

John W. Satzinger
Missouri State University

Robert B. Jackson
RBJ and Associates

Stephen D. Burd
University of New Mexico

Australia • Brazil • Mexico • Singapore • United Kingdom • United States

Seventh Edition

SyStemS AnAlySiS
And deSign
in a Changing World

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial
review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to

remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous
editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by

ISBN#, author, title, or keyword for materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

© 2016, 2012 Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein
may be reproduced, transmitted, stored, or used in any form or by any means
graphic, electronic, or mechanical, including but not limited to photocopying,
recording, scanning, digitizing, taping, Web distribution, information networks,
or information storage and retrieval systems, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without the prior
written permission of the publisher.

Library of Congress Control Number: 2014958278

ISBN: 978-1-305-11720-4

Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions with
office locations around the globe, including Singapore, the United Kingdom,
Australia, Mexico, Brazil, and Japan. Locate your local office at: www.cengage
.com/global

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

To learn more about Cengage Learning Solutions, visit www.cengage.com

Purchase any of our products at your local college store or at our
preferred online store www.cengagebrain.com

Printed in the United States of America
Print Number: 01 Print Year: 2014

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Systems Analysis and Design in a Changing
World, Seventh Edition
John W. Satzinger, Robert B. Jackson, Stephen
D. Burd

Vice President, General Manager, Social
Science & Qualitative Business: Balraj Kalsi

Product Director: Joe Sabatino

Product Manager: Jason Guyler

Content Developer: Lori Bradshaw, S4Carlisle

Senior Product Assistant: Brad Sullender

Senior Market Manager: Eric La Scola

Marketing Coordinator: Will Guiliani

Art and Cover Direction, Production
Management, and Composition:
Lumina Datamatics, Inc.

Intellectual Property Analyst: Christina
Ciaramella

Senior Project Manager: Kathryn Kucharek

Manufacturing Planner: Ron Montgomery

Cover & Internal Image: Image Werks/Corbis

Uncredited figures are created by the authors.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WCN: 02-200-203

DEDICATION

To my wife JoAnn—JWS

To my immediate and extended family—RBJ

To Dee, Amelia, and Alex—SDB

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

iv

 Part ONE Introduction to System Development
 1 From Beginning to End: An Overview of Systems

Analysis and Design 3
 Online Chapter A The Role of the Systems Analyst OL-1

 Part tWO Systems Analysis Activities
 2 Investigating System Requirements 37
 3 Identifying User Stories and Use Cases 69
 4 Domain Modeling 93
 5 Use Case Modeling 131
 Online Chapter B The Traditional Approach to Requirements OL-19

 Part thrEE Essentials of Systems Design
 6 Foundations for Systems Design 157
 7 Defining the System Architecture 185
 8 Designing the User Interface 217
 9 Designing the Database 257

 Part fOur System Development and Project Management
 10 Approaches to System Development 295

 11 Project Planning and Project Management 325

 Online Chapter C Project Management Techniques OL-53

 Part fIVE Advanced Design and Deployment Concepts
 12 Object-Oriented Design: Fundamentals 365

 13 Object-Oriented Design: Use Case Realization 397

 14 Deploying the New System 443

Index 479

brief contents

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

v

contents

 Part ONE Introduction to System Development

 1 From Beginning to End: An Overview of Systems
Analysis and Design 3

Software Development and Systems Analysis and Design 4
The System Development Life Cycle (SDLC) 7
Iterative Development 8
Introduction to Ridgeline Mountain Outfitters (RMO) 9
Developing RMO’s Tradeshow System 11
Where You Are Headed—The Rest of This Book 28
Chapter Summary 30
Key Terms 30
Review Questions 30
Problem and Exercises 31
Chapter case 31

 Online Chapter A The Role of the Systems Analyst OL-1
Overview OL-2
The Analyst as a Business Problem Solver OL-3
Systems That Solve Business Problems OL-6
Required Skills of the Systems Analyst OL-10
Analysis-Related Careers OL-13
Chapter Summary OL-15
Key Terms OL-16
Review Questions OL-16
Problem and Exercises OL-16
Case Study OL-17

Preface xviii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

vi CONTENTS

 Part tWO Systems Analysis Activities

 2 Investigating System Requirements 37
Overview 38
The RMO Consolidated Sales and Marketing System Project 39
Systems Analysis Activities 42
What Are Requirements? 45
Stakeholders 47
Information-Gathering Techniques 50
Models and Modeling 58
Documenting Workflows with Activity Diagrams 60
Chapter Summary 63
Key Terms 63
Review Questions 64
Problems and Exercises 64
Case Study 65
Running Case Studies 66
Further Resources 68

 3 Identifying User Stories and Use Cases 69
Overview 70
User Stories and Use Cases 71
Use Cases and the User Goal Technique 73
Use Cases and Event Decomposition 74
Use Cases in the Ridgeline Mountain
Outfitters Case 80
Chapter Summary 87
Key Terms 88
Review Questions 88
Problems and Exercises 88
Case Study 90
Running Case Studies 90
Further Resources 92

 4 Domain Modeling 93
Overview 94
“Things” in the Problem Domain 94
The Entity-Relationship Diagram 100
The Domain Model Class Diagram 103
The State Machine Diagram—Identifying Object Behavior 114
Chapter Summary 122
Key Terms 123
Review Questions 123

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

viiCONTENTS

Problems and Exercises 124
Case Study 126
Running Case Studies 127
Further Resources 129

 5 Use Case Modeling 131
Overview 132
Use Case Descriptions 133
Activity Diagrams for Use Cases 137
The System Sequence Diagram—Identifying Inputs and Outputs 139
SSD Notation 140
Use Cases and CRUD 146
Integrating Requirements Models 148
Chapter Summary 149
Key Terms 149
Review Questions 149
Problems and Exercises 150
Case Study 151
Running Case Studies 151
Further Resources 154

 Online Chapter B The Traditional Approach to Requirements OL-19
Overview OL-20
Traditional and Object-Oriented Views of Activities and Use Cases OL-21
Data Flow Diagrams OL-21
Documentation of DFD Components OL-38
Locations and Communication through Networks OL-47
Chapter Summary OL-50
Key Terms OL-50
Review Questions OL-50
Problems and Exercises OL-51
Case Study OL-51
Further Resources OL-52

 Part thrEE Essentials of Systems Design

 6 Foundations for Systems Design 157
Overview 159
What Is Systems Design? 159
Design Activities 163
System Controls and Security 168
Chapter Summary 179

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

viii CONTENTS

Key Terms 180
Review Questions 180
Problems and Exercises 180
Case Study 181
Running Case Studies 181
Further Resources 183

 7 Defining the System Architecture 185
Overview 186
Anatomy of a Modern System 187
Architectural Concepts 195
Interoperability 201
Architectural Diagrams 201
Describing the Environment 203
Designing Application Components 208
Chapter Summary 213
Key Terms 213
Review Questions 213
Problems and Exercises 214
Case Study 214
Running Case Studies 215
Further Resources 216

 8 Designing the User Interface 217
Overview 218
Understanding the User Experience and
the User Interface 219
Fundamental Principles of User-Interface Design 223
Transitioning from Analysis to User-Interface Design 232
User-Interface Design 237
Designing Reports, Statements, and
Turnaround Documents 245
Chapter Summary 251
Key Terms 251
Review Questions 251
Problems and Exercises 252
Case Study 253
Running Case Studies 253
Further Resources 255

 9 Designing the Database 257
Overview 258
Databases and Database Management Systems 258

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ixCONTENTS

Database Design and Administration 260
Relational Databases 263
Distributed Database Architectures 279
Protecting the Database 284
Chapter Summary 286
Key Terms 287
Review Questions 287
Problems and Exercises 288
Case Study 289
Running Case Studies 290
Further Resources 292

 Part fOur System Development and Project Management

 10 Approaches to System Development 295
Overview 296
The System Development Life Cycle 297
Methodologies, Models, Tools, and Techniques 301
Agile Development 304
The Unified Process, Extreme Programming, and Scrum 307
Chapter Summary 319
Key Terms 319
Review Questions 319
Problems and Exercises 320
Case Study 321
Running Case Studies 321
Further Resources 324

 11 Project Planning and Project Management 325
Overview 326
Principles of Project Management 327
Activities of Core Process 1: Identify the Problem and Obtain Approval 335
Activities of Core Process 2: Plan and Monitor the Project 345
Chapter Summary 356
Key Terms 357
Review Questions 357
Problems and Exercises 357
Case Study 360
Running Case Studies 360
Further Resources 362

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CONTENTSx

 Online Chapter C Project Management Techniques OL-53
Overview OL-54
Calculating Net Present Value, Payback Period, and Return on Investment OL-55
Understanding PERT/CPM Charts OL-58
Building the Project Schedule with Microsoft Project OL-62
Project Management Body of Knowledge (PMBOK) OL-70
Chapter Summary OL-77
Key Terms OL-77
Review Questions OL-78
Problems and Exercises OL-78
Case Study OL-81

 Part fIVE Advanced Design and Deployment Concepts

 12 Object-Oriented Design: Fundamentals 365
Overview 366
Object-Oriented Design: Bridging from Analysis to Implementation 367
Steps of Object-Oriented Design 374
Design Classes and the Design Class Diagram 376
Designing with CRC Cards 382
Fundamental Principles for Good Design 388
Chapter Summary 393
Key Terms 393
Review Questions 393
Problems and Exercises 394
Case Study 394
Running Case Studies 395
Further Resources 396

 13 Object-Oriented Design: Use Case Realization 397
Overview 398
Object-Oriented Design with Interaction Diagrams 399
Use Case Realization with Communication Diagrams 401
Use Case Realization with Sequence Diagrams 408
Developing a Multilayer Design 417
Updating and Packaging the Design Classes 424
Design Patterns 427
Chapter Summary 434
Key Terms 434
Review Questions 434
Problems and Exercises 435

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xi

Case Study 440
Running Case Studies 440
Further Resources 442

 14 Deploying the New System 443
Overview 444
Testing 446
Deployment Activities 454
Managing Implementation, Testing,
and Deployment 460
Putting It All Together—RMO Revisited 471
Chapter Summary 474
Key Terms 474
Review Questions 474
Problems and Exercises 475
Case Study 475
Running Case Studies 476
Further Resources 478

Index 479

CONTENTS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

features
Systems Analysis and Design in a Changing World, Seventh Edition, was written and
developed with instructor and student needs in mind. Here is just a sample of the unique
and exciting features that help bring the field of systems analysis and design to life.

iv

 Part ONE Introduction to System Development
 1 From Beginning to End: An Overview of Systems

Analysis and Design 3
 Online Chapter A The Role of the Systems Analyst OL-1

 Part tWO Systems Analysis Activities
 2 Investigating System Requirements 37
 3 Identifying User Stories and Use Cases 69
 4 Domain Modeling 93
 5 Use Case Modeling 131
 Online Chapter B The Traditional Approach to Requirements OL-19

 Part thrEE Essentials of Systems Design
 6 Foundations for Systems Design 157
 7 Defining the System Architecture 185
 8 Designing the User Interface 217
 9 Designing the Database 257

 Part fOur System Development and Project Management
 10 Approaches to System Development 295

 11 Project Planning and Project Management 325

 Online Chapter C Project Management Techniques OL-53

 Part fIVE Advanced Design and Deployment Concepts
 12 Object-Oriented Design: Fundamentals 365

 13 Object-Oriented Design: Use Case Realization 397

 14 Deploying the New System 443

Index 479

brief contents

17204_fm_ptg01_i-xxviii.indd 4 17/12/14 10:32 PM

10 PART 1 ■ Introduction to System Development

2016 WINTER CATALOG

2016 W
INTER CATALOG

Figure 1-6 RMO winter catalog

Figure 1-7 RMO online ordering home page

customers to go online to make purchases, so RMO continues to produce and mail

abbreviated versions. Figure 1-7 shows the RMO online ordering home page.

RMO produces its own line of outdoor clothing and sportswear. However,

to offer a complete range of clothing in its retail outlets, it also sells brands of

clothing sourced from other vendors. Furthermore, most accessories sold are

sourced through vendors.
 ■ Trade Shows

To keep its product line innovative and responsive to consumer demand, RMO’s

purchasing agents attend apparel and accessory trade shows around the world
17204_ch01_ptg01_001-034.indd 10

06/12/14 10:30 AM

13

CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design

information system. Based on the list of system capabilities, the project team

identifies these two subsystems:

 ■ Supplier Information Subsystem

 ■ Product Information Subsystem

The Supplier Information Subsystem will collect and maintain information

about the manufacturers or wholesalers and the contact people who work for

them. The Product Information Subsystem will capture information about the

various products offered by the manufacturers or wholesalers, including de-

tailed descriptions and photographs.

Problem Description

Trade shows have become an important information source for new products, new

fashions, and new fabrics. In addition to the large providers of outdoor clothing and

fabrics, there are many smaller providers. It is important for RMO to capture information

about these suppliers while the trade show is in progress. It is also important to obtain

information about specific merchandise products that RMO plans to purchase.

Additionally, if quality photographs of the products can be obtained while at the trade

show, then the creation of online product pages is greatly facilitated.

It is recommended that a new system be developed and deployed so field purchasing

agents can communicate more rapidly with the home office about suppliers and specific

products of interest. This system should be deployed on portable equipment.

System Vision Document

RMO Tradeshow System

System Capabilities

The new system should be capable of:

• Collecting and storing information about the manufacturer/wholesaler (suppliers)

• Collecting and storing information about sales representatives and other key

 personnel for each supplier

• Collecting information about products

• Taking pictures of products (and/or uploading stock images of products)

• Functioning as a stand-alone without connection

• Connecting via Wi-Fi (Internet) and transmitting data

• Connecting via telephone and transmitting data

Business Benefits

It is anticipated that the deployment of this new system will provide the following

business benefits to RMO:

• Increase timely communication between trade show attendees and home office,

 thereby improving the quality and speed of purchase order decisions

• Maintain correct and current information about suppliers and their key personnel,

 thereby facilitating rapid communication with suppliers

• Maintain correct and rapid information and images about new products, thereby

 facilitating the development of catalogs and Web pages

• Expedite the placing of purchase orders for new merchandise, thereby catching

 trends more rapidly and speeding up product availability

Figure 1-8 Tradeshow System

Vision Document

17204_ch01_ptg01_001-034.indd 13

06/12/14 10:30 AM

The innovative text organization starts with a complete
beginning-to-end system development example, moves
 immediately to systems analysis models and techniques, and
then moves to systems design concepts emphasizing system
architecture, user-interface design, and database design.
Analysis and much of design is covered in the first nine chap-
ters. Next, the text focuses on managing system development
projects, including project planning and project management,
after the student has a chance to learn what is involved in
system development. Finally, the text covers detailed object-
oriented design techniques and deployment topics.

The text uses a completely updated integrated case study
of moderate complexity—Ridgeline Mountain Outfitters
(RMO)—to illustrate key concepts and techniques. In addi-
tion, a smaller RMO application—the Tradeshow System—is
used in Chapter 1 to introduce the entire system development
process.

xii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

features
41

CHAPTER 2 ■ Investigating System Requirements

RMO-supported comment forums and blogs, and mined from Facebook and

Twitter. RMO will develop a complete presence in each social networking venue

and enable system users to share purchases, recommendations, coupons, and

store credits using those venues.The new CSMS will have four subsystems: ■ The Sales subsystem provides such basic functions as searching the online

catalog, purchasing items, and paying for them online. However, it has many

new capabilities to assist the shopper. The system will provide specific sugges-

tions about accessories that go with the purchased item. Images and videos

of animated models will be available to help the customer see how various

items and accessory packages will look together. The system will also provide

information to shoppers about related purchases made by other shoppers.

Customer ratings and comments are available for viewing. Finally, key social

networking components will permit shoppers to network with their friends by

sending messages to ask their opinions about particular merchandise items.

 ■ The Order Fulfillment subsystem will perform all the normal tasks of ship-

ping items and allowing customers to track the status of their orders and

shipments. In addition, as part of order fulfillment, customers can rate and

make comments about particular merchandise and their overall shopping

experience. They may also make suggestions directly to RMO about the

attractiveness of the Web site and the quality of the service they received.

 ■ The Customer Account subsystem provides services that enhance the cus-

tomer experience. Customers can view and maintain their account informa-

tion. They also can “link up” with friends who are also customers to share

Supply Chain Management (SCM)
Consolidated Sales and Marketing System (CSMS)

Suppliers

Customers

Buyers

Retail Stores

Retail Sales

Phone Sales

Customers

Trade Show System (TSS)

Warehouses

Shipments

Orders

Shipments

Orders

Shipments

Online Sales

Figure 2-1 Proposed application architecture for RMO (partial)

©
M

ar
ci

n
B

al
ce

rz
ak

/S
hu

tt
er

st
oc

k.
co

m
; ©

C
he

rk
as

 /
S

hu
tt

er
st

oc
k.

co
m

; ©
lu

ch
sc

he
n/

S
hu

tt
er

st
oc

k.
co

m
; ©

K
ur

ha
n/

S
hu

tt
er

st
oc

k.
co

m
; ©

C
an

dy
B

ox
P

ho
to

/S
hu

tt
er

st
oc

k.
co

m
; ©

V
al

en
ty

n
Vo

lk
ov

/S
hu

tt
er

st
oc

k.
co

m
; ©

L
B

ar
nw

el
l/

S
hu

tt
er

st
oc

k.
co

m
; ©

Lo
gi

n/
S

hu
tt

er
st

oc
k.

co
m

17204_ch02_ptg01_035-068.indd 41

06/12/14 10:30 AM

86 PART 2 ■ Systems Analysis Activities

for an item, view product comments and ratings, and view accessory combina-

tions before beginning to fill the shopping cart. However, while filling the shop-

ping cart, the customer might also search for an item, view product comments,

and view accessories. Therefore, one use case uses, or “includes,” another use

case. Figure 3-15 shows a use case diagram emphasizing this aspect of use cases.

Customer

Search for item

Fill shopping cart View productcomments and
ratings

View accessorycombinations

Sales SubsystemFill Shopping Cart <<includes>> Relationships

«includes»

«includes»

«includes»

Figure 3-15 A use case diagram of the Fill shopping cart «includes» relationships

Sales Subsystem
Actors: Service Representative and Store Representative

Customer servicerepresentative

Store salesrepresentative

View productcomments and
ratings

View accessorycombinations

Create phone sale

Search for item

Create store sale

Figure 3-14 Use cases involving the customer service representative and store sales representative for the Sales subsystem

©
 C

en
ga

ge
 L

ea
rn

in
g

®
©

 C
en

ga
ge

 L
ea

rn
in

g
®

17204_ch03_ptg01_069-092.indd 86

06/12/14 10:31 AM

240 PART 3 ■ Essentials of Systems Design

Figure 8-21 is a sample screen of a Web-based application, where an item

was recently added to the shopping cart. Generally, this is a good design, well

organized and easily understood. However, it is somewhat limited in its use of

navigation buttons. Frequently, a user would like to return to the search page to

purchase a related item. Unfortunately, the only way to return to the original list

of search results is with the Back button on the browser. A better design would

be to include a Continue Shopping link back to the search page.

 ■ Considerations for Web-Based Applications

When designing the user interface for Web-based applications, all the pre-

ceding guidelines still apply. There are also two other important issues to be

considered.

The first issue is that every aspect of the user interface must be transmitted

over the Internet. With the speeds and bandwidth available today, even large

Figure 8-20 RMO product detail

search screen

Figure 8-21 Online retailer

checkout page

S
ou

rc
e:

 A
m

az
on

17204_ch08_rev03_217-256.indd 240

06/12/14 10:36 AM

The planned RMO application architecture provides for rich
examples—a Web-based component, a wireless smartphone/
tablet application, and a client/server Windows-based com-
ponent. All RMO applications described are integrated and
strategically planned. The Supply Chain Management System
already exists, ready for integrating the Tradeshow System
and the new Consolidated Sales and Marketing System.

The new Consolidated Sales and Marketing System (CSMS)
is the system development project described in Chapter 2 and
used throughout the text for examples and explanations. It is
strategically important to RMO, and the company must inte-
grate the new system with legacy systems and other planned
systems. There are four subsystems, and the requirements and
design models are shown in detail. UML diagrams are used
throughout for examples and exercises.

xiii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

features
The text describes both predictive and adaptive
approaches to the SDLC and recommends Agile,
iterative development for most projects. The SDLC
used in the text features a generic, condensed ver-
sion of the Unified Process SDLC taught as an Agile
approach that emphasizes iterations and core de-
velopment processes. Core development processes
and iterations are emphasized over phases to reduce
the confusion that ordinarily occurs when students
are taught “phases” and then told to use iterations.
Project planning and project management are em-
phasized throughout, and the book focuses more on
systems analysis and systems design as development
disciplines rather than phases.

300 PART 4 ■ System Development and Project Management

Using iterations, the project is able to adapt to any changes as it proceeds. Also,

parts of the system are available early on for user evaluation and feedback,

which helps ensure that the application will meet the needs of the users.

You first saw this concept in the SDLC example used in Chapter 1, which

is repeated here as Figure 10-5. The core processes defined in Chapter 1 are

carried out in each iteration of the project. This iterative approach is adaptive

because with each iteration’s analysis, design, and implementation, modifica-

tions can be made to adapt to the changing requirements of the project. The

adaptive approach presented in this textbook is a simplification of and variation

on a more formal iterative approach called the Unified Process (UP). You will

learn more about the UP later in this chapter.

A related concept to an iterative SDLC is called incremental development.

Incremental development is always based on an iterative life cycle. The basic

idea is that the system is built in small increments. An increment may be devel-

oped within a single iteration or it may require two or three iterations. As each

increment is completed, it is integrated with the whole. The system, in effect, is

“grown” in an organic fashion. The advantage of this approach is that portions

of the system get into the users’ hands much sooner so the business can begin

accruing benefits as early as possible.

Yet another related concept, which is also based on an iterative approach, is

the idea of a walking skeleton. A walking skeleton, as the name suggests, pro-

vides a complete front-to-back implementation of the new system but with only

Figure 10-4 Overlap of system development phases

Additional project planning and control tasks

Analysis

Design

Implementation

Additional analysis tasks

Deployment

Additional design

tasks

Support

=
Decision points and

completion of major

components of project

Project

initiation

Project

planning

©
 C

en
ga

ge
 L

ea
rn

in
g®

©
 C

en
ga

ge
 L

ea
rn

in
g®

Core

processe
s 1 2 3 4 5 6

Identify the problem and obtain

approval.

Plan and monitor project.

Discover and understand details.

Design system components.

Build, test, and integrate system

components.

Complete system tests and deploy

the solution.

Iterations

Figure 10-5 Adaptive SDLC with

six core processes and multiple

iterations

incremental development an SDLC

approach that completes portions of the

system in small increments across iterations,

with each increment being integrated into the

whole as it is completed

walking skeleton a development

approach in which the complete system

 structure is built but with bare-bones

functionality

17204_ch10_rev03_293-324.indd 300

06/12/14 11:12 AM

163

CHAPTER 6 ■ Foundations for Systems Design

 ■ Design Activities
Figure 6-3 identifies the activities of systems design. This section provides a

short introduction to each of these design activities. In-depth explanation and

instruction on the specific concepts and skills for each design activity are given

later in the text.Systems design involves specifying in detail how a system will work when

deployed within a specific technology environment. Some of the details may

have been defined during systems analysis, but much more detail is added dur-

ing design. In addition, each part of the final solution is heavily influenced by

the design of all the other parts. Thus, systems design activities are usually done

in parallel. For example, the database design influences the design of application

components, software classes and methods, and the user interface. Likewise, the

technology environment drives many of the decisions for how system functions

are distributed across application components and how those components com-

municate across a network. When an iterative approach to the SDLC is used,

major design decisions are made in the first or second iteration; however, many

decisions are revisited and refined during later iterations.

To better understand these design activities, you can summarize each one

with a question. In fact, system developers often ask themselves these questions

to help them stay focused on the objective of each design activity. Figure 6-4

presents these questions:

Design activitiesDescribe the environment.Design the application components.
Design user interface.Design the database.Design the software classes and methods.

Core
processes

1 2 3 4 5 6

Identify the problem and obtain
approval.
Plan and monitor the project.

Discover and understand details.
Design system components.

Build, test, and integrate system
components.
Complete system tests and deploy
the solution.

Iterations

Figure 6-3 Design activities

Design activity
Describe the environment

Design the applicationcomponents
Design the user interface

Key question
How will this system interact with other systems and with

the organization’s existing technologies?What are the key parts of the information system and how

will they interact when the system is deployed?
Design the database

How will data be captured, structured, and stored for later

use by the information system?

Design the software classesand methods What internal structure for each application component will

ensure efficient construction, rapid deployment, and reliable

operation?

How will users interact with the information system?

Figure 6-4 Design activities and
key questions

©
 C

en
ga

ge
 L

ea
rn

in
g

®

©
 C

en
ga

ge
 L

ea
rn

in
g

®

17204_ch06_ptg01_155-184.indd 163

06/12/14 11:13 AM

xiv

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

features

After reading this chapter, you should be able to:

Explain why identifying user stories and

use cases is the key to defining functional

requirements

Write user stories with acceptance criteria

Describe the two techniques for identifying

use cases

Apply the user goal technique to identify use

cases

Apply the event decomposition technique to

identify use cases

Describe the notation and purpose for the use

case diagram

Draw use case diagrams by actor and by

subsystem

Learning Objectives

User Stories and Use Cases

Use Cases and the User Goal Technique

Use Cases and Event Decomposition

Use Cases in the Ridgeline Mountain

Outfitters Case

chapter OutLine

Identifying User Stories

and Use Cases

chapter three

17204_ch03_ptg01_069-092.indd 69

06/12/14 10:32 AM

132 PART 2 ■ Systems Analysis Activities

 ■ Overview

The main objective of defining requirements in system development is under-

standing users’ needs, how the business processes are carried out, and how

the system will be used to support those business processes. As indicated in

Chapter 2, system developers use a set of models to discover and understand the

requirements for a new system. This activity is a key part of systems analysis in

the system development process. The first step in the process for developing this

understanding requires the fact-finding skills you learned in Chapter 2. Fact-

finding activities are also called discovery activities, and obviously, discovery

must precede understanding.The models introduced in Chapters 3 and 4 focus on two primary aspects of

functional requirements: the use cases and the problem domain classes involved

in users’ work. User stories are sometimes used in place of use cases with Agile

development. Use cases are identified by using the user goal technique and the

Opening case ElEctronics UnlimitEd: intEgrating thE sUpply chain

Electronics Unlimited is a warehousing distributor that

buys electronic equipment from various suppliers and

sells it to retailers throughout the United States and

Canada. It has operations and warehouses in Los Ange-

les, Houston, Baltimore, Atlanta, New York, Denver, and

Minneapolis. Its customers range from large nationwide

retailers, such as Target, to medium-sized independent

electronics stores.Most large retailers have moved toward integrated

supply chains. Information systems used to be focused

on processing internal data; however, today, these retail

chains want suppliers to become part of a totally inte-

grated supply chain system. In other words, the systems

need to communicate between companies to make the

supply chain more efficient.To maintain its position as a leading wholesale dis-

tributor, Electronics Unlimited has to convert its system to

link with its suppliers (the manufacturers of the electronic

equipment) and its customers (the retailers). It is develop-

ing a completely new system that uses object-oriented

techniques to provide these links. Object-oriented tech-

niques facilitate system-to-system interfaces by using

predefined components and objects to accelerate the

development process. Fortunately, many of the system

development staff members have experience with object-

oriented development and are eager to apply the tech-

niques and models to the system development project.

William Jones is explaining object-oriented develop-

ment to the group of systems analysts who are being

trained in this approach.“We’re developing most of our new systems by

using object-oriented principles,” he tells them. “The

complexity of the new system, along with its interactiv-

ity, makes the object-oriented approach a natural way to

develop requirements. The object-oriented models track

very closely with the new object-oriented programming

languages and frameworks.”William is just getting warmed up.
“This way of thinking about a system in terms of

objects is very interesting,” he adds. “It is also consis-

tent with the object-oriented programming techniques

you learned in your programming classes. You prob-

ably first learned to think about objects when you de-

veloped screens for the user interface. All the controls

on the screen, such as buttons, text boxes, and drop-

down boxes, are objects. Each has its own set of trigger

events that activate its program functions.”
“How does this apply to our situation?” one of the

analysts asks.“You just extend that thought process,” William

explains.” You think of such things as purchase orders

and employees as objects, too. We can call them the

problem domain objects to differentiate them from user-

interface objects, such as windows and buttons. During

analysis, we have to find out all the trigger events and

methods associated with each business object.”

“And how do we do that?” another analyst asks.

“You continue with your fact-finding activities and

build a better understanding of each use case,” William

says. “The way the problem domain objects interact

with each other in the use case determines how you

identify the initiating activity. We refer to those activi-

ties as the messages between objects. The tricky part

is that you need to think in terms of objects instead of

just processes. Sometimes, it helps me to pretend I am

an object. I will say, ‘I am a purchase order object. What

functions and services are other objects going to ask me

to do?’ After you get the hang of it, it works very well,

and it is enlightening to see how the system require-

ments unfold as you develop the diagrams.”

17204_ch05_ptg01_131-154.indd 132

06/12/14 12:32 PM

Each chapter provides a
chapter outline, states
clear learning objectives,
and includes an opening
case study.

xv

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

features

Margin definitions of key terms
are placed in the text when a
term is first used. Each chapter
includes extensive figures and
illustrations designed to clarify
and summarize key points and
to provide examples of UML
diagrams and other deliverables
produced by an analyst.

372 PART 5 ■ Advanced Design and Deployment Concepts

Problem domain
class diagram

Design class diagram

Object-oriented
program classes

with methodsUse case
descriptions

System sequence
diagrams

Activity diagrams

Communication
diagrams

Sequence
diagrams

CRC cards

Information about
Things

Analysis Models Design Models Programming Models

Information about
Process Flow and
Flow of Execution

Figure 12-3 Analysis models to design models to programming models

Domain diagram Student

studentID
name
address
dateAdmitted
lastSemesterCredits
lastSemesterGPA
totalCreditHours
totalGPA
major

Student

-studentID: integer {key}
-name: string
-address: string
-dateAdmitted: date
-lastSemesterCredits: number
-lastSemesterGPA: number
-totalCreditHours: number
-totalGPA: number
-major: string

Student

+createStudent (name, address, major): Student
+createStudent (studentID): Student
+changeName (name)
+changeAddress (address)
+changeMajor (major)
+getName (): string
+getAddress (): string
+getMajor (): string
+getCreditHours (): number
+updateCreditHours ()
+findAboveHours (int hours): studentArray

Design class diagram Student

Elaborated
attributes

Method signatures

Figure 12-4 Student class example with domain class and design class

©
 C

en
ga

ge
 L

ea
rn

in
g®

17204_ch12_rev03_363-396.indd 372 06/12/14 10:35 AM72 PART 2 ■ Systems Analysis Activities

A final part of a user story is the acceptance criteria. These indicate the

features that must be present for the user to be satisfied with the resulting imple-

mentation. They focus on functionality, not on features or user-interface design.

For example, the following are the acceptance criteria for the user story “bank

teller making a deposit”:1. Customer lookup must be by name or by account number.

2. It would be nice to display photo and signature of customer.

3. Any check hold requirements must be indicated.

4. Current balance and new balance must be displayed.
The programmer analyst uses the acceptance criteria to clarify the expec-

tations of the user and to verify the user is looking at the user story at an

appropriate level of analysis. When the user story is implemented and refined,

the acceptance criteria are used for testing. Some consider it much like a con-

tract between the developers and the users that limits controversy later in the

project. Figure 3-1 shows two user stories handwritten on index cards. The

first user story is for the bank teller example just discussed. The other user

story is for a shipping clerk responsible for shipping the items on a new order

for RMO.

User Story

As a teller, I want to make a deposit to quickly serve more customers.
Acceptance Criteria:

1. Customer lookup must be by name or by account number.
2. Nice to display photo and signature of customer.
3. Any check hold requirements must be indicated.
4. Current balance and new balance must be displayed.

User Story

As a shipping clerk, I want to ship an order as accurately as possible as soon as the order

details are available.
Acceptance Criteria:

1. Available order details must pop up on the screen when available.
2. Portable display and scan device would cut time in half.
3. Sort the items by bin location. 4. Indicate number of items in stock for each item and mark backorder for those not

 available.
5. Recommend shipper based on weight, size, and location.
6. Print out shipping label for selected shipper.

Figure 3-1 Two user stories with acceptance criteria

acceptance criteria features that must
be present in the final system for the user to
be satisfied

17204_ch03_ptg01_069-092.indd 72

06/12/14 10:32 AM

330 PART 4 ■ System Development and Project Management

Communication with the client and oversight committee is an important part

of the project manager’s external responsibilities. Similarly, working with the

team leaders, team members, internal technical staff, and any subcontractors is an

important part of a project manager’s internal responsibilities. The project man-

ager must ensure that all internal and external communication is flowing properly.

Figure 11-2 depicts the various groups of people involved in a development project.

 ■ Project Management and Ceremony

Another dimension that has a heavy impact on project management is the level

of formality, sometimes called ceremony, required for a given project. Level of

formality or ceremony is a measure of the amount of documentation gener-

ated, the traceability of specifications, and the formality of the project’s deci-

sion-making processes. Some projects, particularly small ones, are conducted

with very low ceremony. Meetings occur in the hallway or around the water

cooler. Written documentation, formal specifications, and detailed models are

kept to a minimum. Developers and users usually work closely together on a

daily basis to define requirements and develop the system. Other projects, usu-

ally larger, more complex ones, are executed with high ceremony. Meetings

are often held on a predefined schedule, with specific participants, agendas,

minutes, and follow-through. Specifications are formally documented with an

Level of formality or ceremony the rigor

of holding formal meetings and producing

detailed documentation

Figure 11-2 Stakeholders in a system development project

Project manager

Client

External

stakeholders

User

Oversight committee

Internal

stakeholders

User

Technical staff

Member

Member
Member

Member

Member

Team leader
Subcontractor

Team leader

©
 C

en
ga

ge
 L

ea
rn

in
g®

17204_ch11_rev03_325-362.indd 330

06/12/14 10:34 AM

xvi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

features
393

CHAPTER 12 ■ Object-Oriented Design: Fundamentals

is refined and expanded as the sequence diagrams are

developed. One method of determining which objects

collaborate is to use class responsibility collaboration

(CRC) cards. For simple use cases, a set of CRC cards

may be sufficient to write code. For more complex use

cases, other interaction diagrams are normally used.
One reason that we suggest a more formal system

of design, rather than just starting to write code is

that the final system is much more robust and main-

tainable. Design as a rigorous activity builds better

systems. Some fundamental principles should be con-

sidered as a system is developed; specifically, two criti-

cal ideas are coupling and cohesion. A good system

has low coupling between the classes, and each of the

classes has high cohesion. Another important principle

is “protection from variations,” meaning that some

parts of the system should be protected from and not

tightly coupled to other parts of the system that are

less stable and subject to change. Being a good devel-

oper entails learning and following the principles of

good design.

The ultimate responsibility of system developers is to

write computer software that solves a business prob-

lem. This chapter focuses on how to configure and

develop the solution system—that is, how to design

the details of the new system. Systems design is the

bridge that puts business requirements in terms that

the programmers can use to write the software that

becomes the solution system.Using all the requirements models as well as the

architectural design, object-oriented design extends

the models so programming can proceed. The objec-

tive of object-oriented design is to determine the

methods within individual classes that are needed to

implement the use cases. The process of design is use-

case-driven, in that it is done one use case at a time.
The process of object-oriented design can be

divided into two major areas: developing a design class

diagram (DCD) and identifying the methods for each

use case via an interaction diagram. The DCD is usu-

ally developed in two steps. A first-cut DCD is created

based on the domain model class diagram, but then it

CHAPTER Summary

data access classentity class
indirection
instantiation
method signaturenavigation visibilityobject-oriented design

object responsibilitypersistent class
protection from variationsseparation of responsibilitiesstereotype

visibility

boundary or view classclass-level attributeclass-level methodcohesion
controller class
coupling
CRC (class responsibility collaboration) cards

KEy TermS

 1. Describe in your own words how an object-
oriented program works. 2. What is instantiation? 3. List the models that are used for object-oriented

systems design. 4. Explain how domain classes are different from
design classes. 5. What is the difference between a system sequence

diagram and a sequence diagram? 6. In your own words, list the flow of steps for doing
object-oriented design.

 7. What do we mean by use-case-driven design?
 8. Explain in your own words what coupling means

and why it is important. 9. Explain what cohesion means and why it is
important.

 10. Compare and contrast the ideas of coupling and
cohesion.

 11. What is protection from variations, and why is it
important in detailed design? 12. What is meant by object responsibility, and why is

it important in detailed design?

REviEw QueSTionS

17204_ch12_rev03_363-396.indd 393

06/12/14 10:36 AM

150 PART 2 ■ Systems Analysis Activities

 18. List the primary steps for developing an SSD.
 19. What are the words included in the CRUD

acronym?
 20. What is the purpose of using the CRUD

technique?
 21. Identify the models explained in this chapter and

their relationship to one another.

 14. What are two ways to show repetition on a
sequence diagram? 15. What are the three types of frames used on a

sequence diagram? 16. What is the symbol for a true/false condition on
a sequence diagram? 17. Explain what parameters of a message are.

Problems AND exercises 1. After reading the following narrative, do the fol-
lowing:
a. Develop an activity diagram for each scenario.
b. Complete a fully developed use case descrip-

tion for each scenario.Quality Building Supply has two kinds of
customers: contractors and the general public.
Sales to each are slightly different.A contractor buys materials by taking them

to the checkout desk for contractors. The clerk
enters the contractor’s name into the system.
The system displays the contractor’s informa-
tion, including current credit standing. The clerk
then opens up a new ticket (sale) for the contrac-
tor. Next, the clerk scans in each item to be pur-
chased. The system finds the price of the item
and adds the item to the ticket. At the end of the
purchase, the clerk indicates the end of the sale.
The system compares the total amount against
the contractor’s current credit limit and, if it is
acceptable, finalizes the sale. The system creates
an electronic ticket for the items, and the con-
tractor’s credit limit is reduced by the amount of
the sale. Some contractors like to keep a record
of their purchases, so they request that ticket
details be printed. Others aren’t interested in a
printout.

A sale to the general public is simply entered
into the cash register, and a paper ticket is
printed as the items are identified. Payment can
be made by cash, check, or credit card. The clerk
must enter the type of payment to ensure that
the cash register balances at the end of the shift.
For credit card payments, the system prints a
credit card voucher that the customer must sign.

 2. Based on the following narrative, develop either
an activity diagram or a fully developed descrip-
tion for the use case of Add a new vehicle to an
existing policy in a car insurance system.

A customer calls a clerk at the insurance
company and gives his policy number. The clerk
enters this information, and the system displays
the basic insurance policy. The clerk then checks

the information to make sure the premiums are
current and the policy is in force.The customer gives the make, model, year,

and vehicle identification number (VIN) of the
car to be added. The clerk enters this informa-
tion, and the system ensures that the given data
are valid. Next, the customer selects the types
of coverage desired and the amount of each.
The clerk enters the information, and the system
records it and validates the requested amount
against the policy limits. After all the cover-
ages have been entered, the system ensures the
total coverage against all other ranges, including
other cars on the policy. Finally, the customer
must identify all the drivers and the percent-
age of time they drive the car. If a new driver is
to be added, then another use case—Add new
driver—is invoked.At the end of the process, the system up-

dates the policy, calculates a new premium
amount, and prints the updated policy statement
to be mailed to the policy owner. 3. Given the following list of classes and associa-

tions for the previous car insurance system, list
the preconditions and postconditions for the use
case Add a new vehicle to an existing policy.

Classes in the system include: ■ Policy
 ■ InsuredPerson ■ InsuredVehicle ■ Coverage

 ■ StandardCoverage (lists standard insurance
coverages with prices by rating category)

 ■ StandardVehicle (lists all types of vehicles
ever made)
Relationships in the system include: ■ Policy has InsuredPersons (one-to-many)

 ■ Policy has InsuredVehicles (one-to-many)
 ■ Vehicle has Coverages (one-to-many)
 ■ Coverage is a type of StandardCoverage
 ■ Vehicle is a StandardVehicle

17204_ch05_ptg01_131-154.indd 150

06/12/14 12:34 PM

151CHAPTER 5 ■ Use Case Modeling

 4. Develop an SSD based on the narrative and your
activity diagram for problem 1.

 5. Develop an SSD based on the narrative or your
activity diagram for problem 2.

 6. Locate a company in your area that develops
software. Consulting companies or companies
with a large staff of information systems pro-
fessionals tend to be more rigorous in their
approach to system development. Set up an

interview. Determine the development approaches
that the company uses. Many companies still
use traditional structured techniques combined
with some object-oriented development. In other
companies, some projects are structured, whereas
other projects are object oriented. Find out what
kinds of modeling the company does for require-
ments specification. Compare your findings with
the techniques taught in this chapter.

TheEyesHaveIt.com Book Exchange
TheEyesHaveIt.com Book Exchange is a type of e-busi-
ness exchange that does business entirely on the Internet.
The company acts as a clearinghouse for buyers and sell-
ers of used books.

To offer books for sale, a person must register with
TheEyesHaveIt.com. The person must provide a current
physical address and telephone number as well as a cur-
rent e-mail address. The system then maintains an open
account for this person. Access to the system as a seller is
through a secure, authenticated portal.

A seller can list books on the system through a special
Internet form. The form asks for all the pertinent informa-
tion about the book: its category, its general condition, and
the asking price. A seller may list as many books as de-
sired. The system maintains an index of all books in the
system so buyers can use the search engine to search for
books. The search engine allows searches by title, author,
category, and keyword.

People who want to buy books come to the site and
search for the books they want. When they decide to buy,
they must open an account with a credit card to pay for the
books. The system maintains all this information on secure
servers.

When a purchase is made, TheEyesHaveIt.com sends
an e-mail notice to the seller of the book that was chosen
as well as payment information. It also marks the book as
sold. The system maintains an open order until it receives

notice that the book has been shipped. After the seller re-
ceives notice that a listed book has been sold, the seller
must notify the buyer via e-mail within 48 hours that the
purchase is noted. Shipment of the order must be made
within 24 hours after the seller sends the notification e-
mail. The seller sends a notification to the buyer and The-
EyesHaveIt.com when the shipment is made.

After receiving the notice of shipment, TheEyesHaveIt.
com maintains the order in a shipped status. At the end of
each month, a check is mailed to each seller for the book
orders that have remained in a shipped status for 30 days.
The 30-day waiting period exists to allow the buyer to no-
tify TheEyesHaveIt.com if the shipment doesn’t arrive for
some reason or if the book isn’t in the same condition as
advertised.

If they want, buyers can enter a service code for the
seller. The service code is an indication of how well the
seller is servicing book purchases. Some sellers are very
active and use TheEyesHaveIt.com as a major outlet for
selling books. Thus, a service code is an important indica-
tor to potential buyers.

For this case, develop these diagrams:

1. A domain model class diagram
2. A list of uses cases and a use case diagram
3. A fully developed description for two use cases:

Add a seller and Record a book order
4. An SSD for each of the two use cases: Add a seller

and Record a book order

CASE STUDY

Community Board of Realtors®

The Multiple Listing Service system has a number of
use cases, which you identified in Chapter 3, and three
key domain classes, which you identified in Chapter 4:
RealEstateOffice, Agent, and Listing.

 1. For the use case Add agent to real estate office,
write a fully developed use case description.
Also develop an activity diagram and draw
an SSD. Review the case materials in previous

RUnning CasE sTudIEs

17204_ch05_ptg01_131-154.indd 151 06/12/14 11:32 AM

154 PART 2 ■ Systems Analysis Activities

Philippe Kruchten, The Rational Unified Process:

An Introduction (3rd ed.). Addison-Wesley, 2005.

Craig Larman, Applying UML and Patterns:

An Introduction to Object-Oriented Analysis

and Design and the Unified Process (3rd ed.).

Prentice Hall, 2005.

Object Management Group, UML 2.0 Superstruc-

ture Specification. 2004.

Grady Booch, James Rumbaugh, and Ivar

 Jacobson, The Unified Modeling Language

User Guide. Addison-Wesley, 1999.

E. Reed Doke, J. W. Satzinger, and S. R. Williams,

Object-Oriented Application Development Using

Java. Course Technology, 2002.

Hans-Erik Eriksson, Magnus Penker, Brian Lyons,

and David Fado, UML 2 Toolkit. John Wiley &

Sons, 2004.

Martin Fowler, UML Distilled: A Brief Guide to the

Standard Object Modeling Language (3rd ed.).

Addison-Wesley, 2004.

FuRTheR ResouRces

17204_ch05_ptg01_131-154.indd 154

06/12/14 12:35 PM

End-of-chapter material includes a
detailed summary, an indexed list
of key terms, and ample review
questions.

Each chapter also includes a collection
of problems and exercises that involve
additional research or problem solv-
ing, an end-of-chapter case study, four
running cases that create challenging
and integrated course assignments,
and a list of further resources.

xvii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xviii

Preface

When we wrote the first edition of this textbook, the world of system devel-
opment was in a major transition period—from structured methodologies to
object-oriented methodologies. We were among the first to introduce a compre-
hensive treatment of object-oriented methodologies, and Systems Analysis and
Design in a Changing World, Seventh Edition, continues to be the leader in
teaching UML and object-oriented techniques.

However, change continues. Today, many new initiatives and trends have
become firmly embedded in the world of system development. First and fore-
most is the ubiquitous access to the Internet throughout the global economy.
The resulting explosion of connectivity means that project teams are now dis-
tributed around the world. In addition, large providers (such as Microsoft) and a
proliferation of small providers now contribute to a wonderfully rich and varied
software development environment.

In order to manage system development teams in today’s distributed, fast-
paced, connected, ever-changing environment, the techniques for software de-
velopment and the approach to project management have expanded. Along with
the foundational project management principles, additional approaches and
philosophies provide new, success-oriented methodologies, such as Agile itera-
tive, incremental development approaches. These are thoroughly covered in this
edition.

Even though Systems Analysis and Design in a Changing World, Seventh
Edition, continues to be the leader in its field, with thorough treatment of such
topics as user stories, use cases, object-oriented modeling, comprehensive project
management, the Unified Modeling Language, and Agile techniques, it was time
to take another step forward in textbook design. This edition uses an innovative
approach to teaching systems analysis and design, taking advantage of the new
teaching tools and techniques that are now available. As a result, not only is sys-
tems analysis and design easier to learn by using this approach, it is also easier
to teach. It brings together the best approaches for teachers and students.

In this edition, we accomplish four major new objectives. First, we teach all
the essential principles of system development—principles that must be followed
in today’s connected environment. Second, we teach and explain the new meth-
odologies and techniques that are now available because of widespread connec-
tivity. Third, we have organized and revamped the textbook so that it teaches
these new concepts in a new way. Fourth, we created a set of short videos that
explain key concepts and walk the reader through UML diagrams to help with
understanding complex modeling.

For example, Chapter 1 presents a complete iteration in the development
of a new system. Students get to see that complete iteration—from beginning
to end (through implementation and testing)—before having to learn abstract

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xixPREFACE

principles or memorize terms. Also, the newly written running cases through-
out the book focus on current issues of communication and connectedness
and take the students through all aspects of system development. We have also
expanded the Instructor’s Materials and enhanced the aids available through
CourseMate, our online resource. Additional online chapters are also available
to enhance and extend the learning experience.

Finally, we updated and enhanced the set of over 30 short videos that ex-
plain key concepts in the text. These videos have been very well received and are
even better with the new edition. These videos are useful for blended and online
classes as well as traditional classes. The videos range from 3 to 10 minutes,
and provide just-in-time explanations for often difficult to understand concepts,
such as iterative development and Agile development, and illustrate important
techniques such as identifying user stories and use cases. Most importantly, the
videos show by demonstration how to read and interpret important UML mod-
els such as the domain model class diagrams, use case diagrams, sequence dia-
grams, and package diagrams. Understanding detailed UML models is finally
possible in a way no other text can match.

We are excited about this new approach. The time is right for new materials
and new tools for teaching systems analysis and design. Instructors will find this
textbook intuitive, powerful, and easy to use. Students will find it engaging and
empowering. Many concepts are presented so the students can teach themselves,
with coaching and direction provided by the professor. It will be an rewarding
experience to teach and learn with this textbook.

 ■ Innovations
This edition is innovative in many respects. It includes key concepts from tra-
ditional and object-oriented approaches, covers the use case-driven approach
(with UML modeling being detailed in depth), emphasizes Agile and iterative
development, and incorporates the latest concepts in Agile project management.
Also, the material is completely reorganized to better support learning systems
analysis and design.

 ■ Coverage of Object Orientation and Traditional Analysis
and Design

This textbook is unique in its integration of key systems-modeling concepts that
apply to the traditional structured approach and the object-oriented approach—
user goals and events that trigger system use cases, plus classes of objects/data
entities that are part of the system’s problem domain. We devote one chapter
to identifying user stories and use cases and another chapter to modeling key
objects/entities, including coverage of entity-relationship diagrams, while em-
phasizing UML domain model class diagrams. After completing these chap-
ters, instructors can cover structured analysis and design by including an online
chapter, or they can focus on object-oriented analysis and design by using the
chapters in this textbook. It is assumed from the beginning that everyone should
understand the key object-oriented concepts. The traditional approach isn’t dis-
carded; key structured concepts are still included. But these days, most instruc-
tors are emphasizing the object-oriented approach.

 ■ Full Coverage of UML and the Object-Oriented Approach
The object-oriented approach presented in this textbook is based on the Unified
Modeling Language (UML 2.0) from the Object Management Group, as origi-
nated by Grady Booch, James Rumbaugh, and Ivar Jacobson. A model-driven
approach to analysis starts with user stories and use cases and then defines
problem domain classes involved in the users’ work. We include requirements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xx PREFACE

modeling with use case diagrams, domain modeling, use case descriptions, ac-
tivity diagrams, and system sequence diagrams. The FURPS+ model is used to
emphasize functional and nonfunctional requirements.

Design principles and design patterns are discussed in depth, and system
architecture is modeled by using UML component diagrams and package dia-
grams. Detailed design models are also discussed in detail, with particular at-
tention given to use case realization with CRC cards, sequence diagrams, and
design class diagrams.

 ■ Project Management Coverage
Many undergraduate programs depend on their systems analysis and design
course to teach project management principles. To satisfy this need, we cover
project management by taking a four-pronged approach. First, specific project
management techniques, skills, and tasks are included and highlighted through-
out this book. This integration teaches students how to apply specific project
management tasks to the various activities of the system development life cycle
(SDLC), including iterative development. Second, complete coverage of project
planning and project management is included in a separate chapter. Third, we
include a 120-day trial version of Microsoft Project Professional in the back of
this book so students can obtain hands-on experience with this important tool.
Fourth, a more in-depth treatment of project management techniques and prin-
ciples is provided in an online chapter on this book’s Web site. This information
is based on the Project Management Body of Knowledge (PMBOK), as devel-
oped by the Project Management Institute—the primary professional organiza-
tion for project managers in the United States.

 ■ Organized for More Effective Learning
This edition’s innovative and entirely new organization starts with a complete
beginning-to-end example of system development, moves immediately to sys-
tems analysis models and techniques, and then proceeds to system design con-
cepts, emphasizing system architecture, user interfaces, and database design.
The student sees analysis and much of design covered in the first nine chap-
ters. Next, the text focuses on managing system development projects, including
 Agile development, after the student has had a chance to understand what is
actually involved in system development. Finally, the text covers detailed design
topics and deployment topics, going into more depth about such contemporary
approaches as the Unified Process, Extreme Programming, and Scrum.

 ■ CourseMate Companion Web Site
Cengage Learning’s Systems Analysis and Design in a Changing World, Sev-
enth Edition, CourseMate brings course concepts to life with interactive learn-
ing, study, and exam preparation tools that support the printed textbook. Watch
student comprehension soar as your class works with the printed textbook and
the textbook-specific Web site. CourseMate goes beyond the book to deliver
what you need! Learn more at cengage.com/coursemate.

 ❚ Engagement Tracker
How do you assess your students’ engagement in your course? How do you know
your students have read the material or viewed the resources you have assigned?
How can you tell if your students are struggling with a concept? With CourseMate,
you can use the included Engagement Tracker to assess student preparation and en-
gagement. Use the tracking tools to see progress for the class as a whole or for indi-
vidual students. Identify students at risk early in the course. Uncover which concepts
are most difficult for your class. Monitor time on task. Keep your students engaged.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xxiPREFACE

 ❚ Interactive Teaching and Learning Tools
CourseMate includes interactive teaching and learning tools:

 ■ Quizzes
 ■ Case projects
 ■ Flash cards
 ■ Short videos on concepts, techniques, and models
 ■ PowerPoint presentations

These assets enable students to review for tests, prepare for class, and ad-
dress the needs of students’ varied learning styles.

 ❚ Interactive E-Book
In addition to interactive teaching and learning tools, CourseMate includes an
interactive e-book. Students can take notes, highlight, search for, and inter-
act with embedded media specific to their book. Use it as a supplement to the
printed text or as a substitute—the choice is your students’ with CourseMate.

 ■ Organization and Use
Systems Analysis and Design in a Changing World, Seventh Edition, includes
this printed textbook, a complete e-book, and supporting online chapters. The
current printed textbook provides a focused presentation of those topics that are
essential and most important for information systems developers. The online
chapters extend those concepts and provide a broader presentation of several
topics. The online chapters may be integrated into the course or simply used as
additional readings as prescribed by the instructor.

There are three major subject areas discussed in this book: systems analy-
sis, systems design, and project management. There are additional subject areas,
which are no less important but aren’t discussed in as much depth. These include
systems implementation, testing, and deployment. In addition, we have taken
an approach that is quite different from other texts. Because students already
have a basic understanding of systems analysis and design from Chapter 1, we
immediately present in-depth concepts related to systems analysis and design.
We present approaches to development and project management topics later in
the text. This allows students to learn those project management concepts after
understanding the elements of systems analysis and design. We think it will be
more meaningful for students at that point in the course.

 ■ Part 1: Introduction to System Development
Part 1, comprising Online Chapter A and Chapter 1, presents an overview of
system development. Online Chapter A, “The Role of the Systems Analyst,”
describes basic systems concepts and the role of the systems analyst in system
development projects. Chapter 1 begins by briefly explaining the objectives of
systems analysis and systems design. Then, it provides a detailed, concrete ex-
ample of what is required in a typical software development project. Many stu-
dents who take a programming class think that programming is all you need
to develop software and deploy a system. This chapter and the rest of the book
should dispel that myth.

 ■ Part 2: Systems Analysis Tasks
Chapters 2 through 5 cover systems analysis in detail. Chapter 2 discusses sys-
tem requirements, analysis activities, and techniques for gathering information
about the business problem. Developing the right system solution is possible only

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xxii PREFACE

if the problem is accurately understood. Chapter 2 also explains how to identify
and involve the stakeholders and introduces the concept of models and mod-
eling. Chapters 3 and 4 teach modeling techniques for capturing the detailed
requirements for the system in a useful form. When discussing an information
system, two key concepts are particularly useful: the user stories/use cases that
define what the end users need the system to do and the data entities/domain
classes that users work with while carrying out their work tasks. These two
 concepts—user stories/use cases and data entities/domain classes—are impor-
tant no matter what approach to system development is being used. Chapter 5
presents more in-depth requirements models, such as use case descriptions, ac-
tivity diagrams, system sequence diagrams, and CRUD analysis.

Online Chapter B, “The Traditional Approach to Requirements,” presents
the traditional, structured approach to developing systems. To those instructors
and students who desire to learn about data flow diagrams and structured Eng-
lish, this chapter provides an in-depth presentation.

All these modeling techniques provide in-depth analysis of user needs and
allow the analyst to develop requirements and specifications. Again, the purpose
of systems analysis is to thoroughly understand and specify the user’s needs and
requirements.

 ■ Part 3: Essentials of Systems Design
Part 3 provides the fundamental concepts related to systems design and design-
ing the user experience. Chapter 6 provides broad and comprehensive coverage
of important principles of systems design, including design activities and the
crucial issues of system controls and security that all students should under-
stand. It serves not only as a broad overview of design principles but also as a
foundation for later chapters that explain the detailed techniques, tasks, skills,
and models used to carry out design.

Chapter 7 provides a comprehensive overview of system architecture and
is a new chapter that consolidates material previously spread out in multiple
chapters. Chapter 8 presents additional design principles related to the user ex-
perience. Designing the user interface is a combination of analysis and design.
It is related to analysis because it requires heavy user involvement and includes
specifying user activities and desires. On the other hand, it is a design activity
because it is creating specific final components that are used to drive the pro-
gramming effort. The screens and reports and other user interaction compo-
nents must be precisely designed so they can be programmed as part of the final
system. Chapter 9 provides a compact and integrated coverage of designing the
database.

 ■ Part 4: Projects and Project Management
By this point, students will have a basic understanding of all the elements of
system development. Part 4 brings together all these concepts by explaining
more about the process of organizing and managing development projects.
Chapter 10 describes different approaches to system development in today’s en-
vironment, including Agile development and several widely used development
 methodologies—the Unified Process, Extreme Programming, and Scrum. It is
an important chapter to help you understand how projects actually get executed.

Chapter 11 extends these concepts by teaching foundation principles of
project planning and project management. Every systems analyst is involved in
helping organize, coordinate, and manage software development projects. In
addition, most good students will eventually become team leaders and project
managers. The principles presented in Chapter 11 are essential to a successful
career.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xxiiiPREFACE

Online Chapter C, “Project Management Techniques,” goes into more de-
tail regarding the tools and techniques used by systems analysts and project
managers to plan and monitor development projects. For those instructors and
students who would like to learn specific project management skills, this is an
important chapter.

 ■ Part 5: Advanced Design and Deployment Concepts
Part 5 goes into more depth with respect to systems design, specifically object-
oriented software design, and other important issues related to effective and suc-
cessful system development and deployment.

Chapters 12 and 13 explain in detail the models, skills, and techniques used
to design software systems. As mentioned earlier, systems design is a fairly com-
plex activity, especially if it is done correctly. The objective of these two chapters
is to teach the student the various techniques—from simple to complex—that
can be used to effectively design software systems.

Chapter 14 describes the final elements in system development: final testing,
deployment, maintenance, and version control.

 ■ Designing Your Analysis and Design Course
There are many approaches to teaching analysis and design courses, and the
objectives of the course differ considerably from college to college. In some ac-
ademic information systems departments, the analysis and design course is a
capstone course in which students apply the material learned in prior database,
networking, and programming courses to a real analysis and design project. In
other information systems departments, analysis and design is used as an intro-
duction to the field of system development and is taken prior to more specialized
courses. Some information systems departments offer a two-course sequence
emphasizing analysis in the first semester and design and implementation in the
second semester. Some information systems departments have only one course
that covers analysis and design.

The design of the analysis and design course is complicated even more by
the choice of emphasizing some traditional and some object-oriented content—
again, depending on local curriculum priorities. Additionally, the more iterative
approach to development in general has made choices about sequencing the anal-
ysis and design topics more difficult. For example, with iterative development, a
two-course sequence can’t be divided into analysis and then design as easily.

The objectives, course content, assignments, and projects have many varia-
tions. What we offer below are some suggestions for using this textbook in vari-
ous approaches to the course.

 ■ UML and Object-Oriented Analysis and Design Course
This is the course we designed the printed textbook to support, so all the printed
chapters but none of the online chapters are included. Note that object-oriented
design is included in detail. The course covers object-oriented analysis and de-
sign, user and system interface design, database design, controls and security,
and implementation and testing. It is usually assumed that the projects will use
custom development, including Web development. The course emphasizes itera-
tive development with three-layer architecture, project management, informa-
tion gathering, and management reporting. One-semester courses are usually
limited to completing some prototypes of the user interface to give students
closure. Sometimes, this course is spread over two semesters, with some imple-
mentation of an actual system in the second semester for a more complete devel-
opment experience. Iterative development is emphasized.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xxiv PREFACE

A suggested outline for a course emphasizing object-oriented development is:

Online Chapter A: The Role of the Systems Analyst (optional)
 Chapter 1: From Beginning to End: An Overview of Systems Analysis and
Design
Chapter 2: Investigating System Requirements
Chapter 3: Identifying User Stories and Use Cases
Chapter 4: Domain Modeling
Chapter 5: Use Case Modeling
Chapter 6: Foundations for Systems Design
Chapter 7: Defining the System Architecture
Chapter 8: Designing the User Interface
Chapter 9: Designing the Database
Chapter 10: Approaches to System Development
Chapter 11: Project Planning and Project Management
Chapter 12: Object-Oriented Design: Fundamentals
Chapter 13: Object-Oriented Design: Use Case Realization
Chapter 14: Deploying the New System

 ■ Traditional Analysis and Design Course
A traditional systems analysis and design course provides coverage of activities
and tasks by using structured analysis, user and system interface design, database
design, controls and security, and implementation and testing. It is usually as-
sumed that the project will use custom development, including Web development.
The course emphasizes the SDLC, project management, information gathering,
and management reporting. One-semester courses are usually limited to complet-
ing some prototypes of the user interface to give students closure. Sometimes,
this course is spread over two semesters, with some implementation of an actual
system in the second semester for a more complete development experience.

For this approach to the analysis and design course, a reasonable outline
would omit chapters and sections detailing object orientation but include the
online chapters on the role of the systems analyst and on traditional structured
analysis. However, object-oriented concepts are introduced throughout the text,
so students will still be familiar with them. Additionally, because of the amount
of material to cover, the online chapter detailing project management, financial
feasibility, and scheduling might be omitted.

A suggested outline for a course emphasizing the traditional structured ap-
proach is:

Online Chapter A: The Role of the Systems Analyst
 Chapter 1: From Beginning to End: An Overview of Systems Analysis and
Design
Chapter 2: Investigating System Requirements
Chapter 3: Identifying User Stories and Use Cases
Chapter 4: Domain Modeling
Online Chapter B: The Traditional Approach to Requirements
Chapter 6: Foundations for Systems Design
Chapter 8: Designing the User Interface
Chapter 9: Designing the Database
Chapter 10: Approaches to System Development
Chapter 11: Project Planning and Project Management
Chapter 14: Deploying the New System

 ■ In-Depth Analysis and Project Management
Some courses cover object-oriented systems analysis methods in more depth
and briefly survey structured analysis—with not much about object-oriented

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xxvPREFACE

design—while emphasizing project management. Sometimes, these courses are
graduate courses; sometimes, they assume design and implementation are cov-
ered in more technical courses. In some cases, it might be assumed that packages
are likely solutions rather than custom development, so defining requirements
and managing the process are more important than design activities. The online
chapters covering the role of the systems analyst, the traditional approach to
structured analysis, and project management would be included.

A suggested outline for a course emphasizing object-oriented analysis, with
in-depth coverage of project management, is:

Online Chapter A: The Role of the Systems Analyst
 Chapter 1: From Beginning to End: An Overview of Systems Analysis and
Design
Chapter 2: Investigating System Requirements
Chapter 3: Identifying User Stories and Use Cases
Chapter 4: Domain Modeling
Chapter 5: Use Case Modeling
Online Chapter B: The Traditional Approach to Requirements
Chapter 6: Foundations for Systems Design
Chapter 8: Designing the User Interface
Chapter 10: Approaches to System Development
Chapter 11: Project Planning and Project Management
Online Chapter C: Project Management Techniques
Chapter 14: Deploying the New System

 ■ Available Support
Systems Analysis and Design in a Changing World, Seventh Edition, includes
teaching tools to support instructors in the classroom. The ancillary materials
that accompany the textbook include an Instructor’s Manual, solutions, test
banks and test engine, PowerPoint presentations, and figure files. Please contact
your Cengage Course Technology sales representative to request the Teaching
Tools CD-ROM if you haven’t already received it. Or go to the Web page for
this book at login.cengage.com to download all these items.

 ■ The Instructor’s Manual
The Instructor’s Manual includes suggestions and strategies for using the text,
including course outlines for instructors that emphasize the traditional struc-
tured approach or the object-oriented approach. The manual is also helpful for
those teaching graduate courses on analysis and design.

 ■ Solutions
We provide instructors with answers to review questions and suggested solutions
to chapter exercises and cases. Detailed traditional and UML object-oriented
models are included for all exercises and cases that ask for modeling solutions.

 ■ ExamView
This objective-based test generator lets the instructor create paper, LAN, or
Web-based tests from test banks designed specifically for this Course Technol-
ogy text. Instructors can use the QuickTest Wizard to create tests in fewer than
five minutes by taking advantage of Course Technology’s question banks or in-
structors can create customized exams.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xxvi PREFACE

 ■ Plug and Play!
Jump-start your course with customizable, text-specific content within your
Course Management System!

 ■ Jump-start—Instructors simply load a WebTutor cartridge or e-Pack into
their Course Management System.

 ■ Content—Students have access to text-specific content, media assets, quiz-
zing, Web links, discussion topics, interactive games and exercises, and
more.

 ■ Customizable—Instructors can easily blend, add, edit, reorganize, or delete
content.

Whether you want to Web-enable your class or put an entire course online,
WebTutor delivers! Visit academic.cengage.com/webtutor to learn more.

 ❚ Product Description
WebTutor and WebTutor Toolbox products are Course Cartridges and e-Packs
that provide content natively on a Course Management System (WebCT, Black-
Board, Angel, D2L, and eCollege). The purpose of the product is to provide elec-
tronic solutions in an easy-to-use format with little up-front costs to instructors.

 ■ For more information on how to bring WebTutor to your course, instruc-
tors should contact their Cengage Learning sales representative.

 ■ PowerPoint Presentations
Microsoft PowerPoint slides are included for each chapter. Instructors might use
the slides in a variety of ways, such as teaching aids during classroom presen-
tations or as printed handouts for classroom distribution. Instructors can add
their own slides for additional topics they introduce to the class.

 ■ Figure Files
Figure files allow instructors to create their own presentations by using figures
taken directly from this text.

 ■ Credits and Acknowledgments
We have been very gratified as authors to receive so many supportive and en-
thusiastic comments about Systems Analysis and Design in a Changing World.
Students and instructors in the United States and Canada have found our text
to be the most up-to-date and flexible book available. The book has also been
translated into many languages and is now used productively in Europe, Austra-
lia, New Zealand, India, China, and elsewhere. We truly thank everyone who
has been involved in all the editions of our textbook, particularly Lori Bradshaw
who managed the development of the seventh edition.

We also want to thank all the reviewers who worked so hard for us—
beginning with an initial proposal and continuing throughout the completion
of all seven editions of this text. We were lucky enough to have reviewers with
broad perspectives, in-depth knowledge, and diverse preferences. We listened
very carefully, and the text is much better as a result of their input. Reviewers
for the various editions include:

Rob Anson, Boise State University
Marsha Baddeley, Niagara College
Teri Barnes, DeVry Institute—Phoenix
Robert Beatty, University of Wisconsin—Milwaukee

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xxviiPREFACE

James Buck, Gateway Technical College
Anthony Cameron, Fayetteville Technical Community College
Genard Catalano, Columbia College
Paul H. Cheney, University of Central Florida
Kim Church, Oklahoma State University
Jung Choi, Wright State University
Jon D. Clark, Colorado State University
Mohammad Dadashzadeh, Oakland University
Lawrence E. Domine, Milwaukee Area Technical College
Gary Garrison, Belmont University
Cheryl Grimmett, Wallace State Community College
Jeff Hedrington, University of Phoenix
Janet Helwig, Dominican University
Susantha Herath, St. Cloud State University
Barbara Hewitt, Texas A&M University
Ellen D. Hoadley, Loyola College in Maryland
Jon Jasperson, Texas A&M University
Norman Jobes, Conestoga College—Waterloo, Ontario
Gerald Karush, Southern New Hampshire University
Robert Keim, Arizona State University
Michael Kelly, Community College of Rhode Island
Rajiv Kishore, The State University of New York—Buffalo
Rebecca Koop, Wright State University
Hsiang-Jui Kung, Georgia Southern University
James E. LaBarre, University of Wisconsin—Eau Claire
Ingyu Lee, Troy University
Terrence Linkletter, Central Washington University
Tsun-Yin Law, Seneca College
David Little, High Point University
George M. Marakas, Indiana University
Roger McHaney, Kansas State University
Cindi A. Nadelman, New England College
Bruce Neubauer, Pittsburgh State University
Michael Nicholas, Davenport University—Grand Rapids
Mary Prescott, University of South Florida
Alex Ramirez, Carleton University
Eliot Rich, The State University of New York—Albany
Robert Saldarini, Bergen Community College
Laurie Schatzberg, University of New Mexico
Deborah Stockbridge, Quincy College
Jean Smith, Technical College of the Lowcountry
Peter Tarasewich, Northeastern University
Craig VanLengen, Northern Arizona University
Bruce Vanstone, Bond University
Haibo Wang, Texas A&M University
Terence M. Waterman, Golden Gate University

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Online Chapter A
The Role of the Systems Analyst

Chapter 1
From Beginning to End:
An Overview of Systems Analysis
and Design

Introduction to System
Development

Part ONE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ChaPter ONE

After reading this chapter, you should be able to:

Describe the purpose of systems analysis and
design when developing information systems

Explain the purpose of the system development
life cycle (SDLC) and identify its six core
processes

Explain how information system methodologies
provide guidelines for completing the six core
processes of the SDLC

Describe the characteristics of Agile
methodologies and iterative system
development

Based on the Ridgeline Mountain Outfitters
Tradeshow System example:

Describe how the six core processes of
the SDLC are used in each iteration
Identify key documents used in planning
a project
Identify key diagrams used in systems
analysis and systems design

Learning ObjeCtives

Software Development and Systems Analysis
and Design

The System Development Life Cycle (SDLC)

Iterative Development

Introduction to Ridgeline Mountain Outfitters
(RMO)

Developing RMO’s Tradeshow System

Where You Are Headed—The Rest of This Book

ChaPter OutLine

From Beginning to End:
An Overview of Systems
Analysis and Design

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4 PART 1 ■ Introduction to System Development

 ■ Software Development and Systems Analysis
and Design

You have grown up in a world of ubiquitous computing, where computers are
everywhere and are increasingly characterized by mobility, communication, and
connectivity. You use smartphones, laptops, notepads, and wearable devices
throughout the day. Some of you have already developed your own application
software or have friends who have written applications for these devices. Some
of you have taken programming classes; others have taught yourself how to
write computer application programs. In one way or another, you are certainly
interested in building computer applications and information systems.

Although you are most likely more familiar with your mobile devices, there
is much more to building information systems than just that. Information sys-
tems exist to support all aspects of business organizations and have done so for
centuries. The ancient Mesopotamians conducted business and had accounting
information systems 3,000 years ago—using clay tablet technology. Electronic
computers have been a part of these information systems only for the last
50 years. The technology changes, but information systems have a long history.

An information system is a set of interrelated components that collect,
process, store, and provide as output the information needed to complete busi-
ness tasks. The information system always includes people who operate the sys-
tem and carry out some of the work. In Mesopotamia, people did just about all
of the work required. Now, of course, electronic computing devices do most of
the work, although not all. If you are at the library typing in some search terms
using the online catalog, you are part of the information system—the part that
supplies the input and consumes the output. If you are using your bank’s online
information system, you are part of the information system—the part that se-
lects which account to use to pay a specific bill.

More recently, another term has been used to refer to an information
 system—a computer application. A computer application is a computer soft-
ware program that executes on a computing device to carry out a specific func-
tion or set of related functions. Sometimes, computer application is shortened
to app (such as an iPhone app or an Android app). Many people use the terms
information system and computer application interchangeably, but remember
that an information system includes people and their manual procedures and an
application usually refers just to the software.

Consider the information system your university or college uses to support
students. It is an elaborate system that likely integrates admissions, financial
aid, course scheduling, and even individual course support. You probably access
this information system through the network using a desktop workstation at
home or in a computer lab, a wireless notebook computer, an iPad or tablet, an
iPhone or an Android phone, and even a wearable device such as a smartwatch
or Google Glass. There might be an app that connects to the system seamlessly
from your device, or you might connect through a browser on your desktop,
notebook, or other devices. Figure 1-1 shows a variety of devices all connecting
to the same University Student Support System.

Each information system (or app) was conceived and built to satisfy some
need. When the information system is completed, it is used productively to sat-
isfy that need. Our purpose here is to describe the process by which an informa-
tion system is created from perceived need through actual use. As noted in this
chapter’s title, systems analysis and systems design are key components of this
process.

Systems analysis consists of those activities that enable a person to under-
stand and specify what the new system should accomplish. The operative words
here are understanding and specifying. Systems analysis is more than a brief

information system a set of interrelated
components that collect, process, store, and
provide as output the information needed to
complete business tasks

computer application or app a computer
software program that executes on a comput-
ing device to carry out a specific function or
set of related functions

systems analysis those system
 development activities that enable a person
to understand and specify what the new
 system should accomplish

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design

statement of the problem. For example, a customer management system must
track customers, register products, monitor warranties, and track service levels,
among many other functions—all of which have many details. Systems analysis
describes in detail what a system must do to satisfy the need or solve the problem.

Systems design consists of those activities that enable a person to describe
in detail how the information system will actually be implemented to provide
the needed solution. In other words, systems design describes how the system
will actually work. It specifies in detail all the components of the solution sys-
tem and how they work together. See Figure 1-2 to help distinguish between
analysis and design.

Systems analysis and design plays an integral role in the development of in-
formation systems. To illustrate, consider an analogous situation: the art and

University
Student
Support
System

Database

FiguRE 1-1 A variety of devices all
connected to the same information
system

Systems analysisSystems analysis

What is required for the new
system to solve the problem
What is required for the new
system to solve the problem

System designSystem design

How the system will operate
to solve the problem

How the system will operate
to solve the problem

FiguRE 1-2 Systems analysis
versus systems design

systems design those system
 development activities that enable a person
to describe in detail how the resulting infor-
mation system will actually be implemented

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6 PART 1 ■ Introduction to System Development

science of creating a new building. In this scenario, there is the owner of the land
who has the vision, the builder who will construct the building, and the archi-
tect who serves as the bridge between the owner and the builder. The architect
helps the owner develop the vision, but must also communicate the building’s
specifications to the builder. In doing so, the architect uses various tools to
first capture the vision from the owner and to then provide the builder with
instructions—including line drawings, blueprints, to-scale models, detail speci-
fications, and even on-site inspection reports.

Just as a builder doesn’t start construction without plans, programmers
don’t just sit down and start writing program code. They need someone (maybe
themselves) to function like an architect—planning, capturing the vision, un-
derstanding details, specifying needs—before designing and writing the code
that satisfies the vision. Usually, we call this person a systems analyst. In sit-
uations where you are the programmer as well as the analyst (often called a
programmer-analyst), it might be possible to keep track of the details without
many formal notes. However, in today’s world, with system development teams
often distributed worldwide, you might only be responsible for part of the pro-
gramming, with the rest handled by team members in different locations. In a
distributed team situation or with a complicated project, it is much more impor-
tant to create formal requirements documents that capture each components’
specifications.

In a nutshell, systems analysis and design provides the tools and techniques
you need as an information system developer to complete the development
process:

1. Understand the need (business need).
2. Capture the vision.
3. Define a solution.
4. Communicate the vision and the solution.
5. Build the solution or direct others in building the solution.
6. Confirm that the solution meets the need.
7. Launch the solution application.

You’re getting the
tools and techniques

needed as an information
system developer

…to understand the
business need, capture

the vision, de�ne a solution,
communicate the vision and

solution…

…then build the solution
and direct others to help,

con�rm the solution
meets the need, and

launch the solution as an
information system application.

What am I getting
out of this?

FiguRE 1-3 What analysis and
design provides for the system
developer

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design

 ■ The System Development Life Cycle (SDLC)
Initial development of a new information system is usually done as a project.
A project is a planned undertaking that has a beginning and an end and pro-
duces some end result. This means that the activities required to develop a new
system are identified, planned, organized, and monitored. Some projects are
very formal, whereas others are informal, usually depending on the project size.

To manage a project with analysis, design, and other development activi-
ties, you need a project management framework to guide and coordinate the
work of the project team. The system development life cycle (SDLC) is a
framework that identifies all the activities required to research, build, deploy,
and often maintain an information system. Normally, the SDLC includes all ac-
tivities needed for the planning, systems analysis, systems design, programming,
testing, and user training stages of information systems development, as well as
other project management activities that are required to successfully deploy the
new information system.

There are many approaches to the SDLC, including variations specific to cer-
tain types of projects. However, every SDLC includes some core processes that
are always required, though many different names are used. Here are the six core
processes required in the development of any information system (see Figure 1-4):

 ■ Identify the problem or need and obtain approval to proceed with the project.
 ■ Plan and monitor the project—what to do, how to do it, and who does it.
 ■ Discover and understand the details of the problem or the need—what is

required?
 ■ Design the system components that solve the problem or satisfy the need—

how will it actually work?
 ■ Build, test, and integrate system components—lots of programming and

component integration.
 ■ Complete system tests and then deploy the solution—the need now is

satisfied.

As previously stated, most information systems you will develop are con-
ceived and built to solve complex organizational problems, which are usually
very complex, thus making it difficult to plan and manage a system development
project. Fortunately, there are many ways to implement the six core processes of
the SDLC to handle each project’s complexity. An information systems develop-
ment methodology is a set of comprehensive guidelines for carrying out all
of the activities of each core process of the SDLC. An overall system devel-
opment process is a more recent term for methodology. Each development

project a planned undertaking that has
a beginning and an end and produces some
end result

system development life cycle (SDLC)
a framework that identifies all the activities
required to research, build, deploy, and often
maintain an information system

Core
processes

Identify the problem and obtain
approval.

Plan and monitor the project.

Discover and understand details.

Design system components.

Build, test, and integrate system
components.

Complete system tests and deploy
the solution.

FiguRE 1-4 Six core processes of
the SDLC

system development process or
 methodology a set of comprehensive
guidelines for carrying out all of the activities
of each core process of the SDLC

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8 PART 1 ■ Introduction to System Development

methodology prescribes a way of carrying out the development project, and ev-
ery organization develops its own system development methodology over time
to suit its needs.

During the last 15 years, information system research efforts have resulted
in many new information systems development methodologies/processes to im-
prove the chance of project success. These are all based on what is called Agile
development. The basic philosophy of Agile development is that neither team
members nor the users completely understand the problems and complexities
of a new system, so the project plan and the execution of the project must be
responsive to unanticipated issues. The plan must be agile and flexible. It must
have procedures in place to allow for, anticipate, and even embrace changes and
new requirements that come up during the development process. The six core
processes are still involved in Agile development, but they are carried out itera-
tively, as explained next.

 ■ Iterative Development
Iterative development is an approach to system development in which the sys-
tem is “grown” in an almost organic fashion. Core components are developed
first and then additional components are added. It is called iterative because the
six core development processes are repeated for each component. In other words,
there is one big project, which consists of a series of mini-projects, and the in-
formation system is grown piece by piece during these mini-projects. Iterative
development makes Agile development possible, although Agile development in-
cludes additional techniques that help with project flexibility, too.

Figure 1-5 illustrates how an iterative project might be managed. Across
the figure, you see six iterations as columns. Each iteration involves all six core
processes, shown as rows in the table. At the end of each iteration, a working
part of the system is completed and evaluated. An iteration lasts a fixed period
of time, usually two to four weeks. The rounded mounds inside the graph rep-
resent the relative amount of effort for that core process during that iteration.
For example, in Figure 1–5, Iteration 1 appears to primarily focus on identify-
ing the problem and planning the project. Lesser amounts of discovery, design,
and build/test may also be done. For this iteration, nothing is done with regard
to deploying the system. In Iteration 2, there is less effort for identifying the
problem and planning the project and more effort for discovery, design, and
build/test. By Iteration 3, build/test gets the most effort, but all six core pro-
cesses are still involved, including the beginnings of completing and deploying
the system.

Agile development an information system
development process that emphasizes flexibil-
ity and rapid response to anticipate new and
changing requirements during development

Core
processes

1 2 3 4 5 6
Identify the problem and obtain
approval.

Plan and monitor the project.

Discover and understand details.

Design system components.

Build, test, and integrate system
components.

Complete system tests and
deploy the solution.

IterationsFiguRE 1-5 The six core processes
of the SDLC showing iterations

Iterative development an approach to
system development in which the system is
“grown” piece by piece through multiple mini-
projects called iterations

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design

There are several benefits to iterative development. For one, portions of the
system can sometimes be deployed sooner. If there are core functions that pro-
vide basic support for users, these can be deployed in an early iteration. Second,
by taking a small portion and developing it first, the most difficult problems can
be identified and addressed early in the project. Many of today’s systems are so
large and complex that even with a formal process it is impossible to remember
and understand everything. By focusing on only a small portion at a time, the
requirements are fewer and easier to solve. Finally, developing a system in itera-
tions makes the entire development process more flexible and able to address
new requirements and issues that come up throughout the project.

A key element of iterative development is dividing system components into
pieces that can be completed in two to four weeks. During one iteration, all the
core development processes are involved, including programming and system-
wide testing, so the result is a working part of the system, even though it may
only have a portion of the functionality that is ultimately required. Developers
choose components for each iteration based on priority, either the components
most needed or riskiest to implement.

To better illustrate these concepts, we will walk through a complete ex-
ample in the next sections concerning Ridgeline Mountain Outfitters (RMO).
These sections use a fairly small information system to demonstrate all six core
processes (as much as is feasible in a textbook, anyway). The example completes
one iteration in detail, but the project actually requires multiple iterations. By
going all the way through a very simple project, you will more easily understand
the complex concepts provided in the rest of the text.

 ■ Introduction to Ridgeline Mountain
Outfitters (RMO)

Ridgeline Mountain Outfitters (RMO) is a large retail company that special-
izes in clothing and related accessories for all types of outdoor and sporting
activities. The mountain and western regions of the United States and Canada
witnessed tremendous growth in recreation activities in recent years, including
skiing, snowboarding, mountain biking, water skiing, jet skiing, river running,
sailing, jogging, hiking, ATVing, cycling, camping, mountain climbing, and
rappelling. With the increased interest in outdoor sports, the market for winter
and summer sports clothing and accessories exploded, so RMO continually ex-
panded its line of sportswear to respond to this market.

The company’s growth charted an interesting history of mail-order, brick-
and-mortar, and online sales. RMO got its start by selling to clothing stores in
the Park City, Utah, area. In the late 1980s and early 1990s, it began selling
directly to customers using catalogs with mail-in and telephone-order options. It
opened its first store in 1994. After the Winter Olympics in Park City in 2002,
business exploded and RMO quickly expanded to 10 retail outlets throughout
the West and added Internet sales. Last year, retail store revenue was $67 mil-
lion, telephone- and mail-order revenues were $10 million, and Internet sales
were $200 million. Most sales continue to be in the West, although the market in
several areas of the eastern United States and Canada is growing. By the Winter
Olympics in Vancouver, British Columbia, in 2008, RMO’s growth and profits
resulted mainly from online sales and service, as with most specialty retailers;
however, the brick-and-mortar and mail-order business remained important,
too. After the Winter Olympics in Sochi in 2014, RMO negotiated with several
Utah Olympic Medal Winners for endorsements. This provided additional inter-
est throughout the West and instigated another period of rapid growth.

Figure 1-6 shows a sample of the catalog that RMO still mails out. Although
mail-order and telephone sales are modest, receiving the catalog encourages

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10 PART 1 ■ Introduction to System Development

2016 WINTER CATALOG

2016 W
IN

TER CATALOG

FiguRE 1-6 RMO winter catalog

FiguRE 1-7 RMO online ordering
home page

customers to go online to make purchases, so RMO continues to produce and mail
abbreviated versions. Figure 1-7 shows the RMO online ordering home page.

RMO produces its own line of outdoor clothing and sportswear. However,
to offer a complete range of clothing in its retail outlets, it also sells brands of
clothing sourced from other vendors. Furthermore, most accessories sold are
sourced through vendors.

 ■ Trade Shows
To keep its product line innovative and responsive to consumer demand, RMO’s
purchasing agents attend apparel and accessory trade shows around the world

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design

where vendors exhibit their merchandise. RMO is good at anticipating trends
and profiting from interesting vendor specials. Furthermore, its agents are al-
ways watching for new products and accessories to expand RMO’s product line
appropriately.

At the trade shows, RMO purchasing agents frequently find products they
want to add to the spring, summer, or winter apparel offering. In the past, when
RMO purchasing agents wanted to place an order with a vendor, they would
exchange contact information with the vendor at the trade show and would then
follow up via e-mails and phone calls to create a purchase order. In the current
24/7 business climate, this business process was just too slow. RMO needed
to speed things up to keep ahead of the competition, take advantage of vendor
deals at the trade shows, and be more responsive to customer demands.

To solve this problem, RMO initiated an information system project to
develop a system for collecting and tracking information about suppliers and
about products added to its merchandise offerings. The Tradeshow System needs
to take advantage of the latest in wireless devices and data capturing technology
to allow purchasing agents to research and complete purchase orders on the spot
at the trade shows. RMO decided to use an agile, iterative project management
approach to get the small system completed as fast as possible with maximum
flexibility.

 ■ Developing RMO’s Tradeshow System
We will organize our sample project—the RMO Tradeshow System—into sev-
eral iterations. Our plan for the first iteration is to have it finished in just six
days. Our primary objective is to introduce you to the concepts and techniques
of the six core processes. To do this, we may go a little deeper into a core process
than we might usually do on the first iteration of a real project. Additionally, the
iteration will appear to be managed much more formally than might be the case
in the real world for such a small project. The second and subsequent iterations
will not be described in any detail, but the complete Tradeshow System project
will need several more iterations for a finished product.

Most new information system applications require a project with several
iterations. In the first iteration, there are usually three major objectives. The first
objective is to get project approval. The second objective is to get a clear pic-
ture of the system’s overall vision—the overall functions and data requirements.
The third objective is to determine the detail specifications and develop a solu-
tion for one portion of the system (i.e., actually analyze, design, build, and test
one part of the system). The second and third iterations would continue to work
on the additional portions of the system based on the system vision.

In our project, we will touch on all these objectives within the first iteration.
We will show an example of a System Vision Document and then develop one
portion of the overall system. It should be noted that the division of this project
into days and daily activities is somewhat arbitrary. The following organization
is quite workable, but it is not the only way to organize the project.

 ■ Initial Project Activities
Before the project actually begins, the head of RMO’s Purchasing Department
works with a systems analyst to identify and document the specific business
need and to define the project objectives. RMO’s management then reviews the
primary project objectives and provides budget approval. Every organization has
to give budget approval before a project can start. Some organizations have a
formal process to get a project approved; other organizations have a less-formal
process. Although these activities are part of Core Process 1 of the SDLC, they

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12 PART 1 ■ Introduction to System Development

are often completed well in advance of the start of the first project iteration.
They might be called pre-project activities of Core Process 1:

 ■ Identify the problem and document the objective of the solution system.
 ■ Obtain approval to commence the project.

 ❚ System Vision Document
As with all new projects within RMO, a System Vision Document is developed
to identify the benefits to the company and the functional capabilities that will
be included in the system. Frequently, this is done in two steps: developing a pre-
liminary statement of benefits and then adding estimates of specific dollar costs
and dollar benefits. Figure 1-8 is the System Vision Document for this project.

As described earlier, RMO needs a mobile system that can be used by its
purchasing agents as they attend various product, clothing, and fabric trade
shows. The system needs to fulfill two major requirements. First, it has to have
the functionality to capture information about suppliers and products. Second,
it needs to be able to communicate with the home office systems, and because
these trade shows are held in various venues around the world, various methods
of connectivity are needed.

Preliminary investigation included various equipment options, like note-
book computers, tablets, and smartphones. Smartphones appeared to have the
best connection options, but their small size made viewing the details of photo-
graphs somewhat difficult; the iPad and other portable tablets with advanced
connectivity options also appear to be viable options. Because smartphones and
tablets have similar requirements, analysts determine to develop an application
that will execute on either type of device, giving purchasing agents multiple op-
tions for system access.

Toward the end of the initial project activities, a meeting is held involving
all the key persons, including a representative of executive management. The
decision is made to move ahead with the project and budget the necessary funds.

 ■ Day 1 Activities
 ❚ RMO—Tradeshow System Overall

The project actually begins with Day 1, which is essentially a planning day.
 Usually, the project team first reviews the System Vision Document and veri-
fies that the preliminary work is still valid. It reviews the scope of the project
to become familiar with the problem, and then it plans the iterations and activi-
ties for the remainder of the project. The second SDLC core process—Plan and
monitor the project—includes business analysis and project management activi-
ties. These Core Process 2 activities are completed on Day 1:

 ■ Determine the major components (functional areas) that are needed.
 ■ Define the iterations and assign each functional area to an iteration.
 ■ Determine team members and responsibilities.

 ❚ Planning the Overall Project and the Project Iterations
Many details need to be considered in a project plan. For our project, we will
only focus on the bare essentials. We will describe project planning more elabo-
rately in later chapters. The project team meets with the users to review the
overall business need and the objectives of the new system. The System Vision
Document serves as the starting point for these discussions. As is often the case,
the list of system capabilities provides the foundation information for determin-
ing the overall project plan. The first step is to divide the system into several sub-
systems or components. A subsystem is a fully functional part of the complete

subsystem an identifiable and fully
functional part of a complete system

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design

information system. Based on the list of system capabilities, the project team
identifies these two subsystems:

 ■ Supplier Information Subsystem
 ■ Product Information Subsystem

The Supplier Information Subsystem will collect and maintain information
about the manufacturers or wholesalers and the contact people who work for
them. The Product Information Subsystem will capture information about the
various products offered by the manufacturers or wholesalers, including de-
tailed descriptions and photographs.

Problem Description

Trade shows have become an important information source for new products, new

fashions, and new fabrics. In addition to the large providers of outdoor clothing and

fabrics, there are many smaller providers. It is important for RMO to capture information

about these suppliers while the trade show is in progress. It is also important to obtain

information about specific merchandise products that RMO plans to purchase.

Additionally, if quality photographs of the products can be obtained while at the trade

show, then the creation of online product pages is greatly facilitated.

It is recommended that a new system be developed and deployed so field purchasing

agents can communicate more rapidly with the home office about suppliers and specific

products of interest. This system should be deployed on portable equipment.

System Vision Document

RMO Tradeshow System

System Capabilities

The new system should be capable of:

• Collecting and storing information about the manufacturer/wholesaler (suppliers)

• Collecting and storing information about sales representatives and other key

 personnel for each supplier

• Collecting information about products

• Taking pictures of products (and/or uploading stock images of products)

• Functioning as a stand-alone without connection

• Connecting via Wi-Fi (Internet) and transmitting data

• Connecting via telephone and transmitting data

Business Benefits

It is anticipated that the deployment of this new system will provide the following

business benefits to RMO:

• Increase timely communication between trade show attendees and home office,

 thereby improving the quality and speed of purchase order decisions

• Maintain correct and current information about suppliers and their key personnel,

 thereby facilitating rapid communication with suppliers

• Maintain correct and rapid information and images about new products, thereby

 facilitating the development of catalogs and Web pages

• Expedite the placing of purchase orders for new merchandise, thereby catching

 trends more rapidly and speeding up product availability

FiguRE 1-8 Tradeshow System
Vision Document

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14 PART 1 ■ Introduction to System Development

The next step is to identify the order in which the subsystems will be de-
veloped. Many issues are considered, such as dependencies between the various
tasks, sequential versus parallel development, project team availability, and proj-
ect urgency. In our case, the team decides that the Supplier Information Subsystem
should be scheduled for the first iteration and the Product Information Subsys-
tem should be scheduled for the second iteration. The third and fourth iterations
would complete the implementation, testing, and deployment of the system based
on what was initially implemented in the first two iterations.

 ❚ Planning the Rest of the First Iteration: The Supplier Subsystem
Each iteration is like a system development mini-project. The core processes de-
scribed earlier can all be applied, with the scope limited to the component that
is to be developed during the iteration. The planning process for an iteration
consists of these three steps:

 ■ Identify the tasks required for the iteration.
 ■ Organize and sequence these tasks into a schedule.
 ■ Identify required resources (especially people), and assign people to tasks.

The first step is to identify—or attempt to identify—all the individual tasks
that need to be done. As these tasks are identified, they are compiled and orga-
nized. Sometimes, this organized list of tasks is called a work breakdown struc-
ture (WBS). Figure 1-9 shows the WBS for this iteration.

Part of this effort is trying to estimate how long each task will take. Because
this iteration has a very limited scope (and only six days), all the estimates will
be in hours. These estimates do not include the time expended by those who are
not on the team. However, of those on the team, the estimates include the time
for the original work, the time for discussion, and the time for reviewing and
checking the WBS for accuracy and correctness.

FiguRE 1-9 Sample handwritten
work breakdown structure (WBS)

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

15CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design

The next step is get these tasks organized into a schedule. Again, we can be
very formal and use a sophisticated project scheduling tool, or we can just list
the tasks in the order we think they need to be done. Creating the tasks in order
is an important part of building the schedule because it identifies any dependen-
cies among the tasks, though many tasks can be done in parallel. For example, it
does not make sense to try to design the database before we have identified the
information requirements. Again, the great benefit of planning a single iteration
is that we can make the schedule informal, and we will be able to adjust the
work day-by-day to respond to complexities that occur.

For this iteration, we have taken the tasks from the WBS and placed them on
a day-by-day sequence that we call an iteration schedule, as shown in Figure 1-10.
The project manager can use this diagram to assign people to the tasks and to put
the tasks on a specific schedule chart with calendar dates if necessary.

0-1

Develop project plan
Day 1: Plan
project

Day 2: 12 hours

Day 3: 14 hours

Day 6: 12 hours

Start

I-1 3 hrs

Meet with purchasing manager

I-2 4 hrs

Meet with purchasing agents

I-3 3 hrs

Define use cases

I-5 6 hrs

Develop workflows

I-4 2 hrs

Define information requirements

II-1 8 hrs

Design screens

Day 5: 28 hours

IV-1 5 hrs

Perform functional tests

IV-2 7 hrs

Perform user acceptance test

II-2 4 hrs

Design and build database

II-3 4 hrs

Design overall architecture

II-4 6 hrs

Design program
details

III-1 14 hrs

Code and test
GUI layer

III-2 8 hrs

Code and test logic
layer

Morning of
Day 4: 8 hours

FiguRE 1-10 Schedule for the first
iteration

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

16 PART 1 ■ Introduction to System Development

You should be aware that the sequence of activities and the dependencies of
those activities are represented in this diagram with only partial accuracy. For
example, we show that programming does not start until design has finished.
However, in reality, there may be some overlap between the two activities.

The benefit of an iteration schedule is threefold. First, it helps the team or-
ganize its work so developers have enough time to think through the critical
design issues before programming begins. Second, it provides a measuring rod
to see if the iteration is on schedule. For example, if meetings with the purchas-
ing agents take all day or more than a day, the team will know early on that this
iteration will take longer than expected. Third, the project manager can see that
programming may require more resources if the project is going to stay on this
schedule. Hence, the project manager can begin lining up resources to help with
that part of the iteration. It should be obvious that even this simple diagram can
help a project manager plan and organize the work.

 ■ Day 2 Activities
 ❚ The Tradeshow System Overall

Day 1 involved planning and organizing the project. Day 2 involves discovering
and understanding details, which is a key part of systems analysis. Now we will
complete the systems analysis activities in more detail for the complete Trade-
show System. These Core Process 3 activities include:

 ■ Do fact-finding tasks to understand the requirements.
 ■ Develop a list of use cases and a use case diagram.
 ■ Develop a list of classes and a class diagram.

 ❚ Fact Finding and User Involvement
Before the project commenced, a broad definition of requirements was devel-
oped. It is now time to examine those requirements and determine exactly what
the user needs the system to do. There are various techniques to ensure that the
fact finding is complete and thorough. These include interviewing the key users,
observing existing work processes, reviewing existing documentation and exist-
ing systems, and even researching other companies and other systems. The first
step is to identify the key users who will define these details. In this scenario,
the manager of the Purchasing Department will be one of the first users to meet
with. She will probably designate one or two knowledgeable purchasing agents
who can work with the team on an ongoing basis to develop the specifications
and to verify that the system performs as required. All successful projects de-
pend on heavy user involvement. In Chapter 2, you will learn more about identi-
fying key stakeholders and gathering information.

 ❚ Identifying Use Cases
Identifying and describing use cases is the way to document what the users need
to do with the system, hence, the term use case—a case or situation where the
system is used. For example, suppose a purchasing agent goes to a trade show
and finds a new lightweight sports jacket that will work well for RMO’s fall
merchandise offerings. Suppose that the first task the purchasing agent needs to
do is find out if this supplier has worked with RMO before. Thus, a use case re-
quired for the Tradeshow System might be Look up a supplier. One good way to
help you talk about use cases is to say, “The purchasing agent ‘uses’ the system
to ‘Look up a supplier.’” There are multiple methods used to identify use cases,
which you will learn later in this book. Some developers prefer to use a similar
concept called a user story.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

17CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design

Figure 1-11 is a preliminary list of use cases for the entire Tradeshow Sys-
tem. When the project team meets with the purchasing agents in brainstorming
sessions, they identify the use cases together. Because the first iteration is focus-
ing only on the Supplier Information Subsystem, the project team will also focus
its attention on only the first four use cases on the list.

 ❚ Identifying Domain Classes
Domain classes identify those things in the real world that the system needs to
know about and keep track of. To find domain classes, we look for all objects,
or things, that the system uses or captures. Objects come in all types and varia-
tions, from tangible items (such as merchandise products that you can see and
touch) to more abstract concepts that you cannot touch (such as a promotion),
which, though intangible, is an important thing to remember and track. Domain
classes are the categories of objects identified, much like a table in a database
represents the category of the records it contains. A Product class represents all
of the product objects used by the system.

Domain classes are identified during the discussions with purchasing agents
by looking for the nouns that describe categories of things. For example, the
agents will often talk about suppliers, merchandise products, or inventory items.
These nouns become the domain classes, and each domain class has attributes
(like contact information, product, or business location) that detail the informa-
tion you need to store about the domain class.

Figure 1-12 illustrates which nouns are fundamental domain classes for the
Tradeshow System. The attributes are pieces of information that help define and
describe details about a domain class.

FiguRE 1-11 List of use cases for
Tradeshow System

Use Case Description

Look up supplier Using supplier name, �nd supplier information and
contacts

Enter/update supplier
information

Enter (new) or update (existing) supplier information

Look up contact Using contact name, �nd contact information

Enter/update contact
information

Enter (new) or update (existing) contact information

Look up product
information

Using description or supplier name, look up product
information

Enter/update product
information

Enter (new) or update (existing) product information

Upload product image Upload images of the merchandise product

Object Classes Attributes

Supplier supplier name, address, description, comments

Contact name, address, phone(s), e-mail address(es),
position, comments

Product category, name, description, gender, comments

ProductPicture ID, image

FiguRE 1-12 List of domain
classes for Tradeshow System

©
 C

en
ga

ge
 L

ea
rn

in
g®

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

18 PART 1 ■ Introduction to System Development

In addition to just providing a list of domain classes, systems analysts often
develop a visual diagram of the classes, their attributes, and their associations
with other classes. This diagram is called a domain class diagram. Figure 1-13
shows the domain class diagram for the Tradeshow System.

Each box is a class and can be thought of as a particular set of objects that
are important to the system. Important attributes of each class are also included
in each box. These represent the detailed information about each object that
will be maintained by the system. Note that some classes have lines connecting
them. These represent associations between the classes that need to be remem-
bered by the system. For example, a contact is a person who works for a particu-
lar supplier. A specific example might be that Bill Williams is the contact person
for the South Pacific Sportswear Company. Thus, the system needs to associate
Bill Williams and the South Pacific Sportswear Company. The association line
documents that requirement.

Domain class diagrams are a powerful and frequently used way to under-
stand and document the information requirements of a system. The Tradeshow
System is very simple, with only four classes identified—two of which belong to
the Supplier Information Subsystem. Most real-life systems are much larger and
have dozens or even hundreds of domain classes.

 ■ Day 3 Activities
The purpose of Day 3 activities is to analyze in detail the use cases and domain
classes that are scheduled to be implemented in the first iteration for the Supplier
Subsystem. Included are these Core Process 3 activities:

 ■ Perform in-depth fact finding to understand details of each use case.
 ■ Understand and document the detailed workflow of each use case.
 ■ Define the user experience with sketches of screens and reports needed for

each use case.

After working with the purchasing agents, developers determined the fol-
lowing use cases pertaining to the Supplier Information Subsystem:

 ■ Look up supplier
 ■ Enter/update supplier information

name
address
description
comments

Supplier

productCategory
name
description
gender
comments

Productltem

1..*

1

1 1..*
name
address
phone(s)
emailAddress(es)
position
comments

Contact

pictureID
image

ProductPicture

1 0..*

FiguRE 1-13 Preliminary domain
class diagram for the Tradeshow
System

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

19CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design

 ■ Look up contact information
 ■ Enter/update contact information

From this list, the developer will then create a use case diagram. A use case
diagram is used to graphically portray the use cases and users involved in the
subsystem. Figure 1-14 illustrates a simple use case diagram for the Supplier
 Information Subsystem showing the four use cases as ovals and the two users as
stick figures. The lines connecting users and use cases shows who uses the sys-
tem for the use case: The purchasing agent carries out all four use cases, but the
manager also looks up suppliers or contacts.

The project team will look closely at the steps to follow for each use case
to better understand how the application needs to work and to identify what
screens and reports will need to be developed. As the team gets more into the
details, it may discover that some of the initial analysis is incomplete or not cor-
rect and can adjust the WBS to reflect the changes. This is a good time to make
such discoveries—much better to find mistakes earlier than after the programs
have been written.

 ❚ Developing Use Case Descriptions and Workflow Diagrams
There are various methods for documenting the details of a use case. One that
you will learn later in this text is called a use case description. Another method
is developing an activity diagram, which shows all the steps within the use case.
The purpose with either method is to document the interactions between the
user and the system (i.e., how the user interacts and uses the system to carry out
a specific work task for a single use case).

Let us develop an activity diagram for one use case. Figure 1-15 illustrates
the Look up supplier use case. The flattened ovals in the diagram represent the
activities, the diamonds represent decision points, and the arrows represent the
sequence of the flow. The columns designate the person who performs the ac-
tivities, in this case the purchasing agent in the first column and the Tradeshow
System in the second column. Usually, activity diagrams are quite easy for users
to understand and critique.

Look up supplier

Enter/update
supplier

information

Look up contact

Enter/update
contact

information

ManagerPurchasing
agent

FiguRE 1-14 Use case diagram for
the Supplier Information Subsystem

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

20 PART 1 ■ Introduction to System Development

The arrows that cross the line between users (center) represent the interactions
between the user and the system. These are critically important because they desig-
nate situations where the developers must provide a screen or Web page that either
captures or displays information. These situations become part of the user interface.

In Figure 1-15, the top arrow indicates that the supplier name is entered
into the system first. Thus, we infer that the use case must have an online lookup
page with a field available to enter the supplier name. The next arrow indicates
the application requires a page that displays all the details for an individual sup-
plier, including a list of existing contacts. The user may also want to see more
details about a specific contact person for this supplier, so the application must
provide detailed information request fields for a particular contact. Because the
user will need to select one of the displayed results, we must design the page so
each entry on the list is either a hot link or can be selected.

 ❚ Defining Screen Layout
User-interface design includes creating how a system looks and how the user
interacts with it. Because the user interface is the user’s window to the func-
tionality of the system, it is essentially the system itself to the users. If the in-
terface is poorly designed, users will not be able to take full advantage of the
system; they may even consider the system to be less than optimal. On the other

Purchasing Agent Tradeshow System

Start

Enter supplier name

Return supplier information

not found

found

View supplier and
contact names

done

look up contact

Select contact name

Retrieve contact information

View contact information

End

FiguRE 1-15 Activity diagram for
the Look up supplier use case

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

21CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design

hand, a well-designed user interface—one that is intuitive and easy to use, has a
full range of features to facilitate navigation, and provides good information—
will enhance the utility of the system tremendously.

Figure 1-16 illustrates the layout of the first page used for the workflow
in the use case Look up supplier. The top half of the page provides the fields
where the user enters supplier information, and the bottom portion of the page
shows the results. After results are provided, the search box for data entry will
remain visible to allow the user to enter another search. Each entry in the results
section will be built as a hot link, so the user can click on any particular supplier
to retrieve more detailed information. This drill-down technique is a common
method used in today’s systems and will be intuitively easy for the users.

Data for all of the required fields are stored in the database. Searches seek
information in the database, and display the required data, such as name, ad-
dress, and contact information. An Internet-wide search is also possible. This
allows the purchasing agents to look for and view the suppliers’ own Web sites,
including forums and discussions about the supplier.

 ■ Day 4 Activities
The primary focus of Day 4 is to design the various components of the solution
system, corresponding to Core Process 4: Design System Components. Up to
now, we have mostly been gathering the user requirements. On Day 4, we design
the system based on the user requirements, which leads to programming efforts.
In that sense, design activities can be considered a bridge. The design documents
provide the blueprints for how the solution will be structured and how it is to be
programmed. System design also tends to involve the technical people, with less
need for user participation.

Design can be a complex process. In our small project, we will limit our
design examples to only a few models and techniques. Day 4 activities (Core
Process 4) include the following:

 ■ Design the database structure (schema).
 ■ Design the system’s high-level structure.

Web Search

RMO Database Search

Supplier Name

Product Category

Product

Country

Contact Name

Supplier Name

Search Results

Contact PositionContact Name

GO

GO
Logo

FiguRE 1-16 Initial page layout for
the Look up supplier use case

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

22 PART 1 ■ Introduction to System Development

Database design is a fairly straightforward activity that uses the domain class
diagram and develops the detailed database schema that can be directly imple-
mented by a database management system. Such elements as table design, key
and index identification, attribute types, and other efficiency decisions are made
during this activity.

Designing the high-level system structure and the individual programs can
be an intricate and complex process. First, the overall structure of the system is
designed by identifying the subsystems and connections to other systems. Then,
within each subsystem, decisions are made about individual program modules,
such as the user interface, business logic, and database access.

It is not uncommon for developers to begin writing program code as they
 develop portions of the design. However, best practice suggests that the designer
complete most of the high-level structure design before writing code. Consequently,
in the RMO Tradeshow System project, we will list them as separate activities.

 ❚ Designing the Database
Designing the database uses the information provided by the domain class dia-
gram to determine the tables, the columns in the tables, and other components.
Sometimes, the database design is done for the entire system at once or by subsys-
tem. At other times, it is built piecemeal—use case by use case. To keep our proj-
ect simple, we will just show the database design for the two Supplier Information
Subsystem classes. Figure 1-17 shows the two relational database tables that re-
sult with attributes included along with data types and other properties.

 ❚ A General Approach to Design
One of the first questions encountered in software design is how and where to
start. So far, we have compiled three sets of information that can answer that
question:

 ■ Use cases, with activity diagrams
 ■ Domain classes, with accompanying diagrams
 ■ Pages and reports, with program and display logic specifications

Supplier SupplierID: integer {key}
Name: string {index}
Address1: string
Address1: string
City: string
State-province: string
Postal-code: string
Country: string
SupplierWebURL: string
Comments: string

ContactID: integer {key}
SupplierID: integer {foreign key}
Name: string {index}
Title: string
WorkAddress1: string
WorkAddress2: string
WorkCity: string
WorkState: string
WorkPostal-code: string
WorkCountry: string
WorkPhone: string
MobilePhone: string
EmailAddress1: string
EmailAddress2: string
Comments: string

Contact

Table Name AttributesFiguRE 1-17 Database design for
Supplier Information Subsystem

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

23CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design

Incidentally, in the previous section, we used the class diagram as the basis
for the database design. Those same classes are important in developing object-
oriented program classes.

Before we jump more into software design, let us briefly discuss the objective
of systems design and what we expect the output or result to be. Object-oriented
programs are structured as a set of interacting objects based on classes. To pro-
gram, we need to know what the classes are, what the logic is within each class
(i.e., the functions), and which classes must interact. This is the final objective of
systems design.

We perform this design by starting at the very highest level and then drill-
ing down to the lowest level until we have defined all the functions within each
class. Detailed design documents the thought process of how to program each
use case. For Day 4, we focus only on the overall design.

 ❚ Designing the Software Components
Figure 1-18 shows the overall structure of the new system in terms of software
components. Although the figure itself appears rather simple, some impor-
tant decisions have been involved in the development of this design. First, note
that the decision was made to build this application as a browser-based sys-
tem designed for use on smartphones and tablets. A different and very popular
approach would have been to build specific smartphone or tablet applications.
Browser-based systems sometimes do not provide the same connectivity speed
and control as smartphone or tablet applications, but they are more versatile
because they are easily deployed on different equipment, such as laptops and
tablets, without modification, and on smartphones with only slight modifica-
tion due to screen size.

These high-level design decisions will determine the detailed structure of the
system. A browser-based system is structured and constructed differently than
an application system that runs on a smartphone or a tablet computer.

 ❚ Defining the Preliminary Design Class Diagram
The Tradeshow System will be built by using object-oriented programming
(OOP) techniques, beginning with developing the set of software classes and

Supplier
Information
subsystem

Product
Information
subsystem

Browser
Internet

Tradeshow System

Internet server

FiguRE 1-18 Tradeshow System
software components diagram

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

24 PART 1 ■ Introduction to System Development

their methods that will be needed for the system. Figure 1-19 is a preliminary
design class diagram for the Supplier Information Subsystem that identifies
the software classes needed for the system (for example, the SupplierView and
ContactView classes). In Figure 1-19, we show only the problem domain de-
sign classes and the user-interface View layer classes. Problem domain design
classes are usually derived from those classes that were identified during analy-
sis activities—hence, the name: problem (user need) domain design classes. You
will also notice that they very closely correspond to the database tables; in fact,
in this simple project, they are almost exactly the same as the database tables.

The design classes in Figure 1-19 include the attributes that are needed for
the class. They also include method names of the important methods within
each class. One final element in the design class diagram is the arrows that show
where a class accesses the methods of another class.

 ❚ Designing Subsystem Software Architecture
Once we have an overall structure and approach for implementing the new sys-
tem, we begin to drill down to the software design for the subsystem. Figure 1-20
illustrates the design of the Supplier Information Subsystem. Notice that this sub-
system is further divided into layers: a View layer and a Domain layer. One of the
advantages of partitioning the system into layers is it is much easier to build and
maintain with this kind of structure given its modular format. For example, the
system will be browser based, but different browsers require different techniques.
It is better not to get these complexities mixed in with the basic program func-
tions. Hence, they are separated out into a distinct layer.

+lookupSupplier ()
+displaySupplier ()

SupplierView

+lookUpContact ()
+displayContact ()

ContactView

–supplierID {key}
name: string
address: string
address2: string
city: string
state: string
country: string
URL: string
comments: string

Supplier

–contactID {key}
–name: string {index}
title: string
waddress1: string
waddress2: string
wcity: string
wstate: string
wpostal: string
wcountry: string
wphone: string
mobilephone: string
email1: string
email2: string
comments: string

Contact

+getSupplierInfo () +getContactInfo ()

FiguRE 1-19 Preliminary design
class diagram

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

25CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design

The View layer includes two classes that represent what is seen on the user
interface—SupplierView and ContactView—as well as some JavaScript func-
tions. The Domain layer includes two classes that interact with each other and
with the database—Supplier and Contact.

 ❚ Managing the Project
Design is a complex activity with multiple perspectives—from high-level struc-
tural design to low-level detailed program design. In our project, we have sepa-
rated the tasks for designing the overall system structure from detailed design of
the programs themselves. However, these activities are often done concurrently.
The basic high-level software architectural structure is defined first, but mid-
level and low-level design are often done concurrently with programming.

Detailed design and programming are quite time-consuming activities.
A project manager must decide whether to extend the project or bring on ad-
ditional programmers to help write the code. In our project, we have elected to
insert a half-day of free time to bring in two additional programmers and train
them. Of course, we could go ahead and begin Day 5’s activities to ensure that
we keep the project on schedule.

 ■ Day 5 Activities
As mentioned previously, though detailed design and programming may begin
earlier in the project, we identify it as a separate day’s activity. We want to em-
phasize that it is not a good practice to begin programming before critical in-
formation is obtained and decisions are made. A much better approach is to
understand, design, and build small chunks of the system at a time. Iterative

lookUpSupplier ()
displaySupplier ()

SupplierView

getSupplierInfo ()

Supplier

lookUpContact ()
displayContact ()

validateSupplierInput ()
validateContactInput ()

php
html/css
javascript

php
sql

Javascript
Functions

View layer

Supplier Subsystem

Domain layer

ContactView

getContactInfo ()

Contact

FiguRE 1-20 Supplier Subsystem
software architecture

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

26 PART 1 ■ Introduction to System Development

development anticipates and plans for the expected changes and refinements to
the problem requirements that happen during detailed design and programming.

Day 5 activities include the following (Core 5 Process):

 ■ Create detail design.
 ■ Program the subsystem components.

As the programmers write the code, they also perform individual testing
on the classes and functions they program. This textbook does not focus on
programming activities. However, we include an example of program code so
you can see how systems design relates to the final program code. Figure 1-21
shows PHP code that defines the SupplierView class that receives and processes
the request for supplier information. Note that it sends a message to the Supplier
class requesting information when needed.

 ■ Day 6 Activities
The focus of Day 6 activities is final testing, a step that is required before the
system is ready to be deployed. Although there are many types of testing, we
mention only two types at this time: overall system functional testing and user
acceptance testing. Functional testing is usually a test of all user functions and
is often done by a quality assurance team. User acceptance tests are similar in
nature, but these are completed by the users, who test both the correctness of
the system and its “fitness” to accomplish the business requirements.

Each of the various testing activities in Day 6 has a similar sequence of tasks
to perform. The tasks themselves highly depend on the test data and on the
method for testing a particular test case. In some instances, the testing may be
automated. In others, individuals may need to manually conduct the tests.

<?php
 class SupplierView
 {
 private Supplier $theSupplier;

 function __construct()
 {
 $this->theSupplier = new Supplier();
 }

 function lookupSupplier()
 {
 include('lookupSupplier.inc.html');
 }

 function displaySupplier()
 {
 include('displaySupplierTop.inc.html');
 extract($_REQUEST); // get Form data
 //Call Supplier class to retrieve the data
 $results = $theSupplier->getSupplierInfo($supplier, $category,
 $product, $country, $contact);

 foreach ($results as $resultItem){
 ?>
 <tr>
 <td style="border:1px solid black">
 <?php echo $resultItem->supplierName?></td>
 <td style="border:1px solid black">
 <?php echo $resultItem->contactName?></td>
 <td style="border:1px solid black">
 <?php echo $resultItem->contactPosition?></td>
 </tr>
 <?php }
 include('displaySupplierFoot.inc.html');
 }
 }
?>

FiguRE 1-21 Code for the
 SupplierView class

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

27CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design

Figure 1-22 is a flowchart for testing the new system. In this flowchart, we
have shown the different testing tasks as separate steps; in reality, they tend to
all be carried out together. However, any given test case will follow this flow.

 ■ First Iteration Recap
Figure 1-23 is a screen shot of the browser page that is used in the Tradeshow
System to enter and view suppliers. This page will be seen on a tablet. The
smartphone page will look different, but it will carry out the same functionality.

As stated previously, this is the first (six-day) iteration of a longer project.
Using Agile techniques and iterations within an overall project allows flexibility
in defining and building a new system. In this six-day project, the users have had
major involvement during all days except Day 4 and Day 5.

A primary problem in developing a new system is that as the project pro-
gresses, new requirements are often identified. This happens because the users
and the project team learn more about how to solve the business need. Agile, it-
erative projects are structured to handle these new requirements—often by add-
ing another iteration to the overall project.

As a final step in a current iteration, or perhaps as part of the planning
process for the next iteration, there should be a review of the tasks completed
and evaluation of the success of the current iteration. The lessons learned and is-
sues to be carried forward create an environment of continual improvement and
refinement. Because of this, iterative projects tend to improve and become more
efficient during the life of the project.

In this project, the planning for Iteration 2 would confirm the intention
of focusing on the use cases and domain classes for the Product Information

Start Create test data Conduct tests

End

Document errors
and issues

Fix errors

FiguRE 1-22 Flowchart for testing
tasks

Web Search

RMO Database Search

Supplier Name

Product Category

Product

Country

Contact Name

Supplier Name

Search Results

Contact PositionContact Name

GO

GO

FiguRE 1-23 Screen capture for
page in Look up supplier use case
for tablet

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

28 PART 1 ■ Introduction to System Development

Subsystem. Efforts would focus on understanding the details of the three use
cases and two domain classes required. Activity diagrams or use case descrip-
tions might be created for the complex use cases. Two more database tables
would be designed and implemented. Two more software view classes and
 design domain classes would be defined. Code would then be written and tested
to implement the classes and use cases.

 ■ Where You Are Headed—The Rest of This Book
This seventh edition of Systems Analysis and Design in a Changing World in-
cludes the printed textbook and supporting online chapters. The current printed
textbook provides a compact, streamlined, and focused presentation of those
topics that are essential for information system developers. The online chap-
ters extend those concepts and provide a broader presentation of several topics.
The online chapters may be integrated into the course or simply used as addi-
tional reading as prescribed by the instructor.

We focus on three major subject areas in this book: systems analysis, systems
design, and project management. To a lesser extent, we cover systems implemen-
tation, testing, and deployment. In addition, we have taken an approach that is
quite different from other texts. By providing a basic overview in Chapter 1, we
can immediately present in-depth concepts about systems analysis and design in
the following chapters. Furthermore, we present project management topics after
our discussion on the elements of systems analysis and design, so the reader can
use his or her knowledge of necessary analysis and design tasks to understand
project management.

 ■ Part 1: Introduction to System Development
Part 1—comprising Online Chapter A and Chapter 1—presents an overview of
systems development. Online Chapter A, “The Role of the Systems Analyst,”
describes the many skills required of a systems analyst. It also discusses the vari-
ous career options available to information systems majors. For those of you
who are new to the discipline of information systems, this chapter provides in-
teresting and helpful knowledge about information systems careers. Be sure to
find and refer to this online chapter.

This chapter (Chapter 1) provided a detailed, concrete example of what is
required in a typical (though simplified) system development project, including
processes, techniques, and diagrams. You are not expected to understand all
the elements from this brief introduction. However, you should have a general
idea of how to approach developing systems. You may want to refer back to this
chapter to understand the big picture.

 ■ Part 2: Systems Analysis Tasks
Chapters 2, 3, 4, and 5 cover systems analysis in detail. Chapter 2 discusses tech-
niques for gathering information about the business problem. Developing the right
system solution is possible only if the problem is accurately understood. The people
who are affected by the system (the stakeholders) are included in the development
of the solution. Chapter 2 explains how to identify and involve the stakeholders,
and introduces the concept of models and modeling. Chapters 3 and 4 present
methods for capturing the detailed system requirements in a useful format, often
models. Chapter 5 presents in-depth models that focus on the details of each use
case—use case descriptions, activity diagrams, and system sequence diagrams.

Online Chapter B, “The Traditional Approach to Requirements,” presents a
traditional, structured approach to developing systems. To those instructors and

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

29CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design

students who desire to learn about data flow diagrams, this chapter provides an
in-depth presentation.

 ■ Part 3: Essentials of Systems Design
Chapters 6, 7, 8, and 9 cover the fundamental concepts related to systems design,
including design activities, architectural design, user-interface design, and data-
base design. Chapter 6 provides broad and comprehensive coverage of important
concepts and activities of systems design. It serves not only as a broad overview
of design principles, but also as a foundation for later chapters that explain the
detailed techniques, tasks, skills, and models used to carry out design.

Chapter 7 covers key aspects of architectural design. System interfaces oc-
cur when one information system communicates or interacts with another in-
formation system without human intervention. System interfaces are becoming
increasingly important because of Web services and cloud computing. Other re-
lated concepts, such as controls and security, are also presented in this chapter.

Chapter 8 presents design principles related to the user. Designing the user
interface requires a combination of analysis and design. It is related to analysis
because it requires heavy user involvement and includes specifying user activities
and desires. On the other hand, it is a design activity because it specifies final
components that are used to drive the programming effort. The pages, forms,
reports, and other user interaction components must be precisely designed so
they can be programmed as part of the final system.

Chapter 9 explains how to design the database from the information gleaned
during analysis and the identification of the domain classes.

 ■ Part 4: Projects and Project Management
By this point, you will have a basic understanding of all the elements of system
development.

Part 4 uses these concepts to explain the process of organizing and manag-
ing development projects. Chapter 10 describes different approaches to system
development in today’s environment, including important system development
life cycle models. It is an important chapter to help you understand how proj-
ects actually get executed. Additionally, Agile development is discussed in more
detail along with two specific Agile system development methodologies—Agile
Unified Process and Scrum.

Chapter 11 teaches foundational principles of project management. Every
systems analyst helps organize, coordinate, and manage software development
projects. In addition, many analysts will become team leaders and project man-
agers. The principles presented in Chapter 11 are essential to a successful career
and they are related specifically to Agile methodologies.

Online Chapter C, “Project Management Techniques,” goes into more de-
tail regarding the tools and techniques used by systems analysts and project
managers to plan and monitor development projects. For those instructors and
students who would like to learn advanced project management skills, this is an
important chapter.

 ■ Part 5: Advanced Design and Deployment Concepts
Chapters 12 and 13 explain the models, skills, and techniques used to design soft-
ware for each use case, including designing for multilayer software. The objective
of these two chapters is to teach you the techniques—from simple to complex—
that can be used to effectively design software. Chapter 14 describes the final
elements in system development: testing, deployment, maintenance, and version
control.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

30 PART 1 ■ Introduction to System Development

5. Build, test, and integrate system components.
6. Complete system tests and then deploy the

solution.

A system development methodology (also called a
development process) provides a comprehensive set of
guidelines for carrying out the core processes and cor-
responding activities and tasks for the SDLC. Agile
development refers to recent methodologies that em-
phasize flexibility and rapid response to change. Itera-
tive development is an approach to the SDLC where the
system is “grown” through a series of mini-projects.
Agile development is highly iterative.

The activities and tasks that support the six core
processes of the SDLC were explained as we went
through an implementation of one subsystem of the
Tradeshow System. We divided the project into initial
project activities that comprised six project work days
to show how the first iteration of the Tradeshow System
was completed.

This chapter provided an overview of an information
systems development project called the Tradeshow
System. An information system is a set of interrelated
components that collect, process, store, and provide as
output the information needed to complete business
tasks. Systems analysis is the set of activities used to
understand and document what the new information
system should accomplish. Systems design involves de-
scribing in detail the resulting system.

The system development life cycle (SDLC) iden-
tifies all of the activities required to research, build,
launch, and maintain an information system. Most
SDLCs include the following six core processes, al-
though names used for the processes vary:

1. Identify the problem and obtain project approval.
2. Plan and monitor the project.
3. Discover and understand the details of the problem.
4. Design the system components that solve the

problem.

CHAPTER SuMMARY

project

subsystem

system development life cycle
(SDLC)

system development process
(methodology)

systems analysis

systems design

Agile development

computer application (app)

information system

iterative development

KEY TeRMS

 1. What is the difference between an information
system and a computer application?

 2. What is the purpose of systems analysis? Why is it
important?

 3. What is the difference between systems analysis
and systems design?

 4. What is a project?
 5. What is the purpose of the system development

life cycle (SDLC)?
 6. What are the six core processes of the SDLC?
 7. What is meant by Agile development and iterative

development?
 8. What is the purpose of a System Vision Document?
 9. What is the difference between a system and a

subsystem?
 10. What is the purpose of a work breakdown struc-

ture (WBS)?
 11. What are the components of a work breakdown

structure (WBS)? What does it show?

 12. What information is provided by use cases and a
use case diagram?

 13. What information is provided by a domain class
diagram?

 14. How do a use case diagram and a domain class
diagram drive the system development process?

 15. What is an activity diagram? What does it show?
 16. How does an activity diagram help in user-

interface design?
 17. What is the purpose of software component design?
 18. What new information is provided in a design

class diagram (more than a domain class
 diagram)?

 19. What are the steps of system testing?
 20. What is the purpose of user acceptance testing?
 21. Why is it a good practice to divide a project into

separate iterations?
 22. What should be the primary objective of each

iteration?

REvIEW QueSTIOnS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

31CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design

 1. Consider the example that described the respon-
sibilities of a property owner, an architect, and a
contractor when creating a new building. Create
a similar analogy for a high school reunion
project where there is the reunion committee,
a professional event planner, and a hotel event
vendor that would manage the actual event.

 2. The chapter described several information
systems (or subsystems) that are used to support
students. For your university or college, list at
least four information systems (or subsystems)
that are used to support the work of faculty and
staff.

 3. For each of the following chapter figures, which
ones show the Tradeshow System overall and
which figures show the components that apply to
the Supplier Subsystem?
a. System Vision Document (Figure 1-8)
b. Work Breakdown Structure (Figure 1-9)
c. List of Use Cases (Figure 1-11)
d. List of Domain Classes (Figure 1-12)
e. Domain Class Diagram (Figure 1-13)
f. Use Case Diagram (Figure 1-14)
g. Activity Diagram (Figure 1-15)

h. Initial Screen Layout (Figure 1-16)
i. Database Design (Figure 1-17)
j. Component Diagram (Figure 1-18)
k. Design Class Diagram (Figure 1-19)
l. Software Architecture (Figure 1-20)
m. Code for SupplierView Class (Figure 1-21)
n. Screen Capture (Figure 1-23)

 4. For the same chapter figures above, which are for
planning, for analysis, for design, for implemen-
tation, or for testing?
a. System Vision Document (Figure 1-8)
b. Work Breakdown Structure (Figure 1-9)
c. List of Use Cases (Figure 1-11)
d. List of Domain Classes (Figure 1-12)
e. Domain Class Diagram (Figure 1-13)
f. Use Case Diagram (Figure 1-14)
g. Activity Diagram (Figure 1-15)
h. Initial Screen Layout (Figure 1-16)
i. Database Design (Figure 1-17)
j. Component Diagram (Figure 1-18)
k. Design Class Diagram (Figure 1-19)
l. Software Architecture (Figure 1-20)
m. Code for SupplierView Class (Figure 1-21)
n. Screen Capture (Figure 1-23)

PROBLEM AND EXERCISES

Keeping Track of Your Geocaching Outings
are those that involve caches found by using GPS co-
ordinates, although even some of these tasks can be
difficult if the caches are well hidden. Some of the ac-
tivities involve multipoint drops where there is a set
of clues in multiple locations that must be followed to
arrive at the final cache point. Some activities involve
puzzles that must be solved to determine the coordi-
nates of the final cache.

Before long, Wayne wanted to make his own
caches and post them for people to find. He discov-
ered that there were several Web sites with access to
geocaching information, caches, and memberships.
He joined one of the geocaching Web sites and used it
to log his finds. But he decided he would like to create
his own system for tracking all the information he had
about his caches. Conveniently, Wayne’s older brother
Nick, a college student majoring in information sys-
tems, was looking for a semester project for one of
his programming classes. The two of them decided to

CHAPTER case

When Wayne Johansen turned 16, his dad bought him
a new Garmin handheld GPS system. His family had
always enjoyed camping and hiking, and Wayne was
usually the one who monitored their hikes with his
dad’s GPS system. He always liked to carry the GPS
to monitor the routes, distances, and altitudes of their
hikes. More recently, though, he had found a new
hobby using his GPS system: geocaching.

Geocaching is a high-tech version of the treasure
hunts that most of us did when we were kids. Partici-
pants search for geocaches or caches that are small,
hidden, waterproof containers that typically contain a
logbook and perhaps a small item. When found, the
participant sometimes gets instructions for the next
move—to either enter information into a logbook or
to look for the next cache.

As Wayne became more involved with his hobby,
he discovered that there are many different kinds of
activities for geocaching enthusiasts. The simplest ones

CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design 31

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

32 PART 1 ■ Introduction to System Development

develop a system to help Wayne keep track of all his
geocaching activities.

In this end-of-chapter case, you will go through
the various core processes of an SDLC and perform
some of the activities of a development project. The
project is divided into days, as was our Tradeshow
System project. The daily assignments for this case
should be considered as preliminary efforts and rough
drafts. The objective of these assignments is to help
you remember the overall approach to software devel-
opment. Several assignments have been listed for each
day to allow your instructor to select those that best
meet the objectives of the course.

Day 0: Define the Vision
Either by yourself or with another class member,
brainstorm all the functions this geocaching system
might do. Keep it at a very high level. These activities
closely relate to Core Process 1: Identify problem and
obtain approval.

Assignment D0-1: Write a rough draft of the
 System Vision Document based on your brain-
storming ideas. [Hint: Think of what Wayne wants
the system to do and why this helps him.]

Day 1: Plan the Project
Based on the scope and vision you described in the
 System Vision Document, divide the project into at
least two separate subsystems that can be done in sepa-
rate iterations. For example, perhaps a first version can
run on a laptop, with a second version that includes
mobile components for a smartphone. These activities
are related to Core Process 2: Plan and monitor the
 project—what to do, how to do it, and who does it.

Assignment D1-1: Divide the system into at least
two separate components or subsystems, which
can be supported with two iterations. Briefly de-
scribe each.

Assignment D1-2: Create a work breakdown
structure that lists all the steps to complete the
first iteration. Put a time estimate on each step.
[Hint: Use the one in this chapter as a model.]

Day 2: Define and understand the
Requirements
On Day 2, you want to get an overall view of what
the system needs to do for Wayne. There are two pri-
mary areas to focus on to obtain this high-level un-
derstanding of the system: a list of use cases and a list

of domain classes. You could document this informa-
tion in lists, but diagrams provide a visual representa-
tion that is often easier to remember and understand.
These activities support Core Process 3: Discover and
understand details.

Assignment D2-1: Identify a few use cases that
apply to one subsystem. [Hint: Think of what
Wayne plans to do with the system. He will use
the system to “do what”?]

Assignment D2-2: Try to identify the classes that
apply to the first project iteration. [Hint: Think of
“information things” that Wayne wants the sys-
tem to “remember.”]

Assignment D2-3: Create a simple use case dia-
gram from the list of use cases. [Hint: Drawing
by hand is fine. Use the one in this chapter as a
model.]

Assignment D2-4: Create a simple class diagram
from the list of classes. [Hint: Drawing by hand is
fine. Use the one in this chapter as a model. Think
of other information that applies to each class.]

Day 3: Define the user experience
These activities are a continuation of what you be-
gan in Day 2. The objective here is to further define
what Wayne will need and how he will actually use
the system. You will determine exactly how each use
case works—what steps and options are available
with the use case and even what the display and data-
entry screens will look like. These activities primar-
ily support Core Process 3: Discover and understand
details.

Assignment D3-1: Select a single use case and
identify the steps required to perform the use
case. [Hint: Think of what Wayne does and how
the system responds.]

Assignment D3-2: Make a workflow diagram of
the selected use case. [Hint: Drawing by hand is
fine. Each step from D3-1 goes in an oval. Connect
the ovals with arrows.]

Assignment D3-3: Sketch out one of the screens
that will be required to support a use case. The
screen should allow for data entry and display of
information. [Hint: Don’t make it elaborate. Focus
only on the input and output data fields that apply
to only one use case.]

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design

Day 4: Develop the Software
Architecture Design
The high-level software architectural design of the
system generally includes decisions about how the sys-
tem will be built and what the database will look like.
Design is a technical activity that requires experience
in programming, database development, and software
architecture. These activities support Core Process 4:
Design system components.

Assignment D4-1: Design a preliminary database
schema for the classes in this iteration. [Hint:
Each class becomes a table. The attributes be-
come table columns.]

Assignment D4-2: Decide whether you will build
a desktop system or a browser-based system.
Write a couple of paragraphs listing the pros and
cons of each alternative to defend your decision.
[Hint: Either option is valid. Think of reasons to
support your decision.]

Day 5: Develop the Detailed Design and
Program the System
You probably have had many class projects where you
designed a system and then programmed it. These
kinds of activities support Core Process 5: Build, test,
and integrate system components.

Assignment D5-1: Write a paragraph describing
what programming language(s) you would rec-
ommend and what development environment

you prefer. For this answer, draw on your previ-
ous programming and development experiences.
[Hint: There are many valid solutions. Give rea-
sons for your preference.]

Day 6: Test and Deploy the System
You may have had opportunities to perform compre-
hensive testing of your programming class projects,
 especially if you have developed systems that inte-
grated with other systems. These activities support
Core Process 6: Complete system tests and deploy
solution. Obviously, you can only do this if you have
programmed the system.

Assignment D6-1: Write a paragraph describing
the difference between programmer testing and
user testing. [Hint: Why is it hard to test your own
work? What do the users know that you don’t
know?]

Assignment D6-2: Write a paragraph describing
all the issues that might need to be addressed
to deploy this system. [Hint: You might want to
search the Internet to learn about deployment
issues.]

Assignment D6-3: Look at www.geocaching.com,
which is a commercial Web site. What other issues
need to be addressed to deploy this type of Web
site? [Hint: Think about all the issues related to se-
curity, robustness, financial protection, high vol-
umes, uptime, different browsers, and so forth.]

CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design 33

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2
Investigating System Requirements

Chapter 3
Identifying User Stories and
Use Cases

Chapter 4
Domain Modeling

Chapter 5
Use Case Modeling

Online Chapter B
The Traditional Approach to
Requirements

Systems Analysis Activities

Part TWO

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After reading this chapter, you should be able to:

Describe the activities of systems analysis

Explain the difference between functional and
nonfunctional requirements

Identify and understand different kinds
of stakeholders and their contributions to
requirements definition

Describe information-gathering techniques and
determine when each is best applied

Describe the role of models and UML in
systems analysis

Develop UML activity diagrams to model
workflows

Learning Objectives

The RMO Consolidated Sales and Marketing
System Project

Systems Analysis Activities

What Are Requirements?

Stakeholders

Information-Gathering Techniques

Models and Modeling

Documenting Workflows with Activity
Diagrams

chaPter OutLine

Investigating System
Requirements

chaPter TWO

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

38 PART 2 ■ Systems Analysis Activities

 ■ Overview
In Chapter 1, you saw the system development life cycle (SDLC) being employed
by Ridgeline Mountain Outfitters (RMO) for a small information system appli-
cation called the Tradeshow System. Development of that system followed the
six core processes of the SDLC. The information system application envisioned
for Mountain Vista Motorcycles is another situation where the six core processes
of the SDLC would be required, but because there is much uncertainty about
what the virtual community would actually involve, the project would have to
be highly agile. Some of the early iterations would need to focus intensely on
discovering and understanding the details of the problem and less on planning
the project up front. In this respect, each project adapts the SDLC to its specific
needs. Nevertheless, the same six core processes are always required:

1. Identify the problem or need and obtain approval to proceed.
2. Plan and monitor the project—what to do, how to do it, and who does it.

38

Opening cASe Mountain Vista Motorcycles

Amanda Lamy, president and majority stockholder of
Mountain Vista Motorcycles (MVM), is an avid motor-
cycle enthusiast and businesswoman. MVM is head-
quartered in Denver and has locations throughout
the western United States and Canada. Since the late
1990s, the market for motorcycles has grown tremen-
dously. Amanda expects that the market will continue to
be strong throughout the 2010s.

The demographics of the motorcycle market are
an interesting study in contrasts—an over-50 majority
customer base, but with an under-30 contingent that is
growing. The remaining customer base includes men
and women between the ages of 30 and 50.

The “over 50” customers are typically male profes-
sionals or businesspeople who are partly or fully retired.
They have substantial disposable income, lots of free
time, and tend to own multiple expensive motorcycles
from such manufacturers as Harley-Davidson, Honda,
Ducati, and Moto Guzi. Older customers are generally
comfortable with Internet and Web technology, but are
not significant users of social media technology. Al-
though many own smartphones, they tend to use them
primarily for voice, e-mail, and texting.

Male customers under 30 years of age tend to buy
sport and dirt bikes, typically from such manufacturers
as Suzuki and Kawasaki. They buy less-expensive bikes
than older customers and are more likely to buy parts
and supplies from MVM to service their own bikes. Fe-
male customers under 30 years of age tend to buy motor
scooters and smaller “commuter” motorcycles. Cus-
tomers in the 30–50 age range include men and women
who buy bikes of many types from many manufacturers.
For all customers under the age of 50, comfort with and
use of Internet technology, social media, and portable
computing devices such as smartphones and iPads is
very high, but especially with customers under age 30.

Amanda is convinced that the key to long-term suc-
cess in the motorcycle market is to build an active com-
munity of motorcycle enthusiasts that includes a broad
spectrum of customers at each MVM location. In es-
sence, each location needs to be seen as a hub of local
motorcycle-related activity and information in physical and
virtual terms. On the physical side, MVM has added activ-
ity and event-oriented pages to its Web sites, sponsored
rallies and clubs, added meeting rooms and small coffee
shops in some locations, and collocated with bars and res-
taurants that feature motorcycle-related themes and en-
tertainment. These efforts have yielded good results with
older customers but less so with younger customers.

Amanda is concerned about the lack of participation
in the new initiatives by younger customers and is sure
that MVM’s minimal presence in social media and virtual
relationships is a significant factor. She and her senior
staff, most of whom are older, are unsure how to attract
younger customers. They have little knowledge of and no
experience with creating modern technology-based virtual
communities. To fill this gap, Amanda turns to her chief
information officer (CIO), and tasks her with finding a way
technology can connect the diverse customer base.

MVM’s CIO is starting to develop a project plan for a
virtual community oriented toward younger customers.
If the plan were for developing a traditional information
system, she would use such standard approaches as in-
terviewing internal users and managers, and having her
development staff write specifications, generate story-
boards and screen layouts, and develop prototypes. But
few of the intended virtual community users are MVM
employees, and few staff members fully comprehend
how to successfully use social media and other tech-
niques for building virtual societies. Traditional methods
of defining and refining requirements seem inadequate
to the task.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

39CHAPTER 2 ■ Investigating System Requirements

3. Discover and understand the details of the problem or the need.
4. Design the system components that solve the problem or satisfy the need.
5. Build, test, and integrate system components.
6. Complete system tests and then deploy the solution.

In this chapter, we start expanding the scope and detail of the SDLC core
processes to cover a wider range of concepts, tools, and techniques. The extra
depth and detail are needed to tackle larger and more complex projects. This
chapter concentrates on systems analysis activities (Core Process 3), and the next
few chapters follow up with detailed discussions of models developed during
those systems analysis activities. Subsequent chapters expand the discussion of
other core SDLC processes. The RMO Consolidated Sales and Marketing Sys-
tem project is used for examples throughout the rest of the book. It is a much
larger project than the Tradeshow System project in Chapter 1.

 ■ The RMO Consolidated Sales
and Marketing System Project

Ridgeline Mountain Outfitters has an elaborate set of information systems
applications developed over the years to support operations and management.
However, there is a growing gap between customer expectations, current techno-
logical capabilities, and existing RMO systems that support sales and customer
interaction. This section reviews the existing system inventory and introduces
the proposed Consolidated Sales and Marketing System that will update and
enhance sales and marketing.

 ■ Existing RMO Information Systems and Architecture
RMO’s Information Systems Department has always been forward looking. In
past years, the department, in conjunction with corporate strategic plans, has
developed five-year plans for development and deployment of new technology
and information systems. The planning process has been an excellent tool to
help the organization stay current with new trends and technology capabilities.
However, the plans themselves have had mixed success. One of the problems
with long-range information technology (IT) and software development plans is
that technology changes rapidly and moves in unexpected directions. For exam-
ple, the Tradeshow System described in Chapter 1 was made possible by the
availability of powerful and flexible handheld devices and the widespread avail-
ability of Wi-Fi and Internet connections. Both technologies reached a fairly
mature level in just a couple of years, which created an opportunity for RMO to
optimize this important business process for mobile technology.

Historically, RMO has adopted new technology as soon as it became cost
effective. Past examples include adoption of smaller servers and desktop comput-
ing, interconnection of locations with dedicated telecommunications links, and
such Web-based technologies as customer-oriented Web sites and browser-based
user interfaces for internal systems. At present, RMO has a disparate collection of
computers dispersed across home offices, retail stores, telephone centers, order ful-
fillment/shipping centers, and warehouses—everything connected by a complex
set of local area networks (LANs), wide area networks (WANs), and virtual pri-
vate networks (VPNs). This constitutes RMO’s current technology architecture.

The term technology architecture refers to the set of computing hard-
ware, network hardware and topology, and system software—such as operat-
ing and database management systems—employed by an organization. RMO’s
technology architecture is modern but not state of the art, which is consistent
with its goal of adopting proven technology.

technology architecture a set of comput-
ing hardware, network hardware and topol-
ogy, and system software employed by an
organization

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

40 PART 2 ■ Systems Analysis Activities

The term application architecture refers to the set of information systems
(the software applications) the organization needs to support its strategic plan.
Each information system supports the work that needs to be carried out by the
organization; the strategic plan includes what the information systems are and
how the information systems are integrated together.

Currently, the major systems in RMO’s application architecture consist of
the following:

 ■ Supply chain management (SCM). This application was deployed five years
ago as a client/server application using Java and Oracle. Currently, it sup-
ports inventory control, purchasing, and distribution, although integration
of functions needs improvement. The new Tradeshow System will interface
with this system.

 ■ Phone/mail order system. This modest client/server application was devel-
oped 12 years ago using Visual Studio and Microsoft SQL Server as a quick
solution to customer demand for phone and mail orders. It is integrated
with the SCM and has reached capacity.

 ■ Retail Store System (RSS). This is a retail store package with point-of-sale
processing. It was upgraded eight years ago from overnight batch to real-
time inventory updates to/from the SCM.

 ■ Customer Support System (CSS). This system was first deployed 15 years ago
as a Web-based catalog to support customer mail and phone orders. Four
years later, it was upgraded to an Internet storefront, supporting customer
inquiries, shopping cart, order tracking, shipping, back orders, and returns.

All organizations—including RMO—face a difficult challenge keeping all
their information systems current and effective. Because development resources
are limited, an organization’s technology architecture and application architec-
ture will include a mix of old and new. Older systems were often designed for
outdated operational methods and typically lack modern technologies and fea-
tures that some competitors have adopted to improve efficiency or competitive-
ness. Such is the case with RMO’s existing customer-facing systems, which have
several shortcomings, including:

 ■ Treating phone, Web, and retail sales as separate systems rather than as an
integrated whole

 ■ Employing outdated Web-based storefront technology
 ■ Not supporting modern technologies and customer interaction modes,

including mobile computing devices and social networking

Rather than incrementally update the existing sales systems, RMO plans to
replace them with the new Consolidated Sales and Marketing System, as shown
in Figure 2-1.

 ■ The New Consolidated Sales and Marketing System
The goals of the Consolidated Sales and Marketing System (CSMS) are to mod-
ernize the technology and functionality of the CSS and to add more customer-
oriented functionality. On the technology side, the CSMS will incorporate
current Web standards and require high-bandwidth customer Internet connec-
tions and high-resolution displays. Updating the technology allows a higher
degree of interactivity, richer graphics, and a streamlined interface.

Key additions to system functionality will be support for mobile comput-
ing devices, incorporation of customer feedback and comments into product
information, and integration of social networking functions. Unlike the CSS,
the CSMS will support smartphones and tablet computers with interfaces
specifically designed for each platform and with downloadable apps. Cus-
tomer feedback will be captured directly through the Internet storefront, from

application architecture the set of
information systems (the software applica-
tions) the organization needs to support its
strategic plan

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

41CHAPTER 2 ■ Investigating System Requirements

RMO-supported comment forums and blogs, and mined from Facebook and
Twitter. RMO will develop a complete presence in each social networking venue
and enable system users to share purchases, recommendations, coupons, and
store credits using those venues.

The new CSMS will have four subsystems:

 ■ The Sales subsystem provides such basic functions as searching the online
catalog, purchasing items, and paying for them online. However, it has many
new capabilities to assist the shopper. The system will provide specific sugges-
tions about accessories that go with the purchased item. Images and videos
of animated models will be available to help the customer see how various
items and accessory packages will look together. The system will also provide
information to shoppers about related purchases made by other shoppers.
Customer ratings and comments are available for viewing. Finally, key social
networking components will permit shoppers to network with their friends by
sending messages to ask their opinions about particular merchandise items.

 ■ The Order Fulfillment subsystem will perform all the normal tasks of ship-
ping items and allowing customers to track the status of their orders and
shipments. In addition, as part of order fulfillment, customers can rate and
make comments about particular merchandise and their overall shopping
experience. They may also make suggestions directly to RMO about the
attractiveness of the Web site and the quality of the service they received.

 ■ The Customer Account subsystem provides services that enhance the cus-
tomer experience. Customers can view and maintain their account informa-
tion. They also can “link up” with friends who are also customers to share

Supply Chain Management (SCM) Consolidated Sales and Marketing System (CSMS)

Suppliers

Customers

Buyers

Retail Stores

Retail Sales

Phone Sales

CustomersTrade Show System (TSS)

Warehouses

Shipments

Orders
Shipments

Orders

Shipments

Online Sales

FIGURe 2-1 Proposed application architecture for RMO (partial)

©
M

ar
ci

n
B

al
ce

rz
ak

/S
hu

tt
er

st
oc

k.
co

m
; ©

C
he

rk
as

 /
S

hu
tt

er
st

oc
k.

co
m

; ©
lu

ch
sc

he
n/

S
hu

tt
er

st
oc

k.
co

m
; ©

K
ur

ha
n/

S
hu

tt
er

st
oc

k.
co

m
; ©

C
an

dy
B

ox
P

ho
to

/S
hu

tt
er

st
oc

k.
co

m
; ©

V
al

en
ty

n
Vo

lk
ov

/S
hu

tt
er

st
oc

k.
co

m
; ©

L
B

ar
nw

el
l/

S
hu

tt
er

st
oc

k.
co

m
; ©

Lo
gi

n/
S

hu
tt

er
st

oc
k.

co
m

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

42 PART 2 ■ Systems Analysis Activities

experiences and opinions on merchandise. The system will keep track of
detailed shipping addresses, including payment information and preferences.
RMO also instituted a Mountain Bucks program where customers accumu-
late credits that can be used to redeem prizes as well as purchase merchandise.
Customers may use these Mountain Bucks for themselves or they may transfer
them to other people in their family/friends group. This is a great opportunity
to combine accumulated bucks to obtain expensive merchandise.

 ■ The Marketing subsystem is primarily for employees to set up the infor-
mation and services for customers. Additionally, employees can enter
information about the merchandise offered by RMO. This subsystem is also
fed by the SCM system to maintain accurate data on the inventory in stock
and anticipated arrival dates of items on order. Employees also set up the
various promotional packages and seasonal catalogs by using the functions
of this subsystem. Furthermore, RMO is experimenting with a new idea to
enhance customer experience and satisfaction: building partner relation-
ships with other retailers so customers can earn “combined” points with
RMO purchases or a partner retailer purchase. These points can be used at
RMO or transferred and used at the partner. For example, because RMO
sells outdoor and sporting clothing, it has partnered with various sporting
goods stores. That way, a person can buy sporting equipment at the sport-
ing equipment store and get promotional discounts for clothing at RMO.
The success of this new venture has yet to be proven, but RMO anticipates
that it will enhance the shopping experience of all its customers.

In later chapters, more details will be given about the capabilities of the new
CSMS system. Assuming the project has been proposed, approved, and planned,
the next section describes activities associated with the next step in the develop-
ment process: systems analysis (SDLC Core Process 3). We will return to project
management and project planning later in the text.

