H^+ less than HCO_3^- are approximately equal.
- 13. At 25° C, the solubility product of Mg(OH)₂ is $1.0 \times$ 10⁻¹¹. At which pH, will Mg²⁺ ions start precipitating in the form of Mg(OH)₂ from a solution of 0.001 M Mg^{2+} ions? [AIEEE-2010] (a) 8
 - (c) 10 (b) 9 (d) 11
- 14. Solid Ba(NO₃)₂ is gradually dissolved in a 1.0×10^{-4} M Na₂CO₃ solution. At what concentration of Ba²⁺ will it begin to precipitate?
 - $(K_{SP} \text{ for Ba CO}_3 = 5.1 \times 10^{-9})$ [AIEEE-2009] (a) 8.1×10^{-8} M (b) 8.1×10^{-7} M
 - (c) 4.1×10^{-5} M (d) 5.1×10^{-5} M
- **15.** The pK_a of a weak acid, HA, is 4.80. The pK_b of a weak base, BOH, is 4.78. The pH of an aqueous solution of the corresponding salt. BA, will be [AIEEE-2008] (a) 9.58 (b) 4.79 (c) 7.01 (d) 9.22
- 16. In a saturated solution of the sparingly soluble strong electrolyte $AglO_3$ (molecular mass = 283) the equilibrium which sets in is [AIEEE-2007]

$$AglO_3 \rightleftharpoons Ag^+_{(aq)} + IO^-_{3(aq)}$$

If the solubility product constant K_{sp} of AgIO₃ at a given temperature is 1.0×10^{-8} , what is the mass of AgIO₃ contained in 100 mL of its saturated solution ? (a) 28.3×10^{-2} g (b) 2.83×10^{-3} g

- (d) 1.0×10^{-4} g (c) 1.0×10^{-7} g
- 17. The solubility product of a salt having general formula MX₂, in water is : 4×10^{-12} . The concentration of M²⁺ ions in the aqueous solution of the salt is
 - [AIEEE-2005]

(a)	$1.0 \times 10^{-4} \text{ M}$	(b)	2.0×10^{-6} M
(c)	$4.0 \times 10^{-10} \text{ M}$	(d)	$1.6 \times 10^{-4} \text{ M}$

- 18. Hydrogen ion concentration in mol/L in a solution of [AIEEE-2005] pH = 5.4 will be (a) 3.88×10^6 (b) 3.98×10^8
 - (c) 3.98×10^{-6} (d) 3.68×10^{-6}
- **19.** The molar solubility in mol L^{-1} of a sparingly soluble salt MX₄ is 's'. The corresponding solubility product is K_{sp} . 's' is given in terms of K_{sp} by which relation?

[AIEEE-2004]

(a)	$s = (K_{sp}/128)^{1/4}$	(b) $s = (128 \text{ K}_{sp})^{1/4}$	
(c)	$s = (256 \text{ K}_{sp})^{1/5}$	(d) $s = (K_{sp}/256)^{1/5}$	

- **20.** The solubility of $Mg(OH)_2$ is x mole/lit. Then its solu-[AIEEE-2002] bility product is (b) $5x^3$ (c) $4x^3$ (d) $2x^2$ (a) x^{3}
- **21.** The solubility in water of a sparingly soluble salt AB_2 is 1.0×10^{-5} mol L⁻¹. Its solubility product will be

		[······
(a)	1×10^{-15}	(b) 1×10^{-10}
(c)	4×10^{-15}	(d) 4×10^{-10}

JEE Advanced

Single Correct Answer Type

- **22.** $Ag^+ + NH_3 \rightleftharpoons [Ag(NH_3)]^+$; $k_1 = 3.5 \times 10^{-3}$ $[Ag^+(NH_3)]^+ + NH_3 \implies [Ag(NH_3)_2]^+; k_2 = 1.7 \times 10^{-3}$ Then the formation constant of $[Ag(NH_3)_2]^+$ is **[IIT JEE 2006]** (a) 6.08×10^{-6} (b) 6.08×10^6
 - (c) 6.08×10^{-9} (d) None of these

23. Solubility product constant (K_{sp}) of salts of types MX, MX₂ and MX₃ at temperature T are 4.0×10^{-8} , 3.2×10^{-14} and 2.7×10^{-15} , respectively. Solubilities (mol dm⁻³) of the salts at temperature 'T' are in the order

[IIT JEE 2008]

- (a) $MX > MX_2 > M_3X$ (b) $M_3X > MX_2 > MX$ (c) $MX_2 > M_3X > MX$ (d) $MX > M_3X > MX_2$
- 24. Passing H_2S gas into a mixture of Mn^{2+} , Ni^{2+} , Cu^{2+} and Hg²⁺ ions in an acidified aqueous solution precipitates. **[IIT JEE 2011]**
 - (a) CuS and HgS (b) MnS and CuS
 - (c) MnS and NiS (d) NiS and HgS
- 25. The initial rate of hydrolysis of methyl acetate (1M) by a weak acid (HA, 1 M) is 1/100th of that of a strong acid (HX, 1M), at 25°C. The K_a of HA is

	[JEE Advanced 2013			
(a) 1×10^{-4}	(b) 1×10^{-5}			
(a) 1×10^{-6}	(d) 1×10^{-3}			

(c) 1×10^{-9} (d) 1×10^{-3} **26.** The K_{sp} of Ag₂CrO₄ is 1.1×10^{-12} at 298 K. The solubility (in mol/L) of Ag₂CrO₄ in a 0.1 M AgNO₃ solution is [JEE Advanced 2013] (a) 1.1×10^{-11} (b) 1.1×10^{-10} (c) 1.1×10^{-12} (d) 1.1×10^{-9}

Multiple Correct Answer Type

- 27. Aqueous solutions of HNO₃, KOH, CH₃COOH and CH₃COONa of identical concentration are provided. The pair(s) of solutions which form a buffer upon mixing is (are) **[IIT JEE 2010]**
 - (a) HNO₃ and CH₃COOH
 - (b) KOH and CH₃COONa
 - (c) HNO₃ and CH₃COONa
 - (d) CH₃COOH and CH₃COONa

Linked Comprehension Type

When 100 mL of 1.0 M HCl was mixed 100 mL of 1.0 M NaOH in an insulated beaker at constant pressure, a temperature increase of 5.7°C was measured for the beaker and its contents (Expt. 1). Because the enthalpy of neutralisation of a strong acid with a strong base is a constant $(-57.0 \text{ kJ mol}^{-1})$, this experiment can be used to measure the calorimeter constant. In a second experiment (Expt 2), 100 mL of 2.0 M acetic acid ($K_a = 2.0 \times 10^{-5}$) was mixed with 100 mL of 1.0 M

[AIEEE-2003]

NaOH (under identical conditions to Expt.1) where a temperature rise of 5.6°C was measured.(Consider heat capacity of all solutions as $4.2 \text{ J g}^{-1} \text{ K}^{-1}$ and density of all solutions as 1.0 g mL^{-1}) [JEE Advanced 2015]

- 28. Enthalpy of dissociation (in kJ mol⁻¹) of acetic acid obtained from Excerpt 2 is
- (a) 1.0 (b) 10.0 (c) 24.5 (d) 51.4 **29.** The pH of the solution after Excerpt 2 is (a) 2.8 (b) 4.7 (c) 5.0 (d) 7.0

Integer Answer Type

30. The dissociation constant of a substituted benzoic acid at 25° C is 1.0×10^{-4} . The pH of a 0.01 M solution of its sodium salt is [IIT JEE 2009]

- 31. Amongst the following, the total number of compounds whose aqueous solution turns red litmus paper blue is KCN, K₂SO₄, (NH₄)₂C₂O₄, NaCl, Zn(NO₃)₂, FeCl₃, K₂CO₃, NH₄NO₃, LiCN [IIT JEE 2010]
- 32. The total number of diprotic acids among the following is
 H₃PO₄ H₂SO₄ H₃PO₃ H₂CO₃ H₂S₂O₇
 - $\begin{array}{cccc} H_3PO_4 & H_2SO_4 & H_3PO_3 & H_2CO_3 & H_2S_2O_7 \\ H_3BO_3 & H_3PO_2 & H_2CO_4 & H_2SO_3 \end{array}$
- **33.** In 1 L saturated solution of AgCl $[K_{sp}(AgCl) = 1.6 \times 10^{-10}]$, 0.1 mol of CuCl $[K_{sp}(CuCl) = 1.0 \times 10^{-6}]$ is added. The resultant concentration of Ag⁺ in the solution is 1.6×10^{-x} . The value of 'x' is [IIT JEE 2011]

Answer Key

	LEVEL I									
1. (c) 11. (c) 21. (b) 31. (b) 41. (b)	2. (a) 12. (a) 22. (a) 32. (c) 42. (b)	3. (b) 13. (a) 23. (c) 33. (b) 43. (c)	4. (b) 14. (a) 24. (b) 34. (a) 44. (d)	5. (a) 15. (d) 25. (c) 35. (a) 45. (a)	6. (c) 16. (d) 26. (c) 36. (b) 46. (a)	7. (c) 17. (b) 27. (c) 37. (a)	8. (b) 18. (b) 28. (a) 38. (d)	9. (c) 19. (a) 29. (b) 39. (a)	10. (d) 20. (a) 30. (c) 40. (b)	
	LEVEL II	[
1. (a) 11. (c) 21. (b)	2. (d) 12. (b) 22. (d)	3. (a) 13. (a) 23. (d)	4. (a) 14. (a) 24. (d)	5. (b) 15. (c) 25. (c)	6. (b) 16. (a) 26. (a)	7. (c) 17. (b) 27. (b)	8. (a) 18. (b) 28. (d)	9. (c) 19. (a) 29. (b)	10. (d) 20. (a) 30. (c)	
	LEVEL II	П								
1. $(A) -$ 3. $(A) -$ 5. $(A) -$ 7. $(A) -$ 9. (d) 19. (d) 23. $(Ka =$ 27. $(1.1 \times$ 31. $[H^+] \ge$ 32. (9×1) 37. $(Solv)$	$\Rightarrow s; (B) \rightarrow p;$ $\Rightarrow q; (B) \rightarrow r;$ $\Rightarrow p; (B) \rightarrow s;$ $\Rightarrow q; (B) \rightarrow p;$ 10. (b) 20. (i) [1. = 10 ⁻⁸) $< 10^{-4})$ $\ge [H_2 PO_4^-] =$ $10^{-6} M$ e by salt hyd	(C) → r; (D) (C) → q, s; (D) (C) → r; (D) ; (C) → s; (D) 11. (d) 8×10^{-16}], (i) 24. (i) [2 28. (0.07, 5.6 × 10 ⁻³ W 33. (0.05) rolysis)	$) \rightarrow q$ $(D) \rightarrow p, s$ $) \rightarrow q$ $) \rightarrow r$ 12. (d) $i) [1.67 \times 10]$ 38], (ii) [6.9] 6.126×10^{-1} $1, [HPO_4^{-2}] =$ mole) 38. (3.82)	13. (c) $[7^{-5}], (iii) [4 > 5], (iii) [7.00]^{-2}$ $= 6.8 \times 10^{-8} 1$ 34. (6.6 × × 10 ⁻²⁶)	2. (A) \rightarrow 4. (A) \rightarrow 6. (A) \rightarrow 8. (A) \rightarrow 14. (d) (10 ⁻¹⁰] 004] 29. (10 ⁻³ , M [PO ₄ ⁻³] = 5 (10 ⁻⁶ M) 39. (1.12)	⇒ p, q, r; (B) ⇒ q, s; (B) → q ⇒ r; (B) → q ⇒ s; (B) → p 15. (c) 21. (10) 25. (6.79 3.6 × 10 ⁻⁴ , 4 .46 × 10 ⁻¹⁸ 35. (10 ⁻⁹) × 10 ⁻⁶ M)		q, s; (D) \rightarrow p, r; (D) \rightarrow (D) \rightarrow p, s)) \rightarrow r 17. (b) 1) 26. (0.55 30. (2.5 > 36. (8.34) 10 ⁻⁹ M)	q, r q, s 18. (d) 6M) <10 ⁻¹⁵)	
41. [4.23] 45. (i) [9. 48. (H ₂ C) 50. (1.58) 54. (SA+] 42. (2.77 .6] (ii) 7.2 O_3) = 9.8 × 1 × 10 ⁻³ mole) SB ⇒ WA+	× 10^4 L) 46. (9.16) 0^{-6} M, (HCC) 51. [7.898 WB \therefore feasi	43. (i) [12 47. (3.82) $(3,3) = 4.9 \times 10^{-3}$ 3, 7.3 and 7.3 (ble)	3.1] (b) [0.12 3, 3.846, 3.9 0 ⁻⁴ M, (CO ₃ 3] 55. (6.97	(25 M] (8) $(-)= 2.45 \times 10^{-}$ $(52. (7.8)^{-}$ $(7.8)^{$	44. (a) [2) ⁻⁸ M 53. (Cone 78] (b) [7.5:	.12] (b) [4.66 49. (0.908 ceptual) 5] (c) [3.58]	6] (c) [7.2] (6 3) 57. (Cond	d) [12] ceptual)	
58. (11.3)) 59. (8.71)) 60. (78.36	ml)	61. [12.3]	62. (4.5)	63. (0.17	6↓, 0.176↑)	× ×	. /	

5.30 Physical Chemistry-I for JEE (Main & Advanced)

64.	(salt = 0.087 M acie	d = 0.203 M	65. (5.046)	66. (1)	67. (i) [0.1M] (ii) [0.1]	M] (iii) [13]
68.	(1.12) 69. (1.47)	70. (5.48) 71. [12]	72. (900 ml)			
73.	$[H^+] = 6.61 \times 10^{-5}$	M, $[HCO_3^-] = 6.73 \times 10^{-5}$	M, $[CO_3^{}] = 4.8 \times 10^{-11}$	Μ	74. (0.004%)	
75.	$(1.8 \times 10^{-6} \text{ M})$	76. $(2.2 \times 10^{-6} \text{ M})$	77. $(SA + SB \rightleftharpoons WA +$	WB then fe	asible) 78. (1.23 >	< 10 ⁻¹¹)
79.	(0.4 g)	80. (1.8:1 & 3.74)	81. [9.26] 82. (0.954	$12, 4.751, \frac{10}{11}$	th stage to $\frac{1}{11}$ th stage	83. (10)
84.	(conceptual)	85. (10) 86. (8)	87. (2400) 88. (369)	89. (8)	90. (31) 91. (a, b)	92. (b, c, d)
93.	(a, b, d)	94. (a, c, d)	95. (c, d) 96. (a, b, d	.)		

PREVIOUS YEARS' QUESTIONS OF JEE (MAIN & ADVANCED)

1. (d)	2. (c)	3. (c)	4. (c)	5. (a)	6. (a)	7. (c)	8. (b)	9. (b)	10. (b)
11. (c)	12. (b)	13. (c)	14. (d)	15. (c)	16. (b)	17. (a)	18. (a)	19. (c)	20. (c)
21. (c)	22. (a)	23. (d)	24. (a)	25. (a)	26. (b)	27. (c, d)	28. (a)	29. (b)	30. (8)
31. (3)	32. (6)	33. (7)							

Hints and Solutions

LEVEL I

1. (c)
$$K_{H_2O} = \frac{[H^+][OH^-]}{[H_2O]} = \frac{10^{-12}}{55.55}$$

 $\therefore K_{H_2O} = 1.8 \times 10^{-14}$
2. (a) $pH = pK_a + \log \frac{[salt]}{[weak acid]}$
 $\therefore pH = pK_a$
3. (b) $K_{sp} = [Zn^{2^+}][S^{2^-}]$
 $[S^{2^-}] = \frac{10^{-21}}{0.01} = 10^{-19}$
for $K_{a_1} \cdot K_{a_2} = \frac{[H^+]^2[S^{2^-}]}{[H_2S]}$
 $10^{-20} = \frac{[H^+]^2 \times 10^{-19}}{0.1} \Rightarrow [H^+] = 0.1$
or $pH = 1$
4. (b) $pH = 2$, $[HCI] = 10^{-2}$ (M) and $pOH = 2$
or $[NaOH] = 10^{-2}$ (M)
 $4 \text{ mL of } 10^{-2}$ (M) $HCI = 4 \times 10^{-5} \text{ moles } HCI.$
 $6 \text{ mL of } 10^{-2}$ (M) $NaOH = 6 \times 10^{-5} \text{ moles } NaOH$
After mixing excess moles of $OH^- = 2 \times 10^{-5}$
 $[OH^-] = \frac{2 \times 10^{-5}}{10} \times 10^3 = 2 \times 10^{-3}$
or $pOH = 3 - \log 2 = 3 - 0.3 = 2.7$
or $pH = 11.3$
5. (a) A solution of CuSO₄ is acidic due to hydrolysis of

5. (a) A solution of $CuSO_4$ is acidic due to hydrolysis of strong conjugate acid Cu^{2+} ions,

6. (c)
$$Ba^{2+} H_2O \Longrightarrow Cu (OH)^+ H^+$$

 $Cu^{2+} H_2O \Longrightarrow Cu^- = 1 (M)$
 $CN^- + H_2O \Longrightarrow HCN + OH^-$

$$pH = \frac{1}{2}(pK_w + pK_a + \log c)$$

$$pH = \frac{1}{2}(pK_w + pK_a) \text{ since } c = 1(M)$$

$$pH = \frac{1}{2}(2pK_w - pK_b) = \frac{1}{2}(28 - 9.3)$$

$$pH = \frac{1}{2}(28 - 9.3) = 9.35$$

7. (c) On diluting a buffer solution, the ratio of salt to acid (or base) does not change. Hence, its pH remains constant.

