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FOREWORD

Norman R. Augustine

Arguably the most sought-after employees in engineering-
oriented firms are systems engineers. This was certainly the
case in the firm that I led at the time I led it, and I suspect
that at least in this regard not much has changed. Of 82,000
engineers only a tiny fraction could have been categorized as
“systems engineers;” nonetheless, they were the individuals
who provided the “glue” in building our products and often
were the ones that moved into management positions.

But, given the impact of their field, one can’t help but ask
why such individuals are so rare? One reason is that few
universities even offer a degree in “systems engineering.”
(Most high schools, for that matter, don’t even offer a course
in what one might call “engineering.”) Another reason is that
it requires a rather special talent to cut across a broad set of
disciplines—some of which would not even be categorized
by most people as “technical.” Further, in my experience, the
best systems engineers are those who acquired a relatively
deep understanding of at least one core discipline before
moving into systems engineering. This seems to give them
a grounding in dealing with the challenges one encounters
when working with complex systems—but it also adds time
to the educational process.

Further complicating matters, there is widespread
disagreement, even in the profession itself, as to what
constitutes “systems engineering.” Is it an aspect of man-
agement? Does it have to do with the “ilities”—reliability,
maintainability and availability? Does it have to do with the
acquisition of major systems? Is it the process of conducting
trade-offs between alternate approaches to carrying out
a function or producing a design? Is it figuring out what
something will cost? Is it the process of identifying solutions
to a requirement… or is it determining what the requirement
should be in the first place?

The answer is, “yes.” It is all of these things… and more.
My own rather simplified definition of systems engineer-

ing is that it is the discipline of combining two or more
interacting elements to fulfill a need. In this book, much
greater insight will be given to the answer to this question.
Many tools will also be presented that a systems engineer can
use to address a broad spectrum of problems in design and
analysis—all introduced in an understandable and carefully
organized fashion.

One might conclude that with such a simple definition
as the one I offer, systems engineering must be a fairly
straightforward pursuit. Unfortunately, it is not. Consider
the following: the simplest of all systems has only two
elements, each of which can influence the other. Perhaps
the canonical example would be (putting aside quarks and
their cousins) a hydrogen atom. Furthermore, if one limits
the interaction between the elements of the system to be
binary (“on” or “off”) but omni-interactive, it will readily
be seen that the number of possible states of a two-element
system will be just four. But if one expands the number
of elements to merely seven or eight, the number of states
virtually explodes.

Making matters still worse, many systems involve humans
among their elements, adding unpredictability. All this is
what makes it impossible to completely test a complex
system in all of its possible states and makes the task of the
systems engineer all the more critical. Further, among the
humans affecting systems there are usually engineers, many
of whom seem to embrace the code that “If it ain’t broke…
it needs more functions!”

To the designer of a component, say a fuel-control, the
fuel-control is a system. Which it is. But to the designer of
the jet engine into which the fuel control is incorporated, the



xvi FOREWORD

engine is the system. To an aeronautical engineer, the entire
aircraft is the system. And it does not stop there… since
to an engineer configuring an airline the system includes
passengers, agents, airports, air traffic control, runways,
and still more—what is often called a system of systems.
Fortunately, there are techniques to deal with such challenges
in systems of systems and these, too, are described in the
pages that follow.

The discipline embodied in sound systems engineering
practice can have an important impact on the utility of a
system. For example, a few years ago a market survey found
that airline passengers wished, among other things, to get to
their destinations faster. To an aerodynamicist (my original
field) that meant (presuming supersonic flight over land was,
at least at that time, impracticable) flying faster, which in
turn meant pressing even further against the sudden drag rise
that occurs as one approaches the speed of sound. Thus, the
effort began to develop a “near-sonic” airliner… a difficult
and costly solution.

But systems engineers interpreted the passengers’ desire
quite differently. They deduced that what passengers really
wanted was to get from, say, their homes to an office
in a distant city, more rapidly. Decomposing the relevant
time-line into such segments as driving to the airport, finding
a place to park and clearing security, flying, recovering
baggage, and driving to the destination, they concluded that
any plausible increase in airspeed would be trivial in its
impact on overall travel time and that one should focus not
on a challenging aerodynamics problem but rather on such
matters as expediting security inspection, handling baggage,
and speeding ground transportation. The idea of a near-sonic
aircraft was thus wisely, if belatedly, discarded.

As noted, this book provides the individual interested
in systems engineering with a variety of techniques to
deal with such problems, techniques that systems engineers

(something into which I “evolved” during my career) in the
past largely learned the costly way: O.J.T. Insights will be
offered into such important tasks as defining requirements,
decomposing requirements, managing software, root-cause
analysis, identifying single-point failure modes, modeling,
conducting trades, controlling interfaces, and testing for
utility as opposed to simply satisfying a specification.

Many of the more important challenges facing America,
and in most cases the world, are, in effect, massive systems
engineering problems. These include providing healthcare;
producing clean, sustainable, affordable energy; preserving
the natural environment; growing the economy; providing
national security; and rebuilding the nation’s physical infras-
tructure.

In Systems Engineering Analysis, Design and Develop-
ment, Charles Wasson has created a guide for the practitioner.
This is not a philosophical treatise or an abstract, theoretical
assessment. This is a book that is for the individual who faces
every-day, practical challenges relating to the various aspects
of systems engineering. It is not only an important teaching
device, it is a reference book of lasting value.

The logic and techniques of systems engineering are truly
ubiquitous in their applicability. Whether one works in engi-
neering, venture capital, transportation, defense, communi-
cations, healthcare, cybersecurity, or dozens of other fields,
understanding the principles of systems engineering will
serve one well. After all, what is there in life that doesn’t
involve two or more elements that influence each other?

Norman R. Augustine

Retired Chairman & CEO, Lockheed Martin Corporation
Former Under Secretary of the Army
Former Member of Princeton Engineering Faculty



PREFACE TO THE SECOND EDITION

Welcome to the Second Edition of System Engineering,
Analysis, Design, and Development written for anyone who
is accountable for specifying, analyzing, designing, and
developing systems, products, or services. This Second Edi-
tion is a landmark text intended to take System Engineer-
ing (SE) to new levels of 21st-Century System Thinking.
Systems Thinking that goes beyond what some refer to as
“outdated, old school, and parochial” paradigms such as
“Engineering the (Hardware/Software) Box” promulgated
by institutions and Enterprises.

Traditional “Engineering the Box” mindsets fail to ap-
proach SE&D from the standpoint of “Engineering the Sys-
tem” based on User capabilities and limitations. Contrary
to public perceptions, system failures are often attributable
to poor System Design – “Engineering the Box” – that in-
fluences “human error” publicized as the “root cause.” The
reality is system failures are typically the result of a series of
latent defects in the System “Box” Design that lie dormant
until the right set of enabling circumstances occur and pro-
liferate via a chain of events culminating in an incident or
accident. This text goes beyond traditional “Engineering the
Box” and fosters Systems Thinking to broaden insights about
how to “Engineer the System” and the “Box.”

The Systems Engineering concepts, principles, practices,
and problem-solving and solution-development methods pre-
sented in this text apply to any discipline irrespective of type
of discipline. This includes:

1. System Engineers (SE);

2. Multi-discipline Engineers—Electrical, Mechanical,
Software, BioMedical, Nuclear, Industrial, Chemical,
Civil, and others.

3. Specialty Engineers—Manufacturing, Test, Human
Factors (HF); Reliability, Maintainability, and

Availability (RMA); Safety; Logistics; Environmental,
and others.

4. System and Business Analysts.

5. Quality Assurance (QA) and Software QAs.

6. Project Engineers.

7. Project Managers (PMs).

8. Functional Managers and Executives.

System Engineering Analysis, Design, and Development
is intended to fill the SE void in Engineering education
and to provide the concepts, principles, and practices re-
quired to perform SE. Based on the bestselling, international
award-winning First Edition, this Second Edition builds on
those foundational concepts, principles, and practices. This
text has three key objectives:

1. To help educate Engineers who have a vision of becom-
ing an SE or a better SE through course instruction or
self-study.

2. To equip discipline Engineers and System Analysts—
EEs, MEs, SwEs, etc.—with SE problem-solving and
solution development methods that help them better
understand the context of their work within the overall
framework of the system, product, or service they are
Engineering.

3. To provide Project Managers (PMs) with an under-
standing of SE & Development (SE&D) to facilitate
better project integration with Engineering.

During the past 70 years, Systems Engineering has
evolved from roots in fields such Aerospace and Defense
(A&D) and proliferated into new business domains such
as energy; medical products and healthcare; transportation
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—land, sea, air, and space; telecommunications; financial,
educational, and many others. Worldwide awareness and
recognition of Systems Engineering, its application, and ben-
efits have placed it at the forefront of one of the most
sought-after fields of study and employment. In 2009, Money
Magazine identified Systems Engineering as #1 in its list of
Best Jobs in America with a 10-year job growth forecast of
45%. Besides being #1, the criticality of this profession is in
stark contrast to the second place job, which had a 10-year
job growth projection of 27%.

Despite its rapidly expanding growth potential, Systems
Engineering is still evolving in terms of its methodology, dis-
cipline, and application by Users. Its application in many
Enterprises is often ad hoc, experiential, and characterized
by semantics and methods that often exist in lofty market-
ing brochures and websites. Yet, produce limited objective
evidence that SE has been performed. Based on the author’s
experience:

• Most Engineers, in general, spend from 50% to 75%
of their total career hours on average making systems
decisions for which they have little or no formal
Systems Engineering coursework.

• Less than 3% of the personnel—one person out of
30—in most Enterprise SE organizations possess the
requisite knowledge of the concepts, principles, and
practices identified in this text.

• What most people and Enterprises perceive to be Sys-
tem Engineering (SE) is actually an ad hoc, trial-and-
error, endless loop, Specify-Design-Build-Test-Fix
(SDBTF) Paradigm. Compounding the problem is the
fact that embedded within the SDBTF Paradigm is
another trial-and-error endless loop Design Process
Model (DPM) documented in the 1960s. Users of the
SDBTF-DPM paradigm acknowledge it is inconsis-
tent, inefficient, ineffective, and chaotic in developing
systems, products, or services. Yet, they continue to
employ it despite the fact that it is not scalable to
moderate or large, complex systems projects.

• The underlying rationale to the SDBTF-DPM
Paradigm is that since they have used it to to de-
velop “systems,” it must be—by definition—Systems
Engineering. Based on those misperceptions, the
SDBTF-DPM Paradigm becomes the “core engine”
within an SE “wrapper.” When the SDBTF-DPM
Paradigm is applied to System Development and the
deliverable system fails or the customer does not like
the system, they rationalize the root cause to be …
Systems Engineering.

• Within these Enterprises anyone who has electrically,
electronically, or mechanically integrated two hard-
ware components or compiled two software modules

is “knighted” as a Systems Engineer by their man-
ager whether they have exhibited SE skills and compe-
tence in the discipline or not … everyone is “Systems
Engineer.”

Frightening isn’t it! Unfortunately, executives and man-
agers are often unaware or refuse to acknowledge the ex-
istence of the SDBTF-DPM Paradigm as the defacto “SE
Process” within their Enterprise.

These Enterprises are easily identifiable. Ignoring or
oblivious to the problem, executives and managers will chal-
lenge the SDBTF-DPM Engineering Paradigm observation.
They recite metrics that quantify how they have trained XX
personnel in an SE short course, YY personnel obtained a
Master’s degree in SE or higher, and ZZ personnel have
been certified as Systems Engineering professionals within
the past year. This is mindful of an old cliché that “owning a
paint brush does not make someone an artist.”

Despite their proclamations, project performance issues
traceable to a lack of true SE education or SE courses in
Engineering education refute any evidence to the contrary.
There are, however, Enterprises and professionals who do
understand SE and perform it reasonably well. What are
the differences between Enterprises that perform SE well
versus those where the SDBTF-DPM Engineering Paradigm
thrives?

First, SE knowledge is often learned experientially
through personal self-study and “On-the-Job Training”
(OJT). Despite its significance as a critical workplace En-
gineering skill, the fundamentals of SE are not taught as a
course in most undergraduate Engineering programs. Un-
dergraduate or graduate level courses that are labeled as SE:
(1) often focus on Systems Acquisition and Management
or (2) specialty engineering equation-based courses. These
courses are fine … when staged and sequenced … after …
a strong, requisite foundation in understanding what a system
is coupled with the ability to perform the problem-solving
and solution development to actually develop a system.

Secondly, Engineering has always wrapped itself in a
cloak of equations; that’s the perception of Engineering
by many. 21st Century System Engineering and Devel-
opment (SE&D) in industry and government demands a
combination of problem-solving and solution-development
decision-making soft skills that precede, enable, and facil-
itate the equation-based hard skills. Engineers erroneously
“knighted” as SEs who spend their days plugging and chug-
ging equations either have a highly specialized instance of
SE, misplaced priorities, or simply do not understand what
is required to develop a system on-schedule, within budget,
and compliant with its technical requirements!

Missing is the requisite knowledge Engineers and System
Analysts need to serve as a foundation for transforming a
User’s abstract operational needs into the physical realization
of a system, product, or service. Most SEs will emphatically
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state that is what they do. However, their misinformed
perception of SE and actions reveal that they typically take
a quantum leap from requirements directly to a physical
solution and implementation (Figure 2.3). Due to a lack
of a true system problem-solving and solution development
methodology and skills, these efforts often result in failure
or fall short of technical performance, especially in complex
systems, and compliance to specification requirements.

Foundational SE knowledge requires competence in
the following areas: (1) understanding and applying SE
concepts, principles, and practices; (2) applying a proven
problem-solving and solution-development methodology;
(3) scaling SE practices to meet project resource, budget,
schedule, and risk constraints; (4) structuring and orches-
trating technical projects; and (5) leading multi-discipline
Engineering and other types of System Development
decision-making teams. Where true SE knowledge and
skills are lacking, Engineering evolves into an ad hoc,
endless loop of Build-Test-Fix with the peception that “if
we create a design and tweak it enough, sooner or later we
will get it right.”

To address these and other issues, industry, government,
and professional Enterprises have made great strides in es-
tablishing standards, Enterprise capability assessments, cer-
tification programs, etc. These are certainly essential for any
type of discipline. However, they do not solve the root prob-
lem that exists concerning the lack of foundational SE knowl-
edge. Specifically, shifting—correcting—the SDBTF-DPM
Paradigm that permeates Enterprises, projects, and individ-
ual thinking due to a lack of substantive SE education be-
ginning at the undergraduate level. How do we solve the
problem?

This Second Edition builds on the author’s experiences
and incorporates readers’ and instructors’ feedback as well
as advancements in SE. This includes (1) leading-edge topics
and methods that enhance your knowledge and (2) provides
a framework that supports pursuit of professional certifica-
tion provided by organizations such as International Council
on Systems Engineering (INCOSE), Enterprise level Capa-
bility Maturity Model Integration (CMMI) Assessments, and
Enterprise Organizational Standard Processes (OSPs) trace-
ability to ISO standards.

KEY FEATURES

Textbooks often include a “principles of” subtitle as mar-
keting claims to lure readers. Readers read these texts from
cover to cover and discover the lack of explicitly stated prin-
ciples despite the claims. This text delivers on its Concepts,
Principles, and Practices subtitle. The Second Edition:

• Includes approximately 365 principles, 231 examples,
148 author’s notes, and 21 mini case studies that
exemplify how to apply SE to the real world.

• Facilitates readability and quick location of key points
of information based on icon-based visual aids used
to highlight principles, heuristics, author’s notes, mini
case studies, cautions, warnings, etc.

• Consists of two levels of end-of-chapter exercises for
undergraduate and graduate level course instructions:
Level 1 Chapter Knowledge Exercises and Level 2
Knowledge Application Exercises.

Textbooks are often a one-time reading and disposed of on
completion—donated to a library, sold back to a bookstore,
or given away. It is the author’s intent for this text to serve
as a personal desk reference throughout your professional
career subject to the evolution of SE standards, updates, etc.
Professions, industries, and individuals evolve and inevitably
change over time; however, fundamental systems concepts
stand the test of time.

In summary, System Engineering Analysis, Design, and
Development provides foundational SE knowledge based
on the author’s experience tempered by over 40 years in
industry with some of the world’s leading SE Enterprises and
private consulting with small, medium, and large corporate
clients. The next step is up to you and your Enterprise.
Leverage these concepts, principles, and practices to achieve
the next level of performance. Learn to competently scale this
knowledge along with your own unique experience to meet
each project’s technical, resources, technology, budgetary,
schedule, and risk constraints.
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INTRODUCTION—HOW TO USE THIS TEXT

System Engineering Analysis, Design, and Development
by virtue of its broad application to any type of Enter-
prise or Engineered system, product, or service is written
for Engineers—Hardware, Software, BioMedical Specialty,
Test, Chemical, Nuclear, etc., System Analysts, Project
Engineers, Project Managers, Functional Managers, and
Executives who strive to achieve System Engineering & De-
velopment (SE&D) excellence. Across that spectrum are
Engineers and Analysts who may be new to SE, simply
interested in learning more about SE methods to apply to
their own Engineering disciplines, or seasoned professionals
who want to improve and advance the state of the practice of
their existing skills.

This text is written to accommodate a broad range of
audiences. Writing to fulfill the needs of readers across a
diverse spectrum of disciplines can be challenging. Read-
ers who are new to SE request detailed discussions; sea-
soned professionals request less discussion. To accommo-
date such a diverse audience with varying levels of knowl-
edge and skills, this text attempts to achieve a reasonable
balance between communicating essential information about
SE concepts, principles, and practices while limiting the
depth due to page count limitations. As a result, our dis-
cussions will drill down to a particular level and provide
resource referrals for you to pursue via your own personal
study.

SCOPE OF TEXT

Due to the broad range of technical and managerial activities
required to perform Systems Engineering and Development
(SE&D) coupled with the need to limit the page count, the
scope of this text focuses primarily on the technical aspects
of SE.

As its name communicates, this text is about System
Engineering Analysis, Design, and Development: Concepts,
Principles, and Practices. This text is not about designing
integrated circuits or electronic circuit boards or selecting
physical components—resistors, capacitors, etc. or their
deratings; design of mechanical structures and mechanisms;
design and coding of software; Modeling or Simulation
(M&S); developing mathematical algorithms, etc. Instead,
it provides the SE concepts, principles, and practices that
are essential for discipline-based Engineers and Analysts
who perform those activities to better understand the context
of their work products in terms of its Users, requirements,
architecture, design, trade-offs, etc.

PRIMARY STRUCTURE

System Engineering Analysis, Design, and Development is
partitioned into three parts:

• Part 1—System Engineering and Analysis
Concepts

• Part 2—System Design and Development
Practices

• Part 3—Decision Support Practices

Be Advised: Each part has a specific purpose, scope, and
interrelationship to the other parts as illustrated in Figure I.1.
However, for purposes of this description, to understand why
Part 1 exists, we need to first understand the scopes of Parts 2
and 3.

Part 2—System Design and Development Practices

Part 2—System Design and Development Prac-
tices—addresses multi-discipline SE workflow activities
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and practices required to engineer, develop, and deliver
systems, products, or services. Part 2 is partitioned into
four sets of SE practices that address how SE is performed
not only during SE&D but also during operations per-
formed by the User after delivery—System Deployment;
Operations, Maintenance, & Sustainment (OM&S); and
Retirement/Disposal. These include:

System Development Strategies

• Chapter 12 Introduction to System Development
Strategies

• Chapter 13 System Verification and Validation (V&V)
Strategy

• Chapter 14 The Wasson System Engineering Process

• Chapter 15 System Development Process Models

• Chapter 16 System Configuration Identification and
Component Selection Strategy

• Chapter 17 System Technical Documentation Strategy

• Chapter 18 Technical Reviews Strategy

System Specification Practices

• Chapter 19 System Specification Concepts

• Chapter 20 Specification Development Approaches

• Chapter 21 Requirements Derivation, Allocation, Flow
Down, and Traceability

• Chapter 22 Requirements Statement Development

• Chapter 23 Specification Analysis

System Design and Development Practices

• Chapter 24 User-Centered System Design (UCSD)

• Chapter 25 Engineering Standards of Units, Coordinate
Systems, and Conventions

• Chapter 26 System and Entity Architecture Develop-
ment

• Chapter 27 System Interface Definition, Analysis, and
Control

• Chapter 28 System Integration, Test, and Evaluation
(SITE)
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System Deployment; Operations, Maintenance, and
Sustainment (OM&S), and Retirement Practices

• Chapter 29 System Deployment; Operations, Mainte-
nance, & Sustainment (OM&S); and Retirement

Part 3—Decision Support Practices

Part 3—Decision Support Practices—addresses
multi-discipline SE practices such as System Analysis,
Reliability, Maintainability, Human Factors, safety, etc.
required to provide timely and effective decision support to
the Part 2 decisionmaking practices. This includes devel-
opment and assessment of rapid prototypes, Modeling and
Simulations (M&S); proof-of-concept, proof-of-principle,
and proof-of-technology demonstrations, to derive data
to support SE&D decisions as well as to validate models
and simulations. Part 3 is partitioned into the following
chapters:

• Chapter 30 Introduction to Analytical Decision Support

• Chapter 31 System Performance Analysis, Budgets,
and Safety Margins

• Chapter 32 Trade Study Analysis of Alternatives (AoA)

• Chapter 33 System Modeling & Simulation (M&S)

• Chapter 34 System Reliability, Maintainability, and
Availability (RMA)

This brings us to the purpose of Part 1.

Part 1—System Engineering and Analysis Concepts

Most Enterprises, organizations, and projects perform the
practices addressed in Parts 2 and 3. The problem is they
employ the SDBTF-DPM Engineering Paradigm that is ac-
knowledged to be ad hoc, inefficient, and ineffective as ev-
idenced by poor performance in performing Parts 2 and 3.
The reality is this is a problem space. Part 1—System En-
gineering and Analysis Concepts—provides a solution
space framework for shifting the SDBTF-DPM Engineering
Paradigm to correct these shortcomings and serves as the
foundational knowledge required to competently perform the
practices in Parts 2 and 3.

Part 1 is partitioned into primary concepts that enable you
to understand: what a system is: why it exists—missions; how
the User envisions deploying, operating, maintaining, sus-
taining, retiring, and disposing of the system; how systems
are structured architecturally; and how the User envisions
system behavioral responses to mission interactions in its Op-
erating Environment. Part 1 Systems Engineering and
Analysis Concepts consists of the following:

System Entity Concepts

• Chapter 1 Systems, Engineering, and Systems
Engineering

• Chapter 2 The Evolving State of SE Practice–
Challenges and Opportunities

• Chapter 3 System Attributes, Properties, and Charac-
teristics

System Mission Concepts

• Chapter 4 User Enterprise Roles, Missions, and System
Applications

• Chapter 5 User Needs, Mission Analysis, Use Cases,
and Scenarios

System Operations Concepts

• Chapter 6 System Concepts Formulation and Develop-
ment

• Chapter 7 System Command and Control (C2) -Phases,
Modes, & States of Operation

System Architecture Concepts

• Chapter 8 System Levels of Abstraction, Semantics,
and Elements

• Chapter 9 Architectural Frameworks of the SOI & Its
Operating Environment

System Behavior Concepts

• Chapter 10 Modeling Mission and Enabling System
Operations

System Engineering & Analysis Synthesis

• Chapter 11 Analytical Problem-Solving and Solution
Development Synthesis

How to Use This Text

If you are reading this text for the first time … regardless of
SE experience, you are encouraged to follow the sequence
of Parts 1–3 and Chapters as sequenced. Understanding
Part 1 System Engineering & Analysis Concepts is the
critical foundation for understanding Parts 2 and 3. Figure I.1
serves as a roadmap for quickly locating and navigating the
chapters.

Once you have read the text, you will be performing
project work addressed in Part 2 System Design and
Development Practices or Part 3 Analytical Decision
Support Practices. Figure I.1 facilitates navigation in the
text by enabling you to easily refer back to more detailed
discussions in the other Parts.

Undergraduate and Graduate Level Course Instruction

This textbook is structured to accommodate both upper level
undergraduate and graduate level Engineering and other
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courses. Depending on the (1) students and (2) the instruc-
tor’s knowledge, skills, and industry experience, this text has
also been designed to accommodate as much technical depth
as the instructor wants to achieve. The instructor can treat
the material as introductory or drill deeply into challenging
topics.

Chapter Features

System Engineering Analysis, Design, and Development:
Concepts, Principles, and Practices has been designed to
incorporate specific features to facilitate readability and
searches. In general, the textbook employs a common outline
sequence of topics in each chapter.

• Chapter Introduction

• Definitions of Key Terms

• Approach to the Chapter (where necessary)

• Sectional Details and Discussions of Chapter Topics

• Chapter Summary

• Chapter Exercises

• References

Let’s address some of the details of these features.

Definitions of Key Terms

The introduction to each chapter consists of Definitions of
Key Terms that are relevant to the Chapter’s discussion.
Some of the definitions originate from military handbooks
and standards. If you work in energy, medical, transportation,
telecommunications fields, avoid the notion that these are
not applicable to your work. As an SE, System Analyst, or
Engineer, the mark of a true SE professional is the ability
to work across business domains, understand the context
of usage of definitions, their application, and what is to be
accomplished. If your business domain or Enterprise has its
own standards and definitions, always employ those in your
work unless there is a compelling, authoritative reason to do
otherwise.

Icon-Based Breakouts for Principles, Heuristics,
Author’s Notes, Examples, and Mini-Case Studies

SE, like most disciplines, is characterized by key points
that are worthy of consideration. This includes principles,
heuristics, author’s notes, examples, and mini-case studies.

To facilitate readability, this text employs icon-based
breakouts that also serve as easily identifiable navigation
landmarks for referencing other chapters. For example,
icons are encoded with XX.Y syntax reference identifiers
where XX represents the chapter number and Y represents
a sequential number indexed from the beginning of the

chapter. Principle 12.4 represents Chapter 12 Principle #4,
and so forth. The following is a list of icons for identifying
principles, heuristics, author’s notes, examples, cautions, and
warnings that use this approach.

Principle I.1

Principles represent a truth or law that
governs reasoning and serves as a guide for
action.

Heuristic I.1 Heuristics represent “rules of thumb” that are
not rigid but do provide insightful guidance that is worthy of
consideration. As such, Heuristics are subject to exceptions
depending on the circumstances.

Author’s Note I.1

Author’s Notes provide observations
that highlight subtle or noteworthy as-
pects of a discussion concerning the
context, interpretation, or application
of a concept, principle, or practice.

Your experiences may be different. You, your team, project,
and Enterprise are wholly accountable for the decisions or
lack of decisions you make and their consequences.

Example I.1

Examples illustrate a situation or practical
application of a principle, heuristic, or SE
practice.

MINIMINIIN

Mini-Case
Study I.1

Mini-Case Studies provide a brief descrip-
tion of a real-world situation, event, or in-
cident that illustrates a principle, heuristic,
example, or key point relevant to a topical
discussion.

Reserved Words
Reserved words have unique contexts that differentiate them
from general usage. For these terms, the text uses Small
Caps. For example, there is a contextual difference in
referring to your System (small caps) … versus … generic
systems, products, or services (regular font). Reserved words
occur in three categories of usage:

System Levels of Abstraction
Your System, Product, Subsystem, Assembly, Subassem-
bly, and Part Levels.

System Types
Types of systems such as a System of Interest (SOI) com-
posed of one or more Mission Systems and one or more
Enabling Systems.

Environments
Your Operating Environment consisting of a Natural
Environment, Induced Environment, or Physical
Environment.
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A Word of
Caution I.1

Cautions are informed awareness notifica-
tions concerning conditions that represent
potential risks that require special consider-
ation. Remember—You, your team, project,
and Enterprise are wholly accountable for the
decisions or lack of decisions you make and
their consequences.

WARNING

Warning I.1

Warnings are risk-based situations that
demand special attention, awareness, and
recognition of decisions or conditions
related to safety as well as statutes, regula-

tions, ethics, etc. established by international, national, state,
and local governments and organizations that carry severe
penalties for violation. Remember – You, your team, project,
and Enterprise are wholly accountable for the decisions or
lack of decisions you make and their consequences.

CHAPTER EXERCISES

Chapter Exercises are provided in two forms:

Level 1 Chapter Knowledge Exercises—Represent es-
sential knowledge you should have learned from the
chapter.

Level 2 Knowledge Application Exercises—Represent
upper undergraduate level and graduate-level
exercises that challenge the reader’s ability to ap-
ply Chapter knowledge to real world systems,
products, or services. Level 2 Exercises are lo-
cated on the text’s companion website located at:
www.wiley.com/go/systemengineeringanalysis2e

APPENDICES

This text consists of three Appendices:

Appendix A—Acronyms and Abbreviations—Provides
an alphabetic listing of acronyms and abbreviations
used in the text.

Appendix B—INCOSE Handbook Traceability—
Provides a traceability matrix that links to the Inter-
national Council on Systems Engineering (INCOSE)
Systems Engineering Handbook (SEHv4, 2015) to
chapters within this text.

Appendix C—Systems Modeling Language
(SysMLTM) Constructs—Provides a brief overview
of SysMLTM constructs used in the text. SE employs
the Object Management Group’s (OMG) Systems
Modeling LanguageTM (SysMLTM), an extension of
the OMG’s Unified Modeling Language (UMLTM), to
model Enterprise and Engineered systems, products,
and services. This text uses some of the SySMLTM

features to illustrate SE and Analysis concepts.

As its title conveys, this text is about System Engineering
Analysis, Design, and Development, not SysMLTM;
that is a separate text and course. However, to facilitate
your understanding, Appendix C provides a brief
overview of SysMLTM constructs used in figures of this
text. For more detailed information about SysMLTM,
refer to the OMG’s website.

∘ Note: UMLTM and SysMLTM are either registered
trademarks or trademarks of Object Management
Group (OMG), Inc., in the United States and/or
other countries.

SUMMARY

Now that we have established How to Use the Text, let’s
begin with Chapter 1 Systems, Engineering, and Systems
Engineering.

http://www.wiley.com/go/systemengineeringanalysis2e




1
SYSTEMS, ENGINEERING, AND SYSTEMS ENGINEERING

Principle 1.1

SE Alpha–Omega Principle

SE begins and ends with the Users of a system, product,
or service.

Have you ever purchased a commercial hardware and/or
software product; contracted for development of a system,
product, or service; or used a website and discovered that it:

• May have complied with its specification requirements
but was not what you wanted, needed, or expected?

• Was difficult to use, unforgiving in accepting User
inputs and errors, and did not reflect your thought
patterns of usage?

• Consisted of an overwhelming number of non-essential
features that were so distracting it was difficult to
navigate?

• Buried commonly used features under several layers of
linkable structures requiring numerous mouse clicks to
reach and invoke?

• Has software updates that are incompatible with stan-
dard operating systems. The System Developer’s cus-
tomer service response was to post a question in an
online “community forum.” Then, wait (potentially

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

forever) for some other “community User” to offer a
solution as to how they solved the System Developer’s
problem?

Then, in frustration, you and millions of other Users
question whether the System Developer and its designers
ever bothered to communicate with and listen to the Users
or marketplace to understand and comprehend:

• The jobs or missions the User is expected to perform to
deliver the system’s outcomes to their customers

• How the User expects to deploy, operate, maintain,
sustain, retire, or dispose of the systems, products,
services, or by-products required to perform those jobs
or missions

Welcome to Systems Engineering (SE)—or more appro-
priately the lack of SE. If you talk with Users such as the
ones in the examples above, you will often hear comments
such as:

• Company XYZ needs to do a better job “Engineering”
their systems, products, or services!

• System ABC needs some “SE!”

From an SE perspective, what emerges from a distillation
of User comments are questions such as: What is SE?
Answering this question requires understanding (1) what is
a system and (2) what is Engineering. Then, what is the
interrelationship between Engineering and SE?

http://www.wiley.com/go/systemengineeringanalysis2e


2 SYSTEMS, ENGINEERING, AND SYSTEMS ENGINEERING

Opinions vary significantly for definitions of these terms
and their context of usage. Industry, government, academia,
professional, and standards organizations have worked for
years to reach consensus definitions of the terms. To achieve
a consensus—global in some cases—the wording of the
definitions becomes so diluted and abstract that it has limited
utility to the User communities the organizations serve. In
some cases, the abstractness distorts User perceptions of
what the terms truly encompass. For example, the definition
of a system is a classic example.

The problem is exacerbated by a general lack of true
Systems Engineering & Development (SE&D) courses that
focus on problem-solving and solution development methods
and Engineering. Unfortunately, many of the so-called
SE courses focus on: (1) System Acquisition & Manage-
ment - how to manage the acquisition of systems and (2)
equation-based courses – “Engineering the box,” not the
system. This results in a major deficiency in Engineer-
ing knowledge and skills required to actually transform a
User’s abstract, operational need into the Engineering of
a physical system, product, or service that meets those
needs. Should there be any surprise as to why User frustra-
tions with systems, products, or services highlighted above
occur?

Given this backdrop, Chapter 1 establishes the founda-
tional definitions for understanding what it means to perform
SE addressed in Chapters 2–34.

1.1 DEFINITIONS OF KEY TERMS

• Capability—An explicit, inherent feature initiated or
activated by an external stimulus, cue, or excitation
to perform an action (function) at a specified level of
performance until terminated by external commands,
timed completion, or resource depletion.

• Engineering—“[T]he profession in which knowledge
of the mathematical and natural sciences gained by
study, experience, and practice is applied with judg-
ment to develop ways to utilize economically the ma-
terials and forces of nature for the benefit of mankind”
(Prados, 2007, p. 108).

• Entity—A generic term used to refer to an opera-
tional, logical, behavioral, physical, or role-based ob-
ject within a system. Physical entities, for example,
include Personnel; Equipment items such as sub-
systems, assemblies, subassemblies, or parts com-
prised of hardware and/or software; Procedural
Data such as User’s guides and manuals; Mission
Resources such as consumables (water, fuel, food,
and so on) and expendables (filters, packaging, and
so on); and System Responses—performance-based
outcomes—such as products, by-products, or services
or Facilities.

• Environment—A general, context-dependent term
representing the Natural, Human Systems, or
Induced Environments that in which a System or
Entity of Interest must operate and survive.

• Ilities—Specialty Engineering disciplines such as
Reliability, Maintainability, and Availability (RMA);
Sustainability; Safety; Security; Logistics; and
Disposal.

• System—An integrated set of interoperable elements
or entities, each with specified and bounded capabil-
ities, configured in various combinations that enable
specific behaviors to emerge for Command and Control
(C2) by Users to achieve performance-based mission
outcomes in a prescribed operating environment with a
probability of success.

• System Engineering (SE)—The multidisciplinary
application of analytical, mathematical, and scientific
principles to formulating, selecting, developing, and
maturing a solution that has acceptable risk, satisfies
User operational need(s), and minimizes develop-
ment and life cycle costs while balancing Stakeholder
interests.

1.2 APPROACH TO THIS CHAPTER

Our approach to this chapter focuses on defining SE. Since
the term SE is comprised of System and Engineering, we
begin with establishing definitions for both of these terms
as a precursor for defining SE.

Most definitions of a system are often too abstract with
limited utility to the User. This text defines a system in terms
of its attributes and success criteria—what a system is, why
it exists, its compositional structure, what it accomplishes,
under what conditions, and User expectations for success.
Although systems occur in a number of forms such as
Enterprise, social, political, and equipment, we focus on
Enterprise and Engineered Systems.

One of the challenges in discussing systems is the need
to differentiate systems, products, or services. We address
those differences and relationships and provide examples.
When systems are developed, they may be (1) new inno-
vations (unprecedented systems) based on new or emerging
technologies or (2) improvement on existing systems or tech-
nologies (precedented systems). We address the contexts of
unprecedented versus precedented systems.

Based on establishment of what a system is, we introduce
a commonly accepted definition of Engineering and then
derive the definition of SE used in this text. Since people
often are confused by the usage of System versus SE, we
delineate the context of usage for these terms.

An introduction to SE is incomplete without some form of
background description of its history. Rather than repeating
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a set of dates and facts that have been documented in
other texts, a more important point is understanding what
has driven the evolution of SE. To address this point, we
introduce an excellent source of SE history for those who
want more detailed information. We elaborate this topic in
more detail in Chapter 2.

Finally, we close Chapter 1 with a discussion of a key
attribute of Systems Engineers—Systems Thinking.

Before we begin, a brief word concerning individuals
and teams crafting statements—definitions, specification re-
quirements, and objectives—to achieve consensus agreement
is as follows:

When people or organizations develop definitions, at-
tempts to simultaneously create content and grammar usu-
ally produce a result that only has a degree of acceptability.
People typically spend a disproportionate amount of time on
grammar and spend very little time on substantive content.
We see this in development of plans and specifications, for
example. Grammar is important, since it is the root of any
language and communications. However, grammar is simply
a mechanism to convey: (1) content and (2) context. “Word-
smithed” grammar has little or no value if it lacks substantive
content or context.

You will be surprised how animated and energized people
become during grammar “word-smithing” exercises. After
protracted discussions, others simply walk away from the
chaos. For highly diverse terms such as a system, a good
definition may begin with simply a bulleted list of descriptors
concerning what a term is or is not. If you or your team
attempt to create a definition, perform one step at a time.
Obtain consensus on the key elements of substantive content.
Then, structure the statement in a logical sequence and
translate the substantive content into a grammar statement.

Let’s begin our discussion with What Is a System?

1.3 WHAT IS A SYSTEM?

Merriam-Webster (2014) states that the term system orig-
inates from “late Latin systemat-, systema, from Greek
systēmat-, systēma, from synistanai to combine, from syn- +
histanai to cause to stand.” Its first known use was in 1603.

There are as many definitions of a system as there are
opinions. Industry, government, academia, and professional
organizations over many decades have worked on defining
what a system is in their context. If you analyze many of these
definitions, most of the definitions have become so diluted
due to “wordsmithing” to achieve a consensus of the user
community, the remaining substantive content is almost nil.
That is reality, not a critique! It is a very challenging task
given a diverse set of views and levels of experience weighted
toward those who are willing to participate.

The definition that emerges from these exercises accom-
plishes a different objective—obtain a consensus definition

of what a User community believes a system is versus what a
system actually is and what its Users expect it to accomplish.
Additionally, the definitions are often abstract and intermix
different types of information and levels of detail that may
impress uninformed customers but are technically incorrect.
Consider the following example.

Example 1.1

Making Statements That Are Partially
True but Technically Incorrect

Definitions over the years loosely infer that
a system is a collection of people, hardware,

software, procedures, and facilities—for example, entities.
Systems do encompass those entities. However, general
definitions such as this crafted to achieve a consensus do not
express what a system is, why it exists, who it serves, its
operating conditions, required outcomes and performance,
criteria for success, etc.

The intent here is not to critique established definitions. If
they work for you and your organization, fine. However, let’s
establish a definition that expresses what a system actually
is. This is a crucial step in establishing a foundation for
understanding Chapters 2–34. Therefore, we establish the
following definition of a system:

• System—An integrated set of interoperable elements
or entities, each with specified and bounded capabil-
ities, configured in various combinations that enable
specific behaviors to emerge for Command & Con-
trol, C2 by Users to achieve performance-based mis-
sion outcomes in a prescribed operating environment
with a probability of success.

The “system” definition above captures a number of key
discussion points that define a system. A system is composed
of two or more integrated entities that enable accomplish-
ment of a higher-level purpose—emergence—that cannot be
achieved by each of the entities on an individual basis. How-
ever, a purpose without some measure of success—an out-
come and level of performance—has limited value to the
User or its stakeholders. With the establishment of this theme
as a backdrop, let’s explore each of the definition’s phrases
individually to better understand what they encompass and
communicate.

1.3.1 System Definition: “An Integrated Set
of Interoperable Elements or Entities … ”

Systems occur in a variety of forms that include Enterprise
and Engineered Systems—equipment hardware and soft-
ware, social systems, political systems, and environmental
systems. This text focuses on two types of systems: Enter-
prise and Engineered. Let’s define each of these terms:
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• Enterprise Systems—Formal and informal industry,
academic, governmental, professional, and nonprofit
organizations such as corporations, divisions, func-
tional organizations – departments such as accounting
and engineering; projects, and others.

• Engineered Systems—Physical systems or products
developed for internal use, commercial sale to the
marketplace, or for contract development that require
one or more Engineering disciplines and skillsets to
apply mathematical and scientific principles to design
and develop solutions

Since Engineered Systems are an integral part of our home
and work lives, let’s begin with those.

1.3.1.1 Engineered Systems Engineered Systems, in gen-
eral, consist of equipment comprised of hardware and/or
software, fluids (lubricants, coolants, etc.), gases, and other
entities:

• Hardware entities, for example, include hierar-
chical levels such as Products comprised of →
Subsystems comprised of → Assemblies com-
prised of → Subassemblies comprised of → Parts
(Chapter 8).

• Software entities include hierarchical terms such as
Computer Software Configuration Items (CSCIs) com-
prised of → Computer Software Components (CSCs)
comprised of → Computer Software Units (CSUs)
(Chapter 16).

1.3.1.2 Enterprise Systems Enterprise Systems are
Higher-Order Systems (Chapter 9)—government, corpo-
rations, and small businesses—that:

• Employ Engineered Systems—manufacturing sys-
tems, vehicles, computers, buildings, and roads—to:
∘ Produce and distribute consumer products and con-

tract deliverable systems

∘ Provide services such as retail sales; land, sea, air,
or space transportation; utilities such as electrical
power, natural gas, telephone, water, sanitation, and
refuse; and medical, healthcare, financial, educa-
tional, and other services

As we shall see in Chapters 8 and 9, analytically:

• Enterprise Systems consist of hierarchical levels of
abstraction (divisions, departments, branches, etc.)
comprised of System Elements (Figure 8.13)—
personnel, equipment (hardware and software),
procedures, resources, behavioral outcomes, and
facilities—that are integrated to perform Enterprise
missions.

• Engineered Systems consist of hierarchical levels of
abstraction (Figure 8.4)—Segments, Products, Sub-
systems, Assemblies, Subassemblies, and Parts.

Observe the terms Enterprise System elements and En-
gineered System entities. Application of these terms will
become more important in follow-on chapters. The terms
imply that these are discrete objects, which they are. How-
ever, remember the earlier point in the system definition …
comprised two or more entities in combination that enable
accomplishment of a higher-level purpose that cannot be
achieved by each of the entities on an individual basis. The
operative term combination means that the system elements
or entities must be integrated—connected.

Integrating elements and entities is a necessary condi-
tion to leverage or exploit the combination of capabilities.
However, suppose the entities are incompatible? Hypotheti-
cally, you could fill—integrate—diesel fuel or kerosene into
a gasoline-based automobile’s fuel tank. But that does not
mean that the engine will perform. Due to the incompatibil-
ity, fuel station pump nozzles and vehicle fuel tank ports are
purposely designed to preclude inadvertent mixing.

Being compatible may be a necessary condition for
some system entities such as rigid mechanical interfaces or
System Elements such as procedural consistency between
equipment—hardware and software—and User or Operator
Manuals. Being compatible, however, does not mean that
they can communicate in a language that is intelligible and
comprehensible. That leads us to the need for some sys-
tems to be … interoperable. Consider electronic financial
transactions in which debit or credit cards, card readers, and
computers must be not only compatible in terms of elec-
tronic protocols but also formatting in an intelligible lan-
guage that enables each to understand and interpret what is
being communicated—interoperability. For those types of
systems, compatibility and interoperability are both neces-
sary and sufficient conditions for success.

In summary, the foundation of a system begins with
an integrated set of interoperable (Enterprise System) ele-
ments (personnel, equipment, procedures, resources, behav-
ioral outcomes, and facilities) or (Engineered System) enti-
ties (Products, Subsystems, Assemblies, Subassemblies,
etc.). In either case, we refer to the system being analyzed or
investigated as a System of Interest (SOI).

1.3.2 System Definition: “… Each with Specified and
Bounded Capabilities … ”

If a system requires System Elements or entities that are
compatible and interoperable, how do we ensure that they
are? This requires multi-discipline Engineering - SE - to
specify and bound these operational, behavioral, and phys-
ical capabilities—attributes, properties, and characteristics
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(Chapter 3)—via specification requirements as a starting
point.

Observe usage of the term capability. Traditionally, the
term function—as in form, fit, and function—has been used
by Engineers to characterize what a system is expected to
accomplish. However, there is a gross disparity between the
true definition of a function and what the User expects the
system to accomplish. Here’s the difference.

A Word of
Caution 1.1

Form, Fit, and Function: An Implied
Catch Phrase for Failure!

The phrase form, fit, and function, which is
deeply ingrained as a paradigm in everyday
Engineering, is a well-intended concept that

is subject to misinterpretation. By virtue of the sequence of
terms, people sometimes interpret the phrase as the sequence
of steps required to perform Engineering:

• Step 1—Design the physical system—form.

• Step 2—Figure out how to get the pieces to fit together.

• Step 3—Decide what the system must do—function.

Evidence of this paradigm is illustrated in Figure 2.3.
PURGE the form, fit, and function paradigm from your
mind-set! The phrase simply identifies three key attributes of
a system, product, or service that must be considered, nothing
more!

Simply stated, a function represents an action to be
performed such as Perform Navigation. A function is a
unitless term that does not express a level of performance
to be achieved. In general, it is easy to “identify functions”
via functional analysis—sounds impressive to uninformed
customers. The challenge is specifying and bounding the
level of performance a function must achieve. Although
functions and functional analysis are certainly valid within
their own context, from a current SE perspective, the concept
of functional analysis as a primary driving SE activity is
outdated. The reality is functional analysis is still valid but
only as a supporting SE activity. So, how do we solve this
dilemma?

The solution resides in the term capability. A capability
is defined as follows:

• Capability—An explicit, inherent feature activated by
an external stimulus, cue, or excitation to perform an
action (function) at a specified level of performance
until terminated by external commands, timed comple-
tion, or resource depletion.

From an Engineering perspective, think of a capability us-
ing a vector analogy. A capability (vector) is characterized

by a function (direction) and a level of performance (magni-
tude).

In summary, this text replaces functions and functional
analysis with more appropriate terms capability and capa-
bility analysis.

1.3.3 System Definition: “… Configured in Various
Combinations That Enable Specific Behaviors
to Emerge … ”

Configuration of various combinations of System Ele-
ment and entity capabilities to produce system responses
for a given set of system inputs—stimuli, cues, and
excitations—represents a system architecture. However,
system responses vary based on the User’s operational needs
at different times during a mission. Consider the following
example of an aircraft.

Example 1.2

Aircraft Configurations and Behaviors

For an aircraft to perform a mission, it must
be capable of loading passengers and cargo;
taxiing; performing phases of flight (taking

off, climbing, cruising, holding, and landing); and unloading
passengers to accommodate various Use Cases and Scenarios
(Chapter 5). Each of these activities requires unique sets of
capabilities—architectural configurations—provided by the
(Enterprise System) Elements and (Engineered System) enti-
ties to accomplish the performance-based mission outcomes
and objectives.

Observe the phrase “… enable specific behaviors to
emerge . . . .” Emergent behavior is a key attribute of systems
that enables them to accomplish a higher-level purpose that
cannot be achieved by the individual elements or entities. In
general, emergent behavior means that the system exhibits
behaviors that are not readily apparent from analysis of
its individual elements or entities. Consider the following
example.

Example 1.3

Emergent Behavior

As humans, we have the capability to walk,
run, etc. However, there is a need to travel
more efficiently in a shorter period of time.

To achieve this higher-level purpose, humans created bicy-
cles expressly for enabling a human to travel great distances
more efficiently. But how would you know that (1) a set
of physical components could be assembled into a Bicycle
System as a prime mover capable of rolling and steering
(emergent behaviors) and (2) a human could simultaneously
C2—balance, pedal, and steer (emergent behaviors)—the
Bicycle System? If we analyzed the human or the bicy-
cle, do they exhibit or reveal the capabilities—emergent
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behaviors—that enable them as an integrated system to ac-
complish the higher-level mission (travel more efficiently
in a shorter period of time)? Similar emergent behavior
examples include jet engines or aircraft that can counter the
effects of gravity and fly.

Chapter 3 provides additional discussion on emergent
behavior.

1.3.4 System Definition: “… For Command &
Control (C2) by Users to Achieve Performance-Based
Mission Outcomes … ”

Observe that the thrust of this phrase is an expectation to
accomplish something—an outcome with a level of per-
formance. More specifically, accomplish performance-based
mission outcomes. Those who work in non-Aerospace and
Defense (A&D) sectors often associate the term mission as
unique to military systems. That is factually incorrect! En-
terprises, projects, and individuals—medical doctors, educa-
tors, and so on—all perform missions.

A mission represents an Enterprise or Engineered System
outcome and supporting performance-based objectives to be
achieved. Consider the following mission examples.

Example 1.4

• Medical Mission—Improve the health
conditions of … , find a cure for … ,
administer intravenous drugs to a patient
in accordance with a doctor’s orders, and
so on.

• Transportation Mission—Safely transport passengers
via air, train, or bus from one city to another, deliver
parcel packages, and so on.

• Services Mission—Provide cable and Internet services
to customer’s businesses or homes, respond to fire and
medical emergencies, and so on.

• Educational Mission—Offer an accredited (EE, ME,
SwE, ChemE, IE, etc.) Engineering degree program.

The concept of missions, however, is not limited to
Enterprise Systems. Interestingly, Enterprises for decades
have developed vision and mission statements. Yet, often
fail to recognize that the Engineered Systems they produce
for the marketplace are designed to perform missions to
support their customers’—Users and End Users—Enterprise
System missions. When a system, product, or service ceases
to perform a mission, it has no value to its Users in terms
of outcomes to be accomplished—End User satisfaction and
shareholder value and revenue generation—and will likely
be retired or disposed.

Chapters 4 and 5 address missions and mission analysis
in more detail.

1.3.5 System Definition: “… In a Prescribed
Operating Environment … ”

Humans and equipment often have performance limita-
tions in terms of what types of operating environments
they can operate to accomplish a mission. This requires
knowledge and understanding of (1) where missions will
be conducted—land, sea, air, space, or combinations of
these—and (2) under what types of conditions. Once the ex-
ternal operating environment is understood, it must be speci-
fied and bounded in terms of performance requirements such
as temperature, humidity, shock and vibration, and salt/fog.

1.3.6 System Definition: “… With a Probability of
Success”

Finally, to support a User’s missions, the system must be
available on demand to reliably conduct missions and deliver
performance-based outcomes with a probability of success. If
a system, product, or service is unable to fulfill the minimum
requirements for mission success prior to its mission, then
mission failure may be the consequence and other alternative
systems must be considered.

1.3.7 Other Definitions of a System

As a final note, national and international standards and pro-
fessional organizations as well as different authors present
various definitions of a system. If you analyze these, you
will find a diversity of viewpoints, all influenced and tem-
pered by their personal knowledge and experiences. More-
over, achievement of a “one size fits all” convergence and
consensus by standards organizations often results in weak
wording that many believe it to be insufficient and inade-
quate. For additional definitions of a system, refer to the
following standards:

• INCOSE (2015). Systems Engineering Handbook: A
Guide for System Life Cycle Process and Activities (4th
ed.).

• IEEE Std 1220TM-2005 (2005)—Institute of Electrical
and Electronic Engineers (IEEE)

• ISO/IEC 15288:2015 (2015)—International Organiza-
tion of Standards (ISO)

• DAU (2011)—Defense Acquisition University (DAU)

• NASA SP 2007-6105 (2007)—US National Aeronau-
tics and Space Administration (NASA)

• FAA SEM (2006)—US Federal Aviation Administra-
tion (FAA)

You are encouraged to broaden your knowledge and
explore definitions by these organizations. Depending on
your personal viewpoints and needs, the definition stated in
this text should provide a more definitive characterization.
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1.4 LEARNING TO RECOGNIZE TYPES
OF SYSTEMS

Systems occur in a number of forms. High-level examples
include:

Example 1.5

System Examples

• Economic systems

• Communications systems

• Educational systems

• Entertainment systems

• Financial systems

• Government systems

• Environmental systems

• Legislative systems

• Medical systems

• Judicial systems

• Corporate systems

• Revenue systems

• Insurance systems

• Taxation systems

• Religious systems

• Licensing systems

• Social systems

• Military systems

• Psychological systems

• Welfare systems

• Cultural systems

• Public safety systems

• Food distribution systems

• Parks and recreation systems

• Transportation systems

• Environmental systems

Observe that many of the example systems are subsets
of others and may be interconnected at various levels to
form Systems of Systems (SoS). If we analyze these sys-
tems or SoS, we find that they produce combinations of
performance-based outcomes such as products, behaviors,
by-products, or services. As systems, they exemplify the def-
inition of a system introduced earlier.

1.4.1 Precedented Versus Unprecedented Systems

Enterprise and Engineered Systems, in general, are either
precedented or unprecedented:

• Precedented Systems—Systems for which earlier ver-
sions exist and provide the basis for upgrades such as
technology and performance improvements

• Unprecedented Systems—Systems that represent
innovations and radical new designs that depart from
traditional designs, for example, the introduction of
hybrid vehicles

To illustrate these terms, consider the following automo-
bile example.

Example 1.6

Automobile Application: Precedented
and Unprecedented Systems

Gasoline-powered automobiles are an
example of precedented systems. Over

many decades, they consisted of a frame, body, doors,
engine, inflatable ties, steering, and so on.

Then, as newer automotive technologies evolved over
the past 100+ years, manufacturers added new features and
capabilities that were unprecedented. Examples included
heaters, air-conditioning, power steering, electronic ignition,
electrical doors and windows, compression bumpers, air
bags, entertainment systems, satellite radio and phone data
communications, and hybrid engines.

1.4.2 Products as Systems

Our discussions to this point have focused on the generic
term system. Where do consumer products and services
fit into the context of a system? A product consisting
of two or more entities integrated together to provide a
performance-based capability, by definition, is an instance
of a system. Observe that a product provides a “capability”
but does not address outcome. Why? Unless preprogrammed
to run autonomously, products as inanimate objects are de-
pendent on humans to apply them to a specific situation and
subsequently achieve an outcome. For example:

• A pencil is a product—an instance of a system—
comprised of a lead, a wooden or composite holder,
an attached eraser that provides a capability but no
outcome on its own.

• A computer monitor is a product—an instance of a
system—comprised of an chassis, touch screen display,
motherboard, processor, sound board, and interface
ports—power, video, audio, and communication ports
such as USB:
∘ The computer processor transmits commands and

data to the monitor to display formatted information
to its User.

∘ In response to the display data, the User has the op-
tion to provide a stimulus via the touch screen dis-
play to select an action to be performed—command
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and audio volume—that results in an outcome as
verification feedback of acceptance and subsequent
completion of the action.

1.4.3 Tool Context

Some systems or products are employed as tools by Higher
Order Systems such as an Enterprise. Let’s define what we
mean by a tool:

• Tool—A physical product or software application em-
ployed by a User to enable them to leverage their own
capabilities to more efficiently and effectively perform
a task and accomplish a performance-based outcome
that exceeds their own strengths—capabilities—and
limitations.

Consider the following example:

Example 1.7

Software Application as a Tool

A statistical software application, as a sup-
port tool, enables a statistician to efficiently
sort and analyze large amounts of data and
variances in a short period of time.

Now, is a wooden log, as an entity, a system? No, however,
the log is considered a tool that has the capability to deliver
a performance-based outcome when applied by a human
operator under specific conditions.

1.4.4 Service Systems

The preceding discussion illustrates that the outcomes pro-
duced by a system may be (1) physical such as products and
by-products or (2) behavioral responses—services. What is
a service?

• A service is an activity provided and performed by an
Organizational or Engineered System to produce an
outcome that benefits its User.

Consider the following example.

Example 1.8

Consumer Product Services

• Weight scales are a consumer product—
an instance of a system with multiple parts
integrated together as a system—that

respond to a User stimulus to provide weight measure-
ment information in pounds or kilograms as a service
response. Observe that the service delivers an outcome–
displayed weight, however, no physical products are-
produced.

• A digital alarm clock as a consumer product provides a
service by displaying current time and an alarm when
activated and set for a specific time.

Now that we have established what a system is brings us
to the next question: what is SE?

1.5 WHAT IS SE?

Definition of SE requires an understanding of its two con-
stituent terms: system and Engineering. Since the preceding
discussions defined a system, the next step is to define Engi-
neering to enable us to define SE.

1.5.1 Definition of Engineering

Engineering students often graduate without being intro-
duced to the root term that provides the basis for their formal
education. To illustrate this point, consider a conversational
example.

Example 1.9

The Engineer’s Dilemma

• What is your profession?

• I’m an Engineer—SE, ME, EE, SwE,
ChemE, Test, and so on.

• What do Engineers do?

• We Engineer things.

• So, what is Engineering?

• (Silence) I don’t know. Our instructors and courses
didn’t cover that topic!

• So, even though you have received an Engineering
degree, you are unaware of how “Engineering” is
defined by your profession?

The term engineering originates from the Latin word
ingenerare, which means “to create” (Britannica, 2014).
Its first known use is traceable to 1720 (Merriam-Webster,
2014). Let’s introduce a couple of example definitions of
Engineering:

• Engineering—“The profession in which knowledge of
the mathematical and natural sciences gained by study,
experience, and practice is applied with judgment to
develop ways to utilize economically the materials and
forces of nature for the benefit of mankind” (Prados,
2007, p. 108).

• Engineering—“The application of science and math-
ematics by which the properties of matter and the
sources of energy in nature are made useful to people”
(Merriam-Webster, 2014).
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The Prados (2007) definition of Engineering above origi-
nates from earlier definitions by the Accreditation Board for
Engineering and Technology (ABET), which accredits En-
gineering programs in the United States. ABET evolved the
definition from its founding in 1932 until 1964. It contin-
ued to appear in ABET publications from 1964 through 2002
(Cryer, 2014).

Two key points emerge from the introduction of these
definitions:

• First, you need to understand the definition and scope
of your profession.

• Secondly, on inspection, these definitions might ap-
pear to be a mundane, academic discussion. The reality
is that these definitions characterize the traditional view
of Engineering. That is, Engineering the “Box (Equip-
ment Hardware & Software)” Paradigm or “Box” En-
gineering that contributes to systems, products, or
services failures attributed to “human error” (Chapter
24) or are considered by the User to be failures due
to a lack of usability. This is a critical staging point
in differentiating the scope of the SE – “Engineering
the (User-Equipment) System, which includes the
(Equipment) Box,” versus traditional “Box” Engi-
neering. In that context, SE exemplifies the cliché
“Learning to think outside the (Engineering) box” to
develop systems, products, and services that Users
actually need, can use, and lead to a reduction in human
errors that contribute to system failures. As a result,
this impacts Enterprise System reputation, profitabil-
ity, customer satisfaction, marketplace perceptions, and
subsequently shareholder value.

Now that we have established definitions for a system and
Engineering, let’s proceed with defining SE.

1.5.2 Definition of System Engineering (SE)

Principle 1.2

Content–Grammar Principle

Substantive content must always precede
grammar to achieve successful results.
Avoid negotiating content for the sake of

achieving grammatical elegance and eloquence unless it
precludes misinterpretation.

There are a number of ways to define SE, each dependent
on an individual’s, project’s, or Enterprise’s business domain,
perspectives, and experiences. SE means different things to
different people. You will discover that even your own views
of SE will evolve over time. So, if you have a diversity
of perspectives and definitions, what should you do? What
is important is that you, project teams, or your enterprise
should:

• Establish a consensus definition for SE.

• Document or reference the SE definition in enterprise
command media to serve as a guide for all.