 ■ Systems Analysis Activities
The callout on the left side of Figure 2-2 lists the activities of the third core pro-
cess, which is to discover and understand the details. This core process also goes
by the name systems analysis. The activities are as follows:

 ■ Gather detailed information.
 ■ Define requirements.
 ■ Prioritize requirements.
 ■ Develop user-interface dialogs.
 ■ Evaluate requirements with users.

Analysis activities

Gather detailed information.
Define requirements.
Prioritize requirements.
Develop user-interface dialogs.
Evaluate requirements with users.

Core
processes

1 2 3 4 5 6
Identify the problem and obtain
approval.

Plan and monitor the project.

Discover and understand details.

Design system components.

Build, test, and integrate system
components.

Complete systems tests and
deploy the solution.

IterationsFIGURe 2-2 “Analysis” activities
from Core Process 3

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

43CHAPTER 2 ■ Investigating System Requirements

By completing these activities, the analyst defines in great detail what the
information system needs to accomplish to provide the organization with the
desired benefits.

Although we concentrate only on analysis activities in this chapter, keep in
mind that they are usually intermixed with design, implementation, and other
activities during the system development life cycle. For example, as shown in
Figure 2-2, analysis activities are most intensive in the second iteration but occur
in varying degrees during all project iterations except the last. This pattern is
typical because an analyst often concentrates on one part of a system, defining
requirements only for that part and simultaneously designing and implement-
ing software to satisfy those requirements. Organizing development activities in
this iterative manner enables development to be broken into smaller steps and
helps users to validate requirements by testing and observing parts of the func-
tional system. The following sections briefly describe analysis activities, and the
remainder of this chapter expands the discussion of information gathering and
defining system requirements.

 ■ Gather Detailed Information
Systems analysts obtain information from people who will be using the system,
either by interviewing them or by watching them work. In short, analysts need to
talk to nearly everyone who will use the new system or has used similar systems,
and they must read nearly everything available about the existing system. Spe-
cifically, they obtain additional information by reviewing planning documents
and policy statements; study existing systems, including their documentation;
and obtain additional information by looking at what other companies (particu-
larly vendors) have done when faced with a similar business need. Finally, they
try to understand an existing system by identifying and understanding activities
of all the current and future users by identifying all present and future locations
where work occurs and all system interfaces with other systems, both inside and
outside the organization. Later in this chapter, we discuss how to identify and
extract information from all these people.

Beginning analysts often underestimate how much there is to learn about the
work the user performs. The analyst must become an expert in the business area
the system will support. For example, if you are implementing an order-entry
system, you need to become an expert on the way orders are processed (includ-
ing related accounting procedures). If you are implementing a loan-processing
system, you need to become an expert on the rules used for approving credit. If
you work for a bank, you need to think of yourself as a banker. The most suc-
cessful analysts become experts in their organization’s main business.

 ■ Define Requirements
The analyst uses information gathered from users and documents to define
requirements for the new system. System requirements include the functions the
system must perform (functional requirements) and such related issues as user-
interface formats and requirements for reliability, performance, and security
(nonfunctional requirements). We further discuss the distinction between func-
tional and nonfunctional requirements a bit later in this chapter.

Defining requirements is not just a matter of writing down facts and figures.
Instead, the analyst creates models to record requirements, reviews the mod-
els with users and others, and refines and expands the models to reflect new
or updated information. In Chapter 1, you learned about requirements models,
such as use case diagrams, activity diagrams, and domain model class diagrams.
Building and refining requirements models occupies much of the analyst’s time.
This chapter and the next two chapters explain in considerable depth how to
create requirements models.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

44 PART 2 ■ Systems Analysis Activities

 ■ Prioritize Requirements
Once the system requirements are well understood, it is important to establish
which requirements are most crucial for the system. Sometimes, users request
additional system functions that are desirable but not essential. However, users
and analysts need to ask themselves which functions are truly important and
which are fairly important but not absolutely required. Again, an analyst who
understands the organization and the work done by the users will have more
insight toward answering these questions.

Why prioritize the functions requested by the users? Resources are always
limited, and the analyst must always be prepared to justify the scope of the sys-
tem. Therefore, it is important to know what is absolutely required. Unless the
analyst carefully evaluates priorities, system requirements tend to expand as
users make more suggestions (a phenomenon called scope creep). Requirements
priorities also help to determine the number, composition, and ordering of proj-
ect iterations. High-priority requirements are often incorporated into early proj-
ect iterations so analysts and users have ample opportunity to refine those parts
of the system. Furthermore, a project with many high-priority requirements will
typically have many iterations.

 ■ Develop User-Interface Dialogs
In some cases, when a new system is replacing an old system that does similar
work, users are usually quite sure about their requirements and the desired form
of the user interface. In other cases, the system development project breaks new
ground by automating functions that were previously performed manually or by
implementing functions that were not performed in the past. In either case, users
tend to be uncertain of many aspects of system requirements. Such requirements
models as use cases, activity diagrams, and interaction diagrams can be devel-
oped based on user input, but it is often difficult for users to interpret and vali-
date such abstract models.

In comparison, user validation of a user interface is much simpler and more
reliable because the user can see and feel the system. To most users, the user
interface is all that matters. Thus, developing user-interface dialogs is a powerful
method of eliciting and documenting requirements. Analysts can develop user
interfaces via abstract models, such as interaction diagrams and written dialogs
(covered in more detail in later chapters), or they can develop storyboards or
user-interface prototypes on the actual input/output devices that users will use
(e.g., a computer monitor, iPad, or smartphone). A prototype interface can serve
as a requirement and a starting point for developing a portion of the system.
A user-interface prototype developed in an early iteration can be expanded in
later iterations to become a fully functioning part of the system.

 ■ Evaluate Requirements with Users
Ideally, evaluating requirements with users and documenting the requirements are
fully integrated. But in practice, users generally have other responsibilities besides
developing a new system. Thus, analysts usually use an iterative process in which
they elicit user input to model requirements, return to the user for additional input
or validation, and then work alone to incorporate the new input and refine the
models. Prototypes of user interfaces and other parts of the system may also be
developed when “paper” models are inadequate or when users and analysts need
to prove that chosen technologies will do what they are supposed to do. Also, if
the system will include new or innovative technology, the users may need help
visualizing the possibilities available from the new technology as they define what
they require. Prototypes can fill that need. The processes of eliciting requirements,
building models and prototypes, and evaluating them with users may repeat many
times until requirements models and prototypes are complete and accurate.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

45CHAPTER 2 ■ Investigating System Requirements

 ■ What Are Requirements?
As you can see from the previous section, requirements and models that repre-
sent them are a key focus of analysis phase activities. Most of the analyst’s time
is devoted to requirements: gathering information about them, formalizing them
by using models and prototypes, refining and expanding them, prioritizing them,
and generating and evaluating alternatives. But to fully understand those activi-
ties, you need to answer a fundamental question: What are requirements?

 ■ System Requirements and FURPS
System requirements are all the activities the new system must perform or
support and the constraints that the new system must meet. Generally, analysts
divide system requirements into two categories: functional and nonfunctional
requirements. Functional requirements are the activities that the system must
perform (i.e., the business uses to which the system will be applied). For example,
if you are developing a payroll system, the required business uses might include
such functions as “generate electronic fund transfers,” “calculate commission
amounts,” “calculate payroll taxes,” “maintain employee-dependent informa-
tion,” and “report tax deductions to the IRS.” The new system must handle all
these functions. Identifying and describing all these business uses require a sub-
stantial amount of time and effort because the list of functions and their depen-
dencies can be very complex.

In Chapter 1, the functional requirements were defined by the list of use
cases for the Tradeshow System, but functional requirements are also based on
the procedures and rules that an organization uses to run its business. That is
why use case details must be captured and modeled, too. Sometimes, they are
well documented and easy to identify and describe. An example might be the
following: “All new employees must fill out a W-4 form to enter information
about their tax withholding in the payroll system.” Other business rules might
be more obtuse or difficult to find. An example from RMO might be the fol-
lowing: “Air shipping charges are reduced by 50 percent for orders over $200
that weigh less than two pounds.” Discovering such rules is critical to the final
design of the system. If this rule were not discovered, customers who had relied
on it in the past might become angry. Modifying the system after customers start
complaining is much more difficult and expensive than building in the rule from
the start.

Nonfunctional requirements are characteristics of the system other than
those activities it must perform or support. It is not always easy to distinguish
functional from nonfunctional requirements. One way to do so is to use a frame-
work for identifying and classifying requirements. There have been many such
frameworks developed over time; the most widely used today is referred to as
FURPS (see Figure 2-3). FURPS is an acronym that stands for functional,
usability, reliability, performance, and security. The F in FURPS is equivalent to
the functional requirements defined previously. The remaining categories (URPS)
describe nonfunctional requirements as follows:

 ■ Usability requirements describe operational characteristics related to
users, such as the user interface, related work procedures, online help,
and documentation. For example, the user interface for a smartphone app
should behave similarly to other apps when responding to such gestures as
two-finger slides, pinching, and expanding. Additional requirements might
include menu format, color schemes, use of the organization’s logo, and
multilanguage support.

 ■ Reliability requirements describe the dependability of a system—how
often a system exhibits such behaviors as service outages and incorrect pro-
cessing and how it detects and recovers from those problems.

System requirements all the activities
the new system must perform or support and
the constraints that the new system must
meet (functional + nonfunctional)

Functional requirements the activities
the system must perform to support the
users’ work

nonfunctional requirements required
system characteristics other than the activi-
ties it must perform or support

FURPS an acronym that stands for func-
tional, usability, reliability, performance, and
security requirements

usability requirements the requirements
for operational characteristics related to
users, such as the user interface, related work
procedures, online help, and documentation

reliability requirements the require-
ments that describe system dependability

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

46 PART 2 ■ Systems Analysis Activities

 ■ Performance requirements describe operational characteristics related
to measures of workload, such as throughput and response time. For exam-
ple, the client portion of a system might be required to have a .5 second
response time to all button presses, and the server might need to support
100 simultaneous client sessions (with the same response time).

 ■ Security requirements describe how access to the application will be
controlled and how data will be protected during storage and transmission.
For example, the application might be password protected, encrypt locally
stored data with 1024-bit keys, and use secure HTTP for communication
among client and server nodes.

 ■ Additional Requirements Categories
FURPS+ is an extension of FURPS that adds additional categories, including
design constraints as well as implementation, system interface, physical, and
supportability requirements—all these additional categories summarized by the
plus sign. Here are short descriptions of each category:

 ■ Design constraints describe restrictions to which the hardware and soft-
ware must adhere. For example, a cell phone application might be required
to use the Android operating system, consume no more than 30 MB of
flash memory storage, consume no more than 10 MB of system memory
while running, and operate on CPUs rated at 1 GHz or higher.

 ■ Implementation requirements describe constraints such as required pro-
gramming languages and tools, documentation method and level of detail,
and a specific communication protocol for distributed components.

 ■ Interface requirements describe interactions among systems. For example,
a financial reporting system for a publicly traded company in the United
States must generate data for the Securities and Exchange Commis-
sion (SEC) in a specific XML format. The system might also supply data
directly to stock exchanges and bond rating agencies, and automatically
generate Twitter messages, RSS feeds, and Facebook updates.

 ■ Physical requirements describe such characteristics of hardware as size,
weight, power consumption, and operating conditions. For example, a system
that supports battlefield communications might have such requirements as
weighing less than 200 grams, being no larger than 5 centimeters cubed, and
operating for 48 hours on a fully charged 1200 milliwatt lithium ion battery.

 ■ Supportability requirements describe how a system is installed, configured, moni-
tored, and updated. For example, requirements for a game installed on a home
PC might include automatic configuration to maximize performance on existing
hardware, error reporting, and download of updates from a support server.

As with any set of requirements categories, FURPS+ has some gray areas
and some overlaps among its categories. For example, is a requirement that a
battlefield communications device survive immersion in water and operate across
a temperature range of –20°C to 50°C a performance or physical requirement?

User interface, ease of use

Failure rate, recovery methods

Response time, throughput

Access controls, encryption

Functional

Requirement
categories

FURPS +
categories

Nonfunctional Usability

Reliability

Performance

Security

Functions Business rules and processes

Example
requirements

FIGURe 2-3 FURPS acronym
for functional, usability, reliabil-
ity, performance, and security
requirements

performance requirements the require-
ments that describe operational characteris-
tics related to measures of workload, such as
throughput and response time

security requirements the requirements
that describe how access to the application
will be controlled and how data will be pro-
tected during storage and transmission

FURPS+ an extension of FURPS that
includes design constraints as well as imple-
mentation, system interface, physical, and
supportability requirements

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

47CHAPTER 2 ■ Investigating System Requirements

Is a restriction to use no more than 100 megabytes of memory a performance or
design requirement? Is a requirement to secure communication between work-
stations and servers with 1024-bit encryption a performance, design, or imple-
mentation requirement? What is important is that all requirements be identified
and precisely stated early in the development process and that inconsistencies or
trade-offs among them be resolved.

 ■ Stakeholders
Stakeholders are your primary source of information for system requirements.
Stakeholders are all the people who have an interest in the successful imple-
mentation of the system. Depending on the nature and scope of the system, this
can be a small group, or a large, diverse group. For example, when implement-
ing a comprehensive accounting system for a publicly traded corporation in the
United States, the stakeholders include bookkeepers, accountants, managers and
executives, customers, suppliers, auditors, investors, the SEC, and the Internal
Revenue Service (IRS). Each stakeholder group interacts with the system in dif-
ferent ways, and each has a unique perspective on system requirements. Before
gathering detailed information, the analyst identifies every type of stakeholder
who has an interest in the new system and ensures that critical people from each
stakeholder category are available to serve as the business experts.

One useful way to help identify all the interested stakeholders is to con-
sider two dimensions by which they vary: internal stakeholders versus exter-
nal stakeholders and operational stakeholders versus executive stakeholders
(see Figure 2-4). Internal stakeholders are those within the organization
who interact with the system or have a significant interest in its operation or
success. You may be tempted to define internal stakeholders as employees of
an organization, but some organizations—such as nonprofits and educational
institutions—have internal users (e.g., volunteers and students) who are not
employees. External stakeholders are those outside the organization’s control
and influence—although this distinction can also be fuzzy, such as when an
organization’s strategic partners (e.g., suppliers and shipping companies) interact
directly with internal systems.

Operational stakeholders are those who regularly interact with a system in
the course of their jobs or lives. Examples include accountants interacting with
an accounting or billing system, factory supervisors interacting with a production
scheduling system, customers interacting with an Internet storefront, and patients

Regulators

Partner organizations

Bookkeepers

Operational Executive

Accountants

Internal auditors

Internal

External

Customers

Investors

Board of directors

Senior managers

External
auditors

Operational
managers

FIGURe 2-4 Stakeholders of a
comprehensive accounting system
for a publicly traded company

internal stakeholders persons within the
organization who interact with the system or
have a significant interest in its operation or
success

external stakeholders persons outside
the organization’s control and influence who
interact with the system or have a significant
interest in its operation or success

operational stakeholders persons who
regularly interact with a system in the course
of their jobs or lives

Stakeholders persons who have an
 interest in the successful implementation of
the system

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

48 PART 2 ■ Systems Analysis Activities

who interact with a health-care Web site, Facebook page, or Twitter newsfeed.
Operational users are a key source of requirements information, especially as it
pertains to user interfaces and related functionality. Executive stakeholders are
those who do not interact directly with the system, but who either use informa-
tion produced by the system or have a significant financial or other interest in its
operation and success. Examples include an organization’s senior managers and
board of directors, regulatory agencies, and taxing authorities.

Including such stakeholders in analysis activities is critical because the infor-
mation they possess may not be obvious or widely known in the organization.
In addition, system requirements imposed by executive stakeholders, especially
external ones, often have significant legal and financial implications. For exam-
ple, consider the potential effects of IRS regulations on an accounting system, or
the effects of federal and state privacy laws on a social networking system.

Two other stakeholder groups that do not neatly fall into the categories just
described deserve special attention. The client is the person or group that pro-
vides the funding for the project. In many cases, the client is senior management.
However, clients may also be a separate group, such as a corporation’s board of
directors, executives in a parent company, or the board of regents of a university.
The project team includes the client in its list of important stakeholders because
the team must provide periodic status reviews to the client throughout develop-
ment. The client or a direct representative on a steering or oversight committee
also usually approves stages of the project and releases funds.

An organization’s technical and support staff are also stakeholders in any sys-
tem. The technical staff includes people who establish and maintain the computing
environment of the organization. Support staff provide user training, troubleshoot-
ing, and related services. Both groups should provide guidance in such areas as pro-
gramming language, computer platforms, network interfaces, and existing systems
and their support issues. Any new system must fit within an organization’s existing
technology architecture, application architecture, and support environment. Thus,
technical and support representatives are important stakeholders.

 ■ The Stakeholders for RMO
As a starting point for identifying CSMS stakeholders, it is helpful to develop a
list of current CSS stakeholders, which include:

 ■ Phone/mail sales order representatives
 ■ Warehouse and shipping personnel
 ■ Marketing personnel who maintain online catalog information
 ■ Marketing, sales, accounting, and financial managers
 ■ Senior executives
 ■ Customers
 ■ External shippers (e.g., UPS and FedEx)

Because the CSMS will take over existing functions of the CSS, the list of CSMS
stakeholders includes all the stakeholders in the CSS list; however, there are some
subtle differences. For example, the inclusion of social networking functions in the
CSMS and the planned ability to share Mountain Bucks expands the definition of
a customer. Whereas the old CSS was intended for use by potential customers visit-
ing the Web site, the new system will interact with a much larger group of external
stakeholders, including friends and family of existing customers and potentially all
users of popular social networking sites. In essence, the stakeholder group “Cus-
tomers” is much larger, more diverse, and includes people who have not purchased
from RMO. Ensuring that the viewpoints and requirements of this diverse group
are represented during analysis activities will be a considerable challenge.

Expanded functionality for sales promotions with partner organizations cre-
ates an entirely new group of external stakeholders within those partner organi-
zations. At this point, it is unclear whether that group will include operational

executive stakeholders persons who
don’t interact directly with the system but
who either use information produced by the
system or have a significant financial or other
interest in its operation and success

client a person or group that provides the
funding for the system development project

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

49CHAPTER 2 ■ Investigating System Requirements

stakeholders, executive stakeholders, or both; nor is it known exactly how those
stakeholders will interact with the system. Ensuring adequate input from this
new group of stakeholders begins with defining precisely who they are.

RMO is a privately held company; John and Liz Blankens are the owners,
and they hold two senior management positions. This is significant because the
key operational systems of any publicly traded company “inherit” many exter-
nal stakeholders due to the flow of information from those systems to the orga-
nization’s financial reports. RMO is audited by an external accounting firm,
primarily to ensure access to bank loans and other private financing.

As owners and senior managers, John and Liz are the primary clients, but so
are other senior executives who form a collaborative decision-making body. In
addition, existing technical and support staff are key stakeholders. Figure 2-5 sum-
marizes the internal managerial stakeholders in the form of an organization chart.

FIGURe 2-5 RMO management
stakeholders involved in the CSMS
project

Jason Nadold
Manager

Warehousing/Shipping

John Blankens
President CEO

William Mcdougal
VP Marketing

and Sales

Genny Monson
AVP Retail

Sales

Brian Haddock
Director of
Operations

Karen Hansen
Director of

New Design

Henry Manwaring
Director of U.S.

Purchasing

Nathan Brunner
AVP

Production

Maryann Whitehead
Director of International

Purchasing

Elizabeth Blankens
VP Merchandising

and Distribution

Joann White
VP Finance and

Systems

April Sterling
AVP Accounting

and Finance

Joe Jones
AVP

Marketing/Advertising

Robert Schneider
Director of

Catalog Sales

Christine Roundy
Manager of Telephone

Sales

Mac Preston
Chief Information

Officer

John Macmurty
Director of System

Development

Ann Hamilton
Director of System

Support

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

50 PART 2 ■ Systems Analysis Activities

 ■ Information-Gathering Techniques
There are many ways that information about the system requirements can be
collected. RMO often uses these standard information-gathering techniques:

 ■ Interviewing users and other stakeholders
 ■ Distributing and collecting questionnaires
 ■ Reviewing inputs, outputs, and documentation
 ■ Observing and documenting business procedures
 ■ Researching vendor solutions
 ■ Collecting active user comments and suggestions

All these methods have proven to be effective, although some are more effi-
cient than others. In most cases, analysts combine methods to increase their effec-
tiveness and efficiency and to provide a comprehensive fact-finding approach.

 ■ Interview Users and Other Stakeholders
Interviewing users and other stakeholders is an effective way to understand
business functions and business rules. Unfortunately, it is also the most time-
consuming and resource-expensive option. In this method, systems analysts do
the following:

 ■ Prepare detailed questions
 ■ Meet with individuals or groups of users
 ■ Obtain and discuss answers to the questions
 ■ Document the answers
 ■ Follow up as needed in future meetings or interviews

Obviously, this process may take some time, so it usually requires multiple
sessions with each of the users or user groups.

 ❚ Question Themes
Whether in informal meetings, formal interviews, or as part of a questionnaire
or survey, analysts ask questions. But which questions should analysts ask?
 Figure 2-6 shows three major themes that guide the analysts when they are ask-
ing questions to define system requirements; it also shows sample questions that
arise from those themes.

What Are the Business Processes? The analyst must obtain a comprehensive list
of all the business processes. In most cases, the users provide answers in terms
of the current system, so the analyst must carefully discern which of those func-
tions are fundamental and which may possibly be eliminated with an improved
system. For example, salesclerks might indicate that the first task they perform
when a customer places an order is to check the customer’s credit history. In the
new system, salesclerks might never need to perform that function; the system
might perform the check automatically. The function remains a system require-
ment, but the method of carrying out the function and its timing is changed.

Theme Questions to users

What are the business operations and processes? What do you do?

What information is needed to perform those
operations?

How should those operations be performed? How do you do it?
What steps do you follow?
How could they be done differently?

What information do you use?
What inputs do you use?
What outputs do you produce?

FIGURe 2-6 Themes for information-
gathering questions

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

51CHAPTER 2 ■ Investigating System Requirements

How Are the Business Processes Performed? Determining how business pro-
cesses are performed begins with the current system but gradually moves to the
new system. The goal is to define how the new system should support the func-
tion rather than how it supports it now. The analyst must be able to help the
user visualize new and more efficient approaches to performing the business
processes made possible by new technology or processes.

What Information Is Required? Some information inputs are formal; others are
informal. When questioning the user, the analyst should specifically ask about
exceptions or unusual situations in order to identify additional (nonroutine) in-
formation requirements. In this theme and the previous one, detail is the watch-
word. An analyst must understand the nitty-gritty detail to develop a correct
solution.

 ❚ Question Types
Questions can be roughly divided into two types:

 ■ open-ended questions—such as “How do you do this function?”—
encourage discussion and explanation.

 ■ closed-ended questions—such as “How many forms a day do you
 process?”—are used to get specific facts.

Generally, open-ended questions help to start a discussion and enable a large
number of requirements to be uncovered fairly quickly. Note that all the ques-
tions in the previous section are open ended. A discussion that starts with open-
ended questions usually shifts gradually to closed-ended questions that elicit or
confirm specific details of a business process.

 ❚ Focus of Questions—Current System or New?
A significant question that faces all analysts is how much effort to expend study-
ing and documenting the existing system (if one exists). Excess attention to an
existing system can consume considerable time and can result in simply updat-
ing that system with newer technology. As a result, no matter how inefficient
the current system is, system developers simply reimplement the procedures that
are already in place. On the other hand, if a new system inherits many or all of
the requirements of an existing system, then an analyst risks missing important
requirements through insufficient study of the existing system.

To minimize both risks, analysts must balance the review of current busi-
ness functions with discovery of new system requirements. It is still critical to
have a complete, correct set of system requirements, but in today’s fast-paced
world, there is no time or money to review all the old systems and document all
the inefficient procedures. In fact, in today’s development environment, one of
the most valuable capabilities that a good system developer can bring is a new
perspective to the problem.

 ❚ Interview Preparation, Conduct, and Follow-Up
Figure 2-7 is a sample checklist that summarizes the major points to be covered;
it is useful in preparing for, conducting, and following up an interview.

Preparing for the Interview Every successful interview requires preparation.
The first and most important step in preparing for an interview is to establish
its objective. In other words, you must determine what you want to accomplish
with this interview. Write down the objective so it is firmly established in your
mind. The second step is to determine which stakeholders should be interviewed.
A small number of interviewees is generally best when the objective is narrow or
of a fact-finding nature. Larger groups are better if the objective is more open
ended, such as when generating and evaluating new ideas. However, it can be

open-ended questions questions that
encourage discussion or explanation

closed-ended questions questions that
elicit specific facts

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

52 PART 2 ■ Systems Analysis Activities

difficult to manage a large group meeting well enough to ensure high-quality in-
put from all participants. If possible, have at least two analysts involved in every
interview, and have them compare notes afterward to ensure accuracy.

The next step is to prepare detailed questions to be used in the interview.
Write down a list of specific questions, and prepare notes based on the forms or
reports received earlier. Usually, you should prepare a list of questions that are
consistent with the objective of the interview. Open-ended questions and closed-
ended questions are both appropriate. Generally, open-ended questions help get
the discussion started and encourage the user to explain all the details of the
business process and the rules.

The last step is to make the final interview arrangements and then com-
municate those arrangements to all participants. A specific time and location
should be established. If possible, a quiet location should be chosen to avoid
interruptions. Each participant should know the objective of the meeting and,
when appropriate, should have a chance to preview the questions or materials to
be used. Interviews consume a substantial amount of time, and they can be made
more efficient if each participant knows beforehand what is to be accomplished.

Conducting the Interview The usual rules of workplace meetings apply dur-
ing stakeholder interviews: Plan ahead, arrive early, and ensure that the room
is prepared and that needed resources are available. Limit the time of the in-
terview for the benefit of the analyst(s) and stakeholder(s); stakeholders have
other responsibilities, and the analysts can absorb only so much information at
one time. It is better to have several shorter interviews than one long interview.
A series of interviews provides an opportunity to absorb the material and then
return for clarification later if needed.

Look for exception and error conditions. Look for opportunities to ask
“what if” questions. “What if it doesn’t arrive? What if the signature is miss-
ing? What if the balance is incorrect? What if two orders are exactly the same?”
The essence of good systems analysis is understanding all the “what ifs.” Make
a conscious effort to identify all the exception conditions and then ask about
them. More than any other skill, the ability to think of the exceptions will
help you discover the detailed business rules. It is a hard skill to teach from a

Establish the objective for the interview.
Determine correct user(s) to be involved.
Determine project team members to participate.
Build a list of questions and issues to be discussed.
Review related documents and materials.
Set the time and location.
Inform all participants of objective, time, and locations.

Checklist for Conducting an Interview

Before

During

Review notes for accuracy, completeness, and understanding.
Transfer information to appropriate models and documents.
Identify areas needing further clari�cation.
Thank the participants.
Follow up on open and unanswered questions.

Arrive on time.
Look for exception and error conditions.
Probe for details.
Take thorough notes.
Identify and document unanswered items or open questions.

After

FIGURe 2-7 Sample checklist to
prepare for user interviews

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

53CHAPTER 2 ■ Investigating System Requirements

textbook; experience will hone this skill. You will teach yourself this skill by
conscientiously practicing it.

Probe for details. In addition to looking for exception conditions, the ana-
lyst must probe to ensure a complete understanding of all procedures and rules.
One of the most difficult skills to learn as a new systems analyst is how to get
enough details. Frequently, it is easy to get a general overview of how a pro-
cess works; but do not be afraid to ask detailed questions until you thoroughly
understand how the process works and what information is used. You cannot do
effective systems analysis by glossing over the details.

Take careful notes. It is a good idea to take handwritten notes. Usually,
tape recorders make users nervous. However, taking notes signals that you think
the information you are obtaining is important, and the user is complimented.
If two analysts conduct each interview, they can compare notes later. Identify
and document in your notes any unanswered questions or outstanding issues
that were not resolved. A good set of notes provides the basis for building the
analysis models and for establishing a basis for the next interview session.

Figure 2-8 is a sample agenda for an interview session. Obviously, you do
not need to conform exactly to a particular agenda. However, as with the inter-
view checklist shown in Figure 2-7, this figure will help prod your memory on
issues and items that should be discussed in an interview. Make a copy and use
it. As you develop your own style, you can modify the checklist to the way you
like to work.

Discussion and Interview Agenda

Setting

Objective of Interview
Determine processing rules for sales commission rates

Date,Time, and Location
April 21, 2016, at 9:00 a.m. in William McDougal’s office

User Participants (names and titles/positions)
William McDougal, vice president of marketing and sales, and
several of his staff

Project Team Participants
Mary Ellen Green and Jim Williams

Interview/Discussion

1. Who is eligible for sales commissions?
2. What is the basis for commissions? What rates are paid?
3. How is commission for returns handled?
4. Are there special incentives? Contests? Programs based on time?
5. Is there a variable scale for commissions? Are there quotas?
6. What are the exceptions?

Follow-Up

Important decisions or answers to questions
See attached write-up on commission policies

Open items not resolved with assignments for solution
See Item numbers 2 and 3 on open items list

Date and time of next meeting or follow-up session
April 28, 2016, at 9:00 a.m.

FIGURe 2-8 Sample interview
session agenda with follow-up
information

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

54 PART 2 ■ Systems Analysis Activities

Following up the Interview Follow-up is an important part of each interview.
The first task is to absorb, understand, and document the information that was
obtained. Generally, analysts document the details of the interview by con-
structing models of the business processes and writing textual descriptions of
nonfunctional requirements. These tasks should be completed as soon after the
interview as possible and the results distributed to the interview participants for
validation. If the modeling methods are complex or unfamiliar to the users, the
analyst should schedule follow-up meetings to explain and verify the models, as
described in the last section of this chapter.

During the interview, you probably asked some “what if” questions that
the users could not answer. They are usually policy questions raised by the new
system that management has not considered before. It is extremely important
that these questions not get lost or forgotten. Figure 2-9 shows a sample table
for tracking outstanding or unresolved issues for RMO. The table includes ques-
tions posed by users or analysts and responsibilities assigned for resolving the
issues. If several teams are working, a combined list can be maintained. Other
columns that might be added to the list are an explanation of the problem’s reso-
lution and the date resolved.

Finally, make a list of new questions based on areas that need further elabo-
ration or that are missing information. This list will prepare you for the next
interview.

 ■ Distribute and Collect Questionnaires
Questionnaires enable analysts to collect information from a large number of
stakeholders. Even if the stakeholders are widely distributed geographically, they
can still help define requirements through questionnaires. Questionnaires are
often used to obtain preliminary insight into stakeholder information needs,
which helps to determine areas that need further research using other methods.

Figure 2-10 is a sample questionnaire showing three types of questions.
The first part has closed-ended questions to determine quantitative information.
The second part consists of opinion questions in which respondents are asked
whether they agree or disagree with the statement. Both types of questions are
useful for tabulating and determining quantitative averages. The third part
requests an explanation of a procedure or problem. Questions such as these are
good as a preliminary investigation to help direct further fact-finding activities.

Questionnaires are not well suited to helping you learn about processes,
workflows, or techniques. Open-ended questions such as “How do you do
this process?” are best answered by using interviews or observation. Although
a questionnaire can contain a very limited number of open-ended questions,
stakeholders frequently do not return questionnaires that contain many open-
ended questions.

ID Issue title Date identified Target
end date

Responsible
project person User contact Comments

1 Partial
shipments

6-12-2016 7-15-2016 Jim Williams Jason Nadold Ship partials or wait
for full shipment?

2 Returns and
commissions

7-01-2016 9-01-2016 Jim Williams William
McDougal

Are commissions
recouped on
returns?

3 Extra
commissions

7-01-2016 8-01-2016 Mary Ellen Green William
McDougal

How to handle com-
missions on special
promotions?

FIGURe 2-9 Sample open-items list

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

55CHAPTER 2 ■ Investigating System Requirements

 ■ Review Inputs, Outputs, and Procedures
There are two sources of information about inputs, outputs, and procedures.
One source is external to the organization—industry-wide professional orga-
nizations and other companies. It may not be easy to obtain information from
other companies, but they are a potential source of important information.
Sometimes, industry journals and magazines report the findings of “best prac-
tices” studies. The project team would be negligent in its duties if its members
were not familiar with best practice information.

The second source of inputs, outputs, and procedures includes existing busi-
ness documents and procedure descriptions within the organization. Reviewing

RMO Questionnaire

This questionnaire is being sent to all telephone-order sales personnel. As you know, RMO is developing a new
customer support system for order taking and customer service.

The purpose of this questionnaire is to obtain preliminary information to assist in defining the requirements for
the new system. Follow-up discussions will be held to permit everybody to elaborate on the system requirements.

Part I. Answer these questions based on a typical four-hour shift.
1. How many phone calls do you receive?___
2. How many phone calls are necessary to place an order for a product?_______________________________
3. How many phone calls are for information about RMO products, that is, questions only?_________________
4. Estimate how many times during a shift customers request items that are out of stock.__________________
5. Of those out-of-stock requests, what percentage of the time does the customer desire to put the item
 on back order?______________%
6. How many times does a customer try to order from an expired catalog?______________________________
7. How many times does a customer cancel an order in the middle of the conversation?___________________
8. How many times does an order get denied due to bad credit?______________________________________

Part II. Circle the appropriate number on the scale from 1 to 7 based on how strongly you
agree or disagree with the statement.

Question Strongly Agree Strongly Disagree

It would help me do my job better to have longer 1 2 3 4 5 6 7
descriptions of products available while talking
to a customer.

It would help me do my job better if I had the 1 2 3 4 5 6 7
past purchase history of the customer available.

I could provide better service to the customer if I 1 2 3 4 5 6 7
had information about accessories that were
appropriate for the items ordered.

The computer response time is slow and causes 1 2 3 4 5 6 7
difficulties in responding to customer requests.

Part III. Please enter your opinions and comments.

Please briefly identify the problems with the current system that you would like to see resolved in a new system.

FIGURe 2-10 Sample questionnaire

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

56 PART 2 ■ Systems Analysis Activities

internal documents and procedures serves two purposes. First, it is a good way
to get a preliminary understanding of the processes. Second, existing inputs,
outputs, and documents can serve as visual aids for the interview and as the
working documents for discussion (see Figure 2-11). Discussion can focus on a
specific input or output, its objective, its distribution, and its information con-
tent. The discussion should also include specific business events that initiate
the use of an input or generation of an output. Several different business events
might require the same form, and specific information about the event and the
business process is critical. It is always helpful to have screens and forms that
have been filled out with real information to ensure that the analyst obtains a
correct understanding of the data content.

Reviewing the documentation of existing procedures helps identify busi-
ness rules that may not come up in the interviews. Analyzing formal procedure
documentation also helps reveal discrepancies and redundancies in the business
processes. However, procedure documents frequently are not kept up to date,
and they commonly include errors. To ensure that the assumptions and business
rules that derive from the existing documentation are correct, analysts should
review them with the users.

 ■ Observe and Document Business Processes
Firsthand experience is invaluable to understand exactly what occurs within
business processes. More than any other activity, observing a business process in
action will help you understand the business functions. However, while observ-
ing existing processes, you must also be able to visualize the new system’s asso-
ciated business processes. That is, as you observe the current business processes
to understand the fundamental business needs, you should never forget that the
processes could and often should change to be made more efficient. Do not get
locked into believing there is only one way of performing the process.

Ridgeline Mountain Outfitters—Customer Order Form
Name and address of person placing order.
(Please verify your mailing address and make correction below.)
Order Date

Description

Name

Address Apt. No

City State Zip

Phone: Day () Evening ()

Item No. Style Color Size
Sleeve
Length Qty Monogram Style

Price
Each Total

Method of Payment

Check/Money Order Gift Certificate(s) AMOUNT ENCLOSED $

Account Number

American Express MasterCard VISA

Signature

Other

Expiration Date

MO YR

Delivery Phone ()

MERCHANDISE TOTAL

Regular FedEx shipping $4.50 per U.S. delivery address
(Items are sent within 24 hours for delivery in 2 to 4 days)

Please add $4.50 per each additional U.S. delivery address

FedEx Standard Overnight Service

Any additional freight charges

International Shipping (see shipping information on back)

Gift Order or Ship To: (Use only if different from address at left.)

Name

Address Apt. No

City State Zip

Gift Card Message

Gift Address for this Shipment Only Permanent Change of Address

FIGURe 2-11 RMO mail-order form used as a visual aid during an interview

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

57CHAPTER 2 ■ Investigating System Requirements

You can observe a business process in many ways, ranging from a quick
walk-through of an office or plant to doing the work yourself. A quick walk-
through gives a general understanding of the layout of the office, the need
for and use of computer equipment, and the general workflow. Spending sev-
eral hours observing users at their jobs helps you understand the details of
using the computer system and carrying out business functions. Being trained
as a user and actually doing the job enables you to discover the difficulties of
learning new procedures, the importance of a system that is easy to use, and
the stumbling blocks and bottlenecks of existing procedures and information
sources.

It is not necessary to observe all processes at the same level of detail. A quick
walk-through may be sufficient for one process, whereas a process that is critical
or more difficult to understand might require an extended observation period.
If you remember that the objective is a complete understanding of the business
processes and rules, you can assess where to spend your time to gain that under-
standing. As with interviewing, it is usually better if two analysts combine their
efforts in observing procedures.

Observation often makes the users nervous, so you need to be as unobtrusive
as possible. You can put users at ease in several ways, such as by working along-
side a user or observing several users at once. Common sense and sensitivity to
the needs and feelings of the users will usually result in a positive experience.

 ■ Research Vendor Solutions
Many of the problems and opportunities that companies want to address with
new information systems have already been solved by other companies. In addi-
tion, consulting firms often have experience with the same problems, and soft-
ware firms may have packaged solutions for a particular business need. Taking
advantage of existing knowledge or solutions can avoid costly mistakes and save
time and money.

There are three positive contributions and one danger in exploring existing
solutions. First, researching existing solutions will frequently help users generate
new ideas for how to better perform their business functions. Seeing how some-
one else solved a problem and applying that idea to the culture and structure of
the existing organization will often provide viable alternative solutions for busi-
ness needs.

Second, some of these solutions are excellent and state of the art. Without
including this research, the development team may create a system that is obso-
lete even before it is designed. Companies need solutions that not only solve
basic business problems, but that are up to date with competitive practices.

Third, it is often cheaper and less risky to buy a solution rather than to build
it. If the solution meets the needs of the company and can be purchased, then
that is usually a safer, quicker, and less-expensive route.

The danger in exploring existing solutions is that the users and even the
systems analysts may want to buy one of the alternatives immediately. But if
a solution, such as a packaged software system, is purchased too early in the
process, the company’s needs may not be thoroughly investigated. Too many
companies have purchased systems only to find out later that they only support
half the functions that were needed. Do not rush into a purchase decision until
requirements are fully defined and all viable alternatives have been thoroughly
investigated.

 ■ Collect Active User Comments and Suggestions
As discussed in Chapter 1 and earlier in this chapter, system development nor-
mally proceeds with analysis, design, and other activities spread across mul-
tiple iterations. Portions of the system are constructed and tested during each

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

58 PART 2 ■ Systems Analysis Activities

iteration. Users and other stakeholders perform the initial testing of system
functions during the iteration in which those functions are implemented. They
also test and use those same functions during later iterations.

User feedback from initial and later testing is a valuable source of require-
ments information. Yet, interviews, discussions, and model reviews are an
imperfect way of eliciting complete and accurate requirements. The phrase “I’ll
know it when I see it” applies well to requirements definition. Users often can-
not completely or accurately state their requirements until they can interact with
a live system that implements those requirements. Based on those interactions,
users can develop concrete suggestions for improvement and identify missing or
poorly implemented requirements.

 ■ Models and Modeling
Modeling is an important part of systems analysis and design. You saw many
different models in Chapter 1 for the Tradeshow System. Analysts build mod-
els to describe system requirements and use those models to communicate with
users and designers. By developing a model and reviewing it with a user, an ana-
lyst demonstrates an understanding of the user’s requirements. If the user spots
errors or omissions, they are incorporated into the model before it becomes the
basis for subsequent design and implementation activities. Figure 2-12 summa-
rizes the key reasons for building and using models.

Designers construct high-level and detailed models to describe system
components and their interactions. Design models serve as a scratch pad for
evaluating design alternatives and as a way to communicate the final design to
programmers, vendors, and others who will build, acquire, and assemble com-
ponents to create the final system. In general, models built during one SDLC
activity are “consumed” during other activities.

A model is a representation or abstraction of some aspect of the system
being built. There are dozens of different models that an analyst or designer
might develop and use (see Figure 2-13). Although this book emphasizes mod-
els and techniques for creating models, it is important to remember that system
projects vary in the number of models required and in their formality. Smaller,
simpler system projects will not need models showing every system detail, par-
ticularly when the project team has experience with the type of system being
built. Sometimes, the key models are created informally in a few hours. Although
models are often created by using specialized software tools, useful and impor-
tant models are sometimes drawn quickly over lunch on a paper napkin or in
an airport waiting room on the back of an envelope! As with any development
activity, an iterative approach is used for creating models. The first draft of a
model has some, but not all details worked out. The next iteration might fill in
more details or correct previous misconceptions.

Learning from the modeling process

Reducing complexity by abstraction

Remembering all the details

Communicating with other development team members

Communicating with a variety of users and stakeholders

Documenting what was done for future maintenance/enhancement

FIGURe 2-12 Reasons for
modeling

model representation or abstraction of
some aspect of a system

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

59CHAPTER 2 ■ Investigating System Requirements

Analysis and design models can be grouped into three generic types:

 ■ Textual models. Analysts use such textual models as memos, reports,
narratives, and lists to describe requirements that are detailed and are diffi-
cult to represent in other ways. The event list and use case descriptions (see
icons shown in Figure 2-13) are two examples of textual models. Narrative
description is often the best way to initially record information gathered
verbally from stakeholders, such as during an interview.

 ■ Graphical models. Graphical models make it easier to understand com-
plex relationships that are difficult to follow when described as a list or
narrative. Recall the old saying that a picture is worth a thousand words.
In system development, a carefully constructed graphical model might be
worth a million words! Some graphical models actually look similar to a
real-world part of the system, such as a screen design or a report layout
design. However, the graphical models developed during analysis activities
typically represent more abstract things, such as external agents, processes,
data, objects, messages, and connections.

 ■ Mathematical models. Mathematical models are one or more formulas
that describe technical aspects of a system. Analysts often use mathemati-
cal models to represent functional requirements for scientific and engineer-
ing applications and occasionally use them to describe business system
requirements in areas such as accounting and inventory control. Analysts
and designers use mathematical models to describe nonfunctional require-
ments and operational parameters such as network throughput or database
query response time.

Many graphical models used in system development are drawn accord-
ing to the notation specified by the Unified Modeling Language (UML). In
 Figure 2-13, the use case diagram, class diagram, activity diagram, sequence
diagram, communication diagram, and state machine diagram are UML graphi-
cal models. UML is the standard set of model constructs and notations defined
by the Object Management Group (OMG), a standards organization for sys-
tem development. By using UML, analysts and end users are able to depict and

1 buy new car

2 sell car

3 get car serviced

4 make payment

5 trade in car

Event list Use case
description

Use case
diagram

Sequence
diagram

Communication
diagram

State machine
diagram

Class diagram

Activity
diagram

FIGURe 2-13 Some analysis and
design models

textual models text-based system models
such as memos, reports, narratives, and lists

graphical models system models that use
pictures and other graphical elements to cre-
ate a diagram

mathematical models system models
that describes requirements numerically or as
mathematical expressions

Unified Modeling Language (UML)
a standard set of information system model
constructs and notations defined by the
Object Management Group

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

60 PART 2 ■ Systems Analysis Activities

understand a variety of specific diagrams used in a system development project.
Prior to UML, there was no standard, so diagrams could be confusing, and they
varied from company to company (and from book to book).

In later chapters, you will learn how to develop many of these analysis and
design models. The first UML diagram covered in detail is the activity diagram.

 ■ Documenting Workflows with Activity Diagrams
As you gather information about business processes, you will need to document
your results as a workflow. A workflow is the sequence of work steps that com-
plete one business transaction or customer request. Workflows may be simple or
complex. Complex workflows can be composed of dozens or hundreds of work
steps and may include participants from different parts of an organization.

One effective way to capture this information is with a UML activity dia-
gram. An activity diagram describes the various user (or system) activities, the
person or component that completes each activity, and the sequential flow of
these activities.

Figure 2-14 shows the basic symbols used in an activity diagram. The flat-
tened ovals represent the individual activities in a workflow. The connecting
arrows represent the sequence of the activities. The black circles denote the
beginning and the ending of the workflow. The diamond is a decision point at
which the flow of the process will either follow one path or another. The heavy
solid line is a synchronization bar, which either splits the path into multiple
concurrent paths or recombines concurrent paths. The swimlane represents an
agent who performs the activities. It is called a swimlane because each agent fol-
lows a path parallel with other agents in the workflow, as with swimmers in a
swimming pool.

Figure 2-15 is an activity diagram that describes the order fulfillment pro-
cess for the current RMO CSMS. Processing begins when the customer has
completed the order checkout process and the warehouse begins order fulfill-
ment. The diagram describes the back-and-forth flow of information and con-
trol between the order subsystem, inventory subsystem, warehouse(s), and
shipper. The diagram is simplified because it omits many error-handling path-
ways, including what happens if enough item stock is on hand to fulfill only part
of an order.

workflow a sequence of work steps that
completely handle one business transaction
or customer request

activity diagram a UML diagram that
describes user (or system) activities, the per-
son or component that completes each activ-
ity, and the sequential flow of these activities

synchronization bar an activity diagram
component that either splits a control path
into multiple concurrent paths or recombines
concurrent paths

swimlane an activity diagram component
that divides the workflow activities into
groups showing which agent performs which
activity

Ending activity
(Pseudo)

Activity

Transition arrow

Starting activity
(Pseudo)

Decision
activity

Another way
to show decision

Synchronization
bar (Split)

Synchronization
bar (Join)

Manager

Review
financials

Prepare
report

[yes][no]

Swimlane
heading

FIGURe 2-14 Activity diagram
symbols

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

61CHAPTER 2 ■ Investigating System Requirements

Order subsystem

Pick Item from
stock

Prepare shipment Generate tracking
record

Store shipment
record

Transmit shipment Receive shipment

Decrement item
stock count

Transmit
shipping details

Update order
shipment status

Inventory
subsystem

Warehouse
Shipping
company

Find warehouse
with sufficient stock

Identify order

Select order
to process

Stock
found?

For each item
on order

End for each item

FIGURe 2-15 Simple activity diagram for order fulfillment after online checkout

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

62 PART 2 ■ Systems Analysis Activities

Figure 2-16 illustrates another workflow diagram, which demonstrates
some new concepts. In this example, a customer is ordering a product that has
to be manufactured to match customer specifications. To show that the salesper-
son sends the order to Engineering, the diagram uses a new symbol to emphasize
the transmission of the document between Sales and Engineering. After Engi-
neering develops the specifications, two concurrent activities happen: Purchas-
ing orders the materials, and Production writes the program for the automated
milling machines. These two activities are completely independent and can
occur at the same time. Notice that one synchronization bar splits the path into
two concurrent paths and that another synchronization bar reconnects them.
Finally, Scheduling puts the order on the Production schedule.

Creating activity diagrams to document workflows is straightforward.
The first step is to identify the agents to create the appropriate swimlanes. Next,
follow the various steps of the workflow and then make appropriate ovals for
the activities. Connect the activity ovals with arrows to show the workflow.
Here are a couple guidelines:

 ■ Use a decision symbol to represent an either/or situation—one path or the
other path but not both. As a shorthand notation, you can merge an activ-
ity (by using an oval) and a decision (by using a diamond) into a single oval

Salesperson Engineering Purchasing Production

Accept
order

Make
specifications

Buy
materials

Program
computer

Schedule
production

Scheduling

Order

FIGURe 2-16 Activity diagram showing concurrent paths

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

63CHAPTER 2 ■ Investigating System Requirements

with two exit arrows, as indicated on the right in Figure 2-14. This nota-
tion represents a decision (either/or) activity. Wherever you have an activity
that reads “verify” or “check,” you will probably require a decision—one
for the “accept” path and one for the “reject” path.

 ■ Use synchronization bars for parallel paths—situations in which both paths
are taken. Include a beginning and an ending synchronization bar. You can
also use synchronization bars to represent a loop, such as a “do while” pro-
gramming loop. Put the bar at the beginning of the loop and then describe
it as “for every.” Put another synchronization bar at the end of the loop
with the description “end for every.”

CHAPTER SUMMARy
This chapter focuses on system requirements, which is
the focus of the Core Process 3 (systems analysis) of
the SDLC. There are five primary activities of systems
analysis:

 ■ Gather detailed information.
 ■ Define requirements.
 ■ Prioritize requirements.
 ■ Develop user-interface dialogs.
 ■ Evaluate requirements with users.

Functional requirements are those that explain the
basic business functions that the new system must sup-
port. Nonfunctional requirements involve the system’s
objectives with regard to usability, reliability, perfor-
mance, and security.

Stakeholders include internal and external users
of the system and other persons or organizations that
have a vested interest in the system.

Analysts use many techniques to gather informa-
tion about requirements, including:

 ■ Interviews
 ■ Questionnaires
 ■ Documentation, input and output reviews
 ■ Process observation and documentation
 ■ Vendor solution research
 ■ Active comments and suggestions from users

Textual, graphical, and mathematical models are
developed to document requirements and as an aid in
evaluating requirements with users and other stake-
holders. Models are created when gathering informa-
tion about the system. They are also created when
designing the system. Unified Modeling Language
(UML) defines a collection of diagrams and constructs
used for system modeling.

UML activity diagrams are used to model work-
flows, a technique often used as an early requirements
model. Activity diagrams graphically model the steps
of a business process and the participants who per-
form them. Other models and UML diagrams are cov-
ered in later chapters.

internal stakeholders

mathematical models

model

nonfunctional requirements

open-ended questions

operational stakeholders

performance requirements

reliability requirements

security requirements

stakeholders

swimlane

synchronization bar

system requirements

technology architecture

textual models

Unified Modeling Language
(UML)

usability requirements

workflow

activity diagram

application architecture

client

closed-ended questions

executive stakeholders

external stakeholders

functional requirements

FURPS

FURPS+

graphical models

KEy TERMS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

64 PART 2 ■ Systems Analysis Activities

 7. Describe the open-items list and then explain
why it is important.

 8. List and briefly describe the six information-
gathering techniques.

 9. What is the purpose of an activity diagram?

 10. Draw and explain the symbols used on an
 activity diagram.

 11. Explain why the Unified Modeling Language
(UML) is important to use as a standard for
creating information systems models.

 1. List and briefly describe the five activities of
systems analysis.

 2. What are three types of models?

 3. What is the difference between functional re-
quirements and nonfunctional requirements?

 4. Describe the steps in preparing for, conducting,
and following up on an interview session.

 5. What are the benefits of doing vendor research
during information-gathering activities?

 6. What types of stakeholders should you include in
fact finding?

REvIEW QUESTIONS

PROBLEMS AND EXERCISES
 1. Provide an example of each of the three types

of models that might apply to designing a car, a
house, and an office building.

 2. One of the toughest problems in investigating
system requirements is to make sure they are
complete and comprehensive. How would you
ensure that you get all the right information dur-
ing an interview session?

 3. One of the problems you will encounter during
your investigation is scope creep (i.e., user requests
for additional features and functions). Scope creep
happens because users can have problems with the
current system and the system investigation may be
the first time anybody has listened to their needs.
How do you keep the system from including new
functions that expand the scope beyond the con-
straints imposed by the project schedule or budget?

 4. What would you do if you got conflicting an-
swers for the same procedure from two different
people you interviewed? What would you do if
one was a clerical person and the other was the
department manager?

 5. You have been assigned to resolve several issues
on the open-items list, and you are having a hard
time getting policy decisions from the user con-
tact. How can you encourage the user to finalize
these policies?

 6. In the running case of RMO, assume that you
have set up an interview with the manager of the
Shipping Department. Your objective is to deter-
mine how shipping works and what the informa-
tion requirements for the new system will be.
Make a list of questions—open ended and closed
ended—that you would use. Include any ques-
tions or techniques you would use to ensure you
find out about the exceptions.

 7. Develop an activity diagram based on the follow-
ing narrative. Note any ambiguities or questions
that you have as you develop the model. If you
need to make assumptions, also note them.

The Purchasing Department handles pur-
chase requests from other departments in the
company. People in the company who initiate
the original purchase request are the “custom-
ers” of the Purchasing Department. A case
worker within the Purchasing Department re-
ceives the request and monitors it until it is or-
dered and received.

Case workers process requests for the pur-
chase of products under $1,500, write a pur-
chase order, and then send it to the approved
vendor. Purchase requests over $1,500 must first
be sent out for bid from the vendor that sup-
plies the product. When the bids return, the case
worker selects one bid and then writes a pur-
chase order and sends it to the vendor.

 8. Develop an activity diagram based on the follow-
ing narrative. Note any ambiguities or questions
that you have as you develop the model. If you
need to make assumptions, also note them.

The Shipping Department receives all ship-
ments on outstanding purchase orders. When
the clerk in the Shipping Department receives
a shipment, he or she finds the outstanding
purchase order for those items. The clerk then
sends multiple copies of the shipment pack-
ing slip. One copy goes to Purchasing, and the
department updates its records to indicate that
the purchase order has been fulfilled. Another
copy goes to Accounting so a payment can be
made. A third copy goes to the requesting in-
house customer so he or she can receive the
shipment.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

65CHAPTER 2 ■ Investigating System Requirements

After payment is made, the Accounting
 Department sends a notification to Purchas-
ing. After the customer receives and accepts the
goods, he or she sends notification to Purchas-
ing. When Purchasing receives these other veri-
fications, it closes the purchase order as fulfilled
and paid.

 9. Conduct a fact-finding interview with someone
involved in a procedure that is used in a business
or organization. This person could be someone at
the university, in a small business in your neigh-
borhood, in the student volunteer office at the
university, in a doctor’s or dentist’s office, or in a
volunteer organization. Identify a process, such
as keeping student records, customer records, or

member records. Make a list of questions and then
conduct the interview. Remember, your objective
is to understand that procedure thoroughly (i.e., to
become an expert on that single procedure).

 10. Using RMO and the CSMS as your guide, de-
velop a list of all the procedures that may need
to be researched. You may want to think about
the exercise in the context of your experience
with such retailers as L.L. Bean, Lands’ End, or
Amazon.com. Check out the Internet marketing
done on the retailers’ Web sites and then think
about the underlying business procedures that
are required to support those sales activities. List
the procedures and then describe your under-
standing of each.

John and Jacob, Inc.: Online
Trading System
John and Jacob, Inc., is a regional brokerage firm that has
been successful over the last several years. Competition for
customers is intense in this industry. The large national firms
have very deep pockets, with many services to offer clients.
Severe competition also comes from discount and Internet
trading companies. However, John and Jacob has been able
to cultivate a substantial customer base from upper-middle-
income clients in the northeastern United States. To main-
tain a competitive edge with its customers, John and Jacob
is in the process of modernizing its online trading system.
The modernization will add new features to the existing sys-
tem and expand the range of interfaces beyond desktop and
laptop computers to include tablet computers and smart-
phones. The system will add Twitter messaging in addition
to continued support for traditional e-mail.

edward Finnigan, the project manager, is in the pro-
cess of identifying all the groups of people who should be
included in the development of the system requirements.
He is not quite sure exactly who should be included. Here
are the issues he is considering:

 ■ Users. The trading system will be used by custom-
ers and by staff in each of the company’s 30 trading
offices. Obviously, the brokers who are going to use
the system need to have input, but how should this be
done? edward also is not sure what approach would
be best to ensure that the requirements are complete
without requiring tremendous amounts of time from the
stakeholders. Including all the offices would increase
enthusiasm and support for the system, but it would
increase the time required to compile the information.
Furthermore, involving more brokers would bring diver-
gent opinions that would have to be reconciled.

 ■ Customers. The trading system will also include trade
order entry, investment analysis reports, trade confir-
mations, standard and customized reporting, and cus-
tomer statements. edward wonders how to involve
John and Jacob customers in the development of sys-
tem requirements. edward is sensitive to this issue
because many brokers have told him that their cus-
tomers are unhappy with the current system, and cus-
tomer complaints are sometimes posted to the public
comments area of the current Web site. He would like
to involve customers, but he does not know how.

 ■ Other stakeholders. edward knows he should involve
other stakeholders to help define system requirements.
He is not quite sure whom he should contact. Should he
go to senior executives? Should he contact middle man-
agement? Should he include such back-office functions
as accounting and investing? He is not quite sure how to
get organized or how to decide who should be involved.

1. What is the best method for edward to involve the
brokers (users) in the development of the updated
online trading system? Should he use a questionnaire?
Should he interview the brokers in each of the com-
pany’s 30 offices or would one or two brokers repre-
senting the entire group be better? How can edward
ensure that the information about requirements is
complete, yet not lose too much time doing so?

2. Concerning customer input for the new system, how can
edward involve customers in the process? How can he
interest them in participating? What methods can edward
use to ensure that the customers he involves are repre-
sentative of John and Jacob’s entire customer group?

3. As edward considers what other stakeholders he
should include, what are some criteria he should use?
Develop some guidelines to help him build a list of
people to include.

CASE STUDY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

66 PART 2 ■ Systems Analysis Activities

Community Board of Realtors®

The real estate business relies on an extensive amount of
information used in the buying and selling of real prop-
erty. Most communities of real estate agents and brokers
have formed cooperative organizations to help consoli-
date and distribute information on the real estate pro-
fession, real estate trends, properties in the community,
historical records of property sales, and current listings
of properties for sale. These organizations are usually
referred to as the Community Board of Realtors.

Research your local Community Board of Real-
tors to answer these questions:
1. Who are the stakeholders for the issues related to

real estate in your community, and what are their
main interests?

2. What types of information does the board col-
lect and make available to its members and to the
community?

3. Research the real estate industry in at least two
countries other than the United States. For each of
these countries, what are some of the cultural and
legal issues that differ from those in the United
States? If you were working on support for an in-
ternational real estate cooperative system, in what
ways would the information collection activity
process be complicated?

RUNNING CASE STUDIES

The Spring Breaks ‘R’ Us Travel Service
Spring Breaks ‘R’ Us (SBRU) is an online travel ser-
vice that books spring break trips to resorts for college
students. Students have booked spring break trips for
decades, but changes in technology have transformed
the travel business in recent years. SBRU moved away
from having campus reps with posted fliers and moved
to the Web early on. The basic idea is to get a group
of students to book a room at a resort for one of the
traditional spring break weeks. SBRU contracts with
dozens of resorts in key spring break destinations like
Florida, Texas, the Caribbean, and Mexico. Its Web
site shows information on each resort and includes
prices, available rooms, and special features. Students
can research and book a room, enter contract infor-
mation, and pay deposits and final payments through
the system. SBRU provides updated booking informa-
tion, resort information updates, and travel informa-
tion for booked students when they log in to the site.

The resorts also need access to information from
SBRU. They need to know about their bookings for
each week, the room types that are booked, and so
forth. Before the spring break booking season starts,
they need to enter information on their resorts, includ-
ing prices and special features. Resorts need to be paid
by SBRU for the bookings, and they need to be able to
report and collect for damages caused by spring break-
ers during their stay.

SBRU has recently decided to upgrade its system
to provide social networking features for students. It
is currently researching possibilities and collecting in-
formation from prospective customers about desirable

features and functions. From the business standpoint,
the idea is to increase bookings by enhancing the
 experience before, during, and after the trip.

 1. Who are the stakeholders for SBRU? For each
type of stakeholder, what aspects of the SBRU
booking system are of particular interest?

 2. What are the main functional requirements
for the major subsystems (i.e., resort relations,
student booking, accounting and finance, and
social networking)?

 3. Describe some usability requirements for stu-
dents, booking interactions, and social network-
ing interactions.

 4. Assuming that social networking at the resorts
will require wireless communication and con-
nection to the Internet, what are some reliability
requirements that resorts might be asked to
maintain? What are some performance require-
ments? Is this a bigger issue because resorts are
in international locations?

 5. What are some security requirements? Is there
any reason why students in Europe, Asia, or
other locations could not book rooms through
SBRU? What issues might be anticipated?

 6. To collect information on functional require-
ments for the social networking subsystem, what
are some techniques that might be used? Be
specific and include some sample questions you
might ask by using various techniques.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

67CHAPTER 2 ■ Investigating System Requirements

On the Spot Courier Services
As an employee of a large international courier and
shipping service, Bill Wiley met with many companies
that shipped and received packages almost every day.
He was frequently asked if his company could deliver
local packages on the same day. Over several months,
he observed that there appeared to be a substantial
need for courier services in the city in which he lived.
He decided that he would form his own courier deliv-
ery company called On the Spot to fill this need.

Bill began by listing his mobile telephone number
in the Yellow Pages. He also sent letters to all those
companies that had requested same-day courier ser-
vice that his prior company had not been able to serve.
He hoped that through good service and word-of-
mouth advertising that his business would grow. He
also began other advertising and marketing activities
to promote his services.

At first, Bill received delivery requests on his busi-
ness mobile phone. However, it was not long before
his customers were asking if he had a Web site where
they could place orders for shipments. He knew that if
he could get a Web presence that he could increase his
exposure and help his business grow.

After he had been in business only a few short
months, Bill discovered he needed to have additional
help. He hired another person to help with the delivery
and pickup of packages. It was good to see the business

grow, but another person added to the complexity of
coordinating pickups and deliveries. With the addition
of a new person, he could no longer “warehouse” the
packages out of his delivery van. He now needed a cen-
tral warehouse where he could organize and distribute
packages for delivery. He thought that if his business
grew enough to add one more delivery person that he
would also need someone at the warehouse to coordi-
nate the arrival and distribution of all the packages.

 1. Who are the stakeholders for On the Spot? How
involved should On the Spot’s customers be in
system definition? As the business grows, who
else might be potential stakeholders and inter-
ested in system functions?

 2. If you were commissioned to build a system
for Bill, how would you determine the require-
ments? Be specific in your answer. Make a list of
the questions you need answered.

 3. What technology and communication require-
ments do you see? What are the hardware re-
quirements, and what kind of equipment will
provide viable options to the system? What
would you recommend to Bill?

 4. What are the primary functional requirements
for the system as described so far in the case?

Sandia Medical Devices
Medical monitoring technology has advanced sig-
nificantly in the last decade. Monitoring that once
required a visit to a health-care facility can now be
performed by devices located in a patient’s home, or
carried or worn at all times. Examples include mea-
sures of glucose level (blood sugar), pulse, blood pres-
sure, and electrocardiogram (EKG). Measurements
can be transmitted via telephone, Internet connection,
and wireless data transmission standards, such as
Bluetooth. A particularly powerful technology combi-
nation is a wearable device that records data periodi-
cally or continuously and transmits it via Bluetooth to
a cell phone app. The cell phone app can inform the
patient of problems and can automatically transmit
data and alerts to a central monitoring application (see
Figure 2-17).

Health-care providers and patients incur sig-
nificant costs when glucose levels are not maintained
within acceptable tolerances. Short-term episodes of
very high or very low glucose often result in expensive
visits to urgent care clinics or hospitals. In addition,
patients with frequent but less severe episodes of high

or low glucose are more susceptible to such expensive,
long-term complications as vision, circulatory, and
kidney problems.

Sandia Medical Devices (SMD), an Albuquerque
manufacturer of portable and wearable medical moni-
toring devices, has developed a glucose monitor em-
bedded in a wristband. The device is powered by body
heat and senses glucose levels from minute quantities
of perspiration. SMD is developing the Real-Time Glu-
cose Monitoring (RTGM) device in partnership with
New Mexico Health Systems (NMHS), a comprehen-
sive health delivery service with patients throughout
New Mexico. The system’s vision statement reads as
follows:

RTGM will enable patients and their health-care
providers to continuously monitor glucose levels,
immediately identify short- and long-term medi-
cal dangers, and rapidly respond to those dangers
in medically appropriate ways.

SMD will develop the initial prototype software
for smartphones with Bluetooth capability running

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

68 PART 2 ■ Systems Analysis Activities

the Google Android operating system. If successful,
NMHS and its patients will have free use of the soft-
ware and SMD will resell the software to other health
systems worldwide.

 1. Who are RTGM’s stakeholders? Should
NMHS’s patients be included in defining the
system requirements? Why or why not? Should
RTGM interact with medical professionals other
than physicians? Why or why not?

 2. If you were the lead analyst for RTGM,
how would you determine the requirements?

Be specific in your answer. List several questions
you need answered.

 3. What are the primary functional requirements
for the system as described so far in the case?

 4. Are the parameters for alerting patients and
medical personnel the same for every patient?
Can they vary over time for the same patient?
What are the implications for the system’s func-
tional requirements?

 5. Briefly describe some possible nonfunctional re-
quirements for RTGM.

FIGURe 2-17 Data movement among devices and users

Cell phone app
routes date and

interacts with
patient for alerts

and monitoring

Wristband continuously
measures glucose level

Data sent to/from
server via

wireless Internet

Server archives
data and

generates alerts

Medical personnel
monitor levels/trends

and plan response

Communication with
patient via voice

or text messages

Data transmitted
to cell phone
via Bluetooth

Soren Lauesen, Software Requirements: Styles and
Techniques. Addison-Wesley, 2002.

Stan Magee, Guide to Software Engineering Stan-
dards and Specifications. Artech House, 1997.

Suzanne Robertson and James Robertson, Master-
ing the Requirements Process, Second Edition.
Addison-Wesley, 2006.

Karl Wiegers, Software Requirements. Microsoft
Press, 2003.

Karl Wiegers, More About Software Requirements:
Thorny Issues and Practical Advice. Microsoft
Press, 2006.

Ralph Young, The Requirements Engineering
 Handbook. Artech House, 2003.

FURTHER RESOURCES

© Blue Vista Design/
Shutterstock.com

© Rehan Qureshi/Shutterstock.com

©
 S

to
ck

Li
te

/S
hu

tt
er

st
oc

k.
co

m

©
 A

le
xe

y
B

ol
di

n/
S

hu
tt

er
st

oc
k.

co
m

© Jon Le-Bon/
Shutterstock.com

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After reading this chapter, you should be able to:

Explain why identifying user stories and
use cases is the key to defining functional
requirements

Write user stories with acceptance criteria

Describe the two techniques for identifying
use cases

Apply the user goal technique to identify use
cases

Apply the event decomposition technique to
identify use cases

Describe the notation and purpose for the use
case diagram

Draw use case diagrams by actor and by
subsystem

Learning Objectives

User Stories and Use Cases

Use Cases and the User Goal Technique

Use Cases and Event Decomposition

Use Cases in the Ridgeline Mountain
Outfitters Case

chapter OutLine

Identifying User Stories
and Use Cases

chapter three

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

70 PART 2 ■ Systems Analysis Activities

 ■ Overview
Chapter 2 described the systems analysis activities used in system develop-
ment and introduced the tasks and techniques involved when completing the
first analysis activity—gathering information about the system, its stakehold-
ers, and its requirements. An extensive amount of information is required to
properly define the system’s functional and nonfunctional requirements. This
chapter, with Chapter 4 and Chapter 5, presents techniques for documenting

Opening CaSe Waiters on Call Meal-Delivery systeM

Waiters on Call is a restaurant meal-delivery service
started in 2010 by Sue and Tom Bickford. The Bick-
fords worked for restaurants while in college and always
dreamed of opening their own restaurant; unfortunately,
the initial investment was always out of reach. The Bick-
fords noticed that many restaurants offer takeout food,
and that some restaurants—primarily pizzerias—offer
home-delivery service. However, many people they
met seemed to want home delivery with a wider food
selection.

Sue and Tom conceived Waiters on Call as the best
of both worlds: a restaurant service without the high
initial investment. They contracted with a variety of
well-known restaurants in town to accept orders from
customers and to deliver the complete meals. After pre-
paring the meal to order, the restaurant charges Waiters
on Call a wholesale price, and the customer pays retail
plus a service charge and tip when the meals are deliv-
ered. Waiters on Call started modestly, with only two
restaurants and one delivery driver working the dinner
shift. Business rapidly expanded, until the Bickfords real-
ized they needed a custom computer system to support
their operations. They hired a consultant, Sam Wells, to
help them define what sort of system they needed.

“What events happen when you are running your
business that make you want to reach for a computer?”
asked Sam. “Tell me about what usually goes on.”

“Well,” answered Sue, “when a customer calls in
wanting to order, I need to record it and get the informa-
tion to the right restaurant. I need to know which drivers
are available to pick up the order, so I need drivers to call
in and tell me when they are free. Perhaps this could
be included as a smartphone or iPad app. Sometimes,
customers call back wanting to change their orders, so I
need to find the original order and notify the restaurant
to make the change.”

“Okay, that’s great. Now, how do you handle the
money?” queried Sam.

Tom jumped in. “The drivers get a copy of the bill
showing the retail price directly from the restaurant
when they pick up the meal. The bill should agree with
our calculations. The drivers collect that amount plus a
service charge. When drivers report in at closing, we

add up the money they have and compare it with the
records we have. After all drivers report in, we need to
create a deposit slip for the bank for the day’s total re-
ceipts. At the end of each week, we calculate what we
owe each restaurant at the agreed-to wholesale price
and send them a statement and check.”

“What other information do you need to get from
the system?” continued Sam.

“It would be great to have some information at the
end of each week about orders by restaurant and or-
ders by area of town—things like that,” Sue said. “That
would help us decide about advertising and restaurant
contracts. Then, we need monthly statements for our
accountant.”

Sam made some notes and sketched some dia-
grams as Sue and Tom talked. Then, after spending
some time thinking about it, he summarized the situa-
tion for Waiters on Call. “It sounds to me like you need a
system to use whenever these events occur”:

 ■ A customer calls in to place an order, so you need to
Record an order.

 ■ A driver is finished with a delivery, so you need to
Record delivery completion.

 ■ A customer calls back to change an order, so you
need to Update an order.

 ■ A driver reports for work, so you need to Sign in the
driver.

 ■ A driver submits the day’s receipts, so you need to
Reconcile driver receipts.

Sam continues, “Then, you need the system to
produce information at specific points in time—for
example, when it is time to,”

 ■ Produce an end-of-day deposit slip.
 ■ Produce end-of-week restaurant payments.
 ■ Produce weekly sales reports.
 ■ Produce monthly financial reports.

“Am I on the right track?”
Sue and Tom quickly agreed that Sam was talking

about the system in a way they could understand. They
were confident that they had found the right consultant
for the job.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

71CHAPTER 3 ■ Identifying User Stories and Use Cases

the functional requirements by creating a variety of models. These models are
created as part of the analysis activity Define requirements, although remember
that the analysis activities are actually done in parallel with design and imple-
mentation and in each iteration of the project.

In the Waiters on Call case, Sam Wells is working with the Bickfords to
identify the functional requirements for the new system using the event decom-
position technique. The sketch he was drawing was a use case diagram. You
will learn about this technique and others that help identify user stories and use
cases in this chapter.

 ■ User Stories and Use Cases
As you saw in Chapter 1, identifying user stories and use cases is a key task
when defining functional requirements because these form the basis for the list
of functions the system needs to carry out. Virtually all recent approaches to
system development begin the requirements modeling activity with the concept
of a user story or a use case. These two concepts are similar in that they focus
on the goals of the user, and they show the list of functions at the appropriate
level of detail. But they differ in the approach taken to identify them and in the
amount of detail that is captured by the analyst. User stories are favored by
highly Agile system development methodologies, and they are turned over to the
programmer analyst much earlier than use cases are. The programmer analyst
designs and codes each user story to discover needed details. The Agile devel-
opment philosophy is to work directly with users and avoid doing too much
documentation. In contrast, a use case approach traditionally meant analysts
complete much documentation for each use case, focusing on detailed steps car-
ried out by the user and the system. In practice, use cases can also be very brief
for Agile development.

A user story is usually one short sentence in the everyday language of
the end user that states what a user does as part of his or her work. In other
words, a user story describes a goal the user has when using the system.
User stories are a basic concept in Agile development because they focus on
simplicity, value added, and user collaboration. They document the functional
requirements quickly and less formally than traditional requirements modeling
by focusing on who, what, and why for each function. The users and stakehold-
ers are responsible for identifying the user stories.

In meetings with stakeholders, analysts encourage participants to write out
each user story on an index card or on a shared whiteboard app. The objective
is to get a potential user to articulate what he or she wants to do with the new
system. A standard template helps users think through what they want and why
they want it. The standard template for a user story looks like this:

“As a <role played>, I want to <goal or desire> so that <reason or benefit>.”

For example, some user stories for a bank teller might be:

 ■ “As a teller, I want to make a deposit to quickly serve more customers.”
 ■ “As a teller, I want to balance the cash drawer to assure there were no

errors.”

As a customer of the bank using an ATM machine, some user stories might be:

 ■ “As a bank customer, I want to withdraw cash and feel confident the stack
of cash I get is the correct amount.”

 ■ “As a bank customer, I want to deposit a check and feel confident the
deposit is recorded correctly.”

user story one short sentence in the every-
day language of the end user that states what
a user does as part of his or her work

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

72 PART 2 ■ Systems Analysis Activities

A final part of a user story is the acceptance criteria. These indicate the
features that must be present for the user to be satisfied with the resulting imple-
mentation. They focus on functionality, not on features or user-interface design.
For example, the following are the acceptance criteria for the user story “bank
teller making a deposit”:

1. Customer lookup must be by name or by account number.
2. It would be nice to display photo and signature of customer.
3. Any check hold requirements must be indicated.
4. Current balance and new balance must be displayed.

The programmer analyst uses the acceptance criteria to clarify the expec-
tations of the user and to verify the user is looking at the user story at an
appropriate level of analysis. When the user story is implemented and refined,
the acceptance criteria are used for testing. Some consider it much like a con-
tract between the developers and the users that limits controversy later in the
project. Figure 3-1 shows two user stories handwritten on index cards. The
first user story is for the bank teller example just discussed. The other user
story is for a shipping clerk responsible for shipping the items on a new order
for RMO.

User Story

As a teller, I want to make a deposit to quickly serve more customers.

Acceptance Criteria:

1. Customer lookup must be by name or by account number.
2. Nice to display photo and signature of customer.
3. Any check hold requirements must be indicated.
4. Current balance and new balance must be displayed.

User Story

As a shipping clerk, I want to ship an order as accurately as possible as soon as the order
details are available.

Acceptance Criteria:

1. Available order details must pop up on the screen when available.
2. Portable display and scan device would cut time in half.
3. Sort the items by bin location.
4. Indicate number of items in stock for each item and mark backorder for those not
 available.
5. Recommend shipper based on weight, size, and location.
6. Print out shipping label for selected shipper.

Figure 3-1 Two user stories with
acceptance criteria

acceptance criteria features that must
be present in the final system for the user to
be satisfied

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

73CHAPTER 3 ■ Identifying User Stories and Use Cases

A use case is an activity the system performs in response to a request by
a user. In Chapter 1, the RMO Tradeshow System example had a list of uses
that included Look up supplier, Enter/update product information, and Look
up product information. Two techniques are recommended for identifying use
cases: the user goal technique and the event decomposition technique. Use case
techniques place the responsibility for identifying and detailing the require-
ments on the system developers. The developers typically interview all types
of users and stakeholders, and then make and refine notes about each use case.
Some of the more complex use cases are modeled in more detail by the develop-
ers before turning the uses cases over to the programmer analysts for design
and implementation.

 ■ Use Cases and the User Goal Technique
“User stories will help analysts identify and define use cases, which are the pri-
mary focus of this chapter.”

One approach to identifying use cases, called the user goal technique, is
to ask users to describe their goals for using the new or updated system. The
analyst first identifies all the users, categorizes them by user type, and then con-
ducts a structured interview with each user. By focusing on one type of user at a
time, the analyst can systematically address the problem of identifying use cases.

During the interview, the analyst guides the user to identify specific ways
the computer system could help the user perform his or her assigned tasks.
The overarching objective is to identify what the system could do to improve the
user’s performance and productivity. Subsidiary goals might include streamlin-
ing tasks the user currently performs, or enabling the user to perform new tasks
that are not possible or practical with the current system. As these goals are
uncovered and described, the analyst probes for specific requests from the user
and desired responses from the proposed system, which the analyst documents
as use cases. Although the users are the ultimate source of this information, they
often require guidance from the analyst to think beyond the boundaries of the
ways they currently approach their jobs.

Consider various user goals for the RMO Consolidated Sales and
 Marketing System (CSMS) introduced in Chapter 2. In an example like this,
the analyst might talk to the people in the Shipping Department to identify
their specific goals. These might include: Ship items, Track shipment, and
 Create item return. The Marketing Department might identify goals like
Add/update product information, Add/update promotion, and Produce sales
history report. When considering the goals of the prospective customer, the
analyst might ask RMO users from different departments to think about the
system from the customer’s viewpoint and to imagine the value-added features
and functions that would make RMO appealing and useful. Additionally, focus
groups of actual customers might be formed to pinpoint their wants and needs.
Goals identified for potential customers might include Search for item, Fill
shopping cart, and View product rating and comments. Figure 3-2 lists a few
of the user goals for potential users of the CSMS. Note that for the Shipping
personnel, there is a use case named Ship order, which corresponds to the same
user story identified in Figure 3-1.

The user goal technique for identifying use cases includes these steps:

1. Identify all the potential users for the new system.
2. Classify the potential users in terms of their functional role (e.g., shipping,

marketing, sales).
3. Further classify potential users by organizational level (e.g., operational,

management, executive).

use case an activity that the system
performs in response to a request by a user

user goal technique a technique to
 identify use cases by determining what
 specific goals or objectives must be
 completed by the system for the user

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

74 PART 2 ■ Systems Analysis Activities

4. Interview each type of user to determine the specific goals they will have
when using the new system. Start with goals they currently have and then
get them to imagine innovative functions they think would add value.
Encourage them to state each goal in the imperative verb-noun form, such
as Add customer, Update order, and Produce month-end report.

5. Create a list of preliminary use cases organized by type of user.
6. Look for duplicates with similar use case names and resolve inconsistencies.
7. Identify where different types of users need the same use cases.
8. Review the completed list with each type of user and then with interested

stakeholders.

 ■ Use Cases and Event Decomposition
The most comprehensive technique for identifying use cases is the event decom-
position technique. The event decomposition technique begins by identify-
ing all the business events the information system responds to, with each event
leading to a use case. Starting with business events helps the analyst define each
use case at the appropriate level of detail. For example, one analyst might iden-
tify a use case as typing in a customer name on a form. A second analyst might
identify a use case as the entire process of adding a new customer. A third ana-
lyst might even define a use case as working with customers all day, which could
include adding new customers, updating customer records, deleting customers,
following up on late-paying customers, or contacting former customers. The
first example is too narrow to be useful. Conversely, working with customers all
day—the third example—is too broad to be useful. The second example defines
a complete user goal, which is the right level of analysis for a use case.

The appropriate level of detail for identifying use cases is one that focuses on
elementary business processes (EBPs). An EBP is a task that is performed
by one person in one place in response to a business event, adds measurable
business value, and leaves the system and its data in a stable and consistent state.
In Figure 3-2, the RMO CSMS potential customer use cases Search for item,
Fill shopping cart, and View product rating and comments are good examples
of elementary business processes. Fill shopping cart is a response to the business
event “Customer wants to shop.” There is one person filling the cart, and there
is measurable value for the customer as items are added to the cart. When the
customer stops adding items and moves to another task, the system remembers
the current cart and is ready to switch to the new task.

Note that each EBP (and thus each use case) occurs in response to a busi-
ness event. An event occurs at a specific time and place, can be described, and
should be remembered by the system. Events drive or trigger all processing that
a system does, so listing events and analyzing them makes sense when you need
to define system requirements by identifying use cases.

User User goal and resulting use case

Potential customer Search for item
Fill shopping cart
View product rating and comments

Marketing manager Add/update product information
Add/update promotion
Produce sales history report

Shipping personnel Ship order
Track shipment
Create item return

FIgure 3-2 Identifying use cases
with the user goal technique

event decomposition technique a tech-
nique to identify use cases by determining the
business events to which the system must
respond

elementary business processes (EBP)
the most fundamental task in a business
process, which leaves the system and data in
a quiescent state; usually performed by one
person in response to a business event

event something that occurs at a specific
time and place, can be precisely identified,
and must be remembered by the system

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

75CHAPTER 3 ■ Identifying User Stories and Use Cases

 ■ Event Decomposition Technique
When defining the requirements for a system, it is useful to begin by asking,
“What business events occur that will require the system to respond?” By asking
about the events that affect the system, you direct your attention to the external
environment and look at the system as a black box. This means you don’t see
the underlying functions, just the input and results. This initial perspective helps
keep your focus on a high-level view of the system (looking at the scope), rather
than on the inner workings of the system. It also focuses your attention on the
system’s interfaces with outside people and other systems.

Some events that are important to a retail store’s charge account
 processing system are shown in Figure 3-3. The functional requirements are
defined by use cases based on six events. A customer triggers three events:
“customer pays a bill,” “customer makes a charge,” and “customer changes
address.” The system responds with three use cases: Record a payment,
 Process a charge, or Maintain customer data. Three other events are triggered
inside the system by reaching a point in time: “time to send out monthly
 statements,” “time to send late notices,” and “time to produce end-of-week
summary reports.” The system responds with use cases that carry out what
it is time to do: Produce monthly statements, Send late notices, and Produce
summary reports. Describing this system in terms of events keeps the focus of
the charge account system on the business requirements and the elementary
business processes. The result is a list of use cases triggered by business events
at the right level of analysis.

Using events to define functional requirements was first emphasized for
real-time systems in the early 1980s. Real-time systems must react immediately

Charge account processing system

FIgure 3-3 Events in a charge account processing system that lead to use cases

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

76 PART 2 ■ Systems Analysis Activities

to events in the environment. Early real-time systems include manufacturing
process control systems and avionics guidance systems. For example, in process
control, if a vat of chemicals is full, then the system needs to Turn off the fill
valve. The relevant event is “vat is full,” and the system needs to respond to that
event immediately. In an airplane guidance system, if the plane’s altitude drops
below 5,000 feet, then the system needs to Turn on the low-altitude alarm.

Most information systems now being developed are so interactive that
they can be thought of as real-time systems. In fact, people expect a real-time
response to almost everything. Thus, use cases for business systems are often
identified by using the event decomposition technique.

 ■ Types of Events
There are three types of events to consider when using the event decomposi-
tion technique to identify use cases: external events, temporal events, and state
events (also called internal events). The analyst begins by trying to identify
and list as many of these events as possible, refining the list while talking with
 system users.

 ❚ External Events
An external event is an event that occurs outside the system—usually initiated
by an external agent or actor. An external agent (or actor) is a person or orga-
nizational unit that supplies or receives data from the system. To identify the
key external events, the analyst first tries to identify all the external agents that
might want something from the system. A classic example of an external agent is
a customer. The customer may want to place an order for one or more products.
This event is of fundamental importance to an order-processing system, such as
the one needed by Ridgeline Mountain Outfitters. But other events are associ-
ated with a customer. Sometimes, a customer wants to return an ordered prod-
uct, or a customer needs to pay the invoice for an order. External events such as
these define what the system needs to be able to do. They are events that lead to
important transactions that the system must process.

When describing external events, it is important to name the event so the
external agent is clearly defined. The description should also include the action
that the external agent wants to pursue. Thus, the event “Customer places an
order” describes the external agent (a customer) and the action that the customer
wants to take (to place an order for some products) that directly affects the system.

Important external events can also result from the wants and needs of peo-
ple or organizational units inside the company (e.g., management requests for
information). A typical event in an order-processing system might be “Manage-
ment wants to check order status.” Perhaps managers want to follow up on an
order for a key customer; the system must routinely provide that information.

Another type of external event occurs when external entities provide new
information that the system simply needs to store for later use. For example, a
regular customer reports a change in address, phone, or employer. Usually, one
event for each type of external agent can be described to handle updates to data,
such as “Customer needs to update account information.” Figure 3-4 provides a
checklist to help in identifying external events.

external event an event that occurs
outside the system, usually initiated by an
external agent

actor an external agent; a person, group
or external system that interacts with the
system by supplying or receiving data

External events to look for include:

√ External agent wants something resulting in a transaction
√ External agent wants some information
√ Data changed and needs to be updated
√ Management wants some information

FIgure 3-4 External event
checklist

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

77CHAPTER 3 ■ Identifying User Stories and Use Cases

 ❚ Temporal Events
A second type of event is a temporal event—an event that occurs as a result
of reaching a point in time. Many information systems produce outputs at
defined intervals, such as payroll systems that produce a paycheck every two
weeks (or each month). Sometimes, the outputs are reports that management
wants to receive regularly, such as monthly or weekly performance or excep-
tion reports. These events are different from external events in that the system
should automatically produce the required output without being told to do so.
In other words, no external agent or actor is making demands, but the system is
supposed to generate information or other outputs when they are needed.

The analyst begins identifying temporal events by asking about specific
deadlines that the system must accommodate. What outputs are produced at
that deadline? What other processing might be required at that deadline? In a
payroll system, a temporal event might be named “Time to produce biweekly
payroll.” The event defining the need for a monthly summary report might be
named “Time to produce monthly sales summary report.” Figure 3-5 provides
a checklist to use in identifying temporal events.

Temporal events do not have to occur on a fixed date. They can occur after
a defined period of time has elapsed. For example, a bill might be given to a cus-
tomer when a sale has occurred. If the bill has not been paid within 15 days, the
system might send a late notice. The temporal event “Time to send late notice”
might be defined as a point 15 days after the billing date.

 ❚ State Events
A third type of event is a state event—an event that occurs when something hap-
pens inside the system that triggers the need for processing. State events are also
called internal events. For example, if the sale of a product results in an adjustment
to an inventory record, and the inventory in stock drops below a reorder point, it
is necessary to reorder. The state event might be named “Reorder point reached.”
Often, state events occur as a consequence of external events. Sometimes, they are
similar to temporal events, except the point in time cannot be defined.

 ■ Identifying Events
Defining the events that affect a system is not always easy, but some guidelines
can help an analyst think through the process.

 ❚ Events Versus Prior Conditions and Responses
It is sometimes difficult to distinguish between an event and part of a sequence
of prior conditions that leads up to the event. Consider a customer buying a
shirt from a retail store (see Figure 3-6). From the customer’s perspective, this
purchase involves a long sequence of events. The first event might be that the
customer wants to get dressed. Then, the customer wants to wear a striped shirt.
Next, the striped shirt appears to be worn out. The customer decides to drive
to the mall, and he decides to go into Sears. Then, he tries on a striped shirt.
At this point, the customer decides to leave Sears and go to Walmart to try on a

Temporal events to look for include:

√ Internal outputs needed
 √ Management reports (summary or exception)
 √ Operational reports (detailed transactions)
 √ Internal statements and documents (including payroll)
√ External outputs needed
 √ Statements, status reports, bills, reminders

FIgure 3-5 Temporal event
checklist

temporal event an event that occurs as a
result of reaching a point in time

state event an event that occurs when
something happens inside the system that
triggers some process

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

78 PART 2 ■ Systems Analysis Activities

shirt. Finally, the customer wants to purchase the shirt. The analyst has to think
through such a sequence to arrive at the point where an event directly affects the
system. In this case, the system is not affected until the customer is in the store,
has a shirt in hand ready to purchase, and says “I want to buy this shirt.”

In other situations, it is not easy to distinguish between an external event
and the system’s response. For example, when the customer buys the shirt, the
system requests a credit card number and then the customer supplies the credit
card. Is the act of supplying the credit card an event? In this case, no; it is part of
the interaction that occurs while completing the original transaction.

The way to determine whether an occurrence is an event or whether it is
part of the interaction following the event is by asking if any long pauses or
intervals occur (i.e., can the system transaction be completed without interrup-
tion?). Or is the system at rest again, waiting for the next transaction? After the
customer wants to buy the shirt (the event), the process continues until the trans-
action is complete. There are no significant stops after the transaction begins.
After the transaction is complete, the system is at rest, waiting for the next
transaction to begin. The EBP concept defined earlier describes this as leaving
the system and its data in a consistent state.
On the other hand, separate events occur when the customer buys the shirt by
using his store credit card account. When the customer pays the bill at the end of
the month, is the processing part of the interaction involving the purchase? In this
case, no; the system records the transaction and then does other things. It does not
halt all processes to wait for the payment. A separate event occurs later that results
in sending the customer a bill. (This is a temporal event: “Time to send monthly
bills.”) Eventually, another external event occurs (“Customer pays the bill”).

 ❚ The Sequence of Events: Tracing a Transaction’s Life Cycle
A useful method for identifying events is to trace the sequence of events that
might occur for a specific external agent or actor. In the case of Ridgeline
Mountain Outfitters’ new CSMS, the analyst can think through all the possible
transactions that might result from one new customer (see Figure 3-7). First,
the customer wants a catalog or asks for some information about item avail-
ability, resulting in a name and address being added to the database. Then, the
customer might want to place an order. Perhaps he or she will want to change
the order—for example, correcting the size of the shirt or buying another shirt.

Customer thinks
about getting a

new shirt

Customer drives to
the mall

Customer tries on a
shirt at Sears

Customer goes to
Walmart

Customer tries on a
shirt at Walmart

Customer buys
a shirt

FIgure 3-6 Sequence of actions
that lead up to only one event
affecting the system

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

79CHAPTER 3 ■ Identifying User Stories and Use Cases

Next, the customer might want to check the status of an order to find out the
shipping date. Perhaps the customer has moved and wants an address change
recorded for future catalog mailings. Finally, the customer might want to return
an item. Thinking through this type of sequence can help identify events.

 ❚ Technology-Dependent Events and System Controls
Sometimes, the analyst is concerned about events that are important to the sys-
tem, but do not directly concern users or transactions. Such events typically
involve design choices or system controls. During analysis, the analyst should
temporarily ignore these events. However, they are important later for design.

Some examples of events that affect design issues include external events
that refer to the physical system, such as logging on. Although important to the
final operation of the system, such implementation details should be deferred.
At this stage, the analyst should focus only on the functional requirements (i.e.,
the work that the system needs to complete). A functional requirements model
does not need to indicate how the system is actually implemented, so the model
should omit the implementation details.

Most of these physical system events involve system controls, which are
checks or safety procedures put in place to protect the integrity of the system. For
example, logging on to a system is required because of system security controls.
Other controls protect the integrity of the database, such as backing up the data
every day. These controls are important to the system, and they will certainly be
added to the system during design. But spending time on system controls during
analysis only adds details to the requirements model that users are not typically
very concerned about; they trust the system developers to take care of such details.
One way to help decide which events apply to system controls is to assume
that technology is perfect. The perfect technology assumption states that
events should be included during analysis only if the system would be required
to respond under perfect conditions (i.e., with equipment never breaking down,
capacity for processing and storage being unlimited, and people operating the
system being completely honest and never making mistakes). By pretending that
technology is perfect, analysts can eliminate events like “Time to back up the
database” because they can assume that the disk will never crash. Again, during
design, the project team adds these controls because technology is obviously not
perfect. Figure 3-8 lists some examples of events that can be deferred until the
developer is designing in system controls.

Customer requests a
catalog

Customer wants to check
item availability

Customer places
an order

Customer changes or
cancels an order

Customer wants to
check order status

Customer updates
account information

Customer returns
the item

FIgure 3-7 The sequence of “transactions” for one specific customer resulting in many events

system controls checks or safety proce-
dures to protect the integrity of the system
and the data

perfect technology assumption the
assumption that a system runs under perfect
operating and technological conditions

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

80 PART 2 ■ Systems Analysis Activities

 ■ Steps in the Event Decomposition Technique
To summarize, the event decomposition technique for identifying use cases
includes these steps:

1. Consider the external events in the system environment that require a
 response from the system by using the checklist shown in Figure 3-4.

2. For each external event, identify and name the use case that the system
requires.

3. Consider the temporal events that require a response from the system by
using the checklist shown in Figure 3-5.

4. For each temporal event, identify and name the use case that the system
requires and then establish the point of time that will trigger the use case.

5. Consider the state events that the system might respond to, particularly
if it is a real-time system in which devices or internal state changes trigger
use cases.

6. For each state event, identify and name the use case that the system requires
and then define the state change.

7. When events and use cases are defined, check to see if they are required as
part of analysis by using the perfect technology assumption. Do not include
events that involve such system controls as login, logout, change password,
and backup or restore the database, as these are put in as system controls.

 ■ Use Cases in the Ridgeline Mountain
Outfitters Case

The RMO CSMS involves a variety of use cases, many of them just discussed.
The analysts working on the new system have used all three techniques for
identifying, validating, and refining use cases. The initial system vision (dis-
cussed in Chapter 2) identified four subsystems: the Sales subsystem, the Order
 Fulfillment subsystem, the Customer Account subsystem, and the Marketing
subsystem. As work progressed, the analysts combined reports required by each
subsystem into a fifth subsystem called the Reporting subsystem. In a system
this size, the analyst should organize the use cases by subsystem to help track

User wants to log on
to the system

User wants to change the
password

User wants to change
preference settings

System crash
requires database

recovery

Time to back up the
database

Time to require the
user to change the

password

Don’t worry much
about these until you are

considering design issues

FIgure 3-8 Events deferred until designing system controls

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

81CHAPTER 3 ■ Identifying User Stories and Use Cases

which subsystem is responsible for each use case. The analyst should also iden-
tify which use cases involve more than one type of user.

It is important to recognize that this list of uses cases will continue to evolve
as the project progresses. Additional use cases will be added, some might be
eliminated, and some might be combined. It is helpful to immediately describe
some of the details of each use case, preferably in one sentence. This brief
description is usually expanded to record more of the details when the develop-
ers are designing and implementing the use case (see Chapter 5). Some exam-
ples of brief use case descriptions are shown in Figure 3-9. Figures 3-10a
through 3-10e show the initial list of use cases for the RMO CSMS along with
the users. Note that many use cases have more than one user.

Sometimes, it is useful to create diagrams that visually depict use cases and
how they are organized. The use case diagram is the UML model used to
illustrate use cases and their relationship to users. Recall from Chapter 2 that
Unified Modeling Language (UML) is the standard set of diagrams and model
constructs used in system development. You saw an example of a use case dia-
gram in Chapter 1. The notation is fairly simple.

 ■ Use Cases, Actors, and Use Case Diagram Notation
Implied in most use cases is a person who uses the system, whom we have
referred to up to this point as the user. In UML, that person is called an actor.
An actor is always outside the automation boundary of the system but may be
part of the manual portion of the system. Sometimes, the actor for a use case is
not a person; instead, it can be another system or device that receives services
from the system.

Figure 3-11 shows the basic parts of a use case diagram. A simple stick
figure represents an actor. The stick figure is given a name that characterizes
the role the actor is playing. The use case itself is represented by an oval with
the name of the use case inside. The connecting line between the actor and
the use case indicates that the actor is involved with that use case. Finally, the
 automation boundary, which defines the border between the computerized
portion of the application and the people operating the application, is shown
as a rectangle containing the use case. The actor’s communication with the use
case crosses the automation boundary. The example in Figure 3-11 shows the
actor as a shipping clerk and the use case Ship items.

 ❚ Use Case Diagram Examples
Figure 3-12 shows a more complete use case diagram for a subsystem of
the RMO CSMS: the Customer Account subsystem. The information in
 Figure 3-10c is recast as a single use case diagram to visually highlight the uses
cases and actors for an individual subsystem. In this example, the customer,
customer service representative, and store sales representative are all allowed to
access the system directly. As indicated by the relationship lines, each actor can
access the use case Create/update customer account. The customer might do

Use case

Create customer account

Look up customer

Process account adjustment

Brief use case description

User/actor enters new customer account data, and the system
assigns account number, creates a customer record, and
creates an account record.

User/actor enters customer account number, and the system
retrieves and displays customer and account data.

User/actor enters order number, and the system retrieves
customer and order data; actor enters adjustment amount, and
the system creates a transaction record for the adjustment.

FIgure 3-9 Use cases and brief
descriptions

brief use case description an often
one-sentence description that provides a
quick overview of a use case

use case diagram the UML model used
to illustrate use cases and their relationships
to actors

automation boundary the boundary
between the computerized portion of the
application and the users who operate the
application but are part of the total system

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

82 PART 2 ■ Systems Analysis Activities

CSMS Sales Subsystem

Use cases Users/actors

Search for item Customer, customer service representative, store
sales representative

View product comments and ratings Customer, customer service representative, store
sales representative

View accessory combinations Customer, customer service representative, store
sales representative

Fill shopping cart

Customer

Customer

CustomerEmpty shopping cart

Check out shopping cart

CustomerFill reserve cart

CustomerEmpty reserve cart

Convert reserve cart Customer

Store sales representative

Customer service representativeCreate phone sale

Create store sale

CSMS Order Fulfillment Subsystem

Use cases Users/actors

Ship items Shipping

Manage shippers Shipping

Create backorder Shipping

Create item return

Shipping, customer, marketing

Shipping, customer

Shipping, customer, management Look up order status

Track shipment

CustomerRate and comment on product

CustomerProvide suggestion

Review suggestions Management

FIgure 3-10a Use cases
and actors for CSMS Sales
Subsystem

FIgure 3-10b Use cases
and actors for CSMS Order
Fulfillment Subsystem

©
 C

en
ga

ge
 L

ea
rn

in
g®

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

83CHAPTER 3 ■ Identifying User Stories and Use Cases

CSMS Customer Account Subsystem

Use cases Users/actors

Create/update customer account Customer, customer service representative, store
sales representative

Process account adjustment Management

Send message Customer

Browse messages

Customer

Customer

CustomerRequest friend linkup

Reply to linkup request

CustomerSend/receive partner credits

CustomerView “mountain bucks”

CustomerTransfer “mountain bucks”

CSMS Marketing Subsystem

Use cases Users/actors

Add/update product information Merchandising, marketing

Add/update promotion Marketing

Add/update accessory package Merchandising

Add/update business partner link Marketing

CSMS Reporting Subsystem

Use cases Users/actors

Produce daily transaction summary
report

Management

Produce sales history report Management, marketing

Produce sales trends report Marketing

Produce customer usage report Marketing

Produce shipment history report Management, shipping

Produce promotion impact report Marketing

Produce promotional partner activity
report

Management, marketing

FIgure 3-10e Use cases and
actors for CSMS Reporting
Subsystem

FIgure 3-10c Use cases and
actors for CSMS Customer
Account Subsystem

FIgure 3-10d Use cases and
actors for CSMS Marketing
Subsystem

©
 C

en
ga

ge
 L

ea
rn

in
g®

©
 C

en
ga

ge
 L

ea
rn

in
g®

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

84 PART 2 ■ Systems Analysis Activities

Actor is a stick
figure, usually
meaning an

actual person
using the system

Automation
boundary

Ship items

Shipping clerk

Connecting line
to show which

actors participate
in use cases

FIgure 3-11 A simple use case
with an actor

Create/update
customer account

Customer Account Subsystem
All Actors

Process account
adjustment

Send message

Browse
messages

Request friend
linkup

Reply to friend
linkup

Send/receive
partner credits

View "mountain
bucks"

Transfer
"mountain bucks"

Customer Store sales
representative

Management

Customer service
representative

FIgure 3-12 A use case diagram
of the Customer Account
subsystem for RMO, showing
all actors

©
 C

en
ga

ge
 L

ea
rn

in
g®

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

85CHAPTER 3 ■ Identifying User Stories and Use Cases

this when checking out online. The customer service representative might do this
when talking to a customer on the phone. The store sales representative might
do this when dealing with the customer in a store. Only a member of manage-
ment can process an account adjustment. The other use cases are included only
for the customer.

There are many ways to organize use case diagrams for communicating with
users, stakeholders, and project team members. One way is to show all use cases
invoked by a particular actor (i.e., from the user’s viewpoint). This approach is
often used during requirements definition because the systems analyst may be
working with a particular user and identifying all the functions that user per-
forms with the system. Figure 3-13 illustrates this viewpoint, showing all the
use cases involving the customer for the Sales subsystem. Figure 3-14 shows use
cases involving the customer service representative and the store sales represen-
tative for the Sales subsystem. Analysts can expand this approach to include all
the use cases invoked by any department, regardless of the subsystem, or all use
cases important to a specific stakeholder.

 ❚ «includes» Relationships
Frequently during the development of a use case diagram, it becomes apparent that
one use case might use the services of another use case. For example, in the Sales
subsystem use case diagram shown in Figure 3-14, the customer might search

Search for item

Sales Subsystem
Actor: Customer

Fill reserve cart

Empty reserve
cart

Empty shopping
cart

View product
comments and

ratings

View accessory
combinations

Check out shopping
cart

Fill shopping cart

Convert reserve
cart

Customer

FIgure 3-13 All use cases
involving the customer actor for
the Sales subsystem

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

86 PART 2 ■ Systems Analysis Activities

for an item, view product comments and ratings, and view accessory combina-
tions before beginning to fill the shopping cart. However, while filling the shop-
ping cart, the customer might also search for an item, view product comments,
and view accessories. Therefore, one use case uses, or “includes,” another use
case. Figure 3-15 shows a use case diagram emphasizing this aspect of use cases.

Customer

Search for item

Fill shopping cart
View product

comments and
ratings

View accessory
combinations

Sales Subsystem
Fill Shopping Cart <<includes>> Relationships

«includes»

«includes»

«includes»

FIgure 3-15 A use case diagram
of the Fill shopping cart «includes»
relationships

Sales Subsystem
Actors: Service Representative and Store Representative

Customer service
representative

Store sales
representative

View product
comments and

ratings

View accessory
combinations

Create phone sale

Search for item

Create store sale

FIgure 3-14 Use cases involving the customer service representative and store sales representative for the Sales subsystem

©
 C

en
ga

ge
 L

ea
rn

in
g®

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

87CHAPTER 3 ■ Identifying User Stories and Use Cases

Fill shopping cart also includes Search for item, View product comments and
ratings, and View accessory combinations. Thus, the Customer can view com-
ments initially, and also while carrying out the Fill shopping cart use case. The
relationship between these use cases is denoted by the dashed connecting line
with the arrow that points to the use case that is included. The relationship is
read Fill shopping cart includes Search for item. Sometimes, this relationship is
referred to as the «includes» relationship or the «uses» relationship. Note that
the word includes is enclosed within guillemets in the diagram; this is the way to
refer to a stereotype in UML. It means that the relationship between one use case
and another use case is a stereotypical «includes» relationship.

 ■ Developing a Use Case Diagram
Analysts create a variety of use case diagrams to communicate with users,
 stakeholders, management, and team members. The steps to develop use case
diagrams are:

1. Identify all the stakeholders and users who would benefit by having a use
case diagram.

2. Determine what each stakeholder or user needs to review in a use case dia-
gram. Typically, a use case diagram might be produced for each subsystem,
for each type of user, for use cases with the «includes» relationship, and for
use cases that are of interest to specific stakeholders.

3. For each potential communication need, select the use cases and actors to
show and draw the use case diagram. There are many software packages
that can be used to draw use case diagrams.

4. Carefully name each use case diagram and then note how and when the
diagram should be used to review use cases with stakeholders and users.

«includes» relationship a relationship
between use cases in which one use case
is stereotypically included within the other
use case

CHAPTER SUMMaRy
This chapter is the first of three chapters that present
techniques for modeling a system’s functional require-
ments. A key early step in the modeling process is to
identify and list the user stories or use cases that de-
fine the functional requirements for the system. User
stories are written by end users and stakeholders dur-
ing requirements meetings with the developers. They
are used with most highly Agile development meth-
odologies. Use cases are very similar to user stories,
but they are often modeled in more detail than user
stories and are the responsibility of the developers. Use
cases can be identified by using the user goal technique
and the event decomposition technique. The user goal
technique initially identifies types of system end us-
ers, called actors. Then, users are asked to list specific
user goals they have when using the system to support
their work. The event decomposition technique ini-
tially identifies events that require a response from the

system. An event is something that can be described,
something that occurs at a specific time and place, and
something worth remembering. External events occur
outside the system—usually triggered by someone who
interacts with the system. Temporal events occur at a
defined point in time, such as the end of a work day or
the end of every month. State or internal events occur
based on an internal system change. For each event,
a use case is identified and named. The event decom-
position technique helps ensure that each use case is
identified at the elementary business process (EBP)
level of detail. Each use case identified by the analyst
is further documented by a brief use case description
and by identifying the actors. UML use case diagrams
are drawn to document use cases and their actors.
Many different use case diagrams are drawn based on
the need to review use cases with various stakeholders,
users, and team members.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

88 PART 2 ■ Systems Analysis Activities

event

event decomposition technique

external event

«includes» relationship

perfect technology assumption

state event

system controls

temporal event

use case

use case diagram

user goal technique

user story

acceptance criteria

actor

automation boundary

brief use case description

elementary business
process (EBP)

KEy TERMS

 1. What are the five activities of systems analysis,
and which activity is discussed beginning with
this chapter?

 2. What is a user story? What is a use case?

 3. What are the two techniques used to identify
use cases?

 4. Describe the user goal technique for identifying
use cases.

 5. What are some examples of users with different
functional roles and at different operational levels?

 6. What are some examples of use case names that
correspond to your goals as a student going
through the college registration process? Be sure
to use the verb-noun naming convention.

 7. What is the overarching objective of asking users
about their specific goals?

 8. How many types of users can have the same user
goals for using the system?

 9. Describe the event decomposition technique for
identifying use cases.

 10. Why is the event decomposition technique
considered more comprehensive than the user
goal technique?

 11. What is an elementary business process (EBP)?

 12. Explain how the event decomposition technique
helps identify use cases at the right level of analysis.

 13. What is an event?

 14. What are the three types of events?

 15. Define an external event and give an example
that applies to a checking account system.

 16. Define a temporal event and give an example
that applies to a checking account system.

 17. What are system controls, and why are they
not considered part of the users’ functional
requirements?

 18. What is the perfect technology assumption?

 19. What are three examples of events that involve
system controls that should not be included initial-
ly because of the perfect technology assumption?

 20. What is a brief use case description?

 21. What is UML?

 22. What is the purpose of UML use case
diagrams?

 23. What is another name for “actor” in UML, and
how is it represented on a use case diagram?

 24. What is the automation boundary on a use case
diagram, and how is it represented?

 25. How many actors can be related to a use case on
a use case diagram?

 26. Why might a systems analyst draw many differ-
ent use case diagrams when reviewing use cases
with end users?

 27. What is the «includes» relationship between two
use cases?

REvIEW QUESTiOnS

PROBlEMS AnD ExERCiSES
 1. Consider the situation where a student

 organization is exploring its requirements for
a system that manages its membership and
 finances. Based on what you know about stu-
dent organizations, write user stories using the

standard template for the following potential
users: membership director, finance director,
faculty advisor. Add acceptance criteria for each
user story based on how you imagine the system
might work.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

89CHAPTER 3 ■ Identifying User Stories and Use Cases

 2. Review the external event checklist in Figure 3-4
and then think about a university course registra-
tion system. What is an example of an event of
each type in the checklist? Name each event by
using the guidelines for naming an external event.

 3. Review the temporal event checklist in Figure 3-5.
Would a student grade report be an internal or
external output? Would a class list for the instruc-
tor be an internal or external output? What are
some other internal and external outputs for a
course registration system? Using the guidelines
for naming temporal events, what would you
name the events that trigger these outputs?

 4. Consider the following sequence of actions taken
by a customer at a bank. Which action is the
event the analyst should define for a bank ac-
count transaction processing system? (1) Kevin
gets a check from Grandma for his birthday.
(2) Kevin wants a car. (3) Kevin decides to save
his money. (4) Kevin goes to the bank. (5) Kevin
waits in line. (6) Kevin makes a deposit in his sav-
ings account. (7) Kevin grabs the deposit receipt.
(8) Kevin asks for a brochure on auto loans.

 5. Consider the perfect technology assumption,
which states that use cases should be included
during analysis only if the system would be
required to respond under perfect conditions.
Could any of the use cases listed for the RMO
CSMS be eliminated based on this assumption?
Explain. Why are such use cases as Log on to the
system and Back up the database required only
under imperfect conditions?

 6. Visit some Web sites of car manufacturers, such
as Honda, BMW, Toyota, and Acura. Many of
these sites have a use case that is typically named
Build and price a car. As a potential customer,
you can select a car model, select features and
options, and get the car’s suggested price and list
of specifications. Write a brief use case descrip-
tion for this use case (see Figure 3-9).

 7. Again looking at a Web site for one of the car
manufacturers, consider yourself a potential
buyer and then identify all the use cases included
on the site that correspond to your goals.

 8. Set up a meeting with a librarian. During your
meeting, ask the librarian to describe the situ-
ations that the book checkout system needs to
respond to. List these external events. Now ask
about points in time, or deadlines, that require
the system to produce a statement, notice, report,
or other output. List these temporal events. Does
it seem natural for the librarian to describe the
system in this way? List each event and then
name the resulting use case.

 9. Again considering the library, ask some students
what their goals are in using the library system.
Also ask some library employees about their
goals in using the system. Name these goals as use
cases (verb-noun) and discuss whether student
users have different goals than employee users.

 10. Visit a restaurant or the college food service to
talk to a server (or talk with a friend who is a
food server). Ask about the external events and
temporal events, as you did in exercise 8. What
are the events and resulting use cases for order
processing at a restaurant?

 11. Review the procedures for course registration
at your university and then talk with the staff
in advising, in registration, and in your major
department. Think about the sequence that goes
on over an entire semester. What are the events
that students trigger? What are the events that
your own department triggers? What are the
temporal events that result in information going
to students? What are the temporal events that
result in information going to instructors or
departments? List all the events and the resulting
use cases that should be included in the system.

 12. Refer to the RMO CSMS Order Fulfillment subsys-
tem shown in Figure 3-10. Draw a use case diagram
that shows all actors and all use cases. Use a draw-
ing tool such as Microsoft Visio if it is available.

 13. Again for the Order Fulfillment subsystem, draw
a use case diagram showing just the use cases
for the Shipping Department in preparation for
a meeting with them about the system require-
ments. Use a drawing tool such as Microsoft
Visio if it is available.

 14. Refer to the RMO CSMS Marketing subsystem
shown in Figure 3-10. Draw a use case diagram
that shows all actors and all use cases. Use a draw-
ing tool such as Microsoft Visio if it is available.

 15. Refer to the RMO CSMS Reporting subsystem
shown in Figure 3-10. These reports were iden-
tified by asking users about temporal events,
meaning points in time that require the system
to produce information of value. In most actual
systems today, an actor is assigned responsibil-
ity for producing the reports or other outputs
when they are due. Recall that the actor is part
of the system—the manual, nonautomated
part. Thus, this is one way the “system” can be
responsible for producing an output at a point
in time. In the future, more outputs will be pro-
duced automatically. Draw a use case diagram
that shows the use cases and actors, as shown in
Figure 3-10. Use a drawing tool such as Micro-
soft Visio if it is available.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

90 PART 2 ■ Systems Analysis Activities

The State Patrol Ticket-Processing
System
The purpose of the State Patrol ticket-processing system is
to record moving violations, keep records of the fines paid by
drivers when they plead guilty or are found guilty of moving
violations, and notify the court that a warrant for arrest should
be issued when such fines are not paid in a timely manner.
A separate State Patrol system records accidents and the
verification of financial responsibility (insurance). But a third
system uses ticket and accident records to produce driving
record reports for insurance companies. Finally, a fourth sys-
tem issues, renews, or suspends driver’s licenses. These
four systems are obviously integrated, in that they share ac-
cess to the same database; otherwise, they are operated
separately by different departments of the State Patrol.

When an officer gives a ticket to a driver, a copy of
the ticket is turned in and entered into the system. A new
ticket record is created, and relationships to the correct
driver, officer, and court are established in the database.
If the driver pleads guilty, he or she mails in the fine in a
preprinted envelope with the ticket number on it. In some
cases, the driver claims innocence and wants a court date.
When the envelope is returned without a check and the trial
request box has an “X” in it, the system does the following:
notes the plea on the ticket record; looks up driver, ticket,
and officer information; and sends a ticket details report
to the appropriate court. A trial date questionnaire form is
also produced at the same time and is mailed to the driver.
The instructions on the questionnaire tell the driver to fill in
convenient dates and mail the questionnaire directly to the
court. Upon receiving this information, the court schedules
a trial date and notifies the driver of the date and time.

When the trial is completed, the court sends the
verdict to the ticketing system. The verdict and trial date
are recorded for the ticket. If the verdict is innocent, the
system that produces driving record reports for insurance
companies will ignore the ticket. If the verdict is guilty,
the court gives the driver another envelope with the ticket
number on it for mailing in the fine.

If the driver fails to pay the fine within the required
period, the ticket-processing system produces a warrant
request notice and sends it to the court. This happens if
the driver does not return the original envelope within two
weeks, or does not return the court-supplied envelope
within two weeks of the trial date. What happens next is
in the hands of the court. Sometimes, the court requests
that the driver’s license be suspended, and the system that
processes driver’s licenses handles the suspension.

1. To what events must the ticket-processing system
 respond? List each event, the type of event, the
resulting use case, and the actor(s). Think carefully
about who the actors are. Does the officer directly
enter the ticket into the system? Or does a state pa-
trol clerk do it when the paper ticket is received from
the officer? The existing system uses paper forms, so
for now assume the state patrol clerk enters all of the
information. A new system would use the same use
cases, but opportunities for efficiency and accuracy
would lead to changes in who the actors are.

2. Write a brief use case description for each use case.
3. Draw a use case diagram for the ticket-processing

system assuming the actors are based on your
answers in question 1 (the existing system as
described).

CASE STUDY

Community Board of Realtors®

One of the functions of the Board of Realtors intro-
duced in Chapter 2 is to provide a Multiple Listing
Service (MLS) system that supplies information that
local real estate agents use to help them sell houses to
their customers. Agents list houses for sale (listings) by
contracting with homeowners. The agent works for
a real estate office, which sends information on the

listing to the MLS. Therefore, any agent in the com-
munity can get information on the listing.

The MLS systems include lots of information on
a listing. It is now common to include dozens of pho-
tos, video tours, Google map information, prior sales,
and so forth. For now, let’s keep it simple and assume
a listing includes the address, year built, square feet,

Running CaSe STudieS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

91CHAPTER 3 ■ Identifying User Stories and Use Cases

number of bedrooms, number of bathrooms, owner
name, owner phone number, asking price, and status
code. An agent will directly request information from
the MLS system on listings that match customer re-
quirements. Information is provided on the house, on
the agent who listed the house, and on the real estate
office for which the agent works. This information is
needed because an agent might want to call the listing
agent to ask additional questions or call the homeowner
directly to make an appointment to show the house.
Although it seems dated, once each week, the MLS
produces a listing booklet that contains information
on all listings. These booklets are sent to some real es-
tate agents because many think they are easier to flip

through and write on. Sometimes, agents and owners
decide to change information about a listing, such as re-
ducing the price, correcting previous information on the
house, or indicating that the house is sold. The agent
updates the information directly on the MLS system.

 1. To what events must the MLS system respond
based on the description above? List each event,
the type of event, and the resulting use case. Be
sure to consider all the use cases that would be
needed to maintain the data in the MLS system.

 2. Draw a use case diagram based on the use cases
you identified in question 1. Include appropriate
actors based on the case description.

The Spring Breaks ‘R’ Us Travel Service
Spring Breaks ‘R’ Us (SBRU), introduced in Chapter 2,
includes many use cases that make up the functional
requirements. Consider the following description of the
Booking subsystem. A few weeks before Thanksgiving
break, it is time to open the system to new bookings.
Students usually want to browse through the resorts
and do some planning. When a student or group of
students wants to book a trip, the system allows it.
Sometimes, a student needs to be added or dropped
from the group or a group changes size and needs a
different type of room. One month before the actual
trip, it is time for the system to send out final payment
requirement notices. Students cancel the booking or
they pay their final bills. Students often want to look
up their booking status and check on resort details.
When they arrive at the resort, they need to check in;
and when they leave, they need to check out.

 1. Using the event decomposition technique for
each event you identify in the description here,
name the event, state the type of event, and
name the resulting use case. Draw a use case
diagram for these use cases.

 2. Consider the new Social Networking subsystem
that SBRU is researching that was described
in Chapter 2. Think in terms of the user goal
technique to identify as many use cases as you
can think of that you would like to have in the
system. SBRU is guessing you might want to
join, send messages, and so forth, but there must
be many interesting and useful things the system
could do before, during, and after the trip. Draw
a use case diagram for these use cases.

On the Spot Courier Services
Recall the On the Spot courier service introduced
in Chapter 2. The details of the package pickup and
delivery process are described here.

When Bill got an order, only on his phone at first,
he recorded when he received the call and when the
shipment would be ready for pickup. Sometimes, cus-
tomers wanted immediate pickup; sometimes, they
were calling to schedule a later time in the day for
pickup.

Once he arrived at the pickup location, Bill
 collected the packages. It was not uncommon for
the customer to have several packages for delivery.
In addition to the name and address of the delivery
 location, he also recorded the time of pickup. He
noted the desired delivery time, the location of the
delivery, and the weight of the package to determine
the courier cost. When he picked up the package, he

printed out a label with his portable printer that he
kept in the delivery van.

At first, Bill required customers to pay at the time
of pickup, but he soon discovered that there were some
regular customers who preferred to receive a monthly
bill for all their shipments. He wanted to be able to ac-
commodate those customers. Bills were due and pay-
able upon receipt.

To help keep track of all the packages, Bill de-
cided that he needed to scan each package as it was
sorted in the warehouse. This would enable him to
keep good control of his packages and avoid loss or
delays.

The delivery of a package was fairly simple. Upon
 delivery, he would record information about when the
 delivery was made and who received it. Because some
of the packages were valuable, it was necessary in

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

92 PART 2 ■ Systems Analysis Activities

those instances to have someone sign for the package
upon delivery.

 1. From this description as well as the information
from Chapter 2, identify all the actors who will
be using the system.

 2. Using the actors who you identified in question 1,
develop a list of use cases based on the user goal

technique. Draw a use case diagram for these
use cases.

 3. Using the event decomposition technique for
each event you identify in the description
here, name the event, state the type of event,
and name the resulting use case. Draw a use
case diagram for these use cases.

Sandia Medical Devices
Recall the Sandia Medical Devices Real-Time
 Glucose Monitoring (RTGM) system introduced in
Chapter 2. As the project began, interviews with pa-
tients and physicians about potential RTGM capa-
bilities and interaction modes identified several areas
of concern that will need to be incorporated into the
system requirements and design. The relevant patient
concerns include:

 ■ Viewing and interpreting data and trends.
Patients want to be able to view more than their
current glucose level. They would like to see
glucose levels over various time periods, with a
specific focus on time periods during which their
glucose was within and outside of acceptable
ranges. A graphical view of the data is preferred,
although some patients also want to be able to
see actual numbers.

 ■ Entering additional data. Some patients want
to be able to enter text notes or voice messages
to supplement glucose level data. For example,
patients who see a high glucose alert might
record voice messages describing how they feel
or what they had recently eaten. Some patients
thought that sharing such information with
their health-care providers might be valuable,
but others only wanted such information for
themselves.

Physicians expressed these concerns:

 ■ They do not want to be the “first line of
 response” to all alerts. They prefer that nurses
or physician assistants be charged with that
role and that physicians be notified only when
 frontline personnel determine that an emergency
situation exists.

 ■ They want to be able to monitor and view past
patient data and trends in much the same way as
described for patients.

 ■ They want all their actions to be logged and for
patient-specific responses to be stored as part of
the patient’s electronic medical record.

Perform the following tasks by using the infor-
mation here as well as the system description in
Chapter 2:

1. Identify all the actors who will use RTGM.
2. Using the actors who you identified in question 1,

develop a list of use cases based on the user goal
technique. Draw a use case diagram for these use
cases.

3. Using the event decomposition technique for
each event you identified in the description, name
the event, state the type of event, and name the
resulting use case. Draw a use case diagram for
these use cases.

Classic and more recent texts include the following:

Grady Booch, Ivar Jacobson, and James
 Rumbaugh, The Unified Modeling Language
User Guide. Addison-Wesley, 1999.

Mike Cohn, User Stories Applied. Addison-Wesley,
2004.

Craig Larman, Applying UML and Patterns (3rd ed.).
Prentice Hall, 2005.

Stephen McMenamin and John Palmer, Essential
Systems Analysis. Prentice Hall, 1984.

Ed Yourdon, Modern Structured Analysis. Prentice
Hall, 1989.

FURTHER RESOURCES

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter FOUR

After reading this chapter, you should be able to:

Explain how the concept of “things” in the
problem domain also defines requirements

Identify and analyze data entities and domain
classes needed in the system

Read, interpret, and create an entity-
relationship diagram

Read, interpret, and create a domain model
class diagram

Understand and interpret the domain model
class diagrams for RMO

Read, interpret, and create a state machine
diagram that models object behavior

Learning ObjeCtives

Domain Modeling

“Things” in the Problem Domain

The Entity-Relationship Diagram

The Domain Model Class Diagram

The State Machine Diagram—Identifying
Object Behavior

Chapter OutLine

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

94 PART 2 ■ Systems Analysis Activities

 ■ Overview
Chapter 3 focused on identifying user stories or use cases to define the func-
tional requirements for an information system. This chapter focuses on another
key concept that defines requirements: things in the problem domain of system
users. You first learned about these as domain classes in Chapter 1. You might
have learned about these as data entities when studying database management,
as they define the sources for the tables used in a relational database manage-
ment system. Nearly all approaches to system development include identifying
and modeling domain classes or data entities as an important task in the analy-
sis activity Define functional requirements.

 ■ “Things” in the Problem Domain
Domain classes or data entities are what end users deal with when they do their
work—for example, products, sales, shippers, shipments, and customers. These
are often referred to as “things” in the context of a system’s problem domain.
The problem domain is the specific area of the user’s business that is included
within the scope of the new system. The new system involves working with
and remembering these “things.” For example, some information systems need
to store information about customers and products, so it is important for the
analyst to identify all the important information about them. Often, things are
related to the people who interact with the system or to other stakeholders. For
example, a customer is a person who places an order, but the system needs to
store information about that customer, so a customer is also a thing in the prob-
lem domain.

There are many techniques for identifying the important things in the prob-
lem domain that the system needs to remember. Two of them are introduced in
this chapter: the brainstorming technique and the noun technique.

Opening case Waiters on Call Meal-Delivery systeM (Part 2)

Recall that Waiters on Call has been working with Sam
Wells on the requirements for its meal-delivery system.
Sue and Tom Bickford want a new system that will auto-
mate and improve their specialty business of providing
customer-ordered, home-delivered meals prepared by a
variety of local restaurants. Sam did a great job of iden-
tifying the use cases required for the delivery service,
which impressed the Bickfords. And while working on
the use cases, he continued to note all the business
terms and concepts that the Bickfords used as they
described their operations. He followed up with ques-
tions about the types of things they work with each day,
which they answered.

“Based on what you’ve told me,” Sam said,
“I assume you will need the system to store infor-
mation about the following types of things, which
we call data entities or domain classes: restaurants,
menu items, customers, and orders. I also think you’re

going to need to store information about the following
types of things: drivers, addresses, routes, and order
payments.”

The Bickfords readily agreed and added that it was
important to know what route a restaurant was on and
how far it might be to the customer’s address. They
wanted drivers to be assigned to a route based on the
distances from place to place.

“Yes, we need to decide how things need to be
associated in the system,” Sam agreed. “Can you tell
me if drivers pick up orders from several restaurants
when they go out? Can you tell me how many items are
usually included in one order? Do you note pickup times
and delivery times? Do you need to plan the route so
that hot dishes are delivered first?”

The Bickfords were further reassured that they had
picked an analyst who was aware of the needs of their
business.

problem domain the specific area
(domain) of the user’s business need that is
within the scope of the new system

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

95CHAPTER 4 ■ Domain Modeling

 ■ The Brainstorming Technique
As with use cases, an analyst should ask the users to discuss the types of things
they work with routinely. The analyst can ask about several types of things to
help identify them. Different types of things are important to different users,
so it is important to involve all types of users to help identify problem domain
things. The brainstorming technique is used to identify problem domain
classes where developers work with users to identify different types of things
that they use in their work.

Figure 4-1 shows some types of things to consider that can be used to system-
atically help users do brainstorming. Tangible things are often the most obvious,
such as an airplane, a book, or a vehicle. In the Ridgeline Mountain Outfitters case,
a product in the warehouse and a vehicle in the fleet are tangible things of impor-
tance. Another common type of thing in an information system is a role played by
a person, such as an employee, a customer, a doctor, or a patient. The role of cus-
tomer is obviously a very important one in the Ridgeline Mountain Outfitters case.
Many things in the problem domain can fit into more than one type. For example,
a vehicle might be thought of as a device and also a tangible thing. Either way, the
important point is to identify potential things in the problem domain.

Other types of things can include organizational units, such as a division, depart-
ment, or workgroup. Similarly, a site or location, such as a warehouse, a store, or a
branch office, might be an important thing in a system. Finally, information about
an incident or an interaction can be a thing—information about an order, a service
call, a contract, or an airplane flight. A sale, a shipment, and a return are all impor-
tant incidents in the RMO case. Sometimes, these incidents are thought of as associa-
tions between things. For example, a sale is an association between a customer and
an item of inventory. Initially, the analyst might simply list all these as things and
then make adjustments as required by different approaches to analysis and design.

The analyst identifies these types of things by thinking about each use case,
talking to users, and asking questions. For example, for each use case, what
types of things are affected that the system needs to know about and store infor-
mation about? The types of things shown in Figure 4-1 can be used to systemati-
cally brainstorm about what types of things might be involved in each use case.
When a customer wants to buy from the Web site, the system needs to store
information about the customer, the items ordered, the details about the sale
itself—such as the date and payment terms—and the location of the items to

brainstorming technique a technique
used to identify problem domain classes in
which developers work with users to identify
classes by thinking about different types of
things they use in their work

FIguRe 4-1 Types of things to use for the brainstorming technique

sensor
timer

controller
assembly line

production machine
sorter
printer

inventory bin

Devices

warehouse
branch office

factory
retail store

desktop

Sites/
locations

flight
service call

logon
logoff

contract
purchase

order
payment

Incidents,
events, or

interactions

airplane
book

vehicle
document
worksheet

Tangible
things

employee
customer

doctor
patient

end user
system

administrator

Roles
played

Things

division
department

section
task force

workgroup

Organizational
units

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

96 PART 2 ■ Systems Analysis Activities

be shipped. For that one use case, the analyst can define tangible things (items
ordered), roles played (customer), incidents or events (the sale), sites/locations
(warehouse), and organizational units (shipping).

Here are the steps to follow when using the brainstorming technique:

1. Identify a user and a set of use cases or user stories.
2. Brainstorm with the user to identify things involved when carrying out the

use case—that is, things about which information should be captured by
the system.

3. Use the types of things (categories) to systematically ask questions about
potential things, such as the following: Are there any tangible things you
store information about? Are there any locations involved? Are there roles
played by people that you need to remember?

4. Continue to work with all types of users and stakeholders to expand the
brainstorming list.

5. Merge the results, eliminate any duplicates, and compile an initial list.

 ■ The Noun Technique
Another useful procedure for identifying things in the problem domain is called
the noun technique. Recall that a noun is a person, place, or thing. Therefore,
identifying nouns might help you identify what needs to be stored by the system.
Begin by listing all the nouns that users mention when talking about the system.
Nouns used to describe events, use cases, user stories, and the actors are poten-
tial things. Next, add to the list any additional nouns that appear in information
about the existing system or that come up in discussions with stakeholders about
the problem domain of the system. The list of nouns will become quite long,
so the list will need to be trimmed and refined. How the noun technique dif-
fers from the brainstorming technique is that the analyst lists all nouns without
thinking too much about them and without talking about them with users. Only
later will the list be refined based on consultation with stakeholders and users.

Here are the steps to follow when using the noun technique:

1. Using the use cases, actors, and other information about the system—
including inputs and outputs—identify all nouns. For the RMO CSMS,
the nouns might include the following: customer, product item, sale, con-
firmation, transaction, shipping, bank, change request, summary report,
management, transaction report, accounting, back order, back-order
notification, return, return confirmation, fulfillment reports, prospective
customer, marketing, customer account, promotional materials, charge ad-
justment, sale details, merchandising, and customer activity reports.

2. Using other information from existing systems, current procedures, and cur-
rent reports or forms, add items or categories of information needed. For the
RMO CSMS, these might include more detailed information, such as price,
size, color, style, season, inventory quantity, payment method, and shipping
address. Some of these items might be additional things, and some might be
specific information (called attributes) about things you have already identi-
fied. Refine the list and then record assumptions or issues to explore.

3. As this list of nouns builds, you will need to refine it. Ask these questions
about each noun to help you decide whether you should include it:

 ■ Is it a unique thing the system needs to know about?
 ■ Is it inside the scope of the system I am working on?
 ■ Does the system need to remember more than one of these items?

 Ask these questions about each noun to decide whether you should exclude it:

 ■ Is it really a synonym for some other thing I have identified?
 ■ Is it really just an output of the system produced from other information

I have identified?

noun technique a technique used to
identify things in the problem domain by
finding and classifying the nouns in a dialog
or description

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

97CHAPTER 4 ■ Domain Modeling

 ■ Is it really just an input that results in recording some other information I
have identified?

 Ask these questions about each noun to decide whether you should research it:

 ■ Is it likely to be a specific piece of information (attribute) about some
other thing I have identified?

 ■ Is it something I might need if assumptions change?

4. Create a master list of all nouns identified and then note whether each one
should be included, excluded, or researched further.

5. Review the list with users, stakeholders, and team members and then refine
the list of things in the problem domain.

Figure 4-2 lists some of the nouns from the RMO CSMS, with notes about
each one. As with the brainstorming technique, the initial list developed from
this table is just a start. Much more work is needed to refine the list and define
more information about each item in the list.

 ■ Attributes of Things
The noun technique involves listing all the nouns that come up in discussions or
documents about the requirements. The list can become quite long because many
of these nouns are actually attributes. Most information systems store and use
specific pieces of information about each “thing” of interest, as shown for some
nouns in Figure 4-2. The specific pieces of information are called attributes.
For example, a customer has a name, a phone number, a credit limit, and so on.
Each of these details is an attribute. So as you refine your list of nouns, you may
redefine many nouns as attributes rather than fundamental “things.”

The analyst needs to identify all of the attributes of each thing that the sys-
tem needs to store even if they don’t turn up on the initial list of nouns. One

FIguRe 4-2 Partial list of “things”
based on nouns for RMO

Identified noun Notes on including noun as a thing to store

Accounting We know who they are. No need to store it.

Back order A special type of order? Or a value of order status? Research.

Back-order information An output that can be produced from other information.

Bank Only one of them. No need to store.

Catalog Yes, need to recall them, for different seasons and years. Include.

Catalog activity reports An output that can be produced from other information. Not stored.

Catalog details Same as catalog? Or the same as product items in the
catalog? Research.

Change request An input resulting in remembering changes to an order.

Charge adjustment An input resulting in a transaction.

Color One piece of information about a product item.

Confirmation An output produced from other information. Not stored.

Credit card information Part of an order? Or part of customer information? Research.

Customer Yes, a key thing with lots of details required. Include.

Customer account Possibly required if an RMO payment plan is included. Research.

Fulfillment reports An output produced from information about shipments. Not stored.

Inventory quantity One piece of information about a product item. Research.

Management We know who they are. No need to store.

Marketing We know who they are. No need to store.

Merchandising We know who they are. No need to store.

attributes descriptive pieces of informa-
tion about things or objects

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

98 PART 2 ■ Systems Analysis Activities

attribute may be used to identify a specific thing, such as a Social Security
number for an employee or an order number for a purchase. The attribute that
uniquely identifies the thing is called an identifier or key. Sometimes, the iden-
tifier is already established (a Social Security number, vehicle ID number, or
product ID number). Sometimes, the system needs to assign a specific identifier
(an invoice number or transaction number).

A system may need to remember many similar attributes. For example, a
customer has several names: a first name, a middle name, a last name, and pos-
sibly a nickname. A compound attribute is an attribute that contains a collec-
tion of related attributes, so an analyst may choose one compound attribute to
represent all these names, perhaps naming it Customer full name. A customer
might also have several phone numbers: home phone number, office phone num-
ber, fax phone number, and cell phone number. The analyst might start out by
describing the most important attributes but later add to the list. Attribute lists
can get quite long. Some examples of attributes of a customer and the values of
attributes for specific customers are shown in Figure 4-3.

 ■ Associations among Things
After recording and refining the list of things and determining potential
attributes, the analyst needs to research and record additional information.
Many important relationships among things are important to the system. An
association is a naturally occurring relationship between specific things, such
as an order is placed by a customer and an employee works in a department
(see Figure 4-4). Is placed by and works in are two associations that naturally
occur between specific things. Information systems need to store informa-
tion about things such as employees and departments, but equally important
is storing information about the specific associations between those things; for

FIguRe 4-3 Attributes and
values

All customers have these attributes: Each customer has a value for each attribute:

Customer ID

First name

Last name

Home phone

Work phone

101

John

Smith

555-9182

555-3425

102

Mary

Jones

423-1298

423-3419

103

Bill

Casper

874-1297

874-8546

FIguRe 4-4 Associations naturally occur
among things

Mr Smith

“is placed by” “works in”

“contains” “contains”

401 jeans size
34 long

red shirt size
16/32

Accounting DeptOrder # 1043

identifier or key an attribute the value of
which uniquely identifies an individual thing
or object

compound attribute an attribute that
consists of multiple pieces of information but
is best treated in the aggregate

association a term, in UML, that describes
a naturally occurring relationship between
specific things

©
 C

en
ga

ge
 L

ea
rn

in
g®

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

99CHAPTER 4 ■ Domain Modeling

example, John works in the Accounting Department and Mary works in the
Marketing Department. Similarly, it is quite important to store the fact that
Order 1043 for a shirt was placed by John Smith. In database management, the
term relationship is often used in place of association, which is the term used
when modeling in Unified Modeling Language (UML). This book uses the term
association because it emphasizes UML diagrams and terms.

Associations between things apply in two directions. For example, a cus-
tomer places an order describes the association in one direction. Similarly, an
order is placed by a customer describes the association in the other direction.
It is important to understand the association in both directions because some-
times it might seem more important for the system to record the association in
one direction than in the other. For example, Ridgeline Mountain Outfitters
definitely needs to know what items a customer ordered so the shipment can be
prepared. However, it might not be initially apparent that the company needs to
know about the customers who have ordered a particular item. What if the com-
pany needs to notify all customers who ordered a defective or recalled product?
Knowing this information would be very important, but the operational users
might not immediately recognize that issue.

It is also important to understand the nature of each association in terms
of the number of links for each thing and in which direction. For example, a
customer might place many different orders, but an order is placed by only one
customer. In database management, the number of links that occur is referred
to as the cardinality of the association. Cardinality can be one-to-one or one-
to-many. The term multiplicity is used to refer to the number of links in UML
and should be used when discussing UML models. Multiplicity is established for
each direction of the association. Figure 4-5 lists examples of cardinality/multi-
plicity associated with an order.

It is important to describe not just the multiplicity but also the range of
possible values of the multiplicity (the minimum and maximum multiplicity).
For example, a particular customer might not ever place an order. In this case,
there are zero associations. Alternatively, the customer might place one order,
meaning one association exists. Finally, the customer might place two, three, or
even more orders. The relationship for a customer placing an order can have a
range of zero, one, or more, usually indicated as zero or more. The zero is the
minimum multiplicity, and more is the maximum multiplicity. These terms are
referred to as multiplicity constraints.

In some cases, at least one association is required (a mandatory as opposed
to optional association). For example, the system might not record any informa-
tion about a customer until the customer places an order. Therefore, the multi-
plicity would read customer places one or more orders.

A one-to-one association can also be refined to include minimum and maxi-
mum multiplicity. For example, an order is placed by one customer; it is impos-
sible to have an order if there is no customer. Therefore, one is the minimum

Mr. Jones has placed no order yet,
but there might be many placed

over time.
(Direction: Mr. Jones to Order)

A particular order is placed by Mr.
Smith. There can’t be an order

without stating who the customer is.
(Reverse direction: Order to Mr. Smith)

An order contains at least one item,
but it could contain many items.

(Direction: Order to OrderItem)

multiplicity/cardinality
is zero or more—
optional relationship

multiplicity/cardinality
is one and only one—
mandatory relationship

multiplicity/cardinality
is one or more—
mandatory relationship

Figure 4-5 Multiplicity/cardinality
of associations

cardinality a measure of the number of
links in a particular relationship between a
thing (database data entity) and one or more
other things (database data entities)

relationship a term, in database manage-
ment, that describes a naturally occurring
association between specific things

multiplicity in UML, a measure of the
number of links in a particular association
between a thing (object) and one or more
other things (objects)

multiplicity constraints the actual
numeric count of the constraints on things
(UML objects) allowed in an association

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

100 PART 2 ■ Systems Analysis Activities

multiplicity, making the association mandatory. Because there cannot be more
than one customer for each order, one is also the maximum multiplicity. Some-
times, such an association is read as an order must be placed by one and only
one customer.

The associations described here are between two different types of things—
for example, a customer and an order. These are called binary associations.
Sometimes, an association is between two things of the same type—for example,
the association is married to, which is between two people. This type of asso-
ciation is called a unary association (and sometimes called a recursive asso-
ciation). Another example of a unary association is an organizational hierarchy
in which one organizational unit reports to another organizational unit—the
Packing Department reports to Shipping, which reports to Distribution, which
reports to Marketing.

An association can also be among three different types of things, when it
is called a ternary association, or among any number of different types of
things, when it is called an n-ary association. For example, one particular
order might be associated with a specific customer plus a specific sales represen-
tative, requiring a ternary association.

 ■ The Entity-Relationship Diagram
Traditional approaches to system development place a great deal of emphasis
on data requirements for a new system and use the term data entities for the
things about which the system needs to store information. Data requirements
include the data entities, their attributes, and the relationships (called associa-
tions in UML) among the data entities. The brainstorming technique and noun
technique described earlier are used in the same way with data entities as with
domain classes used for UML modeling. A model commonly used by traditional
analysts and database analysts is called the entity-relationship diagram (ERD).
The ERD is not a UML diagram, but it is frequently used and is quite similar to
the UML domain model class diagram that is discussed later in this chapter.

 ■ Examples of ERD Notation
On the entity-relationship diagram, rectangles represent data entities, and the
lines connecting the rectangles show the relationships among data entities.
Figure 4-6 shows an example of a simplified entity-relationship diagram with
two data entities: Customer and Order. Each Customer can place many Orders,
and each Order is placed by one Customer. The cardinality is one-to-many in

binary associations associations
between exactly two distinct types of things

unary association an association
between two instances of the same type
of thing

ternary association an association
between exactly three distinct types of things

n-ary association an association between
n distinct types of things

data entities the term used in ERD model-
ing to describe things about which the system
needs to store information

entity-relationship diagram (ERD)
a diagram consisting of data entities, their
attributes, and their relationships

an Order must be placed
by exactly one Customer

a Customer can place
zero or more Orders

Customer Order

FIguRe 4-6 A simple
entity-relationship diagram (ERD)

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

101CHAPTER 4 ■ Domain Modeling

one direction and one-to-one in the other direction. The crow’s-feet symbol on
the line next to the Order data entity indicates many orders. But other symbols
on the relationship line also represent the minimum and maximum cardinality
constraints. See Figure 4-7 for an explanation of ERD relationship symbols.
The model in Figure 4-6 actually says that a Customer places a minimum of
zero Orders and a maximum of many Orders. Reading in the other direction,
the model says an Order is placed by at least one and only one Customer.

Cardinality constraints reflect the business policies defined by management.
The analyst does not decide that two customers cannot share one order. Rather,
the analyst must discover the underlying policy and accurately represent it using
cardinality constraints. The analyst must be very careful not to invent policies
by defining arbitrary cardinality constraints. When the discovery process raises
policy questions that haven’t yet been answered—the analyst must raise the
question with management and let it decide on an appropriate policy.

Figure 4-8 shows the model expanded to include the order items (one or
more specific items included on the order). Each order contains a minimum of
one and a maximum of many items (there could not be an order if it did not
contain at least one item). For example, an order might include a shirt, a pair of
shoes, and a belt, and each of these items is associated with the order. This exam-
ple also shows some of the attributes of each data entity: A customer has a cus-
tomer number, a name, a billing address, and several phone numbers. Each order
has an order ID, order date, and so on. Each order item has an item ID, quantity,
and price. The attributes of the data entity are listed below the name, with the
key identifier listed first, usually followed by PK to indicate primary key.

Figure 4-9 shows how the actual data in some transactions might look.
John is a customer who has placed two orders. The first order, placed on Febru-
ary 4, was for two shirts and one belt. The second order, placed on March 29,
was for one pair of boots and two pairs of sandals. Mary is a customer who has
not yet placed an order. Recall that a customer might place zero or more orders.
Therefore, Mary is not associated with any orders. Finally, Sara placed an order
on March 30 for three pairs of sandals. The diagram shown in Figure 4-9 is

FIguRe 4-7 Cardinality symbols of
ERD relationships

Exactly one (mandatory)

Zero or more (optional)

One or more (mandatory)

Zero or one (optional)

©
 C

en
ga

ge
 L

ea
rn

in
g®

FIguRe 4-8 An expanded ERD
with attributes shown Customer

cust number–PK
name
bill address
home phone
office phone

order ID–PK
order date
amount

Order OrderItem
item ID–PK
quantity
price

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

102 PART 2 ■ Systems Analysis Activities

sometimes referred to as a semantic net. A semantic net shows specific objects
that belong to a class or data entity and the links among them. A semantic net
is useful for thinking through and verifying the entities and relationships in an
ERD and the classes and associations in a class diagram (discussed next).

Another example is shown in Figure 4-10. This ERD is for a bank that
has many branches. Each branch has one or more accounts. Each account is
owned by one customer and results in one or more transactions. There are a few
other issues to consider in the bank example. First, there is no data entity named
Bank. That is because the ERD shows data storage requirements for the bank.
There is only one bank. Therefore, there is no need to include Bank in the model.
This is a general rule that applies to ERDs. If the system were for state bank
regulators, then Bank would be an important data entity because there are lots
of banks under the state regulators’ jurisdiction.

semantic net a graphical representation of
an individual data entity and its relationship
with other individual data entities

FIguRe 4-9 Semantic net of
customers, orders, and order items
consistent with the expanded ERD

John

Mary

Sara

no orders for
Mary yet!

Order: 3 March 30

Order: 1 Feb 4

Order: 2 March 29

First shirt

Second shirt

Belt

Boots

First sandals

Second sandals

Third sandals

First sandals

Second sandals

©
 C

en
ga

ge
 L

ea
rn

in
g®

FIguRe 4-10 An ERD for a bank
with many branches

branch ID–PK
manager name
location
main phone

account ID–PK
account type
date opened
balance

cust number–PK
name
bill address
home phone
office phone

Account BranchCustomer

trans ID–PK
trans date
trans type
trans amount

Transaction

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

103CHAPTER 4 ■ Domain Modeling

Look again at the cardinality. Note that a customer must have at least
one account. The rationale for this is that the bank would not add a customer
unless he or she was adding an account. Note also that the branch can have zero
accounts. A branch might be added long before it opens its doors, so it is possible
that it is does not have any accounts. Additionally, there might be some branches
that do not have accounts, such as a kiosk at a university or airport. Note that
an account must have at least one transaction. The rationale is that opening a
new account requires an initial deposit, which is a transaction. It is important to
recognize that questions about the cardinality and minimum and maximum car-
dinality constraints need to be discussed and reviewed with stakeholders.

 ■ The Domain Model Class Diagram
As discussed previously, many current approaches to system development use
the term domain class rather than data entity and use concepts and notations
based on UML to model the things in the problem domain. These concepts come
from the object-oriented approach to system development. A class is a category
or classification used to describe a collection of objects. Each object belongs to
a class. Therefore, students Mary, Joe, and Maria belong to the class Student.
Classes that describe things in the problem domain are called domain classes.
Domain classes have attributes and associations. Multiplicity (called cardinality
in an ERD) applies among classes. Initially, when defining requirements, the
approach to modeling is very similar whether the analyst is using ERD or UML
diagrams.

The UML class diagram is used to show classes of objects for a system.
One type of UML class diagram that shows the things in the users’ problem
domain is called the domain model class diagram. Another type of UML
class diagram is called the design class diagram, and it is used when designing
software classes. You will learn about the design class diagram in Chapter 12.

On a class diagram, rectangles represent classes, and the lines connecting
the rectangles show the associations among classes. Figure 4-11 shows such a
symbol for a single domain class: Customer. The domain class symbol is a rect-
angle with two sections. The top section contains the name of the class, and
the bottom section lists the attributes of the class. Later, you will learn that the
design class symbol includes a third section at the bottom for listing methods of
the class; methods do not apply to problem domain classes.

Class names and attribute names use camelback (sometimes called
camelcase) notation, in which the words run together without a space or under-
score. Class names begin with a capital letter; attribute names begin with a low-
ercase letter (see Figure 4-11). Class diagrams are drawn by showing classes and
associations among classes. The examples used previously for the entity-relation-
ship diagram are redrawn by using UML domain class diagram notation in the fol-
lowing section so you can compare them. Additionally, more complex issues about
classes and associations can be illustrated by using domain model class diagrams.

class a category or classification of a set
of objects or things

domain classes classes that describes
objects from the problem domain

camelback or camelcase notation when
words are concatenated to form a single word
and the first letter of each embedded word is
capitalized

domain model class diagram a class
diagram that only includes classes from the
problem domain

class diagram a diagram consisting of
classes (i.e., sets of objects) and associations
among the classes

FIguRe 4-11 The UML domain
class symbol with name and
attributes

©
 C

en
ga

ge
 L

ea
rn

in
g®

The name of the class

Attributes: all objects in
the class have a value for

each of these

Customer

custNumber
name
billAddress
homePhone
officePhone

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

104 PART 2 ■ Systems Analysis Activities

 ■ Domain Model Class Diagram Notation
Figure 4-12 shows a simplified domain model class diagram with three classes:
Customer, Order, and OrderItem (just like the example of an ERD shown in
Figure 4-8). Here, each class symbol includes two sections. In diagram nota-
tion, you see that each Customer can place many Orders (a minimum of zero
and a maximum of many) and that each Order is placed by one Customer. The
associations places and consists of can be included on the diagram for clarity,
as shown in Figure 4-12, but this detail is optional. The multiplicity is one-to-
many in one direction and one-to-one in the other direction. The multiplicity
notation, shown as an asterisk on the line next to the Order class, indicates
many orders. The other association shows that an Order consists of one or more
OrderItems, and each OrderItem is associated with one Order.

See Figure 4-13 for a summary of multiplicity notation.
Figure 4-14 shows another example of a domain model class diagram, this

one for the bank with multiple branches that was discussed earlier and shown as
an ERD. In this example, the UML notation for indicating an attribute that is
an identifier or key is {key}.

Figure 4-15 shows an example of a domain model class diagram with a
many-to-many association. At a university, courses are offered as course sec-
tions, and a student enrolls in many course sections. Each course section con-
tains many students. Therefore, the association between CourseSection and
Student is many-to-many. There are situations in which many-to-many associa-
tions are appropriate, and they can be modeled as shown.