8. (b) After mixing total moles of A^-

$$= 100 \times 0.2 \times 10^{-3} + 100 \times 0.3 \times 10^{-3}$$

= 100 × 10⁻³ × 0.5 moles
After mixing total moles of HA
= 100 × 0.1 × 10⁻³ + 100 × 0.2 × 10⁻³

 $= 100 \times 0.3 \times 10^{-3} \text{ moles}$

After mixing resulting pH = $5 + \log \frac{5}{3}$

9. (c)
$$K_a K_b = 10^{-14}$$

or $K_a = K_{in} = 10^{-5}$
 \therefore [H⁺] = 10^{-5}
or pH = 5
10. (d)

(a) $\operatorname{SrF}_2(s) \rightleftharpoons \operatorname{Sr}^{2+} + 2\operatorname{F}^$ $s \quad 2s$ where s is the solubility $\therefore \quad 4s^3 = 32 \times 10^{-15}$

or
$$s = 2 \times 10^{-5}$$
 (M)

But practically the solubility of SrF₂ (s) in NaCl solution is slightly greater than 2×10^{-5} because NaCl increases ionic strength of the solution.

11. (c)
$$K_w = [H^+] [OH^-]$$

[H⁺] in pure water = 10⁻⁶
[OH⁻] = 10⁻⁶
Therefore, $K_w = 10^{-12}$

- 12. (a) Solution of KCN is basic. Therefore, concentration of $[H^+]$ will decrease on mixing it with CH₃COOH and thus pH will increase.
- 13. (a) On dissolving FeCl₃ in water, it will give Fe(OH)₃, H⁺ and Cl⁻. Ionisation of Fe(OH)₃ will be low. Therefore, concentration of [H⁺] will be more than [OH⁻] in the solution, so the solution will be acidic and blue litmus solution will turn red.
- **14.** (a) Ionic product of Na⁺ and Cl⁻ becomes more than the solubility product of NaCl.
- **15.** (d) Fe Al and Cr are third group elements. Therefore, their solubility product is low, whereas Zn is of fourth group and therefore its solubility product is high.
- 16. (d) CH_3NH_2 (an amine) is basic, therefore its pH will be greater than 7.

17. (b)
$$\therefore$$
 pH = 3, [H⁺] = 10⁻³ C = 10⁻¹
[H⁺] = C $\cdot \alpha$
10⁻³ = 10⁻¹ α
 $\alpha = \frac{10^{-3}}{10^{-1}} = 10^{-2}, K_a = C\alpha^2$
 $K_a = C\alpha^2 = 10^{-1} \times 10^{-2} \times 10^{-2} = 10^{-5}$

- 18. (b) among all Na_2CO_3 is most basic, therefore its pH value will be highest.
- **19.** (a) Volume is increasing twice, therefore concentration will become half.

 $K_{\rm sp} = [Ag^+][Cl^-]$ Ionic product = 0.5 × 10⁻⁴ · 10⁻⁴ × 0.5 = 10⁻⁸ × 0.25 Solubility product = 1.8 × 10⁻¹⁰

Ionic product > Solubility product, therefore precipitation will take place.

- 20. (a) $\operatorname{Na}_2^+ \operatorname{CO}_3^- + 2\operatorname{H}_2 O \Longrightarrow 2\operatorname{Na}^+ + 2\operatorname{OH}^- + \operatorname{H}_2 \operatorname{CO}_3$ $\operatorname{CO}_3^{-2} + 2\operatorname{H}_2 O \Longrightarrow 2\operatorname{OH}^- + \operatorname{H}_2 \operatorname{CO}_3$
- 21. (b) To precipitate only the metal hydroxides of third group, NH₄Cl is added before NH₄OH in qualitative analysis, because the concentration of OH⁻ decreases due to common ion effect.

22. (a)
$$N_1V_1 + N_2V_2 = N_3V_3$$

 $250 \times 6M + 350 \times 8 = 3N \times V_3$
 $1500 + 280 = 3N \times V_3$
 $V_3 = 1433.3 \text{ mL}$
Volume $1433.3 - (250 + 350) = 833.3 \text{ mL}$

Therefore, 833.3 mL water has to be mixed.

- **23.** (c) CH_3COONH_4 salt is made up of weak acid and weak base. Therefore, pH remains unchanged on diluting it, because it acts as an amphiresistant solution.
- **24.** (b) In the titration of weak base and a strong acid, the resulting solution will be acidic. Therefore, methyl orange is an appropriate indicator.

25. (c) 1.8 g water = 0.1 g mole

2.9 g acetone =
$$\frac{2.9}{58}$$
 = 0.05 g mole

Total mole = 0.15 gram mole

Mole fraction of acetone =
$$\frac{0.05}{0.15} = \frac{1}{3}$$

26. (c)
$$pH = pK_a + \log \frac{[Salt]}{[Acid]} = 4.75 + \log 10$$

 $pH = 5.75$

- **27.** (c) Henolphthalein is colourless in acid medium because concentration of Ph range 8.3 to 10.
- **28.** (a) [Salt] = [Acid]

$$pH = pK_a + \log \frac{\text{[Salt]}}{\text{[Acid]}}$$
$$pH = 4.75 + \log \frac{0.02}{0.02}$$
$$pH = 4.75$$

29. (b) Na^+ and undissociated $H_2PO_4^-$, HPO_4^{2} , PO_4^{-3} ions will be there, because H_3PO_4 dissociates in three steps.

$$Ag^{+} + 2NH_{3} \xleftarrow{K=10^{8}} Ag(NH_{3})_{2}^{+}$$

$$0.02 \text{ mol} \quad 0.14 \text{ mol} \quad 0.02 \text{ mol}$$

$$10^{8} = \frac{[Ag(NH_{3})_{2}^{+}]}{[Ag^{+}][NH_{3}]^{2}} = \frac{0.02}{[Ag^{+}] \times 0.01}$$
or
$$[Ag^{+}] = 2 \times 10^{-8} \text{ (M)}$$
31. (b)

$$pH = 1 \quad pH = 2$$

$$[H^{+}] = 0.1 \quad [H^{+}] = 0.01$$

$$V = 50 \quad V = 50$$

$$[H^{+}] \text{ of mixture is} [H^{+}] = \frac{N_{1}V_{1} + N_{2}V_{2}}{V_{1} + V_{2}} \Rightarrow \frac{50(0.1 + 0.01)}{100}$$

$$[H^{+}] \Rightarrow \frac{0.11}{2} \Rightarrow 0.055$$

$$pH = 1.26$$
32. (c) pH = 7 \therefore [H^{+}] = 10^{-7}, [OH^{-}] = 10^{-7}
New pH after addition of base

- **32.** (c) $pH = 7 \therefore [H^+] = 10^{-7}$, $[OH^-] = 10^{-7}$ New pH after addition of base $pH = 12 \therefore [H^+] = 10^{-12}$ and $[OH^-] = 10^{-2}$ $[OH^-]$ concentration increase 10^5 times.
- **33.** (b) Relative strength = $\sqrt{\frac{K_{a_1}}{K_{a_2}}} = \sqrt{\frac{3 \times 10^{-4}}{1.8 \times 10^{-5}}} \Rightarrow 4 : 1$
- 34. (a) HCOOH + KOH \rightarrow HCOOK + H₂O after reaction it forms Buffer solution

$$[\text{HCOOH}] = \frac{10}{90} \qquad [\text{HCOOK}] = \frac{10}{90}$$

$$pH = pK_a + \log \frac{[salt]}{[acid]}$$
 $pH = pK_a$

 $pH = 4 - \log(1.8)$

35. (a) Let weak acid be HA and its sodium salt be NaA.

$$K_a = \frac{K_w}{K_h}$$
 $K_h = C\alpha^2 \Rightarrow 0.1 \times (0.03)^2$

$$K_{a} = \frac{10^{-14}}{9 \times 10^{-5}} K_{a} = \approx 1 \times 10^{-10}$$
36. (b) CH₃COOH + NaOH \longrightarrow CH₃COONa + H₂O
40 20 0 0 0
After reaction
[CH₃COOH] = $\frac{20}{200}$, [CH₃COONa] = $\frac{20}{200}$
pH = pK_{a} + log [salt]
pH = pK_{a} [H⁺] = K_{a} = 1.8 × 10⁻⁵
37. (a) CH₃COONa + HCl \longrightarrow CH₃COOH + NaCl
at equivalence the [CH₃COOH] = $\frac{20}{200} \Rightarrow 0.1$
pH = $\frac{1}{2}pK_{a} - \frac{1}{2}\log C$
pH = $\frac{1}{2}[5 + \log 2 - \log 10^{-1}]$
pH = $\frac{1}{2}[6 - \log 2] \Rightarrow$ pH = $3 - \log\sqrt{2}$
38. (d) pH = pK_{a} + log $\frac{\text{HCO}_{3}}{\text{H}_{2}\text{CO}_{3}}$
 $7 = 7 - \log 4 + \log \frac{[\text{HCO}_{3}]}{[\text{H}_{2}\text{CO}_{3}]}$

$$4 = \frac{[\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3]}$$
$$[\% \text{HCO}_3^-] = \frac{4}{5} \times 100 \implies 80\%$$

39. (a)
NaOH + H₃PO₄
$$\implies$$
 NaH₃PO₃ + H₂O
5 mm 9 mm 0 0 0
form buffer
 $\therefore Ph = Pka_1 + \log \frac{5}{4}$
 $= 3 + 0.7 - 0.6 = 3.1$
40. Mg(NO₃)₂ + 2NaF \longrightarrow MgF₂ + 2NaNO₃
2.5 5
0 0 2.5
(Mg⁺²) $\frac{2.5}{35} = 0.0714$ M
MgF₂ \longrightarrow Mg⁺² + 2 F
Ionic product
41. IP > K_{sp} I.P. = [Ca⁺²][F⁻]²
I.P. $\Rightarrow \left[\frac{10^{-2}}{2}\right] \left[\frac{10^{-3}}{2}\right]^2 \Rightarrow \left[\frac{10^{-8}}{4}\right]$
IP > K_{sp} (1.7 × 10⁻¹⁰)
42. (b)

HCl + NaCl 1 mL, 0.1 99 mL

$$[H^{+}] = \frac{0.1}{100} \Rightarrow 0.001 \qquad pH = 3$$
43. (c) HF + H₂O \iff F⁻ + H₃O⁺
 $K_a \times K_b = K_w \qquad pK_a + pK_b = pK_w$
 $pK_a = 14 - 10.83 \qquad \therefore pK_a = 3.17$
and $K_a = 6.75 \times 10^{-4}$
44. (d)
First dissociation : H₃X \implies H₂X⁻ + H⁺
 \therefore H⁺ ion concentration = 2×10^{-4} M
Second dissociation : H₂X⁻ \implies HX⁻ + H⁺
 \therefore H⁺ ion concentration = $C\alpha = 2 \times 10^{-4} \times 0.5 = 10^{-4}$
 \therefore Third dissociation is negligible
 \therefore [H⁺] = $2 \times 10^{-4} + 10^{-4} = 3 \times 10^{-4}$
 $pH = 4 - \log 3 = 3.52$
45. (a) [H⁺] = $2C\alpha = 2 \times \frac{1}{200} \times \frac{10}{100} = 10^{-3}$ M
 \therefore pH = 3
46. (a)
Formula of pH is pH = $\frac{1}{2}pK_w + \frac{1}{2}pK_a + \frac{1}{2}\log C$
 $8 = 7 + \frac{1}{2}pK_a - 1$
 $4 = pK_a \text{ or } pK_a = 4$

C LEVEL II

1.
$$C_{6}H_{5}COOH + NaOH \longrightarrow C_{6}H_{5}COONa + H_{2}O$$

2 1
1 0 1
 $pH = pK_{a} \log \frac{[salt]}{[acid]} + pH = 4.2 + \log \frac{1}{1}$
 $pH = 4.2$
 $C_{6}H_{5}COOH + NaOH \longrightarrow C_{6}H_{5}COONa + H_{2}O$
2 2
0 0 2
 $pH = 7 + \frac{1}{2}pKa + \frac{1}{2} \log C$
 $pH = 7 + 2.1 + \frac{1}{2}\log \frac{2}{200}$
 $pH = 9.1 - 1 pH = 8.1$
2. (d)
 $CH_{3}COOH + NaOH \longrightarrow CH_{3}COONa + H_{2}O$
 $0.1 0.1 0 0 0$
 $At 1/3 neutralisation$
 $2/3 1/3 1/3 1/3$
 $pH = pKa + \log \frac{(salt)}{(acid)}$
 $pH_{1} = pKa + \log \frac{1/3}{2/3} = pKa + \log \frac{1}{2} ...(1)$

at 2/3 neutralization

$$pH_{2} = pKa + \log \frac{2/3}{1/3} = PKa + \log 2 \qquad ...(2)$$

$$pH_{1} - pH_{2} = \log \frac{1}{2} - \log 2$$

$$= \log \frac{1}{4} = -2 \log 2$$
3. HSO₄⁻ \longrightarrow H⁺ + SO₄²⁻
1
(1- α) $\alpha \quad \alpha$
 $10^{-2} = \frac{\alpha^{2}}{1-\alpha} \therefore \alpha \Rightarrow 0.09 \text{ pH} = 1.02$

4. (a) HCN is a weak acid so H⁺ due to it can neglect. As comparison to HF.

$$[H^{+}] = \sqrt{KaC} = \sqrt{6.7 \times 10^{-4} \times 0.1} = \sqrt{67 \times 10^{-6}}$$
$$= 8.18 \times 10^{-3}$$
$$pH = -\log [8.18 \times 10^{-3}] = 3 - \log [8.18]$$
$$pH = 2.087$$

$$CH_3CO_2H + NaOH \longrightarrow CH_3COONa + H_2O$$

$$10m \text{ mol} \qquad 5m \text{ mol}$$

$$pH = pK_a = 5 - \log 1.8 \qquad pH = 4.74$$

6. (b)
$$pH = pk_{in} + \log \frac{[In^-]}{[HIn]}$$
 $6 = 5 + \log \frac{[In^-]}{[HIn]}$

$$\frac{\mathrm{In}}{\mathrm{HIn}} = 10 \quad \therefore \quad \frac{\mathrm{[HIn]}}{\mathrm{[HIn]} + \mathrm{[In^-]}} = \frac{1}{11}$$

7. (c) At half way [HIn] = In⁻
pH = 5.5 + log
$$\frac{[salt]}{[acid]}$$
 5.5 = pKa + log $\frac{[salt]}{[acid]}$
log $\frac{[salt]}{[acid]}$ = 0.75 $\Rightarrow \frac{[salt]}{[acid]}$ = 5.62
8. (a) $h = \sqrt{\frac{K_h}{C}}$ $h = \sqrt{\frac{K_w}{K_a \times C}}$
 $h = \sqrt{\frac{10^{-14} \times 80}{1.3 \times 10^{-9} \times 1}}$ $h = 2.48\%$
9. (c) CH₃COOH + NaOH \rightarrow CH₃COO⁻ + H₂O
(WASB)
pH = $\frac{1}{2}[pK_w + pK_a + \log C]$
 $= \frac{1}{2}[14 + 5 - \log 1.9 + \log \frac{1}{20}]$
 $= \frac{1}{2}[19 - \log 1.9 - \log 20]$
pH = $\frac{1}{2}[19 - \log 20 \times 1.9] = 8.78$
pOH = 5.28 [OH[©]] = 5.24 × 10⁻⁶

10. (d) 0.09 M HC1 \rightarrow \rightarrow C₁ = 0.1 M, $\alpha_1 K_{a_1} = 10^{-5}$, CH₃COOH \rightarrow C₂ = 0.09 M, α_2 , $K_{a_2} = ?$ Cl₂CHCOOH $pH = 1, [H^+] = 0.1$ $0.1 = 0.09 + C_1 \alpha_1 + C_2 \alpha_2$ $C_1 \alpha_1 + C_2 \alpha_2 = 0.01$...(i) $CH_3COOH \Longrightarrow CH_3COO^- + H^+$ C_1 $C_1 - C_1 \alpha_1$ $C_1 \alpha_1$ 0.1 $Cl_2HCCOOH \Longrightarrow Cl_2HCCOO^- + H^+$ C_{2} $C_{2} - C_{2}\alpha_{2} \qquad C_{2}\alpha_{2} \qquad 0$ $K_{a_{1}} = \frac{(C_{1}\alpha_{1})(0.1)}{C_{1}(1-\alpha_{1})} \simeq \alpha_{1} \times 0.1 = 10^{-5}$ 0.1 $\alpha_1 = 10^{-4}$ Putting this in equation (i) $10^{-4} \times 0.1 + 0.09 \alpha_2 = 0.01$ $\alpha_2 = 0.111$ $K_{a_2} = \frac{(C_2 \alpha_2)(0.1)}{C_2 (1 - \alpha_2)} = \frac{(0.111)(0.1)}{1 - 0.111} = 1.25 \times 10^{-2}$ 11. (c) $M = \frac{w}{w} \% \frac{10d}{\text{Molar Mass}} = C$ $\frac{10 \times 10 \times 0.935}{17} = 5.5$ $K_b = C\alpha^2 \Longrightarrow 5.5 \times 10^{-6} = 5.5\alpha^2$ $\alpha = 10^{-3}$ $[OH^{-}] = C\alpha = 5.5 \times 10^{-3}$ pOH = 2.26, pH = 11.712. (b) $\ln\frac{k_{w_2}}{k_{w_1}} = \frac{\Delta H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$ $\ln\frac{5.474 \times 10^{-14}}{1.08 \times 10^{-14}} = \frac{\Delta H}{8.314} \left(\frac{1}{298} - \frac{1}{323}\right)$ $\Delta H = 51952.6 \text{ J} = 51.95 \text{ kJ/mole}$ 13. (a) $Na_{2}CO_{3} + HCl \longrightarrow NaHCO_{3} + NaCl$ $2 \qquad 2$ $- \qquad - \qquad 2$ $pH = \frac{pk_{1} + pk_{2}}{2} = 8.35$ 14. (a) $Na_3PO_4 + HCl \longrightarrow Na_2HPO_4 + NaCl$ 1.6 0.8 0.8 0.8 $Na_{2}HPO_{4} + HCl \longrightarrow NaH_{2}PO_{4} + NaCl$ 0.8 0.8 0.8 $pH = \frac{pk_1 + pk_2}{2} = 4.66$

15. (c) Initial pOH =
$$pK_b = 4.744$$

Let x mole of HCl has been added so
 $[NH_4^+] = 0.1 + x$, $[NH_3] = 0.1 - x$
 $pOH = 5.744$
 $5.744 = 4.744 + \log \frac{0.1 + x}{0.1 - x}$
 $1 = \log \frac{0.1 + x}{0.1 - x}$
 $1 = \log \frac{0.1 + x}{0.1 - x}$
 $\frac{0.1 + x}{0.1 - x} = 10 \Rightarrow x = \frac{0.9}{11} = 0.082$ moles
16. (a) Na₃PO₄ + H₂O \longrightarrow Na₂HPO₄ + NaOH
 $K = \frac{K_w}{Ka_3} = 0.0222$
Na₂HPO₄ + H₂O \longrightarrow NaH₂PO₄ + NaOH
 $K = \frac{K_w}{Ka_2} = 1.58 \times 10^{-7}$
NaH₂PO₄ + H₂O \longrightarrow H₃PO₄ + NaOH
 $K = \frac{K_w}{Ka_3} = 1.4 \times 10^{-12}$

Since equilibrium constant of second and third reaction is very less, $[OH^-]$ will mainly come from first reaction. Na₃PO₄ + H₂O \longrightarrow Na₂HPO₄ + NaOH 0.1 0.1 - x x x x

$$\frac{x^2}{0.1-x} = 0.0222 \implies 45x^2 + x - 0.1 = 0$$

$$x = 3.73 \times 10^{-2}$$

$$[OH^{-}] = x = 3.73 \times 10^{-2} M$$

17. (b) Na₃PO₄ + H₂O \longrightarrow Na₂HPO₄ + NaOH

$$K = \frac{K_w}{K_3} = 0.0222$$

$$Na_2HPO_4 + H_2O \longrightarrow NaH_2PO_4 + NaOH$$

$$K = \frac{K_w}{K_2} = 1.58 \times 10^{-7}$$

$$NaH_2PO_4 + H_2O \longrightarrow H_3PO_4 + NaOH$$

$$K = \frac{K_w}{K_3} = 1.4 \times 10^{-12}$$

Since equilibrium constant of second and third reaction is very less, [OH⁻] will mainly come from first reaction.