For those who prefer a brief, high-level definition that
encompasses the key holistic aspects of SE – “Engineering
the System” - consider the following definition:

• System Engineering—The multi-disciplined applica-
tion of analytical, mathematical, and scientific princi-
ples for formulating, selecting, developing, and ma-
turing an optimal solution from a set of viable can-
didates that has acceptable risk, satisfies User opera-
tional need(s), and minimizes development and life cy-
cle costs while balancing Stakeholder interests

To better understand the key elements of the SE definition,
let’s address each of the phrases separately.

1.5.2.1 SE Definition: “The Multi-disciplined Applica-
tion of … ” System, product, and service development
typically require multiple Engineering disciplines of
expertise to translate a User’s operational need and vi-
sion into a deliverable system, product, or service that
produces performance-based outcomes required by the
User. Accomplishment of that translation process requires
multi-disciplined integration of hardware, software, test,
materials, human factors, reliability, maintainability, and
logistics Engineering.

1.5.2.2 SE Definition: “… Analytical, Mathematical,
and Scientific Principles … ”

Author’s Note 1.1

Constructive Assessment

The following discussion is intended
to be a constructive assessment
concerning the state of traditional

Engineering and its views of SE today versus what
twenty-first-century Engineering and SE demand. The
time has come to shift the educational paradigm!

Although not explicitly stated, the ABET (Prados, 2007,
p. 108) definition of Engineering infers that the work scope
of Engineering focuses on the innovation and development
of devices, mechanisms, and structures to produce one
or more performance-based outcomes for the benefit of
mankind. In fact, we analytically represent the boundaries
a system, product, or service as a “box” such as Figures 3.1
and 3.2. Psychologically, the simple act of establishing these
boundaries automatically fosters an “Engineering within
the walls of the box and connections between the boxes”
paradigm. As a result, discipline-based Engineering courses
and instruction focus on:
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• Developing systems, devices, and mechanisms that
utilize materials—technology—to harness, adapt,
transfer, store, convert, transform, and condition the
“forces of nature” such as energy, forces, information,
and operating environment conditions to produce
performance-based outcome(s) that benefits mankind

Unfortunately, this physics-based scientific and mathe-
matical paradigm fosters misperceptions that SE is limited
to Engineering and designing:

• Mechanical structures, enclosures, and mechanisms
that can withstand, survive, divert, convert, transfer,
transform, and store the physical “forces of nature”

• Electrical devices, components, and mechanisms that
(1) respond to electrical, electronic, optical, and acous-
tical stimuli, excitations, and cues to produce specific
outputs and characteristics; (2) store and retrieve en-
ergy and information; (3) select and locate components
on printed circuit layouts; (4) perform self-tests and
diagnostics; and (5) interconnect wiring and cables to
compatible and interoperable components

• Software to (1) perform algorithmic decisions and
computations to C2 systems and products and provide
Situational Assessments and (2) mathematically model
and simulate component and physics characteristics
and other phenomena

The scope of SE does in fact encompass these
multi-discipline Engineering activities as illustrated on
the right side of Figure 1.1. In general, Engineers graduating
from accredited institutions are well educated and competent
in performing these activities. However, SE encompasses
more than simply this traditional Engineering view of SE
as illustrated by the left side of Figure 1.1 concerning
Analytical Problem-Solving and Solution Development.
This requires more than simply “plugging and chugging”
equations to harness the “forces of nature.” As a result, most
Engineers are unprepared to enter industry and government
to perform these activities. We will address this point in
more detail in Chapter 2.

Finally, the term mankind at the end of the ABET (Prados,
2007, p. 108) definition … as a beneficiary of Engineering
work. The question is: who determines what would “benefit”
mankind that motivates the need to involve and initiate Engi-
neering actions? In general, we can say mankind represents
the marketplace. But, who determines what the needs are for
the marketplace, in general, or one of its segments? The an-
swer has two contexts: consumer product development and
contract-based system development detailed in Chapter 5
(Figure 5.1) or services support:

• Consumer Product Development—Commercial in-
dustry expecting to make a profit as a Return on Invest-
ment (ROI) develops systems, products, and services

for marketplace consumers. As a result, they have to
understand and anticipate what potential consumers of
a system, product, or service Want, Need, Can Afford,
and are Willing to Pay (Principle 21.1).

• Contract-Based System Development and Support
Services—Industry and government analyze their own
needs and either develop systems and services inter-
nally or acquire/outsource them from external contrac-
tors or vendors.

Principle 1.3

Intellectual Control Principle

One of the key roles of an SE is to main-
tain “intellectual control of the problem so-
lution” (McCumber and Sloan, 2002).

Returning to the question, who determines what the mar-
ketplace needs are? In either of the consumer or contract
development cases above, the answer is someone with a tech-
nical background preferably in Engineering who has the in-
terpersonal skillset to collaborate with the Users—consumer
or contract—to:

1. Understand, analyze, identify, and document their op-
erational needs and expected performance-based out-
comes.

2. Specify and bound the Problem, Opportunity, or Issue
Space (Figure 4.3) that needs to be solved or mitigated.

3. Specify and bound the Solution Space(s) (Figure 4.6
and 4.7) that represents what the User Wants, Needs,
Can Afford, and Is Willing to Pay (Principle 21.1) to
acquire or develop.

4. Collaborate with multiple Engineering disciplines to
translate the Solution Space(s) performance-based out-
comes and characteristics into an architectural-driven
set of multi-level specification requirements.

5. Select an overall system, product, or service that is
optimal across all User Solution Space scenarios and
conditions.

6. Plan, implement, and orchestrate the technical strategy
for a project as a Project or Lead Systems Engineer
(LSE) or as a development team SE.

7. Maintain intellectual control (McCumber and Sloan,
2002) of the evolving and maturing System Design So-
lution to ensure that it is consistent and traceable to
User Solution Space(s) source or originating require-
ments.

These points illustrate why the traditional Engineering
view of SE as illustrated by the right side of Figure 1.1 is
short scoped. SE encompasses more than simply the design
of physical systems, devices, and components.
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Based on the preceding discussion, the scope of SE
encompasses three areas of concentration (Figure 1.1):

• Analytical Problem-Solving and Solution
Development—
Example activities include collaboration with external
and internal Users to identify, specify, and bound
their operational needs and capabilities; oversight
of multi-level design development and integration;
assessment of System Integration and Test results for
compliance to specification requirements; and conduct
and review of Analysis of Alternatives (AoA).

• Multi-discipline Engineering—Example activities in-
clude collaboration with Engineers concerning the de-
velopment and interpretation of requirements, design
integrity, analyses and trade-offs, prototype develop-
ment, and Modeling and Simulation (M&S).

• Technical PM—Example activities include planning,
tailoring, orchestrating, and implementing the technical
project including baseline and risk management, con-
ducting technical reviews, Specialty Engineering Inte-
gration, performing Verification and Validation (V&V)
oversight, and preserving the technical integrity of the
project.

As a project development “system,” these activities are
not just discrete activities. They must be integrated at

two levels: (1) the Enterprise System developing the (2)
Engineered System. Remember that Figure 1.1 illustrates
a project’s Enterprise System performing multi-discipline
SE. As with any type of system, its interfaces must be
compatible and interoperable to orchestrate the interactions
and bi-directional communications across each interface to
achieve success.

Therefore, SE not only requires the application of math-
ematical and scientific principles addressed in the Prados
(2007) Engineering definition but also encompasses analyti-
cal principles—both inside or outside the system, product, or
service and within the Enterprise System among its system
developers.

1.5.2.3 SE Definition: “… For Formulating, Selecting,
Developing, and Maturing an Optimal Solution from a Set
of Viable Candidates … ” Engineers and teams often ex-
hibit a propensity to take a quantum leap from requirements
(Figure 2.3) to a single Point Design Solution without due
consideration of:

1. How the User expects to deploy, operate, maintain,
sustain, retire, and dispose of a system or product.

2. An evaluation of a viable set of candidate solutions and
selection.

3. User life cycle costs and risks.

Systems Engineering and Development (SE&D)

Multi-Discipline Integration and Collaboration

Highly Iterative

Analytical
Problem Solving/

Solution
Development

Engineering

Roles and Missions
Specifications
Use Cases and Scenarios
ConOps
Architectures
ICDs, IDDs
Modes and States
Designs and Descriptions

Analyses
Trade Studies
Models
Simulations
Prototypes
Test Cases
User Guides
Et al

Example Decision Artifacts

Technical 
Project

Management

Highly
Iterative

Highly
Iterative

Figure 1.1 The Scope of SE and Its Relationship to Traditional Engineering
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Therefore, a key objective of SE is to ensure that each
design is formulated, evaluated, and selected from a set
of viable alternatives using Multivariate Analysis or AoA.
The selection may not be ideal; however, for a given set of
constraints and operating environment conditions, it may be
the best—optimal—that can be achieved.

1.5.2.4 SE Definition: “… That Has Acceptable Risk
… ” If you ask Engineers what level of risk a system, prod-
uct, or service should have, without hesitation, a common
answer is low risk. The reality is customer budgets, sched-
ules, technical requirements, and technologies may impose
constraints in some cases that result in low-, medium-, or
high-risk situations—whatever is acceptable to the User.
This assumes that the System Developer has collaborated
with the User to enable them to make an informed risk de-
cision concerning the options and consequences. Therefore,
under certain circumstances, low, medium, or high risk may
be acceptable to the User. Ideally, SE tries to mitigate and re-
duce the risk via methods such as rapid prototyping, proof of
concept and proof of technology demonstrations, and M&S
methods.

1.5.2.5 SE Definition: “… Satisfies User Operational
Need(s) … ” If you ask Engineers and Analysts where their
requirements originate, the response is “from our contracts
organization.” From an Enterprise protocol perspective, that
is true. However, how do you know that the User require-
ments passed along by your contracts organization accu-
rately and completely characterize the User’s operational
need? Suppose you develop a system, product, or service that
complies with those requirements and the User determines
after delivery that it did not meet their operational needs.
Who is to blame—legally and professionally? This brings us
to a key principle of SE:

When a consumer or User—System Acquirer—purchases
a system, product, or service, there is an expectation that it
will achieve performance-based outcomes that characterize
their operational needs. Those criteria typically characterize
what is required to enable them to perform their missions.
Therefore, SE technically begins and ends with the User and
their End Users. Within this timeframe, the focal point of SE
decision making centers on the User as a User’s advocate.
principle 1.1 illustrates the symbolism.

1.5.2.6 SE Definition: “… Minimizes Development
and Life Cycle Costs … ” Many years ago, Enterprises
and Engineers often had the view that their objective was to
develop a system or product within a project’s contract or
task order triple constraints—cost, schedule, and technical.
That was and is true, especially on Firm-Fixed Price (FFP)
contracts. However, review the response again. It offers no
indication of concern for the customer or User and their

costs to deploy, operate, maintain, and sustain a system or
product after it is delivered. In fact, the attitude was “we get
paid to develop the system. Operations, Maintenance, and
Sustainment (OM&S) costs are the User’s problem.” Those
firms are either out of business today, consumed by their
competition, or forced to change to survive.

Today, with demands on budgets—do more for less
cost—Users are challenged to deal with the realities of
System OM&S costs and the Total Cost of Ownership
(TCO) of a system as an asset. Therefore, a key objective
of SE during System Development is to minimize both
development and User life cycle costs.

1.5.2.7 SE Definition: “… While Balancing Stakeholder
Interests” Enterprises and Engineered Systems have a
variety of stakeholders to satisfy beginning with the acqui-
sition of a system or product and continuing through its dis-
posal. The same is true for System Developer—shareholders
and suppliers. Therefore, another objective of SE is to
achieve a balance not only in their own Enterprise inter-
ests but also to be a User’s advocate. How is this achieved?
Figure 1.2 illustrates how multi-discipline SE “bridges the
gap” between a User’s operational needs and the Engineer-
ing disciplines required to engineer a system, product, or
service.

Additionally, as we shall see in Chapter 3, stakeholders
include competitors and adversaries that have vested interests
in the success or failure of a system, product, or service.

1.6 SYSTEM VERSUS SYSTEMS ENGINEERING

People sometimes get into debates about references to System
versus SE. Which is correct? The answer depends on the
context of the usage from a project SE or enterprise SE
perspective.

1.6.1 Project SE

For example, a customer—System Acquirer or User—issues
a contract to develop “a system.” From a PM perspective, a
project has (1) a Project Manager (PM) and (2) a work scope
that is time-bounded with a beginning and ending for the
development and delivery of the system, product, or service.
The project’s organizational element accountable for SE is
labeled Project XYZ System Engineering (singular).

For large, complex systems that require development of
multiple systems, typically project is assigned to a PM.
The collective set of projects are organized underneath a
Program managed by a Program Manager. At that level,
the program’s organizational label for SE is Program ABC
Systems Engineering (plural).
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Hardware

Engineering
Software

Engineering

Multi-Discipline Systems Engineering
Concepts, Principles, and Practices

Operational
Need(s)

Specialty

Engineering

User System Developers

Solutions

Operational Need-Based Requirements

Figure 1.2 Multi-discipline SE “Bridges the Gap” between Users and System Developer
Engineering Disciplines

1.6.2 Functional SE

Within most Enterprises, functional departments are estab-
lished to supply personnel with Engineering discipline spe-
cialties such as EE, ME, and SwE to projects. Enterprise
organizational charts often include a Systems Engineering
Department. Observe the plural form systems. Matrix-based
organizations such as departments supply Engineers with
defined skillsets to perform specific tasks across multiple
projects. Therefore, the term Systems Engineering (plural)
is often applied to functional organizations.

1.7 SE: HISTORICAL NOTES

The earliest form of system applications began with early
man with the innovation of the wooden, stone, and bone
tools such as the lever and fulcrum, spear, and wheel.
Systems evolved and became increasingly complex such as
ground vehicle and ship transportation systems, weapons,
and fortresses. The need to “engineer systems” evolved as
a response to the demand to counter threats, move large
objects, and develop products. Subsequently, the need to
mass produce items in the late 1700s lead to the Industrial
Revolution. In recent decades, larger complex systems and
products drove the need to predictably and reliably develop
and produce systems.

Most textbooks attempt to summarize the history of SE
with facts and dates. You are encouraged to read those
accounts. However, understanding what SE is today requires
more than reading and memorizing facts and dates of past
history. More importantly, you need to understand how and

why modern-day SE has evolved as a discipline. Key points
to note are:

1. During the first half of the 1900s, a new field of Systems
Management emerged. Failures were attributed to poor
Systems Management. As a result, rigid, inflexible
management controls and processes were implemented
(Johnson, 2002, pp. 1, 227–231).

2. Failures, however, continued to occur due to increasing
complexity of WWII era and beyond military systems.
Subsequently, industry and government came to the
realization that the failures were due to poor reliability,
not just Systems Management. As a result, the focus
shifted to development and evolution of Reliability,
Maintainability, and Availability (RMA) subsequently
improving system performance.

3. During this timeframe, increasing system complexity
began to drive the need to formulate a systems method-
ology. In turn, this led to the emergence of SE processes
and methods to meet industry and government needs.

You are encouraged to read Johnson (2002) to better un-
derstand these points. Chapter exercises will delve into com-
parisons of recent SE processes and methods since WWII.

1.8 SYSTEMS THINKING AND SE

SE is often equated to Systems Thinking and Systems
Engineers as Systems Thinkers. What is Systems Thinking?
From the author’s perspective, Systems Thinking is the
ability to:
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• Visualize or conceptualize any type of
system—Natural, Engineered, or Enterprise—and
all of its constituent levels and components, their
interrelationships, and operational interactions with its
Operating Environment.

• Perform a situational assessment of a system condition
and level of urgency to initiate the appropriate, correc-
tive actions in a timely manner.

• Formulate, develop, and synthesize a set of solutions
that respond to User operational needs and constraints.

• Perform an AoA to evaluate and select the optimal
solution that has acceptable risk to satisfy the User’s
operational needs and constraints for the least total life
cycle cost.

• Optimize the selected solution to provide the best
value—cost-performance–benefit ratio—to the User
based on their operational needs, priorities, and accept-
able risk.

• Observe system performance or the lack thereof, as-
similate the observable facts, model, and analyze the
contributory causes and effects.

Observe several key operative terms above that charac-
terize Systems Thinking. These are visualize, conceptualize,
assess, formulate, develop, synthesize, evaluate and select,
optimize, assimilate, model, and analyze. To illustrate Sys-
tems Thinking under pressure, consider Mini-Case Studies
1.1 and 1.2.

MINIMINIIN

Mini-Case
Study 1.1

Systems Thinking in Action: The Apollo
13 Accident (Figure 1.3)

On April 11, 1970, NASA launched Apollo
13 on a lunar mission. The mission con-
figuration consisted of a Command Module

(CM) and a Service Module (SM) containing the Lunar lan-
der. While in lunar orbit, two astronauts would enter the Lu-
nar Module (LM), separate from the CM, land on the Moon’s
surface, return to the CM containing the third astronaut cir-
cling the Moon, and jettison the LM en route back to Earth.

Two days into the mission, an oxygen tank onboard
exploded crippling the SM causing the lunar landing to be
aborted. Challenged with being unable to visually assess the
damage, the astronaut crew and Engineers on the ground
had to make Situational Assessments concerning how to
manage (1) redirecting a spacecraft back to Earth that was
traveling away from Earth toward the Moon; (2) limited
onboard power, water, heat, and breathable air resources; and
(3) return of the crew home safely.

The demand for Systems Thinking became paramount.
Given the situation, how do you assimilate onboard resources
in the integrated CM–SM and attached LM to synthesize
multiple power, water, heat, air, and other solutions to ensure
survival of the astronaut crew? “The LM was designed to

Command module

Service module

Lunar module

Spacecraft LM adapter

Spacecraft

Figure 1.3 Apollo Vehicle (Source: NASA (1970))

support two men on a 2-day expedition to the lunar surface.
Mission Control made major revisions in the use rate of
water, oxygen, and electrical power to sustain three men for
the 4-day return trip to the Earth.” (NASA 1970, p. 5–33)
Additionally, to conserve power, the astronauts had moved
to the LM as a “lifeboat” for return to Earth allowing the
CM–SM to be powered down. However, to ensure a safe
return, the CM–SM would have to be powered up, an action
that was not intended to be performed in-flight, for the
astronauts to reenter it prior to rentry.

Refer to NASA (1970) and Wikipedia (2014) for details
of the solutions that illustrate how NASA applied Systems
Thinking to innovate and create real-time solutions that
enabled the astronauts to survive and return home safely.

MINIMINIIN

Mini-Case
Study 1.2

Systems Thinking in Action: Critical
Software System Test

A project was developing a large software in-
tensive system to replace an existing system.
To accomplish an orderly transition and re-

placement, the new system operated in a surrogate “shadow
mode” with the existing system to Verify and Validate (V&V)
its condition as being operationally ready. The initial test
was scheduled to occur in the early morning hours when de-
mand for the primary system was low. Due to the system’s
criticality as a control center, the test was under heavy
scrutiny politically, technically, and technologically.
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After months of challenging work to meet an unrealistic
development schedule, the software “locked up” during
Pre-Test Checkout activities. Despite the efforts of many
people and heavy pressure from executives and customers
demanding corrective action due to careers being on the
line, the contributory root cause for the lock-up could not
be identified.

Frustrated, the Lead Software Systems Engineer left the
control center and walked around the large parking lot several
times trying to visualize and assimilate observable facts
based on a mental model of the software’s architecture and
conceptualize a corrective action solution. During one of the
laps, a “light bulb” came on in their head when they realized
that a key software flag may not have been documented and
set in the Pre-Test procedures. The Engineer returned to the
control center, set the flag, and the software became fully
operational less than 30 minutes before the crucial test.

Is Systems Thinking Unique to SEs and Engineers?
Absolutely not! Systems Thinking is a personal attribute
unrelated to SE or engineering. Engineers, by virtue of
reputation of their interest in “tinkering and understanding
how things work,” are often characterized by family mem-
bers and teachers as “Systems Thinkers.” The same can be
said about auto mechanics, food preparation in the home,
PMs, and many other skills. However, there is a difference
between being mechanically, electrically, electronically, or
software minded—one form of Systems Thinking—and the
ability to see things on a much larger, conceptual scale such
as Einstein’s creation of the Theory of Relativity. Systems
Thinkers are present in every field—biology, chemistry,
physics, medicine, politics, education, architecture, banking,
military, communications, and automotive repair, not just
Engineering!

1.9 CHAPTER SUMMARY

This concludes our discussion Systems, Engineering, and
SE. Key points include:

1. We defined system is in terms of what it is, why it exists,
what it is expected to accomplish, and who it benefits.

2. To define SE, we introduced the ABET (Prados, 2007,
p. 108) definition for Engineering and coupled with the
system definition.

3. We highlighted the scope of SE as “Engineering
the (User-Equipment) System” that encompasses the
“Engineering of the (Equipment) Box” by traditional
Engineering that often contributes to factors that drive
system failures and poor customer satisfaction.

4. We also explored examples of types of systems; dis-
tinguished between precedented and unprecedented

systems; and considered the context of systems, prod-
ucts, and tools.

5. Since people often use the terms SE and SE inter-
changeably, we delineated the usage based on its
project or Enterprise context.

6. Lastly, we explored one of the key attributes of SEs,
Systems Thinking.

Given this introductory background, Chapter 2 will
address THE EVOLVING STATE OF SE PRACTICE:
CHALLENGES AND OPPORTUNITIES.

1.10 CHAPTER EXERCISES

1.10.1 Level 1: Chapter Knowledge Exercises

1. Create your own definition of a system. Based on the
“system” definitions provided in this chapter:
a. Identify your viewpoint of shortcomings in the defi-

nitions.

b. Provide rationale as to why you believe your defini-
tion overcomes those shortcomings.

2. From a historical perspective, identify three precedented
systems that were replaced with unprecedented systems.

3. What is a system?

4. Is a product a system?

5. Is a service a system?

6. What are examples of different types of systems?

7. What are the two primary types of systems associated
with system, product, or service development?

8. What is an Engineered System?

9. What is an Organizational System?

10. What is Engineering?

11. What is SE?

12. SE consists of three primary aspects. What are they?
Describe the interactions among the three.

13. How does the scope of Engineering compare with SE in
terms of “Engineering the System” versus “Engineering
the Box.”

14. What is the difference between a system, a product, and
a tool?

1.10.2 Level 2: Chapter Knowledge Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e

http://www.wiley.com/go/systemengineeringanalysis2e
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2
THE EVOLVING STATE OF SE PRACTICE-
CHALLENGES AND OPPORTUNITIES

Enterprises and professionals in industry and government
often erroneously believe they are performing Systems En-
gineering (SE) when in fact they employ a traditional, end-
less loop Plug and Chug … Specify-Design-Build-Test-Fix
(SDBTF) Engineering Paradigm. The paradigm has roots
traceable to the Scientific Method taught in middle and high
school science classes and a 1960s Design Process Model
(DPM). The SDBTF–DPM Paradigm is common in System
Development environments that are characterized as ad hoc,
chaotic, inconsistent, inefficient, and ineffective. A key thrust
of Chapter 2 will be learning to recognize and understand the
SDBTF–DPM Paradigm that impacts SE and subsequently
System Development performance.

Paradigms are simply an ingrained, cultural, mind-set -
groupthink –or model that filters or rejects considerations to
adopt or employ new innovations and ideas that may impact
the existing status quo. Most paradigms remain in place un-
til an external event or the marketplace causes a shift to a
new paradigm. In the case of the marketplace, you either
(1) change with the times and proactively make the competi-
tion; (2) succumb to internal, reactionary “firefighting” and
ultimately go out of business; or (3) are acquired by your
competition.

Chapter 2 examines the evolving state of SE practice of SE
from an historical perspective. Our discussions investigate
various Enterprise SE paradigms that impact overall project
performance. This represents both challenges and opportu-
nities for the future in terms of advancing the state of the SE
practice.

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

From a System Development perspective, our context
of SE practice here focuses on the need for efficient and
effective problem-solving and solution development meth-
ods that apply to all Engineering disciplines, not just
SE. Where these methods are lacking across Engineering
disciplines, Engineers tend to dismiss them because, after
all, they are not EE, ME, and SwE, practices – Not In-
vented Here (NIH). As a result, the multi-discipline integra-
tion required to achieve System Development performance
is often non-existent, ad hoc, inefficient, and ineffective.
As one Engineer stated, “… if my university had thought
this was important, they would have taught me … end of
story!” The end result is projects that have technical per-
formance and compliance issues resulting in overrun bud-
gets and schedules and diminished customer satisfaction – a
source of project management frustration with Engineers and
Engineering.

Traditional Engineering, in general, with the exception
of Software Engineering by virtue of its nature, has always
had a physics-based widget development focus. We see in-
ferences of this in the Engineering definition introduced in
Chapter 1. “… utilize economically, … the materials and
forces of nature … for the benefit of mankind” (Prados,
2007, p. 108). In other words, figure out how to innovate tech-
nologies and widgets that harness and transform “the mate-
rials and forces of nature” to produce output(s) – Equipment
boxes - that exhibit specific performance characteristics for
a given set of operating environment conditions.

To illustrate this point, consider the following example.

http://www.wiley.com/go/systemengineeringanalysis2e
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Example 2.1

The “Engineered” Mousetrap

A consumer requests that an engineer “build
a better mousetrap.” The engineer designs,
builds, tests, and delivers the mousetrap to

the customer.
Sometime later, the engineer sees the consumer and asks

“how did the mousetrap work?” The consumer answers
“Great! It did an excellent job catching mice. However, I
had to spend a considerable amount of time simply trying
to figure out how to bait and set the trap and later removing
the mouse. There has to be a better design.” The engineer
responds … “You didn’t say it had to be easy to use … You
just asked me to build a better mousetrap!”

This example illustrates both the challenges and oppor-
tunities of the twenty-first-century Engineering in a highly
competitive, global economy. This requires a different type
of System Thinking that goes beyond the “box” mind-set
of traditional Engineering—more specifically the need to
understand the Stakeholder’s Operational Needs, Technol-
ogy, Cost, Schedule, and Risk; User Interactions–Usability;
External Systems interfaces; and the “Forces of Nature.” This
is the Realm of SE as illustrated in Figure 1.1.

In the 1970s, an unsubstantiated rumor circulated in
which industry told academia “Teach Engineers how to ‘plug
and chug’ equations and we will teach them how to develop

systems.” A few large corporations developed internal SE
courses. Likewise, a few major universities also offered
courses. However, most Engineers did not have access to
these courses or training. As a result, Engineers acquired
“systems” and SE knowledge experientially via personal
self-study of emerging and evolving SE standards, journal
articles, etc. tempered by On-the-Job Training (OJT).

Historically, Engineering Education has been Engineering
discipline focused—EE, ME, and SwE—as illustrated in
Figure 2.1. However:

Where do discipline Engineers become educated in
Multi-discipline Integration that serves as the centerpiece
for SE in industry and government, especially in common
problem-solving and solution development methods?

The solution is multi-faceted requiring an integrated System
of Systems (SoS) - academia, industry, government, profes-
sional, and standards Enterprises – environment.

The process begins with establishing SE courses as an in-
tegral requirement for Engineering degree programs. Engi-
neering institutions will argue that SE courses already exist
but not as a degree requirement. SE courses based on the
traditional Engineering instructional classroom model - plug
and chug equations - taught by instructors with limited or
no SE industrial experience do not solve the Multi-discipline
Integration void illustrated in Figure 2.1.

Operational
Needs Technology Cost Schedule Risk

Realm of Systems Engineering

Engineering Education Focus
on Discipline Solutions “Within the Box”

To “Harness the Forces of Nature”User interactions

Stakeholders

Users
End Users

Traditional Engineering

Hardware

Electrical Mechanical

Software Materials

Civil Bio-Med

External Systems Multi-
Discipline
Integration

???

 

• Data, Energy, et al.

• Resources
• Command and Control (C2)

Systems
and

Products

Forces of Nature
Industrial Chemical

Et al
Software

Figure 2.1 Void in the Traditional Engineering Education Model
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The other non-academic aspects of the SoS solutions have
been addressed by industry, government, professional, and
standards organizations. However, they have not addressed
a primary root cause of poor project performance—the
SDBTF–DPM Paradigm, which has origins in Engineering
Education.

These points provide the backdrop for Chapter 2.

2.1 DEFINITIONS OF KEY TERMS

Paradigm—An ingrained, groupthink mind-set or model
that filters or rejects considerations to adopt or employ
new innovations and ideas that may impact the status
quo.
∘ Decision Artifacts—Physical, objective evidence

of decision or result outcomes documented in work
products such as plans, tasks, conference or review
minutes, specifications, designs, analyses, models,
simulations, demonstrations, quality conformance
inspections, test results, and others.

∘ Design-Build-Test-Fix (DBTF) Paradigm—An ad
hoc, trial-and-error, instructional model traceable to
the Scientific Method in which engineers perform
“stovepipe” engineering: (1) design an entity, (2)
assemble it in the lab, (3) test it, and (4) fix, rework,
or patch the design or its physical implementation.
These activities are iterated in a seemingly endless
loop until convergence is achieved in a final solution
or schedule and cost resources become depleted.
(Wasson, 2012, p. 1).

∘ Paradigm shift—A transformational change driven
(1) externally by the marketplace or technology
or (2) internally through visionary leadership to
advance state of the practice or being from one
paradigm to another over a planned period of time
(Wasson, 2012, p. 2).

∘ Plug and Chug Paradigm—Represents a tradi-
tional Engineering instructional classroom teach-
ing model for solving classical boundary condition
problems in which students Plug a value into an
equation and Chug out an answer (Adapted from
Wasson, 2012, p. 1).

∘ Specify-Design-Build-Test-Fix (SDBTF) Para-
digm—An expansion of the instructional classroom
Plug and Chug … DBTF Paradigm teaching model
to include specification of requirements (Wasson,
2012, p. 1).

System Acquisition and Management (SA&M) Activi-
ties performed by a System Acquirer to procure a sys-
tem, product, or service; monitor, track and review its
development; witness verification of compliance to its
contract and technical specification requirements; and

validate that the system satisfies the User’s operational
needs.

System Engineering and Development (SE&D) The
sequential workflow activities performed by a System
Developer to:
∘ Identify a system’s Stakeholders - Users and End

Users.

∘ Understand and analyze Stakeholder operational
needs—User stories, use cases, and scenarios.

∘ Transform those needs into performance specifica-
tion requirements.

∘ Incrementally select and document a multi-level
System Design Solution using an Analysis
of Alternatives (AoA) based of sets of viable
candidates.

∘ Procure, develop, or modify the components.

∘ Integrate and test components for compliance veri-
fication to specification requirements.

∘ Incrementally conduct technical reviews to ensure
Verification and Validation (V&V) to specification
and task requirements.

∘ Verify and Validate (V&V) the system throughout
its development.

Validation The continuous process of evaluating and as-
sessing how well multi-discipline SE activities and
work products – decision artifacts such as specifica-
tions, designs, or devices satisfy the respective User
based on their pre-defined operational needs, con-
straints, and performance expectations.

Verification The continuous process of evaluating Sys-
tem Acquirer, System Developer, Services Provider,
or User work products throughout the System/Product
Life Cycle to assess compliance to pre-defined con-
tract, mission, or task requirements.

Work Product Physical, objective evidence that
planned process outcomes such as (1) decision
artifacts – documentation and (2) deliverable systems,
products, or services have been completed. This does
not mean that the work product complies with a
specification, plan, or task order, only evidence of
completion and delivery. Objective evidence of formal
verification of work product compliance, a separate
issue, should be a mandatory condition for completion
and delivery.

Author’s Note 2.1

The validation definition above is a
general-purpose description that ap-
plies to:
• System Acquirer acquisition docu-

ments such as contracts, Statements
of Work (SOW), specifications, and other documents.
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• System Developer System, Product, Subsystem,
Assemblies, Subassembly, and Part specifications,
designs, drawings, test procedures, and devices.

• Vendor specifications, designs, drawings, test proce-
dures, and devices.

• System Acquirer—User evaluation of the system.

• Users—deploying, operating, maintaining, and sus-
taining the fielded system.

2.2 APPROACH TO THIS CHAPTER

We begin with a couple of examples that illustrate the state
of SE practice in many Enterprises today. For customers of
those Enterprises, project performance is often marked by
overrun budgets and schedule as well as poor technical per-
formance. We introduce results from the National Defense
Industries Association (NDIA) concerning the Top Five SE
issues and connect those findings to Enterprise Engineering
Paradigms.

Another factor concerns the level of SE Effort—resources
and funding—on projects, which is often underfunded due
to limited budgets and the difficulty in quantifying the Re-
turn on Investment (ROI) for SE effectiveness. We introduce
research data that illustrates how project cost and schedule
performance with an optimal level of SE Effort improve the
chances of success in meeting cost and schedule require-
ments.

We trace the origins of the fundamental SDBTF–DPM
Engineering Paradigm back to three sources:

• The Scientific Method introduced in middle and high
school science classes.

• The Plug and Chug … DBTF Paradigm acquired from
academic courses and lab sessions.

• Archer’s (1965) DPM.

Chapter 4 introduces the concept of problem spaces and
solution spaces. Using a puzzle analogy, a problem space
represents the puzzle and its outer boundaries to be solved
(Figure 4.7). Pieces of the puzzle represent unique solution
spaces that integrate via their interlocking boundaries solve
the higher-level puzzle - problem space.

Viewing System Development performance as a
multi-faceted problem space, industry, government,
academia, professional, and standards organizations have
attempted to implement several types of solution spaces.
In some cases, the problem space is dynamic and evolving
over time. For example, SE and SwE, as emerging and
maturing disciplines, are highly interdependent not only
between themselves but also with the more mature hardware
Engineering disciplines such as EE, ME, CE, Civil, ChemE,
Nuclear, Materials, and others.

The multi-discipline Engineering integration challenge
has been exacerbated by other factors such as advanc-
ing technologies and analytical tools to support system
decision-making, creation of evolving standards and ca-
pability assessment methods, improvement in Engineering
education accreditation criteria, documentation of Organi-
zational Standards Processes (OSPs), Lean Systems Engi-
neering (LSE) and thinking, etc. Yet, System Development
performance continues to be a problem. This leads to a
key question: Have industry, government, academia, pro-
fessional, and standards organizations been focusing on
Enterprise process “symptom solving” unaware of an un-
derlying deficiency in Engineering education that requires
“problem-solving”?

The author proposes that all of these solutions are
necessary to achieve project performance that is consis-
tent, reliable, and predictable. However, they are insuf-
ficient in solving the root cause of the System Devel-
opment performance problem. The problem traces to a
lack of fundamentals of SE course that introduces system
problem-solving and solution development methods com-
mon across all Engineering programs. For example, most
Engineers are required to complete courses in Engineering
Statics and Dynamics, Engineering Economy, Strength of
Materials, Thermodynamics, etc. Yet, they lack common,
multi-discipline problem-solving and solution development
methods, vocabularies, meanings, etc. that enable them to
immediately become productive in work environments fol-
lowing graduation.

Engineering programs will argue that they have offered
fundamentals of SE course for years. However, many of
these courses focus on (1) SA&M, overseeing how others
should be performing SE, or (2) equation-based instruction,
the comfort zone of Engineering. These courses are fine
when appropriately introduced after a fundamentals of SE
course that provides competent instruction in SE concepts,
principles, and practices addressed in this text.

The educational problem is further exacerbated by a
lack of course instructors who (1) have in-depth indus-
try experience of 20+ years or more and (2) recognize,
understand, and appreciate the SDBTF–DPM Engineering
Paradigm and how its abstract, endless loop methodology
is a key driver for poor System Development technical
performance.

Given this overview, let’s begin our discussion with the
State of SE and System Development Performance.

2.3 THE STATE OF SE AND SYSTEM
DEVELOPMENT PERFORMANCE

One of the best ways to illustrate the current state of SE
practice is to use a couple of examples. Since the two main
contributors to the System Development performance issue
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are System Developers and Engineering Education, we will
use one hypothetical example of each.

MINIMINIIN

Mini-Case
Study 2.1

Case of the Eloquent, Egotistical Proposal

A Stakeholder—User or System Acquirer—
releases a Request for Proposal (RFP) to a
list of potentially qualified off errors. The
offerors prepare and submit their proposals.

The System Acquirer’s Source Selection Evaluation Team
(SSET) reviews and scores each proposal that includes
euphoric themes that read as follows:

Dear Mr. or Mrs. Customer:
Thank you for the opportunity to bid on Acquisition No.

_____. Our Enterprise is the best there is. We have the
best, well-trained, high-performing SE team and documented
processes that everyone understands and follows to the letter
that is compliant with Standard X …

Our Enterprise has also been assessed to be the highest
level of SE capability there is … in most of the assessment
areas. Our Engineering Process is tailorable and guides cre-
ation of specifications, develops designs, builds components,
and integrates and tests the components. Prior to delivery, we
perform V&V. If you award us the contract, rest assured the
project will go smoothly (Figure 2.2, Panel 1) with on-time
delivery and acceptable risk … all within the budget.

The System Acquirer informs their management they are
confident they have selected a System Developer that can
perform the work scope. The Acquirer awards the contract
System Developer.

Beginning with the first technical review and continuing
throughout the contract, the System Acquirer becomes con-
cerned that the “rest assured the project will go smoothly”
in Figure 2.2, Panel 1 actually resembles the perturbations
shown in Panel 2. Ad hoc indecisions and subsurface chaos
begin to emerge over time. Key milestones are missed. Bud-
gets begin to overrun. Then, the System Developer makes
bold pronouncements that they are now in System Integration
and Test (SI&T) and “back on schedule.”

Then … an amazing discovery occurs. The System Ac-
quirer learns that the System Developer is actually redesign-
ing the system … in SI&T (NDIA 2010 Issue #4 addressed
later). Subsystem Teams A and B failed to baseline their In-
terface Control Documents (ICDs), and changes were made
without informing the other team.

Fiction? As a case study, yes! However, key points in the
case study occur every day. When you analyze these cases,
you discover that Enterprises employ paradigms in which
they truly believe they are performing SE. They perceive SE
to be performing the following activities:

1. Writing requirements specifications.

2. Developing architectures and designs.

3. Developing or acquiring components.

4. Performing SI&T.

5. Verifying compliance to specification requirements.

The reality is that these activities represent the general
workflow of the project level System Development Process

Proposal Technical
Management Plan

Plug and Chug …
SDBTF-DPM Paradigm

Approach

Planned
Performance

Solution
Decision

Convergence

1

Option A

Solution
Decision

Convergence
2

DeliveryKey Milestones Key Milestones Delivery

System Engineering
Approach

Your Choice
Option B

Delivery

3

Legend:

DPM = Design Process Model
SDBTF = Specify-Design-Build-Test-Fix 

Figure 2.2 Comparison of Enterprise and Organizational SE Capabilities
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Figure 2.3 SDBTF Quantum Leaps from Requirements to Physical Design Solutions

(Figure 15.2). They are not SE! Although SE encompasses
these activities, it is a problem-solving and solution develop-
ment methodology that can be applied to the system or any
entity within the System. Additionally, the sequence above
infers that one activity must be completed before the next.
This, too, is erroneous! Some Enterprises, projects, and En-
gineers approach these activities like a checklist believing
SE produces documentation to check each box. Then, when
(1) their System or Product fails or (2) schedules or costs
overrun, they blame the result on SE. Contrary to uninformed
opinion, SE is NOT about producing documentation; it is
about decision making!

Wasson (2012) observes that this paradigm is a condition
referred to as the Plug and Chug … SDBTF Engineering
Paradigm, an endless loop exercise that results in technical
and programmatic risk, cost overruns, missed schedules,
and latent defects in fielded systems. To illustrate, SDBTF
Enterprises, functional organizations, projects, and Engi-
neers often have the view “give us some requirements and
we can design and develop the hardware and software
widgets—whatever you need” as shown in Figure 2.3. If
you observe their work patterns, Engineers often prematurely
take a quantum leap or shortcut from Requirements (what
is to be accomplished) to a single Physical Design Solution

(how to physically implement the solution without consider-
ation on interim steps). In this case, a point design solution
is created, which may or may not be optimal. Little or no
consideration is given to:

1. How the User envisions deploying, operating, main-
taining, sustaining, and retiring/disposing of the sys-
tem.

2. How the User expects the System or Product to re-
spond to external stimuli, excitations, or cues that oc-
cur after they have designed the physical implementa-
tion of the system.

3. Alternative solutions based on a set of viable candi-
dates.

Most efforts like this often result in considerable rework
or failure, overrun budgets and schedules, and risk. A
bona fide SE Process methodology introduced later in
Chapters 11 and 14 provides a logical decision making
progression—Requirements → Operations → Behavior →
Physical Implementation—in an efficient and effective man-
ner. It focuses on decision-making convergence and out-
comes while minimizing rework.

This leads to a key question: If the Typical SDBTF
Engineering Approach results in rework, failure, risk, and
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other effects, why is System Development performed in this
manner? The answer resides in Engineering Education. This
takes us to Mini-Case Study 2.2.

MINIMINIIN

Mini-Case
Study 2.2

Case of the Project Engineer and
Engineering Education

A Lead SE (LSE) on a large complex System
Development project is confronted not only
with the technical and technological chal-

lenges of the system but also with personnel that have been
“knighted” by their manager as SEs without any requisite ed-
ucation and experience. It is a major challenge that diverts
energy and time from the main work of the project.

Challenged to (1) train the so-called SEs in real time dur-
ing the business day, which is their functional SE manager’s
job, and (2) oversee the SE aspects of the technical pro-
gram, the LSE decides to contact a local university with a
ranked Engineering Program about teaching a continuing ed-
ucation course in SE after hours. The LSE schedules a meet-
ing with the Dean of Continuing Education (DCE), presents
the course proposal, and provides a course syllabus that was
well received. The DCE, however, observes that since “Engi-
neering” is part of the proposed SE course title, it should
be coordinated with the Dean of Engineering. Makes perfect
sense!

A couple of weeks later, the LSE has a follow-up meeting
with the DCE. All smiles, the DCE noted that the Dean

of Engineering found no conflict with other Engineering
courses. In fact, the DCE quotes the Dean of Engineering
… “… could find NO ENGINEERING in the course at all”
and “proudly recited the revered research institution speech.”

Leaving the meeting, the LSE returns to their office con-
templating the Dean of Engineering’s response. By coinci-
dence, a green Engineering notepad is lying on the desk with
its reverse side grid facing upward. Staring at the grid, the
LSE comes to a startling realization expressed in Figure 2.4.
The outer boundaries of the notepad represent the complex
system development problem the LSE has to solve. Each cell
symbolizes undefined boundary condition problems to be
bounded and specified.

In contrast, the Dean of Engineering is educating En-
gineers to “plug and chug” Engineering boundary condi-
tion problems where initial conditions, assumptions, etc. are
known. After graduation, they enter industry and govern-
ment to await someone to give them clearly defined boundary
condition problems to solve using the Plug and Chug …
SDBTF Engineering Paradigm. Dismayed, the LSE shakes
their head concerning the void between requisite skills En-
gineering graduates need to enter the workforce versus the
reality of today’s Engineering education outcomes. But that
does not help the LSE solve their current problem.

In general, these two examples illustrate the state of SE
and System Development practice today in some Enterprises.
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2.4 UNDERSTANDING THE PROBLEM: ROOT
CAUSE ANALYSIS

There are numerous factors that contribute to System Devel-
opment performance issues such as organizational manage-
ment, functional management, Project Management (PM),
lack of Engineering education, especially a fundamentals of
SE course, and training, etc.

To understand what is occurring in enterprises and
projects, you need to understand not only the technical as-
pects of System Development—specifically SE—but also the
Organizational Development (OD) and Instructional System
Development (ISD) aspects concerning how people learn
and perform. Wasson (2012) notes several enterprise perfor-
mance effectors that contribute to the performance issue:

1. Ad hoc, bottom-up Engineering.

2. Misperceptions that writing specifications, develop-
ing designs, performing integration and test, and then
verifying and possibly validating a system is, by defi-
nition, SE.

3. Erroneous perception that the ad hoc, Plug and Chug
… SDBTF Paradigm, a convolution of the Sci-
entific Method and a 1960s DPM, is a valid SE
problem-solving and solution development methodol-
ogy.

4. Incorrect portrayal of the System Development Pro-
cess as being the SE Process.

5. Erroneous assumption that the SE Process applies
once to the System level.

6. Failure to recognize and understand that specifications
are more than just a random “shall” statements orga-
nized via a standard outline structure.

7. Erroneous belief that SE is about creating bureaucratic
documentation.

8. Failure to recognize and understand that the System
and every hierarchical Entity within it is char-
acterized by four domain solutions—Requirements,
Operations, Behavioral, and Physical—that when in-
tegrated comprise the overall System Design Solution.

9. Failure to recognize that SE competency requires two
levels of knowledge and experience: (1) understand-
ing the SE concepts, principles, and practices concern-
ing the engineering of systems (undergraduate level)
and (2) understanding how to efficiently and effec-
tively tailor SE practices to achieve project objectives
within technical, technology, cost, schedule, and risk
constraints without compromising the integrity of the
discipline (graduate level).

10. Failure to recognize that directing personnel to follow
regimented organizational processes and checklists—
“‘Paint-by-Number’ Engineering” (Wasson, 2008,
p. 33)—unsupported by formal SE educational,

training, and leadership will lead to Enterpriseal and
project success” (Wasson, 2012, p. 4–5).

Author’s Note 2.2

OSPs incorporate best practices,
lessons learned, and checklists to
serve as guides for planning, flex-
ibility, and performing tasks. By
education and training, bona fide SEs

know and understand the process instinctively and use it as
a mental reference model for decision-making.

Rigid “Paint-by-Number” processes turn SEs, System
Analysts, and Engineers into procedural robots, not systems
thinkers. As an example, Dr. Michael Griffin, former NASA
Administrator, cautions about procedural interface defini-
tions and verification without understanding the dynamic in-
teractions (Warwick and Norris, 2010). Every project and
system is different; documented processes should provide a
common frame of reference while promoting flexibility and
agility in thinking, action, and informed decision-making.

Objective evidence of these conditions is reflected by the
NDIA SE Issues Surveys.

2.4.1 NDIA SE Issue Surveys

The NDIA System Engineering Division (SED) System
Engineering Effectiveness Committee (SEEC) periodically
surveys its members to assess the Top 5 SE Issues and
progress in corrective actions identified in previous surveys.
The most recent survey, which was conducted in 2010,
identifies the following issues—no specific priority order:

NDIA 2010 SE Issue 1—The quantity and quality of
SE expertise are insufficient to meet the demands of the
government and defense industry.

NDIA 2010 SE Issue 2—SE practices known to be effective
are not consistently applied or properly resourced to enable
early system definition.

NDIA 2010 SE Issue 3—Technical decision-makers do not
have the right information and insight at the right time to
support informed and proactive decision-making or may
not act on all the technical information available to ensure
effective and efficient program planning, management, and
execution.

NDIA 2010 SE Issue 4—Lack of technical authority can
impact the integrity of developed system and result in
cost/schedule/system performance impacts as the technical
solution is iterated and reworked in later stages of the
development.

NDIA 2010 SE Issue 5—Increasingly urgent demands of the
warfighter are requiring effective capabilities to be fielded
more rapidly than the conventional acquisition processes and
development methodologies allow.

—NDIA, 2010, pp. 4–5.
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You may argue these issues are unique to the defense industry
and are not relevant to your industry. Commercial industry,
for example, by virtue of its competitive, proprietary, and
intellectual property nature does not publicly reveal issues
about its own performance. For software, as an example,
the Standish Group produces Chaos Reports that identify
performance issues and metrics for Information Technology
(IT) projects. Similar issues exist in commercial industry
as well.

SEs and others argue that one of the reasons SE project
performance is inadequate is due to the lack of adequate SE
resources. Token resources are often allocated by projects to
substantiate claims of performing SE.

2.4.2 SE Project Resources Challenges

Every technical project faces a common issue: what is the
minimum funding threshold level for SE for the project to en-
sure a reasonable chance of success? In general, the answer
depends on the Enterprise or project; the education, train-
ing, and competency of its personnel; project complexity; the
customer; and a host of other factors.

Typically, Quality Assurance (QA) and sometimes Con-
figuration Management (CM) are allocated an automatic per-
centage of the project’s budget “up front” after the Project
Manager (PM) takes out 10%+ as a manage reserve for
contingencies and risk actions. PMs, responding to Enter-
priseal command media, often pay token lip service for SE
by “checking the box” and providing insufficient resources or
funding. Since SE is not considered “touch labor” in terms
of designing the System or Product, it is often viewed as
an “overhead cost” or tax.

Quantification of SE effectiveness and ROI is challenging.
SE is like QA; it is difficult to measure the Cost of Quality;
however, when QA is missing, the Cost of Poor Quality
is very quantifiable such as product recalls, dissatisfied
customer returns, and so on.

To address the SE effectiveness and ROI issue, Honour
(2013) makes several key points based on his research that
includes dissenting opinions:

1. “There is a quantifiable relationship between SE effort
levels and program success” (Honour, 2013, p. 177).

2. “SE has a significant, quantifiable ROI.

…For programs operating at near-nil SE effort, that
ROI is as high as 7:1, a program cost reduction seven
times as great as the added SE cost. For programs op-
erating near the median of the interviewed programs,
the ROI is 3.5:1”

—(Honour, 2013, p. 178).

3. There is an optimum amount of SE for best program
success.

“For Total SE, the optimum amount of effort for a
median program is 14.4% of the total program cost.
For non-median programs, this value can vary roughly
between 8% and 19% of the total program based on the
varying program characteristics”

—(Honour, 2013, p. 179).

4. “Programs typically use less SE effort than is optimum
for best success.”

Is there a correlation between SE Effort and meeting
planned actual/planned project costs?

Honour’s (2013) research indicates there is. He states
“… for a median $14M program operating at 8.5% SE
effort (versus 14.4% for optimal SE effort), the observed
cost overrun was on the order of $1.5M; for a similar
program using $200K greater SE effort, the cost overrun was
only $1.0M” (Honour, 2013, p. 180). Figure 2.5 provides a
correlation plot of Actual/Planned Cost normalized to 1.0 as
a function of Equivalent SE Effort (ESEE) as a % of Program
Cost (Honour, 2013, Figure 37, p. 110). Actual/Planned Cost
> 1.0 represents a cost overrun.

Is there a relationship between SE Effort and meeting
planned actual/planned schedule targets?

Honour’s (2013) research indicates there is. Figure 2.6
illustrates results that correlate a correlation plot of Ac-
tual/Planned Schedule results normalized to 1.0 as a function
of ESEE as a % of Program Cost (Honour, 2013, Figure 38,
p. 110). Actual/Planned Schedule> 1.0 represents a schedule
overrun.

Is there a relationship between SE Effort and overall
success?

First, what constitutes overall success? Honour (2013,
p. 43) states that Overall Success is a subjective measure
in which interview participants were asked to estimate
stakeholder satisfaction on a subjective scale. Figure 2.7
provides a correlation plot of Overall Success normalized to
1.0 as a function of ESEE as a % of Program Cost (Honour,
2013, Figure 39, p. 111). Overall Success < 1.0 represents a
degree of success.

Author’s Note 2.3

Honour’s Research (2013)

Please note that Honour’s research
does not differentiate if data were col-
lected from projects that employed the

ad hoc Plug and Chug … SDBTF Paradigm or true SE as
addressed in this text or enterprise/project SE capability.

As a final point, observe the bow like curves in
Figures 2.4–2.6. In terms of meeting Actual/Planned
Cost and Schedule targets, reducing or adding resources on
either side of the optimal 14.4% of Program Cost for SE
Effort can have negative performance effects.
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Referral For additional information concerning the opti-
mal level of SE resources for a project, refer to Honour
(2013) for a detailed discussion of his research.

How do we solve these problems? This brings us to our
next topic, Industry, Government, Academic, Professional,
and Standards Organizations Solutions.

2.5 INDUSTRY, GOVERNMENT, ACADEMIC,
PROFESSIONAL, AND STANDARDS
ORGANIZATIONS SOLUTIONS

Principle 2.1

User’s Problem Space Principle

Thoroughly understand the problem or issue
the User needs to solve, not just surface level
symptoms that fail to reveal the underlying
root cause and its contributors.

Most people often think of SE concepts, principles, and
practices as applying only to Engineered Systems such as
computers, smartphones, and aircraft. Yet, fail to recog-
nize that the same SE concepts, principles, and practices
apply to Enterprise Systems—divisions, departments, and
projects—that develop Engineered Systems.

When Enterprise Systems exhibit project performance is-
sues, SE views each issue as problem space (Chapter 4) that

must be prioritized for corrective action by one or more so-
lution spaces. This section addresses how industry, govern-
ment, academia, professional, and standards organizations
provided solution space corrective actions to deal with vari-
ous types of System Development, SE, SwE, and other per-
formance issues—problem spaces—over the past 50 years.

Since the emergence of modern SE in the WWII
timeframe, industry, government, academia, professional,
and standards, organizations have tried to address the rela-
tionship of SE effectiveness to project performance problem
space. Honour’s (2013) research in the preceding discussion
illustrate one aspect Enterprises understand – application
of funding resources to a problem space in the hope it will
go away.

In general, fragmented solution spaces to project perfor-
mance problems have evolved such as … we need better
standards … we need more processes … we need to assess
our SE capabilities to perform. The solution has been to pile
on layers of standards, processes, capability assessments, etc.
As a result, metrics indicate that Enterprise performance has
improved … up to a point of diminishing returns. Yet, Sys-
tem Development performance issues persist after all of this
investment.

Although the evolving solutions have been necessary,
they have been insufficient in addressing at least one key
issue—how SE is understood and applied. The flaw in the
solution space discussions that follow is how the underlying
Plug and Chug … SDBTF Engineering Paradigm has
been allowed to migrate unchecked and uncorrected through
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higher education and subsequently into industry to merge
with another DPM paradigm (Archer, 1965). To better
understand the evolution of industry, government, academic,
professional, and standards organizations solutions, let’s
investigate the historical legacy.

2.5.1 SE Standards Solutions

Since the 1950s, SE standards have been developed and
evolved to establish a basis for consistently developing
systems that will deliver the required outcomes and levels
of performance. Most notably, the initial releases of various
standards include:

AFSCM 375-5 (1966) Air Force Systems Command
Manual 375-5, System Engineering Management
Procedures.

MIL-STD-499 (1969) Military Standard: Systems Engi-
neering Management.

FM-770-78 (1979) US Army Field Manual: Systems
Engineering.

EIA/IS 632-1994 (1994) Interim Standard: Processes for
Engineering a System.

IEEE 1220-1994 (1995)—IEEE Trial-Use Standard for
Application and Management of the SE Process.

ISO/IEC 15288:2015 (2015) Systems and software
engineering—System life cycle processes.

For some of today’s senior SEs, the evolution of these
standards became a source of SE education. SE courses
were simply not available or accessible for many unless you
lived near one of the few major institutions. Johnson (2002)
addressing the evolution of SE observes that system failures
in the first half of the 1900s were due to a failure to “manage”
the development. As such, Systems Management processes
and standards became a focal point for System Development.
This point is illustrated by SE standards titles in the list
above. Today, education and training continue to focus
on Systems Acquisition and Management and Specialty
Engineering courses where anecdotal evidence suggests that
most SEs spend less than 5% of their time; yet ignoring
SE&D (Figure 1.1) courses where the remaining 95% of
most SE’s time is consumed.

Enterprises often contend that their SE Process (SDBTF)
is a problem-solving and solution development method-
ology. In some respects, especially in Research and
Development (R&D), that is true. However, the core
methodology of the Scientific Method is a process of
scientific inquiry and investigation requiring hypothesis de-
velopment, testing, refinement, and validation. SE&D is not
always an exact science due to the uncertainties and frailties
in human decision-making. SE&D involves application
of technology to a system, product, or service, not R&D.

If a project requires an SE problem-solving and solution
development methodology focused on hypothesis testing,
either the problem is not well understood or the technology
requires further refinement and maturity for application
development.

Author’s Note 2.4

Types of Engineering Problems

The nature of some complex Engineer-
ing problems is so challenging that
they are characterized as:

1. Wicked—Rittel Lecture (Pre-1967), Churchman
(1967).

2. Vexing—These do require iterations of design solu-
tions.

Referral For additional information about wicked prob-
lems, refer to Goldman (2013, p. 6), Rittel and Webber
(1973), Rowe (1998, p. 41), and Vitasek (2014).

Military organizations, for example, often release a se-
quence of contracts over time in which the outcomes and
work products—specifications and designs—of each con-
tract become the basis for the next phase until specification
requirements are sufficiently mature to develop a reliable and
mature system.

The preceding hypothesis testing discussion above refers
to general, everyday Engineering problems that are not
considered wicked and vexing. Those generally fall into the
realm of R&D due to technology and solution maturity.

2.5.2 Current SE Process Paradigms

Enterprises will often contend they have a problem-solving
and solution development process based on the System
Engineering Process originating in MIL-STD-499B Draft
(1994). Key steps of the process include Requirements
Analysis, Functional Analysis/Allocation, Synthesis, and
System Analysis and Control (Balance). The process has
served the military well and is often referenced in textbooks
and Enterprise OSPs.

Commercial Enterprises and engineers often rebuff the
process as indicative of bureaucratic paper work. In terms
of advancing SE knowledge and best practices, the SE
Process as a paradigm needs to be shifted to a new SE
Process paradigm (Chapters 11 and 14) to resolve many of
its deficiencies and reflect new SE approaches.

Enterprises and projects today need a global SE Pro-
cess that is applicable to multiple industries—public and
private—that reflects current thinking, is easy to learn, and
overcomes the deficiencies of the MIL-STD-499B Draft
(1994) SE Process. For example:
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Requirements Analysis infers that requirements exist
and are available to be analyzed. This is seldom the
case, especially when customers may not know what
their needs or objectives are. In fact, only an abstract
vision, problem, or issue may exist. Requirements
Analysis is a “downstream” activity that needs to
be replaced by customer-focused systems thinking in
terms of understanding the User’s problem or issue
space to be solved.

Functional Analysis/Allocation became outdated in the
1980s. If you challenge this, ask software develop-
ers. Yet, SE Enterprises seemingly continue to cling to
the Functional Analysis concept forever. As stated in
Chapter 1, a function simply expresses a unitless action
to be performed. Users expect a system, product, or
service to produce performance-based outcomes, not
functions! When people refer to Functional Analysis
and Decomposition, that is the easy part. The challenge
of SE is bounding, specifying, and allocating capabil-
ities with performance-based magnitudes. Recognize
and appreciate the difference! More on this topic will
be presented in Chapter 21.

Synthesis although valid as a label, it is an abstract term
that few understand. There are better ways of express-
ing the solution conceptualization, formulation, selec-
tion, and development of a solution than abstract terms
such as Synthesis.

System Analysis and Control are clear and concise;
however, System Control is a technical management
issue, not a technical process.

Then, there are the missing process elements. The Re-
quirements → Functions → Synthesis flow is outdated,
flawed, and does not clearly reflect how SE is performed
(Chapters 11 and 14). Specifically, SDBTF Enterprises pre-
maturely take the Requirements → Functions → Synthesis
quantum leap (Figure 2.3) and neglect two critical elements
in the flow.

Operations—How the User intends to deploy, operate,
maintain, sustain, retire, and dispose of a fielded
system that leads to defining system behaviors.

Behavior—How the User expects the system or product
to respond behaviorally to external stimuli, excitations,
and cues that lead to formulation, development, evalu-
ation, and selection of a physical implementation.

Attempts have been made to express these missing elements
in terms of views of a system: (1) an Operational View, (2)
a Functional View, and (3) a Physical View. The problem is
we now have:

1. An SE Process with one set of activities—Requirements
Analysis, Functional Analysis, Synthesis, and System
Analysis and Control.