On closer analysis, analysts often discover that many-to-many associations
involve additional data that are important and must be stored. For example, in
Figure 4-15, where is the grade that each student receives for the course stored?
This is important data, and although the model indicates which course section
a student took, it does not have a place for the grade. Grade isn’t an attribute of
CourseSection alone. Nor is it an attribute of Student alone. Rather, it’s an attri-
bute of the association between CourseSection and StudentGrade.

orderID
orderDate
amount

Order

itemID
quantity
price

OrderItem

custNumber
name
billAddress
homePhone
officePhone

Customer

0..*1 1..*1

places consists of

FIguRe 4-12 A simple domain
model class diagram

©
 C

en
ga

ge
 L

ea
rn

in
g®

FIguRe 4-13 UML notation for
multiplicity of associations

©
 C

en
ga

ge
 L

ea
rn

in
g®

Zero or more
(optional)

One or more
(mandatory)

One and only one
(mandatory)

One and only one
alternate

(mandatory)

Zero or more
alternate
(optional)

Zero or one
(optional)

1

0..*0..1

1..1 1..*

*

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

105CHAPTER 4 ■ Domain Modeling

Adding a domain class, called an association class, to represent the asso-
ciation between Student and CourseSection provides a place in which to store
the missing attribute for grade. Figure 4-16 shows the expanded class diagram,
with an association class named CourseEnrollment, which has an attribute for
the student’s grade. A dashed line connects the association class with the asso-
ciation line between the CourseSection and Student classes.

Reading the association in Figure 4-16 from left to right, one course sec-
tion has many course enrollments—each with its own grade—and each course
enrollment applies to one specific student. Reading from right to left, one stu-
dent has many course enrollments—each with its own grade—and each course
enrollment applies to one specific course section. A database implemented by
using this model will be able to produce grade lists showing all students and
their grades in each course section as well as grade transcripts showing all
grades earned by each student.

FIguRe 4-14 A domain model
class diagram for a bank

©
 C

en
ga

ge
 L

ea
rn

in
g®

account ID {key}
accountType
dateOpened
balance

Account

transID {key}
transDate
transType
transAmount

Transaction

branchID {key}
managerName
branchLocation
mainPhone

Branch

custNumber {key}
fullName
billAddress
homePhone
officePhone

Customer

1..*1

1

1..*

10..*

FIguRe 4-15 A university course
enrollment domain model class
diagram with a many-to-many
association

©
 C

en
ga

ge
 L

ea
rn

in
g®sectionNumber

startTime
roomNumber

CourseSection

studentID
name
major

Student

courseNumber
title
creditHours

Course

0..*

1

0..*

0..*

association class an association that is
also treated as a class; often required in order
to capture attributes for the association

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

106 PART 2 ■ Systems Analysis Activities

Another example of a domain model class diagram with a many-to-many
association is shown in Figure 4-17. A band has one or more band members,
and in this case a band member is in one and only one band. The many-to-many
association is between the classes Band and Concert. A band is booked for zero
or more concerts, and a concert books one or more bands. Note that on the
minimum multiplicities, a band might not have any concerts booked at a given
time, but a concert is ordinarily created only when at least one band is booked.
These minimum multiplicities can seem somewhat arbitrary, although they do
convey important information for programmers and database analysts. Be sure
it is the policymakers who make the decisions about multiplicity constraints.

Looking more closely at the many-to-many association, the analyst might
ask if there is some additional information about the booking that needs to be
captured and remembered by the system. Is it important to store the base pay
expected for the booking? Pay differs for each concert. Is it important to store the
order of performances at the concert? Some booking might be main act and some
might be opening act. Figure 4-18 shows a refined domain model class diagram

sectionNumber
startTime
roomNumber

CourseSection

studentID
name
major

Student

courseNumber
title
creditHours

Course

grade

CourseEnrollment

0..*

1

0..*

0..*

FIguRe 4-16 A refined university
course enrollment domain model
class diagram with an association
class

©
 C

en
ga

ge
 L

ea
rn

in
g®

©
 C

en
ga

ge
 L

ea
rn

in
g®

FIguRe 4-17 An initial band
booking domain model class
diagram with a many-to-many
association memberName

yearsInBand
instrument

BandMember

bandName
style
yearFormed

Band

concertDate
location
audienceCapacity
startTime
priceRange

Concert

1..1

1..*

1..*

0..*

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

107CHAPTER 4 ■ Domain Modeling

that adds an associative class named Booking that includes attributes dateBooked,
performanceOrder, and basePay. Reading from Band to Concert, the diagram
says one band is booked July 7 as a main act for $4,500 (from Booking class)
for a concert on July 28 at the Downtown Concert House (from Concert class).
Again reading from Band to Concert, the diagram says another band is booked
July 9 as the opening act for $2,500 (from Booking class) for a concert on July 28
at the Downtown Concert House (from Concert class).

 ■ More Complex Issues about Classes of Objects
Previously, you learned about associations between domain classes. In UML,
an association is one of many types of relationships, so you need to be more
precise when discussing UML diagrams than when discussing ERDs. With
class diagrams, there are actually three types of relationships among classes
of objects: association relationships (discussed previously), generalization/
specialization relationships, and whole-part relationships. This section discusses
generalization/specialization relationships and whole-part relationships and
shows how they are represented in UML class diagrams.

 ❚ Generalization/Specialization Relationships
Generalization/specialization relationships are based on the idea that people
classify things in terms of similarities and differences. Generalizations are judg-
ments that group similar types of things. For example, there are several types of
motor vehicles: cars, trucks, and tractors. All motor vehicles share certain general
characteristics, so a motor vehicle is a more general class. Specializations are judg-
ments that group different types of things. For example, special types of cars include
sports cars, sedans, and sport utility vehicles. These types of cars are similar in some
ways yet different in other ways. Therefore, a sports car is a special type of car.

A generalization/specialization relationship is used to structure or rank
these things from the more general to the more special. As discussed previ-
ously, classification refers to defining classes of things. Each class of things in
the hierarchy might have a more general class above it, called a superclass.
At the same time, a class might have a more specialized class below it, called a
 subclass. In Figure 4-19, the class Car has three subclasses and one superclass
(MotorVehicle). UML class diagram notation uses a triangle that points to the
superclass to show a generalization/specialization hierarchy.

memberName
yearsInBand
instrument

BandMember

bandName
style
yearFormed

Band

concertDate
location
audienceCapacity
startTime
priceRange

Concert

dateBooked
performanceOrder
basePay

Booking

1..*

0..*

1..* 1..1

FIguRe 4-18 A refined band
booking domain model class
diagram with an association class

©
 C

en
ga

ge
 L

ea
rn

in
g®

generalization/specialization relationships
a type of hierarchical relationship in which
subordinate classes are subsets of objects of
the superior classes; an inheritance hierarchy

superclass the superior or more general
class in a generalization/specialization
relationship

subclass the subordinate or more special-
ized class in a generalization/specialization
relationship

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

108 PART 2 ■ Systems Analysis Activities

We mentioned that people structure their understanding by using gener-
alization/specialization relationships. In other words, people learn by refining
the classifications they make about some field of knowledge. A knowledgeable
banker can talk at length about special types of loans and deposit accounts.
A knowledgeable merchandiser like John Blankens at Ridgeline Mountain
Outfitters can talk at length about special types of outdoor activities and
clothes. Therefore, when asking users about their work, the analyst is trying to
understand the knowledge the user has about the work, which the analyst can
represent by constructing generalization/specialization relationships. At some
level, the motivation for the new CSMS project at RMO started with John’s rec-
ognition that Ridgeline Mountain Outfitters might handle many special types of
sales with a new system (online sales, telephone sales, and in-store sales). These
special types of sales are shown in Figure 4-20.

Inheritance allows subclasses to share characteristics of their superclass.
Returning to Figure 4-19, a car is everything any other motor vehicle is but also
something special. A sports car is everything any other car is but also something
special. In this way, the subclass “inherits” the characteristics of the superclass. In
the object-oriented approach, inheritance is a key concept that is possible because
of generalization/specialization hierarchies. Sometimes, these are referred to as
inheritance relationships. Another term often used to describe generalization/
specialization is an “ISA” relationship. In other words, it makes sense to say, “a
Sedan IS A special type of Car and a Car IS A special type of MotorVehicle.”

Consider Figure 4-20, which represents a partial domain model for a retail
business such as RMO. Attributes are included for each class in the hierarchy. Each
member of the Sale class has a saleDateTime attribute and a priorityCode attribute.
Each InStoreSale has a storeID, clerkID, and registerID, but an OnlineSale and a
TelephoneSale have other attributes. OnlineSale, InStoreSale, and TelephoneSale
inherit the attributes from Sale, plus they have some special attributes of their own.
An OnlineSale actually has eight attributes (six from Sale and two additional).
An InStoreSale has nine attributes, and a TelephoneSale has eight attributes.

FIguRe 4-19 Generalization/specialization relationships for motor vehicles

TractorTruck

MotorVehicle

SportUtilitySedanSportsCar

Car

Trucks, cars, and tractors
are special types of motor

vehicles

Sports cars, sedans, and
sport utilities are special

types of cars

©
 C

en
ga

ge
 L

ea
rn

in
g®

inheritance the concept that specializa-
tion classes inherit characteristics of the
generalization class

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

109CHAPTER 4 ■ Domain Modeling

Note that in Figure 4-20 that the class name Sale is in italic; that is because
it is an abstract class. An abstract class is a class that only exists so subclasses
can inherit from it. There is never an actual object simply called a Sale. Each
sale must be one of the three subclasses. A concrete class is a class that does
have actual objects. Sometimes, a superclass is abstract; sometimes, it is con-
crete depending on the intention of the analyst.

Figure 4-21 shows an extension of the bank with multiple branches example
to indicate that there are two types of accounts: a SavingsAccount and a Check-
ingAccount. The abstract class Account is in italic, indicating it is an abstract

TelephoneSale

clerkID
lengthOfCall

OnlineSale

timeOnSite
chatUse

InStoreSale

storeID
registerID
clerkID

Sale

saleDateTime
priorityCode
S&H
tax
totalAmt
mountainBucks

FIguRe 4-20 Generalization/
specialization relationships
(inheritance) for sales

©
 C

en
ga

ge
 L

ea
rn

in
g®

abstract class a class that only exists in a
model so subclasses can inherit from it

concrete class a class that allows indi-
vidual objects or instances to exist

accountID {key}
dateOpened
balance

Account

interestRate

SavingsAccount

checkStyle
minimumBalance

CheckingAccount

transID {key}
transDate
transType
transAmount

Transaction

branchID {key}
managerName
branchLocation
mainPhone

Branch

custNumber {key}
fullName
billAddress
homePhone
officePhone

Customer

1..*1

1..*

1

10..*

FIguRe 4-21 An expanded
domain model class diagram for the
bank, with subclasses for types of
accounts

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

110 PART 2 ■ Systems Analysis Activities

class. Rather than including an attribute for account type, the subclasses repre-
sent different types of accounts. Each subclass has its own special attributes that
do not apply to the other subclasses. A SavingsAccount has four attributes, and
a CheckingAccount has five attributes. Note that each subclass also inherits an
association with a Customer, optionally a Branch, and one or more Transactions.

 ❚ Whole-Part Relationships
Another way that people structure information about things is by defining them
in terms of their parts. For example, learning about a computer system might
involve recognizing that the computer is actually a collection of parts: processor,
main memory, keyboard, disk storage, and monitor. A keyboard is not a special
type of computer; it is part of a computer, but it is also something separate.
Whole-part relationships are used to show an association between one class
and other classes that are parts of that class.

There are two types of whole-part relationships: aggregation and compo-
sition. Aggregation refers to a type of whole-part relationship between the
aggregate (whole) and its components (parts), where the parts can exist sepa-
rately. Figure 4-22 demonstrates the concept of aggregation in a computer sys-
tem, with the UML diamond symbol representing aggregation. Composition
refers to whole-part relationships that are even stronger, where the parts, once
associated, can no longer exist separately. The UML diamond symbol is filled in
solid to represent composition. For example, think of a house that is made up
of bathrooms, bedrooms, stairwell, and so forth. The bathrooms or bedrooms

whole-part relationships relationships
between classes in which one class is a part
or a component portion of another class

aggregation a type of whole-part relation-
ship in which the component parts also exist
as individual objects apart from the aggregate

composition a type of whole-part relation-
ship in which the component parts cannot
exist as individual objects apart from the total
composition

FIguRe 4-22 Whole-part (aggregation) relationships between a computer and its parts

Monitor

Storage

InputDevice

MainMemory

Processor

Computer

1..*

1..1 1..1

1..*

1..1 1..1

1..*

1..*1..*

1..1

Processor,
MainMemory,

InputDevice, Storage,
and Monitor are parts

of a Computer

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

111CHAPTER 4 ■ Domain Modeling

never exist apart from the house; therefore, this whole-part relationship is a
composition and uses solid diamond connectors.

Whole-part relationships—aggregation and composition—mainly allow the
analyst to express subtle distinctions about associations among classes. As with
any association relationship, multiplicity can apply, such as when a computer
has one or more storage devices.

The UML class diagram examples you have seen so far are domain model
class diagrams. The design class diagram is a refinement of the class diagram
and is used to represent software classes in the new system. You will learn about
the process of converting the domain model class diagram to a design class dia-
gram in Chapter 12.

 ■ The Ridgeline Mountain Outfitters Domain
Model Class Diagram

The RMO CSMS involves many domain classes and many complex association
and generalization/specialization relationships. A domain model class diagram
for an information system evolves as the project proceeds; and unlike the use
case diagrams, where many diagrams are created, there is eventually only one
domain model class diagram. Also, unlike the use case diagram, the domain
model class diagram is not produced just for presentations. The process of devel-
oping and refining the domain model class diagram is how the analyst explores
and learns about the problem domain. Therefore, the information depicted in
the domain model class diagram is very detailed and rich in specific meaning.

The Ridgeline Mountain Outfitters domain model class diagram is a varia-
tion of the customer, order, and order item example shown in Figure 4-12. Most
of the domain classes are from the list of nouns developed in Figure 4-2. Because
the model is fairly complex, an analyst might start by focusing on one subsystem
at a time to reduce the complexity. Eventually, all subsystems can be combined
into one domain model.

 ❚ The RMO Sales Subsystem
Figure 4-23 shows a domain model class diagram for the RMO CSMS Sales
subsystem. The Sales subsystem mainly involves the customer, sale, sales items,
products, promotions, and accessories. That is a good starting point, but there
are also additional domain classes. Additionally, recall that the association rela-
tionships are just as important as the classes, so these must be identified. There
are also special types of sales and a shopping cart.

In Figure 4-23, each customer can be associated with one or more sales.
Note that there are three special types of sales shown in the inheritance rela-
tionships (in-store sale, online sale, and telephone sale), as discussed in the last
section. Therefore, the scope of the Sales subsystem includes in-store, online,
and telephone sales processes. A customer can also be associated with an online
shopping cart (OnLineCart) for any online sale. There are two special types
of carts: the active cart and the on-reserve cart. The minimum multiplicity
between customer and cart is zero, meaning there might not be a shopping cart
involved—for example, in an in-store or telephone sale. There can be a maxi-
mum of two carts for a customer at any one time: an active cart and an on-
reserve cart. The on-reserve cart can be remembered from session to session.
Each sale and each cart is associated with one customer, so the subclasses inherit
the association, just as they inherit the attributes of Sale.

Note that an individual sale is associated with one or more sale items. In the
online cart, it is associated with one or more cart items. With an online sale, the
sale is created from the cart when the customer checks out. Sale items are cre-
ated from each cart item. Finally, a sales transaction is created and associated
with the sale.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

112 PART 2 ■ Systems Analysis Activities

A sale can have one or more sale items, but what is each item? An associa-
tion between each sale item and an inventory item answers the question. Each
sale item is for a specific inventory item, meaning a specific size and color of the
item, such as a shirt or coat. An inventory item has an attribute for the quantity
on hand of that size and color. Because there are many colors and sizes (each
with its own quantity), each inventory item is associated with a product item

FIguRe 4-23 RMO Sales subsystem domain model class diagram

elapsedTime

ActiveCart

holdForDays

OnReserveCart

storeID
registerID
clerkID

InStoreSale

timeOnSite
chatUse

OnlineSale

clerkID
lengthOfCall

TelephoneSale

quantity
soldPrice
shipStatus
backOrderStatus

SaleItem

saleDateTime
priorityCode
S&H
tax
totalAmt
mountainBucks

Sale

date
transactionType
amount
paymentMethod

SaleTrans

season
year
description
startDate
endDate

Promotion

date
rating
comment

ProductComment

size
color
options
quantityOnHand
averageCost
reorderQuantity

InventoryItem

name
mobilePhone
homePhone
emailAddress
status

Customer

gender
description
supplier
manufacturer
picture

ProductItem

startDateTime
noOfItems
valueOfItems
status

OnLineCart

1

1

0..2

1..*

1..*

1..* 1

1..*

1
1 0..*

1

0..*

0..*

1

0..*

0..*

0..* 1..*

0..*

1

0..*

1

1

PromoOffering

regularPrice
promoPrice

category
description

AccessoryPackage

quantity
currentPrice

CartItem

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

113CHAPTER 4 ■ Domain Modeling

that describes the item generally (gender, description, supplier, manufacturer,
and picture). Each product item is associated with many inventory items, and
each inventory item is associated with many sale items.

A product item can be part of many promotions, and a promotion can
include many product items, making a many-to-many association. An associa-
tion class is added to store information about the price of each item in each
promotion. Each product item might have many accessories, and an accessory
might apply to many product items. Here, there is no defined association class
for the many-to-many association. Note that this association might also be mod-
eled as a unary (recursive) association. Finally, each product item can have many
customer comments, which are reviewed during a sale.

 ❚ The RMO Customer Account Subsystem
The Customer Account subsystem domain model class diagram is shown in
Figure 4-24. Note that there are some classes repeated here that are also on
the Sales subsystem domain model class diagram. For example, Customer is
important to both subsystems. Note that Sale and SaleTrans are also included
here. To make account adjustments and report on all payments and returns

FIguRe 4-24 RMO Customer Account subsystem domain in model class diagram

number
street
city
state
zipcode

Address

saleDateTime
priorityCode
S&H
tax
totalAmt
mountainBucks

Sale

amtRMOCredits
amtPartnerCredits

CustPartnerCredit

name
address
contactPerson
telephone
agreementDescription

PromoPartner

date
transactionType
amount
paymentMethod

SaleTrans

customer1
customer2
status
dateLinkedUp

FriendLink

name
mobilePhone
homePhone
emailAddress
status

Customer

date
messageText

Message

typeOfAccount
creditCardNo

Account

1 1..*

0..*

1..*

1

0..*

0..*0..*

1..*

0..*

To

1

0..*

From

1

1..*

0..1

1..*1..*

0..1
©

 C
en

ga
ge

 L
ea

rn
in

g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

114 PART 2 ■ Systems Analysis Activities

for a customer, all sales and sales transactions need to be referenced. Repeat-
ing domain classes in several subsystems does not mean there is redundancy. In
complex domain models, it is easier to do the modeling and analysis in separate
diagrams before merging them all together. Sometimes, the project team divides
the work by subsystem, so each would work on a separate diagram being sure to
coordinate with each other.

The Customer Account subsystem includes messages, partner credits, and
friend links. The FriendLink class is an association class, but unlike other exam-
ples, it is attached to a unary association between customers. Each customer can
be linked to many other customers, shown by the association line at the top of the
Customer class. For each link, the status and dateLinkedUp is stored. The Mes-
sage class is handled differently. Each customer can send many messages, each to
many other customers. Similarly, each customer can receive many messages.

 ❚ The Complete RMO Domain Model Class Diagram
The analysts at RMO may continue to model each subsystem separately. The
exercises at the end of this chapter ask you to create those other subsystem dia-
grams. The final domain model class diagram for the RMO CSMS is shown in
Figure 4-25. Classes not shown before include Shipper, Shipment, ReturnItem,
and Suggestion. You should spend some time to understand all of the classes and
associations in this model. Real-world domain model class diagrams are often
much more complex than this example.

 ■ The State Machine Diagram—Identifying
Object Behavior

Sometimes, it is important for a computer system to maintain information about
the status of problem domain objects. For example, a customer might want to know
whether a particular sale has been shipped or a manager might want to know if a
customer sale has been paid for. Thus, the system needs to be able to track the sta-
tus of customer sales. When defining requirements, analysts need to identify and
document which domain objects require status checking and which business rules
determine valid status conditions. Referring back to RMO, an example of a busi-
ness rule is that a customer sale shouldn’t be shipped until it has been paid for.

The status condition for a real-world object is often referred to as the state
of the object. Defined precisely, a state of an object is a condition that occurs
during its life when it satisfies some criterion, performs some action, or waits for
an event. For real-world objects, we mean the same thing whether we refer to
the status condition of an object or talk about its state.

The naming convention for status conditions helps identify valid states.
A state might have a name of a simple condition, such as On or In repair. Other
states are more active, with names consisting of gerunds or verb phrases, such as
Being shipped or Working. For example, a specific Sale object comes into exis-
tence when a customer buys something. Right after it is created, the object might
be in a state called Adding new sale items, then a state called Waiting for items
to be shipped, and finally, when all items have been shipped, a state called Com-
pleted. If you find yourself trying to use a noun to name a state, you probably have
an incorrect idea about states or object classes. The name of a state should not be
a noun (which is an object); it should be something that describes the object.

States are described as semipermanent conditions because external events
can interrupt a state and cause the object to go to a new state. An object remains
in a state until some event causes it to move, or transition, to another state.
A transition, then, is the movement of an object from one state to another state.
Transitioning is the mechanism that causes an object to leave a state and change
to a new state. States are semipermanent because transitions interrupt them and

state a condition during an object’s life
when it satisfies some criterion, performs
some action, or waits for an event

transition the movement of an object from
one state to another state

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

115CHAPTER 4 ■ Domain Modeling

FIguRe 4-25 Complete RMO CSMS domain model class diagram

elapsedTime

ActiveCart

holdForDays

OnReserveCart

storeID
registerID
clerkID

InStoreSale

timeOnSite
chatUse

OnlineSale

clerkID
lengthOfCall

TelephoneSale

category
description

AccessoryPackage

quantity
soldPrice
shipStatus
backOrderStatus

SaleItem

trackingNo
dateTimeSent
dateTimeArrive
cost

Shipment

name
address
contactName
telephone

Shipper

quantity
price
reason
condition

ReturnItem

saleDateTime
priorityCode
S&H
tax
totalAmt
mountainBucks

Sale

date
transactionType
amount
paymentMethod

SaleTrans

season
year
description
startDate
endDate

Promotion

date
rating
comment

ProductComment

size
color
options
quantityOnHand
averageCost
reorderQuantity

InventoryItem

name
mobilePhone
homePhone
emailAddress
status

Customer

number
street
city
state
zipcode

Address

regularPrice
promoPrice

PromoOffering

gender
description
supplier
manufacturer
picture

ProductItem

quantity
currentPrice

CartItem

date
messageText

Message

typeOfAccount
creditCardNo

Account

date
suggestionText

Suggestion

amtRMOCredits
amtPartnerCredits

CustPartnerCredit

startDateTime
noOfItems
valueOfItems
status

OnLineCart

customer1
customer2
status
dateLinkedUp

FriendLink

1

0..1

1

1

0..*

0..*0..*

1

1..*

1

0..*

1..*

0..*

To From

1..*

1..*

0..1

0..2

1..*

1..*

1..* 1

1..*

1

1 0..*

1

0..*

0..*

1

0..*

0..*

0..* 1..*

0..*

1

0..*

0..1

1..*

1

1

1 0..*

0..* 1

0..*0..*

name
address
contactPerson
telephone
agreementDescription

PromoPartner

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

116 PART 2 ■ Systems Analysis Activities

cause them to end. Generally, transitions are short in duration—compared with
states—and they cannot be interrupted. The combination of states and transi-
tions between states provides the mechanisms that analysts use to capture busi-
ness rules. In the previous RMO example, you would say that a customer sale
must be in a Paid for state before it can transition to a Shipped state.

The UML diagram that is used to describe the behavior of an object is
called a state machine diagram. Sometimes these diagrams are also called
state-transition diagrams because they describe the states and the transitions of
the object. This section introduces state machines.

A state machine diagram describes the behavior, or the possible behav-
ior, of the objects in one particular object class. This is an important concept
to understand—that a state machine diagram applies to only one single class,
and that it can be used to describe the behavior of all objects within that class.
 Earlier in the chapter, you learned how to create a UML class diagram. A class
diagram describes the static characteristics of objects and their associations.
A state machine describes the dynamic behavior of objects.

A state machine diagram can be developed for any problem domain classes
that have complex behavior or status conditions that need to be tracked. How-
ever, not all classes will require a state machine diagram. If an object in the
problem domain class doesn’t have status conditions that must control the
processing for that object, a state machine diagram probably is not necessary.
For example, in the RMO class diagram, a class such as Sale may need a state
machine diagram. However, a class such as SaleTransaction probably does not.
A sale transaction is created when the payment is made and then just sits there;
it doesn’t need to track other conditions.

A state machine diagram is composed of rounded rectangles representing the
states of an object and arrows representing the transitions. Figure 4-26 illus-
trates a simple state machine diagram for a printer. Because it is a little easier to
learn about state machine diagrams by using tangible items, let’s start with a few
examples of computer hardware. The starting point of a state machine diagram is
a black dot, which is called a pseudostate. The first shape after the black dot is
the first state of the printer. In this case, the printer begins in the Off state.

As shown in Figure 4-26, the arrow leaving the Off state is called a transition.
The firing of the transition causes the object to leave the Off state and make a
transition to the On state. After a transition begins, it runs to completion by taking
the object to the new state, called the destination state. A transition begins with
an arrow from an origin state—the state prior to the transition—to a destination
state, and it is labeled with a string to describe the components of the transition.

Off On
onButtonPushed [safety cover closed] / run start-up

A State indicates a state of
being of the object. Name it
as a condition or a verb
phrase.

The beginning pseudostate
denotes the start of the state
machine behavior for this object.

offButtonPushed

A Transition moves the object from the
origin state to the destination state.

Transition-name can have a trigger,
a guard, and an action-expression.

FIguRe 4-26 Simple state
machine diagram for a printer
©

 C
en

ga
ge

 L
ea

rn
in

g®

state machine diagram a diagram
showing the life of an object in states and
transitions

pseudostate the starting point of a state
machine diagram, indicated by a black dot

destination state for a particular transi-
tion, the state to which an object moves after
the completion of a transition

origin state for a particular transition, the
original state of an object from which the
transition occurs

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

117CHAPTER 4 ■ Domain Modeling

The transition label consists of the following syntax with three components:

transition-name (parameters, …) [guard-condition] / action-expression

In Figure 4-26, the transition-name is onButtonPushed. The transition is like
a trigger that fires or an event that occurs. The name should reflect the action of
a triggering event. In Figure 4-26, no parameters are being sent to the printer so
the parentheses are left off. The guard-condition is [Safety cover closed]. For the
transition to fire, the guard must be true. The forward slash divides the firing
mechanism from the actions or processes. Action- expressions indicate some
process that must occur before the transition is completed and the object arrives
in the destination state. In this case, the printer will run a start-up procedure
before it goes into the On state.

The guard-condition is a qualifier or test on the transition, and it is simply
a true/false condition that must be satisfied before the transition can fire. For a
transition to fire, first the trigger must occur and then the guard must evaluate
to true. Sometimes, a transition has only a guard-condition and no triggering
event. In that case, the trigger is considered to be constantly firing, and when-
ever the guard becomes true, the transition occurs.

Any of the three components—transition-name, guard-condition, or action-
expression—may be empty. If either the transition-name or the guard-condition
is empty, it automatically evaluates to true. Either of them may also be complex,
with AND and OR connectives.

 ■ Concurrency and Concurrent States
Sometimes an object will be in two states at the same time. For example, when
the printer is in the On state, it can also be either Printing or Idle. There are sev-
eral ways to express this concurrent condition. This section explains the basic
approach to modeling concurrent behavior. There are more sophisticated tech-
niques that are available; however, the basic approach is usually sufficient for
business modeling.

This condition of being in more than one state at a time is called concurrency,
or concurrent states. For example, the printer can be in the On state and the
Idle state at the same time. Hence, On and Idle would be concurrent states.
Another concept that is important is the idea of a path for the object. A path
is a sequential set of connected states and transitions. In Figure 4-26, there is
only one path. It is the path from the beginning state, to the On state then to
the Off state, and finally looping back to the On state. Sometimes within a state
machine diagram there will be states that are exactly concurrent states. How-
ever, when there are several states in a path that are parallel to another state, we
say that those are concurrent paths. Figure 4-27 illustrates the example we
have been describing.

action- expressions descriptions of the
activities performed as part of a transition

guard-condition a true/false test to see
whether a transition can fire

 concurrency or concurrent states
the condition of being in more than one state
at a time

path a sequential set of connected states
and transitions

concurrent paths when one or more
states in a path are parallel to one or more
states in another path

printcompleted

printRequest (doc)

Off
On

onButtonPushed [safety
cover closed] / run startup

offButtonPushed

Idle Printing

FIguRe 4-27 State
machine diagram with
concurrent paths

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

118 PART 2 ■ Systems Analysis Activities

The notation used in Figure 4-27 is similar to the notation that you used
with activity diagrams in Chapter 2. When a state has two transitions that exit
that state, it is considered an OR condition. In other words, the path for the
object follows only one of the transitions. To show parallel paths with the object
following both paths, that is, an AND condition, a synchronization bar is used.

In Figure 4-27, the path with the Idle and Printing states is parallel with the
path with the On state. In other words, the printer will be in either the Idle or
Printing states whenever it is in the On state. Notice that the printRequest (doc)
transition does have an argument being sent with the transition. The printer will
cycle between the Idle state and the Printing state whenever it is in the On state.
When the offButtonPushed transition fires, the printer exits both the On state
and either the Idle or Printing state, whichever is active. Now that you know the
basic notation of state machine diagrams, you will learn how to develop a state
machine diagram.

 ■ Rules for Developing State Machine Diagrams
State machine diagram development follows a set of rules. Usually, the primary
challenge in building a state machine diagram is to identify the right states for
the object. It might be helpful to pretend that you are the object itself. It is easy to
pretend to be a customer, but it’s a little more difficult to say “I am an order” or “I
am a shipment. How do I come into existence? What states am I in?” However, if
you can begin to think this way, it will help you develop state machine diagrams.

A good approach is to remember that developing state machine diagrams is
an iterative behavior—more so than developing any other type of diagram. Ana-
lysts seldom get a state machine diagram right the first time. They always draw
it and then refine it again and again.

Finally, don’t forget to ask about an exception condition—especially when
you see the words verify or check. Usually, there will be two transitions out of
states that verify something: one for acceptance and one for rejection.

Here is a list of steps that will help you get started in developing state
machine diagrams:

1. Review the class diagram and select the classes that might require state
machine diagrams. Only include those classes that have multiple status
conditions that are important for the system to track. Then, begin with the
classes that appear to have the simplest state machine diagrams, such as the
SaleItem class for RMO.

2. For each selected class in the group, make a list of all the status condi-
tions you can identify. At this point, simply brainstorm. Remember that
these states must reflect the states for the real-world objects that will be
represented in software. Sometimes, it is helpful to think of the physical
object, identify states of the physical object, and then translate those that
are appropriate into corresponding system states or status conditions. It
is also helpful to think of the life of the object. Think of activities done to
the object or by the object. Often, the object will be in a particular state as
these actions are occurring.

3. Begin building state machine diagram fragments by identifying the transi-
tions that cause an object to leave the identified state. For example, if a sale
is in a state of Ready to be shipped, a transition such as beginShipping will
cause the sale to leave that state.

4. Sequence these state-transition fragments in the correct order. Then, aggre-
gate these combinations into larger fragments. As the fragments are being
aggregated into larger paths, it is natural to begin to look for a natural life
cycle for the object.

5. Review the paths and look for independent, concurrent paths. When an
item can be in two states concurrently, there are probably one or more
concurrent paths.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

119CHAPTER 4 ■ Domain Modeling

6. Look for additional transitions. Often, during a first iteration, several of the
possible combinations of state-transition-state are missed. One method to
identify them is to take every paired combination of states and ask whether
there is a valid transition between the states. Test for transitions in both directions.

7. Expand each transition with the appropriate message event, guard-
condition, and action-expression. Include with each state appropriate
action-expressions.

8. Review and test each state machine diagram. Review each of your state
machine diagrams to make sure the names of the states describe the object’s
status condition, to make sure you have identified all the transitions, to check
for all concurrent paths, and to ensure you have the exception conditions.

 ■ Developing RMO State Machine Diagrams
Let us practice these steps by developing two state machine diagrams for RMO.
The first step is to review the domain class diagram and then select the classes
that may have status conditions that need to be tracked. In this case, we select
the SaleItem and the InventoryItem classes. Other classes that are candidates for
state machine diagrams are: Sale, to track when it is completed; Shipment, to
track arrivals at the customer location; and possibly Customer, to track active
and inactive customers.

 ❚ Developing the SaleItem State Machine Diagram
The first step in developing the SaleItem state machine diagram is to identify the
possible status conditions that might be of interest. Some necessary status condi-
tions are Ready to be shipped, On back order, and Shipped. An interesting ques-
tion comes to mind at this point: Can a sale item be partially shipped? In other
words, if the customer bought 10 of a single item but there are only five in inven-
tory, should RMO ship those five and put the other five on back order? You
should see the ramifications of this decision. The system and the database would
need to be designed to track and monitor detailed information to support this
capability. The domain class diagram for RMO indicates that a SaleItem can be
associated with either zero (not yet shipped) shipments or one (totally shipped)
shipment. Based on the current specification, the definition doesn’t allow partial
shipments of SaleItems.

This is just another example of the benefit of building models. Had we not
been developing the state machine diagram model, this question might never
have been asked. The development of detailed models and diagrams is one of the
most important activities that a system developer can perform. It forces analysts
to ask fundamental questions. Sometimes, new system developers think that
model development is a waste of time, especially for small systems. However,
truly understanding the users’ needs before writing the program always saves
time in the long run.

The second step is to identify exit transitions for each of the status conditions.
Figure 4-28 is a table showing the states that have been defined and the exit tran-
sitions for each of those states. One additional state has been added to the list—
Open—which covers the condition that occurs when an item has been added to
the sale but the sale isn’t complete or paid for, so the item isn’t ready for shipping.

State Transition causing exit

Open saleComplete

On back order itemArrived

Ready to Ship shipItem

Shipped No exit transition defined

FIguRe 4-28 States and exit
transitions for SaleItem object

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

120 PART 2 ■ Systems Analysis Activities

The third step is to combine the state-transition pairs into fragments
and to build a state machine diagram with the states in the correct sequence.
Figure 4-29 illustrates the partially completed state machine diagram. The flow
from beginning to end for the SaleItem object is quite obvious. However, at least
one transition seems to be missing. There should be some path to allow entry
into the On back order state so we recognize that this first-cut state machine
diagram needs some refinement. We will fix that in a moment.

The fourth step is to look for concurrent paths. In this case, it doesn’t appear
that a SaleItem object can be in any two of the identified states at the same time.
Of course, because we chose to begin with a simple state machine diagram, that
was expected.

The fifth step is to look for additional transitions. This step is where we
flesh out other necessary transitions. The first addition is to have a transition
from Open to On back order. To continue, examine every pair of states to see
whether there are other possible combinations. In particular, look for backward
transitions. In this situation, we will not define any backward transitions.

The sixth step is to complete all the transitions with correct names, guard-
conditions, and action-expressions. Two new transition-names are added. The
first is the transition from the beginning black dot to the Open state. That
transition causes the creation—or, in system terms, the instantiation—of a new
SaleItem object. It is given the same name as the message into the system that
adds it: addItem. The final transition is the one that causes the order item to
be removed from the system. This transition goes from the Shipped state to a
final circled black dot, which is a final pseudostate. On the assumption that
it is archived to a backup tape when it is deleted from the active system, that
transition is named archive. The seventh step—reviewing and testing the state
machine diagram—is the quality-review step. Figure 4-30 illustrates the final
state machine diagram for SaleItem.

On back order
itemArrived

Ready to shipOpen
saleComplete

Shipped
shipItem

FIguRe 4-29 Partial state machine
diagram for SaleItem object

©
 C

en
ga

ge
 L

ea
rn

in
g®

FIguRe 4-30 Final state machine diagram for SaleItem object

On back order
itemArrives

saleComplete shipItem
Ready to ship

addItem

orderItem

archive
Open Shipped

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

121CHAPTER 4 ■ Domain Modeling

 ❚ Developing the InventoryItem State Machine Diagram
An InventoryItem will have a slightly more complex state machine. In this exam-
ple, you will discover the need to have some concurrent paths defined. As before,
start by thinking of the various status conditions that are important and their asso-
ciated end or exit conditions. As you think about an inventory item, recognize that
important status conditions are associated with the level of inventory. An item can
be at a normal inventory level, a low inventory level, or completely out of stock. In
addition, an inventory item can be on order or have an order outstanding. It could
also not have any orders outstanding. As you think about it, notice that it appears
these two sets of status are independent of each other. First, identify all of these
states and their exit transitions. Figure 4-31 documents our thinking.

In the third and fourth steps, you combine these states and transitions into
fragments and connect them together to give the first-cut state machine dia-
gram. In the fifth step, you see if these state-transition fragments are really con-
current paths. In this situation, there are two concurrent paths. Figure 4-32
shows these steps.

There are a few things you need to consider with this first-cut state machine.
Let’s look at the various transitions and consider each transition along with its
origin state and destination state. The top path appears to be okay—cycling
between Not on order and On order. In the bottom path, however, there are
transitions that have the same name. How do you ensure that the correct transi-
tions fire and the correct states are used?

First consider the reduceInventory transition. The InventoryItem will
receive this message every time an item is sold. However, it only wants to take
the transition from one state to another if it is at the reorder point, or if it is the
last item in stock. Let’s add guards to define those conditions. You also want to
initiate a reorder process when the InventoryItem goes to a Low stock or a Zero
stock state. Let’s add those action expressions.

Next consider the restock transition. It is correct. Depending on what state
the InventoryItem is in, the correct transition will fire and move to the Normal
stock state.

State Transition causing exit

Normal stock reduceInventory

Zero stock removeItem OR restock

Low stock reduceInventory OR restock

On order itemArrives

Not on order orderItem

FIguRe 4-31 States and exit
transitions for InventoryItem object

©
 C

en
ga

ge
 L

ea
rn

in
g®

orderItem
On orderNot on order

reduceInventory

restock

restock

Low stockNormal stock
reduceInventory

Zero stock

itemArrives

FIguRe 4-32 First-cut state
machine diagram for InventoryItem
object

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

122 PART 2 ■ Systems Analysis Activities

links between classes. UML and the domain model
class diagram can be extended to include three types of
relationships: association relationships, generalization/
specialization relationships (inheritance), and whole-
part relationships. Additional concepts of importance
in domain model class diagrams are superclasses,
subclasses, abstract classes, and concrete classes. The
behavior of problem domain objects is an aspect of
functional requirements that is also studied and mod-
eled. Over time, an object will transition from one state
to another. The UML state machine diagram is used to
model object states and state transitions. Only complex
domain classes with numerous states and state transi-
tions will warrant a state machine diagram. Up to this
point, when we talk about domain classes, they are
conceptual things that users work with; they are not
software classes. During design, many domain classes
will become software classes and will also become
 tables in the relational database.

This is the second of three chapters that present tech-
niques for modeling a system’s functional require-
ments, highlighting the tasks that are completed during
the analysis activity Define requirements. Use cases
and things in the user’s work environment are key
concepts common to all approaches to system develop-
ment. This chapter discusses data entities and domain
classes as two terms for things in the work environ-
ment. Two techniques are demonstrated for identifying
things in the problem domain: the brainstorming tech-
nique and the noun technique. The entity- relationship
diagram (ERD) is used by traditional analysts and
by database analysts to model things in the problem
domain. An ERD shows data entities, attributes, and
relationships. The UML class diagram is used for the
same purpose by analysts using UML, referred to as the
domain model class diagram. The domain model class
diagram models domain classes, attributes, and associ-
ations. Multiplicity refers to the number of association

CHAPTER SuMMARy

The other thing you need to add is a starting initial state and a final state.
Let’s define transitions to createItem for the beginning and deleteItem for the
end. DeleteItem is when it is removed completely from the system and the data-
base. In other words, it is no longer offered for sale. Figure 4-33 presents the
final state machine diagram for the InventoryItem object class.

As noted by these examples, the benefit of developing a state machine dia-
gram for a problem domain object is that it helps you capture and clarify busi-
ness rules. As you develop the state machine diagrams, you must think more
deeply about the behavior of these objects and what kind of conditions need to
be accounted for in the program code. As always, the benefits of careful model
building help you gain a true understanding of the system requirements.

FIguRe 4-33 Final state machine diagram for InventoryItem object

orderItem

createItem deleteItem

On orderNot on order

reduceInventory
[at reorder point]

/reorder

restock

restock

Low stockNormal stock

reduceInventory
[at last Item]

/reorder
Zero stock

itemArrives

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

123CHAPTER 4 ■ Domain Modeling

concurrency (concurrent states)

concurrent paths

data entities

destination state

domain classes

domain model class diagram

entity-relationship diagram
(ERD)

generalization/specialization
relationships

guard-condition

identifier (key)

inheritance

multiplicity

multiplicity constraints

n-ary association

abstract class

action-expressions

aggregation

association

association class

attributes

binary associations

brainstorming technique

camelback notation

camelcase notation

cardinality

class

class diagram

composition

compound attribute

concrete class

KEy TERMS
noun technique

origin state

path

problem domain

pseudostate

relationship

semantic net

state

state machine diagram

subclass

superclass

ternary association

transition

unary association

whole-part relationship

 1. What are the two key concepts—one from
Chapter 3 and one from this chapter—that define
functional requirements?

 2. What is the problem domain?

 3. What is a “thing” called in models used by tradi-
tional analysts and database analysts?

 4. What is a “thing” called in newer approaches that
use UNL?

 5. What are two techniques for identifying things in
the problem domain?

 6. What are some examples of tangible things in the
problem domain of a restaurant?

 7. What are some sites or locations in the problem
domain of a restaurant?

 8. What are some roles played by people in the prob-
lem domain of a restaurant?

 9. What are the main steps of the brainstorming
technique?

 10. Explain why identifying nouns helps identify
things in the problem domain.

 11. What are the main steps of the noun technique?

 12. What is an attribute, an identifier or key, and a
compound attribute?

 13. What is an association, and what system develop-
ment standard defines it?

 14. How would you describe or name the association
between a ship and a captain?

 15. What is the term used for association by tradi-
tional analysts and database analysts?

 16. What is an association class? Why is an associa-
tion class used for modeling?

 17. What is multiplicity, and what is the other
term used by traditional analysts and database
analysts?

 18. What is the minimum multiplicity for the
association that reads a customer places zero or
more orders?

 19. What is the maximum multiplicity for the associa-
tion that reads an order is placed by exactly one
customer?

 20. What are some examples of multiplicity constraints?

 21. What are the three types of associations, and
which is the most commonly used?

 22. What are the three key parts of an entity-relationship
diagram (ERD)?

 23. Sketch a simple ERD that shows a team has zero
or more players and each player is on one and
only one team.

 24. Sketch a semantic net that shows two teams and
five players based on your ERD from question 23.

REVIEW QuESTIONS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

124 PART 2 ■ Systems Analysis Activities

 32. What is a generalization/specialization relationship,
and what object-oriented terms does it illustrate?

 33. Compare/contrast superclass and subclass. Com-
pare/contrasts abstract class and concrete class.

 34. What is a whole-part relationship, and why does
it show multiplicity?

 35. Compare/contrast aggregation with composition
for a whole-part relationship.

 36. What is an object state?

 37. What is a state transition?

 38. When considering requirements, states and state
transitions are important for understanding
which other diagram?

 39. What UML diagram is used to show the states
and transitions for an object?

 40. List the elements that make up a transition
description. Which elements are optional?

 41. What is a composite state? What is it used for?

 42. What is meant by the term path?

 43. What is the purpose of a guard-condition?

 25. What is a class, a domain class, and the key parts
of a class diagram?

 26. What does a domain model class diagram show
about system requirements, and how is it differ-
ent from an ERD?

 27. List appropriate UML class names by using the
camelback notation for the following classes:
graduate student, undergraduate major, course
instructor, and final exam feedback.

 28. List appropriate UML attribute names for the
following attributes: student name, course grade,
major name, and final exam quantity score.

 29. Draw a simple domain model class diagram for
the example in question #23 where a team has
zero or more players and each player is on one
and only one team.

 30. Extend the domain model class diagram for
teams and players to show a record of game
statistics for each player in each game using an
association class.

 31. In UML, what are three types of relationships
found on a class diagram?

PROBlEMS AnD ExERCISES
 1. Draw an entity-relationship diagram, including

minimum and maximum cardinality, for the fol-
lowing: The system stores information about two
things: cars and owners. A car has attributes for
make, model, and year. The owner has attributes
for name and address. Assume that a car must
be owned by one owner and an owner can own
many cars, but an owner might not own any cars
(perhaps she just sold them all, but you still want
a record of her in the system).

 2. Draw a class diagram for the cars and owners
described in exercise 1, but include subclasses for
sports car, sedan, and minivan, with appropriate
attributes.

 3. Consider the domain model class diagram shown in
Figure 4-16—the refined diagram showing course
enrollment with an association class. Does this
model allow a student to enroll in more than one
course section at a time? Does the model allow a
course section to contain more than one student?
Does the model allow a student to enroll in several
sections of the same course and get a grade for each
enrollment? Does the model store information about
all grades earned by all students in all sections?

 4. Again consider the domain model class diagram
shown in Figure 4-16. Add the following to the
diagram and list any assumptions you had to

make: A faculty member usually teaches many
course sections, but some semesters, a faculty
member may not teach any. Each course section
must have at least one faculty member teaching
it, but sometimes, faculty teams teach course
sections. Furthermore, to make sure that all
course sections are similar, one faculty member
is assigned as course coordinator to oversee the
course, and each faculty member can be the
coordinator of many courses.

 5. If the domain model class diagram you drew in
exercise 4 showed a many-to-many association
between faculty member and course section,
a further look at the association might reveal
the need to store some additional information.
What might this information include? (Hint:
Does the instructor have specific office hours for
each course section? Do you give an instructor
some sort of evaluation for each course section?)
Expand the domain model class diagram to allow
the system to store this additional information.

 6. Consider a system that needs to store informa-
tion about computers in a computer lab at a
university, such as the features and location of
each computer. What are the domain classes that
might be included in a model? What are some of
the associations among these classes? What are

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

125CHAPTER 4 ■ Domain Modeling

d. Can a faculty member work in more than one
department at the same time? Explain.

e. Can a faculty member work in two depart-
ments at the same time, where one department
is in the college of business and the other
department is in the college of arts and sci-
ences? Explain.

 11. Review information about your own university.
Create generalization/specialization hierarchies
by using the domain model class diagram nota-
tion for (a) types of faculty, (b) types of students,
(c) types of courses, (d) types of financial aid,
and (e) types of housing. Include attributes for
the superclass and the subclasses in each case.

 12. Consider the classes involved when modeling a
car and all its parts. Draw a domain model class
diagram that shows the whole-part relationships
involved, including multiplicity. Which type of
whole-part relationships are involved?

 13. Refer to the complete RMO CSMS domain model
class diagram shown in Figure 4-25. Based on
that model and on the discussion of subsystems in
Chapter , draw a domain model class diagram for
the CSMS Marketing subsystem.

 14. Again based on the complete RMO CSMS
domain model class diagram shown in Figure 4-25,
draw a domain model class diagram for the CSMS
Order Fulfillment subsystem.

 15. Based on the following description of a shipment
made by Union Parcel Shipments, identify all the
states and exit transitions and then develop a
state machine diagram.

A shipment is first recognized after it has been
picked up from a customer. Once in the system,

some of the attributes of each class? Draw a
domain model class diagram for this system.

 7. Consider the domain model class diagram for
the RMO CSMS Sales subsystem shown in
Figure 4-20. If an InStoreSale is created, how
many attributes does it have? If an OnlineSale
is created, how many attributes does it have? If
an existing customer places a telephone order
for one item, how many new objects are created
overall for this transaction? Explain.

 8. Again consider the domain model class diagram
shown in Figure 4-23. How many attributes does
an active cart object have? Can an on-reserve
cart contain cart items? Explain.

 9. A product item for RMO is not the same as an
inventory item. A product item is something
like a men’s leather hunting jacket supplied by
Leather ‘R’ Us. An inventory item is a specific
size and color of the jacket—like a size medium
brown leather hunting jacket. If RMO adds a
new jacket to its catalog and six sizes and three
colors are available in inventory, how many
objects need to be added overall? Explain.

 10. Consider the domain model class diagram
shown in Figure 4-34, which includes classes for
college, department, and faculty members:

a. What kind of UML relationships are shown in
the model?

b. How many attributes does a faculty member
have? Which (if any) have been inherited from
another class?

c. If you add information about one college, one
department, and four faculty members, how
many objects do you add to the system?

departmentName
departmentHead
officeLocation
officePhone

Department

firstName
lastName
currentRank
specialty
officePhone

FacultyMember

collegeName
collegeDean
collegeLocation

College

0..*

1

1..*

1..*

FIguRe 4-34 Domain model class
diagram for a university

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

126 PART 2 ■ Systems Analysis Activities

is handed off to another courier, it is noted as
being handed over. In those instances, a track-
ing number for the new courier is recorded (if it
is provided). Union also asks the new courier to
provide a status change notice after the package
has been delivered.

Unfortunately, from time to time, a package
gets lost. In that case, it remains in an active state
for two weeks but is also marked as misplaced. If
after two weeks the package hasn’t been found,
it is considered lost. At that point, the customer
can initiate lost-package procedures to recover
any damages.

it is considered active and in transit. Every time
it goes through a checkpoint, such as arrival at
an intermediate destination, it is scanned and a
record is created indicating the time and place of
the checkpoint scan. The status changes when it
is placed on the delivery truck. It is still active,
but now it is also considered to have a status of
delivery pending. After it is delivered, the status
changes again.

From time to time, a shipment has a destina-
tion that is outside the area served by Union. In
those cases, Union has working relationships
with other courier services. After a package

Metropolitan Car Service Bureau
Metropolitan Car Service Bureau needs a system that
keeps car service records. The company’s analyst has pro-
vided information about the problem domain in the form of
notes. Your job is to use those notes to draw the domain
model class diagram. The analyst’s notes are as follows:

 ■ The Owner class has the attributes name and address.
 ■ The Vehicle class is an abstract class that has the

attributes VIN, model, and model year.
 ■ There are two types of vehicles, cars and trucks:

 ■ Car has additional attributes for the number of
doors and luxury level.

 ■ Truck has an additional attribute of cargo capacity.

 ■ The Manufacturer class has the attributes name and
location.

 ■ The Dealer class has the attributes name and address.

A service record is an association class between
each vehicle and a dealer, with the attributes service date
and current mileage. A warranty service record is a spe-
cial type of service record with an additional attribute:
eligibility verification. each service record is associated
with a predefined service type, with the attributes type
ID, description, and labor cost. each service type is as-
sociated with zero or more parts, with the attributes part
ID, description, and unit cost. Parts are used with one or
more service types.

An owner can own many vehicles, and a vehicle can
be owned by many owners. An owner and a vehicle are en-
tered into the system only when an owned vehicle is first
serviced by a dealer. Vehicles are serviced many times at
various dealers, which service many vehicles.

1. Draw a uML domain model class diagram for the
system as described here. Be as specific and ac-
curate as possible, given the information provided.
If needed information is not given, make realistic
assumptions.

2. Answer True or False to the following statements,
which are based on the domain model. You may want
to draw a semantic net to help you think through the
questions.

 a. This domain model is for a single car dealer service
department.

 b. This domain model is for a single car manufacturer.
 c. A vehicle can have service records with more than

one dealer.
 d. A dealer can service vehicles from more than one

manufacturer.
 e. Current mileage is recorded for service records

and warranty service records.
 f. An owner can have each of his or her cars serviced

by a different dealer.
 g. A warranty service for a car can include many

parts.
 h. A vehicle can be made by more than one

manufacturer.

3. Consider that a vehicle goes through many states and
state transitions from the perspective of Metropoli-
tan. For example, a new vehicle might be brought in
for the first time. A previously serviced vehicle might
be brought in. Think through the sequences that go
on for a vehicle when it is being worked on by Met-
ropolitan. Draw a state machine diagram showing
states and state transitions, including names for the
transitions.

CASE Study

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

127CHAPTER 4 ■ Domain Modeling

Community Board of Realtors®

In Chapter 3, you identified use cases for the Board of
Realtors Multiple Listing Service (MLS) system, which
supplies information that local real estate agents use
to help them sell houses to their customers. During
the month, agents list houses for sale (listings) by con-
tracting with homeowners. Each agent works for a
real estate office, which sends information on listings
to the Multiple Listing Service. Therefore, any agent
in the community can get information on the listing.
Much of the information is available to potential cus-
tomers on the Internet.

Information on a listing includes the address,
year built, square feet, number of bedrooms, number
of bathrooms, owner name, owner phone number,
asking price, and status code. Additionally, many
pictures and videos showing features of the listing
are included. It is also important to have information
on the listing agent, such as name, office phone, cell
phone, and e-mail address. Agents work through a
real estate office, so it is important to know the office
name, office manager name, office phone, and street
address.

 1. Based on the information here, draw a domain
model class diagram for the MLS system. Be
sure to consider what information needs to be
included versus information that is not in the
problem domain. For example, is detailed infor-
mation about the owner, such as his employer or
his credit history, required in the MLS system?

Is that information required regarding a poten-
tial buyer?

 2. Draw a second domain model class diagram
that adds the following specifications. First,
there are two types of listings: a listing for
sale and a listing for lease. Additionally, a
listing might include no structures, such as
vacant land, or it might include more than one
structure, such as a main house and a guest
house, each with separate values for square
footage, number of bedrooms, and number of
bathrooms.

 3. Draw a third domain model class diagram that
assumes a listing might have multiple owners.
Additionally, a listing might be shared by two
or more agents, and the percentage of the com-
mission that each agent gets from the sale can be
different for each agent.

 4. Consider that a real estate listing goes though
several different states over time. For example,
it might be a new listing, a mature listing, a
revised listing, an under contract listing, and a
sold listing. Draw a state machine diagram for
a listing object based on this information. In-
clude transition names and be sure to consider
all of the possible transitions. For example, can
a new listing transition directly to an under
contract listing?

RUnnIng CaSe StudieS

The Spring Breaks ‘R’ us Travel Service
In Chapter 3, you identified use cases for the Social
Networking subsystem SBRU is researching. Let
us assume you were thinking about a number of
potential domain classes that might be involved. For
example, there would need to be information about
a traveler attending a resort for a particular week.
The traveler would be assigned to a room along with
roommates but might also be connected to other
friends. There might be different interests or hobbies
a traveler can associate with in the hopes of connect-
ing to others. The resort has many locations where a
traveler might be hanging out at any given time, and
a traveler can note whether the location is “liked.”

People might schedule a party at a location and invite
specific friends.

 1. For the Social Networking subsystem as
described here, list the domain classes and their
attributes that should be included in the Social
Networking subsystem. Be creative and add
those you think should be included to make the
system useful and appealing.

 2. Based on the domain classes you identified,
draw a domain model class diagram showing
domain classes with attributes and associations
with multiplicity.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

128 PART 2 ■ Systems Analysis Activities

On the Spot Courier Services
On the Spot courier services grew and changed over
the years. At first, Bill received requests for package
pickups on his mobile phone, recorded that informa-
tion in a log, and would then drive around to retrieve
all the packages later in the day. However, he soon
discovered that with another driver, it was difficult
to coordinate pickups between the two of them from
his van. It was not long before he reorganized his
business and turned the warehouse employee into a
driver. Then, he stayed in the warehouse himself, and
his two employees made all the pickups and deliver-
ies. This worked well because he could control and
coordinate the pickups and deliveries better. It was
also easier for him to receive pickup requests working
at a desk rather than trying to do it while driving a
delivery van.

As he thought about how his business was grow-
ing and the services he provided to his customers, Bill
began to itemize the kinds of information he would
need to maintain.

Of course, he needed to maintain information
about his customers. Some of his customers were
businesses; some were individuals. He needed to have
basic address and contact information for every cus-
tomer. Also, for his corporate customers, he needed to
identify a primary contact person. It was mostly his
corporate customers who wanted to receive monthly
statements listing all their shipments during the month
and the total cost. Bill needed to distinguish which
customers paid cash and which wanted monthly state-
ments. In fact, for those who paid monthly, he needed
to keep a running account of such things as when they
were last billed, when they paid, and any outstanding
balances. Finally, when payments were received, either
for individual shipments or from monthly invoices,
he needed to record information about the payment:
type of payment, date, and amount. Although this was
not a sophisticated billing and payment system, Bill
thought it would suffice for his needs.

Next, he started thinking about his packages and
shipments. At the time that a request for a pickup
came in, he needed to keep track of it as some type
of delivery request or delivery order. At that point in
time, Bill mostly needed to know who the customer

was, where the pickup location was, and what date
and time the package(s) would be ready for pickup. He
also recorded the date and time that he received the
order. A delivery order was considered “open” until
the delivery van arrived at the pickup location and the
packages were all retrieved. At that point, the delivery
order was satisfied.

Once the packages were retrieved, each pack-
age needed to be uniquely identified. Bill needed to
know when it was picked up and which delivery per-
son picked it up. Other important information was
the “deliver to” entity name and the address. He also
needed to identify the type of delivery. Some pack-
ages were high priority, requiring same-day delivery.
Others were overnight. Of course, the weight and cost
were recorded so the customer could either pay or have
it added to the monthly invoice.

In the courier and delivery business, one of the
most important information requirements is the date
and time stamp. For each package, it is important to
know when it was picked up, when it arrived at the
warehouse, when it went back out on the delivery
run, and when it was delivered. When possible, it is
also important to have names associated with each of
these events.

 1. Using the noun technique, read through this case
and identify all the nouns that may be important
for this system. You may also find it helpful to
read back through the case descriptions in the
previous chapters.

 2. Once you have identified all the nouns, identify
which are classes and which are attributes of
these primary classes. Begin constructing a class
diagram based on the classes and attributes you
have identified.

 3. Now that you have identified the classes, deter-
mine what the relationships should be among
the classes. Add multiplicity constraints, being
especially cognizant of zero-to-many versus one-
to-many differences.

 4. Finalize the class diagram, including all your
classes, attributes, primary keys, relationships,
and multiplicity constraints.

Sandia Medical Devices
Initial discussions about the functional requirements
resulted in an initial domain model class diagram for
Sandia Medical Devices’ Real-Time Glucose Monitor-
ing (RTGM) system (see Figure 4-35). After consulta-
tions with system stakeholders, the following potential
changes to the diagram are being considered:

 ■ Include additional medical personnel (nurses and
physicians’ assistants, at a minimum).

 ■ Include alerts sent by the system to medical per-
sonnel and messages sent by medical personnel to
the patient.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

129CHAPTER 4 ■ Domain Modeling

Classic and more recent texts include the following:

Grady Booch, Ivar Jacobson, and James
Rumbaugh, The Unified Modeling Language
User Guide. Addison-Wesley, 1999.

Craig Larman, Applying UML and Patterns (3rd ed.).
Prentice Hall, 2005.

Peter Rob and Carlos Coronel, Database Systems:
Design, Implementation, and Management
(7th ed.). Course Technology, 2007.

FURTHER RESOuRCES

1. Modify the diagram to incorporate the changes
under consideration. You may need to use
generalization/specialization (inheritance).

2. Are a set of abstract and concrete classes needed
to represent variations among cell phones?
Why or why not?

FIguRe 4-35 Initial domain
model class diagram for
Sandia RTGM system

id
lastName
firstName

id
medicalRecordNumber
lastName
dateOfBirth
gender
race
height
weight

Patient

dateTime
level

GlucoseObservation

id
phoneNumber
operatingSystem
osVersion
applicationVersion

CellPhone

Physician

serialNumber
manufacturer
dateOfManufacture
firmwareVersion

MonitoringDevice

1..1

1..1

0..*

0..*

0..*

0..*

1..1

1..1

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter FIVE

After reading this chapter, you should be able to:

Write fully developed use case descriptions

Develop activity diagrams to model flow of
activities

Develop system sequence diagrams

Use the CRUD technique to validate use cases

Explain how use case descriptions and
UML diagrams work together to define
functional requirements

Learning ObjeCtives

Use Case Modeling

Use Case Descriptions

Activity Diagrams for Use Cases

The System Sequence Diagram—Identifying
Use Case Inputs and Outputs

SSD Notation

Use Cases and CRUD

Integrating Requirements Models

Chapter OutLine

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

132 PART 2 ■ Systems Analysis Activities

 ■ Overview
The main objective of defining requirements in system development is under-
standing users’ needs, how the business processes are carried out, and how
the system will be used to support those business processes. As indicated in
Chapter 2, system developers use a set of models to discover and understand the
requirements for a new system. This activity is a key part of systems analysis in
the system development process. The first step in the process for developing this
understanding requires the fact-finding skills you learned in Chapter 2. Fact-
finding activities are also called discovery activities, and obviously, discovery
must precede understanding.

The models introduced in Chapters 3 and 4 focus on two primary aspects of
functional requirements: the use cases and the problem domain classes involved
in users’ work. User stories are sometimes used in place of use cases with Agile
development. Use cases are identified by using the user goal technique and the

Opening Case ElEctronics UnlimitEd: intEgrating thE sUpply chain

Electronics Unlimited is a warehousing distributor that
buys electronic equipment from various suppliers and
sells it to retailers throughout the United States and
Canada. It has operations and warehouses in Los Ange-
les, Houston, Baltimore, Atlanta, New York, Denver, and
Minneapolis. Its customers range from large nationwide
retailers, such as Target, to medium-sized independent
electronics stores.

Most large retailers have moved toward integrated
supply chains. Information systems used to be focused
on processing internal data; however, today, these retail
chains want suppliers to become part of a totally inte-
grated supply chain system. In other words, the systems
need to communicate between companies to make the
supply chain more efficient.

To maintain its position as a leading wholesale dis-
tributor, Electronics Unlimited has to convert its system to
link with its suppliers (the manufacturers of the electronic
equipment) and its customers (the retailers). It is develop-
ing a completely new system that uses object-oriented
techniques to provide these links. Object-oriented tech-
niques facilitate system-to-system interfaces by using
predefined components and objects to accelerate the
development process. Fortunately, many of the system
development staff members have experience with object-
oriented development and are eager to apply the tech-
niques and models to the system development project.

William Jones is explaining object-oriented develop-
ment to the group of systems analysts who are being
trained in this approach.

“We’re developing most of our new systems by
using object-oriented principles,” he tells them. “The
complexity of the new system, along with its interactiv-
ity, makes the object-oriented approach a natural way to
develop requirements. The object-oriented models track

very closely with the new object-oriented programming
languages and frameworks.”

William is just getting warmed up.
“This way of thinking about a system in terms of

objects is very interesting,” he adds. “It is also consis-
tent with the object-oriented programming techniques
you learned in your programming classes. You prob-
ably first learned to think about objects when you de-
veloped screens for the user interface. All the controls
on the screen, such as buttons, text boxes, and drop-
down boxes, are objects. Each has its own set of trigger
events that activate its program functions.”

“How does this apply to our situation?” one of the
analysts asks.

“You just extend that thought process,” William
explains.” You think of such things as purchase orders
and employees as objects, too. We can call them the
problem domain objects to differentiate them from user-
interface objects, such as windows and buttons. During
analysis, we have to find out all the trigger events and
methods associated with each business object.”

“And how do we do that?” another analyst asks.
“You continue with your fact-finding activities and

build a better understanding of each use case,” William
says. “The way the problem domain objects interact
with each other in the use case determines how you
identify the initiating activity. We refer to those activi-
ties as the messages between objects. The tricky part
is that you need to think in terms of objects instead of
just processes. Sometimes, it helps me to pretend I am
an object. I will say, ‘I am a purchase order object. What
functions and services are other objects going to ask me
to do?’ After you get the hang of it, it works very well,
and it is enlightening to see how the system require-
ments unfold as you develop the diagrams.”

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

133CHAPTER 5 ■ Use Case Modeling

event decomposition technique. The Unified Modeling Language (UML) use
case diagram was introduced to show use cases and actors. An information sys-
tem also needs to record and store information about classes of objects involved
in the business processes. In a manual system, the information is recorded on
paper and stored in a filing cabinet. In an automated system, the information is
stored in electronic files or a database. The information storage requirements of
a system are documented either with entity-relationship diagrams (ERDs) or, as
emphasized in this text, with UML domain model class diagrams.

In this chapter, you learn additional techniques and models that will allow
you to extend the requirements models to show additional information about
the use cases for the system. Fully developed use case descriptions, UML activ-
ity diagrams, and UML system sequence diagrams (SSDs) are introduced to
show more information about each use case. Additionally, the CRUD technique
is introduced to help validate the use cases in terms of supporting all of the
domain classes in the domain model class diagram. Remember, when defining
requirements for a system, you will also be doing design and implementation
work, as illustrated in the Trade Show application developed in Chapter 1.

 ■ Use Case Descriptions
A list of use cases and use case diagrams provides an overview of all the use
cases for a system. Detailed information about each use case is described
with a use case description. Brief use case descriptions were introduced in
Chapter 3. This chapter introduces fully developed use case descriptions that list
and describe the processing details for a use case.

 ■ Brief Use Case Descriptions
Depending on an analyst’s needs, use case descriptions tend to be written at
two separate levels of detail: brief description and fully developed description.
Some brief use case descriptions were shown in Chapter 3 (repeated again as
Figure 5-1). A brief description gives enough detail for very simple use cases,
especially when the system to be developed is a small, well-understood applica-
tion. Examples of simple use cases are Add product comment or Send message.
A use case such as Fill shopping cart is complex enough that a fully developed
description is also written after the initial brief use case description is finalized.

 ■ Fully Developed Use Case Descriptions
The fully developed description is the most formal method for documenting a
use case. One of the major difficulties for software developers is that they often
struggle to obtain a deep understanding of the users’ needs. But if you create a
fully developed use case description, you increase the probability that you thor-
oughly understand the business processes and the ways the system must support
them. To create a comprehensive, robust system that truly meets users’ needs,

use case description a textual model
that lists and describes the processing details
for a use case

Use case

Create customer account

Look up customer

Process account adjustment

Brief use case description

User/actor enters new customer account data, and the system
assigns account number, creates a customer record, and
creates an account record.

User/actor enters customer account number, and the system
retrieves and displays customer and account data.

User/actor enters order number, and the system retrieves
customer and order data; actor enters adjustment amount, and
the system creates a transaction record for the adjustment.

FIgUrE 5-1 Use cases and brief
use case descriptions

©
 C

en
ga

ge
Le

ar
ni

ng
®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

134 PART 2 ■ Systems Analysis Activities

you must understand the detailed steps of each use case. Internally, a use case
includes a whole sequence of steps to complete a business process. Figure 5-2
is an example of a fully developed use case description of the use case Create
customer account.

Figure 5-2 also serves as a standard template for documenting a fully
developed description for other use cases. The first and second compartments
are used to identify the use case and the specific scenario within the use case
(if needed) that is being documented. Frequently, several variations of the busi-
ness steps exist within a single use case. These different flows of activities are
called scenarios or sometimes use case instances. The use case Create cus-
tomer account will have a separate flow of activities depending on which actor
invokes the use case. The processes for a customer service representative updat-
ing information over the phone might be quite different from the processes for
a customer updating the information him or herself. Figure 5-2 shows an online
customer creating a customer account, so the scenario indicated is Create online
customer account. Another use case description would be written for the Create

Use case name: Create customer account.

Scenario: Create online customer account.

Triggering event: New customer wants to set up account online.

Brief description: Online customer creates customer account by entering basic information
and then following up with one or more addresses and a credit or debit card.

1. Customer indicates desire to
 create customer account and
 enters basic customer information.

2. Customer enters one or more
 addresses.

3. Customer enters credit/debit card
 information.

1.1 System creates a new customer.
1.2 System prompts for customer
 addresses.

2.1 System creates addresses.
2.2 System prompts for credit/debit
 card.

3.1 System creates account.
3.2 System verifies authorization
 for credit/debit card.
3.3 System associates customer,
 address, and account.
3.4 System returns valid customer
 account details.

Flow of activities: Actor System

Actors: Customer.

Related use cases: Might be invoked by the Check out shopping cart use case.

Stakeholders: Accounting, Marketing, Sales.

Preconditions: Customer Account subsystem must be available.
Credit/debit authorization services must be available.

Postconditions: Customer must be created and saved.
One or more Addresses must be created and saved.
Credit/debit card information must be validated.
Account must be created and saved.
Address and Account must be associated with Customer.

Exception
conditions:

1.1 Basic customer data are incomplete.
2.1 The address isn’t valid.
3.2 Credit/debit information isn’t valid.

FIgUrE 5-2 Fully developed use case description for Create customer account

©
 C

en
ga

ge
Le

ar
ni

ng
®

scenarios or use case instances
a unique set of internal activities within
a use case

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

135CHAPTER 5 ■ Use Case Modeling

customer account by phone scenario. Each flow of activities is a valid sequence
for the Create customer account use case. Thus, a scenario is a unique set of inter-
nal activities within a use case and represents a unique path through the use case.

In larger or more formal projects, a unique identifier can also be added for
the use case, with an extension identifying the particular scenario. Sometimes,
the name of the system developer who produced the form is added.

The third compartment identifies the event that triggers the use case. The
fourth compartment is a brief description of the use case. Analysts may just
duplicate the brief description they constructed earlier here. The fifth compart-
ment identifies the actor or actors. Implied in all use cases is a person who uses
the system called an actor. Actors are shown as stick figures on use case dia-
grams. An actor is always outside the automation boundary of the system but
may be part of the manual portion of the system. By defining actors that way—
as those who interact with the automated part of the system—you can more pre-
cisely define the exact interactions to which the automated system must respond.

The sixth compartment identifies other use cases and the way they are
related to this use case. These cross-references to other use cases help document
all aspects of the users’ requirements.

The seventh compartment identifies stakeholders who are interested parties
other than specific actors. They might be users who don’t actually invoke the
use case but who have an interest in results produced from the use case. For
example, in Figure 5-2, the Accounting Department is interested in accurately
capturing billing and credit card information. Although no one in the Market-
ing Department actually creates new customer accounts, they do perform sta-
tistical analysis of the new customers and create marketing promotions. Thus,
marketers have an interest in the data that are captured and stored from the
Create customer account use case. The Sales Department is interested in having
an easy-to-use and attractive user interface to ensure sales aren’t lost because of
poor user experience. Considering all the stakeholders is important for system
developers so they ensure they have understood all requirements.

The eighth and ninth compartments—preconditions and postconditions—
provide critical information about the state of the system before and after the
use case executes. Preconditions identify what the state of the system must be
for the use case to begin, including what objects must already exist, what infor-
mation must be available, and even the condition of the actor prior to beginning
the use case.

Postconditions identify what must be true upon completion of the use
case. Most important, they indicate what new objects are created or updated
by the use case and how objects need to be associated. The postconditions are
important for two reasons. First, they form the basis for stating the expected
results for test cases that will be used for testing the use case after it is imple-
mented. For example, in the Create customer account use case, it is important
to test that a customer record, address record, and account record were suc-
cessfully added to the database. Second, the objects in postconditions indicate
which objects involved in the use case are important for design. You will see in
Chapters 12 and 13 that the design of a use case includes identifying and assign-
ing responsibilities to objects that collaborate to complete the use case. In this
situation, a customer, one or more addresses, and an account object collaborate
to create a new customer account.

The tenth compartment in the template describes the detailed flow of activi-
ties of the use case. In this instance, Figure 5-2 shows a two-column version,
identifying the steps performed by the actor and the responses required by the
system. The item numbers help identify the sequence of the steps. Alternative
activities and exception conditions are described in the eleventh compartment.
The numbering of exception conditions also helps tie the exceptions to specific
steps in the flow of activities.

preconditions conditions that must be
true before a use case begins

postconditions what must be true upon
the successful completion of a use case

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

136 PART 2 ■ Systems Analysis Activities

Figure 5-3 shows the use case description for the RMO use case Ship items.
The scenario for this description assumes they are shipping a new sale rather
than back-ordered items from a previous sale. Notice that the use case descrip-
tion minimizes the description of manual work that is done in conjunction with
shipping items. Some analysts put that detail in, but others don’t because the
emphasis is on the interaction with the automated part of the application. In this
use case, the preconditions show what existing objects must already exist before
the use case can execute. They can’t ship items that aren’t part of an existing
sale for a customer. The preconditions show that this use case will involve a
customer, sale, and sale items objects. The postconditions again indicate what
to look for when stating the expected results for a test case and show the objects
that will need to collaborate in the design. This use case will also involve a ship-
per, shipment, shipped items, and back-ordered items.

Actors: Shipping clerk.

Preconditions: Customer and address must exist.
Sale must exist.
Sale items must exist.

1. Shipping requests sale and sale
 item information.

2. Shipping assigns shipper.

3. For each available item, shipping
 records item is shipped.

4. For each unavailable item,
 shipping records back order.

5. Shipping requests shipping label
 supplying package size and
 weight.

1.1 System looks up sale and
 returns customer, address, sale,
 and sales item information.

2.1 System creates shipment and
 associates it with the shipper.

3.1 System updates sale item as
 shipped and associates it with
 shipment.

4.1 System updates sale item as
 on back order.

5.1 System produces shipping label
 for shipment.
5.2 System records shipment cost.

Related use cases None.

Stakeholders: Sales, Marketing, Shipping, warehouse manager.

Triggering event: Shipping is notified of a new sale to be shipped.

Brief description: Shipping retrieves sale details, finds each item and records it is shipped,
records which items are not available, and sends shipment.

Scenario: Ship items for a new sale.

Use case name: Ship items.

Flow of activities: Actor System

Postconditions: Shipment is created and associated with shipper.
Shipped sale items are updated as shipped and associated with the shipment.
Unshipped items are marked as on back order.
Shipping label is verified and produced.

Exception
conditions:

2.1 Shipper is not available to that location, so select another.
3.1 If order item is damaged, get new item and updated item quantity.
3.1 If item bar code isn’t scanning, shipping must enter bar code manually.
5.1 If printing label isn’t printing correctly, the label must be addressed
 manually.

FIgUrE 5-3 Fully developed use case description for Ship items

©
 C

en
ga

ge
Le

ar
ni

ng
®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

137CHAPTER 5 ■ Use Case Modeling

 ■ Activity Diagrams for Use Cases
Another way to document a use case is with a UML activity diagram. In
Chapter 2, you learned about activity diagrams as a form of workflow diagram
that might cover several use cases. Activity diagrams are also used to document
the flow of activities for one use case.

Figure 5-4 is an activity diagram that documents the flow of activities for
the Create customer account use case. Sometimes, an activity diagram can take
the place of the flow of activities section of a use case description, and some-
times, it is created to supplement the use case description. In this example, there
are two swimlanes: one for the customer and one for the system. The customer
has three activities, and the system has five activities.

An example is shown in Figure 5-5 for the Ship items use case previ-
ously seen in Figure 5-3. One of the strengths of activity diagrams is that it
provides a more graphical view of the flow of activities. Figure 5-5 illustrates
both a repeating set of steps, that is for each SaleItem in the Sale, and a deci-
sion point to choose which set of steps to perform. Even though this flow is
described by the use case description, it is more evident in the activity dia-
gram. Figure 5-5 illustrates a correct use of the beginning and ending syn-
chronization bars and the decision diamond. Remember that synchronization

Customer System

Request account

Enter addresses

Enter credit info

Create customer

Create addresses

Create account

Verify credit info

Return account
details

FIgUrE 5-4 Activity diagram for
Create customer account showing
alternate way to model the flow of
activities

©
 C

en
ga

ge
Le

ar
ni

ng
®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

138 PART 2 ■ Systems Analysis Activities

bars can be used either for parallel concurrent paths, or for beginning and
ending loops. In this example, we see a loop and inside the loop a decision
point to initiate independent paths, which are later rejoined at the ending
synchronization bar.

Activity diagrams are helpful when the flow of activities for a use case is
complex. The use case Fill shopping cart is complex in that three other use
cases might be invoked while adding items to the shopping cart. For example,
the actor might search for a product and then look at product reviews before
adding the item to the cart. Once an item is added, the actor might search for
and view available accessories and then add one or more to the cart. The activ-
ity diagram shown in Figure 5-6 shows the Fill shopping cart use case flow
of activities. The shaded ovals show the other use cases that are invoked while
filling the shopping cart. The activities of Fill shopping cart go in between the
other use cases. For example, after invoking Search for product and then Look
at product reviews, the actor might start Fill shopping cart to select options
and quantities and add it to the cart. Then the actor might switch to Search and
view accessories before continuing Fill shopping cart to add an accessory. The
activity diagram can be used to show a richer user experience in this way.

Shipping clerk System

Lookup Sale with
SaleItems

Assign shipper

Mark as
backordered

No

Foreach Saleitem

Yes

Mark as shipped

Print shipping label
Update all shipment &

cost info

Create shipment
Link to Sale

Link to Shipper

Display Sale & SaleItems +
Customer info

Update status
Link to shipment

Update status
Initiate backorder

End foreach

Available?

Enter package weight and size
Request shipping label

FIgUrE 5-5 Activity diagram for
Ship Items use case

©
 C

en
ga

ge
Le

ar
ni

ng
®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

139CHAPTER 5 ■ Use Case Modeling

 ■ The System Sequence Diagram—Identifying
Inputs and Outputs

In the object-oriented approach, the flow of information is achieved through
sending messages either to and from actors or back and forth between internal
objects. A system sequence diagram (SSD) is used to describe this flow of
information into and out of the automated portion of the system. Thus, an SSD
documents the inputs and the outputs and identifies the interaction between
actors and the system. It is an effective tool to help in the initial design of the
user interface by identifying the specific information that flows from the user
into the system and the information that flows out of the system back to the
user. An SSD is a special type of UML sequence diagram. You will learn more
about detailed sequence diagrams in Chapter 13.

Customer System

Search for product

Search and view
accessories

Look at product
reviews

Select options
and quantity

Add to cart

Add to cart

Select accessory
options and quantity

FIgUrE 5-6 Activity diagram for
Fill shopping cart showing richer
user experience

©
 C

en
ga

ge
Le

ar
ni

ng
®

system sequence diagram (SSD)
a diagram showing the sequence of messages
between an actor and the automated part of
the system during a use case or scenario

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

140 PART 2 ■ Systems Analysis Activities

 ■ SSD Notation
Figure 5-7 shows a generic SSD with callouts annotating the diagram. As with
a use case diagram, the stick figure represents an actor—a person (or role) who
interacts with the system. In a use case diagram, the actor “uses” the system,
but the emphasis in an SSD is on how the actor “interacts” with the system by
entering input data and receiving output data. The box labeled :System is an
object that represents the entire automated system. In SSDs and all other inter-
action diagrams, analysts use object notation instead of class notation. In object
notation, a box refers to an individual object, not the class of all similar objects.
The notation is simply a rectangle with the name of the object underlined. The
colon before the underlined class name is a frequently used but optional part of
the object notation to indicate that the object is an unnamed object of the class.
In an SSD, the only object included is one representing the entire system: an
unnamed object of the System class.

Underneath the actor and :System are vertical dashed lines called lifelines.
A lifeline, or object lifeline, is simply the extension of that object—either actor
or object—during the use case. The arrows between the lifelines represent the
messages that are sent by the actor. Each arrow has an origin and a destination.
The origin of the message is the actor or object that sends it, as indicated by the
lifeline at the arrow’s tail. Similarly, the destination actor or object of a message
is indicated by the lifeline that is touched by the arrowhead. The purpose of
lifelines is to indicate the sequence of the messages sent and received by the actor
and object. The sequence of messages is read from top to bottom in the diagram.

A message is labeled to describe its purpose and any input data being sent.
The message name should follow the verb-noun syntax to make the purpose
clear. The syntax of the message label has several options; the simplest forms are
shown in Figure 5-7. Remember that the arrows are used to represent a message
and input data. But what is meant by the term message here? In a sequence dia-
gram, a message is an action that is invoked on the destination object, much like
a command. Notice in Figure 5-7 that the input message is called inquireOnItem.

inquireOnItem (catalogID, prodID, size)

item information

:System

The object lifeline; shows
the“sequence” of messages,
top to bottom

Optional note to explain
something in a diagram

A returned value

The actor
interacting with
the system

An object
(underlined)

representing the
automated system

An input message

item information:
description, price, quantity

Clerk

FIgUrE 5-7 Sample system
sequence diagram (SSD)

©
 C

en
ga

ge
Le

ar
ni

ng
®

lifeline, or object lifeline the vertical line
under an object on a sequence diagram to
show the passage of time for the object

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

141CHAPTER 5 ■ Use Case Modeling

The clerk is sending a request (a message) to the system to find an item. The
input data that is sent with the message is contained within the parentheses, and
in this case, it is data to identify the particular item. The syntax is simply the
name of the message followed by the input parameters in parentheses. This form
of syntax is attached to a solid line with arrow.

The returned value has a slightly different format and meaning. Notice that
the line with arrow is dashed. A dashed arrow indicates a response or an answer
(in programming, a return), and as shown in the figure, it immediately follows the
initiating message. The format of the label is also different. Because it is a response,
only the data that are sent on the response are noted. There is no message request-
ing a service—only the data being returned. In this case, a valid response might
be a list of all the information returned—for example, the description, price, and
quantity of an item. However, an abbreviated version is also satisfactory. In this
case, the information returned is named item information. Additional documen-
tation is required to show the details. In Figure 5-7, this additional information is
shown as a note. A note can be added to any UML diagram to add explanations.
The details of item information could also be documented in supporting narra-
tives or even simply referenced by the attributes in the Customer class.

Frequently, the same message is sent multiple times in a loop, as shown in
Figure 5-8. For example, when an actor enters items on an order, the message

addItem (itemID, quantity)
Repeat everything
in the rectangle

description, price, extendedPrice

* [another item] description, price, extendedPrice
:= addItem (itemID, quantity)

(a) Detailed notation

(b) Alternate notation

Clerk

Clerk

Test condition for
repeatability

:System

:System

Loop

[more items]

FIgUrE 5-8 Repeating message in
(a) detailed loop frame notation and
(b) alternate notation

©
 C

en
ga

ge
Le

ar
ni

ng
®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

142 PART 2 ■ Systems Analysis Activities

to add an item to an order may be sent multiple times. Figure 5-8(a) illustrates
the notation to show this repeating operation. The message and its return are
located inside a larger rectangle called a loop frame. In a smaller rectangle at
the top of the frame is the descriptive text to control the behavior of the mes-
sages within the larger rectangle. The condition loop for all items indicates
that the messages in the box repeat many times or are associated with many
instances.

Figure 5-8(b) shows an alternate notation. Here, the square brackets
and text inside them are called a true/false condition for the messages.
The asterisk (*) preceding the true/false condition indicates that the message
repeats as long as the true/false condition evaluates to true. Analysts use this
abbreviated notation for several reasons. First, a message and the returned
data can be shown in one step. Note that the return data is identified as a
return value on the left side of an assignment operator—the := sign. This alter-
native simply shows a value that is returned. Second, the true/false condition is
placed on the message itself. Note that in this example, the true/false condition
is used for the control of the loop. True/false conditions are also used to evalu-
ate any type of test that determines whether a message is sent. For example,
consider the true/false condition [credit card payment]. If it is true that the
thing being tested is a credit card payment, the message is sent to the system
to verify a credit card number. Finally, an asterisk is placed on the message
itself to indicate the message repeats. Thus, for simple repeating messages,
the alternate notation is shorter. However, if several messages are included
within the repeat or there are multiple messages—each with its own true/false
condition—the loop frame is more explicit and precise.

Here is the complete notation for a message:

[true/false condition] return-value := message-name (parameter-list)

Any part of the message can be omitted. In brief, the notation components
do the following:

 ■ An asterisk (*) indicates repeating or looping of the message.
 ■ Brackets [] indicate a true/false condition. This is a test for that message

only. If it evaluates to true, the message is sent. If it evaluates to false, the
message isn’t sent.

 ■ Message-name is the description of the requested service written as a
verb-noun.

 ■ Parameter-list (with parentheses on initiating messages and without
parentheses on return messages) shows the data that are passed with the
message.

 ■ Return-value on the same line as the message (requires :=) is used to
describe data being returned from the destination object to the source
object in response to the message.

Sequence diagrams also use two addition frames to depict processing logic,
as shown in Figure 5-9. The opt frame in Figure 5-9(a) is used when a message
or a series of messages is optional or based on some true/false condition. The alt
frame is used with if-then-else logic, as shown in Figure 5-9(b). The alt frame in
this figure indicates that if an item is taxable, then add sales tax; otherwise, add
a tax exemption code for a sales tax exemption.

 ■ Developing a System Sequence Diagram (SSD)
An SSD is usually used in conjunction with the use case descriptions to help doc-
ument the details of a single use case or scenario within a use case. To develop
an SSD, it is useful to have a detailed description of the use case—either in the

loop frame notation on a sequence
diagram showing repeating messages

true/false condition part of a message
between objects that is evaluated prior
to transmission to determine whether the
message can be sent

opt frame notation on a sequence diagram
showing optional messages

alt frame notation on a sequence diagram
showing if-then-else logic

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

143CHAPTER 5 ■ Use Case Modeling

fully developed form or as an activity diagram. These two models identify the
flow of activities within a use case, but they don’t explicitly identify the inputs
and outputs. An SSD will provide this explicit identification of inputs and out-
puts. One advantage of using activity diagrams is that it is easy to identify when
an input or output occurs. Inputs and outputs occur whenever an arrow in an
activity diagram goes from an external actor to the computer system.

Recall the activity diagram for Create customer account shown in
Figure 5-4. There are two swimlanes: the customer and the computer system. In
this instance, the system boundary coincides with the vertical line between the
customer swimlane and the system swimlane.

addAccessory (anAccessory)

accessary details

(a) Opt frame notation

Opt

Customer

[accessory selected]

addSalesTax (locationCode)

tax exemption details

(b) Alt frame notation

Alt

Sales clerk

sales tax details

addTaxExemptionCode (eCode)

[taxable item]

[else]

:System

:System

FIgUrE 5-9 Sequence diagram
notation for (a) opt frame and
(b) alt frame

©
 C

en
ga

ge
Le

ar
ni

ng
®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

144 PART 2 ■ Systems Analysis Activities

The development of an SSD based on an activity diagram falls into four steps:

1. Identify the input messages. In Figure 5-4, there are three locations with a
workflow arrow crossing the boundary line between the customer and the
system. At each location that the workflow crosses the automation bound-
ary, input data are required; therefore, a message is needed.

2. Describe the message from the external actor to the system by using the
message notation described earlier. In most cases, you will need a
message name that describes the service requested from the system and
the input parameters being passed. Figure 5-10—the SSD for the Create
customer account use case—illustrates the three messages based on
the activity diagram. Notice that the names of the messages reflect the
services that the actor is requesting of the system: createNewCustomer,
enterAddress, and enterCreditCard. Other names could also have
been used. For example, instead of enterAddress, the name could be
createAddress. The point to remember is that the message name
should describe the service requested from the system and should be
in verb-noun form.

The other information required is the parameter list for each message.
Determining exactly which data items must be passed in is more difficult.
In fact, developers frequently find that determining the data parameters
requires several iterations before a correct, complete list is obtained. The
important principle for identifying data parameters is to base it on the class
diagram. In other words, the appropriate attributes from the classes are
listed as parameters. Looking at the attributes, along with an understand-
ing of what the system needs to do, will help you find the right attributes.
With the first message just mentioned—createNewCustomer—the param-
eters should include basic information about the customer, such as name,
phone, and e-mail address. Note that when the system creates the cus-
tomer, it assigns a new customerId and returns it with the other customer
information.

In the second message—enterAddress—parameters are needed to
identify the full address. Usually, that would include street address, city,
state, and zip code. The SSD simplifies the message to show “address” as
the parameter.

The third message—based on the activity diagram—enters the credit
card information. The parameter—cc-info—represents the account number,
expiration date, and security code.

3. Identify and add any special conditions on the input messages, including
iteration and true/false conditions. In this instance, the enterAddress
message is repeated for each address needed for the customer. The asterisk
symbol in front of the message is shown.

4. Identify and add the output return messages. Remember that there are two
options for showing return information: as a return value on the message
itself or as a separate return message with a dashed arrow. The activity
diagram can provide some clues about return messages, but there is no
standard rule that when a transition arrow in the workflow goes from the
system to an external actor that an output always occurs. In Figure 5-4,
there are three arrows from the System swimlane to the Customer swim-
lane. In Figure 5-10, these are shown as return data on the dashed line for
two returns and as a returned value on the same line as the message for
enterAddress. Note that they are each named with a noun that indicates
what is being returned. Sometimes, no output data are returned.

Remember that the objective is discovery and understanding, so you should
be working closely with users to define exactly how the workflow proceeds and

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

145CHAPTER 5 ■ Use Case Modeling

exactly what information needs to be passed in and provided as output. This is
an iterative process, and you will probably need to refine these diagrams several
times before they accurately reflect the needs of the users.

Let us develop an SSD for the Ship items use case that is shown as a fully devel-
oped use case description in Figure 5-3 and as an activity diagram in Figure 5-5.
Note that the actor has five numbered steps in the flow of activities, so there will
be five input messages in the SSD shown in Figure 5-11: getNextSale, setShip-
per, recordShippedItem, initiateBackorder, and getShippingLabel. No parameter is
needed for getNextSale because the system will automatically return the informa-
tion for the next sale to be shipped. The shipper is selected by the actor—probably
from a list on the form or page—so the parameter is shipperID.

There is a loop frame that repeats for each sale item in the sale. Inside the
loop frame is an alt frame that tests the whether each sale item is available to
ship. If the item can be shipped, the recordShippedItem message is sent to the
system. If the item cannot be shipped because it is out of stock or perhaps dam-
aged, the initiateBackorder message is sent to the system. Finally, the getShip-
pingLabel message requires two parameters: the size of the package and the
weight. The system uses that information, along with the shipper and address,
to produce the shipping label and record the cost.

These first sections of this chapter have explained the models that are used
in object-oriented development to specify the processing aspects of the new
 system. The use case descriptions, as provided by written narratives or activity
diagrams, give the details of the internal steps within each use case. Precondi-
tion and postcondition statements help define the context for the use case—that
is, what must exist before and after processing. Finally, the SSD describes the
inputs and outputs that occur within a use case. Together, these models provide a
comprehensive description of the system-processing requirements and give the
foundation for systems design.

Customer

createNewCustomer (name, phones, emails)

cust ID, name, phones, emails

*address details := enterAddress (address)

enterCreditCard (cc-info)

credit card info details

:System

FIgUrE 5-10 SSD for the Create
customer account use case

©
 C

en
ga

ge
Le

ar
ni

ng
®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

146 PART 2 ■ Systems Analysis Activities

 ■ Use Cases and CRUD
Another important technique used to validate use cases is the CRUD technique,
which involves verifying that all of the needed use cases have been identified to
maintain the data represented by the domain model class diagram. CRUD is an
acronym for Create, Read or Report, Update, and Delete, and it is often introduced
with respect to database management. The analyst starts by looking at the types
of data stored by the system, which are modeled as domain classes, as described
in Chapter 4. In the RMO Tradeshow System discussed in Chapter 1, the types of
data included Supplier, Contact, Product, and ProductPicture. In the RMO CSMS,
the types of data include Customer, Sale, Inventory Item, Promotion, Shipment,
and many others. To validate and refine use cases, the analyst looks at each type
of data and verifies that use cases have been identified that create the data, read or
report on the data, update the data, and delete (or archive) the data.

The CRUD technique is most useful when used as a cross-check along with
the user goal technique. Users will focus on their primary goals, and use cases
that update or archive data will often be overlooked. The CRUD technique
makes sure all possibilities are identified. Sometimes, domain classes are shared
by a set of integrated applications. For example, RMO has a supply chain man-
agement application that is responsible for managing inventory levels and add-
ing products. The RMO CSMS will not need to create or delete products, but it
will need to look up and update product information. It is important to identify

Figure 5-11 SSD for the Ship
items use case

[more sale items]

[shipped item]

[else]

Shipping clerk getNextSale()

customer, address, sale, and sale item info

setShipper(shipperID)

recordShippedItem(saleItem)

shipping confirmation

getShippingLabel(packageSize, weight)

initiateBackorder(saleItem)

backorder confirmation

shipping label details

:System

Loop

Alt

©
 C

en
ga

ge
Le

ar
ni

ng
®

CRUD technique an acronym for Create,
Read/Report, Update, and Delete; a technique
to validate or refine use cases

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

147CHAPTER 5 ■ Use Case Modeling

the other application that is responsible for creating, updating, or deleting the
data to be clear about the scope of each system. Figure 5-12 shows an example
of potential use cases based on the CRUD technique for RMO Customer data.

Note in Figure 5-12 that the analyst has not blindly added a use case to
create, read/report, update, and delete instances of a customer. The CRUD tech-
nique is best used to take already identified use cases and verify that there are
use cases for create, read, update, and delete as a cross-check. Create customer
account creates customer objects. A separate Create customer use case is not
needed. Update customer account is defined to archive a customer, so no sepa-
rate Archive customer use case is required.

Another use of the CRUD technique is to summarize all use cases and all
data entities/domain classes to show the connection between use cases and data.
In Figure 5-13, some of the use cases are matched with domain classes by includ-
ing C, R, U, or D in the cell corresponding to the role of the use case in terms
of data. For example, the use case Create customer account actually creates
customer data and account data, so the C is included in those two cells. The use
case Process account adjustment reads information about the sale, reads infor-
mation about the customer, updates the account, and creates an adjustment.

Based on the information shown in Figure 5-13, there are insufficient use cases
to cover the Sale and the Adjustment domain classes. The Sale class will need to have
additional use cases to create, update, and delete Sale objects. In addition, the Adjust-
ment class will require use cases to update, report, and delete Adjustment objects.

The CRUD technique for validating and refining use cases includes these steps:

1. Identify all the domain classes involved in the new system. Chapter 4
discussed these in more detail.

2. For each type of data (domain class), verify that a use case has been identi-
fied that creates a new instance, updates existing instances, reads or reports
values of instances, and deletes (or archives) an instance.

3. If a needed use case has been overlooked, add a new use case and then iden-
tify the stakeholders.

4. With integrated applications, make sure it is clear which application is responsi-
ble for adding and maintaining the data and which system merely uses the data.

Data entity/domain class CRUD Verified use case

Customer Create

Read/report Look up customer
Produce customer usage report

Process account adjustment
Update customer account

Create customer account

Update

Delete Update customer account (to archive)

FIgUrE 5-12 Verifying use cases
with the CRUD technique

©
 C

en
ga

ge
Le

ar
ni

ng
®

FIgUrE 5-13 CRUD table showing use cases and corresponding domain classes

Use case vs.
entity/domain class

Create customer account

Look up customer

Produce customer usage
report

Process account adjustment

Update customer account

Customer

C

R

R

R

UD (archive)

Account

C

R

R

U

UD (archive)

Adjustment

C

Sale

R

R

©
 C

en
ga

ge
Le

ar
ni

ng
®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

148 PART 2 ■ Systems Analysis Activities

 ■ Integrating Requirements Models
The diagrams described in this chapter allow analysts to completely specify the
system functional requirements by modeling details of the use cases. Because
you are using an iterative approach, you would only construct the diagrams
that are necessary for a given iteration. A complete use case diagram would be
important to get an idea of the total scope of the new system. But the supporting
details included in use case descriptions, activity diagrams, and system sequence
diagrams need only be done for use cases in the specific iteration. Again, it is
important to remember that not all use cases need to be modeled in detail.

The domain model class diagram is a special case. Much like the entire use
case diagram, the domain model class diagram should be as complete as pos-
sible for the entire system early in the project, as shown for RMO in Chapter 4.
The number of problem domain classes for the system provides an additional
indicator of the total scope of the system. Refinement and actual implementa-
tion of many classes will wait for later iterations, but the domain model should
be fairly complete. The domain model is necessary to identify all the domain
classes that are required in the new system. The domain model is also used to
design the database.

Throughout this chapter, you have seen how the construction of a dia-
gram depends on information provided by another diagram. You have also seen
that the development of a new diagram often helps refine and correct a pre-
vious diagram. You should also have noted that the development of detailed
diagrams is critical to gaining a thorough understanding of the user require-
ments. Figure 5-14 illustrates the primary relationships among the requirements
models for object-oriented development. The use case diagram and other dia-
grams on the left are used to capture the processes of the new system. The class
diagram and its dependent diagrams capture information about the classes for
the new system. The solid arrows represent major dependencies, and the dashed
arrows show minor dependencies. The dependencies generally flow from top to
bottom, but some arrows have two heads to illustrate that influence goes in both
directions.

Note that the use case diagram and the domain model class diagram are the
primary models from which others draw information. You should develop those
two diagrams as completely as possible. The detailed descriptions—either in
narrative format or in activity diagrams—provide important internal documen-
tation of the use cases and must completely support the use case diagram. Such
internal descriptions as preconditions and postconditions use information from
the domain model class diagram. These detailed descriptions are also important
for development of system sequence diagrams. Thus, the detailed descriptions,
activity diagrams, and system sequence diagrams must all be consistent with
regard to the steps of a particular use case. As you progress in developing the
system and especially as you begin doing detailed systems design, you will find
that understanding the relationships among these models is an important ele-
ment in the quality of your models.

Use case
descriptions

System sequence
diagrams (SSDs)

State machine
diagrams

Activity
diagrams

Use case
diagrams

Domain model
class diagram

FIgUrE 5-14 Relationships among
object-oriented requirements
models

©
 C

en
ga

ge
Le

ar
ni

ng
®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

149CHAPTER 5 ■ Use Case Modeling

The scope of each SSD is usually a use case or a sce-
nario within a use case. The components of an SSD are
the actor—the same actor identified in the use case—
and the system. The system is treated as a black box in
that the internal processing isn’t addressed. Messages,
which represent the inputs, are sent from the actor to
the system. Output messages are returns from the sys-
tem to the actor. The sequence of messages is indicated
from top to bottom.

The CRUD technique is used to validate that all
of the use cases have been identified that are neces-
sary to maintain the data represented by the domain
model class diagram. Use cases must be identified that
create, read or report, update, and delete or archive in-
stances of all classes. Alternatively, other systems that
maintain the data must be identified when integrated
systems share the same database. All the models dis-
cussed in this chapter are interrelated, and informa-
tion in one model explains information in others.

The object-oriented approach to information systems
development has a complete set of diagrams and tex-
tual models that together document the user’s needs
and define the system requirements. These require-
ments are specified by using domain model class
diagrams and state machine diagrams to model the
domain classes and use case diagrams, use case de-
scriptions or activity diagrams, and system sequence
diagrams (SSDs) to model the use cases.

The internal activities of a use case are first de-
scribed by an internal flow of activities. It is possible
to have several different internal flows, which repre-
sent different scenarios of the same use case. Thus, a
use case may have several scenarios. These details are
documented either in use case descriptions or with ac-
tivity diagrams.

Another diagram that provides details of the use
case’s processing requirements is an SSD. An SSD
documents the inputs and outputs of the system.

CHAPTER SUMMARy

opt frame

postconditions

preconditions

scenarios or use case instances

system sequence diagram (SSD)

true/false condition

use case description

alt frame

CRUD technique

lifeline or object lifeline

loop frame

KEy TeRMS

 1. What are the models that describe use cases in
more detail?

 2. What two UML diagrams are used to model
domain classes?

 3. Which part of a use case description can also be
modeled by using an activity diagram?

 4. Explain the difference between a use case and a
scenario. Give a specific example of a use case
with a few possible scenarios.

 5. List the parts or compartments of a fully
 developed use case description.

 6. Compare/contrast precondition and
postcondition.

 7. Compare/contrast postcondition and exception
condition.

 8. Compare/contrast business process and flow of
activities for a use case. Explain how an activity
diagram can be used to model both.

 9. What is the purpose of an SSD? What symbols are
used in an SSD?

 10. What are the steps required to develop an SSD?

 11. Write a complete SSD message from the actor to
the system, with the actor asking the system to
begin the process for updating information about
a specific product.

 12. What is the name of the sequence diagram symbol
used to represent the object’s existence throughout
the duration of a use case?

 13. What are the two ways to show a returned value
on a sequence diagram?

REvIEW QUeSTIONS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

150 PART 2 ■ Systems Analysis Activities

 18. List the primary steps for developing an SSD.

 19. What are the words included in the CRUD
acronym?

 20. What is the purpose of using the CRUD
technique?

 21. Identify the models explained in this chapter and
their relationship to one another.

 14. What are two ways to show repetition on a
sequence diagram?

 15. What are the three types of frames used on a
sequence diagram?

 16. What is the symbol for a true/false condition on
a sequence diagram?

 17. Explain what parameters of a message are.

PRObleMS AND exeRCISeS
 1. After reading the following narrative, do the fol-

lowing:
a. Develop an activity diagram for each scenario.
b. Complete a fully developed use case descrip-

tion for each scenario.
Quality Building Supply has two kinds of

customers: contractors and the general public.
Sales to each are slightly different.

A contractor buys materials by taking them
to the checkout desk for contractors. The clerk
enters the contractor’s name into the system.
The system displays the contractor’s informa-
tion, including current credit standing. The clerk
then opens up a new ticket (sale) for the contrac-
tor. Next, the clerk scans in each item to be pur-
chased. The system finds the price of the item
and adds the item to the ticket. At the end of the
purchase, the clerk indicates the end of the sale.
The system compares the total amount against
the contractor’s current credit limit and, if it is
acceptable, finalizes the sale. The system creates
an electronic ticket for the items, and the con-
tractor’s credit limit is reduced by the amount of
the sale. Some contractors like to keep a record
of their purchases, so they request that ticket
details be printed. Others aren’t interested in a
printout.

A sale to the general public is simply entered
into the cash register, and a paper ticket is
printed as the items are identified. Payment can
be made by cash, check, or credit card. The clerk
must enter the type of payment to ensure that
the cash register balances at the end of the shift.
For credit card payments, the system prints a
credit card voucher that the customer must sign.

 2. Based on the following narrative, develop either
an activity diagram or a fully developed descrip-
tion for the use case of Add a new vehicle to an
existing policy in a car insurance system.

A customer calls a clerk at the insurance
company and gives his policy number. The clerk
enters this information, and the system displays
the basic insurance policy. The clerk then checks

the information to make sure the premiums are
current and the policy is in force.

The customer gives the make, model, year,
and vehicle identification number (VIN) of the
car to be added. The clerk enters this informa-
tion, and the system ensures that the given data
are valid. Next, the customer selects the types
of coverage desired and the amount of each.
The clerk enters the information, and the system
records it and validates the requested amount
against the policy limits. After all the cover-
ages have been entered, the system ensures the
total coverage against all other ranges, including
other cars on the policy. Finally, the customer
must identify all the drivers and the percent-
age of time they drive the car. If a new driver is
to be added, then another use case—Add new
driver—is invoked.

At the end of the process, the system up-
dates the policy, calculates a new premium
amount, and prints the updated policy statement
to be mailed to the policy owner.

 3. Given the following list of classes and associa-
tions for the previous car insurance system, list
the preconditions and postconditions for the use
case Add a new vehicle to an existing policy.

Classes in the system include:

 ■ Policy
 ■ InsuredPerson
 ■ InsuredVehicle
 ■ Coverage
 ■ StandardCoverage (lists standard insurance

coverages with prices by rating category)
 ■ StandardVehicle (lists all types of vehicles

ever made)

Relationships in the system include:

 ■ Policy has InsuredPersons (one-to-many)
 ■ Policy has InsuredVehicles (one-to-many)
 ■ Vehicle has Coverages (one-to-many)
 ■ Coverage is a type of StandardCoverage
 ■ Vehicle is a StandardVehicle

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

151CHAPTER 5 ■ Use Case Modeling

 4. Develop an SSD based on the narrative and your
activity diagram for problem 1.

 5. Develop an SSD based on the narrative or your
activity diagram for problem 2.

 6. Locate a company in your area that develops
software. Consulting companies or companies
with a large staff of information systems pro-
fessionals tend to be more rigorous in their
approach to system development. Set up an

interview. Determine the development approaches
that the company uses. Many companies still
use traditional structured techniques combined
with some object-oriented development. In other
companies, some projects are structured, whereas
other projects are object oriented. Find out what
kinds of modeling the company does for require-
ments specification. Compare your findings with
the techniques taught in this chapter.

TheEyesHaveIt.com Book Exchange
TheEyesHaveIt.com Book Exchange is a type of e-busi-
ness exchange that does business entirely on the Internet.
The company acts as a clearinghouse for buyers and sell-
ers of used books.

To offer books for sale, a person must register with
TheEyesHaveIt.com. The person must provide a current
physical address and telephone number as well as a cur-
rent e-mail address. The system then maintains an open
account for this person. Access to the system as a seller is
through a secure, authenticated portal.

A seller can list books on the system through a special
Internet form. The form asks for all the pertinent informa-
tion about the book: its category, its general condition, and
the asking price. A seller may list as many books as de-
sired. The system maintains an index of all books in the
system so buyers can use the search engine to search for
books. The search engine allows searches by title, author,
category, and keyword.

People who want to buy books come to the site and
search for the books they want. When they decide to buy,
they must open an account with a credit card to pay for the
books. The system maintains all this information on secure
servers.

When a purchase is made, TheEyesHaveIt.com sends
an e-mail notice to the seller of the book that was chosen
as well as payment information. It also marks the book as
sold. The system maintains an open order until it receives

notice that the book has been shipped. After the seller re-
ceives notice that a listed book has been sold, the seller
must notify the buyer via e-mail within 48 hours that the
purchase is noted. Shipment of the order must be made
within 24 hours after the seller sends the notification e-
mail. The seller sends a notification to the buyer and The-
EyesHaveIt.com when the shipment is made.

After receiving the notice of shipment, TheEyesHaveIt.
com maintains the order in a shipped status. At the end of
each month, a check is mailed to each seller for the book
orders that have remained in a shipped status for 30 days.
The 30-day waiting period exists to allow the buyer to no-
tify TheEyesHaveIt.com if the shipment doesn’t arrive for
some reason or if the book isn’t in the same condition as
advertised.

If they want, buyers can enter a service code for the
seller. The service code is an indication of how well the
seller is servicing book purchases. Some sellers are very
active and use TheEyesHaveIt.com as a major outlet for
selling books. Thus, a service code is an important indica-
tor to potential buyers.

For this case, develop these diagrams:

1. A domain model class diagram
2. A list of uses cases and a use case diagram
3. A fully developed description for two use cases:

Add a seller and Record a book order
4. An SSD for each of the two use cases: Add a seller

and Record a book order

CASE STUDY

Community Board of Realtors®

The Multiple Listing Service system has a number of
use cases, which you identified in Chapter 3, and three
key domain classes, which you identified in Chapter 4:
RealEstateOffice, Agent, and Listing.

 1. For the use case Add agent to real estate office,
write a fully developed use case description.
Also develop an activity diagram and draw
an SSD. Review the case materials in previous

RUnning CasE sTudIEs

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

152 PART 2 ■ Systems Analysis Activities

chapters and recall that the system will need to
know which real estate office the agent works
for before prompting for agent information.

 2. For the use case Create new listing, write a fully
developed use case description. Also develop an
activity diagram and draw an SSD. Recall that

the system needs to know which agent made
the listing before the system prompts for listing
information.

 3. Do a CRUD analysis based on the use cases and
classes you have identified. What does it show?

The Spring breaks ‘R’ Us Travel Service
The Spring Breaks ‘R’ Us Travel Service system has
many use cases and domain classes, which you identi-
fied in Chapters 3 and 4.

 1. For the use case Add new resort, write a fully
developed use case description and draw an
SSD. Review the classes that are associated with
a resort in the domain model to understand the
flow of activities and repetition involved.

 2. For the use case Book a reservation, write a fully
developed use case description and draw an SSD.

Review the classes that are associated with a res-
ervation in the domain model to understand the
flow of activities and repetition involved.

 3. Draw an activity diagram to show the flow of
activities for the use case Add a new resort.

 4. Do a CRUD analysis based on the domain
model you build in Chapter 4 and the use cases
you have defined thus far.

On the Spot Courier Services
As On the Spot Courier Services continues to grow,
Bill discovers that he can provide much better services
to his customers if he utilizes some of the technology
that is currently available. For example, it will allow
him to maintain frequent communication with his
delivery trucks, which could save transportation and
labor costs by making the pickup and delivery opera-
tions more efficient. This would allow him to serve his
customers better. Of course, a more sophisticated sys-
tem will be needed, but Bill’s development consultant
has assured him that a straightforward and not-too-
complex solution can be developed.

Here is how Bill wants his business to operate.
Each truck will have a morning and afternoon deliv-
ery and pickup run. Each driver will have a portable
digital device with a touch screen. The driver will be
able to view his or her scheduled pickups and deliver-
ies for that run. (Note: This process will require a new
use case—something the Agile development methodol-
ogy predicted would happen.) However, because the
trucks will maintain frequent contact with the home
office via telephony Internet access, the pickup/deliv-
ery schedule can be updated in real time—even dur-
ing a run. Rather than maintain constant contact, Bill
decides that it will be sufficient if the digital device
synchronizes with the home office whenever a pickup
or delivery is made. At those points in time, the route
schedule can be updated with appropriate information.

Previously, customers were able to either call On
the Spot and request a package pickup or visit the com-
pany’s Web site to schedule a pickup. Once customers

logged in, they could go to a Web page that allowed
them to enter information about each package, includ-
ing “deliver to” addresses, size and weight category
information, and type of service requested. On the
Spot provided “three hour,” “same day,” and “over-
night” services. To facilitate customer self-service, On
the Spot didn’t require exact weights and sizes, but
there were predefined size and weight categories from
which the customer could choose.

Once the customer entered the information for all
the packages, the system would calculate the cost and
then print mailing labels and receipts. Depending on
the type of service requested and the proximity of a
delivery truck, the system would schedule an immedi-
ate pickup or one for later that day. It would display
this information so the customer would immediately
know when to expect the pickup.

Picking up packages was a fairly straightfor-
ward process. But there was some variation in what
would happen depending on what information was
in the system and whether the packages were already
labeled. Upon arriving at the scheduled pickup loca-
tion, the driver would have the system display any
package information available for this customer. If the
system already had information on the packages, the
driver would simply verify that the correct informa-
tion was already in the system for the packages. The
driver could also make such changes as correcting the
address, deleting packages, or adding new packages. If
this were a cash customer, the driver would collect any
money and enter that into the system. Using a portable

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

153CHAPTER 5 ■ Use Case Modeling

printer from the van, the driver could print a receipt
for the customer as necessary. If there were new pack-
ages that weren’t in the system, the driver would enter
the required information and also print mailing labels
with his portable printer.

One other service that customers required was to
be able to track the delivery status of their packages.
The system needed to track the status of a package
from the first time it “knew” about the package until
it was delivered. Such statuses as “ready for pickup,”
“picked up,” “arrived at warehouse,” “out for deliv-
ery,” and “delivered” were important. Usually, a pack-
age would follow through all the statuses, but due to
the sophistication of the scheduling and delivery algo-
rithm, a package would sometimes be picked up and
delivered on the same delivery run. Bill also decided
to add a status of “canceled” for those packages that

were scheduled to be picked up but ended up not
being sent.

 1. Based on this description, develop the following
for the use case Request a package pickup and
for the Web customer scenario:
a. A fully developed use case description
b. An activity diagram
c. An SSD

 Based on the same description, develop the
following for the use case Pickup a package:
a. A fully developed use case description
b. An activity diagram
c. System sequence diagram

 2. Based on the domain model and the list of use
cases you developed in Chapters 3 and 4, do a
CRUD analysis for each of the identified classes.

Sandia Medical Devices Real-Time Glucose Monitoring
Figure 5-15 shows a set of use cases for the patient
and physician actors. Answer the following questions
and/or complete the following exercises:

 1. Which use cases include which other use cases?
Modify the diagram to incorporate included
relationships.

 2. Consider the use cases View/respond to alert and
View history. Both actors share the latter, but
each has a different version of the former. Why
do the actors have different versions of the View/

respond to alert use case? Would the diagram be
incorrect if each actor had his own version of the
View history use case? Why or why not?

 3. Develop an SSD for the View history use case.
Assume that the system will automatically dis-
play the most recent glucose level, which is up-
dated at five-minute intervals by default. Assume
further that the user can ask the system to view
glucose levels during a user-specified time period
and that the levels can be displayed in tabular
form or as a graph.

View/respond to
alert

View history

Annotate history

Send message to
physician

View/hear
message from

physician

View/respond to
alert

Send message to
patient

View/hear
message from

patient

Set alert
conditions

Patient Physician

FIgUrE 5-15 RTGM system use case diagram

©
 C

en
ga

ge
Le

ar
ni

ng
®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

154 PART 2 ■ Systems Analysis Activities

Philippe Kruchten, The Rational Unified Process:
An Introduction (3rd ed.). Addison-Wesley, 2005.

Craig Larman, Applying UML and Patterns:
An Introduction to Object-Oriented Analysis
and Design and the Unified Process (3rd ed.).
Prentice Hall, 2005.

Object Management Group, UML 2.0 Superstruc-
ture Specification. 2004.

Grady Booch, James Rumbaugh, and Ivar
 Jacobson, The Unified Modeling Language
User Guide. Addison-Wesley, 1999.

E. Reed Doke, J. W. Satzinger, and S. R. Williams,
Object-Oriented Application Development Using
Java. Course Technology, 2002.

Hans-Erik Eriksson, Magnus Penker, Brian Lyons,
and David Fado, UML 2 Toolkit. John Wiley &
Sons, 2004.

Martin Fowler, UML Distilled: A Brief Guide to the
Standard Object Modeling Language (3rd ed.).
Addison-Wesley, 2004.

FURTHER ReSOURCeS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Essentials of Systems
Design

Chapter 6
Foundations for Systems Design

Chapter 7
Defining the System Architecture

Chapter 8
Designing the User Interface

Chapter 9
Designing the Database

Part Three

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning Objectives
After reading this chapter, you should be able to:

Describe systems design and contrast it with
systems analysis

List documents and models used as inputs to or
output from systems design

Explain each major design activity

Describe security methods and controls
What Is Systems Design?

Design Activities

System Controls and Security

chaPter OutLine

chaPter SIX

Foundations for
Systems Design

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

158 PART 3 ■ Essentials of Systems Design

Opening caSE Security and controlS at new Mexico HealtH SySteMS

Jim Gutierrez was hired three months ago by New
Mexico Health Systems (NMHS) to oversee all software
development projects. Though Jim lacked prior experi-
ence in health-care services, he’d been hired due to
excellent performance in software development proj-
ects for a variety of firms in various industries. His skills
in designing and deploying complex mobile applications
were especially valuable for several projects in progress
at NMHS, including a reimplementation of the billing and
insurance reimbursement system and an upgrade to the
patient portal that enables patients to view their medical
records and to interact with their primary care providers
via a secure messaging system.

From his first week on the job, Jim was concerned
about security and controls within NMHS’s existing sys-
tems and those under development. Jim gained little
traction with senior management when he raised those
concerns, but they did agree to let him hire an outside
consultant. Consequently, he’d hired Alice Watts, a
security consultant with extensive health-care-related
experience, to complete a thorough analysis of existing
systems and to make recommendations for securing the
systems under development. Alice’s analysis had taken
almost a month to complete. Jim had received some
disturbing preliminary findings as the work progressed,
but he hadn’t yet seen the complete report.

At a meeting that included upper management,
Alice presented her report. She began, “Though I’ll
cover several security-related issues in my presenta-
tion, I want to start by saying that there is far more good
news than bad about the security of your infrastructure
and your existing systems. You have an excellent net-
work administrator. She’s hardened your network and
the systems within it against malicious attacks. Bright
spots include extensive encryption of data at rest and
in transit, robust user authentication and authorization
methods, and a well-implemented system of access
controls for your hardware, operating systems, data-
bases, and applications.”

Alice continued, “Though your infrastructure secu-
rity methods do much to protect your systems from
outside attack, I did find that internal controls within spe-
cific systems are a hit-or-miss proposition. For example,
your system for transcribing recorded notes by physi-
cians and other service providers doesn’t incorporate
the latest dictionary-based technology to detect data-
entry errors. Also, there’s no requirement for review
or approval by a supervisor or the health-care provider.
Because transcription is an error-prone process, you

need additional controls to ensure the integrity of patient
medical records—especially for follow-up orders for lab
tests, prescriptions, and downstream care coordination.”

Rajesh Kumar (the chief financial officer) interrupted,
“We’re planning a pilot for an expensive text-to-speech
system that will eliminate the need for transcription.
We were hoping to avoid spending any more time and
resources on the current system.”

Alice replied, “While I understand the sentiment,
you’re opening yourself to medical errors and lawsuits
in the interim. One transcription-related malpractice suit
could easily cost you far more than technology updates
for the current system.”

Jim added, “I’ve investigated this issue further since
Alice alerted me a couple of weeks ago. I think that we
can make the needed changes in a matter of weeks for
about $20,000.”

Diana Lourdes (the chief medical officer) replied while
glancing at Rajesh, “I think that’s a prudent investment.”

Alice continued, “There are a few other easy-to-
resolve issues with existing systems. But I’d like to
skip over them to what I think are much more impor-
tant topics. My biggest security-related concerns are
with your two systems under development—especially
the patient portal. Both systems open internal data to
outside access. The billing application has some weak-
nesses despite controls implemented within the Web
services interface. But the patient portal is your big-
gest risk because it breaks new ground by enabling
mobile browser-based access from ordinary users with
untrusted devices. Your current design, development,
and deployment methods aren’t up to the task of fully
securing such a system. The risk of malicious attack and
accidental data release through the patient portal is very
high. You can’t fully mitigate that risk with infrastructure-
related security and controls bolted on to the system
after it’s been developed. You have to design the secu-
rity and controls into every part of the software and then
layer additional security on top.”

Rajesh interrupted with considerable concern, “Is
this project in danger? Do we need to start over?”

Alice replied, “I wouldn’t go that far, but some
immediate changes are needed. I’ll provide an executive
summary of my recommendations here. Then, I’ll review
my detailed findings with Jim over lunch and with his
development staff this afternoon. As part of that discus-
sion, we’ll revisit some of the design decisions made
thus far, determine the impact on work already com-
pleted, and reassess the target deployment date.”

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

159CHAPTER 6 ■ Foundations for Systems Design

 ■ Overview
Previous chapters described the activities and decisions associated with dis-
covering and understanding the major elements of the user’s requirements—in
other words, the analysis activities. This chapter focuses on the solution system.
 During analysis, the focus is on understanding what the system should do (i.e.,
the requirements), whereas during design, the focus is on the solution (i.e., speci-
fying how the system will be built and what the structural components of the
new system will be).

New developers often ask, “When are these tasks carried out in a real
project?” Unfortunately, there is no single answer. Many projects begin
with some of the design decisions having already been made, particularly
with regard to the deployment environment, when companies already have a
strong technology infrastructure in place. For other projects, the new system
may be the result of a new thrust for the organization, and thus the decisions
are wide open. However, it is normal for the project team to start thinking
about these issues very early in development and to begin making prelimi-
nary decisions as requirements are being defined. The topics discussed in this
and the following chapters are solution-oriented design topics; however, you
shouldn’t try to come up with a complete solution until you understand the
problem.

This is the first of several chapters that discuss design. This chapter briefly
describes all the design activities and discusses the overarching issues of security
and controls in more detail. Later chapters explore other design activities and
explain in detail the various models and techniques used for systems design.

 ■ What Is Systems Design?
The term design has different meanings depending on the context in which it
is used. For example, when designing a poster or banner, the designer is pri-
marily concerned with the message, text, and images, including their placement
and stylistic elements, such as fonts and colors. The designer may also consider
materials, such as paper for a small poster or tough and resilient plastics for a
large banner stretched across a street. A good poster or banner design captures
the viewer’s attention, clearly communicates the intended message in a way that
leaves a lasting impression, and produces a final product durable enough to last
as long as needed. The entire design can typically be completed by one person in
a matter of hours or days.

In contrast, design of a commercial aircraft is much more complex and
concerned with practical and functional aspects more than with stylistic ones.
Design typically starts with macro-level considerations, such as the aircraft’s
shape, size, and the number and placement of engines. From those decisions,
designers move on to lower-level details and subsystems, such as internal engine
mechanics, control surfaces, the fuel storage/delivery system, hydraulic flight
controls, and myriad electrical subsystems. Designers also focus on minute
details, such as the placement of rivets and welds, the size and shape of seats,
and the placement of cockpit display and control devices. Because aircraft are
so complex, multiple designers work over a period of months or years and coor-
dinate their efforts with extensive drawings, mathematical models, and other
design documents. The drawings and models also provide a way for designers
to communicate with project managers, parts suppliers, designers of production
machinery, and the crews that will eventually build the planes.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

160 PART 3 ■ Essentials of Systems Design

 ■ Analysis, Design, and Implementation
Chapter 1 defined the term systems design as “those system development activi-
ties that enable a person to describe in detail how the resulting information sys-
tem will actually be implemented.” That definition was preceded by a definition
of systems analysis: “those system development activities that enable a person to
understand and specify what the new system should accomplish.” The sequence of
the definitions implies that analysis precedes design. That is, to design anything,
you must first understand and specify what the final product will accomplish.
In the case of a banner or poster, analysis describes the message to be conveyed
and physical aspects, such as physical size and where it will be displayed. In the
case of the commercial aircraft, analysis determines requirements, such as carry-
ing capacity, fuel consumption, range, maximum speed, reliability, maintenance
costs, longevity, and maximum construction cost. Those complex and interde-
pendent requirements drive a complex and interdependent set of design tasks.

The latter part of the systems design definition, “describe…how the result-
ing information system will actually be implemented,” implies a direct and
sequential link between design and implementation. That is, designers provide
the plans that others follow to build the final product or system. In the case of
a banner or poster, the designer provides a full-size or reduced-scale drawing
and a set of construction specifications, such as size, material, thickness, and
placement of mounting grommets. The entire design is described in a few pages.
In contrast, the commercial aircraft design is described in thousands of docu-
ments and drawings that include detailed specifications for every part. In both
cases, design results are recorded in documents and models that provide suffi-
cient information to build the final product.

Figure 6-1 summarizes aspects of design that you can glean from the poster/
banner and aircraft examples and apply to information systems design:

 ■ Analysis provides the starting point for design.
 ■ Design provides the starting point for implementation.
 ■ Analysis and design document their results to coordinate the work of mul-

tiple people and to communicate with downstream activities.

 ■ Design Models
During the analysis activities described in previous chapters, we created docu-
ments and models. For object-oriented analysis, we create models such as class
diagrams, use case diagrams, use case descriptions, activity diagrams, sys-
tem sequence diagrams, and state machine diagrams. The Online Chapter B,
“The Traditional Approach to Requirements,” presents the traditional analysis
models, such as the event table, data flow diagrams, and entity-relationship dia-
grams. Regardless of the approach, design activities begin with documents and
models created during earlier analysis activities. In other words, analysis out-
puts are design inputs.

In iterative projects, analysis and design activities are often done concur-
rently. However, the first focus of any iteration has to be identifying and specify-
ing the requirements for some part of the system (i.e., analysis); determining the
solutions (i.e., design) comes later.

During analysis, analysts build models to represent the real world and to
understand business processes and the information used in those processes.
Basically, analysis involves decomposition—breaking a complex problem with
complicated information requirements into smaller, more understandable pieces.
Analysts then organize, structure, and document the problem domain knowl-
edge by building requirements models. Analysis and modeling require substan-
tial user involvement to explain the requirements and to verify that the models
are accurate.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

161CHAPTER 6 ■ Foundations for Systems Design

Design is also a model-building activity. Designers convert the information
gathered during analysis—the requirements models—into models that represent
the solution system. Design is much more oriented toward technical issues, and
therefore requires less user involvement and more involvement by other systems
professionals. The output of design activities is a set of diagrams and documents
that models various aspects of the solution system.

The formality of a project also affects design. Formal projects usually
require well-developed design documents typically reviewed in formal meet-
ings. Developers on informal projects often create their designs with notepads
and pencils and then throw away the design once the program is coded. This
kind of informal design (used in many Agile projects) is merely a means to an
end, which is the actual program code. However, even in Agile development,
the design activities described in this chapter are still completed. A developer
who jumps into writing software without carefully thinking it through—often
referred to as cowboy coding—ends up with errors, patches, and systems that
are unreliable and difficult to update.

Figure 6-2 identifies the major models used for analysis and design. They’re
intended for object-oriented development, although they also share many charac-
teristics with traditional development models, as explained in Online Chapter B.
Notice that some model types are outputs of both analysis and design. For
example, class and state machine diagrams appear on both sides of Figure 6-2.
For class diagrams, some content, such as classes, attributes, and relationships,

Implementation objective

Build a new system
that fulfills user needs

Analysis models
and documents

Design models
and documents

Analysis objective

Understand and
specify what the new
system will accomplish

Design objective

Describe in detail
how the new system
will be implemented

FIGURe 6-1 Models and documents link analysis, design, and implementation

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

162 PART 3 ■ Essentials of Systems Design

is defined during analysis. Additional content, such as attribute data types, keys,
indexes, and the class methods or functions, is added during design.

You should already be familiar with the analysis models shown on the left
side of Figure 6-2. In the following chapters, you will learn how to create the
design models shown on the right side of the figure.

Customer

name

changeName()

Order

orderID

shipOrder()

Design models

Design class diagrams

:Controller :Customer

Interaction diagrams (sequence
diagrams)

Requirements models

Customer Order

Domain model class diagram

Package diagrams

Design state machine diagrams

Ready Shipped

Clerk

Create
new order

Use case diagrams

Clerk

View layer Data layer

Client
computer

Network
computer

Deployment diagrams

Application
server

Internet
server

Component diagrams

:System

System sequence diagrams

Clerk

System

Enter
data

Activity diagrams and use
case description

Display
order

Clerk

Requirements state machine
diagrams

Ready Shipped

FIGURe 6-2 Analysis and design models

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

163CHAPTER 6 ■ Foundations for Systems Design

 ■ Design Activities
Figure 6-3 identifies the activities of systems design. This section provides a
short introduction to each of these design activities. In-depth explanation and
instruction on the specific concepts and skills for each design activity are given
later in the text.

Systems design involves specifying in detail how a system will work when
deployed within a specific technology environment. Some of the details may
have been defined during systems analysis, but much more detail is added dur-
ing design. In addition, each part of the final solution is heavily influenced by
the design of all the other parts. Thus, systems design activities are usually done
in parallel. For example, the database design influences the design of application
components, software classes and methods, and the user interface. Likewise, the
technology environment drives many of the decisions for how system functions
are distributed across application components and how those components com-
municate across a network. When an iterative approach to the SDLC is used,
major design decisions are made in the first or second iteration; however, many
decisions are revisited and refined during later iterations.

To better understand these design activities, you can summarize each one
with a question. In fact, system developers often ask themselves these questions
to help them stay focused on the objective of each design activity. Figure 6-4
presents these questions:

Design activities

Describe the environment.
Design the application components.
Design user interface.
Design the database.
Design the software classes and methods.

Core
processes

1 2 3 4 5 6
Identify the problem and obtain
approval.

Plan and monitor the project.

Discover and understand details.

Design system components.

Build, test, and integrate system
components.

Complete system tests and deploy
the solution.

IterationsFIGURe 6-3 Design activities

Design activity

Describe the environment

Design the application
components

Design the user interface

Key question

How will this system interact with other systems and with
the organization’s existing technologies?

What are the key parts of the information system and how
will they interact when the system is deployed?

Design the database How will data be captured, structured, and stored for later
use by the information system?

Design the software classes
and methods

What internal structure for each application component will
ensure efficient construction, rapid deployment, and reliable
operation?

How will users interact with the information system?

FIGURe 6-4 Design activities and
key questions

©
 C

en
ga

ge
 L

ea
rn

in
g®

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

164 PART 3 ■ Essentials of Systems Design

The following sections briefly discuss these design activities to better under-
stand what is involved. In later chapters, you will develop the skills necessary for
each of these activities.

 ■ Describe the Environment
For purposes of information systems design, the environment consists of two
key elements:

 ■ External systems
 ■ Technology architecture

Interactions among external systems will usually have been identified and
described by analysis activities. During analysis, those descriptions show how
information flows to and from external systems. To design application compo-
nents and their embedded software classes and methods, additional information
about incoming and outgoing messages is needed, including:

 ■ Precise message formats
 ■ Web or network addresses of sources and destinations
 ■ Communication protocols
 ■ Security methods
 ■ Error detection and recovery

The other key element, technology architecture, was defined in Chapter 2 as
the set of computing hardware, network hardware and topology, and system soft-
ware employed by an organization. For example, components of RMO’s Consoli-
dated Sales and Marketing System (CSMS) will be deployed on a set of computer
servers, desktop computers, and mobile computing devices. Those devices will
communicate across one or more networks employing multiple topologies and
protocols. Each computing device will have an operating system (OS), communi-
cation capabilities, diverse input and output capabilities, and so forth. Additional
system software, such as database management systems (DBMSs), Web server
software, and firewalls will operate on some of the computer systems. The entire
collection of hardware, system software, networks, and the yet-to-be-designed
application components will form an integrated and comprehensive solution.
Because the CSMS application software must interact with all of these elements
once deployed, defining this environment in detail precedes other design activities.

Take a closer look at Figure 6-3, and note that all of the design activity
names except the first begin with the word design. In contrast, the environment
is described rather than designed. Why is this first activity different? The answer
lies in the relative amount of control a designer has over the environment ver-
sus the other parts of the system. In general, the designer of a single system has
little or no control over the environment. For example, with the RMO CSMS,
the DBMS, user identity management system, and external systems (e.g., a UPS
shipping system) are beyond the control of the designer. System components
must be adapted to existing environmental elements, not the other way around.

Furthermore, although an organization does have control over its technol-
ogy architecture, that control seldom extends to the designer of a single system.
The technology architecture supports all of an organization’s systems, so each
of their designs is adapted to that architecture. Thus, from the point of view of
a new system designer, the technology architecture is fixed, and the new system
must be designed to efficiently interact with it. In some cases, a new system will
require changes to existing technology architecture. In those cases, any changes
to the technology architecture are considered and decided upon by the orga-
nization as a whole. Once those decisions are made, updating the architecture
becomes the first step in designing the new system. Chapter 7 covers details of
technology architecture and description of the technology environment.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

165CHAPTER 6 ■ Foundations for Systems Design

 ■ Design the Application Components
An application component is a well-defined unit of software that performs
one or more specific tasks. Though that definition sounds simple, it hides com-
plex details, including the following:

 ■ Size/scope. A component could be small in size, like one method in a class
or one script embedded within a Web page. Components can also be very
large, like the order acceptance subsystem of an online store, a program
containing thousands of lines of source code, or an entire Web site. Of
course, application component size can also be between those extremes.

 ■ Programming languages. Programs, functions, subroutines, and procedures
are application components defined by traditional programming languages,
such as C or FORTRAN. Object-oriented programming languages, such
as Java and C#, use classes and methods as application components. Com-
ponents written in scripting languages, such as JavaScript and PHP, are
embedded within other application components such as Web pages. In
short, the names, sizes, and relationships among application components
vary widely from one programming language and toolkit to another.

 ■ Build or buy? Some parts of an information system are written by an orga-
nization’s information technology (IT) development staff. Others can be
reused from other information systems owned by the organization, pur-
chased separately, or acquired as part of a developer’s toolkit. Other com-
ponents might be deployed by an outside organization and made available
via a Web services interface (e.g., Google Maps or a Federal Express pack-
age tracking service).

Key decisions made when designing application components include how
functions of the system will be grouped or packaged, and how they’ll interact with
one another once built (or acquired) and assembled. One of the first steps in this
design activity is separating the software into subsystems. Decisions are also made
about the database infrastructure and about the multilayer design in which the
user interface is separated from the business logic and database processing. The
technology architecture will impact many of these design decisions. For example,
an organization that employs Microsoft SQL Server and .NET will divide the
application into components that are easily developed and deployed within that
environment. A different organization that employs ORACLE DBMSs and related
technology architecture will define subsystems that match that environment, usu-
ally with significant differences from a .NET design and deployment.

Application component design precedes the later design of software classes.
In essence, application component design divides the functions of the system
into smaller packages, each of which must be further specified in terms of soft-
ware classes and methods. The result of application component design is a set of
models (diagrams), often supplemented with other documents that provide addi-
tional detail. Examples of models produced by this design activity are shown in
Figure 6-5. Chapters 7 and 13 cover the concepts and techniques that underlie
these models.

 ■ Design the User Interface
To the user of a system, the user interface is the system. The quality of the user
interface can make or break a system after deployment. Poor-quality interfaces
deployed to customers and other external users often determine the failure of an
entire business; high-quality user interfaces can be a competitive advantage. The
reaction of employees to a new system interface can also determine system and
business success. High-quality interfaces improve employee productivity and
morale; poor-quality interfaces lead to errors and inefficiency.

application component a well-defined
unit of software that performs one or more
specific tasks

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

166 PART 3 ■ Essentials of Systems Design

Ever-improving technology expands and changes user-interface require-
ments. A decade ago, user-interface design was concerned primarily with sim-
plifying the presentation of information on desktop computer monitors and
minimizing task-related keystrokes and mouse clicks. In the modern world,
designers must deal with multiple screens ranging from phones to large multi-
monitor displays. Multitouch screens, voice recognition, and built-in cameras
that follow a user’s eye movements create new options and provide greater chal-
lenges for user-interface designers. Users might interact with a system using one
technology at their desk, another in a conference room, and yet another while
traveling. Designing a single user interface is now the exception, not the norm.
Thus, the term user interface should generally be considered plural rather than
singular.

Designing user interfaces can be thought of as both an analysis and design
activity. Analysis-related aspects include understanding the user’s needs; how
the user carries out his or her job; and the locations, devices, and physical con-
texts of user-system interactions. Design-related aspects include the distribution
and packaging of related software and determining which device capabilities
and embedded software will be incorporated into an interface.

Many types of models and tools are used to create a user-interface design,
including mock-ups, storyboards, graphical layouts, and prototyping with
screen-modeling tools (see Figure 6-6). System sequence diagrams developed
during analysis are often reused and expanded during design to document user

FIGURe 6-5 Models produced during the activity: Design the application components

Database server

View layer

Application serverDomain layer

Data layer

Browser
(with cookies)

«frameset»
Page

JavaScript
VBScript
Applet

ActiveXControl

Internet
Server

request/
input data

«input data»
Form

«displays»

Common
Gateway

Interface (CGI)

Application
Server

(session mgr)

«frameset»
ResponsePage

PHP
ASP
JSP

Servlets
ColdFusion

User Interface Layer Domain Layer
(Business Logic)

reply

Internet

Deployment diagram

Component diagram

SearchItemWindow

AddItemWindow

AddAccessWindow

CustLoginWindow

View Layer

Domain Layer

CartHandler

OnlineCart

Package diagram

CartItem

PromoOffering

CustomerDA

OnlineCartDA

CartItemDA

PromoOfferingDA

ProductItemDA

InventoryItemDA

CustomerHandler

Customer

Address

InventoryItem

Account

ProductItem

ViewAccessWindow

DisplayItem+AccessWindow

DisiplayItemWindow

Data Access Layer

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

167CHAPTER 6 ■ Foundations for Systems Design

interaction with the system and its interface in detail. Chapter 8 describes many
of the tools and techniques used to effectively build the user-interface design.

 ■ Design the Database
An integral part of every computer information system is the information itself,
with its underlying database. The data model (the domain model class diagram)
is created early during systems analysis and is then used to create the imple-
mentation model of the database. Usually, the first decision is to determine the
database structure. Sometimes, the database is a collection of traditional com-
puter files. More often, it is a relational database consisting of dozens or even
hundreds of tables that interact with each other. Sometimes, files and relational
databases are used in the same system. Another decision that needs to be made
is whether the database should be centralized or distributed. The internal prop-
erties of the database must also be designed, including such things as attribute
types, default values, and access controls. Figure 6-7 is an example of an RMO
database table definition for inventory items in MYSQL.

Manager

updateEmployee (empID, empInformation)

:System

*updateTaxRate (taxTableID, rateID, rateInformation)

Employee

TaxBureauSystem

*inputTimeCard (empID, date, hours)

*signOut (time)

*signIn (time)

TimeCardSystem

Storyboard Small screen menu prototype

System sequence diagram

FIGURe 6-6 Models produced during the activity: Design the user interface

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

168 PART 3 ■ Essentials of Systems Design

Analysts must consider many important technical issues when designing the
database. Many of the technical (as opposed to functional) requirements defined
during systems analysis concern database performance needs (such as response
times). Much of the design work might involve performance tuning to make sure
the system actually responds quickly enough. Security and encryption issues,
which are important aspects of information integrity, must be addressed and
designed into the solution. Given today’s widespread connectivity, a database
may need to be replicated or partitioned at various locations around the world.
It is also not uncommon to have multiple databases with distinct DBMSs. These
databases may be distributed across multiple database servers and may even be
located at completely different sites. These highly technical issues often require
specialized skills from experts in database design, security, performance, and
physical configuration. A final key aspect of database design is making sure
the new databases are properly integrated with existing databases. Chapter 9
describes database design in detail.

 ■ Design the Software Classes and Methods
During this design activity, analysis models, including class diagrams, system
sequence diagrams, and state-machine diagrams, are extended to incorporate
software-specific elements. Designers also create additional models such as
sequence diagrams. These models are blueprints for software methods that will
be programmed, tested, and eventually deployed. The purpose of this activity is
to describe in enough detail how the software programs work, so that program-
mers can write the code for the functions and methods. Figure 6-8 shows one of
the most important models generated during this activity: a sample design class
diagram for RMO’s CSMS system. Chapters 12, 13, and 14 explain the details
of designing software classes and methods, testing them, and packaging them
for deployment.

 ■ System Controls and Security
Modern systems are subject to a variety of risks, ranging from malfunction due
to incorrect data input, inadvertently revealing confidential information, and
malicious destruction by outside parties. The terms control and security are
blanket terms for the wide variety of ways that system designers and operators
mitigate such risks. Some controls and security methods are embedded within
the technology architecture. For example, most organizations have a unified
method for identifying authorized users and providing them (and only them)
with access to the data and applications they need to do their jobs, using identity

FIGURe 6-7 Sample database table definition in MYSQL

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

169CHAPTER 6 ■ Foundations for Systems Design

management and access controls. These controls are services shared across an
entire organization’s portfolio of applications.

Other controls and security are system-specific, and must be specifically
designed by that system’s developers. For example, a payroll-processing sys-
tem typically includes significant controls to ensure that only valid employees
or supervisors submit payroll information, that correct computations are per-
formed on valid data inputs, and to define which data and processing results can
be accessed by which users. Additional controls are part of the system’s data-
base and are designed into its software methods. System-specific controls often
interact with organization-wide controls and security measures. For example,
an application that enables employees to view and modify their own personal
payroll information generally relies on organization-wide identity management
methods, such as usernames and passwords.

The importance of controls and security to modern systems might lead
you to believe that their design should be a security-specific design activity and
should be listed in Figure 6-3. Doing so would be consistent with security’s
importance, but it would also obscure the fact that security and controls aren’t
separate and distinct from other design activities. Rather, they are issues that
need to be embedded within all of the other design activities. That is, controls
and security are important parts of other design activities, such as designing a
user interface, a database, or application components. Because they are embed-
ded in all other design activities, this chapter discusses key aspects so the con-
cepts can be reused in the later design chapters.

+processNewSale ()
+makePayment ()

<<controller>>
SaleHandler

-accountNo:string {key}
-name:string
-billingAddress:string
-shippingAddress:string
-dayPhone:string
-nightPhone:string
-emailAddress:string
-status:string

Customer

+updateName ()
+updateAddress ()
+requestHistory ()

-saleID:int {key}
-saleDateTime:date
-priorityCode:string
-S&H:currency
-tax:currency
-totalAmt:currency

Sale

+addItem ()
+updateInformation ()
+requestShipment ()
+updateStatus ()
+recievePayment ()

-saleItemId:int {key}
-productItem:string
-quantity:int
-soldPrice:currency
-shipStatus:string
-backOrderStatus:string

SaleItem

+updateinformation ()
+cancelItem ()
+requestBackorder ()

-productItem:string
-inventoryItem:int
-size:string
-color:string
-options:string
-quantityOnHand:int
-averageCost:currency
-reorderQuantity:int
-dateLastOrder:date
-dateLastShipment:date

InventoryItem

+updateQOH ()
+updateInformation ()

FIGURe 6-8 Partial design class
diagram for RMO’s CSMS

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

170 PART 3 ■ Essentials of Systems Design

 ■ Designing Integrity Controls
Controls are mechanisms and procedures that are built in to a system to safe-
guard the system and the information within it. Here are a few scenarios that
illustrate the need for controls:

 ■ A furniture store sells merchandise on credit with internal financing.
 Salespeople sometimes sell furniture on credit to friends and relatives.
How do we ensure that only authorized employees can extend credit and
record payments and adjustments to credit accounts?

 ■ A bookkeeper uses accounting software to generate electronic payments to
suppliers. How does the system ensure that the payment is for goods or ser-
vices that were actually received? How does the system ensure that no one
can generate payments to a bogus supplier?

 ■ An online retailer collects and stores credit card and other information
about customers. How does the company ensure that customer data is
 protected and secure?

As shown in Figure 6-9, controls are incorporated into various parts of the
system. Some of the controls—called integrity controls—must be integrated
into both the application programs that are being developed and the database
that supports them. Other controls—usually called security controls—are part
of the operating system and the network. Integrity controls ensure correct system
function by rejecting invalid data inputs, preventing unauthorized data outputs,
and protecting data and programs against accidental or malicious tampering.
Security controls tend to be less application-specific. The distinction between

integrity controls controls that reject
invalid data inputs, prevent unauthorized
data outputs, and protect data and programs
against accidental or malicious tampering

FIGURe 6-9 Security and integrity control locations

Firewall

Internet Internal network

Network access
controls

Input, processing, and
OS controls

Output
controls

Input, processing, and
OS controls

Processing
controls Encryption OS

controls
Processing

controls
OS

controls
Database
controls

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

171CHAPTER 6 ■ Foundations for Systems Design

the two isn’t precise because there is some overlap and because designers typi-
cally use both types. This section explains integrity controls. Later sections dis-
cuss security controls.

The primary objectives of integrity controls are as follows:

 ■ To ensure that only appropriate and correct business transactions occur
 ■ To ensure that the transactions are recorded and processed correctly
 ■ To protect and safeguard the assets of the organization (including hard-

ware, software, and information)

As described in the following subsections, organizations incorporate many
types of controls into their systems and databases to achieve these objectives.
Each control type addresses such specific issues as accuracy of inputs and limit-
ing access to authorized users. No control type is sufficient by itself to achieve
all the objectives; thus, a layered and multifaceted system of controls is required.

 ❚ Input Controls
Input controls prevent invalid or erroneous data from entering the system.
Input controls can be applied to data entered by people or data transmitted from
internal or external systems. Input controls can be implemented within appli-
cation programs, the database schema, or both. Commonly used input control
types include:

 ■ Value limit controls check numeric data inputs to ensure that the amount
entered is reasonable. For example, the amount of a sale or the amount
of a commission usually falls within a certain range of values. A control
might reject negative values or those that exceed a certain threshold, such
as $10,000.

 ■ Completeness controls ensure that all required data values describing an
object or transaction are present. For example, when a shipping address is
entered, the system might check whether enough information has been pro-
vided for successful delivery.

 ■ Data validation controls ensure that numeric fields containing codes or
identifiers are correct. For example, a program for entering letter grades
for a course might check that entered values match a set of predefined valid
grades (such as A, B, C, D, and F) and reject any other entries.

 ■ Field combination controls review various combinations of data inputs
to ensure that the correct data are entered. For example, on an insurance
policy, the application date must be prior to or the same as the effective
date of policy coverage.

 ❚ Output Controls
Systems outputs come in various forms, including data output that is used by
other systems, printed reports, and data displayed on traditional or mobile com-
puter displays. Output controls ensure that output arrives at the proper des-
tination and is accurate, current, and complete. It is especially important that
outputs with sensitive information arrive at the proper destination and that they
cannot be accessed by unauthorized persons. Common types of output controls
include:

 ■ Physical access controls to printers. Printers and printed outputs should be
located in secure areas accessible only by authorized personnel.

 ■ Discarded output control. Although often ignored during systems design,
physical control of discarded printed outputs containing sensitive data is
a must because dumpster diving is an effective way to access data without
authorization. Sensitive printed documents should be segregated from other
trash and shredded or burned.

input controls controls that prevent invalid
or erroneous data from entering the system

value limit controls controls that check
numeric data input to ensure that the value is
reasonable

completeness controls controls that
ensure that all required data values describing
an object or transaction are present

data validation controls controls that
ensure that numeric fields that contain codes
or identifiers are correct

field combination controls controls that
review combinations of data inputs to ensure
that the correct data are entered

output controls controls that ensure that
output arrives at the proper destination and is
accurate, current, and complete

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

172 PART 3 ■ Essentials of Systems Design

 ■ Access controls to programs that display or print. Program access con-
trols restrict which users can access specific programs and program func-
tions, usually via such a mechanism as a username and password. In some
instances, a system designer might restrict program or function access by
access device. This extra safeguard is used primarily for military or other
systems that house workstations in secure areas and provide access to the
system’s information to anyone who has access to the area.

 ■ Formatting and labeling of printed outputs. System developers ensure com-
pleteness and accuracy by printing control data on the output report. For
example, every report should have a date and time stamp—for the time the
report was printed and for the date(s) of the underlying data. To ensure that
a document is complete, designers typically incorporate such formatting
features as pagination in the “page of ” format, control totals, and
an “end of report” trailer.

 ■ Labeling of electronic outputs. Electronic outputs typically include internal
labels or tags that identify their source, content, and relevant dates. They
may also include control totals or checksums that enable the recipient to
determine whether content has been lost or altered.

 ❚ Redundancy, Backup, and Recovery
Redundancy, backup, and recovery procedures are designed to protect
 software and data from hardware failure and from such catastrophes as fire,
flood, and malicious destruction. Most operating systems and DBMSs incor-
porate support for all three. Many organizations that need continuous access
to their data and systems employ redundant servers, databases, and sites.
Each server or site hosts copies of application software, files, databases, and
other important resources. Updates made to one server or site are immedi-
ately or frequently synchronized with the other copies to ensure consistency.
If one site or server fails, the others are still accessible, and the organization
continues to function.

Backup procedures make partial or full copies of a file system (data and
software) or a database to removable storage media, such as magnetic tape, or
to data storage devices or servers at another site. Unlike redundant sites or serv-
ers, backup copies stored off-site can’t be accessed directly by application soft-
ware or users. Instead, recovery procedures read the off-site copies and replicate
their contents to a server that can then provide access to programs and users.
Backup and recovery operations can take from minutes to hours. Backups are
typically scheduled during periods of low utilization. Recovery is performed
when needed, and the database is unavailable until the recovery procedures are
completed.