Na₃PO₄ + H₂O → Na₂HPO₄ + NaOH
0.1
0.1 - x x x

$$\frac{x^2}{0.1 - x} = 0.0222 \Rightarrow 45x^2 + x - 0.1 = 0$$

 $x = 3.73 \times 10^{-2}$
[OH⁻] = $x = 3.73 \times 10^{-2}$ M

 $Na_2HPO_4 + NaOH \longrightarrow NaH_2PO_4 + NaOH$ x-y — y y+x $x - y \simeq x$, $y + x \simeq x$, so $1.58 \times 10^{-7} = \frac{(y+x)}{(x-y)}y; y$ $NaH_2PO_4 + H_2O \longrightarrow H_3PO_4 + NaOH$ y yy-z — z z+x $y - z \simeq y, \qquad z + x \simeq x$ $1.4 \times 10^{-12} = \frac{z(x+z)}{(y-z)} = \frac{z \times x}{y} = \frac{z \times 3.73 \times 10^{-2}}{1.58 \times 10^{-7}}$ $z = 5.93 \times 10^{-18}$ $[H_3PO_4] = z = 5.93 \times 10^{-18} M$ **18.** (b) At equivalence point meq. of HA = meq. of NaOH = 3.612 $NaA + HCl \longrightarrow HA + HCl + NaCl$ 3.612 1.806 1.806 _ 1.806 $pH = pK_a + \log \frac{[S]}{[A]}$ $4.92 = pK_a + \log \frac{1.806}{1.806}$ $pK_a = 4.92$ Now NaOH + HA \longrightarrow NaA 2 2 - - 2 $[NaA] = \frac{2}{20} = 0.1$ $pH = 7 + \frac{1}{2}pK_a + \frac{1}{2}\log C = 7 + \frac{4.92}{2} + \frac{1}{2}\log 0.1$ pH = 919. (a) In the beginning, let x m mole of BOH are present. $BOH + HCl \longrightarrow BCl + H_2O$

 $x \qquad \frac{x}{4} \qquad - \qquad \frac{3x}{4} \qquad 0 \qquad \frac{x}{4}$ $pOH = pk_b + \log \frac{1}{3}$ $14 - 9.24 = pk_b - \log 3$ $pk_b = 5.237$ $k_b = 5.8 \times 10^{-6}$ now BCl + NaOH \longrightarrow BOH $\frac{x}{4} \qquad 6$ $- \qquad - \qquad x$ $\frac{x}{4} = 6, \Rightarrow x = 24$ $[BOH] = \frac{24}{50} = 0.48$

$$[OH^{-}] = \sqrt{k_b \times C} = 1.668 \times 10^{-3}$$

pOH = 2.77
pH = 11.22

20. (a) HCO_3^- is proton acceptor (a base) as well as proton donor (an acid) and it is amphiprotic. For such a case $[\mathrm{H}^+] = \sqrt{K_1 K_2}$

or
$$pH = \left(\frac{pK_1 + pK_2}{2}\right)$$

HCO₃⁻ is an amphiprotic ion. It can undergo hydrolysis forming alkaline solution.

 $HCO_3^- + H_2O \Longrightarrow H_2 CO_3 + OH^-$

 HCO_3^- can also ionise to form acidic solution, pH of this type of salt is – $HCO_3^- + H_2O H_3O^+ + CO_3^{-2}$

$$pH = \left(\frac{pK_1 + pK_2}{2}\right) = \frac{6.38 + 10.26}{2} = 8.32$$
21. AgCNS \iff Ag⁺ + CNS⁻
solubility (1 - S₁) (S₁ + S₂) S₁
AgCl \iff Ag⁺ + Cl⁻
solubility (1 - S₂) (S₁ + S₂) S₂
(K_{sp})_{AgCNS} = (S₁)(S₁ + S₂) ...(i)

$$(K_{\rm sp})_{\rm AgCl} = (S_2)(S_1 + S_2)$$
 ...(ii)

Adding Eqs (i) and (ii)

$$(S_1 + S_2)^2 = (K_{sp})_{AgCNS} + (K_{sp})_{AgCl}$$

$$(S_1 + S_2) = \sqrt{(K_{sp})_{AgCNS} + (K_{sp})_{AgCl}}$$

$$= \sqrt{1.0 \times 10^{-12} + 1.7 \times 10^{-10}}$$

$$[Ag^+] = (S_1 + S_2) = 1.3 \times 10^{-5}$$

Divide Eq. (ii) from Eq. (i)

$$\frac{[\text{Cl}^-]}{[\text{CNS}^-]} = \frac{S_2}{S_1} = \frac{1.7 \times 10^{-10}}{1.0 \times 10^{-12}} \Longrightarrow 1.7 \times 10^2$$

22.
$$K_{sp} = s^2$$

 $s = 8 \times 10^{-3}$
23. $AgNO_3 + 2NH_3 \longrightarrow [Ag(NH_3)_2^+]$
 1.6
 5×10^{-8}
 $(x - 3.2)$
 0.8
 $s = \sqrt{K_{sp}} = \sqrt{6.4 \times 10^{-5}}$

$$K_{s} = \frac{[\text{Ag(NH}_{3})_{2}]^{+}}{(\text{AgNO}_{3})(\text{NH}_{3})}$$

$$10^{8} = \frac{0.8/2}{(5 \times 10^{-8}) \left(\frac{x - 3.2}{2}\right)^{2}} \therefore \left(\frac{x - 3.2}{2}\right)^{2} = 0.16$$

$$x = 2 \text{ M} \qquad \text{mole of NH}_{3} = 4.0$$
24. (d) $s = [\text{Zn(OH})_{2}(\text{aq})] + \text{Zn(OH})^{+} + \text{Zn}^{+2} + \text{Zn(OH})^{-}_{3} + \text{Zn(OH})^{-2}$

$$s = k_1 + \frac{k_1 k_2}{[OH^-]} + \frac{k_1 k_2 k_3}{[OH^-]^2} + k_1 k_4 [OH^-] + k_1 k_4 k_5 [OH^-]^2$$

$$s = 10^{-6} + \frac{10^{-13}}{[OH^-]} + \frac{10^{-17}}{[OH^-]^2} + 10^{-3}[OH^-] + 10^{-2}[OH^-]^2$$
pH = 5, pOH = 9, [OH^-] = 10⁻⁹
s = 10⁻⁶ + 10⁻⁴ + 10 + 10⁻¹² + 10⁻²⁰ = 10 M
25. (c) s = [Zn(OH)₂(aq)] + Zn(OH)⁺ + Zn⁺² + Zn(OH)₃⁻⁺
Zn(OH)₄⁻²
s = k₁ + $\frac{k_1k_2}{[OH^-]} + \frac{k_1k_2k_3}{[OH^-]^2} + k_1k_4[OH^-] + k_1k_4k_5[OH^-]^2$
pH = 13, pOH = 1, [OH^-] = 10⁻¹
s = 10⁻⁶ + 10⁻¹³ + 10⁻¹⁵ + 10⁻⁴ + 10⁻⁴ = 2 × 10⁻⁴ M
26. (a) Let solubility of Cu₃(AsO₄)₂ and Pb₃(AsO₄)₂ is x
and y respectively.
Cu₃(AsO₄)₂ \implies 3Cu⁺² + 2AsO₄⁻³ K_{sp} = 8 × 10⁻³⁶
3x 2x + 2y
Pb₃(AsO₄)₂ \implies 3Cu⁺² + 2AsO₄⁻³ K_{sp} = 4.096 × 10⁻³⁶
(ii) 108 x³(x + y)² = 8 × 10⁻³⁶ ...(ii)
108 x³(x + y)² = 8 × 10⁻³⁶ ...(ii)
(iii) $\Rightarrow \frac{x^3}{y^3} = \frac{8}{4.096} \Rightarrow x = 1.25y$
Putting this in Eq. (ii)
108y³(2.25y)² = 4.096 × 10⁻³⁶
y = 2.3 × 10⁻⁸ x = 1.25y = 2.875 × 10⁻⁸
[Cu⁺²] = 3y = 7.1 × 10⁻⁸
27. (b) Al(OH)₃ \implies Al⁺³ + 3OH⁻ K_{sp}
Al(OH)₄ \implies Al⁺³ + 4OH⁻ K
Al(OH)₃ \iff Al⁺³ + 4OH⁻ K
Al(OH)₄ \implies Al⁺³ + 4OH⁻ K
Al(OH)₄ \implies Al⁺³ + 4OH⁻ K
Al(OH)₃ \implies Al⁶ + Cl⁻ K_{sp}
Ag⁺ + 2NH₃ \implies Ag(NH₃)₂⁺ K₁ × K₂
AgCl_(s) $= 2A + 2x + 2x^2 = 0.002828$
 $\frac{x}{0.2 - 2x} = 0.05318$
x = 0.009613
Solubility = 9.6 × 10⁻³ M

29. (b) $[C1^{-}] = 0.02 \text{ M}$ $Ag(CN)_2^- \iff Ag^+ + 2CN^ K_{inst} = 4 \times 10^{-19}$ 0.05 $0.05 - x \approx 0.05 \quad x$ 2x $4 \times 10^{-19} = \frac{x \cdot (2x)^2}{0.05}$ $\frac{4x^3}{0.05} = 4 \times 10^{-19} \Longrightarrow x = 1.7 \times 10^{-7}$ $[Ag^+][Cl^-] = 1.7 \times 10^{-7} \times 0.02 = 3.4 \times 10^{-9} > K_{sp}$ so AgCl will precipitate. 30. (c) After mixing with equal volume $[Ag^+] = 0.01 \text{ M}, \text{HCN} = 0.01 \text{ M}$ $HCN \Longrightarrow H^+ + CN^- K_a$ $Ag^+ + CN^- \Longrightarrow AgCN_{(s)} \frac{1}{K_{sn}}$ $HCN + Ag^+ \Longrightarrow H^+ + AgCN(s),$ $K = \frac{K_a}{K_{\rm sp}} = 2.25 \times 10^6$ $\begin{array}{c} HCN + Ag^+ & \longrightarrow \\ 0.01 & 0.01 & 0 \\ \end{array} H^+ + AgCN(s), \\ \end{array}$ 0.01 х х since K value is very high, almost all of reactants will convert into product.

$$\frac{0.01}{x^2} = 2.25 \times 10^6 \qquad x = 6.6 \times 10^{-5}$$

[Ag⁺] = 6.7 × 10⁻⁵ M

LEVEL III

Match the Column

1. $[A \rightarrow S; B \rightarrow P; C \rightarrow R; D \rightarrow Q]$ At maximum buffer capacity, [salt] = [acid] hence $pH = pK_a$ \therefore (A) \rightarrow (S) At the $\frac{1}{4}$ th equivalence point of titration of weak acid HA, pH = $pK_a + \log \frac{1}{2}$ $(B) \rightarrow P$ At the $\frac{3}{4}$ th equivalence point of titration of weak acid HA, pH = pK_a + log 3 = $pK_a - \log \frac{1}{2}$ $(C) \rightarrow R$ For C(M) solution of weak acid HA, pH = $\frac{1}{2}$ $(pK_a - \log c) = \frac{1}{2} \left(pK_a - \log \frac{1}{3} \right)$

(D)
$$\rightarrow Q = \frac{1}{2} (pK_a + \log 3)$$

2. $[\mathbf{A} \rightarrow \mathbf{P}, \mathbf{Q}, \mathbf{R}; \mathbf{B} \rightarrow \mathbf{R}; \mathbf{C} \rightarrow \mathbf{Q}, \mathbf{S}; \mathbf{D} \rightarrow \mathbf{Q}, \mathbf{R}]$
(A) CH₃COOH + CH₃COONa \Rightarrow Buffer Solution
 $[S] = [A] \therefore$ acidic buffer at its maximum capacity
 $pH = pK_a = 4.74 \therefore [\mathbf{P}, \mathbf{Q}, \mathbf{R}]$
(B) Mixture of S.A. and W.A.
 $pH = -\log [H^+]_{SA} \therefore pH < 7$
(C) CH₃COOH + NH₄OH \rightarrow CH₃COONH₄
0.1 0.1 0.1 0
0 0 0 0.1
 \therefore salt of WA and WB formed
 $\therefore pH = 7 + \frac{1}{2}Pka - \frac{1}{2}Pkb = 7$
 $Pka = Pkb$
(CH₃COONH₄) also acts as simple buffer.
(D) CH₃ COONa + HCl \rightarrow CH₃COOH+ NaCl
 $300 \times 0.1 \quad 100 \times 0.1$
 $30 \quad 10 \quad 20$
 $20 \quad 0 \quad 10 \quad 10$
means buffer
 $\therefore pH = 4.74 + \log \frac{1}{2}$
 $pH < 7$
3. $[\mathbf{A} \rightarrow \mathbf{Q}; \mathbf{B} \rightarrow \mathbf{R}; \mathbf{C} \rightarrow \mathbf{P}; \mathbf{D} \rightarrow \mathbf{P}, \mathbf{S}]$
(A) 0.1 M KCN Salt of S.B. and W.A.
 $pH = 7 + \frac{1}{2}Pka + \frac{1}{2}\log C$
 $= 7 + \frac{1}{2}Pka + \frac{1}{2}\log C$
 $= 7 - \frac{1}{2}Pkb - \frac{1}{2}\log (10^{-1})]$
 $= 7.5 - \frac{1}{2}Pkb$
(C) 0.1 MKCl salt of SA and SB $\therefore pH = 7$
(D) 0.1 MCH₃COONH₄
Salt of W.A. and W.B.
 $pH = 7 + \frac{1}{2}Pka - \frac{1}{2}Pkb$
 $if ka = kb$
 $\therefore pH = 7$
4. $[\mathbf{A} \rightarrow \mathbf{Q}; \mathbf{S}; \mathbf{B} \rightarrow \mathbf{P}; \mathbf{R}; \mathbf{C} \rightarrow \mathbf{P}; \mathbf{R}; \mathbf{D} \rightarrow \mathbf{Q}; \mathbf{S}]$

1

2.

Only ion of W.A. or W.B. hydrolysis. (A) NaHCO₃ \rightarrow Na⁺ + HCO₃⁻ \downarrow Anionic hydrolysis : solution basic

(B)
$$\operatorname{CuSO}_4 \rightarrow \operatorname{Cu}^{+2} + \operatorname{SO}_4^{--} \downarrow$$

Cationic hydrolysis
 \therefore solution acidic in nature
(C) $\operatorname{K}_2\operatorname{SO}_4$. $\operatorname{Al}_2(\operatorname{SO}_4)_3$. $24\operatorname{H}_2\operatorname{O}$
 $\therefore \operatorname{Al}^{+3}$ hydrolysis
cationic hydrolysis
 \therefore acidic solution.
(D) NaCN Salt of SB and WA
NaCN \rightarrow Na⁺ + CN⁻ \downarrow
Aniomic Hydrolysis
 \therefore anionic hydrolysis and solution basic in
nature.
 $\operatorname{IA} \rightarrow \operatorname{P:} \operatorname{B} \rightarrow \operatorname{S:} \operatorname{C} \rightarrow \operatorname{R:} \operatorname{D} \rightarrow \operatorname{Ol}$

(A) If H.A. and NaA both present means buffer solution

$$Ph = Pka + \log \frac{0.01}{0.1} \Longrightarrow 5 - 1 = 4$$

(B) BOH and BCl form basic buffer solution

$$POH = PKb + \log \frac{0.1}{0.1} \Longrightarrow 6 - 0 = 6$$

$$\therefore$$
 Ph = 8

5.