2. Another set of views—Operational, Functional, and
Physical.

Understanding the MIL-STD-499B Draft (1994) SE Process
is exacerbated by another paradigm. Enterprises, functional
organizations, projects, and Engineers often believe that the
SE Process is only performed once at the System level.
Chapters 12 and 14 shift this paradigm to a new SE Process.

In summary, the time has come to embrace new concepts
for an SE Process. What is needed is an SE Process based
on a problem-solving and solution development methodology
applicable to any type of Enterprise System or Engineered
system, product, or service. We will introduce the founda-
tion for new SE Process in Chapters 11 and 14 after we have
established an understanding in Part 1, “System Engineer-
ing and Analysis Concepts.”

2.5.3 The Emergence of Software in Systems

During the 1980s, systems began to leverage microprocessor
and other technologies to accommodate the need for quick
modification changes that otherwise would have taken con-
siderably longer in hardware—procurement of parts: Fab-
rication, Assembly, Inspection, and Test (FAIT). However,
with the emergence of Software Engineering as a discipline
coupled with rapid growth of software intensive systems,
challenges emerged—how to develop quality software ef-
ficiently and effectively, especially in mission-critical and
safety-critical systems such as manned space flight, medical
systems, etc. During the early years, EEs and others often
wrote the software for some hardware applications.

To address these challenges, the US DoD established the
Software Engineering Institute (SEI) at Carnegie Mellon
University in 1984 as a federal research center. In 1987,
the SEI published the Capability Maturity Model (CMM)
for Software (SEI, 2014) to assess Enterprise capabilities
to develop software. The CMM continued to evolve over
several years to a release of the SW-CMM Version 1.0 in
1991.

Developing quality software was just one aspect. Of par-
ticular interest to the DoD was the need to contract with
Enterprises that were capable of developing, producing, and
delivering quality software that was technically compliant,
on-schedule, and within budget. Significant resources were
invested in SW training, process development, and assess-
ments. As a result, the quality of SW improved dramati-
cally. However, one of the discoveries was that SW engineers
were developing improved software to very poor require-
ments originating from SE.

From the 1950s to 1980s, SEs, typically EEs, wrote soft-
ware requirements. Since the SEs and EEs were hardware
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designers, they wrote the specification requirements and se-
lected the computer hardware processor whether it was ap-
propriate for the software application or not. These decisions
were “thrown over the transom to SwEs” for implementa-
tion with little or no collaboration, opportunity for review,
acceptance, or approval. Fortunately, many of these old En-
gineering paradigms have shifted in most Enterprises.

Recognizing the significance and criticality of software in
systems today and its contributions to project failures, indus-
try responded and formed Systems and Software Engineering
divisions, departments, etc. to clearly communicate to their
customers that they were addressing the SE–SW integration
issue. Hardware, an integral part of every system, was no-
ticeably absent. The title raised questions and appeared odd
to many people, especially given the “multi-disciplinary sys-
tem integration” public relations messages. For example, did
it mean Systems (Engineering) and Software Engineering?
If so, wasn’t hardware part of “multi-disciplinary systems
integration”? Or did it mean Systems (Hardware) and Soft-
ware Engineering, Systems (Engineering and Hardware) and
Software Engineering, and so forth?

2.5.4 The Evolution of OSP Solutions

Faced with global competition, the automotive industry be-
gan redefining itself by documenting processes, performing
statistical process control—Six Sigma—and other methods
in the 1980s. Other industries began to address the ad hoc
and chaotic nature of System Development project perfor-
mance based on system failures and poor project perfor-
mance. They reasoned that they should be able to develop
systems, products, or services the way automobile manufac-
turers designed and mass-produced automobiles. From an
Enterprise perspective, the solution became “everyone doc-
ument your (SDBTF) processes.” As a result, Engineering
Manuals that documented THE (SDBTF) Engineering Pro-
cess including the SE Process began to emerge.

Unfortunately, due to a lack of SE education and com-
mitment of training resources by enterprises, most of these
processes turned into “Paint-by-Number Engineering” (Was-
son, 2008, p. 33) exercises—perform to the processes. Many
of these processes did nothing to shift the SDBTF Paradigm.
If something went wrong, along came another patch and fix
process.

In 2010, Warwick and Norris (2010) posed an interest-
ing question to industry leaders that included Dr. Michael
Griffin, former NASA Administrator: Is it time to revamp
SE? The context of the article addressed the application and
validity of SE requirements decomposition methods to com-
plicated versus complex—dynamically changing—systems.
Some view SE decomposition methods as applicable only
to complicated systems, not complex systems such as Sys-
tems of Systems (SoS) due to their autonomy as well
as their evolving and dynamic nature. Dr. Griffin makes

key observations that seem applicable to the “patch and fix
processes” current State of SE Practice:

1. “How is it that we continue to encounter failure of im-
portant and complex systems where everything thought
to be necessary in the way of process control was done,
and yet despite these efforts the system failed?” Griffin
asks. “The answer cannot lie in continuing to do more
of the same thing while expecting a different outcome.”
(Warwick and Norris, 2010).

2. “Adding processes is not the right answer, he believes.
What is needed is a new view that the core SE function
‘is not primarily concerned with characterizing the in-
teractions between elements and verifying that they are
as intended.’ What’s more important, he says, is under-
standing the dynamic behavior of those interactions.”
(Warwick and Norris, 2010).

To address these issues, industry, government, and pro-
fessional organizations have attempted over several decades
to institute standards as safeguards to ensure consistent, re-
peatable, and predictable SE processes. SE is not perfect
by any means as illustrated by the ripples in Panel 3 of
Figure 2.2. After all, the ambiguities and uncertainties of
human decision-making are still the driver of any System De-
velopment project and its performance.

Yet, as Dr. Griffin observed, “adding processes is not the
solution.” Dr. Albert Einstein also observed the following:

“Insanity: Doing the same thing over and over again expect-
ing different results”

—(Einstein).

As time progressed, industry and government began to
recognize that OSPs needed to be traceable to a global SE
standard such as ISO/IEC 15288 for Systems and ISO/IEC
12207 for Software. Although these standards were a major
stride forward, they did not correct the project performance
issues traceable to the SDBTF–DPM Engineering Paradigm.

2.5.5 The Evolution of SE Capability Assessment
Solutions

In the early 1990s, several organizations developed and
evolved various Capability Assessment Models (CAMs).
Examples include:

In 1994, the SEI released its SE CMM (SE-CMM) Ver-
sion 1.0 (SE-CMM, 1994). Recognizing the interde-
pendence between SE, SW, people, and other drivers
in project performance, the SEI released other mod-
els under the Capability Maturity Model Integration®
(CMMI®) title. The CMMI® is now administered
by the SEI Capability Maturity Model Institute at
Carnegie Mellon University.
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In 1994, International Council on Systems Engineering
(INCOSE) released the initial draft of its SECAM.
The SECAM Version 1.2 was released later that year
(SECAM, 1996, p. 6).

In 1994, the EIA, the INCOSE, and the Enterprise Process
Improvement Collaboration (EPIC) collaborated and
released EIA 731-1 SECM (EIA 731.1, 2002, p. 1).

Eventually, the CMMI emerged as the reference model for
assessing Enterprise capabilities.

Referral For additional information about the history of
these models, refer to EIA 731.1 SECM (2002, p. 1), IN-
COSE SECAM (1996, pp. 132–139), Paulk (2004), Scacchi
(2001), etc.

So, what is the CMMI? The CMM Institute defines CMMI
as follows:

CMMI “… a process improvement approach that pro-
vides organizations with the essential elements of
effective processes that will improve performance.
CMMI-based process improvement includes identify-
ing your organization’s process strengths and weak-
nesses and making process changes to turn weaknesses
into strengths” (CMMI, 2014b).

The CMMI is comprised of three models:

CMMI for Acquisition (CMMI-ACQ) Model “provides
guidance to organizations that manage the supply chain
to acquire and integrate products and services to meet
the needs of the customer.”

CMMI for Development (CMMI-DEV) Model “is used
for process improvement in organizations that develop
products. CMMI-DEV provides guidance to improve
the effectiveness, efficiency, and quality of their prod-
uct development work.”

CMMI for Services (CMMI-SVC) Model “provides
guidance to organizations that establish, manage, and
deliver services that meet the needs of customers and
end users” (CMMI, 2014a).

Author’s Note 2.5

Observe the CMMI focus on
processes, which are a key to en-
suring consistency, repeatability, and
predictability and quality in Enterprise
performance. However, processes

assume that there is a solid foundation in Engineering disci-
plines concerning how to efficiently and effectively engineer
systems based on multi-discipline SE methods commonly
shared across various disciplines. When this foundation

is missing, processes become “Paint-by-Number” Engi-
neering (Wasson, 2008, p. 33) discussed earlier. Instead,
well-trained professionals who are agile, understand the
multi-discipline SE process, and know instinctively how to
apply and tailor the processes efficiently and effectively
should be empowered to lead technical projects.

Some Enterprises and projects have the misperception that
if you are assessed to be compliant with a CAM, you will be
successful. In theory, this is true; however, recognize that a
CAM assesses the capability to perform based on threshold
capability criteria at several levels. CAM assessments do not
guarantee project success; project personnel do. Remember
that a CAM does not tell an enterprise how to conduct
its business – SDBTF versus SE&D; it only assesses an
Enterprise’s “capability to perform” based on the CMMI
Model.

This raises a hypothetical question. Let’s assume that an
Enterprise does all of the right things:

1. Documents their OSPs.
2. Verifies OSP compliance to standards such as ISO/IEC

15288 for Systems, ISO/IEC 12207 for Software, the
ISO 9000 series, and so forth.

3. Achieves a CMMI maturity assessment rating in all or
some of the process areas.

Why then do the System Development problems persist?
Obviously, it ultimately comes down to people—Engineers,
Analysts, etc.—who know how to efficiently and effectively
apply SE problem-solving and solution-development meth-
ods. However, what do Engineers, Analysts, etc. do? The
answer is what they have been educated and trained to
do—SDBTF.

During a capability assessment, evaluators typically sam-
ple and assess two or three “representative” projects. Observe
the term “representative.” The assumption is that the assessed
projects are “representative” of every project within the en-
terprise. The assessments consist of interviews with project
personnel and Enterprise management, reviews of OSPs, and
reviews of work products such as plans, specifications, and
requirements traceability. as objective evidence of compli-
ance. Is it conceivable that SDBTF Paradigm Enterprises can
produce the required interviews and objective evidence for
an assessment—that is, do all of the right things—but still ex-
hibit project performance issues or failures? Are these issues
or failures attributable to the underlying SDBTF paradigm
as the root cause but never explicitly identified as a weak-
ness? The answer is yes!

2.5.6 SE Tool Solutions

The evolution of better, faster, and cheaper technologies such
as microprocessor-based computers and Software Engineer-
ing methods in the 1980s enabled rapid expansion of SE
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tools. This enabled Engineers to link and manage multi-level
specification requirements, architectures, Modeling and Sim-
ulation (M&S), etc. In some respects, you could make the
following observation:

Our ability to model and manage systems data exceeds the
capability of most SDBTF Enterprises to implement SE.
(Wasson)

Today, the concept referred to as Model-Driven Design or
Development (MDD) such as Model-Based Systems Engi-
neering (MBSE) has been expanding rapidly. Watson (2008)
provides an overview of the motivation for model-driven
development. People often erroneously believe that the un-
derlying MBSE concept is new based on the promotion of
the term in recent years. However, MBSE as a concept is
traceable to the 1950s.

SDBTF Enterprises often view themselves as successful
despite inefficient and ineffective methods. Therefore, they
see SE as unnecessary. Rather than learn SE methods, there
is a tendency by these Enterprises to bypass SE training.
Instead, they purchase an MBSE tool. After all, if you
have an MBSE tool, you must be, by definition, performing
SE. Wasson (2011) observes that an old cliché—Owning a
paintbrush does not make one an artist—applies to these
situations.

A Word of
Caution 2.1

Unless an Enterprise understands the SE con-
cepts, principles, and practices discussed in
this and other texts, an MBSE tool is nothing
more than a drag-and-drop graphics appli-
cation for creating nice pictures. Remember
that an MBSE tool is only as valid as the com-

petency of the Engineer creating the model, entering the data,
and linking the information.

2.5.7 The SE Certification Solution

Beginning in the 1990s, the need to certify SEs began gaining
momentum. In 2004, the INCOSE initiated its Professional
Certification Program (INCOSE, 2014). Since the program’s
beginning, INCOSE has expanded it to include the following
types of certifications:

CSEP—Certified SE Professional.

ASEP—Associate SE Professional.

ESEP—Expert SE Professional.

Applicants are required to meet various levels of qualifica-
tions and experiences including validation of experience and
taking an exam based on a specific version of the INCOSE
Handbook. Rhetorically, the challenge question and opportu-
nity is: does taking a certification exam solve the educational
SDBTF–DPM Paradigm problem?

2.5.8 Solutions Summary

In summary, documenting OSPs, tracing compliance to
standards, assessing Enterprise capabilities, and certification
are absolutely essential to achieving consistent, repeatable,
and predictable performance. However, the challenge is that
they do not correct a flawed SDBTF Paradigm that may be
deeply embedded within the culture of an Enterprise.

Given this background, let’s define the central problem.

2.6 DEFINING THE PROBLEM

Wasson (2012) summarizes the project performance problem
as follows:

“Despite the formulation and development of Systems Engi-
neering capability assessment and competency models, cer-
tifications, education and training courses, et al, system de-
velopment projects continue to exhibit technical performance
issues concerning the engineering of systems”

—(Wasson, 2012, p. 4).

How do we solve this problem and overcome the SDBTF
Engineering Paradigm? The answer resides in SE educa-
tional and Enterprise paradigms—specifically what SE is, its
methodology, and how and where it is applied, etc. There is
an old cliché that states:

To understand the tiger, you must go into the jungle. (Anony-
mous)

To understand the underlying SDBTF Paradigm, you
need to have direct, day-to-day contact—work, leadership,
and conversations—with Engineers and Analysts developing
systems and products and observe their actions and patterns
of behavior.

If you observe how Engineering is performed, patterns of
behavior emerge in their daily work habits and perceptions
of SE. Specifically, the perception of SE is:

Read spec requirements, create a single point design solution,
compute a few equations to determine nominal component
values or performance, research catalogs to find components
that fulfill or can be modified to meet design requirements,
create a prototype, and conduct some laboratory tests, tweak
and iterate the design over and over in an endless loop until
it meets its specification requirements.

If you characterize this process graphically, Figure 2.8
emerges.

When new Engineering graduates enter the workforce,
they soon discover that their intrinsic Plug and Chug …
DBTF Paradigm is expanded into a Plug and Chug …
SDBTF Paradigm. System or Product development is
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Figure 2.8 Graphical Depiction of the Plug and Chug … Specify-Design-Build-Text-Fix
(SDBTF) Engineering Paradigm with Archer’s Embedded Design Process Model (DPM)

performed in a seemingly endless loop until the evolving
point design solution complies—system verification—with
customer requirements. As a point design solution, it may
or may not have been selected based on an AoA (Chapter
32). Additionally, compliance to customer specification re-
quirements, which is a binding condition of contracts, does
not necessarily mean that the System or Product is the
right solution—system validation—to fulfill the User’s op-
erational need(s) (Wasson, 2012, p. 13). It simply means that
the system or product meets technical specification require-
ments much like the better like the “Engineered Mousetrap”
presented earlier in Example 2.1.

You may ask: what is the problem with SDBTF Engineer-
ing Paradigm? That’s what engineers do. You are correct.
Engineering, which is dependent on human decision-making,
is not an exact science. The System Development Process
(Figure 15.2) does have a general Specify-Design-Build-Test
workflow and inevitably requires rework to some degree, de-
pending on the effectiveness of the Engineers applying the
SE Process and making insightful, timely, decisions. How-
ever, this is not the context of the SDBTF Paradigm. The
central issue is:

The SDBTF Engineering Paradigm (Figure 2.8) is an end-
less loop set of Engineering activities erroneously employed
as a problem-solving and solution development methodology
with no identifiable outcomes other than to “design compo-
nents, integrate, and deliver them on time and within budget.”

At a component level, Engineers acknowledge that their
ad hoc, endless loop (SDBTF) methods are often inefficient
and ineffective. Now, imagine the chaos compounded by
multi-discipline teams with no common problem-solving
and solution development methodology attempt to develop
moderate to complex systems with hundreds and thousands
of components at various levels of abstraction (Figure 8.4).

From an SE perspective, although the SDBTF methods
might work on a small scale for development of a device,
they simply are not scalable for application to moderate to
large, complicated and complex systems. Objective evidence
of this condition is readily apparent when Enterprises and
projects claim to adopt SE methods and begin applying them
to the project without appropriate SE education and training.
Then, when the first milestone is missed; customers, execu-
tives, and Project Managers (PMs) panic; and the project im-
mediately reverts back to its primal SDBTF instincts, which
exacerbates the multi-level chaos.

The SE Process Model shown in Figure 14.1 is a
scalable, problem-solving and solution development
methodology applicable to the System or any hierar-
chical Entity within it. The SE Process corrects the
amateurish, quantum leap approaches from Requirements to
Physical Implementation illustrated in Figure 2.3. Two key
points:

First, recognize that SE is not a linearly sequential
SDBTF process. In fact, the steps are interdependent.
As we will discover in Part 2, “System Design
and Development Practices,” you have to under-
stand the preliminary design implications at lower
levels of abstraction to evaluate the reasonableness
of achieving a system or entity’s specification re-
quirements. Also, the inference of SDBTF Paradigm
(Specify-then-Design-then-Build-then-Test-then-Fix)
as sequential steps is reflective of the rigid, inflexible,
1960s Waterfall Model (Figure 15.1) that created
major problems for System Developers.

Secondly, the problem originates within the SDBTF “De-
sign” box—the focal point for some SE courses.
Specifically, most design methodologies, assuming
they are taught at all, are typically too abstract. Case



34 THE EVOLVING STATE OF SE PRACTICE- CHALLENGES AND OPPORTUNITIES

in point: the MIL-STD-499B Draft (1994) SE Pro-
cess discussed earlier and currently embraced by many
industry Enterprises and government organizations is
simply labeled Synthesis.

The reality is most design methodologies approach design
as an exploration and discovery of the unknown -“Here Be
Dragons,” a label used by ancient cartographers. Objective
evidence within an Enterprise or project of this condition
is illustrated when they inform customers about plans to
“discover” specification requirements. Exploration of the
unknowns such as User’s abstract operational needs requires
a problem-solving and solution development methodology
that leads to design solution outcomes, not ad hoc, endless
loops.

By virtue of the introduction of the Scientific Method
of inquiry and investigation in middle and high school ed-
ucation, students naturally gravitate to it as their de facto
problem-solving and solution development methodology. As
a result, Engineering Design becomes an iterative process of
trial-and-error hypothesis—conceptual design—testing via
laboratory prototypes, models, and simulations. Then, by a
continuous process of rework and refinements. The process
iterates as an endless loop until: (1) a final solution that com-
plies with Acquirer specifications or derived specification
requirements is achieved or (2) “terminated for convenience”
by the customer due to frustration or resource depletion. Un-
fortunately, this paradigm is allowed to migrate unchecked

and uncorrected throughout most undergraduate Engineering
programs. Why? Two reasons are:

Reason #1—Academic instructors often lack industry SE
experience to be cognizant of the problem. Ironically,
executives, managers, and engineers who work in
industry and government with direct exposure to the
problem typically fail to recognize it as well.

Reason #2—The SDBTF paradigm is congruent with
academic research and scientific inquiry methodolo-
gies, a key focus of many academic institutions
(Mini-Case Study 2.2).

How did the SDBTF Engineering Paradigm originate?
This brings us to our next topic, Archer’s DPM.

2.6.1 Archer’s Design Process Model (DPM)

In 1963–1964, Archer (1963–1964) published a series of De-
sign articles in which he summarized a design method used
by designers. In 1965, the collection of articles was com-
piled into a booklet titled Systematic Methods for Designers
(Archer 1965). These articles not only synthesized these pat-
terns into the DPM but also culminated in a design method-
ology as a frame of reference.

Archer’s DPM Model illustrated in Figure 2.9 con-
sists of Programming—Acquired Knowledge, Data Collec-
tion, Analysis, Synthesis, Development, and Communica-
tion. Highly iterative loop-backs provide corrective action
feedback from:

Training

Programming

Data Collection

BriefAnalytical
Phase

Experience Observation

Measurement

Inductive

Reasoning

Evaluation

Analysis

Synthesis

Development

Creative
Phase

Judgment

Deductive

Reasoning

Decision

Description

CommunicationExecutive
Phase

Translation

TransmissionSolution

Figure 2.9 Archer’s DPM (Source: Reprinted from Rowe (1998), Design Thinking,
published by The MIT Press, modified from its original presentation in Archer (1965).)
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• Data Collection and Analysis feedback to Brief and
subsequently to Programming.

• Analysis, Synthesis, and Development feedback to
Data Collection and so forth.

Observe the right side of the diagram that characterizes
attributes of each phase such as Inductive Reasoning, Eval-
uation, Judgment, and Deducting Reasoning. While these
are certainly valid, these attributes are too abstract, espe-
cially for new students, to properly perform SE&D. Given
the abstractness, everyone within an Enterprise or project
implicitly evolves their own version of the DPM. In princi-
ple, the DPM is fine as an investigative problem-solving and
solution development methodology. However, observe that
it does not preclude Engineers from prematurely taking the
“quantum leap” from Requirements to the Physical Imple-
mentation illustrated in Figure 2.3. You may ask: how does
the SDBTF–DPM Engineering Paradigm evolve within an
Enterprise?

For decades, the Engineering SDBTF–DPM Engineer-
ing Paradigm has been ingrained as part of the Engineer-
ing culture in many Enterprises. Executives and functional
managers immersed in the SDBTF culture get promoted, are
often unaware of the paradigm’s existence in their Enter-
prises or its effects on System Development performance,
and unwittingly allow it to perpetuate culturally. “It’s always
worked for us … if it isn’t broken, don’t fix it.”

Johnson (2002, p. 1) observes that Engineered System
performance problems were perceived to be due to a lack
of (rigid) systems management – managing the university
trained “knowledge workers” coined by Drucker (1959) – via
processes and other methods. However, the “knowledge
workers” had little interest in rigid systems management.
He adds that they promoted new idea generation using an
“undefined process that no one could routinize.” In effect,
it invalidated the scientific management techniques that
were believed to solve the Engineered System performance
problems.

Within an Enterprise, objective evidence of the SDBTF
Engineering Paradigm’s existence comes from PMs who
legitimately protest that Engineers … “never seem to come
to completion designing a system or product.” They lament
that if project cost and schedule constraints were not an issue,
Engineers would “never finish a design.”

In response, Engineers respond that PMs simply do not
understand what is required to design (SDBTF) a system or
product. Ironically, they and their managers submitted cost
estimates as part of the proposal effort. They add:

“It’s how we have always developed systems. Yes, system
development is chaotic and inefficient … but we eventually
get the system built after spending a lot of nights, weekends,
and holidays. That’s how Engineering is performed, … at
least in our organization.”

Then, when projects are eventually completed and de-
livered, award ceremonies are conducted by executives to
bestow well-deserved accolades for the professionalism and
dedication of outstanding personnel “who worked nights,
weekends, and holidays to get the job done” (based on our
ad hoc, inefficient, and ineffective SDBTF–DPM Paradigm).
Imagine what these teams could have accomplished … if …
the Enterprise had an efficient and effective problem-solving
and solution development SE Process (Figure 14.1) that
was not ad hoc and overcomes the problem illustrated in
Figure 2.3.

The irony is that Enterprises strive to improve market
share, shareholder value, and profitability. Yet, are seem-
ingly oblivious to Enterprise performance effectors such as
the SDBTF–DPM Engineering Paradigm and its impact on
project and system, product, or service quality and perfor-
mance that impact stakeholder satisfaction and profitability.
These are the managers who proclaimed they sent XX SEs
to SE training courses. The challenge question is:

1. Did the course instructors understand the
SDBTF–DPM Paradigm issue and its underlying
DPM?

2. Did the SE courses highlight and correct the
SDBTF–DPM Engineering Paradigm?

3. Did you as a functional manager leverage the training
to eliminate the SDBTF Engineering Paradigm?

The answer to all of these questions is probably NO!
This brings us to a key question, how did the

SDBTF–DPM Paradigm become rooted in industry and
government Enterprises? The answer resides in what indus-
try and government do: design systems to produce products
and services for their respective marketplaces. Figure 2.10
provides an illustration.

Beginning in middle and high school, students are taught
the Scientific Method as a problem-solving and solution de-
velopment methodology for scientific inquiry and investiga-
tion. On graduation, they enter higher education to acquire
Engineering and other technical degrees. During their educa-
tion, they are exposed to two types of educational paradigms:

• Plug and Chug Paradigm employed as an Engi-
neering classroom teaching model and homework
problem-solving.

• DBTF Paradigm acquired through refinements and
corrections to laboratory experiment exercises.

To better understand the origins of these paradigms, let’s
explore how they migrate into the workplace. Figure 2.10
serves as a reference model.

On completion of their engineering degree, Engi-
neering graduates enter industry or government and
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Figure 2.10 Archer’s (1965) DPM as the Underlying Problem-Solving and Solution
Development Methodology Embedded within the Plug and Chug … SDBTF Engineering
Paradigm

migrate their knowledge and tools—Plug and Chug …
DBTF—into their new jobs. There, they are assigned to
Current Projects and exposed to a modified Plug and Chug
… Specify-Design-Build-Test-Fix (SDBTF) Engineering
Paradigm, which evolved from Past Projects.

Over time, Engineering personnel may decide to advance
their SE knowledge and pursue an MS or PhD as shown in
the upper portion of the diagram. Again, as in the under-
graduate courses, the Plug and Chug … SDBTF Paradigm
is not explicitly taught per se; however, its underlying Sci-
entific Method and DPM methodologies may be allowed to
thrive unchecked and uncorrected during graduate school.
Graduates complete their MS or PhD programs and return to
or continue in industry and government applying what they
know … The SDBTF Paradigm containing Archer’s embed-
ded DPM.

Observe the gray Enterprise Wrappers band—OSPs; ISO
15288, 12207, 9001; CMMI Assessments; etc.—around
Current Projects. How does an enterprise comply with
these standards and assessments and still have exhibit
questionable System Development Performance? The reality
is they are necessary but do not correct the SDBTF–DPM

Paradigm, which exists as the core problem-solving and
solution development methodology of each Engineer and
project, nor should they.

As noted earlier, these standards do not tell an Enterprise
how to perform Engineering or develop systems, products, or
services. They simply identify process areas that represent
Enterprise levels of capabilities to perform that characterize
attributes of successful projects. Project-to-project compli-
ance to these standards within the Enterprise is an internal
management issue. Failure to comply to these standards may
necessitate a reassessment unless mitigated through an En-
terprise program of continuous process improvement.

Today, we live in a psychological “spin” world in which
Enterprises attempt to depict a deficiency or shortcoming into
something positive that defies commonsense and fact-based
objective evidence. Interestingly, if you talk with SDBTF
Enterprise executives and managers, inquiries about how
they implement SE are sometimes met with … “we have
a different brand of SE … ours is different (SDBTF)!”

First, from a professional practices perspective, there is
only one “brand” of SE.
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Second, Enterprises that have a vision for achieving
SE excellence usually have a different response and
interest … “… we are trying to overcome these
challenges in our organization … tell us more … ”

Given the two contrasting responses above, you soon dis-
cover that those who protest the most—“we have a different
brand of SE”—is a clear indication that the SDBTF Paradigm
is alive and well within the Enterprise. Typically, they are un-
aware of the existence of the SDBTF Paradigm within their
projects and its ramifications on project performance.

Functional managers often agree that the SDBTF–DPM
paradigm may be implicit in their Engineering process. How-
ever, they will state that they employ the MIL-STD-499B
Draft (1994) SE Process. This brings up an interesting ques-
tion: Is the MIL-STD-499B Draft (1994) SE Process any dif-
ferent from Archer’s (1965) DPM? To answer this question,
let’s make the comparison shown in Table 2.1. Observe the
similarities of Archer’s (1965) DPM and the MIL-STD-499B
Draft (1994) SE Process. To illustrate this point, consider the
similarities between Table 2.1 and Figure 2.3:

1. Steps in the MIL-STD-499B Draft (1994) SE Process
and Archer’s (1965) DPM tend to correlate.

2. MIL-STD-499B Draft (1994):
∘ Does not preclude the premature quantum leaps

from Requirements directly to the Physical Imple-
mentation illustrated in Figure 2.3. Although it pro-
vides a very high level Requirements → Functions
→ Synthesis workflow, it does not provide the log-
ical sequencing to correct the Figure 2.3 issue. The
SE Process Model addressed later in Figure 14.1 cor-
rects this problem.

∘ Implicitly assumes that its Users understand how to
perform SE. For those new to SE, a process should
not make assumptions about its Users.

This discussion brings us to a key point: how do we
shift the SDBTF Paradigm? Responsibility resides in an

TABLE 2.1 A Comparison of Archer’s (1965) DPM and
MIL-STD-499B Draft (1994) SE Process

Archer’s (1965)
DPM

MIL-STD-499B Draft (1994)
SE Process

Training
Programming (general knowledge)
Data collection Requirements analysis
Analysis Requirements analysis

Functional analysis
System analysis and control

Synthesis Synthesis
Development System analysis and control
Communication System analysis and control

integrated collaboration between industry, government,
academia, professional, and standards organizations through
a program of awareness, education, and training. What
industry and government need is to shift current SE Process
Paradigms to a new one. INCOSE, IEEE, ISO, and others, for
example, are making great strides toward harmonizing their
respective multi-discipline SE standards and handbooks.
This requires:

1. Correcting the ad hoc, endless loop SDBTF–DPM
Paradigm beginning with Engineering education to
better prepare Engineering graduates for the workplace.

2. Shift current Enterprise SDBTF–DPM Paradigms
through a program of education and training courses for
Engineers, PMs, functional managers, and executives.

To better understand how to address the challenge, let’s
investigate how most Engineers learn SE.

2.6.2 The SE Learning Model in Many Enterprises &
Organizations

Academic Engineering programs are required to meet spe-
cific criteria established by their respective for accreditation
organizations. For example, the Accreditation Board of En-
gineering and Technology (ABET) establishes criteria for the
United States.

At graduation, Engineering graduates from accred-
ited institutions are expected to have demonstrated
knowledge-based performance through coursework
that meets or exceeds a Minimum Competency
Threshold as illustrated in the upper left portion of the
Figure 2.11.

Following graduation, they enter the workforce—lower
portion of Figure 2.11. They soon discover that they
have to learn how their industry implements not only
their own disciplines but also how the Enterprise devel-
ops systems and products. In the 1970’s an unsubstan-
tiated paradigm circulated that industry told academia
to “teach Engineers to plug and chug equations and we
will teach them how to build systems.” That requires
learning concepts, principles, and practices in Sys-
tem Analysis, Design, and Development shown in the
lower right portion of Figure 2.11. If we compare the
level of Engineering Education at graduation (upper
left) with what is required to perform their jobs (lower
right), an Educational Void (upper right) emerges. The
Educational Void represents a deficiency in Engineer-
ing Education at graduation in terms of entering the
workforce and being able to be productive.

Over time, their Engineering competency and skills im-
prove in some areas beyond the graduation criteria
threshold and lessen in other areas (lower left) as a
function of their work task assignments.
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Figure 2.11 SE – The Void in Undergraduate Engineering Education

As a result of the Engineering Education deficiency,
learning becomes a process of osmosis of listening
to meeting discussion semantics that may or may
not be accurate, reading standards that are some-
times abstract, participating in hallway and wa-
ter cooler conversations, and occasional training.
Over time, they accumulate various levels of in-
formal and experiential knowledge as illustrated in
the graphic. Exacerbating the problem are managers
who learned the same way proliferating the culture
by inappropriately labeling Engineers as SEs.

As senior level SEs retire, how do Enterprises transfer SE
knowledge to new SEs in these environments? Whereas for-
mal Engineering Education is structured to address the spec-
trum of topics required to achieve an Engineering degree,
informal SE knowledge is incomplete and exists as informa-
tion fragments that are acquired experientially as shown in
Figure 2.12.

Formal education is based on Instructional System De-
velopment (ISD) principles that teach the what, why, when,
where, and how in understanding subject matter such as SE
concepts, principles, and practices as illustrated by the left
side of Figure 2.12. Formal learning should be based on best
or preferred practices and lessons learned via case studies,

problem exercises, and other methods. Let’s take a closer
look at how informal SE knowledge is acquired in some
Enterprises.

2.6.3 SE Experiential Learning by “Go Do” Tasking

Observe the right side of Figure 2.12. The formal ISD whats
are replaced by “Go Dos” tasking. That is … Go Do a
specification … Go Do an architecture … Go Do a design
… Go Do a test procedure. What is absent as noted by the
dashed lines are the whys, where tos, when tos, and how
tos. Is there any wonder why Engineering task performance
on projects is ad hoc, chaotic, inconsistent, inefficient, and
ineffective?

This also brings up an interesting question concerning En-
terprises that submit proposals—Mini-Case Study 2.1—and
claim to have tailored their (SDBTF–DPM) processes. If per-
sonnel lack an understanding of the what, why, where, when,
and how to, can you effectively tailor a key OSP holistically
without having requisite knowledge of the ramifications and
risks of those actions?

2.6.4 SE & Development versus System Acquisition &
Management Courses

In response to the right side of Figure 2.12, Enterprises and
functional managers will boldly proclaim that they train XX
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Figure 2.12 Formal Education versus Enterprise and Organizational Experiential Learn-
ing

(Qty.) Engineers every year in SE—via courses and OJT (Go
Dos). If that is the case, then WHY do we still see objective
evidence of the effects of the SDBTF Paradigm in project
performance that is validated by Engineers?

A Word of
Caution 2.2

At this point in our discussion, it should
be apparent that titling a course as “System
Engineering” does not mean that it provides
the requisite instruction in SE concepts, prin-
ciples, and practices required to perform Sys-
tems Engineering and Development (SE&D).

Author’s Note 2.6

Less than 3% of SEs in Enterprises
are Actual SEs

Based on the author’s experience and
anecdotal evidence—yours may be

different—less than 3% of the engineers in most SE-labeled
Enterprises understand and can apply SE. For a typical
30-person SE Enterprise in which everyone is arbitrarily
labeled as an SE, only 1 person ± typically possesses the
requisite SE concepts, principles, and practices addressed
in this text. Most of those labeled as SEs are discipline
Engineers performing system analysis, modeling, Specialty
Engineering (RMA), Human Factors (HF), logistics, safety,
security, and other tasks.

Wasson (2012, p. 20) observes that the thrust of most
courses labeled as “SE” focuses on (1) SA&M—key seman-
tics, the philosophy of SE, and what you should do to over-
see others claiming to be performing SE—or (2) equations.
There is a significant difference between overseeing and
managing the work of other Engineers or contractors versus
actually understanding how to perform SE&D. But here’s the
irony. We now have SEs from the SA&M courses overseeing
the work of others who also … completed SA&M courses.
SA&M and equation-based courses are fine when properly
sequenced and matched to specific personnel task descrip-
tions; however, both require a strong foundation in SE&D as
a pre-requisite.

2.6.5 Understanding the Ramifications of the
Educational Void

To better understand the Educational Void in Figure 2.11,
let’s take this a step further. Referring to using Figure 2.13,
most engineers typically have a career that lasts on average
40 years±. During the first 5–10 years, EEs, MEs, SwEs, and
others apply their SDBTF–DPM Paradigm skills to perform
their assigned project tasks based on SDBTF methods they
migrated from their Engineering degree programs.

Beginning with the fifth year, their employers expect
them to assume project roles with increasing responsibility.
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Figure 2.13 System Engineering—The Missing Course in Engineering Education

This comes with more complex project assignments in-
cluding leadership roles of team that include new En-
gineering graduates. As a result, they spend less time
working discipline-specific tasks and more time leading a
multi-discipline team that requires collaboration and inter-
actions with other multi-discipline teams.

From a career hours perspective based on the author’s
experience, Engineers spend 4 years on average obtaining
an Engineering degree that has a “hands-on” application
shelf life of 5–10 years in industry and government. Wasson
(2012) observes that most engineers spend 50–75% of their
total career hours making SE&D decisions for which they
have NO formal SE coursework. This Educational Void
(Figure 2.11) is a contributory performance effector that
impacts project performance.

Today, a new SE paradigm, Lean Systems Engineering, is
being embraced by industry and government. To better un-
derstand this concept and its ramifications of its application,
let’s briefly explore this topic.

2.6.6 Lean Systems Engineering (Lean SE)

With the introduction of quality initiatives such as Zero De-
fects, Total Quality Management (TQM), Design for Six
Sigma (DFSS), etc. in the 1980s by the automotive industry,
for example, enterprises have strived to become more effi-
cient and effective to improve customer satisfaction and im-
prove profitability. Other industries adopted the approaches

with the belief that systems, products, and services could be
designed and developed in the same manner as automobiles.

Since the 1990s, the automobile industry has made great
strides in driving out waste and eliminating non-value-added
processes. The same principles can be applied to the inno-
vation and creation of systems, products, and services via
multi-discipline System Engineering. What evolved is a con-
cept referred to as Lean SE. What is Lean SE?

2.6.6.1 What is Lean SE? Lean SE roots originate from
the Lean Aerospace Initiative (LAI) Consortium at the Mas-
sachusetts Institute of Technology (MIT) in 2004 (Reben-
tisch, et al, 2004). In 2006, initiative was transferred to the
INCOSE LSE Working Group (INCOSE, 2010, p. 4).

The INCOSE LSE Working Group defines Lean SE as
follows:

Lean SE is “The application of lean wisdom, principles,
practices and tool to systems engineering in order
to enhance the delivery of value to the system’s
stakeholders.”

Oppenheim (2011, p. 3) notes:

“The Lean in Lean SE should be regarded as the process of
amending the well-established, traditional SE process with
the wisdom of Lean Thinking, rather than replacing SE with
a new body of knowledge.”
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What is Lean Thinking? Murman et al. (2002) define Lean
Thinking as:

Lean Thinking (Lean) “… the dynamic, knowledge driven
and customer-focused process through which all people in a
defined enterprise work continuously to eliminate waste and
to create value” (Murman et al. 2002, p. 1).

Oppenheim (2011, p. 3) makes an additional observation:

“Put emphatically: … Lean Systems Engineering does
not mean ‘less systems engineering,’ but rather more SE,
with better preparations of the enterprise processes, people,
and tools; better program planning and frontloading; better
workflow management; and better program management and
leadership with higher levels of responsibility, authority, and
accountability.”

In 2009, Oppenheim (2009) published a paper on Lean
Enablers for Systems Engineering (LEfSE) based on work
accomplished conducted by the INCOSE LSE Working
Group (Oppenheim, 2009). The resulting product was de-
scribed as:

“… a collection of 194 practices and recommendations
formulated as “dos” and “don’ts” of SE, and containing
collective wisdom on how to prepare for, plan, execute, and
practice SE and related enterprise management using Lean
Thinking.” (Oppenheim, 2009, p. 1)

As a result of ongoing work performed by the IN-
COSE Lean WG, MIT, and the PM Institute (PMI), a joint
MIT-INCOSE-PMI Community of Practice (CoP) agreed to
collaborate and develop a guide for Lean Enablers.

2.6.6.2 Lean Enablers Guide for Managing Engineer-
ing Programs Beginning in 2011, the Joint MIT, PMI,
INCOSE—MIT-PMI-INCOSE—CoP initiated a one-year
project to develop a comprehensive guide of lean enablers.

In 2012, the group released The Guide to Lean En-
ablers for Managing Engineering Programs. The guide was
“extensively validated through community and practitioner
feedback, multiple workshops at INCOSE and PMI confer-
ences, and LAI-hosted web-based meetings, and surveys of
the extended professional community” MIT-PMI-INCOSE
(2012).

The MIT-PMI-INCOSE (2012, p. vi) Lean Enabler Guide
addresses “major challenge themes in Engineering programs
that Lean Enablers help to address.” These include:

1. “Firefighting – Reactive program execution.

2. Unstable, unclear, and incomplete requirements.

3. Insufficient alignment and coordination of the ex-
tended enterprise.

4. Processes are locally optimized and not integrated for
the entire enterprise.

5. Unclear roles, responsibilities, and accountability.

6. Mismanagement of program culture, team compe-
tency, and knowledge.

7. Insufficient program planning.

8. Improper metrics, metric systems, and KPIs (Key
Performance Indicators).

9. Lack of proactive program risk management.

10. Poor program acquisition and contracting practices.”

You may ask: What is the relevance and connection be-
tween the lean enablers, SE, and the SDBTF–DPM Engi-
neering Paradigm? This brings us to our next topic.

2.6.6.3 Applying Lean Principles to an Enterprise Engi-
neering Process Enterprises either perform SE correctly;
employ the ad hoc, endless loop SDBTF–DPM Paradigm; or
have some hybrid variation of the two. Regarding application
of Lean Principles to an Engineering Process, the question
becomes: how can we apply Lean Principles to eliminate
waste and improve value for our customer? If you are per-
forming SE as addressed in this text, then obviously, you are
embarking on a program of continuous process improvement
and postured for applying Lean Principles. If this is not the
case, a Word of Caution 2.3.

A Word of
Caution 2.3

SDBTF–DPM Paradigm Enterprises

If your Enterprise or project is currently
employing the SDBTF–DPM Engineering
Paradigm, you have a major challenge. Ap-
plication of Lean SE Principles to an ad hoc,

endless loop, SDBTF–DPM Paradigm results in … another
version of a ad hoc, endless loop SDBTF–DPM Paradigm
unless a shift is made to a true SE Paradigm such as Figure
14.1.

Lean SE requires competent, insightful, and timely plan-
ning, training of personnel, updates to Enterprise and project
command media, and other actions fully supported by
executive commitment and resources. Changing Enterprise
cultures is a long-term action; every Enterprise is differ-
ent. Employ the services of a competent, qualified profes-
sional of your own choosing to support the paradigm shift
transition.

Given this discussion, how do we solve the SDBTF–DPM
Engineering Paradigm problem? The solution begins to a de-
gree in K – 12 education and specifically in Engineering de-
gree programs. This brings us to our next topic: Engineering
Educational Challenges and Opportunities.
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2.7 ENGINEERING EDUCATION CHALLENGES
AND OPPORTUNITIES

SE, unlike most other Engineering disciplines, requires
in-depth experience over many years across a multitude of
small, medium, and large, complex System Development
projects. Therein lies a problem for many Engineering
educators.

Lattuca et al. (2006, pp. 6 and 12) observed that:

“In the 1980s, employers expressed dissatisfaction with
engineering graduates’ professional skills.”

“New graduates were technically well prepared but lacked
the professional skills for success in a competitive,
innovative, global marketplace.”

“By the mid-1990s, ABET had implemented a new ac-
creditation philosophy based on assessments of student
learning and continuous improvement principles.”

One educator commenting about SE education challenges
once noted that competent SE course instructors need 25+
years of in-depth industrial system and product development
experience. The problem is that they retire from industry,
move into academia, and leave after a short time due to a lack
of (1) tenure and (2) control over the course(s) they teach. In
contrast, new PhDs become instructors, achieve tenure, but
lack industrial system and product development experience.

To illustrate this point, the National Academy of Engi-
neering’s “Educating the Engineer of 2020” report (NAP,
2005, p. 21) states “… The great majority of engineering
faculty, for example, has no industry experience. Industry
representatives point to this disconnect as the reason that en-
gineering students are not adequately prepared, in their view,
to enter today’s workforce.”

Vest (NAP, 2005) observes that “Academics led the way
in engineering science, but I don’t think we have led the
way in what we now call ‘systems engineering.’ In fact,
as we observe developments in industry, government, and
society, we are asking ourselves what in the world we should
teach our students … Indisputably, engineers of today and
tomorrow must conceive and direct projects of enormous
complexity that require a new, highly integrative view of
engineering systems” (NAP, 2005, p. 165). These initiatives
are imperative to compete in a highly competitive global
environment.

Erwin (1998) observes that projects in engineering
schools tend to focus on the building aspects of systems.
Then, when the projects are submitted for grading, most of
the assessment is based on completion of the artifact, with
design having lesser importance. He notes that this approach
is often rationalized on the basis of allowing the students to
be “creative.” As a result, the student receives little or no
guidance or direction concerning the design process Erwin
(1998, p. 6).

Engineers by virtue of Engineering Education naturally
focus on component-centric design solutions. Caldwell
(2007) in addressing engineering curriculum reform
describes the traditional engineering course presentation
order as bottom-up: Components–Interactions–Systems. He
observes that engineering courses focus on the analysis of
engineering components, not integrated systems (Caldwell,
2007, pp. 92–93).

To address this problem, Engineering programs have
used senior level Capstone Projects to introduce Engineer-
ing discipline students to multi-discipline design team en-
vironments that promote interdisciplinary collaboration and
decision-making. Papers on some Capstone Projects of-
ten characterize the SE exposure as writing specification
requirements, creating a design, identifying and assembling
components, integrating and testing the components, and
performing V&V. As noted earlier, these are SE activities but
not SE problem-solving and solution development. In fact,
this sequential flow is incorrect and deficient.

Engineering programs and instructors often lament about
having limited classroom or laboratory time to cover required
content. So, attempts are made to simultaneously infuse SE
concepts in real time into the mainstream of a capstone
project. While these attempts are well-intentioned, Schmidt
et al. (2011), Nemes et al. (2011), and Corns and Dagli (2011)
provide research and recommendations that illustrate why
SE concepts should be introduced prior to Capstone Project
courses (Wasson, 2012, p. 9).

Although any level of SE awareness is better than none
at all, well-intentioned portrayal of a discipline based on
“knowledge fragments”—namely, activities—is negative ed-
ucation from an Instructional System Development (ISD)
perspective. Such is the case with SE. In preparation for en-
tering the workforce, having an accurate and complete un-
derstanding of … what SE is and is not … is critically
important for an Engineer being ready to competently apply
SE methods and understand the of their assigned work within
the context of a deliverable system, product, or service.

To address these educational concerns, ABET’s Board
of Directors in 1996 approved Engineering Criteria 2000
(EC2000), our next topic (Latucca et al., 2006, p. 6).

2.7.1 ABET Engineering Change 2000 (EC2000)

The EC2000 established a new Criterion 3 for Student
Outcomes ABET (2012, p. 3). Criterion 3 states, “Student
outcomes are outcomes (a) through (k) plus any additional
outcomes that may be articulated by the program.

a. An ability to apply knowledge of mathematics, sci-
ence, and engineering.

b. An ability to design and conduct experiments, as well
as to analyze and interpret data.
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c. An ability to design a system, component, or process
to meet desired needs within realistic constraints such
as economic, environmental, social, political, ethical,
health and safety, manufacturability, and sustainability.

d. An ability to function on multi-disciplinary teams.

e. An ability to identify, formulate, and solve engineering
problems.

f. An understanding of professional and ethical respon-
sibility.

g. An ability to communicate effectively.

h. The broad education necessary to understand the im-
pact of engineering solutions in a global, economic,
environmental, and societal context.

i. A recognition of the need for, and an ability to engage
in life-long learning.

j. A knowledge of contemporary issues.

k. An ability to use the techniques, skills, and modern
engineering tools necessary for engineering practice.”

Observe the word system in Item (c) “an ability to design
a system, component, or process,” which was a significant,
positive change. However, reexamine the list. Rhetorically:
Is there anything in this list that acknowledges the existence
and the need for a student outcome that corrects the Plug and
Chug … SDBTF–DPM Paradigm that continues to plague
industry and government System Development performance?
The key point is it’s time to advance undergraduate Engi-
neering Education to a higher level to correct the Plug and
Chug … SDBTF–DPM Paradigm that migrates unchecked
and uncorrected through Engineering education.

We need to do more than simply produce Engineers that
still use the Plug and Chug … SDBTF–DPM Paradigm
to design systems. Today, Engineering Education is chal-
lenged to shift to more “soft” courses such as communi-
cations, philosophy, and other courses in an already over-
loaded curriculum. This knowledge is certainly vital to the
twenty-first-century Engineering. The challenge question is:

• What is the relative value of an Engineer who can
communicate well and understands philosophy but has
no clue as to what a system really is, how it is structured
architecturally, or the context of their Engineering task
within the overall System or Product as well as its
contribution to overall system performance?

There has to be a balance that produces Student
Outcomes—Engineering graduates—that can fulfill in-
dustry and government System Development needs on Day
#1 of their employment and produce outcomes as indicated
by the definition of Engineering “… for the benefit of
mankind” (Prados, 2007, p. 108).

2.8 CHAPTER SUMMARY

In summary, we addressed the evolving state of SE and
presented challenges and opportunities for advancing the
state of the practice. The current state of SE practice has two
key challenges:

1. Engineers graduate with degrees in a specific En-
gineering discipline with an Educational Void
(Figure 2.11) characterized by:

a. Little or no instruction in multi-discipline
problem-solving and solution development re-
quired in today’s workplace.

b. A lack of SE courses required to perform
multi-discipline SE&D.

2. Based on the author’s experience:

a. Most engineers spend from 50% to 75% of their
total career hours making SE decisions for which
they have NO formal education or coursework
(Figure 2.13).

b. Despite having SE job titles, less than 3% of
Enterprise SEs competently exhibit knowledge of
the SE concepts, principles, and practices addressed
in this text. Collective SE competency resides at
the Enterprise level. However, when Enterprise SE
competency is dispersed–matrixed–across multiple
projects, the level of SE competency on a project is
dependent on the informal, experiential education,
knowledge, and experience of those with “SE job
titles.”

c. SE knowledge for most Engineers is acquired from
informal and experiential learning based on OJT via
“Go Do” tasking (Figure 2.12).

d. SE is one of the most abused enterprise job labor
categories in which managers arbitrarily label Engi-
neers as SEs irrespective of whether they have met
educational requirements and demonstrated knowl-
edge and competency in applying SE concepts,
principles, and practices.

3. Some courses labeled as SE should be labeled
SA&M—overseeing and managing the work of others
performing SE. Courses are needed in SE&D to pro-
vide instruction in how to actually develop systems,
products, or services.

4. Industry, government, academia, professional, and
standards organizations developed and evolved SE
standards to:

a. Correct SE and project performance issues.
b. Promote consistent, repeatable, and predictable

project performance.

5. A paradigm is an ingrained, groupthink mind-set or
model that filters or rejects considerations to adopt or
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employ new innovations and ideas that may impact the
status quo.

6. Project and Engineering performance issues are often
traceable to a little known Plug and Chug … DBTF
Engineering Paradigm based on the Scientific Method
of inquiry or investigation that:

a. Originates in middle and high school education.

b. Migrates through Engineering Education
unchecked and uncorrected and subsequently
into industry and government.

c. Mutates into a Plug and Chug … SDBTF Engineer-
ing Paradigm with its embedded endless loop DPM
(Figure 2.8) prevalent in industry and government.

7. The industrial Plug and Chug … SDBTF Engineering
Paradigm is:

a. Often confused with the System Development
Strategy, which does have a generalized Specify,
Design, Build, and Test workflow (Figure 12.3)
over time.

b. Perceived to be an SE problem-solving and solu-
tion development methodology. The reality is the
SDBTF Paradigm is an ad hoc, endless loop set
of activities that lack completion convergence and
frustrate PMs who are challenged to meet cost,
schedule, and technical constraints.

8. Enterprises, projects, and Engineers often erroneously
perceive SE as:

a. Writing specifications, creating a design, building
or acquiring components, integrating and testing
the system, and performing System V&V prior to
delivery.

b. Documentation-centric – i.e, produce documenta-
tion. The reality is SE, which is methodology-
centric and outcome based, focuses on convergent,
technical decision-making to select an optimal so-
lution from a set of viable alternatives. Decision
artifacts such as inputs, constraints, and recommen-
dations, and are captured via documentation.

9. Be Top-Down Engineering. The reality is
multi-discipline SE is performed:

∘ Vertically—Top-Down and Bottom-Up.

∘ Horizontally—Left to Right and Right to Left.

10. Lean Systems Engineering:

a. Focuses on driving out waste in SE and eliminates
non-value-added processes.

b. Applied to an Enterprise Plug and Chug … SDBTF
Engineering process often results in another Plug
and Chug … SDBTF Engineering process that
fails to correct the quantum leap approaches from
Requirements to Physical Implementation shown in
Figure 2.3.

Principle 2.2

Decision Artifacts Principle

If a key decision or event and its contribu-
tory inputs, constraints, and their sources are
not documented, the decision or event never
occurred.

If you shift the SDBTF–DPM Engineering Paradigm to a
new SE paradigm, will it work?

First, installation of a new SE paradigm requires visionary
leadership, long-term commitment, and incremental
rollouts via updates to OSPs, education and training
courses, and new, fresh managerial perspectives based
on seasoned SE experience.

Secondly, in an ongoing study conducted by Elm and
Goldenson (2012), data validate SE performance. For
example, Figure 2.14 illustrates the effectiveness of
SE best practices on three types of organizations
categorized as having Lower, Middle, and Higher SE
Capabilities (SEC) applied to performing two types
of projects: (1) those with a Low Project Challenge
(Low PC) and (2) those with a High Project Challenge
(High PC) (Elm and Goldenson, 2012, Figure 3,
p. xiv):

∘ Low Project Challenge (PC) Projects (Figure
2.14, Panel A) Enterprises with higher SE Ca-
pabilities (SEC) delivered the Highest Level of
Performance 52% of the time versus 23% for
Middle SEC Enterprises and 23% for Lower SEC
Enterprises.

∘ High Project Challenge (PC) Projects (Figure
2.14, Panel B) Enterprises with Higher SEC deliv-
ered the Highest Level of Performance 62% of the
time versus 26% for Middle SEC Enterprises and
8% for Lower SEC Enterprises.

Bottom line: Enterprises with Higher SE Capabilities have
a much better probability of consistently delivering higher
levels of performance regardless of the Project Challenge
than Enterprises with Middle and Lower SECs.

Author’s Note 2.7

Please note that Elm and Goldstein
(2012) analysis of respondent survey
data makes no distinction concerning
the type of SE Process used—either
the SDBTF–DPM Paradigm based on

MIL-STD-499B Draft (1994) or the SE Process addressed in
Chapter 14 that overcomes performance issues.

Do true, non-SDBTF, SE capable Enterprises have better
performance results? Based on research and industry surveys
by Honour (2013) and Elm and Goldenson (2012):
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Figure 2.14 SE Best Practices Effectiveness—Project Performance versus Total SE
Capability Controlled by Project Challenge (Source: Elm and Goldenson, 2012, Figure 3,
p. xiv. Used with permission.)

“Projects that properly apply systems engineering best prac-
tices perform better than projects that do not”

—(Elm and Goldenson, 2012, p. xiv).

“There is a quantifiable relationship between systems engi-
neering effort levels and program success”

—(Honour, 2013, p. 177).

To overcome the proliferation of current SE paradigms,
industry, government, and academia need to seize the oppor-
tunity to correct the root problem and its contributory causes,
not just create wrappers around the perimeter of the problem
(Figure 2.8) expecting different results.

Up until the 1980s, many Enterprises believed that
QA and Verification & Validation (V&V) were activities
performed on a system or product after it was finished. Re-
jections rates were high, rework cost vast amounts of money,
and scrap heaps were large. Then, challenged by global com-
petition, organizational survival, and the need for higher
profitability, executives and others became enlightened to
learn that system, product, or service quality and perfor-
mance is built in from Day #1, not at the end. Enterprise and
project performance and success are at a new crossroad: con-
tinue the SDBTF Engineering Paradigm or shift to a new SE
Paradigm discussed in this text.

One of the key aspects of Enterprise performance and
tenets of various quality movements, DFSS, and so on is
Supply Chain Management (SCM) illustrated later in Figure
4.1. Delivery of quality products and services is dependent

quality principles instilled in each step of the supply chain.
The SE implementation and education supply chain is frag-
mented and stovepiped! Industry, government, and academia
need to recognize and acknowledge the existence of the Plug
and Chug … SDBTF Paradigm with its embedded DPM.
Then, work collaboratively to shift the SDBTF paradigm.

The challenge questions are:

1. Organizationally, do we and our Enterprise:
a. Continue to allow the Plug and Chug … SDBTF–

DPM Paradigm that everyone acknowledges is ad
hoc, chaotic, inefficient, ineffective, and unscalable
to moderate to large, complex projects?

b. Shift it to a true SE paradigm (Chapters 3–34)?
2. Academically, do we:

a. Continue with current curricula that allow the Sci-
entific Method and the SDBTF–DPM Paradigm to
migrate through Engineering Education unchecked
and uncorrected?

b. Shift to a new Engineering Education Paradigm that
eliminates the Educational Void (Figure 2.11) that:
▪ Prepares undergraduates and graduates to enter

industry and government where real work is
performed?

▪ Is based on a balance between problem-solving
and solution development and Engineering, not
SA&M or equation-based courses, which have
their place as follow-on courses?
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This does not mean create to any type of course - SA&M
or equations-based, put an SE label on it, and assign it to an
instructor with no industry experience to teach it. The ABET
in the United States, for example, via its EC2000 expressed
recognition of the need for Specific Criteria beyond the
General Criteria for Systems Engineering (ABET, 2011, p.3).
Despite several years of having a placeholder in its annual
Accreditation Criteria, the PROGRAM CRITERIA FOR
SYSTEMS AND SIMILARLY NAMED ENGINEERING
PROGRAMS section continues to state, “There are no
(Systems Engineering) program-specific criteria beyond the
General Criteria” (ABET, 2014, p. 20).

Given this discussion of the evolving state of SE practice
and its challenges and opportunities, you should have a better
appreciation for the SE concepts, principles, and practices
addressed in Chapters 3–34.

2.9 CHAPTER EXERCISES

2.9.1 Level 1: Chapter Knowledge Exercises

1. What is a paradigm?

2. What is meant by a paradigm shift?

3. What is verification?

4. What is validation?

5. What is the Plug and Chug … SDBTF paradigm? What
are its origins? Why is it important to get the SDBTF
Paradigm corrected in Engineering education?

6. What does “Paint by Number” Engineering refer to?
What are its pros and cons?

7. What is Lean Thinking?

8. What is Lean SE?

9. What are Lean SE Principles intended to accomplish?

10. Why does application of Lean SE principles to an
SDBTF-DPM Engineering Process result in another
SDBTF-DPM Engineering Process

2.9.2 Level 2: Chapter Knowledge Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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PART I

SYSTEM ENGINEERING AND ANALYSIS CONCEPTS





3
SYSTEM ATTRIBUTES, PROPERTIES,
AND CHARACTERISTICS

If you ask most people, including engineers, analysts, and
educators, how they perceive a system, the usual response
focuses on equipment, hardware and software.

If you ask the same group to give examples of systems,
the responses include physical systems such as computers,
cars, and spacecraft.

These two observations exemplify paradigms and voids
in our educational and training systems, especially for engi-
neers, scientists, and analysts. Since engineers are a critical
element in engineering systems for the “benefit of mankind,”
one would think the concepts of “systems” and “systems
thinking” would be integral elements of Engineering educa-
tion.

This chapter begins our journey to help you understand
what a system is. Given the definition of a system in Chapter
1, we explore what a system is as an object or entity. Imagine
for a moment that the system is a multi-story building with
impressive architectural structure and glass exterior that does
not provide clues as to its purpose. Office building? Apart-
ment building? High-tech manufacturing facility? Hospital?
Our discussions will focus on the system – its attributes,
properties, and characteristics.

3.1 DEFINITION OF KEY TERMS

• Command and Control (C2)—The closed loop pro-
cess of: (1) continuously monitoring planned versus ac-
tual system, product, or service mission performance;
(2) performing situational assessments to determine

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

corrective actions; (3) issuing commands to the system
to achieve the performance.