 ❚ Fraud Prevention
System designers and administrators are rightly concerned with security breaches
arising from outside the organization. But they often pay inadequate attention
to an equally serious problem: the use of the system by authorized users to com-
mit fraud. Obviously, integrity and security controls won’t completely eliminate
fraud; however, system developers should be aware of the fundamental elements
that make fraud possible and incorporate controls to combat it.

In the 1950s, fraud researchers developed a widely used model called the
fraud triangle (see Figure 6-10). Much as a fire needs fuel, heat, and oxygen to
burn, committing fraud requires three elements:

 ■ Opportunity. The ability of a person to take actions that perpetrate a
fraud. For example, unrestricted access to all functions of an accounts
payable system enables an employee to generate false vendor payments.

fraud triangle a model of fraud that states
that opportunity, motivation, and rationaliza-
tion must all exist for a fraud to occur

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

173CHAPTER 6 ■ Foundations for Systems Design

 ■ Motivation. A desire or need for the results of the fraud. Money is the usual
motivation, although a desire for status or power, or even the need to be a
“team player” may be contributing factors.

 ■ Rationalization. An excuse for committing the fraud or an intention to
“undo” the fraud in the future. For example, an employee might falsify
financial reports to stave off bankruptcy, thus enabling fellow workers to
keep their jobs. Or an employee might steal money to pay a gambling debt
or medical bills, with the intention of repaying the money later.

System designers have little or no control over motive and rationalization,
but they can minimize or eliminate opportunity by designing and implementing
effective controls. Figure 6-11 contains several of the more important factors
that increase the risk of fraud. This list isn’t comprehensive, but it does provide
a foundation developers can use to design a computer system that reduces the
opportunity for fraud. As a system developer, you should include discussions
with your users and project teams to ensure that adequate controls have been
included to reduce fraud.

 ■ Designing Security Controls
Although the objective of security controls is to protect the assets of an orga-
nization from all threats, the primary focus is on external threats. In addition

Rationalization

O
pp

or
tu

ni
ty M

otive

FIGURe 6-10 The fraud triangle

Risk-reduction techniques

Design systems so those with asset custody have limited
access to related records. Also, ensure that no one has
sufficient system access to commit and cover up a fraud.

Incorporate regular and systematic procedures to review
records and logs for unusual transactions, accesses,
and other patterns.

Limit physical access to valuable assets, such as
inventory, and periodically reconcile physical asset
counts with related records.

Design security features into individual systems and
supporting infrastructure. Review and test security
features frequently. Use outside consultants to conduct
penetration testing attack and fraud vectors from
external and internal sources.

Factors affecting fraud risk

Separation of duties

Monitoring

Record all transactions and changes in asset status. Log
all changes to records and databases, and restrict log
access to a few trusted persons.

Records and audit trails

Asset control and
reconciliation

Security

FIGURe 6-11 Fraud risks and
prevention techniques

security controls controls that protect
the assets of an organization from all threats,
with a primary focus on external threats

©
 C

en
ga

ge
 L

ea
rn

in
g®

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

174 PART 3 ■ Essentials of Systems Design

to the objectives enumerated earlier for integrity controls, security controls have
two further objectives:

 ■ Maintain a stable, functioning operating environment for users and appli-
cation systems (usually 24 hours a day, 7 days a week).

 ■ Protect information and transactions during transmission across insecure
environments such as public wireless networks and the Internet.

The first objective—to maintain a stable operating environment—focuses
on security measures to protect the organization’s systems from external attacks
from hackers, viruses, and worms, as well as denial-of-service attacks. The most
common security control against such risks is a firewall installed between inter-
nal systems and the Internet (see Figure 6-9).

The second objective—to protect transactions during transmission—focuses
on the information that is sent or received via the Internet. Once a transaction
is sent outside the organization, it could be intercepted, destroyed, or modified.
Thus, designers define security controls that protect data in transit from the
source to the destination.

The most common security control points are network and computer operat-
ing systems because they exercise direct control over such assets as files, applica-
tion programs, and disk drives. All modern operating systems contain extensive
security features that can identify users, restrict access to files and programs,
and secure data transmission among distributed software components. Because
operating system security is the foundation of security for most information sys-
tems, a key task in defining security controls is determining which operating
system security features will be enabled and how they will be configured.

 ❚ Access Controls
An access control limits a user’s ability to access resources, such as servers,
files, Web pages, application programs, and database tables. Operating systems,
networking software, and DBMSs all provide access control systems, and all of
these can be configured to share a common access control system. Access con-
trol systems rely on these common elements:

 ■ Authentication is the process of identifying users who request access to
sensitive resources. Users can be authenticated through methods (or factors)
such as usernames and passwords, smart cards, challenge questions and
responses, or biometric methods, including fingerprint and retinal scans, or
voice recognition. Multifactor authentication uses multiple methods for
increased reliability.

 ■ An access control list is a list attached or linked to a specific resource
that describes users or user groups and the nature of permitted access (e.g.,
read data, update data, or execute program). Users who don’t appear in the
access control list can’t use the associated resource.

 ■ Authorization is the process of allowing or restricting a specific authenti-
cated user’s access to a specific resource based on an access control list.

To build an effective access control system, a designer must categorize system
users and determine what type(s) of access each resource requires. Figure 6-12
illustrates three user categories or types and the role of the access control system
in allowing or restricting their access:

 ■ Unauthorized users are people who aren’t allowed access to any part or
function of the system. Such users include employees who are prohibited
from accessing all of the system, former employees who are no longer per-
mitted to access the system, and outsiders, such as hackers and intruders.

 ■ Registered users are those who are authorized to access the system.
Normally, types of registered users are defined depending on what they are
authorized to view and update. For example, some users may be allowed

access control a control that limits a
user’s ability to access resources, such as
servers, files, Web pages, application pro-
grams, and database tables

authentication the process of identify-
ing users who request access to sensitive
resources

multifactor authentication the process
of using multiple authentication methods for
increased reliability

access control list a list attached or
linked to a specific resource that describes
users or user groups and the nature of permit-
ted access

unauthorized users people who aren’t
allowed access to any part or function of the
system

authorization the process of allowing or
restricting a specific authenticated user’s
access to a specific resource based on an
access control list

registered users people who are autho-
rized to access the system

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

175CHAPTER 6 ■ Foundations for Systems Design

to view data, but not update them, and other users can update only certain
data fields. Some screens and functions of the new system may be hidden
from other levels of registered users.

 ■ Privileged users are people who have access to the source code, execut-
able program, and database structure of the system, including system pro-
grammers, application programmers, operators, and system administrators.
These people may have differing levels of security access.

 ❚ Data Encryption
No access control system is perfect, so designers must anticipate access control
breaches and provide other measures to protect the confidentiality of data. Protec-
tive measures must also be applied to data that is stored or transmitted outside the
organization’s own network, such as transaction data sent by remote suppliers or
customers, and interactions between internal applications and cloud service pro-
viders. Common types of information that require additional protection include:

 ■ Financial information
 ■ Personal information, such as credit card numbers, bank account numbers,

payroll information, or health-care information

privileged users people who have access
to the source code, executable program, and
database structure of the system

FIGURe 6-12 Users and their access to computer systems

Internet

Plotter

Hackers Former employees

Suppliers
Internet

customers

System
developers

System
administrators

Managers

Registered
users

Registered
users

Unauthorized users

Privileged users

Employees

Data

Access control system

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

176 PART 3 ■ Essentials of Systems Design

 ■ Strategies and plans for products and other mission-critical data
 ■ Government and sensitive military information
 ■ Data stored on such portable devices as laptop computers and cell phones

Encryption is the primary method of securing data within internal sys-
tems and during transmission. Encryption is the process of altering data so
unauthorized users can’t view them. Decryption is the process of converting
encrypted data back to their original state. Data stored in files, or databases on
hard drives or other storage devices, can be encrypted to protect against theft.
Data sent across a network can be encrypted to prevent eavesdropping or theft
during transmission: A thief or eavesdropper who steals or intercepts encrypted
data receives a meaningless group of bits that are difficult or impossible to con-
vert back into the original data.

An encryption algorithm is a complex mathematical transformation that
encrypts or decrypts binary data. An encryption key is a binary input to the
encryption algorithm—typically a long string of bits. The encryption algorithm
varies the data transformation based on the encryption key, so data can be
decrypted only with the same key or a compatible decryption key. Many encryp-
tion algorithms are available, and a few—including Data Encryption Standard
(DES) and several algorithms developed by RSA Security—are widely deployed
governmental or Internet standards. An encryption algorithm must generate
encrypted data that are difficult or impossible to decrypt without the encryp-
tion key. Decryption without the key becomes more difficult as key length is
increased, and sender and receiver must use the same or compatible algorithms.

Figure 6-13 shows an example of symmetric key encryption, in which
the same key encrypts and decrypts the data. A significant problem with sym-
metric key encryption is that sender and receiver use the same key, which must
be created and shared securely. Security is compromised if the key is transmit-
ted over the same channel as messages encrypted with the key. Further, sharing
a key among many users increases the possibility of key theft. Because of these
risks, symmetric key encryption is frequently used with data stored in files and
databases, but is used only in conjunction with asymmetric encryption to trans-
mit data over a network.

Data stored by file and database servers can be encrypted with symmetric
key encryption to protect against unauthorized access that bypasses the OS or
DBMS to directly access the physical data store. Typically, the encryption key is
stored on a different server that is queried via secure login when the server first
boots up. Data stored on laptops and other portable devices are often encrypted
to protect against unauthorized access due to loss, theft, or disposal.

encryption the process of altering data so
unauthorized users can’t view them

decryption the process of converting
encrypted data back to their original state

encryption algorithm a complex math-
ematical transformation that encrypts or
decrypts binary data

encryption key a binary input to the
encryption algorithm—typically a long string
of bits

symmetric key encryption an encryption
method that uses the same key to encrypt and
decrypt the data

FIGURe 6-13 Symmetric key encryption

Secret key Secret key

Person 1 Person 2

Same key

InternetMessage:
How are you?

Message:
How are you?

Message:
wp93nznieh?

Message:
wp93nznieh?

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

177CHAPTER 6 ■ Foundations for Systems Design

An additional security measure for portable devices is a technique com-
monly called remote wipe, which automatically deletes sensitive data from
portable devices under certain conditions, such as repeated failure to enter a
valid username and password, or an attempt to access a database or file from an
unauthorized application. Remote wipe is commonly used with apps on porta-
ble devices that sync sensitive data from a server. An unauthorized synchroniza-
tion attempt triggers the remote wipe via a command from the app or the server.

Asymmetric key encryption uses different, but compatible keys to encrypt
and decrypt data. Public key encryption is a form of asymmetric key encryp-
tion that uses a public key for encryption and a private key for decryption. The
two keys are like a matched pair. Once information is encrypted with the public
key, it can be decrypted only with the private key. It can’t be decrypted with the
same public key that encrypted it. Organizations that use this technique broad-
cast their public key so it is freely available to anybody who wants it. For exam-
ple, a company transmitting shipment data to a shipper can access the public key
from the shipper’s Web site and encrypt the shipment information before trans-
mission. The shipper then decrypts the message with the private key. Because no
one else has the private key, no one else can decrypt the message.

Some asymmetric encryption methods can encrypt and decrypt messages in
both directions. That is, in addition to using the public key to encrypt a message
that can be decrypted with the private key, an organization can also encrypt
a message with the private key and decrypt it with the public key. Notice that
both keys must still work as a pair, but the message can go forward or back-
ward through the encryption/decryption pair. This second technique is the basis
for digital signatures and certificates, which are explained in the next section.
 Figure 6-14 illustrates an asymmetric key encryption transmittal.

 ❚ Digital Signatures and Certificates
Encryption is an effective technique for a secure exchange of information between
two entities who have appropriate keys. However, how do you know that the

remote wipe a security measure that
automatically deletes sensitive data from a
portable device when unauthorized accesses
are attempted

FIGURe 6-14 Asymmetric key encryption

asymmetric key encryption an encryp-
tion method that uses different keys to
encrypt and decrypt the data

public key encryption a form of asym-
metric key encryption that uses a public key
for encryption and a private key for decryption

Person 1 Person 2

Get public key
Broadcast public key

Public key
of person #2

Private key
of person #2

Message:
xitow7ei12q

Message:
xitow7ei12q

Internet
Message:

How are you?
Message:

How are you?

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

178 PART 3 ■ Essentials of Systems Design

entity on the other end of the communication is really who you think it is? A
digital signature is a technique in which a message or document is encrypted
with a private key and decrypted with the public key. For example, your bank
might encrypt a message sent to you with its private key. If you decrypt the mes-
sage with your bank’s public key and the message is readable, then you know
the message was sent by your bank. If you decrypt the message with the public
key and the result is gibberish, then you know the message was not sent by your
bank. Encoding a message with a private key is called digital signing.

Taking the example one step further, you can ask the question, “How do I
know that the public key I have is the correct public key and not some counter-
feit key?” In other words, maybe someone is impersonating another entity and
passing out false public keys to intercept encoded messages (such as financial
transactions) and steal information. In essence, the problem is ensuring that the
key purported to be the public key of some institution is, in fact, that institu-
tion’s public key. The solution to that problem is a certificate.

A certificate—or digital certificate—is an institution’s name and public key
(plus other information, such as address, Web site URL, and validity date of the cer-
tificate), encrypted and certified by a third party. Many third parties, such as Veri-
Sign and Equifax, are very well known and widely accepted certifying authorities.
In fact, they are so well known that their public keys are built right into the current
browsers such as Firefox, Chrome, Safari, and Internet Explorer. As shown in Figure
6-15, you can know that the entities with whom you are communicating are, in fact,
who they say they are, and that you do have their correct public key.

An organization or individual who wants a certificate with his or her name
and public key buys a certificate from a well-known certifying authority such
as VeriSign. The certifying authority encrypts the data with its own private key
(signs the data) and gives the data back to the original entity. When someone,
such as a customer, asks you for your public key, you send the certificate. The
customer receives the certificate and opens it with the certifying authority’s pub-
lic key. Because the certifying authority is so well known, its public key is built
in to everyone’s browser and is essentially impossible to counterfeit. The cus-
tomer can now be sure that he or she is communicating with you and can do so
with encrypted messages by using your public key.

A variation of this scenario occurs when a buyer and seller transmit their cer-
tificates to one another. Each participant can decrypt the certificate by using the

digital signature a technique in which a
document is encrypted by using a private key
to verify who wrote the document

digital certificate an institution’s name
and public key (plus other information, such
as address, Web site URL, and validity date
of the certificate) encrypted and certified by
a third party

certifying authorities widely accepted
issuers of digital certificates

FIGURe 6-15 Using a digital certificate

1. Client sends request to
connect to secure server.

3. Client verifies certificate
signer is a trusted certifying
authority and authenticates
server.

4. Client generates a secret
key to be used for the session
and encrypts it with the
server’s public key.

Client Secure server

6. Server uses its private key
to decrypt secret session key.

2. Server sends signed digital certificate
(containing server’s public key).

7. Client and server communicate
securely using the secret session key.

5. Client sends encrypted secret session key.

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

179CHAPTER 6 ■ Foundations for Systems Design

certifying authority’s public key to extract such information as name and address.
However, to ensure that the public key contained within the certificate is valid,
the certificates are transmitted to the certifying authority for verification. The
authority stores certificate data, including public keys, within its database and
verifies transmitted certificates by matching their content against the database.

 ❚ Secure Transactions
Secure electronic transactions require a standard set of methods and protocols
that address authentication, authorization, privacy, and integrity. Netscape orig-
inally developed the Secure Sockets Layer (SSL) to support secure transac-
tions. SSL was later adopted as an Internet standard and renamed Transport
Layer Security (TLS), although the original name is still widely used.

TLS is a method for secure message transmission over the Internet. Sender
and receiver first establish a connection by using ordinary Internet protocols and
ask each other to create a TLS connection. Sender and receiver then verify each
other’s identity by exchanging and verifying identity certificates as explained
previously. At this point, either or both have exchanged public keys, so they
can send secure messages. Because asymmetric encryption is quite slow and dif-
ficult, the two entities agree on a protocol and encryption method—usually a
single-key encryption method. Of course, all the messages to establish a secure
connection are sent by using the public key/private key combination. Once the
encryption technique has been determined and the secret, single key has been
transmitted, all subsequent transmission is done by using the secret, single key.

IP Security (IPSec) is a newer Internet standard for secure message trans-
mission. IPSec is usually implemented by operating systems or within network
hardware devices, which enables it to operate with greater speed. IPSec can
replace or complement SSL. The two protocols can be used at the same time
to provide an extra measure of security. IPSec supports more secure encryption
methods than SSL.

Hypertext Transfer Protocol Secure (HTTPS) is an Internet standard
for securely transmitting Web pages. HTTPS supports several types of encryp-
tion, digital signing, and certificate exchange and verification. All modern Web
browsers and servers support HTTPS. It is a complete approach to Web-based
security, although security is enhanced when HTTPS documents are sent over
secure TLS or IPSec channels.

Secure Sockets Layer (SSL) a standard
set of methods and protocols that address
authentication, authorization, privacy, and
integrity

Transport Layer Security (TLS) an Inter-
net standard equivalent to SSL

IP Security (IPSec) an Internet standard
for secure transmission of low-level network
packets

Hypertext Transfer Protocol Secure
(HTTPS) an Internet standard for
securely transmitting Web pages

CHAPTER SUMMARy
Systems design is the process of organizing and struc-
turing the components of a system to enable the con-
struction of the new system. The design encompasses
key parts of the system, including its environment, ap-
plication components, user interfaces, database, and
software classes and methods. A description or design
activity is associated with each design element. Design
activity inputs consist of the models that were built
during analysis. The outputs of the design consist of
a set of diagrams, or models, that describe the archi-
tecture of the new system and the detailed logic within
various programming components.

Key design elements include application com-
ponents, the user interface, the database, and soft-
ware classes and methods. Each element is the focus
of a separate design activity, though the timing and

ordering of activities varies from project to project.
A separate activity also defines the environment within
which the system will be built and operated. Environ-
mental characteristics tend to limit design choices and
flexibility.

Integrity controls operate within a specific sys-
tem to reject invalid data inputs, prevent unauthorized
data outputs, and protect data and programs against
accidental or malicious tampering. Security controls
cross multiple systems to protect assets of an organiza-
tion from all threats, with a primary focus on external
threats. Although integrity and security controls are
important design elements, there is no separate activ-
ity to create them; control development is included in
each of the other design activities to ensure a robust
and reliable system.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

180 PART 3 ■ Essentials of Systems Design

encryption

encryption algorithm

encryption key

field combination controls

fraud triangle

Hypertext Transfer Protocol
Secure (HTTPS)

input controls

integrity controls

IP Security (IPSec)

multifactor authentication

output controls

privileged users

public key encryption

registered users

remote wipe

Secure Sockets Layer (SSL)

security controls

symmetric key encryption

Transport Layer Security (TLS)

unauthorized users

value limit controls

access control

access control list

application component

asymmetric key encryption

authentication

authorization

certifying authorities

completeness controls

data validation controls

decryption

digital certificate

digital signature

KEY TERMS

 1. How does the objective of systems analysis differ
from the objective of systems design?

 2. What are the inputs to systems design? What are
the outputs?

 3. List and briefly describe each design activity.

 4. Why is the environment described while other
key design elements such as the user interface and
database are designed?

 5. What models are developed during each design
activity?

 6. On a project that uses iterations to develop the
system, in which iteration does systems design
begin? Explain why.

 7. What are the key elements of the environment
described during design activities?

 8. List at least three examples of application
components.

 9. Why is the singular form of the term user interface
usually a misnomer?

 10. Designing security and controls impacts the design
of which other elements?

 11. Compare and contrast integrity controls and secu-
rity controls. Why isn’t there a separate activity to
design them?

 12. Explain four types of integrity controls for input
forms. Which have you seen most frequently?
Why are they important?

 13. What are the two primary objectives of security
controls?

 14. List and briefly describe the three elements of the
fraud triangle. Over which element can a system
designer exercise the greatest control?

 15. Briefly define or describe authentication, access
control lists, and authorization.

 16. How does single-key (symmetric) encryption
work? What are its strengths? What are its
weaknesses?

 17. What is the difference between HTTPS and HTTP?

REVIEW QUESTIOnS

PRObLEMS AND ExERCISES
 1. Discuss the technology architecture and deploy-

ment environment for information systems at
your work or school with a knowledgeable
person. What are the key elements of the envi-
ronment? If you were to implement a new system
for the organization, which of the environmental
elements could you change? Which could you
choose to use or not use?

 2. Pick a major online retailer (e.g., Amazon, Walmart,
or Sears). Examine the default browser-based shop-
ping interface from the following devices: a desktop
computer with a large monitor, a tablet computer,
and a smartphone. How and why do content and
layout vary across the devices? Are there any device-
specific technologies employed in any of the inter-
faces, such as voice recognition, multitouch gestures,

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

181CHAPTER 6 ■ Foundations for Systems Design

 4. Examine the privacy policy (or privacy section
of the user agreement) for a major online service
provider such as Gmail, eBay, or Facebook. What
are the implications of the privacy guarantees
for controls and security? Briefly describe cost-
benefit trade-off of the guarantees.

 5. Look on the Web site you use to access your
bank account(s). What kinds of security and con-
trols are integrated into the system?

 6. Examine the information system of a local busi-
ness, such as a fast-food restaurant, doctor’s
office, video store, grocery store, etc. Evaluate
the screens (and reports, if possible). What kinds
of integrity controls are in place? What kinds of
improvements would you make?

 7. Search the Web for information about Pretty
Good Privacy. What is it? How does it work?
Find information about a passphrase. What
does it mean? Start your research at http://
www.pgpi.org.

and gaze (eye) detection? Is a shopping app avail-
able for any of the devices? If so, how does the app’s
user interface differ from browser-based shopping
on the same device?

 3. This chapter described various situations that
emphasize the need for controls. In the first sce-
nario presented, a furniture store sells merchandise
on credit. Based on the descriptions of controls
given in this chapter, identify the various controls
that should be implemented in the furniture store
system to ensure that corrections to customer bal-
ances are made only by someone with the correct
authorization. In the second scenario illustrating
the need for controls, an accounts payable clerk
uses the system to write checks to suppliers. Based
on the information in this chapter, what kinds
of controls would you implement to ensure that
checks are written only to valid suppliers, that
checks are written for the correct amount, and that
all payouts have the required authorization? How
would you design the controls if different payment
amounts required different levels of authorization?

County Sheriff Mobile System for
Communications (CSMSC)
Law enforcement agencies thrive on information. In previ-
ous eras, it was sufficient to receive information through
the police dispatch radio. Today, much more than voice-
based information is required. Officers often need to check
vehicle registrations, personal identities, outstanding war-
rants, mug shots, maps, and the locations of other officers.

One major difficulty with meeting this need for more
information is figuring out how to transmit the data to re-
mote and mobile locations. Local police agencies are
sometimes able to restrict their transmission needs to

within the city limits. However, county sheriffs and state
troopers often have to travel to remote locations that aren’t
within a metropolitan area’s boundaries.

Suppose a rural county sheriff’s department has re-
ceived a grant to upgrade its existing voice-only com-
munication system. Among other requirements, the
grant specifies that all communications must be pro-
tected against eavesdropping and unintended information
disclosure.

Your assignment: Recommend specific controls to be
applied to radio, cellular, and satellite transmissions. How
will you ensure that only sheriffs and other authorized us-
ers can use the system?

CASE STUDY

Community Board of Realtors®

The Community Board of Realtors’ Mult iple
Listing Service (MLS) will be a Web-based appli-
cation with extensions to allow wireless interac-
tion between the agents and their customers using
cell phones, tablets, and other portable devices.

Review the functional and nonfunctional require-
ments you have developed for previous chapters.
Then, for each of the five design activities discussed
in this chapter, list some specific tasks required
for describing the environment and designing

Running CaSe STUDIeS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

182 PART 3 ■ Essentials of Systems Design

The Spring breaks ‘R’ Us Travel Service
The SBRU information system includes four subsys-
tems: Resort relations, Student booking, Accounting
and finance, and Social networking. The first three
are purely Web applications, so access to those occurs
through an Internet connection to a Web server at the
SBRU home office. However, the Social networking sub-
system has built-in chat capabilities. It relies on Internet
access, as students compare notes before they book their
travel reservations and as they chat while traveling. To
function properly, the system obviously requires a wire-
less network at each resort. SBRU isn’t responsible for
installing or maintaining the resort wireless network;

they only plan to provide some design specifications and
guidelines to each resort. The resort will be responsible
for connecting to the Internet and for providing a secure
wireless environment for the students.

 1. For which subsystem(s) is(are) integrity and secu-
rity controls most important? Why?

 2. What data should be encrypted during trans-
mission through resort wireless networks to
SBRU systems? Does your answer change if
students interact with SBRU systems using a
cell phone (directly, or as a cellular modem)?

On the Spot Courier Services
Previous chapters have described the technological
capabilities that Bill Wiley wants for servicing his cus-
tomers. One of the problems that Bill has is that his
company is very small, so he cannot afford to develop
any special-purpose equipment or even sophisticated
software.

Given this limitation, Bill’s need for advanced
technological capabilities comes at an opportune time.
Equipment manufacturers are developing equipment
with advanced telecommunications capabilities, and
freelance software developers are producing software
applications—many of which provide the capabilities
that Bill needs. The one caveat is that because this will
be a live production system, it needs to be reliable, sta-
ble, error-free, dependable, and maintainable.

Let us review some of the required capabilities of
the new system, which has been described in previous
chapters:

Customers

 ■ Customers can request package pickup via the
Internet.

 ■ Customers can check the status of packages via
the Internet.

 ■ Customers can print mailing labels at their offices.

Drivers

 ■ Drivers can view their schedules via a portable
digital device while on their routes.

 ■ Drivers can update the status of packages while on
their routes.

 ■ Drivers can allow customers to “sign” for packages
that are delivered.

 ■ The system “knows” where the driver is on his
route and can send updates in real time.

 ■ Drivers can accept payments and record them on
the system.

Bill Wiley (management)

 ■ Bill can record package pickups from the ware-
house.

 ■ Bill can schedule delivery/pickup runs.
 ■ Bill can do accounting, billing, etc.
 ■ Bill can access the company network from his

home.

Given these requirements, do the following:

 1. What kind of fraud is possible in this scenario?
By the customer? By the truck driver? By col-
laboration between system users? What steps
should Bill take to minimize the opportunity for
fraud?

 2. What kind of access controls should be put in
place? For the customer? (Notice the customer
has no financial transactions. Would you change
your answer if the customer could also make
payments online?) For the truck driver? For Bill?
Are the typical userID and password sufficient
for all three, or would you require more or less
for each?

 3. Research on the Web and find out what is re-
quired to purchase a digital certificate for a
Web site. Explain what Bill would have to do to
implement a secure site with HTTPS. Do you
recommend that Bill secure his site with HTTPS
and digital security? Why or why not?

application components, user interfaces, the data-
base, and software methods. How will you inte-
grate the design of integrity and security controls

into those tasks? You may want to refer back to the
Tradeshow System discussed in Chapter 1 for some
design specifics.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

183CHAPTER 6 ■ Foundations for Systems Design

Sandia Medical Devices
As described in previous chapters, the Real-Time Glu-
cose Monitoring (RTGM) system will include process-
ing components on servers and on mobile devices with
data exchange via 3G and 4G phone networks. Users
will include patients, physicians, nurses, and physician
assistants. In the United States, the Health Insurance
Portability and Accountability Act of 1996 (HIPAA)
mandates certain responsibilities regarding the privacy
and security of electronic protected health information
(ePHI). The law applies to what are collectively called
covered entities—that is, health plans, health-care clear-
inghouses, and any health-care providers who transmit
health information in electronic form. More informa-
tion can be obtained from the U.S. Department of
Health and Human Services Web site (www.hhs.gov).

In general, covered entit ies should do the
following:

 ■ Ensure the confidentiality, integrity, and availabil-
ity of all ePHI they create, receive, maintain, or
transmit.

 ■ Identify and protect against reasonably antici-
pated threats to the security or integrity of the
information.

 ■ Protect against reasonably anticipated, impermis-
sible uses or disclosures of the information.

 ■ Ensure compliance by their workforces.

Specifically, covered entities should implement policies,
procedures, and technologies that do the following:

 ■ Specify the proper use of and access to worksta-
tions and electronic media.

 ■ Regard the transfer, removal, disposal, and reuse
of electronic media to ensure appropriate protec-
tion of ePHI.

 ■ Allow only authorized persons to access ePHI.
 ■ Record and examine access and other activity in

information systems that contain or use ePHI.
 ■ Ensure ePHI isn’t improperly altered or

destroyed.
 ■ Guard against unauthorized access to ePHI that is

being transmitted over an electronic network.

Answer these questions in light of HIPAA requirements:

1. Does HIPAA apply to the RTGM system? Why or
why not?

2. How should the system ensure data security
during transmission between a patient’s mobile
device(s) and servers?

3. Consider the data storage issues related to a
patient’s mobile device and the possible ramifica-
tions if the device is lost or stolen. What measures
should be taken to protect the data against unau-
thorized access?

4. Consider the issues related to health-care profes-
sionals accessing server data by using worksta-
tions and mobile devices within a health-care
facility. How will the system meet its duty to
record and examine access to ePHI? If a health-
care professional uses a mobile device outside a
health-care facility, what protections must be ap-
plied to the device and/or any data stored within it
or transmitted to it?

5. Consider the issues related to wired and wireless
data transmission between servers and worksta-
tions within a health-care facility. What security
duties, if any, apply to transmissions containing
ePHI? Does your answer change if the servers are
hosted by a third-party provider?

Frederick P. Brooks, The Design of Design: Essays
from a Computer Scientist. Addison-Wesley,
2010.

Michael E. Whitman and Herbert J. Mattord,
Management of Information Security. Cengage,
2014.

Terry Winograd, Bringing Design to Software.
ACM Press, 1996.

FURTHER RESOURCES

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning Objectives
After reading this chapter, you should be able to:

Explain architectural concepts that influence
system design, including ubiquitous computing
and software, components, protocols,
interoperability, and distributed architectures

Describe and draw location, network, and
deployment diagrams

Describe a system’s environment by drawing
architectural diagrams and answering key
questions

Design larger application components based on
use cases and other analysis models

Anatomy of a Modern Information System

Architectural Concepts

Interoperability

Architectural Diagrams

Describing the Environment

Designing Application Components

chapter OutLine

chapter SEVEN

Defining the System
Architecture

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

186 PART 3 ■ Essentials of Systems Design

Opening cASe Technology Decisions aT WysoTronics inc.

As James Schultz walked down the hall toward a meeting
with his staff, he thought about his current job. For a year
now, Schultz had been the vice president and chief infor-
mation officer for a medium-sized supplier of electronic
components to several large electronics firms, including
Samsung and Acer. James’s company, Wysotronics Inc.,
had been in business for many years, but had recently
been having some problems with its internal computer
systems. James was hired to fix the problems.

Soon after starting this job, James discovered that
most systems were functioning properly, but that the
infrastructure was a hodgepodge of disjointed comput-
ers and networks. On the corporate side, there were
accounting systems and human resource systems, both
of which were desktop client/server systems hosted on
a local network computer that resided in the Accounting
Department.

Engineering had its own database and network com-
puters, which hosted several sophisticated engineering
systems with intensive computing requirements. The
engineers’ local desktop systems were the most recent,
up-to-date equipment and software. The server was
also high capacity, with a large data repository to house
all the engineering documents and images.

Marketing and Sales also had their own systems
hosted on their own network server, which was con-
nected to the Internet. The sales staff worked closely
with the manufacturing and assembly plants to ensure
that deliveries were on time, and they were frequently
on the road, visiting Wysotronics’s clients. It was their
job to ensure that clients were satisfied with schedules,
deliveries, and product quality, and they wanted to be
able to access the sales and production databases while
they were on the road. Unfortunately, the servers they
used weren’t very stable and continually had problems.

Perhaps the biggest problem was the supply chain
management system. Wysotronics had a large manu-
facturing plant, an assembly plant, and several suppliers
that needed access to the inventory and supply chain
system. The current infrastructure didn’t have enough
capabilities to provide timely information to these facili-
ties and suppliers.

Today’s meeting objective was to plan and config-
ure the total infrastructure of corporate systems. As he
walked into the room, James was greeted by William
Hendricks, who would be making a presentation sum-
marizing past decisions and future directions.

“Hi, Bill,” James said. “Will you have some new
recommendations for us today? Are there any surprises
from your research?”

“No surprises,” Bill said. “But you will be pleased to
know that our research has validated the decisions you
have made recently. We are providing better service to
the company than ever before, and we are doing it at
less cost than we ever have before. I do have a few rec-
ommendations about how to fine-tune our infrastructure
to provide even better service, though.”

It was obvious that Bill was pretty enthused about
the results of his research.

“Before we start, can you give me a brief idea about
where the cost savings are coming from?” James asked.

“Sure,” Bill said. “As you know, we decided to cre-
ate a virtual private network using the Internet for all
our supply chain and production needs. We moved all
the computers to support this system into a colocation
facility. We still own the servers, but we have signed a
service agreement with the hosting company to main-
tain the operating system and network. This has allowed
us to focus our efforts on the software itself and not
distract valuable personnel with environment or con-
nectivity issues. We also have not had to invest in addi-
tional buildings for a larger data center. Plus, the level of
service is incredible. We have had almost 100 percent
uptime since the switchover. The people in our plants
really are pleased that they can check inventory levels
and shipment dates from all their suppliers at any time.”

“Wow. That is great news,” James said. “And what
are you going to recommend for our marketing and sales
system?”

“Well, as you know, that is a Web-based system,”
Bill replied. “It doesn’t have the security requirements
that our production systems do, but it needs to be
widely available. Our research has shown that we can
deploy that system through a hosting company that
provides cloud computing. We have the option of going
with our colocation provider or using another company
we have used in the past. I think this other company is
going to give us some good price concessions and will
still be able to provide excellent service.”

“That sounds great!” James said. “I’m interested in
hearing about the details. I assume you have also laid out
a migration plan to move the systems over?”

“Yes, I have done my homework on this one,” Bill
said. “I think you will be pleased with the results.”

 ■ Overview
Requirements defined during analysis activities are usually stated in a techno-
logically and architecturally neutral way. That is, they’re stated in a way that
enables designers to choose from a variety of technologies and architectures

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

187CHAPTER 7 ■ Defining the System Architecture

when deciding how best to satisfy the requirements. In contrast, system imple-
menters develop and deploy software using specific technologies and within a
specific architectural framework. Thus, an important part of design is choosing
appropriate technologies, adapting those technologies and software to an orga-
nization’s existing technology architecture, or modifying existing architecture
to support new technologies and systems.

Technology and architecture are usually covered as part of an entire stand-
alone course or in parts of several courses in most information system degree
programs. Systems analysis is usually a separate course (or two). Because this
book is targeted to students completing a systems analysis and design course, a
complete coverage of technology and architecture isn’t appropriate. Thus, this
chapter serves two purposes:

1. Provide a review and summary of technology and architectural concepts
most important in modern systems design

2. Describe the two design activities most concerned with technology and archi-
tecture: Describe the environment and Design the application components
(see Figure 7-1)

 ■ Anatomy of a Modern System
This section examines the technology and architectural features of a modern
Web-based system—the Amazon.com shopping application. The discussion
serves as a review of modern computer and software technology and an intro-
duction to the architecture of Web-based systems. If you’re already familiar with
these topics, you can skip ahead to the “Architectural Concepts” section.

Amazon.com is the largest online retailer in the world. Most of you are
familiar with this Web site (see Figure 7-2). Millions of users interact with this
Web site every day to find products and make purchases (see Figure 7-3).

Figure 7-4 shows a simplified architectural diagram for the Amazon.com
shopping application. Users interact with the application via a Web browser
running on a personal computing device. Those devices normally connect to the
Internet over wireless network connections and from there to one or more serv-
ers that host the Amazon.com shopping application. Other servers host addi-
tional software components to process payment and schedule shipments. We’ll
use this simple diagram as the starting point to examine the components and
architecture of a typical modern information system.

Design activities

Describe the environment.
Design the application components.
Design user interface.
Design the database.
Design the software classes and methods.

Core
processes

1 2 3 4 5 6
Identify the problem and obtain
approval.

Plan and monitor the project.

Discover and understand details.

Design system components.

Build, test, and integrate system
components.

Complete system tests and deploy
the solution.

Iterations

FIGURE 7-1 Design activities

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

188 PART 3 ■ Essentials of Systems Design

 ■ Computing Devices
The symbols along the top edge of Figure 7-4 represent servers. A server is
a computer or group of computers that manages shared resources such as file
systems, databases, and Web sites, and enables users and other computers
to access those resources over a network. Examples of server roles include
hosting a shopping application such as Amazon.com, managing e-mail for
hundreds to millions of users, managing the flow of transactions through a
stock exchange, and running the numerical simulations needed to forecast
weather. Smaller organizations may own a handful of servers or may “rent”
server capacity from larger organizations. Large computing-intensive organi-
zations such as Amazon, Google, and Facebook operate server “farms” that
fill entire buildings and are interconnected and replicated on a global scale
(see Figure 7-5).

FIGURE 7-2 Amazon.com main
shopping page

FIGURE 7-3 Amazon.com product
details

server a computer or group of computers
that manages shared resources such as file
systems, databases, and Web sites, and
enables users and other computers to access
those resources over a network

S
ou

rc
e:

 A
m

az
on

S
ou

rc
e:

 A
m

az
on

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

189CHAPTER 7 ■ Defining the System Architecture

FIGURE 7-4 Amazon.com shopping
application simplified architecture

The three icons in the lower-left corner of Figure 7-4 represent personal
computing devices. Personal computing devices include desktop workstations,
laptops, tablets, and cell phones, with a dizzying array of alternatives that often
blur the categories. They have the same basic hardware components as servers—
processors, memory, disk or flash storage, and input/output devices—tailored to
satisfy the computing needs of one user at a time.

FIGURE 7-5 Server farm within a
data center

©
 E

im
an

ta
s

B
uz

as
/S

hu
tt

er
st

oc
k.

co
m

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

190 PART 3 ■ Essentials of Systems Design

 ■ Networks, the Internet, and the World Wide Web
The true power of modern computing lies not just in the ubiquity and power
of individual computers, but in the ability to interconnect them. Social net-
working services such as Facebook, information resources such as Wikipedia
and Google Search, and shopping applications like Amazon.com all rely on the
interconnection of millions of computers, their users, and the resources that
they manage.

A computer network is a collection of hardware, software, and transmission
media that enables computing devices to communicate with one another and to
share resources. Networks come in many sizes—ranging from small networks
that span a single home or office to international networks that connect coun-
tries and continents.

Networks of all sizes interconnect with one another to form the Internet. The
Internet is sometimes called the network of networks because it interconnects mil-
lions of private, public, business, academic, and government networks. The Inter-
net acts a global highway for information exchange among computing devices and
their users. The largest networks within the Internet are called Internet backbone
 networks. They provide the high-capacity, high transmission speeds, and reli-
ability needed to carry billions of messages across regions, countries, and conti-
nents. Most are owned and operated by governments or large telecommunications
companies.

At the other end of the network size scale are local area networks (LANs),
which typically span a single home, small office, or one floor of a building.
 Servers and personal computing devices connect wirelessly or via cables to
LANs. LANs, in turn, connect to the Internet via larger networks spanning
groups of buildings, cities, or regions.

The World Wide Web, sometimes called the WWW or simply the Web, is
an interconnected set of resources accessed via the Internet. Though the terms
Internet and Web are used interchangeably in everyday language, the distinction
between them is important for information system designers. The Internet is the
“highway” over which messages and information travel from network to net-
work, server to personal computing device, and service provider to end user. The
Web is the set of resources and services that can be accessed via that highway.

Web resources vary widely and include static documents (i.e., Web pages),
images, videos, e-mail and other messages, and software-based services such as
shopping sites and online games. Web resources are identified by a Uniform
Resource Locator (URL) composed of three parts, as shown in Figure 7-6.

Internet backbone network a high-
capacity and high-speed computer network
that carries large amounts of Internet traffic
across regions, countries, and continents

local area network (LAN) a small
 computer network typically spanning a single
home, small office, or one floor of a building

World Wide Web (WWW) an intercon-
nected set of resources accessed via the
Internet

Uniform Resource Locator (URL)
identifier of a Web resource containing a
protocol header, server name or address,
and resource name

FIGURE 7-6 Parts of a Uniform Resource Locator

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

191CHAPTER 7 ■ Defining the System Architecture

The URL of one Web resource can be embedded within another Web resource
as a hyperlink. Documents, embedded hyperlinks, and the resources pointed
to by those hyperlinks form a connection network that resembles a large spider
web when diagrammed—thus, the word web within the term World Wide Web.

 ■ Software
The software components of the Amazon.com shopping application aren’t
 visible in Figure 7-4 because they’re embedded within the servers and personal
computing devices. Figure 7-7 shows the software components within blue
callout boxes.

Software components can be loosely grouped into two types. Application
software includes software that performs user- or business-specific tasks, such
as shopping, preparing customer purchase invoices, generating monthly finan-
cial statements, or enabling a user to play games against the computer or other
users. Some application software is distributed as an app, which is installed
once on a computer or cell phone’s storage device. Other applications are con-
structed as Web-based applications that run within a Web browser and install
little or no software on the user’s device.

System software is software that works behind the scenes to support
application software and to control or interact with hardware or software
resources. Examples include operating systems (OSs), database management sys-
tems, Web browsers, and Web server software. OSs are an especially important
class of business software because they’re installed on every computing device
and because they provide so many support functions used by application soft-
ware. To a significant extent, the OS controls what a device can and can’t do,
thus enabling or limiting the application software that can be used on the device.

 ❚ Web-Based Applications
Applications such as the Amazon shopping application are constructed as
 Web-based applications. Characteristics of Web-based applications include:

 ■ Use of a Web browser as the primary user interface on personal computing
devices

 ■ User access to the Web application via a URL

hyperlink the URL of one Web resource is
embedded within another Web resource

application software software that per-
forms user- or business-specific tasks and is
typically constructed as an app or Web-based
application

app application software that is installed on
the storage device of a computer or cell phone

system software software, such as
operating systems and Web server software,
that works behind the scenes to support
application software and control or interact
with hardware or software resources

Web-based application application software
that uses a Web browser as the user interface,
has a URL for application access, uses a Web
server and server-side software components, and
uses Web standards for communication between
Web browser and server

FIGURE 7-7 Software components
of the Amazon.com shopping
application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

192 PART 3 ■ Essentials of Systems Design

 ■ Server-side software components that execute on or are called from a
Web server

 ■ Use of Web standards for communication between Web browser and server

The reasons that Web applications are so common include ease of access
and use of widely adopted Web standards. However, those benefits come at a
cost. Web applications are a well-defined target for security breaches because
URLs and Web standards are open and widely known. Also, application perfor-
mance can suffer when networks are congested.

The impact of these challenges on the Amazon shopping application is
significant. Amazon servers employ elaborate mechanisms to protect against
threats such as denial-of-service attacks, bogus transactions, and interception
of customer credit card and other sensitive information in transit. To ensure
adequate performance for a global customer base, Amazon uses redundant and
globally distributed servers connected to Internet backbone networks.

 ❚ Embedded Software
A modern laptop computer, tablet computer, or cell phone comes preinstalled
with a very complex OS, a Web browser, and a rich set of preinstalled apps. The
OS has embedded software that provides functions for graphical display, touch
screen and gesture-based input, voice recognition, speech generation, music
and video playback, and access to the Internet and Web resources. Embedding
these capabilities within the OS enables preinstalled or purchased apps and
Web-based applications to reuse the software that implements these functions.
That reuse provides important benefits, including a similar look and feel across
applications and application development toolkits for software developers that
automate many programming tasks and provide a direct interface to software
already embedded in the device.

Embedded software components extend the functions of Web browsers and
Web servers in ways that enhance Web-based applications and the user experi-
ence. Examples include the following:

 ■ Toolbars. A set of links to Web resources or installed apps that extend the
capabilities of a Web browser. For example, an Acrobat PDF toolbar pro-
vides Acrobat help links and one-click access to PDF document creation
and management software.

 ■ Plug-ins. Web browser plug-ins are often used to correctly display certain
types of Web content. For example, Amazon provides plug-ins to enable
users to preview 30-second music clips before purchasing and downloading
digital music files.

 ■ Widgets. An example of a Web browser widget is a time-and-temperature
or stock market widget that is always displayed in one corner of the
browser no matter what Web page is being viewed. An example of a widget
installed within a Web page is a program that display statistics, such as
user comments or visits to the page.

The combination of a computing device’s OS, apps, Web browser, and
embedded components creates a software environment within which an app or
Web-based application operates. That environment provides a set of supporting
functions for application software, but it also creates significant development,
deployment, and support issues. One such issue is whether software developers
deliver application software as an app or Web-based application. If they develop
an app, they gain some advantages like improved performance, higher-quality
user-interface features, and the ability to perform some functions while not con-
nected to the Internet. But they also incur the costs of supporting multiple OSs.
For example, if developers want their apps to be installable on most cell phones,

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

193CHAPTER 7 ■ Defining the System Architecture

then they’ll need to develop and support three different apps—one for iOS, one
for Android, and another for Windows.

Developing application software that works on many device types—for
example, desktops, laptops, and tablets (in addition to cell phones)—adds even
more complexity. Fundamental differences in hardware and screen size forces
developers to adapt application software in subtle and not-so-subtle ways. For
instance, the keyboard and mouse/touch pad of a desktop or laptop computer
may dictate one style of data input, while the small virtual keyboard and touch
screen of a tablet or cell phone will dictate another approach. Screen size dictates
significant differences between application software designed for a cell phone
compared with software designed for a desktop computer and its large display.

The Amazon shopping application has an interesting approach to dealing
with this complexity. Amazon doesn’t provide installable apps for iOS, Android,
and Google devices. Users with devices running those operating systems use
a Web application, and Amazon invests considerable resources in developing
server-side application software that adapts its user experience to the software
environment of the user’s device. However, Amazon has also released its own
cell phone and a version of the Kindle e-reader tablet under the name Amazon
Fire with a customized version of the Android OS. That OS includes embed-
ded software and preinstalled apps that provide direct access to various Ama-
zon services, including shopping. In essence, Amazon has developed a complete
hardware and software environment that is fine-tuned for access to Amazon
services. UPS and FedEx follow a similar strategy with the devices carried by
delivery personnel to record, track, and process shipments.

In sum, the benefits of the rich embedded software architecture of most
end-user computing devices are real—reuse of already-installed software, simi-
lar look and feel across multiple apps, and faster app development. But those
benefits are coupled with significant problems of incompatibility and complex-
ity for system designers and developers. Designers must decide which embedded
software components will be included in their systems, and they must design
their application software for that embedded software. Those choices determine
the range of devices that can execute the application software and the costs of
maintaining and upgrading it for years to come.

 ■ Protocols
A protocol is a set of languages, rules, and procedures that ensure accurate and
efficient data exchange and coordination among hardware and software compo-
nents. Modern information systems rely on hundreds or thousands of protocols.
Hardware, software, and network components abide by protocols because their
owners and users value the results of accurate and efficient data exchange and
coordination. Given the complex interconnected world of modern information
systems, not abiding by protocols is unthinkable because no system could func-
tion without them. Figure 7-8 shows types of protocols and their use within the
Amazon.com shopping application.

 ❚ Network Protocols
Network protocols enable accurate message transmission among the various
computers and software components. They function as the “plumbing” that
enables messages to find their way from sender to recipient, enable multiple
devices to efficiently share wireless and wired connections, and handle tasks
such as identifying and retransmitting lost messages. Network protocols are
implemented within all computers and network hardware devices.

It is rare that an information system designer needs to be concerned with
networking protocols other than their security implications. For purposes of

protocol a set of languages, rules, and
procedures that ensure accurate and efficient
data exchange and coordination among
hardware and software components

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

194 PART 3 ■ Essentials of Systems Design

information systems design, the primary challenge created by networking pro-
tocols lies in deciding which network addresses and URLs the software compo-
nents will use to connect with one another. This is an important issue because
many computers and networks employ software programs or hardware devices
called firewalls. Firewalls examine incoming and outgoing packets and block
those arriving from or sent to “dangerous” URLs or network address. Thus, an
information system designer must ensure that network messages among soft-
ware components won’t be blocked by a firewall at either end.

For increased security, the system designer may want to work with security
and network specialists to develop a virtual private network (VPN) to isolate
sensitive communications between servers or between an organization’s own
employees and servers. A VPN incorporates technologies covered in Chapter 6,
including Secure Sockets Layers, Transport Layer Security, and secure IP, to
reliably identify senders and recipients, and encrypt network messages sent
among them.

The Amazon.com shopping application doesn’t use secure network proto-
cols for server-to-customer communication until the user needs to transmit sen-
sitive data, such as when providing credit card information. All traffic among
Amazon servers and those of its key partners, such as payment processors and
shippers, is secured using virtual private networks.

 ❚ Web Protocols
The World Wide Web is built on a small family of protocols for encoding
Web documents and hyperlinks, requesting documents from Web servers,
and responding to those requests. The most important protocols include the
following:

 ■ URL. As defined earlier, a URL defines a document or resource name,
location, and encoding protocol.

 ■ Hypertext Markup Language (HTML). HTML defines the structure and
content of a Web page, including encoding methods for text, images, tables,
and forms with the ability to control such aspects as text font and size, and
the location of text and images on a displayed or printed page.

 ■ Extensible Markup Language (XML). XML is an extension to HTML
that enables groups of users to define additional encoding within Web
documents. This encoding identifies the meaning of specific words,

virtual private network (VPN) secure
communication over the Internet using tech-
nologies that reliably identify senders and
recipients, and encrypt network messages
sent among them

Hypertext Markup Language (HTML) a
protocol that defines the structure and content
of a Web page

Extensible Markup Language (XML) an
HTML extension that enables the meaning of
words, phrases, or numbers to be defined

FIGURE 7-8 Software components
and protocol types of the Amazon
.com shopping application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

195CHAPTER 7 ■ Defining the System Architecture

phrases, or numbers. For example, in Figure 7-3 the text $13.22 might
include additional encoding information that identifies it as a product
price stated in U.S. dollars. A price comparison service could use such
information to compare prices for the same product across multiple
 shopping sites.

 ■ Hypertext Transfer Protocol (HTTP). HTTP defines the format and
 content of requests for Web documents and resources, and includes some
simple commands for other types of requests, such as uploading a file or
page. For example, Web browsers normally request that a Web page be
transmitted for display via the HTTP GET command. Data entered by a
user in an HTML form is normally transmitted back to a Web server using
the HTTP POST command.

 ■ Hypertext Transfer Protocol Secure (HTTPS). HTTPS is an extension of
HTTP that employs secure network protocols to reliably identify senders
and recipients and encrypt network messages sent among them.

As with network protocols, Web protocols are nearly universal and thus of
little direct concern to information system designers. The primary issue is which
versions of Web protocols are supported by software on servers and end-user
computing devices. For example, HTML5 is a recent update to earlier HTML
protocol versions. It provides some new capabilities that Web application and
Web service developers may want to incorporate into their systems. However,
many users have older computing devices and software that don’t support
HTML5. Thus, a system developer must decide whether to

 ■ Rely exclusively on an older HTML protocol version, sacrificing some
functionality

 ■ Rely only on HTML5 and thus not serve users with older or outdated
devices

 ■ Write multiple versions of software, one for each supported protocol
version

Note that this sort of decision isn’t unique to Web protocols. It occurs with
other types of protocols and with support for specific operating systems.

A user’s initial connection to the Amazon.com shopping application uses
a URL that initiates the transfer of a Web page from an Amazon server to the
user’s Web browser. At that time, the Amazon Web server queries the user’s
Web browser to determine its type, what protocols it supports, and the underly-
ing OS. That information is stored for the duration of the user’s connection and
used to adapt HTML documents to the specific characteristics and capabilities
of the user’s device. When sensitive data needs to be transmitted, the server ini-
tiates an HTTPS connection with the browser to verify its identity and encrypt/
decrypt transmitted data. Data sharing among Amazon.com servers, includ-
ing its key partners, uses XML encoding and employs secure network and
Web protocols.

 ■ Architectural Concepts
In Chapter 2, we defined two key terms that we’ll spend most of this chapter
exploring:

 ■ Technology architecture. The set of computing hardware, network hard-
ware and topology, and system software employed by an organization

 ■ Application architecture. The set of information systems (the software
applications) the organization needs to support its strategic plan

Hypertext Transfer Protocol (HTTP) a
protocol that defines the format and content
of requests for Web documents and related
data communication

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

196 PART 3 ■ Essentials of Systems Design

The technology architecture defines the infrastructure that supports appli-
cation software and the services it provides. Application software is deployed
on a technology architecture by distributing application components to specific
hardware devices and connecting them via networks and protocols.

Technology and application architecture are interdependent. Poor technology
architecture provides a weak foundation for application software and can com-
prise its performance, reliability, and other characteristics. Good technology archi-
tecture enhances those characteristics and provides other benefits, such as minimal
operating cost and flexible updating. But high-quality technology architecture can’t
make up for poor application architecture. Application software must be designed
to ensure ease of construction, deployment, operation, and future updates.

Popular literature and culture usually refer to technology in abstract terms,
and there is an underlying assumption that any useful technology will be
adopted and exploited. But an organization must trade off the potential benefits
of adopting and deploying useful technologies with the cost of supporting those
technologies and the possibility of overextending its ability to manage and suc-
cessfully exploit them. For example, should an organization immediately move
its applications to “latest and greatest” technologies, or should it wait until it
becomes clearer which of those technologies are useful and widely adopted?
Once it decides to adopt a technology, which “flavor(s)” should it choose? What
specific hardware, software, and protocols should it deploy and support?

These are important questions because no organization has sufficient
resources to constantly reimplement existing information systems using all pos-
sible new and updated technologies. An organization must choose technologies
that match its application needs and support those technologies over a period of
years or decades. The technology architecture must evolve slowly over time to
enable new functions, new ways of working, and new ways of interacting with
customers and strategic partners.

 ■ Software as a Service
A service is something that we purchase rather than making or doing it our-
selves. For example, we consider our household utilities such as water, electricity,
and trash pickup to be services. We don’t have to have our own power generator
to get electricity. We just buy power as we use it. Another example is service on
our vehicles. When something breaks on our cars, we pay an auto mechanic to
fix it. We don’t usually operate our own repair shop. We purchase repair services
from someone who does.

Software as a service (SaaS) follows that same basic idea. If an orga-
nization requires some services—for example, bookkeeping and accounting
functions—it could build or buy an accounting software system. Alternatively,
it could find a firm that provides accounting services and buy only the account-
ing services it needs. As with any other utility service, it would purchase and
pay only for those services it requires. It doesn’t have to purchase—or install or
maintain—the software system.

Many applications employ the SaaS model. Examples include the following:

 ■ Social networking services such as Facebook, Tumblr, and Pinterest
 ■ Application software suites such as Google Apps and Adobe Creative Suite
 ■ Specialized applications such as the Amazon.com shopping application and

the UPS.com shipping application

Two common features shared by most applications that employ the SaaS
model include the following:

 ■ Little or no application software is installed on the user’s device.
 ■ User data is stored on servers, though copies may be stored on the user’s

device for improved performance.

software as a service (SaaS) a software
delivery model similar to a utility, in which
application software is accessed via the
Internet without locally installed programs

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

197CHAPTER 7 ■ Defining the System Architecture

 ■ Web Services
A Web service is a software service accessed over the Internet using Web proto-
cols. Although the term can be used to refer to applications such as those listed
above, it more commonly refers to smaller and more focused applications, such
as transmitting shipping information from seller to shipper, or single functions,
such as looking up the zip code that matches a shipping address. In those con-
texts, a Web service is a software function or related set of functions that can
be executed via Web standards. In essence, a Web service is a software function,
subroutine, method, or program that meets the following criteria:

 ■ Is “called” from one application via a URL or other Web protocol
 ■ Accepts input data embedded within the URL or via another protocol
 ■ Executes on the Web service owner’s servers
 ■ Returns processing results encoded within a Web page or document

Web services enable software functions developed by organizations to be
embedded within the information system of another organization. For exam-
ple, consider the shipping options for an Amazon.com purchase, as shown
in Figure 7-9. If the user selects the one-day shipping option, how will the
 Amazon Web application determine what shipping charge to apply to the order?
The Amazon Web application knows the address of the warehouse that holds
the items to be shipped and the customer’s address. It also knows the approxi-
mate dimensions of a box that will hold the purchased item, and it can calculate
the weight based on the weight of the enclosed items, box, and packing materi-
als. What the Amazon.com Web application doesn’t know and can’t calculate
itself is how much a shipper such as FedEx or UPS will charge to deliver the box.

Shipping companies provide Web services that enable companies like
 Amazon.com to compute shipping charges. Amazon’s Web application passes
shipment data to the Web service, and the shipper’s software computes the
charge and then passes it back to the Amazon.com Web application. In essence,
the Amazon.com Web application executes the shipper’s Web service as a sub-
routine over the Web. In a similar manner, the Web application can interact

Web service software function or related
set of functions that can be executed via
Web standards

FIGURE 7-9 Shipping options for
an Amazon.com purchase

S
ou

rc
e:

 A
m

az
on

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

198 PART 3 ■ Essentials of Systems Design

with the Visa or MasterCard Web service to approve and process a charge to the
customer’s credit card. For items that are out of stock, the Web application can
interact with publisher Web services to locate available sale items and estimate
the time to ship them to an Amazon warehouse or direct ship then from the
 publisher warehouse to a customer.

The implications of Web services for system design are significant. Summa-
rized at the strategic level, information system developers must do the following:

 ■ Scan the range of available Web services and decide which to incorporate
into their software. To the extent they include other Web services, they
expand the functions of their own software with minimal related develop-
ment cost.

 ■ Decide which (if any) functions of their own software should be implemented
as Web services and made available to other systems. To the extent they do
so, they increase the potential base of software users, but also commit to
making those services available in a reliable and secure fashion over a long
time period.

At a more detailed level, the decision to use or provide Web services leads
to many other questions about system design, development, and deployment,
including the following:

 ■ What protocols will be used to accept Web service calls and to pass data in
both directions?

 ■ How will data passed to/from Web services be secured?
 ■ Even if no Web services are made available to external users, should some

portions of the system be structured as Web services to facilitate access and
use by other internal systems?

 ■ What performance and availability guarantees will be provided to Web
 service users?

 ■ What server, network, and other resources are needed to satisfy those
guarantees?

We’ll revisit some of these questions in the examples later in this chapter.

 ■ Distributed Architectures
Distribution of system components across machines, server farms, and oceans is
an inescapable facet of modern system architecture. Consider again the Amazon
shopping application shown in Figure 7-8. Participating organizations (e.g.,
Amazon, Visa, MasterCard, UPS, and FedEx) each operate their own server
farms in the locations of their choice. Further, to serve a global market and to
provide higher performance and fault tolerance, each organization distributes its
servers and software across dozens of locations throughout the world. Thus, a
shopping session for a customer in California might be processed in an Amazon
server farm in Canada. The Canadian servers might interact with UPS servers in
Japan and Visa servers in Germany.

 ❚ Client/Server Architecture
Client/server architecture is a method of organizing software to provide and
access distributed information and computing resources. It divides software
into two classes: client and server. A server manages system resources and pro-
vides access to these resources through a well-defined communication interface.
A client uses the communication interface to request resources, and the server
responds to these requests.

The client/server architectural model can be applied in many ways. A sim-
ple example is how desktop computers access a shared printer on a LAN, as
shown in Figure 7-10. An application program on a desktop computer sends a

client/server architecture a software
design and deployment method that divides
software into components that manage
resources and components that use those
resources

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

199CHAPTER 7 ■ Defining the System Architecture

document to a server that dispatches it to a management process for the speci-
fied printer. The server acknowledges the client request and notifies the client
when the document is sent to the printer.

Note that in the context of client/server architecture, the term server doesn’t
refer to computer hardware. Rather it refers to software that might be embedded
within an operating system, be implemented as a separate system software com-
ponent such as a database management system, or provided as a service acces-
sible via Web protocols. A server within client/server architecture can be hosted
within a hardware device, such as a smart printer, or one or more computer
systems called servers. Server computer systems might host a single service or
many different services. Also, a single service might be replicated across many
different computing systems or server farms to make its services available to
many geographically dispersed clients.

In Figure 7-8, the customer’s laptop computer acts as a client while talk-
ing to the server components of the Amazon.com shopping application. In turn,
the Amazon.com shopping application acts as a client to shipper and payment-
processing Web services. Thus, it is possible (and common) for a single software
component or system to be both client and server.

 ❚ Three-Layer Architecture
Three-layer architecture is a variant of client/server architecture that is used
for all types of systems, from internally deployed desktop applications to glob-
ally distributed Web-based applications. Three-layer architecture divides the
application software into three layers that interact, as shown in Figure 7-11:

 ■ The user interface or view layer, which accepts user input and formats and
displays processing results

 ■ The business logic layer or domain layer, which implements the rules
and procedures of business processing

 ■ The data layer, which manages stored data, usually in one or more
databases

three-layer architecture a client/server
architecture that divides an application into
view layer, business logic layer, and data layer

view layer the part of a three-layer
architecture that contains the user interface

business logic layer also known as the
domain layer, the part of a three-layer architec-
ture that contains the programs that implement
the business rules and processes

data layer the part of a three-layer
 architecture that interacts with the data

Figure 7-10 Network printing
services implemented with client/
server architecture

View layer Domain layer Data layer

User requestUser request

Data access
 response

Data access
 response

Data access
 request

Data access
 request

Unformatted
 response

Unformatted
 response

Information
 request

Information
 request

Formatted
response

Formatted
response

Figure 7-11 Three-layer architecture

©
 C

en
ga

ge
 L

ea
rn

in
g®

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

200 PART 3 ■ Essentials of Systems Design

One of the advantages of a client/server architecture is that it easily
 supports—in fact, encourages—software to be developed by using three-layer
architecture. Figure 7-12 illustrates an internally deployed system with a three-
layer architecture, and it shows how the three layers might be configured across
three separate computing platforms: desktop and laptop clients, a Web/applica-
tion server, and a database server.

The view layer resides on all the client computers. The HTML is interpreted
and displayed by the Web browser on the client computers. The view layer soft-
ware components that format the HTML are on the application server. The
data layer consists of the database server and any application programs on the
application server that are necessary to access the data. The business logic layer
resides on the application server computer and includes all the logic to process
the business rules.

A major benefit of three-layer architecture is its inherent flexibility. Interac-
tions among the layers are always requests or responses that follow a Web or
other protocol, which make the layers relatively independent of one another.
It doesn’t matter where other layers are implemented or on what type of com-
puter or operating system they execute. The only interlayer dependencies are a
common protocol for requests and responses and a reliable network with suf-
ficient communication capacity.

Multiple layers can execute on the same computer, or each layer can
operate on a separate computer. Complex layers can be split across two or
more computers. System capacity can be increased by splitting layer functions
across computers or by load sharing across redundant computers. In the event
of a malfunction, redundancy improves system reliability because the server
load can be shifted from one computer to another. In sum, three-layer archi-
tecture provides the flexibility needed by modern organizations to deploy and
redeploy information-processing resources in response to rapidly changing
conditions.

FIGURE 7-12 Internal deployment with three-layer architecture

Database server

View layer

Web/application serverDomain layer

Data layer

Software layers

Domain layer logic—implement business rules

Data layer logic—formulate queries

View layer logic—format screens/reports

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

201CHAPTER 7 ■ Defining the System Architecture

 ■ Interoperability
It’s natural to feel a bit overwhelmed at this point in the chapter. We’ve described
hardware, software, protocols, and multiple architectural concepts. You’ve
encountered many new terms and acronyms and have developed some new per-
spectives on things that you thought you already understood. You’re probably
searching for a framework into which you place all of the new and updated infor-
mation. You’re also wondering: What does it all have to do with systems design?

Interoperability is a perspective through which you can examine all of the
details covered thus far. Interoperability is the ability (or lack thereof) of a
component or system to interact with other components or systems. The myriad
hardware and software components that make up a modern information system
must work together. To ensure interoperability, system designers must do several
things, including the following:

 ■ Understand and describe the current environment in which the system will
operate. That environment includes existing hardware and software com-
ponents, networks, and the protocols and APIs already in use.

 ■ Look for existing software components and services that can provide
needed functions for the new system. Those functions must be interoper-
able with the existing environment and with components that will be built.

 ■ Build components that can’t be purchased as software modules or used as a
service. As with acquired components, these must be interoperable with all
other system components and with existing environments.

 ■ Structure and assemble the components in a way that is feasible to build,
test, deploy, and operate over the long term.

That sounds like a tough and complex job because it is. Successful system
designers are knowledgeable and experienced. They acquire a broad and deep
knowledge of all of the topics discussed thus far in this chapter. They learn to
apply that knowledge by working as developers and by gradually completing
design tasks for larger and more complex subsystems and systems. They constantly
update their knowledge to keep up with rapidly changing technology. And they
work in teams because no one person can hold and successfully apply all of the
knowledge needed to design and deploy a large-scale modern information system.

 ■ Architectural Diagrams
Architectural diagrams are commonly used to visually describe an information
system’s environment, components, and deployment. As with other diagrams used
in systems design, architectural diagrams summarize complex details in a way
that’s easy for people to understand. The following sections briefly look at three
widely used architectural diagrams: location, network, and deployment diagrams.

 ■ Location Diagrams
Location diagrams are commonly used to show the geographic placement of
various system components, including hardware, buildings, and users. Location
diagrams are developed early in the design process to describe a system’s envi-
ronment. A simple example from the RMO case will suffice to show how loca-
tion diagrams are constructed.

RMO’s main offices consist of the corporate headquarters as well as a large
retail store, a manufacturing plant, and a large distribution warehouse in Park
City, Utah. Park City is where the company got its start and where it opened
its first retail store. Salt Lake City is, in many ways, the hub for RMO’s daily

interoperability the ability of a component
or system to interact with other components
or systems

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

202 PART 3 ■ Essentials of Systems Design

operations. The primary data center is located in a separate building in Park
City. There are two distribution centers: one in Portland, Oregon, and the other
in Albuquerque, New Mexico. Additional manufacturing is done in Seattle,
Washington. Figure 7-13 is a location diagram showing retail, manufacturing,
and distribution locations.

 ■ Network Diagrams
A network diagram shows how locations and hardware components are inter-
connected with network devices and wiring. There are many different kinds of
network diagrams—each emphasizing different aspects of the network, con-
nected hardware resources, and users.

Figures 7-4, 7-7, and 7-8 are all network diagrams. Figure 7-14 shows
another network diagram that focuses much more specifically on network con-
nections and network hardware. A diagram of this type is typically used to
describe network connections in a building or within a server room.

 ■ Deployment Diagrams
A deployment diagram describes how software components are distributed
across hardware and system software components. Figure 7-15 shows soft-
ware subsystems and database components distributed across two servers.

network diagram a model that shows how
locations and hardware components are inter-
connected with network devices and wiring

FIGURE 7-13 Location diagram
showing RMO’s warehouses,
manufacturing plants, and retail
stores

Retail stores
Distribution warehouse centers
Manufacturing plants

Montana

Billings

Boise

Idaho

Wyoming

Denver

Colorado

Albuquerque

Salt
Lake City

Nevada

California

Reno

Sacramento

Oregon

Portland

Washington

Seattle

New Mexico

Arizona

Utah

Park City

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

203CHAPTER 7 ■ Defining the System Architecture

On the left, an application server hosts Microsoft Internet Information Server,
which in turn hosts multiple CSMS subsystems. The subsystems and their
dependencies are represented as embedded package diagrams. On the right, a
database server hosts Microsoft SQL Server 2013 as the database management
system (DBMS). In turn, the DBMS hosts three database schemas that provide
permanent storage of customer, order, and product data. Software components
in the application server communicate with the DBMS using SQL as the primary
protocol and database access language.

 ■ Describing the Environment
Returning for a moment to Figure 7-1, notice that describing the environment is
the first design activity. As discussed in Chapter 6, that description includes two
key elements:

 ■ External systems
 ■ Technology architecture

A large-scale information system such as RMO’s CSMS will typically
interact with a few dozen external systems, including other systems owned by
RMO (e.g., financial reporting and supply chain management systems) and
systems owned or operated by other organizations (e.g., payment processors

FIGURE 7-14 Network diagram
showing building or server
room details

FIGURE 7-15 Deployment diagram
for RMO subsystems

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

204 PART 3 ■ Essentials of Systems Design

and shippers). Furthermore, a new system isn’t developed in a technology vacuum.
Rather, the owning organization has many existing systems and a technology
architecture that supports them. Thus, any new system must integrate with that
technology architecture. If the new system requires technology architecture
changes, they must be carefully considered and coordinated with the existing
architecture and systems.

You’ve already reviewed many key aspects of external systems and technol-
ogy architecture. You’ve also learned about three different types of diagrams
that can be used to summarize environment information. The rest of this section
first explores some of the key questions that must be answered when describing
the environment. It then looks at a specific RMO example to show you how
those questions are applied in practice. Finally, it discusses some specific issues
of data integration that must be addressed when interconnecting multiple appli-
cation components and systems.

 ■ Key Questions
A useful way of starting to describe the environment is to pose a series of ques-
tions. The answers to those questions provide a pool of information to be sum-
marized in diagrams and supporting text. The following questions are a typical
starting point:

1. What are the key features of the existing or proposed technology environ-
ment that will support or constrain the system?

a. What operating systems will be used?
b. What other system software (e.g., Web server, database management, and

intrusion detection software) will be used?
c. In what ways are network messages filtered or otherwise secured? Are

any changes required to support interactions with external systems or
user-interface devices?

d. What APIs and development tools are compatible with the existing
 technology environment?

2. With what external systems and databases will the system under devel-
opment interact? For each system or database, answer the following
questions:

a. What is the timing and frequency of each interaction?
b. What is the data content of inputs to and outputs from the system?
c. What protocols will format and encode data flowing to or from the

external system?
d. What are the security requirements of each inflow and outflow?
e. What security methods and protocols will be used to satisfy the security

requirements?

3. What devices will be used for automated inputs and outputs?

a. What protocols will format and encode data flowing to or from the
 devices?

b. What are the security requirements of each inflow and outflow?
c. What security methods and protocols will be used to satisfy the security

requirements?
d. What APIs and development tools are compatible with the existing

 technology environment and required automated inputs and outputs?

4. What user-interface technology will be used?

a. Where will users be located?
b. What hardware device(s) will users use?
c. What operating systems will run on “smart” user-interface devices?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

205CHAPTER 7 ■ Defining the System Architecture

d. On what other user device software will the system rely (e.g., browsers,
plug-ins, and software utilities embedded in the device)?

e. What protocols will format and encode data flowing to or from user
devices?

f. What are the security requirements of each inflow and outflow?
g. What security methods and protocols will be used to satisfy the security

requirements?
h. What APIs and development tools are compatible with the existing

technology environment and required user interfaces?

Once the answers to these questions have been recorded, the designer can
then begin developing architectural diagrams to summarize system interfaces
and technology architecture. However, some details of those diagrams must be
revisited when designers complete the next design activity: design the applica-
tion components.

 ■ RMO Environment Description
Figure 7-16 shows a network diagram describing RMO’s current technology
architecture. Along with the data center in Park City, RMO has internal net-
works in every office, warehouse, manufacturing plant, and retail store. In addi-
tion, the distribution centers and manufacturing plants are all connected to the
central data center and to the corporate offices in Park City by a VPN. Retail
outlets are connected by a separate VPN to the central site. Separate servers host
each primary system and a Gigabit LAN connects all servers and users in the
data center and corporate offices.

Chapter 2 described several planned updates to the current system to
develop the CSMS. This section focuses on a handful of updates to demonstrate
how the environment is affected:

 ■ Support for mobile end-user computing devices, including dedicated apps
for tablets and smartphones

 ■ Updated support for Web technologies, including user content adapted
to device characteristics and structuring of key system components and
 functions as Web services

 ■ Direct interface to social networking sites to enable opinion sharing about
RMO products

 ■ Consideration for the use of external service providers to host all or part of
the CSMS

FIGURE 7-16 RMO’s current
technology architecture

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

206 PART 3 ■ Essentials of Systems Design

The following subsections briefly address the impact of these updates as
answers to the key questions posed above.

 ❚ Mobile Devices and Apps
The current technology architecture connects users to the system using desktop
or laptop computers. Expanding the range of user devices to include tablets and
smartphones will require updates to the supporting system software, APIs, and
development tools. The current system relies on servers running the Windows
operating system with Internet Information Server as the Web server. That
infrastructure is sufficient to support apps in all of the current flavors (iOS,
Android, and Windows) though additional plug-ins will have to be installed and
configured in each device to support each app type.

 ❚ Web Technologies and Adapted Content
Because some users won’t install an app, the CSMS must also support a browser-
based user interface with support for multiple screen sizes, Web browsers, and
plug-ins. That will require more complex user-interface coding than exists in the
current system, which simply serves static Web pages and forms. The updated
user-interface coding will need to query the user’s device and browser and adjust
the content of the Web pages transmitted to match the device characteristics. As
with the apps, this may require supporting more modern Web protocols such as
HTML5 and updated APIs and development tools.

Structuring newly deployed applications as Web services will require changing
the way that RMO configures and manages servers. Note that each server in
Figure 7-16 is dedicated to a specific system. Modern technology architecture
that supports Web services generally organizes servers by type of service
(e.g., Web, application, database, or video content) with each server hosting
 services or components from multiple information systems. In addition, groups
of servers are generally deployed for each service type to provide service
 continuity in case one machine fails.

 ❚ Social Networking
Some of the impacts of incorporating social networking into the system mirror
those described earlier for apps and Web pages that adapt to the user’s device.
Social networking services provide the ability to interface with external systems
in two ways:

 ■ A Web services interface
 ■ An API and toolkit that enable developers to create customized functions

and embed them within the social networking site and interface

Additional research is required to determine whether one or both of these
methods are needed to implement the social networking capabilities of the
new CSMS. That research must be repeated for each social networking ser-
vice (e.g., Facebook, Twitter, Pinterest, and Google+) with which the CSMS
will interact. Of course, the choice of interaction method, the Web services
protocols, and the API and development toolkit will vary among the social
networking services.

 ❚ Security Implications
Supporting apps, multiple browsers with plug-ins, and interfaces to social
networking sites will probably require security updates to the current tech-
nology architecture. Apps will need to be digitally signed prior to distribu-
tion via the app stores for each device’s operating system. In addition, some
browsers and plug-ins require transmission of digitally signed code frag-
ments that are encrypted with the organization’s public key. Similarly, social

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

207CHAPTER 7 ■ Defining the System Architecture

networking services implement stringent security protocols to protect them-
selves against malicious plug-ins and intrusions via Web services. Designers
of the updated CSMS will have to work closely with system and network
administrators to determine what updates to security configuration will be
required.

 ❚ Updated RMO Technology Architecture
Figure 7-17 updates Figure 7-16 to explicitly incorporate support for mobile
devices, apps, and social networking. Note the increased complexity of the dia-
gram, including additional user-interface devices, upgraded network speeds,
an increase in the number of servers, grouping servers by service type, the
addition of content management servers for images and videos, and additional
external service providers. The diagram doesn’t capture additional complexity
associated with updated security configuration and more complex software
hosted within RMO’s application servers. Increased network bandwidth is
needed throughout the architecture due to use of Web services, the increased
complexity of user interfaces, and increased use of graphics and video. Note
that transition from the old technology architecture to the new may take
months or years due to the need to redeploy and update legacy systems not
replaced by the CSMS.

 ❚ External Hosting
The right side of Figure 7-17 summarizes a lot of complexity and cost. Updates
to the data center will be expensive, as will operating, managing, and maintain-
ing it over time. Further, locating all key software and hardware assets in a
single data center is risky. RMO risks customer dissatisfaction and loss of sales
revenue if the data center were to be offline for any reason.

External hosting of all or part of the CSMS is an option that can reduce risk,
improve performance, and possibly reduce cost. Hosting the application with a
national or global company, such as Google or Amazon, would enable RMO
to take advantage of an existing and highly distributed computing infrastruc-
ture. Key components could be replicated at multiple locations to improve per-
formance and to provide fault tolerance. Costs might be lower due to improved
economies of scale. Even if costs were the same or slightly higher, they might be
justified by improved performance and fault tolerance.

FIGURE 7-17 RMO’s updated
technology architecture for the CSMS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

208 PART 3 ■ Essentials of Systems Design

 ■ Designing Application Components
Chapter 6 defined an application component as a well-defined unit of soft-
ware that performs one or more specific tasks. That definition masked some
important details, including variations in component size ranging from single
subroutines or methods to entire subsystems; variations in programming lan-
guage, protocols, and supporting system software; and the ability to build, buy,
or freely access components as Web services of entire SaaS systems. This sec-
tion concentrates on defining the functions and boundaries of larger application
components, including Web services and subsystems. Design of smaller applica-
tion components, such as classes and packages, is covered in later chapters.

 ■ Application Component Boundaries
Systems analysis activities collect and document various aspects of systems
requirements that are needed to design application components. A key question
to be answered when designing application components is which components
will perform which functions? Answering this question can be approached from
a top-down or bottom-up perspective. With a top-down approach, the designer
thinks of the entire system as a single component performing all of the functions
described during analysis activities. The designer then breaks this large com-
ponent into smaller components in a generic process called factoring. With the
bottom-up approach, the designer considers each function separately and looks
for similarities as a basis for grouping software that implements the functions
into larger application components.

With either approach, the designer looks for similarities among system
functions to guide factoring or grouping. But how does a designer determine or
measure similarity among system functions? When answering that question, it
helps to focus on specific analysis activity descriptions like events and use cases.
Events and use cases incorporate attributes that can be used to measure similar-
ity, including the following:

 ■ Actors. Each use case identifies one or more specific actors. Software for
use cases that interact with the same actors is a candidate for grouping into
a single application component.

 ■ Shared data. Use cases that interact with the same domain class(es) are
candidates for grouping into a single application component.

 ■ Events. Use cases that are triggered by the same external, temporal, or state
event are candidates for grouping into a single application component.

 ■ RMO CSMS Application Architecture
Let’s illustrate how use case similarities can be used to define the boundaries of
application components for a portion of RMO’s CSMS. Figure 7-18 combines
information about use cases, domain classes, and events as defined in earlier
chapters and shows all use cases in which Customer is an actor or user. The
far-right column shows prospective groupings of those use cases, which are dis-
cussed further below.

Groups A–D include all use cases related to sale or return activities that can
be performed online by the customer (Groups C and D) or with the assistance of
a phone (Groups A and C) or store sales representative (Groups B and C). Group
D includes use cases that are unique to the customer’s online experience, includ-
ing the online shopping cart. Group E cases cover various nonshopping aspects
of the customer experience, such as product ratings and friend links. In essence,
Groups C–E describe the customer’s entire online experience while interacting
with the CSMS.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

209CHAPTER 7 ■ Defining the System Architecture

Domain class(es)

ProductItem, InventoryItem,
SaleItem, Sale, SaleTrans

ProductItem, InventoryItem,
SaleItem, Sale, SaleTrans

Customer, Account, Address

SaleItem, ReturnItem

ProductItem

ProductItem, ProductComment

ProductItem, AcessoryPackage

ProductItem, InventoryItem,
CartItem, OnlineCart

ProductItem, InventoryItem,
CartItem, OnlineCart

ProductItem, InventoryItem,
CartItem, OnlineCart, SaleItem,
Sale, SaleTrans

ProductItem, InventoryItem,
CartItem, OnlineCart

ProductItem, InventoryItem,
CartItem, OnlineCart

ProductItem, InventoryItem,
CartItem, OnlineCart

Customer, Message

Customer, ProductComment,
ProductItem

Customer, Suggestion

Customer, Message

Customer, FriendLink

Customer, FriendLink

Customer, Sale

Customer, CustPartnerCredit,
PromoPartner

Customer, Sale

ProductItem, InventoryItem,
SaleItem, Sale, SaleTrans,
Shipment, ReturnItem

Shipment, Shipper, SaleItem

Event(s)

Customer request while
shopping by phone

Customer request while
shopping in store

Customer request or sale
to a new customer

Customer requests return

Customer request while shopping
online, by phone, or in store

Customer request while shopping
online, by phone, or in store

Customer request while shopping
online, by phone, or in store

Customer request while
shopping online

Customer request, usually
after sale completed

Customer request while
shopping online

Customer request while
shopping online

Customer request while
shopping online

Customer request while
shopping online

Customer request while
shopping online

Customer request, usually
after sale completed

Customer request while
shopping online

Customer request while
shopping online

Customer request while
shopping online

Customer request while
shopping online

Customer request while
shopping online

Customer request while
shopping online

Customer request while
shopping online

Customer, representative,
shipping, or management
request

Customer, representative,
shipping, or management
request

Group

A

B

C

Use case User/actor

Create phone sale Phone sales representative

Create store sale Store sales representative

Create/update
customer account

Customer, phone or store
sales representative

Look up order status

Customer, phone or store
sales representative

Track shipment

Create item return

Customer, phone or store
sales representative

Search for item

Customer, phone or store
sales representative

View product comments
and ratings

View accessory
combinations

Customer, phone or store
sales representative

Customer

CustomerFill shopping cart

Empty shopping cart

Check out shopping cart Customer

Fill reserve cart Customer

Empty reserve cart Customer

Convert reserve cart Customer

Rate and comment on
product

Customer

Customer

CustomerProvide suggestion

Send message

CustomerBrowse messages

CustomerRequest friend linkup

Reply to linkup request Customer

Customer

CustomerSend/receive partner
credits

View “mountain bucks”

CustomerTransfer “mountain bucks”

Shipping, customer,
management, phone or
store sales representative

Shipping, customer,
management, phone or
store sales representative

D

E

FIGURE 7-18 CSMS use cases for the Customer user/actor

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

210 PART 3 ■ Essentials of Systems Design

Look again at the generic description of three-layer architecture in
 Figure 7-11 and consider how it might be applied to the use cases in Figure 7-18.
 Consider that five different actors will interact with the use cases in Groups
A–C using different devices and in different operational contexts:

 ■ Phone sales representative. Interacts with the customer by phone while
using a desktop computer to perform sale and return functions

 ■ Store sales representative. Interacts with the customer in person while using
a point-of-sale terminal or tablet computer

 ■ Customer. Performs functions using a smartphone, tablet, laptop, desktop
computer, or other device (e.g., an Internet-capable television)

 ■ Shipping. Performs return functions using a tablet or desktop computer
 ■ Management. Performs order and shipment functions using a tablet,

 laptop, or desktop computer

If the domain model is implemented within a single database, the underlying set
of use cases can be organized as one data layer interacting with one or more busi-
ness layers. Use cases could be grouped into business layers in multiple ways. For
example, each use case group could be a separate business layer. However, because
all of the use cases (Groups A–D) have significant overlaps in users, domain classes,
and events, it makes sense to combine them into a single business layer.

The single business layer interacts with multiple view layers, each optimized
for a different combination of user and device. View layers are customized for
each user type by omitting connections to irrelevant use cases and by optimizing
the user-interface design to workflow and context. For example, the user inter-
face for a phone sales representative would omit Groups B, D, and E use cases
and be optimized for rapid data entry using a desktop computer with multiple
large displays. In some cases, such as a shipping representative using a tablet or
desktop computer, a single view layer can support multiple device types. In other
cases, such as customers shopping online, different view layers are required for
some devices due to significant differences in device capability or screen size.

Figure 7-19 shows a deployment diagram describing the three-layer archi-
tecture for the CSMS use cases in Figure 7-18. Note that the diagram distributes
the three layers across two servers—one hosting the data layer and the other
combining the business and view layers. Of course, the two servers could be
clustered or replicated across multiple locations. The diagram represents one
distinct CSMS subsystem in enough detail to enable user-interface, database,
and lower-level software design activities to proceed.

 ■ Application Component Integration
Modern application developers are often faced with the task of integrating leg-
acy systems, purchased application components, third-party SaaS applications,
and custom-developed components. Recall from Chapter 2 that RMO’s CSMS

FIGURE 7-19 Deployment diagram
for RMO CSMS customer-oriented
use cases

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

211CHAPTER 7 ■ Defining the System Architecture

will replace the legacy phone and retail store sales systems, but not the Supply
Chain Management (SCM) system. Recall from Chapter 1 that a Tradeshow
System is also under development. Also, like any large company, RMO has other
systems, including a SaaS Financial planning & peporting (FPR) system and a
purchased Human resource management (HRM) system. Figure 7-20 summa-
rizes the RMO systems and their interactions.

Transaction information that affects accounting records and financial
reports flows into the FPR system from three other systems. If the systems were
all internally developed and implemented, the FPR system could directly access
the databases of the other systems. But because the FPR is a SaaS application,
developers at RMO have no control over its internal implementation. Because
it’s impractical for a SaaS provider to rewrite their application to access the
unique internal systems of every client, most SaaS developers take one or more
of three approaches to data inflow from other systems:

 ■ Batch data export and import. Data from the source system is extracted
and stored in a “neutral” format such as a comma-delimited, Excel, or
XML file. The files are stored in an accessible location such as an FTP
server and the SaaS system periodically executes a script that copies the
file(s) and imports their contents.

 ■ Data import via Web services. The SaaS system provides general-purpose
Web services for data import. User organizations develop customized data
export software to extract data from their systems or databases and pass
it to the SaaS system via Web service calls. Data export/import can occur
periodically in batches or per update in real time.

 ■ Direct access to commonly used third-party applications. When a sufficient
number of clients use the same purchased or SaaS software for other pur-
poses, a SaaS provider might develop a specific data export/import utility
for that system. For example, many colleges use BlackBoard Learn as a
learning management system and Elucian Banner as their student informa-
tion system. Because each system needs access to the other’s data, both ven-
dors have an incentive to develop data export/import software that directly
accesses the database of the other system.

RMO currently uses batch data export and import to move financial data
from the SCM and HRM systems to the FPR system. RMO-developed scripts
export purchase and return transactions from the previous day and store them
in an Excel file at midnight. The FPR system is configured to access that file at

FIGURE 7-20 RMO subsystems
and data flows

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

212 PART 3 ■ Essentials of Systems Design

2:00 A.M. and add all the transactions to the financial records. The benefits of
this approach are low cost and complexity. The drawback is that financial records
don’t reflect purchasing transactions as they occur. A manager viewing purchas-
ing-related accounts through the FPR system is looking at yesterday’s data.

HRM data export to the FPR system is handled similarly, though the export
occurs every two weeks to coincide with payroll generation and the file format
is XML. The drawbacks and benefits are similar, though the issue of managers
accessing “old” data through the FPR system is more significant. Employee time
and attendance data is captured daily through the HRM system, but that data
isn’t shown on RMO financial reports until payroll is generated. Extra accounting
steps are thus required at the end of each month to manually adjust accounting
records for accrued payroll cost so that financial reports are accurate.

Sharing inventory information among three internally developed systems cre-
ates more significant integration challenges. The CSMS will replace the legacy phone
and retail store sales systems that generate updates to inventory levels and financial
transactions. In theory, the CSMS, SCM, and Tradeshow systems could share the
same underlying database, thus eliminating the need to export or import inventory
data among them. However, the SCM is a legacy system that RMO would prefer to
leave untouched during development of the Tradeshow System and CSMS.

Note the two-way arrow between the SCM system and the CSMS in
 Figure 7-20. Both systems read and update inventory records and need current
and accurate data. So which system “owns” inventory records? The answer is
that they both do, and that answer implies that the systems should share real-
time access to common data. But implementing that solution would require
the new CSMS to use the legacy SCM system’s database. Though that solution
is technically feasible, it forces new application software to interface with an
older DBMS, which may limit some desired capabilities of the CSMS. Also,
what about noninventory data used by the CSMS? Will the SCM database be
expanded to include that data or will the CSMS access two different databases?

RMO management is reluctant to create too many dependencies between
new and old systems. Thus, they’ve decided to use a separate database to sup-
port the CSMS. No changes will be made to the SCM, which will continue to
use its current database. Those decisions force a choice concerning inventory
data. One of the systems must be declared the system of record for inventory
data. A system of record maintains a master copy of data that is correct and
current. Any other system that maintains a copy of the same data must periodi-
cally synchronize it with the system of record.

Figure 7-21 shows the detailed impact of declaring the CSMS to be the sys-
tem of record for inventory data. CSMS developers will create a Web service that
imports and exports information about inventory data for the CSMS database.
The Web service format will enable updates over the Internet and provide future
extensibility. The Web service will push data updates to the databases for the
other two systems and copy any updates from those systems back to the CSMS

system of record a system or application
component that maintains the current and
correct master copy of one or more data items

FIGURE 7-21 RMO inventory data
synchronization

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

213CHAPTER 7 ■ Defining the System Architecture

database. The Tradeshow System accepts inventory level updates nightly and sends
back any new inventory item records created by RMO buyers. Updates to/from
the CSMS and SCM system are more frequent because current data is more criti-
cal to both systems. The SCM system processes product shipments from vendors,
and the CSMS needs to know of them quickly so that customers see inventory as
it becomes available, and so that shipments for current orders and back orders can
be quickly generated. The SCM needs frequent updates of inventory levels due to
sales and shipments so that it can generate timely reorders from vendors.

CHAPTER SUMMARy
This chapter described early activities that bridge the
gap between systems analysis activities and detailed
design activities, such as user-interface design, data-
base design, and internal design of software compo-
nents. Those bridge activities include describing the
system environment and designing its application
components. Describing the system’s environment re-
quires describing its technical architecture and any
interfaces with other systems. Designing the applica-
tion components requires allocating system functions
to components, describing how data is shared among
those components, and describing how the application

components are distributed across the technical
architecture.

Diagrams developed during these design activities
include locations, network, and deployment diagrams.
Location diagrams are customized maps that show the
physical locations of users and computing devices. Net-
work diagrams show computing devices and the networks
that connect them. Network diagrams can be annotated in
various ways, including callouts that show embedded soft-
ware components and protocols. Deployment diagrams
show how specific software components are hosted within
system software components and computing devices.

Hypertext Transfer Protocol
 Secure (HTTPS)

Internet backbone network

interoperability

local area network (LAN)

network diagram

protocol

server

software as a service (SaaS)

system of record

system software

three-layer architecture

Uniform Resource Locator (URL)

view layer

virtual private network (VPN)

Web-based application

Web service

World Wide Web (WWW)

app

application software

business logic layer

client/server architecture

data layer

domain layer

Extensible Markup Language (XML)

hyperlink

Hypertext Markup Language (HTML)

Hypertext Transfer Protocol (HTTP)

KEy TERMS

 1. What is a server? Do all organizations with infor-
mation systems own servers? Why or why not?

 2. Compare and contrast Internet backbone
networks with local area networks.

 3. Is the Internet the same thing as the World Wide
Web? Why or why not?

 4. Describe the parts of a URL.

 5. Compare and contrast application and system
software. List a few specific examples of each type.

 6. Which is more secure, an app or a Web-based
application? How or why?

REvIEW QUESTIONS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

214 PART 3 ■ Essentials of Systems Design

 14. List and briefly describe the function of each layer
of three-layer architecture. On what type of com-
puting device is each layer typically deployed?

 15. How or why is interoperability such an impor-
tant consideration in designing and deploying a
modern system?

 16. List and briefly describe three common types of
architectural diagrams developed and used by
system designers.

 17. Describe the key questions that should be asked
and answered when a system designer is describ-
ing the environment of a system.

 18. How are use cases and related information used by
designers when designing application components?

 19. What is a system of record? Under what condi-
tions does a designer need to declare one system
to be the system of record for a specific type
of data? Under what conditions can a system
designer avoid doing so?

 7. List three types of embedded software on a typi-
cal smartphone. Of what benefit is embedded
software to an application software developer?

 8. What is the role of protocols in modern software
and systems?

 9. List and briefly describe at least three commonly
used Web protocols.

 10. Briefly define the terms technology architecture
and application architecture. How are they dif-
ferent? How are they interdependent?

 11. Describe software as a service. What features dis-
tinguish it from application software installed on
a personal computing device?

 12. How or why are Web services important to
designing and constructing modern application
software? What decisions does a system designer
need to make concerning Web services?

 13. In what way(s) is three-layer architecture dif-
ferent from client/server architecture? In what
way(s) is it similar?

PRObLEMS AnD EXERCISES
 1. Investigate the technical and application archi-

tecture of a large-scale digital content provider
such as iTunes or Google Play services. Update
the architectural diagrams in the first half of the
chapter to match your chosen provider. Explain
any differences from the original diagrams
describing the Amazon shopping application.

 2. A medium-sized engineering firm has three sepa-
rate engineering offices. In each office, a local
LAN supports all the engineers in that office. Due
to the requirement for collaboration among the
offices, all the computers should be able to view
and update the data from any of the three offices.
In other words, the data storage server within
each LAN should be accessible to all computers,
no matter where they are located. Draw a net-
work diagram that will support this configuration.

 3. Consider the differences in physical character-
istics among a current smartphone, a current
tablet, and a current laptop computer with
a 15-inch or larger screen. Also consider the
student-facing Web applications you use at your
college to access course learning materials, regis-
ter for classes, and pay college-related bills. For
which devices is a unique view layer required?
Why? Should any of the applications be con-
structed as an installable app? Why or why not?

 4. Reexamine the decision made in the RMO
example at the end of the chapter to make the
CSMS the system of record for inventory data.
What would be the impact of deciding that the
SCM system is the system of record for inventory
data? How would Figure 7-21 change?

Data Integration at Cooper State
University
Cooper State University (CSU) has used a paper-and-pen-
cil survey system to gather student feedback on instruc-
tors and courses for over two decades. Paper forms are
passed out to students during a class period near the end

of the semester. Class information and survey questions
are preprinted on the forms and empty circles are provided
for each answer. Students fill in one of the circles for each
question with a pencil. Written comments can be provided
on the back of the form. The forms are delivered to a pro-
cessing service in Nebraska, which scans the forms, sum-
marizes the responses, and produces printed reports that

CASE STUDY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

215CHAPTER 7 ■ Defining the System Architecture

are sent back to CSU along with the survey forms. The re-
ports and survey forms are distributed to department chairs
who review them and then distribute them to instructors.

CSU wants to replace the existing system with a mod-
ern online survey system. Several vendors market such
systems as SaaS Web-based applications. The systems
all have similar data integration needs with existing CSU
 systems, including the following:

 ■ Data about course sections, assigned instructor(s),
and registered students must be imported from either
CSU’s online learning management system (LMS) or
its student information system (SIS)—the same sys-
tem that stores grades and transcripts.

 ■ A survey for a specific student and course section
must be accessible as a hyperlink from within the
course section’s Web page in CSU’s online LMS.
Instructors may configure the LMS to record whether
a student has completed the survey in the grade
book and provide points toward the course grade as a
reward for completing the survey.

 ■ Access to the survey system should be restricted to
CSU instructors, staff, administrators, and students
using the same user ID and password they use to
access other CSU applications. CSU uses a Central

Authentication Server (CAS) to store usernames and
passwords. Other CSU systems interact with a CAS
Web service when they need to authenticate a user
trying to access the system.

 ■ Students view their final course grades via a Web
application that is part of the SIS. CSU wants to delay
students’ ability to view their final grades by one week
unless that student has completed surveys for all
courses in which they are registered.

Complete the following tasks:

1. Draw a network diagram that summarizes the sys-
tems described above; devices used by administra-
tors, staff, instructors, and students; and the network
connections among them. Assume that the current
survey system will be replaced by a new Web-based
system. Assume further that each existing CSU sys-
tem is hosted on its own server.

2. Which systems need access to current data regarding
course sections, their assigned instructors, and regis-
tered students? Select a system to be the system of
record for that data and justify your decision. Draw a
diagram similar to Figure 7-21 to summarize all required
synchronizations.

Community Board of Realtors®

The Community Board of Realtors Multiple Listing
 Service is a small system with limited requirements. In
Chapter 3, you identified a complete list of use cases.
Using the results from your earlier work, do the following:

 1. Discuss the requirements of this system for
mobility devices. What use cases would be best

utilized on a mobile device? What use cases
would be best with a desktop user interface?

 2. Should this application be architected and de-
ployed as a Web application? What would be
critical factors to consider if it wanted to deploy
this application as a Web application?

Running Case studies

The Spring Breaks ‘R’ Us Travel Service
Complete the following tasks:

 ■ Develop a simple network diagram that includes
all four SBRU subsystems (resort relations,
student booking, accounting/finance, and
social networking) assuming that all server-side
hardware and software resides at the SBRU
home office.

 ■ List the advantages and disadvantages of host-
ing all server-side hardware and software at
the SBRU home office compared with using a
large cloud service provider such as Amazon or
Google.

 ■ Answer the following questions:

 1. Assuming that external hosting costs are roughly
equivalent to the cost of operating, staffing, and
maintaining a server room at the home office, do
the benefits of external hosting outweigh the costs?

 2. Does your answer to question #1 change if external
costs are 50 percent greater than operating, staffing,
and maintaining a server room at the home office?

 3. Does your answer to question #1 or #2 change
if SBRU expands its market to include Europe
and South America?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

216 PART 3 ■ Essentials of Systems Design

On the Spot Courier Services
 1. Can it deploy similar functionality by having

drivers install an app on their smartphones?

 2. What are the pros and cons of this approach as
compared with a customized hardware device?

 3. Is this a feasible alternative given the wide vari-
ety of phones that drivers might own?

 4. What embedded software on a smartphone will
form the app’s technology environment?

Sandia Medical Devices
Based on the discussion of hardware, Internet, and soft-
ware technology trends in this chapter, it should be clear
to you that the Real-Time Glucose Monitoring (RTGM)
system is an interesting combination of older and newer
technology. Except for the interface to software and data
on mobile phones, the server-side portions of the system
are a relatively traditional business-oriented application
that can be implemented by using old-fashioned tech-
nology. What makes the RTGM system “new” are its
client-side functions, including the automated collection
of glucose levels, the regular transmission of that data
to servers, the integration of communication between
patients and health-care providers, and the integration
of those functions within software installed on a por-
table device that can be carried in a user’s pocket.

With that in mind, answer the following ques-
tions. You may need to do some additional research to
fully address them.

 1. Should the client-side software be deployed as
a browser-based application or as an installable
app? Be sure to consider such issues as client/
server communication requirements and fre-
quency, user-interface quality, and portability
across devices and operation systems.

 2. Which (if any) social networking capabilities
might make a useful addition to the RTGM sys-
tem? Be sure to consider the HIPAA requirements
described for this case at the end of Chapter 6.

 3. When recorded glucose levels generate high-
priority alerts, physicians or other health-care

providers initiate direct contact with the patient.
An ordinary phone call over the cellular phone
network is one way to support direct contact.
Because any client-side device used with the
RTGM system must be fully Internet-capable, an
Internet telephony application, such as Skype, is
another possible way of supporting synchronous
voice or video communication with the patient.
Should Skype or a similar Internet telephony
application be used with the RTGM system?
Why or why not? If such an application is used,
should it support video? Why or why not?

 4. Data mining is an increasingly important tech-
nique for medical research. The ability to scan
medical records of large numbers of patients over
extended time periods enables researchers to bet-
ter evaluate the effectiveness of drugs and thera-
pies, more accurately connect disease risk levels
to specific patient characteristics, and identify
patterns of transmission or occurrence, progres-
sion, and treatment response for rare diseases
and conditions. What types of medical research
might be enabled or better supported by the data
collected by the RTGM system? Would your
answer change if the database were extended
to include additional information that might be
gathered from the patient’s mobile phone (e.g.,
location information when each glucose level was
captured, size and content of the patient’s contact
list, call history, and the volume of text messages
and Internet browsing activity)?

Refer to earlier chapters for the functional details of
this application. Large delivery companies like UPS
and FedEx use highly customized portable hardware
devices to enable their drivers to track pickups and
deliveries and to inform drivers of routing changes and
other events to which they must respond. As a smaller
company, On the Spot Courier services doesn’t have
the luxury of developing and deploying a customized
hardware device for its drivers.

Len Bass, Paul Clements, and Rick Kazman,
 Software Architecture in Practice (3rd ed.).
 Addison-Wesley, 2012.

Russ White and Denise Donohue, The Art of Network
Architecture: Business-Driven Design. Cisco
Press, 2014.

Thomas Erl, Ricardo Puttini, and Zaigham
 Mahmood, Cloud Computing: Concepts,
 Technology & Architecture. Prentice-Hall,
2013.

FURTHER RESOURCES

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning Objectives
After reading this chapter, you should be able to:

Explain the concepts of user experience,
user interface, and usability

Describe the metaphors that can be used to
assist in user-interface design

Describe important characteristics of human-
interface objects that affect usability

Discuss the important principles of navigation
through a software application

Explain how a storyboard can be used to help
with user-interface design

Describe important guidelines in user-interface
design for desktop applications

Describe important guidelines in user-interface
design for mobile devices

Design printed and on-screen reports appropriate
to users’ needs

Understanding the User Experience and the
User Interface

Fundamental Principles of User-Interface
Design

Transitioning from Analysis to User-Interface
Design

User-Interface Design

Designing Reports, Statements, and
Turnaround Documents

chapter OutLine

chapter eight

Designing the User
Interface

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

218 PART 3 ■ Essentials of Systems Design

 ■ Overview
In Chapter 6, you learned that user-interface design is one of the activities of the
fourth core process, design system components. In actuality, designing the user
interface has characteristics of both analysis activities and design activities.

As an analysis activity, user-interface design requires very heavy user
involvement. You saw a good example of this in the chapter opening case. Screen
layout is a discovery activity and produces deep understanding of the user pro-
cesses and needs just like other analysis activities. During the analysis activities,
developers discuss inputs and outputs early and often with system stakeholders
to identify users and actors and the information they need to carry out their
business processes. In the following sections, you will learn different ways to
think about and to model the user interface to help yourself and the user con-
sider various methods of interacting with the new system.

As a design activity, user-interface design utilizes other analysis models as
input, such as the system sequence diagram. It also produces models in the form
of sample layouts that are used by programmers to implement the final system.
Because few systems operate autonomously or in isolation, designing the inter-
faces (inputs and outputs) between a system and its users is an important sys-
tems design task. Poorly designed interfaces with people can result in a system
that operates less than optimally or doesn’t fulfill its purpose. In this chapter,

Opening case Interface DesIgn at avIatIon electronIcs

Bob Crain was admiring the user interface for the manu-
facturing support system that was recently installed at
Aviation Electronics (AE). Bob is the plant manager for
AE’s Midwest manufacturing facility, which produces
aviation devices used in commercial aircraft. These avia-
tion devices provide guidance and control functions for
flight crews, and they provide the latest safety and secu-
rity features that pilots need when flying commercial
aircraft.

The manufacturing support system is used for all
facets of the manufacturing process, including product
planning, purchasing, parts inventory, quality control,
 finished goods inventory, and distribution. Bob was
extensively involved in the development of the system
for several years, including the initial planning and devel-
opment. The information systems team that developed
the system relied heavily on Bob’s expertise. That was
the easy part for Bob.

What particularly pleased Bob was the final user
interface. He had insisted that the development team
consider the entire user experience from the very begin-
ning. He didn’t want just another cookie-cutter transac-
tion processing system. He wanted a system that acted
as a partner in the manufacturing process—similar to
the way that AE’s guidance and control system inter-
faces acted as a pilot’s partner.

The first manager assigned to the project placed a
low priority on user-interface design. When Bob asked
why user-interface design wasn’t a key focus of early

iterations, the manager replied, “We’ll add the user
interface later, after we work out the internal func-
tions.” When Bob insisted that the project manager be
replaced, the Information Systems Department sent
Sara Robinson to lead the project.

Sara had a completely different attitude; she started
out by asking about events that affect the manufacturing
process and about cases where users needed support
from the system. Bob and Sara conducted meetings to
involve users in discussions about how they might use
the system, even asking users to act out the roles of the
user and the system in carrying on interactions.

At other meetings, Sara presented sketches of
screens and asked users to draw on them to indicate the
information they wanted to see and options they wanted
to be able to select. These sessions produced many
ideas. For example, it appeared that many users didn’t
sit at their desks all day; they needed larger and more
graphic displays they could see from across the room.
Many users needed to refer to several displays, and they
needed to be able to read them simultaneously. Users
made sketches showing how the manufacturing pro-
cess actually worked, and the team used these sketches
to define much of the interface. Sara and her team kept
coming back every month or so with more examples to
show, asking for more suggestions.

When the system was finally completed and
installed, most users already knew how to use it
because they had been so involved in its design.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

219CHAPTER 8 ■ Designing the User Inter face

you will learn concepts and techniques that will assist you in designing screens
and reports that are rich, engaging, and efficient—elements that create a user-
friendly and effective interface.

User-interface design is much more complex than it used to be, even just
a few years ago. Users are doing much more with multiple computing devices.
User-interface design was initially only concerned with the layout of screens and
reports. Today, you must consider the entire user experience—what devices are
being used and what the users are doing on those devices. Designing the user
interface is dependent not only on the type of device, such as desktop, laptop,
tablet, or smartphone, but also on the specific types of devices that are being
used, such as Apple or Android or Windows devices and operating systems. In
this chapter, you will learn general guidelines and principles that can be applied
across all user-interface and user-experience design.

 ■ Understanding the User Experience and
the User Interface

The use of computing devices and applications continues to proliferate into all
aspects of our lives. Does the use of these applications make us more knowledge-
able or more empowered? Or do they make our lives more complex with added
frustrations? The answer to these questions depends not only on the functional-
ity provided, but also on how easy it is to understand and use these applications.
As a developer, you must have a deep understanding of users, applications,
devices, techniques, and principles to build effective user interfaces.

 ■ Definitions
The user experience (UX) is a broad concept that applies to all aspects of a
person’s interaction with a product or service. When the product is a software
application, UX includes actions, responses, perceptions, and feelings that a per-
son has when he uses or anticipates using the software application. It is impor-
tant for designers to think about the overall user experience as they consider the
design of the new system and particularly the user interface.

The user interface (UI) is the set of inputs and outputs that directly involve
an application user. It is the part of the system that the user sees and interacts with.
Because the user interface is the only part of the system that the users see, to them
the user interface is the system. UI design varies widely depending on such factors
as interface purpose, user characteristics, and characteristics of a specific interface
device. For example, although all user interfaces should be designed for maximal
ease of use, other considerations, such as operational efficiency, may be impor-
tant for internal users who can be trained to use a specific interface optimized
for a specific hardware device (e.g., a keyboard, a mouse, and a large high-resolu-
tion display). In contrast, a quite different user interface might be designed for a
 customer-accessible system that assumes a cell phone as the input/output device.

Sometimes developers think the user interface can be developed and added
to the system near the end of the development process, but as noted in the open-
ing case, the user interface is much more important than that. The user interface
is a major element in the total user experience. Both the considerations related
to the user experience and the details of the user interface must be integrated
into all elements of the system development. Developers must be aware that
everything that the end user sees or does while using the system is part of the
user interface and affects the user experience. Figure 8-1 illustrates the complex
nature of the user’s interaction with the system.

Because from a user perspective, the user interface is the entire system, to
the user the programs, scripts, databases, and hardware behind the interface are

user experience (UX) all aspects of
a person’s interaction with a software
 application, including actions, responses,
perceptions, and feelings

user interface (UI) the set of inputs and
outputs that the user interacts with to invoke
the functions of an application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

220 PART 3 ■ Essentials of Systems Design

almost irrelevant. In fact, good system design makes all of these elements transpar-
ent to the user. Design techniques that embody this point of view are collectively
called user-centered design, which emphasizes three important principles:

 ■ Focus early and throughout the project on the users and their work.
 ■ Evaluate all designs to ensure usability.
 ■ Use iterative development.

An early focus on users and their work is consistent with the approach to
systems analysis in this text. User-oriented analysis and design tasks are per-
formed as early as possible and are often given higher priority than other tasks.
For example, such user-oriented analysis tasks as stakeholder identification and
interviews occur early in the project. User interfaces are designed in early itera-
tions, and user-related design decisions drive other design decisions and tasks.

The second principle of user-centered design is to evaluate designs to ensure
usability. Usability refers to how easy a system is to learn and use. Ensuring
usability isn’t easy; there are many different types of users with different prefer-
ences and skills. If the system has a variety of end users, how can the designer
be sure that the interface will work well for all of them? For example, if it is too
flexible, some end users might feel lost. On the other hand, if the interface is too
rigid, some users will be frustrated.

Furthermore, ease of learning and ease of use are often in conflict. For
example, menu-based applications with multiple forms, many dialog boxes,
and extensive prompts and instructions are easy to learn; indeed, they are self-
explanatory. Easy-to-learn interfaces are appropriate for systems that end users
use infrequently. But if internal users use the system all day, it is important to
make the interface fast and flexible, with shortcuts, hot keys, voice commands,
and information-intensive screens. This second interface might be harder to
learn, but it will be easier to use after it is learned.

user-centered design design techniques
that embody the view that the user interface
appears to be the entire system

usability the degree to which a system is
easy to learn and use

Figure 8-1 Elements affecting the user experience

Equipment—Screen, keyboard,
mouse, keypad, printed forms,
documents, reports, webcam,

desk, chair, light
Screen elements—Windows,

screens, menus, buttons, pictures,
animations, fonts, sounds, colors

Application—Functions,
organization, screen content,
advertisements, distractions,

links, views, complexities

Mobile equipment—Touch
screen, screen size, brightness,

resolution, hotspots, connections,
response times

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

221CHAPTER 8 ■ Designing the User Inter face

The third principle of user-centered design is iterative development—that
is, doing some analysis, then some design, then some implementation, and then
repeating the processes. After each iteration, the project team evaluates the work
on the system to date. Iterative development keeps the focus on the user by con-
tinually returning to the user requirements during each iteration and by evaluat-
ing the system after each iteration.

Jakob Nielson, Donald Norman, and Bruce Tognazzini (see Further
Resources) are active researchers in human-computer interaction (HCI), a
field of study concerned with the efficiency and effectiveness of user interfaces
to computer systems, human-oriented input and output technology, and the psy-
chological aspects of user interfaces. HCI is a broad field with many closely
related fields of study, including interaction design, efficiency, ergonomics, soci-
etal impacts, psychological influences, and so forth.

Although the actual computing devices that people use are physical enti-
ties, the items that appear on the screens are virtual entities. They exist only as
images and sounds. Because of this, it is helpful for HCI developers to use meta-
phors based on real-world physical entities and actions to design a user interface
with a positive user experience.

 ■ Metaphors for Human-Computer Interaction
To make computers easier to use and learn, designers of early visually oriented
interfaces adopted metaphors, which are analogies between features of the user
interface and aspects of physical reality that users are familiar with. Metaphors
are still widely applied to user-interface design, as described in Figure 8-2.

Figure 8-3 is a screen capture of a computer running Windows that illus-
trates the direct manipulation, desktop, and document metaphors. The
entire display is visually similar to the surface of a physical desktop. Icons and
pictures for commonly used tools are located on the left and right sides. The
icons can be directly manipulated with a mouse or another pointing device.
The windows in the center frame are documents that are visually similar to
paper pages laid on the surface of a desk.

human-computer interaction (HCI) a
field of study concerned with the efficiency
and effectiveness of user interfaces vis-à-vis
computer systems, human-oriented input and
output technology, and psychological aspects
of user interfaces

metaphors analogies between features
of the user interface and aspects of physical
reality with which users are familiar

direct manipulation metaphor metaphor
in which objects on a display are manipulated
to look like physical objects (pictures) or
graphic symbols that represent them (icons)

desktop metaphor metaphor in which
the visual display is organized into distinct
regions, with a large empty workspace in the
middle and a collection of tool icons around
the perimeter

document metaphor metaphor in which data
is visually represented as paper pages or forms

FIgURE 8-2 Commonly used
metaphors for user-interface design

©
 C

en
ga

ge
 L

ea
rn

in
g®

Metaphor

Direct
manipulation

Desktop

Document

Dialog

Description Example

Manipulating objects on a
display that look like physical
objects (pictures) or that
represent them (icons)

The user drags a folder icon to an
image of a recycle bin or trash can to
delete a collection of �les.

At computer startup, a Windows user
sees a desktop, with icons for a clock,
calendar, notepad, inbox and sticky
notes (the computer interface version
of a physical Post-It note).

Organizing visual display into
distinct regions, with a large
empty workspace in the middle
and a collection of tool icons
around the perimeter

Visually representing the data in
�les as paper pages or forms;
these pages can be linked
together by references
(hyperlinks)

The user �lls in a form �eld for a
product he or she owns, and the
manufacturer’s Web site �nds and
displays the product’s manual as an
Adobe Acrobat �le, which contains a
hyperlinked table of contents and
embedded links to related documents.

The user and computer
accomplishing a task by
engaging in a conversation or
dialog by using text, voice, or
tools, such as labeled buttons

The user clicks a button labeled
“troubleshoot” because the printer
isn’t working. The computer prints
questions on the display, and the user
responds by typing answers or
selecting responses from a printed
list.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

222 PART 3 ■ Essentials of Systems Design

The direct manipulation, desktop, and document metaphors emphasize
displayed objects with which the user interacts. The dialogue metaphor
emphasizes the communication that occurs between a user and a computer,
conceptualized as a conversation. In a conversation or dialogue between two
people, each person listens and responds to questions and comments from
the other person, with the information being exchanged in a sequence. The
dialogue metaphor is another way of thinking about human-computer inter-
action because the computer “listens to” and “responds” to user questions or
comments, and the user “listens to” and “responds” to the computer’s ques-
tions and comments. Figure 8-4 illustrates a conceptual dialogue between
user and computer.

The dialogue metaphor can be implemented in various ways in user inter-
faces. A direct approach uses speech generation and recognition over a voice
communication channel, as commonly encountered when calling the customer
support number of a large company. A computerized voice asks a series of ques-
tions, listens for the answer to each question, and responds to the answers.
Another implementation of the dialogue metaphor uses questions or instruc-
tions displayed by a user through text and responses as well as counterquestions
displayed by the computer through text. To minimize the need for user typing,
responses to computer questions might be limited to a specific set of possibilities
displayed to the user in the form of a list.

dialogue metaphor metaphor in which
user and computer accomplish a task by
engaging in a conversation or dialogue via
text, voice, or tools, such as labeled buttons

FIgURE 8-3 The direct
manipulation, desktop, and
document metaphors on a
computer display

FIgURE 8-4 The dialogue
metaphor for user-computer
interaction

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

223CHAPTER 8 ■ Designing the User Inter face

 ■ Fundamental Principles of User-Interface Design
Many information technology (IT) researchers and practitioners have published
articles, books, and Web sites that offer guidance in user-interface design. Many
of these guidelines are accepted best practices, having been around for decades.
However, the proliferation of new applications, a variety of computing devices,
and innovative ways to communicate has required new approaches and prin-
ciples for user-interface design.

This section provides explanations of some of the most important universal
guidelines. It is organized into six major categories: human-interface objects,
consistency, discoverability, closure, readability and navigation, and usability
and efficiency.

 ■ Human-Interface Objects
Human-interface objects (HIOs) are those objects that appear on a screen
that the user can manipulate. Included are such things as documents, buttons,
menus, folders, and icons. The following sections discuss several important
principles that apply to the design and utility of human-interface objects.

 ❚ Use Human-Interface Objects That Reflect Their
Purpose or Behavior (Affordance)

The use of HIOs is very common in almost all of today’s applications. The most
common ones we are familiar with are buttons or other small icons. In new ver-
sions of the Microsoft Office suite, the ribbons of icons at the top of the page are
a good example of useful HIOs whose appearance reflects their function. The
technical term for this characteristic is called affordance. Affordance means
that the appearance of a specific control suggests its function—that is, the pur-
pose for which the control is used. For example, a control that looks like a steer-
ing wheel suggests that it is used for turning. Affordance can also be achieved
by a user-interface control that the user is familiar with in another context. For
example, the media player control icons shown in Figure 8-5 were first widely
used on audiotape and videotape players and are still used in such devices as
DVD and portable music players. They are widely incorporated into computer
interfaces because so many users are familiar with them. Notice in the figure
that a tool tip is provided. Tool tips are brief instructions that appear when the
mouse hovers over a particular tool.

 ❚ HIOs Should Provide Visual Feedback When Activated
A second and related characteristic is that HIOs should provide immediate feed-
back when activated or receiving focus. Visibility means that a control is visible
so users know it is available; it also means that the control provides immediate
feedback to indicate that it is responding. Feedback is some visual or audio
response by the system in response to some user action. Figure 8-5 is also an
example of visibility and feedback. The controls are always visible at the bot-
tom of the window and show immediate feedback on mouseover or mouse click.

human-interface objects (HIOs) icons
and other objects on a screen that can be
manipulated by the user and cause some
action to occur

affordance when the appearance of a
 specific control suggests its function

tool tip brief instructions that pop up when
the mouse hovers over a control

visibility when a control is visible so that
users know it is available

feedback some visual or audio response by
the system in response to a user action

FIgURE 8-5 Example of affordance
in media player controls

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

224 PART 3 ■ Essentials of Systems Design

Another example of visibility and feedback is shown in Figure 8-6, with a group
of radio buttons and a check box. A group of radio buttons is a control that
allows one item to be selected out of the group. A group of check boxes is a con-
trol that allows none or many items to be selected. As a radio button is selected,
not only does it change its color, but the image also immediately changes. An
effective HIO performs some visible action when the mouse hovers over it. It
performs some other visible action when it is clicked or double-clicked.

Feedback provides the user with a sense of confirmation and the feeling that
a system is responsive and functioning correctly. Lack of feedback leaves the
user wondering whether a command or input was recognized or whether the sys-
tem is malfunctioning.

Visibility and affordance are relatively easy to achieve when the design tar-
get is a commonly used platform, such as an iPad, a cell phone running the
Android operating system, or a PC running Windows. Such platforms have well-
defined user-interface design guidelines and a library of user-interface features
and functions that can be reused by application software.

Web user-interface design is less standardized. In some cases, a new icon is
used and it is just expected that the user will become familiar with it. Often, these
icons are only recognized because of trial and error. Two examples come to mind.
The small gear icon has been used to represent settings or options. Another icon,
three small bars, is also used. The attempt is to look like a drop-down menu,
but it took users a long while to recognize it as a metaphor for settings. Another
difficult example is the matrix of small squares to represent applications. This is
found on the Google account page. Many users still don’t recognize its purpose.

 ■ Consistency
Consistency can be applied to many different aspects of the user interface, as well as
to the application itself. The effectiveness of the user experience is highly dependent
on consistency. Users not only expect consistency across the various screens of an
application, but now also anticipate consistency across applications. The following
sections itemize different levels or areas where consistency should be maintained.

radio buttons a group of selection items
that allows only one item to be selected
within the group

check boxes a group of selection items
that allows either none or many items to be
selected within the group

FIgURE 8-6 Example of visibility
and feedback

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

225CHAPTER 8 ■ Designing the User Inter face

 ❚ Consistency Within and Across Platforms
Consistency within a platform is usually fairly achievable because the tools to
build applications and the libraries of existing icons are common and available for
all developers. For example, when building Windows applications, it is common
to use the standard icons, buttons, check boxes, and other user-interface icons.

However, it is more difficult for developers to achieve consistency across
platforms. For desktop computers, there three common operating environments:
Windows, Apple, and UNIX. For smaller mobile devices, there are several dif-
ferent environments, including Android, Windows, Apple, and BlackBerry.
Web browsers that execute across multiple platforms help bring consistency
to Web-based applications, but they do not solve the problem completely. It is
always a challenge for developers who have cross-platform applications to make
the user interface as consistent as possible for cross-platform users.

 ❚ Consistency Within a Suite of Applications
Many software organizations have developed and sell a suite of related applica-
tions. In many instances, these applications were developed by separate develop-
ment teams with little communication between teams. The result, of course, is
that the user interface for each application has components, and maybe even the
entire interface, that are distinct for each application. Organizations that provide
a suite should have a coordination group to ensure consistency within the suite.

The Microsoft Office suite is a good example of consistency within the
suite. Originally, only the three main components of the suite (Word, Excel, and
 PowerPoint) had similar user interfaces. However, as Microsoft has acquired other
applications and moved them into the suite, it has modified the user interfaces to be
consistent. For example, Access, Visio, and Project are not part of the basic suite,
but the user interface on these applications now has a consistent look and feel with
the ribbon bar across the top and common icons within the ribbon. Figure 8-7
shows the menu ribbon for three Microsoft applications: Visio, Excel, and Word.

 ❚ Consistency Within an Application
Surprisingly, this concept is probably one of the most violated among developers.
Consistency in using the same standard HIOs is quite easily achieved. They are
provided in standard libraries. However, when designing such interface items as
input forms or data display screens, it is easy to design inconsistent screens. For
example, a developer or developers may use different font types, sizes, colors,
or bolding for labels and data fields. This may not confuse the user, but it does
result in an inconsistent user interface and looks unprofessional.

 ❚ Consistency Versus Continuity
This concept refers to changes occurring in new releases of an application.
Almost every application will have upgrade after upgrade with new versions

FIgURE 8-7 Three Microsoft
applications showing the menu
ribbon

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

226 PART 3 ■ Essentials of Systems Design

being released periodically. Application continuity maintains a certain level
of consistency over time across multiple releases. The problem designers have
is understanding how to add new functionality while maintaining continuity
across new releases. It may not be possible to maintain complete consistency
while adding new functions, but continuity should be maintained so that users
can easily transition into the new release.

One example that many of us are familiar with was the change from
 Windows 7 to Windows 8. In this instance, Microsoft wanted to introduce new
aspects of Windows to be more compatible with mobile devices. Unfortunately,
they ignored continuity and eliminated many aspects that users were familiar
with. Microsoft did a quick fix of some of those issued with Windows 8.1, and
in Windows 10 brought back even more of the traditional layout, icons, and
functions of earlier versions. Figure 8-8 shows the change from Windows 7 to
Windows 8 on the basic home screen.

 ■ Discoverability
Many applications have more features than can be shown on the initial user
interface, especially on smaller devices. Trying to provide an HIO control
for every feature would make the user interface too cluttered and complex.

continuity maintaining a certain level
of consistency over time, across multiple
releases

FIgURE 8-8 Home screen for
Windows 7 versus Windows 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

227CHAPTER 8 ■ Designing the User Inter face

One option is to have a limited number of icons, but have all items listed in the
menu hierarchy. However, even that approach does not work in all cases. Some-
times it is necessary to have functions or features that exist underneath the
 initial user interface and must be discovered. Discoverability is that feature of
the user interface that provides clues to help the users uncover hidden features.
It is important that developers consider the discoverability aspect of user-
interface design.

One example of features that are not visible or obvious are all the opera-
tions that can be performed using the boundary and title bar of a window in
Windows 8.1. The only ways to learn about these features is to either watch a
tutorial video or to learn by trial and error. For example, moving the window
with the title bar to an edge causes it to snap to full size. Another example is
closing a metro-style app in Windows 8. To close these full-screen apps, the user
must grab the top of the app and pull it to the bottom of the screen. This feature
was not obvious, and in fact took many users quite a while to figure it out.

 ❚ Use Active Discovery to Help Find Hidden Features
Active discovery is a user-interface feature that leads users into discovering
hidden features. There are several methods a designer can use to implement
active discovery. One approach is to have a pop-up window appear at applica-
tion initiation that provides hints and additional features. Another approach is
to have a small text box appear as the user hovers over different locations of the
screen. This technique is best implemented with a slight delay so that the user is
not continually being distracted by the opening and closing of myriad text boxes.

One technique of active discovery used by the Microsoft Office suite is the
grouping of similar icons within the ribbon. In the lower-right corner of each
group is a small arrow, which indicates that there are more features and func-
tions available. This small clue helps the users find the additional features that
are not as visible.

Figure 8-9 returns to the DVD player controls to show these techniques.
Notice that some controls are visible, but other controls are hidden. The
most important controls are on the main window and are visible and accessi-
ble. However, there are icons that open pop-up windows with less-frequently
used controls. The tool tips, which appear on mouseover, are also a form of
active discovery.

discoverability a feature of the user
interface that provides clues to help the users
uncover hidden features

active discovery a user-interface feature
to lead users to discover hidden features

FIgURE 8-9 DVD player with
hidden controls and tool tips
active discovery

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

228 PART 3 ■ Essentials of Systems Design

 ❚ Use Visual Diagrams to Help Users Discover Functions or Tools
This third guideline is related to the Help feature of an application. When the user
cannot find a desired feature on the user interface, she will sometimes resort to the
F1 key or the Help function. Unfortunately, some applications are becoming less
user-friendly in this arena. Because most devices are now connected to the Internet,
often the F1 key will connect to a server and display the general-purpose Help Web
site. In most cases, a user only wants a quick answer to a simple question. A small
pop-up window with some instruction or a diagram is still the best solution.

A powerful way to answer a quick query is with a small diagram that dis-
plays what action to take. Figure 8-10 shows a simple diagram that is very
expressive of how to perform a desired action.

 ■ Closure
The idea of closure is based on the dialogue metaphor that was discussed ear-
lier. In most cases, especially for organizational procedures, a use case requires
several steps to complete. Sometimes this requires multiple screens; sometimes it
can be done with a single screen. In either event, the user interface should have a
clearly defined beginning and ending.

 ❚ Provide Closure on Dialogues
Closure is related to the concept of visibility and feedback discussed ear-
lier. Feedback provided on the HIOs is one technique used to provide closure.
 However, feedback on an individual HIO does not necessarily imply closure.
For example, a Save button may change colors and make a clicking sound when
it is clicked. However, to ensure closure, it is helpful to have a message pop up
saying that the work was saved or the action was completed. The same prin-
ciple applies to a Cancel button. The Cancel button should provide visual and
audio feedback, but refreshing the data fields on a cancel action provides a more
declarative closure.

When a use case requires several steps, it is important that the user know
that all the steps are completed. One technique to implement this process is to
have a Continue button and a Finish button that indicate the end of the process.
Sometimes a progress bar is also included and a final message to indicate that
the dialogue has successfully finished. Refreshing the final screen to return to a
beginning point of the next dialogue also indicates closure.

 ❚ Protect Users’ Work
It would appear that the principle to protect a user’s work is absolute. However,
it applies to a broader set of circumstances than many developers consider. It is
common with current applications to always ask the user if she wants to save her
work before closing the application. Many applications will also do automatic

Figure 8-10 Help window with diagrammatic explanation

Swipe left or right
to browse a book

Swipe up or down
to read a book

Tap the control to
access a function

Double-tap the
control to toggle

on and off

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

229CHAPTER 8 ■ Designing the User Inter face

saving of a document every few minutes. Another common feature is to inform
the user when she tries to save a newer version of a file on top of an older one.
These are effective techniques.

However, how many of us have filled out an online form and had to start
over again because of either an error or the need to change an input value on
the original form? For example, when purchasing concert tickets or airline res-
ervations, if you only want to change a date or time, often the application will
require you to complete the entire form for every change. That approach does
not conform to the principle of saving the user’s work. As much as possible, the
user interface should capture and remember the data entered by the user.

 ❚ Make Actions Reversible (Undo)
Users always make mistakes and often need to undo a recent step. Both the
application and the user interface must support this reverse function. Users need
to feel that they can explore options and take actions that can be canceled or
reversed without difficulty. This is one way that users learn about the system—
that is, by experimenting. It is also a way to prevent errors; as users recognize
they have made a mistake, they cancel the action. In addition, designers should
be sure to include Cancel buttons on all dialog boxes and allow users to go back
a step at any time. Finally, when the user deletes something substantial—a file,
a record, or a transaction—the system should ask the user to confirm the action
and, where possible, delay implementing the action.

 ■ Readability and Navigation
The concept of readability and navigation are particularly important today, yet
can be difficult to support. Though large desktop screens usually are quite read-
able, readability with small mobile devices is often a serious problem. Large
desktop screens also have a lot of space for clues about navigating through vari-
ous screens of an application. The small screens on mobile devices often require
that the navigation tools be hidden or partially hidden.

 ❚ Text Should Be Readable (Type, Size, and Color)
There are two primary considerations when designing text to be displayed: the
age of your target population and the devices that will be used. Older popula-
tions normally require large fonts with clear distinction from the background.
Smaller mobile devices limit the amount of text that can reasonably be displayed,
so both the type of font and the organization of the text are important. One help-
ful consideration is that the actual data to be displayed is more important than
the labels. Of course, the data must be labeled sufficiently to be understood, but
the actual transfer of information occurs with the changing data, not the labels.

The font type is also important. Fancy fonts are frequently hard to discern.
Simple sans-serif fonts tend to be better for online reading. Figure 8-11 illus-
trates some of the issues with trying to be too fancy with fonts. This Web site
advertisement is way too busy. The font colors on the blue background make
some parts almost impossible to read. The fancy script lettering is also very
 difficult to read.

 ❚ Navigation Should Be Clear
Navigation through an application or a Web site depends heavily on the orga-
nization of the user interface. The user interface can be organized in a deeply
hierarchical vertical fashion or a shallow approach with a flat horizontal span
of forms or pages. The vertical approach has fewer menu items at the top level,
but requires multiple levels of submenus. The horizontal approach has many
menu items at the top level and fewer levels of submenus. The organization of
the application or Web site is then reflected in the menu hierarchy provided.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

230 PART 3 ■ Essentials of Systems Design

Either approach works. Each has advantages and disadvantages. Generally,
flat designs allow users to see more options quickly. However, deeper menu
hierarchies often allow a more organized search approach. In the “depth ver-
sus breadth” design, the most important issue is balance. Grouping the various
options in logical categories also helps users find their way through the site.

Mobile devices present a challenging platform. Due to the limited screen
size, it is often not possible to show all the navigation options. Often the naviga-
tion objects are semihidden and must be retrieved to navigate to another page
or form.

 ❚ Always Allow a Way Out
This concept applies both to navigation through an application and doing work
within a particular page or form. When the user is entering data, he should be able
to immediately escape from that form or page without changing the system. Many
input forms have a Cancel button to immediately back out of the specific form.

One common technique to allow the user to navigate back out of a loca-
tion within an application is to display breadcrumbs on the page. Breadcrumbs
(navigation) is the technique of displaying the sequence of pages traversed to
the current page. For example, RMOHome> Women’s clothes> WinterCoats
indicates that the user has traversed three levels down to the winter coats page.
Each item in the list is a hot link that will take the user back to that location.
This provides both a view of the navigation path and a way to immediately back
out and return to any previous level.

 ■ Usability and Efficiency
One of the primary design considerations in UI design is how to increase user
efficiency and effectiveness. In other words, the entire user experience must be
considered to make an application effective and usable. The following items are
only a few issues that should be addressed.

breadcrumbs (navigation) the technique
of displaying the sequence of pages traversed
to allow easy backing out to a previous page

FIgURE 8-11 Sample fonts with
readability problems

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

231CHAPTER 8 ■ Designing the User Inter face

 ❚ Provide Shortcut Keys to Support Experienced Users
Software applications normally must be prepared to support users at many
different levels of competency and training. Novice users need clear naviga-
tion through sequences of steps to complete a task. More advanced users want
to complete a task in the fewest steps possible. Hence, user interfaces must be
designed to support users across a wide range of capability and expertise.

User interfaces designed primarily for novices are often an annoyance and
an impediment to experienced users’ productivity. Users who work with an
application repeatedly or for long time periods want shortcuts for frequently
used functions, which minimize the number of keystrokes, mouse clicks, and
menu selections required to complete tasks. Examples include voice commands
as well as shortcut keys, such as Windows keyboard sequences Ctrl+C for
copy and Ctrl+V for paste. It is always a good idea for application designers
to include standard shortcuts when available or build their own for frequently
repeated functions.

 ❚ Design Error Messages That Provide Solution Options
A good user-interface design anticipates common errors and helps the user to
avoid them or correct them immediately when they occur. One way to do this is
to limit available options, presenting the user with only valid options for a spe-
cific point in a dialogue. Adequate feedback, as discussed previously, also helps
reduce errors.

When the system does find an error, the error message should state specifi-
cally what is wrong and explain how to correct it. Consider this error message
that occurs after a user has typed in a full screen of information about a new
customer:

The customer information entered is not valid. Try again.

This message doesn’t explain what is wrong or tell the user what to do next.
Furthermore, what if the system clears the data-entry form after this message
appears? The user would have to reenter everything previously typed but would still
have no idea what was wrong. A better error message would read more like this:

The date of birth entered is not valid. Check to be sure only numeric
 characters in appropriate ranges are entered in the Date of Birth field.

The system also should streamline corrective actions. For example, if the
user enters an invalid customer ID, the system should tell the user that this has
occurred and then place the insertion point back in the Customer ID text box.

 ❚ Design for Simplicity
The final point is the basic KISS (Keep It Simple Stupid) principle. The simpler
the user interface, the better the user experience will be. Fewer mouse clicks
is always more productive. Fewer levels to navigate through increase speed of
access. Straightforward paths to highly used forms or pages is best. Developers
should always be asking themselves whether there is a simpler way to design the
navigation and the screens.

Figure 8-12 shows the home page displayed when a customer views the
RMO Web site. The form includes two menu bars near the top that group
related functions within the same part of the page. If the user points to Shop
for Clothing, a submenu is displayed immediately below the menu item and the
menu text “Shop for Clothing” changes to white text with a blue background.
Labels for the menu items are widely spaced in an easy-to-read font. Except
for the logo and picture, the page uses a few complementary colors. The title is
positioned near the top of the picture in bold letters. A portion of the title can be
seen from behind the drop-down menus.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

232 PART 3 ■ Essentials of Systems Design

 ■ Transitioning from Analysis to User-Interface Design
The foundation for user-interface design is built from the use case definitions
as described in Chapter 3. You learned in earlier chapters how to document the
interactions between the user and the system using use case descriptions, activ-
ity diagrams, and most importantly system sequence diagrams. Most use cases
require direct user interaction and become the starting point for a dialogue or
form. Use cases usually require the user to input choices and data into the sys-
tem (such as when making an online order) or may generate outputs in response
to a user request (such as when tracking a shipment).

 ■ Use Cases and the Menu Hierarchy
Menus provide the mechanisms first to organize use cases and second to invoke
a particular use case or user dialogue. In all but the smallest systems, menus
are needed to present the user with a number of choices per screen, to group
related functions together so users can more easily locate them, and to properly
sequence related forms to handle complex procedures. Figure 8-13 shows two
different menu styles. In Figure 8-13(a), the mouse pointer is positioned over the
Shop item of the upper menu in a Web page. Figure 8-13(b) shows a more com-
plex menu design, with three menu levels displayed.

How does a designer decide which use cases and user interfaces to include,
which menus are required, and how many menu levels are required? These deci-
sions are driven both by organization of the menus (flat versus deep), by the
number of uses cases or menu choices, and by the limits of human cognition.
For a typical business system, dividing the total number of interactive use cases
by five provides an initial estimate of the number of menus needed that includes
all use cases and allows for additional menu items, such as setting options or
preferences.

Use cases with common actors and event decomposition or that implement
CRUD actions for a specific domain class are good candidates to be grouped
into a single menu or related group of menus. For example, consider the RMO
CSMS use cases shown in Figure 8-14. An initial grouping of these cases by
actor and subsystem is a good starting point for menu design.

FIgURE 8-12 RMO home page
showing simple design and
navigation

S
ou

rc
e:

 M
ic

ro
so

ft
 C

or
po

ra
tio

n

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

233CHAPTER 8 ■ Designing the User Inter face

Figure 8-13 Two different menu styles

(a)

(b) S
ou

rc
e:

 M
ic

ro
so

ft
 C

or
po

ra
tio

n

©
 C

en
ga

ge
 L

ea
rn

in
g®

Sales

Sales

Sales

Sales
Sales
Sales
Sales
Sales
Sales
Sales
Sales
Order fulfillment
Order fulfillment
Order fulfillment
Order fulfillment

Search for item

View product comments and
ratings
View accessory combinations

Customer, customer service
representative, store sales representative
Customer, customer service
representative, store sales representative
Customer, customer service
representative, store sales representative

Fill shopping cart
Empty shopping cart
Check out shopping cart
Fill reserve cart
Empty reserve cart
Convert reserve cart
Create phone sale
Create store sale
Ship items
Manage shippers
Create backorder
Create item return

Customer
Customer
Customer
Customer
Customer
Customer
Customer service representative

Shipping
Store sales representative

Shipping
Shipping
Shipping, customer

Order fulfillment
Order fulfillment
Order fulfillment
Order fulfillment

Look up order status
Track shipment
Rate and comment on product
Provide suggestion

Shipping, customer, management
Shipping, customer, marketing
Customer
Customer

Subsystem Use case Users/actors

Figure 8-14 RMO use cases grouped by actor and subsystem

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

234 PART 3 ■ Essentials of Systems Design

Figure 8-15 shows the use cases shown in Figure 8-14 grouped into four
menus. Each menu collects uses cases from one subsystem for a customer or
internal sales representative. The number of menu choices ranges from four to
seven, which won’t overload any one menu and may enable multiple menu levels
to be displayed at one time. A dialogue design is created for each menu option.
You should note that designers often discover missing or incomplete use cases
during user-interface design, which results in a brief return to analysis activities
to complete the documentation.

Menus also include options that are not activities or use cases from the event
list. Many of these options are related to the system controls, such as account
maintenance or database backup and recovery, which are discussed later in this
chapter. Other added items include help links as well as links to other menus
or subsystems.

 ■ Analysis Models and Input Forms
In Chapter 5, you learned how to document the process flow of a use case using
an activity diagram or a system sequence diagram. A system sequence diagram
identified individual messages coming from the external actor into the system.
The messages included in the sequence diagram represented forms or input
screens to pass information into and out of the system. Using a system sequence
diagram is a good starting point to identify the various screens and forms that
may be needed for the user interface for a particular use case. Figure 8-16 is the
system sequence diagram for the Create customer account use case, which you
first saw in Figure 5-10.

This figure shows six separate data flows across the system boundary. Part
of the user-interface design process is to decide how to design the screens for
these six data flows. You could design six separate screens; however, notice
that there are only three input data flows and three responses reflecting the

FIgURE 8-15 RMO CSMS use cases grouped into first-cut menus by similar function and user

Shopping cart functions
(primary or reserve)

Menu description Menu choices (use cases)

Sale creation Search for item
View product comments and ratings
View accessory combinations
Create sale

Order shipment Ship items
Manage shippers
Create backorder
Create item return
Look up order status
Track shipment

Customer order control

Customer

Customer service and
store sales representatives

Customer service and
store sales representatives

Customer

Search for item
View product comments and ratings
View accessory combinations
Switch carts (primary to reserve or vice
versa)
Fill shopping cart
Empty shopping cart
Check out shopping cart

Look up order status
Track shipment
Create item return
Rate and comment on product
Provide suggestion

Intended user(s)

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

235CHAPTER 8 ■ Designing the User Inter face

information that was entered. It might be possible to design the three input
screens and use those same screens to display the output of the same fields after
the system updates internal files. These kinds of decisions are exactly the ones
that need to be made during user-interface design.

Let’s develop a first draft of an input screen for createNewCustomer
(name, phones, emails). The first step is to verify the data that is passed. The
place to verify the data is to look at the domain model, to see the attributes of
the appropriate classes. Observing the domain model (see Figure 4-25), you
can see that there are four fields that require input: name, mobilePhone, home-
Phone, and emailAddress. Notice that there are two other classes, Address
and Account, that will also be used to verify data for the other messages in
this use case.

Figure 8-17 illustrates the first draft of the customer screen. It appears that
this screen, with some additional messages and buttons, can be used both for
inputting data and for displaying the data as it exists within the system.

 ■ Dialogues and Storyboards
After identifying all required dialogues, the designers must document the dia-
logues. One approach is to list the key steps the dialogue incorporates, fol-
lowed by a description of what the user and computer do at each step. The
format for writing these steps can mimic the activity diagram described in
Chapter 2 or the use case description format in Chapter 4, or it can be more
free form.

Designers can also document dialogue designs by writing out how the user
and system might interact if they were two people engaged in conversation.
Sometimes, the designer can go right from building a dialogue to sketching a
series of screens that make the design more understandable. Consider the Check
out shopping cart use case for the RMO CSMS. A dialogue between the system
and user might follow this pattern:

FIgURE 8-16 SSD for Create
customer account use case

:SystemCustomer

createNewCustomer (name, phones, emails)

*address details := enterAddress (address)

cust ID, name, phones, emails

enterCreditCard (cc-info)

credit card info details

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

236 PART 3 ■ Essentials of Systems Design

System: What would you like to do?

User: I’d like to check out.

System: Okay. What is your e-mail address or account number?

User: My e-mail address nwells22@gmail.com.

System: Fine. You are Nancy Wells at 1122 Silicon Avenue. Correct?

User: Yes.

System: All items in your cart are in stock and can be shipped today.
 Because your order subtotal is over $100, you qualify for free UPS
ground shipping (3–5 days). Other shipping options include next
day ($35.00), two day ($20.00), and USPS parcel post ($11.70,
5–7 days). How would you like your items to be shipped?

User: Free UPS ground shipping.

System: We have a shipping address on file for you (1122 Silicon
 Avenue). Do you want your order shipped to that address?

User: No.

System: To what address would you like the order shipped?

User: John Wells, 1612 Jefferson Street NE, Albuquerque, NM 87123.

System: Okay, the total charge is $125.56 ($117.90 item subtotal plus
$7.66 sales tax). Shall I charge that amount to your credit card
on file (a Visa with an account number ending in 0899)?

User: Yes.

System: Your payment has been approved, and your order is being prepared
for shipment. A confirmation e-mail has been sent to you, and
 another will be sent with a shipment tracking number when the
order is shipped later today. Can I help you with anything else?

User: No.

There are many possible implementations of this scenario. Before decid-
ing on a specific implementation, an analyst often uses a technique called
 storyboarding—that is, showing a sequence of sketches of the display screen
during a dialogue. The sketches don’t have to be very detailed to show the basic
design concept. Designers can implement a storyboard with a visual programming
tool, such as Visual Basic, or with a presentation program such as PowerPoint.

storyboarding sequence of sketches of
the display screen during a dialogue

FIgURE 8-17 First-cut input form
for createNewCustomer message

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

237CHAPTER 8 ■ Designing the User Inter face

Figure 8-18 shows the storyboard for the dialogue based on the Check out
shopping cart use case. Though the screen formats are primitive, they are suffi-
ciently detailed to show all the information presented to and entered by the user.
The storyboard can be reviewed by users and designers to identify missing or
extraneous information and to discuss various options for final implementation,
which might be based on a Web page shown on a large display, a traditional
Windows or Apple user interface, or the user interface for a mobile device app.

 ■ User-Interface Design
In the preceding sections, you have learned several basic principles of effective
user-interface design. There are many more that could be discussed. The fun-
damental principles you learned are foundational and apply to all types of user
interfaces. In this section, you will learn more of the particulars of designing the
user interface for specific devices and configurations.

FIgURE 8-18 Storyboard for the
Check out shopping cart dialogue

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

238 PART 3 ■ Essentials of Systems Design

As you begin the design of the user interface, there are three major consid-
erations that will affect your approach. The first decision, which was probably
made at the beginning of the project, is whether the application will be built as
a custom, stand-alone software application or whether it will be browser-based.
Either approach is viable whether the application is a local, single-computer
application or whether it runs over a network or the Internet. If the software is
a stand-alone application, then it will utilize the controls and human-interface
objects that are available in development libraries for that platform. If it is a
browser-based application, then it will need to conform to the controls and con-
figurations provided by the browsers. In some rare instances, the software may
need to support both environments.

The second major decision applies to the type of device the application is
designed for. Some applications are designed to run only on desktops and lap-
tops. Others execute on tablets, while others are designed exclusively to execute
on small devices such as smartphones. In some cases, the software may need to
run on multiple devices. In fact, for many types of software, it is desirable that
it can be executed on several types of devices. Obviously, this complicates the
design of the user interface.

The third major decision applies to the operating system platform. For desk-
tops and laptop computers, the most common operating systems are Windows,
Apple Mac OS, and a UNIX derivation such as Ubuntu. For tablets, there are
Windows 8 and Windows RT, Apple iOS, Google Android, Amazon Fire, and
others such as Ubuntu and BlackBerry. For smartphones, the major operating
systems are Google Android, Apple iOS, BlackBerry, Windows Mobile, and oth-
ers. This decision affects the design because the human-interface objects that are
available are different for each platform, especially for stand-alone applications.
For Web-based applications, there is a little more commonality, but the browsers
are still slightly different for each platform.

As with the fundamental principles, the range of topics for this section is
immense. You are encouraged to extend your knowledge of specific platforms
through additional books, tutorials, and articles.

 ■ Desktop and Laptop User Interfaces
There are three areas that will be discussed here with regard to user-interface
design: layout and formatting, data entry, and navigation and visibility.

 ❚ Layout and Formatting
Usually, desktops and laptops have large screen displays with adequate space to
provide a rich and engaging user interface. Here are several important guidelines:

 ■ Design screens with purpose. Each screen should have a primary purpose
or use. Do not clutter the screen with unnecessary elements. Allow empty
spaces, sometimes called white space, on the screen to keep it simple and
easily readable.

 ■ Consider location and grouping. Users in the United States read screens top
to bottom, left to right. Place important items where they are easily found.
Make logical groupings of related items and place them closer together.

 ■ Ensure professionalism. Make sure that when people see the screen it looks
professional. Align and organize screen objects. Check for poor grammar
and spelling errors. Make sure lists have equivalent language constructs
(nouns or verbs or adjectives—always the same form).

Figure 8-19 illustrates a sloppy design of an input form with inconsistent labels,
inconsistent text box types, poor spacing, misspelled words, and so forth. How
would you like to have to fill out data on this form? How would you like to have
your name associated with the design of this form?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

239CHAPTER 8 ■ Designing the User Inter face

 ❚ Data Entry
Screens and pages where users enter information require special attention. The
overriding objective on data-entry screens is always to minimize errors. The design
of the screen can have a big influence on whether the data is error free or error
laden. Errors not only reduce productivity, but also can compound errors when
the data is used for later processes. There are many ways to make beautiful, effec-
tive data input screens. Here are some things to consider as you design the screens:

 ■ Use controls that minimize keystrokes. Use controls that do not require
keystrokes. List boxes with predefined fields allow quick selection of cor-
rect data. Date controls where the user can select a date controls entering
correct date and format. Autocorrect fields can also help ensure correct
data. Use check boxes and radio boxes when possible. Though these types
of controls can reduce productivity, they do minimize errors.

 ■ Set focus and tabbing. Set the cursor in the first data-entry box so it is
ready to accept data. Make sure the cursor tabs from field to field in a
 logical fashion.

 ■ Set font and text box sizes appropriately. Set font sizes for both labels and
entered text so that it is easy for the user to read. Set the size of the data-
entry box so that the use of scroll bars is minimized. It is difficult to enter
long sentences into a small text box that requires scrolling to view what
was entered.

 ■ Include online edits. The user interface can be developed to simply accept
the entered information, or program code can also be associated with cer-
tain fields to perform validations immediately. Some edits are simply logi-
cal and can be made locally. Other edits may require validation against a
database, and it may not be feasible to perform those edits until the screen
is submitted. In any event, it is always best to edit the newly entered data as
thoroughly as possible and as soon as feasible.

Figure 8-20 shows a product search screen for RMO. This screen allows the
user to search for products using key words and other criteria such as type of
products, price ranges, gender, and catalog. In the search group on the lower
right, the user can use a text box to enter data. There is also a list box, which
displays a drop-down list of predefined values by clicking on the arrow. A
combo box is a variation of list box that also allows the user to enter new values
if necessary. Contrast this form with Figure 8-19.