(C)
$$HA + BOH \Longrightarrow BA + H_2O$$

 \downarrow

Salt of W.A. and W.B.

$$\therefore Ph = 7 + \frac{1}{2}pka - \frac{1}{2}pkb$$

= 7 + $\frac{1}{2}(5) - \frac{1}{2}(7) = 6$
(D) HNO₃ + NaOH \longrightarrow NaO₃ + H₂O
500 × 0.2 500 × 0.2
- - - 100 100
Salt of S.A. and S.B. formed \therefore Ph = 7

6.
$$[A \rightarrow R; B \rightarrow Q, S; C \rightarrow R; D \rightarrow P, S]$$

(A)
$$pH = 7 + \frac{1}{2}Pka - \frac{1}{2}Pkb$$

If $Pka = Pkb$
 $pH = 7$
(B) $pH = 7 + \frac{1}{2}Pka + \frac{1}{2}\log C$
 $\therefore Ph > 7$
(C) No hydrolysis $\therefore Ph = 7$
(D) $pH = 7 - \frac{1}{2}pkb - \frac{1}{2}\log C \quad pH < 7$
7. $[\mathbf{A} \rightarrow \mathbf{Q}; \mathbf{B} \rightarrow \mathbf{P}; \mathbf{C} \rightarrow \mathbf{S}; \mathbf{D} \rightarrow \mathbf{R}]$
(A) $PKa + Pkb = 14$
 $\therefore Pkb = 8$
(B) $[H^+] = 10^{-8} + x$
 $use x \approx 10^{-7}$

(C)
$$Ph = \frac{1}{7}[Pka - \log C]$$

(B)
$$Ph = -log [H^+] = -log [5 \times 10^{-4}]$$

And
$$[H^+] = \frac{10^{-3}V + 10^{-5}V}{2V} = 5 \times 10^{-4}$$

 \therefore POH = 14 - 4.4 = 10.7
 $[A \rightarrow S; B \rightarrow P; C \rightarrow Q; D \rightarrow R]$
(A) Ag₂CrO₄ \rightleftharpoons 2Ag⁺ + CrO₄⁻
 $KsP = (2S)^2(S) = 4s^3$
(B) H₂O \rightleftharpoons H⁺ + OH⁻
 $Kd = \frac{[H^+][OH^-]}{[H_2O]}$
(C) BaCrO₄ \rightleftharpoons Ba⁺² + CrO₄⁻
 $Ksp = S \times S$

(d)
$$K_2CO_3 \longrightarrow 2K^+ + CO_3^-$$

 CO_3^{-2} anionic hydrolysis
 \therefore Basic in nature Ph > 7

Comprehension

Comprehension 1

8.

9. (d) Suppose volume of $HCO_3^- = V mL$ Millimoles of $HCO_3^- = 5 V$ Millimoles of $H_2CO_3 = 20$

$$pH = pK_a + \log \frac{[HCO_3^-]}{[H_2CO_3]}$$

7.40 = 6.11 + log, $\frac{V}{4}$ $V = 78$ mI

10. (b) If CO_2 escapes, $[H^+]$ decreases, hence pH increases.

Comprehension 2

11. (d) Final pH = 1.7 or $-\log [H^+] = 1.7$ or $\log [H^+] = -2 + 0.3$ or $[H^+] = 2 \times 10^{-2}$ Let V mL of 0.1 (M) HA solution is mixed with 100 mL of 10^{-2} (M) HCl. In the mixed solution, [HA] $= \frac{V \times 10^{-4}}{(100 + V)} \times 10^3$ $= \frac{0.1V}{(100 + V)} (M)$ and $[HCl] = \frac{10^{-3} \times 10^3}{(100 + V)}$ $= \frac{1}{(100 + V)}$ HA $\rightleftharpoons H^+ + A^ \frac{0.1V}{(100 + V)} (1 - \alpha) \frac{0.1V\alpha}{(100 + V)} \frac{0.1V\alpha}{(100 + V)} + \frac{1}{(100 + V)}$ $\therefore [H^+] = \frac{(0.1V\alpha + 1)}{(100 + V)} = 2 \times 10^{-2}$

or
$$0.1V\alpha + 1 = 2 + 2 \times 10^{-2} \times V$$

$$K_{a} = \frac{\frac{(0.1V\alpha + 1)}{(100 + V)} \times \frac{0.1V\alpha}{(1.00 + V)}}{\frac{0.1V(1 - \alpha)}{(100 + V)}} = \frac{\alpha}{(1 - \alpha)} \times 2 \times 10^{-2}$$

$$\therefore \quad \frac{\alpha}{(1 - \alpha)} \times 2 \times 10^{-2} = 10^{-2}$$
or $\frac{\alpha}{1 - \alpha} = \frac{1}{2}$
or $2\alpha = 1 - \alpha$
or $\alpha = \frac{1}{3}$

$$\therefore \quad 0.1V \times \frac{1}{3} + 1 = 2 + 2 \times 10^{-2} \times V$$
or $\frac{V}{30} - \frac{V}{50} = 1$
or $\frac{20V}{30 \times 50} = 1$
or $V = \frac{150}{2} = 75 \text{ ml}$
12. (d) For isohydric solution, $Ka_{1}C_{1} = Ka_{2}C_{2}$
13. (c)
$$HA \rightleftharpoons H^{+} + A^{-} \quad HD \rightleftharpoons H^{+} + D^{-}$$
 $\frac{0.1}{2}(1 - \alpha_{1}) \quad \frac{0.1}{2}\alpha_{1} \quad \frac{0.1}{2}\alpha_{1} \quad \frac{1}{2}(1 - \alpha_{2}) \quad \frac{\alpha_{2}}{2} \quad \frac{\alpha_{2}}{2}$
 $+ \frac{\alpha_{2}}{2} \qquad + \frac{\alpha_{1}}{2}\alpha_{1}$

- \therefore Total H⁺ in solution $0.1/2\alpha_1 + \alpha_2/2$ for HA
- Total H⁺ in solution $0.1/2\alpha_1 + \alpha_2/2$ for HB *:*..

$$10^{-2} = \frac{\alpha_1}{(1 - \alpha_1)} \times \frac{(0.1\alpha_1 + \alpha_2)}{2} \quad \text{and}$$
$$10^{-3} = \frac{\alpha_2}{(1 - \alpha_2)} \times \frac{(0.1\alpha_1 + \alpha_2)}{2}$$

Neglecting α_1 and α_2 with respect to 1

$$\frac{\alpha_1}{\alpha_2} = 10$$

or $10^{-2} \approx \alpha_1 \times \frac{2\alpha_2}{2} = \alpha_1 \alpha_2 = \frac{\alpha_1^2}{10}$
or $\alpha_1^2 = 0.1$
or $\alpha_1 = 0.316$
 $\alpha_2 = 0.0316$
 \therefore final [H⁺] = $\frac{(0.0316 + 0.0316)}{2} = 0.0316$
or final pH = 1.5

It is the approximate pH since practically α_1 cannot be neglected with respect to 1

Comprehension 3

14. (d)

$$K_{a_{2}} \text{ of HCO}_{3}^{-} = \frac{10^{-10}}{2.1}$$
or $pK_{a_{2}} = 10 + \log 2.1$
 $\therefore \text{ pH} = 7 + \frac{1}{2}(10 + \log 2.1) - 1 = 11.161$
15. (c)
 $K_{a_{1}} \text{ of } \text{H}_{2}\text{CO}_{3} = \frac{10^{-6}}{2.2}$
 $pK_{a_{1}} = 6 + \log 2.2$
 $\therefore \text{ at the half neutralisation point, pH} = \frac{1}{2}(pK_{a_{1}} + pK_{a_{2}})$
 $= \frac{1}{2}[10 + \log 2.1 + 6 + \log 2.2]$
 $= \frac{1}{2}[16 + \log ((2.1 \times 2.2))]$
 $= \frac{1}{2}[16 + 0.665] = 8.33$
16. (a)

16. (a)

At complete equivalence point, an aqueous solution of H₂CO₃ is produced.

$$[H_{2}CO_{3}] = \frac{0.1}{2} (M)$$

$$\therefore \quad [H^{+}] = \sqrt{K_{a_{1}}C}$$

or $\log [H^{+}] = \frac{1}{2} [\log K_{a_{1}} + \log C]$
or $pH = \frac{1}{2} [pK_{a_{1}} - \log C]$
or $pH = \frac{1}{2} \Big[6 + \log 2.2 - \log \frac{0.1}{3} \Big]$
or $pH = \frac{1}{2} \Big[6 + 0.3424 + 1.48 \Big] = 3.91 \approx 4$

Comprehension 4

17. (b) Let molar absorbance of H In = $\alpha_{H In}$ and molar absorbance of $In^- = \alpha_{In^-}$ $\therefore \qquad 6 \times 10^{-4} \times \alpha_{\rm H \ In} = 0.142$ or $\alpha_{\rm H \ In} = \frac{0.142}{6 \times 10^{-4}}$ and $6 \times 10^{-4} \times \alpha_{In^-} = 0.943$ or $\alpha_{\text{In}^-} = \frac{0.943}{6 \times 10^{-4}}$ At pH = 8, $[In^{-}] + [H In] = 6 \times 10^{-4}$

and
$$\frac{0.142}{6 \times 10^{-4}} \times [H In] + \frac{0.943}{6 \times 10^{-4}} [In^{-}] = 0.527$$
or $0.142[H In] + 0.943[In^{-}] = 0.527 \times 6 \times 10^{-4}$
and $0.142[H In] + 0.142[In^{-}] = 6 \times 10^{-4} \times 0.142$
 $\therefore 0.801[In^{-}] = 0.385 \times 6 \times 10^{-4}$
or $[In^{-}] = \frac{0.385}{0.801} \times 6 \times 10^{-4} = 2.88 \times 10^{-4} (M)$
(d)
$$[H In] = (6 - 2.88) \times 10^{-4} = 3.12 \times 10^{-4}$$
 $H In \overleftarrow{K_{in}} = \frac{[H^{+}][In^{-}]}{[H In]} = \frac{10^{-8} \times 2.88 \times 10^{-4}}{3.12 \times 10^{-4}}$
 $= \frac{2.88}{3.12} \times 10^{-8} = 9.25 \times 10^{-9}$
(d)
$$0.625 = [H In] \times \frac{0.142}{6 \times 10^{-4}} + [In^{-}] \times \frac{0.943}{6 \times 10^{-4}}$$
 $\therefore 0.625 \times 6 \times 10^{-4} = [H In] \times 0.142 + 0.943 \times [In^{-1}]$
 $[H In] + [In^{-}] = 6 \times 10^{-4}$
 $\therefore 0.142 \times 6 \times 10^{-4} = [H In] \times 0.142 + 0.142[In^{-1}]$
or $[In^{-}] = \frac{0.483}{0.801} \times 6 \times 10^{-4} = 3.618 \times 10^{-4} (M)$
 $\therefore [H In] = (6 - 3.618) \times 10^{-4} = 2.382 \times 10^{-4}$
 $K_{in} = \frac{[H^{+}][In^{-}]}{[H In]}$
or $9.5 \times 10^{-9} = \frac{[H^{+}] \times 3.618 \times 10^{-4}}{2.382 \times 10^{-4}}$
or $[H^{+}] = \frac{2.382}{3.618} \times 9.25 \times 10^{-9} = 6.09 \times 10^{-9}$

18.

19.

or
$$pH = 9 - \log 6.09 = 8.215$$

Subjective

20. (i)
$$H_2O \xleftarrow{Ka} H^+ + OH^-$$

 10^{-7} $H^+ + OH^-$
 $K_a = \frac{[H^+][OH^-]}{[H_2O]} = \frac{10^{-7} \times 10^{-7}}{1000/8}$
 $= \frac{10^{-14}}{55.5} = 1.8 \times 10^{-16}$
(ii) $K_a = \frac{10 \times 10^{-15}}{6 \times 10^{-10}} = 1.67 \times 10^{-5}$
(iii) $K_a = \frac{10 \times 10^{-15}}{2.5 \times 10^{-5}} = 4 \times 10^{-10}$

21.
$$Ka = C\alpha^2 \Rightarrow \frac{\alpha_2}{\alpha_1} = \sqrt{\frac{C_1}{C_2}} = \sqrt{\frac{1}{1/100}} = 10$$

22. $K_a = C\alpha^2$
 $\frac{\alpha_1}{\alpha_2} = \sqrt{\frac{Ka_1}{Ka_2}} = \sqrt{\frac{1.8 \times 10^{-5}}{6.2 \times 10^{-10}}} = \sqrt{\frac{18}{6.2} \times 10^4} = 170:1$
23. (a) $pH = \frac{1}{2} pK_a - \frac{1}{2} \log C$
 $4.50 \times 2 = pK_a - \log (0.1)$
 $9 - 1 = pK_a \quad pK_a = 8 \quad K_a = 10^{-8}$
24. (i) $[H^+] = \sqrt{KaC} = \sqrt{18 \times 10^{-6}}$
 $\therefore \quad pH = 3 - \log [18]^{\frac{1}{2}}$
 $= 3 - 0.62 = 2.38$
(ii) $[H^+] = 10^{-8} + 10^{-7} = 10^{-7} [1.01]$
 $pOH = 7 - \log 1.1 = 6.95$
(iii) $[OH^-] = 10^{-10} + 10^{-7} = 10^{-7} [1.001]$
 $POH = 7 - \log 1.001 = 6.99$
 $pH = 7.0004$
25. $pK_w = 14 - \log 2.56 = 13.59 \approx 13.6$
 $pH = \frac{pK_w}{2} = 6.795$
26. $pH = 11.5 \quad [H^+] = 10^{-11.5}$
 $[OH^-] = 10^{-2.5}$
 $NH_4OH \xrightarrow{K_{bb}} \qquad NH_4^+ + OH^-$
 $10^{-2.5}$
 $\frac{10^{-5}}{C} = 1.8 \times 10^{-5} \quad C = \frac{1}{1.8} = 0.556 \text{ M}$
27. $C = 10^{-2}, [H^+] = 10^{-3}$
 $H^A \Rightarrow H^+ + A^-$
 $10^{-2} - 10^{-3} \qquad 10^{-3} = \frac{10^{-3}}{9} = 1.1 \times 10^{-4}$
28. $CHCl_2COOH \longrightarrow H^+ + CHCl_2COO^-$
 0.01
 $0.01 - x$ ($0.01 + x$) x
 $\frac{x(0.01 + x)}{0.01 - x} = 2.55 \times 10^{-2} = x$
 $29. \text{ For weak acid}$
 $[H^+] = \sqrt{K_1C_1 + K_2C_2 ... + K_w}$
 $= \sqrt{1.8 \times 10^{-5} \times 0.02 + 6.4 \times 10^{-5} \times .01 + 10^{-14}$

$$[H^{+}] = 10^{-3} \qquad K_{a} = \frac{[H^{+}][ACO^{-}]}{[ACOH]_{2}}$$

$$[ACO^{-}] = 3.6 \times 10^{-4}$$

$$same [C_{7}H_{5}O_{7}] = 6.4 \times 10^{-4}$$

$$30. H_{2}S \longrightarrow 2H^{+} + S^{-2}$$

$$[H^{+}] = 2 \times 10^{-4}, [H_{2}S] = 0.1 M$$

$$K = K_{1} \times K_{2} \qquad K = 10^{-7} \times 10^{-14}$$

$$K = 10^{-21} = \frac{[2 \times 10^{-4}]^{2}[S^{-2}]}{[0.1]} 10^{-21} = \frac{4 \times 10^{-8}}{0.1} [S^{-2}]$$

$$\frac{1}{4} \times 10^{-14} = [S^{-2}] \qquad 2.5 \times 10^{-15} = [S^{-2}]$$

$$31. (i) H_{3}PO_{4} \rightleftharpoons H^{+} + H_{2}PO_{4} \qquad K_{1} = 7.225 \times 10^{-3}$$

$$C(1 - \alpha) \qquad C\alpha_{1} \qquad C\alpha_{1} \qquad C\alpha_{1}$$

$$(i) H_{2}PO_{4} \rightleftharpoons H^{+} + PO_{4}^{-3} \qquad K_{3} = 6.8 \times 10^{-8}$$

$$C\alpha_{1}(1 - \alpha_{2}) \qquad C\alpha_{1}\alpha_{2} \ [C\alpha_{1}] \qquad (C\alpha_{1}\alpha_{2}\alpha_{3})$$

$$7.225 \times 10^{-3} = \frac{C\alpha_{1}^{2}}{(1 - \alpha_{1})} = \frac{0.01 \times \alpha_{1}^{2}}{1 - \alpha}$$

$$RxN. \qquad \dots(i)$$

$$(1 - \alpha) \times 0.7225 = \alpha_{1}^{2}$$

$$\alpha_{1}^{2} + 0.7225 \alpha - 0.7225 = 0$$

$$\alpha_{1} = 0.562$$

$$\Rightarrow \ [H^{+}] = 0.01 \times 0.562 \qquad [H^{+}] = 5.6 \times 10^{-3}$$

$$[H_{2}PO_{4}^{-2}] \approx 5.6 \times 10^{-3} \qquad RxN. \qquad \dots(i)$$

$$(1 - 8 \times 10^{-8} = \frac{[HPO_{4}^{-2}][H^{+}]}{[H_{2}PO_{4}^{-2}]} \qquad from [i] reaction.$$

$$\Rightarrow \qquad [HPO_{4}^{-2}] = 6.8 \times 10^{-8} M \qquad RxN. \qquad \dots(i)$$

$$4.5 \times 10^{-13} = \frac{[PO_{4}^{-3}][H^{+}]}{[HPO_{4}^{-2}]}$$

$$\frac{4.5 \times 10^{-13}}{5.6 \times 10^{-3}} = [PO_{4}^{-3}]$$

$$32. NH_{4}CI \longrightarrow NH_{4}^{+} + CI^{-}$$

$$NH_{4}OH \rightleftharpoons NH_{4}^{+} + OH^{-}$$

$$K_{b} = \frac{[NH_{4}^{+1}][OH^{-1}]}{[NH_{4}OH]}$$

 $[NH_4^+]$ = is due to salt because NH_4OH ionises in less amount due to common ions effect.