• Emergence—A behavioral property of a system or
entity that emerges from configuring and integrating
the properties and characteristics of its constituent
components that may not be apparent on an individual
component basis. For example, physical pieces and
parts of an aircraft, when fully disassembled, may not
reveal its ability to fly.

• Entity—A “general term to denote the system, item,
software, process, or material that is the subject of a
specification” (MIL-STD-961E, p. 4).

• Fit—An item’s compatibility to mechanically interface
with another item within a prescribed set of limits with
ease and without interference.

• First Article System—Refer to Chapter 12 Definitions
of Key Terms.

• Form—An item’s shape, geometry, material, or surface
characteristics required to support one or more inter-
face boundary constraints.

• Form, Fit, and Function—“In configuration manage-
ment, that configuration comprising the physical and
functional characteristics of an item as an entity, but not
including any characteristics of the elements making up
the item” (Copyright © 2014 ISO/IEC/IEEE. Used with
permission) (ISO/IEC/IEEE 24765:2010, p. 127).

• Function—A unitless operation, activity, process, or
action performed by a system element to achieve a

http://www.wiley.com/go/systemengineeringanalysis2e
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specific objective. Functions represent actions such as
to move a force through a distance, analyze and process
information, transform energy or physical properties,
make decisions, conduct communications, and interop-
erate with other Operating Environment systems. A
function bounded by a level of performance constitutes
a capability.

• Latent Defects—Residual, undiscovered, defects or
hazards due to: (1) specification or design flaws, er-
rors, and deficiencies; (2) poor workmanship practices,
(3) material composition impurities, imperfections, or
blemishes that may impact system performance or cos-
metically diminish its aesthetic value.

• Level of Performance—An objective, measurable pa-
rameter presenting a threshold performance that serves
to bound the ability of a system to perform an ac-
tion based on a set of scenario assumptions, initial
conditions, and operating conditions. Examples in-
clude: physical characteristics – force, frequency, rate
of change, etc.; Personnel proficiency; system effec-
tiveness and efficiency; and so forth.

• Performance—“The degree to which a system or com-
ponent accomplishes its designated functions within
given constraints, such as speed, accuracy, or memory
usage” (Copyright, 2012, IEEE. Used with permission)
(ISO/IEC/IEEE 24765:2010, p. 219).

• Performance Effector—A factors that influences a
system or entity’s performance-based outcome.

• Pre-Planned Product Improvements (P3I)—A
staged strategy for upgrading a system, product,
or service with new capabilities or technologies to
meet specific mission objectives such as payloads,
cost, weight, or performance; correct for system
vulnerabilities deficiencies; and so forth.

• Physical Attributes—“Quantitative and qualita-
tive characteristics of material, including interfaces;
for example, composition, dimensions, finishes,
tolerances, source and object code, compilation in-
formation, complexity level, data structure, platform,
drivers” (ANSI/EIA-649-1998, p. 8).

• Staging or Control Point—A pre-defined program-
matic decision event such as a conference, review, or
demonstration intended to assess the progress, status,
maturity, and risk of a work product such as a plan,
specification, and design prior to committing resources
to proceed to the next step or System/Product Life Cy-
cle phase.

• Sustainment—The logistical delivery of essential
Mission Resources (consumables and expendables
(Chapter 8) such as fuel, lubricants, parts, food, water,
medicines, and health) to sustain Mission System
and Enabling System Operations and Maintenance

(O&M) daily needs to ensure missions continue
without interruption.

• System Design Solution – The evolving technical doc-
umentation set - system specifications; designs; draw-
ings; system description; analyses and trade studies;
models, simulations, and their results; test procedures;
conference minutes; and so forth - that captures the
Developmental Configuration of a deliverable system
/ product or a specific model or version.

• System Element—A label applied to classes of entities
that comprise a System of Interest’s (SOI’s) Mission
System and Enabling System(s), Higher Order
Systems, or Physical Environment domains. As a
convention, specific System Element names employ 1st
letter capitalizations (e.g., Personnel, Equipment)
throughout the text to facilitate identification and con-
text of usage. Refer to Chapter 8.

• System End User—An individual or Enterprise that
benefits directly or indirectly from the outcome or
results of a system, product, or service. End Users
typically do not require system operation training. For
example, an aircraft’s passengers are System End Users
that benefit from being transported from one airport to
another.

• System of Interest (SOI)—An entity such as a system,
product, or service with boundaries scoped for contex-
tual analysis, research, or study purposes and tasked
to perform one or more Enterprise or organizational
missions with outcome-based performance objective(s)
within a specified time frame, available resources, and
within specified operating constraints.

• System Stakeholder—An individual or Enterprise that
has a vested interest whether friendly, competitive,
or adversarial in the outcome produced by a system,
product, or service in performing its assigned mission.

• System User—An individual or Enterprise account-
able for the C2 of a system, product, or service in
performing its assigned mission. System Users may re-
quire some degree of training and possibly certifica-
tion. For example, an aircraft’s pilots, as System Users,
require rigorous training and certification to safely C2
the aircraft.

• Transfer Function—A mathematical model that ex-
presses an output as a function of its input(s). For
example, y = f (x1, x2, x3 . . . .) where y represents an
output as a function of xn.

• Validation—Refer to the definition provided in
Chapter 2.

• Verification—Refer to the definition provided in
Chapter 2.
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3.2 ANALYTICAL REPRESENTATION OF A
SYSTEM

Analytically, a system is represented as a simple entity
depicted graphically as a rectangular box as shown in
Figure 3.1. In general, Inputs such as stimuli, excitations,
or cues are fed into a system that transforms the inputs via
value-added processing – transfer functions - to produce
an Output(s) such as products, by-products, services, or
behavior. As a construct, symbolically the box is acceptable;
however, we need to more explicitly understand what the
system performs. That is, the system must efficiently and
effectively add value to its input to produce a responsive
output that meets the operational needs of its User.

As a simple conceptual diagram of a system, Figure 3.1
is easy to understand. However, from an analytical per-
spective, the diagram is missing key information that re-
lates to how the system operates and performs within its
Operating Environment. Therefore, we expand the di-
agram to identify these missing elements. The result is
shown in Figure 3.2. The attributes of the construct, which
include Desirable/Undesirable Inputs, Stakeholders, and
Desirable/Undesirable Outputs, serve as a key checklist to
ensure that all contributory performance effectors are duly
considered when specifying, designing, and developing a
system.

3.2.1 System Capabilities

We refer to the transformational processing – transfer func-
tions - that adds value to inputs and produces an output as
a capability. You will often hear people refer to this as the
system’s functions or functionality; this is only partially cor-
rect. Functionality expresses an action to be performed, not
how well as characterized by performance. This text uses
capability as the operative term that encompasses both the
functionality and performance attributes of a system.

3.2.2 The System Analytical Construct

All Natural and Human Systems—Enterprise and
Engineered—exist within an abstraction we refer to as the
System’s Operating Environment. Survival for many
systems ultimately depends on its capabilities—physical
attributes, properties, characteristics, strategies, tactics,
security, timing, and luck.

If we observe and analyze these systems and their pat-
terns of behavior to understand how they adapt and sur-
vive, we soon discover that they exhibit a common con-
struct or template that describes a system’s interactions with
their Operating Environment. We refer to the system be-
ing studied or analyzed as the System of Interest (SOI).
Figure 3.2 provides a graphical depiction of the construct.
Using an automobile example, an SOI, which is context de-
pendent, could be a tire, steering system, engine, radio, or the
total vehicle.

When an SOI (e.g., system, product, or service) interacts
with its Operating Environment, several types of behav-
ioral patterns emerge as key Systems Engineering (SE) prin-
ciples:

Principle 3.1

System Interactions Principle

Systems, products, and services must be ca-
pable of encountering, engaging, and re-
sponding to external systems and dynamic

conditions in their Operating Environment.

Principle 3.2

Types of Interactions Principle

External system encounters and interactions
are characterized as cooperative, support-
ive, benign, competitive, harsh, aggressive,

hostile, and defensive, or combinations of these.

System
Value-Added Processing

Input(s)
Output
Response(s)

• Products
• By-Products
• Services
• Behavior

• Stimuli
• Cues
• Excitations
• Expendables
• Consumables

Self Interaction

Inputs Behavioral
Response(s)

Figure 3.1 Simple Diagram of a System
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System of Interest (SOI)
(Any Level of Abstraction)

• Attributes
• Capabilities
• Performance

• Products
• By-Products
• Services

Threats

Roles, Missions, and
Objectives

Opportunities

Resources

Internal Controls/
Constraints

Operating
Constraints

Stakeholders

Inputs Outputs

Acceptable Acceptable

Unacceptable Unacceptable

Self Interaction

Figure 3.2 Analytical System Entity Construct

Principle 3.3

System Reactive and Adaptive Behavior
Principle

Systems, products, and services must be ca-
pable of responding with reactive and adap-

tive behavior - non-responses, aggressive actions, protection
mechanisms, or defensive countermeasures - to stimuli, ex-
citations, and cues originating from external systems in their
Operating Environment.

Principle 3.4

System Responses Principle

Systems produce products, by-products,
services, behaviors, or combinations of
these to accomplish mission outcome-based

performance objectives and survive in their Operating
Environment.

Principle 3.5

Law of Unintended Consequences
Principle

Systems, products, by-products, or services
responses may result in self-inflicted ad-

verse or catastrophic conditions or effects with negative con-
sequences that impact its performance, mission, or survival.

When you analyze interactions of an SOI with its
Operating Environment, two fundamental types of inter-
actions emerge:

• Peer-level, one-to-one interactions.

• Hierarchical interactions (i.e., vertical interactions un-
der the C2 of Higher Order Systems such as Enter-
prise or organizational management or subject to natu-
ral forces and laws such as gravity).

Principle 3.6

Higher Order Systems Principle

Every system serves at the pleasure of or is
subject to Higher Order, Human Systems
and Natural Environment Systems that

exercise authoritative control over the system, its operation,
and the conduct of its missions.

When an SOI interacts with its Operating Environ-
ment, it:

1. Performs mission task assignments established by
higher level, chain of command decision authorities.

2. Interacts with external Operating environment Sys-
tems such as Human, Natural, and Induced during
missions.

Author’s Note 3.1

The Operating Environment is
comprised of three types of Physical
Environments—Human Systems,
Natural, and Induced Environ-
ments—discussed later in Chapter 9.
ITS

SOI interactions with its Operating Environment in-
clude two types of entities: (1) a Higher Order Systems
Domain and (2) a Physical Environment Domain.

The identification of Operating Environment domains
enables us to expand the System Analytical Construct shown
in Figures 3.1 and Figure 3.2.
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3.3 SYSTEM STAKEHOLDERS: USER AND END
USER ROLES

Principle 3.7

System Existence Principle

Every system exists for its stakeholders
based on their perceived operational needs.

Every system exists at the pleasure, benefit, and opera-
tional needs of its Stakeholders. When that relationship di-
minishes, ends, or the system is destroyed, the reason for the
system, product, or service’s existence has ended. We see this
in marketing as illustrated by what are referred to as Con-
sumer Product or Technology Adoption “S” curves and their
segments—Early Adopters, Mass market Adoption, Mature
Market, and Later Adopters (Rogers 1962).

Systems have two types of Stakeholder roles - Users and
End Users. Observe usage of the term role. Some systems
may have an operator that serves in both roles—System User
and System End User. Let’s explore and delineate each of
these types of roles and then discuss how System Users can
also be End Users.

3.3.1 System User(s) Role

A System User(s) (Role) operates and performs C2 of a sys-
tem, product, or service to accomplish a mission or task
order. Typically, System Users require some level of fun-
damental and proficiency training and may require certifi-
cation and licensure. Systems such as an aircraft may also
require one or more System Users – pilots – to fly the air-
craft. For example, a commercial aircraft has a Pilot, a First
Officer (Co-pilot), a head Flight Attendant, and Flight Atten-
dants that perform C2 of a variety of flight operations such as
communication, aviation, navigation, passenger safety, food
preparation, and passenger food service. In performing their
respective flight duties, they manipulate controls and mech-
anisms to accomplish task-based outcomes. For example, an
aircraft’s passengers, as System Users, learn to C2 the light-
ing, air direction/flow, and flight attendant call button above
their seat with minimal or no training. In contrast, a pilot, as
a System User of the Aircraft System, requires specialized
aviation and aircraft knowledge, training, and experience as
well as certification and licensure to safely C2 the aircraft.

3.3.2 System End User(s) Role

A System End User (Role) benefits directly or indirectly
from a system’s performance-based missions and outcomes.
End User roles may or may not require limited training. For
example, a passenger on a commercial airline, as an End User
of the Aircraft System, benefits from being transported from
one airport to another.

The preceding System User and End User examples
illustrate a specific role-based context. A key question
emerges: Can a system’s operator or maintainer be a System
User and a System End User and vice versa? The answer is,
yes. Let’s explore this point further.

3.3.3 System Users as End Users

To illustrate how System Users can also be End Users and
vice versa, let’s expand on those same examples. Observe in
each case how Personnel perform missions with dual roles
as System Users and End Users.

3.3.3.1 Aircraft Pilot/First Officer as System Users
and End Users The Pilot/First Officer, as System End
Users of the Aircraft System, benefit from its real-time
flight operations outcomes such as flying qualities; cockpit
performance displays; cautions, alerts, and warnings.

After assimilating and evaluating this information as Sys-
tem End Users, the Pilot/First Officer, perform C2 as System
Users of the aircraft to make corrective actions—ascend, de-
scend, or turn—and take evasive actions related to weather
or other aircraft.

3.3.3.2 Airline Passengers as System Users and End
Users An aircraft passenger, as a System User of the
Aircraft System, activates – C2 - the aircraft’s flight attendant
Call Button as a Request for Service (RFS). When the Flight
Attendant responds to the RFS, the passenger, as a System
End User of the Aircraft System, benefits from the services
provided by the Flight Attendant.

3.3.3.3 Flight Attendants as System Users and End Users
Flight attendants, as System End Users of the Aircraft
System, benefit from receiving a passenger’s RFS via
the seat’s Call Button identifying a specific passenger
requiring service. The Flight Attendant responds to the
passenger’s RFS. On arrival at the passenger’s seat, the
Flight Attendant, as System User of the Aircraft, deacti-
vates – C2 - the Call Button above the passenger’s seat.
The deactivation turns off the Call Button light as feed-
back that benefits the Flight Attendant as a System End
User.

The preceding discussion introduces the concept of Sys-
tem Users and End Users as System Stakeholders. We will
expand our discussion of Users and End Users further in
Chapter 4.

N
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Heading 3.1

People use the terms attributes, properties,
and characteristics as part of our vocabu-
lary. However, what do these terms mean? To
the casual observer researching definitions of
these terms, most dictionaries define these
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terms by referencing one of the other terms (i.e., circular
referencing). The sum of a system’s attributes, properties,
and characteristics uniquely identifies and distinguishes a
system, product, or service from others of the same classi-
fication. Let’s begin with System Attributes.

3.4 SYSTEM ATTRIBUTES

The term attributes describes a system’s quality traits
or physical features that may be objective—observable
and measurable—or subjective. Examples include sys-
tem/product name, model, serial number, contract number,
unit cost, and fixed-wing aircraft versus rotorcraft.

All Natural and Human Systems—Enterprise
and Engineered—have unique sets of attributes (traits).
Examples include roles, behavioral patterns, temperament,
and appearance, even within the same species. In general,
key attributes of uniqueness include the items such as the
examples listed in Table 3.2.

3.5 SYSTEM PROPERTIES

The term property represents unique observable and mea-
surable features of a system or product that may be physical,
emergent, or intangible. Let’s define each type.

Physical properties characterize the physical state of a
system or component such as size, geometrical shape, and
surface. Examples include:

TABLE 3.1 Examples of System Properties

Physical Property Example Parameters

Size Length, width or depth, height, area
Geometrical shape Square, rectangular, irregular, spherical
Optical Luminance, reflectivity, irradiance,

opacity, spectral frequency, intensity
Thermal Color temperature, absorption,

insulation, coefficient of
expansion/contraction

Mechanical Mass, density, hardness, brittleness,
force, velocity,
acceleration/deceleration,
momentum, pressure

Electrical Charge, voltage, current, resistivity
Aerodynamic Forces of flight—lift, drag, weight,

thrust

One of the challenges in identifying physical properties,
especially for color, is how humans perceive color and the
influence of reflectivity based on surface properties of an
object.

Mass properties are those properties of a system or
product that characterize its physical implementation. In
addition to the physical properties noted in the preceding
discussion—materials, weight, and size—examples include
center of gravity (CG), reference axes, weights and balances,
moment of inertia, density, and so forth. Refer to Boynton
and Wiener (2000) for examples of calculations.

Emergent properties are those behavioral properties of a
system or product that cannot be derived from lower level
properties until it is integrated, configured, and operational.
Let’s elaborate this point further.

Imagine for a moment that a jet aircraft had been disas-
sembled and all the thousands of individual parts were laid
out on a tarmac. Based on inspection and investigation of
these components, would it be apparent if they were to be in-
tegrated together and configured they would enable a human
to fly and C2 the aircraft? Emergence serves as a key con-
cept that describes how humans can exploit the capabilities
of the physical components to create a system that exhibits
properties that are greater than the properties of each compo-
nent’s performance-based outcomes. Consider the following
example:

Example 3.1

Bicycle Emergent Properties Example

Based on its mechanical properties and those
of a human, who would think that we could
Engineer a bicycle to allow a human to learn

to balance the integrated Bicycle-Rider System to achieve
and maintain stability sufficient to cycle down the road at a
velocity, longer duration, and distance greater than a human
can run for a given amount of energy expended?

In each of these cases, the integrated system exhibits
emergent properties that are not apparent from analysis of
the properties of the individual components.

Our discussion of what emergent properties are leaves an
unanswered: are emergent properties engineered or discov-
ered? Sometimes it can be either.

Returning to our aircraft example, we can say that humans
have always been fascinated with being able to defy gravity
and fly … on Earth … and to distant planets and solar sys-
tems. Although as humans we lack the ability to physically
fly, we do have the ability to apply Systems Thinking (Chapter
1)—observe, envision, reason, solve problems, and assimi-
late properties of physical objects—in a way that allows us
to exploit those properties to achieve higher level objectives
than we can achieve on a personal basis. So, in that context
you can say that we can ultimately “engineer” systems that
exhibit emergent properties.

Observe that the previous statement said “ultimately”
engineer. This is where SE becomes paramount. Consider the
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TABLE 3.2 Attributes Common to Most Human Systems—Organizational and Engineered

ID Attribute Description

3-1 System stakeholders Every system has at least one or more benefactors such as owners, administrators,
operators, maintainers instructors, and End Users who promote and benefit from its
behavior, products, by-products, or services

3-2 System Life Cycle Every system, product, and service consists of a life cycle
3-3 System operating domain Every system has an operating domain or “sphere of influence” that bounds its

operating range, area coverage, operations, and effectiveness. Humans have learned
to extend the area of coverage by employing other assets that enable a specific
system to “amplify” its range

Example
An aircraft has a specific operating range under specific operating conditions such as

fuel, payload, and weather. Deploying refueling sources, airborne tankers, and
maintenance facilities along its mission flight path can extend the range

3-4 System frame of reference Every system at any point in time has a frame of reference that serves as its permanent
or temporary:

• Base of operations for its operating domain
• Basis for navigation

Example
• An aircraft may be assigned to a permanent home base that serves as the center of

its operations. The aircraft may be ordered to perform special (temporary)
assignments from a base in another global region

• The Apollo Space Program used the Kennedy Space Center and the Earth as
frame of reference for launch operations

3-5 Higher order systems Every system operates within a Higher Order System (Chapter 9) that may
authoritatively govern, direct, constrain, or control its operation and performance

3-6 Purpose-based role Viewing the universe as a System of Systems (SOS), every Human System serves its
Stakeholders based on a reason for its existence as envisioned by its original System
User

3-7 System missions Every system performs missions or tasks in fulfillment of its purpose to achieve
performance-based outcome objectives established by its Higher Order Systems
and Users

3-8 Mission goals and performance
objectives

Each system has a set of goals and objectives, preferably documented, supported by
one or more specific objectives that are quantifiable, measurable, testable, and
verifiable. Goals and objectives provide the fundamental basis for resource
expenditures and investments by the System Owner and Shareholders based on a
planned set of multi-faceted accomplishments and an expected ROI

3-9 System operating constraints and
conditions

Every system performing its assigned mission or task is subjected to a set of operating
constraints and conditions controlled by Higher Order Systems

3-10 Operational utility Every system must produce performance-based outcomes that are relevant to its
application, ease of use, touch and feel, usefulness

3-11 Operational suitability Every system has a level of operational suitability to the User in terms of suiting or
meeting their mission needs and system application

3-12 Operational Usability Every system is characterized by its ease of learnability and use that enables the User
to perform their mission with minimal human error.

3-13 Operational Availability Every system requires a level of availability to start-up on demand when required by
its User

3-14 System success criteria Each system and mission/task requires a set of criteria that the System Owner and
Shareholders agree represent goals and results-oriented objectives for mission
success

3-15 System reliability Every system is characterized by a probability of success in contributing to mission
objectives for a given set of Operating Environment conditions, scenarios and
mission duration

3-16 System capacity Every system requires some level of capacity to store personnel, energy, fuel, food,
data, equipment, tools, and so forth

(continued)
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TABLE 3.2 (Continued)

ID Attribute Description

3-17 System energy Human Systems—Enterprise and Engineered—require an energy source to provide
responses to incoming stimuli, excitations, or cues. The source might be
replaceable, restorative, and regenerative

3-18 Operational effectiveness Every system has a cost, technical effectiveness, and probability of success related to
accomplishing its missions

Example
Consider the system effectiveness of an educational system, healthcare system. The

challenge is effectiveness from which Stakeholder’s perspective

3-19 System efficiency Every system has a degree of efficiency in transforming or converting energy,
processing raw materials, information, or responding to stimuli, cues. As engineers,
we assign an efficiency metric that mathematically expresses a ratio of the quantity
of output produced for a known quantity on input

3-20 System sustainment Every system, product, or service requires resources such as personnel, funding,
consumable, and expendables; corrective and preventive maintenance; and support
such as spares, supplies, and training to ensure success in accomplishing its mission

3-21 System promotion Some systems, namely, businesses, promote their systems in anticipation of future
sales via demonstrations and advertising

3-22 System concealment Some systems may employ camouflage or stealth methods to avoid detection,
visibility, or existence

3-23 System threats Every system and its missions may be threatened by competitors or adversaries within
its Operating Environment that may exhibit friendly, benign, aggressive, hostile
intentions or actions

3-24 System protection Every system requires a level of protection to minimize its vulnerability to external
threats

3-25 System security Human Systems—Enterprise and Engineered—may require a level of security such as
physical security (PHYSEC), communications security (COMSEC), operational
security (OPSEC), and information security (INFOSEC)

3-26 System architecture Every system consists of a multi-level, operational, logical (functional), and physical
structure or architecture that provides the framework for its form, fit, and function

3-27 System capabilities Every system, by definition, has inherent capabilities such as processing, strengths, or
mathematical transfer functions that enable it to process or transform inputs such as
raw materials, information, stimuli, and provide a response in the form of behavior
patterns, products, and by-products

System capabilities, like operating domains, can be extended using tools or other
systems

3-28 System concept of operations
(ConOps)

Every system requires a Concept of Operations (ConOps) as envisioned by its System
Owner, System Developer, and/or System Maintainer that expresses HOW the
system will be deployed, operated, maintained, sustained, retired, and disposed

3-29 System application Every system is designed for applications such as single use, reusable, or multi-use
3-30 Operating norms, standards, and

conventions
Every system employs a set of operating norms, standards, and conventions that

govern its operations, behaviors, morals, ethics, and tolerances
3-31 System description Every system requires an operational, behavioral, and physical description that

characterizes its system architecture, System Elements, interfaces, behavioral
responses, and physical implementation

Each of these characteristics is represented by system capabilities and Engineering
performance parameters that must be captured and articulated as requirements in the
System Performance Specification (SPS)

3-32 System operating constraints and
conditions

Every system has operating constraints and conditions that may be physical
(capabilities), imposed by higher order authority—international, governmental,
environmental, social, economic, financial, and psychological

3-33 Modes of operation Every system consists of modes of operation that enable its Users to safely perform
Command and Control (C2) to achieve performance-based objectives and outcomes

3-34 States of operation Every system consists of states of operation that relate to its deployment, state of
operational readiness, or physical condition
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TABLE 3.2 (Continued)

ID Attribute Description

3-35 Current operating condition Every system is characterized by a physical condition that affects its ability to
successfully perform its missions

3-36 Operational status Every system and its components have an operational status related to its current
operation such as On/Off, Enabled/Disabled, Activated/Deactivated,
Energized/Deenergized, Open/Closed, failed, degraded, calibrated, and aligned

3-37 System readiness Every system has an Operational Health Status that represents its current state of
readiness to perform or support User missions

3-38 System sensors Human Systems—Enterprise and Engineered—require some form of sensory
receptors that enable it to detect external stimuli, excitations, or cues and process
inputs or internal status or operating condition

3-39 System behavior patterns Every system is characterized by patterns of behavior that represent responses to
interact with its Operating Environment and conditions

3-40 System responsiveness and
sensitivity

Every system possesses time and performance-based behavioral capabilities that
characterize its ability to respond to or process raw materials, stimuli, excitations, or
cues and provide a response

3-41 System interfaces Every system has internal and external interfaces that enable it to interact with its
Operating Environment as well as itself

3-42 System pedigree Every system has a pedigree derived from a legacy system designs, technologies, and
improvements to those designs to correct for design flaws, defects, deficiencies, and
errors

3-43 Mission resources (system
inputs)

Every system requires resource inputs such as tasking, expendables, consumables, and
operator actions that can be transformed into specific actions required to stimulate,
motivate, maneuver, propel, process, and output behavioral and physical responses

System technology Every system is implemented with a type of technology that has a performance-based
shelf life and utility

3-44 System products, services, and
by-products

Every system produces:
• Value-added products and/or performs services that benefit its Stakeholders
• By-products that may impact system performance and/or its Operating

Environment

Example
By-products include heat, waste products such as trash, exhaust, thermal signatures,

colorations

3-45 Procedural data Every Human System requires procedural data that describe safe operating procedures
related to equipment, services, operator interfaces, and interfaces with external
systems

3-46 System vulnerability Every system has some form vulnerability that represents uncertainties or
shortcomings in its operational, behavioral, and/or physical characteristics

Vulnerability includes physical, psychological, social, economic, security, privacy, and
other factors

Example
Military tanks have additional layers of protection to minimize the impacts of direct

hits. Internet sites have vulnerabilities to computer “hackers”

3-47 System lethality Offensive military systems are characterized by their lethality—their potential to
destroy or inflict damage, disable, neutralize, or otherwise cause harm to a threat or
target

3-48 System survivability Every system consists of operating tactics and physical characteristics that enable it to
survive encounters with external systems in its Operating Environment

3-49 System fault tolerance Every system has degrees of fault tolerance that enable it to perform missions and
achieve mission objectives while operating at a degraded level of performance for a
given set of internal or externally induced or malfunctions

3-50 System agility Every system requires a level of agility to respond to opportunities and threats in its
Operating Environment to ensure its survival and success

3-51 System C2 Every system requires C2 of its operations, processing, behaviors, and actions
3-52 System stability Every system requires a level of stability to accomplish mission operations

(continued)
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TABLE 3.2 (Continued)

ID Attribute Description

3-53 System operators Every system requires one or more human operators or capabilities to C2 its missions
and operations

3-54 System maintainers Every system requires maintainers to perform preventive and corrective maintenance
actions to ensure mission performance is achieved.

3-55 System instructors Some systems, especially complex systems, require instructors to ensure that the Users
are proficient in safely operating the system to perform missions

3-56 System aesthetics Every system possesses psychological or appearance characteristics that are
aesthetically pleasing or appealing to the senses of its Stakeholders

3-57 System latent defects Every system is unique in its development and often includes residual, undiscovered,
latent defects—design flaws, errors, and deficiencies; workmanship and material
defects imperfections or blemishes; that may impact system performance or
cosmetically diminish its aesthetic value

3-58 System risk Every system, product, or service has an element of risk related to mission operations
and its Operating Environment that include a:

• Probability of occurrence

• Consequence(s) of failure

3-59 System Environmental, Safety,
and Health (ES&H)

Every Human System imposes some Level of ES&H risks to system
personnel—operators, maintainers, private and public property, and the environment

3-60 System Total Cost of Ownership
(TCO)

Every Human System has a TCO that is cumulative over its life cycle and includes
non-recurring (NRE) and recurring engineering development costs plus
deployment, OM&S, and retirement/disposal costs

ABET definition of Engineering and the Wasson definition of
SE stated earlier in Chapter 1:

1. ABET definition of Engineering—“… knowledge of
the mathematical and natural sciences gained by study,
experience, and practice is applied with judgment to
develop ways to utilize economically the materials and
forces of nature for the benefit of mankind (Prados,
2007, p. 108).”

2. Wasson SE is the “multi-disciplinary application of
analytical, mathematical, and scientific principles to
problem solving and solution development based on
formulating, selecting, and developing an optimal so-
lution that has acceptable risk, satisfies User opera-
tional need(s), and minimizes development and life cy-
cle costs while balancing Stakeholder interests.”
We can say that humans can apply Engineering and SE
methods to innovate and create solutions that do have
emergent properties.

Can emergent properties be discovered? Yes. Consider the
following examples:

Example 3.2

Cause and Effect Emergent Behaviors

The medical profession sometimes discov-
ers that drugs originally developed for cer-
tain types of medical conditions can have

positive or negative effects on other conditions. In cases

where the results of positive, emergent properties open new
opportunities for further research and healing.

Example 3.3

Campus Sidewalks – Emergent
Behaviors

Architects developing a new campus may
sometimes perform an analysis of potential

high traffic areas for installing sidewalks, wait several weeks
or months, assess worn footpaths across grassy areas, and
then install sidewalks in those areas. Analyses are fine
but have limitations; however, the student Users exhibit
emergent properties that may not have been apparent in the
initial analyses or planning.

Intangible properties are those properties of a system
or product that have an intrinsic, psychological value to
stakeholders. For Example, nuclear, biological, and chemi-
cal weapon systems act as a deterrence to adversaries. Con-
versely, marketing creates website designs, product features,
etc. having intangible properties that appeal to the attention
of Users and result in their selection over other systems or
products.

3.6 SYSTEM CHARACTERISTICS

The term characteristics refers to the operational, behavioral,
and physical performance that is observable, measurable, and
uniquely identifies a system’s performance.
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When we characterize systems, especially for marketing
or analysis, there are four basic types of characteristics
we consider: (1) general characteristics, (2) operating or
behavioral characteristics, (3) physical characteristics, and
(4) system aesthetics.

Every system consists of high-level general char-
acteristics that enable us to describe its key features.
We often see general characteristics stated in market-
ing brochures where key features are emphasized to
capture a client’s or customer’s interest. General char-
acteristics often have some commonality across multiple
instances or models of a system. Consider the following
examples:

Example 3.4

Automobile General Characteristics
Handling qualities such as swerving and
cornering, two-door or four-door mod-
els; convertible or sedan; air-conditioned
comfort; independent suspension; tinted
windows, 22 mpg city, 30 mpg highway

Aircraft General Characteristics
Flying or handling qualities such as stability and
control, 50-passenger, 2000 nautical mile range, IFR
capabilities

Enterprise or Organization General Characteristics
200 employees; staff with 20 PhDs, 50 MS de-
grees, and 30 BS degrees; annual sales of $500M
per annum

Network General Characteristics
Client–server architecture, PC and Unix platforms,
firewall security, remote dial-up access, Ethernet back-
bone, network file structure (NFS)

At a level of detail below the General Characteristics,
systems have Operating Characteristics that describe system
features related to usability, vulnerability, survivability, and
performance for a prescribed Operating Environment.
Consider the following examples:

Example 3.5

Automobile Operating Characteristics
Maneuverability, turn radius of 18 ft., 0 to
60 mph in 6 seconds

Aircraft Operating Characteristics
All-weather application, speed

Network Operating Characteristics
Authorized access, access time, latency

Every system is characterized by nonfunctional physical
attributes such as size, weight, color, capacity, and interface
attributes. Consider the following examples:

Example 3.6

Automobile Physical Characteristics
2000 lbs, curb weight 14.0 cu. ft. of
cargo volume, 43.1 of inches (max) of
front leg room, 17.1 gals fuel capacity,
240 horsepower engine at 6250 rpm,
turbo, available in 10 colors

Enterprise or Organization Physical Characteristics
20,000 sq. ft. of office space, 300 PhDs, 300 networked
computers, 100,000 sq. ft. warehouse

Network Physical Characteristics
1.0 Mb Ethernet backbone, topography, routers, gate-
ways

Observe usage of the term “non-functional” in the pre-
vious paragraph and examples above. Recall that a function
represents an action to be performed. Non-functional indi-
cates that an action is not performed such as size, weight,
color.

In summary, general, operating, behavioral, and physi-
cal characteristics are objective performance parameters that
are observable and measureable. However, what about sub-
jective characteristics? We refer to these as system aesthetic
characteristics because they relate to the “look and feel” ap-
pearance of a system that appeals to the User’s, Acquirer’s,
or System Owner’s preferences. Thus, some buyers make in-
dependent decisions, while others are influenced by external
systems (i.e., other buyers) in matters relating to community
or corporate status, image, and the like.

3.7 THE SYSTEM’S STATE OF EQUILIBRIUM
AND THE BALANCE OF POWER

Principle 3.8

System Equilibrium Principle

Every system, depending on its condi-
tion, exists in a state of equilibrium with
its Operating Environment to ensure
survival.

Collectively, a system’s attributes, properties, and char-
acteristics integrate to create its unique identity and enable
it to operate and survive within a given Operating Envi-
ronment. When the system does survive, future survival
depends on its ability to exist, evolve, and change in a “state
of equilibrium” relative to its Operating Environment. In
general, we refer to this as the “balance of power.”

The state of equilibrium depends on how a system ex-
ists through its own (1) level of dominance or (2) subordi-
nation to and protection by other systems. At any instance
of time prior to, during, and following an engagement or
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encounters with other systems in its Operating Environ-
ment, a system has an initial state, an operating condition,
strengths, weaknesses, or stabilization, and a final state that
are determined by the balance of power and results of the
interaction.

3.7.1 Pre-requisite Conditions Leading to an
Encounter

System stability, integrity, and consistency of performance
require that transitions between system phases, operations,
and tasks have clean, unambiguous transitions with no
unintended consequences. Thus, systems are assumed by
designers to have pre-requisite operating conditions that lead
them to the present time or operational need that requires
encounters and interactions with external systems in its
Operating Environment.

3.7.2 Initial Operating Conditions and State

A system’s initial operating condition and state consist of
the physical integrity of its components and operational state
of readiness at a specific instant in time. Since analyses
often require the establishment of basic assumptions for
investigating some facet of system phases, operations, or
task, initial conditions serve as a “snapshot” or starting point
that captures the assumptions. To illustrate this concept,
consider the following example:

Example 3.7

The aircraft took off with a crosswind of 15
knots.

The early morning rush hour began as
a blizzard moved through the area with 30
mph wind gusts.

3.7.3 Static Conditions

When we analyze systems, a key basis for the analysis is
often the physical state of the system at a given “instance
time.” Engineering statics are used to characterize a system’s
current orientation, such as state vector or orientation within
a larger system. From an overall system perspective, an
aircraft sitting in a hanger, an automobile in a driveway,
a network computer system with no message traffic, and a
lighting system in the On or Off State, all represent a system
in a static state. In contrast, lower level system components
may have a static states while the system as a whole is in a
dynamic condition and vice versa. For example, an aircraft’s
wing flaps and landing gear may be set in a static state
for landing despite the aircraft experiencing dynamic wind
conditions that must be controlled by other flight control
surfaces.

3.7.4 Dynamic Conditions

Every Natural and Human System conducts missions
in its Operating Environment in some form of dynamic,
physical state (Chapter 7). Dynamics are characterized by an
infinite number of time-dependent system static snapshots
over a defined timeframe and Operating Environment
conditions. The dynamics may range from slow changes
(rock anchored on a hillside) to moderate changes (tempera-
ture variations) to violent, sudden changes (wind shear, earth-
quakes, or volcanoes).

Dynamic conditions also include inconsistencies, pertur-
bations, and instabilities in the balance of power in the local
or global environment. Mankind has always been intrigued
by the study of dynamics and their effect on behavior patterns
of the Earth, weather, oceans, stock market, and people. In
today’s world, research shifts to dynamic, complex systems
with a focus on predicting dynamic behavior and its impacts
on the economy and political elections. Thus, predicting
the dynamics of economies, consumer preferences, market
trends, technologies, social networks, and how they influence
each other are major research topics and have tremendous
market potential.

3.7.5 System Stabilization

Principle 3.9

System Stabilization Principle

Every system exhibits a level of stability
that requires the User and system to Moni-
tor, Command, & Control (MC2) its perfor-

mance to successfully accomplish mission objectives.

All Natural and Human Systems must maintain a level
of stability to ensure their survival and longevity. Otherwise,
the system can easily become unstable and potentially
become a threat to itself, its operators and maintainers, and
the public. Therefore, systems should have inherent design
characteristics – robustness - that enable them to stabilize
and control their responses to dynamic, external stimuli,
excitations, or cues.

Stabilization is ultimately dependent on having some
form of calibrated reference that is stable, dependent, and
reliable. For Human Systems such as systems or products,
stabilization is achieved by employing devices such as in-
ertial navigation gyroscopes, the Global Positioning System
satel (GPS), quartz crystals for electronic watches, and refer-
ence diodes for voltage regulators. In each of these cases, the
system stabilization is accomplished by sensing current free
body dynamics; comparing them with a known, calibrated
reference source; and initiating system feedback control ac-
tions to correct any variations.
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3.7.6 The Balance of Power

Taking all of these elements into account, system existence
and survival are determined by its ability to:

• Cope with the statics and dynamics of its Operating
Environment.

• Sustain a level of capability and stabilization that
harmonizes with its adjacent systems—the balance of
power or state of equilibrium.

The balance of power of systems, coupled with hu-
mankind’s general desire for peace and harmony, requires
systems to comply with standards imposed by society.
Standards in this context refer to explicit and implicit,
self-imposed expectations by society such as laws, regula-
tions, ordnances, codes of conduct, morals, and ethics. Thus,
system survival, peace, and harmony are often driven by a
system’s compliance to these standards. System adherence
to these standards involves two terms that are often inter-
changed and require definition. The terms are compliance
and conformance.

3.7.6.1 The Consequences of Noncompliance When a
system fails to adhere to established standards or norms of
society, it may place itself be at risk. Society’s response to
a lack of compliance generally involves formal or informal
notification, establishment that noncompliance occurred,
adjudication of the degree or noncompliance, and sentencing
in accordance with prescribed consequences or penalties.

For systems such as ships, aircraft, and automobiles,
intentional or unintentional noncompliance with the Human
Systems, Induced, and Natural Environments can be
very unforgiving or, even worse, catastrophic.

3.7.6.2 Levels of System Interactions System interac-
tions with its Operating Environment occur at two levels:
strategic interactions and tactical interactions. Let’s explore
each of these in detail.

3.7.6.2.1 Strategic Interactions Human Systems exhibit
a higher level of behavior that reflects a desire to advance
our current condition as a means of achieving higher level
vision. To achieve the higher level vision, humans must im-
plement a well-defined strategy, typically long term, based on
stimuli and information extracted from the Operating En-
vironment. We refer to implementation of this long-term
strategy as strategic interactions. These strategic interac-
tions are actually implemented via a series of premeditated
missions—tactical interactions—with specific mission ob-
jectives.

3.7.6.2.2 Tactical Interactions All life forms exhibit vari-
ous types of tactics that enable the system to survive, repro-
duce, and sustain itself. We refer to a system’s implemen-
tation of these tactics within the confines of its Operating
Environment as tactical interactions. In general, this re-
sponse mechanism focuses all existing survival needs in the
short term on obtaining the next meal.

3.7.6.3 System Interaction Analysis and Methodology
Depending on the compatibility and interoperability of an
interface, consequences of an encounter or engagement with
an external system may be positive, neutral, or negative. As
an SE or System Analyst, your mission is to:

1. Develop a thorough understanding of the engagement
participants (systems).

2. Analyze the System Use Cases (UCs) and scenarios
(Chapter 5) by applying natural and scientific laws
of physics to thoroughly understand the potential out-
comes, ramifications, and consequences.

3. Specify system interface requirements that ensure en-
gagement interactions compatibility and interoperabil-
ity success within cost, schedule, and technology con-
straints.

3.7.6.3.1 System Adaption to Its Operating Envi-
ronment Most systems are specified and designed to
perform in a prescribed Operating Environment. There
are situations whereby a system is transferred to a new
geophysical location or environment. When this occurs, the
system must adapt to its new Operating Environment.
Consider the following examples:

Example 3.8

System Adaption Example

As part of a strategy for climbing a high
mountain, mountain climbers travel to a
series of base camps to satisfy logistics

requirements and allow their bodies time to acclimate to the
thin air environment over a period of several days.

Since humans can only survive in specific types of Earth
environments, SEs must understand those conditions and
constraints and recreate a similar environment to enable
us to expand our base of operations and operating range
such as changing geographical locations to hostile or harsh
conditions or engage in space travel.

Some Engineered Systems are designed for adaptive
control to accommodate varying parameter conditions. For
example, an autopilot as a controller requires a control law
that enable it to C2 the aircraft based on parameter estimation
such as the aircraft’s changing mass due to in-flight fuel
consumption.
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Heading 3.2

Given an understanding of a system’s at-
tributes, properties, and characteristics as
well as its Stakeholders—Users and End
Users—we shift our discussion to its Sys-
tem/Product Life Cycle.

3.8 SYSTEM/PRODUCT LIFE CYCLE CONCEPTS

Principle 3.10

System Life Cycle Principle

Every Natural and Human System
exhibits a system life cycle that character-
izes its staged evolution from conception
to disposal.

Enterprises and Engineered systems, products, or services
are characterized by a System/Product Life Cycle. The life
cycle represents the evolution of a system beginning with
its conception; acquisition; development; deployment and
production; OM&S; retirement; and disposal.

The System/Product Life Cycle serves as both a roadmap
for understanding and communicating how Natural and
Human Systems evolve through a progression of sequen-
tial life cycle phases. For Human Systems, the roadmap
provides a framework for: (1) assessing existing system capa-
bilities and performance relative to threats and opportunities;
(2) defining, procuring, and developing new systems, prod-
ucts, and services of upgrades to respond to the threats and
opportunities; and (3) implementing new system or upgrades
to achieve mission objectives that counter or leverage the
threats and opportunities.

Engineered systems, products, and services originate
from a point of conception based on innovation and end when
the system becomes too costly to maintain, is obsolete, or
no longer fills an operational need. Since this text focuses
primarily on systems and products developed under contract
or commercially for the marketplace, we will refer to as the
System/Product Life Cycle shown in Figure 3.3.

The System/Product Life Cycle represents how an Enter-
prise views the conception to disposal life cycle of a system,
product, or service as an asset used to perform missions. En-
gineered Systems, for example, are conceptualized, planned,
organized, scheduled, estimated, procured, deployed, oper-
ated and supported, and retired from active service using this
framework. Their development is marked by a control point
or staging event such as a key decision that authorizes and
enables progression to the next phase. Natural Systems
follow similar constructs with life phases.

Author’s Note 3.2

There are a number of ways to define a
System/Product Life Cycle. Ten peo-
ple will have 10 different versions of
this graphic. You and your Enterprise
or organization should choose one that

best represents your Enterprise’s needs.

Over several decades, various government and pro-
fessional Enterprises have developed life cycle models.
Examples include:

• US Department of Defense (DoD)

• International Council on Systems Engineering (IN-
COSE)

• Institute of Electrical and Electronic Engineers (IEEE)

• American National Standards Institute (ANSI)

• Electronic Industries Alliance (EIA)

• International Organization of Standards (ISO)

During the late 1990s, government and industry
world-wide began to recognize and appreciate the need
for a consensus standard for life cycle processes. For
example, the ISO/International Electrotechnical Committee
(IEC) initiated activities to develop the standard that has
become known as:

• ISO/IEC 15288 Systems and software engineering—
System life cycle processes

System and Product Life Cycle

System
Definition
Phase  

System
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System
Procurement
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System
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Distribution
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System Operations,
Maintenance, and
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Phase   

System
Retirement/

Disposal
Phase   

System
Production

Phase
(As Applicable)

Figure 3.3 System/Product Life Cycle Overview
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As a result, organizations such as INCOSE and others
establish and link their standards for engineering processes
to ISO/IEC 15288.

Traditionally, most organizations refer to the various
“segments” of their life cycle as phases. In contrast, the
ISO/IEC 15288:2008 life cycle identifies stages that include
Concept, Feasibility, Development, Production, Utilization
and Support, and Retirement.

One of the challenges in establishing a life cycle is the
use of terms systems, hardware, software, and stakehold-
ers within a Community of Practice (CoP). For example,
by naming convention, the ISO/IEC 15288:2008 stages vary
from explicit names such as Development, Production, Sup-
port, and Retirement to less explicit names such as Concept,
Feasibility, and Utilization.

Author’s Note 3.3

Referral

For additional information concerning
the ISO/IEC 15288:2008 Life Cycle
Model stages, refer to Lawson (2010)
Chapter 3.

This text employs the Wasson System/Product Life Cycle
and life cycle phases as illustrated in Figure 3.3. Table 3.3
provides a mapping between the two life cycle models.
Please note: if you need to use the ISO/IEC 15288:2008 Life
Cycle Model, you should do so.

In general, life cycle models serve as an Enterprise frame-
work for planning project management activities and devel-
oping Engineered Systems. Over the years, SE has created
various life cycle model frameworks. From a SE perspective,
the semantics and value of a life cycle model is more than
simply depicting how to structure an end-to-end workflow
like a production line. The framework provides the infras-
tructure for SE analysis and subsequent specification require-
ments development. As a result, there must be harmonization
of both project management and SE needs in creating a life
cycle model with semantics and segmented workflow that
supports both sets of objectives.

As an example, the ISO/IEC 15288:2008 Life Cycle
Model transitions from Development or Production Stages
directly into the concurrent Utilization and Support Stages.
The reality is that commercial products and contract En-
gineered Systems completing Development or Production
must be deployed or distributed to the field or marketplace.
When deployed, they may enter an optional Storage Opera-
tions as illustrated later in Figure 6.4.

Additionally, the term Utilization leads to the question “by
whom”? System Stakeholders? Operators? Maintainers? So,
for educational purposes, the Wasson System/Product Life
Cycle model consists of a System Operations, Maintenance,
and Sustainment (OM&S) Phase.

TABLE 3.3 Mapping of ISO/IEC 15288:2008 to the
Wasson System/Product Life Cycle Model

ISO/IEC 15288:2008 Wasson System/Product Life
Cycle Model

Concept Stage System Definition Phase
Feasibility Stage System Acquisition Phase
Development Stage System Development Phase
Production Stage System Production Phase

System Deployment/Distribution Phase
Utilization and

Support Stages
System Operation, Maintenance, and

Sustainment (OM&S) Phase
Retirement Stage System Retirement/Disposal Phase

Traditionally, organizations often use the term support for
simplicity. However, support is an abstract term that sup-
presses the scope of its activities. This too leads to a learning
paradigm that may ignore a key activity, sustainment, that
has gained recognition and rightfully so in recent years. The
point is that although a User’s Enterprise has a requirement
to maintain and support a system, product, or service in the
field, a necessary condition, it is insufficient unless it has have
sustainable supply chains. Military campaigns, for example,
exemplify this point. Therefore, the Wasson System/Product
Life Cycle Model consists of a System OM&S Phase to pro-
vide a more explicit and complete meaning of what is re-
quired.

Commercial and other organizations often establish evo-
lutionary stage-gate life cycles that focus on the productiza-
tion of new technologies and maturation of a system, product,
or service to ensure its readiness for the consumer market-
place. As an example, the US Department of Energy (DOE,
2007, p. 3) identifies five stages for “managing risk through
project decision-making” as shown in Figure 3.4.

Based on this introduction to the Wasson System/Product
Life Cycle Model, let’s scope the activities that comprise
each phase.

3.8.1 The System Definition Phase

The System Definition Phase begins with recognition by
the User’s Enterprise that a new system or upgrade to an
existing—legacy—system, product, or service is required
to satisfy an operational need. The operational need may
be derived from (1) mission opportunities, (2) threats, or
(3) projected system capability and performance “gaps” or
deficiencies.

When a decision is made to acquire a new system, the
User analyzes existing system operational needs and defines
requirements for a new system, product, or service. In some
instances, the User may enlist the services of a System
Acquirer (Role) to procure the system and serve as the User’s
technical and contract representative during its acquisition
and development. The System Acquirer is a role that may be
performed by the User or contracted to an external Services
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Figure 3.4 US DOE Stage-Gate Process Example Source: DOE (2007), Stage-Gate
Innovation Management Guidelines

Provider to represent the User’s interests contractually and
technically during a system acquisition.

There are several reasons why Users employ the services
of a System Acquirer. The User’s Enterprise may be:

• Non-technical and employs high-tech systems but lack
the expertise to develop new systems or upgrades
internally.

• Technical but does not have the staff resources readily
available to develop a new system or upgrade.

• Technical but lacks the specialized expertise or tech-
nology required to develop a new system or upgrade.

The System Acquirer, if applicable, assists the User as
their technical representative in analyzing what is referred
to as the Opportunity or Problem Space (Figure 4.7) that
created the need. The System Acquirer, in collaboration with
the User, bounds the Solution Space in the form of a set
of System Performance Specification (SPS) requirements to
serve as the basis for a system development contract.

When the System Definition Phase has reached suffi-
cient maturity, the Acquirer initiates the System Acquisition
Phase.

3.8.2 The System Acquisition Phase

The System Acquisition Phase consists of those activities
required to formally procure the new system or upgrades to
the existing system. These activities include:

1. Qualifying potential system, product, or service ven-
dors based on a Request for Information (RFI) that elic-
its qualification of capabilities, technical approaches,
and subsequent down selection to a list of Offeror can-
didates.

2. Release of a Request for Proposal (RFP) or Quote
(RFQ) from qualified vendors (Offerors)

3. Selecting a preferred vendor (Offeror).

4. Contracting with the vendor to develop the system,
product, or service.

On Contract Award, two transitions occur:

• The System/Product Life Cycle Model transitions from
the System Acquisition Phase to the System Develop-
ment Phase.

• The selected vendor transitions from an Offeror role
to a System Developer, System Integrator, or Services
Provider role.

3.8.3 The System Development Phase

The System Development Phase (Figure 12.2) consists of
those activities required to translate the contract SPS require-
ments into a physical, deliverable system. Key System Devel-
opment Phase activities include:

1. System Engineering Design

2. Component Procurement and Development

3. System Integration, Test, and Evaluation (SITE)

4. System Verification

5. System Baseline Authentication

6. System Validation—Operational Test and Evaluation
(OT&E)

Throughout the phase, the multi-level System Design
Solution – specifications, designs, drawings, etc. - evolves
through a progression of maturity phases. Each phase of ma-
turity typically consists of a major technical design review
(Chapter 18) with entry and exit criteria supported by anal-
yses, prototypes, and technology demonstrations. The re-
views culminate in design baselines that capture snapshots
of the evolving and maturing Developmental Configuration
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(Chapter 16). When the System Design Solution is formally
approved, the Developmental Configuration provides the ba-
sis for component acquisition and development. We refer to
the initial system(s) as the first article of the Developmental
Configuration.

Acquired and developed components are inspected, in-
tegrated, and verified against the respective design require-
ments and performance specifications at various levels of
integration. The intent of verification (Chapter 13) is to an-
swer the question: Did we develop the system in compliance
with the specification requirements? The integration culmi-
nates in a System Verification Test (SVT) (Chapter 18) that
proves the system, product, or service fully complies with the
contract SPS. Since the System Development Phase focuses
on the creation of the system, product, or service from Con-
tract Award through SVT, we refer to this as Developmental
Test and Evaluation (DT&E) (Figure 13.6).

DT&E for commercial and consumer products (Figure
5.1) involve more than simply verifying compliance to an
SPS. Consumer product safety is a critical issue from both us-
age and human consumption perspectives. As a result, addi-
tional verification may be required by an independent testing
organization such as Underwriters Laboratories (UL®) in the
United States and Conformité Européenne (CE) in Europe
that a product meets the “essential” requirements of product
safety established by governmental organizations and stan-
dards. Examples include the:

• US Consumer Product Safety Improvement Act of
2008

• US Food and Drug Administration (FDA)

• US Department of Agriculture (USDA)

• US Environmental Protection Agency (EPA)

• European Union (2001), the European Council Direc-
tive on General Product Safety 2001/95/EC

When the first article system(s) of the Developmental
Configuration has been verified, at least two options may be
available, depending on contract requirements. The system
may deploy to:

• Another location for validation testing by the User or an
Independent Test Agency (ITA) representing the User’s
interests

• The User’s designated field site for installation, check-
out, and commission for active service

Validation testing (Chapter 13), which is referred to as
Operational Test & Evaluation (OT&E) enables Users to
determine if they specified and procured the right system
or product to meet their operational needs. Any deficiencies
are resolved in accordance with the Terms and Conditions
(Ts&Cs) of the contract.

After an initial period of operational field use to correct
defects such as residual latent defects—design flaws, errors,
deficiencies, and discrepancies—as well as collect field data
to validate system performance, a decision is made to begin
the System Production Phase, if applicable. If the User does
not intend to place the system or product in production, the
System Acquirer and User formally accept system delivery,
thereby initiating the System OM&S Phase.

3.8.4 The System Deployment/Distribution Phase

When a system, product, or service completes its System
Development Phase, the next step is to deploy or distribute it
to Users or consumers. In general:

• Systems that are developed under contract between two
or more parties are deployed to the User’s designated
field site or staging area for storage or Installation and
Checkout (I&CO).

• Consumer product systems are delivered from manu-
facturers to distributors that serve as distribution points
or channels for subsequent delivery to retail and dis-
count stores and sold to consumers.

When the systems are finally installed and ready for
operation or have been purchased by consumers, they enter
the System OM&S Phase of their life cycle.

3.8.5 The System Production Phase

The System Production Phase consists of those activities
required to produce small-to-large quantities of the system or
product. The initial production typically consists of a Low-
Rate Initial Production (LRIP) to verify and validate that:

• Production documentation and manufacturing pro-
cesses are mature and complete.

• Latent defects such as design errors, design flaws, or
poor workmanship are eliminated.

It is important to note here that simply verifying and vali-
dating the First Article systems in the System Development
Phase indicates compliance to System Acquirer specifica-
tions and satisfaction of User operational needs. However,
this does not mean that the verified Developmental Configu-
ration can be cost effectively mass produced.

The System Production Phase is a form of enhanced de-
velopment in which Product Engineering Teams (PDTs) in-
vestigate ways of improving the Developmental Configu-
ration design and component selection to achieve a lowest
cost solution without sacrificing reliability, maintainability,
and safety of the original Development configuration. This
may require reverification and validation against production
specifications—Production Design Verification.
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Once the production design is verified, subsequent veri-
fications on a specific instance of the system consist of pro-
duction tests to simply demonstrate that the system is op-
erable and eliminate any latent defects such as poor work-
manship or faulty components. As production systems age
over time, projects typically institute a series of incremen-
tal Pre-Planned Product Improvement (P3I) upgrades and
retrofits to the fielded system via new production contracts.

When the production design has completed V&V based
on field tests of system production samples, full-scale pro-
duction, if applicable, may be initiated. Since the system and
production engineering designs have already been verified,
each production system is:

• Inspected

• Verified against key SPS requirements

• Deployed - Deployment Phase - to the User’s desig-
nated field site(s) for use—OM&S Phase or Storage
Phase (Optional)

Author’s Note 3.4

There is a difference between Sys-
tem Design Verification and Produc-
tion System Verification. Once a de-
sign has been verified, the design is
effectively complete pending any un-

known latent defects – design flaws, errors, or deficiencies;
or material composition defects or degradations - that may
emerge over time. The only remaining variable is elimina-
tion of poor workmanship, faulty materials and components,
which are unique to a specific instance of a Production Sys-
tem. Refer to Chapter 13, for a more detailed discussion.

3.8.6 The System OM&S Phase

The System OM&S Phase consists of User activities required
to operate, maintain, and sustain the system including train-
ing for system Users to perform its operational mission. If the
system is directed to change physical or geographic locations
in preparation for the next mission, the system is redeployed.
On deployment, the system, product, or service begins ac-
tive duty.

Throughout the system’s operational life, refinements and
enhancement upgrades may be procured and installed to
improve system capabilities and performance in support of
Enterprise or organizational missions. The system configu-
ration at initial delivery and acceptance represents the Initial
Operational Capability (IOC). System upgrades, referred to
as incremental builds (i.e., Build #1, Build #2), are released
and incorporated into the fielded system or product until the
system reaches a planned level of maturity referred to as Full
Operational Capability (FOC).

Although most systems have a planned operational ser-
vice life, the expense of maintaining a system via upgrades

and ability to upgrade the existing system with new technolo-
gies is not always cost effective. As a result, the User may be
forced to procure a new system, product, or service to replace
the existing system. Where this is the case, a new system life
cycle is initiated while the existing system is still in active
service.

As the first articles of the new system are placed into ac-
tive service, a transition period occurs whereby the legacy
(i.e., existing) system and the new system operate simul-
taneously in the field. Ultimately, a decision will be made
to deactivate and phase out the legacy system from active
service. When system phase-out occurs, the legacy system’s
Retirement Phase begins.

3.8.7 The System Retirement/Disposal Phase

The System Retirement/Disposal Phase consists of those
activities required to phase out an existing or legacy system
from active service. During retirement, each system or the
lot of systems may be dispositioned for sale, lease, storage
or disposal. Disposal alternatives include storage for future
re-commissioned use, disassembly, destruction, burning, and
burial. System disposal may also require environmental
remediation and reclamation to restore the system’s field site
or disposal area to its natural state.

3.8.8 Life Cycle Models in Real-time Operations

As stated earlier, life cycle models provide a basic strategy
for generalized project management workflow over time.
They do not, however, reflect the framework of real-time
system operations that serve as the analytical basis for SE
identifying and deriving operational capabilities that will be
translated into SPS requirements. Figure 3.5 provides an
illustration.

Let’s assume a system, product, or service is ready to exist
the System Development/Distribution Phase. Two options as
noted by the bubble identifiers are available:

• Option 1—Deliver the verified system, product, or
service to the System Deployment Phase for delivery
to the User.

• Option 2—Transition the Developmental Configura-
tion to the System Production Phase.

3.8.8.1 System Production Phase Operations Production
systems are developed and produced in LRIP or mass quan-
tities. On completion of the System Production Phase, the
system is transitioned (Option 6) to the System Deployment
Phase.

3.8.8.2 System Deployment Phase Operations The sys-
tem, product, or service is transported (Option 3) from the
System Developer’s facility to the User’s designated field site
for storage, operation, and consumer product distribution.
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Figure 3.5 System Usage Pathway Options Through Its Lifecycle.

3.8.8.3 System OM&S Phase Operations Once the sys-
tem, product, or service placed into active service, it per-
forms operations, undergoes maintenance actions, and has
its missions sustained. During its active service life, several
options are available to its Users:

• Option 4—Transition back to the System Deployment
Phase for redeployment to another User site and rein-
troduction, Option 3, to active service

• Option 5—Transition the fielded system, Developmen-
tal Configuration, after a period of field use and valida-
tion to the System Production Phase.