 ❚ Navigation and Visibility
When designing for navigation and visibility, the developer must consider not
just each screen individually, but the entire application or site. A good site design
considers primary as well as secondary paths through the various screens,
including both forward and backward movement. Desktop systems should have
adequate screen space to allow for clear positioning of menus, hot links, and
buttons that are easily located.

text box a box that accepts text from a
keyboard or speech input

list box a text box with a list of predefined
data values

combo box a combination text box and list
box that displays a predefined list, but also
allows data entry

FIgURE 8-19 Poorly designed
data-entry fields

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

240 PART 3 ■ Essentials of Systems Design

Figure 8-21 is a sample screen of a Web-based application, where an item
was recently added to the shopping cart. Generally, this is a good design, well
organized and easily understood. However, it is somewhat limited in its use of
navigation buttons. Frequently, a user would like to return to the search page to
purchase a related item. Unfortunately, the only way to return to the original list
of search results is with the Back button on the browser. A better design would
be to include a Continue Shopping link back to the search page.

 ■ Considerations for Web-Based Applications
When designing the user interface for Web-based applications, all the pre-
ceding guidelines still apply. There are also two other important issues to be
considered.

The first issue is that every aspect of the user interface must be transmitted
over the Internet. With the speeds and bandwidth available today, even large

FIgURE 8-20 RMO product detail
search screen

FIgURE 8-21 Online retailer
checkout page

S
ou

rc
e:

 A
m

az
on

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

241CHAPTER 8 ■ Designing the User Inter face

images and videos are commonly sent to application pages. However, developers
still need to be aware of file sizes and page load times. Users may be willing to
wait for a video to begin, but they still prefer rapid responses for the initial load.
Furthermore, developers should include sufficient error-handling capability to
reestablish the dialogue if the connection breaks.

The second major issue is that all the pages of the Web site need to be com-
patible with all of the potential browsers. The most common browsers today
are Internet Explorer, Firefox, Chrome, and Safari. Each of the major browsers
implements the primary controls in a somewhat similar fashion. However, each
also has unique extensions. Developers must carefully design and thoroughly
test Web pages so that they display correctly in each environment. This could
require either using controls that are common to all browsers, or testing to see
which browser is being used and transmitting the appropriate user-interface
code. Here are some additional considerations for design of a Web user interface.

 ❚ Layout and Formatting
As a topic, the layout and formatting of Web pages is extensive. It is impossible
to address even a small portion of the issues, guidelines, standards, and conven-
tions that apply to Web user-interface design. Developers who become expert in
this arena have a program of continual self-education, reading, and training to
design beautiful, engaging, and effective Web pages.

Web applications will be displayed in many different-sized windows. Win-
dows will also frequently be resized on the computer screen. Careful consid-
eration should be given to what happens to the page as it is resized within the
window. Poorly designed pages may not resize correctly and may require hori-
zontal scroll bars to view the entire page. Although vertical scrolling is accept-
able for most applications, horizontal scrolling is not.

There is one common business practice that user-interface designers con-
tinually struggle with: advertising on a Web site. Because the business model
for many Web applications includes a revenue string from advertising, designers
frequently have to find some way to include sponsor ads. As designers, we will
not be able to eliminate all advertising. However, it is a good design practice to
place the advertising so that it does not confuse or override the main purpose of
the page. This, of course, requires a balance between the revenue stream from
the main function of the Web pages and the advertising revenue stream.

In contrast to integrated advertising, Figure 8-22 is a Web site of only
advertisements. It was an interesting marketing idea, but very difficult for any
kind of use.

 ❚ Data Entry and User Actions
Data entry for Web applications has all the same considerations as for regular
desktop apps. With the advent of such capabilities as client-side programming
with asynchronous transmission to the server, data-entry validation can occur
immediately as it is entered. A primary consideration for data entry is error han-
dling when delays occur over the network.

 ❚ Navigation and Visibility
Standards and conventions for Web applications are in a continual state of flux.
Horizontal menu navigation using tabs along the top of the page are currently a
popular and effective technique. The guidelines discussed earlier for navigation
and visibility also apply to Web applications. It is especially important that navi-
gation links be checked periodically. Web applications frequently have hot links
to external sites, which are more susceptible to being broken.

Figure 8-23 is a draft design for the RMO checkout page. Tasks are clear
with easily discernable organization and clear instructions. There is plenty of
white space to allow for additional instructions or navigation elements if needed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

242 PART 3 ■ Essentials of Systems Design

 ■ Smartphones and Small Mobile Devices
Designing the user interface for smartphones is a very young discipline, and is
consequently fluxuating. We will consider some of the issues related to design-
ing the user interface; however, we also recognize that current solutions and
approaches will be replaced with better solutions every few months. In addition,
because the field is so young, there are few standards or even recognized con-
ventions that are universally applicable. As more experience is gained, you can
expect to see guidelines and conventions that are applicable across platforms.

Smartphone apps are usually designed and built for a particular platform.
In other words, Android apps must be rewritten to execute on the iPhone. In
addition, the user interface is usually tightly connected to the app itself. Some of

FIgURE 8-22 Web site of only
advertising

FIgURE 8-23 RMO shopping cart
checkout page

S
ou

rc
e:

 M
ic

ro
so

ft
 C

or
po

ra
tio

n
S

ou
rc

e:
 T

he
 M

ill
io

n
D

ol
la

r
H

om
ep

ag
e

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

243CHAPTER 8 ■ Designing the User Inter face

the earlier principles you learned about multilayer design are not as important
for building a smartphone app interface.

The principles you will learn in this section apply to creating a smartphone
application. However, all smartphones also have browser programs and thus sup-
port Web-based applications. We won’t discuss them separately, but the same prin-
ciples of effective smartphone app user interfaces apply to the design of Web pages
viewed on smartphone browsers. Today, all Web-based applications should test
the platform that is requesting the page so that it can respond with the appropri-
ate page layout and information. This characteristic is called mobile responsive
design. Trying to display a full-bodied Web page on the limited real estate available
on a smartphone screen almost always ends up completely unusable.

Two primary characteristics of smartphones that influence every aspect of
user-interface design are the limited screen size touch screen interaction. Design-
ing for these two characteristics requires a major shift in thinking. Limited
screen size dictates that applications and user interfaces must be simple and
focused. In addition, almost all navigation and interaction must fit on and be
done through the screen. Smartphones have a very limited repertoire of hard-
ware-based buttons and controls, unlike a desktop with a keyboard that has
function keys and shortcuts as well as a mouse pointer. However, phone interac-
tion is also changing as voice interaction becomes more common.

 ❚ Layout and Formatting
Given the characteristics of smartphone environment, there are several items
affecting layout and formatting that should be noted:

 ■ Each screen should have a single focus or purpose.
 ■ Screens need both portrait- and landscape-view capabilities.
 ■ When appropriate, screens should be allowed to resize without losing

screen controls.
 ■ Screen components should be directly touch-manipulated.
 ■ Visible navigation controls should be placed at the bottom of the screen.
 ■ Due to screen swiping, both horizontal and vertical scrolling is allowed.
 ■ Use small pop-up screens when additional information is needed.

Figure 8-24 illustrates some of the issues related to smartphone apps.
There is always an important tradeoff between the work area of the screen, and
the navigation elements. In this case, two types of navigation elements are used.
The icons will take the user to entirely different pages within the application.
The control buttons at the bottom will take the user to the specific functions
within the same page. The “Edit” label is a hotlink that will drop down other
menu items to allow the user to perform actions on the work area. Thus, even
though “Edit” is visible, it contains hidden functions, which requires that the
user must pursue active discovery to find all the available actions. It may take
the user some time and effort to utilize this smartphone app fully.

 ❚ Data Entry and User Actions
The limited nature of smartphone screens makes data entry and other user
actions sometimes difficult to support. Input can occur by typing on a touch
keyboard, swiping on the same keyboard, speaking, or other kinds of touching
or tapping. Output can be in the form of text, buzzes, beeps, clicks, ring tones,
video movies, songs, and vibrations. In other words, smartphone outputs are
rich and varied. Smartphone apps should support multiple types of inputs and
outputs to take advantage of the capabilities built in to the device. When allow-
ing touch screen actions, developers should plan for the following:

 ■ Be aware of “fat finger” problems where users cannot precisely touch parts
of the screen. This means that important control areas should not be too
small nor too close together.

mobile responsive designing Web sites
so that the pages are responsive to being
displayed on small, mobile devices

Figure 8-24 Android smartphone
with app

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

244 PART 3 ■ Essentials of Systems Design

 ■ Be aware of accidental touches. Allow a mechanism to reverse without
damage. Confirm all actions that delete data.

 ❚ Navigation and Visibility
Navigation and visibility are major issues for smartphone user-interface design.
It is generally impossible to keep all navigation controls visible at all times.
Developers must pay particular attention to making the application user-friendly
in this area of design. Here are a few suggested guidelines:

 ■ Design the landing screen (first loading screen) so that it shows clearly how
the app is organized and how to get to all the functions. Include a way to
return to this screen on all other screens.

 ■ Design the user interface so that there are visual clues for where a task is
located in the app.

 ■ Consider using an action bar at the bottom (or top) of every screen with
common navigation or action controls. If the bar must be hidden, make it
easy to find and show.

 ■ Remember that there is no mouseover capability, so such techniques as tool
tips are not available.

 ■ Ensure a Back button capability exists, either on the device or as part of the
application.

Figure 8-25 is the landing screen for the RMO smartphone app. This screen
is almost completely made up of navigation elements to send the user to the
appropriate screens. The only image is the small logo at the top. Special atten-
tion was given to contrast and layout to ensure readability.

 ■ Tablets
User-interface design for tablets requires many of the same techniques that are
used for smartphone design. Tablets are mobile devices with similar device con-
straints as smartphones. The primary difference is that there is more screen real
estate, so the screen constraints are not as tight.

When considering layout and formatting for tablets, applications must sup-
port both portrait and landscape display. Where a smartphone screen can only
support a single function or activity, it may be possible to have multiple action
areas on a tablet. The small screen size and the lack of physical keyboards and
mouse interaction do require that developers still design screen layout carefully.

action bar a common navigation bar with
action controls used for smartphones and
 usually placed at the bottom of the screen

FIgURE 8-25 RMO home screen
on a smartphone

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

245CHAPTER 8 ■ Designing the User Inter face

Data entry and user actions are very similar for tablets and smartphones.
The lack of a keyboard makes typing somewhat cumbersome, so any tech-
nique that reduces actual data entry is helpful. The larger touch screen, how-
ever, does permit the use of larger icons and touch areas to alleviate the fat
finger problem.

Probably the biggest benefit of the somewhat larger screen is that more naviga-
tion controls and menu items can be made visible and remain on the screen. More
items can be added to the action bar, and having navigation controls other than
the single action bar is possible. Figure 8-26 is a picture of an iPad with an online
store open. The navigation is clear, with a menu on the top and icons for the avail-
able categories. Note, however, that the site limits this page to eight categories.

 ■ Designing Reports, Statements, and
Turnaround Documents

Due to the highly interactive nature of today’s software applications, there is
less need for printing formal reports. In many cases, the screen views that the
user sees can either be sent directly to the printer, or a special print view is pro-
vided. A print view is usually a simple reformatting of the screen view with the
controls, advertising, and extraneous graphics removed. As you work with the
users to develop an application, you should continually be asking if a print view
is required for each screen that displays information or whether a printed report
is the best form for presenting the information.

Modern information systems have made information much more widely
available, with a proliferation of all types of reports—paper and electronic. One
of the major challenges organizations face today is to compile the overwhelming
amount of information available to support managerial decision making. One
of the most difficult aspects of output design is to decide what information to
provide and how to present it effectively.

FIgURE 8-26 Application on an
iPad tablet

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

246 PART 3 ■ Essentials of Systems Design

 ■ Report Types
There are four types of output reports commonly provided by an information
system:

 ■ Detailed reports. These contain specific information on business trans-
actions—for example, a list of all overdue accounts, with each line of the
report presenting information about a particular account.

 ■ Summary reports. These are often used to recap periodic activity. An
example of this is a daily or weekly summary of all sales transactions, with
a total dollar amount of sales. Managers often use this type of report to
track departmental or division performance.

 ■ Exception reports. These provide details or summary information about
transactions or operating results that fall outside of a predefined range of
values. When business is progressing normally, no report is needed. For
example, a manufacturing organization might produce a report that lists
parts that fail quality control tests more than 0.2 percent of the time.

 ■ Executive reports. These are used by high-level managers to assess overall
organizational health and performance. They contain summary informa-
tion from activities within the company. They might also show comparative
performance with industry-wide averages.

An example of a detailed report is shown in Figure 8-27. When a customer
places an order on the Web, the system prints the order information as a con-
firmation. Of course, a user can always print the Web screen display by using

detailed reports reports that contain
specific information on business transactions

summary reports reports that summarize
detail or recap periodic activity

exception reports reports that provide
details or summary information about
transactions or operating results that fall
outside a predefined normal range of values

executive reports reports used by
high-level managers to assess overall
organizational health and performance

FIgURE 8-27 RMO shopping cart order report

05 / 17

Description

Customer Name: Fred Westing

Customer Number: 6747222

Product ID Color Price
Extended

PriceSizeQty

 Payment Information:

Account Number

American Express MasterCard VISA Discover

Expiration Date

MO YR

Shipping Information:

Shipping Method: Normal 7–10 day

Shipping Company: UPS

Tracking Number: To be sent via email

Email Address: FredW253@aol.com

Shipping Address:

936 N Swivel Street
Hillville, Ohio 59222

Order Number: 4673064
Today's Date: May 18, 2015

Billing Address:

936 N Swivel Street
Hillville, Ohio 59222

Ridgeline Mountain Outfitters—Shopping Cart Order

1 458238WL

1 347827OP

2 8759425SH

1 5858642OR

Jordan Men's Jumpman Team J

Woolrich Men's Backpacker Shirt

Nike D.R.I. – Fit Shirt

Puma Hiking Shorts

Oatmeal Plaid

Black

Tan

$119.99

$41.99

$30.00

$15.00

$119.99

$41.99

$60.00

$15.00

$236.98

Shipping

Subtotal

Tax

Total

$8.50

$11.25

$256.73

X X X X – X X X X – X X X X – 5 7 8 4

Thank you for your order. It is a pleasure to serve you.
Check back next week for new weekly specials!!

X

12

XL

M

L

White/ Light Blue

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

247CHAPTER 8 ■ Designing the User Inter face

the browser’s print capability, but that takes more time and report format isn’t
guaranteed. It is much more user-friendly to provide shoppers with a “printer
friendly” order confirmation in addition to a Web-based display.

Figure 8-28 is an example of an internal report based on inventory records.
This report includes detailed information; summary information is available on
a different report. A control break is used to divide the detailed section into
groups. In this example, the control break is on the product item number—
called ID on the report. Whenever a new value of the ID is encountered on the
input records, the report begins a new control break section. The detailed sec-
tion lists the transactions of records from the database, and the summary section
provides totals and recaps of the information. The report is sorted and presented

FIgURE 8-28 RMO inventory report

Ridgeline Mountain Outfitters — Products and Items

ID Season Category Supplier DiscontinuedUnit Price Special Price

Description Outdoor Nylon Jacket with Lining

RMO12587 Spr/Fall Mens C 8201 $39.00 $34.95 No

Size Color Style Units in Stock Reorder Level Units on Order
Small

Medium

Large

Xlarge

Blue
Green
Red
Yellow
Blue
Green
Red
Yellow
Blue
Green
Red
Yellow
Blue
Green
Red
Yellow

150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150

ID Season Category Supplier DiscontinuedUnit Price Special Price

Description Hiking Walkers with Patterned Tread Durable Uppers
RMO28497 All Footwear 7993 $49.95 $44.89 No

Size Color Style Units in Stock Reorder Level Units on Order

 7

 8

 9

10

11

12

13

Brown
Tan
Brown
Tan
Brown
Tan
Brown
Tan
Brown
Tan
Brown
Tan
Brown
Tan

389
422
597
521
633
654
836
954
862
792
754
788
830
921

100
100
100
100
100
100
100
100
100
100
100
100
100
100

691
723
569
827
722
756
698
590

1289
1455
1329
1370
1498
1248
1266
1322

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

248 PART 3 ■ Essentials of Systems Design

by product. Within each product is a list of each inventory item showing the
quantity currently on hand.

Reports that are produced for external stakeholders can consist of com-
plex, multiple-page documents. A well-known example is the set of reports and
statements that you receive with your car insurance statement. This statement is
usually a multipage document consisting of detailed automobile insurance infor-
mation and rates, summary pages, turnaround premium payment cards, and
insurance cards for each automobile. Another example is a report of employ-
ment benefits, with multiple pages of information customized to the individual
employee. Sometimes, the documents are printed in color, with special high-
lighting or logos. Figure 8-29 is one page of a sample report for survivor protec-
tion from an employee benefit booklet. The text is standard wording, but the
numbers are customized for the individual employee.

 ■ Electronic Reports
Organizations use various types of electronic reports, each serving a differ-
ent purpose and each with its respective strengths and weaknesses. Electronic
reports allow flexibility in the organization and presentation of information.
Some have detailed and summary sections, some show data and graphics

FIgURE 8-29 A sample
employee benefit report

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

249CHAPTER 8 ■ Designing the User Inter face

together, others contain boldface type and highlighting, others can dynami-
cally change their organization and summaries, and still others contain hot
links to related information. A primary characteristic of electronic report-
ing is that it must be dynamic; users should be able to control input to meet
the specific needs of a particular situation. For example, an electronic report
can provide links to further information. One technique, called drill down,
allows the user to activate a “hot spot hyperlink” on the report, which tells
the system to display a lower-level report that provides more detailed infor-
mation. For example, Figure 8-30 contains a monthly sales summary. The
report provides sales totals grouped by product category and season. If the
user clicks the hot link for any season, a detailed report pops up with more
sales data.

Another variation of this hot link capability lets the user correlate informa-
tion from one report to related information in another report. Most people are
familiar with hot links from using their Internet browsers. In an electronic report,
hot links can open other information that correlates or extends the primary infor-
mation. This capability can be very useful in a business report that, for example,
links the annual statements of key companies in a certain industry.

Another aspect of electronic reports is the capability to view the data from
different perspectives. For example, it might be beneficial to view sales com-
mission data by region, by sales manager, by product line, or by time period

drill down user-interface design technique
that enables a user to select summary
information and view supporting detail

FIgURE 8-30 RMO summary report with drill down to the detailed report

Monthly Sales Summary

Year 2015 Month January

Category Season Web Telephone Mail Total
 Code Sales Sales Sales Sales

Footwear All $ 289,323 $ 1,347,878 $ 540,883 $ 2,178,084

Men’s Clothing Spring $ 1,768,454 $ 2,879,243 $ 437,874 $ 4,691,484
Summer 213,938 387,121 123,590 724,649
Fall 142,823 129,873 112,234 384,930
Winter 2,980,489 6,453,896 675,290 10,109,675
All 1,839,729 4,897,235 349,234 7,086,198

Totals $ 6,945,433 $14,747,368 $ 1,698,222 $ 23,391,023

Women’s Spring 387,432 $ 454,329 $ 123,849 965,610
Clothing Summer 89,322 187,987 34,879 312,188

Fall 78,398 99,873 56,890 235,161
Winter 782,982 899,490 278,389 1,960,861
All 778,394 678,987 328,122 1,785,503

Totals $ 2,116,528 $ 2,320,666 $ 822,129 $ 3,359,323

782,92,982 899,49090 278,389 1,960,8611
77778,394 678,98,987 328,12222 1,785,,50503
116,528 $ 2,3,3220,666 $ 8222 1,129 $ 3,353599,323

Monthly Sales Detail

Year 2015 Month January Category Men’s Clothing Season Winter

Product Product Web Telephone Mail Total
 ID Description Sales Sales Sales Sales

RMO12987 Winter Parka $ 1,490,245 $ 3,226,948 $ 337,640 $ 5,054,833
RMO13788 Fur-Lined Gloves 149,022 322,695 33,765 505,482
RMO23788 Wool Sweater 596,097 1,290,775 135,058 2,021,930
RMO12980 Long Underwear 298,050 645,339 68,556 1,003,005
RMO32998 Fleece-Lined Jacket 447,075 1,258,079 100,271 1,805,425
Total $ 2,980,489 $ 6,743,836 $ 675,290 $ 10,394,615

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

250 PART 3 ■ Essentials of Systems Design

or to compare the current data with last season’s data. Instead of printing all
these reports separately, you can use an electronic format to generate the dif-
ferent views as needed. Sometimes, long or complex reports include a table
of contents, with hot links to various sections of the report. Some report-
generating programs provide an electronic reporting capability that includes
all the functionality found on Web pages, including frames, hot links, graphics,
and even animation.

 ■ Graphical and Multimedia Presentation
The graphical presentation of data is one of the greatest benefits of the informa-
tion age. Tools that permit data to be easily depicted in charts and graphs have
simplified information reporting for printed and electronic formats. Information
is being used more for strategic decision making as businesspeople examine their
data for trends and changes. In addition, today’s systems frequently maintain
massive amounts of data—much more than people can review. The only effec-
tive way to use much of this data is by summarizing and presenting it in graphi-
cal form. Figure 8-31 presents a pie chart and a bar graph—two common ways
to present summary data.

Multimedia outputs have become available recently as multimedia capabili-
ties have increased in applications. Today, it is possible to see a graphical (pos-
sibly animated) presentation of the information on a screen and have an audio
description of the salient points. Combining visual and audio output is a power-
ful way to present information.

FIgURE 8-31 Sample pie chart
and bar graph reports

Men’s Clothing Sales–January 2015

Web Sales

Telephone Sales

Store Sales

Men’s Clothing Sales by Season–January 2015

Web Sales

Telephone Sales

Store Sales

7,000,000

6,000,000

5,000,000

4,000,000

3,000,000

2,000,000

1,000,000

0
Spring Summer Fall Winter

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

251CHAPTER 8 ■ Designing the User Inter face

CHAPTER SUmmARy
The primary focus of user-interface design is on the us-
er’s needs, requiring major involvement by the user. As
such, user-interface design has characteristics of both
analysis and design activities. Today’s UI design efforts
focus on more than building the screens and reports,
but also considers the entire user experience. The use of
various metaphors, such as direct manipulation, desk-
top, or dialogue metaphors, helps developers better un-
derstand and think about how the users interact with
the system.

User-interface design is a complex discipline and
usually requires substantial knowledge and experi-
ence to understand important influencing factors. Six
key factors to consider are human-interface objects,
consistency, discoverability, closure, readability and
navigation, and usability and efficiency. Each of these
categories has several key issues that need to be ad-
dressed during design activities.

Input for the user interface comes from the dia-
grams and models that were developed during the
analysis activities. The list of use cases is often helpful
to define menus and navigation components. Activity
diagrams and system sequence diagrams help identify
particular screens and reports that are needed.

A major difficulty of UI design is the many differ-
ent devices and screen types that must be supported,
from large screen desktop systems to miniature smart-
phone systems. In addition, many different platforms,
such as Apple versus Android devices, require multiple
interfaces to display correctly on each device.

Although output reports are not used as widely as they
once were, there is still the need to produce printed output
of some information. Furthermore, today’s printed reports
need to be more sophisticated by integrating charts and
graphs. Users expect sophisticated electronic reports with
hot links, which allow drill down to display more detail.

discoverability

document metaphor

drill down

exception reports

executive reports

feedback

human-computer interaction (HCI)

human-interface objects (HIOs)

list box

metaphor

mobile responsive

radio button

storyboarding

summary reports

text box

tool tip

usability

user-centered design

user experience (UX)

user interface (UI)

visibility

 1. Why is user-interface design often referred to as
dialogue design?

 2. What are some examples of the physical, percep-
tual, and conceptual aspects of the user interface?

 3. What are the three metaphors used to describe
human-computer interaction?

 4. A desktop on the screen is an example of which
of the three metaphors used to describe human-
computer interaction?

 5. What is the technique that shows a sequence of
sketches of the display screen during a dialogue?

 6. What are some of the input controls that can be
used to select an item from a list?

 7. What two types of input controls are included in
groups?

 8. What are the different considerations for output
screen design and output report design?

 9. What is meant by the user experience? How does
the user interface relate to it?

 10. What is meant by usability and why is it impor-
tant for user-interface design?

action bar

active discovery

affordance

breadcrumbs (navigation)

check box

combo box

continuity

desktop metaphor

detailed reports

dialogue metaphor

direct manipulation metaphor

KEy TERmS

REvIEW QUESTIOnS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

252 PART 3 ■ Essentials of Systems Design

 23. How can use case diagrams help in the design of
the user interface?

 24. How can system sequence diagrams help in the
design of the user interface?

 25. What is storyboarding?

 26. Describe three major decisions that must be
made early in the project that directly affect user-
interface design.

 27. What is the difference between a combo box and
a list box?

 28. What are two major considerations when design-
ing the user interface for browser-based systems?

 29. What does it mean for an application to be
mobile responsive?

 30. What is meant by the “fat finger” problem? How
does it affect user-interface design?

 31. What is an action bar? Have you noticed one on
an app? Describe it.

 32. What is the difference between a summary report
and an exception report?

 33. What does drill down mean? How is it
displayed?

 11. Describe each of the four metaphors for user-
interface design.

 12. What are human-interface objects? Give some
examples.

 13. Describe affordance and provide an example
from your experience.

 14. What is meant by a tool tip? How does it
show up?

 15. Give several examples of feedback. Why is it
important?

 16. What is the difference between visibility and
affordance?

 17. Identify and describe three levels of consistency.

 18. What is the difference between consistency and
continuity?

 19. What is active discovery? Give two examples of
how to implement it.

 20. What is closure? Why is it important?

 21. How do breadcrumbs work? Show an example from
one of your activities, either in an app or a Web site.

 22. What is the difference between a flat menu
design and a deep menu design?

PROBlEmS AnD EXERCISES
 1. Think of all the software you have used. What

are some examples of ease of learning conflicting
with ease of use?

 2. Visit some Web sites and then identify all the
controls used for navigation and input. Are they
all obvious? Discuss some differences in visibility
and affordance among the controls.

 3. A common maxim for designing a man-machine
interface is that it is better to change the ma-
chine than to try to change the human to ac-
commodate the machine. Are there machines (or
systems) that you use in your daily life that have
room for improvement? Are the current genera-
tions of Windows PC and Apple Mac as usable
as they might be? If not, what improvements can
you suggest? Is the World Wide Web as usable
as it might be? If not, what improvements can
you suggest? Are we just beginning to see some
breakthroughs in usability, or have most of the
big improvements already been made?

 4. Download and install App Inventor from MIT
(http://www.appinventor.org/ and http://appinventor
.mit.edu/explore/). Use it to develop a prototype inter-
face that implements the storyboard in Figure 8-18.

 5. Evaluate the course registration system at your
university. List the basic steps of a user’s dialogue
with the system. What are some of the problems
with the system from the perspective of ease of
learning and ease of use? In what ways is the
system inflexible? In what ways is needed infor-
mation not available? Is too much information
provided that distracts from the task at hand?

 6. Evaluate the online catalog system at your univer-
sity library. Write a dialogue that shows the inter-
action between the user and the system. Rewrite
the dialogue to improve it. Create a storyboard to
show how your design would look and feel.

 7. Find a Web site with direct customer ordering.
Browse through some product descriptions and
note the design of the dialogue and the Web
pages. What do you like and dislike about the
design? Evaluate the Web site based on visibility
and affordance. Does the site achieve an optimal
balance between the number of page refreshes
and the delay between page refreshes? Would
your answer change if you were using a different
computing device, a different network, or ac-
cessing the system at a different time of day?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

253CHAPTER 8 ■ Designing the User Inter face

Video Rental Service

CASE STUDY

Community Board of Realtors®

One of the key use cases for the Multiple Listing
Service system is Create new listing, where the re-
altor enters all the important information about a
new listing he or she has obtained. Realtors want
to be able to create a new listing as soon as pos-
sible so other realtors and potential buyers will find
the listing online. Some like to enter the informa-
tion while talking with the owner or while inspect-
ing the property. Realtors are rarely in their offices
these days, so being able to create a new listing on
a mobile device is a key feature of the Multiple List-
ing Service system.

Consider the information that must be entered
when creating a new listing, and list the dialogue steps
that are necessary. Keep in mind that when designing
for a smartphone, less information can be entered in
each step compared with a full screen Web application.

Also keep in mind that typing is error-prone and
awkward for many users, so think about opportunities
to use check boxes, radio buttons, and list boxes to
aid selection. Create a storyboard of this use case for a
mobile device, showing each step of the dialogue that
maximizes the use of check boxes, radio buttons, and
list boxes.

RUnnIng CaSe STUDieS

Develop a storyboard that encompasses the following sam-
ple dialogue. The system supports rental and download of
movies or television shows to a computer or digital video

recording and playback device. A dialogue between the
system and user might follow this pattern:

On the Spot Courier Services
Review the case description and your solution for the
Web scenario of the use case Request package pickup
from Chapter 5. Then, using a presentation tool, such
as Microsoft PowerPoint or Apple Keynote, create a
storyboard of the Web pages necessary to support the
use case.

The case description in Chapter 5 also identified a
new use case, which we can call View scheduled pick-
ups/deliveries. Based on current technology, write a
dialogue showing how this might be supported with
a portable digital device such as an Internet-connected
tablet. You may use any current technology that you

SyStem: What would you like to do?

USer: I’d like to rent a movie.

SyStem: Okay. What is your e-mail address or account
number?

USer: My e-mail address nwells22@gmail.com.

SyStem: Fine. You are Nancy Wells at 1122 Silicon
Avenue. Correct?

USer: Yes.

SyStem: What movie do you want to rent?

USer: Titanic.

SyStem: I have two available movies named Titanic. The
first was released in 1953 and stars Barbara
Stanwyck and Clifton Webb. The second was
released in 1997 and stars Leonardo DiCaprio
and Kate Winslet. Which do you want to rent?

USer: Both.

SyStem: Fine. That is Titanic (the 1953 release) with
a rental charge of $2.99 for seven days and
Titanic (the 1997 release) with a rental charge
of $5.99 for seven days. Would you like to add
more rentals?

USer: That’s all.

SyStem: Okay. The total charge is $8.98. Shall I charge
that amount to your credit card file (a Visa
with an account number ending in 0899)?

USer: Yes.

SyStem: Your movies are downloading to your com-
puter now. They will expire at midnight seven
days from now.

USer: Okay. Thanks.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

254 PART 3 ■ Essentials of Systems Design

The Spring Breaks ‘R’ Us Travel Service
The Spring Breaks ‘R’ Us social networking subsys-
tem requires an intuitive and engaging user-interface
design for mobile devices. But the social networking
subsystem can also play an important role in resort
security. For example, each resort could use traveler
location, interests, activities, and “likes”—all of which
are available through the application—to monitor
the well-being of travelers staying at the resort. Most
spring break travelers are young, and their parents are
concerned about their safety—particularly at isolated
resorts in foreign countries. SBRU and the participat-
ing resorts could keep track of where travelers are and
who they are near, monitor messages about activities
and parties, and anticipate crowded conditions or
vulnerable travelers wandering off-site. Alerts could
notify security if conditions veer away from normal or
if messages indicate there are problems. For example, if
the pool is overcrowded, some action can be taken.
If messages refer to places off-site that are known

to be dangerous, security can make an extra patrol.
Although many people find this use of private infor-
mation objectionable, others—particularly parents—
find it essential.

Imagine resort security with a large, wide-screen
monitor tracking traveler activities. Design a main
screen that includes multiple locations, paths and
roads, traveler location and status, messages traveling
from traveler to traveler, and other features that secu-
rity should monitor. Create a storyboard that shows
an example of a pop-up alert and a menu of options
that security might select after an alert. Should you
also show security the staff members’ locations and
status? How about clicking security staff members to
send them a message? How about clicking a location
to turn up the lights or to close a security gate? Be
creative as you think through the design possibilities.
You should include four or five screen layouts for the
storyboard.

Sandia medical Devices Real-Time Glucose monitoring

deem applicable, such as GPS tracking, map and direc-
tions software, and real-time updates of pickup loca-
tions. Consider the possibility that the driver may

want to get an overview of his or her stops for the
entire run, view the next few stops, or just get direc-
tions to the next stop.

In Chapter 3, you learned about a use case where the
patients would like to view their history. In Chapter 5,
we called the use case View history. Here are those
paragraphs:

 ■ Viewing and interpreting data and trends. Patients
want to be able to view more than their current
glucose level. They would like the ability to see
past glucose levels over various time periods, with
a specific focus on time periods during which
their glucose was inside and outside of acceptable
ranges. A graphical view of the data is preferred,
although some patients also want to be able to see
actual numbers.

 ■ Entering additional data. Some patients want to
be able to enter text notes or voice messages to
supplement glucose level data. For example, pa-
tients who see a high glucose alert might record
voice messages describing how they feel or what
they had recently eaten. Some patients thought
that sharing such information with their health-
care providers might be valuable, but others only
wanted such information for themselves.

You have been asked to write a smartphone app to
display this history. The smartphone app would con-
nect to the monitor using Bluetooth and collect the pre-
vious 24 hours’ data. Using a drawing program such

as Visio or PowerPoint, sketch out the screen to view
this history. Explain your screen(s) and controls—how
they work and what they mean. Remember the princi-
ples you have learned, especially about affordance and
visibility, and the capabilities of smartphones.

Consider the following points:

1. How would you illustrate the graph? How could
you use colors to indicate good/warning/critical
readings?

2. How would you combine graphical display with
actual numeric values? How would you display
this information? What icons would you use?

3. How would you allow messages to be entered? Voice
or text? How would you activate that feature? How
would you play back or redisplay the messages?

4. How would you indicate the ability to transmit
this data to the medical staff?

5. What changes would you make to the user inter-
face if this were a tablet app instead of a smart-
phone? Sketch out the screen(s) for a tablet app.

The following Web site shows a very small “on
the belt” display. Your smartphone will have more
built-in capabilities, but this Web site can give you a
starting point. http://www.medtronicdiabetes.com/
customer-support/device-settings-and-features/
sensor-settings/read-sensor-graphs

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

255CHAPTER 8 ■ Designing the User Inter face

Randolph G. Bias and Deborah J. Mayhew,
Cost-Justifying Usability: An Update for the
Internet Age (2nd ed.). Morgan Kaufmann, 2005.

Paul C. Brown, Implementing SOA: Total Architec-
ture in Practice. Addison-Wesley, 2008.

Patrick Carey, New Perspectives on Creating Web
Pages with HTML, XHTML, and XML (3rd ed.).
Cengage Learning, 2010.

Jakob Nielsen and Raluca Budiu, Mobile Usability,
New Riders, 2013.

Donald Norman, The Design of Everyday Things:
Revised and Expanded Edition. Basic Books,
2013.

Janice Redish, Letting Go of the Words: Writing
Web Content that Works. Morgan Kaufmann,
2007.

Ben Shneiderman, Catherine Plaisant, Maxine
 Cohen, and Steven Jacobs, Designing the
User Interface: Strategies for Effective
Human- Computer Interaction (5th ed.).
Addison-Wesley, 2009.

Joel Sklar, Principles of Web Design (5th ed.).
 Cengage Learning, 2012.

FURTHER RESOURCES

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After reading this chapter, you should be able to:

Explain the responsibilities of the data
administrator and database administrator

Design a relational database schema based on a
class diagram

Evaluate and improve the quality of a
database schema

Describe the different methods for configuring
distributed databases

Explain the importance of and methods for
protecting the database

Designing the Database

Learning Objectives

Databases and Database Management
Systems

Database Design and Administration

Relational Databases

Distributed Database Architectures

Protecting the Database

chapter OutLine

chapter NINE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

258 PART 3 ■ Essentials of Systems Design

 ■ Overview
Databases and database management systems are core components of modern
information systems. Almost every facet of our lives depends on databases.
Databases underlie everyday activities, including making a phone call, search-
ing the Web, reading your e-mail, buying groceries, visiting your doctor, and
tweeting your favorite friends. Database management systems let database
designers, developers, and end users create databases and store, retrieve, and
manage the data. Sharing and managing the vast amounts of data needed by
a modern organization wouldn’t be possible without a database management
system.

In Chapter 5, you learned to construct a domain model class diagram. The
class diagram is the starting point for database development. To design and
build an information system, developers must transform conceptual models into
more detailed design models. In this chapter, you will learn how to transform
the domain model class diagram into a detailed database model and how to
implement that model with a database management system.

 ■ Databases and Database Management Systems
A database (DB) is an integrated collection of stored data that is centrally
managed and controlled. A database typically stores information about dozens
or hundreds of classes or entities. A database is managed and controlled by
a database management system (DBMS). A DBMS is a system software
component that is generally purchased and installed separately from other
system software components (e.g., operating systems). Examples of modern
database management systems include Microsoft SQL ServerTM, Oracle, and
MySQLTM.

Opening case Downslope ski Company: a new proDuCtion Database

Downslope Ski Company manufactures skis and snow-
boards. In the company’s early years, ski manufacturing
was simple and straightforward. However, in recent years,
manufacturing has become more complex with high-tech
materials, such as carbon-laced resins, and product fea-
tures, such as skis with integrated bindings. To ensure
product quality, computers now control production pro-
cesses, including ingredient mixtures, furnace tempera-
tures, and curing times. These changes have gone hand
in hand with increased attention to raw materials quality.

Downslope uses a just-in-time (JIT) manufacturing
process, which means that it doesn’t stockpile a large
quantity of raw materials. It keeps about a 10-day supply
on hand and depends on its suppliers to restock materi-
als at least weekly. As with many growing companies,
their software systems have lagged behind changes
in the manufacturing process. Downslope is currently
updating its manufacturing control system. Critical issues
in the new system include the database and accessibility
of its information to all the interested parties.

Nathan Jones wants to get a good grasp of the over-
all database requirements before proceeding with the

design for the first iteration development. There are sev-
eral areas he wants to review, including data sources,
destinations, and formats; data requirements for every
step in the manufacturing process; requirements for his-
torical data; data size and volume; database response
time requirements; and so forth.

Input data sources and formats are especially impor-
tant because suppliers need access to inventory levels,
including both items that are in production and supplies
that are on order. They also need to update the data-
base for deliveries and billing. Other priorities include
capturing and storing data from production furnaces and
manufacturing equipment, including periodic outputs of
volumes, temperatures, and times. Of course, produc-
tion staff need access to the database to control pro-
duction and to forecast future needs. Finally, sales staff
are interested in product levels and delivery dates for
finished inventory. The inputs and outputs range from
Web-based access, to automated equipment feeds, to
internal user access. These very diverse requirements
must be integrated into a comprehensive database and
information system.

database (DB) an integrated collection
of stored data that is centrally managed and
controlled

database management system
(DBMS) a system software component
that manages and controls one or more
databases

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

259CHAPTER 9 ■ Designing the Database

Figure 9-1 illustrates the components of a typical database. Usually when
we refer to a database, we mean both the database data, shown on the left,
and the DBMS, shown in the middle. The database data consists of two related
information stores: the application domain data, which is the actual data for
the problem domain, and the schema, which contains descriptive information
about the application domain data. The reason we usually include all of these
components when we discuss the database is that the application domain data
cannot be accessed without the DBMS and the schema data. Hence, we consider
it all together.

The schema data is required because it describes the structure and rules for
accessing the application domain data. It is often referred to as metadata, or
data about the data. It includes the following:

 ■ Organization of individual stored data items into higher-level groups, such
as tables

 ■ Associations among tables (e.g., pointers from customer objects to related
sale objects)

 ■ Details of individual data items, including types, lengths, locations, and
indexing of data items

 ■ Access and content controls, including allowable values for specific data
items, value dependencies among multiple data items, and lists of users
allowed to read or update data items

A DBMS has four key components: an application programming interface
(API), a direct SQL or query interface, an administrative interface, and an under-
lying set of data-access programs and subroutines. Figure 9-1 refers to SQL,
which stands for Structured Query Language SQL, as the query language
used to access the database data. Application programs, users, and adminis-
trators never access the domain data directly. Instead, they tell an appropriate
DBMS interface what data they need to read or write, using names defined in
the schema. The DBMS accesses the schema to verify that the requested data
exist and that the requesting user has appropriate access privileges. If the request
is valid, the DBMS extracts information about the physical organization of the
requested data from the schema and uses that information to access the domain
data on behalf of the requesting program or user.

Administration
interface

Direct query
user

Database
administrator

API SQL
processor

Database Management
System

Application
program

Application
domain

data

Schema
data

Database Data

DBMS control logic

Direct SQL
processor

FIgure 9-1 Database and DBMS
components with interacting actors

©
 C

en
ga

ge
 L

ea
rn

in
g®

Structured Query Language SQL a query
language used to access and update the data
in a relational database

schema database component that contains
descriptive information about the data stored
in the physical data store

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

260 PART 3 ■ Essentials of Systems Design

Databases and database management systems provide several important
data access and management capabilities, including the following:

 ■ Simultaneous access by many users and application programs
 ■ Access to data without writing application programs (i.e., via the

Direct SQL processor)
 ■ Application of uniform and consistent access and content controls
 ■ Integration of data stored on multiple servers distributed across multiple

locations

DBMSs have evolved through a number of technology stages since their
introduction in the 1960s. The most significant change has been the type of
model used to represent and access the content of the physical data store. Early
models, including the hierarchical and network models, have been replaced by
the relational and object-oriented (OO) models. However, though most modern
software is designed and implemented by using OO techniques and program-
ming languages, most deployed databases and DBMSs are based on the rela-
tional model.

 ■ Database Design and Administration
Before jumping into the actual details of how to design the database, you first
need to address three important issues:

 ■ How does database design integrate into the organization’s overall techno-
logical environment?

 ■ How does database design integrate into the overall project plan?
 ■ Who is involved in database design?

 ■ Technology Environment
Most system development occurs within an organization that has an existing
technology architecture and upgrade strategy. Included in the technology archi-
tecture may be various DBMSs, databases, database servers, and networks. The
following sections first consider the software and data environment, and then
discuss the hardware and server configurations.

 ❚ Data and DBMS Environment
In most organizations, information systems and databases are deployed in a piece-
meal fashion, with new systems purchased or developed to meet specific business
requirements. The result, of course, is many independent systems with diverse data
and DBMS configurations in one company. In addition, one of the most important
assets of almost any organization is its data. Information such as client lists, prod-
uct descriptions, and sales histories is critically important to the continued success
of the organization. The development of a new information system, and especially
the database design, must capture and preserve this critical information. In other
words, the new database must incorporate the important data from the previous
databases and systems. (Chapter 13 discusses issues related to the actual conver-
sion of the data from the old database to the new database.)

In addition to replacing or upgrading existing data in the database itself,
it is also common that the previous system also fed data to other information
systems in the organization. This same service will need to be reflected in the
design of the new database. For example, a new inventory system may need to
be tightly coupled to a supply chain management system with data flowing in
both directions between the two databases.

These issues become even more important, and more complex, when differ-
ent databases are residing on different DBMSs. Data transfer between DBMSs is

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

261CHAPTER 9 ■ Designing the Database

more complex. Each DBMS has its own rules and idiosyncrasies with regard to
data types, SQL extensions, user authentication and privileges, triggers, stored
procedures, and so forth.

 ❚ Hardware and Network Architecture
The other big issue is the hardware and network configuration in the organiza-
tion. An important issue is how the database architecture of the new system will
interact with the architecture that supports existing systems. More specific ques-
tions include whether the new system will use existing DBMSs and servers—it is
possible for a single DBMS or server to support multiple independent databases—
and whether the existing servers and the network have sufficient unused capacity
to support the new system. Those questions are typically asked and answered in
an early project iteration or before the project is even approved.

A beginning organization may only have a few desktop systems. However,
even small organizations can have a local area network (LAN), which connects
desktop systems together and permits sharing of database information. Frequently,
the need for a new system and database is due to growth or anticipated growth. In
those cases, the network and computer server environment is changing and grow-
ing. Decisions about the deployment architecture should be made early in the proj-
ect and will have a big impact on database design decisions. Going from smallest
to largest hardware architecture, databases can be deployed as the following:

 ■ A single desktop system residing on one computer and used only by one or
two users.

 ■ A shared database that resides on a database server for a LAN. A database
of this size can be accessed by all the users in a particular office or depart-
ment. A single server database might also be deployed over the Internet if it
is accessed by a Web-based application.

 ■ A larger database requiring multiple servers, but that is contained within
a single server farm or data center. This configuration requires a sophisti-
cated switchboard function with decision and routing protocols to respond
to queries and updates.

 ■ Finally, when the organization becomes global with many users worldwide
(or in multiple locations in a single country), it is often required to have
multiple data centers or server farms. As you can imagine, this requires
incredible sophistication to maintain current data among the various data
centers. Later in this chapter, you will learn about distributed databases
that exist in this configuration.

 ■ Project Plan and Schedule
Choosing the correct timing for database design and construction within a
system development project isn’t a simple matter. The basic issue is whether
the database design can proceed in iterations or if it is better to complete the
database early in the project. In Chapter 1, you saw an example of an itera-
tive approach to system development using Agile techniques. (You will learn
more about iterative development in Chapters 10 and 11.) The philosophy of an
iterative approach is to develop the system incrementally, including determin-
ing the processing requirements and mapping the classes of the domain model.
Because the primary input for database design is the domain model, an incre-
mental development of the domain model dictates an incremental design of the
database. However, there exists a fundamental tension between Agile/iterative
development and designing the complete database early. The foundation of any
information system is the database, and having a stable database design facili-
tates the development of the entire system.

Iterative development and phased deployment typically occur together in
current adaptive approaches to system development. The philosophy of using

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

262 PART 3 ■ Essentials of Systems Design

iterations is that a subsystem will “grow” piecemeal as requirements are discov-
ered. Phased deployment is normally implemented by deploying various subsys-
tems one at a time until the entire system has been deployed. Database design is
influenced by both of these techniques.

Normally in iterative development, the higher-risk elements of a subsystem
are developed first. Because the database is the foundation of any information
system, it is common to define the domain model and perform the database
design in the first few iterations of subsystem development. For example, rather
than focus on a detailed design of the user interface and on programming in the
early iterations, it is usually a better approach to expend time and resources to
discover and validate all the classes and attributes of the domain model.

Unfortunately, even this technique may not be sufficient for a complex sys-
tem consisting of multiple subsystems with interlocking database requirements.
Focusing only on a single subsystem within a set of iterations may not discover
important database considerations influenced by the design of other subsystems
not yet in development. In a phased deployment, these other subsystems may
not be explored until the first subsystem has been deployed. Obviously, if major
changes to the database are required, the original deployment may need to be
redone. There are no definitive directions to determine if the entire database
must be designed before any portion can be deployed. Experienced project man-
agers and team members are sensitive to the risks associated with phased data-
base development and deployment.

 ■ Database Design Team
Larger organizations typically have staff members dedicated to maintaining
the operational databases that underlie an organization’s information systems.
Although the project team has primary responsibility for defining the domain
model and designing the corresponding database for a new system, permanent
database staff usually assist the project team in database design. This ensures con-
sistency between database requirements for new and existing systems and helps to
avoid problems that might disrupt existing systems when a new system is deployed.

Two key positions on the permanent database staff are the data administra-
tor and the database administrator. A data administrator (DA) has respon-
sibility for the structure and integrity of the data itself. Specifically, the DA
manages important aspects of data definition and database design, including the
following:

 ■ Data standards. Naming standards, definition standards, data typing stan-
dards, and value edits

 ■ Data use. Ownership of data, accessibility of data, and confidentiality
 ■ Data quality. Validation rules, completeness, currency, consistency, and

relevancy

A database administrator (DBA) maintains the database after it has been
deployed and manages the safety and operation of the database. It is his or her
job to ensure that the database—both the data and the DBMS—is configured
correctly for the organization’s architecture and performs effectively and effi-
ciently. The DBA’s responsibilities include the following:

 ■ Managing a multiple DBMS environment
 ■ Protecting the data and database, including user authentication and attack

prevention
 ■ Monitoring and maintaining high levels of performance
 ■ Backing up the database and defining recovery procedures

Figure 9-2 illustrates the different focus and responsibilities of the DA and
the DBA.

data administrator (DA) The person
in charge of the structure and integrity of
the data

database administrator (DBA) The
person in charge of the safety and operation
of the DBMS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

263CHAPTER 9 ■ Designing the Database

 ■ Relational Databases
Historically, many different structures have been used to organize data into a
database. Most early structures were either hierarchical or linked together in
some type of network. More recently, however, databases have been built in a
relational structure by defining a set of interconnected tables. The following sec-
tion defines the terms and concepts of relational databases.

 ■ Definitions
A relational database management system (RDBMS) is a DBMS that orga-
nizes stored data into structures called tables or relations. Relational database
tables are similar to conventional tables; that is, they are two-dimensional data
structures of columns and rows. However, relational database terminology is
somewhat different from conventional table and file terminology. A single row
of a table is called a row, tuple, or record, and a column of a table is called an
 attribute or field. A single cell in a table is called an attribute value, field value,
or data element. As indicated previously, the data in a relational database is
edited and accessed through a common query language called Structured Query
Language or SQL. You will learn how to use SQL in your database courses.

Figure 9-3 shows the content of a table as displayed by the Microsoft Access
relational DBMS. Note that the first row of the table contains a list of attribute
names (column headings) and that the remaining rows contain a collection of
attribute values, each of which describes a specific product. Each row contains
the same attributes in the same order, but not necessarily containing the same
attribute values.

FIgure 9-2 Data and database
administrators’ responsibilities

Application
domain

data

Database Management
System

Data administrator
 • Standard
 • Ownership
 • Quality

Database administrator
 • Environment
 • Security/protection
 • Performance
 • Recovery

©
 C

en
ga

ge
 L

ea
rn

in
g®

relational database management system
(RDBMS) a DBMS that organizes data in
tables or relations

tables two-dimensional data structures
consisting of columns and rows

row one horizontal group of data attribute
values in a table

attribute one vertical group of data attri-
bute values in a table

attribute value the value held in a single
table cell

FIgure 9-3 Partial display of a
relational database table

S
ou

rc
e:

 M
ic

ro
so

ft
 C

or
po

ra
tio

n

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

264 PART 3 ■ Essentials of Systems Design

Each table in a relational database must have a unique key. A key is an
attribute or set of attributes, the values of which occur only once in all the rows
of the table. You learned about a key in Chapter 4 when you learned about
object classes. The key uniquely identifies each object in a class. For a relational
database table, the key uniquely identifies each row in the table. Frequently,
there may be multiple groups of attributes that are unique in each row and that
could serve as a candidate key. If there are multiple unique attributes or sets
of attributes that are candidate keys, then the database designer must choose
one of the possible keys as the primary key. In any event, each table is given a
primary key.

Key attributes may be natural or invented. An example of a natural key
attribute in chemistry is the atomic weight of an element (a unique identifying
characteristic) in a table containing descriptive data about elements. Unfor-
tunately, in business, few natural key attributes are useful for information
processing, so most key attributes in a relational database are invented. Your
wallet contains many examples of invented keys, including your Social Secu-
rity number, driver’s license number, and credit card numbers. The key field is
an important element because it is frequently used to find or locate a particu-
lar row in a table. For example, in a driver’s license system, using your driver’s
license number, your record can be retrieved with information about you and
your driving history.

In addition to serving as unique identifiers for each row, primary keys are
critical elements of relational database design because they are the basis for rep-
resenting relationships among tables. Keys are the “glue” that binds rows of one
table to rows of another table—in other words, keys relate tables to each other.
For example, consider the class diagram fragment from the RMO example,
which is shown in Figure 9-4, and the tables that are shown in Figure 9-5. The
class diagram fragment shows an optional one-to-many association between the
classes ProductItem and InventoryItem. The upper table in Figure 9-5 contains
data representing the ProductItem class. The lower table contains data repre-
senting the InventoryItem class.

The association between the ProductItem and InventoryItem classes is rep-
resented by a common attribute value within their respective tables. The Pro-
ductItemID attribute (the primary key of the ProductItem table) is stored within
the InventoryItem table, where it is called a foreign key. A foreign key is an
attribute that duplicates the primary key of a different (or foreign) table. In
 Figure 9-4, the existence of the value 1244 as a foreign key within the Invento-
ryItem table indicates that the values of Vendor, Gender, and Description in the
row defined by the value 1244 of the ProductItem table also describe inventory
items 86779 through 86788.

 ■ Designing Relational Databases
For database design, the preferred starting point is the domain model
class diagram because it provides a comprehensive description of all the

key an attribute or set of attributes, the
values of which are unique for each row of the
table, that is used to uniquely identify a row

candidate key an attribute or set of attri-
butes that are unique identifiers and could
serve as the primary key

primary key the key chosen by a database
designer to define relationships by being used
as a foreign key in other tables

foreign key an attribute that duplicates
the primary key of a different (or foreign) table

gender
description
supplier
manufacturer
picture

ProductItem

1 0..*

size
color
options
quantityOnHand
averageCost
reorderQuantity

InventoryItem

FIgure 9-4 Portion of the RMO
class diagram

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

265CHAPTER 9 ■ Designing the Database

problem domain classes. To create a relational database schema from a domain
model class diagram, follow these steps:

1. Create a table for each class in the domain model.
2. Choose a primary key for each table (invent one, if necessary).
3. Add foreign keys to represent one-to-many associations.
4. Create new tables to represent many-to-many associations.
5. Represent and adjust classification hierarchies.
6. Define referential integrity constraints.
7. Evaluate schema quality and make necessary improvements.
8. Choose appropriate data types.
9. Incorporate integrity and security controls.

The following subsections discuss these items in more detail.

 ❚ Creating Tables from Domain Classes
The first step in creating a relational database schema is to create a table for
each class on the class diagram. Figure 9-6 shows a partial class diagram for
the RMO customer support system with 17 classes, including three specialized
classes of Sale and two of OnlineCart. For the moment, we will treat each group
of generalized and specialized classes as if it were a single class. Thus, there
are 12 primary classes that will be used to create tables. The attributes of each
table will be the same as those defined for the corresponding class in the class
diagram. To avoid confusion, table and attribute names should match the names
used in the class diagram and abbreviations should be avoided. Initial table defi-
nitions for the classes in Figure 9-6 are shown in Figure 9-7. This example uses
the same camel case naming convention that was used to name the attributes
in the class diagram. However, there are other conventions that are popular in
industry. Some DBMSs allow attribute names with embedded spaces. Other
conventions include using all lowercase letters with underscores. The examples
in this book use lowercase attribute names in the domain model and capitalized
column names in the database schema.

FIgure 9-5 An association
between rows in two tables
represented by primary and
foreign keys

S
ou

rc
e:

 M
ic

ro
so

ft
 C

or
po

ra
tio

n

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

266 PART 3 ■ Essentials of Systems Design

 ❚ Choosing Primary Keys
After creating tables for each class, the designer selects a primary key for each
table. If a table already has an attribute or set of attributes that are guaranteed
to be unique, then the designer can choose that attribute or set of attributes as
the primary key. If the table contains no possible keys, then the designer must

FIgure 9-6 Subset of the RMO domain model class diagram

©
 C

en
ga

ge
 L

ea
rn

in
g®

elapsedTime

ActiveCart

holdForDays

OnReserveCart

storeID
registerID
clerkID

InStoreSale

timeOnSite
chatUse

OnlineSale

clerkID
lengthOfCall

TelephoneSale

quantity
soldPrice
shipStatus
backOrderStatus

SaleItem

saleDateTime
priorityCode
S&H
tax
totalAmt
mountainBucks

Sale

date
transactionType
amount
paymentMethod

SaleTrans

season
year
description
startDate
endDate

Promotion

date
rating
comment

ProductComment

size
color
options
quantityOnHand
averageCost
reorderQuantity

InventoryItem

name
mobilePhone
homePhone
emailAddress
status

Customer

gender
description
supplier
manufacturer
picture

ProductItem

startDateTime
noOfItems
valueOfItems
status

OnLineCart

1

1

0..2

1..*

1..*

1..* 1

1..*

1
1 0..*

1

0..*

0..*

1

0..*

0..*

0..* 1..*

0..*

1

0..*

1

1

PromoOffering

regularPrice
promoPrice

category
description

AccessoryPackage

quantity
currentPrice

CartItem

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

267CHAPTER 9 ■ Designing the Database

invent a new key attribute. Any name can be chosen for an invented key field,
but the name should indicate that the attribute contains unique values. Typical
names include Code, Number, and ID—possibly combined with the table name
(e.g., ProductCode and OrderID). Figure 9-8 shows the class tables with pri-
mary key columns in boldface type.

Because key creation and management are critical functions in databases and
information systems, many relational DBMSs automatically create a primary
key. Furthermore, DBMSs typically provide a special data type for invented keys

Attributes

Category, Description

Quantity, CurrentPrice

Name, MobilePhone, HomePhone, EmailAddress, Status

Size, Color, Options, QuantityOnHand, AverageCost, ReorderQuantity

StartDateTime, NumberOfItems, ValueOfItems, Status, ElapsedTime,
HoldForDays

Date, Rating, Comment

Gender, Description, Supplier, Manufacturer, Picture

RegularPrice, PromoPrice

Season, Year, Description, StartDate, EndDate

SaleDateTime, PriorityCode, ShippingAndHandling, Tax, TotalAmount,
MountainBucks, StoreID, RegisterID, ClerkID, TimeOnSite, ChatUse,
LengthOfCall

Quantity, SoldPrice, ShipStatus, BackOrderStatus

Table

AccessoryPackage

CartItem

Customer

InventoryItem

OnlineCart

ProductComment

ProductItem

PromoOffering

Promotion

Sale

SaleItem

SaleTransaction Date, TransactionType, Amount, PaymentMethod

Attributes

AccessoryPackageID, AccessoryCategory, Description

CartItemID, Quantity, CurrentPrice

AccountNumber, Name, MobilePhone, HomePhone, EmailAddress,
Status

InventoryItemID, Size, Color, Options, QuantityOnHand, AverageCost,
ReorderQuantity

OnlineCartID, StartDateTime, NumberOfItems, ValueOfItems, Status,
ElapsedTime, HoldForDays

ProductCommentID, Date, Rating, Comment

ProductItemID, Gender, Description, Supplier, Manufacturer, Picture

PromoOfferingID, RegularPrice, PromoPrice

PromotionID, Season, Year, Description, StartDate, EndDate

SaleID, SaleDateTime, PriorityCode, ShippingAndHandling, Tax,
TotalAmount, MountainBucks, StoreID, RegisterID, ClerkID,
TimeOnSite, ChatUse, LengthOfCall

SaleItemID, Quantity, SoldPrice, ShipStatus, BackOrderStatus

Table

AccessoryPackage

CartItem

Customer

InventoryItem

OnlineCart

ProductComment

ProductItem

PromoOffering

Promotion

Sale

SaleItem

SaleTransaction SaleTransactionID, Date, TransactionType, Amount, PaymentMethod

FIgure 9-7 Initial set of tables
representing RMO classes

©
 C

en
ga

ge
 L

ea
rn

in
g®

FIgure 9-8 Class tables with
primary keys identified in bold

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

268 PART 3 ■ Essentials of Systems Design

(e.g., the AutoNumber type in Microsoft Access). The DBMS automatically
assigns a key value to newly created rows. The application program must
then retrieve that key for use in subsequent database operations. Embedding
this capability in the DBMS frees the Information Systems (IS) developer from
designing and implementing customized key-creation software modules. In the
example of Figure 9-8, all the primary keys will be an AutoNumber type of field
except the AccountNumber for the Customer table. An AccountNumber may be
an AutoNumber field, but it might just as easily be a specific number assigned,
based on some other algorithm.

Invented keys that aren’t assigned by the information system or DBMS must
be carefully scrutinized to ascertain their uniqueness and usefulness over time.
For example, employee databases in the United States commonly use Social
Security numbers as keys. Because the U.S. government has a strong interest in
guaranteeing the uniqueness of Social Security numbers, the assumption that
they will always be unique seems safe. But will all employees who are stored
in the database have a Social Security number? What if the company opens a
manufacturing facility in Asia or South America?

Invented keys assigned by nongovernmental agencies deserve even more care-
ful scrutiny. For example, FedEx, UPS, and other shipping companies assign a
tracking number to each shipment they process. Tracking numbers are guaran-
teed to be unique at any given point in time, but are they guaranteed to be unique
forever (i.e., are they ever reused)? Could reuse of a tracking number cause pri-
mary key duplication in your database? And what would happen if two different
shippers assigned the same tracking number to two different shipments?

Organizations that have large number of records in the database and that
share these items across multiple databases will sometimes use a globally unique
identifier (GUID). GUIDs are guaranteed to be unique across all items in the
world. However, because they are usually 32 hexadecimal digits in length, they
require substantial storage space in the database, and are usually only used for
specific items that need to be uniquely identified outside of the database.

 ❚ Representing Associations
Associations are represented within a relational database by foreign keys. The
choice of which foreign keys to place in which tables depends on the type of
association being represented. The RMO class diagram in Figure 9-6 contains
10 one-to-many associations, two many-to-many associations, and two general-
ization/specialization association groups. You will deal with the generalization/
specialization associations in a later step. The rules for representing one-to-
many and many-to-many associations are as follows:

 ■ One-to-many associations. Add the primary key attribute(s) of the “one”
class to the table that represents the “many” class.

 ■ Many-to-many associations. There are two possible situations—either an asso-
ciation class has already been defined in the domain model and a table has been
created, or a many-to-many association exists with no association class defined:

 ● Association with defined association class. Add the primary keys of the
endpoint classes (i.e., the associated classes) as foreign keys in the table
that was created for the association class. These foreign keys are always a
candidate key and frequently will serve as the primary key. They uniquely
define the rows in the association class table.

 ● Association without a class. Create a new table to represent the associa-
tion. Add the primary keys of the endpoint classes (i.e., the associated
classes) as foreign keys in the new table. These foreign keys are always
a candidate key. The concatenation of these primary keys is always a
unique identifier for the record and thus a candidate key. An invented
primary key may also be added if desired for ease of use.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

269CHAPTER 9 ■ Designing the Database

One-to-Many Associations Figure 9-9 shows the results of representing the
10 one-to-many associations within the tables from Figure 9-8. Each foreign
key (shown in italic) represents a single association between the table contain-
ing the foreign key and the table that uses that same key as its primary key. For
example, the attribute CustomerAccountNumber was added to the Sale table as
a foreign key representing the one-to-many association between the Customer
and Sale classes. The foreign key SaleID was added to the SaleTransaction table
to represent the one-to-many association between Sale and SaleTransaction.

Many-to-Many Associations Figure 9-10 expands the table definitions in
 Figure 9-9 by updating the PromoOffering table to represent the many-to-
many association between Promotion and ProductItem. The primary key of
 PromoOffering becomes the combination of PromotionID and ProductItemID.
The old primary key PromoOfferingID is discarded. The two attributes that
make up the primary key are also foreign keys and are displayed in boldface and
italic to indicate their dual status. PromotionID is a foreign key from the Promo-
tion table, and ProductItemID is a foreign key from the ProductItem table.

Because there is no association class representing the many-to-many asso-
ciation between ProductItem and AccessoryPackage, a new table named Acces-
soryPackageContents is created. As with PromoOffering, it contains two foreign
key columns that combine to form the primary key.

Notice that the class diagram contains other classes—including Pro-
ductComment, SaleItem, and CartItem—that are connected between two other
classes on the many side of one-to-many associations. Though not shown the
same way as PromoOffering on the class diagram, SaleItem and CartItem are
similar to PromoOffering in that they could also have been modeled as an asso-
ciation class in a many-to-many association. For example, SaleItem can also be
thought of as a many-to-many association between Sale and InventoryItem.

Attributes

AccessoryPackageID, AccessoryCategory, Description

CartItemID, InventoryItemID, OnlineCartID, Quantity, CurrentPrice

AccountNumber, Name, MobilePhone, HomePhone, EmailAddress,
Status

InventoryItemID, ProductItemID, Size, Color, Options,
QuantityOnHand, AverageCost, ReorderQuantity

OnlineCartID, CustomerAccountID, StartDateTime,
NumberOfItems, ValueOfItems, Status, ElapsedTime, HoldForDays

ProductCommentID, ProductItemID, CustomerAccountNumber, Date,
Rating, Comment

ProductItemID, Gender, Description, Supplier, Manufacturer, Picture

PromoOfferingID, RegularPrice, PromoPrice

PromotionID, Season, Year, Description, StartDate, EndDate

SaleID, CustomerAccountNumber, SaleDateTime, PriorityCode,
ShippingAndHandling, Tax, TotalAmount, MountainBucks, StoreID,
RegisterID, ClerkID, TimeOnSite, ChatUse, LengthOfCall

SaleItemID, InventoryItemID, SaleID, Quantity, SoldPrice, ShipStatus,
BackOrderStatus

Table

AccessoryPackage

CartItem

Customer

InventoryItem

OnlineCart

ProductComment

ProductItem

PromoOffering

Promotion

Sale

SaleItem

SaleTransaction SaleTransactionID, SaleID, Date, TransactionType, Amount,
PaymentMethod

FIgure 9-9 One-to-many
associations represented by
adding foreign key attributes
(shown in italic)

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

270 PART 3 ■ Essentials of Systems Design

Because the combination of foreign key values in SaleItem is always unique,
the foreign key combination can serve as the table’s primary key, and the
invented key (SaleItemID) created earlier can be discarded. A similar situation
exists for CartItem. However, ProductComment is different. Even though it has
one-to-many associations with ProductItem and Customer, it cannot be mod-
eled as an association class. With ProductComment, it is possible for a single
customer to make multiple comments about the same product. Hence, it is not
an association class. If we tried to model it with only foreign keys as the pri-
mary key there would be two rows in the ProductComment table with the same
values of CustomerAccountNumber and ProductItemID. Thus, the invented key
 ProductCommentID is retained and the two foreign key attributes aren’t part of
the primary key.

 ❚ Representing Classification Hierarchies
Generalization/specialization hierarchies, such as the associations among Sale,
InStoreSale, TelephoneSale, and WebSale, are a special case in relational data-
base design. Just as a specialized class inherits the data and methods of a gen-
eralized class, a table representing a specialized class inherits some or all of its
data from the table representing its generalized class. This inheritance can be
represented in multiple ways, including the following:

 ■ Combining all the tables into a single table containing the superset of
all classes

 ■ Using separate tables to represent the child classes, and using the primary
key of the parent class table as the primary key of the child class tables

 ■ Some combination of the previous two methods

Attributes

AccessoryPackageID, AccessoryCategory, Description

InventoryItemID, OnlineCartID, Quantity, CurrentPrice

AccessoryPackageID, ProductItemID

AccountNumber, Name, MobilePhone, HomePhone,
EmailAddress, Status

InventoryItemID, ProductItemID, Size, Color, Options,
QuantityOnHand, AverageCost, ReorderQuantity

OnlineCartID, CustomerAccountID, StartDateTime,
NumberOfItems, ValueOfItems, Status, ElapsedTime,
HoldForDays

ProductCommentID, ProductItemID, CustomerAccountNumber,
Date, Rating, Comment

ProductItemID, Gender, Description, Supplier, Manufacturer,
Picture

PromotionID, ProductItemID, RegularPrice, PromoPrice

PromotionID, Season, Year, Description, StartDate, EndDate

SaleID, CustomerAccountNumber, SaleDateTime, PriorityCode,
ShippingAndHandling, Tax, TotalAmount, MountainBucks,
StoreID, RegisterID, ClerkID, TimeOnSite, ChatUse,
LengthOfCall

InventoryItemID, SaleID, Quantity, SoldPrice, ShipStatus,
BackOrderStatus

Table

AccessoryPackage

CartItem

AccessoryPackageContents

Customer

InventoryItem

OnlineCart

ProductComment

ProductItem

PromoOffering

Promotion

Sale

SaleItem

SaleTransaction SaleTransactionID, SaleID, Date, TransactionType, Amount,
PaymentMethod

FIgure 9-10 PromoOffering table
modified to represent the many-
to-many association between
Product and Promotion

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

271CHAPTER 9 ■ Designing the Database

Any of the three methods are acceptable approaches to representing a clas-
sification hierarchy.

Figure 9-11 shows the definition of the Sale table under the first method. All
the non-key attributes in the InStoreSale, TelephoneSale, and OnlineSale classes
are stored in the Sale table. For any particular sale, some of the attribute values in
each row will be empty or, in database terminology, NULL. For example, a row
representing a telephone sale would have no values for the attributes StoreID,
RegisterID, TimeOnSite, and ChatUse.

Figure 9-12 shows separate table definitions for specialized classes. The
relationship among Sale, InStoreSale, TelephoneSale, and OnlineSale is repre-
sented by the foreign key SaleID in all three specialized class tables. In each
case, the foreign key representing the inheritance association also serves as the
primary key of the table representing the specialized class. A similar situation
exists for OnlineCart, ActiveCart, and OnReserveCart.

 ❚ Enforcing Referential Integrity
In general terms, referential integrity is a constraint on database content; for
example, “A sale must be to a customer” and “A sale item must be something that
we stock in inventory.” For relational databases, the term referential integrity
describes a consistent state between foreign key and primary key values. A refer-
ential integrity constraint requires that every foreign key value in one table must
have a record in the associated table with that same value in the primary key.

The DBMS usually enforces referential integrity automatically once the
schema designer identifies primary and foreign keys. For example, when a new
row is added to a table containing a foreign key, the DBMS checks that the value

FIgure 9-11 Specialization classes
of Sale and OnlineCart included in
the primary tables

Attributes

AccessoryPackageID, AccessoryCategory, Description

InventoryItemID, OnlineCartID, Quantity, CurrentPrice

AccessoryPackageID, ProductItemID

AccountNumber, Name, MobilePhone, HomePhone,
EmailAddress, Status

InventoryItemID, ProductItemID, Size, Color, Options,
QuantityOnHand, AverageCost, ReorderQuantity

OnlineCartID, CustomerAccountID, StartDateTime,
NumberOfItems, ValueOfItems, Status, ElapsedTime,
HoldForDays

ProductCommentID, ProductItemID, CustomerAccountNumber,
Date, Rating, Comment

ProductItemID, Gender, Description, Supplier, Manufacturer,
Picture

PromotionID, ProductItemID, RegularPrice, PromoPrice

PromotionID, Season, Year, Description, StartDate, EndDate

SaleID, CustomerAccountNumber, SaleDateTime, PriorityCode,
ShippingAndHandling, Tax, TotalAmount, MountainBucks,
StoreID, RegisterID, ClerkID, TimeOnSite, ChatUse,
LengthOfCall

InventoryItemID, SaleID, Quantity, SoldPrice, ShipStatus,
BackOrderStatus

Table

AccessoryPackage

CartItem

AccessoryPackageContents

Customer

InventoryItem

OnlineCart

ProductComment

ProductItem

PromoOffering

Promotion

Sale

SaleItem

SaleTransaction SaleTransactionID, SaleID, Date, TransactionType, Amount,
PaymentMethod

©
 C

en
ga

ge
 L

ea
rn

in
g®

referential integrity every value as
a foreign key in one table must have an
equivalent value as the primary key in
the associated table

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

272 PART 3 ■ Essentials of Systems Design

also exists as a primary key value in the related table and rejects the new row if
no such primary key value exists. The database designer “tells” the DBMS which
columns are foreign keys and which primary key columns they refer to by creat-
ing a referential integrity constraint. For example, a referential integrity con-
straint for SaleID in the SaleItem table would be written in SQL as:

ADD CONSTRAINT FK_SaleItem_Sale FOREIGN KEY
(SaleID) REFERENCES Sale(SaleID)

 ■ Database Normalization
Creating a set of database tables from a well-formed and accurate data model
produces a correct and well-defined database. However, at times the data
model may not have been built accurately or correctly. This could result in a
database that is either incorrect, or not designed efficiently. In addition, some-
times developers will design a database without using a complete data model.
In any event, it is a good practice to do a final review of the database, to
ensure that it is well formed and correct. One important characteristic of a
correct database design is that all of the tables in the database be normalized.
A normalized database has certain characteristics that are important for accu-
racy and performance.

Attributes

AccessoryPackageID, AccessoryCategory, Description

InventoryItemID, OnlineCartID, Quantity, CurrentPrice

AccountNumber, Name, MobilePhone, HomePhone,
EmailAddress, Status

OnlineCartID, HoldForDays

ProductCommentID, ProductItemID,CustomerAccountNumber,
Date, Rating, Comment

ProductItemID, Gender, Description, Supplier, Manufacturer,
Picture

PromotionID, ProductItemID, RegularPrice, PromoPrice

PromotionID, Season, Year, Description, StartDate, EndDate

SaleID, CustomerAccountNumber, SaleDateTime, PriorityCode,
ShippingAndHandling, Tax, TotalAmount, MountainBucks

Table

AccessoryPackage

AccessoryPackageID, ProductItemIDAccessoryPackageContents

CartItem

Customer

OnReserveCart

OnlineCartID, ElapsedTimeActiveCart

OnlineCartID, CustomerAccountID, StartDateTime,
NumberOfItems, ValueOfItems, Status, ElapsedTime,
HoldForDays

OnlineCart

ProductComment

ProductItem

PromoOffering

Promotion

Sale

SaleTransaction SaleTransactionID, SaleID, Date, TransactionType, Amount,
PaymentMethod

SaleItem

InventoryItemID, ProductItemID, Size, Color, Options,
QuantityOnHand, AverageCost, ReorderQuantity

InventoryItem

InventoryItemID, SaleID, Quantity, SoldPrice, ShipStatus,
BackOrderStatus

InStoreSale SaleID, StoreID, RegisterID, ClerkID

OnlineSale SaleID, TimeOnSite, ChatUse

TelephoneSale SaleID, ClerkID, LengthOfCall

FIgure 9-12 Specialization classes
of Sale and OnlineCart represented
as separate tables

©
 C

en
ga

ge
 L

ea
rn

in
g®

referential integrity constraint
a constraint, stored in the schema, that
the DBMS uses to automatically enforce
referential integrity

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

273CHAPTER 9 ■ Designing the Database

A normalized relational database schema has three important characteristics:

1. Allows flexibility in implementing future data model changes
2. Contains a minimum of redundant data
3. Prevents insertion, deletion, and update anomalies

A database schema is considered flexible and maintainable if changes to the
database schema can be made with minimal disruption to existing data content
and structure. For example, adding a new class to the schema shouldn’t require
redefining existing tables. Adding a new one-to-many association should only
require adding new foreign keys and/or tables. Redundancy also plays a role in
database longevity and usability. Excessive redundancy reduces schema flexibility
and also reduces system performance. Anomalies in record updates, insertions, and
deletions occur, for example, when deleting data in a table inadvertently deletes
important but ancillary data. For example, if customer name and address informa-
tion is maintained as part of a Sale, then deleting a Sale record might also com-
pletely delete the Customer information! Obviously, this is not a desirable result.

You have learned how to create a database schema based on a data modeling
activity rigorous enough to create a correct and complete data model. You have
also learned how to convert a conceptual data model to a relational model or rela-
tional database schema. The advantage of creating a database schema using this
process is that the resulting schema is already in normalized form. However, in
your career you will have occasion to work with databases that were not designed
with this rigorous data modeling approach or in which data modeling errors were
made, so you should understand how to evaluate and normalize a database.

Normalization is a formal technique for structuring a database to minimize
data redundancy and to prevent data anomalies. It defines specific methods to
eliminate redundancy and improve flexibility as well as to prevent data anomalies.
Database theory defines increasing levels of normalization, including first normal
form, second normal form, third normal form, fourth normal form, Boyce-Codd
normal form, and others; however, a complete discussion of normalization is well
beyond the scope of this textbook. The following sections briefly define the key
concepts of first, second, and third normal forms. Usually ensuring that a data-
base is in third normal form is sufficient for most business information systems.

 ❚ First Normal Form
A table is in first normal form (1NF) if every field contains only one value.
The formal way to state this is that all attribute values must be atomic. Non-
atomic fields can be illustrated in two ways. Either you have attributes with mul-
tiple values in them, which are called multivalued attributes, or you have a table
with multiple columns with the same name. Figure 9-13(a) illustrates the first
approach, and Figure 9-13(b) illustrates the second. 1NF prohibits attributes
such as Dependent, which is shown in Figure 9-13.

normalization a formal technique
for transforming a relational schema to
an equivalent one that minimizes data
redundancy and eliminates data anomalies

first normal form (1NF) a restriction that
all fields must be atomic, or single valued

FIgure 9-13(a) Rows with
multivalued attribute Dependents SSN

111-22-3333
222-33-4444
333-44-5555

Name

Mary Smith
Jose Pena
Frank Collins

Department

Accounting
Marketing
Production

Salary

40,000
50,000 ---
35,000

Dependents

John, Alice, Dave

Jan, Julia

©
 C

en
ga

ge
 L

ea
rn

in
g®

SSN

111-22-3333
222-33-4444
333-44-5555

Name

Mary Smith
Jose Pena
Frank Collins

Department

Accounting
Marketing
Production

Salary

40,000
50,000
35,000

Dependent

John

Jan

Dependent

Alice

Julia

Dependent

Dave

©
 C

en
ga

ge
 L

ea
rn

in
g®

FIgure 9-13(b) Rows
with varying number of
Dependent columns

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

274 PART 3 ■ Essentials of Systems Design

To correct this problem, the employee table must be divided into two
tables. The first table will have the columns of SSN, Name, Department, and
Salary. Another table, with a newly invented key, will have columns SSN and
Dependent. Notice in the second table, that each row has a unique key, and
also has a pairwise matching of SSNs and Dependents. Figure 9-14 illustrates
the solution to the problem. The schema shown in Figure 9-14 is in first nor-
mal form.

Note that the correct data model for this situation would be an Employee
class and a Dependent class with a one-to-many association. As stated pre-
viously, a correct data model—when converted to a set of database tables
 correctly—will result in a normalized schema.

 ❚ Functional Dependency
Before moving on to second and third normal forms, you should become famil-
iar with the concept of a functional dependency. A functional dependency is
a relationship between columns such that the values in one (or more) column
determine the values in a second column (or set of columns). The association is
formally stated as follows:

Attribute B is functionally dependent on attribute A if for each value
of attribute A there is only one corresponding value of attribute B. Also
written as FD: A S B.

The most precise way to determine whether functional dependency exists
is to pick two attributes in a table and insert their names as A and B of the
previous statement and ask whether the result is true. For example, consider
the attributes ProductItemID and Description in the ProductItem table (see
 Figure 9-15). ProductItemID is an internally invented primary key that is
guaranteed to be unique within the table. To determine whether Descrip-
tion is functionally dependent on ProductItemID, substitute Description for
attribute B and ProductItemID for attribute A in the functional dependency
definition:

Description is functionally dependent on ProductItemID if for each
value of ProductItemID there is only one corresponding value of
Description.

Now ask whether the statement is true for all rows that could possibly
exist in the ProductItem table. If the statement is true, then Description

FIgure 9-14 Schema normalized
to first normal form SSN

111-22-3333
222-33-4444
333-44-5555

Name

Mary Smith
Jose Pena
Frank Collins

Department

Accounting
Marketing
Production

Salary

40,000
50,000
35,000

RecordID

1
2
3
4
5

SSN

111-22-3333
111-22-3333
111-22-3333
333-44-5555
333-44-5555

Dependent

John
Alice
Dave
Jan
Julia

©
 C

en
ga

ge
 L

ea
rn

in
g®

functional dependency a relationship
between columns such that the values in one
(or more) column determine the values in a
second column (or set of columns)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

275CHAPTER 9 ■ Designing the Database

is functionally dependent on ProductItemID. As long as the invented key
ProductItemID is guaranteed to be unique within the ProductItem table, then
the preceding statement is true. Therefore, Description is functionally dependent
on ProductItemID. Note that the following notation is another way to write a
functional dependency “FD: ProductItemID S Description.” Said another way,
 ProductItemID functionally determines Description.

Let’s check other columns. Look at ProductItemID and Supplier. Note
that Supplier is also functionally dependent on ProductItemID, or FD:
ProductItemID S Supplier. However, in this case, also notice that the reverse
is not true. That Supplier does NOT functionally determine ProductItemID
because given a value of Supplier, such as West Coast, you cannot determine a
single value for ProductItemID.

Finally, note that ProductItemID S Gender, Description, Supplier, Manu-
facturer. In other words, because ProductItemID is the key field for this table, it
functionally determines every other column in the rows. Thus, the ProductItem
table is normalized correctly. The following sections look at second and third
normal forms, including some situations where tables are not normalized com-
pletely and need to be corrected.

 ❚ Second Normal Form
A table is in second normal form (2NF) if it is in 1NF and if each non-key
attribute is functionally dependent on the entire primary key. A table violates
2NF when a non-key attribute is functionally dependent on only part of the pri-
mary key, which is only possible if the primary key contains multiple attributes.
Thus, because the ProductItem table is in 1NF, it is also in 2NF because its pri-
mary key is a single column.

When a table’s primary key consists of two or more attributes, the analyst
must examine functional dependency of non-key attributes on each portion
of the primary key. For example, consider a modified version of the RMO
PromoOffering table, as shown in Figure 9-16. Recall that this table represents
a many-to-many association between Promotion and ProductItem. Thus, the
table representing this association has a primary key consisting of the primary
keys of Promotion (PromotionID) and ProductItem (ProductItemID).

To be in 2NF, each non-key attribute must be functionally dependent on
the entire primary key consisting of the combination of PromotionID and
 ProductItemID. The simplest way to test for 2NF is to test for functional depen-
dency of non-key attributes on each individual attribute of the primary key.
Because the primary key contains two attributes, there are two statements that

FIgure 9-15 RMO ProductItem
table

S
ou

rc
e:

 M
ic

ro
so

ft
 C

or
po

ra
tio

n

second normal form (2NF) a restriction
that a table is in 1NF and that each non-key
attribute is functionally dependent on the
entire primary key

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

276 PART 3 ■ Essentials of Systems Design

must be tested for each non-key attribute. To test RegularPrice attribute, these
statements are:

RegularPrice is functionally dependent on PromotionID if for each value
of PromotionID there is only one corresponding value of Regular Price.

RegularPrice is functionally dependent on ProductItemID if for each value
of ProductItemID there is only one corresponding value of Regular Price.

If either statement is true—that is, an attribute is functionally dependent on
only part of the key—then a 2NF violation exists. In this example, the first state-
ment is false, but the second is true. RegularPrice depends on ProductItemID
regardless of what promotions, if any, a product participates in. Another way
to think about this example is to think about the underlying association repre-
sented by the PromoOffering table. A product can be part of multiple promo-
tions at the same time. Although a product’s promotional price can be different
in different promotions, its regular price is the same whether it participates in
one promotion, three promotions, or none.

If a non-key attribute such as RegularPrice is functionally dependent on
only part of the primary key, then you must remove the non-key attribute from
its present table and place it in another table to satisfy the requirements of
2NF. Because the first functional dependency statement is true, RegularPrice
belongs in a table that has ProductItemID as its primary key. If such a table
doesn’t already exist, it must be created. However, in this case, there is
already a table with ProductItemID as its primary key: the ProductItem table.
Thus, the column RegularPrice is removed from the PromoOffering table and
added to the ProductItem table, thus ensuring that the PromoOffering table
is in 2NF.

Referring back to Figure 9-6, notice that the PromoOffering class was
modeled incorrectly. It should be clear from our normalization exercise that
the RegularPrice attribute really belongs in the ProductItem class and not the
PromoOffering class. Normalization provides verification that the data model
was constructed correctly.

 ❚ Third Normal Form
A table is in third normal form (3NF) if it is in 2NF and if no non-key attribute
is functionally dependent on any other non-key attribute. To verify that a table
is in 3NF, you must check the functional dependency of each non-key attribute
against every other non-key attribute. This can be cumbersome for a large table
because the number of pairs that must be checked grows quickly as the num-
ber of non-key attributes grows. The number of functional dependencies to be
checked is N 3 (N 2 1), where N is the number of non-key attributes. Note, too,
that functional dependency must be checked in both directions (i.e., A depen-
dent on B, and B dependent on A).

FIgure 9-16 Version of the
RMO PromoOffering table that
violates 2NF

S
ou

rc
e:

 M
ic

ro
so

ft
 C

or
po

ra
tio

n

third normal form (3NF) a restriction that
a table is in 2NF and that no non-key attribute
is functionally dependent on any other non-
key attribute

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

277CHAPTER 9 ■ Designing the Database

This section demonstrates two common violations of 3NF. To illustrate
these violations, the Sale class and the Customer class in the class diagram have
been modified. Figure 9-17 illustrates these modified classes.

A common example of a 3NF violation is an attribute that can be computed
by a formula or algorithm using other table values as inputs. Common examples
of computable attributes include subtotals, totals, and taxes. To illustrate this
concept, the Sale class was modified to include an itemTotal attribute.

The modified Sale table is shown in Figure 9-18. The ItemTotal field is the
sum of SoldPrice amounts from the SaleItem table. The TotalAmt field is the
sum of the Shipping, Tax, and ItemTotal, as follows:

TotalAmt 5 Shipping 1 Tax 1 ItemTotal, or
FD: Shipping, Tax, ItemTotal S TotalAmt

Computational dependencies are a form of redundancy because a change to
the value of any input variable in the computation (e.g., Shipping) also changes
the result of the computation (i.e., TotalAmount). The way to correct this type
of 3NF violation is simple: Remove the computed attribute from the database.
Eliminating the computed attribute from the database doesn’t mean that its
value is lost. It can always be recalculated when it is needed.

The other example in the Customer class is the addition of a creditCategory
field along with its associated creditRate (refer back to Figure 9-17). In other
words, a creditCategory of A has a creditRate of 6 percent, and a creditCat-
egory of B has a creditRate of 7 percent. It is tempting to put all this data right
in the Customer table, so that you can see the credit rating of a customer and
the interest rate that she must pay. However, it should be obvious that this is a
bad design. If the interest rate for CreditCategory B changed to 8 percent, there
may be hundreds or thousands of places where that value is stored in the Cus-
tomer table, then requiring an update. The solution to this problem is to make a
new table, called CreditRule, with CreditCategory and CreditRate as the fields
and CreditCategory as the key. The Customer table will have a foreign key that
points to the CreditCategory field in the CreditRule table. Figure 9-19 shows
the solution with the two tables defined.

From time to time, a database design will relax 3NF requirements and have
some tables that are not in 3NF compliance. A common example is a customer
address. In the address field, it is normal to have both state and zipcode fields.

saleDataTime
priorityCode
S&H
tax
itemTotal
totalAmt

Sale

1..* 1

name
mobilePhone
homePhone
emailAddress
status
creditCategory
creditRate

Customer

FIgure 9-17 Sale class with
itemTotal and totalAmt

©
 C

en
ga

ge
 L

ea
rn

in
g®

FIgure 9-18 Sale table modified to violate 3NF

S
ou

rc
e:

 M
ic

ro
so

ft

C
or

po
ra

tio
n

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

278 PART 3 ■ Essentials of Systems Design

However, because zip codes do not cross state lines, the state field is functionally
determined by the zipcode field. However, because the zipcode values almost
never change, to avoid having a zipcode table, and due to convention, most
databases permit both state fields and zipcode fields in the address information
of a single table.

 ■ Data Types
A data type defines the storage format and allowable content of a program
variable, class attribute, or relational database attribute or column. Primitive
data types are supported directly by computer hardware and programming
languages and include integers, single characters, and real numbers (floating-
point numbers). Complex data types are combinations of or extensions to
primitive data types that are supported by programming languages, operating
systems, and DBMSs. Examples include arrays and tables, strings (character
arrays), dates, times, currency (money), audio streams, still images, motion
video streams, and Uniform Resource Locators (URLs or Web links).

A database designer must choose an appropriate data type for each attri-
bute in a relational database schema. For many attributes, the choice of a
data type is relatively straightforward. For example, designers can represent
customer names and addresses as strings, inventory quantities as integers, and
item prices as currency. RDBMSs support a variety of primitive and complex
data types required by modern information systems. Figure 9-20 contains a
partial listing of some of the data types available in the Microsoft SQL Server
RDBMS. The varbinary data type is typically used to store such data items
as pictures, sound, and video encoded in such standardized formats as JPEG,
MP3, and MP4.

FIgure 9-19 Customer table in
3NF showing CreditRule table

S
ou

rc
e:

 M
ic

ro
so

ft
 C

or
po

ra
tio

n

Description

Date, time, and time zone

Whole numeric values

Numeric values with fractional quantities

Currency values and related symbols (e.g., $ and)

Fixed- and variable-length Unicode string

Variable-length byte sequence up to 2GB

XML document up to 2GB

Type(s)

datetimeoffset

int, small int, and bigint

float and real

money

nchar and nvarchar

varbinary

xml

FIgure 9-20 Examples of data
types available in the Microsoft
SQL Server RDBMS

©
 C

en
ga

ge
 L

ea
rn

in
g®

data type the storage format and allow-
able content of a program variable, class
attribute, or relational database field

primitive data types data types
supported directly by computer hardware
or a programming language

complex data types combinations of
or extensions to primitive data types that
are supported by programming languages,
operating systems, and DBMSs

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

279CHAPTER 9 ■ Designing the Database

 ■ Distributed Database Architectures
Earlier in the chapter, you learned about various database configurations, from
local desktop to LAN server to a large database server farm, and finally to
distributed server farms residing in multiple data centers. As an organization
becomes very large, with a user base that spans the globe, it becomes more ben-
eficial to locate the data at locations that are closer to the users. There are three
scenarios for distributing the data:

 ■ Decentralized database. In some situations, a global company may
have pockets of database users who share data with each other, but do
not have the need to share the data globally. Each database may have the
same structure and schema as the other databases, but does not need to
be connected with Internet or wide area networks (WANs). In this situa-
tion, the data is purely local, even though the database configuration may
be the same.

 ■ Homogeneous distributed database. In the situation where the data
need to be shared or at least available throughout the reach of the orga-
nization, a homogeneous distributed database is the correct structure.
 Figure 9-21 illustrates a typical configuration for this type of environment.
The global schema contains the metadata about which data reside at which
node and directs queries and updates appropriately. In this configuration,
the global schema is available to every database user issuing database que-
ries. Normally, a homogeneous configuration will use the same DBMS at
each location.

 ■ Heterogeneous distributed database. This configuration combines the
features of the two previous configurations, namely, that there are some
users and queries that are purely local, combined with other users and
queries that require global access. With a heterogeneous configuration,
different locations may also utilize distinct DBMSs, especially where most
of the queries are local and only occasional queries require global inter-
faces. Figure 9-22 illustrates a typical heterogeneous distributed database
configuration.

decentralized database a database
stored at multiple locations without needing
to be interconnected through a network or
synchronized

homogeneous distributed database
a database distributed across multiple
locations with the same DBMS, and
all database access coordinated by
a global schema

heterogeneous distributed database
a database distributed across multiple locations
with different DBMSs and with local access
allowed without global schema coordination

DBMS for
distributed
database

Global user

Global user

Global user

Global
schema

Location 1
data

Location 2
data

Location 3
data

DBMS system

DBMS system

DBMS system

FIgure 9-21 Typical
homogeneous distributed
database configuration

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

280 PART 3 ■ Essentials of Systems Design

 ■ Implementation Approaches for Distributed Database
Once the need for a distributed database is recognized, decisions must be made
on how to partition the database and what the configuration will be at each
location. Obviously, this is a complex decision that requires careful analysis of
the data requirements for each location. Configuration decisions must consider
such things as frequency of queries versus updates; size and frequency of result
sets; data transmission costs; physical location of server farms; and many other
cost, efficiency, and performance requirements. The following sections briefly
consider four distribution strategies:

1. Data replication
2. Horizontal partitioning
3. Vertical partitioning
4. Combinations of the above three strategies

 ❚ Data Replication
Complete database copies are hosted at each location or server farm and main-
tained by cooperating DBMSs. The servers are usually distributed across geo-
graphic locations. Application programs can access any server and usually make
database updates to only one server. Servers at distinct locations periodically
exchange update information to synchronize their database copies.

Applications can direct access requests to any available server, with prefer-
ence given to the nearest server. When a server is unavailable, clients can redi-
rect requests to another available server. In spite of these advantages, replicated

DBMS for
distributed
database

Global user

Local user

Global user

Global user

Global
schema

Location 1
data

Location 2
data

Location 3
data

DBMS-A
system

DBMS system

DBMS-B
system

Local user

FIgure 9-22 Typical
heterogeneous distributed
database configuration

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

281CHAPTER 9 ■ Designing the Database

database servers do have some drawbacks. When data are updated on one data-
base copy, clients accessing that same data from another database copy receive
an outdated response. To counteract this problem, each database copy must
periodically be updated with changes from other database servers. This process
is called database synchronization.

The time delay between an update to a database copy and the propaga-
tion of that update to other database copies is an important database design
decision. During the time between the original update and the update of data-
base copies, application programs that access outdated copies aren’t receiv-
ing responses that reflect current reality. Designers can address this problem
by synchronizing more frequently or continuously. However, synchronization
then consumes a substantial amount of database server capacity, and a large
amount of network capacity among the related database servers must be pro-
vided. The proper synchronization strategy is a complex trade-off among cost,
hardware and network capacity, and the need of application programs and
users for current data.

The advantage of replicated distributed databases is that each location is
essentially independent for any given query or update; thus, response times tend
to be fast. Also, in case of unavailability for any location, the other locations
are immediately prepared to handle queries. In addition, transaction process-
ing, which requires multiple updates to occur, is straightforward because only
one location is impacted. The two major disadvantages are the increased storage
requirements because the database is duplicated multiple times, and, as men-
tioned previously, keeping all the locations synchronized.

 ❚ Horizontal Partitioning
Horizontal partitioning of the database occurs when a table is split by storing
some rows or records at one location and other rows or records at another loca-
tion. For example, suppose a large international bank had branches around the
world with one data center in the United States, a second data center in Canada,
a third data center in Europe, and so forth. It would make sense to partition the
CustomerAccount tables, summary, and detail information horizontally so that
the data for U.S. customers resided in the U.S. data center. Figure 9-23 illustrates
a global view one of the CustomerAccount tables, showing how it might be par-
titioned. The global schema will identify which records reside at which location
so queries and updates can be routed to the correct data center. For example, a
person traveling internationally may need to check her information from various
locations around the world. Even though this is a fairly straightforward method
to partition the database, it does get more complex as customers also become
global and have accounts or loans in multiple locations throughout the world.
Hence, even with horizontal partitioning there may be the need to maintain
duplicate data or to synchronize data.

To reconstruct the complete base tables requires that data from all locations
be combined together. This situation might be required for combined reporting
or data analysis processing.

database synchronization updating one
database copy with changes made to other
database copies

FIgure 9-23 Horizontally partitioned table of a database

S
ou

rc
e:

 M
ic

ro
so

ft
 C

or
po

ra
tio

n

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

282 PART 3 ■ Essentials of Systems Design

The major advantage of this configuration is its simplicity. Each data center
is essentially independent and database access can be optimized as though it
were a local data center. Security is also handled at the local level. A disad-
vantage is that, because there is no duplication, this configuration is subject to
unavailability should one of the locations experience a catastrophe.

 ❚ Vertical Partitioning
Vertical partitioning of the database occurs when complete tables or only specific
columns of a base table are stored at distinct locations. A vertically partitioned
table may have some columns at location A, other columns at location B, and
other columns at location C. Distributing entire base tables to distinct locations
is fairly straightforward. Distributing only columns of the same table to distinct
locations is more complex, and is more complex than horizontal partitioning. So
when would an organization implement vertical partitioning?

Figure 9-24 illustrates vertical partitions for an AssemblyPart table in a
Supply Chain database for a company that obtains parts from manufacturers
in one location, such as Japan, and does final inspection and assembly of those
parts in another location, such as the United States. For the AssemblyPart table
in Japan, information is required about the description, the manufacturer, and
the quantity on hand of these raw parts. For the AssemblyPart table in the United
States, information is required about the description, the schematic number of
the assembly instructions, the document number of the inspection instructions,
and the quantity on hand at the assembly plant. Thus, vertical partitioning of
the database occurs more frequently when different functional areas must access
the same database and the same data elements.

 ❚ Combination of Replication, Horizontal, and Vertical Partitions
All of the preceding three techniques can be combined to provide the right data
at the right place in the right form. A large international organization will often
have different functional areas located at distinct geographical locations, requir-
ing vertical partitioning. Other functional areas, such as Sales, may require cus-
tomer and sales information at all locations, which may best be partitioned in
a horizontal configuration. Some information, such as corporate-wide informa-
tion, may need to be available at all locations and may utilize replicated tables.
The design and maintenance of this complex configuration would be designed
under the direction of the data administrator and the database administrator
roles, as explained previously. A single project team would not take responsibil-
ity for designing and administering this scenario.

S
ou

rc
e:

 M
ic

ro
so

ft
 C

or
po

ra
tio

n

FIgure 9-24 Vertical partition of the AssemblyPart table

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

283CHAPTER 9 ■ Designing the Database

 ■ RMO Distributed Database Architecture
The starting point for designing a distributed database architecture is informa-
tion about the data needs of geographically dispersed users. Some of this infor-
mation for RMO was gathered as an analysis activity and is summarized here:

 ■ Warehouse staff members (Portland, Salt Lake City, and Albuquerque) need
to check inventory levels, query orders, record back orders and order fulfill-
ment, and record order returns.

 ■ Phone-order staff members (Salt Lake City) need to check inventory levels;
create, query, update, and delete orders; query customer account informa-
tion; and query catalogs.

 ■ Customers using the online sales system and sales associates in retail stores
need the same access capabilities as phone-order staff.

 ■ Marketing staff members (Park City) need to query and adjust orders,
query and adjust customer accounts, and create and query product and pro-
motion information.

RMO has already decided to manage its database by using the existing
server cluster in the Park City data center. That same center will also host serv-
ers supporting the online sales, order fulfillment, and marketing systems. Thus,
a high-capacity wide area network (WAN) will be needed to connect the servers
to local area networks (LANs) in the warehouses, phone-order centers, retail
stores, headquarters, and data centers.

An architecture that stores the entire database on a single server is not fea-
sible for the Consolidated Sales and Marketing System. There are many accesses
from many locations at many different times. Inevitable database server down-
time would result in lost productivity, sales, and reputation. In essence, the entire
company would grind to a halt, and its future revenue stream would be jeopar-
dized. As for many modern organizations, that risk is simply too much to bear.

A more complex alternative that addresses the risk is shown in Figure 9-25.
Each remote location employs a combination of database partitioning and repli-
cation. A server at each warehouse stores a local copy of the order and inventory

©
 C

en
ga

ge
 L

ea
rn

in
g®

FIgure 9-25 Replicated and
partitioned database server
architecture for RMO

Central
database

server

Replicated
database
partition

Replicated
database
partition

Replicated
database
partition

Corporate
headquarters

LAN

Wide
area

network

Data
center

LAN

Phone-
order center

LAN

Mail-
order center

LAN

Warehouse
LAN

(three locations)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

284 PART 3 ■ Essentials of Systems Design

portions of the database. Servers in the phone-order center and retail stores host
local copies of a larger subset of the database. Corporate headquarters relies on
the central database server in the data center.

The primary advantages of this architecture are fault tolerance and reduced
WAN capacity requirements. Each location could continue to operate indepen-
dently if the central database server failed. However, as the remote locations
continued to operate, their database contents would gradually drift out of
synchronization.

The primary disadvantages to the distributed architecture are cost and com-
plexity. The architecture saves WAN costs through reduced capacity require-
ments, but adds costs for additional database servers. The cost of acquiring,
operating, and maintaining the additional servers would probably be much
higher than the cost of adding greater WAN capacity.

So, does the proposed architecture make sense for RMO? The answer
depends on some data that hasn’t yet been gathered and on answers to some
questions about desired system performance, tolerances for downtime, cost
and reliability of WAN connections, and the cost and availability of cloud
services. RMO management must also determine its goals for system perfor-
mance and reliability. The distributed architecture would provide higher per-
formance and reliability but at substantially increased cost. Management must
determine whether the extra cost is worth the expected benefits.

 ■ Protecting the Database
In Chapter 6, you learned about the need to consider security issues early in the
development of the new system. In the discussion of access controls in Chapter 6,
you learned about the process of authentication and authorization. Those con-
cepts apply directly to the protection of the data in the database and are used
extensively before allowing access to the database. Additional techniques, such
as data encryption, are also a frequently used technique to keep the data pro-
tected from unauthorized persons and programs.

The responsibility for designing and deploying a secure database is shared
between the project team, that is, the system development team, and the DBA.
The DBA provides advice and direction to the project team as they design the
new system to ensure that proper controls and mechanisms are included in
the code of the new system. The DBA then has responsibility for protecting the
DBMS and the database when it is put into production and while it is opera-
tional. In Figure 9-1, you see that there are three types of agents that have access
to the database: the application programs, database users, and database admin-
istrators. The development team plays a major role in the security aspects of the
application programs. The DBA is concerned about security for all three types
of agents.

In today’s computing environment where databases are available to the
entire world via the Internet, you will frequently read about occasions when a
particular database has been compromised and private data has been exposed.
Protecting the database is a serious issue in the development and deployment of
information systems, and a thorough treatment of the subject is well beyond the
scope of this textbook. There are many books and even university courses that
cover security for information systems, networks, and databases.

In addition to the security issues for protecting the database, there is the
need to protect the data in the database from catastrophes ranging from sim-
ple power outages to major natural disasters. The following sections provide
an introduction to some of the concepts, including programming issues, related
to transaction logging and complex updates. In Chapter 6, you were also intro-
duced to the need for backup and recovery.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

285CHAPTER 9 ■ Designing the Database

 ■ Transaction Logging
Transaction logging is a technique by which any update to the database is
logged with such audit information as user ID, date, time, input data, and type
of update. Transaction logging provides a record of database changes that is
stored in a separate location and can be checked independently of the database
itself. The fundamental idea is to create an audit trail of all database updates
and, therefore, track any errors or problems that occur. Most DBMSs include
transaction logging as part of the DBMS software, although database designers
or administrators can customize its application.

Transaction logging achieves two objectives. First, it helps discourage
fraudulent transactions or malicious database changes. For example, if a person
knows that his or her ID will be associated with every check request, that person
isn’t likely to request a bogus payment. Similarly, a disgruntled employee who
might be tempted to delete important records knows that his or her actions are
being logged.

Second, a logging system provides a recovery mechanism for erroneous
transactions. A midlevel logging system maintains the set of all updates. The
system can then recover from errors by “unapplying” the erroneous transac-
tions. More sophisticated logging systems can provide “before” and “after”
images of the attributes or rows that are changed by the transaction as well as
the audit trail of all transactions. These sophisticated systems are typically used
only for highly sensitive or critical data files, but they do represent an important
control mechanism that is available when necessary.

 ■ Concurrency and Complex Update Controls
Databases provide the foundation of almost every activity that is performed
using an electronic device. Activities such as making a call on a cell phone, shop-
ping online, sending a text, playing an Internet game, sharing your photos online,
accessing your Facebook account, checking the price of your stocks and bonds all
depend on databases and database technology. As you can imagine, large, active
databases often have tens of thousands of users every minute who need to read
and update the data. Not only do databases need to be extremely fast, but they
also need to be designed so that multiple users do not damage each other’s data
inadvertently when they are accessing or updating the same information.

In some situations, such as looking at your online photos, users will be
accessing personal or private information that only they will be using. How-
ever, in many situations, such as online shopping, the same information can
be desired by thousands of users at the same time—some of which will only
look at it, but others will need to update it. For example, when you purchase
something on Amazon, the inventory levels and availability information must be
updated immediately. It is not uncommon for multiple customers to be viewing
and updating the information at the same time.

One of the problems that potentially can occur when multiple people are
updating the database at the same time is called the “lost update problem.” For
example, suppose Bill wants to buy some shoes. He accesses the record that con-
tains shoe inventory levels. It indicates that there are 10 pairs in stock. Gary also
wants to buy the same shoes, and also reads the shoe information. Bill buys a
pair of shoes, and the system decrements the quantity and rewrites the quantity
to nine pairs left. Gary does the same, and the system also rewrites the quantity
to nine pairs. Unfortunately, Bill’s update was overwritten by Gary’s and so it
becomes a “lost update.”

To solve this problem, techniques that implement two concepts are used.
This section introduces the concepts, but does not explain all the techniques.
The details of the techniques are beyond the scope of this text and fit more com-
fortably in a database textbook.

transaction logging a technique by which
any update to the database is logged with
such audit information as user ID, date, time,
input data, and type of update

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

286 PART 3 ■ Essentials of Systems Design

The first concept is of a transaction. A transaction is a piece of work that
has several steps, including several reads and writes to the database, that must
all be completed to be valid. An example might be buying movie tickets online.
The transaction will require the following steps:

1. Read the database for available seats and display it.
2. Update the database when the user chooses seats.
3. Start a timer.
4. Accept user purchase information (credit card number).
5. Verify credit and send a charge to the user’s credit card.
6. Post the user’s payment to the company ledger.
7. Permanently update the seat database that the chosen seats are now taken.
8. Update the user information with a reservation for the specific seats.

All of these steps must be completed for the “purchase ticket transaction” to
be complete. If the user stops, if the credit card charge is refused, or if the timer
runs out, then all the prior changes must be undone, and the database returned
to its original condition. This is a rather long transaction involving a consider-
able period of time and many steps.

The second important concept that is widely used to protect against lost
updates is to apply a database lock. A database lock is the technique where a por-
tion of the database is locked by one user so that no other users (or programs) can
use that portion of the database until the first user is finished and releases the lock.

The portion of the database that is locked can vary and is usually a design
issue decided by the DBA. Locks can be applied to individual columns, to single
records or table rows, to an entire table, or even to the entire database. Locking
small portions of the database, such as a column or even a row, requires more
sophistication to track it and control it. However, it is more efficient because
other users can still use most of the database. Locking large portions, such as an
entire table or even the database, is easy to implement, but makes the database
inefficient for a multiple-user environment. The DBA decides the best type of
locking to use depending on the use and activity level of the database.

There are two types of locks that are used, a shared lock, also called a read
lock, and an exclusive lock, also called a write lock. If the user application only
needs to read the data, with no need to update it, it can issue a shared lock. A
shared lock allows other users to also read the same data, but not to update it.
If the user application needs to read and then rewrite the data, then an exclusive
lock is issued. No other user can even read the data that has an exclusive lock.

transaction a piece of work with several
steps that must all be completed to be valid

database lock the technique of applying
exclusive control to a part of the database so
that one user at a time can use the data

shared or read lock a lock where other
transactions are allowed to read the data

exclusive or write lock a lock where no
other activity is allowed, neither reading nor
writing the data

CHAPTER SuMMARy
Most modern information systems store data in a
database and access and manage the data by using
a DBMS. The actual design of the database schema is
a responsibility of the project team, with input from
other technical staff, such as the DA and the DBA.
One of the key activities of systems design is develop-
ing a relational database schema. A relational database
is a collection of data stored in tables. A relational
database schema is normally developed from a domain
class diagram. Each class is represented as a separate
table. One-to-many associations are represented by
embedding foreign keys in class tables. Many-to-many

associations are represented by creating additional
tables containing foreign keys of the related classes.

As organizations grow and become global, there
is frequently a need to distribute the database across
multiple data centers in distinct physical locations.
Methods of partitioning the database, either horizon-
tally or vertically, are used to provide an effective, yet
reliable distribution of data between the data centers.

Because stored data is such an important organi-
zational asset, database design incorporates security
measures to ensure the correctness, completeness, and
security of data.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

287CHAPTER 9 ■ Designing the Database

KEy TeRMS
exclusive lock or write lock

first normal form (1NF)

foreign key

functional dependency

heterogeneous distributed
database

homogeneous distributed
database

key

normalization

primary key

primitive data types

referential integrity

referential integrity constraint

relational database management
system (RDBMS)

row

schema

second normal form (2NF)

shared lock or read lock

Structured Query Language
(SQL)

tables

third normal form (3NF)

transaction

transaction logging

attribute

attribute value

candidate key

complex data types

data administrator (DA)

data type

database (DB)

database administrator (DBA)

database lock

database management system
(DBMS)

database synchronization

decentralized database

 1. List the components of a DBMS and describe the
function of each.

 2. What is a database schema? What information
does it contain?

 3. What does SQL stand for and what is its purpose?

 4. Why are databases the preferred method of storing
data used by an information system?

 5. What are the responsibilities of a data administrator?

 6. What are the responsibilities of a database
administrator?

 7. With respect to relational databases, briefly
define the terms row and attribute value.

 8. What is a primary key? Are duplicate primary key
values allowed? Why or why not?

 9. What is the difference between a natural key and
an invented key? Which type is most commonly
used in business information processing?

 10. What is a foreign key? Why are foreign keys used
or required in a relational database? Are duplicate
foreign key values allowed? Why or why not?

 11. Describe the steps used to transform a domain
class diagram into a relational database schema.

 12. What is referential integrity? Describe how it is
enforced when a new foreign key value is created,
when a row containing a primary key is deleted,
and when a primary key value is changed.

 13. What types of data (or attributes) should never
be stored more than once in a relational data-
base? What types of data (or attributes) usually
must be stored more than once in a relational
database?

 14. What is relational database normalization? Why is a
database schema in third normal form considered to
be of higher quality than a non- normalized database
schema?

 15. Describe the process of relational database normal-
ization. Which normal forms rely on the definition
of functional dependency?

 16. What is the difference between a primitive data type
and a complex data type?

 17. What additional database management complexities
are introduced when database contents are replicated
in multiple locations?

 18. When should database design be performed? Can
the database be designed iteratively or must the
entire database be designed at once?

 19. What is the basic purpose of transaction logging?

 20. What is the difference between homogeneous distributed
database and a heterogeneous distributed database?

 21. What is the purpose of database synchronization for
a replicated database?

 22. What are the advantages and disadvantages of repli-
cated databases?

 23. Which would be easier to configure and maintain?
A vertically partitioned database or a horizontally
partitioned database? Explain why.

 24. What is a transaction with regard to updating a
database?

 25. What is transaction logging and what is its purpose?

 26. What is the difference between a shared lock and an
exclusive lock?

 27. What is another name for an exclusive lock?

REvIEw QueSTiONS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

288 PART 3 ■ Essentials of Systems Design

PROBLeMS AND exeRCiSeS
 1. The Universal Product Code (UPC) is a bar-

coded number that uniquely identifies many
products sold in the United States. For example,
all printed copies of this textbook sold in the
United States have the same UPC bar code on
the back cover. Now consider how the design of
the RMO database might change if each indi-
vidual item sold by RMO were required by law
to carry a permanently attached UPC (e.g., on
a label sewn into a garment or on a Radio Fre-
quency Identification [RFID] tag attached to an
item). How might the RMO relational database
schema change under this requirement?

 2. Assume that RMO will begin asking a random
sample of customers who order by telephone
about purchases made from competitors. RMO
will give customers a 15 percent discount on
their current order in exchange for answering
a few questions. To store and use this informa-
tion, RMO will add two new classes and three
new associations to the class diagram. The new
classes are Competitor and ProductCategory.
Competitor has a one-to-many association with
ProductCategory, and the existing Customer
class also has a one-to-many association with
ProductCategory. Competitor has a single attri-
bute called Name. ProductCategory has four
attributes: Description, DollarAmount Purchased,

MonthPurchased, and YearPurchased. Revise the
relational database schema shown in Figure 9-10
to include the new classes and associations. All
tables must be in 3NF.

 3. Assume that RMO will use a relational data-
base, as shown in Figure 9-11. Assume further
that a new catalog group located in Milan, Italy,
will now create and maintain the product cata-
log. To minimize networking costs, the catalog
group will have a dedicated database server
attached to its LAN. Develop a plan to parti-
tion the RMO database. Which tables should be
replicated on the catalog group’s local database
server? Update Figure 9-25 to show the new dis-
tributed database architecture.

 4. Visit the Web site of an online catalog vendor
similar to RMO (such as www.llbean.com or
www.landsend.com) or an online vendor of
computers and related merchandise (such as
www.cdw.com or www.newegg.com). Browse
the online catalog and note the various types of
information contained there. Construct a list
of complex data types that would be needed to
store all the online catalog information.

 5. Figure 9-26 illustrates a partial class diagram for
a property management company. Using the data
in the class diagram, create a database schema.

name
strAddress
city
state
zip
description

Property

name
strAddress
city
state
zip
email
telephone

Owner

percentOwn

Ownership
numbUnits
numbStorage
buildingType
floors
numbParkSpace

Residential

squareFeet
numbRetUnits
sqFtParking

Commercial

status
numbBedrooms
numbBaths
rentAmt
unitAddress
tenantName
tenantPhone
tenantEmail
contractDate

Apartment

status
squareFt
typeUnit
leaseAmt
tenantName
tenantPhone
tenantEmail
contractDate
leasetype

RetailSpace

11..*

1..* 1..*

11..*

FIgure 9-26 Partial class diagram for a property management company

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

289CHAPTER 9 ■ Designing the Database

 6. Given the database table in Figure 9-27 of uni-
versity course and sections offered, normalize
the table so that it is in third normal form. Hint:
Look for functional dependencies.

 7. Given the database table in Figure 9-28 of
employees and their employment, normalize the
table so that is in third normal form. Hint: Look
for functional dependencies.

Course Section Course Name Room# #Chairs #Enrolled Time Teacher Students

IS205 001 Intro to IS TB105 55 46 3:00
MWF

B. Jones R. Smith
H. Black
P. Harris
A. Wells

IS401 001 Systems
Analysis
& Design

TB223 45 30 1:00
MWF

R. White M. Tams
N. Rich
T. Nells

Figure 9-27 Non-normalized Course-section table

©
 C

en
ga

ge
 L

ea
rn

in
g®

Emp# Employee
Name

Job
Title

Wage
Range

Date
Promoted

Supervisor
Emp#

Supervisor
Name

876 W. Johnson 25.00–45.00
18.00–30.00
12.00–25.00

651 A. Hansen Welder
Worker

20.00–35.00
12.00–25.00

June 1, 2011
May 15, 2006
July 1, 2002

Aug 1, 2012
June 15, 2009

450

335

B. Noch

P. Williams

Machinist
Pipe Fitter
Worker

Figure 9-28 Non-normalized Employee table

©
 C

en
ga

ge
 L

ea
rn

in
g®

Computer Publishing Inc.
in only a decade, Computer Publishing inc. (CPi) grew
from a small textbook publishing house into a large, inter-
national company with significant market share in tradi-
tional textbooks, electronic books, and distance education
courseware. CPi’s processes for developing books and
courseware were similar to those used by most other pub-
lishers, but those processes had proven cumbersome and
slow in an era of rapid product cycles and multiple product
formats.

Text and art were developed in a wide variety of elec-
tronic formats, and conversions among those formats
were difficult and error-prone. Many editing steps were
performed with traditional paper-and-pencil methods. Con-
sistency errors within books and among books and related
products were common. Developing or revising a book and
all its related products typically took a year or more.

CPi’s president initiated a strategic project to reen-
gineer the way that CPi developed books and related
products. CPi formed a strategic partnership with Davis
Systems (DS) to develop software that would support the
reengineered processes. DS had significant experience de-
veloping software to support product development in the
chemical and pharmaceutical industries by using the latest
development tools and techniques, including object-ori-
ented software and relational databases. CPi expected the
new processes and software to reduce development time
and cost. Both companies expected to license the software
to other publishers within a few years.

A joint team specified the workflows and high-level
requirements for the software. The team developed plans
for a large database that would hold all book and course-
ware content through all stages of production. Authors,
editors, and other production staff would interact with the
database in a variety of ways, including traditional word

CASE STUDY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

290 PART 3 ■ Essentials of Systems Design

processing programs and Web-based interfaces. When
required, format conversions would be handled seam-
lessly and without error. All content creation and modifi-
cation would be electronic—no text or art would ever be
created or edited on paper, except as a printed book ready
for sale.

Software would track and manage content through
every stage of production. Content common to multiple
products would be stored in the database only once. De-
pendencies within and across products would be tracked
in the database. Software would ensure that any content
addition or change would be reflected in all dependent
content and products, regardless of the final product
form. For example, a sentence in Chapter 2 that refers to
a figure in Chapter 1 would be updated automatically if
the figure were renumbered. If a new figure were added
to a book, it would be added automatically to the related
courseware presentation slides. related courseware
and study material on the Web site would automatically

reflect changes, such as a new answer to an end-of-chap-
ter question.

1. Consider the contents of this textbook as a template for
CPI’s database content. Draw a class diagram that rep-
resents the book and its key content elements. expand
your diagram to include related product content, such as
a set of PowerPoint slides, an electronic book formatted
as a Web site or PDF file, and a Web-based test bank.

2. Develop a list of data types required to store the con-
tent of the book, slides, and Web sites. Are the rela-
tional DBMS data types listed in Figure 9-20 sufficient?

3. Authors and editors are often independent contrac-
tors, not publishing company employees. Consider
the implications of this fact for controls and security.
How would you enable authors and editors to interact
with the database? How would you protect data-
base content from hackers and other unauthorized
accesses?

Community Board of Realtors®

In Chapter 4, you developed a domain model class dia-
gram. Using your previous solution or one provided
to you by your instructor, update your domain model
class diagram with any additional problem domain
classes, new associations, or additional attributes that
you have discovered as you worked through the pre-
vious chapters. Finalize this comprehensive domain
model and then turn it in as part of your solution.

Using this comprehensive domain model class dia-
gram, develop a relational database schema. In the
schema, identify the foreign keys that are required.

Also, identify a key attribute for each table. You may
need to add a key field if there isn’t an attribute that
could logically serve as the key. Remember that a can-
didate key for an association class is the combination
of the keys of the connected classes. However, it may
make sense to define a shorter, more concise key field.

Verify that each table is in first, second, and third
normal form. Discuss any discrepancies you had to fix
from your first solution. Discuss any tables that may
not be in third normal form and why you are leaving it
as non-normalized.

RuNNINg CaSe STUDieS

The Spring Breaks ‘R’ us Travel Service
In Chapter 4, you developed a domain model class dia-
gram. Using your previous solution or one provided
to you by your instructor, update your domain model
class diagram with any additional problem domain
classes, new associations, or additional attributes that
you have discovered as you worked toward your solu-
tions in the previous chapters. Finalize this comprehen-
sive domain model and then turn it in as part of your
solution.

Using this comprehensive domain model class dia-
gram, develop a relational database schema. In the
schema, identify the foreign keys that are required.
Also, identify a key attribute for each table. You may

need to add a key field if there isn’t an attribute that
could logically serve as the key. Remember that a can-
didate key for an association class is the combination
of the keys of the connected classes. However, it may
make sense to define a shorter, more concise key field.

Verify that each table is in first, second, and third
normal form. Discuss any discrepancies you had to
fix from your first solution. Discuss any tables that
aren’t in third normal form and why you are leaving
them as non-normalized. (For example, in the United
States, city and state are functionally dependent on
zip code, but you might leave all three fields in the
same table. Why?)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

291CHAPTER 9 ■ Designing the Database

On the Spot Courier Services
In Chapter 4, you developed a domain model class dia-
gram. Using your previous solution or one provided to
you by your instructor, update your domain model class
diagram with any additional problem domain classes,
new associations, or additional attributes that you have
discovered as you worked toward your solutions in the
previous chapters. Finalize this comprehensive domain
model and then turn it in as part of your solution.

Using this comprehensive domain model class
diagram, develop a relational database schema. In the
schema, identify the foreign keys that are required.
Also, identify a key attribute for each table. You may
need to add a key field if there isn’t an attribute that
could logically serve as the key. Remember that a can-
didate key for an association class is the combination

of the keys of the connected classes. However, it may
make sense to define a shorter, more concise key field.

Verify that each table is in first, second, and third
normal form. Discuss any discrepancies you had to fix
from your first solution. Discuss any tables that aren’t
in third normal form and why you are leaving them as
non-normalized.

Even though this is a small company, the DA and
DBA responsibilities need to be assumed by somebody,
or by several people. Of the employees so far identified
in previous discussion, who should assume DA respon-
sibilities and who should assume DBA responsibilities?
Do the current employees have enough skills to suc-
cessfully handle these responsibilities? Should “On the
Spot” hire somebody? Explain your reasoning.

Sandia Medical Devices Real-Time Glucose Monitoring
Part 1
Review the original system description in Chapter 2,
the additional project information in Chapters 3 and 4,
and the domain class diagram shown in Figure 9-29
to refamiliarize yourself with the proposed system.
Assume that the type attribute of the AlertCondition
class identifies one of three alert types:

 1. Glucose levels that fall outside the specified
range for 15 minutes (three consecutive
readings)

 2. Glucose levels that fall outside the specified
range for 60 minutes (12 consecutive readings)

 3. An average of glucose levels over an eight-hour
period that falls outside a specified range

The specified range for an AlertCondition object
is the set of values between and including lowerBound
and upperBound. AlertCondition objects also include
an effective time period specified by the attributes star-
tHour and endHour, which enables physicians to set dif-
ferent alert parameters for sleeping and waking hours.

id
lastName
firstName

id
medicalRecordNumber
lastName
firstName
dateOfBirth
gender
race
height
weight

Patient

dateTime
level

GlucoseObservation

id
phoneNumber
operatingSystem
osVersion
applicationVersion

CellPhone

Physician

alertConditionID
type
startHour
endHour
upperBound
lowerBound

AlertCondition

dateTime
value(s)

Alert

serialNumber
manufacturer
dateOfManufacture
firmwareVersion

MonitoringDevice

1..1

0..*

0..*

0..*

0..*

0..*1..1

0..*1..1

1..1

1..1

1..1

FIgure 9-29 Updated domain
model class diagram for
Sandia RTGM system

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

292 PART 3 ■ Essentials of Systems Design

When an alert is triggered, an object of type Alert
is created and associated with an alertCondition ob-
ject. The dateTime attribute records when the Alert
object was created and the value(s) attribute records
the glucose levels (alert types 1 and 2) or average level
(alert type 3) that fell outside the specified range. Each
Alert object is indirectly related to a Patient object via
the association between Alert and AlertCondition and
the association between AlertCondition and Patient.

Develop a set of relational database tables based
on the domain class diagram. Identify all primary and
foreign keys, and ensure that the tables are in 3NF.

Part 2
Based on what you learned in this chapter about
databases, controls, and system security, review your
answers to the questions for this case in Chapter 6.
Assume that the patient’s cell phone and the central-
ized servers are different nodes in a replicated data-
base architecture and are regularly synchronized.
What changes, if any, should be made to your answers
now that you have a deeper understanding of data-
bases, controls, security, and related design issues?

Alfred Basta and Melissa Zgola, Database Security.
Cengage Learning, 2011.

Carlos Coronel, Steven Morris, and Peter Rob,
Database Systems: Design, Implementation, and
Management (9th ed.). Cengage Learning, 2010.

Michael E. Whitman and Herbert J. Mattord,
 Principles of Information Security (4th ed.).
 Cengage Learning, 2012.

D. David Arthur Bell and Jane B. Grimson, Distri
buted Database Systems. Addison-Wesley, 1992.

FuRTHER ReSOuRCeS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Part four

System Development and
Project Management

Chapter 10
Approaches to System
Development

Chapter 11
Project Planning and
Project Management

Online Chapter C
Project Management Techniques

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning Objectives
After reading this chapter, you should be able to:

Compare the underlying assumptions and
uses of a predictive and an adaptive system
development life cycle (SDLC)

Explain what makes up a system development
methodology—the SDLC as well as models,
tools, and techniques

Describe the key features of Agile development

Understand and describe the key features of
the Unified Process, Extreme Programming, and
Scrum Agile system development methodologies

The System Development Life Cycle

Methodologies, Models, Tools, and Techniques

Agile Development

The Unified Process, Extreme Programming,
and Scrum

chaPter OutLine

chaPter TEN

Approaches to System
Development

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

296 PART 4 ■ System Development and Project Management

 ■ Overview
As the experiences of Kim, Mary, and Bob demonstrate, there are many ways
to develop an information system, and doing so is very complex. Project manag-
ers rely on a variety of aids to help them with every step of the process. So far
in this text, you have learned about analysis and design models and techniques,
and now you will learn more about the overall system development process. You
learned about the system development life cycle (SDLC) in Chapter 1. That par-
ticular SDLC included six core processes and multiple iterations. This chapter
discusses the SDLC in more detail, including some variations found in industry.

The entire process of developing an information system requires more
than just an SDLC. A system development methodology includes more specific
instructions for completing the activities of each core process by using specific
models, tools, and techniques. As mentioned in Chapter 1, a system develop-
ment methodology is sometimes referred to as a development process.

Also as mentioned in Chapter 1, most newer system development method-
ologies are Agile. Agile development is further discussed in this chapter as a phi-
losophy that guides a development project. Aside from being iterative, it focuses

Opening cASe

Kim, Mary, and Bob, graduating seniors, were discussing
their recent interview visits to companies that recruit com-
puter information system (CIS) majors on their campus. All
agreed that they had learned a lot by visiting the compa-
nies, but they also all felt somewhat overwhelmed.

“At first, I wasn’t sure I knew what they were talking
about,” Kim said. During her on-campus interview, she had
impressed Ajax Corporation with her knowledge of data
modeling and database management. And when she vis-
ited the company’s home office data center for her second
interview, the interviewers spent a lot of time describing
the company’s system development methodology.

“They said to forget everything I learned in school,”
Kim continued. “That got my attention.”

Ajax Corporation had purchased a complete devel-
opment methodology called IM One from a small con-
sulting firm. Most of its employees agreed that it worked
fairly well, having invested a lot of time and money learn-
ing and adapting to it. Those who had worked for Ajax
for a long time thought IM One was unique, and they
were very proud of it.

“Then, they started telling me about their iterative
SDLC, business events, use cases, and domain model
class diagrams—things like that,” Kim said. She had rec-
ognized that many of the key concepts in the IM One
methodology were fairly standard models and tech-
niques from UML and iterative development concepts
that she had learned in school.

“I know what you mean,” said Mary, a very talented
programmer who knew just about every popular program-
ming language available. “Consolidated Concepts went
on and on about things like OMG, UP, and people named
Booch, Rumbaugh, and Jacobson. It turns out they use

the object-oriented approach to develop their systems,
and they like the fact that I know Java and C# and .NET.
There was no problem once I got past all the people’s
names and acronyms they used. The actual models and
techniques they used were very familiar to me.”

Bob, who interviewed with Pinnacle Manufacturing,
had a different story to tell. “A few people said analy-
sis and design are no longer a big deal,” he said. “And
I’m thinking, ‘Knowing that would have saved me some
time in school.’”

Pinnacle has a small system development group
supporting its manufacturing and inventory control.
“They said they like to jump in and get to the code as
soon as possible,” Bob said. “Little documentation and
not much of a project plan. They showed me some
books on their desks, and it looked like they had been
doing a lot of reading about analysis and design. I could
see they were using Agile development and Agile mod-
eling techniques and focusing on best practices required
for their small projects. It turns out they just organize
their work differently by looking at risk and writing user
stories while building prototypes. I recognized some
sketches of class diagrams and sequence diagrams on
the boss’s whiteboard, so I felt fairly comfortable that
they were using an Agile approach like XP or Scrum but
still doing some modeling after all.”

Kim, Mary, and Bob agreed that there was much
to learn in these work environments but also that there
are many different ways to describe the key concepts
and techniques they learned in school. They were all
glad they focused on the fundamentals in their CIS
classes and that they had been exposed to a variety of
approaches to system development.

Development ApproAches At AjAx corporAtion,
consoliDAteD concepts, AnD pinnAcle mAnufActuring

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

297CHAPTER 10 ■ Approaches to System Development

on techniques and methods that encourage more user involvement and allow
for more flexible projects with changing requirements. Finally, some specific
Agile system development methodologies are described, including Agile Unified
 Process, Extreme Programming, and Scrum.

 ■ The System Development Life Cycle
Chapter 1 demonstrated how analysis and design models and techniques are
used to solve business problems by building an information system. For prob-
lem-solving work to be productive, it needs to be organized and goal-oriented.
Analysts achieve these results by organizing the work into projects. As defined
in Chapter 1, a project is a planned undertaking, with a beginning and end that
produces a well-defined result or product. The term information system devel-
opment project refers to a planned undertaking that produces a new information
system. Some system development projects are very large, requiring thousands
of hours of work by many people and spanning several calendar years. In the
RMO case study introduced in Chapter 2, the system being developed is a mod-
erately sized computer-based information system requiring a moderately sized
project. Many system development projects are smaller, lasting a few months.
Some are very small, such as the Tradeshow application in Chapter 1.

For a system development project to be successful, it must be planned and
organized. The plan must include a comprehensive set of activities that flow in
the proper sequence. Otherwise, activities are omitted or work may need to be
done multiple times. The end result, of course, is producing a high-quality infor-
mation system as measured by its reliability, robustness, efficiency, and fitness
for purpose. The system development life cycle (SDLC), which was introduced in
Chapter 1, is a fundamental concept in the success of information system devel-
opment projects.

The SDLC provides a way to think about the development of a new system
as a progressive process, much like a living entity. This concept can be expanded
and you can view the information system as having a life itself; in fact, we often
refer to the life cycle of a system. During its life cycle, an information system is
first conceived, then it is designed, built, and deployed as part of a development
project, and, finally, it is put into production and used to support the business.
However, even during its productive use, a system is still a dynamic, living entity
that is updated, modified, and repaired through smaller projects.

Several projects may be required during the life of a system, first to develop
the original system and then to upgrade. This text focuses on the initial develop-
ment project, not on the support projects. In other words, the primary concern
is with getting the new system developed and deployed.

In today’s diverse development environment, there are many approaches to
developing systems, and they are based on different approaches to the SDLC.
Although it is difficult to find a single, comprehensive classification system that
encompasses all the approaches, one useful way to categorize them is along a
continuum from predictive to adaptive (see Figure 10-1).

The choice of SDLC varies depending on the project

Predictive
SDLC

Adaptive
SDLC

Requirements well understood
and well defined.
Low technical risk.

Requirements and needs
uncertain.
High technical risk.

FIGURE 10-1 Predictive versus
adaptive approaches to the SDLC

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

298 PART 4 ■ System Development and Project Management

A predictive approach to the SDLC assumes that the development proj-
ect can be planned and organized and that the new information system can
be developed according to the plan. Predictive SDLCs are useful for building
systems that are well understood and defined. For example, a company may
want to convert its old networked client/server system to a newer Web-based
system that includes a smartphone app. In this type of project, the staff already
understands the requirements very well, and no new processes need to be added.
Thus, the project can be carefully planned, and the system can be built accord-
ing to the specifications.

An adaptive approach to the SDLC is used when the system’s requirements
and/or the users’ needs aren’t well understood. In this situation, the project can’t
be planned completely. Some system requirements may need to be determined
after preliminary development work. Developers should still be able to build the
solution, but they need to be flexible and adapt the project as it progresses. Recall
that the Tradeshow System described in Chapter 1 used this approach.

In practice, any project could have—and most do have—predictive and
adaptive elements. That is why Figure 10-1 shows them as endpoints along a
continuum, not as mutually exclusive categories. The predictive approaches are
more traditional and were conceived during the 1970s through the 1990s. Many
of the newer, adaptive approaches have evolved with object-oriented technol-
ogy and Web development; they were created during the late 1990s and into
the twenty-first century. The following sections look at the more predictive
approaches and then examine the newer adaptive approaches.

 ■ Traditional Predictive Approaches to the SDLC
The development of a new information system requires a number of different but
related sets of activities. In predictive approaches, there is a group of activities that
identifies the problem and secures approval to develop a new system; this is called
project initiation. A second group of activities, called project planning, involves
planning, organizing, and scheduling the project. These activities map out the proj-
ect’s overall structure. A third group—analysis—focuses on discovering and under-
standing the details of the problem or need. The intent here is to figure out exactly
what the system must do to support the business processes. A fourth group—
design—focuses on configuring and structuring the new system components. These
activities use the requirements that were defined earlier to develop the program
structure and the algorithms for the new system. A fifth group—implementation—
includes programming and testing the system. A sixth group—deployment—
involves installing and putting the system into operation.

These six groups of activities—project initiation, project planning, analysis,
design, implementation, and deployment—are sometimes referred to as phases
of the system development project, and they provide the framework for manag-
ing the project. Another phase, called the support phase, includes the activi-
ties needed to upgrade and maintain the system after it has been deployed. The
support phase is part of the overall SDLC, but it isn’t normally considered part
of the initial development project. Figure 10-2 illustrates the six phases of a

predictive approach to the SDLC an
approach that assumes the project can
be planned in advance and that the new
 information system can be developed
 according to the plan

adaptive approach to the SDLC an
approach that assumes the project must be
more flexible and adapt to changing needs as
the project progresses

phases related groups of development
activities, such as initiation, planning,
analysis, design, implementation, deployment,
and support

Project
planning Analysis Design Implementation

Project
initiation

SupportDeployment

FIGURE 10-2 Traditional information system development phases (with support phase)

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

299CHAPTER 10 ■ Approaches to System Development

traditional predictive SDLC plus the support phase. Note that the main differ-
ence from the iterative SDLC used in this text is that the activities are carried
out sequentially rather than repeated in each iteration.

The most predictive SDLC approach (i.e., farthest to the left on the predictive/
adaptive scale) is called a waterfall model, with the phases of the project flowing
down, one after another. As shown in Figure 10-3, this model assumes that the
phases can be carried out and completed sequentially. First, a detailed plan is devel-
oped, then the requirements are thoroughly specified, then the system is designed
down to the last algorithm, and then it is programmed, tested, and installed. After
a project drops over the waterfall into the next phase, there is no going back. In
practice, the waterfall model assumes rigid planning and final decision making
at each step of the development project. As you may have guessed, the waterfall
model doesn’t always work very well. Being human, developers are rarely able to
complete a phase without making mistakes or leaving out important components
that have to be added later. However, even though the waterfall model isn’t used in
its purest form anymore, it still provides a valuable foundation for understanding
development. No matter what system is being developed, you need to include initia-
tion, planning, analysis, design, implementation, and deployment activities.

A little farther to the right on the predictive/adaptive scale are modified
waterfall models. These are still predictive—that is, they still assume a fairly
thorough plan—but there is a recognition that the project’s phases must overlap,
influencing and depending on each other. Some analysis must be done before
the designing can start, but during the design, there is a need for more detail in
the requirements or perhaps it is discovered that a requirement cannot be met
in the manner originally requested. Figure 10-4 illustrates how these activities
can overlap.

 ■ Newer Adaptive Approaches to the SDLC
In an adaptive approach, project activities—including plans and models—are
adjusted as the project progresses. There are many ways to depict an adaptive
SDLC. All include iterations, which were discussed in Chapter 1. Rather than
having the analysis, design, and implementation phases proceed sequentially
with some overlap, iterations can be used to create a series of mini-projects that
address smaller parts of the application. One of these smaller parts is analyzed,
designed, built, and tested during a single iteration; then, based on the results, the
next iteration proceeds to analyze, design, build, and test the next smaller part.

waterfall model an SDLC approach
that assumes the phases can be completed
sequentially with no overlap

FIGURE 10-3 Waterfall model of the SDLC

Project
initiation

Deployment

Implementation

Design

Analysis

Initiation and
planning

specifications frozen

Analysis
specifications

frozen

System built and
delivered exactly

as specified

Design
specifications

frozen

Project
planning

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

300 PART 4 ■ System Development and Project Management

Using iterations, the project is able to adapt to any changes as it proceeds. Also,
parts of the system are available early on for user evaluation and feedback,
which helps ensure that the application will meet the needs of the users.

You first saw this concept in the SDLC example used in Chapter 1, which
is repeated here as Figure 10-5. The core processes defined in Chapter 1 are
carried out in each iteration of the project. This iterative approach is adaptive
because with each iteration’s analysis, design, and implementation, modifica-
tions can be made to adapt to the changing requirements of the project. The
adaptive approach presented in this textbook is a simplification of and variation
on a more formal iterative approach called the Unified Process (UP). You will
learn more about the UP later in this chapter.

A related concept to an iterative SDLC is called incremental development.
Incremental development is always based on an iterative life cycle. The basic
idea is that the system is built in small increments. An increment may be devel-
oped within a single iteration or it may require two or three iterations. As each
increment is completed, it is integrated with the whole. The system, in effect, is
“grown” in an organic fashion. The advantage of this approach is that portions
of the system get into the users’ hands much sooner so the business can begin
accruing benefits as early as possible.

Yet another related concept, which is also based on an iterative approach, is
the idea of a walking skeleton. A walking skeleton, as the name suggests, pro-
vides a complete front-to-back implementation of the new system but with only

FIGURE 10-4 Overlap of system development phases

Additional project planning and control tasks

Analysis

Design

Implementation

Additional analysis tasks

Deployment

Additional design
tasks

Support

=
Decision points and
completion of major
components of project

Project
initiation

Project
planning

©
 C

en
ga

ge
 L

ea
rn

in
g®

©
 C

en
ga

ge
 L

ea
rn

in
g®

Core
processes

1 2 3 4 5 6
Identify the problem and obtain
approval.

Plan and monitor project.

Discover and understand details.

Design system components.

Build, test, and integrate system
components.

Complete system tests and deploy
the solution.

IterationsFIGURE 10-5 Adaptive SDLC with
six core processes and multiple
iterations

incremental development an SDLC
approach that completes portions of the
system in small increments across iterations,
with each increment being integrated into the
whole as it is completed

walking skeleton a development
approach in which the complete system
 structure is built but with bare-bones
functionality

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

301CHAPTER 10 ■ Approaches to System Development

the “bare bones” of functionality. The walking skeleton is developed in a few
iterations early in the project. Later iterations then flesh out the skeleton with
more functions and capabilities. It should be obvious that this approach also
gets working software into the hands of the users early in the project. Both these
approaches have the additional advantage of extensive user testing and feedback
to the project team as the project is progressing—another example of how an
iterative project is also adaptive.

 ■ Methodologies, Models, Tools, and Techniques
Aside from an SDLC, systems developers have a variety of aids at their disposal
to help them complete activities and tasks. Among them are methodologies,
models, tools, and techniques. The following sections discuss each of these aids.

 ■ Methodologies
A system development methodology as described in Chapter 1 provides guide-
lines for every facet of the system development life cycle. For example, within a
methodology, certain models, such as diagrams, are used to describe and specify
the requirements. Related to these models are the techniques for how the project
team will do its work. An example of a technique is the guidelines for conducting
a user interview that you learned about in Chapter 2. Finally, each project team
will use a set of tools—usually computer-based tools—to build models, record
information, and write the code. These tools are considered part of the overall
methodology used for a given project. Figure 10-6 illustrates that the techniques,
models, and tools support one another to provide a comprehensive, integrated
methodology. Some methodologies are developed by systems professionals within
the company based on their experience. Others are learned and used based on
purchased materials and training from consulting firms or vendors.

Some methodologies (whether created in-house or purchased) contain mas-
sive written documentation that defines everything the developers may need
to produce at any point in the project, including how the documentation itself
should look and what reports to management should contain. Other methodolo-
gies are much more informal, such as a single document that contains general
descriptions of what needs to be done. Sometimes, the methodology a company
adopts isn’t only informal, it is ad hoc and almost undefined, but such free-
dom of choice is becoming rare. Management in most IT departments prefers to
adopt a flexible methodology so it can be adapted to different types of projects
and systems. The methodology used by the organization determines how predic-
tive or adaptive the approach to a system development project should be.

©
 C

en
ga

ge
 L

ea
rn

in
g®

Methodology

Techniques Models

Tools

FIGURE 10-6 Components of a
methodology

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

302 PART 4 ■ System Development and Project Management

 ■ Models
Anytime people need to record or communicate information, it is useful to
create a model. As discussed in Chapter 2, a model is a representation of an
important aspect of the real world. Sometimes, the term abstraction is used
because people abstract (separate out) an aspect that is of particular impor-
tance to them. For example, consider an airplane model. To talk about the
aerodynamics of the airplane, it is useful to have a model that shows the plane’s
overall shape in three dimensions. Sometimes, a drawing of the cross-sectional
details of the plane’s wing is what is needed. In other cases, a mathematical
formulation of the plane’s aerodynamic characteristics might be necessary to
understand how it will behave.

Some models are physically similar to the real product. Some are graphi-
cal representations of important details. And some are abstract mathematical
notations. Each emphasizes a particular type of information. In airplane design,
engineers use lots of different models. Learning to be an aerospace engineer
involves learning how to create and use all the various models. That is true for
an information system developer too, although the models for information sys-
tems aren’t as standardized or precise as aerospace models. System developers
are making progress, but the field is very young, and many senior analysts were
self-taught. More important, an information system is much less tangible than
an airplane; you can’t really see, hold, or touch it. Therefore, the models of the
information system can seem much less tangible too.

The models used in system development include representations of inputs,
outputs, processes, data, objects, object interactions, locations, networks, and
devices, among other things. Most of the models are graphical models, which
are drawn representations that employ agreed-upon symbols and conventions.
These are often called diagrams and charts, and the UML diagrams you have
encountered so far in this book are examples. Much of this text describes how
to read and create a variety of models that represent an information system.

Another important kind of model is a project-planning model, such
as a Gantt chart or net present value (NPV), both of which are discussed in
 Chapter 11. These models represent the system development project itself,
highlighting its tasks and other considerations. Yet another model related to
project management is a chart showing all the people assigned to the project.
 Figure 10-7 lists some models used in system development.

Some models of system components
 Use case diagram
 Domain model class diagram
 Design class diagram
 Sequence diagram
 Package diagram
 Screen design template
 Dialog design storyboard
 Entity-relationship diagram (ERD)
 Database schema
Some models used to manage the development process
 Gantt chart
 Organizational hierarchy chart
 Financial analysis models—NPV, payback period
 System development life-cycle model
 Stakeholders list
 Iteration plan

FIGURE 10-7 Some models used
in system development

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

303CHAPTER 10 ■ Approaches to System Development

Project management application
Drawing/graphics application
Word processor/text editor
Visual modeling tool
Integrated development environment (IDE)
Database management application
Reverse-engineering tool
Code generator tool

©
 C

en
ga

ge
 L

ea
rn

in
g®

FIGURE 10-8 Types of tools used
in system development

 ■ Tools
In the context of system development, a tool is software support that helps
create models or other components required in the project. Tools might be
simple drawing programs for creating diagrams. They might also include an
application that stores information about the project, such as data definitions,
use case descriptions, and other artifacts. A project management software
tool, such as Microsoft Project, is another example of a tool used to create
models. The project management tool creates a model of the project tasks and
task dependencies.

Tools have been specifically designed to help system developers. Program-
mers should be familiar with integrated development environments
(IDEs), which include many tools to help with programming tasks—for exam-
ple, smart editors, context-sensitive help, and debugging tools. Some tools can
generate program code for the developer. Some tools reverse engineer old pro-
grams, generating a model from the code so the developer can determine what
the program does if its documentation is missing (or was never done). Visual
modeling tools are available to systems analysts to help them create and ver-
ify important system models. These tools are used to draw such diagrams as
class diagrams or activity diagrams. Other visual modeling tools help design
the database or even generate program code. Figure 10-8 lists the types of
tools used in system development.

 ■ Techniques
You learned several techniques for gathering information in Chapter 2. You
learned many techniques for defining functional requirements in Chapters 3,
4, and 5, and many design techniques in Chapters 6, 7, 8, and 9. In system
 development, a technique is a collection of guidelines that helps an analyst
complete an activity or task. It often includes step-by-step instructions for cre-
ating a model, or it might include more general advice on collecting information
from system users. Examples include data-modeling techniques, software-
testing techniques, user-interviewing techniques, and relational database
design techniques.

Sometimes, a technique applies to an entire life cycle phase and helps you
create several models and other documents. The modern structured analysis
technique (discussed later) is an example of this. Figure 10-9 lists some tech-
niques commonly used in system development.

How do methodologies, models, tools, and techniques fit together? A meth-
odology includes a collection of techniques that are used to complete activities
within each phase or iteration of the system development life cycle. The activi-
ties include the completion of a variety of models as well as other documents
and deliverables. Like any other professionals, system developers use software
tools to help them complete their activities.

integrated development environments
(IDEs) sets of tools that work together
to provide a comprehensive development
and programming environment for software
developers

visual modeling tools tools that help
 analysts create and verify graphical models
and may also generate program code

technique a collection of guidelines that
specify a method for how to carry out a
 development activity or task

tool a software application that assists
developers in creating models or other
 components required for a project

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

304 PART 4 ■ System Development and Project Management

 ■ Agile Development
The highly volatile marketplace has forced businesses to respond rapidly to new
opportunities. Sometimes, these opportunities appear in the middle of imple-
menting another business initiative. To survive, businesses must be agile—
that is, able to change directions rapidly, even in the middle of a project.
Agile development is a philosophy and set of guidelines for developing infor-
mation systems in an unknown, rapidly changing environment, and it can be
used with any system development methodology. Usually, Agile development
complements adaptive approaches to the SDLC and methodologies that support
it. But the emphasis is on taking an adaptive approach and making it agile in all
development activities and tasks. Related to Agile development, Agile model-
ing is a philosophy about how to build models, some of which are formal and
detailed, others sketchy and minimal. All the models you have learned how to
create in this text can be used with Agile modeling.

 ■ Agile Development Philosophy and Values
The “Manifesto for Agile Software Development” (see the “Further Resources”
section) identifies four basic values, which represent the core philosophy of
Agile development:

 ■ Value responding to change over following a plan
 ■ Value individuals and interactions over processes and tools
 ■ Value working software over comprehensive documentation
 ■ Value customer collaboration over contract negotiation

The people involved in system development—whether as team members,
users, or other stakeholders—all need to accept these priorities for a project to
be truly agile. Adopting an Agile approach isn’t always easy. Managers and exec-
utive stakeholders frequently have trouble accepting this less-rigid viewpoint,
wanting instead to impose more controls on development teams and enforce
detailed plans and schedules. However, the Agile philosophy takes the opposite
approach, providing more flexibility in project schedules and letting the project
teams plan and execute their work as the project progresses.

Some industry leaders in the Agile movement coined the term chaordic to
describe an Agile project. Chaordic comes from two words: chaos and order.
The first two values in the list do seem to be a recipe for chaos, but software
projects always have unpredictable elements—hence, a certain amount of
chaos. The Agile philosophy recognizes this unpredictability, handling it with
increased flexibility and by trusting the project team to develop solutions to
project problems. Depending too heavily on a plan and predefined processes

Agile development a guiding philosophy
and set of guidelines for developing
 information systems in an unknown, rapidly
changing environment

chaordic a term used to describe adaptive
projects because they are chaotic yet ordered

Strategic planning techniques
Project management techniques
User-interviewing techniques
Data-modeling techniques
Relational database design techniques
Structured programming techniques
Software-testing techniques
Process modeling techniques
Domain modeling techniques
Use case modeling techniques
Object-oriented programming techniques
Architectural design techniques
User-interface design techniques

©
 C

en
ga

ge
 L

ea
rn

in
g®

FIGURE 10-9 Some techniques
used in system development

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

305CHAPTER 10 ■ Approaches to System Development

exacerbates problems when unpredictable requirements arise. Developers need
to accept a certain amount of chaos and mix that with other Agile modeling and
development techniques that help to provide order and structure to the project.
 Chapter 11 will cover many of these Agile project management techniques.

Another important aspect of Agile development is that customers must
continually be involved with the project team. They don’t just sit down with
the project team for a few sessions to develop the specifications and then go
their separate ways. They become part of the technical team. Because work-
ing software is being developed throughout the project, customers are continu-
ally involved in defining requirements and testing components.