$$1.8 \times 10^{-5} = \frac{0.1 \times [OH^{-}]}{0.05} 9 \times 10^{-6} = [OH^{-}]$$

33. POH = 14 - 9.26 = 4.74
$$4.74 = 4.74 + \log \frac{[NH_{4}^{+}]}{[NH_{4}OH]}$$
$$\log 1 = \log \frac{[NH_{4}^{+}]}{[NH_{4}OH]}$$

$$[NH_{4}OH] = [NH_{4}^{+}]$$

$$\therefore \text{ number of moles of } (NH_{4})_{2} \text{ SO}_{4} = \frac{n_{NH_{4}OH}}{2}$$

$$= \frac{0.1}{2} = 0.05 \text{ moles, } x = 0.05 \text{ mole}$$

34. $CH_{3}COO^{\odot} + H_{2}O \Longrightarrow CH_{3}COOH + OH^{\odot}$

$$0.08 - x \qquad x \qquad x$$

$$K_{h} = \frac{10^{-14}}{1.8 \times 10^{-5}}$$

$$Kh = \frac{x^{2}}{0.08} = \frac{10}{1.8} \times 10^{-10} \qquad x^{2} = \frac{0.8}{1.8} \times 10^{-10}$$

$$x^{2} = 0.44 \times 10^{-10} \qquad x = 0.66 \times 10^{-5}$$

35. $C_{5}H_{6}N^{+} + H_{2}O \Longrightarrow C_{5}H_{5}NOH + H^{+}$

$$pH = \frac{1}{2} [pK_{w} - pK_{b} - \log C]$$

$$2.699 = \frac{1}{2} [14 - pK_{b} + 0.6]$$

$$5.398 = 14.6 - pK_{b}$$

$$pK_{b} = 14.6 - 5.398 = 9.802$$

$$K_{b} = 10^{-9.802}$$

36. $pH = \frac{pK_{1} + pK_{2}}{2}$

$$pH = \frac{11 + 7 - 2 \log 4.5}{2} = 9 - \log 4.5 = 8.34$$

37. $Q^{+} + H_{2}O \Longrightarrow QOH + H^{+} \quad k_{w}/k_{1} \qquad \frac{n_{1}}{V} = n_{1}'$

$$n_{1}' - x \qquad x \qquad x + y$$

$$R^{+} + H_{2}O \Longrightarrow ROH + \qquad H^{+} \qquad \frac{n_{2}}{V} = n_{2}'$$

$$n_{2}' - y \qquad y \qquad y + x$$

$$\frac{k_{w}}{k_{1}} = \frac{x(x + y)}{n_{1}' - x} = \frac{x(x + y)}{n_{1}'} \qquad \dots(i)$$

$$\frac{k_{w}}{k_{2}} = \frac{y(x + y)}{n_{2}' - y} \approx \frac{y(x + y)}{n_{2}'} \qquad \dots(i)$$

Assuming $x \ll n_1'$ and $y \ll n_2'$ from Eqs (i) and (ii)

$$x(x+y) = \frac{k_{w}}{k_{1}}n'_{1} \text{ and } y(x+y) = \frac{k_{w}}{k_{2}}n'_{2}$$

Adding both
$$(x+y)^{2} = k_{w}\left[\frac{n'_{1}}{k_{1}} + \frac{n'_{2}}{k_{2}}\right] = \frac{k_{w}(k_{2}n'_{1} + k_{1}n'_{2})}{k_{1}k_{2}}$$
$$[H^{+}] = (x+y) = \sqrt{\frac{k_{w}}{k_{1}k_{2}V}(k_{2}n_{1} + k_{1}n_{2})}$$
$$pH = -\log[H^{+}]$$
$$pH = \frac{1}{2}\log\left[\left(\frac{k_{1}k_{2}}{k_{w}}\right)\frac{V}{(k_{2}n_{1} + k_{1}n_{2})}\right]$$

38. Na₄Y + H₂O ⇒ Na₃HY + NaOH
$$\frac{k_w}{k_4}$$
 = 1.818 × 10⁻⁴
0.1
0.1 − x x x x
 $\frac{x^2}{0.1 - x}$ = 1.818 × 10⁻⁴ ⇒ 5500.55x² + x − 0.1 = 0
x = 4.17 × 10⁻³
Na₃HY + H₂O ⇒ Na₂H₂Y + NaOH $\frac{k_w}{k_3}$ = 1.445 × 10⁻⁸
x
x − y y y y + x
since y << x x − y ≃ x, x + y ≃ x
1.445 × 10⁻⁸ = $\frac{y \cdot x}{x}$ = y
Na₂H₂Y + H₂O ⇒ NaH₃Y + NaOH $\frac{k_w}{k_2}$ = 4.7 × 10⁻¹²
y
y − z z z + x
y − z = y, z + x = x
4.7 × 10⁻¹² = $\frac{z \cdot x}{y}$ z = 1.628 × 10⁻¹⁷
NaH₃Y + H₂O ⇒ H₄Y + NaOH $\frac{k_w}{k_1}$ = 9.8 × 10⁻¹³
z
z − t t t + x
9.8 × 10⁻¹³ = $\frac{t \cdot x}{z}$ t = 3.82 × 10⁻²⁷
Fraction = $\frac{t}{0.1}$ = 3.82 × 10⁻²⁶
39. s = [Zn(OH)₂(aq.)] + Zn(OH)⁺ + Zn⁺² + Zn(OH)⁻³
+ Zn(OH)⁻²
s = k₁ + $\frac{k_1k_2}{[OH-1]}$ + $\frac{k_1k_2k_3}{[OH-1]^2}$ + k_1k_4 [OH⁻¹] + $k_1k_4k_5$ [OH⁻¹]²
(b) pH = 9, pOH = 5, [OH⁻¹] = 10⁻⁵
s = 10⁻⁶ + $\frac{10^{-13}}{[OH-1]}$ + $\frac{10^{-17}}{10^{-8}+10^{-12}}$ = 1.12 × 10⁻⁶ M
40. Given:
Ag + $\frac{1}{2}$ Cl₂ ⇒ AgCl Δ G°₁ = −109.7kJ/mole⁻¹
Ag → Ag⁺ + e⁻ Δ G°₂ = 77.2 kJ/mole⁻¹
Ag → Ag⁺ + e⁻ Δ G°₂ = -71.2 kJ/mole⁻¹
Ag⁻¹ → Ag⁺ + e⁻¹ Δ G°² = − Δ G°₁ + Δ G°₂ + Δ G°₃
 Δ G°² = 55.7 kJ/mole
 Δ G° = -RT In K_{xyp}
55.7 × 10⁻³ = -8.314 × 298 In K_{xyp}
 K_{xyp} = 1.723 × 10⁻¹⁰
1.723 × 10⁻¹⁰

 $s = 3.446 \times 10^{-9} \text{ M}$ **41.** $K_{sp} = [Al^{+3}][OH^{-}]^3$ $5 \times 10^{-33} = [1 \times 10^{-3}][OH^{-3}]$ $[OH^{-}] = 1.7 \times 10^{-10}$ pOH = 9.767 pH = 4.23 $[\mathrm{H}^+] = \sqrt{K_a C}$ **42.** In beginning $[\mathrm{H}^+] = \sqrt{1.8 \times 10^{-5}} = 0.004242$ pH = 2.372On doubling pH, new pH= 4.744 $[H^+] = 1.8 \times 10^{-5}$ $CH_3COOH \Longrightarrow CH_3COO^- + H^+$ С $C - C\alpha$ Cα Cα $K_a = \frac{(C\alpha)^2}{C(1-\alpha)}, C\alpha = [\mathrm{H}^+] = 1.8 \times 10^{-5}$ $1.8 \times 10^{-5} = \frac{(1.8 \times 10^{-5})^2}{C - C\alpha}$ $C - C\alpha = 1.8 \times 10^{-5}$ $C = 3.6 \times 10^{-5}$ $V = \frac{1}{C} = 2.77 \times 10^4 \,\mathrm{L}$ **43.** (a) PV = nRT $1 \times 0.959 = n \times 0.0821 \times 298$ *n* = 0.03919 959 ml in 1 ml H_2O Volume of $H_2O = 1 \text{ mL}$ (per volume of H_2O) $C = \frac{n}{V} = \frac{0.03919}{10^{-3}} = 39.19 \text{ M}$ $pk_b = 3.39 \implies k_b = 4 \times 10^{-4}$ $[OH^{-}] = \sqrt{K_{h}C} = 0.1252 \text{ M}$ pOH = 0.9023 pH = 13.097 (b) M = 0.1252 for NaOH 44. (a) $H_3PO_4 + NaOH \longrightarrow NaH_2PO_4 + H_2O_4$ 6 3 3 – 3 $pH = pk_1 = 2.12$ (b) $H_3PO_4 + NaOH \longrightarrow NaH_2PO_4 + H_2O$ 6 6 6 $pH = \frac{pk_1 + pk_2}{2} = 4.66$ (c) $H_3PO_4 + NaOH \longrightarrow NaH_2PO_4 + H_2O$ 4.8 7.2 2.4 _ 4.8 $NaH_2PO_4 + NaOH \longrightarrow Na_2HPO_4 + H_2O$ 4.8 2.4 2.4 2.4 $pH = pk_2 = 7.2$

5.42 Physical Chemistry-I for JEE (Main & Advanced)

(d) $H_3PO_4 + NaOH \longrightarrow NaH_2PO_4 + H_2O$ 4 10 - 6 $NaH_2PO_4 + NaOH \longrightarrow Na_2HPO_4 + H_2O$ $\begin{array}{c} - & 2 \\ - & 2 \\ Na_2HPO_4 + NaOH \longrightarrow Na_3PO_4 + H_2O \\ 4 & 2 \\ 2 & - \\ PU \end{array}$ $pH = pk_3 = 12$ **45.** $H_3PO_4 \rightarrow k_1 = 7.5 \times 10^{-3}, k_2 = 6.2 \times 10^{-8}, k_3 = 10^{-12}$ (i) $Na_3PO_4 + NaH_2PO_4 \longrightarrow 2Na_2HPO_4$ 10 $pH = \frac{pk_2 + pk_3}{2} = 9.6$ (ii) $H_3PO_4 + Na_3PO_4 \longrightarrow Na_2HPO_4 + NaH_2PO_4$ 4 4 - $pH = pk_2 = 7.2$ **46.** BOH + HCl \longrightarrow BCl + H₂O 4 4 4 At end point, *m* moles of BOH = m moles of HCl $0.16 \times V = 4$ V = 25 mLTotal volume = 40 + 25 = 65 mL $[BC1] = \frac{4}{65}$ Since BCl is salt of SAWB. $pH = 7 - \frac{1}{2}pk_b - \frac{1}{2}\log C$ $5.23 = 7 - \frac{1}{2}pk_b - \frac{1}{2}\log\frac{4}{65}$ $pk_{b} = 4.75$ Now on further adding NaOH $BCl + NaOH \longrightarrow BOH + NaCl$ 4 1.8 _ 2.2 1.8 $pOH = pk_b + \log \frac{2.2}{1.8} = 4.837 \implies pH = 9.1628$ 47. (a) pH = $pK_a + \log \frac{0.06}{0.05}$ pH = 3.744 + log 1.2 = 3.823(b) On diluting solution 10 times [HCOOH] = 0.005, [HCOONa] = 0.006 $HCOOH \iff H^+ + HCOO^-$ 0.005 $0.005 (1 - \alpha) \quad 0.005 \alpha \qquad 0.005 \alpha + 0.006$ $K_a = 1.8 \times 10^{-4} = \frac{(0.005\alpha + 0.006)(0.005\alpha)}{0.005(1 - \alpha)}$ $\frac{0.005\alpha^2 + 0.006\alpha}{1 - \alpha} = 1.8 \times 10^{-4}$

 $\Rightarrow 27.77 \alpha^2 + 34.33 \alpha - 1 = 0 \alpha = 0.0285$ $[H^+] = 0.005 \alpha = 1.425 \times 10^{-4}$ pH = **3.846** (c) On further diluting solution by 10 times [HCOOH] = 0.0005, [HCOONa] = 0.0006 $HCOOH \Longrightarrow H^+$ $+ HCOO^{-}$ 0.0005 $0.0005(1-\alpha)$ 0.0005α $0.0005\alpha + 0.0006$ $K_a = 1.8 \times 10^{-4} = \frac{(0.0005\alpha + 0.0006)(0.0005\alpha)}{0.0005(1 - \alpha)}$ $=\frac{0.0005\alpha^2+0.0006\alpha}{1-\alpha}=1.8\times10^{-4}$ $2.77\alpha^2 + 4.33\alpha - 1 = 0 \Longrightarrow \alpha = 0.2047$ $[H^+] = 0.0005 \alpha = 1.0235 \times 10^{-4}$ pH = 3.9899 **48.** pH = 8, $[H^+] = 10^{-8}$, $[OH^-] = 10^{-6}$ $HCO_3^- \rightleftharpoons H^+ + CO_3^{-2} \quad K = 5 \times 10^{-13}$ 0.0005 0.0005-y-z 10⁻⁸ y $HCO_3^-+H_2O \Longrightarrow H_2CO_3 + OH^- \quad K = \frac{K_w}{K_1} = 2 \times 10^{-8}$ 0.0005 10^{-6} 0.0005 - y - z zsince equilibrium constant for first reaction is very less $v \ll z$ $2 \times 10^{-8} = \frac{z(10^{-6})}{0.0005 - z}$ $51 z = 0.0005 \implies z = 9.8 \times 10^{-6}$ $[H_2CO_3] = 9.8 \times 10^{-6} M$ $[\text{HCO}_3^{-}] = 0.0005 - 9.8 \times 10^{-6} = 4.9 \times 10^{-4} \text{ M}$ $5 \times 10^{-3} = \frac{10^{-8} \times y}{4.9 \times 10^{-4}}$ $[CO_3^{-2}] = y = 2.45 \times 10^{-8} \text{ M}$ 49. $Fe^{+3} + H_2O \longrightarrow Fe(OH)^{+2} + H^+ k = 6.5 \times 10^{-3}$ х 0.95*x* 0.05x0.05x $6.5 \times 10^{-3} = \frac{(0.05)^2 x}{0.95} \qquad x = 2.47$ $[H^+] = 0.05x = 0.1235$ pH = 0.908**50.** $pH = pK_2 + \log \frac{\text{salt}}{\text{acid}}$ $6.7 = 7.2 + \log \frac{y}{0.005}$ $y = 1.58 \times 10^{-3}$ mole **51.** When indicator is half in ionic form $pH = pK_a = 7.2$ $pH = 7.2 + \log 5 = 7.898$ Now with this pH $7.898 = pK_{a1} + \log 4 = pK_{a1} = 7.2959$ Again when 50% of new indicator is in ionic form $pH = pK_{a1} = 7.2959$

52. 4 m mole of H^+ ion will produce

$$[H^{+}] = \frac{4 \times 10^{-3}}{0.1} = 0.04$$

$$PO_{4}^{-3} + H^{+} \longrightarrow HPO_{4}^{-2} \frac{1}{k_{3}}$$

$$0.02 \quad 0.04 \quad 0.08$$

$$0.02 \quad 0.10$$

$$HPO_{4}^{-2} + H^{+} \longrightarrow H_{2}PO_{4}^{-} \frac{1}{k_{2}}$$

$$0.10 \quad 0.02$$
So now they form a buffer solution

So now they form a buffer solution of HPO_4^{-2} and $\mathrm{H_2PO}_4^{-}$

pH =
$$pk_2 + \log \frac{0.08}{0.02}$$
 $(k_2 = 6.3 \times 10^{-8})$
pH = 7.2 + log 4 = **7.8**

53. In terms of Lewis acid-base theory, the reaction of SO_2 with water is very similar to the reaction of SO_2 with pyridine. SO_2 acts as an electron pair acceptor (Lewis acid) and water acts as the electron pair donor (Lewis base).

$$\begin{array}{c} H\\ H\\ H\\ \hline O: + S\\ \hline O: \end{array} \xrightarrow{O} H\\ \hline O-S\\ \hline O: \end{array} \xrightarrow{O:} + H^+ \longrightarrow H - O-S\\ \hline O-S\\ \hline O-H\\ \hline O-H\\ \hline O-S\\ \hline O-H\\ \hline O-H\\ \hline O-S\\ \hline O-H\\ \hline O-H\\ \hline O-S\\ \hline O-S\\ \hline O-H\\ \hline O-S\\ \hline O-S\\ \hline O-H\\ \hline O-S\\ \hline O-H\\ \hline O-S\\ \hline O-S\\ \hline O-H\\ \hline O-S\\ \hline O-S\\ \hline O-H\\ \hline O-S\\ \hline$$

54. CH₃COOH being weaker acid than oxallic acid, does not decompose CaC_2O_4 . On the other hand, HCl being stronger acid forms Ca^{2+} and oxalate ion to pass CaC_2O_4 in solution state.