• Option 7—Decommission and phase-out for transition
to the System Retirement Phase.

3.8.8.4 System Retirement/Disposal Phase During the
System Retirement Phase, the system, product, or service
may be stored or shelved in inventory until a decision is made
to return it to active service (Option 8) or to dispose of it as
an Enterprise asset.
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Heading 3.3

Based on the preceding discussion, it should
be obvious that a system life cycle model is
more than simply identifying a generalized
project management workflow. As a unifying
framework for overall project success, the

model should support all types of project technical uses such
as SE and System Analysis. The infrastructure exhibited in
Figure 3.5 provides the basis for SE and System Analysts to
derive System life cycle operational capabilities addressed in
Chapter 7, “System Command and Control (C2) Phases,
Modes, and States of Operation.”

3.8.8.5 System Phase-Out versus Retirement Some En-
terprises refer to the System Phase-Out as the System Retire-
ment Phase. The inference is an ending of the active service
life of a system, product, or service and it is. Observe that

we said active service life, not end of life. There are several
scenarios that represent what might occur to a system.

• Scenario #1—A downturn in economic conditions
may result in an excess inventory of Enterprise assets
requiring them to be placed in storage until the condi-
tions improve. In this context, a system may be placed
in storage as illustrated in Figure 6.4. For example,
commercial and military aircraft are sometimes stored
in dry desert conditions until needed. Then, returned for
use.

• Scenario #2—A system or product is no longer needed
and will be dispositioned for disposal by the Enterprise.

The two scenarios above represent the transition of a sys-
tem, product, or service to a new state—Storage or Disposal.

3.8.8.6 Nested Operational Life Cycles Now that we
have a basic understanding of a system or product’s life cycle,
we shift our attention to understanding how a system’s life
cycle fits within the context of an Enterprise.

3.8.8.7 Understanding the Enterprise Aspects of System
Life Cycles Systems, products, or services are owned as
part of the higher level Enterprise System that also has a
system life cycle. Therefore, we have multiple levels of
embedded system life cycles as illustrated in Figure 3.6.

To better understand the last point, suppose that a User has
quantities of a product or system, including various versions
in inventory. At some point in time, the User may decide to
replace a specific product or a group of products.

Example 3.9

For example, an airline might decide to
replace a specific aircraft by tail number
or replace an entire fleet of aircraft over
a period of time. Each aircraft, which has
its own life cycle, is part of a much larger
Airline System that owns a fleet of aircraft.
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Figure 3.6 Enterprise Organizational, Line of Business (LOB), and Product Model Life
Cycles

To illustrate the point of this example, Figure 3.6 provides
an example. Assume we have an Enterprise that has evolved
over a number of years. Historically, we can state that the
business came into existence as Enterprise Entity #1. As
the business entity grows, it changes its name and becomes
Enterprise Entity #2.

If we examine the system life cycle of Enterprise Entity
#2, we might find that the organization evolves through sev-
eral Lines of Business (LOBs): LOB #1, LOB #2, and so on.
Within each LOB, the organization has a core product line
that consists of Product Model #1, which evolves into Prod-
uct Model #2. Observe the overlapping of Product #1 and
Product #2 life cycles. The evolution of this product line con-
tinues until the organization decides to terminate the product
or LOB. How is this concept applied to the real world?

3.8.8.8 Application of System Life Cycles We can apply
the concept of system life cycles within system life cycles to
an example such as a small engine developer. The organiza-
tion, which has a life cycle, may evolve through a number

of business life cycles such as small business, corporation,
and so on. During Enterprise Life Cycle #2, the organization
may develop several LOBs two-cycle engines, four-cycle en-
gines, and so on to support marketplace opportunities such
as lawn mowers, edgers, and small tractors. The Enterprise
four-cycle engine LOB may evolve through Product Model
#1 and Product Model #2. Each product model builds on its
predecessor—precedented system—to improve capabilities
and performance to meet marketplace needs.

The preceding discussion of a System/Product Life
Cycles relate to project management workflow and the
development of systems, product, or services. However, life
cycle models are not restricted to the workflow. The same
analogy applies to Users of system, product, and service.
Their Enterprises evolve through similar life cycles. The
differences occur when Product Model #1:

1. Fails.

2. Becomes too costly to operate, maintain, and sustain.

3. Is predicted to be vulnerable to system threats.
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4. Lacks the specific level of capability or performance to
meet predicted Enterprise needs.

Why is this relevant to SE? As a Systems Engineer (SE),
you need to understand what:

1. LOB your User is engaged in.
2. Opportunities, problems, or issues your User is char-

tered to address as part of its LOB. We refer to this as
the opportunity space and specific targets as Targets of
Opportunity (TOO)

3. Missions your User performs to support the LOB (we
refer to this as the solution space)

4. Capabilities your User requires to support solution
space missions now and in the future

5. Existing systems, products, or services your User em-
ploys to provide those capabilities

6. Deficiency gaps—or opportunities—exist in the current
system, product, or service and how you and your En-
terprise can cost effectively eliminate those deficiencies
with new technologies, systems, products, or services

Based on this knowledge and understanding, the SE’s role
as a problem solver–solution developer becomes crucial. The
challenge is: how do SEs work with Users and Acquirers to:

1. Collaboratively identify and partition the Opportunity
Space into one or more Solution Spaces?

2. Technically bound and specify each Solution Space in
terms of capability and performance requirements that
are legally sufficient to procure systems, products, and
service?

3. Verify that the new system complies with those require-
ments?

4. Validate that the system developed satisfies the User’s
original operational needs?

The remainder of this book is intended to answer these
questions.
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Heading 3.4

As we close this chapter, there is one re-
maining topic that is paramount to a sys-
tem’s use, its acceptance by the System
Stakeholders—Users and End Users. The
most elegantly designed system is of limited

value if the stakeholders do not want to use it. This brings us
to our final topic, System Acceptability.

3.9 SYSTEM ACCEPTABILITY: CHALLENGES
FOR ACHIEVING SUCCESS

The degree of success of any Engineered System and its
mission(s) ultimately depends on four factors:

• Success Factor #1—Marketplace Introduction and
Timing

• Success Factor #2—System Feasibility and Afford-
ability

• Success Factor #3—User Perception of Benefits –
Return on Investment (ROI)

• Success Factor #4—Total Cost of Ownership (TCO)

The Success Factors listed above are seldom optimum
simultaneously. Though appearing to be equal, psycholog-
ically subjective measures tend to take precedence over ob-
jective measures of system success. Simply stated, system
success ultimately comes down to whether the User and
Stakeholder decision authorities “like” the system or not and
are willing to use and sustain its operation. For example:

• Subjective aesthetics include look, feel, and perception
- within the peer community often promote User
acceptance of a system that may only be partially
successful.

• Conversely, the User for the same subjective reasons
may reject an objectively successful system.

Success Factor #1: Marketplace Introduction and
Timing
History is filled with examples of systems or products
that were delivered to the marketplace prematurely or
too late. You can innovate and develop the best widget
or electronic mousetrap (Example 2.1). However, if the
marketplace is not mentally or skillfully ready for the
device or can afford it, your efforts and investments
may be futile—timing is critical for User acceptance!
The same is true for proposing new systems or ca-
pabilities to Users. Users may want and need a sys-
tem yet lack sufficient funding (Figure 21.4). In other
cases, their funding may be placed “on hold” by deci-
sion authorities due to a lack of consensus regarding
the maturity of the system definition, understanding
of the system’s requirements, or technology. For this
reason, most Enterprises develop a series of decision
“gates” (Figure 3.4) that qualify the maturity of a busi-
ness opportunity and incrementally increase the level
of commitment, such as funding. The intent is to en-
sure that the right system or product solution is intro-
duced at the right time for the right price and is readily
accessible when the User is ready to purchase. There-
fore, Enterprises must do their research, collaborate,
and work proactively with the Stakeholders – Users
and End Users - to ensure that system timing is right.
This leads to the next point: User system/product fea-
sibility and affordability.

Success Factor #2: System Feasibility and
Affordability
If a determination is made that the timing for a system,
product, or service is right, the next challenge comes
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in determining if the system, as currently specified,
can be feasibly developed and produced with existing
technologies within the planned development and life
cycle budget at acceptable risk for the User or System
Acquirer.
As an SE, chances are you may be required to provide
technical support to business development teams work-
ing on a new system or product acquisition. If not, you
may be supporting an SE who is. From a technical per-
spective, the multi-disciplinary SE team is expected to
conceptualize, mature, and propose technical solutions
to satisfy the system feasibility questions noted in the
preceding text.
If you choose to avoid business development support,
others within your Enterprise may potentially formu-
late a risky or undesirable solution or commitment that
you have to live with later. Conversely, if the others
solicit engineering support and you choose to ignore
them, you may be stuck with the consequences of your
own inaction. Therefore, proactively support and tech-
nically influence business development activities and
decision-making. It’s a win–win for all stakeholders.

Success Factor #3: User Perception of Benefits –
Return on Investment (ROI)

Principle 3.11

User Benefits Principle

Every system, product, or service must
provide six benefits to Stakeholders to be
considered worthy of their consideration
for missions:

• Operational Utility

• Operational Suitability

• Operational Availability

• Operational Usability

• Operational Effectiveness

• Operational Efficiency

The ultimate test of any system, product, or service is
its mission and system effectiveness in performing User mis-
sions and accomplishing mission objectives. Failure to per-
form within prescribed Operating Environment condi-
tions and constraints places operational, financial, and sur-
vival risks on the Users, their Enterprise, and the public.
One of System Engineering’s greatest challenges for SEs is
being able to translate operational and system effectiveness
objectives into meaningful capability and performance re-
quirements that developers understand and can implement.
The challenge is exacerbated by a lack of formal Engineering
education and training (Figures 2.11–2.13).

The ultimate test for a system, product, or service resides
in its capabilities to produce performance-based outcomes

that meet Enterprise and mission objectives. When you
develop systems, there are six basic questions the User,
Acquirer, and System Developer need to answer:

• Stakeholder Decision #1 – Operational Utility—If
we invest in the development of this system, product,
or service, will it be operationally useful to the User in
accomplishing their Enterprise missions?

• Stakeholder Decision #2 – Operational Suitability
—If the system has operational utility, will it be oper-
ationally suitable for the User’s mission application(s)
and integrate easily into their business model?

• Stakeholder Decision #3 – Operational Availability
—If the system has operational utility and is opera-
tionally suitable for the application, will it be opera-
tionally available “on demand” to perform the mission
when tasked?

• Stakeholder Decision #4 – Operational Usability
—If the system has operational utility and is oper-
ationally suitable for the application, will it be op-
erationally usable – easy to understand and oper-
ate - by its Users without inducing human errors
(Chapter 24)?

• Stakeholder Decision #5 – Operational Effective-
ness —If the system has operational utility to the User,
is operationally suitable for the application, and will
be operationally available to perform its mission, will
it be operationally effective in accomplishing mission
objectives?

• Stakeholder Decision #6 – Operational Efficiency
—If the system has operational utility to the User,
is operationally suitable for the application, will
be operationally available to perform its mission,
and have operational effectiveness in achieving mis-
sion objectives, will it be operationally efficient to
operate?

Let’s explore each of these decisions further.

3.9.1 Operational Utility

Principle 3.12

Operational Utility Principle

Every system, product, or service must
be operationally useful to enable its User
to C2 the system and perform Situational

Assessments with the least number of human errors.

Users expect systems and products to have a level of oper-
ational utility that enables them to accomplish the Enterprise
missions and achieve the stated goals and objectives. These
are nice words, but what does operational utility really mean?
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A system, product, or service having operational utility is
one that:

• Is the right solution for use in Enterprise or organiza-
tional missions.

• Achieves mission outcome(s) and objectives.

So, if a system satisfies these operational utility criteria,
how do we determine operational suitability?

3.9.2 Operational Suitability

Principle 3.13

Operational Suitability Principle

Every system, product, or service must be
operationally suitable for the User’s mis-
sion application—the right tool for the job.

Operational suitability characterizes how well a system or
product:

• Suits a User’s specific application in a given
Operating Environment and conditions—that
is, the right system, product, or service for the job or
task to be performed.

• Integrates and performs within the User’s Enterprise
systems.

• Does not pose any unacceptable safety, environment,
or health hazards or risks to its operators, the public, or
environment

Some systems and products may have operational utility
for some applications but simply are not operationally suited
to a specific User’s intended application and Operating
Environment. Consider the following example:

Example 3.10

Operational Suitability Example

From a transportation perspective, vehicles
such as automobiles may have operational
utility to a User commuting to work and

transporting children to school. However, if the User plans to
use the vehicle Off-the-Road in a rugged, harsh environment,
only specific types of vehicles may be operationally suitable
for that type of mission application. If the User intends
to carry heavy loads, only specific types of trucks may be
operationally suitable for that type of mission application.

3.9.3 Operational Availability

Principle 3.14

Operational Availability Principle

Every system, product, or service must be
operationally available on demand to per-
form missions when required by its User.

Operational availability means that the system, product,
or service is capable and operationally ready “on demand” to
perform a mission when tasked. Operational availability be-
comes a critical metric for assessing the level of operational
readiness to perform missions. System availability is a func-
tion of system reliability and maintainability (Chapter 34).
Consider the following example:

Example 3.11

Operational Availability Example

When an emergency situation such as an
accident or fire occurs, 911 calls to police,
fire departments, and emergency medical

responders test the respective Enterprise’s system availabil-
ity – Personnel, Equipment, and so forth - to respond
to emergencies and disasters in the least amount of time.
“On demand” timing is crucial in life threatening situations.
The same is true when you crank your automobile to travel
to work.

3.9.4 Operational Usability

Principle 3.15

Operational Usability Principle

Every system, product, or service must be
operationally usable - easy to understand
and operate – according to the User’s

mental models, knowledge, and skill levels without inducing
human errors that affect mission or system performance.

Engineers can design and develop a system, product, or
service that possesses all the right technical operational at-
tributes – operational utility, suitability, availability, effec-
tiveness, and efficiency – based on their mental models.
However, it is the User who must be comfortable in using
the system, product, or service. If the System Design human
interfaces – displays, comfort, ease of operation, etc. - do not
comply with the User’s mental models (Chapter 24) and skill
levels thereby minimizing human error, it has limited or no
value. Learn to think based on the User’s mental model, not
the Engineering designer’s mental model.

3.9.5 Operational Effectiveness

Principle 3.16

Operational Effectiveness Principle

Every system, product, or service must
be operationally effective in producing the
required mission outcome(s).

Enterprises and Users are chartered with specific goals,
missions, and objectives. For example:

• A new vaccine is 99% effective in eliminating a specific
type of virus.
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• New surgical devices (Figure 25.9) enable surgeons to
perform minimally invasive surgery resulting in faster
patient recovery times.

If the system, product, or service does not achieve or is
only marginally operationally effective, it is of limited or no
value to the User.

3.9.6 Operational Efficiency

Principle 3.17

Operational Efficiency Principle

Every system, product, or service must
be operationally efficient in delivering the
required mission outcome(s) in the least
amount of time and cost.

You can develop the best system, product, or service that
has operational utility, suitability, availability, and effective-
ness; however, if it is not operationally efficient in terms
of cost effectiveness, it has limited value. For example, if a
system, product, or service is developed but is simply unaf-
fordable for the User to purchase, operate, and maintain, it is
totally useless to the User.

Success Factor #4: Total Cost of Ownership (TCO)
Developing a system, product, or service that has oper-

ational utility, suitability, availability, effectiveness, and ef-
ficiency focuses on system, product, or services outcomes
and objectives. However, what if the Total Cost of Ownership
(TCO) of a system, product, or service’s lifecycle is simply
unaffordable? For example, you might be able to splurge and
afford a luxury automobile to rent for a short family vacation;
however it would be unaffordable to purchase and too expen-
sive to operate and maintain over a period of ownership of a
few years. The concept of life cycle cost emerged during the
1960s when the US DoD began to recognize the significance
of operations and support costs relative to system acquisition
costs.

People are often surprised to learn that approximately
70% of the TCO for a system occurs during the System
OM&S Phase of its life cycle. As an example, Eisenberger
and Lorden (1977, p. 103) cite OM&S as 72% of the TCO.
Dallosta and Simcik (2012, p. 35) indicate costs for military
systems over a 30+ year life cycle have probability frequency
distributions as follows:

• System Acquisition Costs account for 20% to 40% of
TCO.

• Operations and Support Costs account for 60% to 80%
of TCO.

What is interesting about the OM&S metric is the nominal
value continues to hover around 70% of TCO based on two
different sources over a 35-year period—Eisenberger and
Lorden (1977, p. 103) and Dallosta and Simcik (2012, p. 35).

3.10 CHAPTER SUMMARY

During our discussion in this chapter, we introduced the key
concepts that define a system, product, or services attributes,
properties, and characteristics. Key topics included:

• Systems interact with themselves and with exter-
nal systems within their Operating Environment
(Figure 3.1 and 9.2).

• System Stakeholders consist of System Users that C2 a
system or product and End Users that benefit from the
mission outcomes of a system:

∘ Mission System and Enabling System (Chapter 3)
operators are defined as Users of a system if they
Command and Control (C2) the system, product, or
service to achieve mission outcomes and objectives.

∘ Mission System and Enabling System opera-
tors (Chapter 3) are defined as End Users if they
derive benefits from the system such as com-
fort – environmental control, lighting, seating, or
entertainment; Situational Assessment informa-
tion such as system performance – speed, battery
voltage, oil pressure, and so forth.

• System attributes, properties, and characteristics enable
us to characterize the unique identity for system,
product, or service.

• Systems have a state of equilibrium and stability within
their Operating Environment that determines their
position in the balance of power and ultimately sur-
vival.

• A System/Product Life Cycle model depicts the stages
or phases of evolution of a system from conception
through disposal.

• In the eyes of its owners and Users, affordability; oper-
ational utility, suitability, usability, availability, effec-
tiveness, and efficiency; and TCO are major drivers that
ultimately determine system acceptability and success.

3.11 CHAPTER EXERCISES

3.11.1 Level 1: Chapter Knowledge Exercises

1. What is a SOI?

2. What is a capability?

3. What is the difference between a capability and a
function?

4. What is the top level system analytical construct?

5. What do systems interact with?

6. What is a system attribute?
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7. What is a system property?

8. What is a system characteristic?

9. What makes a system, product, or service unique?

10. What influences a system and its results?

11. What are some types of system characteristics?

12. What constitutes a system’s state of equilibrium and
stability?

13. What is a system life cycle?

14. From an SE perspective, what criteria should a life cycle
meet?

15. What is the System Definition Phase, when does it start,
and when does it end?

16. What is the System Procurement Phase, when does it
start, and when does it end?

17. What is the System Development Phase, when does it
start, and when does it end?

18. What is the System Production Phase, when does it start,
and when does it end?

19. What is the System Operations, Maintenance, and
Support (OM&S) Phase, when does it start, and when
does it end?

20. What is the System Retirement and Disposal Phase,
when does it start, and when does it end?

3.11.2 Level 2: Knowledge Application Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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4
USER ENTERPRISE ROLES, MISSIONS,
AND SYSTEM APPLICATIONS

Engineers graduate every year with Engineering degrees and
go to work in industry and government. They begin their
careers within projects developing systems for which they
typically have little or no System Engineering education and
training as discussed in Chapter 2.

• If you ask engineers an open-ended question: “where
do your requirements originate?” most will respond
with a project-centric protocol and say “from our
Contracts organization.”

• If you ask them where the Contracts organization
gets the requirements, they will respond “from our
customers.”

• If you ask them where their Customers get their
requirements, they will respond with “they write some
requirements in a specification and send it out with a
Request for Proposal (RFP)”

If you sift through these responses, you begin to observe
that most engineers do not understand how their system
requirements originate and perceive that the Customer sits
down one day with a word processor and writes a few
requirements for a new system “off the top of their head.”

The reality is: Customers do not magically decide one day
to acquire a new system, product, or service and start writing
requirements. Unfortunately, this is sometimes the case for
those who do not fully understand how to develop systems.

Consider a heavy construction company that owns mas-
sive haulers to carry rocks, bulldozers, front-end loaders, and
water trucks. Do you think the owner arbitrarily decides to
procure these types of vehicles simply because they have a

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

fascination with vehicles? Absolutely not! These vehicles ex-
ist because the organization has a business mission to support
its customers. The organizational mission requires perfor-
mance of a diversity of mission tasks, each requiring a dif-
ferent type of system—vehicle—to produce outcomes that
contribute to the organization’s overall business mission.

Chapter 4 introduces ENTERPRISE ROLES, MIS-
SIONS, AND SYSTEM APPLICATIONS Concepts. Our
discussions and topical sequences include the following:

• User Enterprise Roles and Missions

• Duality of Enterprise Roles as Mission Systems and
Support Systems

• Problem, Opportunity, and Solution Space Concepts

• Evolution of System Capabilities and Requirements

4.1 DEFINITIONS OF KEY TERMS

• Countermeasure—An operational capability or tactic
employed by a system to camouflage its identity, de-
ceive or defeat adversarial or hostile system’s capabili-
ties, or minimize vulnerability by protecting itself from
unauthorized access.

• Counter-Countermeasure (CCM)—An operational
capability or tactic employed by a system to neutralize
another system’s threats or countermeasures.

• Mission—A purposeful action or task directed toward
accomplishing a specific objective-based outcome and
level of performance.

http://www.wiley.com/go/systemengineeringanalysis2e
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• Mission Needs Statement (MNS)—A general de-
scription of the operational capabilities required for a
new system, product, or service or upgrade to meet mis-
sion requirements.

• Mission Objectives—Performance-based outcomes to
be achieved by a mission within a specified timeframe
and operating constraints.

• Mission Profile—A time phased description of opera-
tional events and environments an item experieces from
beginning to end of a specific mission. It identifies the
tasks, events, durations, operating conditions and en-
vironment of the system for each phase of a mission.
(MIL-HDBK-1908B, p. 23).

• Opportunity Space—A gap or vulnerability in a sys-
tem, product, or service capability that represents an
opportunity for (1) a competitor or adversary to exploit
or (2) a supplier to offer solutions.

• Problem Space—An abstraction within a system’s
Operating Environment that represents an actual,
perceived, or evolving gap, hazard, or threat to an
existing capability. The potential threat is perceived
either to pose some level of financial, security, safety,
health, or emotional risk to the User or to have already
had an adverse impact on the individual or Enterprise
and its success. One or more lower level Solution Space
systems, products, or services resolve the problem
space.

• Problem Statement—A brief, concise, statement of
fact that clearly describes an undesirable event, issue,
state, or condition without identifying the source or
actions required to solve the problem.

• Situational Assessment—An objective evaluation
of current Strengths, Weaknesses, Opportunities, and
Threats (SWOT) of a System of Interest (SOI) rel-
ative to its operating conditions and outcome-based
objectives. Results of a situational assessment docu-
ment the prioritized mission operational needs for the
organization.

• Solution Space—A bounded abstraction that repre-
sents a capability that, when implemented, is intended
to satisfy all or a portion of a higher level Problem
Space.

• Statement of Objectives (SOO)—A statement of User
performance-based objctives to be achieved by a mis-
sion, system, product, or service.

• Strategic Plan—An outcome-based, global or busi-
ness domain document that expresses an Enterprise’s
vision, mission, and objectives of: (1) where it wants to
be at some point in time and (2) what it wants to ac-
complish in the long term, typically five years or more
hence. The challenge for most organizations is: What
business or Line of Business (LOB) are you currently

in versus what do you want to be in five years from now
versus what LOB you should be in?

• Strategic Threats—External systems that have
long-term plans to exploit opportunities that leverage
or enhance an Enterprise’s reputation or equity to
achieve a long-term vision and upset the “balance of
power.” For example, an Enterprise has a long-term
vision to predominate a software market.

• System Adaptation—The ability of a system to accli-
mate physically and functionally to a new Operating
Environment with a minimal degree of degradation
to its capabilities.

• System Threat—An external entity that has the po-
tential to cause or inflict varying degrees of harm on
another entity and its mission, capabilities, or perfor-
mance. A system threat is any interaction by an external
system that is hostile or adversarial and impedes the
operation and performance of your system in accom-
plishing its intended mission.

• Tactical Plan—A near-term, mission-specific plan that
expresses how the Enterprise’s leadership approach to
deploy, operate, and support existing assets—such as
people, products, processes, and tools—to achieve or-
ganizational objectives allocated from the strategic plan
within timeframe and resource constraints, typically
one year or less.

• Tactical Threats—External systems that pose a poten-
tial, short-term hazard to another organization or sys-
tem and its mission. For example, counter a competi-
tor’s advertising campaign.

4.2 APPROACH TO THIS CHAPTER

Principle 4.1

Customer Needs Principle

Success in providing systems, products, or
services solutions to a highly competitive,
global marketplace requires two levels of
knowledge:

• Understanding the operational needs of your
Users—customers.

• Understanding what the User’s customer expects of
them.

Chapter 4’s title may appear to be about as far from En-
gineering as one could imagine. What do User Enterprise
Roles, Missions, and System Applications have to do with
creating a system design and selecting components? The
reality is that systems, products, or services exist because
a User has an operational need to be filled on an Enter-
prise or individual consumer basis, accomplish one or more
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performance-based outcomes, and receive some form of Re-
turn on Investment (ROI) if they invest resources to pro-
cure it. This could be a consumer searching for a new tablet
computer, smartphone, Enterprise updating its accounting
system, a space agency planning a mission to Mars, and
so forth.

Success in developing systems, products, or services for
Enterprises and requires that you understand the who, what,
when, where, and how they will purchase. For Enterprises
making major capital investment expenditures, the process
often begins years in advance through some form of bud-
geting process. When the decision is made to acquire a new
system or upgrade to an existing one, you need to understand
how to satisfy those needs, set a competitive price, and then
deliver on your commitments. But the process does not begin
here. You need to understand what is motivating or driving
your customers’ operational needs based on what their cus-
tomers expect of them.

Our discussion begins with an introduction to the types
of Enterprises that acquire systems, products, or services.
Every Enterprise, irrespective of its business domain, serves
as an SOI and performs two roles: (1) a Mission System
role that produces physical products or performs services and
(2) an Enabling System role that delivers those systems,
products, or services to meet the operational needs of their
customers—the Users. However, Users have to satisfy the
operational needs of their customers—the End Users—that
benefit from the systems you and your organization develop
for the marketplace.

To meet the operational needs of your customers, you
need to understand how Enterprises assess their operational
needs to identify “gaps” in their organizational or system,
product, or service capabilities and how they intend to
eliminate the gap. Each gap effectively becomes a Problem
Space that requires one or more Solutions Spaces, each of
which becomes its own contextual Problem Space to be
decomposed into lower level Solution Spaces at lower levels
of abstraction and so forth.

We conclude Chapter 4 with a discussion of the need
for an Enterprise to time the development of new systems,
products, or services to ensure delivery prior to the emerging
capability gap growing to a stage in which the business
becomes vulnerable to competitive or adversarial threats and
ceases to exist.

4.3 USER ROLES AND MISSIONS

Principle 4.2

System Existence Principle

Every system, product, or service has a pur-
pose and exists for the benefit of performing
missions for its Stakeholders—User(s) and

End User(s). Failure of either one or both represent system
obsolescence leading to system retirement and disposal.

Every Human System—Enterprise and Engineered—
has a purpose or reason for its existence: Enable its User(s) to
accomplish their performance-based mission outcome(s) and
supporting objectives. As a result, every type of Enterprise
and Engineered System serves at the pleasure of its Users
in achieving their missions. When a system: (1) no longer
has a mission; (2) becomes cost prohibitive to operate,
maintain, or sustain (OM&S); or (3) is no longer efficient
or effective in accomplishing Enterprise performance-based
mission outcomes, it serves no one and no longer provides
value. As a result, it is decommissioned and disposed.

This section introduces the concept of Enterprise roles
and missions, system roles and Stakeholders—Users and
End Users—Enterprise capability gaps, and Problem/
Opportunity–Solution Spaces. We explore the roles of En-
terprises that employ systems, products, and services and
how physical systems—namely, assets—are acquired to
perform in support of Enterprise System roles, missions, and
objectives.

The success of Human Systems—Enterprise and Engi-
neered - in achieving success is determined by how well the
system is specified, designed, developed, integrated, verified,
validated, operated, supported, and sustained. This requires
that System Stakeholders—Users and End Users - have a
vested interest in the operational and cost-effectiveness of
the mission results. We conclude Chapter 4 by identifying
the primary system stakeholder roles and their contributions,
sometimes positive—sometimes negative—to system mis-
sion performance and outcomes.

4.3.1 User and End User Organizational Roles
and Missions

User and End User Enterprises and their systems per-
form roles that reflect their chartered missions and objec-
tives. Table 4.1 provides examples of system roles and
missions. Let’s explore the context of organizational roles
further.

4.3.1.1 Enterprise System Roles Context

Principle 4.3

The Customer and Customer’s
Customer Principle

To fully understand and support your
customer as a System User, you must

understand what their customers—the System’s End
Users—expect from them and the enabling role your system,
product, and service contributes to the accomplishment of
those results.
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TABLE 4.1 Example System Roles and Missions

System Role-Based Mission Description

Legislative Establish societal compliance guidance and constraints in the form of
local, state, and federal laws, statutes, regulations, ordinances, and
policies that govern individuals, organizations, or Enterprises

Judicial Adjudicate individual, organizational, or Enterprise compliance with
established laws, statutes, regulations, ordinances, and policies

Military Perform cooperative, emergency, peacekeeping, deterrence, and
wartime roles that ensure the survival of a country and protect its
constitution, security, and sovereignty

Transportation Provide transportation services that enable Users, customers, and
products to move safely and efficiently from one location to
another by land, sea, air, or space or combinations of these

Civic Perform public services that promote the goals and objectives of a
community-based organization

Educational Provide educational opportunities for people to gain specialized
knowledge and enhance their skills to prepare them for becoming
contributing members of society

Medical Provide medical consultation, therapy, diagnostic, surgical, and
treatment services

Resource Provide resources (e.g., time, money, fuel, electricity) commensurate
with performance and risk to support the missions, goals, and
objectives of an individual, organization, or Enterprise with an
expectation of a Return on Investment (ROI)

Producer Produce large or mass quantities of a system design or product in
accordance with requirements and standards for the marketplace

Construction Provide construction services that enable system developers to
implement facilities or sites that enable Users to deploy, operate,
support, train, and dispose of systems

Agricultural Provide nutritional food and agricultural by-products to the
marketplace that are safe for human and animal consumption and
safe for the environment

Food Serve customer daily food consumption needs such as grocery stores,
markets, restaurants, distributors

Public utilities Provide community water, sewer, refuse pick-up, electrical power,
natural gas, communication and other services

Retail or wholesale business Supply consumer products and services to the marketplace
Consulting and Technical Services Monitor the performance of other systems, evaluate the performance

against established standards, record objective evidence, and
control system performance

Research and Development Investigate the research and development, productization, or
application of new technologies for systems

Donne (1623) in his poem “No Man Is an Island”
exemplifies Enterprise and Engineered Systems and
their dependence on others. SEs must understand their
User’s/customer’s needs to successfully develop the
systems, products, or services required. Implicit in this
point is recognition that Enterprise and Engineered
Systems are dependent on unbroken “supply chains.”
Each step of the supply chain is required to deliver
systems, products, and/or services that comply with
Fitness for Use Criteria such as specifications to ensure

their existence and survival. Let’s explore this point
further.

4.3.1.2 Understanding Enterprise Supply Chain Roles

Principle 4.4

Dual Producer–Supplier Roles Principle

Every system, product, or service performs
two contextual roles: a Mission System
(Producer) role and an Enabling System
(Supplier) role.
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Figure 4.1 Understanding the Mission System (Producer) and Enabling System
(Supplier) Roles

Human Systems—Enterprise and Engineered—consist
of integrated supply chains of systems in which an Enterprise
produces systems, products, and services to support another
“downstream” system. Figure 4.1 provides an illustration.
Two key points are:

1. A Mission System (Producer Role) exists to per-
form and accomplish specific objectives defined by
contract, tasking, or personal motivation and pro-
duces systems, products, by-products, and/or services
as performance-based outcomes.
This leads to a follow-up question: Who benefits from
accomplishment of these objectives? This leads to the
second contextual role.

2. Each Mission System (Producer Role) serves as an
Enabling System (Supplier Role) to its Users per-
forming their Mission System roles.

If we investigate the tandem roles of the Mission System
and Enabling System(s) every Enterprise and Engineered
System SOI—such as divisions, departments, subsystems,
assemblies, subassemblies, and parts - provides capabilities
that produce value-added products, by-products, and/or ser-
vices required for their Users’ SOIs. Figure 4.1 illustrates the
dual role supply chains.

Author’s Note 4.1

Value-Added Processing

The term “value-added processing”
emerged from the 1980’s. Due to its
overuse or misapplication in market-

ing literature, the phrase became a meaningless cliche. Every
process within a system, product, or service must produce
performance-based “outcomes”, which is necessary. How-
ever, even the term “outcome” tends to obscure what is being
produced thereby making it an insufficient condition. Why?
Every process and step within the process must “add value”
to the preceding step. If it doesn’t, the process or step should
be eliminated. Remember—the term “process” has a human
administrative and manufacturing connotation. The same is
true for the human operator interaction with an Equipment
Element such as a car. Model-Based Systems Engineering
(MBSE) that represent logic and computations in a system
is focal point for eliminating non-value added processes.

System #1 performs a Mission System role as a Producer
of value-added products, by-products, and services to meet
consumer marketplace or contract requirements. The market-
place or contract establishes Fitness-for-Use standards and
acceptance criteria to meet the needs of System #2. As a
Supplier of products, by-products, and services, System #1
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serves as an Enabling System to System #2 performing its
Mission System role.

4.3.1.2.1 “Fitness-for-Use” Standards and Acceptance
Criteria

Principle 4.5

System Input and Output (I/O)
Fitness-for-Use Principle

Every system Input/Output (I/O) must com-
ply with pre-defined fitness-for-use perfor-

mance standards and acceptance criteria established by its
Stakeholders - Users and End Users.

Customers, Users, or System Acquirers of systems, by
virtue of validated operational needs, have minimum require-
ment thresholds and expectations that must be met to en-
sure the products, by-products, and services they acquire are
“acceptable for use.” Acceptable in terms of technical ca-
pability, quality, and safety and are not detrimental to the
environment, human safety, and health. To be considered for
acceptance as completion of a contract or task, a deliverable
system, product, or service is required comply with Fitness
for Use standards specified in a contract, specification, and
so forth.

Observe that Fitness for Use standards also apply to
system inputs and system outputs. Figure 3.2 illustrated
this concept as Acceptable and Unacceptable Inputs and
Acceptable and Unacceptable Outputs.

4.3.1.2.2 System Producer–Supplier Relationships The
construct depicted in Figure 4.1 represents the fundamental
Producer–Supplier Supply Chain relationships. If we analyze
each system within the Supply Chain, we discover that every
system has mission objectives to achieve. The mission ob-
jectives focus on performance-based outcomes—behavior,
products, by-products, and services—provided by an SOI to
satisfy customer operational needs and provide an ROI to
the supplier’s Enterprise Stakeholders. Therefore, a system
fulfills two roles:

1. A Mission System role to produce value-added prod-
ucts, by-products, and services.

2. An Enabling System role to deliver those products,
by-products, and services to other systems.

4.3.1.2.3 Organizational Mission System (Producer Role)

Principle 4.6

Mission System (Producer Role)
Principle

In performing its Mission System (Pro-
ducer Role), every System performs mis-

sions or tasks to produce performance-based outcomes (e.g.,

systems, products, by-products, services, or combinations of
these) to benefit its Users and their End Users.

Mission System roles are performed by Human Sys-
tems—Enterprise and Engineered—that are assigned spe-
cific missions to produce systems, products, and/or services
outcomes and deliverables that comply with mission objec-
tives. Consider the following example.

Example 4.1

NASA’s Space Shuttle as a Mission
System (Producer Role)

As a Mission System (Producer Role),
NASA’s Space Shuttle performed

space operations to accomplish mission outcome-based
objectives—deploy satellites; conduct scientific experiment
missions; and ferry astronauts, food, supplies, and refuse to
and from the International Space Station (ISS).

4.3.1.2.4 User Organizational Enabling System (Sup-
plier Role)

Principle 4.7

Enabling System (Supplier Role)
Principle

As an Enabling System (Supplier
Role), every System delivers products,

by-products, or services to meet the needs and Fitness for
Use standards of its Stakeholders - Users and End Users -
performing their Mission System Roles.

Enabling Systems—Enterprise and Engineered—
ensure that its User and End User operations are sustained
to perform missions. Consider the following examples.

Example 4.2

NASA’s Space Shuttle Supplier Role as
an Enabling System

As an Enabling System (Supplier),
NASA’s Space Shuttle deployed satellites

to space for Users, collected data from experiments for
scientific investigators, and transported astronauts and cargo
between the Kennedy Space Center (KSC) and the ISS
performing its Mission System Role.

Example 4.3

Aircraft Systems as Enabling Systems

As an Enabling System (Supplier), an air-
craft safely and comfortably transports pas-
sengers performing their Mission System

roles and cargo between two airports.
In support of the aircraft performing its Mission Sys-

tem (Producer) Role, Enabling Systems such as baggage
handlers, mechanics, ticket and gate agents, Ground Support
Equipment (GSE), and others perform their own Mission
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System (Producer) Roles to prepare the aircraft for a safe
flight, replenish expendables and consumables, and load or
unload cargo and passengers.

4.3.1.3 Why User Enterprise and Engineered System
Roles Are Important to SE You may be asking why and
how Enterprise and Engineered System roles are important to
SE and the Engineering of systems. Physical systems, such
as hardware, software, and courseware, exist because higher
level Enterprise Systems, such as Users, employ and leverage
physical system capabilities to achieve organizational goals,
missions, and objectives within budgetary cost and schedule
constraints.

As an SE, recognize, understand, and appreciate how
the User intends to deploy and employ a system in a pre-
scribed Operating Environment. Ask yourself: How does
a system, product, or service contribute to an organization’s
transportation role? For example, if you are in the airline
business, you provide or contract for: reservation and tick-
eting services, check-in and baggage handling, aircraft, gate
facilities, special services, or security. All these require phys-
ical systems, as well as integrated hardware and software, to
perform the Enterprise’s role. The airline has the options to:

1. Develop a system, product, or service.
2. Procure the system, product, or service from external

vendors.
3. Outsource (e.g., contract, lease) for the systems, prod-

ucts, or services.

In any case, each Enterprise organizational element such
as a division, department, and so forth is allocated goals,
objectives, missions, or performance requirements that con-
tribute to achieving the element’s mission and objectives.

When an organization, such as an airline, initiates oper-
ations, large numbers of personnel must be an integral part
of the planning, implementation, Operation, Maintenance, &
Sustainment (OM&S) activities. Each Stakeholder—pilots,
flight attendants, gate attendants, baggage handlers, and
food caterers—has a contribution and vested interest in the
performance-based outcomes and successes of the airline’s
role and its embedded systems.

4.3.1.4 Mission System–Enabling System Supply
Chain Relevance to Engineering The Producer–Supplier
Supply Chain concept may leave the impression that it
applies only to Enterprises. Not true! Producer–Supplier
Supply Chains apply to every aspect of engineering and its
disciplines such as processes. Observe how Enterprises and
their Engineered Systems serve as Mission System and
Enabling System Roles in the examples below:

• Electronics Design Supply Chain—As a Mission
System (Producer), a digital circuit designer trans-
forms a set of specification requirements into a physical

device such as a circuit board that has been engineered
to produce the specified outputs and characteristic
responses for a given set of inputs and Operating
Environment conditions. As an Enabling System
(Supplier), the device’s output is routed via cables
or wiring to downstream electronics to other inter-
nal/external systems for further processing.

• Mechanical Design Supply Chain—As a Mission
System (Producer), a mechanical engineer designs a
structure to support installation of User systems to op-
erate under varying wind loads and Operating Envi-
ronment conditions. As an Enabling System (Sup-
plier), the mechanical designer collaborates with the
Users to ensure that the structure produced will accom-
modate their Mission System operational needs.

• Software Design Supply Chain—As a Mission Sys-
tem (Producer), a software application consists of an
algorithm that computes results for a given set of inputs
and conditions. As an Enabling System (Supplier),
the software application stores results in a memory lo-
cation for subsequent retrieval by other software appli-
cations.

• Chemical Process Design Supply Chain—As a
Mission System (Producer), a chemical is used as a
catalyst to produce an outcome—a reaction—under
specified conditions.
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Based on the introduction of the Mission
System–Enabling System Supply Chain
concept leads to a need to discuss account-
ability for each SOI and its Mission Sys-
tem(s) and Support System(s) roles. Each of

these has its own sets of Stakeholders - Users and End Users
- that are accountable for SOI performance or application of
its performance-based outcomes.

4.3.2 Stakeholder User and End User Roles

Engineered Systems, from conception through retirement,
require some level of human operation, intervention, and
support, either directly and indirectly. Stakeholders—Users
and End Users—with vested interests in a system, product, or
service expect to contribute to its conceptualization, funding,
procurement, design, development, integration, operation,
support, and retirement of every system. Depending on
the size and complexity of the system, including risks and
importance to the User, Stakeholder roles may be performed
by an individual, an organization, or some higher level
Enterprise. Consider the following examples of System
Stakeholder roles:

Example

• System Advocate or Proponent
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• System Shareholder

• System Administrator

• System Owner

• System User(s)

• System End User(s)

• System Architect

• System Acquirer

• System Developer

• Services Provider

• Independent Test Agency (ITA)

• Mission Planner

• System Analyst

• System Support

• System Maintainer

• System Instructor

• System Critic

• System Competitor

• System Adversary

• System Threat

Let’s introduce and define each of these roles. Table 4.2
provides a brief description of each stakeholder role.

The context of stakeholder roles depends on an SOI’s
context. Recognize that the personnel—operators and main-
tainers, organizations, or Enterprises that perform these roles
may also be Stakeholders and have different roles relative
to other systems. As an example, the System Advocate for
one system may serve as a System Owner for several other
systems.

4.4 UNDERSTANDING AND DEFINING USER
MISSIONS

User Enterprise roles, missions, and objectives establish
the driving need for mission and system capabilities and
performance requirements. Each role, mission, and objective
serves as the benchmark frame of reference for scoping and
bounding what is and is not relevant as an organization’s
mission.

Understanding the problem, issue, or opportunity the
User is attempting to solve, resolve, or exploit is key to
understanding why a system exists and what purpose it serves
within the System Owner’s Enterprise. Let’s briefly explore
some of the types of Enterprise Missions.

4.4.1 Types of Enterprise Missions

Organizations conduct various types of missions that require
assets such as systems, products, or services to fulfill mission

objectives. High level types of missions include:

• Educational

• Humanitarian

• Medical

• Transportation

• Government

• Educational

• Delivery Services

Military organizations, for example, perform missions
such as:

• Search and Assist

• Search and Rescue

• Search and Retrieve or Recover

• Search and Destroy

The key point here is to fully understand the Enterprise
purpose, roles and missions, performance-based outcome
objectives, level of urgency, resource and time constraints,
and windows of opportunity. Although these points may
seem bland, they serve as critical decision points for the
development of systems, products, or services addressed in
the remainder of this text. Let’s briefly explore each one.

4.4.2 Enterprise Strategic Planning for Engineered
Systems

From an Enterprise perspective, we model the strategic and
tactical planning process as illustrated in Figure 4.2. In
general, the process consists of a Strategic Planning Loop
and a Tactical Planning Loop. These two loops provide the
basis for our discussion.

4.4.2.1 The Strategic Planning Loop The seed for
long-term Enterprise growth and survival begins with an
organizational vision. Without a vision and results-oriented
plan for action, the organization’s founders would be chal-
lenged to initially or continually attract and keep investors,
investment capital, and the like.

4.4.2.2 The Enterprise’s Operating Environment The
path forward for most organizations begins with a domain
analysis of the Operating Environment consisting of
Targets of Opportunity (TOOs) and threat environment. The
analysis task, which is scoped by the organizational vision,
produces a Market and Threat Assessment Report. The
report, coupled with the long-term organizational vision of
what is to be accomplished, provides the basis for developing
the organization’s Strategic Plan.

As the organization’s capstone planning document, the
Strategic Plan defines where the Enterprise expects to be five
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TABLE 4.2 System Stakeholder Role Definitions

Role Role Description

System Advocate or
Proponent

An individual, organization, or Enterprise that champions the system’s cause, mission, or reason for
existence
The System Advocate may derive tangible or intangible benefits from their support of the system or
they may simply believe the system contributes to some higher level cause the System Advocate
supports

System Shareholder An individual, organization, or Enterprise that “owns” all or equity shares in the system and its
development, operation, products, and by-products—either directly or indirectly

System Owner An individual, organization, or Enterprise that is legally and administratively responsible and
accountable for the system; its development, operation, products, and by-products; outcomes; and
retirement

System User(s) An individual, organization, or Enterprise that operates, commands and controls (C2) a system or
provides inputs—data, consumables and expendables, raw materials, or pre-processed materials. As
a result of system usage under their control, Users control system outputs to provide results such as
information, data, reports, and End Users to perform their tasks or make decisions. Users may
require proficiency training and possibly certification

System End Users An individual, organization, or Enterprise that derives direct benefits directly or indirectly from a
system and/or its products, services, or by-products. End Users may or may not require training

System Acquirer An agent or agency selected by the User to serve as their acquisition and technical representative to:

1. Define and specify the system

2. Select a System Developer or Services Provider

3. Provide technical assistance to assess System Developer or System Service Provider
performance, progress, maturity, status, and risk

4. Provide contractual oversight for the execution of the contract and delivery of a verified and
validated system to the User

System Developer An individual, organization, or Enterprise responsible for developing and delivering a verified system
solution based on operational capabilities and performance bounded and specified in a System
Performance Specification (SPS)

System Architect An individual, organization, or Enterprise that visualizes, conceptualizes, and formulates the system,
system concepts, missions, goals, and objectives. Since SE is viewed as multi-disciplined, the system
architect role manifests itself via hardware architects, software architects, and instructional architects

Services Provider An individual, organization, or Enterprise chartered or contracted to provide services to operate the
system or support its operation

Independent Test
Agent/Agency (ITA)

An individual, organization, or Enterprise responsible for verifying and/or validating that a system will
meet the User’s documented operational mission needs for an intended and prescribed operating
environment

System Administrator An individual, organization, or Enterprise responsible for the general operation, configuration, access,
and maintenance of a system

Mission Planner An individual, organization, or Enterprise that:

1. Translates mission objectives into detailed tactical implementation plans based on situational
analysis and system capabilities and performance relative to SWOT

2. Develops a course of action, countermeasures, and required resources to achieve success of the
mission and its objectives

System Analyst An individual, organization or Enterprise that applies analytical methods and techniques (e.g.,
scientific, mathematical, statistical, financial, political, social, cultural) to provide analysis and
meaningful data to support informed decision-making by Mission Planners, System Operators, and
System Maintainer personnel

System Support An individual, organization, or Enterprise responsible for supporting the system, its capabilities, and/or
performance at a sustainment level that ensures successful achievement of the system’s mission and
objectives. System support includes activities such as maintenance, training, data, technical manuals,
resources, and management

(continued)
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TABLE 4.2 (Continued)

Role Role Description

System Maintainer An individual, organization, or Enterprise accountable for ensuring that the Equipment System Element
is properly maintained via preventive and corrective maintenance and system upgrades

System Instructor An individual or organization accountable for training system operators or maintainers to achieve a
standard level of performance based on proficiency in achieving the system mission and its objectives

System Critic An individual, organization, or Enterprise with competitive, adversarial, or hostile motivations to
publicize or promote the shortcomings of a system to fulfill its assigned missions, goals, and objectives
in a cost effective, value-added manner and/or believes the system is a threat to some other system for
which the System Critic serves as a System Advocate

System Competitor An individual, organization, or Enterprise whose missions, goals, and objectives compete to capture
similar mission outcomes

Example
Examples include market share and physical space

System Adversary An individual, organization, or Enterprise that exhibits hostile behavior or actions whose interests,
ideology, goals, and objectives are to:

1. Counter to another system’s missions, goals, and/or objectives

2. Exhibit behavioral patterns and actions that appear to be threatening

System Threat A competitive, adversarial, or hostile individual, organization, or Enterprise actively planning and/or
executing missions, goals, and objectives that may be counter to another system’s missions, goals, and/or
objectives

Organizational
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Operating EnvironmentStrategic Planning Loop

Targets of Opportunity/

Threat Environment
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Figure 4.2 Operational Needs Identification Process
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years or more from now. The plan identifies a set of long-term
objectives, each of which should be specific, realistic,
measurable, achievable, and verifiable. As with any sys-
tem, strategic planning objectives require performance-based
metrics that serve as benchmarks for assessing planned ver-
sus actual performance and progress.

Author’s Note 4.2

The Global Nature of the Strategic
Plan

It is important to underscore the
global nature of the Strategic Plan.

The approved document forms the frame of reference
for initiating annual organizational Tactical Plans that
focus on LOB-specific missions and objectives for their
assets—systems, products, or services.

4.4.2.3 The Tactical Planning Loop Once the Strategic
Plan is established, the key question is: How do we get from
where we are now to five years from now? The answer resides
in creating and maintaining incremental, short-range Tactical
Plans that elaborate near-term—one year—objectives and
actions required to achieve strategic planning objectives.

Executive management decomposes strategic objectives
into tactical objectives and assigns the objectives to vari-
ous organizational elements. Performance-based metrics or
Measures of Performance (MOPs) benchmark the required
performance of each tactical objective. The MOPs serve as
benchmarks for assessing planned versus actual progress in
achieving the objectives.

4.4.2.4 Tactical Plans In response to the tactical objec-
tives, each organizational element develops a Tactical Plan
that describes how the each Enterprise’s leadership plans to
achieve the objectives relative to the MOP benchmarked. In
terms of how, the Tactical Plan describes what types of En-
terprise systems, products, or services as assets will be re-
quired, acquired, deployed, operated, maintained, sustained,
retired, and disposed. Thus, each Enterprise division, depart-
ment, and so forth requires a specified level of capabilities
and performance to support accomplishment of the tactical
objectives. To illustrate an aspect of a tactical plan, consider
the following example.

Example 4.4

Fleet Availability

Assume an Enterprise requires a fleet of 10
delivery vehicles with a fleet operational
availability of 0.95 (Chapter 34) and you

only have 6 vehicles that are operational due to the need
for major repairs. The tactical plan describes the strategy
concerning how the Enterprise intends to:

1. Acquire at least four additional vehicles (e.g., purchase,
lease, rent).

2. Operate the vehicles to achieve organizational objec-
tives.

3. Maintain the vehicles to achieve an operational avail-
ability of 0.95.

4.4.2.5 System Resources System assets as resources in
inventory and their current operating conditions represent
the existing Enterprise capabilities. Assuming the Enterprise
has a realistically achievable Strategic Plan and supporting
Tactical Plans, these documents and enabling Enterprise
systems have a shelf life. Competitive or hostile threats, as
well as opportunities, evolve over time. As a result, two types
of situations occur:

• Threat capabilities begin to exceed your Enterprise’s
organizational capabilities.

• As new opportunities arise, each organizational asset
requires a projected level of performance to defend
against threats or capitalize on the opportunities.

Given that the Enterprise systems, products, or services
have a shelf life due to materials degradation or product
obsolescence, the Enterprise may experience gaps between
current capabilities and they operationally need to survive
external threats or capitalize on opportunities.

As the Tactical Plans for achieving specific missions ma-
ture and are approved, Enterprise Systems such as Personnel
and Engineered Systems are funded to achieve the mission
objectives. The updates may include:

1. Deployment of a new system, product, or service.

2. Upgrades, enhancements, and refinements to existing
systems, products, or services.

3. Updates to Enterprise doctrine and command media
revisions.

4. Personnel training and skills enhancement.

5. Revisions to operational tactics.

Depending on the level of urgency for these capabilities,
a tactical plan may require several days, weeks, months, or
a year to implement and bring the organizational capabilities
up to required level of performance. Consider the following
example.

Example 4.5

Evolution of System Capabilities Over
Time

An Enterprise fields a system or product
with an Initial Operational Capability (IOC)

and incrementally upgrading via a series of “builds” until a
Full Operational Capability (FOC) is achieved at some point
in the future (Figures 15.5 and 15.6).
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Principle 4.8

Mission Outcome(s) Principle

Mission outcome(s) identify what has to
be accomplished to eliminate, minimize,
or control an emerging Problem Space or
exploit an Opportunity Space.

Additionally, until the required capabilities are firmly
established, interim operational tactics may be employed to
project a perception to adversarial or competitive threats to
a capability that may only exist in virtual space. History
is filled with examples of decoy systems or products that
influence competitor, adversary, or customer perceptions of
reality until the actual system, product, or service capability
is fielded.
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Heading 4.2

At this point, recognize that the Enterprise
was established to capitalize on TOOs in
the marketplace. As the Enterprise deliv-
ers or employs those products or services
in the Operating Environment, it must

continually assess a system’s operational utility, suitability,
availability, and efficiency and effectiveness. The analysis
collects and analyzes data from User interviews, observa-
tions, lessons learned, Trouble Reports (TRs), and deficien-
cies, for example, comprising the mission capability gaps.
The bottom line is:

1. Here’s what we set out to accomplish with our products
and services.

2. Here’s how they performed in the marketplace.

3. Here’s what our customers told us about their percep-
tions and level of satisfaction with our systems, prod-
ucts, or services.

4. Here’s the scorecard on performance results.

4.4.2.6 Existing System/Product Capabilities Effective
mission gap analysis requires a realistic, introspective assess-
ment of the existing Enterprise system, product, or service
capabilities. Enterprises employ media relations to project a
positive image to the marketplace. As a result, a “perception”
is created that the Enterprise may appear to be much stronger
than the existing capabilities, actions, and performances in-
dicate. Depending on the situation, serious business ethics
may be at issue with significant consequences.

For internal assessment purposes, the path to survival de-
mands objective, unbiased, realistic assessments of system,
product, or service capabilities. Otherwise, the Enterprise
places itself and its missions at risk by believing their own
rhetoric. This paradigm includes a concept referred to as
“group think” in which Enterprise management synergizes
their thought processes to a level of belief that ignores and
defies fact-based reality.

4.4.2.7 Organizational and Stakeholder Moments of
Truth

Principle 4.9

Stakeholder Moments of Truth Principle

Every time a System Stakeholder—User
and End User—encounters and interacts
with your organization and its systems,

products, or services is a “moment of truth” that result in pos-
itive or negative experiences, outcomes, and consequences
that impact business with you in the future.

Carlzon (1989) describes every customer’s encounter and
interaction with your Enterprise and its systems, products, or
services as “moments of truth.” As a result, those physical en-
counters and interactions may have positive, benign, or neg-
ative encounters as part of the normal course of day-to-day
business operations.

Observe Stakeholder as an operative term in Stakeholder
“moments of truth.” The preceding paragraph addressed
the topic from the User and End User perspectives. If the
systems, products, or services your Enterprise develops are
poorly received “moments of truth” by those Stakeholders,
imagine the complaints and messages the marketplace sends
to your stockholders, executives, and others either directly or
via falling stock prices.

How do Enterprises stay informed about Stakeholder op-
erational needs and expectations of their systems, products,
or services? Any candid User assessments of your system,
product, or service such as likes, don’t cares, or dislikes
as well as comparisons with others in the marketplace pro-
vide invaluable information related to your own capability
gaps and opportunities in the marketplace. Field engineers,
User interviews and feedback, or broader-based User com-
munity surveys serve as key collection points for moments of
truth data. The interviews capture User experiences, lessons
learned, and best practices based on direct physical interac-
tions with the TOOs or threat environment. Leverage this
information and knowledge to identify and create new sys-
tems, products, services, or upgrades to them.

4.4.2.8 Enterprise Capability Gap Analysis Mission gap
analysis focuses more in-depth on an SWOT or gap analysis
between the organization’s existing system, product, or ser-
vice capabilities, operational state of readiness, and TOOs or
threats. The analysis includes conducting what if scenarios;
assessment of operational strengths and definition of Mea-
sures of Effectiveness (MOEs) and Measures of Suitability
(MOSs) (Chapter 5); and leveraged capabilities. Based on the
mission gap analysis results, prioritized operational needs are
documented and serve as inputs into tactical plans. It is im-
portant to note here that gap analysis should reflect two types
of information:

1. The paper analysis comparison.
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2. Real world field data based on actual physical interac-
tions between the existing system or product and the
TOOs or threat environment.

The paper analysis is simply an abstract analysis and
comparison exercise based on documented evidence such
as “brochureware” in trade journals, customer feedback,
surveys, intelligence, and problem reports. The analysis may
be supported by various validated models and simulations
that can simulate the effects of interactions between the
existing system, product, or service capabilities and TOOs
or threats. Though potentially lacking in physical substance
and validation, the paper analysis approach should convey a
level of risk that may have an impact on the organization,
physical assets, human life, property, or the environment.

4.5 UNDERSTANDING THE USER’S PROBLEM,
OPPORTUNITY, AND SOLUTION SPACES

Principle 4.10

Problem, Opportunity, and Solution
Spaces Principle

Understand the User’s Problem/
Opportunity and Solution Spaces. A

worst-case scenario is writing perfectly stated specification
requirements for the wrong problem.

The concept of identifying and bounding a Problem Space
and Solution Spaces is one that you occasionally hear in
buzzword vocabularies. Sounds great! Impresses customers!
However, if you ask the same people to differentiate the
Problem Space from the Solution Space(s), you either get
ambiguous answers or a lot of animated arm-waving rhetoric.

Most successful missions begin with a thorough identifi-
cation and understanding of the Problem, Opportunity, and
the Solution space(s). One system’s Problem Space may be
an Opportunity Space for another that desires to capitalize on
the potential or emerging weakness.

4.5.1 Understanding Operating Environment
Opportunities

Principle 4.11

Problem/Opportunity Space Principle

One Enterprise’s or system’s Problem
Space is an Opportunity Space for a
competitor or adversarial system.

Human Systems, from an Enterprise perspective, exploit
opportunities and respond to threats. Enterprises assign mis-
sions and performance objectives—financial, market share,
and medical—that support the founder’s or system owner’s
vision of capitalizing on opportunities or neutralizing threats.

Survivalist opportunity and threat motives are common
throughout the Enterprise’s Operating Environment. De-
pending on one’s perspective, some refer to this as the “natu-
ral ordering of systems.” The animal kingdom that exists on
the plains of Africa is an illustrative example.

Example 4.6

Plains of Africa Fable (Anonymous)

On the plains of Africa, the lion awakes and
wonders if it will eat that day—a Problem
Space for the lion. Elsewhere, the gazelle

awakens and wonders if it will survive the day without be-
ing eaten by the lion—the gazelle’s Problem Space. From
the lion’s perspective, the gazelle represents an Opportunity
Space and, if sighted nearby within stalking distance, be-
comes a Solution Space for the lion’s survival.

To better understand the concepts and relationships of
Problem, Opportunity, and Solutions Spaces, consider the
illustration shown in Figure 4.3.

Assume that an Enterprise System such as an airline pos-
sesses a set of assets such as airplanes, flights, reservation
system, baggage handling system, and so forth. Over time, if
the Enterprise does not continuously improve those capabili-
ties to offer newer, competitive services to its customers, the
competition will. As a result, an Emerging Capability Gap
begins to evolve that may be unnoticeable or have limited
public exposure.