Historically, particularly with predictive projects, many system development
efforts attempted to be fixed-price endeavors. This was true for both in-house
groups and external development teams. However, the approach with Agile devel-
opment is that system development projects should be more of a collaborative effort.
Hence, contracts take on an entirely different flavor. Fixed prices and fixed deliver-
ables don’t make sense. Contracts for Agile projects include other kinds of options
for the customer. The approach to the scheduling of activities, the delivery of system
components, and the early termination of the project allow the client to maintain
control, but it is done with different options than with fixed-bid contracts.

Models and modeling are critical to Agile development, so the next section
looks at Agile modeling. Many of the core values are illustrated in the principles
and practices of building models.

 ■ Agile Modeling Principles
Much of this text teaches techniques for creating models. Your first impression
might be that an Agile approach means less modeling or maybe even no modeling.
Agile modeling (AM) isn’t about doing less modeling, but about doing the right
kind of modeling at the right level of detail for the right purposes. AM doesn’t
dictate which models to build or how formal to make those models. Instead, it
helps developers stay on track with their models by using them as a means to an
end rather than end deliverables. AM’s basic principles express the attitude that
developers should have as they develop software. Figure 10-10 summarizes Agile
modeling principles. Those principles are discussed next.

Agile modeling (AM) a guiding philosophy
in which only models that are necessary, with
a valid need and at the right level of detail,
are created

Minimize modeling
High-quality models,

get feedback
Adapt to specific project

needs

Software is your
primary goal Model with a purpose

Embrace change,
change incrementally

Next effort is your
secondary goal Build multiple models

Know your models and
how to use them

Communicate and learn
from each other

Focus on content,
not representation

Maximize stakeholder
ROI

©
 C

en
ga

ge
 L

ea
rn

in
g®

FIGURE 10-10 Agile modeling principles

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

306 PART 4 ■ System Development and Project Management

 ❚ Develop Software as Your Primary Goal
The primary goal of a software development project is to produce high-quality
 software. The primary measurement of progress is working software, not intermedi-
ate models of system requirements or specifications. Modeling is always a means to
an end, not the end itself. Any activity that doesn’t directly contribute to the end goal
of producing software should be questioned and avoided if it cannot be justified.

 ❚ Enable the Next Effort as Your Secondary Goal
Focusing only on working software can also be self-defeating, so developers
must consider two important objectives. First, requirements models might be
necessary to develop design models. So, don’t think that if the model cannot
be used to write code, it is unnecessary. Sometimes, several intermediate steps
are needed before the final code can be written. Second, although high- quality
 software is the primary goal, long-term use of that code is also important.
So, some models might be necessary to support maintenance and enhancement of
the system. Yes, the code is the best documentation, but some architectural design
decisions might not be easily identified from the code. Look carefully at what other
artifacts might be necessary to produce high-quality systems in the long term.

 ❚ Minimize Your Modeling Activity—Few and Simple
Create only the models that are necessary. Do just enough to get by. This prin-
ciple isn’t a justification for sloppy work or inadequate analysis. The models you
create should be clear, correct, and complete. But don’t create unnecessary mod-
els. Also, keep each model as simple as possible. Normally, the simplest solution
is the best solution. Elaborate solutions tend to be difficult to understand and
maintain. However, simplicity isn’t a justification for being incomplete.

 ❚ Embrace Change and Change Incrementally
Because the underlying philosophy of Agile modeling is that developers must
be flexible and respond quickly to change, a good Agile developer willingly
accepts—even embraces—change. Change is seen as the norm, not the excep-
tion. Watch for change, and have procedures ready to integrate changes into the
models. The best way to accept change is to develop incrementally. Take small
steps and address problems in small bites. Change your model incrementally and
then validate it to make sure it is correct. Don’t try to accomplish everything in
one big release.

 ❚ Model with a Purpose
Recall that the two reasons to build models are to understand what you are
building and to communicate important aspects of the solution system. Make
sure your modeling efforts support those reasons. Sometimes, developers try to
justify building models by claiming that (1) the development methodology man-
dates the development of the model, (2) someone wants a model, even though
the person doesn’t know why it is important, or (3) a model can replace a face-
to-face discussion of issues. Identify a reason and an audience for each model
you develop. Then, develop the model in sufficient detail to satisfy the reason
and the audience. Incidentally, the audience might be you.

 ❚ Build Multiple Models
Along with other modeling methodologies, UML has several models to represent
different aspects of the problem at hand. To be successful—in understanding the
problem or communicating the solution—you need to model the critical aspects
of the problem domain or the required solution. Don’t develop all of them; be
sure to minimize your modeling, but develop enough models to make sure you
have addressed all the issues.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

307CHAPTER 10 ■ Approaches to System Development

 ❚ Build High-Quality Models and Get Feedback Rapidly
Nobody likes sloppy work. It is based on faulty thinking and introduces errors.
One way to avoid error in models is to get feedback rapidly while the work is
still fresh. Feedback comes from users as well as from technical team members.
Others will have helpful insights and different ways to view a problem and iden-
tify a solution.

 ❚ Focus on Content Rather Than Representation
Sometimes, a project team has access to a sophisticated visual modeling tool.
These can be helpful, but at times, they are distracting because developers spend
time making the diagrams pretty. Be judicious in the use of tools. Some models
need to be well drawn for communication or contractual issues. Sometimes, it is
more productive to build a model with a tool because it is expected that it will
be changed frequently, and using a tool is usually more productive than redraw-
ing by hand. In other cases, a hand-drawn diagram might suffice. Sometimes,
developers work out a model on a whiteboard in a conference room and take a
digital photo to keep a record of the details worked out.

 ❚ Learn from Each Other with Open Communication
All the adaptive approaches emphasize working in teams. Don’t be defensive
about your models. Other team members have good suggestions. You can never
truly master every aspect of a problem or its models.

 ❚ Know Your Models and How to Use Them
Being an Agile modeler doesn’t mean that you aren’t skilled. If anything, you
must be more skilled to know the strengths and weaknesses of the models,
including how and when to use them. An expert modeler applies the previous
principles of simplicity, quality, and development of multiple models.

 ❚ Adapt to Specific Project Needs
Every project is different because it exists in a unique environment; involves dif-
ferent users, stakeholders, and team members; and requires a different develop-
ment environment and deployment platform. Adapt your models and modeling
techniques to fit the needs of the business and the project. Sometimes, models
can be informal and simple. For other projects, more formal, complicated mod-
els might be required. An Agile modeler is able to adapt to each project.

 ❚ Maximize Stakeholder ROI
The stakeholders are the real purpose that there is even a project. Stakeholders
include both the users of the new system and those who are funding the development
of the system. Never lose track of the real reason for the project. The stakeholders
deserve to have the final say in what the system does and how it is developed.

 ■ The Unified Process, Extreme Programming,
and Scrum

The Agile philosophy has proven to be an effective way to approach software
development in today’s fast-paced, continually changing landscape of computer
applications. However, the Agile philosophy only proposes principles; it isn’t
meant to be a complete methodology, with practices and action steps. This sec-
tion presents three methodologies that incorporate Agile principles, but are also
complete methodologies, with specific techniques and practices.

These three methodologies—UP, XP, and Scrum—are among the most
popular approaches to application software development, but they aren’t always

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

308 PART 4 ■ System Development and Project Management

found in their purest forms. Frequently, organizations either mix and match
techniques from the three or only adopt a specific set of practices. However,
adoption of these methodologies continues to expand throughout all types of
organizations that develop software applications.

There are other variations of Agile development that are also popular. Each
has its own adherents and its own set of principles and practices. Some of these
other methodologies include Lean Software Development, Kanban Develop-
ment, and Feature Driven Development (FDD). As you move into your career in
software development, you may have opportunities to learn and practice several
variations of Agile development methodologies.

 ■ The Unified Process
The Unified Process (UP) is an object-oriented system development methodol-
ogy originally offered by Rational Software, which is now part of IBM. Devel-
oped by Grady Booch, James Rumbaugh, and Ivar Jacobson—the three pioneers
behind the success of the Unified Modeling Language (UML)—the UP defines
a complete methodology that uses UML for system models and describes a new,
adaptive system development life cycle. In the UP, the term development process
is synonymous with development methodology.

The UP is now widely recognized as a highly influential innovation in soft-
ware development methodologies for object-oriented development using an adap-
tive approach. The original version of UP defined an elaborate set of activities
and deliverables for every step of the development process. More recent versions
are streamlined, with fewer activities and deliverables, simplifying the methodol-
ogy. The methodology used in this textbook is an adaptation of UP principles.

As discussed previously, adaptive methodologies—including the UP—are all
based on an iterative approach to development. You learned in Chapter 1 that
each iteration is like a mini-project, in which requirements are defined based on
analysis tasks, system components are designed, and those components are then
implemented—at least partially—through programming and testing. However,
one of the big questions in adaptive development is what the focus of each itera-
tion should be. In other words, do iterations early in the project have the same
objectives and focus as those done later? The UP answers this question by divid-
ing a project into four major phases.

 ❚ Up Phases
A phase in the UP can be thought of as a goal or major emphasis for a particular
portion of the project. The four phases of the UP life cycle are inception, elabo-
ration, construction, and transition, as shown in Figure 10-11.

Each phase of the UP life cycle describes the emphasis or objectives of the proj-
ect team members and their activities at that point in time. Thus, the four phases
provide a general framework for planning and tracking the project over time.
Within each phase, several iterations are planned to give the team enough flexibil-
ity to adjust to problems or changing conditions. The emphases or objectives of the
project team in each of the four phases are described briefly in Figure 10-12.

Inception Phase As in any project-planning phase, the inception phase consists of
the project manager developing and refining a vision for the new system in order

UP system development life cycle

Iteration Phase

Inception TransitionElaboration Construction

©
 C

en
ga

ge
 L

ea
rn

in
g®

FIGURE 10-11 The Unified Process
system development life cycle with
phases and iterations

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

309CHAPTER 10 ■ Approaches to System Development

to show how it will improve operations and solve existing problems. Essentially,
the project manager makes the business case for the new system, proving that the
new system’s benefits will outweigh the cost of development. The scope of the sys-
tem must also be defined so it is clear what the project will accomplish. Defining
the scope includes identifying many of the key requirements for the system.

The inception phase is usually completed in one iteration, and as with any
iteration, parts of the actual system may be designed, implemented, and tested.
As software is developed, team members must confirm that the system vision
still matches user expectations or that the technology will work as planned.
Sometimes, prototypes are discarded after proving that point.

Elaboration Phase The elaboration phase usually involves several iterations, and
early iterations typically complete the identification and definition of all the sys-
tem requirements. Because the UP is an adaptive approach to development, the
requirements are expected to evolve and change after work starts on the project.

The elaboration phase’s iterations also complete the analysis, design, and
implementation of the system’s core architecture. Usually, the aspects of the
system that pose the greatest risk are identified and implemented first. Until
developers know exactly how the highest-risk aspects of the project will work
out, they can’t determine the amount of effort required to complete the project.
By the end of the elaboration phase, the project manager should have more real-
istic estimates for the project’s cost and schedule, and the business case for the
project can be confirmed. Remember that the design, implementation, and test-
ing of key parts of the system are completed during the elaboration phase. One
other major objective of the elaboration phase is to do the necessary research
and fact-finding so all the user requirements are identified. During the elabora-
tion phase, a high percentage of time is spent on understanding and analysis.

Construction Phase The construction phase involves several iterations that con-
tinue the design and implementation of the system. The core architecture and
highest-risk aspects of the system are already complete. Now the focus of the work
turns to the routine and predictable parts of the system—for example, detailing
the system controls, such as data validation, fine-tuning the user-interface design,
finishing routine data maintenance functions, and completing the help and user
preference functions. The team also begins to plan for deployment of the system.

Transition Phase During the transition phase, one or more final iterations involve
the final user acceptance and beta tests, and the system is made ready for opera-
tion. After the system is in operation, it will need to be supported and maintained.

 ❚ UP Disciplines
As mentioned earlier, the four UP phases define the project sequentially by indi-
cating the emphasis of the project team at any point in time. To make iterative
development manageable, the UP defines disciplines to use within each iteration.
A UP discipline is a set of functionally related activities that contributes to

UP Phase

Inception

Elaboration

Construction

Objective

Develop an approximate vision of the system, make the business case,
define the scope, and produce rough estimates for cost and schedule.

Define the vision, identify and describe all requirements, finalize the
scope, design and implement the core architecture and functions, resolve
high risks, and produce realistic estimates for cost and schedule.

Transition Complete the beta test and deployment so users have a working system
and are ready to benefit as expected.

Iteratively implement the remaining lower-risk, predictable, and easier
elements and prepare for deployment.

©
 C

en
ga

ge
 L

ea
rn

in
g®

FIGURE 10-12 UP phases and
their objectives

UP discipline a set of functionally related
activities that combine to enable the develop-
ment process in a UP project

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

310 PART 4 ■ System Development and Project Management

one aspect of the development project. UP disciplines include business modeling,
requirements, design, implementation, testing, deployment, configuration and
change management, project management, and environment. Each iteration usu-
ally involves activities from all disciplines.

Figure 10-13 shows how the UP disciplines are involved in each iteration, which
is typically planned to last four weeks. The size of the shaded area under the curve for
each discipline indicates the relative amount of work included from each discipline
during the iteration. This is the same approach to showing work done in each itera-
tion as the SDLC used throughout this text. The amount and nature of the work dif-
fers from iteration to iteration. For example, in iteration 2, much of the effort focuses
on business modeling and requirements definition, with much less effort focused on
implementation and deployment. In iteration 5, very little effort is focused on model-
ing and requirements and much more effort focused on implementation, testing, and
deployment. But most iterations involve some work in all disciplines.

Figure 10-14 shows the entire UP life cycle: phases, iterations, and disci-
plines. It includes all the key UP life cycle features and is useful for understand-
ing how a typical information system development project is managed.

The previous figures illustrate how the phases include activities from each disci-
pline. But what about the detailed activities that occur within each discipline? The
disciplines can be divided into two main categories: system development activities
and project management activities. The six main UP development disciplines are:

 ■ Business modeling
 ■ Requirements
 ■ Design
 ■ Implementation
 ■ Testing
 ■ Deployment

For each iteration, the project team must understand the business environ-
ment (business modeling), define the requirements that that portion of the sys-
tem must satisfy (requirements), design a solution for that portion of the system

71 2 3 4 5 6

Iterations
A four-week iteration includes work in most
disciplines, ending with a stable executable.

Iteration 2 involves much business
modeling and requirements but still
includes some design, implementation,
and testing activities.

Iteration 5 involves minimal modeling
and requirements, some design, but
much more implementation and many
more testing activities.

UP Disciplines

Business modeling

Requirements

Design

Implementation

Testing

Deployment

Configuration & change
management

Project management

Environment

©
 C

en
ga

ge
 L

ea
rn

in
g®

FIGURE 10-13 UP disciplines used
in varying amounts in each iteration

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

311CHAPTER 10 ■ Approaches to System Development

that satisfies the requirements (design), write and integrate the computer code
that makes that portion of the system work (implementation), thoroughly test
that portion of the system (testing), and then, in some cases, put the part of the
system that is completed and tested into operation for users (deployment).

Three additional support disciplines are necessary for planning and control-
ling the project:

 ■ Configuration and change management
 ■ Project management
 ■ Environment

Configuration and change management involves setting up processes to
support the coding activities. This includes such guidelines as when and how to
release code as well as when and how to manage releases and versions. Project
management refers to the tasks that are discussed in Chapter 11, such as plan-
ning the iterations, assigning work, and verifying that work has been completed.
The environment discipline involves those tasks required to establish the working
environment, including the tools to be used by the team. It also includes those
guidelines about how to work together in an iterative Agile project.

All nine UP disciplines are employed throughout the lifetime of a project
but to different degrees. For example, in the inception phase, there is one itera-
tion. During the inception phase iteration, the project manager might complete
a model showing some aspect of the system environment (the business modeling
discipline). The scope of the system is delineated by defining many of the key
system requirements and listing use cases (the requirements discipline). To prove
technological feasibility, some technical aspect of the system might be designed
(the design discipline), programmed (the implementation discipline), and tested to
make sure it will work as planned (the testing discipline). In addition, the project
manager makes plans for handling changes to the project (the configuration and
change management discipline), working on a schedule and cost/benefit analysis
(the project management discipline), and tailoring the UP phases, iterations, deliv-
erables, and tools to match the needs of the project (the environment discipline).

The elaboration phase includes several iterations. In the first iteration, the
team works on the details of the domain classes and use cases addressed in
the iteration (the business modeling and requirements disciplines). At the same

Design

UP Disciplines

Business modeling

Requirements

Implementation

Testing

Deployment

Configuration & change
management

Project management

Environment

UP Phases
Unified Process Life Cycle Model

Inception Elaboration Construction Transition

This is a seven-iteration project. Each iteration is a mini-project that
includes work in most disciplines and ends with a stable executable.

©
 C

en
ga

ge
 L

ea
rn

in
g®

FIGURE 10-14 UP life cycle with
phases, iterations, and disciplines

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

312 PART 4 ■ System Development and Project Management

time, it might complete the description of all use cases to finalize the scope (the
requirements discipline). The use cases addressed in the iteration are designed
by creating design class diagrams and interaction diagrams (the design disci-
pline), programmed using Java or Visual Basic .NET (the implementation dis-
cipline), and fully tested (the testing discipline). The project manager works on
the plan for the next iteration and continues to refine the schedule and feasibility
assessments (the project management discipline), and all team members continue
to receive training on the UP activities they are completing and the system devel-
opment tools they are using (the environment discipline).

By the time the project progresses to the construction phase, most of the use
cases have been designed and implemented in their initial form. The focus of the
project turns to satisfying other technical, performance, and reliability require-
ments for each use case, finalizing the design, and implementing the design.
These requirements are usually routine and lower risk, but they are key to the
success of the system. The effort focuses on designing system controls and secu-
rity and on implementing and testing these aspects.

As a system development methodology, the Unified Process must be tailored
to the development team and the specific project. Choices must be made about
which deliverables to produce and the level of formality, or ceremony, to be
used. Sometimes, a project requires formal reporting and controls. Other times,
it can be less formal. The UP should always be tailored to the project, although
the UP does tend toward more ceremony than the next two methodologies.

 ■ Extreme Programming
Extreme Programming (XP) is an adaptive, Agile development methodology
that was created in the mid-1990s. The word extreme sometimes makes peo-
ple think that this methodology is completely new and that developers who
embrace XP are radicals. However, XP is really an attempt to take the best
practices of software development and extend them “to the extreme.” Extreme
programming has these characteristics:

 ■ Takes proven industry best practices and focuses on them intensely
 ■ Combines those best practices (in their most intense forms) in a new way to

produce a result that is greater than the sum of its parts

Figure 10-15 lists the core values and practices of XP. The following sec-
tions first present the four core values of XP and then explain its 12 primary
practices. Finally, the basic structure of an XP project and the way XP is used to
develop software is discussed.

 ❚ XP Core Values
The four core values of XP—communication, simplicity, feedback, and
 courage—drive its practices and project activities. You will recognize the first
three as best practices for any development project. You will also notice that
the fourth is a desired value for any project, even though it might not be stated
explicitly. Here are brief descriptions of the four core values of XP:

 ■ Communication. One of the major causes of project failure is a lack of
open communication among the right players at the right time and at the
right level. Effective communication involves not only documentation, but
also verbal discussion. The practices and methods of XP are designed to
ensure that open, frequent communication occurs.

 ■ Simplicity. Even though developers have always advocated keeping solutions
simple, they don’t always follow their own advice. XP includes techniques to
reinforce this principle and make it a standard way of developing systems.

 ■ Feedback. As with simplicity, getting frequent, meaningful feedback is rec-
ognized as a best practice of software development. Feedback on function-
ality and requirements should come from the users, feedback on designs

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

313CHAPTER 10 ■ Approaches to System Development

and code should come from other developers, and feedback on satisfying
a business need should come from the client. XP integrates feedback into
every aspect of development.

 ■ Courage. Developers always need courage to face the harsh choice of doing
things right or throwing away bad code and starting over. But all too fre-
quently, they haven’t had the courage to stand up to a too-tight schedule,
resulting in bad mistakes. XP practices are designed to give developers the
courage to “do it right.”

 ❚ XP Practices
XP’s 12 practices embody the basic values just presented. These practices are
consistent with the Agile principles explained earlier in this chapter.

Planning Some people describe XP as glorified hacking or as the old “code and
fix” methodology that was used in the 1960s. That isn’t true; XP does include
planning. However, as an adaptive technique, it recognizes that you can’t know
everything at the start. As indicated earlier, XP embraces change. XP planning
focuses on making a rough plan quickly and then refining it as things become
clearer. This reflects the Agile development philosophical dictum that change
is more important than detailed plans. It is also consistent with the idea that
individuals—and their abilities—are more important than an elaborate process.

The basis of an XP plan is a set of stories that users develop. A story describes
what the system needs to do. XP doesn’t use the term use case, but a user story
and a use case express a similar idea. Planning involves two aspects: business
issues and technical issues. In XP, the business issues are decided by the users and
clients, whereas technical issues are decided by the development team. The plan,
especially in the early stages of the project, consists of the list of stories (from the
users) and the estimates of effort, risk, and work dependencies for each story (from
the development team). As in Agile development, the idea is to heavily involve the
users in the project rather than have them to simply sign off on specifications.

FIGURE 10-15 XP core values and
practices

Planning

Refactoring the
code

System metaphor
Small releases Forty-hour week Coding standards

Owning the code
collectively

Continuous
integration

On-site customer

Testing Pair programming

Communication

Simplicity Feedback

Courage

Simple designs

XP Core Values

XP Practices

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

314 PART 4 ■ System Development and Project Management

Testing Every new piece of software requires testing, and every methodology
includes testing. XP intensifies testing by requiring that the tests for each story
be written first—before the solution is programmed. There are two major types
of tests: unit tests, which test the correctness of a small piece of code, and accep-
tance tests, which test the business function. The developers write the unit tests,
and the users write the acceptance tests. Before any code can be integrated into
the library of the growing system, it must pass the tests. By having the tests
written first, XP automates their use and executes them frequently. Over time,
a library of required tests is created, so when requirements change and the code
needs to be updated, the tests can be rerun quickly and automatically.

Pair Programming More than any other, this practice is one for which XP is
famous. Instead of simply requiring one programmer to watch another’s work, pair
 programming divides up the coding work. First, one programmer might focus more
on design and double-checking the algorithms while the other writes the code. Then,
they switch roles; thus, over time, they both think about design, coding, and testing.
XP relies on comprehensive and continual code reviews. Interestingly, research has
shown that pair programming is more efficient than programming alone. It takes
longer to write the initial code, but the long-term quality is higher. Errors are caught
quickly and early, two people become familiar with every part of the system, all design
decisions are developed by two brains, and fewer “quick and dirty” shortcuts are
taken. The quality of the code is always higher in a pair-programming environment.

Simple Designs Opponents say that XP neglects design, but that isn’t true. XP
conforms to the principles of Agile modeling by avoiding the “Big Design Up
Front” approach. Instead, it views design as so important that it should be done
continually, although in small chunks. As with everything else, the design must be
verified immediately by reviewing it along with coding and testing.

So, what is a simple design? It is one that accomplishes the desired result
with as few classes and methods as possible and that doesn’t duplicate code.
Accomplishing all that is often a major challenge.

Refactoring the Code Refactoring is the technique of improving the code with-
out changing what it does. XP programmers continually refactor their code.
Before and after adding any new functions, XP programmers review their code
to see whether there is a simpler design or a simpler method of achieving the
same result. Refactoring produces high-quality, robust code.

Owning the Code Collectively In XP, everyone is responsible for the code. No
one person can say, “This is my code.” Someone can say, “I wrote it,” but every-
one owns it. Collective ownership allows anyone to modify any piece of code.
However, because unit tests are run before and after every change, if program-
mers see something that needs fixing, they can run the unit tests to make sure
the change didn’t break something. This practice embodies the team concept
that developers are building a system together.

Continuous Integration This practice embodies XP’s idea of “growing” the soft-
ware. Small pieces of code—which have passed the unit tests—are integrated
into the system daily or even more often. Continuous integration highlights
errors rapidly and keeps the project moving ahead. The traditional approach of
integrating large chunks of code late in the project often resulted in tremendous
amounts of rework and time lost while developers tried to determine just what
went wrong. XP’s practice of continuous integration prevents that.

On-Site Customer As with all adaptive approaches, XP projects require contin-
ual involvement of users who can make business decisions about functionality
and scope. Based on the core value of communication, this practice keeps the
project moving ahead rapidly. If the customer isn’t ready to commit resources to
the project, the project won’t be very successful.

pair programming XP practice in which
two programmers work together on designing,
coding, and testing software

refactoring revising, reorganizing, and
rebuilding part of a system so it is of higher
quality

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

315CHAPTER 10 ■ Approaches to System Development

System Metaphor This practice is XP’s unique and interesting approach to defining
an architectural vision. It answers the questions “How does the system work?” and
“What are its major components?” And it does it by having the developers iden-
tify a metaphor for the system. For example, Big Three automaker Chrysler’s payroll
system was built as a production-line metaphor, with its system components using
 production-line terms. Everyone at Chrysler understood a production line, so a pay-
roll transaction was treated the same way; developers started with a basic transac-
tion and then applied various processes to complete it. Of course, a system metaphor
should be easily understood or well known to the members of the development team.
It can guide members toward a vision and help them understand the system.

Small Releases A release is a point at which the new system can be turned over to
users for acceptance testing and even for productive use. Consistent with the entire
philosophy of growing the software, small and frequent releases provide upgraded
solutions to the users and keep them involved in the project. Frequent releases also
facilitate other practices, such as immediate feedback and continual integration.

Forty-Hour Week and Coding Standards These final two practices set the tone for
how the developers should work. The exact number of hours a developer works
isn’t the issue. The issue is that the project shouldn’t be a death march that burns
out every member of the team. Neither should the project be a haphazard coding
exercise. Developers should follow standards for coding and documentation. XP
uses just the engineering principles that are appropriate for an adaptive process
based on empirical controls.

 ❚ XP Project Activities
Figure 10-16 shows an overview of the XP system development approach. It is
divided into three levels: system (the outer ring), release (the middle ring), and iter-
ation (the inner ring). System-level activities occur once during each development

Finish

Start

Plan
releases

Create acceptance tests

Cr
ea

te
sys

tem
metaphor

Cr
ea

te
us

er
st

or
ie

s

Plan
iterations

Ac
ce

ptance tests

Co
de

Unit test

Integration test

start next release

start next iteration

FIGURE 10-16 XP development
approach

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

316 PART 4 ■ System Development and Project Management

project. A system is delivered to users in multiple stages called releases. Each
release is a fully functional system that performs a subset of the full system
requirements. A release is developed and tested within a period of no more than
a few weeks or months. The activities in the middle ring cycle multiple times—
once for each release. Releases are divided into multiple iterations. During each
iteration, developers code and test a specific functional subset of a release. Itera-
tions are coded and tested in a few days or weeks. There are multiple iterations
within each release, so the iteration ring (inner) cycles multiple times.

The first XP development activity is creating user stories, which are similar
to use cases in object-oriented analysis. A team of developers and users quickly
documents all the user stories the system will support. Developers then create a
class diagram to represent objects of interest within the user stories.

Developers and users then create a set of acceptance tests for each user story.
Releases that pass the acceptance tests are considered finished. The final system-
level activity is to create a development plan for a series of releases. The first
release supports a subset of the user stories, and subsequent releases add support
for additional stories. Each release is delivered to users and performs real work,
thus providing an additional level of testing and feedback.

The first release-level activity is planning a series of iterations. Each itera-
tion focuses on a small (possibly just one) system function or user story. The
iterations’ small size allows developers to code and test them within a few days.
A typical release is developed by using from a few to a few dozen iterations.

After the iteration plan is complete, work begins on the first iteration-level
activity. Code units are divided among multiple programming teams, and each
team develops and tests its own code. XP recommends a test-first approach to
coding. Test code is written before system code. As code modules pass unit test-
ing, they are combined into larger units for integration testing. When an itera-
tion passes integration testing, work begins on the next iteration.

When all iterations of a release have been completed, the release undergoes
acceptance testing. If a release fails acceptance testing, the team returns it to the
iteration level for repair. Releases that pass acceptance testing are delivered to
end users, and work begins on the next release. When acceptance testing of the
final release is completed, the development project is finished.

 ■ Scrum
Those of you who are familiar with rugby are aware that when a team gets pos-
session of the ball, it attempts to go the entire distance in one continuous play—
from point of possession to the score. The team works together, passing the ball
back and forth; even when tackled, it can maintain possession and keep the ball
in play. Originally, this “rugby” approach was applied to product development.

One interesting element in rugby is a scrum, which is used to get a ball
back into play after a penalty. The defining characteristics of a scrum are that it
begins quickly, is a very intense effort, involves the entire team, and usually only
lasts for a short duration.

Combining some of these principles of rugby with the Agile philosophy gave
rise to a methodology—the objective of which is to be quick, agile, and intense
and to go the entire distance. This methodology is referred to as the Scrum
approach. Over time, the techniques have been refined to fit into a powerful
adaptive software development methodology. Figure 10-17 illustrates an over-
view of the Scrum approach. There are three important Scrum areas to under-
stand: the philosophy, the organization, and the practices.

 ■ Scrum Philosophy
The Scrum philosophy is also based on the Agile development principles
described earlier. Scrum is responsive to a highly changing, dynamic environment

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

317CHAPTER 10 ■ Approaches to System Development

in which users might not know exactly what is needed and might also change
priorities frequently. In this type of environment, changes are so numerous that
projects can bog down and never reach completion. Scrum excels in this type
of situation.

Scrum focuses primarily on the team level. It is a type of social engineering
that emphasizes individuals more than processes and describes how teams of
developers can work together to build software in a series of short mini-projects.
Key to this philosophy is the complete control a team exerts over its own organi-
zation and its work processes. Software is developed incrementally, and controls
are imposed empirically—by focusing on things that can be accomplished.

The basic control mechanism for a Scrum project is a list of all the things
the system should include and address. This list—called the product backlog
includes user functions (such as use cases), features (such as security), and tech-
nology (such as platforms). The product backlog list is continually being pri-
oritized, and only a few of the high-priority items are worked on at a time,
according to the current needs of the project and its sponsor.

 ❚ Scrum Organization
The three main organizational elements that affect a Scrum project are the
product owner, the Scrum master, and the Scrum team or teams.

The product owner is the client, but he or she has additional responsi-
bilities. Remember that in Agile development, the user and client are closely
involved in the project. In Scrum, the product owner maintains the product
backlog list. For any function to be included in the final system, it must first
be placed on the product backlog. Because the product owner maintains that
list, any request must first be approved and agreed to by the product owner. In
traditional development projects, the project team initiates the interviews and
other activities to identify and define requirements. In a Scrum project, the pri-
mary client controls the requirements. This forces the client and user to be inti-
mately involved in the project. Nothing can be accomplished until the product
owner creates the backlog.

The Scrum master enforces Scrum practices and helps the team complete its
work. A Scrum master is comparable to a project manager in other approaches.
However, because the team is self-organizing and no overall project schedule
exists, the Scrum master’s duties are slightly different. He or she is the focal
point for communication and progress reporting—just as in a traditional

Scrum master
Scrum team

Incremental
software

result

Sprint backlog

Daily scrum

Product owner

Product backlog

Scrum
planning
meeting

30-day
Scrum sprint

©
 C

en
ga

ge
 L

ea
rn

in
g®

FIGURE 10-17 Scrum software development process

product backlog a prioritized list of user
requirements used to choose work to be done
in a Scrum project

product owner the client stakeholder for
whom the system is being built

Scrum master the person in charge of a
Scrum project—similar to a project manager

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

318 PART 4 ■ System Development and Project Management

project. But the Scrum master doesn’t set the schedule or assign tasks. The team
does. One of the primary duties of the Scrum master is to remove impediments
so the team can do its work. In other words, the Scrum master is a facilitator.

The Scrum team is a small group of developers—typically five to nine
people—who work together to produce the software. For projects that are
very large, the work should be partitioned and delegated to smaller teams. If
necessary, the Scrum masters from all the teams can coordinate multiple team
activities.

The Scrum team sets its own goal for what it can accomplish in a specific
period of time. It then organizes itself and parcels out the work to members. In a
small team, it is much easier to sit around a table, decide what needs to be done,
and have members of the team volunteer or accept pieces of work.

 ❚ Scrum Practices
The Scrum practices are the mechanics of how a project progresses. Of course,
the practices are based on the Scrum philosophy and organization. The basic
work process is called a sprint, and all other practices are focused on support-
ing a sprint.

A Scrum sprint is a firm period called a time box, with a specific goal or
deliverable. At the beginning of a sprint, the team gathers for a one-day plan-
ning session. In this session, the team decides on the major goal for the sprint.
The goal draws from several items on the prioritized product backlog list. The
team decides how many of the highest-priority items it can accomplish within
the sprint. Sometimes, lower-priority items can be included for very little addi-
tional effort and can be added to the deliverables for the sprint.

After the team has agreed on a goal and has selected items from the back-
log list, it begins work. The scope of that sprint is then frozen, and no one can
change it—neither the product owner nor any other users. If users do find new
functions they want to add, they put them on the product backlog list for the
next sprint. If team members determine that they can’t accomplish everything in
their goal, they can reduce the scope for that sprint. However, the time period is
kept constant.

Every day during the sprint, the Scrum master holds a daily Scrum, which
is a meeting of all members of the team. The objective is to report progress. The
meeting is limited to 15 minutes or some other short time period. Members of
the team answer only three questions:

 ■ What have you done since the last daily Scrum (during the last 24 hours)?
 ■ What will you do by the next daily Scrum?
 ■ What kept you or is keeping you from completing your work?

The purpose of this meeting is simply to report issues, not to solve them.
Individual team members collaborate and resolve problems after the meeting
as part of the normal workday. One of the major responsibilities of the Scrum
master is to note the impediments and see that they are removed. A good Scrum
master clears impediments rapidly. The Scrum master also protects the team
from any intrusions. The team members are then free to accomplish their work.
Team members do talk with users to obtain requirements, and users are involved
in the sprint’s work. However, users can’t change the items being worked on
from the backlog list or change the intended scope of any item without putting
it on the backlog list.

At the end of each sprint, the agreed-on deliverable is produced. A final
half-day review meeting is scheduled to recap progress and identify changes
that need to be made for the following sprints. By time-boxing these activities—
the planning, the sprint, the daily Scrum, and the Scrum review—the process
becomes a well-defined template to which the team easily conforms, which con-
tributes to the success of Scrum projects.

sprint a time-controlled mini-project that
implements a specific portion of a system

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

319CHAPTER 10 ■ Approaches to System Development

change over following a plan, individuals over pro-
cess and tools, working software over documentation,
and customer collaboration over contract negotia-
tion. Agile modeling describes principles for keeping
a project agile.

The most formal adaptive, Agile development
methodology is the Unified Process (UP). It was one of
the first methodologies to be formalized with specific
definitions for iterations and processes. Other more
radical adaptive, agile methodologies are now being
promoted and used. Two of the more popular ones are
Extreme Programming and Scrum.

Extreme Programming (XP) and Scrum are meth-
odologies that embody the most Agile principles. Two
core elements of XP are that system tests are written
first and that programmers work in pairs to design,
code, and test the software. Thus, when a function is
completed, it has not only been designed and coded,
but it has also been reviewed and tested.

The Scrum approach defines a specific goal that
can be completed within a short sprint. During that
sprint, the project team is protected from all outside
distractions so it can complete the defined goal. A
product backlog of all outstanding requests is main-
tained by the client, and changes to the work the team
is doing are only allowed between sprints.

System development projects are organized around a
system development life cycle (SDLC). Some SDLCs
are based on a more predictive approach to the proj-
ect, and other SDLCs are based on a more adaptive ap-
proach. The predictive approach to the SDLC includes
phases that are completed sequentially or with some
overlap. The traditional SDLC phases are project ini-
tialization, project planning, analysis, design, imple-
mentation, deployment, and support. The adaptive
approach to the SDLC is used when the requirements
or technology are less certain and it is difficult to plan
everything about the project in advance. Adaptive
SDLCs use multiple iterations that allow the analysis,
design, and implementation of smaller parts of the ap-
plication to be completed and evaluated. The SDLC
used in this text is an example of an adaptive SDLC,
and the six core processes correspond to the phases of
the traditional predictive SDLC. All development proj-
ects use an SDLC to manage the project, but there is
more to system development than the SDLC. Models,
techniques, and tools make up a system development
methodology that provides guidelines for completing
every activity in the SDLC.

Agile development, the leading trend in system
development, helps keep system development projects
responsive to change. It is a philosophy that values

CHAPTER Summary

pair programming

phases

predictive approach to the SDLC

product backlog

product owner

refactoring

Scrum master

sprint

technique

tool

UP discipline

visual modeling tools

walking skeleton

waterfall model

adaptive approach to the SDLC

Agile development

Agile modeling (AM)

chaordic

incremental development

integrated development
 environments (IDEs)

KEy TermS

 1. What is a project?

 2. What is the range of sizes of an information
system development project?

 3. What is the system development life cycle (SDLC)?

 4. What characteristics of a project call for a
predictive approach to the SDLC?

 5. What characteristics of a project call for an
adaptive approach to the SDLC?

 6. What are the six phases of the traditional predic-
tive SDLC?

 7. Explain how the waterfall model of the SDLC
controls the changes that occur during a project.

 8. Explain the advantages of having the phases of a
predictive SDLC overlap.

 9. What organizing concept is included in all
adaptive SDLCs?

REviEw QueSTionS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

320 PART 4 ■ System Development and Project Management

PRObLEMS AnD ExERCISES

 18. What are some examples of tools included in a
methodology?

 19. What is Agile development?

 20. What are the four “values” reflected in Agile
development?

 21. What is Agile modeling (AM)?

 22. What are the 12 Agile modeling principles?

 23. What are the four UP phases, and what is the
objective of each?

 24. What are the six UP development disciplines?

 25. What are the three UP support disciplines?

 26. Why is the word extreme included as part of
Extreme Programming?

 27. List the core values of XP.

 28. List the XP practices.

 29. What is the product backlog used for in a
Scrum project?

 30. Explain how a Scrum sprint works.

 10. For an adaptive SDLC, explain what goes on
during each iteration.

 11. The SDLC used in this text is based on what
adaptive SDLC?

 12. What are the core processes in the SDLC used in
this book, and what traditional predictive SDLC
phase corresponds to each process?

 13. What is the iterative approach that involves com-
pleting and deploying part of an application over
a few iterations and then completing and deploy-
ing another part of that application after a few
more iterations?

 14. Why do adaptive SDLCs not explicitly include
the support phase?

 15. What is a system development methodology?

 16. What are some examples of models included in a
methodology?

 17. What are some examples of techniques included
in a methodology?

 1. Write a one-page paper that distinguishes among
the fundamental purposes of the analysis phase,
the design phase, and the implementation phase
of the traditional predictive SDLC.

 2. Describe an information system project that
might have three subsystems. Discuss how three
iterations might be used for the project.

 3. Why might it make sense to teach analysis and
design phases and activities sequentially, like a
waterfall, even though iterations are, in practice,
used in nearly all development projects?

 4. List some of the models that architects create to
show different aspects of a house they are design-
ing. Explain why several models are needed.

 5. What models might an automotive designer use
to show different aspects of a car?

 6. Sketch and write a description of the layout of
your room at home. Are both the sketch and the
written description considered models of your
room? Which is more accurate? More detailed?
Which would be easier to follow by someone
unfamiliar with your room?

 7. Describe a technique you use to help you com-
plete the activity “Get to class on time.” What are
some of the tools you use with this technique?

 8. Describe a technique you use to make sure you
get assignments done on time. What are some of
the tools you use with this technique?

 9. What are some other techniques you use to help
you complete activities in your life?

 10. Go to the campus placement office to gather
some information on companies that recruit
information systems graduates. Try to find any
information about the companies’ approaches to
developing systems. Is their SDLC described? Do
any mention an IDE or a visual modeling tool?
Visit the companies’ Web sites to look for more
information.

 11. Visit the Web sites of a few leading information
systems consulting firms. Try to find information
about their approaches to developing systems.
Are their SDLCs described? Do the sites mention
any tools, models, or techniques?

 12. The Unified Process (UP) was first developed by a
company called Rational, which is now owned by
IBM. On the IBM Web site, find any information
about UP tools available through IBM/Rational.
Briefly describe the suite of tools available. Also,
look on the IBM Web site and other Web sites
(such as the Agile Modeling Web site) for opinions
on the relationships and commonality between the
UP and Agile modeling. Report your findings.

 13. Consider XP’s team-based programming
approach in general and its principle of allowing
any programmer to modify any code at any time
in particular. No other development approach
or programming management technique follows

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

321CHAPTER 10 ■ Approaches to System Development

 15. Find someone in your community who is work-
ing on a software development project that
is using Agile principles. How was the team
trained to use Agile development? How was this
approach adopted in the organization? What
is the general feeling about its success? What
aspects does this developer like? Which aspects
does he or she find frustrating or difficult to use?

 16. Research on the Internet one of the other tech-
niques such as Lean Development or Feature
Driven Development. Write a short summary
of its principles and practices. Comment on its
strengths and weaknesses.

this particular principle. Why not? In other
words, what are the possible negative implica-
tions of this principle? How does XP minimize
these negative implications?

 14. Visit the Web sites of the Agile Alliance (www
.agilealliance.org) and Agile Modeling (www
.agilemodeling.com). Find some articles on
 project management in an Agile environment.
Summarize key points that you think make pro-
ject management more difficult in this environ-
ment than in a traditional, predictive project.
Do the same for key points that make project
management easier for an Agile project.

Community Board of Realtors®

The Board of Realtors Multiple Listing Service (MLS)
system isn’t very large in terms of use cases and domain
classes. In that respect, the functional requirements
are simple and well understood. MLS needs a Web
site with public access to the listings, and it also needs
to allow agents and brokers to log in to the system to
add and update listings. There is very little back-end
administrative data maintenance required, except to
add or update a real estate office or agent.

 1. Compared to the Tradeshow application
described in Chapter 1, how long might this
project take, and which approach to the SDLC
would be most appropriate?

 2. If you use a predictive SDLC, how much time
might each phase of the project take? How much
overlap of phases might you plan for? Be specific
about how you would overlap the phases.

Running Case studies

A “College Education Completion”
Methodology
Given that you are reading this book, you are probably a
college student working on a degree. Think about complet-
ing college as a project—a big project lasting many years
and costing more than you might want to admit. Some
students do a better job managing their college comple-
tion projects than others. Many fail entirely (certainly not
you), and most complete college late and way over budget
(again, certainly not you).

As with any other project, to be successful, you need
to follow some sort of “college education completion”
methodology—that is, a comprehensive set of guidelines

for completing activities and tasks from the beginning of
planning for college through to the successful completion.

1. What are the phases that your college education
completion life cycle might have?

2. What are some of the activities included with each
phase?

3. What are some of the techniques you might use to
help complete those activities?

4. What models might you create? Differentiate the
models you create to get you through college from
those that help you plan and control the process of
completing college.

5. What are some of the tools you might use to help you
complete the models?

CASE studY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

322 PART 4 ■ System Development and Project Management

What are the implications for including the
smartphone application in the initial project ver-
sus having a separate project for wireless later?

 5. Consider using incremental development to
include the Web application and the wireless
support. Describe what would be included in
the first and second deployments of the project.
Take into consideration that you might want
to work on some initial problem solving for
requirements, design, and implementation of the
wireless support at the same time you are work-
ing on the Web application.

 3. If you use an adaptive SDLC, how many itera-
tions might you plan to include? What use cases
would you analyze, design, and implement in the
first iteration? What use cases would you work
on in the second iteration? In additional itera-
tions? Think in terms of getting the core func-
tionality implemented early and then building
the supporting functionality.

 4. Assume this project focused on Web access to
the MLS. If you also plan to deploy a smart-
phone application for use by the public and by
the agents and brokers, how might this affect
your choice of the approach to the SDLC?

The Spring breaks ‘R’ Us Travel Service
Recall from Chapter 2 that SBRU’s initial system
included four major subsystems: Resort relations, Stu-
dent booking, Accounting and finance, and Social net-
working. The project calls for an adaptive approach
to the SDLC for several reasons. One, it is relatively
large in scope. Two, there is a diverse set of users in
several functional areas, internal and external to the
company and in several foreign countries. Three,
the project needs to use an assortment of newer
technologies that can communicate anytime and
anywhere.

 1. The SBRU information system includes four
major subsystems: Resort relations, Student
booking, Accounting and finance, and Social
networking. Although you have only worked
with the domain model class diagram for the
Social networking subsystem, list as many of the
domain classes that would probably be involved

in each of the subsystems. Note which classes
are used by more than one subsystem.

 2. Based on the overlapping classes, what domain
classes seem to be part of the core functionality
for SBRU? Draw a domain model class diagram
that shows these classes and their associations.

 3. Suppose you plan to implement the basic use
cases that create and maintain the classes that
are part of the core functionality you just mod-
eled. Describe what domain classes you would
focus on in each iteration if you assumed that
you would need two iterations for the initial
core functionality and two additional iterations
to complete each of the subsystems.

 4. How might you use incremental development to
get some core functionality or some subsystems
deployed and put into use before the project is
completed?

On the Spot Courier Services
In the On the Spot system, package pickup and deliv-
ery are closely integrated with route schedules. How-
ever, recall the RMO system, where there is a Sales
subsystem, an Order fulfillment subsystem, a Cus-
tomer account subsystem, and a Marketing subsystem.
You could conceive of the On the Spot system as also
consisting of four subsystems:

 ■ Customer account subsystem (like customer account)
 ■ Pickup request subsystem (like sales)
 ■ Package delivery subsystem (like order fulfillment)
 ■ Routing and scheduling subsystem

Assuming that On the Spot’s system developer
approached this new system from this point of view
and that the developer also decided to use an adaptive,
iterative approach, answer these questions:

 1. In what order would you develop the four sub-
systems? Support your answer.

 2. Reviewing your work from Chapter 3, assign each
of your use cases to a particular subsystem. Does
this change your answer or does it strengthen
your original premise? Support your answer.

 3. Reviewing your work from Chapter 4, assign
each of your classes to a subsystem. (Note: Some
classes may be in multiple subsystems. The pri-
mary subsystem is the one that “creates” the
objects in that class.) Does this change your an-
swer or does it strengthen your original premise?
 Support your answer.

 4. Considering the Agile modeling principles, dis-
cuss each of the following:

a. In Chapter 3, you developed a list of use cases
and a use case diagram. If you follow the
Agile modeling philosophy, how much or how
little of this model do you think is necessary?
Support your answer.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

323CHAPTER 10 ■ Approaches to System Development

b. In Chapter 4, you developed a class diagram.
If you follow the Agile modeling philosophy,
how much or how little of this model do you
think is necessary? Support your answer.

c. In Chapter 5, you developed some use case
descriptions, activity diagrams, and system
sequence diagrams. If you follow the Agile
modeling philosophy, how many or how few

of these models do you think are necessary?
Support your answer.

d. In Chapter 6, you learned about system design
and system environments. If you follow the
Agile modeling philosophy, how many or how
few of these models do you think are neces-
sary? Support your answer.

View/respond to
alert

View history

Annotate history

Send message to
physician

View/hear
message from

physician

View/respond to
alert

Send message to
patient

View/hear
message from

patient

Set alert
conditions

Patient Physician

FIGURE 10-18 Use cases for the patient and physician actors

©
 C

en
ga

ge
 L

ea
rn

in
g®

Review the original system description in previ-
ous chapters and the use case diagram shown in
 Figure 10-18 to refamiliarize yourself with the pro-
posed system. Consider this additional information:

 ■ Sandia Medical Devices (SMD) and New Mexico
Health Systems (NMHS) are developing the system
jointly. Project staff will include analysts, design-
ers, and programmers from both organizations.
Three technical staff members from each organiza-
tion have been assigned initially, and the budget
includes sufficient funds to add other personnel
for short-term assignments as needed. In addition,
NMHS will assign a physician and a physician’s
assistant to the project one day per week.

 ■ It is anticipated that SMD personnel assigned to
the project will work primarily at NMHS facili-
ties in office space and with computer equipment
dedicated to developing the Real-Time Glucose
Monitoring (RTGM) system.

 ■ NMHS anticipates recruiting a handful of its own
diabetic employees to provide requirements and to
test the prototype RTGM software.

Sandia Medical Devices Real-Time Glucose Monitoring
 ■ SMD and NMHS anticipate a six-month develop-

ment schedule for an initial version of the server soft-
ware and Android-based client-side software. That
will be followed by a three-month period for evalu-
ation and another three-month period for develop-
ment of improved software versions and support for
a wider range of mobile phone operating systems.

Answer these questions:

 1. Given the system goals, requirements, and scope
as they are currently understood, is the project
schedule reasonable? Why or why not?

 2. How well understood are the system requirements
at the start of the project? What are the implica-
tions of your answer for using a predictive, adap-
tive, or mixed SDLC? What are the implications
of your answer for using Agile techniques?

 3. Medical personnel at NMHS have very busy sched-
ules. NMHS’s decision to assign two medical practi-
tioners to the project for one day a week represents
a significant investment in salary and lost revenue.
How should project iterations be structured to en-
sure rapid progress to completion, high quality, and
efficient use of medical practitioner time?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

324 PART 4 ■ System Development and Project Management

Agile Alliance, www.agilealliance.org.

Scott W. Ambler, Agile Modeling: Effective Prac-
tices for eXtreme Programming and the Unified
Process. John Wiley & Sons, 2002.

Scott Ambler, John Nalbone, and Michael J. Vizdos,
The Enterprise Unified Process: Extending the
Rational Unified Process. Prentice Hall, 2005.

Ken Auer and Roy Miller, Extreme Programming
Applied: Playing to Win. Addison-Wesley, 2002.

D. E. Avison and G. Fitzgerald, Information Systems
Development: Methodologies, Techniques, and
Tools (3rd ed.). McGraw-Hill, 2003.

Kent Beck, Extreme Programming Explained:
Embrace Change. Addison-Wesley, 1999.

Mike Cohn, Succeeding with Agile: Software Devel-
opment Using Scrum. Addison-Wesley, 2010.

Philippe Kruchten, The Rational Unified Process:
An Introduction. Addison-Wesley, 2004.

Craig Larman, Agile and Iterative Development:
A Manager’s Guide. Addison-Wesley, 2004.

“Manifesto for Agile Software Development,”
Agile Alliance, www.agilemanifesto.org.

Pete McBreen, Questioning Extreme Programming.
Addison-Wesley, 2003.

Andrew Pham and Phuong-Van Pham, Scrum in
Action. Course Technology, 2011.

Ken Schwaber and Mike Beedle, Agile Software
Development with Scrum. Prentice Hall, 2002.

FuRTheR ResouRces

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning Objectives
After reading this chapter, you should be able to:

Describe the factors that cause a software
development project to succeed or fail

Describe the responsibilities of a project
manager

Describe the knowledge areas in the project
management body of knowledge (PMBOK)

Describe the Agile approach to the project
management knowledge areas

Explain the activities required to get a project
approved (Core Process 1)

Explain the activities required to plan and
monitor a project (Core Process 2)

Principles of Project Management

Activities of Core Process 1: Identify the
Problem and Obtain Approval

Activities of Core Process 2: Plan and
Monitor the Project

chapter OutLine

chapter ELEVEN

Project Planning and
Project Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

326 PART 4 ■ System Development and Project Management

 ■ Overview
Chapter 10 introduced you to the SDLC and the various alternatives for orga-
nizing software development activities. By now, you may be asking yourself such
questions as:

 ■ How are all these activities coordinated?
 ■ How do I know which tasks to do first?
 ■ How is the work assigned to the different teams and team members?
 ■ How do I know which parts of the new system should be developed first?

The purpose of project planning and project management is to bring some
order to all these (sometimes seemingly unrelated) tasks. As you will learn in
this chapter, the success of any given project highly depends on the skills and
abilities of those managing the project. You will also learn that project manage-
ment skills aren’t only for project managers—that all the project team members
contribute to the management of the project and thus to its success.

This chapter first discusses the need for project management and the prin-
ciples associated it. The rest of this chapter discusses the detailed activities that
are associated with the first two core processes of system development, both of

Opening case Blue Sky Mutual FundS: a new developMent approach

Jim Williams, vice president of finance for Blue Sky
Mutual Funds, spoke first. “There are some things I like
about this new approach, but other things worry me,”
he told Gary Johnson, the company’s director of infor-
mation technology.

“This idea of ‘growing’ the system through several
iterations makes a lot of sense to me. It is always hard
for my people to know exactly what they need a new
information system to do and what will work best for the
company. So, if they can get their hands on the system
early, they can begin acceptance testing and try it out to
see whether it addresses their needs in the best way.”

“Let me see if I understand the big picture, though.
Your development team and my investment advisors will
decide on a few core processes that the system needs
to support and then your team will design and build a
system to support those core processes. You will do
that in a mini-project that will last about six weeks. Then,
you will continue adding more functionality through sev-
eral other mini-projects until the system is complete and
functioning well. Is that right?”

Jim was becoming more enthusiastic about this
new approach to system development.

“Yes, that’s the basic idea,” Gary said. “Your users
need to understand that the first few versions of the
system won’t be complete and may not be completely
robust either. But these early versions will give them
something to work with and try out. We also need good
feedback from their acceptance testing so the system
will be thoroughly tested by the time we are through.”

“I realize that,” Jim said. “My people will like not hav-
ing to think from the very beginning about everything they
need the system to do. They’ll like being able to try things
out. As I said earlier, I like this approach. However, the part
I don’t like about this approach is that it will be more dif-
ficult for you to give me a firm time schedule and project
cost. That worries me. In the past, those have been two
of the major tools we used to monitor a project’s progress.
Are you saying that now we won’t have a schedule at all?
And you want an open budget?” Jim frowned.

“It’s not as bad as it first sounds,” Gary said. “This
approach is an ‘adaptive’ approach, by which I mean
that because the system is growing, the project is more
open ended. The project manager will still create a
schedule and estimate the project costs, but she won’t
even try to identify and lock in all the required function-
ality for several of the iterations. Because the system’s
scope is going to continually be refined over the first few
iterations, there is the risk of ‘scope creep.’ That is one
of the biggest risks with adaptive approaches. You and I
should meet with the project manager fairly frequently
to ensure that the scope is controlled and the project
doesn’t get out of control.”

“Okay,” Jim said. “You have convinced me to try
this new approach. However, let’s treat this project as
a pilot and see how it works. If it’s successful, we will
consider using this iterative approach on our other proj-
ects.” Jim and Gary agreed that a pilot was the best way
to get started. Gary then headed off to meet with the
project manager and get the project started.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

327CHAPTER 11 ■ Project Planning and Project Management

which are primarily project management processes. The purpose of this chapter
is to teach you how to plan, organize, and direct a system development project.

 ■ Principles of Project Management
Many of you may have built a Web page with HTML or written a computer
program for yourself or a friend. In those cases, where it was just you work-
ing, you weren’t too concerned about how to organize your work or how to
manage the project. However, as soon as two or more developers are working
together, the work must be partitioned and organized, with specific assignments
for each developer. This is true whether the project uses a predictive approach or
an adaptive approach. As discussed in the last chapter, the chosen methodology
lays out a complex set of activities and tasks that must be carefully managed.
Failing to organize usually causes wasted time and effort as well as confusion
and may even cause the project to fail.

Even though every project team designates one person as the project manager,
with primary responsibility for the way the team functions, all members contrib-
ute to the team’s management. The project manager for the RMO Consolidated
Sales and Marketing System (CSMS) project is Barbara Halifax, but she has a
senior systems analyst helping her every step of the way. As the project proceeds,
all team members are involved in aspects of managing the project.

As discussed in earlier chapters, a project is a planned undertaking with a
beginning and an end, which produces a predetermined result and is usually
constrained by a schedule and resources. The development of information sys-
tems fits this definition. In addition, it is usually a quite complex project, with
many people and tasks that have to be organized and coordinated. Whatever
its objective, each project is unique. Different products are produced, different
activities are required with varying schedules, and different resources are used.
This uniqueness makes information systems projects difficult to control.

 ■ The Need for Project Management
History is replete with stories of software development projects that go awry. Prob-
ably one of the most visible examples of a less-than-successful development project
was the Affordable Care Act enrollment system—frequently referred to as Obam-
acare. Even though it was reported on the news media that the only problem was
that it could not handle the volume of traffic, more in-depth evaluation uncovered
several serious flaws. According to Ben Simo, the past president of the Association
for Software Testing, there were other serious problems. One small example:

“In mid-October, he went to Healthcare.gov to help a family mem-
ber get insurance, only to find his progress blocked. When he inves-
tigated the cause, he discovered that one part of the website had
created so much ‘cookie’ tracking data that it appeared to exceed the
site’s capacity to accept his login information. That’s the mark of a frac-
tured development team.” (http://swampland.time.com/2013/10/24/
traffic-didnt-crash-the-obamacare-site-alone-bad-coding-did-too/)

A “fractured development team” really means that the project manager and
team leaders were unable to manage the project. Admittedly, it was a giant proj-
ect under a very tight deadline with many diverse stakeholders—as are many
software projects.

There are a number of organizations that study software development to eval-
uate success rates and to identify best practices. Software development success is
often measured using three criteria: finishing on time, finishing within budget,

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

328 PART 4 ■ System Development and Project Management

and effectively meeting the need as expressed by the original problem definition.
Given these three criteria, software projects are often categorized in three ways:

1. Successful projects, which are completed on time and within budget while
meeting the users’ requirements for functionality

2. Challenged projects, which have some combination of being late, overbud-
get, or reduction of scope

3. Failed projects, which are canceled or result in the system never being used

One of the early organizations to study software development success was
the Standish Group, which started surveying success rates back in 1995. At that
time, the results were dismal. One-third of all projects ended up as failed proj-
ects that were canceled. Fully one-half of projects were challenged and were late,
overbudget, and often with reduced functionality. Only about 15 percent were
considered successful.

Over the last 20 years, there has been a major effort to improve these num-
bers. You learned in the previous chapter about new development paradigms
that are easier to manage and respond better to users’ needs. Figure 11-1 illus-
trates success rates based on several different types of development paradigms.
Even though the success has improved substantially, billions of dollars are still
spent on projects that don’t meet their objectives.

Many of these studies and reports don’t just indicate the rate of informa-
tion technology (IT) project failure or success. They also identify the reasons for
each. Here are some of the primary reasons for failure:

 ■ Undefined project management practices
 ■ Poor IT management and poor IT procedures
 ■ Inadequate executive support for the project
 ■ Inexperienced project managers
 ■ Unclear business needs and project objectives
 ■ Inadequate user involvement

It is notable that the primary reasons projects fail are a lack of executive
involvement and a lack of management skills. The other major reason is lack of
involvement by the user community. In other words, projects don’t tend to fail
for lack of programming skills or enthusiastic developers.

For an IT project to be successful, strong IT management and business direc-
tion need to be present. The other major element in all project success is sound
project management procedures as well as experienced and competent project
managers. In fact, good project managers always ensure that they have received
clear directives from business executives and committed user involvement with
the requirements for the new system. Substantial research and improvement
have also occurred in project management approaches. You will learn about spe-
cific project management techniques that improve project success.

FIGure 11-1 Project success rates
for various development paradigms

Development paradigm Successful Challenged Failed

Ad hoc

Traditional

Lean

Agile

Iterative

50%

49%

72%

64%

65%

35%

32%

21%

30%

28%

15%

18%

7%

6%

7%

Source: http://www.drdobbs.com/architecture-and-design/the-non-existent-software-crisis-debunki/
240165910.

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

329CHAPTER 11 ■ Project Planning and Project Management

 ■ The Role of the Project Manager
Project management is organizing and directing other people to achieve a planned
result within a predetermined schedule and budget. At the beginning of a project,
a plan is developed that specifies the activities that must take place, the deliverables
that must be produced, and the resources that are needed. Even though the project
plan is quite different depending on whether a predictive traditional approach is
used or whether an adaptive approach is used, successful projects always have some
type of project plan. Project management can also be defined as the processes or
activities used to plan the project and then to monitor and control it.

One of the most exciting careers for IT-oriented people is being a project man-
ager. As projects become more complex because of shorter time frames, distrib-
uted project teams (including offshore and cross-cultural teams), rapidly changing
technology, and more sophisticated requirements, highly qualified project manag-
ers are sought after and paid well. Many universities have added project manage-
ment courses to their curricula to respond to the needs of the industry. There is
a strong need and a high demand for people who are capable project managers.
As your career progresses, you should develop your management skills. You may
even want to become active in the Project Management Institute (PMI), which is
the most well-known professional organization for project managers.

Overall, project managers must be effective internally (managing people
and resources) and externally (conducting public relations). Internally, the proj-
ect manager serves as locus of control for the project team and all its activities.
He or she establishes the team’s structure so work can be accomplished. This list
identifies a few of these internal responsibilities:

 ■ Developing the project schedule
 ■ Recruiting and training team members
 ■ Assigning work to teams and team members
 ■ Assessing project risks
 ■ Monitoring and controlling project deliverables and milestones

Externally, the project manager is the main contact for the project. He or
she must represent the team to the outside world and communicate the team
members’ needs. Major external responsibilities include:

 ■ Reporting the project’s status and progress
 ■ Working directly with the client (the project’s sponsor) and other

stakeholders
 ■ Identifying resource needs and obtaining resources

In Chapter 2, you learned about the various stakeholders of a system. These
stakeholders were divided into internal stakeholders, which are those inside the
organization, and external stakeholders, which are those outside of the orga-
nization. Drilling down to a more detailed level, you can identify those people
who are part of the project team and work for the project manager, and those
stakeholders who do not. Among the people who are not part of the project
team are several groups of people that the project manager must interact with.

First, there is the client (i.e., the customer), who pays for the development
of the new system. Project approval and the release of funds come from the cli-
ent. For in-house developments, the client may be an executive committee or a
vice president. The client approves and oversees the project, along with its fund-
ing. For large, mission-critical projects, an oversight committee (sometimes
called the steering committee) may be formed. This consists of clients and other
key executives who have a vision of the organization’s strategic direction and
a strong interest in the project’s success. On the other hand, the users are the
people who will actually use the new system. The user typically provides infor-
mation about the detailed functions and operations needed in the new system.

project management organizing and
directing other people to achieve a planned
result within a predetermined schedule
and budget

client the person or group that funds the
project

oversight committee clients and key
managers who review the progress and direct
the project

users the person or group of people who
will use the new system

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

330 PART 4 ■ System Development and Project Management

Communication with the client and oversight committee is an important part
of the project manager’s external responsibilities. Similarly, working with the
team leaders, team members, internal technical staff, and any subcontractors is an
important part of a project manager’s internal responsibilities. The project man-
ager must ensure that all internal and external communication is flowing properly.
Figure 11-2 depicts the various groups of people involved in a development project.

 ■ Project Management and Ceremony
Another dimension that has a heavy impact on project management is the level
of formality, sometimes called ceremony, required for a given project. Level of
formality or ceremony is a measure of the amount of documentation gener-
ated, the traceability of specifications, and the formality of the project’s deci-
sion-making processes. Some projects, particularly small ones, are conducted
with very low ceremony. Meetings occur in the hallway or around the water
cooler. Written documentation, formal specifications, and detailed models are
kept to a minimum. Developers and users usually work closely together on a
daily basis to define requirements and develop the system. Other projects, usu-
ally larger, more complex ones, are executed with high ceremony. Meetings
are often held on a predefined schedule, with specific participants, agendas,
minutes, and follow-through. Specifications are formally documented with an

Level of formality or ceremony the rigor
of holding formal meetings and producing
detailed documentation

FIGure 11-2 Stakeholders in a system development project

Project manager

Client

External
stakeholders

User

Oversight committee

Internal
stakeholders

User

Technical staff

MemberMember Member MemberMember

Team leader SubcontractorTeam leader

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

331CHAPTER 11 ■ Project Planning and Project Management

abundance of diagrams and documentation and are frequently verified through
formal review meetings between developers and users.

A project’s ceremony isn’t the same as whether its approach is predictive
or adaptive. However, even though the approach and ceremony are different,
large predictive projects often tend to have high ceremony, with lots of meet-
ings and documentation. Unfortunately, the extensive documentation tended to
increase the length of the project and sometimes contributed to cost overruns.
Techniques such as rapid application development (RAD) were utilized to help
manage large predictive projects with less formality. This approach required less
documentation and fewer status and review meetings. Of course, many smaller
projects were often managed with less ceremony.

Adaptive projects can also be more or less formal in the way they are man-
aged. The Unified Process, which was explained in Chapter 10, is quite formal,
with high ceremony. Each iteration is precisely defined, with such specific out-
comes as specifications, diagrams, prototypes, and deliverables. However, other
adaptive approaches, such as lean, iterative, or Agile methods, lend themselves
to being managed with much less formality. The inherent characteristics of an
iterative approach, with its “just in time” project plans, easily adjust to less doc-
umentation, fewer diagrams for specifications, and less-formal status reporting.

 ■ Project Management Body of Knowledge (PMBOK)
The PMI is a professional organization that promotes project management,
primarily within the United States but also throughout the world. In addition,
professional organizations in other countries promote project management. The
PMI has a well-respected and rigorous certification program, and many corpo-
rations encourage their project managers to become certified.

As part of its mission, the PMI has defined a body of knowledge for project
management. This body of knowledge, referred to as the project management
body of knowledge (PMBOK), is a widely accepted foundation of informa-
tion that every project manager should know. The PMBOK is organized into 10
knowledge areas (Figure 11-3):

 ■ Project Integration Management. Integrating all the other knowledge areas
into one seamless whole

 ■ Project Scope Management. Defining and controlling the functions that are
to be included in the system as well as the scope of the work to be done by
the project team

 ■ Project Time Management. Creating a detailed schedule of all project tasks
and then monitoring the progress of the project against defined milestones

 ■ Project Cost Management. Calculating the initial cost/benefit analysis and
its later updates and monitoring expenditures as the project progresses

 ■ Project Quality Management. Establishing a comprehensive plan for ensuring
quality, which includes quality control activities for every phase of a project

 ■ Project Human Resource Management. Recruiting and hiring project
team members; training, motivating, and team building; and implementing
related activities to ensure a happy, productive team

 ■ Project Communications Management. Identifying all stakeholders and the
key communications to each; also establishing all communications mecha-
nisms and schedules

 ■ Project Risk Management. Identifying and reviewing throughout the proj-
ect all potential risks for failure and developing plans to reduce these risks

 ■ Project Procurement Management. Developing requests for proposals, eval-
uating bids, writing contracts, and then monitoring vendor performance

 ■ Project Stakeholder Management. Identifying and communicating with the
stakeholders of the new system

project management body of knowledge
(PMBOK) a project management guide and
standard of fundamental project management
principles

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

332 PART 4 ■ System Development and Project Management

As you progress in your career, you would be wise to keep a record of the
project management skills you observe in others as well as those you learn from
your own experiences. One place to start is with the set of skills a systems ana-
lyst needs, as described in earlier chapters. A good project manager knows how
to develop a plan, execute it, anticipate problems, and make adjustments. Proj-
ect management skills can be learned. If project management is in your long-
term game plan, you might consider joining PMI early in your career.

 ■ Agile Project Management (APM)
In the last chapter, you learned about the Agile approach to developing systems
and the four values of Agile development, which tended to prefer flexibility over

FIGure 11-3 Project management body of knowledge areas and processes

Project Integration
Management

1.1 Project plan development
1.2 Project plan execution
1.3 Integration change control

Project Cost
Management

4.1 Resource planning
4.2 Cost estimating
4.3 Cost budgeting
4.4 Cost control

Project Scope
Management

2.1 Initiation
2.2 Scope planning
2.3 Scope definition
2.4 Scope verification
2.5 Scope change control

Project Management
Body of Knowledge Areas

Project Quality
Management

5.1 Quality planning
5.2 Quality assurance
5.3 Quality control

Project Risk
Management

8.1 Risk identification
8.2 Risk quantification
8.3 Risk response development
8.4 Risk response control

Project Time
Management

3.1 Activity definition
3.2 Activity sequencing
3.3 Activity duration estimating
3.4 Schedule development
3.5 Schedule control

Project Human
Resource Management

6.1 Organizational planning
6.2 Staff acquisition
6.3 Team development

Project Procurement
Management

9.1 Procurement planning
9.2 Solicitation planning
9.3 Solicitation
9.4 Source selection
9.5 Contract administration
9.6 Contract closeout

Project Communications
Management

7.1 Communications planning
7.2 Information distribution
7.3 Performance reporting
7.4 Administrative closure

Project Stakeholder
Management

10.1 Identify stakeholders
10.2 Plan stakeholder management
10.3 Manage stakeholder engagement
10.4 Control stakeholder engagement

reference: http://www.pmi.org/PMBOK-Guide-and-Standards.aspx

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

333CHAPTER 11 ■ Project Planning and Project Management

plans and defined procedures. Obviously, these values have a large impact on the
way a project is managed. However, one of the concerns with them is that they
imply a working environment that has no controls or plans—one that can turn
into pure chaos. Chapter 10 also introduced a term, chaordic, that describes a
project that expects and allows chaos while remaining controlled or ordered.

One of the major challenges of Agile project management is how best to
balance the flexibility and chaos of an Agile team with the order and control
needed for a project. More than anything else, Agile project management is a
way of balancing these two conflicting requirements: how to be agile and flex-
ible while maintaining control of the project schedule, budget, and deliverables.
In recent years, several implementations of Agile principles have appeared in the
form of specific methodologies, each with their own set of principles, such as
Scrum and Lean.

To help you understand Agile project management better, the following sec-
tions discuss five of the ten knowledge areas of the PMBOK and discuss the
issues involved in implementing them by using Agile principles.

 ❚ Agile Scope Management
Scope management refers to the scope of the new system and the scope of the
project. In traditional predictive projects, the project manager and the team
attempted to define the scope in both areas at the beginning of the project, dur-
ing the planning phase. Unfortunately, for most new systems, there were so
many unknowns that the scope was almost never defined accurately. The Agile
philosophy accepts the fact that the scope isn’t well understood and that there
will be many changes, updates, and refinements to the requirements as the proj-
ect progresses. However, uncontrolled scope can result in a project that never
finishes, even if it is an Agile project. The project manager must have a pro-
cess and mechanisms in place to control the scope of the project. How can this
be done?

Let us assume that one of the major outcomes of the planning iteration was
the decision to develop a prioritized list of business requirements that the new
system needs to support. Figure 11-4 represents this list, with the higher-prior-
ity items toward the top and the lower-priority items toward the bottom. These
requirements can be prioritized by using several criteria, including importance
to the business, risk, complexity, size, and other dependencies. In most proj-
ects, some combination of these criteria is used to prioritize the requirements.
 Figure 11-4 also indicates that the project team has made a preliminary assign-
ment of these requirements to iterations. As new requirements are defined, they
are prioritized, inserted into the stack, and assigned to an iteration.

Controlling the scope is a decision made by the client, with input provided by
the project team and the users. With an iterative project, a deliverable is usually
provided at the end of each iteration. Because the system is growing throughout
the project, with the highest-priority requirements implemented first, the client
is able to shut down the project when he or she feels that the system is complete
enough to satisfy the business need. Most projects usually require one or two
more iterations to do final integration and testing to ensure that the system will
scale for high volume and that it meets all the “hardening” requirements for
security purposes.

 ❚ Agile Time Management
Traditional time management is primarily concerned with scheduling tasks: cre-
ating the schedule, assigning work according to the schedule, and monitoring
progress against the schedule. In predictive projects, the schedule is created dur-
ing the initial planning phase and entered into a project scheduling system, such
as Microsoft Project.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

334 PART 4 ■ System Development and Project Management

In an Agile project, because the requirements are always changing, it can be
very difficult to create and maintain a meaningful project schedule. The initial
planning effort will usually include the beginning set of requirements and divide
the project into iterations, with a preliminary assignment of requirements to iter-
ations. However, it is expected that the number of iterations and the assignments
will change as new requirements are discovered and put on the prioritized stack.

Within an iteration, which often lasts from two to four weeks, a more
detailed schedule can be developed. The Agile philosophy includes the idea that
only for small work projects, in which the tasks are performed at nearly the
same time (i.e., within one iteration), can a meaningful schedule be developed. In
addition, the project team, not the project manager or team leader, will schedule
its own work. Thus, for an Agile project, each iteration is usually planned as the
first task within the iteration. The tasks are identified, estimates of the effort are
developed, and work is assigned by the project team members. Because there are
so many iterations in a project, the project team gets lots of practice and quickly
becomes proficient at estimating and scheduling the work.

 ❚ Agile Cost Management
It is normal for the client stakeholder to ask, “How long will it take and how
much will it cost for this new system to be developed?” These questions are
hard to answer. For predictive projects, the project manager gives estimates,
but as you saw earlier, these are usually incorrect. Agile project managers
admit more readily that time and cost estimates are difficult to make, especially
with a project in which the requirements are expected to change through-
out. Hence, estimating the project’s cost isn’t as important as controlling the

High-priority functions

Low-priority functions

Iteration 1

New required functions
can be inserted

Existing functions can be
removed or reprioritizedIteration 2

Iteration 3

Iteration 4

Iteration 5

FIGure 11-4 Scope management
with changing requirements

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

335CHAPTER 11 ■ Project Planning and Project Management

cost during the life of the project. The project manager’s responsibility to
 control costs is just as important for an Agile project as it is for a traditional
predictive project.

 ❚ Agile Risk Management
In most adaptive, iterative projects, including Agile projects, close attention is
given to project risks, particularly technical risks. Iterative projects are often
risk-driven, meaning that early iterations focus specifically on addressing the
most critical project risks. Although a similar emphasis on risk can be included
in a predictive project, it is more difficult to integrate specific risk-reducing
activities into the project schedule. The major difference between the two types
of projects is that in predictive projects, separate prototypes are built, whereas
in adaptive projects, the high-risk portions of the new system are built first.

 ❚ Agile Quality Management
Usually, quality management has to do with the quality of the deliverable from
the project. However, in an Agile project, you also consider the quality of the
process. How well is the project working, and how well do the internal proce-
dures promote project success?

In a predictive project, the final set of tasks consists of the system test, the
integration test, and the user acceptance test. However, scheduling these exten-
sive tests at the end of the project renders it very difficult and expensive to make
the necessary changes. An alternative is to deploy the system with minimal test-
ing, which helps the budget but can cause many problems for the company.

In an Agile project, each iteration has a deliverable. Often, each iteration
also integrates a new piece into the growing total system. Within each iteration,
the new pieces are tested by themselves and as integrated with the rest of the
system. The users also get involved in testing the system’s ability to meet their
business needs. Hence, testing and quality control are spread across the entire
project and usually provide a better-tested and more robust system.

Another kind of quality control that should be done as part of an Agile
project is a process evaluation at the end of each iteration. In other words, the
project team does a self-evaluation to figure out how well it did and what could
be done to improve the next iteration.

 ■ Activities of Core Process 1: Identify the Problem
and Obtain Approval

Chapter 1 introduced you to the basic principles of iterative development using
six core processes. In fact, the core processes are applicable to either a predic-
tive approach or an adaptive approach. As explained in the last chapter, with a
predictive approach, the core processes are performed in a waterfall sequence. In
an iterative approach, these core processes are performed multiple times—dur-
ing each iteration. Obviously, some overall project planning must be done at
the initiation of the project, but detailed project planning, as well as execution,
continues throughout the project.

So far in the text, you have learned the detailed activities of Core Process 3
(“Discover and understand details”) and Core Process 4 (“Design system com-
ponents”). This chapter discusses the activities of Core Processes 1 and 2.
We elected to discuss the concepts of project management until after you had
some experience in the details of project development work. In other words,
your ability to understand the need and importance of project management is
enhanced by having experience with the kind of work that must be managed.
In later chapters, you will learn the details of the final two core processes.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

336 PART 4 ■ System Development and Project Management

Core Process 1 is probably the most critical process for project success.
As was noted earlier in the chapter, establishing such things as strong executive
support, clear business case and direction, and effective planning is critical to
project success. These important factors are identified and resolved during the
activities of Core Process 1. Figure 11-5 highlights the four activities associated
with Core Process 1.

 ■ Identify the Problem
Information systems development projects are initiated for various reasons,
including (1) to respond to an opportunity, (2) to resolve a problem, and (3) to
respond to an external directive.

Most companies are continually looking for ways to increase their market
shares or open up new markets. One way they create opportunities is with stra-
tegic plans—short term and long term. In many ways, planning is the optimal
way to identify new projects. As the strategic plans are developed, projects are
identified, prioritized, and scheduled.

Projects are also initiated to resolve immediate business problems. Such
projects can be initiated as part of a strategic plan, but they are more com-
monly requested by middle managers who want to take care of some difficulty
in the company’s operations. Sometimes, these needs are so critical that they are
brought to the attention of the strategic planning committee and integrated into
the overall business strategy. At other times, an immediate need can’t wait, such
as a new sales commission schedule or a new report needed to assess productiv-
ity. In these cases, managers of business functions will request the initiation of
individual development projects.

Finally, projects are initiated to respond to outside directives. One common
version of this is legislative changes that require new information gathering and
reporting—for example, changes in tax laws and labor laws. Legislative changes
can also expand or contract the range of services and products that an organiza-
tion can offer in a market. For example, recent changes in health insurance with
the Affordable Care Act have required insurance companies to modify exist-
ing systems and add new systems to interface with government systems and the
Health Insurance Marketplace.

Identifying and carefully defining the problem is a critical activity for a suc-
cessful project. The objective is to ensure that the new system actually meets the
business need. The purpose is to precisely define the business problem and deter-
mine the scope of the new system. This activity defines the target you want to hit.

Identify problem activities

Identify the problem.
Quantify project approval factors.
Perform risk and feasibility analysis.
Review with the client and obtain approval.

Core
processes

1 2 3 4 5 6
Identify the problem and obtain
approval.

Plan and monitor the project.

Discover and understand details.

Design system components.

Build, test, and integrate system
components.

Complete system tests and deploy
the solution.

Iterations

FIGure 11-5 Activities of Core Process 1

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

337CHAPTER 11 ■ Project Planning and Project Management

If the target is ill defined, all subsequent activities will lack focus. For example, a
request might be made for a system that would “keep track of salesperson com-
missions.” Without knowing more about the context surrounding this request, a
system could be built that only records the commissions, ignoring the complexi-
ties of tax reporting, internal-versus-outside salespersons, deferred commissions,
complex relationships, shared commissions, and so forth. Thus, even though
all the specifications may not be defined in this initial activity, enough defining
needs to be done to understand the implications of the required solution.

An effective way to define the problem is to develop a System Vision
 Document, which was introduced in Chapter 1. There are three components to
this document: the problem description, the anticipated business benefits, and
the system capabilities.

The first task in developing a System Vision Document is to review the busi-
ness needs that initiated the project. If the project was initiated as part of the
strategic plan, then the planning documents need to be reviewed. If the project
originated from departmental needs, then key users need to be consulted to help
the project team understand the business need. From this task, a brief problem
description is developed. As these needs are identified, the team also develops
a detailed list of the expected business benefits. The list of business benefits
contains the results that the organization anticipates it will accrue from a new
system. Business benefits are normally described in terms of the specific results
that can change the financial statements, either by decreasing costs or increasing
revenues.

As the business benefits are being identified, the project team will identify
the new system’s specific capabilities to support the realization of these benefits.
The objective of this task is to define the scope of the problem in terms of the
requirements for the information system. This scoping statement, as defined by
a list of system capabilities, helps identify the size and complexity of the new
system and the project that will be required.

Members of the development team, working with the users and the client,
combine these three components—the problem description, the business ben-
efits, and the system capabilities—into a System Vision Document. Figure 11-6
presents RMO’s System Vision Document. Note the differences between the
business benefits and the system capabilities. The business benefits focus on the
financial benefit to the company. The system capabilities focus on the system
itself. The benefits are achieved through the capabilities provided by the system.

RMO’s existing CSS (Customer Support System) was built under a tight
deadline, and the company recognized that it would have a fairly short life.
There were still many things to learn about Web marketing, but the existing CSS
will help the company define the requirements for its CSMS.

 ■ Quantify Project Approval Factors
The first activity produced a high-level overview document that identified the
need for a new system. However, that document alone may not be adequate
to receive approval and funding. During this second activity, the project team,
working with the users, will attempt to define more precisely the scope and
impact of the project.

The objective is to provide sufficient justification so funds will be released
and the project can start. Sometimes, the need is so great or so obvious that
project approval is almost automatic. In other situations, it may be necessary to
prepare a thorough cost/benefit analysis. These criteria must frequently be con-
sidered to obtain project approval:

 ■ The estimated time for project completion
 ■ The estimated cost for the project and system
 ■ The anticipated benefits from the deployment of the new system

System Vision Document a document to
help define the scope of a new system

business benefits the benefits that
accrue to the organization; usually measured
in dollars

system capabilities the required capabili-
ties of a new system; part of a System Vision
Document

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

338 PART 4 ■ System Development and Project Management

Consolidated Sales and Marketing System

System Vision Document

Problem Description

Sales and marketing on the Web has changed drastically since the CSS was built. Customers are more

sophisticated, and they are used to catalog and sales systems that are easy to use and provide many

services, such as one-click ordering, deferred-purchase tracking, simplified searches, and comparison

shopping. In addition, research has shown that sales increase dramatically when social media marketing

tools are combined with basic sales functionality. Hence, the new CSMS is needed not only to respond to

today‘s competition but also to launch RMO into today‘s world of social media and mobile computing.

The longer RMO delays in starting this project, the more opportunities it misses.

System Capabilities

This document identifies the required system capabilities at a high level. Later documents will specify the

detailed requirements. These capabilities are required:

• Provide a shopping cart capability.

 • Support customer sales with high automation (one-click, etc.).

 • Recommend related product purchases and comparison shopping.

 • Allow customer ratings and recommendations.

 • Include “friend” network capability.

• Include comprehensive order fulfillment.

 • Support multiple and split-order shipping and tracking.

 • Support back-ordering and tracking.

 • Allow customer comments and feedback.

• Provide customer account and billing capability.

 • Provide individualized customer accounting.

 • Support electronic billing and many electronic payment methods.

 • Accumulate customer “points” and allow transfer and sharing.

• Include marketing functions for promotions and specials.

 • Provide flexible promotions and sales.

 • Accumulate and track “points” from suppliers directly to customers.

 • Interface with social marketing media for advertising and social marketing activities.

 • Support mobile devices for social marketing and sales.

Business Benefits

The primary business benefit of these capabilities will be to increase sales by connecting with customers

and improving the customer experience. The specific benefits include:

• Increasing the size of customer purchases

• Increasing the frequency of customer purchases

• Increasing customer satisfaction

• Increasing product recommendations from customers to friends

• Attracting new customers through recommendations and social marketing

• Building customer loyalty with recommendations and service

• Increasing speed of product availability

• Eliminating shipping delays and outages

FIGure 11-6 System Vision Document for RMO’s CSMS

At this time, these will only be rough estimates. In the traditional predic-
tive approach to system development, estimates were often made with a con-
siderable amount of detail. However, the estimates were frequently far off the
mark. The problem was, of course, that with most new systems, the team was

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

339CHAPTER 11 ■ Project Planning and Project Management

venturing into unknown needs, requirements, and technologies. With the more
adaptive approaches, the stakeholders recognize that the requirements are
unknown and that it is more important to monitor and control scope, cost, and
schedule than to try to make detailed estimates.

 ❚ The Estimated Time for Project Completion
During Core Process 2 (“Plan and monitor the project”), a more detailed project
schedule is created. During project initiation, there usually isn’t enough known
about the project to create a schedule. But there is nevertheless a need to esti-
mate the project’s completion date, even though this is one of the hardest things
to do.

Sometimes, there are business constraints that dictate the completion of the
project. For example, new legislative requirements may affect the deployment
date, such as with the Affordable Care Act deployment date. Of course, it is
always risky to assume that setting a target date actually gives the development
team sufficient time to complete the project. A window of opportunity may also
provide a powerful motivation to complete a project at a specific time. These
considerations should be made manifest and considered in the project approval
and project planning processes.

The major inputs toward estimating the project completion date are the
scoping document and the amount of effort required to develop the listed
requirements. As indicated earlier, it is difficult to make an estimate with any
degree of accuracy. At this early point in the project, gross estimates of team
size and time frame are usually the best that can be achieved. For a predictive
approach, the list of requirements can serve as the starting point for estimating
the effort required to define and develop a particular function. For an adaptive
approach, the same information can be used to estimate the number of iterations
required and the size and number of teams working on the various subsystems.

Figure 11-7 shows an example of a time estimate document for RMO.
For RMO, the development of the time estimate was a one-day exercise.

Because the project didn’t yet have approval or funding, neither a project man-
ager nor any systems analysts had been assigned to the project. However, a proj-
ect manager had been assigned to obtain approval, and two systems analysts
were assigned to help him. These three experienced technical people met for
four hours with the key users from the various RMO departments. The object
of these meetings was to build a comprehensive list of all the functional require-
ments from each department. After the meetings, the group met again to orga-
nize this list of requirements into groupings that could be assigned to various
iterations for the development of the software.

Time Estimate for the New CSMS Project

Subsystem Functional
requirements

Iterations
required

15

Order Fulfillment subsystem* 12

Customer Account subsystem** 10

Marketing subsystem** 6

7

5

5

4

3

3

2

Estimated
time

20 weeks

20 weeks

15 weeks

13 weeks

12 weeks

40 weeks

8 weeks

48 weeks

Reporting subsystem**

Total development time (2 teams)

Final hardening and acceptance testing

Total project time

*Assigned to Tiger team
**Assigned to Cougar team

Sales subsystem*

FIGure 11-7 Project completion
date estimate for the CSMS project

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

340 PART 4 ■ System Development and Project Management

An assumption that was made by the director of new development was
that there would be two subteams of four people each allocated to this project.
As indicated in Figure 11-7, the time estimate for this project is 48 weeks from
the date it begins.

 ❚ The Estimated Cost for the Project and System
The estimated costs of developing the new CSMS are shown in Figure 11-8.
By far, the largest cost item in the project’s budget is the salaries of the project
team. Other cost elements include the cost of the new computers; training for
the users; offices, facilities, and utilities for the project team; travel expenses for
the project team to do site visits; and software licenses. As you can see, this esti-
mate is a little over $1.5 million.

After the system has been put into production, there will be annual oper-
ating costs, as shown in Figure 11-9. The largest cost is for a hosting service
to provide some of the equipment, the connection to the Internet, and server
administration services. These estimated costs were based on RMO using a
hosting service to provide the equipment, the connection to the Internet, and
server administration. The project team estimated about $13,000 a month for
those expenses, which is enough for 15 large managed servers. This appeared
to be more than adequate depending on the traffic volume. Other costs were for
one full-time programmer and two help desk personnel.

 ❚ The Anticipated Benefits from the Deployment of the New System
The System Vision Document identifies the anticipated business benefits of the
new system. In this task, you analyze those business benefits and provide an
estimate of their value to the organization. This value becomes part of the total
decision criteria. Obviously, the dollar amount associated with these savings or
revenues must be estimated by the client. It isn’t the project manager’s job to

Summary of Development Costs for CSMS

Expense category Amount

Salaries/wages (includes benefits costs)
(1 PM, 8 analysts, 1 support)

$936,000.00

Equipment/installation $308,000.00

Training $78,000.00

Facilities $57,000.00

Utilities $97,000.00

Travel/miscellaneous $87,000.00

Licenses $18,000.00

Total $1,581,000.00

FIGure 11-8 Summary of
development costs for CSMS

©
 C

en
ga

ge
 L

ea
rn

in
g®

Summary of Estimated Annual Operating Costs for CSMS

Recurring expense Amount

Programming $75,000.00

Connectivity/hosting $156,000.00

Help desk $90,000.00

Total $321,000.00

FIGure 11-9 Summary of
estimated annual operating costs
for CSMS

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

341CHAPTER 11 ■ Project Planning and Project Management

predict the value of business benefits. However, the project manager can help
the client identify categories of potential benefits. Typical areas of increased rev-
enue or cost reduction benefits include:

 ■ Opening up new markets with new services, products, or locations
 ■ Increasing market share in existing markets
 ■ Enhancing cross-sales capabilities with existing customers
 ■ Reducing staff by automating manual functions or increasing efficiency
 ■ Decreasing operating expenses, such as shipping charges for “emergency

shipments”
 ■ Reducing error rates through automated editing or validation
 ■ Reducing bad accounts or bad credit losses
 ■ Reducing inventory or merchandise losses through tighter controls
 ■ Collecting receivables (accounts receivable) more rapidly

The project team at RMO worked with the vice president of sales and mar-
keting to identify benefit areas and estimate a value for each one. This size of
an investment and ongoing expense was going to require board approval within
RMO. The board will want to know what the benefits of the new system will be
and what the return on the investment will be. One of the difficulties for RMO
is to determine how to assign a value to a benefit. A typical question might be
“Do we assign the value of all our sales given that this system is needed to stay
competitive in the marketplace? Or do we assign only the value of the increased
sales we expect to get from marketing and higher volume?” If sales will drop
because RMO becomes less competitive in the marketplace, the total sales value
could be used. However, if the existing system is good enough to maintain a
good client base, then only the increased sales should be used. These kinds of
decisions are made by the client, not the project team. In this case, the vice presi-
dent of sales and marketing at RMO decided to use a more conservative esti-
mate. Figure 11-10 summarizes the estimates he generated.

Many organizations like to compare the estimated costs with the antici-
pated benefits to calculate whether the benefits outweigh the costs. This process
is called a cost/benefit analysis. Companies use a combination of methods
to measure the overall benefit of the new system. One popular approach is to
determine the net present value (NPV) of the new system. The two concepts
behind net present value are (1) that all benefits and costs are calculated in terms
of today’s dollars (present value) and (2) that benefits and costs are combined to
give a net value. The future stream of benefits and costs are netted together and
then discounted by a factor for each year in the future. The discount factor is
the rate used to bring future values back to current values. Online Chapter C,
“Project Management Techniques,” includes instructions on how to calculate
estimated benefits using net present value and other financial measures.

cost/benefit analysis process of
comparing costs and benefits to see whether
investing in a new system will be beneficial

net present value (NPV) the present
value of dollar benefits and dollar costs of a
particular investment

Recapture/prevention of lost sales

Sales to new customers

Increased efficiency in order processing

Reduction of data center and equipment costs
because of hosting

Total

$200,000.00

$350,000.00**

$50,000.00

$146,000.00

$1,046,000.00

**plus 8% annual growth

Estimated Annual Benefits for CSMS

Benefit or cost saving Amount

Increase sales to existing customers $300,000.00

FIGure 11-10 Estimated annual
benefits for CSMS

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

342 PART 4 ■ System Development and Project Management

Figure 11-11 shows a copy of the NPV calculation done for RMO’s new
CSMS. There are various techniques for calculating the NPV of a given invest-
ment. In this example, Year 0 represents the development period prior to the
deployment of the system. The annual benefits for each year are extended across
the top row. The development costs are shown on the second row. Annual
expenses are shown on the third. Those three rows are combined in the fourth
row to give the net benefits and costs. The fifth row shows the discount value
given a 6 percent discount rate. The sixth row is the product of the fourth and
fifth rows and represents the net value in terms of today’s dollars (i.e., the NPV).
The seventh row shows a cumulative total of annual NPVs.

In Figure 11-11, the numbers in the seventh row eventually change from nega-
tive to positive. The point in time when that happens is called the break-even
point. The length of time before the break-even point is reached is called the pay-
back period. The payback period occurs in the year that the cumulative value
goes positive. To calculate it, first take the last year that the cumulative value is
negative—in this case, Year 2. Add to that year the number of days in the follow-
ing year (in this case, Year 3) that it takes for the cumulative value to go positive.
The method for doing that is to take absolute values of the ending value in Year
2 divided by the sum of the absolute values for the end of Year 2 and Year 3—in
this case, 226,865 divided by (226,8651430,743). Here, that calculation indicates
that the cumulative value goes positive after 35 percent of the year has passed.
Multiply .35 times the 365 days in the year to get 128 days into Year 3. Many
companies require a payback period of two to three years on new software.

The previous cost/benefit calculation depends on an organization’s ability
to quantify the costs and benefits. If it can indeed estimate a dollar value for a
benefit or a cost, the organization treats that value as a tangible benefit or cost.
However, in many instances, an organization can’t measure some of the costs
and benefits to determine a value. Never discount the importance of ascertaining
the “behind the scenes” reasons for a project. There may be political reasons for
or against the project that override all other feasibility analyses. If there is no reli-
able method for estimating or measuring the value, it is considered an intangible
benefit. In some instances, the importance of the intangible benefits far exceeds
the tangible costs—at least in the opinion of the client, who pursues developing
the system even though the dollar numbers don’t indicate a good investment.

Examples of intangible benefits include:

 ■ Increased levels of service (in ways that can’t be measured in dollars)
 ■ Increased customer satisfaction (not measurable in dollars)
 ■ Survival
 ■ Need to develop in-house expertise (such as a pilot program with new

technology)

FIGure 11-11 Five-year cost/benefit analysis for CSMS

break-even point the point in time at
which dollar benefits offset dollar costs

payback period the time period during
which the dollar benefits offset the dollar
costs

tangible benefit a benefit that can be
measured or estimated in terms of dollars

intangible benefit a benefit that accrues
to an organization but that can’t be measured
quantitatively or estimated accurately

S
ou

rc
e:

 M
ic

ro
so

ft
 C

or
po

ra
tio

n

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

343CHAPTER 11 ■ Project Planning and Project Management

Examples of intangible costs include:

 ■ Reduced employee morale
 ■ Lost productivity (the organization may not be able to estimate it)
 ■ Lost customers or sales (during some unknown period of time)

 ■ Determine Project Risk and Feasibility
Project risk and feasibility analysis verifies whether a project can be started and
completed successfully. Because each project is a unique endeavor, every project
has unique challenges that affect its potential success.

The objective of this activity is to identify and assess the potential risks to
project success and to take steps to eliminate or at least ameliorate these risks.
They should be identified during the project approval process so all stakehold-
ers are aware of the potential for failure. The team can also establish plans
and procedures to ensure that those risks don’t interfere with the success of
the project. Generally, the team assigns itself these tasks when confirming a
 project’s feasibility:

 ■ Determine the organizational risks and feasibility.
 ■ Evaluate the technological risks and feasibility.
 ■ Assess the resource risks and feasibility.
 ■ Identify the schedule risks and feasibility.

 ❚ Determine Organizational Risks and Feasibility
Each company has its own culture, and any new system must be accommodated
to that culture. There is always the risk that a new system departs so dramati-
cally from existing norms that it can’t be successfully deployed. The analysts
involved with feasibility analysis should evaluate organizational and cultural
issues to identify potential risks for the new system. Such issues might include:

 ■ Substantial computer phobia
 ■ A perceived loss of control on the part of staff or management
 ■ Potential shifting of political and organizational power due to the

new system
 ■ Fear of change of job responsibilities
 ■ Fear of loss of employment due to increased automation
 ■ Reversal of long-standing work procedures

It isn’t possible to enumerate all the potential organizational and cultural
risks that exist. The project management team needs to be very sensitive to the
reluctance within the organization to identify and resolve these risks.

After identifying the risks, the project management team can take positive
steps to counter them. For example, the team can hold additional training ses-
sions to teach new procedures and provide increased computer skills. Higher
levels of user involvement in developing the new system will tend to increase
user enthusiasm and commitment.

 ❚ Evaluate Technological Risks and Feasibility
Generally, a new system brings new technology into the company, even state-of-
the-art technology. Other projects use existing technology but combine it into
new, untested configurations. If an outside vendor is providing a capability in a
certain area, the client organization usually assumes the vendor is an expert in
that area. However, even an outside vendor may find the requested level of tech-
nology too complicated.

The project management team needs to carefully assess the proposed tech-
nological requirements and available expertise. When these risks are identified,
the solutions are usually straightforward. The solutions to technological risks

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

344 PART 4 ■ System Development and Project Management

include providing additional training, hiring consultants, or hiring more experi-
enced employees. In some cases, the scope and approach of the project may need
to be changed to ameliorate technological risk. The important point is that a
realistic assessment will identify technological risks early, making it possible to
implement corrective measures.

 ❚ Assess Resource Risks and Feasibility
The project management team must also assess the availability of resources for
the project. The primary resource consists of team members. Development proj-
ects require the involvement of systems analysts, system technicians, and users.
Required people may not be available to the team at the necessary times. An
additional risk is that people assigned to the team may not have the necessary
skills for the project. After the team is functioning, members may have to leave
the team. This threat can come either from staff who are transferred within
the organization if other special projects arise or from qualified team members
who are hired by other organizations. Although the project manager usually
doesn’t like to think about these possibilities, skilled people are in short supply
and sometimes do leave projects.

The other resources required for a successful project include adequate com-
puter resources, physical facilities, and support staff. Generally, these resources
can be made available, but the schedule can be affected by delays in the avail-
ability of these resources.

 ❚ Identify Schedule Risks and Feasibility
The development of a project schedule always involves high risk. Every sched-
ule requires many assumptions and estimates without adequate information. For
example, the needs (and, hence, the scope) of the new system aren’t well known.
Also, the time needed to research and finalize requirements has to be estimated.
The availability and capability of team members aren’t completely known.

Another frequent risk in developing the schedule occurs when upper man-
agement decides that the new system must be deployed within a certain time.
Sometimes, there is an important business reason for setting a fixed deadline,
such as RMO’s need to complete the CSS in time for online ordering over the
holidays. Similarly, universities require the completion of new systems before
key dates in the university schedule. For example, if a new admissions system
isn’t completed before the admissions season, then it might as well wait another
full year. In cases like these, schedule feasibility can be the most important fea-
sibility factor to consider.

If the deadline appears arbitrary, the tendency is to create the schedule to
show that it can be done. Unfortunately, this practice usually spells disaster.
The project team should create the schedule without any preconceived notion
of required completion dates. After the schedule is completed, comparisons can
be done to see whether timetables coincide. If not, the team can take corrective
measures, such as reducing the scope of the project, to increase the probability
of the project’s on-time completion.

One objective of defining milestones and iterations during the project sched-
ule is to permit the project manager to assess the ongoing risk of schedule slip-
page. If the team begins to miss milestones, the manager can possibly implement
corrective measures early. Contingency plans can be developed and carried out
to reduce the risk of further slippage.

 ■ Review with Client and Obtain Approval
As mentioned earlier, the amount of expenditure for the RMO project required
board approval. However, before a presentation could be given to the board,
RMO’s executive committee needed to understand and agree to the project.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

345CHAPTER 11 ■ Project Planning and Project Management

A project of this size has major impacts on all areas of the company. The depart-
ments, such as Sales and Marketing, will be directly impacted. They will have
to allocate staff and resources to help in defining the requirements, develop-
ing test cases, and testing the new system as it is developed. In other words,
the people in this department will have extra duties for the next 12 months
or so. Even departments not directly involved will need to support this heavy
development activity, perhaps tightening their budgets. In any event, it is always
good policy to get the approval and support of the entire company. This pro-
cess starts by making presentations to the senior executives of RMO. Often, a
project manager will be asked to make the presentation or at least be present to
answer questions.

After the executive committee approves the project, it goes to the board.
After board approval, the IT Department begins to assign full-time resources
to the project. It is also a good idea at this point to have a company-wide memo
or meeting to mark the beginning of this major activity. If the entire company
knows that all the executives are supporting it and requesting cooperation, the
project will proceed much more smoothly.

 ■ Activities of Core Process 2: Plan and Monitor the Project
This core process lasts throughout the entire project. A major planning effort
occurs immediately after the project is approved. Ongoing planning and project
monitoring continue during all project iterations. Not only must each iteration
be planned as it starts, but progress must continually be monitored and correc-
tive actions may be required. Figure 11-12 illustrates by the height of the effort
curve in each iteration that planning and monitoring activities must be an inte-
gral part of every project iteration. The specific activities associated with this
core process are also listed in Figure 11-12. The following sections discuss each
of these activities individually.

 ■ Establish the Project Environment
So far, this text has discussed different types of projects, such as predictive and
adaptive projects, as well as tools, techniques, and methodologies to use with
these different types of projects. It has also discussed such concepts as ceremony,
project reporting, stakeholders, user participation, and the project team work
environment. All these elements must be put in place as the project gets under way.

Plan and monitor activities

Establish the project environment.
Schedule the work.
Staff and allocate resources.
Evaluate work processes.
Monitor progress and make corrections.

Core
processes

1 2 3 4 5 6
Identify the problem and obtain
approval.

Plan and monitor the project.

Discover and understand details.

Design system components.

Build, test, and integrate system
components.

Complete system tests and deploy
the solution.

Iterations

FIGure 11-12 Activities of Core Process 2

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

346 PART 4 ■ System Development and Project Management

Some of these decisions will already have been made based on the organization’s
standard policies and procedures. Others will be decided during the approval
process. In any case, the project manager must ensure that the project’s param-
eters and the work environment are finalized so the work of the project can
proceed without roadblocks or delays. There are important project structure
considerations that must be addressed as the project gets under way. For exam-
ple, what kind of communication processes will be needed to keep the team and
external stakeholders informed about what is going on? In addition, the mem-
bers of the project team all need computers and integrated development environ-
ments (IDEs) and other tools to do their work. Of course, specific procedures
about how the project team meets with the users, how they write code, and how
they submit code for acceptance also need to be finalized. The following sec-
tions discuss three important considerations:

 ■ Recording and communicating—internal/external
 ■ Work environment—support/facilities/tools
 ■ Processes and procedures

 ❚ Recording and Communicating—Internal/External
The project manager and project team members will be involved in all types of
meetings where decisions will be made and information developed. Determining
what is important and how to record this information need to be set out in spe-
cific project procedures. The other critical issue with information is what, how,
how frequently, and to whom this information needs to be disseminated. One of
the first tasks for a project manager on a new project is to establish the proce-
dures and guidelines for how to handle the project’s information.

A critical success factor for IT projects is to have the support of the organi-
zation’s executives and other key stakeholders. A good project manager under-
stands this need and structures his or her project so he or she communicates
frequently, with the appropriate detail, to each of his or her stakeholders. Figure
11-2 identified the various stakeholders and participants in a project. Some of
these stakeholders will be integrally involved with the project. Other stakehold-
ers will be only marginally involved, receiving periodic status reports. The client
stakeholders (the ones paying the project costs) will need to be kept aware of
the project’s status and of any difficulties or delays. A stakeholder analysis helps
identify all those persons who have an interest in the project and defines what
information they will want and need concerning the project. Generally, we refer
to this as external reporting of project information.

Maintaining project information can be done via electronic means. Spread-
sheets, e-mails, newsletters, and list servers all provide ways to maintain, col-
lect, and distribute information. Once the electronic systems are set up, they will
often take care of themselves. Project information can be published to a Web site
so everyone can view it.

Another type of project-tracking tool, sometimes called a project dashboard,
allows all types of project information to be posted and viewed by Web brows-
ers. There are many available application systems that will extract the project
data and illustrate it in different formats. Many of these systems are flexible and
allow the project manager to configure the data as well as the look and feel of
the project dashboard. Figure 11-13 is an example of a project dashboard sys-
tem that allows easy access to project information. Each of the tiles on the dash-
board is a hot link and will open up a new window with more details, charts,
and graphs.

The members of the project team also need to have mechanisms in place
to communicate among themselves and document project decisions. This is an
entirely different type of information—information about the system under
development. For example, during analysis activities, the project team docu-
ments the results of user meetings by using various means, such as writing use

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

347CHAPTER 11 ■ Project Planning and Project Management

case descriptions. During design, information also needs to be recorded and
distributed among members of the team as appropriate. During testing, when
errors are found, they must be documented and assigned to programmers to
be fixed. Finally, the entire recording and communication requirement is often
made more critical by members of the project team (as well as the users) being
located at various sites around the globe. Figure 11-14 illustrates some of the

FIGure 11-13 Sample dashboard showing project information and status

Conference Registration System

Planned finish
Planned cost

Urgent issues
Open issues
Assigned
Unassigned
Closed issues

Open
 Unassigned
 Assigned
Slipped – urgent
Slipped – routine

35
22
13
3
7

10

Tasks this iteration
Tasks this week

45
15

3
22
15
7

137

Dec 2015
$1,680,000

Time expended
Deliverables completed

18%
4/35

Current iteration
Active tasks

Project Overview Issues & Risks Tasks

Identified risks

Completed tasks

4
4/15

5

Iterations
Current

Status Report

Domain Model

User Stories Labor

Process Improve

Total $1,680,000

$486,000

$397,000
Servers $27,000
Contractors $52,000
Facilities $10,000

Expended

Status short 1

3 full
7 full
2 prt
1 prt

4prt

Team ldrs
Prog/anal
Prog/anal
Tech supp

User supp

Total 87

14
4
2

This iteration
 Completed
 Slipped

Deliverables
 Finished

3
1

This iteration
Length
Left

Iteration Schedule Documents Budget Team Staff Milestones

42 d
21 d

11
4

©
 C

en
ga

ge
 L

ea
rn

in
g®

FIGure 11-14 System information stored in data repositories

Screen and report specifications
(documents)

Data definition and
database schema

(application)

Requirements specifications
(documents)

Program code repository
(application)

Project schedule
(application)

Issues and issue tracking
(application)

Test cases and test data
(application & documents)

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

348 PART 4 ■ System Development and Project Management

information that may need to be captured and maintained. The data repository
in the figure usually consists of many different types of data structures and
 storage techniques—from wikis to databases to issue-tracking systems.

There is one caveat related to recording and communicating. With tradi-
tional predictive projects, the tendency was to create reams and reams of docu-
mentation. As you learned in the previous chapter, adaptive projects that use the
Agile philosophy emphasize code over documentation. A novice project man-
ager may interpret that to mean that no documentation is required. However,
even with an Agile approach, the basic user definitions need to be documented
for later verification. It isn’t uncommon during programming for a programmer
to have to refer back to notes and models to remember the exact details and
decisions of a particular requirement. An experienced project manager knows
the right amount of documentation so the project isn’t overloaded with overhead
but that critical decisions are recorded.

It should be obvious that a comprehensive recording and communica-
tion scheme needs to be put in place. Fortunately, in today’s connected world,
there are many tools available so external and internal communication can
be done easily. With so many electronic tools, all project information should
be available online and accessible to all stakeholders. In fact, with the use of
wikis, it is now common to allow many team members and even users to assist
in the recording and updating of critical project information.

The CSMS team wanted to maintain its project information in digital for-
mat and have it available to all stakeholders, including team members, users,
the client, and the members of the steering committee. RMO is a very open
shop guided by the philosophy that information should be widely distributed.
Figure 11-15 shows all the tools that the CSMS project team uses to communi-
cate and capture information. The core team members had previously worked
on several Agile projects, so they had learned there is a correct balance of

Electronic tools

Electronic Digital Repositories

Who can update/viewInformation captured

Issues and outstanding problems

Program code Apache subversion (SVN)

Microsoft projectProject schedule

Project status and information

Daily team coordination meeting

Distributed team communication

Project update newsletter

Issue-tracking software

Screens and reports layouts Web design tools
Visio
PowerPoint/Keynote

Analysts, users/all

Analysts, users/all

Design specifications and diagrams Wiki software
Visio

Analysts/all

Analysts/all

User definitions and functions
User documents

Forum software
Document server
Scanners

Analysts, users/all

Analysts, users/all

Project team

Project team

Project manager/all

Analysts

Forum software

Video laptop
conferencing

IM chat with video

Blog software

FIGure 11-15 Electronic digital
repositories of information for
CSMS

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

349CHAPTER 11 ■ Project Planning and Project Management

documentation—not too much but enough to be able to trace key decisions and
requirements. Barbara Halifax, the project manager, wanted to ensure the tools
were in place so it was easy to record information when it was prudent to do so.

User documents, such as sample invoices, were scanned and placed in a doc-
ument repository. User functional definitions were recorded in a forum system.
Using a forum allowed team members and users to update it when key issues
were discussed and needed to be remembered. Sample screen and report layouts
were either sketched out or drawn with Visio or Keynote. Hand sketches were
often scanned and saved. Most design decisions and specifications went right
into the program code and weren’t documented. However, some decisions were
global, and those were captured in a wiki.

Each day, the project team had a “stand up” meeting—a short coordina-
tion meeting. Most of the team members were in the Park City Center, but some
users were assigned to the team from other locations. Sometimes, team members
were visiting user sites and therefore not available, and there were some team
members who worked in the Salt Lake City office. Therefore, the daily meeting
was conducted as a videoconference call using Skype, with each person using
his or her webcam and personal computer. The meeting normally lasted about
15 minutes.

Finally, there was some discussion of sending out a biweekly newsletter
about the progress on the project. Barbara felt that it was important for the
entire company to stay informed about the project to encourage their enthusi-
asm and support. However, instead of a printed newsletter, she opted to do it
in the form of a blog. All users were invited to sign up with an RSS feed to keep
informed about the project’s progress.

 ❚ Work Environment—Support/Facilities/Tools
Although the work environment may relate more to the work processes of the
project team, the project manager must ensure that it is adequate to allow the
project team to work productively. There are five major components of the work
environment:

 ■ Personal computer(s) and/or workstation(s)
 ■ Personal development software and tools
 ■ Development server with repositories, sandboxes, and communication tools
 ■ Office space, conference rooms, and equipment, including printers, scanners,

and projectors
 ■ Support staff

Most important, of course, is the computer equipment and other hardware
that the team will need. Obviously, each developer will need his or her own
computing configuration, which may consist of multiple computers or monitors.
Other important hardware includes the development servers, printers, and inter-
nal development network. If the team is distributed, video cameras and projec-
tors may be necessary to conduct distributed team meetings. Along with the
hardware, resources must be made available to administer things such as the
development server.

Related to the hardware is the computer software and other tools. Software
tools can get quite elaborate—from stand-alone IDE tools to modeling software
to code repository software. The development server, with its environment and
software, must also be configured and deployed. The server may be set up as a vir-
tual server or as a stand-alone computer. Applications include such things as code
repository, issue-tracking application, testing system, and the project dashboard.

Along with the hardware and software, a work configuration must be pro-
vided for each developer, with logon permissions, sandbox environments, repos-
itory access, and so forth. The final two components are the office space and
other facilities that may be needed. This will include access to conference rooms,

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

350 PART 4 ■ System Development and Project Management

presentation equipment, and maybe even transportation vehicles. Finally,
the productivity of the team members is always enhanced when adequate
 support staff is available to take care of myriad details that always accompany
an active project.

 ❚ Processes and Procedures
The final major set of decisions has to do with the project’s internal processes
and procedures. Earlier, you learned about a project’s level of formality. Larger
projects require more elaborate reporting processes and meeting schedules.
When there are many people involved, coordination of activities becomes
 critical. Procedures include:

 ■ Reporting and documentation—What is done? How is it done? Who does it?
 ■ Programming—Single or pair programming? How is work assigned? By

whom?
 ■ Testing—Programmer tests or user tests? How do you mark items ready for

testing?
 ■ Deliverables—What are they? How and when are they handed over to

users? How are they accepted?
 ■ Code and version control—How is the code controlled to prevent conflicts?

How do you coordinate bug fixing with new development? How and when
are deliverables released?

 ■ Schedule the Work
Scheduling the work is necessary for any size or type of project. However, the
techniques used can vary widely depending on the type of project. For predic-
tive, highly controlled projects, a detailed and complete schedule that covers
the entire project is usually built. Again, these kinds of schedules only work
because the software to be built is well understood. However, even in those proj-
ects with detailed and comprehensive schedules, accommodation is required as
things change during the life of the project. At the other end of the spectrum,
small Agile projects sometimes don’t even have a project schedule, with the team
members being responsible for scheduling their own work. Coordination is
accomplished by talking and keeping each other informed of what each person
is working on. This is what is meant by chaordic.

Scheduling the work for many of today’s projects lies somewhere between
these two extremes. Large projects may have several independent teams of
developers working on various subsystems. Even though the work between the
teams is fairly independent, coordination is still required. Adaptive projects also
anticipate additional requests and changes to the original scheduled tasks.

For adaptive types of projects, creating the project schedule is done through-
out the life of the project. During the initial planning phase, the initial list of use
cases or user stores is developed for each subsystem. The use cases are divided up
and tentatively assigned to the iterations. Let us call this the project iteration
schedule. As each iteration is begun, a detailed schedule of tasks and work to
be done is developed. You saw an example of creating an iteration schedule in
Chapter 1. Let us call this schedule a detailed work schedule, meaning that it
schedules the work within an iteration. Sometime during each iteration—often
as one iteration is finishing and before the next iteration begins—the project
manager, with assistance from the team leaders and key users, will review and
rework the project iteration schedule. During this process, the changes and any
new requirements are prioritized and placed on the schedule.

Creating the project iteration schedule must take into account the total size
and configuration of the solution system and the number of teams available to
work on the project. Separate lists of requirements are made by each subsystem,

project iteration schedule the list of
 iterations and use cases or user stories
assigned to each iteration

detailed work schedule the schedule
that lists, organizes, and describes the depen-
dencies of the detailed work tasks

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

351CHAPTER 11 ■ Project Planning and Project Management

and a project iteration schedule can then be made for each subsystem. Some tasks,
such as designing the database, may go across all subsystems and need to be
scheduled separately or be included in every subsystem list. Figure 11-16 shows a
sample project iteration schedule for the CSMS Sales subsystem. As you can see,
the length of each iteration is fairly constant at around four weeks. All the iden-
tified tasks, which represent the requirements, have been assigned to iterations.
In this case, we have identified five iterations.

Developing a detailed work schedule for a single iteration is a three-step
process:

 ■ Develop a work breakdown structure.
 ■ Estimate effort and identify dependencies.
 ■ Create a schedule by using a Gantt chart.

A work breakdown structure (WBS) is a list of all the required individual
activities and tasks for the project. There are two general approaches for creat-
ing a WBS: by deliverable or by a timeline. The first approach identifies all the
deliverables that must be completed for a given iteration. Then, the WBS identi-
fies every task that is necessary to create each deliverable. The second approach
works through the normal sequence of activities that are required for the final
deliverable. Experienced developers who have worked on Agile projects under-
stand the steps and tasks that are required to create a particular deliverable.
Of course, each iteration is slightly different depending on the particular func-
tions and deliverables that are included.

Figure 11-17 is a sample handwritten WBS for the first iteration of the Sales
subsystem. The tasks have been partitioned according to the core processes
Planning, Analysis, Design, and Building. In the figure, each task also has an
estimate of the time required. Sometimes, two estimates are provided: the effort
required and the expected duration. The effort required is given in person-days
of work, and the duration is a measure of lapsed calendar time. Of course, these
are related depending on the number of people working on the specific task.
In Figure 11-16, only duration is shown; however, the time estimates assume a
project team of four people.

Iteration Time estimate

Project Iteration Schedule for the CSMS Sales Subsystem

Use cases assigned to iteration

1

2

4 weeks

4 weeks

3 5 weeks

5. View comments and ratings.
6. Search comments and ratings for friends.
7. View accessory combinations (images).
8. Save item + accessories as “combo.”

 9. Add item (or combo) to shopping cart.
10. Remove item (or combo) from shopping cart.
11. Add item (or combo) to “on reserve” cart.
12. Remove item (or combo) from “on reserve” cart.

13. Check out active cart.
14. Create and process store sale.
15. Create and process phone sale.

1. Search for item.
2. View detailed descriptions.
3. View rotating (3-D) images.
4. Compare item characteristics.

4 weeks

3 weeks 16. Clean up, final test, harden site, tune database, etc.

20 weeks

4

5

Total

FIGure 11-16 Project iteration
schedule for the Sales subsystem

work breakdown structure (WBS)
the list or hierarchy of activities and tasks of a
project; used to estimate the work to be done
and to create a detailed work schedule

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

352 PART 4 ■ System Development and Project Management

When developing a WBS, new analysts frequently ask, “How detailed
should the individual tasks be?” A few guidelines can help answer that question:

 ■ There should be a way to recognize when the task is complete.
 ■ The definition of the task should be clear enough so you can estimate the

amount of effort required.
 ■ As a general rule for software projects, the effort should take one to five

working days.

The second step in developing a detailed work schedule for a single iteration
is to determine the dependencies between the tasks and the amount of effort
required for each. The most common way to relate tasks is to consider the order
in which they are completed; for example, as one task finishes, the next one
starts. This is called a finish-start relationship. Other ways to relate tasks include
start-start relationships, in which tasks start at the same time, and finish-finish

FIGure 11-17 Work breakdown
structure for first iteration

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

353CHAPTER 11 ■ Project Planning and Project Management

relationships, in which tasks must finish at the same time. The effort required
should be the actual amount of work required to complete the task. As with the
identification of the tasks in the WBS, the dependencies and effort estimates
should be done by the developers who are going to actually do the work.

The third step in developing a detailed work schedule is to actually cre-
ate the iteration schedule. In Chapter 1, Figure 1-10 presented a graph of the
tasks involved in the first iteration of the Tradeshow System, their sequence,
and the estimated calendar time to complete them. The graph was, in actual-
ity, a simplified PERT/CPM chart. Online Chapter C provides more informa-
tion about PERT charts. The other form for presenting a schedule is a bar chart
that shows the activities as bars on a horizontal timeline; this is called a Gantt
chart. A widely used tool for building Gantt charts is Microsoft Project. New
versions of Microsoft Project are network enabled and provide a powerful tool
to not only create schedules, but to also distribute schedule information across
the organization by using HTML and the HTTP protocol so it can be viewed
in a browser. The benefit of using a tool such as Microsoft Project is that the
project manager can update progress easily and make that information widely
available. Online Chapter C provides more detailed instructions both on Gantt
charts and on the Microsoft Project management software.

Figure 11-18 shows an iteration schedule from the RMO CSMS project
formatted as a bar chart. In the figure, the tasks from the work breakdown
structure are listed in the Task Name column and the durations are listed in
the Duration column. The Predecessor column identifies dependencies between
tasks. As you can see, every task except the first has at least one predecessor task,
and every task except the last is a predecessor to one or more other tasks. There
are various ways to document dependencies. The most common way is to show
the finish of one task occurring before the start of another (FS). Other common
ways are finish-finish (FF), where both must finish at the same time, and start-
start (SS), where both must start at the same time. Any dependency can have a
lag time, such as that shown on Line 11 of Figure 11-18. The final column docu-
ments what resources have been assigned to each task. In this example, the Tiger
Team is divided into two subteams of two people each: TT1 and TT2.

Gantt chart a bar chart that portrays the
schedule by the length of horizontal bars
superimposed on a calendar

FIGure 11-18 An iteration schedule for the first iteration of the Shopping Cart subsystem

S
ou

rc
e:

 M
ic

ro
so

ft
 C

or
po

ra
tio

n

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

354 PART 4 ■ System Development and Project Management

The bars in Figure 11-18 illustrate the duration of each task superimposed on
a calendar. The red bars indicate a critical path on the schedule. The critical path
is defined as those tasks that must stay on schedule. If any of the critical path tasks
cause a schedule slip, then the entire project is delayed. The blue bars are those
tasks that aren’t on the critical path. Obviously, a project manager will monitor
critical path tasks quite closely. Online Chapter C gives more detailed explanations
and instructions on how to use Microsoft Project to create Gantt chart schedules.

 ■ Staff and Allocate Resources
In an Agile project, the various teams are self-organizing. They decide how they
are going to work together and assign the tasks to be done among themselves.
However, the job of identifying what expertise is needed for the project and
getting those people assigned to the project falls on the shoulders of the project
manager. This includes finding the right people with the correct skills and then
organizing and managing them throughout the project. The staffing activity
consists of five tasks:

 ■ Developing a resource plan for the project
 ■ Identifying and requesting specific technical staff
 ■ Identifying and requesting specific user staff
 ■ Organizing the project team into work groups
 ■ Conducting preliminary training and team-building exercises

Based on the tasks identified in the project schedule, the project manager
can develop a detailed resource plan. In fact, the schedule and the resource
requirements are usually developed concurrently. In developing the plan, the
project manager recognizes that (1) resources usually aren’t available as soon as
requested and (2) a period of time is needed for a person to become acquainted
with the project. After developing the plan, the project manager can then iden-
tify specific people and request that they become part of the team.

On small projects, members of the project team may all work together.
 However, a project team that is larger than four or five members is usually
divided into smaller work groups. Each group will have a group leader who
coordinates the tasks assigned to the group. The project manager is responsible
for dividing the team into groups and assigning group leaders.

Finally, training and team-building exercises are conducted. Training may
be done for the project team as a whole when such new technology as a new
database or a new programming language is used. In other cases, team members
who are unfamiliar with the tools and techniques being used may require indi-
vidual training. The team should conduct appropriate training for technical peo-
ple and users. Team-building exercises are especially important when members
haven’t worked together before. The integration of users with technical people is
an important consideration in developing effective teams and workgroups.

 ■ Evaluate Work Processes (How Are We Doing?)
Although evaluating how the project team performed is sometimes done on pre-
dictive projects, it isn’t a common practice. However, on iterative projects, many
companies require an “end of iteration” review of how well the team performed
and worked together. One of the advantages of an iterative project is that the same
team often stays together for a number of iterations. After each iteration, team
members can evaluate how well they worked together and how they can improve
their effectiveness and performance as a team. In an Agile project, this is referred
to as a retrospective. Here are the kinds of questions the team might want to ask:

 ■ Are our communication procedures adequate? How can they be improved?
 ■ Are our working relationships with the user effective?

retrospective a meeting held by the team
at the end of an iteration to determine what
was successful and what can be improved

critical path a sequence of tasks that
can’t be delayed without causing the entire
project to be delayed

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

355CHAPTER 11 ■ Project Planning and Project Management

 ■ Did we hit our deadlines? Why or why not?
 ■ Did we miss any major issues? How can we avoid this in the future?
 ■ What things went especially well? How can we ensure it continues?
 ■ What were the bottlenecks or problem areas? How can we eliminate them?

 ■ Monitor Project Progress and Make Corrections
In theory, executing and controlling the project plan sounds easy, but in fact,
it is quite complicated. To execute any project, you need some type of project
plan. How a team builds and executes project plans will vary depending on
whether the project structure is based on a predictive approach or an adaptive
approach. In the predictive approach, the project plans are quite large and com-
plex. The adaptive approach is less daunting because the detailed project plan
is done for each iteration. Because the piece of work is smaller and often better
understood, these plans tend to be smaller and less complex.

Figure 11-19 is a high-level process chart that illustrates the basic process
for monitoring and controlling the project. The first box—Assign work to per-
son or team—refers to a task that is complex all by itself due to the fact that
teams are made up of people with varying skill levels and experiences.

The task for the second box—Collect status—is less complex. When col-
lecting status information, you should adhere to the certain guidelines. First,
providing status information should be a standard process for all team mem-
bers. Second, status information should be collected and posted electronically
for all to see. Status information can be reported at milestones as complete or
not complete.

The task for the third box—Analyze variance—requires the project man-
ager to try to determine why the task isn’t on target and how significant the
delay is with regard to the impact on the total project.

The task for the fourth box—Take corrective action—can be complex.
 Experienced project managers have a whole set of tools they can use to try to
correct the variance. Sometimes, the correction is as simple as reassigning team
members or maybe it just requires some extra hours of overtime. At other times,
tasks may have to be rearranged. In more serious instances, the entire schedule
may have to be reworked or more team members may need to be recruited for the
team. The objective of corrective action is to get the project back to a known and
predictable schedule.

Every development project—whether it follows a predictive or adaptive
approach—has lots of questions that need answers and many decisions that need
to be made. In many cases, these issues are quickly resolved and the project
moves rapidly forward. However, in other instances, the answer to a question
or the resolution of an open issue will require additional research. For example,

Take corrective
action

Is variance
significant?

Assign work to
person or team Collect status

Is task
complete?

Is task on
target?

Analyze
variance

yes

no no

no

yes

yes

FIGure 11-19 Process to monitor and control project execution

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

356 PART 4 ■ System Development and Project Management

a set of rules for sales commissions might include when and how commissions
are calculated, what happens to commissions on returned merchandise, when
commissions are paid, how the commission schedule varies to encourage sales
of high-margin items and sale items, and so on. If management is still making
decisions about these rules, you will need to track these issues until they are
resolved.

The monitoring and control of open issues and risks for a project is usually
no more complex than building various tracking logs. These logs can be built in
a simple spreadsheet and posted on the project’s Web site or central repository.
It is a good idea to make these logs available to all team members. Figure 11-20
presents an example of a tracking log. The column headings will vary depending
on the type of log you use. The tracking log in Figure 11-20 shows issues that
need to be resolved by a certain date and the persons responsible for resolving
those issues. The log in this figure is a spreadsheet but formatted as a table to
allow sorting and filtering by any of the columns.

There are also many issue-tracking systems available that provide additional
capabilities such as allowing more detailed descriptions and resolutions. These
systems will also provide reports showing open and closed issues and other com-
binations of issues.

Figure 11-20 Sample issue-tracking log

ChAPTeR Summary
This chapter focused on the principles and activities
related to planning and managing a system develop-
ment project. It covered three major themes: (1) the
principles of project management, (2) the activities to
get a project initiated and approved, and (3) the activi-
ties to plan the project and monitor its progress.

Project management is the organizing and direct-
ing of other people to achieve a planned result. Histori-
cally, software projects haven’t had a very good track
record. Strong project management is seen as one fac-
tor that improves success rates of software development
projects. Other factors, such as the adaptive approach
to the SDLC, can also contribute to project success.

In this chapter’s first section, many important
skills, techniques, and concepts that relate to project
management were discussed. The project management
body of knowledge (PMBOK) provides an extensive
conceptual foundation for learning about project man-
agement. Agile project management also requires the
same foundation concepts and skills as the PMBOK,

although many of the specific techniques may be
different.

This chapter’s second major section focused on the
specific activities of Core Process 1, the objective of
which is to identify the business need and to get the
project initiated. These activities include:

 ■ Identifying the problem
 ■ Extending the project approval factors
 ■ Performing risk and feasibility analysis
 ■ Reviewing with the client and obtaining approval

This chapter’s third major section focused on those
activities that are necessary to get the project planned,
scheduled, and started. These activities include:

 ■ Establishing the project environment
 ■ Scheduling the work
 ■ Staffing and allocating resources
 ■ Evaluating work processes
 ■ Monitoring progress and making corrections

S
ou

rc
e:

 M
ic

ro
so

ft

C
or

po
ra

tio
n

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

357CHAPTER 11 ■ Project Planning and Project Management

level of formality or ceremony

net present value (NPV)

oversight committee

payback period

project iteration schedule

project management

project management body of
knowledge (PMBOK)

retrospective

system capabilities

System Vision Document

tangible benefit

users

work breakdown structure
(WBS)

break-even point

business benefits

client

cost/benefit analysis

critical path

detailed work schedule

Gantt chart

intangible benefit

KEy TerMS

 1. List six major reasons that cause projects to fail.

 2. Define project management.

 3. List five internal responsibilities of a project manager.

 4. List three external responsibilities of a project
manager.

 5. What is the difference between the client and
the user?

 6. What is meant by an organic approach?

 7. What is the importance of “ceremony”?

 8. List the 10 areas of the PMBOK.

 9. What is meant by Agile project management?

 10. What does the term chaordic mean?

 11. How is scope management accomplished with
Agile project management?

 12. What are the four activities of Core Process 1?

 13. What are three reasons that projects are initiated?

 14. What is the difference between system capabilities
and business benefits?

 15. What factors are usually considered when approv-
ing a project?

 16. List 10 types of benefits that may be considered
when approving a project.

 17. Explain how net present value (NPV) is
calculated.

 18. What is the difference between tangible benefits
and intangible benefits?

 19. What are some factors to consider when assessing
organizational feasibility?

 20. List four different types of major risks that may
cause problems for a project.

 21. What are the five activities of Core Process 2?

 22. What is the purpose of a project dashboard?

 23. List five types of policies or procedures that must
be established for the project team to function.

 24. What is the difference between the project itera-
tion schedule and the detailed work schedule?

 25. What is a work breakdown structure used for?

 26. List three guidelines for identifying tasks on the
WBS.

 27. What is a Gantt chart? What is it used for?

 28. What is a critical path? Why is it important for
the project manager to watch the tasks on the
critical path?

 29. What is the benefit of an iteration review and
retrospective?

 30. Describe in general terms the processes required
to monitor project execution.

 31. What is the usefulness of an issue-tracking
system?

REVIEw QueSTIONS

PrOBLeMS AnD exerCISeS
 1. Read this description and then make a list of ex-

pected business benefits that the company might
derive from a new system:

Especially for You Jewelers is a small jewelry
company in a college town. Over the last couple
of years, it has experienced a tremendous in-
crease in its business. However, its financial

performance hasn’t kept pace with its growth.
The current system, which is partly manual and
partly automated, doesn’t track accounts receiv-
ables sufficiently, and the company is finding it
difficult to determine why the receivables are so
high. It runs frequent specials to attract custom-
ers, but it has no idea whether these are profitable

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

358 PART 4 ■ System Development and Project Management

a couple people handling marketing and sales.
There are 10 employees.

The president of your company has pur-
chased a nearby single-story building, and the
company is going to move into it. The building
will need some internal modifications to make
it suitable. The president has asked you to take
charge of the move. Your assignment is to (1) get
the building ready, (2) arrange for the move, and
(3) carry out the move.

The building is nearly finished, so the job
shouldn’t be too difficult (no construction is
necessary—just some refurbishing). The building
has several offices as well as a larger area that
needs to be set up with cubicles.

You and the president are walking through
the building, and he tells you what he wants:

“Let’s use the offices as they are,” she says.
“We will need a reception desk for visiting cus-
tomers. The office in the back corner should be
okay for our computer servers. Let’s put the sales-
people in these offices along the east wall. We are
short a few offices, so let’s put up a few cubicles
in the large room for our junior developers.”

“Of course, we will need to get everybody
connected to our system, and I think Ethernet
would be faster than wireless for us. And we all
need to have phones.”

“Let’s plan the move for a long weekend,
like a Thursday, Friday, and Saturday. Of
course, we need to be careful not to shut down
the clients we are already hosting.”

“Will you put together a schedule for the
move for our employees and set up instructions
for all the employees so they know how they are
supposed to get ready for the move? Thanks.”

 5. Enter your WBS from Problem 4 into Microsoft
Project. First, enter the tasks, dependencies, and
durations. Write a paragraph on your experience
using Microsoft Project.

 6. Develop a six-year NPV spreadsheet similar to
the one shown in Figure 11-11. Use the follow-
ing table of benefits, costs, and discount factors
(see Figure 11-21). The development costs for
the system were $225,000.

or if the benefit—if there is one—comes from
associated sales. Especially for You wants to in-
crease repeat sales to its existing customers, thus
it needs to develop a customer database. It also
wants to install a new direct sales and accounting
system to help solve these problems.

 2. Read this narrative and then make a list of
system capabilities for the company:

The new direct sales and accounting system for
Especially for You Jewelers will be an important
element in the growth and success of the jewelry
company. The direct sales portion needs to track
every sale and be able to link to the inventory
system for cost data to provide a daily profit-
and-loss report. The customer database needs
to be able to produce purchase histories to as-
sist management in preparing special mailings
and special sales to existing customers. Detailed
credit balances and aged accounts for each cus-
tomer would help solve the problem with the
high balance of accounts receivables. Special no-
tice letters and credit history reports would help
management reduce accounts receivable.

 3. Develop a System Vision Document for
Especially for You Jewelers based on the work
you did for Problem 1 and Problem 2.

 4. Develop a work breakdown structure (WBS)
based on the following narrative. It should cover
all aspects of the move—from the beginning of
the project (now) to the end, when all employees
are moved into their new offices. Format your
solution in tabular form with the following col-
umn headings: Task ID No, Task Description,
Estimated Effort, and Predecessor Task ID. For
your solution, follow these guidelines:

 ■ Include dependencies.
 ■ Include effort (work) estimates.
 ■ Have 30 to 40 detailed tasks.
 ■ Cover a period of at least two months to a

maximum of six months.

You are an employee of a small company
that has outgrown its facility. It is a Web devel-
opment and hosting company, so you have tech-
nical network administrators, developers, and

Year Annual benefits Annual operating costs 6% discount factor

4 $75,000 $5,500 0.8227

5 $80,000 $7,000 0.7835

6 $80,000 $8,000 0.7462

1

2

3

$55,000 $5,000

$5,000

$5,500

0.9524

0.9070

0.8638

$60,000

$70,000

FIGure 11-21 Benefits,
costs, and discount factors for
calculating NPV

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

359CHAPTER 11 ■ Project Planning and Project Management

 7. Build a Gantt chart by using Microsoft Project
based on the table shown in Figure 11-22. Enter
the tasks, dependencies, and durations. Print out
the PERT chart (Network chart) and the Gantt
chart.

Figure 11-22 presents a list of tasks for a
student who wants to have an international
experience by attending a university abroad.
 Assume that all predecessor tasks must finish
before the succeeding task can begin (the sim-
plest version). Also, insert a few overview tasks,
such as Application tasks, Preparation tasks,
Travel tasks, and Arrival tasks. Be sure to state
your assumption.

 8. The state university wants to implement a
 better system to keep track of all the computer
equipment it owns and needs to maintain.
The university purchases a tremendous number
of computers and software that are distributed
throughout the campus and are used by faculty,
staff, departments, and colleges. Currently, the
university has very sparse records of its equip-
ment and almost no records about maintenance
or the software that has been purchased. A list
of use cases has been defined; it will serve as the
starting point to develop this system.

Take the following list of use cases to cre-
ate a project iteration schedule. You should
try to arrange the use cases so similar ones are
developed together. Also, the most important

use cases should be developed first. State your
assumptions, and explain your reasons for your
solution.

Note: For brevity, we use the word
 computer to refer to any type of computing
equipment, such as a desktop computer, laptop
computer, server computer, printer, monitor,
projector, wireless access point, and so forth.

 1. Buy a computer.
 2. Sell a computer.
 3. Put a computer in service.
 4. Take a computer out of service (surplus).
 5. Assign a computer to a person.
 6. Record the location of a computer.
 7. Repair a computer (in house).
 8. Return a computer for repair.
 9. Identify computers ready for replacement.
 10. Search for a specific computer by various

options.
 11. Buy a software license.
 12. Renew a software license.
 13. Install software on a computer.
 14. Remove software from a computer.
 15. Record a warranty for a computer.
 16. Purchase a warranty for a computer.
 17. Search for multiple computers by various

options.
 18. Search for software on computers by various

options.
 19. Assign a computer to a department or college.

1

2

3

4

5

6

7

Obtain forms from the international exchange office.

Fill out and send in the foreign university application.

Receive approval from the foreign university.

Apply for the scholarship.

Receive notice of approval for the scholarship.

Arrange financing.

Arrange for housing in a dormitory.

Task Id Description

1

3

21

3

30

5

25

None

1

2

2

4

3, 5

8 Obtain a passport and the required visa. 35 6

9 Send preregistration forms to the university. 2 8

10 Make travel arrangements. 1 7, 9

11 Determine clothing requirements and go shopping. 10 10

12 Pack and make final arrangements to leave. 3 11

13 Travel. 1 12

14 1 13

15 2 14

16 Begin classes. 1 15

6

Duration (days) Predecessor task

Move into the dormitory.

Finalize registration for classes and other university
paperwork.

FIGure 11-22 WBS task list for attending a university abroad

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

360 PART 4 ■ System Development and Project Management

Custom Load Trucking
It was time for Stewart Stockton’s annual performance
 review. As Monica Gibbons, an assistant vice president of
information systems, prepared for the interview, she re-
viewed Stewart’s assignments over the last year and his
performance. Stewart was one of the “up and coming”
systems analysts in the company, and she wanted to be
sure to give him solid advice on how to advance his ca-
reer. For example, she knew that he had a strong desire to
become a project manager and accept increasing levels of
responsibility. His desire was certainly in agreement with
the needs of the company.

Custom Load Trucking (CLT) is a nationwide trucking firm
that specializes in the movement of high-tech equipment.
With the rapid growth of the communications and computer
industries, CLT was feeling more and more pressure from its
clients to move its loads more rapidly and precisely. Several
new information systems were planned that would enable
CLT to schedule and track shipments and truck locations al-
most to the minute. However, trucking wasn’t necessarily a
high-interest industry for information systems experts. With
the shortage in the job market, CLT had decided not to try
to hire project managers for these new projects but to build
strong project managers from within the organization.

As Monica reviewed Stewart’s record, she found that he
had done an excellent job as a team leader on his last project,

where he was a combination team leader and systems
analyst on a four-person team. He had been involved in
systems analysis, design, and programming, and he had
also managed the work of the other three team members.
He had assisted in the development of the project sched-
ule and had been able to keep his team right on schedule.
It also appeared that the quality of his team’s work was
as good as, if not better than, other teams on the project.
Monica wondered what advice she should give him to help
him advance his career. She was also wondering if now
was the time to give him his own project.

1. Do you think the decision by CLT to build project man-
agers from its existing employee base is a good one?
What advice would you give CLT to make sure it has
strong project management skills in the company?

2. What kind of criteria would you develop for Monica to
use to measure whether Stewart (or any other poten-
tial project manager) is ready for project management
responsibility?

3. How would you structure the job for new project man-
agers to ensure or at least increase the possibility of a
high level of success?

4. If you were Monica, what kind of advice would you
give Stewart about managing his career and attaining
his immediate goal of becoming a project manager?

CASE STUDY

Community Board of realtors®

The Board of Realtors Multiple Listing Service (MLS)
system is a fairly focused system. In Chapter 3, you
identified a use case diagram for the customer users.
In Chapter 8, you extended the functions to include
aspects of the system that would be required for the
real estate agents to enter their information. You
also made some preliminary estimates of iterations
and time to complete. Let us expand and refine those
answers to include concepts from this chapter.

 1. Given the total vision of this system, develop a
System Vision Document. Focus primarily on
finding the benefits to the community board, the
real estate agents, and home buyers.

 2. Including the uses cases and functions identified
in Chapters 3 and 8, make a list of all the use
cases that must be developed. Divide them into
subsystems as appropriate. You should have at

least two subsystems: one for viewing data and
one for updating data. Add any additional use
cases (and subsystems) that might be important
to the Community Board of Realtors itself.
(Hint: Think about user goals and CRUD.)

 3. Decide on a work sequence, and develop a proj-
ect iteration schedule.

 4. Estimate the development cost and the time
required.

 5. Develop a work breakdown structure (WBS) for
the project’s first iteration.

 6. Enter your WBS into Microsoft Project to cre-
ate a detailed work schedule. (Instructions on
how to use Microsoft Project are given in Online
Chapter C, which you can find on the Cengage
Web site.)

RUnnInG CASE STUDiES

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

361CHAPTER 11 ■ Project Planning and Project Management

The Spring Breaks ‘r’ us Travel Service
Assume you are a project manager for Spring Breaks
and have been asked to prepare the necessary docu-
ments to get this project approved and planned. You
have been told that four programmers will be available
to work on this project and that it will have the high-
est priority within the company. In other words, the
company would like to have this application up and
running as soon as possible. The travel season is fast
approaching, and Spring Breaks would like to be able
to use the system for this very next season.

As part of the approval and planning activities,
you decide that the most important items to develop
will be a System Vision Document and a project itera-
tion plan. Given those elements, you can make an esti-
mate of the completion date and the development cost
for the system.

 1. Based on the answers you gave to the Chapter 2
running case questions, develop a System Vision
Document.

 2. Based on the functional descriptions you pro-
vided for the Chapter 2 running case and the
use cases you defined in Chapter 3, finish iden-
tifying a complete list of use cases for each of

the four subsystems. One important decision
you will have to make is which subsystems to
develop first. In other words, can the subsystems
be deployed independently and, if so, which
should be deployed first? Defend your answer.

 3. A related decision is whether to organize your
programmers into one larger team or multiple
smaller teams and how many programmers you
can use on this project. Make that decision and
then defend your answer.

 4. Once those decisions are made, develop a project
iteration plan. If you have multiple independent
teams, your project iteration plan will have par-
allel paths.

 5. Based on your previous answers, develop an
estimate for the total project cost and the time
required to complete the project.

 6. Assuming an annual revenue increase of
$250,000 per year (benefit) and an annual oper-
ating cost of $75,000, develop a five-year NPV
worksheet by using your estimates for develop-
ing the system. Use a 6 percent discount factor.

On the Spot Courier Services
This chapter discussed the first two core processes of
a system development project and the activities within
these core processes. Obviously, for a normal project,
these first two core processes are done at the begin-
ning, when the project manager is still learning about
the needs of the business and trying to develop a vision
of the solution. However, in this case, you have already
gathered a lot of information about On the Spot from
the previous chapters. Use this information to develop
some project management planning documents.

In Chapter 2, you developed a list of use cases. In
Chapter 8, you identified four required subsystems in
the total solution. Chapter 6 provided a good review of
the essential system capabilities. Using the discussions of
On the Spot from these chapters and the items you have
produced from your previous work, produce these items:

 1. Create a System Vision Document.

 2. Review all the use cases that you identified in
Chapter 2 and then enhance the list to achieve
a complete solution based on the narratives
that you have read in previous chapters. In
 Chapter 5, you learned how to do a CRUD
analysis. A CRUD analysis of this case indicates
that it might be necessary to add a new subsys-
tem called “Administration.” Assign use cases to

the five subsystems; include the Administration
subsystem plus the other four subsystems you
previously defined:

 ■ Customer account subsystem (like customer
account)

 ■ Pickup request subsystem (like sales)
 ■ Package delivery subsystem (like order

fulfillment)
 ■ Routing and scheduling subsystem

 3. Create a project iteration schedule for each sub-
system. The project consultant is planning to
assign one team of two people to this project, and
the subsystems will be built consecutively. Based
on the answers you provided in Chapter 8, com-
bine your four individual schedules into a total
project iteration schedule.

 4. Create a work breakdown structure (WBS) for
the first iteration of the project as you have out-
lined it. Estimate the effort required for each
task in the WBS.

 5. Enter the WBS into Microsoft Project to create
a detailed work schedule. (Instructions on how
to use Microsoft Project are given in Online
 Chapter C on the Cengage Web site.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

362 PART 4 ■ System Development and Project Management

Sandia Medical Devices
Use cases were identified for the RTGM system in
Chapter 5 (see Figure 11-23). Additional descriptions
of the system requirements are found in Chapters 3, 4,
and 8. You might want to review those to refresh your
memory of the needs for this system.

Complete these tasks:

 1. Based on the use case diagram and other project
information, develop a list of software com-
ponents (subsystems) that must be acquired or
developed. Describe the function(s) of each com-
ponent in detail. Be sure to consider components
that aren’t directly tied to use cases, such as the
software interface between the glucose monitor-
ing wristband and the cell phone.

 2. Prioritize the list of software components based
on risk.

 3. Prepare a project iteration schedule based on
iterations that last between two and four weeks.
The schedule should include all the tasks needed
to develop a complete version of the system,
which will then be subjected to live testing and
evaluation by real users for three months.

 4. Prepare a detailed work schedule for the first
iteration. If you have access to project manage-
ment software, prepare the schedule and a Gantt
chart by using the software.

Scott W. Ambler, Agile Modeling: Effective Practices
for eXtreme Programming and the Unified
Process. John Wiley & Sons, 2002.

Charles G. Cobb, Making Sense of Agile Project
Management: Balancing Control and Agility.
John Wiley & Sons, 2011.

Jim Highsmith, Agile Project Management: Creating
Innovative Products. John Wiley & Sons, 2009.

Gopal K. Kapur, Project Management for Informa-
tion, Technology, Business, and Certification.
Prentice Hall, 2005.

Craig Larman and Bas Vodde, Scaling Lean and
Agile Development: Thinking and Organizational

Tools for Large-Scale Scrum. Addison-Wesley,
2009.

Jack R. Meredith and Samuel J. Mantel Jr., Project
Management: A Managerial Approach (6th ed.).
John Wiley & Sons, 2004.

Project Management Institute, A Guide to the
Project Management Body of Knowledge (4th
ed.). Project Management Institute, 2008.

Kathy Schwalbe, Information Technology Project
Management (6th ed.). Course Technology, 2009.

Robert K. Wysocki, Effective Project Management:
Traditional, Agile, Extreme. John Wiley & Sons,
2009.

FURTHER reSOurCeS

View/respond
to alert

View history

Annotate history

Send message
to physician

View/hear
message from

physician

View/respond
to alert

Send message
to patient

View/hear
message from

patient

Set alert
conditions

Patient Physician

FIGure 11-23 RTGM system use cases

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12
Object-Oriented Design:
Fundamentals

Chapter 13
Object-Oriented Design: Use Case
Realization

Chapter 14
Deploying the New System

Part FIVE

Advanced Design and
Deployment Concepts

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ChaPter TwElVE

Object-Oriented Design:
Fundamentals

Learning ObjeCtives
After reading this chapter, you should be able to:

Explain the purpose and objectives of
object-oriented design

Develop design class diagrams

Use CRC cards to define class responsibilities
and collaborations

Explain important fundamental principles of
object-oriented design

Object-Oriented Design: Bridging from
Analysis to Implementation

Steps of Object-Oriented Design

Design Classes and the Design Class Diagram

Designing with CRC Cards

Fundamental Principles for Good Design

ChaPter OutLine

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

366 PART 5 ■ Advanced Design and Deployment Concepts

Opening CAse New Capital BaNk: part 1

Bill Santora, the project leader responsible for devel-
oping an integrated customer account system at New
Capital Bank, just met with the review committee and
finished a technical review of the new system’s first-cut
design. This first-cut design focused on four fundamen-
tal core use cases and would be implemented in the first
development iteration.

New Capital Bank had been using object-oriented
techniques for quite a while, but it had been slower to
adopt some of the newer Agile approaches. Bill had
been involved in some pilot projects that had used Uni-
fied Modeling Language (UML) to develop systems
using object-oriented techniques. However, this devel-
opment project was his first large-scale project that
would be entirely Agile.

As Bill was collecting his presentation materials, his
supervisor, Mary Garcia, spoke to him: “Your technical
review went very well, Bill,” she said. “The committee
found only a few minor items that need to be fixed. And
even though I am not completely current on the new
approach, it was easy for me to understand how these
core functions will work. I still find it hard to believe that
you will have these four pieces implemented in the next
few weeks though.”

“Wait a minute,” Bill said, laughing. “It won’t
be ready for the users then. Getting these four core
functions coded and running doesn’t mean that we
are almost done. This project will still take a year to
complete.”

“Yes, I know,” Mary said. “But it is nice that we will
have something to show after only one month. Not only
do I feel more confident in this project, but the users
love to see things developing.”

“I know,” Bill said. “Remember how much grief
I got when I originally laid out this plan based on an
iterative approach? It was difficult to detail the project
schedule for the later iterations, so I had a hard time

convincing everybody that the project schedule wasn’t
too risky. The upside is that because each iteration is
only four weeks long, we have something to show right
at the beginning. You don’t know how relieved I am that
the design passed the review! The team has done a
lot of work to make sure the design is solid, and we all
felt confident.”

“Well, building it incrementally makes a lot of sense
and certainly seems to be working,” Mary said. “I espe-
cially liked the diagrams you showed. It was terrific how
the three-layer architectural design supported each use
case. Even though I don’t consider myself an advanced
object-oriented technician, I could understand how the
object-oriented design fit into the architecture. I think
you wowed everybody when you demonstrated how
you could use the same basic design to support both
our internal bank tellers and a Web portal for our cus-
tomers. Congratulations.”

Bill picked up on Mary’s enthusiasm.
“How about the design class diagrams?” he asked.