$$CaC_2O_4 + 2HCl \rightarrow CaCl_2 + H_2C_2O_4$$

- **55.** Meq. of HCl_I in 1 mL = $10^{-5} \times 1$ Meq. of HCl_{II} in 1000 mL = N × 1000
 - i.e., Meq. of HCl (conc.) = Meq. of HCl (dil.)

$$\therefore \quad 10^{-5} \times 1 = N \times 1000$$

$$\therefore \quad N_{HCLr} = 10^{-8}$$

$$N_{HCl_{II}} = 10$$

pH = 6.9788

56. (a)
$$pH = -\log K_a + \log \frac{[salt]}{[acid]}$$

$$\therefore \text{ [salt]} = \frac{3 \times 1000}{82 \times 100} \text{ M and [acid]} = \frac{2 \times 1000}{6000} \text{ M}$$

$$\therefore \text{ pH} = -\log 1.8 \times 10^{-5} + \log \frac{\frac{3 \times 1000}{82 \times 100}}{\frac{2 \times 1000}{60 \times 100}}$$

pH = 4.7851

(b)
$$pOH = -\log K_b + \log \frac{|salt|}{|base|}$$

 \therefore total volume after mixing = 250 + 5 = 255 mL
Meq. of salt = 250 × 0.1 = 25
Meq. of base = 5 × 0.1 = 0.5
 \therefore [salt] = $\frac{25}{255}$ M and [base] = $\frac{0.5}{255}$ M

F 1/7

$$\therefore \quad \text{pOH} = -\log 1.8 \times 10^{-5} + \log \frac{\frac{25}{255}}{\frac{0.5}{255}}$$

$$pOH = 6.4437$$

$$pH = 14 - pOH = 7.5563$$
(c)
$$pH = -\log K_a + \log \frac{[\text{salt}]}{[\text{acid}]}$$

$$= -\log 3.6 \times 10^{-4} + \log \frac{\frac{0.35}{500}}{\frac{0.25}{500}}$$

$$pH = 3.5898$$

- **57.** (a) Bronsted Lowry acid : $H_2PO_4^-$, NH_4^+
 - (b) Bronsted Lowry base: SO_3^{2-} , ClO^- , $H_2PO_4^-$
 - (c) Lewis acid : Fe^{3+} , BCl_3
 - (d) Lewis base : $H_2PO_4^-$, SO_3^{2-} , ClO⁻
- 58. pH of HCl solution = 2; $[H_3O^+]$ in solution = 10^{-2} M Meq. of HCl solution $(N_1V_1) = 10^{-2} \times 200 = 2$ pH of NaOH solution = 12; $[OH^-]$ in solution = 10^{-2} M Meq. of NaOH solution $(N_2V_2) = 10^{-2} \times 300 = 3$ Total volume V_{net} of the solution after mixing = (200 + 300) = 500 mL For heterogeneous mixtures $N_1V_1 \sim N_2V_2 = NV_{net}$ $2 \sim 3 = N (500)$ $N[OH^-] = 1/500 = 2 \times 10^{-3}$ $[H_3O^+] = \frac{K_w}{[OH^-]} = \frac{(10^{-14} \text{ M}^2)}{(2.0 \times 10^{-3} \text{ M})} = 5 \times 10^{-12} \text{ M}$ $pH = -\log [H_3O^+] = -\log (5.0 \times 10^{-12})$ $= (12 - \log 5) = (12 - 0.69897) = 11.30103$ 59. The reaction between an acid and base is
 - $CH_3COOH + NaOH \Longrightarrow CH_3COONa + H_2O$
 - The concentration of CH_3COONa at the equilibrium 0.1

$$point = \frac{1}{2} = 0.05 \text{ M}$$

The formula for finding the pH of the salt solution is

$$pH = -\frac{1}{2} [\log K_w + \log K_a - \log C]$$

= $-\frac{1}{2} [\log 10^{-14} + \log (1.9 \times 10^{-5}) -\log (5.0 \times 10^{-2})]$
= $-\frac{1}{2} [-14 + (-5 + 0.2788) - (-2 + 0.6990)]$
= $-\frac{1}{2} [-14 - 4.7217 + 1.301]$
= $-\frac{1}{2} [-17.420] = 8.71$

60. Let the volume of NaHCO₃ solution mixed = x mL Number of moles of NaHCO₃ in x mL of 5M NaHCO₃ solution = $\frac{5 \times x}{1000}$ = 0.005x mol Number of moles of H₂CO₃ in 10 mL of 2M H₂CO₃ solution = $\frac{2 \times 10}{1000}$ = 0.02 mol pH of the solution = 7.4, K_a for H₂CO₃ = 7.8 × 10⁻⁷ According to Henderson's equation, $pH = -\log K_a + \log \frac{[salt]}{[acid]}$ $7.4 = -\log(7.8 \times 10^{-7}) + \log\left(\frac{0.005x}{0.02}\right)$ or $pH = -\log K_a + \log \frac{M_1 V_1}{M_2 V_2}$ $7.4 = (7 - \log 7.8) + \log \frac{0.005x}{0.02}$ pH = $-\log K_a + \log \frac{5 \times x}{2 \times 10}$ $7.4 = (7 - 0.892) + \log(0.25x)$ $7.4 = 6.108 + \log(0.25 x)$ $\log(0.25x) = 7.4 - 6.108 = 1.292$ 0.25x =Antilog 1.292 = 19.59

$$\therefore \quad x = \frac{19.59}{0.25} = 78.36$$

Thus, the volume of 5M NaHCO₃ solution to be mixed = 78.36 mL

61. Number of milli-equivalents of NaOH = $800 \times 0.05 = 40$

Number of milli-equivalents of HCl = $200 \times 0.1 = 20$ Number of milli-equivalents of NaOH left after the addition of HCl = 40 - 20 = 20

Total volume = (200 + 800) mL = 1000 mL = 1 L 20 milli-equivalents or 0.02 equivalent of NaOH are present in 1 L, i.e.,

0.02 N NaOH = 0.02 M NaOH and the base is completely ionised.

 $[OH^{-}] = 0.02 \text{ M} = 2 \times 10^{-2} \text{ M}$ pOH = $-\log (2 \times 10^{-2}) = 1.7$ pH = 14 - 1.7 = 12.3

62. On adding HCl, the free hydrogen ions will combine with CH₃COO⁻ ions to form CH₃COOH. Thus, the concentration of acetic acid increases while that of CH₃COO⁻ ions decreases.

$$[CH_3COOH] = (0.2 + 1) = 1.2 \text{ mol } L^{-1}$$

[Salt] = (1 - 0.2) = 0.8 mol L^{-1}
plying Henderson's equation,

$$h = PKa + \log \frac{[\text{salt}]}{[\text{Acid}]}$$

Ap

Р

 $pH = \log \frac{[Salt]}{[Acid]} - \log K_a$ $= \log \frac{0.8}{1.2} - \log 1.8 \times 10^{-5}$ $= \log 2 - \log 3 - \log 1.8 \times 10^{-5}$ =4.5687**63.** pOH of NH_3 and NH_4Cl buffer $= -\log K_b + \log \frac{[S]}{[B]}$ $= -\log 1.8 \times 10^{-5} + \log \frac{0.1}{0.1} = 4.75$ pH = (14 - 4.75) = 9.25First case $NH_3 + HCl \longrightarrow NH_4Cl$ [S] = (0.1+0.02) = 0.12 M[B] = (0.1 - 0.02) = 0.08 M $pOH = -\log K_b + \log \frac{0.12}{0.08}$ = 4.75 + 0.176 = 4.926pH = 14 - 4.926 = 9.074 $\Delta \text{ pH} = (9.25 - 9.074) = 0.176 \text{ pH}$ unit Second case: $NH_4Cl + NaOH \implies NH_4OH + NaCl$ [S] = (0.1 - 0.02) = 0.08 M[B] = (0.1 + 0.02) = 0.12 M $pOH = -\log K_b + \log \frac{0.08}{0.12}$ = (4.75 - 0.176) = 4.576pH = (14 - 4.574) = 9.426 $\Delta \text{ pH} = (9.426 - 9.25) = 0.176 \text{ pH}$ unit 64. pH = $pK_a + \log \frac{[S]}{[A]} = pK_a + \log \frac{a}{(0.29 - a)}$ $4.4 = 4.76 + \log \frac{a}{(0.29 - a)}$ $-0.36 = \log \frac{a}{(0.29 - a)}$ $\log \frac{0.29 - a}{a} = 0.36 = \log 2.3$ 2.3a = 0.29 - a3.3a = 0.29a = 0.087 M = saltacid = 0.29 - 0.087 = 0.203 M **65.** $pH = pK_a + \log \frac{[CH_3COO^-]}{[CH_3COOH]}$ $pK_a = -\log(1.8 \times 10^{-5}) = 4.7447$ $[CH_3COO^-] = 2 \times [(CH_3COO)_2Ba] = 0.2 \text{ M}$ $[CH_3COOH] = 0.1 M$ $pH = 4.7447 + \log \frac{0.2}{0.1} = 5.046$

66. Concentration of HNO₃ solution = 0.63 g per 100 mL (Given)

$$= 6.3 \text{ g } \text{L}^{-1} = \frac{6.3}{63} \text{ mol } \text{L}^{-1} = 0.1 \text{ M}$$
(: Mol. wt. of HNO₃ = 63)
Now, HNO₃ completely ionizes as
HNO₃ + H₂O \implies H₃O⁺ + NO₃
: [H₃O⁺] = [HNO₃] = 10⁻¹M
: pH = -log [H₃O⁺] = - log 10⁻¹ = 1
67. (i) Calculation of molarity:
Weight of NaOH dissolved = 4.0 g L⁻¹
Molecular weight of NaOH = 40
: molarity of the solution
= $\frac{\text{Strength in gL}^{-1}}{\text{Molecular weight}} = \frac{4.0}{40} = 0.1 \text{ M}$
(ii) Calculation of the OH⁻ ion concentrated NaOH
completely ionises as
NaOH \implies Na⁺ + OH⁻
: [OH⁻] = [NaOH] = 0.1 M = 10⁻¹ M
(iii) Calculation of pH
We know that
[H₃O⁺][OH⁻] = $K_W = 1.0 \times 10^{-14}$
: [H₃O⁺] = $\frac{K_W}{[OH-]} = \frac{1.0 \times 10^{-14}}{10^{-1}} = 10^{-13} \text{ M}$
: pH = -log [H₃O⁺] = -log 10^{-13} = 13
68. $N_1V_1 + N_2V_2 + N_3V_3 = NV$
 $\frac{N}{10} \times 200 + \frac{N}{20} \times 100 + \frac{N}{20} \times 100 = N(400)$
 $20 + 5 + 5 = N(400)$
 $N = \frac{30}{400} = \frac{3}{4} \times 10^{-1}$
This is the normality of [H⁺]
: final solution is acidic
: pH = 1 + log 4 - log 3 = 1.12
69. $N_1V_1 \sim N_2V_2 = NV$
 $\frac{N}{10} \times 2000 \sim \frac{N}{10} \times 1000 = N(2000 + 1000)$
 $200 - 100 = N(3000)$
 $N = \frac{100}{3000} = \frac{1}{30}$
Hence, the resulting solution is $\frac{N}{30}$ HC1
[H⁺] = $\frac{1}{30} = 0.033 \text{ mol L}^{-1}$
pH = - log [H⁺]
 $= -\log[H^+]$

= 0 + 1.4771 = 1.4771**70.** $pOH = pK_b + \log \frac{[Salt]}{[Base]}$ or $5 = pK_b + \log \frac{[Salt]}{[Base]}$ If the concentration of salt is increased three times, then $p'OH = 5 + \log 3 = 5 + 0.48 = 5.48$

71. Applying $N_1V_1 = N_2V_2$ Ba(OH)₂ Mixture (Normality of solution of Ba(OH)₂ = 2 × its molarity) We have, $0.01 \times 2 \times 50 = N_2 \times (50 + 50)$ because it is assumed as 100% ionised)

$$N_2 = \frac{0.01 \times 100}{100} = 0.01 \text{ N} = [\text{OH}^-]$$

pOH = -log [OH⁻] = -log 10⁻² = 2 log 10 = 2
pH + pOH = 14 or pH + 2 = 14 or pH = 12

72. For acetic acid (weak acid)

$$\frac{\alpha_1}{\alpha_2} = \sqrt{\frac{v_1}{v_2}}$$
$$\left(\frac{1}{2}\right)^2 = \frac{300}{V_2}$$
$$V_2 = 1200 \text{ mL}$$
$$1200 - 300 = 900 \text{ mL water should be added.}$$

or So,

73. We have, $pH = -log [H^+]$ $4.18 = -\log [H^+]$ $\log [H^+] = -4.18$ or Taking antilog, $[H^+] = 6.61 \times 10^{-5} \text{ mol } \text{L}^{-1}$ Now, for equilibrium $H_2CO_3 \Longrightarrow HCO_3^- + H^+$ $K_{a_1} = \frac{[\text{HCO}_3^-][\text{H}^+]}{[\text{H}_2\text{CO}_3]}$ $4.45 \times 10^{-7} = \frac{[\text{HCO}_3^-](6.61 \times 10^{-5})}{0.01}$ or $[\text{HCO}_3^{-}] = \frac{4.45 \times 10^{-7} \times 0.01}{6.61 \times 10^{-5}}$ *.*.. $= 6.73 \times 10^{-5} \text{ mol } \text{L}^{-1}$ Again for the dissociation of HCO_3^- , we have $HCO_3^- \rightleftharpoons CO_3^{-2} + H^+$ $K_{a_2} = \frac{[\mathrm{CO}_3^{-2}][\mathrm{H}^+]}{[\mathrm{HCO}_3^{-1}]}$ $K_{a_1} \times [\text{HCO}_3^-]$ ~ *.*..

$$[CO_{3}^{-2}] = \frac{\frac{1}{d_{2}} \times 10^{-0.3} \text{ J}}{[H^{+}]}$$
$$= \frac{4.69 \times 10^{-11} \times 6.73 \times 10^{-5}}{6.61 \times 10^{-5}}$$
$$= 4.8 \times 10^{-11} \text{ mol } \text{L}^{-1}$$

74. Given density of formic acid = 1.22 g cm⁻³
∴ weight of formic acid in 1 L solution = 1.22 × 10³ g

Thus,

$$[\text{HCOOH}] = \frac{1.22 \times 10^3}{46} = 26.5 \text{ M}$$

Since in case of auto-ionisation $[\text{HCOOH}_{2}^{+}] \times [\text{HCOO}^{-}] = 10^{-6}.$

:.
$$[HCOO^{-}] = 10^{-3}$$

Now % dissociation of HCOOH

$$\frac{[\text{HCOO}^-] \times 100}{[\text{HCOOH}]} = \frac{C\alpha}{C(1-\alpha)} = \frac{10^{-3}}{26.5} \times 100 = 0.004\%$$

75. Acetic acid ionises partially while sodium acetate ionises strongly in solution. Let *x* be the number of moles of acetic acid ionised. The concentration can be formulated as follows:

 $\begin{array}{c} CH_3COOH(aq) + H_2O &\Longrightarrow H_3O^+(aq) + CH_3COO^-(aq) \\ (0.02 - x) & x & x \\ CH_3COONa &\longrightarrow Na^+(aq) + CH_3COO^-(aq) \\ 0.2 \text{ gives} & 0.2 & 0.2 \end{array}$

Because x is small as compared to 0.2, the total concentration of CH_3COO^- is approximately 0.2 mol L⁻¹. Thus,

$$[CH_{3}COO^{-}] = 0.2 + x \approx 0.2 \text{ mol } L^{-1}$$

and
$$[CH_{3}COOH] = 0.2 - x \approx 0.2 \text{ mol } L^{-1}$$
$$K = \frac{[H_{3}O^{+}][CH_{3}COO^{-}]}{[CH_{3}COO^{-}]}$$

$$[CH_{3}COOH]$$

$$1.8 \times 10^{-5} = \frac{[H_{3}O^{+}] \times 0.2}{0.02}$$

$$[H_{3}O^{+}] = \frac{1.8 \times 10^{-5} \times 0.02}{0.2} = 1.8 \times 10^{-6} \text{ mol } \text{L}^{-1}.$$

76.
$$C_{6}H_{5}OH + H_{2}O \implies C_{6}H_{5}O^{-} + H_{3}O^{+}$$

 $(0.05 - x) \qquad x \qquad x$
 $[H_{3}O^{+}] = \sqrt{K_{a} \times C} = \sqrt{1 \times 10^{-10} \times 0.05} = \sqrt{5 \times 10^{-12}}$
 $= 2.2 \times 10^{-6} M$
[Phenate] = $[H_{3}O^{+}] = 2.2 \times 10^{-6} M$
77. (i) $C_{6}H_{5}COOH + H_{2}O \implies C_{6}H_{5}COO^{-} + H_{3}O^{+}$
(ii) $HSO_{3}^{-} + H_{2}O \implies SO_{3}^{2-} + H_{3}O^{+}$

(iii)
$$CH_2NH_2 + H_2O \Longrightarrow CH_2NH_2^+ + OH^-$$

(iv) $H_2S + H_2O \rightleftharpoons HS^- + H_3O^+$

78. Given:
$$K_b = 5.4 \times 10^{-4}$$

$$K_a \times K_b = K_w$$

$$K_w = 1 \times 10^{-14}$$

$$\Rightarrow K_a = \frac{K_w}{K_b} = \frac{1 \times 10}{5.40 \times 10^{-4}} = 1.23 \times 10^{-11}$$

79. pH = $-\log[H_3O^+] = 12$ log [H₃O⁺] = -12∴ [H₃O⁺] = $1 \times 10^{-12} \text{ mol } L^{-1}$

We know that
$$K_w = [H_3 O^+][OH^-]$$
 $\therefore [OH^-] = \frac{K_w}{[H_3 O^+]}$

Since NaOH is a strong base, it is completely ionised.