Engineered systems, as inanimate objects, are unaware
of their plight. However, the User’s Enterprise should be
increasingly concerned. As the Emerging Capability Gap
grows, it is viewed as a Problem Space for the User’s
Enterprise to fill via corrective action that may have a level of
urgency. Sometimes the “gap” occurs in the form of system
or product failures that require public acknowledgement,
notification to Users and End users, and product recalls for
immediate corrective action to mitigate risks and consumer
safety concerns.

While this is occurring, the User’s Enterprise’s Competi-
tors/Adversaries may observe, learn, or anticipate the Emerg-
ing Capability Gap. Whereas the Owner/User Organization
sees the Emerging Capability Gap as a Problem Space, its
competitors see the gap as a TOO as indicated by the rap-
tor icon.

The term Problem Space has two contexts—(1) a
User–Acquirer’s perspective and (2) a System Developer
perspective:

• A Problem Space for the User–Acquirer represents an
Opportunity–Solution Space for the System Developer.

• In turn, a System Developer’s Problem Space of find-
ing a design solution becomes an Opportunity Space
for subcontractors, vendors, and consultants to offer
solutions.
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When this condition occurs, the User’s Enterprise has
three potential options:

1. Fill the gap via internal system or upgrade develop-
ment.

2. Contract with an external System Developer to develop
a new system or upgrade the existing system.

3. Combinations of internal and external development.

In highly competitive situations, the Enterprise may be
required to camouflage the gap until it can be filled. In other
cases, such as product recalls, the Enterprise is required
to acknowledge the gap via public announcements to raise
consumer awareness of the situation and build confidence
that actions are being taken to correct any deficiencies or
safety issues.

4.5.1.1 Types of System Opportunities Opportunities
generally are of three basic types:

1. Time-based (i.e., waiting for the right time).

2. Technology-based (i.e., waiting on technology matu-
rity).

3. Location-based (i.e., waiting for a lease to expire).

Let’s explore both of these further.

4.5.1.2 Time-Based Opportunities Time-based opportu-
nities can occur randomly or predictably. Random opportu-
nities are sometimes viewed as “luck.” Predictable oppor-
tunities are dependent on periodic or repeatable behavioral
patterns (i.e., knowledge applied to practice) that enable an
aggressor system to capitalize on a situational weakness.

4.5.1.3 Technology-Based Opportunities One of the
ways a User can capture opportunities is by exploiting new
and emerging technology either through internal research
and development, currently available in the marketplace, or
by forging strategic partnerships with other organizations.

4.5.1.4 Location-Based Opportunities Location-based
opportunities, as the name implies, relate to being in the
right place at the right time. In the business world, success is
often said to be driven by “Location! Location! Location!”
Obviously, a good location alone does not make a business
successful. However, the location positions the business for
potential mission success.

4.5.2 Understanding the Problem Space

Principle 4.12

Operational Needs Principle

System analysis requires recognition and
validation of three types of Stakeholder—
User and End User—operational needs:

real, perceived, or projected.
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One of the first steps in SE is to understand what problem
or issue the User is attempting to solve. The term Problem
Space is relativistic. Consider competition in the commercial
marketplace or military adversaries. An Enterprise may view
a competitor or adversary and their operating domain as
a Problem Space. Hypothetically, if you were to ask the
competitor or adversary if they were a “problem” to the
other Enterprise, they may state unequivocally “yes!” or
emphatically “no!” Therefore, the context of a Problem
Space resides in the eyes and minds of those who perceive
the situation. Sometimes there is little doubt as evidenced by
acts of aggression or hostility such as invasion of a country’s
air space or hostile business takeovers.

Recognize the Problem Space has two contexts:

1. Threat Context—Eliminate vulnerabilities in system,
product, or service capabilities to external threats.

2. Opportunity Context—Seize the Opportunity Space to
create a new system, problem, or service that will
enable your Enterprise to increase market share in a
highly competitive market.

4.5.2.1 Opportunity Space Versus Problem Space
Semantics In a highly competitive marketplace and
adversarial, hostile world, survival for many organizations
requires proactive minimization of system vulnerability.
Enterprises that are proactive in recognizing opportunities
initiate risk mitigation actions to prevent hazards from oc-
curring and becoming problems—or tomorrow’s corporate
headlines. In contrast, procrastinators deal with problems
by becoming reactionary “firefighters,” assuming that they
were aware of the potential hazard and did not mitigate it;
they seem to never get ahead. Since the term Problem Space
is commonly used and one aspect of SE is problem-solving,
this text uses the term Problem Space.

4.5.2.2 Problem-Solving or Symptom Solving?

Principle 4.13

Problem–Symptom Solving Principle

There are two types of solution develop-
ment activities: problem-solving and symp-
tom solving. Recognize the difference.

Enterprises often convince themselves and their executive
management they are problem-solving. In many cases,
the so-called problem-solving is actually symptom solving.
This question leads to critical question for the User, Ac-
quirer, and System Developers: Is this the right problem to
solve or a downstream symptom of an unknown or larger
problem?

4.5.2.3 Dynamics of the Problem Space For most orga-
nizational systems, Problem Spaces are dynamic and evolu-
tionary. They evolve over time in a number of ways. Some
occur as instantaneous, catastrophic events, while others
emerge over several years—such as the hole in the ozone
layer of Earth’s atmosphere. The root causes for Problem
Spaces in system capabilities and performance originates
from several potential sources such as:

1. System neglect.

2. Improper oversight or maintenance.

3. System degradation through normal wear.

4. Ineffective training of the User Operators.

5. Improper use, abuse, or misapplication.

6. Product or technology obsolescence.

7. Budgetary constraints.

Organizationally, managers have an obligation to track
Problem Spaces. The challenge is that some managers are
politically reluctant to surface the Problem Spaces until it
is too late. In other cases, management fails to provide the
proper visibility and priority to seemingly trivial issues until
they become full-fledged Problem Spaces—the proverbial
“head in the sand.” When this happens, four potential
outcomes can occur:

1. Operationally, the source of the Problem Space goes
away.

2. The Enterprises management becomes distracted or
enamored by other priorities.

3. Enterprise objectives change.

4. Catastrophic (worst-case) events force corrective
action.

In general, people tend to think of the Problem Space as
static. In fact, the primary issue with the Problem Space is
its dynamics, especially in trying to bound and specify it
as illustrated in Figure 4.3. Dynamically, gaps may occur
rapidly or evolve slowly over time.

4.5.2.4 Forecasting the Problem Space The challenge
for most organizations is: How do we translate a forecast
of a potential Problem Space in terms of system capabilities
with some level of confidence? The answer resides in the
organizational and system level strategic and tactical plans,
system missions, and objectives.

Enterprise Strategic and Tactical Plans establish the ref-
erence framework for evaluating potential organizational
weaknesses—current capabilities versus planned capabili-
ties. Using these objectives as the basis, situational assess-
ments and gap analysis are employed as tools to compare
the state of existing to projected system capabilities and per-
formance against projected capabilities and performance of
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competitors or adversaries. The results may indicate a poten-
tial or emerging “gap” in capabilities and/or levels of perfor-
mance as shown in Figure 4.3. The identification of the gap
establishes the basis for Enterprise action.

Sometimes you cannot forecast a Problem Space. At best,
you may need to prepare for its occurrence … but that
costs money that some may view as wasteful. Consider the
following example.

Example 4.7

Asteroid Problem Space Example

Planet Earth has encountered several near
misses by asteroids. Since mankind started
exploring space, the international scientific

community has discussed the need for a solution such as
launching a device into space to destroy or divert the asteroid
before it can hit Earth.

In this case, you will not know an asteroid is on a collision
path until it is discovered by astronomers. Then, response
time becomes a critical issue. This leads to the question:
what happens if you develop such as device and there are
no asteroids? The rhetorical question becomes: What are the
cost and risk of development versus the cost and risk of not
developing the device?

4.5.2.4.1 When Does a “Capability Gap” Become a
Problem? Technically, a problem does not exist until a
hazard that poses a potential risk occurs as an event such as
an accident or incident (Chapter 24). Then you actually have
a problem! The infamous “OK, Houston, we have a problem
… ” communicated by Apollo 13 Commander Jim Lovell is
one of the best illustrations of the context used here.

This is perhaps the toughest question, especially from a
forecasting perspective. Obviously, you know you have a
problem when it occurs such as malfunction, emergency,
or catastrophic events. One approach may be to deter-
mine whether a potential hazard with a level of risk has
outcome-based consequences that are unacceptable. In ef-
fect, you need to establish levels or thresholds for assessing
the degree of problem significance.

4.5.2.4.2 Establishing Problem Space Boundaries One of
the challenges in SE is defining the Problem Space bound-
aries. It is easy for people to debate the concept of Problem
Spaces, their dependencies, and their dynamics. However,
Problem Spaces are often vague, imaginary concepts that are
difficult to bound and articulate.

Metaphorically, Problem Spaces are like the fabled
Sasquatch. Everyone talks about their existence, and some
claim to have recorded various types of objective evidence,
but no one seems to be able to capture one. Rowe (1998,
p. 56) illustrates this point by introducing what he describes
as the Problem Space Problem—defining and bounding the
Problem Space.

Conceptually, we illustrate a Problem Space with solid
lines to symbolically represent its boundary. For some
systems such as a lawn, the property boundaries are clearly
defined for ownership accountability. In other cases, the
boundaries may be elusive and vague. Consider civil unrest
and wars in countries where people take sides but look, dress,
and communicate similarly. How does one differentiate
friend versus foe? On which day of the week?

Lines drawn around abstractions such as ideology, pol-
itics, and religion are often blurry, vague, and ill defined.
Consider the graphic shown in Figure 4.4. The left side of
the figure illustrates Problem Space boundaries as gray, fuzzy
edges. The “center of mass” is indicated by the dark area
whose edges, however, are blurry and indistinct. In some
cases the Problem Space has tentacles that connect to other
Problem Spaces, each having an effect on the other. The blur-
riness may not be static but a continuum of dynamic, evolv-
ing changes as with clouds or a thunderstorm.

4.5.2.5 Eliminating/Controlling the Problem Space

Principle 4.14

Eliminate/Control the Problem Space
Principle

If you cannot eliminate the Problem Space,
try to control it until you can resolve and
eliminate it.

Depending on the source or root cause of the Problem
Space and the degree of risk to your system or its mission
objectives, the natural tendency of most Enterprises is to
eliminate the problem, assuming it is within their control,
resources, or sphere of influence. However, the reality is that
you may not be able to eliminate the Problem Space. At best,
you may only be able to manage and control it.

Once the Emerging Capability Gap is recognized as a
Problem Space, how do we articulate the problem to others?
This brings us to our next topic, Defining the Problem
Statement.

4.5.2.6 Defining the Problem Statement

Principle 4.15

Problem Statement Principle

Every Problem or Opportunity Space
should be clearly and concisely bounded
by a well-articulated Problem Statement

that does not identify causes, assign blame, or propose
solutions.

Principle 4.16

Contributory Cause(s) Determination
Principle

Investigative teams determine probable
causes and recommend solutions based on
analysis of the Problem Statement.
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Author’s Note 4.3

Root Cause Paradigms and
Contributory Causes Realities

One of the sources of Problem Spaces
is often incidents and accidents. Exec-

utives and news media boldly demand determination of the
“root cause.”

In Chapter 24, you will learn that most incident and acci-
dent Problem Spaces are not the result of a single root cause
but are typically the result of a series (Figure 24.1) of con-
tributory causes such as unsafe acts—operator, management,
and Equipment latent defects—design errors, flaws, and
deficiencies that occur under the same executive’s purview.
When a potential hazard penetrates Enterprise and Engi-
neered System safeguards, barriers, or defenses intended to
prevent such an occurrence, its trajectory culminates in an
incident or accident.

Our discussion to this point focuses on the Problem Space
in an abstract sense. The rhetorical question that requires
specificity is: What problem or issue is the User attempt-
ing to solve? Before the Solution Space can be bounded and
specified, it is crucial for you and your development team,
preferably in collaboration with the User, to simply docu-
ment what problem or issue the User is attempting to solve.
You need to define a Problem Statement. Ultimately, this
leads to the question: How should a problem statement be
written? Although there are a number of ways to develop

a problem statement, there are some general guidelines to
apply. A Problem Statement should:

1. Clearly, concisely, and succinctly define the problem or
issue in one sentence.

2. Avoid identifying the source or root cause of a problem.
3. Identify the operational scenario or operating condi-

tions under which the problem occurs or leads to oc-
currence of the problem.

4. Avoid stating any explicit or implicit solutions.
5. Avoid assigning responsibility or blame.

Consider the following example.

Example 4.8

Simple Problem Statement

Viruses are corrupting computers connected
to our Local Area Network (LAN).

Observe that the example does not specify: (1) where the
viruses originate, (2) the source or root cause of the problem,
(3) what the impact is, or (4) how to solve the problem.

Also observe that we said that a Problem Statement should
be a single sentence. People have a tendency to write a
paragraph about a problem leaving the reader to figure out
what the true problem actually is. Write a single, stand-alone
Problem Statements. If additional clarifying information is
required, isolate it from the Problem Statement and label it
as “Discussion” or “Clarifying information.”
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4.5.2.7 Partitioning the Problem Space As your under-
standing of the Problem Space matures, the next step is to
partition it into one or more Solution Spaces. Work with
System Stakeholders to partition the complex Problem Space
into more manageable Solution Spaces. The identification
of one or more Solution Spaces requires highly iterative
collaboration, analysis, and decision-making. Consider the
challenge of attempting to partition the ambiguous Problem
Space shown at the left side of Figure 4.4. Through parti-
tioning, our objective is to isolate key attributes, properties,
and characteristics of the problem to enable development of
solutions.

Principle 4.17

Problem Complexity Reduction
Principle

Partition—decompose - Problem or Issue
Spaces into one or more manageable Solu-

tion Spaces as a means of reducing complexity and manag-
ing risk.

Humans have a tendency to believe that a Problem Space
has one Solution Space. For some Problem Spaces, this may
be true. This assumes all Problem Spaces are easily solv-
able by current hardware and software in the marketplace.
The challenge is some problems—relatively speaking—are
small, some complicated, and some simply complex.

Problem-solving requires establishing a conceptual solu-
tion as a starting point that may become several Solution
Spaces. The Solution Space(s) may evolve throughout the
process and may not be recognizable at completion from its
starting point.

One approach is to gather the facts about a Problem Space
and create notional or hypothesis-based Solution Space
boundaries. Then, as the analysis progresses, adjust the
boundaries until decisions about the Solution Space bound-
aries mature or stabilize. The key point is that some com-
plex Problem Spaces are described as “wicked” (Chapter 2)
due to their complex, dynamic nature and are effectively
unsolvable. In general, you have a choice:

• Flounder in the abstractness.

• Make a decision, move on to the next decision, and then
revisit and revise the original decision when necessary.

4.5.2.8 Addressing Capability Gaps in Current Systems
Systems, products, and services have shelf lives and ulti-
mately outlive their usefulness, have diminishing utility to
System Stakeholders over time, and ultimately become ob-
solete. Assuming the capability gaps are not significant and
solution options are feasible, the User may decide to acquire
capability upgrades and retrofit existing systems in the field.
If the gaps are significant, the User needs to anticipate their
size well in advance of their occurrence. In these cases, new
system development may be the alternative.

Most systems, products, and services are precedented
(Chapter 2). As a result, many of the required operational
capabilities may already exist—the implementation may be
different. In the case of unprecedented systems, the System
Acquirer or User may have to issue several sequential
contracts to develop prototypes that drive out key operational
requirements. To better understand how system capabilities
are derived, let’s use the example illustrated in Figure 4.5.

During the System OM&S Phase of System #1, a decision
event occurs to replace System #1. The acquisition strategy
is to bring the new System #2 “on-line” or into active service
as noted by the First Article Field Delivery event.

After a System Transition Period for checkout and inte-
gration of System #2 into the Higher Order System, an
Existing System Deactivation Order is issued. At that time,
System #2 becomes the primary and System #1 enters the
System Disposal Phase of its life cycle. At some time period
later, the disposal of System #1 is marked by the Existing
System Disposal Complete event.

So, how do we initiate actions to get System #2 into active
service by the planned new system’s First Article Field De-
livery event without disrupting organizational operations?
Let’s explore that aspect.

When the new system Operational Need Decision event
is made, procurement actions are initiated to initiate System
#2’s life cycle. Thus, the System Definition Phase of System
#2’s life cycle begins. System #2’s System Development
Phase must be complete and ready for field integration
by the New System’s First Article Field Delivery event.
System #2 then enters the System OM&S Phase of its life
cycle.

By the time the Existing System Deactivation Order event
is issued, System 2 should be “on-line” and in active service.
As a result, System #1 completes its life cycle at the Existing
System Disposal Complete event thereby completing the
transition.

4.5.2.9 Problem Space Degree of Urgency The level of
risk and degree of urgency of the Problem Space as a
whole or portions thereof may influence or drive Solution
Space decisions, especially, where budgets or technology are
constrained. The net result may be a decision to prioritize
Solution Spaces and levels of capability within them.

We meet this challenge by establishing an IOC at system
delivery and acceptance. Then, as budgets or technologies
permit, IOC is followed by a series of incremental “builds”
or upgrades (Figures 15.5 and 15.6) that enhance the overall
capability. Finally, as the system matures with the integration
of the “builds,” overall capability referred to as a FOC is
achieved.

Given the preceding Problem/Opportunity Space discus-
sion, how does a User resolve the issue? The answer resides
in our next topic, Solution Spaces.
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4.5.3 Understanding Solution Spaces

To illustrate the partitioning of the Problem Space into Solu-
tion Spaces, consider the graphic in Figure 4.6. Symbolically,
we begin with a Problem Space represented by a large
box. Next, we arbitrarily partition the box into five Solu-
tion Spaces, each focused on satisfying a set of Problem

Space capability and performance requirements allocated to
the Solution Space. Initially we could have started with four
or even six solution spaces. Through analysis, we ultimately
decide there should be five Solution Spaces; it could have
been four or six.

So, how does this relate to system development? The large
box symbolizes the total system solution. We partition the
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complexity of the system solution into multiple levels of
Solution Spaces via the System’s multi-level architecture as
a framework. Let’s explore this point further.

4.5.3.1 Problem–Solution Space Partitioning and
Decomposition

Principle 4.18

Problem Space Decomposition
Principle

Partition or decompose each Problem
Space into one or more Solution Spaces.

Problem Space complexity is resolved through a process
of partitioning and multi-level refinement - decomposition
- as shown in Figure 4.7. We partition the overall Problem
Space into four Solution Spaces, 1.0 through 4.0. Solution
Space 4.0 becomes Problem Space 4.0 for the next lower
level and is partitioned into Solution Spaces 4.1 through 4.4.
The partitioning and decomposition process continues to the
lowest level. The net result of the narrowing process is shown
in the upper right-hand corner of the figure.

In general, Solution Spaces are characterized by a variety
of boundary conditions:

• Distinct, rigid boundaries.

• Fuzzy, blurry boundaries.

• Overlapping or conflicting boundaries.

The degree to which the Solution Space is filled is deter-
mined by the capabilities required, priorities assigned to, and
resources allocated to the Problem Space “zone.” Higher
Order Systems (Chapter 9) contractually and organization-
ally impose resource and operating constraints that may ulti-
mately limit the degree of solution coverage.

Referral Warwick and Norris (2010) introduce a topic
for SE debate concerning an observation that complicated
systems, aircraft and cars, are decomposable versus complex
systems, social network systems and the Internet, cannot
be easily decomposed due to their dynamic and evolving
nature.

4.5.3.2 Eliminating the Problem Space When a capa-
bility gap is identified in an Enterprise or Engineered sys-
tem, product capability, or service, it generally takes a finite
amount of time to resolve, especially if system development
is involved. If the gap is of a defensive nature, the system or
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product may be vulnerable or susceptible to acts of aggres-
sion and hostilities from competitors or adversaries. If the
gap represents a deficiency in an offensive capability, work
must be performed to eliminate the gap by upgrading system
capabilities and performance.

Depending on the system or product’s application, oper-
ational tactics such as decoys, camouflage, and operational
patterns may be employed to supplement the gap until a new
system, product, or service is available.

4.5.3.3 Solution Capability Force Multipliers Solutions
Spaces require capabilities that are affordable but may
not completely fill all of the User’s operational needs.
Capability-based solutions, as viewed by the User, have a fi-
nite strength, capacity, and reliability required to accomplish
mission objectives:

• Strength—Power to accept a specific type of mission
challenge.

• Robustness—Capability to withstand threat attacks and
accommodate internal failures.

• Capacity to Project—Multiply that power over a de-
fined range.

• Reliability—A probability of completing a mission of
a given duration in a specified Operating Environment

The question is: How can the User expand the limited
Solution Space capability of a system to fill the void?
The answer resides in strategic leveraging of capabilities.
Consider the following example.

Example 4.9

Developing a high-performance aircraft
with a given operating range and payload
may be prohibitively expensive. How do
you solve the problem? What you need to
do is figure out how to build an affordably

priced aircraft and be able to “project” that capability into
a 10× square mile domain by leveraging other systems and
their capabilities. One way of doing this is by leveraging the
capabilities of air-to-air refueling with fuel tanker aircraft or
logistical bases. As a result, the operating range is increased
significantly.

4.5.3.4 Selecting Candidate Solutions for the Solution
Space

4.5.3.4.1 Enterprise Each Solution Space is bounded by
technical, technology, support, cost, schedule, and accept-
able risk constraints. The challenge is to identify and evaluate
several viable candidate solutions that satisfy the technical

requirements and then recommend the preferred solution.
The selection requires establishing pre-defined, objective cri-
teria and then performing an Analysis of Alternatives (AoA)
(Chapter 32) to select the recommended solution.

Recognize that Solution Spaces are simply boundary
spaces for solution development without regard to how the
system solution is to be developed. By default to reduce
risk and minimize cost, SEs should always determine how
they can leverage or modify existing User assets or find
solutions already available in the marketplace. New de-
velopment should only be investigated and performed as
a last resort after all other options have been exhausted
(Principle 16.7).

4.5.4 Problem Space Exposure to Facilitate Solution
Space Definition

Principle 4.19

On-Site Visits Principle

Always send a qualified SE to accompany
business development personnel during
on-site visits to understand, analyze, and

document the Opportunity/Problem and Solution Spaces.

Every person in your Enterprise should have firsthand
exposure to and an understanding and the User’s Problem
Space as they relate to your Enterprise’s Opportunity and So-
lution Spaces. Unfortunately, travel budgets and the User’s
desire and ability to accommodate throngs of people pre-
vent firsthand observations of how the system they develop
will be deployed, operated, and supported. As with any sci-
entific field, observation is a critical Systems Thinking skill
for SEs. Seeing, touching, feeling, operating, hearing, and
studying existing systems in action have a profound in-
fluence on SE problem-solving and solution development
throughout system development. Consider the following
example.

MINIMINIIN

Mini-Case
Study 4.1

Understanding the Problem and Solution
Spaces

A company is contracted to design a large
piece of computer equipment. Prior to the
trip to the User’s site, Engineering personnel

are denied the opportunity by Business Development to
participate in a site survey of the facility. Since one of
the challenges is always maneuvering equipment through
doorways and hallways, Business Development personnel
visit the site and take a few notes about the doorway and
hallway leading to the room entrance. Convinced that they
could develop a cabinet to fit through a narrow doorway,
Engineering proceeded with the design.

When the system was delivered, the installation team
encounters major problems. They discover that the cabinet



CHAPTER EXERCISES 97

could be moved down the narrow hallway and through
the door, except for one “minor detail”—a case of the
overlooked constraint. The cabinet could not physically be
maneuvered around a 90-degree turn between the hallway
and the doorway.

Heuristic 4.1 On-Site Visits to the User

Always send a qualified SE to accompany Business Devel-
opment personnel during on-site visits to understand, ana-
lyze, and document the Opportunity/Problem and Solution
Spaces.

4.5.5 Final Thoughts

Principle 4.20

Counter Reactions Principle

When bounding a Solution Space, antici-
pate short-term and long-term competitor
or adversarial reactionary responses and
countermeasures to the Solution Space.

Understanding Problem–Solution Spaces requires con-
tinual assessments due to the dynamics of the Operating
Environment. SEs often erroneously believe that filling the
Solution Space with development of a new system, product,
or service is an end-all answer. As in the case of Newton’s
Third Law of Motion, every action initiated by the User can
be expected to have an equal and opposite counter-reaction
by competitors and adversaries. So, when you bound
the Solution Space, the bounding process must also
consider:

• The potential reactions of competitors and adversaries.

• How the new system, product, or service minimizes
susceptibility and vulnerability to those threats, at
least for a reasonable period of time until reactionary
capabilities can be fielded and retrofitted on existing
systems.

4.6 CHAPTER SUMMARY

Chapter 4 introduced the concept of Problem, Opportunity,
and Solution Spaces. Key points include:

1. Identify and bound the Problem or Opportunity Space
and its Stakeholders—Users and End Users.

2. Recognize and appreciate the difference between
problem-solving and symptom solving.

3. A Problem Statement clearly and concisely describes
a Problem, Issue, or condition that must be resolved.
Avoid identifying the root cause or probable cause. Do
not assign responsibility, blame, or the root cause(s).

4. Manage Problem Space complexity by decomposing
it into one or more levels consisting of one or more
Solution Spaces

5. Decompose or partition an overall Problem Space into
multiple levels of one or more Solution Spaces with
each Solution Space serving as the Problem Space for
the next lower level Solution Spaces.

6. Each Solution Space represents a set of performance-
based outcomes and capabilities that are required to
resolve the User’s Problem Space.

7. Leverage existing assets, legacy system designs, and
marketplace solutions before embarking on new system
design.

4.7 CHAPTER EXERCISES

4.7.1 Level 1: Chapter Knowledge Exercises

1. What is a Mission System (Producer) role?

2. What is an Enabling System (Supplier) role?

3. What is a Problem Space?

4. What is an Opportunity Space?

5. What is the relationship between a Problem Space and
an Opportunity Space?

6. What is a Solution Space?

7. What is the relationship between the Problem/
Opportunity Space and a Solution Space?

8. How do you write a Problem Statement?

9. Identify three rules for writing Problem Statements.

10. How do you forecast the Problem Spaces?

11. How does an Enterprise resolve gaps between a Problem
Space and its Solution Space(s)?

12. Where and how do Users obtain system requirements for
development?

13. Cite various Solution Space tools that enable a home-
owner to leverage their time, resources, and skills to
maintain their lawn.

14. Cite two examples of Human Systems—organizational
and engineered—that project or expand their sphere of
influence by leveraging the capabilities of other systems.

4.7.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e

http://www.wiley.com/go/systemengineeringanalysis2e
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5
USER NEEDS, MISSION ANALYSIS, USE CASES,
AND SCENARIOS

The primary purpose of any system, product, or service
is to accomplish consumer or organizational objectives
with an expected Return on Investment (ROI)—tangible or
intangible—as defined by its Stakeholders—Users and End
Users. These objectives may range from the quality of life
such as happiness, entertainment, education, and health to
the basic necessities of life—organizational survival, prof-
itability, food, and shelter. The act of identifying, bound-
ing, and defining the set of capabilities to accomplish these
objectives encompasses the System Definition Phase of the
System/Product Life Cycle (Figure 3.3).

The form, fit, and function of a system, product, or ser-
vice is defined by (1) its Stakeholders (Users and End Users),
(2) mission applications, (3) performance-based objectives
and outcomes to be achieved, and (4) Operating Environ-
ment conditions. For example, consider shape or form as a
distinguishing application characteristic such as an automo-
bile versus high-performance race car, aircraft versus space-
craft, desk phone versus smartphone, and desktop computer
versus tablet computer.

Humans leverage systems, products, and services as
Enabling Systems to supplement our own finite capabil-
ities and limitations to accomplish feats greater than we
can achieve individually or collectively. Examples include
long-distance travel in a short period of time, space travel,
Internet access to world knowledge, fresh foods from great
distances, and telecommunications. Selection or acquisition
of those Enabling System capabilities begins with under-
standing the who, what, when, where, why, and how system
User(s) plan to accomplish the mission(s).

Contrary to the traditional Engineering viewpoint of
developing “widgets” – Engineering the Box - from the

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

Engineer’s perspective for the User to figure out how to
use, the reverse should occur. As Chapter 24 User-Centric
System Design (UCSD) will address later, Engineering
needs to shift its traditional paradigm to understanding a
system, product, or service’s Users—their capabilities and
limitations. Then, design Equipment as Enabling Systems
for their operators and maintainers to accomplish their
assigned missions, not vice versa. This is a critical staging
point in System Definition. Every System Definition decision
from this point forward, including mission success, evolves
from shifting this paradigm to a new one.

Chapter 5 introduces the key elements of the System
Definition—User Needs Analysis and Mission Analysis.
Mission analysis becomes the key tool for defining the
analytical infrastructure and model of a system, product, or
service based on its mission applications. Our discussions
introduce a Mission Methodology that leverages concepts
such as User Stories from Agile Development, Use Cases
(UCs), and scenarios that enable SEs and Analysts to:

• Identify and understand the values and priorities
Users place on Key Performance Parameters (KPPs)
or quality attributes—performance, usability, and
reliability—that drive customer expectations and
satisfaction.

Employ UCSD methods (Chapter 24) to develop systems,
products, or services that conform to User capabilities and
limitations, not vice versa, and enable them to accomplish
mission outcomes.

http://www.wiley.com/go/systemengineeringanalysis2e
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5.1 DEFINITIONS OF KEY TERMS

• Actor—“An actor specifies a role played by a user
or any other system that interacts with the subject.
(The term ‘role’ is used informally here and does not
necessarily imply the technical definition of that term
found elsewhere in this specification.)” (OMG, 2006,
p. 230).

• Anthropometrics—“Quantitative descriptions and
measurements of the physical body variations in
people. These are useful in human factors design”
(MIL-HDBK-470A, p. G-2).

• Compensating Provisions—“Actions that are avail-
able or can be taken by an operator to negate or mitigate
the effect of a failure on a system” (Mil-Std-1629A,
p. 3).

• Cost-Effectiveness—“A measure of the operational
capability added by a system as a function of its Life
Cycle Cost (LCC)” (DAU, 2012, p. B-49).

• Cost-as-an-Independent-Variable (CAIV)—A con-
cept that offers a range of viable alternatives to a
decision-maker to trade-off operational capabilities
versus cost for purposes of selecting the best value so-
lution to meet organizational needs.

• Critical Operational Issue (COI)—A concern ex-
pressed by the User, System Acquirer, or System
Developer regarding the deployment—Operation,
Maintenance, and Sustainment (OM&S)—and retire-
ment or disposal or operating constraint(s) of a system,
product, or service.

• Critical Technical Issue (CTI)—A concern expressed
by the User, System Acquirer, or System Developer re-
garding the achievement of a specification requirement;
technology limitation, application, or implementation;
or conflict with another specification requirement.

• Effectiveness—“The extent to which the goals of the
system are attained, or the degree to which a system
can be elected to achieve a set of specific mission
requirements … ” (DAU, 2012, p. B-75).

• Engagement—A single instance of a friendly, cooper-
ative, benign, competitive, adversarial, or hostile inter-
action between two systems.

• Key Performance Parameter (KPP)—An attribute
representing a quality characteristic with a minimum
acceptable value the User has determined is critical to
achieving mission success and subsequently customer
satisfaction. Example quality characteristics include
performance, usability, survivability, safety, reliability,
and shelf life.

• Measure of Effectiveness (MOE)—A quantitative
measure that represents the outcome and level of
performance to be achieved by a system, product, or
service and its level of attainment following a mission.

• Measure of Performance (MOP)—A quantitative
measure to represent the level of performance to be
achieved by a specified capability, typically in the form
of a stated requirement statement in a specification.

• Measure of Suitability (MOS)—“Measure of an
item’s ability to be supported in its intended operational
environment. MOSs typically relate to readiness or op-
erational availability and, hence, reliability, maintain-
ability, and the item’s support structure” (DAU, 2012,
pp. B-140). An MOS is a key contributor to operational
suitability.

• Mission—A pre-planned exercise that integrates a se-
ries of sequential or concurrent operations or tasks with
an expectation of achieving outcome-based success cri-
teria with quantifiable performance objectives.

• Mission Event Timeline (MET)—A timeline that:
(1) identifies key mission events and (2) when they
must occur to ensure successful completion of a mis-
sion.

• Mission Reliability—“The probability that a system
will perform its required mission-critical functions for
the duration of a specified mission under conditions
stated in the mission profile” (DAU, 2012, p. B-143).

• Mission-Critical System—“A system whose oper-
ational effectiveness and operational suitability are
essential to successful completion or to aggregate resid-
ual (mission) capability. If this system fails, the mission
likely will not be completed. Such a system can be an
auxiliary or supporting system, as well as a primary
mission system” (DAU, 2012, p. B-144).

• Operational Effectiveness—“Measure of the overall
ability of a system to accomplish a mission when used
by representative personnel in the environment planned
or expected for operational employment of the system
considering organization, doctrine, tactics, supportabil-
ity, survivability, vulnerability, and threat (Defense Ac-
quisition Guidebook)” (DAU, 2012, p. 156).

• Operational Scenario—An hypothesized narrative
that describes system or entity interactions, assump-
tions, conditions, activities, and events that have a
likelihood or probability of actually occurring under
prescribed or “worse-case” conditions.

• Operational Suitability—“The degree to which a
system can be satisfactorily placed in field use with
consideration to reliability, availability, compatibil-
ity, transportability, interoperability, … usage rates,
maintainability, safety, human factors, habitability,
manpower supportability, logistics supportability, doc-
umentation, environmental effects and training require-
ments (Defense Acquisition Guidebook)” (DAU, 2012,
p. B-156). Operational suitability is characterized by
one or more MOSs.

• Phase of Operation A high-level, objective-based
abstraction representing a collection of System of In-
terest (SOI) operations required to support accomplish-
ment of a system’s mission. For example, a system has
Pre-Mission, Mission, and Post-Mission Phases.

• Point of Delivery—A waypoint or one of several
waypoints designated for delivery of mission products,
by-products, or services.
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• Point of Origination or Departure—The initial start-
ing point or location of a mission.

• Point of Termination or Destination—The final des-
tination of a mission.

• Scenario—“A specific sequence of actions that illus-
trates behaviors. A scenario may be used to illustrate
an interaction or the execution of a use case instance”
(OMG, 2006, p. 244). Also see Use Case Scenario.

• Sequence Diagram—“A diagram that depicts an inter-
action by focusing on the sequence of messages that
are exchanged, along with their corresponding event
occurrences on the lifelines. Unlike a communication
diagram, a sequence diagram includes time sequences
but does not include object relationships. A sequence
diagram can exist in a generic form (describes all pos-
sible scenarios) and in an instance form (describes one
actual scenario). Sequence diagrams and communica-
tion diagrams express similar information, but show it
in different ways” (OMG, 2006, p. 244).

• System Effectiveness—A quantitative measure of a
system’s capability to accomplish a specified mission
outcome and performance-based objectives.

• Task Order—A document that: (1) serves as a trig-
gering event to initiate a mission, (2) defines mission
objectives, and (3) performance-based outcomes.

• Time Requirements—“Required functional capabil-
ities dependent on accomplishing an action within
an opportunity window (e.g., a target is vulnerable
for a certain time period). Frequently defined for
mission success, safety, system resource availabil-
ity, and production and manufacturing capabilities”
(MIL-STD-499B Draft, p. 41).

• Timeline Analysis—“An analytical task conducted to
determine the time sequencing between two or more
events and to define any resulting time requirements.
Can include task/time line analysis. Examples include:
∘ A schedule line showing key dates and planned

events.
∘ An engagement profile detailing time-based position

changes between a weapon and its target.
∘ The interaction of a crew member with one or more

Subsystems” (MIL-STD-499B Draft, p. 42).
• Use Case (UC)—A statement that expresses an

outcome-based capability the User requires from a
system, product, or service to enable their achievement
of a specific mission or task objective.
“A use case is the specification of a set of actions
performed by a system, which yields an observable
result that is, typically, of value for one or more actors
or other stakeholders of the system” (OMG, 2006,
p. 248).

• Use Case (UC) Diagram—“A diagram that shows the
relationships among actors and the subject (system),
and use cases” (OMG, 2006, p. 248).

• Use Case (UC) Scenario—A situation of probable set
of conditions a Mission System UC may encounter in

its Operating Environment that requires a unique set
of capabilities to produce a desired result or outcome.
Scenarios include considerations of how a User or
threat might apply or misapply, abuse, or misuse a
system, product, or service. Also see Scenario.

• Waypoint—A geographical or objective-based point
of reference along a sequence of mission steps to mark
progress and measure performance along a Mission
Event Timeline (MET).

5.2 APPROACH TO THIS CHAPTER

Chapter 5 focuses on missions that provide the foundational
concepts for conceptualizing, formulating, and developing
systems, products, or services. Although the term has a
military connotation due to its application, it applies to any
type of Human System (Chapter 9).

• Enterprise Systems consist of organizational
elements—Divisions, Departments, Branches—such
as hospitals, universities, and the government.
Engineered Systems such as Automotive, Transporta-
tion, Energy, Medical, Communications, Financial,
Aerospace and Defense (A&D) perform missions.

Conceptually, System Engineering and Development
(SE&D) concepts, principles, and practices are generally
universal across all types of system, product, or service de-
velopment with one key exception. Although similar, there
are differences in how User operational needs are identified
and analyzed in systems, and products are developed for
the Consumer versus Contract-based System Development.
Since the identification and analysis of User operational
needs are a key first step in System definition, we begin there.

Given the distinction between consumer versus
contract-based development and the identification of User
operational needs, we shift our focus to establishing the sys-
tem, product, or service’s mission definition methodology.
This methodology defines how the User expects conduct
missions to accomplish Enterprise System missions. Within
the methodology, we introduce the concepts of User Stories,
UCs, and Scenarios that enable us to identify, derive, and
elaborate system capabilities as the basis for system, product,
or service specification requirements. We conclude our dis-
cussion with a focus on how to develop UCs and Scenarios.

Let’s briefly discuss the differences in Commercial versus
Contract Development.

5.3 COMMERCIAL/CONSUMER PRODUCT
VERSUS CONTRACT SYSTEM DEVELOPMENT

In general, the System Development Workflow Strategy
(Chapter 12) follows a basic User Operational Needs: Anal-
ysis → Specification Design → Build → Integrate and Test
workflow progression over time. However, two distinct mod-
els emerge between two predominant development strategies
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in the industry—consumer product development versus con-
tract system development as shown in Figure 5.1.

Observe how Commercial/Consumer Product Develop-
ment shown on the left side of Figure 5.1 assesses the
consumer marketplace, identifies Product capabilities and
features, and develops the System/Product—for a specu-
lative ROI—then iterates the evolving and maturing Devel-
opmental Configuration (Chapter 16) through a series of test
marketing cycles to arrive at the final System Design Solu-
tion. This ultimately leads to large-scale or mass production
which can range into millions of units such as smartphones.

In contrast, Contract System Development analyzes User
operational needs and missions; identifies, bounds, and spec-
ifies capabilities; develops the System/Product; and per-
forms User acceptance. User acceptance based on contract
criteria does not mean that the Developmental Configuration
of the System/Product can be cost-effectively produced. As a
result, a few units may be produced via Low Rate Initial Pro-
duction (LRIP) for field use. After an initial phase of field
usage, a contract may be awarded to refine and improve the
design for cost-effective, large-scale, or mass production that
may range from a few dozen units to several thousand units
such as military systems.

In both cases, marketplace feedback for consumer prod-
ucts or future User operational needs for contract-developed
systems may lead to the end for upgrades on the
System/Product. This typically occurs in the form of new
models for consumer products or contract-based upgrades
for retrofit into existing field units of contract-developed
Systems/Products. From an SE perspective, both em-
ploy the same System Development Processes Workflow
(Figure 12.2); however, each has their own nuances based
on their respective marketplaces.

Commercial/Consumer Product versus Contract-Based
system, product, or service development both require innova-
tion and creativity but two different applications of Systems
Thinking (Chapter 1).

5.3.1 Commercial/Consumer System or Product
Development

Commercial/Consumer System or Product Development
invests in developing new systems, products, or services in
anticipation of an ROI for its Stakeholders and market share.
This requires:

• Understanding the global marketplaces, segments,
and niches; Users and End Users—their emotional
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tendencies that motivate them to purchase—contexts
of usage; competition; and statutory/regulatory restric-
tions.

• Anticipating, innovating, developing, and applying new
or emerging technologies to create new products in
a fast-paced, time-to-market environment before the
competition seizes on the Opportunity Space.

Chapter 4 introduced the concepts of Problem, Opportu-
nity, and Solution Spaces. Commercial/Consumer System or
Product development involves recognizing customer per-
ceived or actual Problem Spaces as Opportunity Spaces and
responding with affordable systems, products, or services to
fulfill those operational needs.

Commercial/consumer systems, products, or services are
often referred to as Commercial-Off-the-Shelf (COTS) ven-
dor products that are available for ordering via catalogs, Web
sites, or marketing organizations. If the vendor is willing to
customize an existing COTS product for fee to respond to
an external User’s—customer’s—specification requirement,
the modified COTS product is referred to by governmental
organizations as a Non-Developmental Item (NDI).

Referral For additional information about COTS and NDI,
refer to Chapter 16 Configuration Identification and
Component Selection Strategy.

Commercial/consumer systems, products, or services are
outcome driven via metrics such as customer satisfaction,
sales, and price points, performance, profitability, et al.

When commercial industry or government organizations
require development and installation of specialized systems,
products, or services such as buildings, machinery, vehicles,
aircraft, et al that may not be readily available in the market-
place. Problem Space, the Solution Space is Contract-Based
System Development.

5.3.2 Contract-Based System Development

In contrast, Contract-Based System Development originates
from a single System Acquirer source that acquires a system,
product, or service. The Acquirer may be the actual User, a
procurement representative within the User’s organization,
or an external organization serving as the User’s technical
and procurement representative. Contract-Based System De-
velopment may occur within a commercial organization for
procurement of large, capital investment items such as build-
ings, and machinery.

Contract-Based System Development is:

• Typically mission driven to develop an Engineered
System such as facilities, machinery, manufacturing
equipment, and networks, to support Enterprise System
missions.

• Dependent on customer satisfaction concerning results
of performance-based outcomes such as KPPs, MOEs
and MOS introduced later in this chapter.

• Usability of the Equipment and handling characteris-
tics.

Given these two backdrops concerning Commer-
cial versus Contract System Development, let’s begin
our discussion of the System Development Workflow
Strategy.

5.4 USER OPERATIONAL NEEDS
IDENTIFICATION

The first critical step in system definition is to identify and
understand who the key Stakeholders—Users and End Users
(Chapter 3)—of a system, product, or service are, their Sys-
tem usage roles, decision-making roles, and relationships.

Once these are identified, the next step is to iden-
tify their specific operational needs. Operational needs are
often thrown around to impress people. The so-called oper-
ational needs identified are actually symptoms of an under-
lying Problem or Issue Space. To exacerbate the challenge,
Stakeholders many times specify a need-based solution such
as new computer, new software, and new car, et al, instead of
identifying the central problem or issue via a problem state-
ment that may lead to one of those solutions. As a result,
Operational Needs is an abstract term that has a context rel-
ative to the Stakeholder and requires further delineation. So,
what does the term mean? Let’s begin by differentiating some
semantics:

Step 1—Stakeholders have challenges such as Problem,
Issue, or Opportunity Spaces such as threats, and barriers
that need to be addressed.

Step 2—SEs and other trained professionals perform a
Needs Analysis in collaboration with the User community
to understand the problem, issue, or opportunity to be
addressed, root cause, and its boundaries.

Step 3—Results of the Needs Analysis express the true oper-
ational need in the form of a Problem or Issue Statement
(Chapter 4) that Stakeholders agree by consensus to be the
underlying motivation for their actions.

Step 4—The Problem Statement leads to a set of rec-
ommendations in the form of Solution Spaces with
performance-based outcomes and objectives required to
solve it.

Step 5—Some organizations create a Capabilities Devel-
opment Document (CDD),formerly the Operational
Requirements Document (ORD) (DAU, 2014), and State-
ment of Objectives (SOO) that express Solution Space
capabilities to be developed or acquired.
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The steps above illustrate why the ad hoc
Specify-Design-Build-Test-Fix (SDBTF)–Design Process
Model (DPM) Engineering Paradigm (Chapter 2) organi-
zations that amateurishly create specifications containing
“wish list” requirements often result in systems, products,
or services that fail to meet the Stakeholders operational
needs—System Validation.

In general, operational needs may represent
performance-based outcomes, system/product character-
istics, usability, and factors. The question is: how do we
translate those into a set of system, product, or service
capabilities that form the basis for deriving specification
requirements? SEs elaborate those outcomes via tools such
as Mission Analysis, UCs and Scenarios addressed later
in this chapter and Model-Based SE (MBSE) addressed
in Chapters 10 and 33. The central thread through these
chapters is Mission-based Outcomes → User Stories →
Use Cases and Scenarios → Operational Tasks → Opera-
tional Capabilities → Performance-Based Requirements →
Specifications.

This discussion leads to a question: what approach should
an SE use to identify User operational needs?

5.4.1 Operational Needs Identification Approaches

Approaches for identifying operational needs occur in a num-
ber of forms. These include anonymous surveys, personal
interviews, and Nominal Grouping Techniques (NGTs),
both formally and informally. Approaches that are handled
amateurishly as “check the box” exercises may identify
symptoms, not the actual underlying problems or issues. One
of the advantages of having trained professionals conduct the
Needs Analysis is the ability to narrow the focus on the driv-
ing needs or problems.

Chapter 4 introduced the concepts of Prob-
lem/Opportunity Spaces and Solution Spaces. An oper-
ational need does not necessarily mean there is a problem
or issue. It could be as simple as “wonder why someone
doesn’t invent a (widget) that will . . . .” In that context,
we are dealing with an Opportunity Space. Addition-
ally, you will discover that some “needs” are actually
user non-essential “wants” or “desires” (Figure 21.4)-
“shopping lists” that vaporize when budget thresholds are
reached.

5.4.1.1 User Stories Agile Development addressed later
in Chapter 15 employs a concept called User Stories. User
Stories enable Users to write their specific need in their
own words on an index card using the following statement
syntax:

“As a <type of user>, I want <some goal> so that <some
reason>.”

—(Cohn, 2008)

Then, write Conditions of Satisfaction (COS) (Cohn,
2008) in their own words on the back of the card concerning
how they would verify if their need had been satisfied.
On inspection, it is tempting to accept the User Story “as
is” and begin identifying requirements. However, what a
Stakeholder—User or End User—writes on the card may not
be the central problem or issue to be solved. That takes us to
our next topic, The Five Whys Analysis.

A Word of
Caution 5.1

Qualify Actual Users vs Administrative
Paper Pushers

Observe the operative term User in User
Stories. One of the fallacies of Operational
Needs Analysis is failure to qualify actual

Users. Many times, managers and executives, who are Stake-
holders but not Users, are the ones interviewed to identify
needs; they may be fully qualified to address needs and
should be interviewed. However, the consequences of in-
terviewing the wrong people who claim to be button push-
ing Users when, in fact, they are not, can be devastating
for the true Users that have to actually operate and main-
tain the system, product, or service when it is fielded or
distributed.

5.4.1.2 Five Whys Analysis One method for driving to a
real problem or issue is the Five Whys Analysis. If you start
with some condition such as an incident, event, perceived
need, and ask “why” after each response, you will ultimately
get to the root problem or issue. Consider the following
example:

Example 5.1

5 Whys Analysis

Using Cohn’s (2008) User Story syntax, let’s
assume a User Story states: As a <User>, I
need an XYZ computer so that I can have a

high tech office.

• SE Question #1: Why do you need an XYZ computer?

• User Response #1: I need to create/review and ex-
change documents with my customers.

• SE Question #2: Why not use the mail or a FAX
machine?

• User Response #2: Our office has gone paperless. We
have no file cabinet storage.

• SE Question #3: Why is there no file cabinet storage?

• User Response #3: The cost of renting space and
labor cost in maintaining paper copy files is becoming
astronomical.

• SE Question #4: Why is the cost increasing?

• User Response #4: The volume of paper documents we
create and receive is increasing.
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• SE Question #5: Why is the volume increasing?

• User Response #5: We have new regulations that
require us to keep more paperwork above and beyond
the systems, products, and services we develop.

In this example, the User stated that they needed an
XYZ computer. Upon inspection one could certainly in-
terpret the User Story as pointing to an operational need.
However, applying the 5 Whys Analysis revealed the ac-
tual problem—increasing paperwork due to regulatory re-
quirements while needing to reduce paper document storage
space—file cabinets. In turn, this discussion raises several
questions:

• How will buying one individual a computer solve the
overall office problem when there are XX people in the
office?

• What if one individual wants an XYZ computer and
everyone else wants an ABC computer?

In summary, understand the central problem, issue, or
opportunity to be solved. User Stories are fine for identifying
wants/desires, but should be validated through every User by
a 5 Whys Analysis. Only then can the true operational need
be identified.

As noted earlier, the term operational need is abstract and
could have many contexts. For example:

• Operational Needs Context #1—Consumers pur-
chase systems, products, or services (TVs, smart-
phones, computers, refrigerators, freezers) based on
key characteristics they value as criteria for a buying
decision.

• Operational Needs Context #2—Enterprises acquire
systems, products, or services that require capital ex-
penditures that align with their mission objectives. For
example, develop a spacecraft for an XX (time) du-
ration mission to fly astronauts to Mars for scientific
studies and return them safely to Earth.

What tools can we use to drive out these outcomes and
key characteristics? This brings us to our next topic, Quality
Functional Deployment (QFD).

5.4.1.3 QFD One tool that is useful in identifying User
operational needs is QFD. What is QFD? Dr. Yoji Akao
(1990, p. 5), one of the co-founders of QFD, defines it as:

Converting the consumers’ demands into quality characteris-
tics and developing a design quality for the finished product
by systematically deploying the relationships between the
demands and the characteristic, starting with the quality of
each functional component and extending the deployment to
quality of each part and process.

QFD places special emphasis on the Voice of the Cus-
tomer (VOC), priorities, and the values customers place on
the key characteristics of systems, products, or services they
purchase and employ to perform their jobs or missions. Qual-
ity in the context earlier represents attributes of a system,
product, or service as discussed in Chapter 3. Examples in-
clude performance, aesthetics, durability, shelf life, usability,
reliability, and maintainability.

Unfortunately, people today often associate QFD with
a rooftop matrix originated from the 1980s known as the
House of Quality (HoQ) that employed terms such as Whats,
Hows, How Much, and Whys, to depict customer value
relationships. The paradigm is promulgated by engineering
textbooks that continue to present the HoQ as the focal
point for QFD. Mazur (2014) indicates that HoQ charts,
now referred to as Classical QFD, are no longer used.
Modern QFD employs seven management and planning
tools such as spreadsheets to work with Users to identify key
characteristics for system product or service development.

5.4.1.3.1 QFD and User Requirements When collaborat-
ing with the User community to identify potential needs,
you can expect to receive a diverse range of User, not spec-
ification, requirements—wants, desires, must-haves, and
nice-to-haves. Some are important to some Users and not to
others. Ultimately, when we develop specification require-
ments for the system, product, or service, every User require-
ment may not be realistically achievable within the User’s
schedule, budget, technology, and risk constraints. (Figure
21.4) Ultimately, we need to reduce the final list of require-
ments down to essential requirements.

A Word of
Caution 5.2

Needs versus Requirements

Observe the phrase “… collaborating with
the User community to identify potential
needs … ” It says needs, not requirements.
In general, needs are bounded and specified

by requirements. This is a key point. If you ask a User for
requirements and they provide them, they will expect to see
those requirements stated in a specification.

Our objective here is to simply collect User needs via
User Stories (Chapter 15) and methods for analysis and
assimilation as inputs for deriving the true Operational
Need(s)—Problem, Issue, or Opportunity Space. Then, using
the need as the basis for identifying capabilities that will
enable us to derive specification requirements for a system,
product, or service.

Essential requirements are typically a subset of the overall
data set of requirements Users identified. This process is
typified by the illustration shown in Figure 21.4 and Principle
21.1—What the User Wants, Needs, Can Afford, and Is
Willing to Pay.
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User’s Perception

‘‘Satisfied’’

‘‘Dissatisfied’’

‘‘Sufficient’’‘‘Insufficient’’
Physical

StateIndifferent

Quality

Reverse
Quality

Neutral

Must-Be Quality

Attractive
Quality

One-Dimensional
Quality

Figure 5.2 Kano’s Model of Customer Satisfaction—
Recent Developments (Source: Zultner and Mazur (2006,
p. 3). Used by permission.)

A key question emerges from this discussion: how do
we distill the total set of User requirements down to essen-
tial requirements? Traditionally, SE has often categorized
User requirements using terms such as Mandatory, Desired,
Nice-to-Have, Don’t Care, and Not required categories. QFD
offers a similar approach.

In the late 1970s and early 1980s, Dr. Noriaki Kano
developed the Kano Model for Customer Satisfaction. Early
QFD research focused on the concepts of expected and
exciting requirements.

In 2006, Zultner and Mazur (2006) addressed recent
developments in the Kano Model shown in Figure 5.2. Their
graphic associated table value scales enable analysts to assess
customer values for specific quality attributes of a system,
product, or service. The graphic illustrates two intersecting
axes representing the:

• Physical State (Horizontal Axis)—a Quality Attribute
such as performance, usability and reliability, in ac-
complishing a mission or task, and the User’s view of
its sufficiency—Insufficient or Neutral.

• User’s Perception (Vertical Axis) of the product for
specified Physical State—Quality Attribute.

Several key points concerning the graphic that you should
note:

• Exciting Requirements are:

∘ “… generally unknown to customers and they gen-
erally will not mention them – but when they see
them, they really like them” (Zultner and Mazur,
2006, p. 4).

∘ “Sort of “out of the ordinary” functions or features
of a product or service that cause “wow” reactions

in customers. Exciting requirements are also usu-
ally invisible unless they become visible when they
are fulfilled and result in customer satisfaction; they
do not leave customers dissatisfied when left unful-
filled” (QFD Institute, FAQ, 2013).

• Expected Requirements are:
∘ “Assumed by the customer, so they don’t mention

them – unless they have been recently disappointed.
These are “deal breakers” for customers. Often
they would not consider products lacking these
requirements” (Zultner and Mazur, 2006, p. 4).

∘ “Essentially basic functions or features that cus-
tomers normally expect of a product or service. Ex-
pected requirements are usually invisible unless they
become visible when they are unfulfilled” (QFD In-
stitute, FAQ, 2013).

• Must-Be Requirements are mandatory.

• Desired Requirements:
∘ Are those Users identified when you ask them

what they want? “Customers are willing to trade-off
performance on one for less on another” (Zultner and
Mazur, 2006, p. 4).

∘ “These requirements satisfy (or dissatisfy) in propor-
tion to their presence (or absence) in the product or
service. Fast Delivery would be a good example. The
faster (or slower) the delivery, the more they like (or
dislike) it” (Mazur, p. 5).

• Indifferent Requirements—Are don’t cares from the
customer’s perspective.

• One-Dimensional Quality—As the quality of the
Physical State increases, so does the User’s Perception.

• Reverse requirements are:
∘ “Those the customer would prefer not to have … ”

∘ “… dissatisfying and the absence is satisfying”
(Zultner and Mazur, 2006, p. 4).

Referral The descriptions earlier are very brief and high
level. Refer to technical papers by Mazur (2003) and Zultner
and Mazur (2006) for more detailed discussions of QFD
applications in these areas.

Author’s Note 5.1

User Needs Analysis Application
Contexts

The User Needs Analysis discussion
earlier has two application contexts:

1. Application Context #1—A Commercial/Consumer
Product Developer performs the Needs Analysis
in-house or employs the services of a professional
organization or consultant to help specify and bound
marketplace needs for development in-house or by an
external System Developer.
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2. Application Context #2—A User employs the ser-
vices of a System Acquirer or professional organization
or consultant to help specify and bound mission and
system needs that provide the basis for a System Re-
quirements Document (SRD) or Capability Description
Document (CDD) used in a Request for Proposal (RFP)
for System Development.

In summary, employ QFD or other methods used to distill
initial User requirements to only essential requirements that
(1) represent a consensus of the Stakeholders—Users and
End Users—and (2) are realistically achievable within their
development schedules, budgets, existing technologies, and
level of risk.

Referral Remember—The discussion earlier is just one
example of the power of QFD methods and tools for pro-
viding quality and value to the User driven by the VoC. For
additional information about QFD, refer to:

• The QFD Institute—www.qfdi.org

• QFD Case Studies—www.mazur.net
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Heading 5.1

Our discussion to this point has focused on
the similarities yet differences in Stakeholder
Needs Analysis for Commercial/Consumer
Product Development versus Contract-based
System Development. The remaining

sections of the chapter focus on System Definition that
will ultimately lead to the identification of system, product,
or service capabilities.

5.5 MISSION ANALYSIS

Principle 5.1

Mission Success Principle

Mission success requires five key elements:
a purpose; timely, sustainable resources; a
reasonably achievable outcome-based per-

formance objective(s); a MET; and a willingness to perform.
Where there is no willingness to perform, the system suf-
fers neglect, becomes technologically obsolete, and falls into
disrepair.

“Success always comes when preparation meets oppor-
tunity” (Hartman) is a quote attributed to Henry Hartman
that exemplifies the cornerstone of mission success. Mission
success requires insightful planning, and solving the right
problem with the right system at the right time.

Every system, product or service exists as an Enabling
System for the purpose of fulfilling the operational needs
of its Users to accomplish their Enterprise System missions

or tasks (Principle 3.7). How a system, product, or service’s
Stakeholders—Users and End Users—intend to deploy,
operate, maintain, and sustain to accomplish missions
or tasks establishes the analytical framework for System
Definition.

As a result, we begin with Mission Analysis and its
methodology.

Author’s Note 5.2

Mission analysis often conveys a mili-
tary connotation to many people. This
is a paradigm; do not succumb to its
connotations. Example - system mis-
sions include development of:

• Medical Devices—Intravenous drug delivery, Mag-
netic Resonance Imaging (MRI), and heart monitors

• Public Services—Police, fire, water, sewer, and refuse
collection

• Energy—Exploration and extraction, Seismic equip-
ment, oil rigs, and pipelines, et al

• Telecommunications

• Transportation—Inter-modal, subways, vehicles, and
airlines

• Internet—Web sites

• Businesses, Restaurants, movies, and shopping centers

5.5.1 Mission Analysis Methodology

Enterprise and Engineered Systems missions range from
simple tasks such as writing a letter to performing highly
complex International Space Station (ISS) operations and
managing a government. Regardless of application, Mission
Analysis requires a methodology that enables us to bound
and specify the Solution Space and its KPPs. The methodol-
ogy consists of the following steps:
Step 1: Define the Enterprise or Engineered System Mission.

Step 2: Derive the Mission Operational Requirements.

Step 3: Develop the Mission Profile.

Step 4: Identify and Define the Mission Phases of Operation.

Step 5: Perform a Mission UC Analysis.

Step 6: Develop the MET.

Step 7: Identify Mission Resources.

Step 8: Identify System Quality Factors.

Step 9: Assess and Mitigate Mission and System Risk.

Step 10: Iterate Steps #1–9, as necessary.

Author’s Note 5.3

Missions versus Systems

Observe usage of the terms mission
versus system earlier. Remember—
One or more missions may be required

to eliminate an Enterprise Problem Space or seize an Op-
portunity Space. The physical implementation of a mission

http://www.qfdi.org
http://www.mazur.net
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may require one or more Mission Systems and one or more
Enable Systems. For example, if your mission is to keep
your lawn beautiful, you (Mission System) will need tools
such as a lawn mower (Enabling System), a lawn edger
(Enabling System), and a blower (Enabling System).