“Don’t they give a nice overview of the classes and the
methods? We use them extensively as a focus for dis-
cussion on the team. They really help the programmers
write good, solid code.”

Mary nodded in agreement and added, “By the
way, have you scheduled a review with the users?”
Mary asked.

“No, not yet,” Bill replied. “The architectural design is
mostly technical stuff, and we aren’t quite ready to meet
with the users. The users will help us by verifying our
understanding of the information availability, but much of
what we do now is too technical for them to follow.”

“I am excited to see the first pieces run,” Mary said.
“It just makes so much sense to be able to test these
core functions during the rest of the project. Let me
congratulate you again.” Then, they headed off to lunch
together.

 ■ Overview
In Chapters 3, 4, and 5, you learned how to do object-oriented analysis by devel-
oping functional requirements models. You learned that analysis consists of two
parts: discovery and understanding. Discovery is learning exactly how the user
conducts his activities through probing questions that provide detailed informa-
tion. Understanding is taking the information gleaned from user interviews and
constructing a set of interrelated and comprehensive models. Model building is
an essential part of understanding the user needs and how they influence the
proposed system. However, the objective of analysis models isn’t to describe the
new system, but to understand, in precise terms, the requirements.

In Chapters 6 and 7, you learned about the need and importance of tech-
nology architecture and application software architecture. Chapter 7 distin-
guished the difference between large software components, such as systems or

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

367CHAPTER 12 ■ Object-Oriented Design: Fundamentals

subsystems, and smaller software components, such as classes and methods.
This chapter and the next focus on classes and methods.

This chapter and the next discuss object-oriented design, specifically, on
the internal structure of a software system or subsystem. You will learn how
to develop object-oriented design models based on the requirements models,
which are then used by the programmers to code the system. This chapter first
explains design class diagrams, which are an extension of the problem domain
class diagram with design information added. Next, it explains class responsi-
bility collaboration (CRC) cards to begin teaching the details of use-case-driven,
object-oriented design.

This chapter ends with an important discussion of design principles for good
object-oriented design. Throughout this chapter and the next, you learn not only
the basics of object-oriented design but also the teaching principles underlying it,
so the systems you build are well structured and maintainable. These design prin-
ciples will provide you with a solid foundation for designing systems correctly.

 ■ Object-Oriented Design: Bridging from
Analysis to Implementation

So, what is object-oriented design? It is a process by which a set of detailed
object-oriented design models are built, which are then used by the program-
mers to write and test programs for the new system. Systems design is the bridge
between user requirements and programming the new system. One strength of
the object-oriented approach is that the design models are often just extensions
of the requirements models. Obviously, it is much easier to extend an existing
model than to create entirely new design models. Frequently, developers like to
skip the design model step; however, it is a good practice to create design models
and not just jump into coding. Just as a builder doesn’t build something larger
than a doghouse or a shed without a set of blueprints, a good system developer
would never try to develop a large system without a set of design models.

One tenet of Agile, adaptive development approaches emphasized through-
out this text is to create models only if they have meaning and are necessary.
Sometimes, new developers misinterpret this guideline to mean that they don’t
need to develop design models at all. The design models may not be formal-
ized into a comprehensive set of documents and diagrams, but they are certainly
necessary. Developing a system without doing design is comparable to writing
a research paper without an outline. You could just sit down and start writing;
however, if you want a paper that is cohesive, complete, and comprehensive,
you should write an outline first. You could write a complex paper without an
outline, but in all probability, it would be disjointed, hard to follow, and miss-
ing important points—and it would earn a low grade! The outline can be jot-
ted down on paper, but the process of thinking it through and writing it down
allows the writer to ensure that it is cohesive. Systems design provides the same
type of framework.

There are three subheadings in this section. First, you’ll review how an
object-oriented application works. Second, you’ll identify the analysis models
that are used for object-oriented design and indicate how they flow into the
design models. Third, you’ll learn about the design models that support the pro-
grammers. In other words, the following sections discuss the design models used
for programming.

 ■ Overview of Object-Oriented Programs
Let’s quickly review how an object-oriented program works. Many of you will
be familiar with these ideas from your programming classes.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

368 PART 5 ■ Advanced Design and Deployment Concepts

An object-oriented program consists of sets of computing objects. Each
object has data and program logic encapsulated within itself. Analysts define
the structure of the program logic and data fields by defining a class. The class
definition describes the structure or a template of what an executing object
looks like. The object itself doesn’t come into existence until the program begins
to execute. This is called an instantiation of the class—that is, making an
instance (an object) based on the template provided by the class definition.

An object-oriented program consists of a set of these instantiated objects
that cooperate to accomplish a result. These objects work together by sending
each other messages and working in concert to support the functions of the
main program.

Figure 12-1 depicts how an object-oriented program works. The program
includes a window object that displays a form in which to enter a student ID and
other information (message 1). From the user perspective, this object appears as
a form on a screen. After the student ID is entered, the Window object sends a
message (message 2) to the Student class to tell it to create a new Student object
(instance) in the program. The new Student object will know that it needs more
data for some of its attributes based on internal logic in the student class, so it
will send a message to a Database Access object asking for data from the data-
base (message 3). Once it is completely instantiated with all the required data,
the Student object sends the information back to the Window object to display
it on the screen. The student user then enters the updates to her personal infor-
mation (message 4), and another sequence of messages is sent to update the Stu-
dent object in the program, which forwards information to the Database Access
object and writes it to the database.

The important concept you should understand is that an object-oriented
program consists of many objects. Within each object, the program logic exists

FIGURE 12-1 Object-oriented
event-driven program flow

©
 C

en
ga

ge
 L

ea
rn

in
g®

instantiation creation of an object
based on the template provided by the
class definition

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

369CHAPTER 12 ■ Object-Oriented Design: Fundamentals

in small segments called methods. These methods are “called” or invoked
through messages. In the example in Figure 12-1, there are three objects,
each of which has a unique job to do. These three objects can relate back to
 concepts you learned in Chapter 7 about three-layer architecture. Referring
back to Figure 7-11, “Three-layer architecture,” the three-layers translate to the
three objects in Figure 12-1: the Window object (view layer), the Student object
(domain layer), and the Database Access object (data layer).

You can look inside a class and see the program code that corresponds to
the functions performed by the objects once they are instantiated. Figure 12-2
illustrates an example of the program code for a class with its parameters and
methods. Part (a) is the code for Java, and part (b) is the code for VB.NET. The
methods, such as getFullName (), are the pieces of executable code that carry
out the functions of the class.

 ■ Analysis Models to Design Models
As you remember, during analysis two types of information are captured, which
are used to define the requirements: information about things and informa-
tion about the business processes. A domain model class diagram described the
information about things, and use case descriptions, activity diagrams, and sys-
tem sequence diagrams described the information about the business processes.
In other words, requirements are documented as domain classes and business
processes.

To write a computer program, a programmer needs to know what the
classes are, and what the methods are in those classes. If you think through
Figure 12-1 again, note that the example covers a single use case, perhaps one
called Update student information. This is an important programming concept!
A programmer will work on one use case at a time. She will select a use case and
program the appropriate methods in the required classes to carry out that use
case. Hence, the design models must support that activity. In other words, the
design models must provide the information required to (1) identify the classes
and (2) document the flow of execution—both for a single use case.

Figure 12-3 illustrates how this model building process flows from analy-
sis to design to implementation. Again, note the two types of information—
information about things, and information about the flow or the process. The
analysis flow models document the flow of the business process, while the design
flow models document the flow of execution through the classes.

 ■ Introduction to the Design Models
The primary model used to document the classes and the methods is the design
class diagram. The design class diagram is an extension of the domain model
class diagram that was developed during analysis activities and requirements
definition. Figure 12-4 illustrates a Student class both as the domain class and
as the design class. The primary difference is the addition of the method sig-
natures for the class. A method signature includes the method name, the input
parameters, and the type for the returned value. Notice that the method names
given in the bottom panel of the design class correspond to method names found
in the code in Figures 12-2a and b. You’ll learn more about the design class dia-
gram in the section “Design Classes and Design Class Diagram.”

To document the flow of execution of a particular use case, you use the
information provided in a UML interaction model or a CRC card. Each of the
following three models captures essentially the same information, so you do
not need to use all three for any given use case. For a particular use case, you
would only use one. The three models are a sequence diagram, a communica-
tion diagram, or CRC (class responsibility collaboration) cards. Sequence dia-
grams and communication diagrams are standard UML interaction diagrams.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

370 PART 5 ■ Advanced Design and Deployment Concepts

public class Student
{

//attributes
private int studentID;
private String firstName;
private String lastName;
private String street;
private String city;
private String state;
private String zipCode;
private Date dateAdmitted;
private float numberCredits;
private String lastActiveSemester;
private float lastActiveSemesterGPA;
private float gradePointAverage;
private String major;

//constructors
public Student (String inFirstName, String inLastName, String inStreet,

String inCity, String inState, String inZip, Date inDate)
{

firstName = inFirstName;
lastName = inLastName;
...

}
public Student (int inStudentID)
{

//read database to get values
}

//get and set methods
public String getFullName ()
{

return firstName + " " + lastName;
}
public void setFirstName (String inFirstName)
{

firstName = inFirstName;
}
public float getGPA ()
{

return gradePointAverage;
}
//and so on

//processing methods
public void updateGPA ()
{

//access course records and update lastActiveSemester and
//to-date credits and GPA

}
}

FIGURE 12-2a Example of class definition in Java with several methods

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

371CHAPTER 12 ■ Object-Oriented Design: Fundamentals

FIGURE 12-2b Example of class definition in VB.NET with several methods

 Public Class Student

'attributes
Private studentID As Integer
Private firstName As String
Private lastName As String
Private street As String
Private city As String
Private state As String
Private zipCode As String
Private dateAdmitted As Date
Private numberCredits As Single
Private lastActiveSemester As String
Private lastActiveSemesterGPA As Single
Private gradePointAverage As Single
Private major As String

'constructor methods
Public Sub New(ByVal inFirstName As String, ByVal inLastName As String,

ByVal inStreet As String, ByVal inCity As String, ByVal inState As String,
ByVal inZip As String, ByVal inDate As Date)

firstName = inFirstName
lastName = inLastName
...

End Sub

Public Sub New(ByVal inStudentID)
'read database to get values

End Sub

'get and set accessor methods
Public Function GetFullName() As String

Dim info As String
info = firstName & " " & lastName
Return info

End Function

Public Property firstName()
Get

Return firstName
End Get
Set(ByVal Value)

 firstName = Value
End Set

End Property

Public ReadOnly Property GPA()
Get

Return gradePointAverage
End Get

 End Property

'Processing Methods
Public Function UpdateGPA()

'read the database and update last semester
'and to date credits and GPA

 End Function

 End Class

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

372 PART 5 ■ Advanced Design and Deployment Concepts

Problem domain
class diagram

Design class diagram

Object-oriented
program classes

with methodsUse case
descriptions

System sequence
diagrams

Activity diagrams

Communication
diagrams

Sequence
diagrams

CRC cards

Information about
Things

Analysis Models Design Models Programming Models

Information about
Process Flow and
Flow of Execution

FIGURE 12-3 Analysis models to design models to programming models

Domain diagram Student

studentID
name
address
dateAdmitted
lastSemesterCredits
lastSemesterGPA
totalCreditHours
totalGPA
major

Student

-studentID: integer {key}
-name: string
-address: string
-dateAdmitted: date
-lastSemesterCredits: number
-lastSemesterGPA: number
-totalCreditHours: number
-totalGPA: number
-major: string

Student

+createStudent (name, address, major): Student
+createStudent (studentID): Student
+changeName (name)
+changeAddress (address)
+changeMajor (major)
+getName (): string
+getAddress (): string
+getMajor (): string
+getCreditHours (): number
+updateCreditHours ()
+findAboveHours (int hours): studentArray

Design class diagram Student

Elaborated
attributes

Method signatures

FIGURE 12-4 Student class example with domain class and design class

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

373CHAPTER 12 ■ Object-Oriented Design: Fundamentals

CRC cards are not standard UML, but are very popular for designing simple
systems. This section introduces you to all three.

You first learned about sequence diagrams in Chapter 5 when you learned
about system sequence diagrams (SSD). An SSD only had two actors, the external
actor and the system. A sequence diagram expands the system object to identify
the internal interacting objects. Figure 12-5 illustrates a simple sequence diagram.
Notice that the: System object is no longer included, but two of the internal objects
are shown. Also notice the message arrows between the interacting objects.

A communication diagram is similar to a sequence diagram and serves the
same purpose. Some developers prefer sequence diagrams, whereas others prefer
communication diagrams. Each provides basically the same information, but in
different formats. Each also has strengths and weaknesses. Figure 12-6 illus-
trates a communication diagram for the same use case as Figure 12-5, updating
student name. Chapter 13 elaborates the details and benefits of both sequence
and communication diagrams.

The third model that is used to do detailed object-oriented design and to
provide information for the design class diagram is CRC cards. Even though
the CRC card method is not a standard UML diagraming approach, it provides
a straightforward approach for detailed object-oriented design, especially for
simple use cases, and thus has become popular. (Remember that object-oriented
design is use-case-driven—design is done use case by use case.)

CRC cards include a set of cards, with each card representing a class. Developers
use 3 x 5 cards or some other method to document each card. Each card identifies
the class, its responsibilities (i.e., its methods), and the other classes with which it
collaborates. Figure 12-7 shows both front and back sides of one single CRC card.
The card represents a class. The list on the left is the “responsibilities.” The list on
the front right is the other classes with which this class must “collaborate.” In a later
section, “Designing with CRC Cards,” you will learn how to use these cards.

Actor

changeName (studentID, name)

nameUpdate

:StudentUpdController :Student

changeName (name)

FIGURE 12-5 Sequence diagram
for updating student name

©
 C

en
ga

ge
 L

ea
rn

in
g®

:Student

1: changeName (studentID, name)

1.3: nameUpdate

1.2: changeName (name)

:StudentUpdControl ler

Actor

FIGURE 12-6 Communication diagram for updating student name

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

374 PART 5 ■ Advanced Design and Deployment Concepts

An object-oriented system designer must provide enough detail so a pro-
grammer can write the initial class definitions, including the method code. The
following sections and Chapter 13 explain these models in more depth and
explain how to use them to perform detailed design.

 ■ Steps of Object-Oriented Design
The previous section identified the primary models used for object-oriented
design and the source models from analysis activities. As you saw in Figure 12-1,
an object-oriented program will have classes in three separate layers: user inter-
face, problem domain, and database access layers. Thus, object-oriented
design is the process that identifies and describes the classes within each layer
and defines the messages that are used to invoke the methods of the involved
classes. Object-oriented design is an analytical, rigorous, and detailed process.
Don’t be discouraged if it takes several tries before you feel comfortable with
this skill.

Another important issue about object-oriented design is that it is “use-case-
driven.” As was discussed earlier, a programmer will code all of the methods
across various classes that are required to implement the flow of execution of a
single use case. Object-oriented design is done the same way. A single use case
is chosen and the appropriate models are constructed or updated to describe the
details of the use case. Note in the definition of object-oriented design, it empha-
sizes this fact of being use-case-driven.

Because the process of object-oriented design is quite rigorous, sometimes
developers are tempted to skip the design step and move directly to program-
ming. In fact, with simple use cases, at times it is easier just to code the use case,
rather than develop a formal use case design. As has been discussed earlier with
Agile development, the objective of development activities should always be to
create accurate, robust software. If a model or diagram will assist in that objec-
tive, then it should be created. If it does not contribute directly to the end result,
then time should not be spent on it. However, you should not just skip modeling
with the assumption that a model is a distraction rather than a necessary step in
creating a solid design for the software.

Figure 12-8 illustrates steps required in object-oriented design. The first
step is to choose a single use case. Then, you create a model, the type of which
depends on the complexity of the use case. The final result is to produce a com-
plete design class diagram with supporting detail as required from interaction
diagrams.

Developers will use different types of models depending on the complexity
of the use case they are designing. This figure identifies three possible model
paths for generating a final design class diagram. The path on the far left, using
CRC cards, is often used for use cases that are straightforward and do not

Student

Front of card Back of card

change name
change address
change major
get name
get address
get major
get credit hours

Sale
Payment

StudentId
name
address
dateAdmitted
lastSemesterCredits
lastSemesterGPA
totalCreditHours
total GPA
major

FIGURE 12-7 Sample CRC card for
the Student class

object-oriented design the process to
identify the set of classes, their methods, and
their messages required to execute a use case

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

375CHAPTER 12 ■ Object-Oriented Design: Fundamentals

require extensive design decisions. The middle path, using communication dia-
grams, can be used for use cases that are more complex. The path on the right,
using sequence diagrams, can be used for any use case, no matter the level of
complexity. No matter which technique is used, detailed design does require a
careful thought process to ensure a solid, well-constructed solution.

In any of the three techniques for modeling, the objective is to identify and
define the methods that are required in each class. The final design class dia-
gram documents these required methods. It should be noted that each use case
will have a separate sequence diagram or communication diagram. Furthermore,
the design class diagram is a growing model because as each use case design is
finished, the new methods are added to the existing design class diagram. It is a
composite model containing the method names for all use cases.

Finally, a package diagram can also be added to divide the classes into
components or subsystems that can be implemented as a unit. Some develop-
ers use package diagrams, but many do not. The following section begins the
detailed discussion about design by going into more depth about the design
class diagram.

FIGURE 12-8 Object-oriented design process for a single use case

First-Cut
Design Class Diagram

• Identify classes
• Elaborate attributes
• Identify navigation

• Choose a use case

Use Case Diagram

CRC Cards

• Determine responsibilities
• Determine collaborations

Communication Diagrams

• Identify messages
• Define parameters
• Add multilayer objects

 Package Diagrams

• Configure packages with classes
• Determine dependencies

Final Design Class Diagram

• Add and elaborate methods
• Finalize navigation

Complex use casesSimple use cases

Moderately
complex use cases

Sequence Diagrams

• Identify messages
• Define parameters
• Add multilayer objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

376 PART 5 ■ Advanced Design and Deployment Concepts

 ■ Design Classes and the Design Class Diagram
The design class diagram contains the final definition of each class in the final
object-oriented software system. The primary source of information for this dia-
gram is the problem domain model. Hence, the problem domain model serves
as the basis for both database design, as you learned in Chapter 9, and for
the software classes as defined in the design class diagram. First, you need to
understand the diagram itself, and then you’ll learn how it is created during the
design process.

The domain model class diagram shows a set of problem domain classes and
their associations. During analysis, because it is a discovery process, analysts
generally don’t worry much about the details of the attributes. However, because
in object-oriented programming the attributes of a class must be declared as
public or private and each attribute must also be defined by its type, such as
character or numeric, it is important to elaborate on these details as well as
to define the methods and parameters that are passed to the methods and the
return values from methods.

As developers build the design class diagrams, they add many more classes
that were not originally defined in the domain model. Referring to Figure 12-1,
the Input window objects and Database access objects are examples of addi-
tional classes that are not problem domain classes. The classes in a system can
be partitioned into distinct categories, such as user-interface classes or data
access classes. At times, designers may also develop distinct class diagrams by
subsystem. The following section now turns to design class diagram notation
and discusses the design principles used in developing the first iteration of the
design class diagram.

 ■ Design Class Stereotypes
UML doesn’t specifically distinguish between design class notation and domain
model class diagram notation. However, practical differences occur simply
because the objective of design modeling is distinct from that of domain model-
ing. Domain modeling shows things in the users’ work environment and the
naturally occurring associations among them. At that point, the classes aren’t
specifically software classes. After you start a design class diagram, though, you
are specifically defining software classes. Because many different types of design
classes are identified during the design process, UML has a special notation—
called a stereotype—that allows designers to designate a special type of class.
A stereotype is simply a way to categorize a model element as a certain type.
A stereotype extends the basic definition of a model element by indicating that
it has some special characteristic you want to highlight. The notation for a ste-
reotype is the name of the type placed within printer’s guillemets, like this:
«control».

Four types of design classes are considered standard stereotypes: an entity
class, a boundary or view class, a controller class, and a data access class.
 Figure 12-9 shows the notation used to identify these four stereotypes.

An entity class is the design stereotype for a problem domain class. It typi-
cally describes something users deal with when doing their work. Objects of
entity classes usually need to be remembered and are also referred to as persis-
tent classes. A persistent class is an entity stereotyped class with objects that
exist after the program quits. However, persistency is usually not indicated as a
stereotype. The way to make data persistent is to write it to a file or database so
that it is saved and can be retrieved at a later execution of the software.

A boundary or view class is specifically designed to live on the system’s
automation boundary. In a desktop system, these classes would be the windows
classes or Web pages and all the other classes associated with the user interface.

stereotype a way of categorizing a model
element by its characteristics, indicated by
guillemets (« »)

entity class a design stereotype for a
problem domain class

persistent class an entity class whose
objects must continue to exist after a system
is shut down

boundary or view class a class that
exists on a system’s automation boundary,
such as a user interface or a system
interface class

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

377CHAPTER 12 ■ Object-Oriented Design: Fundamentals

A boundary class could also be a system interface between a company’s system
and an external system. So a boundary stereotype is either a user or a system
interface class.

A controller class mediates between the boundary classes and the entity
classes. In other words, its responsibility is to catch the messages from the bound-
ary class objects and send them to the correct entity class objects. It acts as a
kind of switchboard between the boundary or view layer and the domain layer.

A data access class is used to retrieve data from and send data to a data-
base. Sometimes it is also called a database access class. Rather than insert data-
base access logic, including SQL statements, into the entity class methods, a
separate layer of classes to access the database is often included in the design.

 ■ Design Class Notation
Figure 12-10 shows the details within a design class. Refer back to Figure 12-4
to see an example. The name compartment includes the stereotype name, class
name, and superclass name (if any). The lower two compartments contain more
details about the attributes and the methods.

The format that analysts use to define each attribute includes the following:

 ■ Visibility—Visibility denotes whether other objects can directly access the
attribute. (The values for visibility are a plus sign, which indicates that an
attribute is visible, or public, and a minus sign, which indicates that it isn’t
visible, or is private, i.e. “1” 5 visible, “2” 5 invisible.)

 ■ Attribute-name
 ■ Data-type-expression (such as character, string, integer, number, currency,

or date)
 ■ Initial-value, if applicable
 ■ Property (within curly braces), such as {key}, if applicable

FIGURE 12-9 Standard stereotypes
found in UML design models «entity»

Customer
«controller»

UseCaseHandler

«boundary»
SalelnputWindow

«dataAccess»
SaleDBReader

controller class a class that medi-
ates between boundary classes and entity
classes, acting as a switchboard between the
 boundary or view layer and domain layer

data access class a class that is used to
retrieve data from a database

visibility a notation that indicates (by plus
or minus sign) whether an attribute can be
directly accessed by another object

«StereotypeName»
ClassName::SuperClass

visiblity attribute-name: data-type-expression = initial-value {property}

visiblity method-name (parameter-list): return-type-expression

Class names. Note
the camel case
notation.

Attributes.

Method signatures.

FIGURE 12-10 Notation used to
define a design class

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

378 PART 5 ■ Advanced Design and Deployment Concepts

The third compartment contains the method signature information.
A method signature shows all the information needed to invoke (or call) the
method. It shows the format of the message that must be sent, which consists of
these attributes:

 ■ Method visibility
 ■ Method-name
 ■ Method-parameter-list (incoming arguments)
 ■ Return-type-expression (the type of the return parameter from the method)

The domain model attribute list contains all attributes discovered during
analysis activities. The design class diagram includes more information on attri-
bute types, initial values, and properties. It can also include a stereotype for
clarification. As shown in Figure 12-4 in the Student design class diagram, the
third compartment contains the method signatures for the class. Remember that
UML is meant to be a general object-oriented notation and not specific to any
one language. Thus, the notation won’t be the same as programming method
notation.

The method called findAboveHours (int hours): studentArray, which is
denoted with an underline in Figure 12-4, is a special kind of method. Remem-
ber that in the object-oriented approach, a class is a template to create individual
objects or instances. Most of the methods apply to one instance of the class.
However, analysts frequently need a method to look through all the instances
at once. Such a method is called a class-level method and is denoted by
an underline.

In Chapter 4, you learned about generalization/specialization. In the prob-
lem domain model, generalization/specialization becomes inheritance in the
design model and in a programming language. Figure 12-11 shows an example

method signature a notation that shows
all the information needed to invoke, or call,
the method

class-level method a method that is
associated with a class instead of with
objects of the class

Customer

-accountNo: string {key}
-name: string
-mobilePhone: string
-homePhone: string
-emailAddress: string
-status: string

Sale

-saleID: int {key}
-saleDate: date
-priorityCode; string
-shipping&Handling: currency
-tax: float
-grandTotal: currency

+addItem (itemUPCCode)
+cancelSale (saleID)
+makePayment(amount)

0..*

+updateName (name)
+updateAddress (address)
+createSale (accountNo)

TelephoneSale::Sale

-clerkID: string-clerkID: string
-lengthOfCall: string
-noOfPhoneSales: int

InStoreSale::Sale

-storeID: string
-registerID: string
-clerkID: string
-noOfStoreSales: int

OnlineSale::Sale

-URLaddress: string
-timeOfDay: string
-timeToOrder: int
-noOfWebSales: int

+confirmEmail (emailAddress)

1..1

FIGURE 12-11 Sale superclass (abstract) with three concrete subclasses showing inheritance

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

379CHAPTER 12 ■ Object-Oriented Design: Fundamentals

of design classes with attributes and methods; it shows how inheritance works
for design classes. Each of the three subclasses inherits all the attributes and
methods of the parent Sale class. Hence, each subclass has a saleID, a saleDate,
and so forth. In this example, each subclass also has additional attributes that
are unique to its own specific class. Each of the subclasses also has a unique
attribute that is underlined, such as noOfPhoneSales. As previously mentioned,
underlined attributes are class-level attributes and have the same characteris-
tics as class-level methods. A class-level attribute is a static variable, and it con-
tains the same value in all instantiated objects of the same type.

Not only are methods and attributes inherited by the subclasses, but asso-
ciations are also inherited. In Figure 12-11, the Sale object must be associated
with exactly one customer. Each subclass inherits the same association; it must
be associated with exactly one customer. Finally, notice that the title of the Sale
class is italicized. As defined in Chapter 4, an italicized class name indicates that
it is an abstract class—a class that can never be instantiated. In other words,
there are never any Sale class objects. All orders in the system must be instanti-
ated as one of the three subclasses, which are concrete classes, meaning that
every order in the system will be either a TelephoneSale, an OnlineSale, or an
InStoreSale. The purpose of an abstract class is illustrated by the figure. It pro-
vides a central holding place for all the attributes and methods that each of the
three subclasses will need. This example demonstrates one way that OOP imple-
ments reuse. The methods and attributes in the abstract superclass only need to
be written once in order to be reused by each of the subclasses.

 ■ Developing the First-Cut Design Class Diagram
To illustrate how to start the design process, this section develops a first-cut
design class diagram based on the domain model. Figure 12-12 is a partial
RMO domain model class diagram, as developed in Chapter 4.

class-level attribute an attribute that
contains the same value for all objects in the
system

season
year
description
startDate
endDate

Promotion

productID {key}
vendor
gender
description

ProductItem

price
specialPrice

PromoOffering

date
transactionType
amount
paymentMethod

SaleTrans

quantity
price
backorderStatus

SaleItem
saleID {key}
saleDate
priorityCode
shipping&Handling
tax
grandTotal

Sale

accountNo {key}
name
mobilePhone
homePhone
emailAddress
status

Customer

inventoryID {key}
size
color
options
quantityOnHand
averageCost
reorderQuantity

InventoryItem

1..*

0..*

0..*

1

1
0..*

1..*

1

1
1..*

0..*

1

FIGURE 12-12 Partial RMO Sales
subsystem domain model class
diagram

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

380 PART 5 ■ Advanced Design and Deployment Concepts

The first-cut design class diagram is developed by extending the domain
model class diagram. It requires two steps: (1) adding type and initial value
information to the attributes and (2) adding navigation visibility arrows. As
indicated earlier, object-oriented design is use-case-driven; so, let’s choose a use
case to start with and focus only on classes involved in that use case.

 ❚ Elaboration of Attributes
The elaboration of the attributes is fairly straightforward. The type information
is determined by the designer, based on his or her expertise. In most instances,
all attributes are kept invisible or private and are indicated with minus signs
before them. We also need to add a new compartment to each class for the addi-
tion of method signatures.

 ❚ Navigation Visibility
As stated earlier, an object-oriented system is a set of interacting objects. The
sequence diagrams document which interactions occur between which objects.
However, for one object to interact with another, the first object must be vis-
ible to the second object. In this context, navigation visibility refers to the
ability of one object to interact with and send messages to another object.
 Sometimes, developers refer to navigation visibility as just navigation or vis-
ibility. However, using just the term visibility can cause confusion with attri-
bute or method visibility. We will use either the term navigation visibility or
navigation to distinguish the concept from public and private visibility on
attributes and methods.

Figure 12-13 shows one-way navigation visibility between the Customer
class and the Sale class. It is called “one-way” because Customer can interact
with Sale, but Sale does not have a direct reference back to Customer. The navi-
gation arrow indicates that a Sale object must be visible to the Customer object.
Notice the variable called mySale in the Customer class. This variable refers to a
Sale instance. The mySale attribute is included in the example to provide a way
to actually implement it. This is quite different from the database concept of
including a foreign key. The mySale attribute is not the value of the key to a Sale
object, but it is an actual programming reference to the Sale object. You could
even think of it as having a Sale object embedded within the Customer object.
From a database point of view, you would do exactly the reverse. You would put
a foreign key of the Customer in the Sale data record to capture the one-to-many
relationship. (One customer has many sales.)

Now let’s think about adding navigation visibility to the RMO design class
diagram. Remember that you are designing just the first-cut class diagram, so
you might continue to modify the navigation arrows as the design progresses.

navigation visibility a design principle in
which one object has a reference to another
object and thus can interact with it

Customer

-accountNo: string {key}
-name: string
-mobilePhone: string
-homePhone: string
-status: string
-mySale: Sale

-saleID: int {key}
-saleDate: date
-priorityCode: string
-shipping&Handling: currency
-tax: currency
-totalAmt: currency
-mountainBucks: int

Sale

FIGURE 12-13 Navigation visibility
between Customer and Sale

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

381CHAPTER 12 ■ Object-Oriented Design: Fundamentals

You should ask the following basic question when building navigation visibil-
ity: Which classes need to have references to or be able to access which other
classes? Here are a few general guidelines:

 ■ One-to-many associations that indicate a superior/subordinate relationship are
usually navigated from the superior to the subordinate—for example, from
Sale to SaleItem. Sometimes, these relationships form hierarchies of navigation
chains—for example, from Promotion to ProductItem to InventoryItem.

 ■ Mandatory associations, where objects in one class can’t exist without
objects of another class, are usually navigated from the independent class to
the dependent class—for example, from Customer to Sale.

 ■ When an object needs information from another object, a navigation arrow
might be required, pointing either to the object itself or to its parent in a
hierarchy.

 ■ Navigation visibility arrows may be bidirectional—for example, a Sale
object might need to send a message to its Customer object as well as
the reverse.

The very first step you do when creating the first-cut design class diagram
is to add a controller class. You will learn more about controller classes in the
next chapter. Basically, the controller class is a switchboard between the input
screens and the programming logic classes, i.e. the domain classes, for a par-
ticular use case. In our examples, we will always create a controller class for
each use case, and place it between the user-interface classes and the problem
domain classes.

Figure 12-14 is a first-cut design class diagram for the use case Create tele-
phone sale based on the steps described earlier: add a controller class, elaborate
attributes, and identify navigation visibility. To elaborate the attributes, you add
type information and visibility. To add navigation visibility, you first identify
which classes may be involved and then determine the classes that require navi-
gation visibility to other classes. For example, for the Create telephone sale use
case, price information is in the PromoOffering class and description informa-
tion is in the ProductItem class. In most instances, it is unnecessary to put the
navigation visibility reference attribute in the class. (And, in fact, there are some
languages that do not require it.) In other words, the mySale attribute is redun-
dant to the information provided by the arrow. So, even though it was shown
in Figure 12-13 to emphasize the concept of navigation visibility, it is left off in
Figure 12-14 and subsequent figures.

As a reminder, one thing to remember about navigation visibility is that the
classes are programming classes, not database classes. So, we aren’t thinking
about foreign keys in a relational database. We are thinking about object refer-
ences in a programming language.

Figure 12-14 includes SaleHandler as the controller class. As mentioned pre-
viously, a controller class, or use case controller, is a utility class that helps in the
processing of a use case. Notice that it has navigation visibility at the top of the
visibility hierarchy and starts the use case by messaging a customer.

Three points are important to note: First, as design proceeds use case by use
case, you need to ensure that the sequence diagrams support and implement the
navigation visibility that was initially defined. Second, the navigation arrows
need to be updated as design progresses to be consistent with the design details.
Finally, method signatures will be added to each class based on the design deci-
sions made when creating the interaction diagrams for the use cases.

As discussed earlier and shown in Figure 12-8, for use cases that are simple,
a developer will often use CRC cards to design the detail flow of execution for
the use case from one class to another. The next section explains how CRC
cards can be used to design a use case.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

382 PART 5 ■ Advanced Design and Deployment Concepts

 ■ Designing with CRC Cards
CRC (class responsibility collaboration) cards are a brainstorming and
design technique that is quite popular among object-oriented developers. Devel-
opers use this technique during design to help identify responsibilities of the
class and the sets of classes that collaborate for a particular use case.

A CRC card is simply a 3 3 5 or 4 3 6 index card with lines that par-
tition it into three areas: class name, responsibility, and collaboration classes.
 Figure 12-15 illustrates the two sides of a CRC card from the RMO CSMS. The
card is partially filled out. Along the top of the card is the name of the class. The
left partition lists the responsibilities for objects in this class. Responsibilities
include information that the class maintains and actions that the class carries
out in support of a particular use case. The right partition lists other classes
with which this class collaborates in support of a particular use case. On the
back of the card, you have the option of listing important attributes that are
required for particular use cases.

The process of developing a CRC model is usually done in a brainstorm-
ing session. A design session using CRC cards already has substantial informa-
tion from which to begin. Before starting the design session, each team member
should have a copy of the domain model class diagram. The use case diagram or
list of use cases also needs to be available. Other detailed information, such as

«controller»
SaleHandler

Customer

-accountNo: string {key}
-name: string
-mobilePhone: string
-homePhone: string
-status: string

-saleID: int {key}
-saleDate: date
-priorityCode: string
-shipping&Handling: currency
-tax: currency
-totalAmt: currency
-mountainBucks: int

Sale

-saleItemID: int {key}
-quantity: int
-soldPrice: currency
-shipStatus: string
-backOrderStatus: string

SaleItem

-transactionID: int {key}
-saleDate: date
-transactionType: string
-amount: currency
-payMethod: string

SaleTransaction

PromoOffering

-PromoNo: string
-ProductID: string
-promoPrice: currency

-productID: string {key}
-gender: string
-description: string
-supplier: string
-manufacturer: string
-regularPrice: currency
-picture: blob

ProductItem

-inventoryID: string {key}
-size: string
-color: string
-options: string
-quantityOnHand: int
-averageCost: currency
-reorderQuantity: int

InventoryItem

FIGURE 12-14 First-cut RMO design class diagram for the Create telephone sale use case

©
 C

en
ga

ge
 L

ea
rn

in
g®

CRC cards a brainstorming and design
technique for designing interactions in use
cases by assigning responsibilities and
collaborations for classes

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

383CHAPTER 12 ■ Object-Oriented Design: Fundamentals

activity diagrams, system sequence diagrams, and use case descriptions, should
be provided, along with a stack of blank CRC-formatted index cards.

For each use case that needs to be designed, these steps are repeated:

1. Select a use case. Because the process is to design a single use case, start
with a set of unused CRC cards. The first card to include should be a use
case controller card.

2. Identify the first problem domain class that has responsibility for this use
case. This object will receive the first message from the use case control-
ler. Using the domain model that was developed during analysis, select one
class to take responsibility. Focus only on the problem domain classes. On
the left side of the card, write the object’s responsibility. For example, a
Customer object may take responsibility to make a new sale, so one respon-
sibility may be Create phone sale.

3. Identify other classes that must collaborate with the primary class to com-
plete the use case. In other words, identify the classes that have required
information or that need to be updated in this use case. As you identify a
collaborating class, go to the appropriate CRC card for that class and write
its responsibilities on the cards. Also, on the back of each card, write the
pertinent information about required attributes of each object class.

4. Another helpful step is to include the user-interface classes. If a user is
part of the team and if some preliminary work has been done on the user-
interface requirements, it could be effective to add CRC cards for all user-
interface window classes that are required for the use case. By including
user-interface classes, all the input and output forms can be included in the
design, making it much more complete.

5. Add any other required utility classes that are needed to the solution. For
example, for a three-layer design, data access classes will be part of the
solution. Usually, each persistent domain class will have a data access class
to read and write to the database.

At the end of this process, you will have a small set of CRC cards that col-
laborate to support the use case. This process can be enhanced with several
other activities. First, the CRC cards can be arranged on the table in the order
they are executed or called. In other words, the calling order can be determined
at this time.

To begin, let’s work through a simple use case. Referring back to
 Figure 12-8, we first choose a use case. Next, we create the first-cut design class
diagram with navigation. In Chapter 5, we identified a simple use case called

FIGURE 12-15 Sample CRC card (front and back)

Class name

Customer
update name
update address
request purchase history
process sale
make payment

Sale
Payment

accountNo
customerName
mobilePhone
homePhone
status

Responsibilities

Collaborating classes Attributes

Front of card Back of card

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

384 PART 5 ■ Advanced Design and Deployment Concepts

Create customer account. Figure 12-16 is the first-cut design class diagram,
with navigation visibility added. (Remember that this is simply a preliminary
assessment at navigation visibility; it may change as we proceed with the design.)
To create this, we first looked at all those domain classes that had associa-
tion relationships with the Customer class (see Figure 4-24), and selected those
that might be created or updated with this use case. For this use case, we only
selected the Account class and the Address class.

To learn how the CRC cards process works, let’s go through each step
listed above and develop the necessary CRC cards. We will use many other
requirements models that were created in previous chapters for this use case.
In Chapter 5, you saw an activity diagram (refer back to Figure 5-4) and a
system sequence diagram (refer back to Figure 5-10), which document the
results of analysis activities to determine requirements. That information will
also help define the responsibilities of the object classes. So the analysis mod-
els identify what needs to be done, but during design we may make changes
as we implement how to do it. Remember, however, that during design we
may need to make changes based on good design principles and programming
techniques.

1. We have selected the use case Create Customer Account. At this point, we
will call the controller card, CustomerHandler. Figure 12-17 illustrates this
card. The only responsibility that we have identified so far is a method to
create a new Customer object.

«controller»
CustomerHandler

Customer

-accountNo: string {key}
-name: string
-mobilePhone: string
-homePhone: string
-status: string

Address

-accountNo: string {key}
-typeOfAddress: string
-number: string
-street: string
-city: string
-state: string
-postalCode: string

Account

-accountNo: string {key}
-typeOfAccount: string
-creditCardNo: int
-creditCardDate: date

FIGURE 12-16 First-cut design
class diagram for Create
customer account use case

FIGURE 12-17 CRC card for
CustomerHandler CustomerHandler

create Customer Customer

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

385CHAPTER 12 ■ Object-Oriented Design: Fundamentals

2. The primary class responsible for creating a new customer account could
be the Customer class, so we will add a CRC card for Customer. It makes
sense that a Customer class takes responsibility for creating and updat-
ing anything having to do with customer details such as accounts and
addresses. The Customer class also has the responsibility to instantiate a
new object with a constructor method. Some developers like to include
constructor responsibilities, while others do not. In our example, we will
not include the constructor. The programmers will know that every class
requires at least one constructor. The input information for the constructor
can be found in the SSD, as shown in Figure 5-10. Figure 12-18 illustrates
the completion of step 2.

3. For the third step, we observe from Figure 5-4 and Figure 5-10 that there
are two other messages coming into the system. One message passes
address data and another message passes credit card information. Also
note in Figure 12-16 that there are two other classes involved in this use
case, Address and Account. When creating a new customer, the system
also needs to instantiate a new Account object, and at least one new
Address object, though there may also be multiple address objects created.
 Figure 12-19 illustrates the completion of step 3, except for the attributes,
which are not being shown in this example.

4. For the fourth step, we will add the user-interface classes. Input to this
design step will come from two sources, the parameters on the messages
as seen in Figure 5-10, and the screen designs and layouts designed during
input design. In this instance, let’s assume that the user requirement is to
have a starting screen that captures basic information such as name, phone
numbers, and e-mail addresses. A second input screen will allow enter-
ing address information, multiple times if necessary. A final input screen
will accept credit card information. Because there may be extra processing
required to verify credit information at that point, the user wanted to have
it on a separate input screen. Figure 12-20 illustrates this step in the CRC
design process.

5. For the fifth and final step, we add three more CRC cards for the data-
base access classes—one for each of Customer, Address, and Account.

FIGURE 12-18 CRC cards for
controller and Customer CustomerHandler

create Customer Customer

Customer

Address

Account

CustomerHandler

create Customer Customer

Customer

create Address
create Account

Address
Account

FIGURE 12-19 CRC cards for the problem domain classes

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

386 PART 5 ■ Advanced Design and Deployment Concepts

These three CRC cards are labeled CustomerDB, AddressDB, and
AccountDB. We would also need to add collaboration information on
the Customer, Address, and Account cards for these three additional
classes. Each of these three new cards will have responsibilities to update
the appropriate tables in the database. Figure 12-21 illustrates this final
set of CRC cards.

Referring back to our process as described in Figure 12-8, let’s update the
design class diagram with information from the last set of CRC cards. We ini-
tially showed navigation visibility from the controller to Customer, and from
Customer to Account and Address. The CRC cards and the decisions we made
when creating them confirms our initial assumptions. We could include all the
classes, i.e. the user-interface classes and the data access classes, if we so desired;
however, for this example we will only include the domain classes and the con-
troller class. To define complete method signatures, we will use the CRC cards

CustomerHandler
create Customer
create Address
create Account

Customer

Customer
create Address
create Account

Address
Account

Address

Account

CustomerScreen
accept customer info CustomerHandler

AddressScreen
accept address info CustomerHandler

CreditcardScreen
accept CC info CustomerHandler

FIGURE 12-20 CRC cards for Create customer account with input classes identified

CustomerScreen
accept customer info CustomerHandler

AddressScreen
accept address info CustomerHandler

CustomerHandler
create Customer
create Address
create Account

Customer

Customer
create Address
create Account

Address
Account
CustomerDB

CustomerDB
write Customer

AddressDB
write Address

AddressDB
write Account

Address
AddressDB

Account
AccountDB

CreditcardScreen
accept CC info CustomerHandler

FIGURE 12-21 CRC cards for Create customer account with DB classes

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

387CHAPTER 12 ■ Object-Oriented Design: Fundamentals

and information from the system sequence diagram (SSD). The methods in the
design class diagram are derived from the lists of responsibilities on each card.
In other words, each responsibility should translate to a method. The CRC cards
identify responsibilities, but do not normally include the complete method sig-
natures with parameters and returns. Not having to worry about parameters
simplifies the CRC card process, but it requires that the developer add that
information when the design class diagram is completed. Also, because we have
elected not to include the constructor responsibilities on CRC cards, we have
not included the constructor methods on the final design class diagram. So even
though there are no methods defined for Address or Account, we know that
there are constructor methods that execute when new objects are instantiated. If
we were to define multiple constructor methods with different parameters and
returns, we could add them to this final version of the design class diagram.
Figure 12-22 shows the updated design class diagram of the domain layer with
method signatures added for this use case.

Let’s show one more example. Figure 12-14, which we developed to illus-
trate design class diagram elements, contains the first-cut design class diagram
for the RMO use case Create telephone sale. We will complete this example and
show the set of CRC cards and the final design class diagram.

For this example, it makes sense that the Customer object creates a Sale
object, the Sale object creates SaleItem objects, and SaleItem objects access Pro-
ductItem, InventoryItem, and PromoOffering objects to get required informa-
tion. We had determined this when we created the first-cut design class diagram
in Figure 12-14. Figure 12-23 illustrates a solution set of CRC cards for the use
case Create telephone sale. The process payment responsibility in the Sale class
will cause a SaleTransaction to be created.

To finish the example, let us go back to the design class diagram and update
it based on the design information created during the CRC card brainstorming

«controller»
CustomerHandler

+createCustomer (name, mobilePhone, homePhone)
+createAddress (type, street, city, state, pcode)
+createAccount (type, ccNo, ccDate)

Customer

-accountNo: string {key}
-name: string
-mobilePhone: string
-homePhone: string
-status: string

+createAddress (no, type, street, city, state, pcode)
+createAccount (no, type, ccNo, ccDate)

Address

-accountNo: string {key}
-typeOfAddress: string
-number: string
-street: string
-city: string
-state: string
-postalCode: string

Account

-accountNo: string {key}
-typeOfAccount: string
-creditCardNo: int
-creditCardDate: date

FIGURE 12-22 DCD with method signatures added from CRC cards

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

388 PART 5 ■ Advanced Design and Deployment Concepts

session. Figure 12-24 shows an updated design class diagram, with methods
navigation visibility updates added. Note that the SaleHandler class needs vis-
ibility to the Sale class to process a payment. Compare the responsibilities iden-
tified on the CRC cards and the method names described in each class. Note the
close correlation. Also remember that we have not included constructors. So for
example, the SaleTransaction has a constructor method, which is not shown, to
process the payment by instantiating a new SaleTransaction object.

Often, when developers begin using CRC cards, they assign many different
responsibilities for a given class. For example, developers might say the SaleItem
class should get the price. In reality, the PromoOffering class provides the price
and the SaleItem only uses it. In other words, it helps to think of responsibili-
ties as being similar to methods—requests to do something rather than random
actions that need to occur.

As method names and navigation visibility are added to the design class
diagram for each use case, the overall diagram grows and becomes the central
repository of all information about every class in the new system. Each set of
CRC cards, or interaction diagrams as shown in the next chapter, can be used
for programming the new system. The overall design class diagram becomes a
source for verification that all use cases have been programmed completely and
accurately.

Now that you have some idea of the design process, let’s go back through
and think about what makes a good design.

 ■ Fundamental Principles for Good Design
With something as complex as a software application, there are probably an
infinite number of design and programming solutions that will work. Some solu-
tions will be “good” solutions, while many other solutions would be considered
“bad” solutions. In Online Chapter C, “Project Management Techniques,” the
PMBOK area of Project Quality Management identified several characteristics
of “good” software. Included were several characteristics related to usability of
the software application and fitness for its intended use. Other characteristics
focused on robustness, reliability, and maintainability of the software itself.

SaleHandler
start new sale
accept item request
accept payment

Customer
Sale

Customer
process new sale Sale

ProductItem
provide description

InventoryItem
provide quantity
update quantity
order new supply

provide price

PromoO�ering Sale
add/delete item
process payment

SaleItem
SaleTransaction

SaleItem
delete item
request backorder

PromoOffering
ProductItem
InventoryItem

SaleTransaction

NewSaleWindow
accept input
display results
accept payment

SaleHandler

Inquire-addItemWindow
accept item-data
display item info

SaleHandler

FIGURE 12-23 CRC cards model for Create telephone sale use case

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

389CHAPTER 12 ■ Object-Oriented Design: Fundamentals

These characteristics determine the quality of the design. In other words, they
indicate the “goodness” of the detailed design and the implementation of the
new system. Although understanding and using the following design principles
will not guarantee a high-quality design, applying these principles will increase
the probability that the design is solid. Ignoring the following principles will
almost certainly ensure a less-than-optimal software design.

The following discussion of good design principles is a launching point for
you to understand how to design high-quality software. However, it is not a
comprehensive discussion. There are many good books and articles on the prin-
ciples of good object-oriented design, which further explain principles and tech-
niques of good design.

 ■ Object Responsibility
One of the most fundamental principles of object-oriented design is the idea of
object responsibility; that is, objects should be responsible for carrying out
system processing. These responsibilities are categorized in two major areas:
knowing and doing. In other words, what is an object expected to know and
what is an object expected to do or to initiate?

Customer

-accountNo: string {key}
-name: string
-mobilePhone: string
-homePhone: string
-status: string

-saleID: int {key}
-saleDate: date
-priorityCode: string
-shipping&Handling: currency
-tax: currency
-totalAmt: currency
-mountainBucks: int

Sale

-saleItemID: int {key}
-quantity: int
-soldPrice: currency
-shipStatus: string
-backOrderStatus: string

SaleItem

PromoOffering

-promoNo: string
-productID: string
-promoPrice: currency

-productID: string {key}
-gender: string
-description: string
-supplier: string
-manufacturer: string
-regularPrice: currency
-picture: blob

ProductItem

-inventoryID: string {key}
-size: string
-color: string
-options: string
-quantityOnHand: int
-averageCost: currency
-reorderQuantity: int

InventoryItem

+processNewSale (...) +addItem (...)
+deleteItem (...)
+processPayment (...)

+deleteltem (...)
+requestBackorder (...)

+getPrice (...) +getDescription (...) +getQOH (...)
+updateQOH (...)
+orderSupply (...)

«controller»
SaleHandler

+startNewSale (...)
+acceptItemRequest (...)
+acceptPayment (...)

SaleTransaction

-transactionID: int {key}
-saleDate: date
-transactionType: string
-amount: currency
-payMethod: string

FIGURE 12-24 Updated DCD for
Create telephone sale use case

©
 C

en
ga

ge
 L

ea
rn

in
g®

object responsibility a design principle in
which objects are responsible for carrying out
system processing

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

390 PART 5 ■ Advanced Design and Deployment Concepts

Knowing includes an object’s responsibilities for knowing about its own
data and knowing about other classes with which it must collaborate to carry
out use cases. Obviously, a class should know about its own data, what attri-
butes exist, and how to maintain the information in those attributes. It should
also know where to go to get information when required. For example, dur-
ing the instantiation of an object, data that aren’t passed as parameters may be
required. An object should know about or have navigation visibility for other
objects that can provide the required information. For example, in Figure 12-2,
the first constructor method for the Student class doesn’t receive a studentID
value as a parameter. Instead, the Student class takes responsibility for creat-
ing a new studentID. It will know how to create a studentID according to an
internal algorithm, such as an “autonumber next higher number” algorithm, or
perhaps a globally unique identifier routine.

Doing includes all the activities an object performs to complete a use case.
Some of those activities include receiving and processing messages. Another
activity is to instantiate, or create, new objects that may be required for comple-
tion of a use case. Classes must collaborate to carry out a use case, and some
classes are responsible for coordinating the collaboration. For example, in the
use case Create phone sale, the Sale class has responsibility to create SaleItem
objects. Another class, such as InventoryItem, is only responsible for provid-
ing information about itself. Good design dictates that the developer pay close
attention to recognizing and assigning responsibilities to the appropriate objects.

 ■ Separation of Responsibilities or Separation of Concerns
Separation of responsibilities, also called separation of concerns, is a design
principle that is applied to a group of classes rather than to each class indi-
vidually. The basic idea of separation of responsibilities is to segregate classes
into packages or groupings based on a primary focus of processing responsi-
bility. Separation of responsibilities is the fundamental principle behind multi-
layer design. In multilayer design, there are user-interface classes, business logic
classes, and data access classes. Each layer has a particular focus or area of
responsibility. Classes that share the same focus or concern are grouped together
in a layer. This design principle allows flexibility in system deployment because
different layers, i.e., a grouping of classes, can be located on different computers
or at different locations.

 ■ Protection from Variations
Another underlying principle of good design is protection from variations—
the principle that the parts of a system that are unlikely to change should be seg-
regated (or protected) from those that will change. As you design systems, you
should try to isolate the parts that will change from those that are more stable.

Protection from variations is a principle that affects the multilayer design
pattern. Designers could mix all the user-interface logic and business logic
together in the same classes. In fact, in early user-oriented, event-driven sys-
tems, such as those built with early versions of Visual Basic and PowerBuilder,
the business logic was included in the view layer classes—often in the Windows
input forms. Many Web applications also combine HTML and business logic.
The problem with this design was that when an interface needed to be updated,
all the business logic had to be rewritten. A better approach is to decouple
the user-interface logic from the business logic. Then, the user interface can
be rewritten without affecting the business logic. In other words, the business
logic—being more stable—is protected from variations in the user interface.

Also, what if updates to the business logic require the addition of new
classes and new methods? For example, if the user interface is included as part
of the business classes, then changing the business logic would impact the user

separation of responsibilities a design
principle that recommends segregating
classes into separate packages or group-
ings based on a primary focus of processing
responsibility

protection from variations a design
principle in which parts of a system that are
unlikely to change are segregated from those
that will

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

391CHAPTER 12 ■ Object-Oriented Design: Fundamentals

interface. However, building the system with a use case controller allows the
user interface to simply send all its input messages to the use case controller
class. Thus, changes to the methods or classes in the business logic and domain
layer are isolated to the controller class. You will find that protection from vari-
ations affects almost every design decision, so you should watch for and recog-
nize the application of this principle in all design activities.

 ■ Indirection
Indirection is the principle of separating two classes or other system compo-
nents by placing an intermediate class between them to serve as a link. In other
words, instructions don’t go directly from A to B; they are sent through C first.
Or in message terminology, don’t send a message from A to B. Let A send the
message to C and then let C forward it to B.

Although there are many ways to implement protection from variations,
indirection is frequently used for that purpose. Inserting an intermediate object
allows any variation in one system to be isolated in that intermediate object.
Indirection is also useful for many corporate security systems. For example,
many companies have firewalls and proxy servers that receive and send mes-
sages between an internal network and the Internet. A proxy server appears as a
real server—ready to receive such messages as e-mail and HTML page requests.
However, it is a fake server, which catches all the messages and redistributes
them to the recipients. This indirection step allows security controls to be put in
place and protect the system.

A common example of indirection that we have been using throughout is the
insertion of a use case controller. The controller is a separate class that receives
all the inputs and directs it to the appropriate domain classes.

 ■ Coupling
This principle, coupling, and the next principle, cohesion, were originally
defined during the early days of software design and programming. However,
both principles continue to be extremely important and applicable to object-
oriented design.

In the previous examples throughout the text of the RMO class diagram,
you have seen that the Customer class and the Sale class are linked together in
an association relationship. Another term for this linking is coupled. Coupling
is a qualitative measure of how closely the classes in a design class diagram are
linked. A simple way to think about coupling is by the number of association
relationships and whole/part relationships on the design class diagram. Previ-
ously, you learned about navigation visibility, which measures what a class can
link to and access. Low coupling is usually better for a system than high cou-
pling. For example, a Customer object can access a Sale object that belongs to
it. However, if it can also directly access the SaleItem, that would be too much
coupling. Only the Sale object should be able to access its own SaleItem objects.

We say that coupling is a qualitative measure because no specific number
measures coupling in a system. It is a global measure that applies to a set of
classes for a particular use case design. It does not measure an individual class.
A designer must develop a feel for coupling—that is, recognize when there is too
much or too little. Coupling is evaluated as a design progresses—use case by use
case. Generally, if each use case design has a reasonable level of coupling, the
entire system will too.

Refer back to Figure 12-1 to observe the flow of messages between the
objects. Obviously, objects that send messages to each other must have visibility
and thus are coupled. For the Input window object to send a message to the Stu-
dent object, it must have visibility, or be coupled, to it. The Input window object
isn’t connected to the Database access object, so those objects aren’t coupled.

indirection a design principle in which an
intermediate class is placed between two
classes to decouple them but still link them

coupling a qualitative measure of how
closely the classes in a design class diagram
are linked

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

392 PART 5 ■ Advanced Design and Deployment Concepts

If we designed the system so the Input window object accessed the Database
access object, the overall coupling for this use case would increase; that is, there
would be more connections. Is that good or bad? In this simple example, it
might not be a problem. But for a system with 10 or more classes, too many
connections with visibility can cause high levels of coupling, making the system
more complex and therefore harder to maintain.

So, why is high coupling bad? The main reason is that a change in one class
ripples through the entire system and may cause methods to fail. Therefore,
experienced analysts make every effort to simplify coupling and reduce ripple
effects in the design of a new system.

 ■ Cohesion
Cohesion refers to the consistency of the functions within a single class and is a
qualitative measure of its focus or unity of purpose. Unlike coupling (where you
want low coupling), classes need to be highly cohesive to be well designed. For
example, in Figure 12-1, you would expect the Student class to have methods—
that is, functions—to enter student information, such as identification number
or name. That would represent a unity of purpose and a highly cohesive class.
But what if that same object also had methods to make classroom assignments
or assign professors to courses? The cohesiveness of the class would be reduced.

Classes with low cohesion have several negative effects. First, they are hard
to maintain. Because they perform many different functions, they tend to be
overly sensitive to changes within the system, suffering from ripple effects.
 Second, it is hard to reuse such classes because they have many different—and
often unrelated—functions. For example, a button class that processes button
clicks can easily be reused. However, a button class that processes both button
clicks and user log-ins has limited reusability. A final drawback is that classes
with low cohesion are usually difficult to understand. Frequently, their func-
tions are intertwined and their logic is complex.

Although there is no firm metric to measure cohesiveness, we can think
about classes as having very low, low, medium, or high cohesion. Remember,
high cohesion is the most desirable. An example of very low cohesion is a class
that has responsibility for services in different functional areas, such as a class
that accesses both the Internet and a database. These two types of activities are
different and accomplish different purposes. To put them together in one class
causes very low cohesion.

An example of low cohesion is a class that has different responsibilities, but
in related functional areas—for example, a class that handles all database access
for every table in the database. It would be better to have different classes to
access customer information, order information, and inventory information.
Although the functions are the same—that is, they access the database—the
types of data passed and retrieved are very different. Thus, a class that is con-
nected to the entire database isn’t as reusable as one that is only connected to the
Customer table.

An example of medium cohesion is a class that has closely related responsi-
bilities, such as a single class that maintains customer information and customer
account information. A better design would be to define two highly cohesive
classes: One class could be defined for customer information, such as names
and addresses, and another class or set of classes could be defined for customer
accounts, such as balances, payments, credit information, and all financial activ-
ity. If the customer information and the account information are limited, they
could be combined into a single class with medium cohesiveness. Either medium
or highly cohesive classes can be acceptable in systems design.

Now let’s begin the detailed design process by investigating the properties
and details of the design class diagram.

cohesion a qualitative measure of the
focus or unity of purpose within a single class

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

393CHAPTER 12 ■ Object-Oriented Design: Fundamentals

is refined and expanded as the sequence diagrams are
developed. One method of determining which objects
collaborate is to use class responsibility collaboration
(CRC) cards. For simple use cases, a set of CRC cards
may be sufficient to write code. For more complex use
cases, other interaction diagrams are normally used.

One reason that we suggest a more formal system
of design, rather than just starting to write code is
that the final system is much more robust and main-
tainable. Design as a rigorous activity builds better
systems. Some fundamental principles should be con-
sidered as a system is developed; specifically, two criti-
cal ideas are coupling and cohesion. A good system
has low coupling between the classes, and each of the
classes has high cohesion. Another important principle
is “protection from variations,” meaning that some
parts of the system should be protected from and not
tightly coupled to other parts of the system that are
less stable and subject to change. Being a good devel-
oper entails learning and following the principles of
good design.

The ultimate responsibility of system developers is to
write computer software that solves a business prob-
lem. This chapter focuses on how to configure and
develop the solution system—that is, how to design
the details of the new system. Systems design is the
bridge that puts business requirements in terms that
the programmers can use to write the software that
becomes the solution system.

Using all the requirements models as well as the
architectural design, object-oriented design extends
the models so programming can proceed. The objec-
tive of object-oriented design is to determine the
methods within individual classes that are needed to
implement the use cases. The process of design is use-
case-driven, in that it is done one use case at a time.

The process of object-oriented design can be
divided into two major areas: developing a design class
diagram (DCD) and identifying the methods for each
use case via an interaction diagram. The DCD is usu-
ally developed in two steps. A first-cut DCD is created
based on the domain model class diagram, but then it

CHAPTER SummARy

data access class

entity class

indirection

instantiation

method signature

navigation visibility

object-oriented design

object responsibility

persistent class

protection from variations

separation of responsibilities

stereotype

visibility

boundary or view class

class-level attribute

class-level method

cohesion

controller class

coupling

CRC (class responsibility
collaboration) cards

KEy TeRmS

 1. Describe in your own words how an object-
oriented program works.

 2. What is instantiation?

 3. List the models that are used for object-oriented
systems design.

 4. Explain how domain classes are different from
design classes.

 5. What is the difference between a system sequence
diagram and a sequence diagram?

 6. In your own words, list the flow of steps for doing
object-oriented design.

 7. What do we mean by use-case-driven design?

 8. Explain in your own words what coupling means
and why it is important.

 9. Explain what cohesion means and why it is
important.

 10. Compare and contrast the ideas of coupling and
cohesion.

 11. What is protection from variations, and why is it
important in detailed design?

 12. What is meant by object responsibility, and why is
it important in detailed design?

REvIEw QueSTIOnS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

394 PART 5 ■ Advanced Design and Deployment Concepts

 18. What information is added to the domain model
to derive the first-cut DCD?

 19. Describe navigation visibility. Why is it important
in detailed design?

 20. List some typical conditions that dictate in which
direction navigation visibility occurs.

 21. What information is maintained on CRC cards?

 22. What is the objective of a CRC card design session?

 23. How are CRC cards used to update the DCD?

 13. What is meant by separation of responsibilities?

 14. What are (a) persistent classes, (b) entity classes,
(c) boundary classes, (d) controller classes, and
(e) data access classes?

 15. What are class-level methods and class-level
attributes?

 16. What is a method signature?

 17. Compare and contrast abstract and concrete
classes. Give an example of each.

PROBlemS AnD exeRCISeS
 1. In this chapter, we developed a first-cut DCD,

a set of CRC cards, and a final DCD for the
Create customer account use case for RMO.
Create the same three drawings for the Ship
items use case. (Hint: Figure 5-3 contains a use
case description.)

 2. Find a company that does object-oriented
design using CRC cards. The information
systems unit at your university often uses
object-oriented techniques. Sit in on a CRC
design brainstorming session. Interview some
of the developers about their feelings regarding
the effectiveness of doing CRC design. Find out
what documentation remains after the sessions
and how it is used.

 3. Find a system that was developed by using Java.
If possible, find one that has an Internet user
interface and a network-based user interface. Is
it multilayered—three layers or two layers? Can
you identify the view layer classes, the domain
layer classes, and the data access layer classes?

 4. Find a system that was developed by using Visual
Studio .NET (Visual Basic or C#). If possible,
find one that has an Internet user interface and a
network-based user interface. Is it multilayered?
Where is the business logic? Can you identify the

view layer classes, the domain layer classes, and
the data access layer classes?

 5. Pick an OOP language with which you are famil-
iar. Find a programming IDE tool that supports
that language. Test its reverse-engineering capa-
bilities to generate UML class diagrams from
existing code. Evaluate how well it does and how
easy the models are to use. Can it input UML
diagrams and generate skeletal class definitions?
Write a report on how it works and what UML
models it can generate.

 6. Draw a UML design class that shows the follow-
ing information:

The class name is Boat, and it is a concrete
entity class. All three attributes are private
strings with initial null values. The attribute
boat identifier has the property of “key.” The
other attributes are the manufacturer of the
boat and the model of the boat. There is also
an integer class-level attribute containing the
total count of all boat objects that have been in-
stantiated. Boat methods include creating a new
instance; updating the manufacturer; updating
the model; and getting the boat identifier, manu-
facturer, and model year. There is a class-level
method for getting the count of all boats.

The State Patrol Ticket-Processing
System (Revisited)
In Chapter 3, you identified use cases and considered the
domain classes for the State Patrol ticket-processing sys-
tem. Review the descriptions in that chapter for the use
case Record a traffic ticket. Recall that the domain classes
included Driver, Officer, Ticket, and Court.

1. Draw a DCD for the ticket-processing system based
on the four classes just listed and include attributes,
association, and multiplicity.

2. List the classes that would be involved in the use
cases and decide which class should be responsible
for collaborating with the other classes for the use
case Record a traffic ticket. Consider some possibili-
ties: (1) A Driver object should be responsible for

CASE Study

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

395CHAPTER 12 ■ Object-Oriented Design: Fundamentals

recording his/her ticket, (2) the Officer object should
be responsible for recording the ticket that he or she
writes, and (3) a Ticket object should be responsible
for recording itself.

3. Create a set of CRC cards showing these classes,
responsibilities, and collaborations for the use case.

4. Draw a DCD based on your CRC cards. Include method
names.

Community Board of Realtors®

In Chapter 3 and Chapter 5, you identified and then
modeled use cases for the Multiple Listing Service
(MLS) application. You also identified and modeled
domain classes. Use your solutions from these chapters
to do the following:

 1. Draw a first-cut design class diagram (DCD) based
on the domain classes for the Create new listing
use case.

 2. Use the CRC cards technique to verify the
classes that are involved in the Create new

listing use case. Recall that creating a new list-
ing involves an agent, a real estate office, and
a listing. Decide which class should have the
primary responsibility for collaborating with
the other classes and then complete the CRC
cards for the use case.

 3. Update the design class diagram with method
names from the CRC cards. For this solution,
do not try to determine entire method signa-
tures, just the names.

RUnnInG CaSe StudieS

The Spring Breaks ‘R’ us Travel Service
In Chapter 3, you identified use cases for the Spring
Breaks ‘R’ Us Travel Service. In Chapter 4, you iden-
tified the classes associated with these use cases. In
Chapter 5, you elaborated those use cases. Using your
solutions from these chapters, do the following:

 1. Draw a first-cut design class diagram (DCD) for
the Book a reservation use case.

 2. Use the CRC cards technique to verify
the classes that are involved in the Book a

reservation use case. Recall that creating a
booking involves at least a student group, a
resort, a week, and a room type. Decide which
class should have the primary responsibility for
collaborating with the other classes and then
complete the CRC cards for the use case.

 3. Update the design class diagram with method
names from the CRC cards. For this solution, do
not try to determine entire method signatures,
just the names.

On the Spot Courier Services
In Chapter 6, you considered the issues relevant to the
specification of the hardware equipment and network-
ing requirements. The case description in Chapter 6
also reviewed the three primary types of users for the
system and many of their respective system-supported
activities.

In Chapter 5, you developed activity diagrams and
system sequence diagrams for two use cases: Request a
package pickup and Pickup a package. In Chapter 4, you
developed a domain model class diagram for the system.

 1. For each of the two use cases, develop a
first-cut DCD and a set of CRC cards.
The design class diagram should elaborate

the attributes and show navigation visibil-
ity. You may also need to add more classes
from your solution in Chapter 4. It isn’t
uncommon for developers to enhance early
models as they begin to understand system
requirements better. The CRC cards should
include classes for the controller class and
any classes for screens you identified in
Chapter 7.

 2. Update the DCD with method names from
the CRC cards. For this solution, do not try
to determine entire method signatures, just
the names.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

396 PART 5 ■ Advanced Design and Deployment Concepts

Sandia medical Devices
Review the original system description in Chapter 2,
additional project information in Chapters 3, 4, 6, 8,
and 9, and the use case diagram shown in Figure 12-25
to refamiliarize yourself with the proposed system.

Complete these tasks:

 1. For the moment, assume that the database
will store two glucose levels for each patient—
normal minimum and normal maximum—and

that an alert will be generated if three or more
consecutive glucose readings are above or below
those levels. Expand the domain class diagram in
Chapter 4 to include this information and then
develop a first-cut design class diagram to sup-
port the patient use case View/respond to alert.

 2. Develop a design solution using CRC cards for
the View/respond to alert use case.

View/respond
to alert.

View history.

Annotate history.

Send message
to physician.

View/hear
message from

physician.

View/respond
to alert.

Send message
to patient.

View/hear
message from

patient.

Set alert
conditions.

Patient Physician

FIGURE 12-25 Use cases for the patient and physician actors

©
 C

en
ga

ge
 L

ea
rn

in
g®

Grady Booch, James Rumbaugh, and Ivar Jacobson,
The Unified Modeling Language User Guide.
Addison-Wesley, 1999.

Grady Booch, et al., Object-Oriented Analysis and
Design with Applications (3rd ed.). Addison-
Wesley, 2007.

E. Reed Doke, J. W. Satzinger, and S. R. Williams,
Object-Oriented Application Development Using
Java. Course Technology, 2002.

E. Reed Doke, J. W. Satzinger, and S. R. Williams,
Object-Oriented Application Development Using
Microsoft Visual Basic .NET. Course Technology,
2003.

Hans-Erik Eriksson, Magnus Penker, Brian Lyons, and
David Fado, UML 2 Toolkit. John Wiley & Sons, 2004.

Martin Fowler, UML Distilled: A Brief Guide to the
Standard Object Modeling Language (3rd ed.).
Addison-Wesley, 2004.

Ivar Jacobson, Grady Booch, and James Rumbaugh,
The Unified Software Development Process.
Addison-Wesley, 1999.

Philippe Kruchten, The Rational Unified Process, An
Introduction. Addison-Wesley, 2000.

Craig Larman, Applying UML and Patterns: An Intro-
duction to Object-Oriented Analysis and Design
and the Unified Process (3rd ed.). Prentice Hall,
2004.

Robert Martin C. Agile Software Development,
Principles, Patterns, and Practices. Prentice Hall,
2002.

Jeffrey Putz, Maximizing ASP.NET Real World,
Object-Oriented Development. Addison-Wesley,
2005.

James Rumbaugh, Ivar Jacobson, and Grady Booch,
The Unified Modeling Language Reference Manual.
Addison-Wesley, 1999.

FURTHER ReSOuRCeS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter ThirTeen

Object-Oriented Design:
Use Case Realization

Learning ObjeCtives
After reading this chapter, you should be able to:

Explain the different types of objects and
layers in a design

Develop communication diagrams for use
case realization

Develop sequence diagrams for use case
realization

Develop updated design class diagrams

Develop multilayer subsystem packages

Explain design patterns and recognize various
specific patterns

Object-Oriented Design with Interaction
Diagrams

Use Case Realization with Communication
Diagrams

Use Case Realization with Sequence Diagrams

Developing a Multilayer Design

Updating and Packaging the Design Classes

Design Patterns

Chapter OutLine

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

398 PART 5 ■ Advanced Design and Deployment Concepts

 ■ Overview
In Chapter 12, you learned the objective of object-oriented design and the fun-
damental approach. In Figure 12-3, you learned that design includes informa-
tion about the classes and about the processes. In Figure 12-8, you learned the
approach to (1) select a use case, (2) identify the classes involved and begin the
design class diagram, (3) choose a modeling technique to identify the messages
and methods, and (4) finalize the class methods in the design class diagram.

This chapter pursues object-oriented detailed design in more depth and
formality. This chapter focuses on the foundation principles, which are based
on the concepts of use case realization by using UML interaction diagrams
and design patterns. You will learn how to use communication diagrams and
sequence diagrams to extend the input messages and define internal messages.
These techniques will first focus on the problem domain classes and then extend
to multilayer design.

The last section of this chapter is a brief introduction to design patterns.
As with any engineering discipline, certain procedures have become tried and
proven solutions. Even though object-oriented development is a relatively young
engineering discipline, it offers standard ways to design use cases that lead to
solid, well-constructed solutions. You will learn a few of those standard designs
or patterns.

Opening Case New Capital BaNk: part 2

The integrated customer account system project for
New Capital Bank was now two months old. The first
development iteration had gone pretty well, although
there were a few snags because the team was still learn-
ing the ins and outs of iterative development projects.
Bill Santora, the project leader, was discussing some
of the system’s technical details with Charlie Hensen,
one of his team leaders, in preparation for the iteration
retrospective.

“How is the team feeling about doing detailed
 design?” Bill asked Charlie, who was one of the early
critics of doing more formal design. “I know some of
the programmers wanted to just start coding from the
use case descriptions that were developed with the
users. They weren’t very happy about taking the time to
design. Is that still a problem?”

“It really has worked out quite well,” Charlie said.
“As you know, I was skeptical at first and thought it
would waste a lot of time. Instead, it has allowed us to
work together better because we know what the other
team members are doing. I also think the system is
much more solid. We’re all using the same approach, and
we’ve discovered that there are quite a few classes we
share. Of course, we don’t waste a lot of time making
fancy drawings. We do document our designs with tem-
porary drawings, but that is about as far as we take it.”

“What would you say were the strengths and weak-
nesses of our approach?” Bill asked, “Or are there ways
you think we could do it better in this next iteration?”

“I really like the approach of first doing a rough de-
sign using CRC cards,” Charlie replied. “It’s nice to have
a couple of users there with us to verify that our col-
laborations are correct. For the simple use cases, we
can work with the users to lay out the user interface.
Between the CRC cards and the user-interface specifi-
cations, we should have enough to program from, espe-
cially now that we have the basic structure set up. Then,
for the more complex use cases, we can go ahead and
do a detailed design with communication diagrams or
sequence diagrams. The nice thing about these interac-
tion diagrams is that they’re detailed enough for us to
hand the designs over to some of the junior program-
mers. It makes them much more effective in their team
contributions.”

“So, would you change our approach or do you think
it’s working the right way?” Bill asked, still looking for
ways to improve the process.

“Well, it really is working pretty well right now,”
Charlie said. “One thing I really like about it is that we
have a common domain class diagram that everyone
can access and review. That really helps when you’re
ready to insert some code into a class to check and see
what is already there. The central repository for all our
code and for the diagrams we do formalize is a great
tool. I wonder if there is a way to get more use out of
that tool. Other than that, I would say let’s stick with this
approach for another iteration and see if it needs chang-
ing after that.”

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

399CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

 ■ Object-Oriented Design with Interaction Diagrams
The discussion of CRC cards in Chapter 12 introduced the idea of collaborating
objects to execute various use cases. Design sessions using CRC cards focus on
the problem domain classes and their responsibilities. Even though we did add
multilayer classes to the CRC cards, the actual details of how all the layers and
classes work together was not addressed. Because the CRC card method focuses
on simple use cases, the details of the interactions between classes and layers is
left to the programmer. This chapter describes in depth the detailed design of all
layers of a multilayer system.

In Figure 12-1, there are three objects representing the three layers of a system.
Each object has certain responsibilities. The input window object has the primary
responsibility of formatting and presenting student information on the screen.

The student object represents the middle layer, or business logic layer, for
the use case. This chapter formalizes the process of precisely identifying meth-
ods and defining method signatures, particularly for this layer.

The database access object represents the third layer in the multilayer design.
It is responsible for connecting to the database, reading the student information,
and sending it back to the student object. It is also responsible for writing the
student information back to the database when necessary. This object doesn’t
come from a problem domain class; it is a utility object created by the designer.

Several questions should come to mind as you review a detailed systems design.
First, how do all these objects get created in memory? For example, how and when
does the student object get created? How about the database access object? Other
questions include: Will other objects be necessary? What object represents authen-
tication? What is the life span of each object? Maybe the student object should go
away after the update—but what about the database access object?

The method used to extend the process of detailed design is called use case
realization. In use case realization, each use case is taken individually to deter-
mine all the classes that collaborate on it. As part of that process, any other util-
ity or support classes are identified. Care is taken during this process to define
the classes so the integrity of the multilayer architectural design is maintained.
As the details of the classes are designed—use case by use case—the design class
diagram is also updated as necessary.

As you saw in Figure 12-8, in addition to CRC cards, there are two other
models that are useful for systems design—communication diagrams and
sequence diagrams. Developing interaction diagrams is at the heart of object-
oriented design. The realization of a use case—determining what objects col-
laborate and the messages they send to each other to carry out the use case—is
done through the development of an interaction diagram. Two types of inter-
action diagrams can be used during design: communication diagrams and
sequence diagrams.

Both communication diagrams and sequence diagrams are a type of UML
interaction diagram. Figure 13-1 is a partial class diagram illustrating this fact.
It also shows a few composition classes for each diagram class.

Each type of diagram is capable of providing a rigorous method for use case
realization. Interaction diagrams, as the name implies, focus on the interac-
tions between the objects that are required to execute a particular use case. The
interactions between the objects are called messages. These methods translate
directly to the class methods that support the use case. We saw a little bit of
this idea with the “responsibilities” that are identified on CRC cards. However,
interaction diagrams are more formal and precise in defining these interactions
between objects and across layers.

Both communication diagrams and sequence diagrams provide the same
basic information. However, communication diagrams are a little less detailed
and provide a broad “overview” picture of the interactions. Sequence diagrams

use case realization the process
of elaborating the detailed design with
interaction diagrams for a particular use case

communication diagram type of inter-
action diagram that emphasizes the objects
that send and receive messages for a specific
use case

sequence diagram type of interaction
diagram that emphasizes the sequence of
messages sent between objects for a specific
use case

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

400 PART 5 ■ Advanced Design and Deployment Concepts

are more detailed and allow the designer to visually document the process flow
of the messages. This chapter begins the discussion with communication dia-
grams and then moves to sequence diagrams. First, the following section briefly
discusses the concept of a use case controller.

 ■ The Use Case Controller
The previous chapter briefly introduced the concept of a use case controller in
the discussion of CRC cards, but did not elaborate on its use. In reality, a con-
troller class is part of a popular design technique called Model-View-Controller.
(This technique is discussed in more detail in the “Use Case Controller” section
under “Design Patterns.”)

Let us formalize the concept of a use case controller. For any particular use
case, messages come from the external actor to a windows class—that is, an
electronic input form—and then to a problem domain class. One issue in sys-
tems design is the question of which problem domain class should receive input
messages to reduce coupling, maintain highly cohesive domain classes, and pro-
tect from variations between the user interface and the domain layer. (Do you
remember these good design principles discussed in Chapter 12?) Designers often
define intermediary classes that act as buffers between the user interface and the
domain classes. These classes are called use case controllers. For example, the
use case Fill shopping cart might have a controller class named CartHandler.

A use case controller acts as a switchboard, taking input messages and rout-
ing them to the correct domain class. In effect, the use case controller acts as an
intermediary between the outside world and the internal system. What if a par-
ticular window object needs to send messages to several problem domain objects?
Without the use case controller, the input window would need references to all
these domain objects. The coupling between the input window object and the
internal system would be very high; there would be many connections. The cou-
pling between the user-interface objects and the problem domain objects could
be reduced by making a single use case controller object to handle all the input
messages. In this way, domain layer design classes can remain more cohesive by
focusing only on the precise functions that truly belong to that domain object.

The following examples define a controller class for each use case. This is
a common practice, and many development environments (such as Java Struts)
automatically define a controller class for each use case. Of course, this creates
many artifact objects in a system. If there are 100 use cases, there would be
100 use case controller artifact objects. To reduce the number of controllers,
developers sometimes combine the control of several closely related use cases
into a single use case controller. Either approach, if done judiciously, provides a

Link

Message

Object

InteractionDiagram

CommunicationDiagram SequenceDiagram Timeline

FIguRe 13-1 Communication diagrams and sequence diagrams are interaction diagrams

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

401CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

good solution. A use case controller is a completely artificial class created by the
person doing the system design. Sometimes, such classes are called artifacts or
artifact objects.

 ■ Use Case Realization with Communication Diagrams
Adaptive projects that use iteration and Agile modeling techniques minimize the
formality of design diagrams. In this chapter (and possibly for your homework
assignments), the diagrams will be developed using Microsoft Visio. However,
in real projects, hand-drawn diagrams can be scanned and transmitted to all
the team members just as easily. Design diagrams are helpful in communicating
design decisions throughout the team.

 ■ Understanding Communication Diagrams
A communication diagram consists of actors, objects, links, and messages.
 Figure 13-2 illustrates how these various components are illustrated on
the diagram.

These components have the following characteristics:

 ■ Actor. This represents an external role of the person or thing that initiates
the use case by sending the initial message. The actor will also send any
other messages that are external to the system. These messages can come
into the system through data that is entered on forms. They can also come
electronically by other external devices or systems.

 ■ Object. The objects are the instantiated class objects that perform actions
to help carry out the use case. In design diagram terms, they receive the
messages that request services. Objects can both receive messages and send
messages. Note we use object notation—with a colon and underlining—
and not class notation. The execution of a use case is performed by instan-
tiated objects and not classes.

 ■ Link. Links are simply the connectors that illustrate the flow of the messages.
These links do not mean the same as the navigation visibility arrows, although
they frequently exist between the same objects. They are only used to show
where the messages flow. Messages can flow in either direction on a link.

An actor who sends
the initial message

An object that
receives a message
and sends other
messages

1: firstMessage ()

4: finalResponse ()

2: secondMessage ()

3: returnMessage ()
Actor

:Object :Object2

A message arrow and
descriptive name

A link between
symbols that send or
receive messages

FIguRe 13-2 Symbols used in a communication diagram

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

402 PART 5 ■ Advanced Design and Deployment Concepts

 ■ Message. Messages are a primary element of the diagram. A message has
an originating object or actor, and a destination object or actor. A message
is a request for service. A message can also be a return of data from a previ-
ous message. A message will invoke a service in an object. In programming
terms, a message is the same as a procedure call or a method call.

Chapter 5 first presented the idea of a message in the discussion of a system
sequence diagram. Messages in a communication diagram have the same mean-
ing. However, the syntax of the message is slightly different. The syntax con-
tains five elements, all of which are optional. The format of a communication
diagram message is the following:

[true/false condition] sequence-number: return-value: 5 message-name
(parameter-list)

 ■ True/false condition. This is a condition that is tested for true or false. If
it is true, then the message is sent; if false, the message is not sent. It only
applies to sending the message. It is optional.

 ■ Sequence number. The sequence number is used to identify the order,
or sequence, of the messages. They can be simply numbered by integers.
Developers also often use hierarchical dot notation (i.e., 1.0, 1.2, 2.1.3,
etc.) to denote dependency as well as sequence. For example, if a use case
has two separate input messages, each with several subsequent messages
that travel the same links, they could be uniquely partitioned by using
1.0 and 2.0 series. Note that a colon follows the sequence number.

 ■ Return-value. The return value is a value that the message returns after the
completion of the service requested in the forward part of the message. In
programming terms, this is similar to a method return value. Return values
can be returned either with this format (i.e., as part of the message) or as a
separate return message.

 ■ Message-name. This is the name of the message. As noted, it usually uses
camel case with the initial letter lowercase. To name the message, it is
usually best to describe the service that is requested from the destination
object. For example, createAccount could be a message name that requests
the specific service from the destination object. Notice that if a return-value
is given, that the two items are separated by a “:=” sign.

 ■ Parameter-list. The parameter list contains those items that are being passed
to the destination object via the message. Again, in programming terms,
these are the arguments that would be passed when a method is invoked.

Let’s look at a typical communication diagram and take note of the informa-
tion it provides and its characteristics. Remember that a communication diagram is
useful to design and document use cases of medium complexity. In other words, this
type of diagram works best for use cases that are not too large with many messages.
A major benefit of a communication diagram is that it provides a snapshot view of
the classes and messages. However, a disadvantage is that there is not much space
allowed for messages, so it can easily become cluttered with overlapping information.
Figure 13-3 is a communication diagram for the Create customer account use case.
Refer back to Figure 12-19 and recall the set of CRC cards created for this same use
case. You might want to compare the two solutions, shown in Figure 12-19 and 13-3.

This use case has three input messages: createNewCustomer, enterAddress,
and enterAccount. Figure 13-3 shows those three messages as input messages
coming from the Clerk actor into the :CustomerHandler controller object. Note
the sequence numbers indicate the order of the messages. The first message spec-
ifies the individual parameters that are to be passed with the message. However,
due to space limitations, Figure 13-3 does not show the detail parameters for
message 2 or 3. The programmer would have to look at the class diagram and
determine what information needs to be passed, or he could provide a footnote
to the drawing to provide that additional detail. On the second message, the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

403CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

asterisk between the number and the name indicates that the message may be
sent multiple times. This is called a multiply occurring message.

The next set of messages, 1.1, 2.1, and 3.1, use the hierarchical dot notation
to indicate that they are part of a sequence. Looking at 1.1, notice that it has a
return value. Also note that the Customer object is named aC:Customer. The
underline indicates an object and not a class. The aC: is the name or identifier for
this particular object. That information (i.e., the name of the object) is returned
to the :CustomerHandler object. Referring back to Figure 12-16, note that the
:CustomerHandler object has navigation visibility to the :Customer object. This
mechanism of returning the identifier of the newly created :Customer object
provides this navigation visibility. Thus, the :CustomerHandler object can pass
the other messages to the correct object because it has a reference to it.

The next set of messages, 2.2 and 3.2, have a similar form. Each sends a
create message to the appropriate object and returns the identifier of the newly
created object. These two messages include the detail parameters to be passed.
In the earlier messages, 2, 2.1, 3, and 3.1 only abbreviated parameter lists were
given. The full parameter list is more correct. The abbreviated lists were used
purely to save space. Remember, the purpose of modeling is to provide guide-
lines for programming. So designers sometimes take liberties with the formality
of the model, as long as it is still understandable.

Finally, it is worth mentioning that some return messages have been left off
from :CustomerHandler to the Clerk. A system will normally return and display
the data that was entered so that the actor can verify that the correct informa-
tion was stored. In Figure 13-2, the method of returning data is indicated with
a return message.

 ■ Object-Oriented Design with Communication Diagrams
Now that you can read and understand a communication diagram, it’s time to
learn how to do use case realization using this technique. You will work through
the same use case, Create customer account. As you work through the example,
your understanding of object-oriented design should deepen due to the detailed
discussion of the design steps.

Referring back to Figures 12-3 and 12-8, note the models and information
that are prerequisite to detailed object-oriented design. First, you should have
completed the first-cut design class diagram. This gives you a preliminary idea
of what domain classes will be involved and the logical navigation visibility rela-
tionships. From the analysis models, it is helpful to have either an activity dia-
gram or a system sequence diagram. In fact, in the ideal world, both would be
available along with a detailed use case description.

1: createNewCustomer
 (name, mobilePh, homePh, email)

1.1: aC := createNewCustomer
 (name, mobilePh, homePh, email)

2: *enterAddress (addressInfo)

3: enterAccount (cc-info)

2.1: enterAddress (addressInfo)

3.1: enterAccount (cc-info)

Clerk

«controller»
:CustomerHandler

aC:Customer

aAdd:Address

aAcc:Account

2.2: aAdd := createAddress
 (accNo, type, no, street, city, state, zip)

3.2: aAcc :=createAccount
 (accNo. type, CCNo, CCDate)

FIguRe 13-3 Communication diagram for Create customer account use case

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

404 PART 5 ■ Advanced Design and Deployment Concepts

 ❚ Input Models
A slightly enhanced version of Figure 12-16 is included here as Figure 13-4. The
selection of which classes to include is purely an estimate at this point because
we will not determine all the classes until we proceed with the design steps.
However, in this simple example, the preliminary assessment is accurate. Do not
worry if you do happen to omit some required classes. It will become evident
during the design process if something is missing.

The other source of input information comes from the analysis models.
Chapter 5 developed several models for this use case, including a use case
description (Figure 5-2), an activity diagram (Figure 5-4), and a system
sequence diagram (Figure 5-10). Before initiating the design, you will want
to look at all three models to understand as much as possible about the use
case. For this example, focus on the system sequence diagram, which is dupli-
cated here as Figure 13-5. There are three input messages and two return
responses.

 ❚ Extend Input Messages
For each input message, extend the message to the internal objects within the
:System object. Follow this process:

1. From the first-cut design class diagram, identify the classes that will be
 required to carry out the execution of the message. Place the corresponding
objects on the diagram.

2. Beginning with the input message, identify each message that will be
required for each of the included objects on the diagram. For each message,
ensure that the origin object has navigation visibility to the destination
object. Determine which object should have primary responsibility for com-
pleting the required service. Place appropriate messages based on navigation
and responsibility.

«controller»
CustomerHandler

-accountNo: string {key}
-name: string
-mobilePhone: string
-homePhone: string
-emailAddress: string
-status: string

Customer

-accountNo: string {key}
-typeOfAddress: string
-number: string
-street: string
-city: string
-state: string
-postalCode: string

Address

-accountNo: string {key}
-typeOfAccount: string
-creditCardNo: int
-creditCardDate: date

Account

FIguRe 13-4 First-cut design
class diagram for Create customer
account

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

405CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

3. Name each message to reflect the service requested from the destination
object. Identify and include the parameters that the destination object will
require to carry out the requested service. Identify and name any return
messages or return values that need to be returned to origin objects.

Looking at the first input message, createNewCustomer (name, phones,
emails), we decide the following:

1. The required classes for this message are CustomerHandler and Customer.
2. The required message is createNewCustomer and comes from the Clerk to

the :CustomerHandler. The :CustomerHandler then forwards that same
message to the :Customer object. The :Customer object is the appropriate
object to carry out this service. The constructor method in the Customer
class instantiates a new :Customer object. This is shown in the diagram
with a message directly to the :Customer object.

3. The name of the message is appropriate as given in the SSD. The param-
eters on the SSD, however, do not reflect the attributes of the Customer
class. The accountNo and status attributes are both determined by the
constructor. The other attributes—name, mobilePhone, homePhone, and
emailAddress—need to be passed in as arguments. The input parameter list
will be modified to reflect these changes.

The return information is a little more complex. First, the identifier, “aC,”
of the newly created object is returned from :Customer to :CustomerHandler. As
mentioned previously, this provides navigation visibility from :CustomerHandler
to :Customer. Second, all of the data from the :Customer object is returned to
the clerk, including the accountNo and the status. Only the parameter-list is
included because all other items of the message syntax are optional, and not
required for this message.

Figure 13-6 is the result of these steps. Notice that the messages in the fig-
ure are numbered sequentially as they are passed.

Customer

createNewCustomer (name, phones, emails)

cust ID, name, phones, emails

*address details := enterAddress (address)

enterCreditCard (cc-info)

credit card info details

:System

FIguRe 13-5 System sequence
diagram for Create customer
account

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

406 PART 5 ■ Advanced Design and Deployment Concepts

Next, you follow the same steps for the second input message, which is

*address details := enterAddress (address).

Notice several things about this input message. First, it begins with an asterisk.
The asterisk means that this message may be sent multiple times. You will carry
that forward to the design. Second, the return data is shown right in the message
syntax. You have the option of showing it that way, or with a separate message
as was done with the first message above. Finally, note that the parameter list
is rather abbreviated. We will need to expand it to reflect the attributes of the
Address class.

The original name of the message is appropriate for the input message and
the second message: enterAddress. However, we change the name to create-
Address for the final name to better reflect service requested. The responsible
object for initiating this final request should be the :Customer object. Because
a customer needs navigation visibility to its dependent objects, including its
addresses, it should be the one to invoke the constructor method. The path of
the message thus goes from the controller to :Customer and then to :Address.
Figure 13-7 illustrates the results of extending this message.

The next message, enterCreditCard (cc-info), will follow the same pro-
cess. We also changed the name of this message to be enterAccount because
we are creating a new Account object. We also expanded the parameter list to
reflect the attributes in the Account class. The other decisions with regard to
responsibility and flow of execution are similar to the enterAddress message.
 Figure 13-8 shows the results of extending the enterAccount message.

1: createNewCustomer
 (name, mobilePh, homePh, email)

1.1: aC := createNewCustomer
 (name, mobilePh, homePh, email)

1.2: (accountNo, name, mobilePh, homePh, email, status)Clerk

«controller»
:CustomerHandler

aC:Customer

FIguRe 13-6 createNewCustomer message extended to all objects

2: * enterAddress
 (type, no, street, city, state, zip)

2.1: enterAddress
 (type, no, street, city, state, zip)

2.4: (type, no, street, city, state, zip) 2.3: (type, no, street, city, state, zip)Clerk

«controller»
:CustomerHandler

aC:Customer

aAdd:Address

2.2: aAdd := createAddress
 (accNo, type, no, street, city, state, zip)

FIguRe 13-7 enterAddress message extended to all objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

407CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

The final communication diagram for this use case is illustrated in
 Figure 13-9. It is similar to the earlier one in Figure 13-3; however, all of the
return messages are included in this final diagram. For ease of reading, the input
messages are on top and the return messages are on the bottom. This diagram
contains only problem domain objects and does not include view layer or data
access layer. The multilayer design using sequence diagrams are covered in the
next section. The process is the same for both types of diagrams.

 ❚ Final Design Class Diagram
As can be seen in Figure 13-9, the messages are specific and precise. Thus, spec-
ifying the methods in the design classes can also be precisely defined. In fact,
message syntax for communication diagrams is quite similar to the method

3: enterAccount (type, CCNo, CCDate) 3.1: enterAccount (type, CCNo, CCDate)

3.4: (type, CCNo, CCDate) 3.3: (type, CCNo, CCDate)Clerk

«controller»
:CustomerHandler

aC:Customer

3.2: aAcc := createAccount
 (accNo, type, CCNo, CCDate)

aAcc:Account

FIguRe 13-8 enterAccount message extended to all objects

1: createNewCustomer
 (name, mobilePh, homePh, email)

2: *enterAddress (type, no, street, city, state, zip)

3: enterAccount (type, CCNo, CCDate)

1.1: aC := createNewCustomer
 (name, mobilePh, homePh, email)

2.1: enterAddress (type, no, street, city, state, zip)

3.1: enterAccount (type, CCNo, CCDate)

1.2: (accountNo, name, mobilePh, homePh, email, status)

2.4: (type, no, street, city, state, zip)

3.4: (type, CCNo, CCDate)

2.3: (type, no, street, city, state, zip)

3.3: (type, CCNo, CCDate)

Clerk

«controller»
:CustomerHandler

aC:Customer

aAcc:Account

3.2: aAcc := createAccount
 (accNo, type, CCNo, CCDate)

aAdd:Address

2.2: aAdd := createAddress
 (accNo, type, no, street, city, state, zip)

FIguRe 13-9 Final communication diagram for Create customer account use case

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

408 PART 5 ■ Advanced Design and Deployment Concepts

syntax that is used for the design class diagram. Figure 13-10 illustrates the
final design class diagram. You will note that is very similar to Figure 12-22.
In this instance, however, the constructor methods for each class are included.

 ■ Use Case Realization with Sequence Diagrams
Now that you have learned how to do object-oriented design with CRC cards
and with communication diagrams, this section explains how to design com-
plex use cases using sequence diagrams. The next section provides a partial
sequence diagram to introduce the terms and composition of a sequence dia-
gram. The chapter then demonstrates the process of use case realization by
using the use case that we have been working with previously, Create customer
account. The chapter also demonstrates a more complex example with the use
case Fill shopping cart. These examples illustrate the core process of organizing
and structuring the problem domain classes into the solution for the use case.
The final examples explain how to add the data access layer classes and the
view layer classes. Each layer is illustrated with a detailed example using the
same use case.

«controller»
CustomerHandler

+createCustomer (name, mobilePh, homePh, email)
+enterAddress (type, street, city, state, zip)
+enterAccount (type, CCNo, CCDate)

Address

+createAddress
 (accNo, type, no, street, city, state, zip): Address

-accountNo: string {key}
-typeOfAddress: string
-number: string
-street: string
-city: string
-state: string
-postalCode: string

Account

+createAccount (accNo, type, CCNo, CCDate): Account

-accountNo: string {key}
-typeOfAccount: string
-creditCardNo: int
-creditCardDate: date

Customer

+createNewCustomer (name, mobilePh, homePh, email): Customer
+enterAddress (type, street, city, state, zip)
+enterAccount (type, CCNo, CCDate)

-accountNo: string {key}
-name: string
-mobilePhone: string
-homePhone: string
-status: string

FIguRe 13-10 Design class diagram for methods added from Create customer account

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

409CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

 ■ Understanding Sequence Diagrams
This section first reviews the elements of a sequence diagram to ensure that you
remember and understand how to read a sequence diagram. You first learned
about sequence diagrams in Chapter 5 when you learned how to develop a sys-
tem sequence diagram (SSD).

The most important information on an SSD is the sequence of messages
between the actor and the system. There may be a single input message or many.
The input messages may have data parameters or not. There also may be Loop
frames, Alt frames, and Opt frames as well as repeating inputs and outputs.
A Loop frame denotes a set of messages within a loop. An Alt frame is similar
to an if-then-else statement or switch statement, which allows the firing of dif-
ferent sets of messages. An Opt frame is an optional invocation of a set of mes-
sages. You will see examples of these later in this chapter. First, let’s review the
basic elements in a sequence diagram.

Figure 13-11 is a sample sequence diagram. In many ways, it is similar to a
communication diagram. The actor is an external role, in this case, a Clerk. The
boxes are instantiated objects from the corresponding classes. Object notation is
used. Some objects are named objects, such as aC:Customer. The primary benefit
of the sequence diagram is the ability to lay out the messages from top to bot-
tom to emphasize the sequence of firing. Below each actor and object is a lifeline,
which is used as an indicator of the life of the object. Messages are attached to
the lifeline either as a source point or a destination point. Attached to locations
of each lifeline are vertical boxes representing activation lifelines. You might
consider these activation lifelines the time period when a method is executing.

(type, no, street, city, state, zip)

enterAccount (type, CCNo, CCDate)

aAdd: =createAddress
 (accNo, type, no, street, city, state, zip)

(type, CCNo, CCDate)

*enterAddress (type, no, street, city, state, zip)

(name, mobilePh, homePh, email)

«controller»
:CustomerHandler

aC:Customer

aAdd:Address

aAcc:Account

Clerk

createNewCustomer (name, mobilePh, homePh, email)

(type, no, street, city, state, zip)

(type, CCNo, CCDate)

enterAccount (type, CCNo, CCDate)

enterAddress (type, no, street, city, state, zip)

aAcc: =createAccount (accNo, type, CCNo, CCDate)

A Method to return data;
note dashed arrow

A method to return data

Activation Lifeline

Lifeline

Vertical position of
messages indicates
sequence of �ring

Send a constructor message
either to the object itself, or
to its lifeline

aC :=createNewCustomer (name, mobilePh, homePh, email)

FIguRe 13-11 Sample sequence diagram from Create customer account use case

activation lifeline a representation of the
period during which a method of an object is
alive and executing

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

410 PART 5 ■ Advanced Design and Deployment Concepts

Some developers use them; others do not. There are two ways to indicate data
being returned, either by a return assignment with the “:=” operator, or as a return
message using a dashed arrow. Messages that invoke a constructor can be sent
either to a lifeline or to the object itself. Both examples are shown in the figure.

As with a communication diagram, when a message is sent from an originat-
ing object to a destination object, in programming terms, it means that the origi-
nating object is invoking a method on the destination object. Thus, by defining
the messages to various internal objects, we are actually identifying the methods
of that object. The data that is passed by the messages corresponds to the input
parameters of the methods. The return data on a message is the return value from
a method. Hence, once a use case is realized with this detailed design process,
the set of classes and required methods can be extracted so programming can
be completed.

 ■ Design Process for Use Case Realization
The design process for using sequence diagrams is the same as it is for com-
munication diagrams. The starting point for the detailed design of a use case
is always its SSD and the first-cut design class diagram. Other models, such as
a use case description and activity diagram, are also helpful. Remember that
the SSD only has two lifelines—one for the actor and one for the system. Start-
ing with the SSD, each input message is taken, one at a time, and extended
to all of the internal classes so that the desired result is obtained. Any data to
be returned is identified and added. Figure 13-11 is the sequence diagram solu-
tion of the Create customer account use case. It was developed using the same
three steps that were used to extend communication diagram messages. You will
notice that it has the same set of messages, but displayed differently.

Let us analyze this solution based on some of the principles of good design
that were discussed in Chapter 12. The use case controller provides the link
between the internal objects and the external environment. The responsibilities
assigned to :CustomerHandler are to catch incoming messages, distribute them
to the correct internal domain objects, and return the required information to
the external environment.

The responsibility assigned to :Customer is to be in charge of creating itself
and to control the other required updates to subordinate objects. The :Address
and :Account objects create themselves. Coupling is straightforward, being basi-
cally vertical on the hierarchy. Thus, the assignment of responsibilities and cor-
responding messages conforms to good design principles. Other issues will need
to be addressed as the design expands to include three layers.

 ■ Sequence Diagram: Fill Shopping Cart Use Case
This section looks at a slightly more complex example of a sequence diagram.
With this example, you will see the strength of sequence diagrams in modeling
complex use cases. Figure 13-12 is an activity diagram for the Fill shopping
cart use case. You will remember from Figure 3-15 that this use case “included”
three other use cases, as shown in Figure 13-12. By designing the use case in this
manner, with other use cases included, our solution will only have to focus on
those functions that actually add items to the shopping cart.

The SSD for this use case is quite simple. Figure 13-13 shows that there are
only two input messages to the system: adding an item and adding an acces-
sory item. As you analyze the SSD, notice that adding an item to the shopping
cart and adding an accessory to the cart are the same operation. The only dif-
ference is that adding accessories requires a loop for any multiple accessories
added for that same item. Because this is the only difference, we can simplify the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

411CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

diagram by limiting the solution to the first message. (Note: An additional class,
 AccessoryPackage, is required for the use case Search and view accessories, but
because we aren’t designing that use case, it isn’t required for this solution.)

We begin this design by developing the first-cut design class diagam. Refer
back to Figure 4-23, which presented the class diagram for the CSMS sales subsys-
tem. Using that diagram, we can identify the classes that are required for this use
case. The Customer, Cart, and CartItem classes are necessary because the use case
will be adding items for this customer to the customer’s cart. To create a cart item,
the system will need to know what product it is, if there are items in stock, and
the price for the item. Therefore, other classes that are required are InventoryItem,
ProductItem, and PromoOffering. As we develop the solution, we may have to add
classes, but this appears to be sufficient for now. Navigation visibility between
these classes will be from the controller to the Customer class and to the Cart class
once it has been created. The Cart class will be able to access the CartItem class.
The CartItem class should have visibility to the other classes, such as ProductItem

Customer System

Search for product

Search and view
accessories

Look at product
reviews

Select options and
quantity

Add to cart

Add to cart

Select accessory
options and

quantity

FIguRe 13-12 Activity diagram for
the Fill shopping cart use case

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

412 PART 5 ■ Advanced Design and Deployment Concepts

and InventoryItem that contain the necessary information. Figure 13-14 shows
the first-cut design class diagram, which includes several additions to the domain
model. In Figure 13-14, several key identifier fields have been added to some classes.
One correction to the domain model was also made. In Chapter 9 during the nor-
malization process the regularPrice attribute was moved out of the PromoOffering
class and into the ProductItem class, which is where it correctly belongs.

To design this use case, we will follow the same steps that were outlined in
the “Extend Input Messages” section for use case realization using communi-
cation diagrams. Even though this use case has fewer input messages than the
previous example (Create customer account), the processing required to execute
a message is more complex.

Let’s take the first input message, addItemToCart. This message first comes
to the CartHandler. Obviously, it is not possible to add an item to a cart if there
is no cart. So how do you create a cart? One solution is to require the user/actor
to create a new cart. This is a poor idea. It is never a good idea to require the
user to perform an act if the system can do it automatically. The system can be
made smart enough to know if it needs to create an online cart first. How can
the system know? There are several ways to design this process. Let’s use the
perfect technology assumption that the user has logged on. So :CartHandler
should have a reference to the :Customer object. However, if there is no refer-
ence to an online cart object, then it needs to be created. The next question is,
what object should create the new online cart object? From the domain model,
you can see that an online cart object has a cardinality of exactly one to a cus-
tomer object. So a cart cannot exist without a customer, and from the design
class diagram, you can see that the customer must have visibility to the online
cart. Hence :Customer is the obvious object to create the :OnLineCart object.

Figure 13-15 shows this first step. The :CartHandler checks to see if it is the
first item, and if so, sends a createCart message to :Customer. Notice the true/
false condition on that message. The :Customer object sends a create message
directly to :OnlineCart to instantiate a new cart. A reference to the new cart is
returned first to :Customer, which then forwards it on to :CartHandler. Now
both have navigation visibility to the newly created online cart. Figure 13-15
shows both methods of returning data.

:SystemCustomer

addItemToCart (promoNo, prodID, size, qty)

(description, price, extendedPrice)

*addAccessoryToCart (promoNo, prodID, size, qty)

(description, price, extendedPrice)

FIguRe 13-13 System sequence
diagram for Fill shopping cart
use case

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

413CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

Customer

-accountNo: string {key}
-name: string
-mobilePhone: string
-homePhone: string
-emailAddress: string
-status: string

«controller»
CartHandler

OnlineCart

-Sale: int {key}
-saleDateTime: date
-priorityCode: string
-S&H: currency
-tax: currency
-totalAmt: currency

InventoryItem

-inventoryID: int {key}
-productID: string
-size: string
-color: string
-options: string
-quantityOnHand: int
-averageCost: currency
-reorderQuantity: int
-dateLastOrder: date
-dateLastShipment: date

ProductItem

-productID: string {key}
-gender: string
-description: string
-supplier: string
-manufacturer: string
-regularPrice: currency
-pictureID: string

PromoOffering

-promoNo: string
-promoPrice: currency

CartItem

-saleItemID: int {key}
-productID: string
-InventoryID: int
-quantity: int
-soldPrice: currency
-shipStatus: string
-backOrderStatus: string

FIguRe 13-14 First-cut
design class diagram for
the Fill shopping cart
use case

:CartHandler :Customer

aCrt:OnlineCart

Customer

addItem (promoNo, prodID, size, color, qty)

aCrt: =createCart ()
[firstItem]createCart ()

(aCrt)

FIguRe 13-15 First step in extending addItem message

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

414 PART 5 ■ Advanced Design and Deployment Concepts

Customer

[firstItem]createCart ()

(aCrt)

:CartHandler :Customer

aCrt:OnlineCart

:ProductItem

:PromoOffering :InventoryItem

:CartItem

aCrt := createCart ()

addItem
(promoNo, prodID, size, color, qty)

(description, price, extended price)

price:=getPrice ()

description:=getDesc ()

status:=updateQty (qty)

(description, price)

createCartItem
(promoNo, prodID, size, color, qty)

(description, price)

addItem (promoNo, prodID, size, color, qty)

FIguRe 13-16 Completion of Additem message

Now that the cart is created, the system can add the item to the cart. Also,
notice that if it is not the first item, then this sequence of messages is skipped and
the system goes directly to adding the item to the cart. Because :Cart Handler
now has visibility to :OnlineCart, it sends a message directly to the cart to add
the appropriate item. :OnlineCart creates a new cart item and passes the data to
:CartItem to instantiate a new cart item. :CartItem retrieves the necessary data
to complete its attributes. We are assuming in this case that the price is the pro-
motional price. Once the cart item has created itself, it returns information back
to :OnlineCart, which returns it to :CartHandler and eventually to the user/
customer. Figure 13-16 illustrates this next set of messages.

As you can see, this simple input message extends to quite a bit of internal
activity. How did we know what to do? We observed the attributes of :CartItem
and noted what classes contained the information that was needed. :CartItem is
responsible for obtaining the data to instantiate itself. It simply went to the nec-
essary objects to obtain that data.

Referring back to Figure 13-13, note that there is another input message,
addAccessoryToCart (…), with the same input parameters. As you think about
this, note that adding an accessory is the same activity as adding an item. Acces-
sories are just items that are associated with products for promotions to the cus-
tomer. Once an accessory item is selected, it simply becomes an item. Hence, the
same set of internal messages are required. The only difference is that adding
accessories is an optional activity. In Chapter 5, Figures 5-8 and 5-9 showed you
how to indicate a loop of messages or an optional set of messages. In this case, the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

415CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

SSD indicates a repeating message for the accessories. Figure 13-17 is the full use
case with both sets of messages shown, one set for an item and a repeating set for
the accessories. The repeating messages inside the Opt, Loop frame are the same
as those developed for the first input message, but without the createCart message.

As you identify the specific messages, along with source and destination and
the passed parameters, you need to consider some critical issues. As before, an
important question is: Which object is the source or initiator of a message? If
the message is a query message, the source is the object that needs information.

Customer

[firstItem]createCart ()

(aCrt)

:CartHandler :Customer

aCrt:OnlineCart

:ProductItem

:PromoOffering :InventoryItem

:CartItem

aCrt := createCart ()

addItem (promoNo, prodID, size, color, qty)
createCartItem
(promoNo, prodID, size, color, qty)

addItem
(promoNo, prodID, size, color, qty)

(description, price) (description, price)

Loop

addItem
(promoNo, prodID, size, color, qty)

(description, price,
extended price)

price:=getPrice ()

description:=getDesc ()

status:=updateQty (qty)

price:=getPrice ()

status:=updateQty (qty)

addAccessory
(promoNo, prodID, size, color, qty)

(description, price,
extended price)

createCartItem
(promoNo, prodID, size, color, qty)

(description, price)

description:=getDesc ()

(description, price)

[Accessory]

FIguRe 13-17 Sequence diagram for Fill shopping cart use case

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

416 PART 5 ■ Advanced Design and Deployment Concepts

If the message is an update or create message, the source is the object that con-
trols the other object or that has the information necessary for its creation.

Another important consideration is navigation visibility. To send a message
to the correct destination object, the source object must have visibility to the
destination object. Remember that the purpose of doing design is to prepare
for programming. As a designer, you must think about how the program will
work and consider programming issues. Given these two considerations and the
source considerations discussed in the previous paragraph, we have determined
that the following internal messages will be required. For each message, a source
object and a destination object have been identified.

 ■ createCart(). The :CartHandler object will know whether it has received
earlier messages to add items. If it hasn’t, it knows it must tell the :Customer
object to create a cart.

 ■ aCrt:=createCart(). The :Customer object owns the :OnlineCart object.
 ■ addItem(). A forwarded version of the input message from :CartHandler to

:OnlineCart. Because :CartItem objects are dependent on a cart, :OnlineCart
is the logical object to create :CartItem objects. The controller has visibility
to :OnlineCart from the previous return message, when aCrt was returned.

 ■ createCartItem(). The internal message from :Cart to :CartItem. Because
:CartItem will be responsible for obtaining the data for its attributes, it
needs visibility to :PromoOffering, :ProductItem, and :InventoryItem. As a
result, information to find those objects is sent as parameters.

 ■ getPrice(). The message to get the price from the :PromoOffering object.
The :CartItem initiates the message.

 ■ getDescription(). The message initiated by :CartItem to get the description
from :ProductItem.

 ■ updateQty(qty). The message that checks for sufficient quantity on hand.
This message also initiates updates of the quantity on hand. :CartItem
 initiates the message.

 ■ Guidelines and Assumptions Sequence Diagram Development
From the two previous examples, we can distill several guidelines that can help
you develop a design for a use case or scenario using sequence diagrams. Several
assumptions are also implicit in this process.

 ❚ Guidelines
Designing a use case or scenario by using sequence diagrams involves perform-
ing these tasks:

 ■ Take each input message and determine all the internal messages that result
from that input. For each message, determine its objective. Determine what
information is needed, what class needs it (the destination), and what class
provides it (the source).

 ■ As you work with each input message, identify the complete set of classes
that will be affected by the message. In other words, select all the objects
from the domain class diagram that need to be involved. In Chapter 5, you
learned about use case preconditions and postconditions. Any classes that are
listed in either the preconditions or postconditions should be included in the
design. Other classes to include are those that are created, classes updated
during the use case, and those that provide information used in the use case.

 ■ Flesh out the components for each message; that is, add iteration, true/false con-
ditions, return values, and passed parameters. The passed parameters should be
based on the attributes found in the domain class diagram. Return values and
passed parameters can be attributes, but they may also be objects from classes.

These three steps will produce the preliminary design. Refinements and
modifications may be necessary; again, we are focusing only on the problem
domain classes involved in the use case.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

417CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

 ❚ Assumptions
The development of the first-cut sequence diagram is based on several assump-
tions, including:

 ■ Perfect technology assumption. You first encountered this assumption in
Chapter 5, when identifying business events. The assumption continues
here. You don’t include messages such as the user having to log on.

 ■ Perfect memory assumption. You might have noticed our assumption that
the necessary objects were in memory and available for the use case. We
didn’t ask whether those objects were created in memory. We will change
this assumption when we get to multilayer design. In multiple-layer design,
we do include the steps necessary to create objects in memory.

 ■ Perfect solution assumption. The first-cut sequence diagram assumes that
there are no exception conditions. No logic is included to handle a situation
in which the requested catalog or product isn’t found. More serious excep-
tion conditions, such as the failure of a credit check, might also be encoun-
tered. Many developers design the basic processing steps first and then add
the other messages and processes to handle the exception conditions later.
We do the same here.

 ■ Developing a Multilayer Design
So far in the development of the sequence diagram, we have focused only on the
classes in the problem domain layer. In many instances, this may be sufficient
documentation to program the solution—either by yourself or with another pro-
grammer. Once you have a solid design for the problem domain classes, adding
the view layer and the data access layer is a straightforward, if time-consuming,
process. Conforming to the principles of Agile modeling, we don’t want to cre-
ate diagrams unless there is real benefit. We also don’t normally keep the design
 diagrams as documentation because over time, the system will be modified and
the diagrams will become obsolete. As Agile modeling suggests, be prudent in the
development of models. However, there are times when it is important to see the
total picture and identify the need and use of the view layer classes and the data
access layer classes. A system developer needs to know how to do complete
design for those instances when it is necessary.

Every system will need view layer classes to represent the input and out-
put screens for the application. Data access layer classes aren’t always required.
The data access layer is required when the business logic is fairly complex and
should be isolated from the SQL statements that access the database. The CRC
cards example in Chapter 12 for the Create customer account use case showed
an example of a three-layer design with both view and data access classes (see
 Figure 12-21). Because CRC cards is an informal technique, we simply added
the classes without much discussion of how they are to be connected to the
problem domain classes. The following sections develop that same example but
with a sequence diagram. This more rigorous modeling technique highlights the
issues involved with three-layer design. First, we add the view layer, then the
data access layer.

 ■ Designing the View Layer
In Chapter 8, you learned how to do the design of the user interface. In reality,
user-interface design is both an analysis and a design activity. Quite a bit of
discovery and understanding is being developed as the systems analysts and
the users work together. However, design work is also being done because the
actual detailed layout, including input and output data fields, is being devel-
oped. You might ask, “If the user interface is already designed, do I need to
add the view layer to the sequence diagram?” The answer is a definite maybe.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

418 PART 5 ■ Advanced Design and Deployment Concepts

One advantage of adding it to the sequence diagram is that the programmer can
see how the view layer classes integrate with the rest of the design. It becomes
a check to make sure the design is correct and complete. It is a good practice to
verify several use cases to ensure that the developers understand how the view
layer represents the user-interface design and how all the elements integrate
together for a smooth program execution. Thus, input for view layer design
includes the use case description, the SSD, the activity diagrams, the first-cut
design class diagram, and, finally, the user-interface layouts or mock-ups.

User-interface design and the integration of the view layer into a sequence
diagram are made even more complex by the fact that many systems require
both a Web-based interface and an internal, network-based interface. Fortu-
nately, browsers are becoming more sophisticated, so many new systems can
now be designed for only one type of interface. Designing a system with multiple
user interfaces is a complex endeavor.

Let’s return to the Add customer account use case and add the view layer.
Remember from the discussion of communication diagrams that there are three
input messages: createNewCustomer, enterAddress, and enterAccount. Let’s
assume that, from the results of our user-interface design, a separate input form
for each message is required. Let’s add those classes to the sequence diagram.
The starting point is Figure 13-11, which is the sequence diagram with the prob-
lem domain classes. The process to add the view layer is simply to add an object
for each input form or screen. First add the appropriate messages from the Clerk
to the input «view» objects. In this instance, the messages are the ones identified
from the SSD, and which were used in Figure 13-11. Additional messages are
added for the :CustWindow to open the :AddrWindow, and the :AddrWindow
to open the :AcctWindow. Figure 13-18 illustrates the resulting diagram with
both the domain and view layers.

In Figure 13-18, we just added a single view object for each message. This
approach was rather straightforward. If we look at the other use case we have
been using, Fill shopping cart, we have a more complex example. Remember
that the Fill shopping cart use case included other use cases for Search for item
and View accessory combinations. Obviously, all those use cases go together
for a rich and efficient user experience. In Figure 13-19, we have added the
two view layer objects for searching items and viewing accessories. The first
input message, addItem (), will go through the :SearchItemWindow object.
In other words, when the customer finds something he or she likes, he or she
will initiate adding it to his or her cart from that window. The message then
causes a detailed :AddItemWindow object to display and show the details to
verify the addition to the cart. This later window will forward the message on
to :CartHandler.

Once the item has been added to the cart, another window displays that
shows the results of adding this new item. Depending on the design of the user
interface, this window might show the single newly added item or it might also
show the total shopping cart.

The next three view layer objects, :ViewAccessWindow, :AddAccess-
Window, and :DisplayItem+AccessWindow, function in a manner similar to the
other view layer objects. The only difference is that the data includes the item
and the accessories that have been added to the online cart.

Adding the view layer to your design is a good way to verify that the user
interface that was developed with the users is consistent with the application
design. All the input messages that were identified and documented on SSDs
must be handled by the user interface. If there are messages without input win-
dows or windows without messages, you will know that part of the design is
incomplete and that more definition is required.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

419CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

 ■ Designing the Data Access Layer
The principle of separation of responsibilities is the motivating factor behind
the design of the data access layer. On large, complex systems, designers create
three-layer designs, including classes whose sole responsibility is executing data-
base SQL statements, getting the results of the query, and providing the informa-
tion to the domain layer. As hardware and networks became more sophisticated,
multilayer design was used to support multitier networks in which the database
server was on one machine, the business logic was on another server, and the
user interface was on several desktop client machines. This way of designing
systems creates more robust and more flexible systems.

In most cases, problem domain classes are also persistent classes, which
means that their data values must be stored by the system even when the appli-
cation isn’t executing. The whole purpose of a relational database is to provide
this ability to make problem domain objects persistent. Executing SQL state-
ments on a database enables a program to access a record or a set of records

Loop

enterAddress
 (type,no,street,city,state,zip) enterAddress

 (type,no,street,city,state,zip)
aAdd:=createAddress
(accNo, type, no, street, city, state, zip)enterAddress

 (type,no,street,city,state,zip)

showAddrWindow ()

showAcctWindow ()

(name, mobilePh, homePh, email

(type, CCNo, CCDate)

(type, no, street, city, state, zip)
(type, no, street, city, state, zip)

(type, CCNo, CCDate)

createNewCustomer
 (name, mobilePh, homePh, email)

«view»
:AddrWindow

aC:=createNewCustomer
(name, mobilePh, homePh, email)

aC:Customer

aAdd:Address

enterAccount
 (type, CCNo, CCDate) enterAccount

 (type, CCNo, CCDate enterAccount
 (type, CCNo, CCDate)

«view»
:AcctWindow

aAcc:Account

«controller»
:CustomerHandler

«view»
:CustWindow

aAcc:=createAccount
 (accNo, type, CCNo, CCDate)

Clerk

createNewCustomer
 (name, mobilePh, homePh, email)

[Address]

FIguRe 13-18 Add customer account use case with view layer added

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

420 PART 5 ■ Advanced Design and Deployment Concepts

from the database. One of the problems with object-oriented programs that use
relational databases is that there is a slight mismatch between programming lan-
guages and database SQL statements. For example, in a database, tables are
linked through the use of foreign keys (see Figure 9-9), such as a cart having a

addItem
 (promoNo, prodID, size, color, qty)

(description, price, extendedPrice)

addAccessory
 (promoNo, prodID, size, color, qty)

(description, price, extendedPrice)

(description, price, extendedPrice)

«view»
:SearchItemWindow

«view»
:AddItemWindow

«view»
:DisplayItemWindow

«view»
:ViewAccessWindow

«view»
:AddAccessWindow

«view»
:DisplayItem+AccessWindow

«controller»
:CartHandler

Customer
addItem
 (promoNo, prodID, size, color, qty)

addItem
 (promoNo, prodID, size, color, qty)

addAccessory
 (promoNo, prodID, size, color, qty)

addAccessory
 (promoNo, prodID, size, color, qty)

(description, price, extendedPrice)

Loop
[Accessory]

FIguRe 13-19 Partial sequence diagram for the Fill shopping cart use case with view layer

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

421CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

CustomerID as a column so the order can be joined with the customer in a rela-
tional join. However, in object-oriented programming languages, the navigation
is often in the opposite direction (i.e., the Customer class may have an array of
references that point to the OnlineCart objects, which are in computer memory
and are being processed by the system). In other words, design classes don’t have
foreign keys.

This chapter takes a somewhat simplified design approach in order to teach
the basic ideas without getting embroiled in the complexities of database access.
Let us assume that every domain object has a table in a relational database.
(More complex situations exist in which tables must be combined to provide the
correct set of objects in memory.)

When a new persistent object is created in memory, the constructor method
often initiates the process to write it to the database. When an object is updated,
it also needs to be written to the database. The common method to do that
is simply to send a message to the data access object. Either the set of object
attributes can be sent as parameters or simply as a reference to the object itself.
The data access method can pull out the attributes, format an SQL insert or
update statement, and write it to the database. Figure 13-20 is an enhancement
of Figure 13-18 with the data access layer added. It is a straightforward addition
to add three data access objects and have the newly created objects send mes-
sages to write themselves out to the database. Although this diagram is fairly
busy, it is organized with the view layer on the left, the problem domain layer in
the middle, and the data access layer on the right.

Loop
[Address]

enterAddress
 (type,no,street,city,state,zip) enterAddress

 (type,no,street,city,state,zip) enterAddress
 (type,no,street,city,state,zip)

showAddrWindow ()

showAcctWindow ()

(name, mobilePh, homePh, email)

(type, CCNo, CCDate)

(type,no,street,city,state,zip)
(type,no,street,city,state,zip)

(type, CCNo, CCDate)

writeDB (aAcc)

createNewCustomer
 (name, mobilePh, homePh, email)

«view»
:AddrWindow

aC:=createNewCustomer
(name, mobilePh, homePh, email)

writeDB (ac)

aC:Customer

«dataAccess»
:CustomerDA

«dataAccess»
:AddressDA

«dataAccess»
:AddressDA

aAdd:Address

enterAccount
 (type, CCNo, CCDate) enterAccount

 (type, CCNo, CCDate enterAccount
 (type, CCNo, CCDate)

«view»
:AcctWindow

aAcc:Account

«controller»
:CustomerHandler

«view»
:CustWindow

aACC:=createAccount
 (accNo, type, CCNo, CCDate)

Clerk

createNewCustomer
 (name, mobilePh, homePh, email)

writeDB (aAdd)

aAdd:=createAddress
 (accNo,type,no,street,city,state,zip)

FIguRe 13-20 Create customer account use case with view layer and data layer

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

422 PART 5 ■ Advanced Design and Deployment Concepts

:PromoOffering

:CartItem

aPO:PromoOffering

price:=getPrice ()

price:=getPrice ()

readPO ()

Becomes :CartItem

:PromoOfferingDA

aPO:=findPromo (promoID, ProdID

FIguRe 13-21 Partial sequence diagram with data access as part of constructor

When the database needs to be read to retrieve data, usually as part of a
constructor, it is a little more complex. There are several techniques (that pro-
vide different designs) for linking the domain layer to the data access layer for
reading data. There are two common techniques.

One technique is to have the constructor method of an object read the
database and obtain the required data to flesh out its attributes and create an
object in memory. For example, in the Fill shopping cart use case, we need to
get the price from a PromoOffering object. This means that we first have to have
a PromoOffering object in memory, so it must be created and then accessed.
 Figure 13-21 illustrates this technique. The findPromo message invokes a con-
structor for :PromoOffering. During the instantiation, it reads the database to
get the required data. Then, it can respond to the getPrice message.

Another technique is to send a message to the data access layer object and
have it read the database and then instantiate a new problem domain object.
This second technique is better when a set of objects needs to be created from a
database access that returns an unknown number of rows. However, both tech-
niques are good solutions. Figure 13-22 illustrates this second technique.

 ❚ The Data Access Layer for the Fill Shopping Cart Use Case
Figure 13-23 is a portion of the Fill shopping cart use case from Figure 13-16. In
this diagram, we have only included the AddItem message to limit the complexity
of the drawing. The data access classes have all been added along the top. The first
two, :OnlineCartDA and :CartItemDA, are needed so that the system can write
out the data from the newly created online cart and cart item. At the bottom of the
lifeline of each of those two objects is the save statement, which causes the data to
be written to the database. The next three data access objects, :PromoOfferDA,
:ProductDA, and :InventoryDA, are needed to retrieve data as part of the construc-
tor for :PromoOffering, :ProductItem, and :InventoryItem. Each of those sets of
messages function as explained in Figure 13-21. As you can see, adding the data
access layer can increase the level of complexity of the drawing quite dramatically.

It is important during this process to ensure that source objects have navi-
gation visibility to destination objects so messages can be sent. We assume but
don’t show that the data access objects have global visibility. (In your program-
ming class, you will learn that factory or singleton classes are often designed

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

423CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

with global methods.) After the appropriate problem domain object is created, a
reference to it is returned to the object that needs visibility. As you look closely
at Figure 13-23, note that every object that sends a message to another object
must have navigation visibility to that object. Remember this important design
point as you develop your design solutions.

PromoOffering

:CartItem

aPO:PromoOffering

price:=getPrice ()

price:=getPrice ()
createPO (...)

Becomes :CartItem

:PromoOfferingDA

aPO:=findPromo (promoID, ProdID)

FIguRe 13-22 Partial sequence diagram with data access prior to constructor

:CartHandler

aCrt:OnlineCart

aCl:CartItem

«dataAccess»
:OnlineCartDA

«dataAccess»
:CartItemDA

«dataAccess»
:PromoOfferDA

«dataAccess»
:ProductDA

aP:PromoOffering aPl:ProductItem all:InventoryItem
Customer

addItem (promoNo, ProdID, size, color, qty) createCartItem
 (promoNo, ProdID, size, color, qty)

aP:=findPromo (promoID, prodID)

price:=getPrice ()

addItem
 (promoNo, ProdID, size, color, qty)

«dataAccess»
:InventoryDA

readPO ()

saveCart (aCrt)

(description, price)

(description, price, extended price)

(description, price)

description:=getDesc ()

aPl:=findProdItem (prodID)

all:=findInvItem (prodID, size, color)

readInv ()status:=updateQty (qty)

saveCartItem (aCI)

readProd ()

FIguRe 13-23 Partial sequence diagram for the Fill shopping cart use case with data access layer

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

424 PART 5 ■ Advanced Design and Deployment Concepts

An effective method for understanding what is going on in Figure 13-23 is
to begin with the internal messages from the sequence diagram in Figure 13-17.
Let us review each one and see what changes are required:

 ■ [firstItem]createCart. The cart handler is going to send a message to a
customer object to create a cart. First, it needs to ensure that there is
a customer object in memory. It sends a findCustomer message to the
aC:Customer object to find and create itself from the database. It does
so by sending a message to the :CustomerDA object to read the database
and return the appropriate customer object. Only then can it send the
createCart message to aC:Customer. Also, note that at the end of this
execution, the aCrt:OnlineCart object sends a message to the data access
object to save the data to the database.

 ■ addItem. This message is initially the same in both figures. After
aCrt:CartItem has been created and populated with data, a message is sent
to the data access object to save the data to the database.

 ■ getPrice, getDesc, updateQty. These three messages all access or update the
database. Therefore, each also requires a previous message to find the appro-
priate data from the database, which is stored in a domain object in memory.

Even though Figure 13-23 appears rather crowded, looking at each internal
message to a problem domain class makes the figure easier to understand. The
primary thing to remember is that data access objects are necessary to retrieve
data and thereby provide navigation visibility to the required object.

 ■ Updating and Packaging the Design Classes
The design class diagram keeps growing and expanding as each use case is
designed and its methods added. The previous examples only created a design
class diagram for the problem domain classes. However, design class diagrams
can also be developed for each layer. In the view layer and the data access layer,
several new classes must be specified. The domain layer also has new classes
added for the use case controllers.

As we update the design class diagram, note that there are three types of
methods found in most classes: (1) constructor methods, (2) data-get and data-
set methods, and (3) use case–specific methods.Constructor methods create new
instances of objects. Get and set methods retrieve and update attribute values.
To avoid information overload, most developers don’t include the get and set
methods in the DCD. The third type of method—use case–specific methods—are
the ones we normally include in the design class diagram. Figure 13-24 contains
the completed design class diagram for the domain layer classes for the two use
cases illustrated in this chapter, Create customer account and Fill shopping cart.

The two major additions to the domain layer classes are the two use case
handlers. Additional navigation arrows have also been added to document which
classes are visible from the controller classes. The other navigation arrows,
which were defined during the first cut of the class diagram, have proved to be
adequate for these two use cases.

 ■ Structuring the Major Components with Package Diagrams
A package diagram in UML is simply a high-level diagram that allows design-
ers to associate classes of related groups. Designers sometimes need to docu-
ment differences or similarities in relationships in different layers—perhaps
separating or grouping objects based on a distributed processing environment.
This information can be captured by showing each layer as a separate package.
 Figure 13-25 illustrates how these layers might be documented.

The classes are placed inside the appropriate package based on the layer to which
they belong. To develop this package diagram, we simply extracted the information

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

425CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

from design class diagrams and interaction diagrams for each use case. Figure 13-25
is only a partial package diagram because the packages contain only the classes from
the use case interaction diagrams that were developed in this chapter.

The other symbol used on a package diagram is a dashed arrow, which
represents a dependency relationship. The arrow’s tail is connected to the
package that is dependent, and the arrowhead is connected to the independent
package. To read a dependency relationship, read it in the direction of the arrow.

Customer

+createNewCustomer (name, mobilePh, homePh,
 email): Customer
+enterAddress(type, street, city, state, zip)
+enterAccount(type, ccNo, ccDate)
+createCart ()

-accountNo: string {key}
-name: string
-mobilePhone: string
-homePhone: string
-status: string

«controller»
CustomerHandler

+createCustomer (name, mobilephone, homePhone, email)
+enterAddress (type, street, city, state, zip)
+enterAccount (type, ccNo, ccDate)

«controller»
CartHandler

+addItem (promoNo, prodID, size, color, qty)
+addAccessory (promoNo, prodID, size, color, qty)

InventoryItem

-inventoryID: int {key}
-productID: string
-size: string
-color: string
-options: string
-quantityOnHand: int
-averageCost: currency
-reorderQuantity: int
-dateLastOrder: date
-dateLastShipment: date

+updateQty (qty): string

Account

-accountNo: string {key}
-typeOfAccount: string
-creditCardNo: int
-creditCardDate: date

+createAccount (accNo, type, ccNo, ccDate)

Address

-accountNo: string {key}
-typeOfAddress: string
-number: string
-street: string
-city: string
-state: string
-postalCode: string

+createAddress (accNo, type, no, street, city, state, zip)

CartItem

-saleItemId: int {key}
-productID: string
-InventoryID: int
-quantity: int
-soldPrice: currency
-shipStatus: string
-backOrderStatus: string

+createCartItem (promoNo, prodID, size, color, qty)

OnlineCart

-saleID: int {key}
-saleDateTime: date
-priorityCode: string
-S&H: currency
-tax: currency
-totalAmt: currency

+createCart ()
+addItem (promoID, prodID, size, color, qty)

PromoOffering

-promoNo: string
-promoPrice: currency

+getPrice (): currency

ProductItem

-productID: string {key}
-gender: string
-description: string
-supplier: string
-manufacturer: string
-regularPrice: currency
-pictureID: string

+getDesc (): string

FIguRe 13-24 Updated design class diagram for the domain layer

dependency relationship a relationship
between packages, classes, or use cases
in which a change in the independent item
requires a change in the dependent item

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

426 PART 5 ■ Advanced Design and Deployment Concepts

For example, SearchItemWindow is dependent on ProductItem. Dependency
relationships are used in package diagrams, class diagrams, and even interaction
diagrams. A good way to think about a dependency relationship is that if one
element changes (the independent element), the other (dependent) element might
also have to be changed. Dependency relationships can be between packages or
between classes within packages. Figure 13-25 indicates that several classes in
the view layer are dependent on classes in the domain layer. Thus, for example,
if a change is made in the ProductItem class, the SearchItemWindow class should
be evaluated to capture that change. However, the reverse isn’t necessarily true.
Changes to the view layer usually don’t carry through to the domain layer.

 ■ Implementation Issues for Three-Layer Design
Using design class diagrams, interaction diagrams, and package diagrams, pro-
grammers can begin to build the components of a system. Thus, implementa-
tion in this sense means constructing the system with a programming language,
such as Java, PHP, or such Visual Studio languages as VB or C#. Integrated
development environment (IDE) tools have been developed to help program-
mers construct systems. Such tools as Jbuilder and Eclipse (for Java), Aptana (for
PHP), Visual Studio (for Visual Basic), and C# and C++Builder (for C++) pro-
vide a high level of programming support, especially in building the view layer
classes—the windows and window components of a system.

SearchItemWindow

AddItemWindow

AddAccessWindow

View Layer

Domain Layer

CartHandler

OnlineCart

CartItem

PromoOffering

CustomerDA

OnlineCartDA

CartItemDA

PromoOfferDA

ProductItemDA

InventoryItemDA

CustomerHandler

Customer

Address

InventoryItem

Account

ProductItem

ViewAccessWindow

DisplayItem+AccessWindow

DisplayItemWindow

Data Access Layer

FIguRe 13-25 Partial design of
three-layer package diagram for
RMO

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

427CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

Unfortunately, these same tools have propagated some bad programming
habits in some developers. The ease with which programmers can build GUI
windows and automatically insert code has allowed them to put all the code in
the windows. Each window component has several associated events where code
can be inserted. Thus, some programmers find it easy to build a window with
an IDE tool, let the tool automatically generate the class definition, and merely
insert business logic code. No new classes need to be defined, and little other
coding is required. Some of these tools also have database engines, so the entire
system can be built with windows classes. However, taking such shortcuts exacts
a price later.

The problem with this approach is the difficulty of maintaining the system.
Code snippets scattered throughout the GUI classes are hard to find and main-
tain. Plus, when the user-interface classes need to be upgraded, the program-
mer must also find and update the business logic. If a network-based system
needs to be enhanced to include a Web front end, a programmer must rebuild
nearly the entire system. Or if two user interfaces are desired, all the business
logic is programmed twice. Finally, without the tool that generates the code, it
is almost impossible to keep the system current. This problem is exacerbated by
new releases of the IDE tools, which may not be compatible with earlier ver-
sions. Many programmers have had to completely rewrite the front end of a
system because the new release of an IDE tool didn’t generate code the same way
the previous release did. Thus, we advise analysts and programmers to use good
design principles in the development of new systems.

Based on the design principle “object responsibility,” it is possible to define
which program responsibilities belong to each layer. If you follow these guide-
lines when writing code, a system will be much easier to maintain throughout
its lifetime. Let us summarize the primary responsibilities of each layer.

View layer classes should have programming logic to perform the following:

 ■ Display electronic forms and reports.
 ■ Capture such input events as clicks, rollovers, and key entries.
 ■ Display data fields.
 ■ Accept input data.
 ■ Edit and validate input data.
 ■ Forward input data to the domain layer classes.
 ■ Start and shut down the system.

Domain layer classes should have responsibilities to perform the following:

 ■ Create problem domain (persistent) classes.
 ■ Process all business rules with appropriate logic.
 ■ Prepare persistent classes for storage to the database.

Data access layer classes should have responsibilities to perform the following:

 ■ Establish and maintain connections to the database.
 ■ Contain all SQL statements.
 ■ Process result sets (the results of SQL executions) into appropriate

domain objects.
 ■ Disconnect gracefully from the database.

 ■ Design Patterns
Patterns, also called templates, are used repeatedly in everyday life. A chef uses
a recipe, which is just another word for a pattern, to combine ingredients into a
flavorful dish. A tailor uses a pattern to cut fabric for a great-fitting suit. Engi-
neers take standard components and combine them into established configura-
tions, or set patterns, to build buildings, sound systems, and thousands of other
products. Patterns are created to solve problems. Over time and with many

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

428 PART 5 ■ Advanced Design and Deployment Concepts

attempts, people who work on a particular problem develop a given solution to
the problem. The solution is general enough that it can be applied over and over
again. As time passes, the solution is documented and published, and eventually,
it becomes accepted as the standard.

Standard design templates have become popular among software developers
because they can speed object-oriented design work. The formal name for these
templates is design patterns. Design patterns became a widely accepted object-
oriented design technique in 1996 with the publication of Elements of Reusable
Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. These four authors are now referred to as the Gang of Four
(GoF). As you learn more about design patterns, you will often see references to
a particular design pattern as a GoF pattern. In their book, the authors identified
23 basic design patterns. Today, scores of patterns have been defined—from low-
level programming patterns to midlevel architectural patterns to high-level enter-
prise patterns. Two important enterprise platforms—Java and .NET—have sets
of enterprise patterns, which are described in various books and publications.

You are also familiar with the concepts of design patterns and with two
specific patterns: three-layer design and use case controllers. Patterns exist at
various levels of abstraction. At a concrete level, a pattern may be a class defini-
tion that is written in code to be used by any developer. At the most abstract
level, a pattern might only be an approach to solving a problem. For example,
the multilayer design pattern tends to be more abstract. Thus, multilayer design
is an approach to building a system rather than a specific solution.

 ■ Use Case Controller
In Chapter 12, you were introduced to a design pattern called the Model-View-
Controller pattern. Let us formalize the concept of a use case controller and
explain its importance as a design pattern. For any particular use case, messages
come from the external actor to a windows class (i.e., an electronic input form)
and then to a problem domain class. This pattern answers the question of which
problem domain class should receive input messages to reduce coupling, main-
tain highly cohesive domain classes, and maintain independence between the
user interface and the domain layer. Designers often define intermediary classes
that act as buffers between the user interface and the domain classes.

Figure 13-26 provides a more formal specification for the use case control-
ler pattern. Note that this specification has five main elements:

 ■ Pattern name
 ■ Problem that requires a solution
 ■ Solution to or explanation of the pattern
 ■ Example of the pattern
 ■ Benefits and consequences of the pattern

A use case controller acts as a switchboard, taking input messages and routing
them to the correct domain class. In effect, the use case controller acts as an inter-
mediary between the outside world and the internal system. The coupling between
the user-interface objects and the problem domain objects is reduced by making a
single use case controller object to handle all the input messages. A use case con-
troller also contains logic that controls the flow of execution for the use case.

 ■ Adapter
The adapter pattern concept is straightforward. The adapter pattern is also a
good example of the design principles “protection from variations” and “indi-
rection.” An adapter pattern is roughly akin to an electrical adapter used for
international travel. Thus, if you are traveling to England, you might decide to
take your hair dryer with you. It has a switch for either 110 volts or 220 volts,

design patterns standard design
techniques and templates that are widely
recognized as good practice

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

429CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

so you think you can run it on either voltage. However, the plug on the end of
the power cord has two flat prongs. Unfortunately, wall sockets in England have
slots for three large prongs set at angles. You need something that can adapt the
power cord’s two prongs to the wall’s three angled slots. Figure 13-27 shows a
typical electrical adapter you might use.

RMO New Customer

Controller

Domain classes have the responsibility of processing use cases. However,
since there can be many domain classes, which one(s) should be responsible
for receiving the input messages?

User- interface classes become very complex if they have visibility to all of the
domain classes. How can the coupling between the user-interface classes and
the domain classes be reduced?

Assign the responsibility for receiving input messages to a class that receives
all input messages and acts as a switchboard to forward them to the correct
domain class. There are several ways to implement this solution:
(a) Have a single class that represents the entire system, or
(b) Have a class for each use case or related group of use cases to act as a
 use case handler.

The RMO Customer account subsystem accepts inputs from a :CustomerForm window.
These input messages are passed to the :CustomerHandler, which acts as the switchboard to
forward the message to the correct problem domain class.

Benefits and
consequences:

Other cases of the controller pattern will be used for each RMO use case.

Coupling between the view layer and the domain layer is reduced.
The controller provides a layer of indirection.

The controller is closely coupled to many domain classes.
If care is not taken, controller classes can become incoherent,
 with too many unrelated functions.
If care is not taken, business logic will be inserted into the controller class.

Example:

Solution:

Problem:

Name:

createNewCustomer ()

createNewCustomer () createNewCustomer ()

User interface Domain classes

:CustomerForm :CustomerHandler :Customer

Controller class

CancelSave

FIguRe 13-26 Pattern specification for the controller pattern

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

430 PART 5 ■ Advanced Design and Deployment Concepts

The adapter design pattern works just like the electrical adapter; it plugs
an external component into an existing system. The method signatures on the
external class are different from the method names being called from within the
system, so the adapter class is inserted to convert the method calls from within
the system to the method names in the external class.

Figure 13-28 describes the details of the adapter design pattern. The sample
diagram has four UML classes. The one labeled System represents the entire
system. The classes within the system use such method names as getSTax() and
getUTax() to access the tax routines. The TaxCalculator class has the method
names findTax1() and findTax2(). The two UML classes in the middle represent
the adapter. The top middle class symbol represents an interface class. An inter-
face is useful to specify the method names; although not absolutely necessary, it
is a simple way to specify and enforce the use of the correct method names. The
adapter class then inherits those method names and provides the method logic
for those methods. The body of each method simply extends a call to the final
method name findTax1() or findTax2(). In other words, it “adapts,” or trans-
lates, the method names from one to the other.

As you become familiar with this design pattern, you will find that it has a
multitude of uses. It is a powerful and elegant solution to making a system more
maintainable. Experienced developers use this pattern frequently—for foreign
classes and for internally written classes that may need frequent upgrades. It is
an excellent way to insulate the system from frequently changing classes.

 ■ Factory
In the discussions of detailed design, we have often expressed the need to have
utility classes, which include the data access objects or controller classes. An
adapter in an adapter pattern situation is also a utility class. What class should
create these utility objects? In most situations, it doesn’t make sense for domain
classes to create them because it isn’t a listed responsibility of domain classes.
A popular solution in object-oriented programming is to have some classes that
are factories. In other words, these classes instantiate objects from utility classes.

For example, an executing customer object may need to write some data.
If the factory class is designed with static methods, which means they have
global visibility, the customer object can just say to the factory: “Get me a ref-
erence to a data access object for the customer table.” The factory will create
a new data access object and return the reference. If a customer data access
object already exists in memory, it simply returns the reference. The customer
object doesn’t have to be concerned about creating objects to access the data-
base. It just uses whatever is passed to it. This reduces coupling, enhances cohe-
sion, and assigns responsibilities to the right classes. Figure 13-29 is an example
of a factory class.

The factory class has private attributes to hold the references to the data
objects that are created. When a request is made to get the reference to a data
object, the method simply checks to see if the attribute is null. If so, it creates
a new object, places its reference in the attribute, and returns the value. Other-
wise, it just returns the parameter with the reference already in it.

FIguRe 13-27 Electrical adapter

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

431CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

TaxCalculator

Adapter

A class must be replaced, or is subject to being replaced, by another standard
or purchased class. The replacing class already has a predefined set of method
signatures that are different from the method signatures of the original class.
How do you link in the new class with a minimum of impact so that you don’t
have to change the names throughout the system to the method names in
the new class?

Write a new class, the adapter class, which serves as a link between the original system
and the class to be replaced. This class has method signatures that are the same as
those of the original class (and the same as those expected by the system). Each method
then calls the correct desired method in the replacement class with the method signature.
In essence, it “adapts” the replacement class so that it looks like the original class.

There are several places in the RMO system where class libraries were purchased to
provide special processing. These purchased libraries provide specialized services
such as tax calculations and shipping and postage rates. From time to time, these
service libraries are updated with new versions. Sometimes a service library is even
replaced with one from an entirely different vendor. The RMO systems staff applies
protection from variations and indirection design principles by placing an adapter
in front of each replaceable class.

Benefits and
consequences:

Example:

Solution:

Problem:

Name:

ABCTaxCalculator

«interface»
TaxCalculatorIF

TaxCalcAdapter

System

The adaptee class can be replaced as desired. Changes are confined to the adapter
class and do not ripple through the system.

Two classes are defined, an interface class and the adapter class.

Passed parameters may add more complexity, and it is difficult to limit changes to
the adapter class.

getSTax ()
getUTax ()

findTax1 ()
findTax2 ()

getSTax ()
getUTax ()

FIguRe 13-28 Adapter pattern template

 ■ Singleton
Some classes must have exactly one instance—for example, a factory class or the
main window class. Because these classes are instantiated from only one place, it
is easy to limit the logic to create only one object.

Other classes must have exactly one instance but can’t be easily controlled
by having only one place to invoke the constructor. Depending on the system’s
flow of logic, a particular class might get instantiated from multiple locations.
However, only one instance needs to be created, so the first one that needs it

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

432 PART 5 ■ Advanced Design and Deployment Concepts

creates it, and every other class uses the one that was initially created. Usually,
these classes are service classes that manage a system resource, such as a data-
base connection. In fact, the factory class that was just described is an excellent
example. This common problem has a standard solution: the singleton pattern.

Figure 13-30 presents the template of the description for the singleton pat-
tern. The singleton pattern provides a solution in which the class itself controls
the creation of only one instance.

Benefits and
consequences:

Example:

Solution:

Problem:

Name: Factory or factory method

Who should be responsible for creating utility type objects that do not specifically
belong to the problem domain classes? These utility objects may also be accessed
from various places within the system, so a given object may need to be instantiated
from several classes.

Create an artifact that is a factory class. Its responsibility is only to instantiate utility
classes. In many situations, only one instance of a particular utility class is allowed.
Hence, all classes that need access to the class come through the factory. The
factory ensures that only one instance is created.

Several places in the RMO system need to get data from an Order object and need
to have a reference to an Order_DA [data access] object. The Order_DA object may
or may not already have been instantiated. A data access factory is defined and an
interface is created. The requesting object uses the methods defined in the interface
to request the reference to the Order_DA object. It then can read the database
of orders.

Higher cohesion of problem domain classes
Less coupling between business logic layer and data layer
Smaller, more maintainable classes

Customer

Shipment

Order

Order_DA

«interface»
DAFactory_iF

getOrder_DA ()
getCustomer_DA ()
getShipment_DA ()

DAFactory

getOrder_DA ()
getCustomer_DA ()
getShipment_DA ()

-myODA: Order_DA
-myCDA: Customer_DA
-mySAD: Shipment_DA

:System «uses»

«creates»

«requiresDA»

public synchronized Order_DA getOrder_DA () {
 if (myODA == null) {
 myODA = new Order_DA ();
 }
 return myODA;
}

FIguRe 13-29 Factory method pattern template

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

433CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

Notice that the singleton pattern has the same basic logic as the factory
method pattern. The difference is that the singleton class has code that applies to
itself as static methods. The approach of the singleton solution is that the class has
a static variable that refers to the created object. A method such as getConnection
is defined and used to get the reference to the object. The first time the getCon-
nection method is called, it instantiates an object and returns a reference to it. On
later calls to the method, it simply returns a reference to the already instantiated
object. The code is simple and elegant. The example doesn’t show the constructor;
however, to ensure that only one instance is created, all constructors are specified
as private—not accessible—so no other class can accidentally invoke one.

In the singleton template, the pattern is represented by code. To specify this
in your design, you should stereotype the class as a «singleton». Good program-
mers will recognize the stereotype and know exactly how to code the class.

Singleton

Only one instantiation of a class is allowed. The instantiation (new) can be
called from several places in the system. The first reference should make a
new instance, and later attempts should return a reference to the already
instantiated object. How do you define a class so that only one instance is
ever created?

A singleton class has a static variable that refers to the one instance of itself.
All constructors to the class are pr ivate and are accessed through a method
or methods, such as getInstance(). The getInstance() method checks the variable;
if it is null, the constructor is called. If it is not null, then only the reference to
the object is returned.