 ∴ [NaOH] = [OH⁻] = 1 × 10⁻² mol L⁻¹ Molecular mass of NaOH = 40
 ∴ amount of NaOH in grams per litre

$$\therefore \text{ amount of NaOH in grams per li} = 1 \times 10^{-2} \times 40 = 0.4 \text{ g}$$

80. We know, pH =
$$pK_a + \log \frac{[Salt]}{[Acid]}$$

 $4 = -\log (1.8 \times 10^{-4}) + \log \frac{[Formate]}{[Formic acid]}$
 $4 = 3.74 + \log \frac{[Formate]}{[Formic acid]}$
 $\log \frac{[Formate]}{[Formic acid]} = 4 - 3.74 = 0.26$
 $\frac{[Formate]}{[Formate]} = 1.8$

The buffer capacity of this solution would be maximum near the pK_a of the acid.

 \therefore for maximum buffer capacity

- pH = pK_a = $-\log K_a$ = $-\log (1.8 \times 10^{-4})$ = 3.74. **81.** 100 mL of 0.1 M HCl = 10 m mol of HCl, 100 mL of
 - $0.2 \text{ M NH}_3 = 20 \text{ m mol of NH}_3$

$$NH_3 + HCl \longrightarrow NH_4 Cl$$

 $NH_4 Cl$ formed = 10 m mol, NH_3 left unreacted = 10 m mol, Volume of solution = 200 mL

$$[NH_3] = \frac{10}{200} M = 0.05 M; [NH_4^+] = \frac{10}{200} M = 0.05 M$$
$$pOH = pK_b + \log \frac{[Salt]}{[Base]}$$
$$= -\log (1.8 \times 10^{-5}) + \log \frac{0.05}{0.05} = 4.74$$

9.26

$$pH = 14 - pOH = 14 - 4.74 =$$

82. (a) pH at 1/4 neutralisation

(c) prime in the mathematical

$$(pH)_{1} = pk_{a} + \log \frac{x/4}{3x/4} = pk_{a} + \log \frac{1}{3}$$
pH at 3/4 neutralisation

$$(pH)_{2} = pk_{a} + \log = pk_{a} + \log 3$$

$$\Delta pH = (pH)_{2} - (pH)_{1} = 2 \log 3 = 0.9542$$
(b) $4.45 = pk_{a} + \log \frac{x/3}{2x/3} = pk_{a} - \log 2$

$$pk_{a} = 4.751$$
(c) $\Delta pH = 2$, i.e.,

$$(pH)_{1} = pk_{a} + 1$$
, $(pH)_{2} = pk_{a} - 1$
For $pk_{a} + 1 \Rightarrow \frac{[S]}{[A]} = 10$
 $\frac{x}{a - x} = 10 \Rightarrow x = 10a - 10x$
 $x = \frac{10a}{11}$
i.e., $\frac{10^{th}}{11}$ stage
For $pk_{a} - 1 \Rightarrow \frac{[S]}{[A]} = \frac{1}{10}$

$$\frac{x}{a-x} = \frac{1}{10}$$
$$x = \frac{a}{11}$$
i.e., $\frac{1}{11}$ th stage

83. $Zn(OH)_2(s) \rightleftharpoons Zn^{+2}(aq) + 2OH^{-}(aq) K_{sp}$ $Zn(OH)_2(s) + 2OH^{-} \rightleftharpoons [Zn(OH)_4]^{-2}(aq) K_C$ dissolved $Zn(OH)_2$ is present in form of Zn^{+2} and $[Zn(OH)_4^{-2}]$ so solubility $S = [Zn^{+2}] + [Zn(OH)_4]^{-2}$

$$S = \frac{K_{\rm sp}}{[OH^-]^2} + K_C[OH^-]^2$$

For minimum solubility

$$\frac{ds}{d[OH^-]} = 0 \Rightarrow \frac{-2K_{sp}}{[OH^-]^3} + 2K_C[OH^-] = 0$$
$$[OH^-] = \left(\frac{K_{sp}}{K_C}\right)^{1/4}$$
$$[OH^-] = 9.8 \times 10^{-5}$$
$$pOH = 4.00869$$
$$pH = 9.9913$$
84. MA $\longrightarrow M^{+2} + A^{-2}$
$$S \qquad S$$

Let solubility of MA is *S* mole L^{-1} . But some amount of A^{-2} will undergo hydrolysis. Let *x* is the amount of A^{-2} left in solution.

$$A^{-2} + H_2O \Longrightarrow HA^- + OH^- \frac{k_w}{k_2}$$

$$HA^- + H_2O \Longleftrightarrow H_2A + OH^- \frac{k_w}{k_1}$$

$$\frac{k_w}{k_2} = \frac{[HA^-][OH^-]}{[A^{-2}]} \Rightarrow [HA^-] = \frac{k_w[A^{-2}]}{k_2[OH^-]}$$

$$\frac{k_w}{k_1} = \frac{[H_2A][OH^-]}{[HA^-]} \Rightarrow [H_2A] = \frac{k_w[HA^-]}{k_1[OH^-]}$$

$$[H_2A] = \frac{k_w^2}{k_1k_2} \frac{[A^{-2}]}{[OH^-]^2}$$

From mass balance

$$S = x + \frac{k_w [A^{-2}]}{k_2 [OH^{-1}]} + \frac{k_w^2 [A^{-2}]}{k_1 k_2 [OH^{-1}]^2}$$
$$S = x + \frac{[H^{+1}]x}{k_2} + \frac{[H^{+1}]^2 x}{k_1 k_2}$$
$$x = \frac{S}{1 + \frac{[H^{+1}]}{k_2} + \frac{[H^{+1}]^2}{k_1 k_2}}$$

$$k_{sp} = [M^{+2}][A^{-2}] = s \cdot x = \frac{s^2}{1 + \frac{[H^+]}{k_2} + \frac{[H^+]^2}{k_1k_2}}$$

$$S = \sqrt{k_{sp} \left(1 + \frac{[H^+]}{k_2} + \frac{[H^+]^2}{k_1k_2}\right)}$$
85. $Ka_1 = \frac{[H^+][HCO_3^-]}{[H_2CO_3]}; Ka_2 = \frac{[H^+][CO_3^{2^-}]}{[HCO_3^-]}$

$$Ka_1 \times Ka_2 = \frac{[H^+]^2[CO_3^{2^-}]}{[H_2CO_3]} = 10^{-18}$$

$$\vdots \frac{10^{-10} \times [CO_3^{2^-}]}{10^{-2}} = 10^{-18}$$

$$[CO_3^{2^-}] = 10^{-10}$$

$$\therefore -\log [CO_3^2] = 10$$
86. 8 mL of 5×10^{-3} (N) KMnO₄ = 40 × 10^{-6} equiv
KMnO_4 = 40 × 10^{-6} equivalent C_2O_4^{2^-} = 20 × 10^{-6} mole C_2O_4^{2^-}
$$\therefore \text{ in the saturated solution of CaC_2O_4(s),}$$

$$[C_2 O_4^{2-}] = s = \frac{20 \times 10^{-6}}{200} \times 10^3 = 10^{-4} (M)$$

$$\therefore \quad \text{for CaC}_2 O_4, Ksp = s^2 = 10^{-8}$$

$$\therefore \quad pKsp = 8$$

87.
$$\frac{\alpha_1}{\alpha_2} = \sqrt{\frac{V_1}{V_2}}$$

$$\therefore \quad \left(\frac{1}{3}\right)^2 = \frac{300}{V_2}$$

$$V_2 = 2700 \text{ mL}$$

$$V_{H_2O} = 2700 - 300 = 2400 \text{ ml}$$

88. The initial pH of solution = 5

$$\begin{array}{rcl} A^{-} &+ \text{HCOOH} & \overleftarrow{K_{eq}} & \text{HA} &+ \text{HCOO}^{-} \\ 10^{-2} & 5 \times 10^{-3} & \hline{10 \times 10^{-3}} & - \\ (10 \times 10^{-3} - x) & (5 \times 10^{-3} - x) & (10 \times 10^{-3} + x) & x \\ & K_{eq} = \frac{[\text{HA}][\text{HCOO}^{-}]}{[\text{A}^{-}][\text{HCOOH}]} = \frac{(\text{KA}) \text{HCOOH}}{(\text{Ka}) \text{HA}} \\ \therefore & \frac{x(10^{-2} + x)}{(10^{-2} - x)(5 \times 10^{-3} - x)} = 10 \\ \text{or } x^{2} + 10^{-2} \times x \\ &= 10(5 \times 10^{-5} - 5 \times 10^{-3} \times x - 10 \times 10^{-3} \times x + x^{2}) \\ \text{or } x^{2} + 10 \times 10^{-3} \times x \\ &= 10(x^{2} - 15 \times 10^{-3} \times x + 5 \times 10^{-5}) \\ \text{or } x^{2} + 10 \times 10^{-3} \times x \\ &= 10x^{2} - 150 \times 10^{-3} \times x + 5 \times 10^{-4} \\ \text{or } 9x^{2} - 160 \times 10^{-3} \times x + 5 \times 10^{-4} = 0 \end{array}$$

or
$$x = \frac{+160 \times 10^{-3} \pm \sqrt{(16)^2 \times 10^{-4} - 4 \times 9 \times 5 \times 10^{-4}}}{2 \times 9}$$

or $x = \frac{+16 \times 10^{-2} \pm \sqrt{(256 - 180) \times 10^{-4}}}{2 \times 9}$
 $= \frac{+16 \times 10^{-2} \pm 8.71 \times 10^{-2}}{2 \times 9}$
or $x = 4.05 \times 10^{-3}$
 \therefore in the final solution moles of HCOO⁻ = 4.05 × 10^{-3}
and moles of HCOOH = 0.95 × 10^{-3}
 \therefore HCOOH $\overleftarrow{}^{10^{-4}}$ H⁺ + HCOO⁻
 \therefore I0⁻⁴ = $\frac{[H^+][HCOO^-]}{[HCOOH]}$
or $[H^+] = \frac{10^{-4} \times [HCOOH]}{[HCOO^-]} = \frac{10^{-4} \times 0.95 \times 10^{-3}}{4.05 \times 10^{-3}}$
or $[H^+] = \frac{0.95}{4.05} \times 10^{-4} = 0.234 \times 10^{-4}$
 $= 2.34 \times 10^{-5}$ (M)
 \therefore pH = 5 - log 2.34 = 5 - 0.369 = 4.631
 \therefore $\Delta pH = 5 - 4.631 = 0.369$
 \therefore $\Delta (pH) \times 10^3 = 369$
89. Mg(OH)₂ \rightleftharpoons Mg²⁺ + 2OH⁻
 $x \qquad 2x + 3y$
Now $x > y$ because K_{sp} of Mg(OH)₂ $> K_{sp}$ of Al(OH)₃
 $\Rightarrow x \times (2x)^2 = 4 \times 10^{-12} \Rightarrow x = 10^{-4}$...(1)
and $y \times (2x)^2 = 1 \times 10^{-33}$
 $y = \frac{10^{-33}}{8x^3} = \frac{10^{-33}}{8 \times 10^{-12}} = \frac{10^{-21}}{8}$
 $\Rightarrow \frac{x}{y} = \frac{10^{-4}}{10^{-21}} \times 8 = 8 \times 10^{17}$...(2)
So answer $8 \times 10^{+17} \times 10^{-17} = 8$
90. Ag₂CrO₄(s) $\rightleftharpoons 2Ag^{+} + C_2Q_4^{-1}$
 $Ag2CrO4(s) $\nRightarrow 2Ag^{+} + C_2Q_4^{-1}$
 $Ag2CrO4$$$$$$$$$$$$$$$$$$$$$$$

or
$$s_2^3 = \frac{6 \times 10^{-12}}{25} = 24 \times 10^{-14} = 240 \times 10^{-15}$$

or
$$s_2 = (240)^{1/3} \times 10^{-5} = 6.214 \times 10^{-5}$$
 (M)
 $s_1 = 6.214 \times 10^{-5} \times \frac{3}{2} = 9.321 \times 10^{-5}$ (M)
 $\therefore [Ag^+] = 2(6.214 + 9.321) \times 10^{-5}$
 $= 31.07 \times 10^{-5}$
or $[Ag^+] \times 10^5 = 31.07 \approx 31$
91. (a, b) HIn (Red) $\rightleftharpoons H^+ + In^-$ (Blue)
 $pH = p^{K}_{In} + \log \frac{[In^-]}{[HIn]}$
(a) $pH = (5 - \log 3) + \log \left(\frac{25}{75}\right) = 4.05$
(b) $pH = p^{K}_{In} + \log \left(\frac{75}{25}\right) = 5 - \log 3 + \log 3 = 5$
92. (b, c, d)
 pH of
[I] Salts of weak acid and weak base as RCOONH₄.
[II] Amphiprotic ions as HCO_3^- , HS⁻.
[III] Buffer solutions are not affected by dilution.
Thus (b), (c), (d) are the correct options.

- **93.** (a, b, d) At 25°C $K_w = [H^+][OH^-] = 10^{-14}$ for water
- 94. (a, c, d)

For NaA,
$$K_h = \frac{K_W}{K_a} = \frac{10^{-14}}{10^{-8}} = 10^{-6}$$

For NaB, $K_h = \frac{K_W}{K_a} = \frac{10^{-14}}{10^{-6}} = 10^{-8}$
For NaC, $K_h = \frac{K_W}{K_a} = \frac{10^{-14}}{2 \times 10^{-8}} = \frac{10^{-6}}{2}$
For NaD, $K_h = \frac{K_W}{K_a} = \frac{10^{-14}}{10^{-10}} = 10^{-4}$
For NaE, $K_h = \frac{K_W}{K_a} = \frac{10^{-14}}{10^{-7}} = 10^{-7}$

Since K_h of NaD is the highest, therefore, NaD is most extensively hydrolysed

For NaB pH =
$$\frac{1}{2}(pK_w + pK_a + \log C)$$

or $pH = \frac{1}{2}(14 + 6 + \log \frac{1}{10}) = \frac{1}{2}(20 - 1) = \frac{1}{2} \times 19$
or $pH = 9.5$
For isohydric solution, $Ka_1C_1 = Ka_2C_2$
 $\therefore \quad 10^{-7} \times 0.1 = 10^{-6} \times 0.01 = 10^{-8}$

Hence, 0.1(M) HE is isohydric to 0.01(M) HB solution

95. (c, d) Solubility of sparing soluble salt decreases due to presence to common ion effect.

$$Ksp = S^{2} \text{ in water}$$

$$AgCl \iff Ag^{+} + Cl^{-}$$

$$NaCl \implies Na^{+} \quad Cl^{-}$$

$$C \qquad C + S'$$

KsP = S'(S' + C)
S' =
$$\frac{\text{KsP}}{C}$$

∴ S₁ > S₂ = S₃ > S₄
96. (a, b, d)
S₁ = $\sqrt{8 \times 10^{-37}}$
S₂ = $\sqrt{7 \times 10^{-16}}$
S₃ = $\sqrt{10^{-72} \times 108}$

$$S_4 = \sqrt[4]{1.8 \times 10^{-18} \times 27}$$

∴ $S_4 > S_2 = S_3 > S_1$

• PREVIOUS YEARS' QUESTIONS • OF JEE (MAIN & ADVANCED)

1. (d) pH = 1

.. $[H^+] = 10^{-1} = 0.1 \text{ M}$ pH = 2.. $[H^+] = 10^{-2} = 0.01 \text{ M}$ For dilution of HCl, $M_1V_1 = M_2V_2$ $0.1 \times 1 = 0.01 \times V_2$ $V_2 = 10 \text{ L}$ Volume of water to be added to 10 - 1 = 9 L2. (c) $HQ \rightleftharpoons H^+ + Q^-$

$$[H^{+}] = \sqrt{K_a C} \text{ by Ostawald's dilution law}$$

$$[H^{+}] = 10^{-pH} = 10^{-3} \text{ M}$$

$$C = 0.1 \text{ M}$$
Thus, $10^{-3} = \sqrt{K_a \times 0.1}$

$$10^{-6} = K_a \times 0.1$$

$$\therefore \quad K_a = 10^{-5}$$
Alternate method
$$HQ \rightleftharpoons H^{+} + Q^{-}$$
Initial concentration 0.1 M 0 0
Given, pH = 3. This suggests [H^{+}] = 10^{-3} \text{ M at equilibrium so } [Q] = 10^{-3} \text{ m}

Hum so $[Q] = 10^{-10}$ m Hence, $[HQ] = 0.1 \text{ M} - 10^{-3} \text{ M}$ $\approx 0.1 \text{ M} [10^{-3} \text{ M} <<< 0.1 \text{ M}]$ K_a for the above reaction is given by $K_a = \frac{[H^+][Q^-]}{[HQ]} = \frac{[10^{-3}][10^{-3}]}{[0.1]}$ $K_a = 1 \times 10^{-5}$ 3. (c) $H_2A \Longrightarrow HA^- + H^+$ $\therefore K_1 = 1.0 \times 10^{-5} = \frac{[H^+][HA^-]}{[H_2A]}$ (given) $HA^- \rightleftharpoons H^+ + A^{2-}$