Note that the Mission Analysis Methodology is based
on system, product, or service development. If the system
already exists, Steps #1–10 are still applicable; however, the
decision process becomes one of selecting the right system,
product, or service for the mission.

Let’s explore each of these steps in more detail.

5.5.1.1 Step 1: Define the System, Product, or Service
Mission

Principle 5.2

Mission Statement Principle

A mission statement should specify one and
only one outcome to be achieved and sup-
ported by one or more performance-based
objectives.

Principle 5.3

Mission Objectives Principle

Each mission should be bounded and spec-
ified by one or more performance-based
objectives.

The first step in planning missions is to eliminate or mini-
mize a Problem Space or exploit an Opportunity Space. Once
the mission is identified, mission objectives for accomplish-
ing the mission outcome need to be established.

Mission objectives represent User performance-based
outcomes that contribute to accomplishment of a mission
outcome within a specified timeframe for a prescribed Op-
erating Environment. Mission objectives also serve as the
foundation for selection or acquisition of systems, products,
or services to support a special mission or different types of
missions. Consider the following example:

Example 5.2

Family Vehicle Mission Objectives

A family requires a vehicle to support
their many activities—different types of
missions—that include general transporta-

tion, grocery shopping, biking, kayaking, or transporting
family members to school in all types of road and
weather conditions. As a result, the family establishes
performance-based mission objectives—such as 6 passen-
gers, storage space, and fuel economy—that will serve as
the basis for acquiring a vehicle to meet their operational
needs.

Observe that the family did not identify a specific type of
vehicle, only mission objectives.

The term mission objectives has a human connotation.
Since humans are the mechanisms for planning, orchestrat-
ing, and performing missions, mission objectives or tasks
apply directly to the SOI and subsequently its Personnel
Element. Recall that an SOI, as a performing entity, is com-
prised of several types of System Elements—Personnel,
Equipment, Mission Resources, Procedural Data, and
System Responses. To illustrate this point, consider a heavy
construction company Mini-Case Study 5.1.

MINIMINIIN

Mini-Case
Study 5.1

Heavy Construction Company

A heavy construction business consists of
several SOIs such as bulldozers, heavy rock
haulers, front-end loader tractors, and water
trucks. Each of these SOIs—Bulldozer Sys-

tem, Heavy Rock Hauler System—as a performing entity,
is assigned a mission consisting of a Personnel Ele-
ment to operate the Equipment Element that consumes
and processes Mission Resources such as fuel in ac-
cordance with its Procedural Data Element concerning
how to safely operate the equipment and produces System
Responses Element results to achieve performance-based
outcomes.

As a performing entity, each SOI requires harmonious
integration of its respective System Elements to accomplish
the assigned mission. The “production line” Supply Chain of
SOIs and their outcomes enable the construction company
to extract rocks from a quarry and transport the rocks to a
processing facility that crushes the rocks in various sizes for
commercial sale and distribution to Users.

Government organizations such as the military develop
a Mission Needs Statement (MNS) or a SOO for acquiring
systems to fill Solutions Spaces related to one or more mis-
sions (Problem Space). NASA, for example, works with prin-
cipal investigators to establish science objectives—mission
objectives—for development of experiments and systems
NASA manifests and deploys to space.

Principle 5.4

Mission Operating Constraints Principle

Each mission should bounded by oper-
ating constraints that limit its acceptable
usage—safety, operating range, affordabil-
ity, and environmental conditions.

Throughout a mission, an SOI—Mission System or
Enabling System—interacts with external systems within
its Operating Environment. These systems may include
friendly, benign, hostile, adversarial, threats, encounters,
and interactions and Operating Environment conditions
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that may range from benign to harsh. Specify at least
one or more Operating Constraints objectives that establish
boundary conditions that restrict mission operations. For
example, time of day, day of week, and single-use versus
multi-use applications.

Principle 5.5

Mission Reliability Principle

Each mission should be bounded in terms of
the mission reliability to be achieved.

Human Systems, despite careful planning and execu-
tion, are not infallible. The question is: Given resource con-
straints, what is the minimum level of success you are willing
to accept to provide a specified ROI? From an SE perspec-
tive, we refer to the level of success as mission reliability.
Mission reliability is influenced by internal Equipment fail-
ures or over/under tolerance conditions, human operator per-
formance (judgment, errors, fatigue) and interactions with
Operating Environment entities and threats.

Mission reliability is defined as the conditional probabil-
ity that a system with a given operating condition will suc-
cessfully accomplish a mission of a specific duration in a
prescribed Operating Environment without failure. De-
pending on the system application, 100% mission reliability
may be prohibitively expensive, but 95% mission reliability
may be affordable.

Author’s Note 5.4

Operating Constraint Trade-Offs

Since increased reliability ultimately
has a cost, establish an initial reliabil-
ity estimate as simply a starting point

and compute the cost. Some Acquirers may request a CAIV
plot of cost as a function of capability to determine what
level of capability or reliability is affordable within their bud-
getary constraints. Figure 32.4 introduced later provides an
example.

You may be thinking that mission reliability refers to
Equipment Element reliability—that is incorrect. Mission
reliability provides the basis for deriving Mission Sys-
tem and Enabling System reliabilities that will ulti-
mately be allocated to and specified in their respective
System Performance Specifications (SPSs). The reliabil-
ity for the Equipment Element within a Mission System
and Enabling System is derived from the SPS reliability.
Figure 5.3 illustrates these dependencies. Observe that over-
all mission reliability is a function of:

• Mission System Reliability, which is a function of its
System Element reliabilities:
∘ Personnel Element Reliability

∘ Equipment Element Reliability

∘ Mission Resources Reliability

∘ Procedural Data Reliability

∘ System Responses Reliability

• Enabling System Reliability, which is a function of
its System Element reliabilities:
∘ Personnel Element Reliability

∘ Equipment Element Reliability

∘ Mission Resources Reliability

∘ Procedural Data Reliability

∘ Facilities Element Reliability

∘ System Responses Reliability
Each of the System Element reliabilities is dependent

on other reliabilities such as training and information
accuracy.

In summary, at a minimum, there should be at least:
• One or more performance-based objectives for each

mission outcome to be accomplished and its expected
level of performance to be achieved.

• One mission reliability objective.

• One operating constraints objective.

5.5.1.2 Step 2: Derive the Mission Operational
Requirements Once the mission outcomes and objectives
are identified, the next step is to derive mission requirements.
Each type of Enterprise mission is documented by a Strate-
gic Plan and supporting Tactical Plans. These plans identify,
define, and document specific mission requirements.

Mission requirements are sometimes referred to as oper-
ational requirements. In general Operational requirements
express a User’s perspective of how they intend to:

• Integrate the propose system, product, or service as
an asset into their Enterprise System to accomplish its
missions

• Deploy, operate, maintain, sustain, retire, and dispose
of a system, product, or service for specific mission
applications

Documents that capture operational requirements include
what is explicitly referred to as an ORD and now a CDD and
others types of documents.

5.5.1.3 Step 3: Define the Mission Profile

Principle 5.6

User Mission Profile Principle

Every system, product, or service should in-
clude a characterization of its User mission
profiles.

A mission begins with a point of origination and
terminates at a point of destination. As end-to-end boundary
constraints, the challenge question is: How do we get from
the point of origination, Point A, to the point of destination,
Point B? We begin by establishing a strategy that leads to
a mission profile such as the one shown in Figure 5.4 for a
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Figure 5.4 Commercial Aircraft Mission Profile Example

commercial aircraft. Observe that Take Off, Ascend, Cruise,
Descend, Approach/Hold, and Land are considered Phases
of Flight. In the context of System UCs introduced later, the
Mission Profile is a graphical illustration of a System UC of
an aircraft performing a mission. A UC is characterized by
a main success scenario (Cockburn, 2001) when everything
performs as planned—Take -Off, Ascend, Cruise, Descend,
Approach/Hold, and Land.

5.5.1.4 Step 4: Identify and Define the Mission Phases of
Operation

Principle 5.7

Mission Phases of Operation Principle

Human Systems—Enterprise and
Engineered—have at least three primary
phases of operation: Pre-Mission, Mission,

and Post-Mission. An interim phase, such as Storage, may
be required for some systems between missions.

Human Systems, especially cyclical systems, sequence
through three sets of objective-based actions to accomplish
a mission: (1) prepare for the Mission, (2) conduct or
perform the Mission, and (3) perform Post-Mission actions
and processing. We characterize these objectives as the
Pre-Mission, Mission, and Post-Mission phases of operation.
For those systems to be placed in storage following the
Mission, an interim Storage Phase may be added.

A key question emerges during mission definition: When
do the Pre-Mission, Mission, and Post-Mission Phases of
Operation begin and end? To aid our discussion, consider
Figure 5.4 representing the Mission Profile:
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• Does an aircraft’s Pre-Mission begin when it starts
loading passengers? When it arrives from the previous
flight?

• When does its Mission Phase of operations begin?
When it leaves the terminal? At Takeoff?

• When does the Mission Phase end and its Post-Mission
Phase begin and end? When it lands? When it arrives at
the gate? When all passengers and baggage have been
unloaded?

Now how do you decide which of the Phases of Flight
indicated in Figure 5.4 is in the Pre-Mission, Mission, and
Post-Mission Phases of operation. As a starting point, we
could say that:

• The Pre-Mission Phase begins when the aircraft has
been deemed ready to initiate operations for the next
flight—baggage, fuel, and passenger loading.

• The Mission Phase begins when (1) the passengers and
baggage are stored, (2) all maintenance actions have
been completed, and (3) the aircraft has been released
for flight.

• The Post-Mission Phase begins when the aircraft has
arrived at the terminal gate and the gate agents and
flight crew informed the passengers to safely leave the
aircraft.

5.5.1.5 Step 5: Perform a Mission UC Analysis Through-
out the Pre-Mission, Mission, and Post-Mission phases,
specific mission UCs and scenarios and their respective op-
erations and tasks must be performed to accomplish the
phase-based mission objectives. Therefore, the mission anal-
ysis should:

• Identify the high-level outcome-based mission tasks to
be accomplished.

• Synchronize those tasks to the MET.

• Identify the performance-based task objectives.

• For each operational task, translate it into a required
operational capability of the System or Product.

5.5.1.6 Step 6: Develop the MET

Principle 5.8

MET Principle

Every system, product, or service
should include an MET that identifies
time-dependent events that represent the

start and completion of mission operations and interim
waypoints required to be accomplished to achieve mission
success.

Once the overall mission profile concept has been estab-
lished, identify one or more staging, control, or waypoints
along the MET to pace critical operations. A waypoint rep-
resents a geographical location or position, a point in time,

or objective to be accomplished as an interim step toward the
destination, as illustrated in Figure 5.5.

As an example of an MET, Figures 5.6 and 5.7 rep-
resent a NASA example of the Launch and Descent, En-
try, and Landing Concepts for the NASA Mars Exploration
Rovers. Observe how launch and landing operations are par-
titioned into key control or staging events with timeline
milestones.

5.5.1.7 Step 7: Identify Mission Resources

Principle 5.9

Mission Efficiency and Effectiveness
Principle

Every system, product, or service mission
should be defined in terms of its efficiency
and effectiveness.

Human Systems—Enterprise and Engineered—have fi-
nite resource capacities that require efficient and effective use
as well as replenishment and refurbishment. Depending on
the mission operating range of the system relative to its cur-
rent mission application, mission analysis must consider how
the system’s expendables and consumables will be employed
and resupplied, replaced, and replenished. Operationally, the
question is: How will the Enterprise maintain and sustain the
mission from beginning to end?

The solution begins with definition of a mission profile
and development of the MET and its waypoints; however,
that does not necessarily indicate that the mission perfor-
mance is efficient or effective. Therefore, investigate how the
mission performance can be improved. “Why” and “what
if” questions related to conducting simultaneous previous
flight and next flight operations to save time and become
more efficient? As another example, consider the follow-
ing commercial aircraft fuel efficiency and effectiveness
example.

Example 5.3

Aircraft Fuel Efficiency and
Effectiveness Example

How could you improve aircraft fuel effi-
ciency and effectiveness? In general, if the

aircraft is consuming fuel on the ground and not flying, it
is inefficient and ineffective use of the asset. Performance
improvements might include improving aircraft engine ef-
ficiency, reduction in terminal-to-takeoff time, reduction in
holding pattern time, and reduction in fuel loading based on
travel distance. In the case of aircraft fuel loading, every addi-
tional pound of fuel that is not required beyond safety limits
to fly between airports is additional weight that must be trans-
ported thereby reducing fuel economy.

Now consider how mission strategy has an impact
on Enterprise efficiency and profitably in Mini-Case
Study 5.2.
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Figure 5.5 Mission Event Timeline (MET) Example

Main Engine Cutoff
t = 4 min, 23.4 sec
Alt = 119.3 km (74.1 mi)
VI = 22,317 km/h (13,867 mph)

Stage 2 lgnition
t = 4 min, 36.9 sec
Alt = 118.9 km (73.9 mi)
VI = 22,326 km/h (13,873 mph)

Fairing Jettison
t = 4 min, 42 sec
Alt = 121.3 km (75.4 mi)
VI = 22,377 km/h (13,904 mph)

Booster Jettison (3)
t = 2 min, 11.5 sec
Alt = 52.4 km (32.6 mi)
VI = 9,046 km/h (5,621 mph)

Alt = 18.0 km (11.2 mi) /
        18.3 km (11.4 mi)
VI = 3,668 km/h (2,279 mph) /
       3,712 km/h (2,307 mph) Booster Impact Booster Impact

Liftoff

Booster Jettison (3/3)
t = 1 min, 6 sec and
     1 min, 7 sec

Stage 2 Cutoff #1
t = 9 min, 38.5 sec
Alt = 170.4 km (105.9 mi)
VI = 28,095 km/h (17,457 mph)

Numbers approximate, for
first day of Rover A launch period

Figure 5.6 Example MET—NASA Mars Exploration Rover Launch Phases (Source:
NASA (2003, p. 26).)
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· Entry Turn Starts: L − 91 min. Turn completed By L − 77 min

· Cruise Stage Separation: L − 21 min

· Atmospheric Entry: L − 6 min, altitude 120 km (75 mi)

Numbers approximate,
for  Spirit landing

· Peak Heating: L − 4 min

· Parachute Deployment: L − 113 sec, altitude 8.6 km (5.3 mi), speed 472 km/hr (293 mph)

· Heatshield Separation: L − 93 sec

· Lander Separation: L − 83 sec

· Radar Ground Acquisition: L − 35 sec, 2.4 km (1.5 mi) above ground
· Descent Images Acquired: L − 30 sec, 2.0 km above ground

· Start Airbag Inflation: L − 8 sec, 284m above ground
· Retro-Rocket Firing: L − 6 sec, 134m, 82 km/hr (51 mph)

· Bridle Cut: L − 3 sec, 10 m above ground
· Landing: Entry + 354 sec

· Bounces, Rolls Up to 1 km

· Airbags Retracted: L + 66 min
· Petals Opened: L + 96 min

to L + 187 min

· Roll Stop: Landing + 10 min

L − 26 sec, 1.7 km above ground
L − 22 sec, 1.4 km above ground

Figure 5.7 Example MET—NASA Mars Exploration Rover Entry, Descent, and Landing
Phases (Source: NASA (2004, p. 33). http://marsrover.nasa.gov/newsroom/merlandings.pdf)

MINIMINIIN

Mini-Case
Study 5.2

Package Delivery Service Example

United Parcel Service (UPS) discovered that
it could improve its delivery system perfor-
mance and reduce fuel consumption. Waiting
on traffic to make a left turn consumes valu-

able fuel and time—Problem Space—while the vehicle is
idling, poses potential accident risks when crossing traffic
lanes, and delays delivery performance. UPS discovered that
creating a route strategy for each vehicle based on making
right hand turns improved fuel consumption and delivery per-
formance (UPS, 2012).

5.5.1.8 Step 8: Identify System Quality Factors Through-
out all phases of the Mission, an SOI may be required to pro-
duce a series of behavioral responses, products, by-products,
and services to satisfy internal and external requirements:

• Examples of Internal requirements include perfor-
mance monitoring, resource consumption, and pay-
load/cargo manifests.

• Examples of External requirements include establish-
ment of rules of engagement, communications proto-
cols, detection and avoidance strategies, and evasive
tactics.

Based on the preceding discussion of mission outcomes,
objectives, and requirements, we can derive outcomes, ob-
jectives, and requirements for each of the System Elements.
Analytically, we establish each of the System Elements as
peers. However, the Personnel Element has overall ac-
countability for performing missions and achieving their out-
comes.

Engineered Systems, as inanimate objects, are incapable
of achieving mission objectives without some form of rea-
soning and intervention by their Users - operators or main-
tainers, either by remote control or by pre-programmed
scripts and tasks to be performed. Robots, computers, and
aircraft autopilots are examples.

As technology evolves, Engineered Systems will eventu-
ally possess increasing levels of the capability and reason-
ing. In any case, a System must possess the capability to
perform specific actions-UCs- that enable their human oper-
ators to achieve an SOI’s mission objectives. That responsi-
bility is assigned to the Personnel Element to MC2 the
Equipment Element to produce System Responses that ac-
complish mission outcomes. This leads to the question: what
objectives must be assigned to the Equipment Element to
respond to Personnel Element MC2?

http://marsrover.nasa.gov/newsroom/merlandings.pdf
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Equipment Element objectives are derived from SOI
Mission System or Enabling System objectives and syn-
chronized with Personnel MC2 objectives. For example,
the mission may require the Equipment Element capabilities
such as:

• Usability

• Single-Use/Multi-use Applications

• Comfort

• Interoperability

• Transportability

• Mobility

• Maneuverability

• Portability

• Growth and Expansion

• Reliability

• Availability

• Maintainability

• Producibility

• Mission Support

• Deployment

• Training

• Vulnerability

• Lethality

• Survivability

• Security and Protection

• Efficiency

• Effectiveness

• Reconfigurability

• Integration, test, and evaluation

• Verification

• Maintainability

• Disposal

• Safety
Capabilities such as these provide the basis for deriving

System or lower level Entity capabilities and translation
into SPS requirements.

5.5.1.9 Step 9: Assess and Mitigate Mission and System
Risk Some missions require the system to operate in harsh
Operating Environments that may place the system at
risk to threats, not only in completing its mission but also
in returning safely to its home base.

Mission assessments include considerations of system
vulnerability, susceptibility, survivability, and maintainabil-
ity. Most people tend to think in terms of external benign,
adversarial, or hostile systems that may be threats to the sys-
tem. However, since a system interacts with itself, it can also

be a threat to itself as shown earlier in Figure 3.2. Consider
the following examples.

Example 5.4

Risk Mitigation Example

Develop risk mitigation procedures and
training to detect the conditions noted
below and perform corrective actions:

• Failed automobile components, such as a blown tire,
can cause a driver to lose control of the vehicle while
driving.

• Failures in an aircraft’s Flight Control System (FCS)
or broken blades in a jet engine fan can force an
emergency landing or have catastrophic consequences.

Internal failures and/or degraded performance also have
negative impacts on system performance that ultimately
translates into mission failure or degree of success. Perhaps
one of the most notable examples is the Apollo 13 catastro-
phe. Mission analysis should identify system capabilities that
are mission critical and may be vulnerable or susceptible to
external or internal threats.

Author’s Note 5.5

Failure Modes and Effects Analysis
(FMEA) and Failure Modes,
Effects, and Criticality Analysis
(FMECA)s

Internal failure analysis is typically performed via FMEA.
For mission-critical components, the FMEA may be ex-
panded into a FMECA that assesses the degree of criticality
(Chapter 34).

5.5.1.10 Step 10: Iterate Steps #1–9 as Necessary The or-
der of Steps #1–9 is based on a set of sequence dependencies.
Although they may appear to be linear, iterate the set of steps
until the mission solution reaches maturity.
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Heading 5.2

Our discussion to this point has focused
on understanding, analyzing, and structuring
a system’s mission—for example, Problem
Space—into Solution Spaces. This brings us
to a key topic—effectiveness of the system
to perform missions.

5.6 MISSION OPERATIONAL EFFECTIVENESS

A system, product, or service must be capable of support-
ing User missions to a level of performance that makes it
operationally effective in terms of accomplishing Enterprise
System goals and objectives, namely outcomes, cost, sched-
ule, and risk.
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Example 5.5

System Effectiveness Example

For a military system, system effectiveness
depends on environmental factors such as
operator training doctrine and tactics, sys-

tem vulnerability and survivability, and threat characteristics.

If you analyze operational effectiveness, two key concerns
emerge:

• Concern #1—How well the system accomplishes its
mission objectives—operational effectiveness.

• Concern #2—How well the system integrates and
performs missions within the User’s Enterprise struc-
ture and Operating Environment—operational
suitability.

Therefore, we need to establish metrics that enable us
to analyze, predict, and measure mission operational out-
comes. We do this with two key metrics: (1) MOEs and
(2) MOSs. MOEs and MOSs are outcome-based measures
of operational effectiveness. MOEs and MOSs “identify the
most critical performance requirements to meet system-level
mission objectives, and will reflect key operational needs
in the operational requirements document” (DAU, 2001, p.
125).

5.6.1 MOEs

Principle 5.10

Measures of Effectiveness Principle

Mission and System success requires es-
tablishment of one or more MOEs that
quantify mission objectives in terms of
performance-based outcomes.

MOEs enable us to evaluate how well the system ac-
complished its mission objectives. MOEs are objective mea-
sures that represent the most critical measures—performance
effectors—that contribute to overall mission success. An
MOE characterizes the operational effectiveness of a system,
product, or service to achieve a specific performance-based
outcome. For example, Figure 5.8 provides an illustra-
tion of the variables that affect an automobile’s Fuel Effi-
ciency MOE.

Consider the following examples.

Example 5.6

MOE Example

Enterprises must continuously answer the
following questions:

• Did the new vaccine reduce the incidence of XYZ in
age groups under Y years of age?

• What is the airline’s on-time performance for Flight
XYZ?

• Did the system detect the target at the predicted
range?

Example 5.7

Office Copier MOE Example

Let’s assume that an Enterprise has decided
to purchase a copier for its offices. A sur-
vey is conducted of the printing needs for

each of the offices. Since the cost of labor is critically im-
portant, the Enterprise has decided to establish the following
MOEs:

• MOE #1—Reproduce color copies at the rate of 30 ppm
(pages per minute).

• MOE #2—XX cents per copy.

• MOE #3—Energy consumption—XX watts per
hour.

• MOE #4—Maximum heat dissipation—YY BTUs per
hour.

• MOS #5—Toner particulate size filtration.

Observe the context of the achieved MOE. The MOE
represents the SOI Level mission performance for a specified
outcome to be achieved. To attain this level of performance,
the integrated set of SOI System Elements—Personnel,
Mission Resources, Equipment, and Procedural
Data—must perform together as a System. As contributory
performance effectors, each System Element has MOEs
that contribute to the achievement of each SOI Level MOE.
We will discuss MOEs and MOPs in more detail later in
Chapter 21 (Figures 20.1 and 20.2).

5.6.2 Mission MOEs versus System MOEs

Now, suppose you are a System Developer contracted to de-
velop a system, product, or service such as the Equipment
Element. You have no control over the driving habits of
the User—Personnel Element within the SOI. Thus, the
Equipment and Personnel Elements are primary contribu-
tory performance effectors to the SOI’s Mission MOE, as-
suming the Mission Resources and Procedural Data
Elements are accurate and adequate. Since we know that
the Personnel Element interacts with the Equipment El-
ement throughout the Mission, it has its own MOEs. This
discussion brings us a key point: recognition of the dif-
ference between SOI Mission MOEs versus Equipment
Element MOEs and Personnel Element MOEs—(Figures
10.13 – 10.16)

5.6.3 MOS

Principle 5.11

MOS

Mission and System success require
establishment of one or more MOSs that
quantify how well a system is required to
perform its mission.
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Automobile 
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Dynamics
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Where:
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Figure 5.8 Automobile Fuel Efficiency MOE and Contributory MOPs (Source: Collab-
oration with Matthew Doude (2012)—Center for Advanced Vehicular Systems (CAVS),
Mississippi State University.)

One of the challenges in developing systems, products,
or services is developing the right system—validation—for
specific mission applications and Operating Environment
conditions. If a system, product, or service is not suitable
for a mission application—reliable, dependable, and difficult
to use or maintain—obviously, that impacts its ability to
perform and achieve an outcome-based MOE. For example,
special laptop computers and devices are made for harsh
industrial or field environments such as dropping and spills
on keyboards. We can say that these types of devices are
made to accomplish specified MOEs in prescribed types of
environments.

An MOS is metric that characterizes the operational
suitability of a system, product, or service. The DAU (2001)
states “… Operational suitability is the degree to which a
system can be placed satisfactorily in field use considering
availability, compatibility, transportability, interoperability,
reliability, usage rates, maintainability, safety, human factors,
documentation, training, manpower, supportability, logistics,
and environmental impacts… ” DAU (2012, p. 156). DAU
(2001) also suggests that MOS metrics include:

“…measurements that indicate improvement in the pro-
ducibility, testability, degree of design simplicity, and design

robustness. For example, tracking number of parts, number
of like parts, and number of wearing parts provides indicators
of producibility, maintainability, and design simplicity”

—(DAU, 2011, p. 126).

Consider the following example.

Example 5.8

Based on the previous office copier example,
the Enterprise recognizes that not only
should the copier be operationally effective
in achieving the specified MOEs, it should
be operationally suitable for the planned

office areas. This includes background noise, jam-free
reliability, and energy savings on office utilities. As a re-
sult, the following MOSs were established as key metrics
representing concerns to the officer workers:

• MOS #1—Maximum noise level— XX db (decibels)
• MOS #2—Number of copies reproduced without

jamming
• MOS #3—Increase/decrease for Heating, Ventilation,

and Air Conditioning (HVAC) costs

Example 5.8 illustrates the acquisition of a system,
product, or service via consideration of its MOSs. Although
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this was a simple example to introduce the concept of
MOSs, what types of decisions does a System Developer
make to develop a contract-based system or a product
for the commercial marketplace? Again, this is a simple
example, but consider the following MOS decisions related
to Personnel–Equipment Element interactions.

Example 5.9

Personnel–Equipment Element
Interactions Example

• What User skills, tools, and Equipment
considerations impact system design

concerning how to operate and maintain the system to
achieve a specific level of performance?

• Do the control panels incorporate ergonomic designs
and devices that minimize operator fatigue and errors
(Chapter 24)?

One point we have not addressed is: What is the rela-
tionship of MOS to MOEs? Since an MOE is a metric that
characterizes a system’s operational effectiveness to accom-
plish mission performance-based outcomes, obviously, oper-
ational suitability has an impact on that achievement. There-
fore, an MOS is a contributory performance effector to one
or more MOEs.

5.6.4 System Effectiveness

As an objective factor, system effectiveness represents the
physical reality of outcome-based performance and results.
System effectiveness requires understanding the contributory
factors such as reliability, maintainability, and performance.

Outcome-based performance and results occur in two
basic forms: planned and actual performance. When system
development is initiated, the System Developer is dependent
on analyses, models, and simulations to provide technical
insights that reveal how a system is projected to perform. The
data is used to:

• Bound, specify, and model system performance or one
of its items.

• Compare actual versus planned performance or ex-
pected results.

Various techniques, such as rapid prototypes, proof of
concept prototypes, and technology demonstrations, are em-
ployed to validate models and effectiveness of simulations.
The intent is to collect objective, empirical evidence “early
on” to gain a level of confidence that the system, or portions
thereof, will perform as expected. The net result is to V&V
system effectiveness predictions.

When the actual System or Product is ready for
field-testing, actual performance data are collected to:

• Verify accomplishment of the requirements.

• Validate System or Product models.

5.6.5 Cost-Effectiveness

The objective measure of system success ultimately depends
on its cost-effectiveness. From an Enterprise perspective, Will
a system produce outcome-based performance and results
that provide an ROI that justifies its continued use? Are there
other alternative systems that produce similar or comparable
results that are more cost-effective?

Engineers, by virtue of their technical backgrounds, often
have difficulty in relating to the concept of cost-effectiveness;
they focus by virtue of experience, education, and training
on technical—system effectiveness. The reality is that the
Total Cost of Ownership (TCO) and the profits derived
from system applications drive Enterprise decision-making.
You can innovate the most elegant system, product, or
service with outstanding system effectiveness. However, if
the recurring operating and support costs are unsustainable
for its Users, the system may be “dead on arrival (DOA)” at
system delivery, especially in commercial environments.

Cost-effectiveness, as a metric, is computed from two el-
ements: (1) LCC – TCO and (2) system effectiveness. It is
important to note that a system, product, or service can be
characterized by its system effectiveness. However, having
system effectiveness does not mean that it is cost-effective.
Examples include experimental medical drugs and engineer-
ing designs that are unaffordable.

5.7 DEFINING MISSION AND SYSTEM UCs AND
SCENARIOS

The subject of UCs and Scenarios applies to Enterprise mis-
sions; SOI missions, as well as the Equipment System Ele-
ment consisting of Subsystems and Assemblies. Although
there are debates concerning the association of the term mis-
sion to Enterprises, it can be argued that any Equipment
components of a system, product, or service have their own
missions to perform.

Author’s Note 5.6

System Use Cases (UCs) and Agile
Development User Stories

Agile Development employs the term
User Story to capture a User’s opera-

tional needs in their own words. Observe that we said “in
their own words.” In that context, one could say that User
Stories serve as the basis for identifying UCs. We will ad-
dress User Stories as part of our discussion of Agile Develop-
ment later in Chapter 15, which includes their relationship to
UCs. You may want to consider gaining insights about User
Stories in Chapter 15 and their relationships to UCs.

From an SE perspective, User Stories help identify User
operational needs; UCs elaborate sequences of operational
tasks to be performed to accomplish a mission or task.
The sequences of operational tasks enable us to model
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system operations using methods such as MBSE. Operations,
in turn, require performance-based capabilities to achieve
the UC objectives and their outcomes for translation into
specification requirements.

5.7.1 Underlying Philosophy of UCs

The introduction to this section highlighted the need to un-
derstand Stakeholder needs. System Acquirers and Develop-
ers respond by writing engineering specifications that include
highly technical requirements statements and terms for the
system, product, or service that will satisfy their needs. Since
the Stakeholder community may or may not be engineers, the
process involves a level of trust and risk due to interpreta-
tion. As a result, a void exists between Stakeholder abilities
to express and articulate their needs. How do we solve this
problem?

Recognizing the need to solve this problem, Ivar Jacobson
introduced the concept of UCs to the public in 1987 with a
paper accepted for OOPSLA ’87. The paper, which described
the development of functional requirements for software and
modeling, was based on work that evolved over 16 years
(Jacobson, 2003, pp. 1–2).

Jacobson (2003, p. 2) makes a very key point concerning
“functions,” the traditional focus of SE, versus “use cases”.
Beginning in the 1960s, he began to observe that functions
have “no interfaces;” they are bounded entities with a set of
inputs, a transfer function, and an output (Figure 3.1). As
a problem space, the challenge is: since a system, product,
or service outcome is dependent on “interfacing” unique
sets - configurations - of functions (capabilities), how do we
accomplish this task?

This challenge lead to Jacobson’s evolution of Use Cases
(UCs) beginning in 1967 (Jacobson, 2003, p. 1). As a solution
space, UCs provided the linking mechanism for “interfac-
ing” the set of “functions” (capabilities) into an integrated
Input/Output (I/O) response thread. In that context, each UC
represents a higher level system, product, or service “capa-
bility” to produce a performance-based outcome required by
the User (Principle 5.14).

The concept of a UC is simple. Employ conversational
English or other appropriate language to articulate individ-
ual, narrative descriptions of how a stakeholder envisions
using a system, product, or service to perform a mission or
task. Each description should be supported by other rele-
vant information such as who, what, when, where, how, and
how often. UCs started as an informal method to “bridge
the gap” between stakeholders and specification develop-
ers. Over the years, they have been transformed into formal
documents.

What is the relevance of Use Cases to SE? Use Cases
fill the void to enable SEs to communicate and collaborate
with Stakeholders, irrespective of their technical skills. In so
doing, the method enables SEs to breakdown the abstractness

into a sequence of steps to be performed by the User and
the system, product, or service to accomplish the desired
outcome.

5.7.2 What Are System UCs?

UCs are methods that allow a System Developer SEs and
Analysts to collaborate with the Users to identify and doc-
ument in plain everyday language the key mission activities
and outcomes they would like to achieve with a system, prod-
uct, or service.

UCs serve as a valuable tool for SE and analysis, espe-
cially for identifying system capabilities that will enable us
to model the System and develop specification requirements.
The scope of our discussion will not be a treatise on UCs but
rather key elements of the concept that lead to the identifica-
tion of system, product, or service capabilities.

Referral For a more in-depth discussion of UCs, refer to
Cockburn (2001).

5.7.3 UC Applications

UCs are applicable to User Enterprise System missions,
SOI level missions, Equipment such as physical systems,
Subsystems, and hardware or software missions.

5.7.4 UC Documentation

UCs typically begin as informal working papers. Profession-
ally, they should be formalized and controlled by the Lead SE
(LSE) for a project. In general, UC Documents should con-
sist of an outline structure with a section—Section 3.0, “Use
Case Descriptions”—that identifies and describes each UC
for the system, product, or service.

Section 3.0 should begin with the introduction of a
UC Diagram. Each UC Description should include Se-
quence Diagrams that depict the operational sequences
of time-dependent interactions expected between the
System Users referred to as Actors and the System
elements.

Referral Refer to Appendix B for a brief overview of
Systems Modeling Language (SySMLTM) and its diagrams.

5.7.5 UC Representations

UC representations employ the SySMLTM and its graphical
tools based on standards established by the Object Manage-
ment Group (OMG®). UCs for a system, product, or service
are represented by a UC Diagram as shown in Figure 5.9.
Key points are:

1The System Modeling Language (SysMLTM) is a registered trademark of
the Object Management Group (OMG®)
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Your System

Use Case
#2

Use Case
#3

Use Case
#1

User #3
(Actor)

User #1
(Actor)

User #2
(Actor)

Figure 5.9 SysMLTM Use Case Diagram Example1

• Each UC is unique within the system, product, or
service and is symbolized by an oval.

• The syntax of each UC title consists of an active
verb followed by an outcome-based action that the
User (Actor) expects the system, product, or service to
accomplish, not features of the system.

• Each UC may be employed by one or more
stakeholders—Users and End Users—referred to
as Actors and represented by stick figures.

• Each UC may have one or more Extensions that
represent variations of the UC.

Given this basic understanding of UC fundamentals,
let us establish some attributes that will enable us to
develop UCs.

5.7.6 UC Descriptions

A UC is characterized by a UC Description that characterizes
UC attributes that describe how the User might deploy,
operate, support, sustain, retire, and dispose of a system,
product, or service. The following is a customized list of UC
attributes that are useful in developing System Level UCs.
If you are developing software UCs, you are encouraged
to employ UC attributes that may be more appropriate for
software development:

1. UC#_ Title

2. UC#_ Identifier

3. UC#_ Outcome and Performance-based Objectives

4. UC#_ Description

5. UC#_ Actors

6. UC#_ Assumptions

a. Initial state

b. Final state

c. Environmental conditions

d. Operating constraints

e. Acceptable and Unacceptable Inputs

f. Resources

g. Event-based timeline

h. UC Frequency of occurrence and utility priorities

7. UC#_ Pre-conditions

a. Preceding Events

b. System/Entity Operational Status and Health
(OS & H)

8. UC#_ Trigger(s)

9. UC#_ Main Success Scenario

10. UC#_ Post-Conditions

11. UC#_ Extension Points

12. UC#_ Scenarios and consequences

a. Probability of occurrence

b. UC scenario actors

c. Stimuli, excitations, and cues

d. Scenario consequences

e. Compensating/mitigating actions

13. UC#_ Artifacts

Given this list, let’s briefly describe each one and its
contribution to the characterization.
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5.7.6.1 Attribute 1: UC#_ Title

Principle 5.12

Use Case Title Principle

Every Use Case consists of a title that
expresses an outcome to be accomplished
from the perspective of the User (Actor).

Each UC consists of a brief, two or three word title that
expresses an outcome to be achieved. The syntax of the
title requires an active verb that represents the action to be
performed followed by a noun representing the outcome. One
key point that is often confusing. The title captures what the
Actor requires the system, product, or service to accomplish.

People may erroneously misinterpret a UC as being a
feature or capability of the system, product, or service. In the
end, System or Product success is determined by meeting
the operational needs of the User, not highlighting a feature
someone within the System Developer’s Enterprise thinks
might be interesting. These are very different concepts;
recognize and appreciate the difference.

5.7.6.2 Attribute 2: UC#_ Identifier

Principle 5.13

Use Case Identifier Principle

Every Use Case must be unique and consist
of an identifier that: (1) differentiates it
from other Use Cases and (2) facilitates
referencing.

Each UC should have its own unique identity with no
overlap, conflict, or duplicate other UCs for the system,
product, or service. Therefore, each UC should be tagged
with a unique identifier such as System UC #1 and System
UC #2. Since there may be UCs at various levels of abstrac-
tion, attach the appropriate prefix such as SS#1 UC#1 for
Subsystem #1 Use Case #1 accordingly or whatever naming
convention works best for you and your team.

5.7.6.3 Attribute 3: UC#_ Outcome and Performance-
Based Objectives

Principle 5.14

Use Case Outcome Principle

Every Use Case expresses what outcome
the User(s) requires the system, product,
or service to produce, not what the system
does to perform the action.

UC success comes from producing timely, performance-
based outcomes. Therefore, each UC should explicitly state
the outcome and performance-based objectives to be accom-
plished.

5.7.6.4 Attribute 4: UC#_ Description

Principle 5.15

Use Case Description Principle

Every Use Case should consist of a brief
synopsis that describes how the UC will
accomplish the required outcome.

To help UC users understand the UC, include a brief nar-
rative description that serves as an executive summary about
how the UC will be employed by an Actor. Although the
description could be several pages in length, best practice
indicates this statement should be brief and concise with
lengths ranging from one or two sentences to a full para-
graph at most. The structure of the paragraph should reflect
three phases of the UC: 1) preparation, 2) execution, and
3) completion.

5.7.6.5 Attribute 5: UC#_ Actors

Principle 5.16

Use Case Actors Principle

Each Use Case (UC) represents a system,
product, or service capability required by
one or more Users (Actors) in performing
their assigned mission or task.

Each UC should identify the list of Actors that participate
in and interact with the system, product, or service described
by the UC. An actor can be a person, place, thing, or role
and includes the entity for which the UC is written. This last
statement is key to the implementation of a UC. Consider the
following commercial aircraft UC example.

Example 5.10

UC Actor Example Applications

• Flight crew (Actor) interact with an
aircraft during all phases of flight.

• The flight crew (Actor) consists of a
Pilot (Actor), a Co-pilot or First Officer (Actor), and
Flight Attendants (Actors).

• The Pilot (Actor) and Co-pilot (Pilot) perform the
following roles: Communicator Role (Actor), Aviator
Role (Actor), and Navigator Role (Actor).

Observe in the preceding example how an
individual—Pilot or Co-pilot—can serve in multiple roles
while performing their duties represented by UCs.

5.7.6.6 Attribute 6: UC#_ Assumptions The formulation
and development of UCs requires that SEs make assumptions
that characterize a UC. Assumptions include the following
types of attributes.

5.7.6.6.1 Initial State The initial state of a UC represents
the assumed physical configuration state (Chapter 7) of the
system, product, or service when the UC is initiated.
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5.7.6.6.2 Final State The final state represents the desired
physical or operational state of the system when the desired
outcome has been achieved.

5.7.6.6.3 Environmental Conditions The current environ-
mental conditions specify and bound the Operating Envi-
ronment conditions that exist when a system, product, or
service UC is initiated.

5.7.6.6.4 Operating Constraints For some UCs, the sys-
tem, product, or service may have operational constraints
such as organizational policies, procedures, and task orders;
local, federal, state, and international regulations or statu-
tory laws; public opinion; or an MET. Therefore, operational
constraints serve to bound or restrict the acceptable set of cor-
porate, moral, ethical, or spiritual actions allowed for a UC.

5.7.6.6.5 Acceptable and Unacceptable Inputs Every sys-
tem, product, or service processes external acceptable and
unacceptable inputs to add value to achieve the specified
outcome.

5.7.6.6.6 Resources

Principle 5.17

UC Event Timeline Principle

When applicable, every Use Case should
be bounded by and synchronized to an
event timeline.

Every system, product, or service requires Mission Re-
sources to perform its mission. Mission Resources are
typically finite and are therefore constrained. The resources
attribute documents what types of resources such as expend-
ables or consumables are required to sustain System or Entity
operations.

5.7.6.6.7 Event-Based Timeline UCs may require an
MET to synchronize the planned actions or intervention
of System Users- operators or maintainers - or expected
responses from the System or Product.

5.7.6.6.8 Frequency of Occurrence and Utility Priorities

Principle 5.18

UC Frequency Principle

Every UC has a cost, risk, and time re-
quired to develop and assess its frequency
of usage and prioritize based on level of
criticality.

Every UC has a cost and schedule for development,
training, implementation, and maintenance. The realities of
budgetary cost and schedule limit the number of UCs that
can be practically implemented. Therefore, prioritize UCs

and implement those that maximize application and System
safety and utility to the User.

Observe that we said … to maximize application and
System safety and utility. If you prioritize UCs, emergency
capabilities and procedures should have a very remote
frequency of occurrence. Nevertheless, they can be the most
critical. You may need to analytically express utility in terms
of a multiplicative factor. Instead of assigning a 1 (low) to
5 (high) weighting factor priority to each UC, multiply the
factor by a level of criticality from 1 (low) to 5 (high) to
ensure the proper visibility from a safety perspective.

Enterprise systems, products, and services must be safe
for the Users to deploy, operate, maintain, sustain, and
dispose. Hypothetically, you could focus all resources on
safety features and produce a product that is so burdened with
safety features that it has no application utility to the User.

Although our discussion focuses on the development of
a product or service, remember that the system has other
System Elements—Personnel, Mission Resources, and
Procedural Data—than just Equipment. So, when con-
fronted with increasing design costs, there may be equally
effective alternatives for improving safety such as operator
certification, training and periodic refresher training, cau-
tionary and warning labels, and supervision required that
might not require product implementation.

5.7.6.7 Attribute 7: UC#_ Pre-conditions

Principle 5.19

Use Case Preconditions Principle

Establish the pre-conditions context for
each UC.

For some applications, the circumstance or sequence
of events leading up to the initiation of a UC needs to
be identified. Pre-conditions establish the contextual basis
for documenting the UC. Pre-conditions such as Preceding
Events and Operational Health and Status (OH&S) that are
relevant to the UC should be documented.

5.7.6.7.1 Preceding Events Some UCs are dependent on
what has been accomplished prior to the initiation of the
UC. Therefore, list any preceding events such as power
applied and switches set that enable accomplishment of
the UC.

5.7.6.7.2 System/Entity OH&S Another pre-condition for
a UC is the general OH and S of the System or Entity
for which the UC applies. The operational state or condition
(Chapter 7) determines the UC’s Flow of Events or the need
for an Alternative Flow. For example, nominal operations
may be required when “off”.
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5.7.6.8 Attribute 8: UC#_ Trigger(s)

Principle 5.20

UC Trigger Principle

Every UC requires a triggering condition
or event to initiate its performance.

A UC requires one or more triggers as enablers to
initiate performance of a UC. In general, Human Sys-
tems—Enterprise and Engineered—require some form of
human user intervention to activate/deactivate the system to
perform its mission. There are several ways of doing this de-
pending on the system design:

• Manual intervention systems—require a human to
manually Start or Stop the system from performing
operations. For example, a garden hose.

• Semi-automatic systems—perform operations that re-
quire human intervention to initiate a sequence of oper-
ations that continues until the system times-out, deletes
resources, or completes processing of a single task. For
example, an office copier.

• Automated System—automatically senses the need to
initiate operations when specific conditions are met,
performs the operation, completes the operation, and
awaits conditions to repeat the process. For example,
a facility badge security system that operates 24 hours
per day, 7 days a week.

UC triggers ultimately depend on the system operations
concept.

5.7.6.9 Attribute 9: UC#_ Main Success Scenario

Principle 5.21

UC Main Success Scenario Principle

Every UC has a main success scenario
(Cockburn, 2001) that when everything
works flawlessly the normal sequence of
actions produces the required outcome.

The heart of a UC centers on the main stimulus/response
processing scenario for a specified set of conditions to
produce the desired or required outcome. Some domains
refer to this as a Transfer or Response function.

Cockburn’s (2001) main success scenario represents the
sequence of steps and interactions required to initiate, ex-
ecute, and complete the UC by the System’s Actors. This
series of steps provide the basis for developing SySMLTM

Activity Diagrams from which System or Entity capabilities
will be extracted and derived.

When writing the main success scenario, it is important to
avoid presuming that hardware or software exists. Remem-
ber, at the System Level, the System is simply a box that has
inputs and provides outputs (Figure 3.2); its contents in terms
of Subsystems and Assemblies are abstract—unknown. So,

all that exists is the System. Consider the following example
in which the Office Copier is treated as a box with inputs and
outputs:

Example 5.11

Office Copier UC Flow of Events
Example

Step 1. The Copier (Actor) displays readi-
ness to copy.

Step 2. The User (Actor) places the document to be copied
in the Copier’s (Actor) hopper.

Step 3. The Copier senses paper in hopper.

Step 4. The Copier awaits User inputs.

Step 5. The Operator selects quantity of copies.

Step 6. The Copier reads User inputs—quantity of copies.

Observe that Example 5.11 Flow of Events does not
specify how to design the Copier—displays, keyboards,
and hopper—only how the Operator expects the Copier to
respond to the user inputs.

An alternative to the linear sequence of steps is based on
interactions between the Actors as shown in Table 5.1.

5.7.6.10 Attribute #10: UC#_ Postconditions

Principle 5.22

UC Completion Principle

Every UC requires definition of actions to
be accomplished by the user or system to
finalize the UC.

When a UC has achieved its prescribed result, postcondi-
tions describe any actions required by the Actors to perform
any housekeeping tasks and place the system in a State of
Readiness for the next UC. This includes storage of data,
printouts, and notification of task or action completion.

5.7.6.11 Attribute 11: UC#_ Extension Points UCs can
be elaborated into Extension Points that represent unique
instances of a UC. For example, a restaurant UC might be
Take Order. The Take Order UC might be extended via
Extension Points into: (1) Take Order - Beverage, (2) Take
Order - Entrée, (3) Take Order - Dessert, and so forth.

5.7.6.12 Attribute 12: UC#_ Scenarios and Consequences

Principle 5.23

UC Scenarios Principle

Every UC should include considerations
for the most likely or probable scenarios
when things go wrong that require alter-

nate flows from the main success scenario to enable recovery
and avoid System or Product failure.
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TABLE 5.1 Table-Based Example of Office Copier UC Flow of Events and Inter-
changes between Actors

UC Step User (Actor) Copier (Actor)

Step 1 Indicates readiness to copy
Step 2 Loads original in Copier
Step 3 Copier senses paper supply
Step 4 Copier awaits User inputs
Step 5 Selects quantity of copies
Step 6 Copier reads User inputs
Step 7 Copier displays copy quantity selection
Step 8 Copier awaits User selection inputs
Step 9 Selects Color or B and W copies
Step 10 Copier reads User inputs
Step 11 Copier displays B and W copy selection
Step 12 Copier awaits User selection inputs
Step 13 Selects Paper Size
Step 14 Copier reads User inputs
Step 15 Copier displays Paper Size selection
Step 16 Copier awaits User selection inputs
Step 17 Selects Double-Sided copies
Step 18 Copier reads User inputs
Step 19 Copier displays Double-Sided copy selection
Step 20 Copier awaits user selection inputs
Step 21 Initiates copy
Step 22 Copier reads pages
Step 23 Copier prints copies
Step 24 Copier dispenses copies for user
Step 25 Copier displays “Ready to Copy” message
Step 26 Picks up copies
Step 27 Copier awaits User inputs
Step 28 Copier initiates countdown timer
Step 29 Copier awaits User inputs
Step 30 Copier timer expires
Step 31 Copier switches to Energy Saver Mode

The preceding discussion addresses an ideal scenario in
which everything works perfectly as planned. As humans,
we tend to be optimistic and believe that everything will be
successful. While this is true most of the time, uncertainties
and unknown-unknowns do occur that create conditions we
have not planned for operationally. Once a UC is identified,
ask the question: When the User employs this UC:

• What can go wrong that we haven’t anticipated?

• What are the consequences of failure and how do we
mitigate them?

We refer to each of these instances as UC scenarios and
consequences. Consider the following example:

Example 5.12

CD Player UC Scenarios Example

Suppose that we are designing a Com-
pact Disk (CD) or Digital Video Disk
(DVD) player. Ideally, the high-level Play

CD/DVD UC describes a User inserting the CD/DVD
into the player—and magic happens! The player pro-
duces the desired result, positive outcome of music or a
movie.

Now, what happens if the User inserts the CD/DVD upside
down? The User has a UC scenario with a negative outcome
that has consequences—no music or video. This leads to the
question: When we design the CD/DVD device, how should
the User be advised of this situation? If we add an automatic
notification capability via displays or alarms to the device,
development costs increase. In contrast, the low-cost solution
may be to simply inform the User via the product manual
or user’s guide about the convention of always inserting the
CD/DVD with the title facing upward.

UC Scenarios include topics such as Probability of Oc-
currence; Scenario Actors; Stimuli, Excitations, and Cues;
and Compensating/Mitigating Actions that are relevant. Let
us briefly address each of these.
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5.7.6.12.1 Probability of Occurrence Once UC scenarios
are identified, we need to determine the probability of
occurrence of each one. As in the earlier discussion of UC
priorities, scenarios have a probability of occurrence. Since
additional design features may increase the cost and risk,
prioritize scenarios based on the most likely or probability of
occurrence with User safety as a predominant consideration.

5.7.6.12.2 UC Scenario Actors Our discussion up to this
point has focused on what is most likely or probable to occur:
UCs or scenarios. The key question is: Who or what are the
interacting entities during UCs and scenarios?

The Unified Modeling Language (UML®) and its subset
SySML (Appendix C) characterize these entities as Actors.
Actors can be persons, places, roles, real or virtual objects,
or events. Actors are represented by a human stick figure icon
and UCs as ellipses as shown in Figure 5.9:

• User 1 (Actor) such as a system administra-
tor/maintainer interacts with UC #1 through UC
#3.

• User 2 (Actor) interacts with UC #1 (Capability) and
UC #2 (Capability).

• User 3 (Actor) interacts with UC #3 (Capability).

5.7.6.12.3 Stimuli, Excitations, and Cues UCs are initi-
ated based on a set of actions triggered by system operator(s),
external systems, or the system. Consider the following
stimulus–response actions:

• The User or an external system initiates one or more
UC-based Triggers that cause the System to respond
behaviorally within a specified time period.

• The System notifies the User to perform an action to
make a decision or input data.

• The User intervenes or interrupts ongoing actions by
the System.

Each of these examples represents instances whereby the
User or System stimulates the other to action. Figure 5.10
illustrates such a sequence of actions using a UML Sequence
Diagram.

5.7.6.12.4 Scenario Consequences Each UC and scenario
produces an outcome that may have positive or negative
consequences that impact System or Product performance
or mission success. Consider the following example:

Example 5.13

Scenario Consequences Example

If Scenario X occurs and the operator or
system responds in a specified manner,
instabilities and perturbations that may

have negative consequences may be induced into the sys-
tem. Therefore, each UC and scenario should identify
the potential consequences of proper use/misuse, applica-
tion/misapplication, or abuse.

5.7.6.12.5 Compensating Provisions/Mitigating Actions
Given the set of consequences identified for UCs and UC
scenarios, we need to identify what compensating provi-
sions/mitigating actions should be incorporated into the
system, product, or service to eliminate or minimize the
effects of a negative outcome consequences.

Compensating provisions might include design changes
and training operators in proper methods. Consider the

System 

Operator
Subsystem

#1

System of Interest (SOI)

Subsystem

#2

1: XXXXXX

2: XXXXXX

3: XXXXXX

4: XXXXXX

Figure 5.10 SysMLTM Sequence Diagram Example
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example below concerning what has occurred with automo-
bile design over the past 100 years.

Example 5.14

Automobile Evolution Mitigating
Actions Example

Suppose that we design a car. Since
a car can collide with other vehicles,

walls, or trees, a generalized interface solution of the car
body-to-external system is insufficient. An analysis of UCs
and UC scenarios suggests that passengers can lose their
lives or sustain injuries in a collision. So a specialized
interface consisting of a bumper is added to the car frame
as a compensating/mitigating action. However, impact tests
reveal that the bumper is inadequate and requires yet a more
specialized solution including the following sequences of
design actions:

• Design action 1: Specify proper vehicle operating
procedures

• Design action 2: Incorporate shock absorbers into the
vehicle’s bumpers.

• Design action 3: Install and require use of seat belts.

• Design action 4: Install an airbag system.

• Design action 5: Install an Anti-lock Braking System
(ABS).

• Design action 6: Increase driver awareness to drive
safely and defensively.

• Design action 7: Install a collision avoidance system.

Compensating provisions also include actions the System
operator or maintainer can take to avoid an outcome that
may have negative or catastrophic consequence. Mini-Case
Study 24.1 illustrates compensating provisions test pilot
Chuck Yeager took in an aircraft that had been subject to
several unexplainable accidents that resulted in loss of life.

5.7.6.13 Attribute 13: UC#_ Artifacts UCs are required
to produce outcome-based results that are: (1) specific,
achievable, observable, measurable, testable, and verifiable
and (2) meet the Producer–Supplier “fitness for use” perfor-
mance criteria for the next downstream customer as shown
in Figure 4.1. This means that when the system, product, or
service performs a UC, it must produce objective evidence
in the form of an action report that documents results and
completion of the UC. This section defines and specifies the
objective evidence results that satisfy the observable, verifi-
able criteria.

5.7.7 UC Analysis

Each UC and its most likely or probable scenarios represent a
series of anticipated interactions among the actors. Once the

scenarios and actors are identified, SEs and System Analysts
need to understand the most likely or probable interactions
between: (1)the System User and the Equipment, and (2) the
system or entity of Interest and external systems within its
Operating Environment.

UML tools are useful in understanding the stimuli, cues,
and behavioral responses between interacting systems. UML
sequence diagrams, which serve as a key tool for represent-
ing interactions with a UC, include:

• Actors—Consist of entities such as persons, places,
things, roles, and other objectives that interact or
provide information, energy, or other inputs to another
Actor. Labels at the top of each Swim Lane identify
actors.

• Lifeline—Consists of a vertical line to represent time
relative processing. Activation boxes are placed along
the lifeline to represent processing of external inputs,
stimuli, or cues and behavioral responses to produce a
specific output(s) for exchange with other downstream
Actors.

• Swim Lanes—Consist of the regions between the
Actor lifelines for illustrating sequential control flow
of operations and tasks and data exchange interactions
between each Actor.

Appendix C provides a brief overview of these and other
SysML tools.

To illustrate how these are employed, consider the follow-
ing example:

Example 5.15

UC Swim Lanes Example

Suppose a User (Actor) has a task to per-
form mathematical calculation and report
the results. To perform the task, the User

(Actor) interacts with a calculator (Actor) as shown in
Figure 5.11. Observe that the figure is structurally similar
to and expands the level of detail of Figure 5.10. Activa-
tion boxes (Figure 5.10) are transformed into Actor activi-
ties in Figure 5.11. To keep the example simple, assume the
calculator consists of two Subsystems—Subsystem #1 and
Subsystem #2.

The User and each of the Subsystems have an Initial
State, Final State, and conditional loops that cycle until spe-
cific decision criteria are met to terminate operation. We as-
sume each of the Subsystem activities include “wait states”
for inputs. When inputs arrive, processing is performed, and
control is passed to the next activity. Here is a potential UC
scenario description:

• The System operator (Actor) turns on the calculator
(Actor), which activates and initializes Subsystems #1
and #2 from their Initial States.
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• Each subsystem initializes and proceeds to Activities
20 and 30 to await System Operator inputs.

• The System Operator (Actor) enters data –Activity 10-
into the calculator producing Output 10.

• Activity 20 accepts the System Operator keyboard
entries, processes the information, and sends Output 20
to Activity 30.

• Activity 30 processes the information and transfers
control to Activity 31.

• Activity 31 performs the required computation and
produces Output 31.

• In the interim, Subsystem #1 Activity 21 enters a “wait
state” for the Output 31 results.

• On receipt of Output 31, Activity 21 converts the results
into meaningful operator information and displays
Output 21 to the System Operator.

• On receipt of Output 21, the System Operator records
the results – Activity 11 – and communicates the
results – Output 11.

• Subsystems #1 and #2 continue to cycle (Con-
ditions 11, 21, and 31) awaiting inputs until the
System Operator decides to Power Down the
calculator.

• On Power Down Conditions 10, 20, and 30), Subsys-
tems #1 and #2 enter a Final State.

5.7.8 Relating UCs to Operational Tasks

A UC represents a capability traceable to a mission objective
that enables a System User (Actor) to Monitor, Command
and Control (MC2) a system, product, or service. When you
elaborate a UC’s Flow of Events into a series of interaction
steps such as Table 5.1 and Example 5.1, each step represents
an operational task that enables the User (Actor) or Copier
(Actor) to accomplish a mission objective—print copies
of a document. In turn, each activity- capability - can be
translated into an SPS capability requirement. Net result is:

UCs → Operational Tasks → Operational Capabilities →
SPS Capability Requirements

5.7.9 How Many System UCs?

A key question people often ask is: How many UCs are
required for a system? There are no magic answers; 10
through 30 UCs might be average. Some highly complex
systems may just have 5 or 6; others, 10 to 20. It all depends
on the individuals and organizations involved. Some want
simplicity to keep the number small; others want detailed

System Operator (Swim lane) Subsystem #1 (Swim lane) Subsystem #2 (Swim lane)

Output 10 

System of Interest (SOI) 

Condition
20 

Initial

State  

Final State 

Condition
21Condition

10 

Condition
11 Condition

30

Condition
31

Output 21 

Output 20 

Output 31 

Final State Final State 

Output
11

Activity
10

Activity
11 

Activity
20 

Activity
21 

Activity
31

Activity
31 

? ? 
? 

Initial

State  
Initial

State 

Figure 5.11 SysMLTM Activity Diagram Example
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lists. In general, a system may have 5 to 8 primary UCs;
the remainder may be secondary or extension UCs of the
primary UCs.

From an SE perspective, UC analysis should be a key
tool of any System Development effort. However, Engineers
often view this activity as non-value-added, bureaucratic
paperwork to the User and product, and believe their time
is better spent contemplating the creation of elegant designs.
The reality is that elegant designs can be useless—unless
the User can easily and understandably implement them
with their current skill set. This is why “Just in Time”
(JIT) training for System Operators must take place prior
to system acceptance and delivery.

People who promote the bureaucratic paperwork argu-
ment are the same people who, after a system fails during
integration and test, capitulate and remark “…How was I
to know what the User wanted? I’m only human … besides
they couldn’t decide what they wanted. I can’t read their
minds!”

Documenting UCs is a simple matter. It requires pro-
fessional discipline, something that tends to get lost in
modern-day casual engineering efforts. If you doubt this,
ask yourself how many products have disappointed you and
made you wonder did anyone within the System Developer’s
organization ever consult the Users and how they expected to
use the system? If they had, they would have easily learned
that this step is critical to the User’s success and acceptance
of the system, product, or service.