In RMO’s system, the connection to the database is made through a class called
Connection. However, for efficiency, we want each desktop system to open
and connect to the database only once, and to do so as late as possible. Only
one instance of Connection—that is, only one connection to the database—is
desired. The Connection class is coded as a singleton. The following coding
example is similar to C# and Java:

Class Connection
{
private static Connection conn = null;
public synchronized static getConnection ()
 {
 if (conn == null) {

 conn = new Connection ();}
 return conn;
 }
}

Another example of a singleton pattern is a utilities class that provides services for the system,
such as a factory pattern. Because the services are for the entire system, it causes confusion if
multiple classes provide the same services.

An additional example might be a class that plays audio clips. Since only one audio clip should
be played at one time, the audio clip manager will control that.
must be only one instance of the audio clip manager.

There are other times when only one instance of an object is needed, but if it is instantiated from
only one place, then a singleton may not be required. The singleton object controls itself
and ensures that only one instance is created—no matter how many times it is called and
wherever the call occurs in the system.

The code to implement the singleton is very simple, which is one of the desirable characteristics
of a good design pattern.

Benefits and
consequences:

Example:

Solution:

Problem:

Name:

However, for this to work, there

FIguRe 13-30 Singleton pattern technique

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

434 PART 5 ■ Advanced Design and Deployment Concepts

The final step is to convert each message, along
with the passed parameters and return values, into
method signatures located in the correct classes. This
information is used to update the design class diagram.
Changes are also made to the design class diagram to
show required visibility between the classes in order to
send messages in the sequence diagrams. Package dia-
grams are used to partition the design class diagram into
appropriate packages. Dependency between the classes
and the packages is also added to the package diagram.

Popular design patterns include the adapter pat-
tern, factory pattern, singleton pattern, and observer
pattern. The adapter pattern implements the design
principle “protection from variations” by allowing a
changing piece of the system to simply plug into a more
stable part of the system. When the pluggable piece of
the system needs to change, it can just be unplugged
and the updated component can be plugged in.

The factory and singleton patterns have much in
common. Both return a reference to a specific object.
Both allow only one instance of that object to exist in
the system. The difference is that the factory pattern
enforces a single occurrence for utility classes and the
singleton only enforces a single occurrence for itself.

Detailed design is use case–driven in that each use case
is designed separately. This type of design is called use
case realization. The two primary models used for
detailed design are the design class diagram and the
sequence diagram.

Detailed design of use cases entails identifying
problem domain classes that collaborate to carry out
a use case. Each input message from an external actor
triggers a set of internal messages. Using a sequence
diagram or a communication diagram, the designer
identifies and defines all these internal messages. In
the first cut, only the problem domain classes and
their internal messages are identified. Next, the solu-
tion is completed by adding the classes and messages
for the view layer and the data access layer.

Three-layer design is part of the overall move-
ment in systems design based on design patterns. A
design pattern is a standard solution or template that
has proven to be effective to a particular requirement
in systems design. The other pattern, introduced in
Chapter 12, is a use case controller, which addresses
the need to isolate the view layer from the business
layer in a simple way that limits coupling between the
two layers.

CHAPTER SUMMaRy

dependency relationship

design patterns

sequence diagrams

use case realization

activation lifeline

communication diagrams

KEy TeRMS

 9. What is the purpose of the use case controller?

 10. What is the purpose of a lifeline on a sequence
diagram?

 11. What is meant by an activation lifeline? How is
it used on a sequence diagram?

 12. Describe the three major steps in developing the
set of messages for the communication diagram.

 13. What assumptions do developers usually make
while doing the initial use case realization?

 14. When doing multilayer design, what is the order
in which layers should be designed? Why?

 15. What is the “separation of responsibilities”
principle?

 16. Explain the two methods of accessing the data-
base to create new objects in memory.

 1. What is meant by the term use case realization?

 2. What are the benefits of knowing and using
design patterns?

 3. What is the contribution to system development
by the Gang of Four?

 4. What are the five components of a standard
design pattern definition?

 5. List five elements included in a sequence
diagram.

 6. How does a sequence diagram differ from
an SSD?

 7. What is the difference between designing with CRC
cards and designing with interaction diagrams?

 8. Explain the syntax of a message on a communi-
cation diagram.

REvIEw QUeSTIOnS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

435CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

PRObleMS AnD exeRCISeS
Problems 1 through 7 are based on the solutions you
developed in Chapter 5 for problems 1 and 2, which
involved a university library system. Alternatively,
your instructor may provide you with a use case dia-
gram and a class diagram.

 1. Figure 13-31 is an SSD for the use case Check
out books in the university library system. Do the
following:
a. Develop a first-cut sequence diagram that only

includes the actor and problem domain classes.
b. Develop a design class diagram based on your

solution. Be sure to include your controller
class.

 2. Using your solution to problem 1, do the following:
a. Add the view layer classes and the data access

classes to your diagram. You may do this with
two separate diagrams to make them easier to
work with and read.

b. Develop a package diagram showing a three-
layer solution with view layer, domain layer,
and data access layer packages.

 3. Figure 13-32 is an activity diagram for the use
case Return books in the university library sys-
tem. Do the following:
a. Develop a first-cut sequence diagram that

only includes the actor and problem domain
classes.

b. Develop a design class diagram based on the
domain class diagram.

 4. Using your solution to problem 3, do the
following:
a. Add the view layer classes and the data access

classes to your diagram.
b. Develop a package diagram showing a three-

layer solution with view layer, domain layer,
and data access layer packages.

 17. What symbols are used in a communication
diagram, and what do they mean?

 18. Explain the components of message syntax in a
sequence diagram. How does this syntax differ
from that of a communication diagram message?

 19. Explain the method syntax on design classes.

 20. What is meant by a dependency relationship?
How is it indicated on a drawing?

 21. List the major implementation responsibilities of
each layer in a three-layer design.

 22. What is the purpose of the adapter pattern?

 23. What common element is found in the
singleton pattern and the factory pattern?
What is the basic difference between the
two patterns?

LibraryEmployee

verifyPatron (ID, name)

title, author, copy#, dueDate

closeLoan ()

verificationInformation

checkOutBook (catalog#)

:System

Loop
[book]

FIguRe 13-31 System sequence
diagram for the Check out books
use case

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

436 PART 5 ■ Advanced Design and Deployment Concepts

FIguRe 13-32 Activity diagram for
the Return books use case SystemLibraryEmployee

Remove book from
loan

Change book status/
display status

Scan book into system

Collect returned books

Place book on
reshelve cart

Close return
form

Close form

for each book

end for each

 5. Figure 13-33 is a fully developed use case
description for the use case Receive new book in
the university library system. Do the following:
a. Develop a first-cut communication diagram

that only includes the actor and problem
domain classes.

b. Develop a design class diagram based on the
domain class diagram.

 6. Using your solution to problem 5, do the following:
a. Add the view layer classes and the data access

classes to your diagram.
b. Develop a package diagram showing a three-

layer solution with view layer, domain layer,
and data access layer packages.

 7. Integrate the design class diagram solutions you
developed for problems 1, 3, and 5 into a single
design class diagram.

 Problems 8 through 14 are based on the
 solutions you developed for problems 3 and 4 in
Chapter 5, which involved a dental clinic system.
Alternatively, your instructor may provide you
with a use case diagram and a class diagram.

 8. Figure 13-34 is an SSD for the use case Record
dental procedure in the dental clinic system. Do
the following:
a. Develop a first-cut sequence diagram that only

includes the actor and problem domain classes.
b. Develop a design class diagram based on the

domain class diagram.

 9. Using your solution to problem 8, do the
following:
a. Add the view layer classes and the data access

classes to your diagram.
b. Develop a package diagram showing a three-

layer solution with view layer, domain layer,
and data access layer packages.

 10. Figure 13-35 is an activity diagram for the use
case Enter new patient information in the dental
clinic system. Do the following:
a. Develop a first-cut sequence diagram that

only includes the actor and problem domain
classes.

b. Develop a design class diagram based on the
domain class diagram.

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

437CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

Use case name: Receive new book
Scenario: Receive new book
Triggering event: Newly purchased book arrives

Brief description: The librarian decides on purchases of new books and places order (prior to this use case).
Shipments of new books arrive. Each new book is assigned a library catalog number. Some
books are simply additional copies of existing titles. Some books are new editions of existing titles.
Some books are new titles and new physical books. The new book information is added to the
system.

Actors: Library Employee
Stakeholders: Library Employee, Librarian
Preconditions: None

Postconditions:
Flow of activities:

Book Title exists, Physical Book exists

Exception
conditions: Duplicate numbers require further research and reassignment of catalog numbers.

Actor System

1. Collect new books from receipt of shipment.
2. For each book, research book category and catalog

numbers. Assign tentative number.
3a. If new copy of existing title, enter book information
 and catalog number into system.
3b. If new edition of existing title, enter book information,
 edition information, and catalog number.
3c. If new title, assign general catalog number. Assign
 book copy number.
4. Mark book with number.
5. Place book on shelving cart.
6. Repeat for each book (back to step 2).

3a.1 Update catalog with new
number.Verify that not duplicate.

3b.1 Update catalog with new
number. Verify that not duplicate.

3c.1 Verify that catalog number
 not duplicate.

FIguRe 13-33 Fully developed use case description for the Receive new book use case

Dental Aide

find Patient (name, telephone#)

updateVerificationMessage

closePatientFile

patientID, name, telephone, address

enterDescription (dentistID, hygienistID, description)

:System

Loop [Procedure]

FIguRe 13-34 System sequence
diagram for the Record dental
procedure use case

©
 C

en
ga

ge
 L

ea
rn

in
g®

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

438 PART 5 ■ Advanced Design and Deployment Concepts

 13. Using your solution to problem 12, do the following:
a. Add the view layer classes and the data access

classes to your diagram.
b. Develop a package diagram showing a three-layer

solution with view layer, domain layer, and data
access layer packages.

 14. Integrate the design class diagram solutions that you
developed for problems 8, 10, and 12 into a single
design class diagram.

 15. In Figure 13-37, the package on the left contains the
classes in a payroll system. The package on the right
is a payroll tax subsystem. What technique would you
use to integrate the payroll tax subsystem into the
payroll system? Show how you would solve the prob-
lem by modifying the existing classes (in either figure).
What new classes would you add? Use UML notation.

 11. Using your solution to problem 10, do the
following:
a. Add the view layer classes and the data access

classes to your diagram.
b. Develop a package diagram showing a three-

layer solution with view layer, domain layer,
and data access layer packages.

 12. Figure 13-36 is a fully developed use case
description for the use case Print patient invoices
in the dental clinic system. Do the following:
a. Develop a first-cut communication diagram

that only includes the actor and problem
domain classes.

b. Develop a design class diagram based on the
domain class diagram.

System

Existing

Dental Aide

Review completed patient
information form

Patient in existing
household? Or new

household?

Enter head of
household
identifier

new HH

Enter HH information

Verify HH information
correct

Enter new patient
information

Verify patient
information correct

End new patient
process

Build new
patient record

Close new
patient process

Build new HH
record

Display HH
information

FIguRe 13-35 Activity diagram for
the enter new patient information
use case

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

439CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

1. Collect all written notes about procedures
 completed this month.
2. View several patients to verify that procedure
 information has all been entered.
3. Review log of payments received and verify that
 payments have been entered.
4. Enter month-end date and request invoices.
5. Verify invoices are correct.
6. Close invoice print process.

2.1 Display patient information, including
 procedure records.
3.1 Display patient information, including
 account balance and last payment
 transactions.
4.1 Review every patient record. Find unpaid
 procedures. List on report as aged or
 current. Calculate and break down by
 co-pay and insurance pay.

Use case name: Print patient invoices
Scenario: Print patient invoices
Triggering event: At the end of the month, invoices are printed

Brief description: The billing clerk manually checks to see that all procedures have been collected. The clerk spot-
checks, using the written records to make sure procedures have been entered by viewing them
with the system. The clerk also makes sure all payments have been entered. Finally, he/she prints
the invoice reports. An invoice is sent to each patient.

Actors: Billing Clerk
Stakeholders: Billing Clerk, Dentist
Preconditions: Patient Records must exist, Procedures must exist

Postconditions:
Flow of activities:

Patient Records are updated with last billing date

Exception
conditions: None

Actor System

FIguRe 13-36 Fully developed use case description for the Print patient invoices use case

Payroll System Payroll Tax Subsystem

calcHourlyPayrollTax (payperiod, payAmt, depend)
calcSalaryPayrollTax (month, salary, depend)

Employee PRollTaxCalculator

PRTHourly (pp, amt, dep)
PRTSal (pp, amt, dep)

FIguRe 13-37 Payroll system packages and classes

©
 C

en
ga

ge
 L

ea
rn

in
g®

©
 C

en
ga

ge
 L

ea
rn

in
g®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

440 PART 5 ■ Advanced Design and Deployment Concepts

Moveyourbooksnow.com
book exchange
MoveYourBooksNow.com is a book exchange that does
business entirely on the Internet. The company acts as a
clearinghouse for buyers and sellers of used books.

To offer books for sale, a person must register with
MoveYourBooks. The person must provide a current physi-
cal address and telephone number as well as a current
e-mail address. The system maintains an open account for
this person. Access to the system as a seller is through a
secure, authenticated portal.

A seller can list books on the system through a special
Internet form. Information required includes all the perti-
nent information about the book, its category, its general
condition, and the asking price. A seller may list as many
books as desired. The system maintains an index of all
books in the system so buyers can use the search engine
to search for books. The search engine allows searches by
title, author, category, and keyword.

People who want to buy books come to the site and
search for the books they want. When they decide to buy,
they must open an account with a credit card to pay for the
books. The system maintains all this information on secure
servers.

When a request to purchase is made and the payment
is sent, TheMoveYourBooks.com sends an e-mail notice
to the seller of the book. It also marks the book as sold.
The system maintains an open order until it receives notice

that the book has been shipped. After the seller receives
notice that a listed book has been sold, the seller must notify
the buyer via e-mail within 48 hours. Shipment of the order
must be made within 24 hours of the seller sending the noti-
fication e-mail. The seller sends a notification to the buyer
and TheMoveYourBooks.com when the shipment is made.

After receiving notice of shipment, TheMoveYour-
Books.com maintains the order in shipped status. At the
end of each month, a check is mailed to each seller for the
book orders that have been in shipped status for 30 days.
The 30-day waiting period allows the buyer to notify The-
MoveYourBooks.com if the shipment doesn’t arrive for
some reason or if the book isn’t in the same condition as
advertised.

If they want, buyers can enter a service code for
the seller. The service code is an indication of how well
the seller is servicing book purchases. Some sellers are
very active and use TheMoveYourBooks.com as a major
outlet for selling books. Thus, a service code is an impor-
tant indicator to potential buyers.

For this case, develop the following diagrams:

1. A domain model class diagram
2. A use case diagram
3. SSDs for two use cases, such as Add a seller and

 Record a book order
4. A sequence diagram for each of the above use cases
5. An integrated design class diagram that includes

classes, methods, and navigation attributes

CASE Study

Community board of Realtors®

In Chapter 3, you identified use cases for the business
events for the Community Board of Realtors. In Chap-
ter 5, you elaborated on those use cases. In Chapter
4, you identified the classes associated with the busi-
ness events. Using your solutions from those chapters,
develop:

 1. A first-cut DCD by using the problem domain
classes that you identified in Chapter 4

 2. A communication diagram for the Create new
listing use case (domain classes and controller
class only)

 3. A sequence diagram for the Update agent infor-
mation use case (domain classes and controller
class only)

 4. A multilayer sequence diagram for the Update
agent information use case that includes domain
classes and data access classes

 5. A separate multilayer sequence diagram
for the Update agent information use case that
includes the domain classes and the view layer
classes

 6. A final design class diagram that includes
the classes from both use cases; include
elaborated attributes, navigation arrows,
and all the method signatures from both
use cases

RUnnIng CaSe StudieS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

441CHAPTER 13 ■ Object-Oriented Design: Use Case Realization

The Spring breaks ‘R’ Us Travel Service
 4. A multilayer sequence diagram for the Book a

reservation use case that includes domain classes
and data access classes

 5. A separate multilayer sequence diagram for the
Book a reservation use case that includes the
domain classes and the view layer classes

 6. A final design class diagram that includes the
classes from both use cases; include elabo-
rated attributes, navigation arrows, and all the
method signatures from both use cases

 7. A package diagram of the four subsystems
(Resort Relations, Student Booking, Account-
ing and Finance, and Social Networking) that
includes all the problem domain classes

In Chapter 3, you identified use cases for the business
events for the Spring Breaks ‘R’ Us Travel Service.
In Chapter 5, you elaborated on those use cases. In
 Chapter 4, you identified the classes associated with
the business events. Using your solutions from those
chapters, develop:

 1. A first-cut DCD by using the problem domain
classes you identified in Chapter 4

 2. A communication diagram for the Add a
resort use case (domain classes and controller
class only)

 3. A sequence diagram for the Book a reservation
use case (domain classes and controller class
only)

On the Spot Courier Services
In Chapter 10, you developed a first-cut design class
diagram and CRC card solutions for two use cases:
Request a package pickup and Pickup a package.

Let us extend your solution from that chapter by
developing the following:

 1. A sequence diagram for each use case (domain
classes and controller classes only).

 2. A multilayer sequence diagram for each use case
that includes domain classes and data access
classes.

 3. A separate multilayer sequence diagram for each
use case that includes the domain classes and the
view layer classes. (We won’t combine view and
data access layers on the same drawing. It makes
the drawing too complex.)

 4. A final design class diagram that includes the
classes from both use cases. Include elabo-
rated attributes, navigation arrows, and all the
method signatures from both use cases.

In Chapter 9, we defined four subsystems:

 ■ Customer Account subsystem (like Customer
Account)

 ■ Pickup Request subsystem (like Sales)
 ■ Package Delivery subsystem (like Order

Fulfillment)
 ■ Routing and Scheduling subsystem

Even though these subsystems are somewhat
arbitrary, we can treat each one as a separate pack-
age. Develop a package diagram for each of the four
subsystems by assigning domain model classes to each
package. A domain model class should belong to only
one subsystem package. Normally, it is the subsystem
that instantiates objects from that class. Also, show
dependency relationships among the various packages
and classes.

Sandia Medical Devices
Review your answers to the case-related questions in
Chapter 10 and then do the following:

 1. Develop a sequence diagram for the patient use
case View/respond to alert.

 2. Develop a multilayer sequence diagram that
includes domain classes and data access classes.

 3. Develop a separate multilayer sequence diagram
that includes the domain classes and the view

layer classes. (We won’t combine view and data
access layers on the same drawing. It makes the
drawing too complex.)

 4. Update your DCD from Chapter 10 to include
the methods you have identified. Also, include
any changes you may have made to navigation
visibility and attribute details.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

442 PART 5 ■ Advanced Design and Deployment Concepts

Erich Gamma, R. Helm, R. Johnson, and
J. Vlissides, Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

Mark Grand, Patterns in Java, Volumes I and II.
John Wiley and Sons, 1999.

Craig Larman, Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and
Design and the Unified Process (3rd ed.).
 Prentice Hall, 2004.

David S. Linthicum, Next Generation Application
Integration: From Simple Information to Web
Services. Addison-Wesley, 2004.

James Rumbaugh, Ivar Jacobson, and Grady
Booch, The Unified Modeling Language
 Reference Manual. Addison-Wesley, 1999.

Grady Booch, James Rumbaugh, and Ivar
 Jacobson, The Unified Modeling Language User
Guide. Addison-Wesley, 1999.

Grady Booch, et al., Object-Oriented Analysis and
Design with Applications (3rd ed.). Addison-
Wesley, 2007.

Frank Buschmann, R. Meunier, H. Rohnert, P. Som-
merlad, and M. Stal, Pattern-Oriented Software
Architecture: A System of Patterns. John Wiley
and Sons, 1996.

Alur Deepak, J. Crupi, and D. Malks, Core J2EE
 Patterns: Best Practices and Design Strategies.
Sun Microsystems Press, 2001.

Hans-Erik Eriksson, Magnus Penker, Brian Lyons,
and David Fado, UML 2 Toolkit. John Wiley and
Sons, 2004.

FURTHER ReSOURCeS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter fourteen

Deploying the
New System

Learning ObjeCtives
After reading this chapter, you should be able to:

Describe implementation and deployment
activities

Describe four types of software tests and
explain how and why each is used

Describe several approaches to data conversion

List various approaches to system deployment
and describe the advantages and disadvantages

Explain the importance of configuration
management, change management, and source
code control to the implementation, testing,
and deployment of a system

Testing

Deployment Activities

Managing Implementation, Testing, and
Deployment

Putting It All Together—RMO Revisited

Chapter OutLine

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

444 PART 5 ■ Advanced Design and Deployment Concepts

 ■ Overview
Developing any complex system is inherently difficult. For example, consider
the complexity of manufacturing automobiles. Tens of thousands of parts
must be fabricated or purchased. Laborers and machines must assemble those
parts into small subcomponents, such as dashboard instruments, wiring har-
nesses, and brake assemblies. These are in turn assembled into larger subcom-
ponents, such as instrument clusters, engines, and transmissions, which in
turn must be constructed, tested, and passed on to subsequent assembly steps.

Opening caSe Tri-STaTe HeaTing Oil: Juggling PriOriTieS TO Begin OPeraTiOn

It was 8:30 on Monday morning, and Maria Grasso,
Kim Song, Dave Williams, and Rajiv Gupta were about
to begin the weekly project status meeting. Tri-State
Heating Oil had started developing a new schedul-
ing system for customer orders and service calls five
months earlier. The target completion date was 10
weeks away, but the project was behind schedule.
Early project iterations had accomplished far less than
anticipated because key users had disagreed on what
new system requirements to include and the system
scope was larger than expected.

Maria began the meeting. “We’ve gained a day
or two since our last meeting due to better-than-
expected unit testing results,” she said. “All the meth-
ods developed last week sailed through unit testing,
so we won’t need any time this week to fix errors in
that code.”

Kim frowned. “I wouldn’t get too cocky just yet,”
she said. “All the nasty surprises in my last project
came during integration testing. We’re completing the
user-interface classes this week, so we should be able
to start integration testing with the business classes
sometime next week.”

Nodding enthusiastically, Dave said: “That’s good!
We have to finish testing those user-interface classes
as quickly as possible because we’re scheduled to
start user training in three weeks. I need that time to
develop the documentation and training materials and
work out the final training schedule with the users.”

Rajiv looked doubtful. “I’m not sure that we should
be trying to meet our original training schedule with so
much of the system still under development,” he said.
“What if integration testing shows major bugs that
require more time to fix? And what about the unfin-
ished business and database classes? Can we realisti-
cally start training with a system that’s little more than
a user interface with half a system behind it?”

“But we have to start training in three weeks,”
Dave replied. “We contracted for a dozen temporary
workers so we could train our staff on the new sys-
tem. Half of them are scheduled to start in two weeks

and the rest two weeks after that. It’s too late to
renegotiate their start dates. We can extend the time
they’ll be here, but delaying their starting date means
we’ll be paying for people we aren’t using.”

Maria spoke up. “I think that Rajiv’s concerns are
valid,” she said. “It’s not realistic to start training in
three weeks with so little of the system completed
and tested. We’re at least five weeks behind sched-
ule, and there’s no way we’ll recapture more than four
or five days of that during the next few weeks. I’ve
already looked into rearranging some of the remaining
coding to give priority to the work most critical to user
training. There are a few batch processes that can be
put on the back burner for a while. Kim, can you rear-
range your testing plans to handle all the interactive
applications first?”

“I’ll have to go back to my office and take another
look at the dependencies among those programs,”
Kim replied. “Offhand, I’d say yes, but I need a few
hours to make sure.”

“Okay,” Maria said. “Let’s proceed under the
assumption that we can rearrange coding and testing
to complete a usable system for training in five weeks.
I’ll confirm that by e-mail later today, as soon as Kim
gets back to me. I’ll also schedule a meeting with the
CIO to deliver the bad news about temporary staffing
costs.”

After a few moments of silence, Rajiv asked, “So,
what else do we need to be thinking about?”

Well, let’s see,” Maria replied. “There’s hard-
ware delivery and setup, operating system and DBMS
installation, importing data from the old database, the
network upgrade, and stress testing for the distributed
database accesses.”

Rajiv smiled and said to Maria, “You must have
been a juggler in your youth, which would have been
good practice for keeping all these project pieces up in
the air. Does management pay you by the ball?”

Maria chuckled. “I do think of myself as a juggler
sometimes. And if management paid me by the ball, I
could retire as soon as this project is finished!”

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

445CHAPTER 14 ■ Deploying the New System

The effort, timeliness, cost, and output quality of each step depend on all the
preceding steps.

Implementing and deploying an information system is similar in many ways;
it is a complex production and assembly process that must use resources effi-
ciently, minimize construction time, and maximize product quality. But unlike
automobile manufacturing, it isn’t done once and then used to build thousands
of similar units. Instead, implementation and deployment are unique to each
project and must match that project’s characteristics.

We have spent many chapters detailing the first four core processes of the
system development life cycle (SDLC). This chapter covers the last two core
 processes—those related to implementing the system and deploying the system,
as shown in Figure 14-1.

The fact that we are covering two core processes in a single chapter
doesn’t mean that they are simple or unimportant. Rather, they are complex
processes that you will learn about in detail by completing other courses and
reading other books as well as through on-the-job training and experience.
Our purpose in covering them in this chapter is to round out our discussion
of the SDLC and to show how all the core processes and activities relate to
one another.

Implementation activities are those related to building and testing the new
software, and to integrating all the components together. Earlier, you learned
that a new system may include purchased components, prebuilt components,
newly developed software components, DBMS components, and other middle-
ware components. All of these components must be tested in the total configura-
tion of the new system. The fifth core process includes activities to complete all
these tasks.

Deployment activities are related to final acceptance testing by the users of
the system, training the user, converting any existing data to the new DBMS
structure, configuring and testing the production computers and network,
installing the new system, and turning it on.

Sometimes the dividing line between implementation and deployment is
somewhat fuzzy because testing of the new system occurs during both core pro-
cesses. These two core processes can be distinguished by the primary focus of
each. Implementation is focused toward building and testing the system by the
technical project team. Deployment is focused toward putting the system into

Deployment activities

Perform system and stress tests.
Perform user acceptance tests.
Convert existing data.
Build training materials and conduct training.
Configure and set up production environment.
Deploy the solution.

Implementation activities

Program the software.
Unit test the software.
Identify and build test cases.
Integrate and test components.

Core
processes

1 2 3 4 5 6
Identify the problem and obtain
approval.

Plan and monitor the project.

Discover and understand details.

Design system components.

Build, test, and integrate system
components.

Complete system tests and deploy
the solution.

Iterations

FIGuRE 14-1 Core processes with implementation and deployment activities

©
 C

en
ga

ge
Le

ar
ni

ng
®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

446 PART 5 ■ Advanced Design and Deployment Concepts

production, particularly to ensure the users are satisfied with its capabilities
and know how to use the new system. Because testing is such an integrated
activity across both core processes, this chapter begins with a discussion of
 software testing.

 ■ Testing
Testing activities are a key part of implementation and deployment activi-
ties, although different kinds of tests are used in each core process. Testing is
the process of examining a component, subsystem, or system to determine its
operational characteristics and whether it contains any defects. To conduct a
test, developers must have well-defined specifications for both functional and
nonfunctional requirements. From the requirements specifications, test devel-
opers develop precise definitions of expected operational characteristics. The
developers can test software by designing and building the software, exercising
its function, and examining the results. If the results indicate a shortcom-
ing or defect, then the project team cycles back through earlier implementa-
tion or deployment activities until the shortcoming is remedied or the defect
is eliminated.

Test types, their related core processes, and the defects they detect and oper-
ational characteristics they measure are summarized in Figure 14-2. Each type
of testing is described in detail later in this section.

An important part of developing tests is specifying test cases and data.
A test case is a formal description of the following:

 ■ A starting state or condition
 ■ One or more events to which the software must respond
 ■ The expected response or ending state

The starting and ending states and the events are represented by a set
of test data. For example, the starting state of a system may represent a

FIGuRE 14-2 Types of software tests and the purpose of each

test case a formal description of a start-
ing state, one or more events to which the
software must respond, and the expected
response or ending state

test data a set of starting states and
events used to test a module, group of
modules, or entire system

Test type Core process Need and purpose

Unit testing

Integration testing

Implementation Software components must perform to the de	ned requirements and
speci	cations when tested in isolation—for example, a component that
incorrectly calculates sales tax amounts in different locations is unacceptable.

Implementation Software components that perform correctly in isolation must also perform
correctly when executed in combination with other components. They must
communicate correctly with other components in the system. For example
a sales tax component that calculates incorrectly when receiving money
amounts in foreign currencies is unacceptable .

User acceptance
testing

Deployment Software must not only operate correctly, but must also satisfy the business
need and meet all user “ease of use” and “completeness” requirements—for
example, a commission system that fails to handle special promotions or a
data-entry function with a poorly designed sequence of forms is unacceptable.

DeploymentSystem and stress
testing

A system or subsystem must meet both functional and non-functional
requirements. For example an item lookup function in a Sales subsystems
retrieves data within 2 seconds when running in isolation, but requires 30
seconds when running within the complete system with a live database.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

447CHAPTER 14 ■ Deploying the New System

particular set of data, such as the existence of a particular customer and
order for that customer. The event may be represented by a set of input data
items, such as a customer account number and order number used to query
order status. The expected response may be a described behavior, such as the
display of certain information, or a specific state of stored data, such as a
canceled order.

Preparing test cases and data is a tedious and time-consuming process.
At the component and method levels, every instruction must be executed at least
once. Ensuring that all instructions are executed during testing is a complex
problem. Fortunately, automated tools based on proven mathematical tech-
niques are available to generate a complete set of test cases. Many test cases
representing normal and exceptional processing situations should be prepared
for each scenario.

 ■ Unit Testing
Unit testing is the lowest level of and the earliest testing for a new software
 system. The concept and approach to unit testing is not consistent across all
development teams and, in fact, it has changed over the years as program-
ming methods and languages have changed. In today’s object-oriented devel-
opment approaches, a unit can be defined to be something as small as an
individual method. However, a frequent definition is to define a unit as a
class or sometimes even a small set of closely integrated classes such as a
component. For our purposes, we define unit test as a test of an individual
method, class, or component before it is integrated with other software. The
primary purpose of doing unit testing is to test a small piece of the code in
isolation to make sure that it functions correctly before it is integrated into a
larger program. Stated another way, its purpose is to make sure that the unit
is error-free before being integrated into the larger program. There are three
primary characteristics of a unit test:

1. It is done in isolation.
2. The test data and the test are done by the programmer who wrote

the code.
3. It is done quickly without a large requirement for other resources.

The first requirement is that the unit test be done in isolation. The objec-
tive of a unit test is to test a specific piece of software, and to be able to easily
identify the misbehaving code when an error occurs. If the unit is too large, or
if it is not isolated, the error could come from some code or an interface other
than the specific code being tested. One of the difficulties of being able to iso-
late the unit being tested is that it often will depend on other software, either to
receive a parameter or to output a result. Figure 14-3 illustrates this condition.
Suppose the piece of software is the colored box and the drawing on the left
describes the location of the unit within a larger component. As can be seen,
the unit to be tested is called from and receives input parameters from another
component, and it passes output to two other components. A true unit test
would need to be configured as shown in the drawing on the right. A driver
and a stub may need to be written and used to test the unit. In this example,
the stubs are overlapped to indicate that a single stub class could be used to
receive all unit test results.

The second requirement is that pieces of code are tested by the program-
mer who writes the code. This is the fastest and easiest approach to unit test-
ing. The programmer writing the code can quickly generate test data and run
several tests on the class or method. In addition, this requirement is in place

driver a method or class used in unit
testing that simulates the behavior of a class
that calls and sends parameters to the unit
being tested

unit test test of an individual method,
class, or component before it is integrated
with other software

stub a method or class used in unit testing
that receives and displays the output from the
unit being tested

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

448 PART 5 ■ Advanced Design and Deployment Concepts

to place responsibility of writing solid, clean code right on the programmer. It
is just human nature that if you are not accountable for your work, the qual-
ity degrades substantially. On highly productive development teams, program-
mers are well trained on how to conduct unit tests. For example, one caveat is
that both good test data and bad test data should be used in the unit test. The
natural tendency is to just use good test data and observe the expected result.
However, a well-trained programmer also thinks of multiple ways that bad data
might be received, either from user input or other errors.

Finally, unit testing should not require elaborate test cases or complex tex-
ting configurations. Depending on the environment and the language being
used, there are also unit test generators that can be used. The test driver and test
stub, as shown in the previous figure, can often be written as general purpose
and can be used to test many different pieces of code. One of the characteris-
tics of a good unit test is that it can be done quickly and frequently without
setting up an entire testing environment. Unit testing should enhance the pro-
grammer’s productivity, not consume a lot of resources—neither programmer
time nor computing resources. Ideally, in an iterative development project where
the philosophy is that the system is developed organically, software methods or
classes can be written, unit tested, and quickly integrated into the new system as
it gradually “grows.”

 ■ Integration Testing
Integration testing is the next logical extension of unit testing. After small units
are tested, they are combined into a larger component and tested together.
The objective of integration testing is both to test the interfaces between these
units and to test the entire integrated piece of software. An integration test
evaluates the functional behavior of a group of classes or components when
they are combined together. Figure 14-4 illustrates this concept—a new class
or component is integrated into the existing, growing, and tested portion of
the system.

The purpose of an integration test is to identify errors that weren’t or
couldn’t be detected by unit testing. There are two types of results that can
be tested. The first type of test is to test the interface itself between the
 components. Such errors may result from a number of problems, including
the following:

 ■ Interface incompatibility. For example, one method passes a parameter of
the wrong data type to another method.

 ■ Parameter values. A method is passed or returns a value that was unex-
pected, such as a negative number for a price.

 ■ Unexpected state interactions. The states of two or more objects interact to
cause complex failures, as when an OnlineCart class method operates cor-
rectly for all possible Customer object states except one.

Driver
Stub

FIGuRE 14-3 Unit testing using drivers and stubs

integration test test of the functional
behavior of a group of classes or components
when they are combined together

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

449CHAPTER 14 ■ Deploying the New System

FIGuRE 14-4 Integration testing—
adding new components to tested
components

The second item that is tested is the value of the expected result. Again, both
good data and bad data should be used for the test. Good input data should produce
the correct expected result. Bad data should be captured and handled appropriately.

Integration testing often begins small, with an individual programmer com-
bining the classes that she has developed into a larger component and tested.
However, it soon grows to required components developed by different pro-
grammers to be combined and tested together. Consequently, the complexity of
integration testing increases rapidly. When integration testing reaches this level,
several procedures must be put in place:

 ■ Building the component for integration test. Sometimes, particularly when
the software is growing organically, this may be a natural result of adding
new components. At other times, particular integrated components need to
be built and tested separately.

 ■ Creating test data. Integration test data is more complex and usually
requires coordination between programmers. Responsibility for coordinat-
ing the creation, formatting, recording, use, and updating of the test data
must be assigned.

 ■ Conducting the integration test. Decisions must be made and assignments
given about who will conduct the integration tests, how they are done,
what resources are used, and how frequently they are executed.

 ■ Evaluating the results. Often this requires involvement by all the
programmers.

 ■ Logging test results. An error log is usually kept at this point to ensure that
errors are tracked and corrected. Figure 14-5 shows a sample error log.
There are many commercially available error tracking systems.

FIGuRE 14-5 Sample error tracking log

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

450 PART 5 ■ Advanced Design and Deployment Concepts

 ■ Correcting the code and retesting. Normally, the programmer who wrote
the original code makes the corrections, conducts any required unit tests,
and submits the components back for integration testing. The person con-
ducting the integration test usually attempts to identify and isolate the
cause of the error as much as possible.

Integration testing of object-oriented software is quite complex. Because an
object-oriented program consists of a set of interacting objects that can be cre-
ated or destroyed during execution, there is often no clear hierarchical structure.
As a result, object interactions and control flow are dynamic and complex.

Additional factors that complicate object-oriented integration testing include
the following:

 ■ Methods can be (and usually are) called by many other methods, and the
calling methods may be distributed across many classes.

 ■ Classes may inherit methods and state variables from other classes.
 ■ The specific method to be called is dynamically determined at run time

based on the number and type of message parameters.
 ■ Objects can retain internal variable values (i.e., the object state) between

calls. The response to two identical calls may be different due to state
changes that result from the first call or occur between calls.

 ■ System, Performance, and Stress Testing
A system test is a comprehensive integration test of the behavior of an entire
system or independent subsystem. Integration testing is normally associated
with the implementation core process, and system testing is normally associ-
ated with the deployment core process. System testing often is used to verify the
nonfunctional requirements, such as response time and throughput. The line
separating integration testing from system testing is fuzzy, as is the line between
implementation and deployment activities. The important differences are scope
and timing. Integration tests are performed more frequently and on smaller com-
ponent groups. System tests are performed less frequently on entire systems or
subsystems. In addition, there are various kinds of system tests that test various
functional and nonfunctional aspects of the new system. Figure 14-6 illustrates
the types of tests that can be included in system testing.

For a system developed by using a traditional waterfall SDLC, system test-
ing is concentrated near the end of the project. In a typical iterative project,

Stability

Business
functions

Resource
usage

Speed

Throughput

Response
time

System,
Performance,

Stress
Testing

FIGuRE 14-6 Types of tests
included in system testing

system test a comprehensive integration
test of an entire system or independent
subsystem

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

451CHAPTER 14 ■ Deploying the New System

system testing activities are often performed at the end of each iteration where
software is completed. Even with systems that are grown organically, there are
usually natural plateaus where a subsystem is completed and delivered. System
tests are performed on each of these subsystems as they become ready.

System testing may also be performed more frequently. A build and smoke
test is a system test that is typically performed daily or several times per week.
The system is completely compiled and linked (built), and a battery of tests is
executed to see whether anything malfunctions in an obvious way (“smokes”).

Build and smoke tests are valuable because they provide rapid feedback on
significant integration problems. Any problem that occurs during a build and
smoke test must result from software modified or added since the previous test.
Daily testing ensures that errors are found quickly and that they can be easily
tracked to their sources. Less-frequent testing provides rapidly diminishing ben-
efits because more software has changed and errors are more difficult to track
to their sources.

A performance test, also called a stress test, determines whether a sys-
tem or subsystem can meet such time-based performance criteria as response
time or throughput. Response time requirements specify desired or maxi-
mum allowable time limits for software responses to queries and updates.
 Throughput requirements specify the desired or minimum number of queries
and transactions that must be processed per minute or hour.

Performance tests are complex because they can involve multiple programs,
subsystems, computer systems, and network infrastructure. They require a large
suite of test data to simulate system operation under normal or maximum load.
Diagnosing and correcting performance test failures are also complex. Bottle-
necks and underperforming components must first be identified. Corrective
actions may include any combination of the following:

 ■ Application software tuning or reimplementation
 ■ Hardware, system software, or network reconfiguration
 ■ Upgrade or replacement of underperforming components

 ■ User Acceptance Testing (UAT)
A user acceptance test (UAT) is comprehensive system testing to determine
whether the system fulfills user requirements and can support all business
and user scenarios. The UAT is normally the final stage in testing the system.
Although the primary focus is usually on the functional requirements, the non-
functional requirements are often also verified.

In some cases, UAT is a formal milestone, and requires completion and sign-
off by the client. Details of acceptance tests may even be included in a request for
proposal (RFP) and procurement contract when a new system is built by or pur-
chased from an external party. In those situations, payments to the developers
are often tied to passing specific acceptance tests. In other situations, particu-
larly in Agile projects where the user is involved with the project team, UAT may
be less formal and may be integrated into the normal development activities.

In either situation, whether UAT is a formalized process or an informal
component of the development, it is a critical component of the development
project. All too often, because the project is behind and the delivery date is fast
approaching, UAT is minimized or partially skipped. However, minimizing the
UAT is always a mistake and a source of problems and disagreements. It is the
UAT that verifies that the system is ready to be deployed. If the UAT is mini-
mized or skipped, then it is almost a certainty that the deployed system will have
major problems. As mentioned in Chapter 11, the Affordable Care Act insur-
ance Web site is a very visible example. It was deployed with very little UAT, and
it took several months before it was ready. It also cost several people their jobs
and companies their contracts.

build and smoke test a system test that is
performed daily or several times a week

performance test or stress test an
integration and usability test that determines
whether a system or subsystem can meet
time-based performance criteria

response time the desired or maximum
allowable time limit for software response to
a query or update

throughput the desired or minimum
 number of queries and transactions that must
be processed per minute or hour

user acceptance test (UAT) a system
test performed to determine whether the
system fulfills user requirements and can
support all business and user scenarios

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

452 PART 5 ■ Advanced Design and Deployment Concepts

UAT is a big topic, larger than can be covered in this chapter. There are
many resources and instruction books on how to plan and execute a successful
UAT. You are invited to do further study into this topic. The following sections
briefly discuss three areas—planning, preparation, and execution of the UAT.

 ❚ Planning the UAT
The UAT should be included in the total project plan, and whether it will be
included in specific iterations or have its own iterations toward the end of the
project. Detailed plans for the UAT itself need to be developed early. There are
important decisions and preparations that must be done throughout the proj-
ect. Waiting until late in the project to plan the UAT causes serious difficulties
and delays.

In Chapters 2 and 3, you learned about business events, user stories, and
use cases. You also learned about functional and nonfunctional requirements.
All of these items created requirements and specifications. The UAT should be
prepared to test all of them. Test cases should be identified to test various busi-
ness events, including external events (from the users), temporal events (such as
month-end and year-end processing and reporting), and state events (such as
inventory order points triggered). You also learned about FURPS+ as a basis
for defining specifications. The test plan should address each of these areas and
define appropriate test cases to verify the fulfillment of the specification.

The important point here is that as user stories are identified, as use cases
are defined, and as nonfunctional requirements are documented, UAT test
cases can be identified that will enable the verification of the specifications. In
other words, developing the details of what is to be included in the UAT occurs
throughout the project. The UAT test plan begins early and continues through-
out the project. As each requirement is specified, the following question should
be asked: “How can the UAT test that this specification is complete?”

A frequent complaint by developers is that this is a lot of work. The answer is
twofold. A simple test identification list can be created and maintained through-
out the project. Figure 14-7 illustrates a possible form. Notice that at this point
in the project, it is a fairly simple list that is easily updated as the developers
identify requirements. The second part of the answer is, “What is the alter-
native?” If there is no documentation for what needs to be tested, it is almost
 guaranteed that the system will have many, and possibly major, defects.

 ❚ Preparation and Pre-UAT Activities
The process of entering data into Figure 14-7 only identifies the potential test
cases. The other part of the effort required is to develop the test data. Creating
test data can be complex and require substantial resources. There are two pri-
mary types of test data: data entered by users and internal data residing in the
database. The data entered by users can be precisely defined and documented,
or the users can be allowed to create ad hoc data based on the requirement to be

FIGuRE 14-7 Simple UAT test case list

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

453CHAPTER 14 ■ Deploying the New System

tested. Each has advantages and disadvantages. It is more work to predefine the
fields of data, but verification of expected results is easier.

The planning and creation of test data necessitates more detailed planning
of the UAT. For example in Figure 14-7, the third specification to ship items can
be done with data already existing in the database, or it can use data created by
earlier specifications. Hence, the planning of the sequence of tests will assist in
the development of the test data. Another example of required planning is the
testing of month-end and year-end processing. In both of those cases, there will
need to be appropriate detail in the database in order for the test to be meaning-
ful. The question arises whether that data needs to be created from scratch, or
if the previous tests will create sufficient data. It should be evident that the cre-
ation of test data can be a large endeavor.

Another area of pre-UAT activity is to set up the test environment. Because one
of the purposes of the UAT is to verify that the system will function in the day-to-
day business environment, it is usually necessary to set up a separate test computer
and environment that simulates the true business environment as much as possible.
This will include computers, networks, databases, operating systems, and so forth.

 ❚ Management and Execution of the UAT
One of the important decisions is who will participate and who has responsibil-
ity for the UAT. Because the objective of the UAT is user acceptance, the system
users have primary responsibility. Ideally, system users will take full responsibil-
ity for identifying test cases, creating test data, and carrying out the UAT. Unfor-
tunately, in many organizations, the users either are not prepared, do not have
enough expertise, or do not have time from their regular responsibilities to take
over the testing completely. The user should always have the final say whether a
test is successful and a requirement satisfied. However, it is not uncommon that
some project personnel are required to help plan, organize, and execute the tests.

Managing the UAT is like a mini-project in and of itself. As mentioned, both
users and development personnel are part of the team. Specific tests need to be
scheduled. The test data needs to be ready and in place. Specific users will have
assignments to complete their tasks. At the conclusion of each test, the results must
be verified. If there are failures, the required fixes must be documented and tracked.
The error tracking log shown in Figure 14-4 can be used to track the errors. The
test case list identified in Figure 14-7 can be expanded to help control and moni-
tor each test and the results of the test. Figure 14-8 is an example of an expanded
 version of Figure 14-7 with added columns to help manage the testing process.

FIGuRE 14-8 Test case tracking list

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

454 PART 5 ■ Advanced Design and Deployment Concepts

Deployment activities

Perform system and stress tests.
Perform user acceptance tests.
Convert existing data.
Build training materials and conduct training.
Configure and set up production environment.
Deploy the solution.

Core
processes

1 2 3 4 5 6
Identify the problem and obtain
approval.

Plan and monitor the project.

Discover and understand details.

Design system components.

Build, test, and integrate system
components.

Complete system tests and deploy
the solution.

Iterations

FIGuRE 14-9 SDLC deployment activities

 ■ Deployment Activities
Once a new system has been developed and tested, it must be placed into opera-
tion. Deployment activities (see Figure 14-9) involve many conflicting constraints,
including cost, the need to maintain positive customer relations, the need to sup-
port employees, logistical complexity, and overall risk to the organization. User
acceptance and other test types were described in the previous section. Multiple
types of tests are often performed concurrently because later project iterations
typically include implementation and deployment activities. The following sec-
tions provide additional details about deployment activities other than testing.

 ■ Converting and Initializing Data
An operational system requires a fully populated database to support ongoing
processing. For example, online order-entry and management functions of the
RMO CSMS rely on stored information about products, promotions, customers,
and previous orders. Developers must ensure that such information is present in
the database at the moment the subsystem becomes operational.

Data needed at system start-up can be obtained from these sources:

 ■ Files or databases of a system being replaced
 ■ Manual records
 ■ Files or databases from other systems in the organization
 ■ User feedback during normal system operation

 ❚ Reusing Existing Databases
Most new information systems replace or augment an existing manual or auto-
mated system. In the simplest form of data conversion, the old system’s database
is used directly by the new system with little or no change to the database struc-
ture. Reusing an existing database is fairly common because of the difficulty
and expense of creating new databases from scratch, especially when a single
database often supports multiple information systems, as in today’s enterprise
resource planning (ERP) systems.

Although old databases are commonly reused in new or upgraded systems,
some changes to database content are usually required. Typical changes include
adding new tables, adding new attributes, and modifying existing tables or
attributes. Modern database management systems (DBMSs) usually allow data-
base administrators to modify the structure of a fully populated database. Such
 simple changes as adding new attributes or changing attribute types can be
 performed entirely by the DBMS.

©
 C

en
ga

ge
Le

ar
ni

ng
®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

455CHAPTER 14 ■ Deploying the New System

 ❚ Reloading Databases
More complex changes to database structure may require creating an entirely new
database and copying and converting data from the old database to the new data-
base. Whenever possible, utility programs supplied with the DBMS are used to
copy and convert the data. In more complex conversions, implementation staff
must develop programs to perform the conversion and transfer some or all of the
data. The upper portion of Figure 14-10 shows both approaches. In either case, the
old database can be discarded once the conversion and transfer process is complete.

The middle of Figure 14-10 shows a more complex approach that uses an
export utility, an import utility, and a temporary data store. This approach
might be employed when the source and target databases employ different data-
base technologies; no utility exists that can directly translate from one to the
other, but a “neutral” format exists that can serve as a bridge.

Data from paper records can be entered by using the same programs being
 developed for the operational system. In that case, data-entry programs are usually
developed and tested as early as possible. Initial data entry can be structured as a user
training exercise. For greater efficiency, data from paper records can also be scanned
into an optical character recognition program and then entered into the database by
using custom-developed conversion programs or a DBMS import utility.

In some cases, it may be possible to begin system operation with a partially
or completely empty database. For example, a customer order-entry system need
not have existing customer information loaded into the database. Customer
information could be added the first time a customer places an order, based on
a dialogue between a telephone order-entry clerk and the customer. Adding data
as they are encountered reduces the complexity of data conversion but at the
expense of slower processing of initial transactions.

Old
database

Copy and
convert data

DBMS
import
utility

DBMS
import
utility

New
database

DBMS
export
utility

Temporary
data store

Manual
data entry

Paper
records

Related
subsystem
database

Optical
character

recognition
Temporary
data store

Copy and
convert data

FIGuRE 14-10 Complex data-conversion example

©
 C

en
ga

ge
Le

ar
ni

ng
®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

456 PART 5 ■ Advanced Design and Deployment Concepts

 ■ Training Users
Training two classes of users—end users and system operators—is an essential part
of any system deployment project. End users are people who use the system from
day to day to achieve the system’s business purpose. System operators are people
who perform administrative functions and routine maintenance to keep the system
operating. Figure 14-11 shows representative activities for each role. In smaller sys-
tems, a single person may fill both roles. In larger organizations, the technical sup-
port staff may already be prepared to handle the system operator responsibilities. In
that case, only some documentation or basic instructions may be all that is needed.

The nature of training varies with the target audience. Training for end
users must emphasize hands-on use for specific business processes or functions,
such as order entry, inventory control, or accounting. If the users aren’t already
familiar with those procedures, training must include them. Widely varying skill
and experience levels call for at least some hands-on training, including practice
exercises, questions and answers, and one-on-one tutorials. Self-paced training
materials can fill some of this need, but complex systems also require some face-
to-face training. If there is a large number of end users, group training sessions
can be used, and a subset of well-qualified end users can be trained and then
pass their knowledge on to other users.

Determining the best time to begin formal training can be difficult. On one
hand, users can be trained as parts of the system are developed and tested, which
ensures that they hit the ground running. On the other hand, starting early can
be frustrating to users and trainers because the system may not be stable or com-
plete. End users can quickly become frustrated when using a buggy, crash-prone
system with features and interfaces that are constantly changing.

In an ideal world, training doesn’t begin until the interfaces are finalized and
a test version has been installed and fully debugged. But the typical end-of-proj-
ect crunch makes that approach a luxury that is often sacrificed. Instead, training
materials are normally developed as soon as the interfaces are reasonably stable,
and end-user training begins as soon as possible thereafter. It is much easier to
provide training if system interfaces are completed in early project iterations.

Documentation and other training materials are usually developed before
formal user training begins. Each documentation type is targeted to a different
purpose and audience. Documentation can be loosely classified into two types:

 ■ System documentation. Descriptions of system requirements, architec-
ture, and construction details

 ■ User documentation. Descriptions of how to interact with and use the
system

 ❚ System Documentation
System documentation serves one primary purpose: providing information to
developers and other technical personnel who will build, maintain, and upgrade
the system. System documentation is generated throughout the SDLC by each

End-user activities System operator activities

Creating records or transactions

Modifying database contents

Generating reports

Querying database

Importing or exporting data

Starting or stopping the system

Querying system status

Backing up data to archive

Recovering data from archive

Installing or upgrading software

FIGuRE 14-11 Typical activities of
end users and system operators

system documentation descriptions
of system requirements, architecture, and
construction details, as used by maintenance
personnel and future developers

user documentation descriptions of how
to interact with and use the system, as used
by end users and system operators

©
 C

en
ga

ge
Le

ar
ni

ng
®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

457CHAPTER 14 ■ Deploying the New System

core process and many development activities. System documentation developed
during early project iterations guides activities in later iterations, and documen-
tation developed throughout the SDLC guides future system maintenance and
upgrades.

A system deployed for a customer is a collection of computing and network
hardware, system software, and application software. Once the system had been
developed, separate descriptions of it, such as written text and graphical mod-
els, are redundant with the system itself. In the early days of computing, there
were few automated tools to support development of analysis and design models
and even less support for automating the process of generating application soft-
ware from those models. Developers in that era faced a recurring dilemma: how
to minimize the duplicate effort of updating models and application software
while ensuring that the system documentation was always “in sync” with the
actual system. In the rush to complete and deploy systems and to maintain and
upgrade them over time, system documentation updates were often neglected
and documentation was frequently lost.

Modern application development tools and methods have largely solved the
system documentation dilemma of earlier times. A modern integrated develop-
ment environment provides automated tools to support all SDLC core processes.
Requirements and design models, such as use case descriptions, class diagrams,
and sequence diagrams, are developed by using the development tool and stored
in a project library (see Figure 14-12). Changes to one model are automatically
synchronized with related models. Application software is often generated in
part or in its entirety directly from design models. When application software
is altered at a later date, the development tools can “reverse engineer” appropri-
ate changes to the models. Due to these capabilities, system documentation is
always complete and in sync with the deployed system, thus simplifying future
maintenance and upgrades.

 ❚ User Documentation
User documentation provides ongoing support for end users of the system. It
primarily describes routine operation of the system, including such functions as

FIGuRE 14-12 System documentation stored within Microsoft Visual Studio

S
ou

rc
e:

 M
ic

ro
so

ft
 C

or
po

ra
tio

n

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

458 PART 5 ■ Advanced Design and Deployment Concepts

data entry, output generation, and periodic maintenance. Topics typically cov-
ered include the following:

 ■ Software start-up and shutdown
 ■ Keystroke, mouse, or command sequences required to perform specific

functions
 ■ Program functions required to implement specific business procedures

(e.g., the steps followed to enter a new customer order)
 ■ Common errors and ways to correct them

For ease of use, user documentation typically includes a table of contents,
a general description of the purpose and function of the program or system, a
glossary, and an index.

User documentation for modern systems is almost always electronic and
is usually an integral part of the application. Most modern operating systems
provide standard facilities to support embedded documentation. Figure 14-13
shows electronic user documentation of a typical Windows application. The
table of contents can be displayed by clicking the book-shaped icon in the top
toolbar, and the user can search for specific words or phrases by using the search
tool. The center portion of the display shows individual pages of user documen-
tation. The sample page includes embedded glossary definition hyperlinks and
hyperlinks to other documentation pages.

Developing good user documentation requires special skills and consider-
able time and resources. Writing clearly and concisely, developing effective pre-
sentation graphics, organizing information for easy learning and access, and
communicating effectively with a nontechnical audience are skills for which

FIGuRE 14-13 Sample Windows Help and Support display

S
ou

rc
e:

 M
ic

ro
so

ft
 C

or
po

ra
tio

n

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

459CHAPTER 14 ■ Deploying the New System

there is high demand and limited supply. Development takes time, and high-
quality results are achieved only with thorough review and testing. Unfortu-
nately, preparing user documentation is often left to technicians lacking in one
or more necessary skills. Also, preparation time, review, and testing are often
shortchanged because of schedule overruns and the last-minute rush to tie up all
the loose ends of implementation.

 ■ Configuring the Production Environment
Modern applications are built from software components based on interaction
standards, such as Common Object Request Broker Architecture (CORBA),
Simple Object Access Protocol (SOAP), and Java Platform Enterprise Edition
(Java EE). Each standard defines specific ways in which components locate and
communicate with one another. Each standard also defines a set of support-
ing system software to provide needed services, such as maintaining component
directories, enforcing security requirements, and encoding and decoding mes-
sages across networks and other transport protocols. The exact system soft-
ware, its hardware, and its configuration requirements vary substantially among
the component interaction standards.

Figure 14-14 shows a typical support infrastructure for an application
deployed using Microsoft .NET, a variant of SOAP. Application software com-
ponents written in such programming languages as Visual Basic and C# are
stored on one or more application servers. Other required services include a Web
server for browser-based interfaces, a database server to manage the database,
an Active Directory server to authenticate users and authorize access to infor-
mation and software resources, a router and firewall, and a server to operate
such low-level Internet services as domain naming system (DNS) and Internet
address allocation (DHCP).

FIGuRE 14-14 Infrastructure and clients of a typical .NET application

Router and
firewall

Internet Internal network

DNS, DHCP, and
Active Directory servers

Web/application
servers

Database
server

Additional or redundant
servers in the cloud

©
 C

en
ga

ge
Le

ar
ni

ng
®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

460 PART 5 ■ Advanced Design and Deployment Concepts

Unless it already exists, all this hardware and system software infrastruc-
ture must be acquired, installed, and configured before application software
can be installed and tested. In most cases, some or all of the infrastructure will
already exist—to support existing information systems. In that case, developers
work closely with personnel who administer the existing infrastructure to plan
the support for the new system. In either case, this deployment activity typically
starts early in the project so software components can be developed, tested, and
deployed as they are developed in later project iterations.

 ■ Managing Implementation, Testing,
and Deployment

The previous sections have discussed the implementation, testing, and deploy-
ment activities in isolation. This section concentrates on issues that impact all
those activities as well other core processes, including project planning and
monitoring, analysis, and design. In an iterative development project, activities
from all core processes are integrated into each iteration and the system is ana-
lyzed, designed, implemented, and deployed incrementally. But how does the
project manager decide which portions of the system will be worked in early
iterations and which in later iterations? And how does he or she manage the
complexity of so many models, components, and tests?

Some of these issues were partly addressed in earlier chapters. But now that
you understand implementation, testing, and deployment activities in depth, you
can see that there are many interdependencies that must be accounted for. These
interdependencies must be fully identified and considered when developing a
workable iteration plan. Furthermore, automated tools must be utilized to man-
age each part of the development project and to ensure maximal coordination
across iterations, core processes, and activities.

 ■ Development Order
One of the most basic decisions to be made about developing a system is the
order in which software components will be built or acquired, tested, and
deployed. Choosing which portions of the system to implement in which itera-
tions is difficult, and developers must consider many factors, only some of which
arise from the software requirements. Some of the other factors discussed in ear-
lier chapters include the need to validate requirements and design decisions and
the need to minimize project risk by resolving technical and other risks as early
as possible.

A development order can be based directly on the structure of the system
itself and its related issues, such as use cases, testing, and efficient use of devel-
opment staff. Several orders are possible, including the following:

 ■ Input, process, output
 ■ Top-down
 ■ Bottom-up
 ■ Use-case driven

Each project must adapt one or a combination of these approaches to spe-
cific project requirements and constraints.

 ❚ Input, Process, Output Development Order
The input, process, output (IPO) development order is based on data flow
through a system or program. Programs or modules that obtain external input
are developed first. Programs or modules that process the input (i.e., transform

input, process, output (IPO) development
order a development order that implements
input modules first, process modules next,
and output modules last

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

461CHAPTER 14 ■ Deploying the New System

it into output) are developed next. Programs or classes that produce output are
developed last. The key issue to analyze is dependency—that is, which classes
and methods capture or generate data that are needed by other classes or meth-
ods? Dependency information is documented in package diagrams and may also
be documented in a class diagram. Thus, either or both diagram types can guide
implementation order decisions.

For example, the package diagram in Figure 14-15 shows that the Cus-
tomer Account and Marketing subsystems don’t depend on any of the other sub-
systems. The Sales subsystem depends on the Customer Account and Marketing
subsystems, and the Order Fulfillment and Reporting subsystems depend on the
Sales subsystem.

The chief advantage of the IPO development order is that it simplifies test-
ing. Because input programs and modules are developed first, they can be used
to enter test data for process and output programs and modules. IPO develop-
ment order is also advantageous because important user interfaces (e.g., data-
entry routines) are developed early. User interfaces are more likely to require
change during development than during other portions of the system, so early
development allows for early testing and user evaluation. If changes are needed,
there is still plenty of time to make them. Early development of user interfaces
also provides a head start for related activities, such as training users and writ-
ing documentation.

SearchItemWindow

AddItemWindow

AddAccessWindow

CustLoginWindow

Sales Subsystem

CartHandler

OnlineCart

CartItem

ReturnItem

Sale

SaleItem

AccessoryPackage

SaleTxn

Data Access Layer

PromoOfferingDA

ProductItemDA

InventoryItemDA

CustomerDA

OnlineCartDA

CartItemDA

ViewAccessWinodw

DisplayItem+AccessWindow

DisiplayItemWindow

Reporting Subsystem

Customer Account Subsystem

CustomerHandler

Customer

Address

FamilyLink

Message

Suggestion

Account CustPartnerCredit

Order Fulfillment Subsystem

Shipment Shipper

View Layer

Domain Layer

ProductItem

InventoryItem

PromoPartner

Promotion

PromoOffering

Marketing Subsystem

FIGuRE 14-15 Package diagram for the four RMO subsystems

©
 C

en
ga

ge
Le

ar
ni

ng
®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

462 PART 5 ■ Advanced Design and Deployment Concepts

 ❚ Top-Down and Bottom-Up Development Order
The terms top-down and bottom-up have their roots in traditional structured
design and structured programming. A traditional structured design decom-
poses software into a series of modules or functions, which are hierarchically
related to one another. As a visual analogy, consider a typical organization chart
with the president or CEO at the top. In structured design, a single module (the
president or CEO) controls the entire software program. Modules at the bottom
perform low-level specialized tasks when directed to do so by a module at the
next higher level. Top-down development begins with the CEO and works
downward. Bottom-up development begins with the detailed modules at the
lowest level and works upward to the CEO.

Top-down and bottom-up program development can also be applied to
object-oriented designs and programs, although a visual analogy isn’t obvious
with object-oriented diagrams. The key issue is method dependency—that is,
which methods call which other methods. Within an object-oriented subsystem
or class, method dependency can be examined in terms of navigation visibility,
as discussed in Chapters 12 and 13.

The primary advantage of top-down development is that there is always a
working version of a program. As each method or class is implemented, stubs
for the methods or classes on the next lower level are added. At every stage of
development, the program can be executed and tested, and its behavior becomes
more complex and realistic as development proceeds.

 ❚ Use-Case Driven
IPO, top-down, and bottom-up development are only starting points for creat-
ing implementation and iteration plans. Other factors that must be considered
include use-case-driven development, user feedback, training, documentation,
and testing. Use cases deserve special attention in determining development
order because they are one of the primary bases for dividing a development proj-
ect into iterations.

In most projects, developers choose a set of related use cases for a single
iteration and complete analysis, design, implementation, and deployment activi-
ties. Use-case-driven development occurs when developers choose which
use cases to focus on first based on such factors as minimizing project risk,
efficiently using nontechnical staff, or deploying some parts of the system ear-
lier than others. For example, use cases with uncertain requirements or high
technical risks are typically addressed in early iterations. Addressing uncertain
requirements requires usability and other testing by nontechnical development
staff, and those staff members may only be available at certain times in the
project.

User feedback, training, and documentation all depend heavily on the user
interfaces of the system. Early implementation of user interfaces enables user
training and the development of user documentation to begin early in the devel-
opment process. It also gathers early feedback on the quality and usability of the
interface. Note the important role that this issue played in the opening case of
this chapter.

 ■ Source Code Control
Development teams need tools to help coordinate their programming tasks.
A source code control system (SCCS) is an automated tool for tracking
source code files and controlling changes to those files. An SCCS stores project
source code files in a repository, and it acts the way a librarian would—that
is, implements check-in and checkout procedures, tracks which programmer
has which files, and ensures that only authorized users have access to the
repository.

top-down development a development
order that implements top-level modules first

bottom-up development a development
order that implements low-level detailed
modules first

use-case-driven development a devel-
opment based on a selection of use cases to
implement during project iterations

source code control system (SCCS) an
automated tool for tracking source code files
and controlling changes to those files

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

463CHAPTER 14 ■ Deploying the New System

A programmer checks out a file in read-only mode when he or she wants to
examine the code without making changes (e.g., to examine a module’s inter-
faces to other modules). When a programmer needs to make changes to a file,
he or she checks out the file in read/write mode. The SCCS allows only one pro-
grammer to check out a file in read/write mode. The file must be checked back
in before another programmer can check it out in read/write mode.

Figure 14-16 shows the source code control display of Microsoft Visual
Studio. Various source code files from the RMO CSS are shown in the display.
Some files are currently checked out by programmers. For each file checked out
in read/write mode, the program lists the programmer who checked it out, the
date and time of checkout, and whether the copy currently stored in the central
repository is the most current (latest) version.

An SCCS prevents multiple programmers from updating the same file at the
same time, thus preventing inconsistent changes to the source code. Source code
control is an absolute necessity when programs are developed by multiple pro-
grammers. It prevents inconsistent changes and automates coordination among
programmers and teams. The repository also serves as a common facility for
backup and recovery operations.

 ■ Packaging, Installing, and Deploying Components
As with the other disciplines discussed in this chapter, deployment activities are
highly interdependent with activities of the other disciplines. In short, a system
or subsystem can’t be deployed until it has been implemented and tested. If a
system or subsystem is large and complex, it is typically deployed in multiple
stages or versions, thus necessitating some formal method of configuration and
change management.

FIGuRE 14-16 Project files managed by a source code control system

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

464 PART 5 ■ Advanced Design and Deployment Concepts

Important issues to consider when planning deployment include the
following:

 ■ Incurring costs of operating both systems in parallel
 ■ Detecting and correcting errors in the new system
 ■ Potentially disrupting the company and IS operations
 ■ Training personnel and familiarizing customers with new procedures

Different approaches to deployment represent different trade-offs among
cost, complexity, and risk. The most commonly used deployment approaches
are:

 ■ Direct deployment
 ■ Parallel deployment
 ■ Phased deployment

Each approach has different strengths and weaknesses, and no one approach
is best for all systems. Each approach is discussed in detail in the following
sections.

 ❚ Direct Deployment
In a direct deployment, the new system is installed and quickly made opera-
tional, and any overlapping systems are then turned off. Direct deployment is
also sometimes called immediate cutover. Both systems are concurrently oper-
ated for only a brief time (typically a few days or weeks) while the new system is
being installed and tested. Figure 14-17 shows a timeline for direct deployment.

The primary advantage of direct deployment is its simplicity. Because the
old and new systems aren’t operated in parallel, there are fewer logistical issues
to manage and fewer resources required. The primary disadvantage of direct
deployment is its risk. Because older systems aren’t operated in parallel, there
is no backup in the event that the new system fails. The magnitude of the risk
depends on the nature of the system, the cost of workarounds in the event of a
system failure, and the cost of system unavailability or less-than-optimal system
function.

 ❚ Parallel Deployment
In a parallel deployment, the old and new systems are operated for an
extended period of time (typically weeks or months). Figure 14-18 illustrates
the timeline for parallel deployment. Ideally, the old system continues to operate
until the new system has been thoroughly tested and determined to be error-free
and ready to operate independently. As a practical matter, the time allocated for

New system
deployed and

configured
Old system
terminated

Time

Old system in operation

New system in operation

FIGuRE 14-17 Direct deployment
and cutover

direct deployment or immediate
cutover a deployment method that installs
a new system, quickly makes it operational,
and immediately turns off any overlapping
systems

parallel deployment a deployment
method that operates the old and the new
systems for an extended time period

©
 C

en
ga

ge
Le

ar
ni

ng
®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

465CHAPTER 14 ■ Deploying the New System

parallel operation is often determined in advance and limited to minimize the
cost of dual operation.

The primary advantage of parallel deployment is relatively low operational
risk. If both systems are operated completely (i.e., using all data and exercising
all functions), the old system functions as a backup for the new system. Any fail-
ure in the new system can be mitigated by relying on the old system.

The primary disadvantage of parallel deployment is cost. During the period
of parallel operation, the organization pays to operate both systems. Extra costs
associated with operating two systems in parallel include:

 ■ Hiring temporary personnel or temporarily reassigning existing personnel
 ■ Acquiring additional computing and network capacity
 ■ Increasing managerial and logistical complexity

Parallel operation is generally best when the consequences of a system failure
are severe. Parallel operation substantially reduces the risk of a system failure
through redundant operation. The risk reduction is especially important for
such mission-critical applications as customer service, production control, basic
accounting functions, and most forms of online transaction processing.

Full parallel operation may be impractical for any number of reasons,
including:

 ■ Inputs to one system may be unusable by the other, and it may not be
 possible to use both types of inputs.

 ■ The new system may use the same equipment as the old system (e.g.,
 computers, I/O devices, and networks), and capacity may be insufficient to
operate both systems.

 ■ Staffing levels may be insufficient to operate or manage both systems at the
same time.

When full parallel operation isn’t possible or feasible, a partial parallel
operation may be employed instead. Possible modes of partial parallel operation
include:

 ■ Processing only a subset of input data in one of the two systems. The sub-
set could be determined by transaction type, geography, or sampling (e.g.,
every 10th transaction).

 ■ Performing only a subset of processing functions (e.g., updating account
history but not printing monthly bills).

 ■ Performing a combination of data and processing function subsets.

Deployed and
configured

Parallel operation
and testing

Time

Old system in operation

New system in operation

FIGuRE 14-18 Parallel deployment
and operation

©
 C

en
ga

ge
Le

ar
ni

ng
®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

466 PART 5 ■ Advanced Design and Deployment Concepts

Partial parallel operation always entails the risk that significant errors or
problems will go undetected. For example, parallel operation with partial input
increases the risk that errors associated with untested inputs won’t be discovered.

 ❚ Phased Deployment
In a phased deployment, the system is deployed in a series of steps or phases.
Each phase adds components or functions to the operational system. During
each phase, the system is tested to ensure that it is ready for the next phase.
Phased deployment can be combined with parallel deployment, particularly
when the new system will take over the operation of multiple existing systems.

Figure 14-19 shows a phased deployment with direct and parallel deploy-
ment of individual phases. The new system replaces two existing systems. The
deployment is divided into three phases. The first phase is a direct replacement
of one of the existing systems. The second and third phases are different parts of
a parallel deployment that replace the other existing system.

The primary advantage of phased deployment is reduced risk because fail-
ure of a single phase is less problematic than failure of an entire system. The
primary disadvantage of phased deployment is increased complexity. Dividing
the deployment into phases creates more activities and milestones, thus making
the entire process more complex. However, each phase contains a smaller and
more manageable set of activities. If the entire system is simply too big or com-
plex to install at one time, the reduced risks of phased deployment outweigh the
increased complexity inherent in managing and coordinating multiple phases.

phased deployment a deployment method
that installs a new system and makes it
operational in a series of steps or phases

FIGuRE 14-19 Phased deployment with direct cutover and parallel operation

Phase 2
deployed

Phase 1
deployed

Phase 3
deployed

Phase 1
begins
operation

Phase 3 parallel
operation and testing

Phase 2 parallel
operation and testing

New system phase 1 in operation

New system phase 2 in operation

New system phase 3 in operation

Old system A in operation

Old system B in operation
©

 C
en

ga
ge

Le
ar

ni
ng

®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

467CHAPTER 14 ■ Deploying the New System

 ■ Support Activities after Deployment
The predictive waterfall SDLC explicitly includes a support phase, but adaptive,
iterative SDLCs typically don’t. In fact, newer adaptive SDLCs consider support
to be an entirely separate project worthy of its own support methodology.

The objective of the support activities is to keep the system running pro-
ductively during the years following its initial deployment. They begin only
after the new system has been installed and put into production, and they last
throughout the productive life of the system. Most business systems are expected
to last for years. During the support activities, upgrades or enhancements may
be carried out to expand the system’s capabilities, and these will require their
own development projects. Three major activities occur during support:

 ■ Maintaining the system
 ■ Enhancing the system
 ■ Supporting the users

Every system, especially a new one, contains components that don’t func-
tion correctly. Software development is complex and difficult, so it is never free
of error. Of course, the objective of a well-organized and carefully executed
project is to deliver a system that is robust and complete and that gives correct
results. However, because of the complexity of software and the impossibility of
testing every possible combination of processing requirements, there will always
be errors. In addition, business needs and user requirements change over time.
Key tasks in maintaining the system include fixing the errors (also known as fix-
ing bugs) and making minor adjustments to processing requirements. Usually, a
system support team is assigned responsibility for maintaining the system.

Most newly hired programmer analysts begin their careers working on sys-
tem maintenance projects. Tasks typically include changing the information
provided in a report, adding an attribute to a table in a database, or chang-
ing the design of Windows or browser forms. These changes are requested and
approved before the work is assigned, so a change request approval process is
always part of the system support phase.

During the productive life of a system, it is also common to make major mod-
ifications. At times, government regulations require new data to be maintained
or information to be provided. Also, changes in the business environment—new
market opportunities, new competition, or new system infrastructure—neces-
sitate major changes to the system. To implement these major modifications,
the company must approve and initiate an upgrade development project. An
upgrade project often results in a new version of the system. During your career,
you may participate in several upgrade projects.

The next section describes the techniques used during the support activities
to maintain the system. These techniques apply to the final testing and deploy-
ment activities as well as to the system after it is in production.

 ■ Change and Version Control
Though not formal activities of the implementation or deployment core pro-
cesses, change and version control are key parts of managing software devel-
opment, testing, deployment, and support activities. Medium- and large-scale
systems are complex and constantly changing. Changes occur rapidly during
implementation and more slowly during deployment and after the system is in
use. System complexity and rapid change create a host of management problems,
particularly for testing and postdeployment support.

Change and version control tools and processes handle the complexity asso-
ciated with testing and supporting a system through multiple versions. Tools
and processes are typically incorporated into implementation activities from the
beginning and continue throughout the life of a system. Most organizations use
a common set of tools and procedures for all their systems.

support activities the activities in the
support phase whose objective is to maintain
and enhance the system after it is installed
and in use

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

468 PART 5 ■ Advanced Design and Deployment Concepts

 ❚ Versioning
Complex systems are developed, installed, and maintained in a series of versions
to simplify testing, deployment, and support. It isn’t unusual to have multiple
versions of a system deployed to end users and yet more versions in different
stages of development. A system version created during development is called a
test version. A test version contains a well-defined set of features and represents
a concrete step toward final completion of the system. Test versions provide a
static system snapshot and a checkpoint to evaluate the project’s progress.

An alpha version is a test version that is incomplete but ready for some
level of rigorous integration or usability testing. Multiple alpha versions may
be built depending on the size and complexity of the system. The lifetime of an
alpha version is typically short—days or weeks.

A beta version is a test version that is stable enough to be tested by end
users over an extended period of time. A beta version is produced after one or
more alpha versions have been tested and known problems have been corrected.
End users test beta versions by using them to do real work. Thus, beta versions
must be more complete and less prone to disastrous failures than alpha versions.
Beta versions are typically tested over a period of weeks or months.

A system version created for long-term release to users is called a production
version, release version, or production release. A production version
is considered a final product, although software systems are rarely “finished”
in the usual sense of that term. Minor production releases (sometimes called
 maintenance releases) provide bug fixes and small changes to existing fea-
tures. Major production releases add significant new functionality and may be
the result of rewriting an older release from the ground up.

Keeping track of versions is complex. The development teams must coordinate
existing production versions with its upgrades with new versions. Figure 14–20
illustrates some of the overlap that occurs and must be coordinated. Each version
needs to be uniquely identified for developers, testers, and users. In applications
designed to run under Windows, users typically view the version information by
choosing the About item from the standard Help menu (see Figure 14-21). Users
seeking support or reporting errors in a beta or production version use this fea-
ture to report the system version to testers or support personnel.

Controlling multiple versions of the same system requires sophisticated
version control software, which is often built in to development tools or can
be obtained through a separate source code and version control system, as
described later in this chapter. Programmers and support personnel can extract
the current version or any previous version for execution, testing, or modi-
fication. Modifications are saved under a new version number to protect the
accuracy of the historical snapshot.

Beta and production versions must be stored as long as they are installed
on any servers or user machines. Stored versions are used to evaluate future bug
reports. For example, when a user reports a bug in version 1.0, support person-
nel extract that release from the archive and attempt to replicate the user’s error.
Feedback provided to the user is specific to version 1.0, even if the most recent
production release is a higher-numbered version.

 ❚ Submitting Error Reports and Change Requests
To manage the risks associated with change, most organizations adopt formal
control procedures for all systems under development and in operation. For-
mal controls are designed to ensure that potential changes are adequately
described, considered, and planned before being implemented and deployed.
Typical change control procedures include these:

 ■ Standard reporting methods
 ■ Review of requests by a project manager or change control committee
 ■ For operational systems, extensive planning for design and implementation

alpha version a test version that is incom-
plete but ready for some level of rigorous
integration or usability testing

beta version a test version that is stable
enough to be tested by end users over an
extended period of time

production version, release version, or
production release a system version
that is formally distributed to users or made
operational for long-term use

maintenance release a system update
that provides bug fixes and small changes to
existing features

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

469CHAPTER 14 ■ Deploying the New System

FIGuRE 14-20 Need for version
control

FIGuRE 14-21 About box of a
typical Windows application

Alpha 0.1

Version 1

Beta 0.3

Beta 0.4

Production 1.0

Production 1.2

Alpha 1.1.0

Beta 1.1.1

Production 2.0

Production 1.1

Version 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

470 PART 5 ■ Advanced Design and Deployment Concepts

Figure 14-22 shows a sample error (bug) report that has been completed by
a tester or system developer. In this case, error reporting is integrated into the
application development tool and source code control system, which enables the
project manager to centrally manage all reports, assign reports to specific devel-
opers, and track each report to its resolution.

Similar tools can be used to report and manage errors and requests for new
features in operational systems. In the case of new features, the request is usu-
ally submitted to a change control committee that reviews the change request to
assess the impact on existing computer hardware and software, system perfor-
mance and availability, security, and operating budget. Approved changes are
added to the list of pending changes for budgeting, scheduling, planning, and
implementation.

 ❚ Implementing a Change
Change implementation follows a miniature version of the SDLC. Most of the
SDLC activities are performed, although they may be reduced in scope or some-
times completely eliminated. In essence, a change for a maintenance release is
an incremental development project in which the user and technical require-
ments are fully known in advance. Analysis activities are typically skimmed or
skipped, design activities are substantially reduced in scope, and the entire proj-
ect is typically completed in one or two short iterations.

FIGuRE 14-22 Sample error report in Microsoft Visual Studio

S
ou

rc
e:

 M
ic

ro
so

ft
 C

or
po

ra
tio

n

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

471CHAPTER 14 ■ Deploying the New System

Planning for a change includes these activities:

 ■ Identify what parts of the system must be changed.
 ■ Secure resources (such as personnel) to implement the change.
 ■ Schedule design and implementation activities.
 ■ Develop test criteria and a testing plan for the changed system.

Whenever possible, changes are implemented and tested on a copy of the
operational system. The production system is the version of the system used
day to day. The test system is a copy of the production system that is modified
to test changes. The test system may be developed and tested on separate hard-
ware or on a redundant system. The test system becomes the operational system
only after complete and successful testing.

 ■ Putting It All Together—RMO Revisited
In a medium-sized or large-scale development project, managers usually feel
overwhelmed by the sheer number of activities to be performed, their interde-
pendencies, and the risks involved. This section gives you a glimpse of the inter-
play among those issues by showing how Barbara Halifax’s team developed an
iteration plan for RMO’s Customer Support System (CSS). But keep in mind that
no single example can adequately prepare you to tackle iteration planning for
a complex project. That is why iteration planning and other project planning
tasks are typically performed by developers with years of experience.

Before reading the rest of this section, you may want to review earlier
descriptions of the RMO case in Chapters 2, 3, 4, 6, and 11. Some basic param-
eters for the project are already described, including subsystem boundaries and
a 48-week project length (nine 4-week iterations).

Chapter 11 describes Barbara’s early planning decisions. In this section,
she expands on those decisions, makes some changes to her earlier decisions,
makes additional key decisions, and develops the revised iteration plan shown
in Figure 14-23. The sections that follow describe key issues and decisions that
underlie that plan.

 ■ Upgrade or Replace?
Upgrading the current CSS “in place” was ruled out early in project planning
for these reasons:

 ■ The current infrastructure is near capacity.
 ■ RMO expects to save money by having an external vendor host the CSMS.
 ■ Existing CSS programs and Web interfaces are a hodgepodge developed

over 15 years.
 ■ Current system software is several versions out of date.
 ■ Infrastructure that supports the current CSS can be repurposed to expand

SCM capacity.

In short, it would be too complex to upgrade the current CSS without dis-
rupting operations, and the risks of upgrading old infrastructure and applica-
tion software are simply too great. By building and deploying an entirely new
system, RMO will make a clean break from the existing CSS and its supporting
infrastructure. A new hosted infrastructure will be developed for the CSMS.
After the first deployment phase, the existing CSS infrastructure will be updated
to match the hosted environment and serve as a test environment for later devel-
opment and deployment activities.

production system the version of the
system used daily to support organizational
operations

test system a copy of the production
system that is modified to test changes

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

472 PART 5 ■ Advanced Design and Deployment Concepts

 ■ Phased Deployment to Minimize Risk
The schedule described in Chapter 11 didn’t call for phased deployment, but
neither did it directly consider such deployment issues as database development,
data migration, and training. To minimize deployment risks, the CSMS will
be deployed in two versions. Version 1.0 will reimplement most of the existing
CSS use cases with minimal changes. Version 2.0 will incorporate bug fixes and
incremental improvements to version 1.0 and will add additional functionality
not present in the CSS, including social networking, feedback/recommenda-
tions, business partners, and Mountain Bucks.

FIGuRE 14-23 Revised CSMS iteration plan for RMO

Iteration

1

2

3

Description

Define business models and development/deployment environment. Define essential use cases and
rough class diagram. Storyboard sales processing. Finalize deployment environment. Select and
acquire network components, system software, hardware, and development tools. Create a CSS
database copy with minimal data content as a starting point for CSMS database. Construct a simple
prototype for adding a customer order (no database updates) and perform usability testing.

Define class, use case, sequence diagrams, and programs, concentrating on the key use cases
(Search for item, Fill shopping cart, Check out shopping cart, Look up customer, and Create customer
account). Deploy infrastructure components, including operating systems, Web/application servers,
and DBMS by the middle of the iteration. Update database schema based on newly defined or revised
classes and associations. Perform usability, unit, and integration testing to validate database design,
customer/sales function set, and user interfaces.

Loop through iteration 2 use cases again and make all changes determined at the end of the previous
iteration. Expand requirements and design to cover additional sales use cases and essential customer
account and order-fulfillment use cases. Perform usability, unit, and integration testing.

4

5

Loop through iteration 3 use cases again and make all changes determined at the end of the previous
iteration. Expand requirements and design to cover remaining Marketing subsystem use cases for
products and promotions. Develop customer-oriented online help for all functions implemented in
previous iterations. Prepare training materials and conduct training for phone and retail stores sales
personnel. Finalize the new database and prepare it for data migration. Develop data migration
(import) procedures. Test and refine data migration procedures by importing all data from the CSS
database.

Loop through iteration 4 use cases again and make all changes determined at the end of the previous
iteration. Continue training for phone and retail stores sales personnel. Conduct usability tests with a
large number of actual or simulated customers. Make any needed changes to user interfaces,
including online help. Conduct performance and stress testing and make any needed changes.
Create a copy of the CSMS deployment environment at the Park City data center for use as a test
system for version 2.0 development. Conduct user acceptance testing. Import all CSS database
changes since the last import. Place version 1.0 into production.

6

7

Monitor system performance and user comments. Develop a change list and classify them as “ASAP”
or “version 2.0.” Implement ASAP changes. Expand requirements and design to cover essential use
cases from the Reporting subsystem and those related to social networking. Migrate database
updates from CSMS to CSS database twice per day. If no problems are encountered with CSMS,
discontinue data migration and old system operation at the end of this iteration.

Loop through iteration 6 use cases again and make all changes determined at the end of the previous
iteration. Expand requirements and design to cover all remaining use cases. Update database design
as needed to support version 2.0 use cases. Program iteration 7 and use cases and conduct unit and
integration testing.

8

9

Develop customer-oriented online help for all functions implemented in iterations 6 and 7. Prepare
training materials and conduct training for sales, marketing, and management personnel. Conduct
usability tests with a large number of actual or simulated customers. Make any needed changes to
user interfaces, including online help. Update the production database with any structural changes
in the test database.

Continue training for sales, marketing, and management personnel. Conduct performance and stress
testing and make any needed changes. Conduct user acceptance testing. Place version 2.0 into
production.

©
 C

en
ga

ge
Le

ar
ni

ng
®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

473CHAPTER 14 ■ Deploying the New System

The two-phase deployment minimizes project risk by dividing a single large
deployment into two smaller deployments. Another key risk mitigation feature
is maintaining the current CSS and its database as a backup for at least one
iteration after version 1.0 deployment. If a serious problem arises with version
1.0, RMO can revert to the current CSS simply by redirecting Web site accesses
back to its internal servers.

 ■ Database Development and Data Conversion
Many of the classes in the CSMS class diagram are already represented in the
existing CSS database. However, there are some new classes and associations
and some changes to existing classes. Thus, there is some degree of compatibility
between the old and new databases, but not enough to enable an upgraded ver-
sion of the current database to directly interface with both systems. Thus, a new
CSMS database will need to be built, and data will need to be migrated from the
CSS database prior to deploying version 1.0.

Database development and migration prior to version 1.0 deployment will
occur over multiple iterations. The iteration plan calls for creating a copy of the
CSS database early in the project and making incremental changes to it. All data
in the production CSS database will be migrated to the CSMS database near the
end of the fourth iteration. If problems are encountered, they will be resolved
and the migration will be repeated as early as possible during the fifth iteration.
Migrating much of the data during the fourth iteration will enable fifth-iteration
testing of user interfaces with real data from real customers and products and
system and stress testing with a “production sized” database.

At the end of the fifth iteration, all CSS database changes since the last
full migration will be copied to the CSMS database. Copying only the changes
will enable migration within a matter of hours. The CSS system will be offline
during the migration. Cutover to the CSMS will occur as soon as the migration
is completed. To minimize risk, additional data conversion routines will copy
new data from the CSMS database back to the CSS database twice per day
during the fifth iteration. If disaster strikes, the CSS can be restarted with a
current and complete database. If CSMS version 1.0 passes all user acceptance
tests during the fifth iteration, the CSS will be turned off and data migration
will cease.

 ■ Development Order
A combination of IPO and use-case-driven development order is the primary
basis for the development plan. By starting with a copy of the CSS database, a
set of test data will exist from the first iteration, thus enabling the highest-risk
use cases to be tackled first. These involve the entire Sales subsystem and cus-
tomer-facing portions of the Order Fulfillment subsystem. The risks arise from
new technology, uncertainty about requirements, and the operational impor-
tance of sales and order fulfillment to RMO. By tackling those use cases first,
Barbara allowed her development staff plenty of time to resolve uncertainties
and test related software. Note that significant testing of these functions began
in iteration 2 and continued through most of the project.

 ■ Documentation and Training
Training activities were spread throughout later project iterations for both pro-
duction versions. Initial training exercises covered the highest-risk portion of
the system prior to deployment. They also enabled developers to do integration
and performance testing on the sales-related use cases long before deployment.
 Additional training continued as new functions were added to the system, pro-
viding a gradual ramping up of user skills and developer workload.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

474 PART 5 ■ Advanced Design and Deployment Concepts

Configuration and change management activi-
ties track changes to models and software through
multiple system versions, which enables developers to
test and deploy a system in stages. Versioning also im-
proves postdeployment support by enabling developers
to track problem support to specific system versions.
Source code control systems enable development teams
to coordinate their work.

Implementation and deployment are complex processes
because they consist of so many interdependent activi-
ties. Testing is a key activity of implementation and de-
ployment. Software components must be constructed
in an order that minimizes the use of development re-
sources and maximizes the ability to test the system and
correct errors. Unfortunately, those two goals often con-
flict. Thus, a program development plan is a trade-off
among available resources, available time, and the desire
to detect and correct errors prior to system deployment.

CHAPTER SUMMARy

parallel deployment

performance test or stress test

phased deployment

production system

production version, release
version, or production release

response time

source code control system
(SCCS)

stub

support activities

system documentation

system test

test case

test data

test system

throughput

top-down development

unit test

use-case-driven development

user acceptance test (UAT)

user documentation

alpha version

beta version

bottom-up development

build and smoke test

direct deployment or
immediate cutover

driver

input, process, output (IPO)
development order

integration test

maintenance release

KEy TeRMS

 1. List and briefly describe each activity of the SDLC
core processes Build, test, and integrate system
components and Complete system tests and
deploy solution.

 2. What is the purpose of unit testing? Who
 performs it? How is the test data prepared?

 3. What is the difference between unit testing and
integration testing?

 4. What are the objectives of integration testing?

 5. What distinguishes integration testing from system
testing? What kinds of tests can be included in
system testing?

 6. Who is responsible for user acceptance
testing (UAT)? What are the primary objectives
of UAT?

 7. What is a good way to identify test cases to be
used for UAT?

 8. Who defines the test data for the UAT?

 9. What is a test case? What are the characteristics of
a good test case?

 10. What are the various elements required for good
test data?

 11. What is a driver? What is a stub? With what type
of test is each most closely associated?

 12. During what types of testing would it be helpful
to have an error tracking log?

 13. List possible sources of data used to initialize a
new system database. Briefly describe the tools and
methods used to load initial data into the database.

 14. How do user documentation and training activities
differ between end users and system operators?

 15. List the major items in the architecture environment
that must be configured for production systems.

 16. List and briefly describe four basic approaches to
program development order. What are the advan-
tages and disadvantages of each?

REvIEw QUeSTIOnS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

475CHAPTER 14 ■ Deploying the New System

 17. How can the concepts of top-down and
bottom-up development order be applied to
object-oriented software?

 18. Why has use-case-driven development become
popular with iterative development?

 19. What is a source code control system? Why is
such a system necessary when multiple program-
mers build a program or system?

 20. Briefly describe direct, parallel, and phased
deployments. What are the advantages and
disadvantages of each deployment approach?

 21. Define the terms alpha version, beta version, and
production version. Are there well-defined crite-
ria for deciding when an alpha version becomes
a beta version or a beta version becomes a pro-
duction version?

PROBleMS AND exeRCISeS
 1. Describe the process of testing software

 developed with the IPO (input, process, output),
top-down, bottom-up, and use-case-driven devel-
opment orders. Which development order results
in the fewest resources required for testing?
What types of errors are likely to be discovered
earliest under each development order? Which
development order is best, as measured by the
combination of required testing resources and
ability to capture important errors early in the
testing process?

 2. Assume that you and three of your classmates
are charged with developing the first prototype
to implement the RMO use case Create/update
customer account. Create a development and
testing plan to write and test the classes and
methods. Assume that you have two weeks to
complete all tasks.

 3. Talk with a computer center or IS manager about
the testing process used with a recently deployed
system or subsystem. What types of tests were
performed? How were test cases and test data
generated? What types of teams developed and
implemented the tests?

 4. Consider the issue of documenting a system by
using only electronic models developed with
an integrated development tool, such as Micro-
soft Visual Studio or Oracle JDeveloper. The
advantages are obvious (e.g., the analyst modi-
fies the models to reflect new requirements and

automatically generates an updated system).
Are there any disadvantages? (Hint: The system
might be maintained for a decade or more.)

 5. Talk with an end user at your school or work
about the documentation and training provided
with a recently installed or distributed busi-
ness application. What types of training and
documentation were provided? Did the user
consider the training to be sufficient? Does the
user consider the documentation to be useful and
complete?

 6. Assume you are in charge of implementation and
deployment of a new system that is replacing
a critical existing system that is used 24 hours
a day. To minimize risk, you plan to phase in
deployment of new subsystems over a period of
six weeks and operate both systems in parallel
for at least three weeks beyond the last new sub-
system deployment. Because there aren’t enough
personnel to operate both systems, you plan to
hire up to 30 temporary workers during the par-
allel operation period. How should you use the
temporary workers? In answering that question,
be sure to consider these issues:

 a. Some current personnel will be trained before
subsystem deployments, and those employees
will train other employees.

 b. Employees newly trained on the system will
probably not reach their former levels of
efficiency for many weeks.

Hudsonbanc Billing System Upgrade
Two regional banks with similar geographic territories
merged to form HudsonBanc. Both banks had credit card
operations and operated billing systems that had been in-
ternally developed and upgraded over three decades. The
systems performed similar functions, and both operated

primarily in batch mode on mainframe computers. Merging
the two billing systems was identified as a high-priority
cost-saving measure.

HudsonBanc initiated a project to investigate how to
merge the two billing systems. upgrading either system
was quickly ruled out because the existing technology
was considered old and the costs of upgrading the system

CASE STUDY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

476 PART 5 ■ Advanced Design and Deployment Concepts

were estimated to be too high. HudsonBanc decided that
a new component-based, Web-oriented system should be
built or purchased. Management preferred the purchase
option because it was assumed that a purchased system
could be brought online more quickly and cheaply. An RFP
(request for proposal) was prepared, many responses were
received, and after months of business modeling and re-
quirements activities, a vendor was chosen.

Hardware for the new system was installed in early
January. Software was installed the following week,
and a random sample of 10 percent of the customer ac-
counts was copied to the new system. The new system
was operated in parallel with the old systems for two
months. To save costs involved with complete duplication,
the new system computed but didn’t actually print billing
statements. Payments were entered into both systems
and used to update parallel customer account databases.
 Duplicate account records were checked manually to en-
sure that they were the same.

After the second test billing cycle, the new system
was declared ready for operation. All customer accounts
were migrated to the new system in mid-April. The old sys-
tems were turned off on May 1, and the new system took
over operation. Problems occurred almost immediately.
The system was unable to handle the greatly increased
volume of transactions. Data entry and customer Web ac-
cess slowed to a crawl, and payments were soon backed
up by several weeks. The system wasn’t handling certain
types of transactions correctly (e.g., charge corrections and
credits for overpayment). Manual inspection of the recently

migrated account records showed errors in approximately
50,000 accounts.

It took almost six weeks to adjust the incorrect ac-
counts and update functions to handle all transaction types
correctly. On June 20, the company attempted to print
billing statements for the 50,000 corrected customer ac-
counts. The system refused to print any information for
transactions more than 30 days old. A panicked consulta-
tion with the vendor concluded that fixing the 30-day re-
striction would require more than a month of work and
testing. It was also concluded that manual entry of account
adjustments followed by billing within 30 days was the fast-
est and least risky way to solve the immediate problem.

Clearing the backlog took two months. During that
time, many incorrect bills were mailed. Customer support
telephone lines were continually overloaded. Twenty-five
people were reassigned from other operational areas, and
additional phone lines were added to provide sufficient cus-
tomer support capacity. System development personnel
were reassigned to IS operations for up to three months
to assist in clearing the billing backlog. Federal and state
regulatory authorities stepped in to investigate the prob-
lems. HudsonBanc agreed to allow customers to spread
payments for late bills over three months without interest
charges. Setting up the payment arrangements further
 aggravated the backlog and staffing problems.

1. What type of installation did HudsonBanc use for its
new system? Was it an appropriate choice?

2. How could the operational problems have been avoided?

Community Board of Realtors®

Assume that the Multiple Listing Service that is under
development will replace an existing system devel-
oped many years ago. The database requirements and
design for the old and new systems are very similar.
Unfortunately, the existing system stores its data in a
Microsoft Access database, which provides little sup-
port for simultaneous access and updates by multiple
users. An important reason for replacing the current
system is to upgrade to a DBMS that can easily sup-
port many simultaneous accesses.

The current plan is to use Microsoft SQL Server
as the new DBMS and to migrate all data from the

existing Microsoft Access database immediately prior
to full deployment. Perform these tasks to prepare for
this migration:

 1. Investigate data migration from Microsoft Access
to SQL Server. What tools are available to assist
in or perform the migration? If there are multiple
possible tools, which should you use and why?

 2. Develop plans to test the migration tools/strat-
egy in advance of full deployment. When should
the test be performed, and how will you deter-
mine whether the test has been “passed”?

RuNNINg CaSe STUDieS

The Spring Breaks ‘R’ Us Travel Service
Review the case-related questions and tasks as well as
your responses from Chapters 10 and 11. As described
in previous chapters, assume the new system will

upgrade an existing system and add new social net-
working functions to it. Specifically, review your
answer to question 2 in Chapter 11 in light of the more

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

477CHAPTER 14 ■ Deploying the New System

detailed understanding of the risks, costs, and bene-
fits of various implementation orders and deployment
approaches that you gained by reading this chapter.

 1. For each subsystem—Resort Relations, Student
Booking, Accounting and Finance, and Social
Networking—specify which other subsystem(s)
it depends on for input data.

 2. Can the four subsystems be developed and
deployed independently? If so, in which order
should they be developed and deployed? If not,
explain why not and describe how you would
develop and deploy the system.

On the Spot Courier Services
In Chapter 10, we identified these four subsystems:

 ■ Customer Account subsystem (such as Customer
Account)

 ■ Pickup Request subsystem (such as Sales)
 ■ Package Delivery subsystem (such as Order

Fulfillment)
 ■ Routing and Scheduling subsystem

In Chapter 10, you also decided on a development
order for these four subsystems, assuming a single
two-person team. In Chapter 11, you created indi-
vidual subsystem iteration schedules and a combined
project schedule. In Chapter 7, you identified equip-
ment that would be needed for the system.

Your assignment for this chapter is to develop a
test plan for each subsystem and for the overall proj-
ect as well as to develop a conversion/deployment
schedule.

 1. For your test plan, do the following:
 a. Develop an iteration test plan (i.e., one that

applies to and can be used within a subsystem
iteration mini-project). Discuss which types
of testing (as identified in this chapter) you
would include and why. Estimate how much
time will be needed for each type of test.
 Discuss what types of testing might be com-
bined or scheduled with an overlap.

 b. Develop a total project test plan to integrate
all the subsystems. Discuss which types of
testing you would include and why. (Don’t
put them on a schedule yet.)

 2. Develop a conversion/deployment plan. Discuss
these:

 a. Data conversion: Which parts of the data
must be saved from the old spreadsheet/
manual system? Which parts of the data
can just be discarded (i.e., not moved to the
new system)? Discuss specific tables that you
 identified in Chapter 9.

 b. Deployment: Based on your decisions about
which subsystems should be deployed first
(Chapter 10), your overall testing plan, and
your data conversion decisions, develop an
overall schedule for testing and deployment of
the new system. How would you characterize
your solution: direct, parallel, or phased con-
version? Support your answer by discussing
the logic behind your decisions.

 3. Develop and discuss your current recommenda-
tion for hosting the system. Add to your deploy-
ment schedule the activities to set up the hosting
environment. Include the steps to purchase
equipment if needed.

Sandia Medical Devices
Refer to the case information provided at the end of
Chapters 10 and 11 and the domain class diagram at
the end of Chapter 9. Review and update your results
from performing the tasks at the end of Chapter 11
based on the information provided in this chapter.
Then, answer these questions:

 1. What integration and system tests are required,
and when should they be incorporated into the
iteration schedule?

 2. What are the documentation and user training
requirements for the system, and when should
they be incorporated into the iteration schedule?

 3. Assume that after deployment and a three-
month testing and evaluation period, updates
to the first Android-based system (client and
server) will be implemented and another client-
side version will be implemented for the iPhone.
Develop an iteration plan for implementing and
deploying the second version of the system.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

478 PART 5 ■ Advanced Design and Deployment Concepts

William Horton, Designing Web-Based Training:
How to Teach Anyone Anything Anywhere
 Anytime. John Wiley & Sons, 2000.

William Horton, e-Learning by Design. Pfeiffer,
2011.

International Association of Information
 Technology Trainers (ITrain) Web site,
http://itrain.org.

David Yardley, Successful IT Project Delivery.
 Addison-Wesley, 2002.

Robert V. Binder, Testing Object-Oriented Systems:
Models, Patterns, and Tools. Addison-Wesley,
2000.

Mark Fewster and Dorothy Graham, Software Test
Automation. Addison-Wesley, 1999.

Jerry Gao, H.-S. Jacob Tsao, and Ye Wu, Testing
and Quality Assurance for Component-Based
Software. Artech House Publishers, 2003.

William Horton, Designing and Writing Online
Documentation: Hypermedia for Self-Supporting
Products (2nd ed.). John Wiley & Sons, 1994.

FuRTHER ReSOURCeS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

479

1NF(first normal form), 273–274
2NF (second normal form), 275–276
3NF (third normal form), 276–278

abstract classes, 109–110, 379
acceptance criteria, 72
acceptance tests, 26, 316, 451
access controls, 174–175
accounting and financial management (AFM)

systems, defined, OL-8
action-expressions, 117, 119
activation lifelines, 409
activity diagrams

analysis and design models, 162
defined, 60
documenting workflows with, 60–63
for Fill Shopping Cart, 411
relationship with other models, 148
for RMO Supplier Information Subsystem, 24–25
for RMO Tradeshow system, 12
for use cases, 137–139

activity-data matrix, defined, OL-48
activity-location matrix, defined, OL-48
actors, defined, 76, 81, 135
adapter pattern, 428–430
adaptive approaches to the SDLC, 297–298,

300. See also Agile development; project
management

affordance, 223
aggregation, 110
Agile development

defined, 8, 304
iterative, 8–9, 27
modeling principles, 305–307
philosophy and values, 304–305
Scrum, 316–318
UP, 308–312
XP, 312–316

Agile modelling (AM), 305–307
Agile project management (APM), 332–335. See

also project management
Ajax Corporation, 296
alpha versions, 468
alt frames, 142–143
AM (agile modeling), 305–307
analysis. See systems analysis
analysis-related careers, OL-13–OL-15
API (application programming interface). See

application programming interface (API)
APM (Agile project management), 332–335. See

also project management
application architecture and software, 191, 196,

451, 457
concepts, 195–200
defined, 40
design key question, 163

application components
boundaries, 208
defined, 165
integration, 210–213
RMO CSMS application architecture, 208–210

application programming interface (API), 201,
206, 259

approval, quantifying factors for, 337–343
apps, defined, 4
architectural concepts, 195–200

distributed, 198–200
client/server architecture, 198–199
three-layer architecture, 199–200

software as a service, 196
Web service, 197–198

architectural diagrams, 201–203
deployment, 202–203
location, 201–202
network, 202

architectures
distributed databases, 279–284
hardware and network, 261
overview, 186–187
RMO CSMS application, 208–210
RMO’s current technology architecture, 179–180
of RMO Supplier Information Subsystem, 24–25
of RMO Tradeshow System, 12, 16, 23
updated RMO technology, 207

artifacts, defined, 401
association classes, 105
associations. See also relationships

among things in problem domain, 98–100
representing in database, 268–270

assumptions sequence diagrams, 417
asymmetric key encryption, 177
attributes

class-level, 379
defined, 97, 263
in databases, 263
elaboration of, 380
of things in problem domain, 97–98
value, 263

authentication, 174
authorization, 174
automation boundary, 81
automation boundary, defined, OL-7
availability, item, 79
Aviation Electronics, 218

backlog, product, 317
backup, database, 172
balancing, defined, OL-36
bar graph sample, 250
benefits, anticipated, 337, 340–343
beta versions, 468
binary associations, defined, 100
black hole, defined, OL-36
Blue Sky Mutual Funds, 326
bottom-up development, 462
boundary classes, 376–377
brainstorming technique, 95–96
break-even point, 342
brief use case descriptions, 81, 133
browser-based systems. See also Internet,

Web-based applications
affordance and visibility in, 223–224
internal network, 391, 418
pros and cons of, 23
user interface guidelines, 240–242

build and smoke testing, 451

business benefits, 337
business intelligence system, defined, OL-9
business knowledge, for systems analyst, OL-12
business logic layer. See domain layer
business processes

elementary, 74
observing and documenting, 56–57
questions related to, 50–51

camelback or camelcase notation, 103
candidate key, 264
cardinality, defined, 99
ceremony, project management and, 330–331
certificates, 177–179
certifying authorities, 178
change and version control, 467–471
chaordic, defined, 304
check boxes, 224
class diagrams. See also design class diagrams

(DCDs); domain model class diagrams
defined, 17, 103
for RMO Tradeshow System, 18

class responsibility collaboration (CRC) cards
defined, 382
designing, 382–388

classes. See also design class diagrams (DCDs); use
case realization

abstract and concrete, 109, 379
on CRC cards, 382–388
creating tables for, 266
defined, 103
design overview, 376
notation for, 377–379
types of, in UML, 376

classification hierarchies, representing, 270–271
class-level attributes, 379
class-level methods, 378
clients (customers). See also stakeholders

in Agile projects, 304–305
defined, 329
reviewing with and obtaining approval from,

344–345
in Scrum, 317
in XP, 314

clients (software/hardware), 48
client/server architecture, 198–199. See also three-

layer client-server architecture
closed-ended questions, 51
code ownership in XP, 314
coding standards adoption in XP, 315
cohesion, 392
collaboration on CRC cards, 382–388
collaboration support system (CSS), defined, OL-9
colors, 97, 159, 229
combo boxes, 239
committees, oversight, 329–330
communication diagrams, 399, 401–408

object-oriented design with, 403–408
extend input messages, 404–407
final design class diagram, 407–408
input models, 404

understanding, 401–403
use case realization with, 401–408

index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

480 Index

communication, network, OL-47–OL-49
communications

establishing environment for, 345–350
on Internet, 418
management of, 331
in XP, 312

completeness controls, 171
complex data types, 278
complex update controls, 285–286
component diagrams, 162
composition, defined, 110
compound attributes, defined, 98
computer applications, defined, 4
computing devices, 188–189
concrete classes, 109, 379
concurrency (concurrent states), 117–118
concurrency in state machine diagrams, 117–118
concurrent paths

activity diagram, 62
defined, 117

consistency, 224–226
Consolidated Concepts, 296
construction phase, 309
context diagram, defined, OL-26
continuous integration, 314
contracts for Agile projects, 305
control break, 247
controller classes, 377
controller pattern, 428–429
controls, integrity, 170–173
controls, security. See security and system controls
corrective actions, taking, 355–356
cost/benefit analysis, 341–342
costs

estimated, 340
intangible, 343
management of, 331, 334–335

coupling, 391–392
CPM charts, OL-58–OL-62, OL-69–OL-70
CRC (class responsibility collaboration) cards. See

class responsibility collaboration (CRC) cards
critical path, 354
CRUD (create, read, update, and delete), OL-48

technique, 146–147
customer relationship management (CRM) system,

defined, OL-7
customers. See clients (customers)

dashboard, project, 346–347
data, 260–261
data access classes, 377
data access layer

designing, 419–424
linking to domain layer, 419–422
relationship with other layers, 200
responsibilities of, 427

data administrator (DA), 262
data centers, 189, 281–284
data dictionary, defined, OL-45
data element definitions, OL-45
data encryption, 175–177
data entities, defined, 94, 100
data entry, 239, 241, 243–244
data flow, defined, OL-22, OL-43–OL-45
data flow diagrams (DFD), 62, 137, 161,

OL-21–OL-38
and abstraction levels, OL-24–OL-28
complex information, minimizing,

OL-34–OL-35
components, documentation of, OL-38–OL-46
context diagram, OL-26
data element definitions, OL-45
data flow consistency, OL-35–OL-38
data flow definitions, OL-43–OL-45
data store definitions, OL-45
decomposition, activity detail, OL-30–OL-32
defined, OL-22
evaluating quality of, OL-34–OL-38
event-partitioned system model, OL-27–OL-28
fragments, OL-26–OL-27
logical system model, OL-32–OL-34
physical system model, OL-32–OL-34
process descriptions, OL-38–OL-43
RMO, OL-28–OL-32
symbols, OL-22–OL-23
traditional analysis model, OL-45–OL-46

data layer. See data access layer
data store, defined, OL-22, OL-45
data types, 278
data validation controls, 171
database administrator (DBA), 262
database, defined, OL-10
database lock, 286
database management system (DBMS), 258–260
database synchronization, 281
databases and design. See also relational databases

administration, 260–263
definitions and overview, 22, 167–168, 258
distributed architectures, 279–284
Downslope Ski Company, 258
integrity controls, 170–173
key question for, 163
project plan and schedule, 261–262
protecting, 284–286

concurrency and complex update controls,
285–286

transaction logging, 285
reloading, 455
reusing existing, 454
for RMO CSMS, 473
RMO distributed architecture, 283–284
for RMO Supplier Information Subsystem, 22
security controls, 173–179
team, 262–263
technology environment, 260–261

DBA (database administrator). See database
administrator (DBA)

DBMS (database management system), 258–260.
See also databases and design

DCDs (design class diagrams). See design class
diagrams (DCDs)

decentralized database, 279
decision table, defined, OL-40
decision tree, defined, OL-40
decryption, 176
dependency relationships, 425
deployment

data conversion and initialization, 454–455
direct, 464
internal, 200
parallel, 464–466
phased, 466
planning, 464–466
production environment configuration, 459–460
for RMO CSMS, 473
support activities after, 467
Tri-State Heating Oil, 444
user training, 456–459

deployment diagrams, 162, 166, 202–203
design. See systems design
design class diagrams (DCDs)

analysis and design models, 162
class notation, 377–379
defined, 23–24, 372–373
for Fill Shopping Cart, 413
first-cut, 379–382
for RMO CSMS, 169
for RMO Customer Account Subsystem, 404
for RMO Supplier Information Subsystem, 23–24
stereotypes in, 376
updating, based on sequence diagrams, 424–427

design constraints, defined, 46
design patterns. See also multilayer design

adapter, 428–430
controller, use case, 428
overview, 427–428
singleton, 431–433

desktop and laptop user interfaces, 238–240
desktop metaphor, 221
desktop systems, 239, 261, 376
destination states, defined, 116
detailed design, 23, 25–26, 262, 389, 398–399. See

also object-oriented design/programming
(OOD/OOP)

detailed reports, 246
detailed sequence diagrams. See also design class

diagrams (DCDs)
for Create customer account, 409–410
defined, 399
for Fill Shopping Cart, 410–416, 420, 423
guidelines and assumptions for first-cut, 416–417
in object-oriented approach, 162, 369, 373

detailed work schedule, 350
DFD. See data flow diagrams (DFD)
diagrams. See specific diagrams
dialogs

closure, 228–229
developing, 44
documenting, 235–237
make actions reversible, 229
use cases and, 232–234

dialogue metaphor, 222
digital certificates, 178
digital signatures, 178
direct deployment, 464
direct manipulation metaphor, 221–222
disciplines in UP, 309–312
discount factor, defined, OL-55
discount rate, defined, OL-55
distributed database architectures, 279–284

implementation approaches for, 280–282
RMO, 283–284

document metaphor, 221–222
documentation

classifications, 456–459
establishing environment for, 345–350
for RMO CSMS, 473

domain classes
defined, 103
for RMO Tradeshow System, 17–18

domain layer
linking to data layer, 419–422
relationship with other layers, 199–200
responsibilities of, 427

domain model class diagrams
definitions, 103
design model based on, 162
generalization/specialization relationships,

107–110
notation, 104–107
relationship with other models, 148
for RMO CSMS, 111–114
whole-part relationships, 110–111

domain modeling. See also domain model class
diagrams; problem domain

ERDs, 100–103
Waiters on Call, 70, 94

Downslope Ski Company, 258
drill down, 249
drivers (for unit testing), 447

early start time, defined, OL-60
EBPs (elementary business processes), 74
elaboration phase, 309
electronic reports, 248–250
Electronics Unlimited, 132
elementary business processes (EBPs), 74
embedded software, 192–193
encryption, 176
end users, training of, 456–459
enterprise resource planning (ERP), defined, OL-9
entity classes, 376
entity-relationship diagrams (ERDs), 100–103
environment

DBMS, 260–261
describing, 203–207
design key question, 163
design overview, 164
establishing, 345–350
external, 75, 410
key questions, 204–205
RMO, 205–207
RMO’s location diagram, 201–202
technology, 260–261
work, 349–350

ERDs (entity-relationship diagrams), 100–103
errors

messages, provide solution options, 231
reporting, 468–470

estimated cost, 340
estimated time for project completion, 339–340
event decomposition technique

event types, 76–77
identifying events, 77–80
overview, 74–76
steps in, 80

event-partitioned system model (diagram 0),
defined, OL-27

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

481Index

exception reports, 246
exclusive lock, 286
executive reports, 246
executive stakeholders, 48
Extensible Markup Language (XML), 194–195
external agent, defined, OL-22
external events, 76
external stakeholders, 47
Extreme Programming (XP), 312–316

core values, 312–313
practices, 313–315
project activities, 315–316

Facebook, 41, 46, 48, 188, 190, 196, 206, 285
factory pattern, 430, 432
feasibility analysis, 343–344
feedback, 223–224, 312–313
field combination controls, 171
first normal form (1NF), 273–274
following up interviews, 54
fonts, 159, 225, 229, 239
foreign keys

normalization and, 273
overview, 264
representing associations using, 268–270

fraud prevention, 172–173
functional decomposition, defined, OL-7
functional dependency, 274–275
functional requirements, 45. See also use cases
functional testing, defined, 26
FURPS and FURPS+, 45–46

Gang of Four (GoF), 428. See also design patterns
Gantt chart, 353–354, OL-62–OL-69

new project, set up, OL-63
resources, enter information about,

OL-63–OL-64
tasks, enter information about, OL-64–OL-69
tracking, OL-69

generalization relationships, 107–110
GoF (Gang of Four), 428. See also design patterns
graphical models, defined, 59
graphical presentation, 250
guard-conditions, defined, 117

handheld devices. See smartphones
hardware architectures, 261
HCI (human-computer interaction), 221–222
heterogeneous distributed database, 279
high cohesion, 392
high-level systems design

defined, 22
for RMO Supplier Information Subsystem, 22–25

HIOs (human-interface objects). See human-
interface objects (HIOs)

homogeneous distributed database, 279
hosting, 188, 210, 340

external, 207
hours of work in XP, 315
HTML (Hypertext Markup Language), 194
HTML5, 195, 206
HTTP (Hypertext Transfer Protocol), 195
HTTPS (Hypertext Transfer Protocol, Secure),

179, 195
human resource management (HRM) systems,

331, OL-8
human-computer interaction (HCI), 221–222
human-interface objects (HIOs), 223–224

purpose or behavior (affordance), 223
visual feedback, 223–224

hyperlink, 191, 458
Hypertext Markup Language (HTML), 194
Hypertext Transfer Protocol (HTTP), 195
Hypertext Transfer Protocol, Secure (HTTPS),

179, 195

identifiers (key), defined, 98
IDEs (integrated development environments), 303
immediate cutover, 464
implementation requirements, defined, 46
inception phase, 308–309
<<includes>> relationships, 85–87
incremental development, 300
indirection, 391
information gathering

brainstorming technique, 95–96

collecting active user comments and suggestions,
57–58

interviewing users and stakeholders, 50–54
observing and documenting business processes,

56–57
overview, 43
questionnaires, 54
researching vendor solutions, 57
reviewing inputs, outputs, procedures, 55–56

information overload, defined, OL-35
information system development projects,

defined, 297
information systems, OL-6–OL-7. See also RMO

CSMS (Consolidated Sales and Marketing
System)

defined, 4, OL-6
types of, OL-7–OL-10

information systems development processes,
defined, 6. See also Agile development

inheritance, 108
input, process, output (IPO) development order,

460–461
input controls, 171
input forms, 234–235
inputs. See also system interfaces; user interfaces

(UIs)
design models, 160–162
reviewing, 55–56
in SSDs, 139

instantiation, 368
intangible benefits, 342
intangible costs, 343
integrated development environments (IDEs), 303
integration testing, 448–450
integrity controls, 170–173
interaction diagrams. See also detailed sequence

diagrams; system sequence diagrams (SSDs)
analysis and design models, 162
communication diagrams, 399, 400

interface requirements, defined, 46
interfaces, overview, 218–219. See also system

interfaces; user interfaces (UIs)
internal deployment, 200
internal stakeholders, 47
Internet, 190–191
Internet backbone network, 190
interoperability, 201
interviewing users and stakeholders, 50–54
invented keys, 267–268
IP Security (IPSec), 179
iPhone app, 4
IPO (input, process, output) development order,

460–461
IPSec (IP Security), 179
issues, tracking, 356
iteration schedule, 15, 353
iterative development. See also Agile development;

project management
in adaptive SDLC, 299–301
overview, 8–9, 27
revised plan for RMO CSMS, 472
user-centered design and, 220–221

Javascript, 165

keys, defined, 98, 264. See also foreign keys;
 primary keys

knowledge management system (KMS), OL-9

LANs (local area networks), 190
laptop user interfaces, desktop and, 238–240
late start time, defined, OL-61
level of formality or ceremony, 312, 330
levels of abstraction, defined, OL-24
lifelines, 140, 409–410
list boxes, 239
local area networks (LANs), 190
location diagrams, 201–202, OL-47
location information, networks, OL-47–OL-49
logging transactions, 285
logical DFD, defined, OL-32
loop frames, defined, 142

maintenance releases, 468
management. See project management
manufacturing management system, OL-9

many-to-many associations, 269–270
mathematical models, defined, 59
menus, use cases and, 232–234
metaphors, 221–222, 315
method signatures, 378
methodologies, Agile. See under Agile development
methods

class-level, 378
deriving from sequence diagrams, 409–410
top-down development and, 462

Microsoft Project, 351–354
minimization of interfaces, defined, OL-35
miracle, defined, OL-37
mobile devices. See smartphones
models and modeling. See also domain modeling;

object-oriented requirements models
agile, 305–307
analysis vs. design, 159, 160, 162
benefits of, 58
defined, 58
methodologies and, 301
object-oriented approach to, 369–374
types overview, 59

Mountain Vista Motorcycles, 38
multifactor authentication, 174
multilayer design

data access layer, 419–424
developing, 417–424
domain layer. See use case realization
implementation issues for, 426–427
object-oriented design with interaction

diagrams, 399
responsibilities of each layer, 427
top-down development of, 462
view layer, 417–418

multimedia presentation, 250
multiplicity

defined, 99
UML notation for, 104

multiplicity constraints, defined, 99

n-ary associations, defined, 100
navigation controls, 243, 245
navigation visibility, 380–381, 416
net present value (NPV), 341, OL-55–OL-57
network architectures, 261
network-based systems, 427
network communication, OL-47–OL-49
network diagrams, 202, 205, OL-69–OL-70
network protocols, 193–194
network-based systems, 427
networks, 190–191
New Capital Bank, 366, 398
New Mexico Health Systems, security and system

controls, 158–159
nonfunctional requirements, defined, 45
normalization, database, 272–278
Norman, Donald, 221
noun technique, 96–97
NPV (net present value). See net present value

(NPV)

object lifelines, 140
object responsibility, 389–390
object-oriented approach, 103, 108, 139, 367,

378. See also object-oriented design/
programming (OOD/OOP)

system development, OL-21
object-oriented design/programming (OOD/OOP).

See also use case realization
analysis to implementation, 367–374
with communication diagrams, 403–408

extend input messages, 404–407
final design class diagram, 407–408
input models, 404

with CRC cards, 382–388
defined, 374
fundamental principles, 388–392
with interaction diagrams, 399–401
models, 369–374
New Capital Bank, 366, 398
overview, 367–369, 388–389
steps, 374–375

object-oriented requirements models. See also
system sequence diagrams (SSDs); state
machine diagrams

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

482 Index

activity diagrams for use cases, 137–139
Electronics Unlimited, 132
integrating, 148
overview, 132–133
use case descriptions, 133–136

objects, defined, 103, 114
one-to-many associations, 268
OOD/OOP (object-oriented design/programming).

See object-oriented design/programming
(OOD/OOP)

open items, tracking, 54
open-ended questions, 51
operational stakeholders, 47–48
opt frames, 142, 143
order of development, 460–463, 473
organizational risks and feasibility, 343
origin states, defined, 116
output controls, 171–172
outputs. See also reports; system interfaces; user

interfaces (UIs)
design models, 160–162
reviewing, 55–56
in SSDs, 139

outstanding items, tracking, 54
oversight committees, 329, 330
ownership of code in XP, 314

package diagrams
analysis and design models, 162
for RMO, 461
structuring major components with, 424–426

pair programming, 314
parallel deployment, 464–466
partitioned database server architecture, 283
paths, defined, 117
patterns, defined, 427. See also design patterns
payback period, 342, OL-57
people knowledge, for systems analyst,

OL-12–OL-13
perfect internal technology, defined, OL-32
perfect memory assumption, 417
perfect solution assumption, 417
perfect technology assumption, 79, 417
performance and throughput

requirements, defined, 46
testing, 451

persistent classes, 376, 419
PERT charts, OL-58–OL-62, OL-69–OL-70
phased deployment, 466
phases

project, 298–299
UP, 308–309

phones. See smartphones
physical data store, 176, 259, 260
physical DFD, defined, OL-32
physical requirements, defined, 46
pie chart sample, 250
Pinnacle Manufacturing, 296
planning. See project management
planning in XP, 313
plug-ins, 192
PMBOK (Project Management Body of

Knowledge). See Project Management Body
of Knowledge (PMBOK)

postconditions, 135
preconditions, 135
predictive approaches to the SDLC, 297, 298–299,

301. See also project management
primary keys

choosing, 266–268
normalization and, 272–278
overview, 264

primitive data types, 278
printers and output controls, 171
prioritizing requirements, 44
privileged users, 175
problem domain

associations among things in, 98–100
attributes of things in, 97–98
brainstorming technique, 95–96
defined, 94
noun technique, 96–97

problem identification, 336–337
procedures, reviewing, 55–56
process, defined, OL-22
process descriptions, DFD, OL-38–OL-43

processes, business. See business processes
procurement management, 331
product backlog, 317
product owner, 317
production environment configuration, 459–460
production releases, 468
production system, 471
production versions, 468
programming for RMO Supplier Information

Subsystem, 25–26
progress monitoring, 355–356
project communications management,

OL-74–OL-75
objectives of, OL-74–OL-75
techniques, OL-75

project cost management, OL-73
objectives of, OL-73
techniques, OL-73

project dashboard, 346–347
project human resources management, OL-74

objectives of, OL-74
techniques, OL-74

project integration management, OL-77
project iteration schedule, 350
project management. See also System Development

Life Cycle (SDLC)
agile, 332–335
Blue Sky Mutual Funds, 326
body of knowledge for, 331–332
ceremony and, 330–331
change and version control, 467–471
defined, 329
deployment planning, 463–466
determining project risk and feasibility,

343–344
development order, 460
establishing environment, 345–350
evaluating work processes, 354–355
identifying problem, 336–337
monitoring progress and making corrections,

355–356
need for, 327–328
overview, 327
putting it all together, for RMO, 471–473
quantifying approval factors, 337–343
reviewing with client and obtaining approval,

344–345
role of manager, 329–330
scheduling work, 350–354
source code control, 462–463
staffing and allocating resources, 354

Project Management Body of Knowledge
(PMBOK), OL-54, OL-70–OL-71

project communications management,
OL-74–OL-75

project cost management, OL-73
project human resources management, OL-74
project integration management, OL-77
project procurement management,

OL-75–OL-76
project quality management, OL-73–OL-74
project risk management, OL-75
project scope management, OL-71–OL-72
project stakeholder management, OL-76
project time management, OL-72–OL-73

project management techniques
Gantt chart, OL-62–OL-69
net present value calculations, OL-55–OL-57
payback period calculations, OL-57
PERT/CPM charts, understanding, OL-58–OL-

62, OL-69–OL-70
project schedule building, microsoft project,

OL-62–OL-69
return on investment, OL-57–OL-58

project procurement management, OL-75–OL-76
objectives of, OL-75–OL-76
techniques, OL-76

project quality management, OL-73–OL-74
objectives of, OL-73
techniques, OL-74

project risk management, OL-75
objectives of, OL-75
techniques, OL-75

project scope management, OL-71–OL-72
objectives of, OL-71–OL-72
techniques, OL-72

project stakeholder management, OL-76
objectives of, OL-76
techniques, OL-76

projects. See also project management; RMO entries;
System Development Life Cycle (SDLC)

defined, 7, 297
phases, 298
reasons for initiating, 336
stakeholders in, 330

project time management, OL-72–OL-73
objectives of, OL-72
techniques, OL-72–OL-73

protection from variations, 390–391
protocols

defined, 193
network, 193–194
Web, 194–195

pseudostates, defined, 116
public key encryption, 177

quality management, 331, 335
questionnaires, 54
questions, interview, 51

RAD (rapid application development), 331
radio buttons, 224
rapid application development (RAD), 331
RDBMS, 263. See also relational databases
read lock, 286
recording information, environment for, 346–349
recovery procedures, 172
recursive associations, defined, 100
redundancy, 172
refactoring, 314
referential integrity, enforcing, 271–272
registered users, 174–175
relational databases

associations, 268–270
classification hierarchies, 270–271
data types, 278
definitions and overview, 263
design overview, 264–265
normalization, 272–278
primary keys, 266–268
referential integrity, 271–272
table creation, 265

relationships. See also associations
defined, 99
generalization/specialization, 107–110
whole-part, 110–111

release versions, 468
releases in XP, 315–316
reliability requirements, defined, 45
remote wipe, 177
replicated database server architecture, 280–281
reports

electronic, 248–250
graphical and multimedia presentation, 250
output controls, 171–172
types of, 246–248

requirements. See object-oriented requirements
models; system requirements

resource allocation, 354
resource risks and feasibility, 344
response time, 451
responsibilities

on CRC cards, 382–388
object, 389–390
separation of, 419

retrospectives, 354
return on investment (ROI), OL-57–OL-58
reversible action (undo), 229
Ridgeline Mountain Outfitters (RMO). See also

RMO entries
data flow diagrams, OL-28–OL-32

risk
analysis, 343–344
management, 331, 335

RMO CSMS (Consolidated Sales and Marketing
System). See also other RMO entries

annual operating costs for, 340
anticipated benefits from, 340–343
application architectures, 208–210
associations among things in, 99
database architecture and plan for, 283–284,

473

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

483Index

deployment plan for, 472–473
development order for, 473
documentation and training, 473
domain model class diagram for, 111–114, 266
estimated costs for developing, 340
existing system and architecture, 39–40,

201–202
information repositories for, 347–348
iteration plan, revised, 472
menu design based on use cases, 234
order fulfillment activity diagram for, 61
overview, 41
package diagram for, 461
problem domain for, 95
putting it all together, 471–473
samples

associations, 99
CRC card, 382
database table definition, 168
design class diagram, 169
external events, 80
iteration schedule, 353
mail-order form, 56
open-items list, 54
product detail search screen, 240
questionnaire, 55
reports, 246, 247, 249
sales types, 108
things in problem domain, 95, 96–97
time estimate document, 339–340
use case diagrams, 81–85
use cases, 80–87, 146–147
user goals, 73–74
Web pages, 231

stakeholders for, 48–49
state machine diagrams for, 119–122
“upgrade or replace” decision, 471

RMO Customer Account Subsystem
domain model class diagram for, 113–114
package diagram for, 461

RMO environment description, 205–207
external hosting, 207
mobile devices and apps, 206
security implications, 206–207
social networking, 206
updated RMO technology architecture, 207
Web technologies and adapted content, 206

RMO Product Information Subsystem
class diagrams for, 17–18
use cases for, 16–17

RMO Sales Subsystem
domain model class diagram for, 111–113,

379
package diagram for, 461
samples

CRC cards, 388
design class diagrams, 382, 389
project iteration schedule, 350
work breakdown structure, 351–352

RMO Supplier Information Subsystem
architecture, 24–25
class diagrams for, 17–18
database design, 22
domain classes for, 17–18
fact finding and user involvement, 16
general approach design, 22–25
planning rest of first iteration, 14–16
programming, 25–27
screen layout, 20–22
testing, 26–27
use cases for, 17–19
workflow diagrams development, 19, 20

RMO, three-layer package diagram for, 426
RMO Tradeshow System. See also other RMO

entries
initial project activities, 11–12
introduction, 9–11
managing project, 25
planning overall project and iterations, 12–14
software components, 23
subsystems of, 12–13
System Vision Document, 12

ROI (return on investment). See return on
investment (ROI)

rows, database, 263
rule of 7 ± 2 (Miller’s number), defined, OL-35

SAAS (software as a service), 196
SCCS (source code control system), 462–463
scenarios, defined, 134
schedule risks and feasibility, 344
schema, database, 259
scope, 331, 333, 337
Scrum

overview, 316
philosophy, 316–318

Scrum master, 317–318
SDLC (System Development Life Cycle). See System

Development Life Cycle (SDLC)
second normal form (2NF), 275–276
Secure Sockets Layer (SSL), 179
security and system controls

for databases, 173–179
design key question, 163
events involving, 79–80
integrity controls, designing, 170–173

backup, 172
fraud prevention, 172–173
input controls, 171
output controls, 171–172
recovery, 172
redundancy, 172
scenarios, 170

at New Mexico Health Systems, 158–159
overview, 168–169
security controls, designing, 173–179

access controls, 174–175
data encryption, 175–177
digital signatures and certificates, 177–179
secure transactions, 179

in VPNs, 194
security requirements, defined, 46
semantic nets, 102
separation of responsibilities, 419
sequence diagrams. See detailed sequence

diagrams; system sequence diagrams
(SSDs)

server computers, defined, 188, 199
server farms, 199, 261
shared lock, 286
shortcuts, 231
singleton pattern, 431–433
slack time, defined, OL-62
smartphones, 12, 23, 206, 210, 238, 298

user interface guidelines, 242–244
software

application components
boundaries, 208
integration, 210–213
RMO CSMS application architecture,

208–210
classes and methods, designing, 168
components, Tradeshow System, 23
embedded, 192–193
overview, 191
Web-based applications, 191–192

software as a service (SAAS), 196
source code control system (SCCS), 462–463
specialization relationships, 107–110
sprints, 318
SQL (Structured Query Language), 259, 263
SSDs (system sequence diagrams). See system

sequence diagrams (SSDs)
SSL (Secure Sockets Layer), 179
staffing, 354
stakeholders. See also clients (customers);

information gathering; users
categories of, 47–48
defined, 47
internal and external, 330
for RMO CSMS, 48–49

stand-alone software application, 238
Standish Group, 328
state events, 77
state machine diagrams

concurrency and concurrent states, 117–118
definitions, 114–117
developing, 118–119
in OOD, 162
relationship with other models, 148
for RMO, 119–122

status, collecting and reporting, 355–356
steering committees, 329, 348

stereotypes, 376–377, 433
storyboarding, 236, 237
stress testing, 451
structured English, defined, OL-38
Structured Query Language (SQL), 259, 263
stubs, 447
subclasses, defined, 107
subsystems, defined, 12–13, OL-6
summary reports, 246
superclasses, defined, 107
supply chain management (SCM) system,

OL-7–OL-8
support

activities, 467
staff, as stakeholders, 48

supportability requirements, defined, 46
swimlane, defined, 60
symmetric key encryption, 176
synchronization, database, 281
synchronization bars, defined, 60
system architectures

concepts, 195–200
modern system, anatomy of, 187–195

computing devices, 188–189
Internet, 190–191
networks, 190–191
protocols, 193–195
software, 191–193
World Wide Web, 190–191

overview, 186–187
system boundary, defined, OL-7
system capabilities, defined, 337
system controls. See security and system controls
system, defined, OL-6
System Development Life Cycle (SDLC). See also

Agile development; object-oriented design/
programming (OOD/OOP)

adaptive approaches, 298, 299–301
change implementation, 470–471
core processes, 7. See also iterative development
methodologies, models, tool, techniques,

301–304
overview, 7–8, 297
predictive approaches, 297, 298–299, 301
sample cases, 296. See also RMO Tradeshow

System
support activities after deployment, 467

system development process (methodology), 7
system documentation, 456–457
system interfaces, 29, 377
system metaphor, 315
system of record, 212
system operators, training of, 456–459
system requirements. See also information

gathering; models and modeling;
stakeholders

categories of, 45–46
defined, 45
defining (activity), 43
documenting workflows, 60–63
evaluating with users, 44
prioritizing, 44
sample cases

Mountain Vista Motorcycles, 38
Ridgeline Mountain Outfitters. See RMO

CSMS (Consolidated Sales and Marketing
System)

system sequence diagrams (SSD)
defined, 139
design model based on, 162, 409–410
developing, 142–146
for Fill Shopping Cart, 412
notation, 140–142
relationship with other models, 148

system software, 191
system testing, 450
System Vision Documents

components of, 337
for RMO CSMS, 337
for RMO Tradeshow System, 12

systems analysis, OL-3. See also object-oriented
requirements models

activities overview, 42–44
defined, 4, 42–43
design and implementation, 160, 161
importance of, 4–6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

484 Index

models in, 161
systems design, 160
transition to user-interface design, 232–237

systems analysts
analysis-related careers and, OL-13–OL-15
business knowledge for, OL-12
as business problem solver, OL-3–OL-7
at consolidated refineries, OL-2
defined, 6, OL-3
integrity and ethics, OL-13
people knowledge for, OL-12–OL-13
skills of, OL-10–OL-13
technical knowledge for, OL-10–OL-11

systems controls, designing, 163
systems design

activities overview, 163–168
defined, 5, 159–160, OL-3
design and implementation, 160, 161
design models, 160–162
importance of, 4–6
overview, 159–160
systems analysis, 160

systems development methodologies, 301

tables, database, 263
tablets, user-interface guidelines, 244–245
tangible benefits, 342
teams in Agile projects, 354
technical knowledge, for systems analyst,

OL-10–OL-11
technical staff as stakeholders, 48
techniques, 303, OL-11

CRUD, 146–147
event decomposition, 75–76
information-gathering, 50–58
methodologies and, 301–304
noun, 96–97
use cases and user goal, 73–74

technological risks and feasibility, 343–344
technology architecture, 39
templates, defined, 427. See also design patterns
temporal events, 77
ternary associations, defined, 100
test versions, 468
testing

build and smoke, 451
definitions and overview, 446–447
integration, 448–450
order of development and, 460–462
overview, 26
performance, 451
for RMO Supplier Information System, 26–27
stress, 451
system, 450
Tri-State Heating Oil, 444
unit, 447–448
usability, 468
user acceptance, 26, 451–453
in XP, 314

text boxes, 239
textual models, defined, 59
themes for information gathering questions, 50–51
things in problem domain, 97–100
third normal form (3NF), 276–278
three-layer client-server architecture

environment design, 199–200
implementation issues for, 426–427
responsibilities of each layer, 427
top-down development of, 462
use of in internal deployments, 200

throughput. See performance and throughput
time

estimated, 339–340
management of, 331, 333–334

TLS (Transport Layer Security), 179
toolbars, 192
tools

defined, OL-11
methodologies and, 301–304

top-down development, 462
top-down programming, 462
tracking logs, 356
Traditional analysis model, DFD, OL-45–OL-46
traditional approaches

predictive, 297, 298–299, 301
system development, OL-21

training, 456–459, 473
transaction logging, 285
transition phase, 308–309
transitions, defined, 114
Transport Layer Security (TLS), 179
Tri-State Heating Oil, 444
true/false conditions, defined, 142
turnaround documents, 245–250

UATs (user acceptance tests). See user acceptance
tests (UATs)

UIs. See user interfaces (UIs)
UML. See Unified Modeling Language (UML)
unary associations, defined, 100
unauthorized users, 174
undoing actions, 229
Unified Modeling Language (UML). See also

activity diagrams; class diagrams; detailed
sequence diagrams; system sequence
diagrams (SSDs)

component diagrams, 162
defined, 59
stereotyping in, 87, 376

Unified Process (UP), 308–312, 331
disciplines, 309–312
phases, 308–309

Uniform Resource Locator (URL), 190
unit testing, 447–448
unresolved issues, tracking, 54
UP disciplines, 309–312
UP (Unified Process). See Unified Process (UP)
URL (uniform resource locator), 190
usability

requirements, 45
testing, 451
as user-centered design principle, 221

Use Case Controller, 400–401
use case descriptions

design model based on, 162
main discussion, 133–136
relationship with other models, 148

use case diagrams
defined, 81
design model based on, 162
developing, 87
including other use cases in, 85–87
relationship with other models, 148
for RMO CSMS, 81–87
for RMO Supplier Information Subsystem, 18–19

use case instances, defined, 134
use case realization. See also multilayer design

with communication diagrams, 401–408
design process for, 410
overview, 398
with sequence diagrams for Fill Shopping Cart,

410–416
updating and packaging design classes, 424–427

use-case-driven development, 462
use cases. See also design class diagrams (DCDs);

event decomposition technique; use case
diagrams; use case realization

activity diagrams for, 137–139
controllers, 400–401, 428
CRUD technique, 146–147
defined, 16, 73
descriptions, 133–136
order of development and, 462
for RMO CSMS, 80–81, 146–147
for RMO Tradeshow System, 16
user goal technique, 73–74
user stories and, 71–73
user-interface design and, 232–237
Waiters on Call, 70

user acceptance tests (UATs), 26, 316, 451–453
management and execution, 453
planning, 452
preparation and pre-activities, 452–453

user documentation, 456–459
user experience (UX)

defined, 219
understanding, 219–222

user goal technique, 73–74
user interfaces (UIs). See also dialogs

adding CRC cards for, 383, 385
analysis models and input forms, 234–235
defined, 219

design key question, 163
desktop and laptop, 238–240
fundamental principles, 223–232

closure, 228–229
consistency, 224–226
discoverability, 226–228
HIOs, 223–224
readability and navigation, 229–230
usability and efficiency, 230–232

menus, 232–234
metaphors for human-computer interaction,

221–222
order of development and, 461–462
overview, 165–167, 237–238
principles, 219–221
for RMO Supplier Information Subsystem, 19,

24–25
smartphones and small mobile devices,

242–244
tablets, 244–245
transition from analysis to design of, 232–237
universal guidelines, 223–232
Web-based applications, 240–242

user stories, 316
with acceptance criteria, 72
defined, 71
and use cases, 71–73

user-centered design principles, 220–221
users. See also information gathering; stakeholders

access control for, 174–175
defined, 329
evaluating requirements with, 44
gathering information from, 43
involvement of, 16
in Scrum, 318
training of, 456–459
in XP, 314

UX (user experience). See user experience (UX)

value limit controls, 171
variance, analyzing, 355
variations, protection from, 390–391
vendors, researching solutions from, 57
version control, 467–471
videos on Web pages, 190
view classes, 376–377
view layer

designing, 417–419
relationship with other layers, 199–200
responsibilities of, 427

Virtual Private Network (VPN), 194
virtual servers, 349
visibility, 223–224, 377
visibility, navigation, 380–382, 416
visual modeling tools, 303
VPN (Virtual Private Network), 194

Waiters On Call, 70, 94
walking skeletons, 300–301
waterfall model, 299
WBS (work breakdown structure), 14, 351–352
Web protocols, 194–195
Web service, 197–198

data import via, 211
Web technologies. See browser-based systems;

Internet
Web-based applications, 191–192

user interface guidelines for, 240–242
whole-part relationships, 110–111
widgets, 192
work

environment, establishing, 349–350
processes, evaluating, 354–355
scheduling, 350–354

work breakdown structure (WBS), 14, 351–352
work hours in XP, 315
workflow diagrams, 19–20
workflows, documenting, 60–63
World Wide Web (WWW), 190–191, 194
write lock, 286
WWW (World Wide Web), 190–191, 194
Wysotronics Inc., 186

XML (Extensible Markup Language), 194–195
XP (Extreme Programming). See Extreme

Programming (XP)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	Cover
	Title
	Statement
	Copyright
	Dedication
	Brief Contents
	Contents
	Features
	Preface
	Part One: Introduction to System Development
	Ch One: From Beginning to End: An Overview of Systems Analysis and Design
	Ch One: Chapter Outline
	Ch One: Learning Objectives
	Software Development and Systems Analysis and Design
	The System Development Life Cycle (SDLC)
	Iterative Development
	Introduction to Ridgeline Mountain Outfitters (RMO)
	Developing RMO’s Tradeshow System
	Where You Are Headed—The Rest of This Book
	Ch One: Chapter Summary
	Ch One: Key Terms
	Ch One: Review Questions
	Ch One: Problem and Exercises
	Ch One: Chapter Case

	Part Two: Systems Analysis Activities
	Ch Two: Investigating System Requirements
	Ch Two: Chapter Outline
	Ch Two: Learning Objectives
	Ch Two: Overview
	The RMO Consolidated Sales and Marketing System Project
	Systems Analysis Activities
	What Are Requirements?
	Stakeholders
	Information-Gathering Techniques
	Models and Modeling
	Documenting Workflows with Activity Diagrams
	Ch Two: Chapter Summary
	Ch Two: Key Terms
	Ch Two: Review Questions
	Ch Two: Problems and Exercises
	Ch Two: Case Study
	Ch Two: Running Case Studies
	Ch Two: Further Resources

	Ch Three: Identifying User Stories and Use Cases
	Ch Three: Chapter Outline
	Ch Three: Learning Objectives
	Ch Three: Overview
	User Stories and Use Cases
	Use Cases and the User Goal Technique
	Use Cases and Event Decomposition
	Use Cases in the Ridgeline Mountain Outfitters Case
	Ch Three: Chapter Summary
	Ch Three: Key Terms
	Ch Three: Review Questions
	Ch Three: Problems and Exercises
	Ch Three: Case Study
	Ch Three: Running Case Studies
	Ch Three: Further Resources

	Ch Four: Domain Modeling
	Ch Four: Chapter Outline
	Ch Four: Learning Objectives
	Ch Four: Overview
	“Things” in the Problem Domain
	The Entity-Relationship Diagram
	The Domain Model Class Diagram
	The State Machine Diagram—Identifying Object Behavior
	Ch Four: Chapter Summary
	Ch Four: Key Terms
	Ch Four: Review Questions
	Ch Four: Problems and Exercises
	Ch Four: Case Study
	Ch Four: Running Case Studies
	Ch Four: Further Resources

	Ch Five: Use Case Modeling
	Ch Five: Chapter Outline
	Ch Five: Learning Objectives
	Ch Five: Overview
	Use Case Descriptions
	Activity Diagrams for Use Cases
	The System Sequence Diagram—Identifying Inputs and Outputs
	SSD Notation
	Use Cases and CRUD
	Integrating Requirements Models
	Ch Five: Chapter Summary
	Ch Five: Key Terms
	Ch Five: Review Questions
	Ch Five: Problems and Exercises
	Ch Five: Case Study
	Ch Five: Running Case Studies
	Ch Five: Further Resources

	Part Three: Essentials of Systems Design
	Ch Six: Foundations for Systems Design
	Ch Six: Chapter Outline
	Ch Six: Learning Objectives
	Ch Six: Overview
	What Is Systems Design?
	Design Activities
	System Controls and Security
	Ch Six: Chapter Summary
	Ch Six: Key Terms
	Ch Six: Review Questions
	Ch Six: Problems and Exercises
	Ch Six: Case Study
	Ch Six: Running Case Studies
	Ch Six: Further Resources

	Ch Seven: Defining the System Architecture
	Ch Seven: Chapter Outline
	Ch Seven: Learning Objectives
	Ch Seven: Overview
	Anatomy of a Modern System
	Architectural Concepts
	Interoperability
	Architectural Diagrams
	Describing the Environment
	Designing Application Components
	Ch Seven: Chapter Summary
	Ch Seven: Key Terms
	Ch Seven: Review Questions
	Ch Seven: Problems and Exercises
	Ch Seven: Case Study
	Ch Seven: Running Case Studies
	Ch Seven: Further Resources

	Ch Eight: Designing the User Interface
	Ch Eight: Chapter Outline
	Ch Eight: Learning Objectives
	Ch Eight: Overview
	Understanding the User Experience and the User Interface
	Fundamental Principles of User-Interface Design
	Transitioning from Analysis to User-Interface Design
	User-Interface Design
	Designing Reports, Statements, and Turnaround Documents
	Ch Eight: Chapter Summary
	Ch Eight: Key Terms
	Ch Eight: Review Questions
	Ch Eight: Problems and Exercises
	Ch Eight: Case Study
	Ch Eight: Running Case Studies
	Ch Eight: Further Resources

	Ch Nine: Designing the Database
	Ch Nine: Chapter Outline
	Ch Nine: Learning Objectives
	Ch Nine: Overview
	Databases and Database Management Systems
	Database Design and Administration
	Relational Databases
	Distributed Database Architectures
	Protecting the Database
	Ch Nine: Chapter Summary
	Ch Nine: Key Terms
	Ch Nine: Review Questions
	Ch Nine: Problems and Exercises
	Ch Nine: Case Study
	Ch Nine: Running Case Studies
	Ch Nine: Further Resources

	Part Four: System Development and Project Management
	Ch Ten: Approaches to System Development
	Ch Ten: Chapter Outline
	Ch Ten: Learning Objectives
	Ch Ten: Overview
	The System Development Life Cycle
	Methodologies, Models, Tools, and Techniques
	Agile Development
	The Unified Process, Extreme Programming, and Scrum
	Ch Ten: Chapter Summary
	Ch Ten: Key Terms
	Ch Ten: Review Questions
	Ch Ten: Problems and Exercises
	Ch Ten: Case Study
	Ch Ten: Running Case Studies
	Ch Ten: Further Resources

	Ch Eleven: Project Planning and Project Management
	Ch Eleven: Chapter Outline
	Ch Eleven: Learning Objectives
	Ch Eleven: Overview
	Principles of Project Management
	Activities of Core Process 1: Identify the Problem and Obtain Approval
	Activities of Core Process 2: Plan and Monitor the Project
	Ch Eleven: Chapter Summary
	Ch Eleven: Key Terms
	Ch Eleven: Review Questions
	Ch Eleven: Problems and Exercises
	Ch Eleven: Case Study
	Ch Eleven: Running Case Studies
	Ch Eleven: Further Resources

	Part Five: Advanced Design and Deployment Concepts
	Ch Twelve: Object-Oriented Design: Fundamentals
	Ch Twelve: Chapter Outline
	Ch Twelve: Learning Objectives
	Ch Twelve: Overview
	Object-Oriented Design: Bridging from Analysis to Implementation
	Steps of Object-Oriented Design
	Design Classes and the Design Class Diagram
	Designing with CRC Cards
	Fundamental Principles for Good Design
	Ch Twelve: Chapter Summary
	Ch Twelve: Key Terms
	Ch Twelve: Review Questions
	Ch Twelve: Problems and Exercises
	Ch Twelve: Case Study
	Ch Twelve: Running Case Studies
	Ch Twelve: Further Resources

	Ch Thirteen: Object-Oriented Design: Use Case Realization
	Ch Thirteen: Chapter Outline
	Ch Thirteen: Learning Objectives
	Ch Thirteen: Overview
	Object-Oriented Design with Interaction Diagrams
	Use Case Realization with Communication Diagrams
	Use Case Realization with Sequence Diagrams
	Developing a Multilayer Design
	Updating and Packaging the Design Classes
	Design Patterns
	Ch Thirteen: Chapter Summary
	Ch Thirteen: Key Terms
	Ch Thirteen: Review Questions
	Ch Thirteen: Problems and Exercises
	Ch Thirteen: Case Study
	Ch Thirteen: Running Case Studies
	Ch Thirteen: Further Resources

	Ch Fourteen: Deploying the New System
	Ch Fourteen: Chapter Outline
	Ch Fourteen: Learning Objectives
	Ch Fourteen: Overview
	Testing
	Deployment Activities
	Managing Implementation, Testing, and Deployment
	Putting It All Together—RMO Revisited
	Ch Fourteen: Chapter Summary
	Ch Fourteen: Key Terms
	Ch Fourteen: Review Questions
	Ch Fourteen: Problems and Exercises
	Ch Fourteen: Case Study
	Ch Fourteen: Running Case Studies
	Ch Fourteen: Further Resources

	Index

		2015-01-09T15:11:37+0000
	Preflight Ticket Signature