:.
$$K_2 = 5.0 \times 10^{-10} = \frac{[\text{H}^+][\text{A}^2]}{[\text{HA}^-]}$$
 (given)

$$K = \frac{[H^+]^2[A^{2-}]}{[H_2A]} = K_1 \times K_2$$

= (1.0 × 10⁻⁵) × (5 × 10⁻¹⁰) = 5 × 10⁻¹⁵
4. (c) Let molar solubility of Cr(OH)₃ = S mol L⁻¹
Cr(OH)₃ (S) \rightleftharpoons Cr³⁺(aq) + 3OH⁻(aq) lim
_{3S}
 $K_{sp} = 1.6 \times 10^{-30}$
= [Cr³⁺][OH⁻]³ = (S)(3S)³ = 27 S⁴
 \therefore S⁴ = $\frac{1.6 \times 10^{-30}}{27}$
5. (a) pH of a solution = 5
 \therefore [H⁺] = 10^{-pH} = 10⁻⁵
HA (a weak acid) ionises as
HA \rightleftharpoons H⁺ + A⁻
1.0 0 0
(1-10⁻⁵) 10⁻⁵ 10⁻⁵
 $K_a = \frac{[H^-][A^-]}{[HA]} = \frac{10^{-5} \times 10^{-5}}{(1-10^{-5})} = \frac{10^{-10}}{1}$ [1 >>> 10⁻⁵]
6. (a) Only in reaction (II), H₂PO₄, gives H⁺ to H₂O.
Thus, behaves as an acid.
7. (c) H₂CO₃ \Longrightarrow H⁺ + HCO₃⁻; $K_1 = 4.2 \times 10^{-7}$
HCO₃ \longleftrightarrow H⁺ + CO₃²⁻; $K_2 = 4.8 \times 10^{-11}$
 $K_1 >> K_2$
 \therefore [H⁺] = [HCO₃⁻]
 $K_2 = \frac{[H^+][CO_3^{-2}]}{[HCO_3]}$
So, [CO₃²⁻] = $K_2 = 4.8 \times 10^{-11}$
8. (b) [AgNO₃] = [Ag⁺] = 0.05 M
 $K_{sp}[AgBr] = [Ag^{-1}][Br-]$
 \Rightarrow [Br⁻] = $\frac{K_{sp}(AgBr)}{[Ag^{+}]}$
 $= \frac{5.0 \times 10^{-13}}{0.05} = 10^{-11} [mol L^{-1}]$
Moles of KBr needed to precipitate AgBr
 $= [Br-] \times V = 10^{-11} mol L^{-1} \times 1 L = 10^{-11} mol$
Therefore, amount of KBr needed to precipitate AgBr
 $= 10^{-11} mol \times 120 g mol-1 \times 1 L = 10^{-11} mol$

9. (b) Mg(OH)₂ → Mg²⁺ + 2OH⁻

$$K_{sp} = [Mg^{2+}] [OH^{-}]^{2}$$

 $[OH^{-}] = \sqrt{\frac{K_{sp}}{[Mg^{2+}]}} = \sqrt{\frac{1 \times 10^{-11}}{0.001}} = 10^{-4}$
pOH = -log[OH⁻] = -log[10⁻⁴]
pOH = 4
∴ pH = 14 - pOH = 14 - 4 = 10

10. (b)
$$Na_2CO_3 \implies Na^+ + CO_3^{2-}$$

 $[Na_2CO_3] = [CO_3^{2-}] = 1 \times 10^{-4} M$
 $BaCO_3 \implies Ba^{2+} + CO_3^{2-}$
 $K_{sp(BaCO_3)} = [Ba^{2+}][CO_3^{2-}]$
 $[Ba^{2+}] = \frac{K_{sp}[BaCO_3]}{[CO_3^{2-}]}$
 $[Ba^{2+}] = \frac{5.1 \times 10^{-9}}{1 \times 10^{-4}}$
 $[Ba^{2+}] = 5.1 \times 10^{-5} M$

Hence, at 5.1×10^{-5} concentration of Ba²⁺, a precipitate will begin to form.

11. AgBr \Longrightarrow Ag⁺ + Br⁻

 $K_{sp} = [Ag^+] [Br^-]$ For precipitation to occur Ionic product > Solubility product

$$[Br^{-}] = \frac{K_{sp}}{[Ag^{+}]} = \frac{5 \times 10^{-13}}{0.05} = 10^{-11}$$

i.e., precipitation just starts when 10^{-11} moles of KBr is added to $1 \ \text{I AgNO}_3$ solution \therefore number of moles of Br⁻ needed from KBr = 10^{-11} \therefore mass of KBr = $10^{-11} \times 120 = 1.2 \times 10^{-9}$ g

12. (b)

$$H_{2}CO_{3}(aq) + H_{2}O(1) \rightleftharpoons HCO_{3}^{-}(aq) + H_{3}O^{+}(aq)$$

$$0.034-x \qquad x \qquad x$$

$$K_{1} = \frac{[HCO_{3}^{-}][H_{3}O^{+}]}{[H_{2}CO_{3}]} = \frac{x \times x}{0.034 - x}$$

$$\Rightarrow \quad 4.2 \times 10^{-7} \frac{x^{2}}{0.034} \qquad \Rightarrow \quad x = 1.195 \times 10^{-4}$$

As H_2CO_3 is a weak acid so the concentration of H_2CO_3 will remain 0.034 as 0.034 >> x.

$$x = [H^+] = [HCO_3^-] = 1.195 \times 10^{-4}$$

Now, $HCO_3^-(aq) + H_2O(l) \rightleftharpoons CO_3^{2-}(aq) + H_3O^+(aq)$
 $x - y \qquad y \qquad y$

As HCO_3^- is again a weak acid (weaker than H_2CO_3) with x >> y.

$$K_2 = \frac{[\text{CO}_3^{2^-}][\text{H}_3\text{O}^+]}{[\text{HCO}_3^-]} = \frac{y \times (x+y)}{(x-y)}$$

Note: $[H_3O^+] = H^+$ from first step (*x*) and from second step (*y*) = (*x* + *y*)

 $[As x \gg y so x + yx and x - yx]$

So,
$$K_2 \simeq \frac{y \times x}{x} = y$$

 $\Rightarrow K_2 = 4.8 \times 10^{-11} = y = [CO_3^{2-1}]$

So the concentration of $[H^+] \approx [HCO_3^-] = \text{concentra-}$ tions obtained from the first step. As the first step. As the dissociation will be very low in the second step so there will be no change in these concentrations. $[H^+] = [HCO_3^-] = 1.195 \times 10^{-4}$ and $[CO_3^{2-}] = 4.8 \times 10^{-11}$

13. (c) Mg(OH)₂ → Mg²⁺ + 2OH⁻

$$K_{sp} = [Mg^{2+}] [OH^{-}]^{2}$$

 $[OH^{-}] = \frac{K_{sp}}{[Mg^{2+}]} = \sqrt{\frac{1 \times 10^{-11}}{0.001}} = 10^{-4}$
 $pOH = -log[OH^{-}] = -log[10^{-4}]$
 $pOH = 4$
 \therefore pH = 14 - pOH = 14 - 4 = 10
14. (d) Na₂CO₃ → 2Na⁺ + CO₃²⁻
 1×10^{-4} M Na₂CO₃ gives 1×10^{-4} M Na⁺ and
 1×10^{-4} M CO₃⁻⁻
 $K_{SP}(BaCO_3) = [Ba^{2+}][CO_3^{2-}]$
 $[Ba^{2+}] = \frac{5.1 \times 10^{-9}}{1 \times 10^{-4}} = 5.1 \times 10^{-5}$ M

15. (c) It corresponds to choice (c) which is the correct answer.

$$BA + H_2O \Longrightarrow BOH + HA$$

Base Acid

Now pH is given by

$$pH = \frac{1}{2}pK_{w} + \frac{1}{2}pK_{a} - \frac{1}{2}pK_{b}$$

Substituting given values, we get

$$pH = \frac{1}{2}(14 + 4.80 - 4.78) = 7.01$$

16. (b) Let s = solubility $AgIO_{3} \xrightarrow{} Ag^{+} + IO_{3}^{-}$ $S \qquad S$ $K_{sp} = [Ag^{+}][IO_{3}^{-}] = S \times S = S^{2}$ Given: $K_{sp} = 1 \times 10^{-8}$

$$\therefore \qquad S = \sqrt{K_{sp}} = \sqrt{1 \times 10^{-8}}$$

= 1.0 × 10⁻⁴ mol/lit
= 1.0 × 10⁻⁴ × 283 g/lit
(:: molecular mass of AgIO₃ = 283)

$$=\frac{1.0\times10^{-4}\times283\times100}{1000}\,\mathrm{gm}/100\,\mathrm{ml}$$

=
$$2.83 \times 10^{-3}$$
 gm/100 mL
17. (a) MX₂ \implies M⁺² + 2X⁻

S = 2Swhere *s* is the solubility of MX₂

then
$$K_{sp} = 4 \times 10^{-12} = 4\text{S}^3$$
; $S = 1 \times 10^{-4}$
 $\therefore \qquad [\text{M}^{+2}] = S = 1 \ [\text{M}^{+2}] = 1 \times 10^{-4}$

18. (c) pH =
$$-\log[H^+] = \log \frac{1}{[H^+]}$$

5.4 =
$$\log \frac{1}{[H^+]}$$

On solving, $[H^+] = 3.98 \times 10^{-6}$
19. (c) MX₄ $\implies M^{4+} + 4X^-$
 $S = 4S$
 $K_{SP} = [S][4S]^4 = 256 S^5$
$$\therefore \qquad S = \left(\frac{K_{\rm sp}}{256}\right)^{1/5}$$
20 (c) Mg(OH), $\longrightarrow [Mg^{2+}] + 2[OH^{-}]$

20. (c)
$$\operatorname{Mg}(\operatorname{OH}_{2}^{2} \to \operatorname{P}[\operatorname{Mg}^{-1}] + 2[\operatorname{OH}^{-1}]$$

 $x = 2x$
 $K_{sp} = [\operatorname{Mg}][\operatorname{OH}]^{2} = [x][2x]^{2} = x.4x^{2} = 4x^{3}.$
21. (c) $\operatorname{AB}_{2} \rightleftharpoons A^{+2} + 2B^{-1}$
 $[A] = 1.0 \times 10^{-5}, [B] = [2.0 \times 10^{-5}],$
 $K_{sp} = [B]^{2}[A] = [2 \times 10^{-5}]^{2}[1.0 \times 10^{-5}]$
 $= 4 \times 10^{-15}$

JEE Advanced

Single Correct-Answer Type

i.
$$Ag^+ + NH_3 \rightleftharpoons [Ag(NH_3)]^+; k_1 = 3.5 \times 10^{-3}$$

ii. $[Ag^+ (NH_3)]^+ + NH_3 \rightleftharpoons [Ag(NH_3)_2]^+; k_2 = 1.7 \times 10^{-3}$

On the basis of above reaction

$$k_1 = \frac{[\text{Ag}(\text{NH}_3)]^+}{[\text{Ag}^+][\text{NH}_3]}$$
(i)

$$k_2 = \frac{[\text{Ag}(\text{NH}_3)_2]^+}{[\text{Ag}(\text{NH}_3)]^+[\text{NH}_3]} \qquad \dots (\text{ii})$$

For the formation of $[Ag(NH_3)_2]^+$ $Ag^+ + 2NH_3 \rightleftharpoons [Ag(NH_3)_2]^+$

Formation constant (K) =
$$\frac{[Ag(NH_3)_2]^+}{[Ag^+][NH_3]^2}$$
 ...(iii)

When two equations are added their equilibrium constants are multiplied.

From Eqs (i) and (ii), we get

$$k = k_1 \times k_2$$

 $= 3.5 \times 10^{-3} \times 1.7 \times 10^{-3}$
 $= 5.95 \times 10^{-6} = 6.08 \times 10^{-6}$

23. (d) $MX \rightarrow M^+ + X^-$ (where s is the solubility) S S

Then
$$K_{sp} = S^2$$
 or $S = \sqrt{K_{sp}}$
Similarly for MX₂ \rightarrow M²⁺ + 2X

$$K_{sp} = S \times (2S)^2 = 4S^3 \text{ or } S = \left[\frac{K_{sp}}{4}\right]^{1/3}$$

and for $M_3 X \rightarrow 3 M^+ + X^{-3}$

Then
$$K_{sp} = S^2$$
 or $S = \sqrt{K_{sp}}$

$$K_{sp} = (3S)^3 \times S = 27S^4 \text{ or } S = \left[\frac{K_{sp}}{27}\right]^{1/4}$$

From the given values of K_{sp} for MX, MX₂ and M₃X, we can find the solubilities of those salts at temperature, *T*

Solubility of MX =
$$\sqrt{4 \times 10^{-8}} = 2 \times 10^{-4}$$

Solubility of MX₂ =
$$\left[\frac{3.2 \times 10^{-14}}{4}\right]^{1/3}$$
 or $\left[\frac{32}{4} \times 10^{-15}\right]^{1/3}$
= $[8 \times 10^{-15}]^{1/3}$ or 2×10^{-5}
Solubility of M₃X = $\left[\frac{2.7 \times 10^{-15}}{27}\right]^{1/4}$
= $[10^{-16}]^{1/4}$ or 10^{-4}

24. (a) In acidic solution $[S^{2-}]$ is low. So CuS and HgS (second group cations) will be precipitated more easily due to low K_{sp} value. NiS and MnS (IV group cation) will precipitate if H₂S is passed in basic medium.

25. (a) Rate in weak acid =
$$\frac{1}{100}$$
 (rate of strong acid)

$$\therefore \quad [\mathrm{H}^+]_{\mathrm{weak acid}} = \frac{1}{100} [\mathrm{H}^+]_{\mathrm{strong acid}}$$

:.
$$[H^+]_{\text{weak acid}} = \frac{1}{100} \text{ M} = 10^{-2} \text{ M}$$

$$\therefore \quad C\alpha = 10^{-2}$$
$$\therefore \quad K_{\alpha} = 10^{-4}$$

Hence
$$\stackrel{a}{(a)}$$
 is correct.

26. (b)
$$K_{sp} = 1.1 \times 10^{-12} = [\text{Ag}^+]^2 [\text{CrO}_4^{-2}]$$

 $1.1 \times 10^{-12} = [0.1]^2 [S]$
 $S = 1.1 \times 10^{-10}$

Multiple Correct-Answer Type

27. (c), (d)

 \Rightarrow

- 1. Not buffer since it is a mixture of strong acid and weak acid.
- **2.** Not buffer since it is a mixture of strong base and salt of weak acid/strong base.
- 3. It is an acidic buffer since some of HNO₃ will react with CH₃COONa to produce weak acid and some CH₃COONa will be left. So buffer is formed

Initial
$$x = v = 0 = 0$$

Initial x y 0 0Final — (y-x) (y-x) (y-x)

4. It is acidic buffer (mixture of weak acid and salt of weak acid/strong base).

Linked Comprehension Type

28. [A] Let the heat capacity of insulated beaker be *C*. Mass of aqueous content in experiment

$$1 = (100 + 100) \times 1 = 200 \text{ g}$$

$$\therefore$$
 Total heat capacity = $(C + 200 \times 4.2)$ J/K

- Mole of acid, base neutralized in Experiment 1 = $0.1 \times 1 = 0.1$
- \Rightarrow Heat released in Expt. 1 = 0.1 × 5.7 = 5.7 KJ = 5.7 × 1000 J

$$\Rightarrow \quad 5.7 \times 1000 = (C + 200 \times 4.2) \times \Delta T$$

$$5.7 \times 1000 = (C + 200 \times 4.2) \times 5.7$$

$$\Rightarrow \quad (C + 200 \times 4.2) = 1000$$

5.52 Physical Chemistry-I for JEE (Main & Advanced)

In second experiment

 $N_{\text{CH}_3\text{COOH}} = 0.2, N_{\text{NaOH}} = -0.1$ Total mass of aqueous content = 200 g \Rightarrow Total heat capacity = (C + 200 × 4.2) = 1000 \Rightarrow Heat released = 1000 × 5.6 = 5600 J Overall, only 0.1 mol of CH₃COOH undergo neutralisation.

$$\Rightarrow \Delta H_{neutralisation} \text{ of } CH_3 COOH = \frac{-5600}{0.1}$$

⇒ ΔH_{dissociation} of CH₃COOH = 57 - 56 = 1 kJ/mol.
29. [B] Final solution contains 0.1 mole of CH₃COOH and CH₃COONa each.

Hence it is a buffer solution

$$pH = pK_a + \log \left[\frac{CH_3COO^-}{CH_3COOH}\right]$$
$$= 5 - \log 2 + \log \frac{0.1}{0.1} = 4.7$$

Integer Answer Type

30. (8) $K_a(C_6H_5COOH) = 1 \times 10^{-4}$ pH of 0.01 M C₆H₅COONa

$$C_{6}H_{5}COO^{-} + H_{2}O \Longrightarrow C_{6}H_{5}COO^{-} + OH^{-1}_{0.01h}$$

$$K_{h} = \frac{K_{w}}{K_{a}} = \frac{0.01h^{2}}{1-h}$$
$$\frac{10^{-14}}{10^{-4}} = \frac{10^{-2}h^{2}}{1-h} \quad (1-h \approx 1)$$
$$[OH^{-}] = 0.01 \text{ h} = 0.01 \times 10^{-4} = 10^{-6}$$
$$[H^{+}] = 10^{-8}$$
$$pH = 8$$

- **31.** (c) KCN, K₂CO₃ and LiCN are the salts of weak acid and strong base. So, their aqueous solution turns red litmus paper blue.
- **32.** (6) Diprotic acids are H_2SO_4 , H_3PO_3 , H_2CO_3 , $H_2S_2O_7$, H_2CrO_4 and H_2SO_3 .
- **33.** (3) Let the solubility of AgCl is $x \mod L^{-1}$

AgCl
$$\implies Ag^+ + Cl^-_x$$

and that of CuCl is y mol L⁻¹ CuCl $\implies Cu^+ + Cl^-_y$
∴ K_{sp} of AgCl = [Ag^+][Cl^-]
1.6 × 10^{-10} = x(x + y) ...(i)
Similarly K_{sp} of CuCl = [Cu^+][Cl^-]
1.6 × 10^{-6} = y(x + y) ...(ii)
On solving Eqs (i) and (ii)
[Ag⁺] = 1.6 × 10^{-7}
∴ $x = 7$