5.8 CHAPTER SUMMARY

This concludes our discussion of Mission Analysis, User Sto-
ries, Use Cases, and Scenarios. Our discussions highlighted
the need to employ UCs as a means of avoiding quantum
leaps (Figure 2.3) between User visionary requirements and
System or Product design. We also noted that UCs and sce-
narios provide a powerful tool using plain language that
Users, Acquirers, and System Developers can employ, to im-
prove communications and understanding of how the system,
product, or service is envisioned to be deployed, operated,
maintained, sustained, retired, and disposed:

• Every mission must be founded on an operational
strategy referred to as a mission profile.

• Each mission begins with a point of origination and
concludes with a destination or point of termination
with intervening staging, control, or waypoints based
on specific objectives and MET events.

• Between the point of origination and point of termina-
tion, some missions may require interim waypoints or
delivery points that satisfy specific mission objectives.

• Every mission is characterized by at least three mission
phases of operation: (1) Pre-Mission, (2) Mission, and
(3) Post-Mission.

• Every mission is characterized by outcomes and sup-
porting performance-based objectives that represent
UCs of the system, product, or service.

• Each mission requires consideration of mission scenar-
ios that might occur during the performance of a UC.

• UCs provides a means of identifying key sequential or
concurrent operational tasks that represent lower-level
capabilities that will ultimately be translated into SPS
requirements.

• UCs must be prioritized for development based on most
likely or probable occurrences for development subject
to program technical, cost, and schedule constraints.

• UC scenarios provide a basis for understanding:
(1) how the User expects to use a system, product,
or service. And (2) how the misuse or abuse might
result in risks with consequences that require design
compensating or mitigating actions.

• UC scenarios must be prioritized within UC technical,
cost, and schedule constraints.

• UC attributes provide a standard framework to uni-
formly and consistently describe each use case.

• SysMLTM Sequence Diagrams serve as a useful tool for
understanding the sequencing of Actor interactions and
behavioral responses.

• Each UC and its attributes should be captured in a
System XYZ UCs and Scenarios Document and placed
under baseline management control for decision-
making.

5.9 CHAPTER EXERCISES

5.9.1 Level 1: Chapter Knowledge Exercises—Mission
Analysis

1. How does System Definition vary between consumer
product development and contract system development?

2. What is a mission?

3. Is the term “mission” restricted to the military applica-
tions? Explain why?

4. Do consumer products and services perform missions?

5. How do you plan a mission?

6. What is a Mission Event Timeline (MET), its key
attributes, and how is it developed.

7. How is mission task analysis is performed?

8. What are the primary phases of operation of a system,
product, or service? Can there be other phases of opera-
tion?
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9. What system operations and decisions are performed
during the Pre-Mission, Mission, and Post-Mission
Phases?

10. How do SEs bound each mission phase of operation and
establish criteria for triggering the next phase? Why is it
important to bound phases of operation? What occurs if
you do not bound each phase of operation?

11. What is a User Story?

12. What is a Use Case (UC)?

13. How many UCs does a system, product, or service need?

14. Which types of systems employ UCs? Organiza-
tions, systems, products, or services; Subsystems, or
Assemblies?

15. What are the attributes of a UC?

16. What is UC analysis and how do you perform one?

17. What is an Actor and what is its relationship to a UC?

18. Is each UC restricted to one Actor?

19. What is the structure of a UC Description? What is the
optimal length of a UC Description? Paragraph? Pages?

20. Where are UCs documented?

21. What is a UC scenario?

22. Why are UC scenarios important to defining systems,
product, and services?

23. What is the relationship between UCs and system capa-
bility requirements?

24. List the key SE principles learned from this chapter.

5.9.2 Level 2: Knowledge Application Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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6
SYSTEM CONCEPTS FORMULATION
AND DEVELOPMENT

Chapter 5 introduced concepts for the Mission Definition
Methodology and its underlying foundation of mission and
system Use Cases (UCs) and scenarios. These concepts pro-
vide the framework from which Systems Engineering (SE),
Analysis, and Development will emerge. Once the organiza-
tional mission has been defined using the Mission Definition
Methodology, Systems of Interest (SOIs) have been iden-
tified, and Enabling Systems have been established, the
next step is to formulate and develop the conceptualizations
of how the system, product, or service is envisioned to be
deployed, operated, maintained, sustained, retired, and dis-
posed by the User.

We begin our discussions with the introductory overview
of the System Operations Model. This model provides the
“headwaters” analytical framework for structuring system
operations that lead to the identification of system capa-
bilities and subsequently System Performance Specifica-
tion (SPS) capability requirements. This model illustrates
the deficiencies in the traditional, ad hoc, Plug & Chug
… Specify-Design-Build-Test-Fix (SDBTF) Paradigm that
often focuses on “engineering the box” for normal mis-
sion operation. Commonly ignored are the Pre-Mission,
Post-Mission, Storage, Sustainment, and other operations
that emerge after the system, product, or service has been
fielded.

Given a foundational understanding of the System Oper-
ations Model concept, we introduce the System Concept of
Operations (ConOps) document that describes how a system,
product, or service is envisioned to be deployed, operated,
and maintained. Observe that we did not include sustainment,
retirement, and disposal. Why?

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

In general, a ConOps is developed by the System Devel-
oper or Services Provider organization in collaboration with
the User to serve as a shared vision for developing the system,
product, or service. Once the system has been contractually
accepted by the User and has been fielded, it belongs to the
User and their Enabling Systems. The Developer can and
should include the concepts for sustainment, retirement, and
disposal; however, some users will tell you very explicitly
that is their business and is not within the scope of your du-
ties as a System Developer. This does present a dilemma for
“smart” SE that incorporates features related to disposal, es-
pecially for easy removal of toxic and hazardous materials
such as heavy metals. Check with the System Acquirer and
User regarding their position on this topic.

Our discussions provide an example ConOps outline and
then provide information for developing the Deployment;
Operations, Maintenance, and Sustainment (OM&S); Retire-
ment; and Disposal concepts.

6.1 DEFINITIONS OF KEY TERMS

• ConOps—A project document that serves as the cen-
tral focal point early in system development to com-
municate the vision for a system, product, or service’s
Operational Concept Descriptions (OCDs); system
context and interfaces; operational architecture; Sys-
tem Operations Model; mission phases, modes, and
states of operation; sequential and/or concurrent opera-
tions workflow; and others required to achieve mission
performance objectives.

http://www.wiley.com/go/systemengineeringanalysis2e
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The ConOps should be developed specifically by a
key technical visionary leader for the project—Project
Engineer, System Architect, or Lead Systems Engineer
(LSE). Since the ConOps expresses the project leader’s
vision, its development should not be delegated. This is
not a “guess what the project engineer’s vision is today”
exercise to be performed by a subordinate!

• Control or Staging Point—A major decision gate that
limits advancement of workflow progress to the next
set of objective-based operations until a set of go–no
go decision criteria are accomplished.

• Corrective Maintenance—“All actions performed as
a result of … failure to restore … an item to a speci-
fied condition. Corrective maintenance can include any
or all of the following steps: localization, isolation, dis-
assembly, interchange, reassembly, calibration, align-
ment, and checkout” (DAU, 2012, p. B-48).

• Deployment Concept—An ConOps OCD that ex-
presses how a system, product, or service will be
(1) deployed from the System Developer’s facility to
a designated User’s site, facility, or distribution system
or (2), if applicable, redeployed to a new site.

• Disposal Concept—A ConOps OCD that expresses
how (1) a system, product, or service will be disposed
such as sale, transfer of ownership, lease, or destruc-
tion, (2) key components will be salvaged and recycled,
and (3), as applicable, environmental remediation and
reclamation will be accomplished.

• Entry Criteria—One or more thresholds that must
be met individually or collectively as a condition to
perform the next life cycle stage, phase of operation,
mode, state, task, or activity.

• Exit Criteria—A set of performance-based outcomes
that must be completed individually or collectively to
enable transition to the next life cycle stage, phase of
operation, mode, state, task, or activity.

• Maintenance Concept—A ConOps OCD that ex-
presses how a system, product, or service will be main-
tained via (1) preventive and corrective maintenance
actions, (2) training, (3) upgrades and retrofits, etc.
prior to, during, and after each mission for the remain-
der of its life cycle.

• Operations Concept—A ConOps OCD that ex-
presses how a system, product, or service will conduct
Pre-Mission, Mission, and Post-Mission operations.

• Operational Concept description (OCD)—A narra-
tive that describes a unique aspect of a fielded system,
product, or service’s life cycle such as deployment,
mission operations, mission support Operations, Main-
tenance, Sustainment (OM&S), retirement, or disposal.
In general, a deployment, OM&S, and retire-
ment/disposal OCD should be incorporated as a

section within the System ConOps. However, if a
given OCD is critical to technical decision-making
prior to release of the System ConOps, the OCD is
sometimes released in interim form.

• Operational Task—A workflow directive that in-
cludes an outcome-based objective and performance-
based completion criteria.
Operational tasks are implemented in accordance with
Enterprise Organizational Standard Processes (OSPs),
methods, and procedural activities.

• Preventive Maintenance—“All actions performed in
an attempt to retain an item in specified condition by
providing systematic inspection, detection, and preven-
tion of incipient failures” (DAU, 2012, p. B-167).

• Retirement Concept—A ConOps OCD that describes
(1) how a system, product, or service will be decom-
missioned and transitioned from active service to in-
active service and (2) retraining and reassignment of
Personnel.

• Sustainment Concept—A ConOps OCD that ex-
presses how a system, product, or service will be
sustained logistically by its Enabling System via
(1) Mission Resources (consumables and expend-
ables), (2) maintenance, and (3) Personnel training
(basic, proficiency, remedial, and skills enhancement).
Organizations sometimes have different views of Sus-
tainment versus Maintenance. Some view the two ac-
tivities as: separate, combined, Maintenance as part of
Sustainment, or Sustainment as part of Maintenance.
Typically, Maintenance and Sustainment are separate,
peer level activities.

• System Operations—A unique set of multi-level, in-
terdependent, value-added tasks and activities that col-
lectively contribute to satisfying a Pre-Mission, Mis-
sion, or Post-Mission Phase for a given System/Product
Life Cycle and Mode of Operation.

• System Operations Dictionary—A project document
that serves as central focal point for scoping and defin-
ing activity-based tasks required to perform or support
Pre-Mission, Mission, and Post-Mission Phases of Op-
eration and their respective Modes of operation within
the Deployment, OM&S, and Retirement/Disposal Life
Cycle Phases.

• System Operations Model—A generalized template
of system operations that can be employed as an initial
framework for identifying and tailoring the operational
workflows for most systems from the System Develop-
ment Phase to the System Retirement/Disposal Phase
of the System/Product Life Cycle.
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6.2 CONCEPTUALIZATION OF SYSTEM
OPERATIONS

One of the first critical steps in SE is creating an expression of
how system, product, or service will be deployed, operated,
maintained, sustained, retired, and disposed. Although this
can be accomplished via text, humans instinctively gravitate
to graphics such as: (1) block diagrams, timelines, artistic
renderings, etc. (2) 3-D wooden or cardboard models, or
(3) 3-D printing. The intent is to create a common focal
point that expresses the look, feel, and emotion that immerses
system development Personnel into the “mental models” of
the User (Chapter 24) and inspires them to action.

Building and landscape architects communicate these
visions via artistic rendering. Engineers tend to employ
sketches, Architecture Block Diagrams (ABDs), prototypes,
models & simulations to represent a view of the system.
Then, corporate publications artists to create artistic ren-
derings of vehicles, device-based products, etc. applications
within the User’s intended Operating Environments.

In the twenty-first century, creating visions that inspire is
even more critical and leads to the need for “thinking outside
the box” when employing ABDs. Walt Disney served an
example for inspiration through its world-wide amusement
parks. Perhaps one of the best examples of illustrating
visions for new systems, products, and services is captured
in a text entitled Designing Disney (Hench, 2009). The text
employs storyboard graphics to express conceptualization
views of the futuristic Disney World through the eyes of its
patrons—Users and End Users.

• Key point: When developing system concepts, think
about the various methods you can employ to concep-
tualize, communicate, and inspire in the least amount of
space. As an old cliché, a “picture is worth a thousand
words.”

6.3 THE SYSTEM OPERATIONS MODEL

Graphical models provide an excellent way for SEs, engi-
neers, analysts, etc. within the System Acquirer, User, and
System Developer organizations to establish a shared vision
for a system, product, or service. In this context, there are
two perspectives:

• Enterprise Perspective—how the User intends to de-
ploy, operate, maintain, and sustain the SOI.

• Engineering Perspective—how an SOI is envisioned to
provide capabilities to support mission operations.

We will address the Engineering Perspective in Chapters
7–10. Our discussions here focus on the Enterprise

Perspective that provides the basis for the Engineering
Perspective.

Figure 6.1 provides a generalized System Operations
Model as a construct that can be applied to Human
Systems—enterprise and engineered—as a starting point
template for characterizing its deployment, OM&S, retire-
ment, and disposal. The System Operations Model provides
a high-level operational workflow that represents “A Day in
the Life of a Mission.” It describes how a system, product,
or service:

• Is configured for a mission (Pre-Mission)

• Conducts the mission (Mission)

• Is supported following a mission (Post-Mission)

The structure of the model consists of a series of sequen-
tial and concurrent operations and tasks that can be translated
into specification capability requirements.

Principle 6.1

System Operations Model Principle

Human Systems—Enterprise and
Engineered—are characterized by a Gener-
alized System Operations Model developed

in collaboration with Users concerning how a system,
product, or service will be deployed, operated, maintained,
sustained, retired, and disposed.

Principle 6.2

Operational Capability Principle

Every system operation represents a
required operational capability that must
produce a specified performance-based

outcome while coping with one or more probable or most
likely Operating Environment scenarios.

First, a word about the contents of the graphic. Each box
in Figure 6.1 represents an integrated, multi-level collection
of stakeholder Use Case (UC) based operations required to
achieve an overall mission objective. We will decompose
or expand each of these UC operations into a series of se-
quential and concurrent tasks and activities—processes—to
achieve the UC performance-based outcome. Ultimately,
these tasks are translated into capabilities, and their re-
spective levels of performance are allocated to one or
more of the System Elements such as the Personnel,
Equipment, and Facilities (Chapter 8). Several key
points:

1. Each block consists of a unique identifier—numbered
circle—that serves as a navigational aid for narrative
description references such as an OCD within the
ConOps document.
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Figure 6.1 Generalized System Operations Model

2. Each decision block in the figure is referred to as a con-
trol or staging gate and requires a Go–No Go decision
from a decision authority based on a pre-defined set of
exit or entry criteria.

3. Operations 8.0, 11.0, 12.0, and 19.0 are reserved in
Figure 6.1 for a follow-on discussion later in this
chapter.

6.3.1 System Operations Model Description

Figure 6.1 depicts the System Operations Model that applies
to most Human Systems—enterprise and engineered. Entry
into the model begins when a system completes and is
transitioned from its System Development Phase of the
System/Product Life Cycle. Entrance or entry criteria are
evaluated to assess system readiness to begin active service.
Let’s explore each of the operations.

6.3.1.1 Operation 3.0: Deploy System Operation 3.0, De-
ploy the System, addresses system capabilities and activities
required to deliver and install the system, product, or service
at the User’s required destination. As each system completes
the System Development Phase or System Production Phase

the system is packed and shipped for deployment or distribu-
tion to the User. Examples of operational activities include
transportation; loading/unloading; crating/uncrating; initial
setup, installation, and assembly; system checkout; verifica-
tion; integration into higher-level systems; and verification of
interoperability at that level. On completion of Operation 3.0,
Operation 4.0, the Conduct System/Mission Training Deci-
sion is made.

6.3.1.2 Operation 4.0: Conduct System/Mission Training
Decision Operation 4.0, Conduct System/Mission Training
Decision, a decision control point, determines if the system
is to be commissioned into active service or reserved for
operator training or demonstrations:

• If the System/Mission Training Decision is Yes or
True, workflow progresses to Operation 17.0, Conduct
System Training.

• If the System/Mission Training Decision is No or False,
workflow progresses to Operation 5.0, Await Mission
Notification Decision.

6.3.1.3 Operation 5.0: Mission Notification Decision
Operation 5.0, Mission Notification Decision, a decision
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control point or gate, must await notification to initiate
preparations to conduct a mission. Depending on the system
and its mission application, Operations 4.0 and 5.0 are each
effectively cyclical Do Until wait states that loop until a
higher-level decision authority issues an order to perform
the mission:

• If the Mission Notification Decision is Yes or True,
workflow progresses to Operation 6.0, Configure Sys-
tem for Mission.

• If the Mission Notification Decision is No or False,
workflow continues to cycle back to Operation 4.0,
Conduct System/Mission Training Decision.

6.3.1.4 Operation 6.0: Configure System for Mission
Operation 6.0, Configure System for Mission, includes op-
erational tasks and activities required to prepare and config-
ure the system for the mission. On receipt of mission task
orders, the system is configured for the mission. Depend-
ing on the type of system, Pre-Mission configurations may
necessitate a standing configuration before mission tasking
occurs, for example, a surgical suite in a hospital having a
standing configuration before a crisis occurs versus the ne-
cessity to configure a commercial airline aircraft before a
flight.

Operational activities include Pre-Mission analysis and
planning; physical hardware and software updates, if re-
quired; Personnel Element training; and replenishment of
consumable and expendable Mission Resources. System
configuration/reconfiguration activities include the synchro-
nized orchestration of the System Elements such as:

• Personnel Element—Operators, maintainer, adminis-
trators, etc.

• Procedural Data Element—Operating procedures,
media, etc.

On completion of Operation 6.0, System Verification is
performed to ensure that the system is properly configured
for the mission:

• If the verification is successful, workflow progresses to
Operation 7.0, Assess Operational Mission Readiness.

• If system latent defects – design errors, flaws, or
deficiencies -are discovered during system Pre-Mission
inspections, workflow progresses to Operation 20.0,
Perform System Maintenance.

6.3.1.5 Operation 7.0: Assess Operational Mission
Readiness Operation 7.0, Assess Operational Mission
Readiness, includes system capabilities and activities
required to review the overall readiness to conduct the
assigned mission. After the system has been configured

for the mission and all System Element resources are fully
integrated and operational, mission operational readiness is
assessed. The assessment evaluates the readiness posture of
the integrated set of System Elements—such as Equipment,
Personnel, and Facilities—to perform their assigned
mission on demand.

If the readiness assessment is No, the system is identified
as operationally deficient with a color-coded tag or placard
such as Red or Yellow. A mission impact risk assessment
decision is made to determine if the deficiency warrants
replacement of the System/Entity with a backup system or
postponement:

• If the system requires maintenance, workflow pro-
gresses to Operation 20.0, Perform System Mainte-
nance.

• If the system is determined to provide the capabilities
required to support the mission, workflow progress to
Operation 9.0, Await Mission Go-Ahead Decision.

6.3.1.6 Operation 9.0: Mission Go-Ahead Decision
Operation 9.0, Mission Go-Ahead Decision, a decision
control point, determines if tasking orders to conduct the
mission have been issued:

• If Await Mission Go-Ahead Decision is Yes or True,
workflow proceeds to Operation 10.0, Conduct Mis-
sion.

• If the Await Mission Go-Ahead Decision is No or False,
system readiness is periodically checked by cycling
back to Operation 7.0, Assess Operational Mission
Readiness.

6.3.1.7 Operation 10.0: Conduct System Mission Oper-
ation 10.0, Conduct System Mission, includes system oper-
ational tasks and activities required to conduct the system’s
primary and secondary mission(s). During the mission, the
system may encounter, engage, and interact with external
system threats and opportunities as it performs the mission
objectives.

If the system requires maintenance during Operation 10.0,
Operation 16.0, Replenish System Resources, or Operation
20.0, Perform System Maintenance, may be performed,
where practical. Consider the following example.

Example 6.1

Comparison of System Maintenance
During a Mission

• As a ground-based vehicle, most automo-
bile repairs can be accomplished within

a reasonable time period during its mission.
• As a space-based vehicle, maintenance of a satellite on

Earth orbit may be impractical until a repair solution
can be developed and manifested on an available flight
in the future.
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6.3.1.8 Operation 13.0: Assess Mission and System
Performance Operation 13.0, Assess Mission and Sys-
tem Performance, includes system activities required to
review the level of mission success based on mission pri-
mary and secondary objectives as well as Mission System
and Enabling System performance contributions to that
success. Activity examples include Post-Mission data re-
duction and analysis, target impact assessment, strengths,
and weaknesses; threats; mission debrief observations and
lessons learned; and mission success. These operations also
provide the opportunity to review and assess the integrated
Personnel–Equipment Element interactions and perfor-
mance; strengths, and weaknesses during the conduct of the
mission; and corrective actions required.

6.3.1.9 Operation 14.0: Deactivate/Phase-Out System
Decision Operation 14.0, Deactivate/Phase-Out System
Decision, a decision control point, determines if the system
is to continue current operations, be upgraded, or be decom-
missioned or phased out of active service. The decision is
based on Operation 15.0 Exit Criteria that were established
for the system:

• If the Deactivate/Phase-Out System Decision is Yes
or True, workflow progresses to Operation 21.0,
Deactivate/Phase-Out System.

• If the decision is No or False, workflow proceeds to
Operation 16.0, Replenish System Resources.

6.3.1.10 Operation 16.0: Replenish System Resources
Operation 16.0, Replenish System Resources, includes
Enabling System operational tasks and activities required
to restock or replenish system resources such as Personnel
and Mission Resources—consumables and expendables:

• If deficiencies are found in the system, the workflow re-
turns to Operation 20.0, Perform System Maintenance.

• On completion of Operation 16.0, Replenish System
Resources, workflow progresses to Operation 18.0,
Redeploy System Decision.

6.3.1.11 Operation 17.0: Conduct System/Mission
Training Operation 17.0, Conduct System Training,
includes tasks and activities required to train Users - system
operators, maintainers, and others - in how to properly
operate the system. This includes classroom, simulator, and
actual system usage. For larger, more complex systems, ini-
tial operator training is sometimes performed at the System
Developer’s factory prior to system deployment to the field.
This includes normal operations as well as abnormal and
emergency operations. Remedial and skills enhancement
training occur after the system is already in field service.

During Operation 17.0, Conduct System Training, new
system operators are instructed in the safe and proper use

of the system to develop basic skills. Experienced operators
may also receive remedial, proficiency, or skills enhancement
training based on lessons learned from previous missions or
new tactics employed by adversarial or competitive threats.

On completion of a training session, workflow progresses
to Operation 16.0, Replenish System Resources. If the sys-
tem requires maintenance during training, Operation 20.0,
Perform System Maintenance, is activated.

6.3.1.12 Operation 18.0: Redeploy System Decision Op-
eration 18.0 to redeploy the System, a decision control point,
determines if the physical system requires redeployment to
a new deployment site to support organizational mission ob-
jectives:

• If Operation 18.0, Redeploy System Decision, is Yes
or True, workflow progresses to Operation 3.0, which
is to deploy the system.

• If Operation 18.0, Redeploy System Decision, is No
or False, workflow proceeds to Operation 4.0, Conduct
System/Mission Training Decision, and the cycle re-
peats back to Operation 18.0, Deploy System Decision.

6.3.1.13 Operation 20.0: Perform System Maintenance
Operation 20.0, Perform System Maintenance, includes sys-
tem capabilities and activities required to upgrade system
capabilities or correct system deficiencies through preven-
tive or corrective maintenance actions. Systems are tagged
with easily recognizable color identifiers such as Red or Yel-
low to represent corrective or preventive maintenance actions
(Chapter 34) required to correct any defects or deficiencies
that may impact mission success.

On successful completion of Perform System Mainte-
nance, the system is returned to active service via the next
operation—be it Operation 6.0, Configure System Mission;
Operation 7.0, Assess Operational Mission Readiness; Oper-
ation 10.0, Conduct Mission; Operation 16.0, Replenish Sys-
tem Resources; or Operation 17.0, Conduct System/Mission
Training—of the requested need for maintenance.

6.3.1.14 Operation 21.0: Decommission, Deactivate,
and Phase-Out System Operation 21.0, Decommission,
Deactivate, and Phase-Out System, includes operational
tasks and activities required to decommission, terminate,
and remove the system from active service; store, ware-
house, or disassemble the system; and properly dispose all
its components and elements. Some systems may be placed
in storage or “mothballed” until needed in the future to sup-
port surges in mission operations that cannot be supported
by existing systems. On completion of the deactivation,
the system proceeds to the System Disposal Phase of its
System/Product Life Cycle.
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6.3.2 System Operations Dictionary

Principle 6.3

System Operations Dictionary

Every project should consist of a System Op-
erations Dictionary that clearly defines each
system operation, its scope, and activities.

Obtaining team agreement on the graphical depiction of
the ConOps is only the first step. When working with larger,
complex systems and development teams, diagrams at this
level require scoping definitions for each task and activity
to ensure proper understanding among team members. For
example, you and your team may define and scope a specific
operational task or activity differently from a team operating
in another business domain, depending on the system’s
application.

One solution is to create a System Operations Dictionary.
The dictionary, which defines and scopes each capability
similar to the previous System Operations Model descrip-
tions, should be maintained throughout the life of the system.

In terms of accountability, the Systems Engineering and
Integration Team (SEIT) under the leadership of the Project
Engineer or LSE should lead plan and orchestrate develop-
ment of the System Operations Dictionary. This effort should
begin during the proposal phase of a system, product, or ser-
vice prior to contract award and certainly on Day #1 After
Contract Award (ACA).

6.3.3 Final Thoughts

The System Operations Model provides an initial, an-
alytical framework for defining how systems, products,
organizations, services, etc. will be deployed, operated,
sustained, and retired/disposed. We can apply this model as
an initial starting point for most, if not all, Human Systems
(Chapter 9)—enterprise or engineered—such as corpora-
tions, departments, projects, automobiles, airlines, hospitals,
businesses, fire and ambulance services, etc. Collectively and
individually, each of the model’s operations represents a gen-
eralized construct that can be used as an initial starting point
applicable to most systems.

• Your job as an SE is to collaborate with the
Stakeholders—Users and End Users—to tailor the
System Operations Model to reflect their needs within
the constraints of contractual, statutory, and regula-
tory requirements. Each operation should be scoped
and bounded via a System Operations Dictionary
to ensure all members of the Acquirer, User, and
System Developer teams clearly understand what
is/is not included in specific operations—with no
surprises!

Principle 6.4

Value-Added Operations Principle

Each System Operations Model operation
or task and its performance by the System
Elements either add value and contribute to

achieving a mission-based performance objective or not; if
not, eliminate it!

From an individual’s perspective, the System Opera-
tions Model may appear to be very simple. However, on
closer examination, even simple systems often require fore-
thought to adequately define the operational sequences. If
you challenge the validity of this statement, consider the
following:

• Develop the System Operations Model for a car and
driver.

• Conduct a similar exercise with each of three col-
leagues who are unfamiliar with the model. The diver-
sity of colleague opinions may be enlightening.

• Repeat the exercise as a team focused on achieving a
single, collaborative consensus for the final diagram.

Now, consider the case where the System Operations
Model involves the definition of a more complex system
with a larger stakeholder community. If you contemplated the
previous car and driver exercise, you should appreciate the
challenges of getting a diverse group of people from various
disciplines, political factions, and organizations to arrive at
a consensus on a System Operations Model for a specific
system.

You will discover that the ad hoc, endless loop, Plug &
Chug … SDBTF Engineering Paradigm (Wasson, 2012,
p. 2) engineers often refer to the System Operations Model as
“textbook stuff.” Due to a lack of SE education and training,
they:

• Do not recognize the need to spend time addressing this
concept.

• Have a natural tendency to focus immediately on phys-
ical hardware and software design (Figure 2.3), such
as resistors, capacitors, data rates, software languages,
and operating systems.

A Word of
Caution 6.1

If your project, customer, and User com-
munity has not agreed on some form of
this top-level concept and its lower-level
decomposition, System Development prob-
lems further downstream historically can be
traced back to this fundamental concept.

Even worse, fielding a system that does not pass customer
validation for intended usage presents even greater chal-
lenges and risks, not only technically but also for your
Enterprise’s reputation.
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Consider the following points:

• Obtain System Acquirer and User community consen-
sus and “buy in” prior to committing resources for
development of the system. Investigate how the User
envisions operating the planned system to achieve or-
ganizational mission objectives. Avoid premature ad
hoc “Plug & Chug … SDBTF” Engineering Paradigm
hardware and software development efforts until these
decisions are approved and flowed down and allocated
to hardware and software specifications.

• Use the System Operations Model as an infrastructure
to identify and specify UCs comprised of operational
tasks. The tasks represent operational capabilities that
can be translated into SPS requirements.

• When reviewing and analyzing specifications prepared
by others, use the System Operations Model to assess
top-level system performance requirements for com-
pleteness of system operations.

6.3.4 Developing a More Robust System Operations
Model

The preceding System Operations Model provided a funda-
mental understanding of how a system might be employed by
the User. As a high-level model, it serves as a useful instruc-
tional tutorial. The model, however, has some areas that need
to be strengthened to accommodate a broader range of appli-
cations. Figure 6.2 provides an expanded System Operations
Model. To maintain continuity with the previous model, we
have preserved the original numbering convention and sim-
ply added the following operations:

• Operation 8.0: Mission Ready Decision

• Operation 11.0: Provide Mission Oversight and
Support

• Operation 12.0: Mission Complete Decision

• Operation 19.0: Remediate and Restore Site
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Figure 6.2 Robust System Operations Model
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6.3.5 The Importance of the Generalized System
Operations Model

Principle 6.5

Synchronized Operations Principle

Every System Operations Model activity
should be synchronized with the sys-
tem, product, or service’s Mission Event
Timeline (MET).

The System Operations Model (Figures 6.1 and 6.2)
serves as a high-level framework that facilitates the orches-
tration of the totality of system synchronized to a time-based
schedule such as a MET. Operations in the model represent
UCs that require capabilities and time-based interactions
between the SOI Mission System and one or more of its
Enabling Systems.

6.3.5.1 Specification Developer’s Perspective From a
specification developer’s perspective, the System Operations
Model construct provides the infrastructure for collaborating
with Stakeholder Users and End Users to capture, organize,
and create an analytical framework that enables us to iden-
tify operational tasks to be performed. Operational tasks,
which represent Stakeholder UCs, provide the foundation
for identifying Mission System and Enabling System
capabilities. Capabilities will then be translated into specifi-
cation capability requirements that are incorporated into the
SPS.

6.3.5.2 Specification Analyst Perspective From a System
Analyst’s perspective, the System Operations Model con-
struct can be used to correlate SPS requirements supplied by
a third party with specific operations. If each System Opera-
tions Model operation is decomposed into hierarchical levels
of sub-operations, the System Analyst can easily find the
holes representing missing or misplaced requirements in the
SPS or the need for clarification.

Author’s Note 6.1

Many untrained specification writ-
ers focus exclusively on Operation
10.0, Conduct Mission. Even worse,
they employ the feature-based ap-
proach in Chapter 20 APPROACHES

by specifying features of the system for Operation
10.0.

As products of the Engineering education process,
electrical, mechanical, and software disciplines, engineers
immediately focus on their “comfort zone,” physical sys-
tem hardware and software requirements and solutions.
Their specifications often fall short of complete system
requirements coverage as noted by the absence of mis-
sion requirements for Operations 3.0 through 13.0 and 16.0
through 19.0. Even within Operation 10.0, Conduct Mission,

specification writers focus only on specific physical features.
As a result, critical requirements are missed or misplaced
(Figure 20.1)

Despite the shortcoming noted in the previous points,
standard system specification outlines such as the former
MIL-STD-490A tend to guide the specification developers
to at least partially consider these missing steps—Operations
3.0–13.0 and 16.0–19.0—in specification sections such as
Design and Construction Constraints, Support, Training, etc.

Author’s Note 6.2

Based on the author’s experience,
competent Systems Engineers (SEs)
begin their systems analysis work
with the System Operations Model
or some version tailored specifically

for their system application and User needs. This statement
serves as a key indicator of the training and maturity level
of Engineers and System Analysts claiming to be SEs.
Application of the System Operations Model enables you to
sort out the bona fide SEs from the ad hoc SEs and the level
of risk associated with their positions on the program.

6.3.6 Assessing Coverage of Mission Operations

Finally, a key question you and your team will have to
address is: how do you know that all of the operations
required for interactions between the Mission System and
Enabling System(s) have been properly addressed?

One solution is to construct a simple matrix such as the
one illustrated in Figure 6.3. Observe that the matrix lists the
major operations from Figure 6.2 and links them to Mission
System and Enabling System operations as a function of
Phase of Operation. Specifically, each bubble identifier rep-
resents specific operations that have to be accomplished by
the Mission System and Enabling System. Mission Sys-
tem and Enabling System operations are paired—bubble
IDs 1–2, 3–4, etc.—to represent interactions and outcomes as
illustrated in Figure 7.4. This matrix can be tailored to meet
the specific needs of the system. Gray fill areas represent op-
erations that are not applicable. For example, Operation 3.0,
Deploy System, obviously is not applicable during the Mis-
sion Phase of Operation.

A Word of
Caution 6.2

When tailoring this matrix, avoid removing
the bubble IDs. Simply gray out the back-
ground behind each identifier in the matrix.
Why? Two reasons are:

1. It communicates to reviewers that you
have assessed the applicability of an operation to your
system and found it to be Not Applicable.
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3.0 Deploy System

6.0 Configure System for Mission

7.0 Assess Operational Mission Readiness

11.0 Provide Mission Oversight and Support

10.0 Conduct Mission

13.0 Assess Mission and System Performance

17.0 Conduct Mission/System Training

20.0 Perform System Maintenance

19.0 Remediate and Restore Site

16.0 Replenish System Resources

21.0 Deactivate / Phase-Out System

Pre-Mission Mission Post-Mission

System Phases of Operation
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= Typically Not Applicable
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# = Reference to description
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Element
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SYSTEM

Element

ENABLING

SYSTEM
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Figure 6.3 Matrix for Mapping Mission System and Enabling System Operations to
Phases of Operation

2. System requirements may change or reviewers may
challenge your applicability assessment during a design
review and determine that a bubble ID is applicable and
should be reinstated, and described.

As a final point, meetings and reviews often turn into
spirited discussions due to the participants using words that
apply to different operations. The matrix enables the review
leader or moderator to restrict focus to a specific bubble
identifier, produce decisions, and target notes in meeting
or review conference minutes. Figure 6.3 is actually a
stepping-stone to a more comprehensive graphic introduced
in Figure 10.21.

6.3.7 Summary: System Operations Model

The preceding discussions represent the embryonic, concep-
tual views of how the User intends to use the system. The
General System Operations Model Construct:

1. Serves an initial starting point template for identify-
ing high level operations applicable to most systems,
products, or services. Since every system is unique, the
intent of this discussion is to provide a basic orienta-
tion and awareness that will stimulate your “systems
thinking” thought processes and enable you to plan,

translate, and orchestrate these approaches into your
own System Operations Model.

2. Shifts the Plug and Chug … SDBTF-DPM Engineer-
ing Paradigm (Chapters 2, 11, and 14) to focus on the
need to understand all operations required to prepare a
system for a mission, perform the mission, and main-
tain the system following a mission, not just mission
operations.

6.4 FORMULATING AND DEVELOPING THE
SYSTEM CONCEPTS

As the mission analysis identifies a system’s UCs and
scenarios, preferably in direct collaboration with the
Stakeholders—Users and End Users—the next challenge
is working with the User to formulate and conceptualize
how they intend to deploy, operate, maintain, sustain, and
retire/dispose of a system. One of the mechanisms for doc-
umenting the conceptualization is the System ConOps. This
section introduces the System Operations Model that pro-
vides the structural framework for developing the ConOps.

Our discussions provide insights regarding how the
model’s operational tasks and activities are allocated and
assigned to the System Elements such as Equipment,
Personnel, and Facilities. As a result, these discussions
provide the foundation for Chapter 7.
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6.4.1 Developing the System ConOps

Once a system’s problem space and solution spaces are fully
understood and bounded, the next step is to understand how
the User intends to employ a system, product, or service as
an organizational solution space asset to conduct missions
that resolve all or a portion of the Problem Space. Most
systems are precedented (Chapter 1) and simply employ
new technologies to build on the existing infrastructure
of operations, Facilities, and skills. This does not mean,
however, that unprecedented systems do not occur.

If we expand the Problem–Solution Space concepts
(Figure 4.7), our analysis reveals that the Solution Space
time-based interactions—namely, Entity Relationships
(ERs)—can be generalized by a set of operations into a
System Operations Model. In turn, the model provides
a framework for developing the System ConOps, which
describes the top-level sequential and concurrent operations
required to deploy, operate, maintain, sustain, retire, and
dispose of the system, product, or service.

Principle 6.6

ConOps Principle

Every project should include a System
ConOps document that describes how the
system, product, or service being devel-

oped is envisioned to be deployed, operated, maintained,
sustained, retired, and disposed via its OCDs.

Example 6.2

A ConOps for a system such as NASA’s
Space Transportation System (STS)—Space
Shuttle—describes the operational se-
quences and interactions of the Mission
System and Enabling Systems required

to prepare for and conduct a mission to deliver a pay-
load into outer space, deploy the payload and conduct
experiments, and return the cargo and astronauts safely to
Earth.

We can generalize a ConOps in terms of a common set
of objectives that reflect how the User envisions employing
the system, product, or service to fulfill its organizational
missions. These objectives include:

• Deploy the system, product, or service.

• Configure the system for mission use.

• Assess the system’s readiness to conduct Pre-Mission,
Mission, and Post-Mission operations.

• Perform corrective actions to achieve mission
readiness.

• Perform the System’s Mission.

• Restore, replenish, refurbish, and/or store the system
for the next mission.

• Decommission or dispose of the system, when appro-
priate.

There are numerous ways of developing a System ConOps
that are organizational dependent. Table 6.1 provides an
example outline listing of System ConOps topics.

Given this overview of the ConOps outlines, let’s explore
what would be included in descriptions of each of the System
Concepts.

6.4.2 ConOps Accountability

In terms of accountability, the System Development Team
(SDT) or Systems engineering and Integration Team (SEIT)
under the leadership of the Project Engineer or LSE should
lead plan and orchestrate development of the System
ConOps. This effort should begin during the proposal phase
of a system, product, or service prior to contract award and
certainly on Day #1 ACA. Formulation and development
accountability for each of the System Operational Concepts
should be assigned to the Subject Matter Expert (SME) leads
in each of the concept areas and then coordinated, integrated,
and reviewed by the SEIT as well as other Stakeholders. On
approval, baseline and release the document under formal
configuration management control.

6.4.3 Integration of the System Concepts

The ConOps outline and the preceding discussions of for-
mulating and developing the System Concepts may leave the
impression that these exist as separate, static concepts. Avoid
that logic!

The reality is these concepts are interrelated and transition
from one to another according to the dynamics of deploy-
ing/redeploying the system, product, or service; conducting
missions; performing maintenance; and placement in stor-
age between missions as shown in Figure 6.4 derived from
Figure 6.2.

In general, the System/Product Life Cycle Phases are too
abstract to support complete analysis and require further
decomposition and refinement. Each life cycle phase is fur-
ther partitioned into Pre-XXXX Operations, XXXX Opera-
tions, and Post-XXXX Operations where XXXX represents
a unique segment of mission operations. Table 6.2 represents
implementation of the construct.

To illustrate the syntactical context of XXXX, consider
the following examples.

Example 6.3

1. An aircraft’s phases of operation are
Pre-Flight, Flight, and Post-Flight
operations.
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TABLE 6.1 Example System ConOps Document Outline

Section Section Title Example Subsections

Section 1.0 Introduction • Scope
• System Purpose
• General System Description
• Definitions of Key Terms

Section 2.0 References • User Documents
• International Standards and Specifications
• National Standards and Specifications
• Interfacing System Documents
• Project Documents

Section 3.0 System Missions • System Roles and Missions
• Mission Objectives
• Mission Operations and Profile
• Mission Event Timeline (MET)
• System Stakeholders: Users and End Users
• System UCs and Scenarios, etc.
• System Objectives

Section 4.0 System Concepts • System Deployment Concept
• System Operations Concept
• System Maintenance Concept
• System Sustainment Concept (optional)
• System Retirement Concept (optional)
• System Disposal Concept (optional)

Section 5.0 System Architecture • External Systems
• System Context Diagram
• Operational Architecture

Section 6.0 System Operations Model Description of Model Operations

(Other topics)
Appendices As appropriate

2. A medical device’s phases of operation are
Pre-infusion, Infusion, and Post-infusion.

3. A football game’s phases of operation consist of
Pre-Game, Game, and Post-Game.

Let’s establish the context of each type of operation.

6.4.3.1 Pre-XXXX Phase Objective The objective of the
Pre-XXXX Phase of operations, at a minimum, is to ensure
that an entity—SOI, Mission System and Enabling Sys-
tems—is fully prepared, configured, operationally available,
and ready to conduct its organizational mission when di-
rected or tasked.

6.4.3.2 XXX Phase Objective The objective of the XXXX
Phase of operations, at a minimum, is to conduct the en-
tity’s primary mission. Besides achieving the SOI’s mission

objectives, one must mitigate mission risks and ensure the
system’s safe operation and return.

6.4.3.3 Post-XXX Phase Objective The objective of the
Post-XXXX Phase of operations, at a minimum, is to:

• Analyze an entity’s mission outcome(s) and perfor-
mance objective results

• Replenish system consumables and expendables, as
applicable

• Refurbish the system
• Capture lessons learned

• Analyze and debrief mission results
• Improve future system and mission performance

To see how Phases of Operation may apply to a sys-
tem, consider the following example of an automobile
trip—mission.
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OM&S Phase 
Mission Ops Concept

•  Pre-Mission Ops
•  Mission Ops
•  Post-Mission Ops

OM&S Phase
Maintenance

Conceptp

•  Pre-Maintenance Ops
•  Maintenance Ops
•  Post-Maintenance Ops

Disposal Phase
Concept

•  Pre-Disposal Ops
•  Disposal Ops
•  Post-Disposal Ops

Storage
Operations

•  Pre-Storage Ops
•  Storage Ops
•  Post-Storage Ops

Deployment Phase 
Concept

•  Pre-Deployment Ops
•  Deployment Ops
•  Post-Deployment Ops

Option

Option Option

Option

Option

Option

Option

OM&S Phase
Sustainment

Concept

Option

Figure 6.4 Fielded System/Product Life Cycle Concepts and Operations

TABLE 6.2 Applications of the Pre-XXXX Operations, XXXX Operations, and Post-XXXX Operations Construct

Life Cycle Phase Pre-XXXX Operations XXXX Operations Post-XXX Operations

Deployment Pre-Deployment Operations Deployment Operations Post-Deployment Operations
Operations (OM&S) Pre-Mission Operations Mission Operations Post-Mission Operations
Maintenance (OM&S) Pre-Maintenance Operations Maintenance Operations Post-Maintenance Operations
Storage (OM&S) Option Pre-Storage Operations Storage Operations Post-Storage Operations
Retirement/Disposal Pre-Disposal Operations Disposal Operations Post-Disposal Operations

Example 6.4

During the Pre-Mission Phase prior to driv-
ing an automobile on a trip, the driver:

• Services the vehicle (oil and filter change,
new tires, repairs, etc.)

• Fills the tank with gasoline

• Checks the tire pressure

• Inspects the vehicle

• Loads the vehicle with personal effects (suitcases,
coats, etc.)

During the Mission Phase, the driver:

• Departs on the trip from the point of origination

• Drives defensively in accordance with vehicle safe
operating procedures

• Obeys vehicular laws

• Navigates to the destination

• Periodically checks and replenishes the fuel and
coolant supply en route

• Arrives at the destination

During the Post-Mission Phase on arrival at the point of
destination, the driver:

• Parks the vehicle in a permissible space

• Unloads the vehicle

• Safely secures the vehicle until it is needed again
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TABLE 6.3 Examples of Deployment Phase Operations

Deployment Concept UCs

Pre-deployment
Operations UCs

Deployment
Operations UCs

Post-deployment
Setup Operations UCs

1. Teardown (option)

2. Disassemble (option)

3. Inventory

4. Package

5. Pack

6. Crate

7. Load

8. Store and Protect

1. Transport

2. Track Location

3. Inspect

4. Storage (optional)

5. Conceal

1. Unload

2. Uncrate

3. Unpack

4. Inventory

5. Assemble

6. Install

7. Checkout

8. Verify

9. Storage (optional)

Observe in the example that each of the bulleted activ-
ities represents the Driver’s UC of the automobile in the
same manner as the Office Copier Example presented in
Table 5.1. This is a key point in the discussions that follow.
Remember that UC operational tasks are assigned, allocated
to, and performed by the Personnel and the Equipment
Elements.

6.4.3.4 System Deployment Concept Development The
System Deployment Concept is developed in collaboration
with the User and describes the vision for fielding a system,
product, or service. Deployment encompasses transport,
storage, installation, checkout, and verification of system
readiness to perform its missions. Deployment operations are
performed by the User or a vendor contracted to perform
the deployment. Table 6.3 provides an example listing of
Deployment Concept UCs that require System User or
Acquirer consideration when specifying the system, product,
or service’s capability requirements prior to the System
Development Phase.

Author’s Note 6.3

Observe that Table 6.3 and the ones
that follow use an active verb appli-
cable to the system to represent an
action to be performed that may ap-
ply to numerous types of activities.

For example, the Checkout UC may have UC extensions
(Chapter 5) such as Checkout Sensor, Checkout Computer,
Checkout System, and so forth.

To illustrate how Table 6.3 applies to Mission System
and Enabling System development, consider the following
example:

Example 6.5

Heavy Construction Crane Deployment
Example

Assume we are developing a large crane
used to erect tall buildings, specifically the

transport of the crane to new job sites. To accomplish the
Deployment Operations, Transport UC, the crane must be
capable of being retracted into a small form factor to fit on
some form of transporter vehicle; provide hooks and eyelet
tie-downs for securing the crane to the vehicle; and travel
on roadways that have restrictions in terms of size, weight,
markers, etc.

Several key points to consider about Table 6.3 and those
that follow are:

1. Observe that the list of process flow of tasks accom-
modates both large complex systems that require Tear-
down and Disassembly as well as commercial products
that require packaging, packing, etc.

2. Whereas some commercial products are deployed and
distributed to stores for sale as ready-to-use “out of the
box,” other products and larger, complex systems may
require setup such as TVs, hospital Equipment, etc.

3. There may be some instances whereby the system,
product, or service is placed in Storage or “On Hold”
until requested for missions.

4. Operations represent what the SOI—Mission System
and Enabling System(s)—must be capable of provid-
ing. Other operations may be unique to the Mission
System or Enabling System(s). Some may require
the Mission System to be operating; others do not.

5. Observe that even though each operation is sequentially
numbered within a given cell, each one can be assigned
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a unique code to be used as the basis for estimating SSE
costs, correlating with the Work Breakdown Structure
(WBS), and be used for collecting labor and other
charges during System Development.

6.4.3.5 System Operations Concept Development The
System Operations Concept is developed in collaboration
with the User and describes the vision for operating a system,
product, or service to accomplish organization-level mission
objectives. These operations are typically performed by the
System User or could be contracted to a Services Provider.
Table 6.4 provides an example listing of System Operations
Concept UCs that require System User or Acquirer consider-
ation when specifying the system, product, or service’s capa-
bility requirements prior to the System Development Phase.

Key points include:

1. Mission Operations such as Normal Ops, Degraded
Ops, Emergency Ops represent the core capabilities
required of the system, product, or service required to
conduct its mission.

2. Whereas the concept of Model-Based Systems Engi-
neering (MBSE) applies to the Deployment, OM&S,
and Disposal Phase, the OM&S Phase Mission Opera-
tions should be a key focal point for modeling system
performance.

6.4.3.6 System Maintenance Concept Development The
System Maintenance Concepts is developed in collaboration
with the User and describes the vision for how the system,
product, or service will be maintained prior to, during,
and after a mission. Maintenance operations are typically
performed by the System User or by one or more vendors

TABLE 6.4 Examples of System Operations Concept
UCs

System Operations UC Examples

Pre-Mission
Operations
UCs

Mission
Operations

UCs

Post-Mission
Operations

UCs

1. Power Up

2. Initialize

3. Configure

4. Align

5. Calibrate

6. Train

7. Replenish

8. Power Down

1. Normal Ops

2. Degraded Ops

3. Emergency Ops

4. Power Down

1. Safe and
Secure

2. Retrieve

3. Analyze

4. Report

5. Refurbish

6. Power Down

contracted to provide Mission Support Operations. Table 6.5
provides an example listing of System Maintenance Concept
UCs that require System User or Acquirer consideration
when specifying the system, product, or service’s capability
requirements for maintenance support.

6.4.3.7 System Storage Concept Development (Optional)
The System Storage Concept, which may or may not apply to
your system, is developed in collaboration with the User and
describes the vision for how the system, product, or service
will be stored between missions. Storage Phase operations
are typically performed by the System User or by one or more
vendors contracted to provide Storage Operations. Table 6.6
provides an example listing of System Maintenance Concept
UCs that require System User or Acquirer consideration
when specifying the system, product, or service’s capability
requirements for maintenance support.

Key points include:

• The term Storage can have several different meanings.
We typically think of storage as placement in an
environmental controlled facility; however, storage of
an aircraft might include parking on a tarmac. Since
space at an airport is important, commercial aircraft
might be relocated to a dry desert environment such as
the Mojave Air and Space Port in Mojave, CA.

6.4.3.8 System Sustainment Concept Development The
System Sustainment Concept is typically developed by
the User and describes the vision concerning how the
User or a third party will establish logistical supply chains
to ensure a continual pipeline of Mission Resources
(Chapter 8)—consumables and expendables including
parts—to ensure that system, product, or service is sus-
tainable in the field to perform its missions with minimal
interruption. System Sustainment Concept UCs include:

• Analyze Failure Frequencies
• Maintain Inventory
• Order Parts
• Deliver Parts
• Deliver Consumables
• Deliver Expendables

6.4.3.9 System Retirement and Disposal Concept
Development The System Retirement/Disposal Con-
cept is typically developed by the Users and describes the
vision for retiring and/or disposing of a system, product, or
service that has been decommissioned or deactivated from
active service. The User is organizationally accountable
planning and orchestrating the retirement and disposal of an
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TABLE 6.5 Examples of System Maintenance Concept Use Cases

System Maintenance Concept UC Examples

Pre-Maintenance
Operations UCs

Maintenance
Operations UCs

Post-Maintenance
Operations UCs

1. Relocate

2. Inspect

3. Troubleshoot

4. Analyze

5. Document

6. Order Parts

7. Receive Parts

1. Preventative Maintenance

2. Corrective Maintenance

3. Others

1. Inspect

2. Assess

3. Verify

4. Document

5. Dispose/Recycle

6. Release

TABLE 6.6 Examples of System Storage Concept Use Cases

System Storage Concept UC Examples

Pre-Storage
Operations UCs

Storage
Operations UCs

Post-Storage
Operations UCs

1. Redeploy

2. Inspect

3. Configure

4. Instrument

5. Protect

6. Secure and Protect

1. Monitor

2. Inspect

3. Maintain

4. Replenish (optional)

1. Deinstrument

2. Configure

3. Replenish

4. Inspect

5. Redeploy

asset. The actual retirement and disposal may be performed
by the User, performed by another organization, or con-
tracted out to a services provider organization that has the
required capabilities. Table 6.7 provides an example listing
of Retirement/Disposal UCs that require System User or
Acquirer consideration when specifying the system, prod-
uct, or service’s Mission System and Enabling System
capability requirements.

To illustrate how systems are retired and ultimately
disposed, consider the following example.

Example 6.6

NASA Space Shuttle Fleet Retirement
Example

At the completion of NASA’s Space Shuttle
Program, the fleet of shuttles—Discovery,

Atlantis, and Endeavor—were retired between March and
July 2011 (NASA, 2011). On completion of their final
missions, all three were subsequently donated to museums.
Each was ferried atop its 747 carrier from the landing
site to airports in cities near the museums. Each was then
transported over land, by air, or by water to their final resting
places at the museums. Although the flight vehicles were not

disposed, hardware components were donated, disposed of,
or reused. One of the three Multi-purpose Logistics Modules
(MPLM) underwent conversion for the International Space
Station (ISS).

Figure 6.3 summarizes operations from all of these tables
based on the sequencing options for system operations
introduced in Figure 6.2.

6.5 CHAPTER SUMMARY

In summary, our discussions in this chapter addressed the
formulation and development of the System Concepts that
are documented as OCDs in the System ConOps document.
Key points include:

• Develop and tailor a System Operations Model to serve
as a guide for communicating the vision of how a
system, product, or service will be deployed, operated,
maintained, stored, sustained, retired, and disposed.

• Develop a ConOps document to capture the Sys-
tem Operations Model and the System Concepts—
Deployment, OM&S, etc.
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TABLE 6.7 Examples of System Retirement/Disposal Concept Use Cases

System Retirement / Disposal Concept UC Examples

Pre-Disposal
Operations UCs

Disposal
Operations UCs

Post-Disposal
Operations UCs

1. Redeploy

2. Remove Toxic Hazards

3. Configure

4. Document

1. Destroy

2. Document

1. Recover

2. Donate

3. Recycle

4. Reuse

5. Reclaim

6. Remediate

7. Document

• The ConOps should:
∘ Be lead and developed by the Project Engineer in

collaboration with the Stakeholders—Users and End
User.

∘ Serve as a shared vision among the System Devel-
oper, System Acquirer, User, and End user com-
munities to guide the development of the system,
product, or service.

∘ Focus on all aspects of system deployment, opera-
tion, maintenance, storage, sustainment, retirement,
and disposal due to the implications of required
operational capabilities in developing the system;
however, the User may selectively exclude sus-
tainment, retirement, and disposal and declare
it outside the scope of the System Development
contract.

∘ Describe how the System Concepts are seamlessly
integrated to accomplish smooth transitions.

6.6 CHAPTER EXERCISES

6.6.1 Level 1: Chapter Knowledge Exercises

1. What is the System Operations Model?

2. How do you graphically illustrate the System Operations
Model?

3. How do you describe each of the model’s operations?

4. How do you delineate the differences in the System
Operations Model (Figure 6.1) from its robust version
(Figure 6.2)?

5. What is a System Operations Dictionary?

6. What is a ConOps and how much does it facilitate System
Development?

7. What Stakeholders have vested interests in a ConOps?

8. What System/Product Life Cycle Phases are covered by
the ConOps?

9. Which System/Product Life Cycle Phases may not be
covered by the ConOps and why?

10. What is the purpose of the System Operations Model and
how does it aid development of the ConOps?

11. What topics should a ConOps, at a minimum, include?

12. What is a System Deployment Concept? Identify
examples of its UCs.

13. What is a System Operations Concept? Identify examples
of its UCs.

14. What is a System Maintenance Concept? Identify
examples of its UCs.

15. What is a System Storage Concept? Identify examples of
its UCs.

16. What is a System Sustainment Concept? Identify
examples of its UCs.

17. What is a System Retirement/Disposal Concept? Identify
examples of its UCs.

6.6.2 Level 2: Knowledge Application Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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7
SYSTEM COMMAND AND CONTROL (C2) - PHASES,
MODES, AND STATES OF OPERATION

Chapter 4 highlighted the importance of partitioning abstract
system complexity into lower levels of refinement that pro-
vide increasing clarity and manageable risk (Principle 4.17).
The overarching theme is twofold:

1. Partition and refine a problem space into more or more
solutions spaces to manage risk—what into how.

2. Assimilate—integrate—the refined “pieces” into
higher levels of abstraction that represent what has to
be accomplished and why.

This chapter represents a solution space for “how” we
solve a problem. However, the title does not communicate
the second point—what problem space they solve and “why”
we need System Phases, Modes, and States of Operation. As
a result, most Enterprises and Engineers approach the topic
as “something we do” without ever understanding “why.”

If you trace the evolution of System Development
from the beginning of time, humans solved operational
needs—problem spaces—by creating simple tools such as
the lever, wheel, and spear, with specific capabilities. Early
approaches to problem-solving and solution development
focused on developing and improving capabilities.

As systems evolved, humans began to recognize the need
to develop systems to not only accommodate a diverse
range of usage and Operating Environment conditions
but also how to configure and control system capabilities in
certain situations. Specifically, deploy and redeploy systems
to new sites, configure and prepare the system for battle,

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

and perform maintenance after usage. Over time, the need
for operator control became more evident, especially in
situations related to hazardous conditions and usage related
to safety. Examples included brakes on horse-drawn wagons,
safety mechanisms on guns, and so forth. As a result,
Engineering evolved into a build, test, fix paradigm for
problem-solving–solution development.

As systems became more complex and powerful, the
challenge for humans was how to Command and Control
(C2) a system and the “forces of nature”—definition of
Engineering (Chapter 1)—to accomplish their missions.
Examples include: firearms, munitions, water turbines, dams,
steam engines, and so forth. If there was a problem, the
Engineering mind-set was to “add another capability” to
prevent another capability or a scenario from occurring.

These capabilities, however, had its limitations and could
cause a system to fail, especially if the mechanisms exceeded
system boundary envelope performance thresholds. System
performance monitoring became a function of the operator’s
instincts. Obviously, instincts varied from one operator to
another and so did the system outcomes. So, the next
challenge became: how to we monitor the performance of
a system to be able to predictably and repeatedly C2 its
operation within its boundary performance envelopes?

As technologies evolved, capabilities to “monitor” sys-
tem or product performance evolved. Examples included:
notches on trees as early depth gauges in rivers and streams,
rotational frequency of windmills, turbines, ship speed based
on trailing rope-based knots, sextants for navigation, and

http://www.wiley.com/go/systemengineeringanalysis2e
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sundials. As a result, humans began to learn how to Monitor,
Command, and Control (MC2) system performance.

With the evolving MC2 methods came the need for
humans to communicate not only the configuration of a sys-
tem but also its current availability and readiness to conduct
missions, operating condition, and operating status. Since
the laws of physics: (1) characterized physical interactions
and (2) fluids changed states—solids, liquids, and gases,
physics provided a vocabulary of terms for characterizing the
state and condition of a system. Although the concept of state
machines and state transitions are modern day terms, they
characterize the early machines.

Observe the context of the state discussion. It focuses on
the physical configuration of the system. However, they were
soon confronted with the reality that they needed to redeploy
the system to different geographic regions that required
different methods—modes—of transportation that did not
necessarily: (1) impact the physical state of the system or
(2) require disassembly and reassembly for transport by
other systems across geographical barriers such as oceans,
mountains, rivers, and so forth.

Chapter 7 introduces the concept of system phases,
modes, and states of operation that enable operators and
maintainers to MC2 a System or Product to accomplish
both mission and system objectives.

7.1 DEFINITIONS OF KEY TERMS

• Affinity Analysis—A data research and analysis
method to discover similarities or common occurrences
across sets of data.

• Allowable Action—A User- or system-selectable
capability that is available or enabled for use when
required for a given set of circumstances or conditions.

• Mode of Operation—An abstract label applied to a
User selectable option that enables a set of UC-based
capabilities to be employed in conjunction with Enter-
prise processes and procedures to MC2 an Enterprise
or Engineered system, product, or service to achieve a
specific mission outcome, objectives, and levels of per-
formance.

• Monitor, Command, and Control (MC2)—A key
mission task assigned and allocated to the Personnel,
Equipment, and Procedural Data System Ele-
ments for monitoring system performance, issuing
commands, and controlling performance of all system
operations to ensure stability, safety, and successful
completion of the mission.

• Operational Health and Status (OH&S)—The cur-
rent operating condition and operational status of a
System or Entity and its current state of use.

• Phase of Operation—Refer to the Chapter 5 Defini-
tions of Key Terms.

• Phase—A label applied to segments of the System/
Product Life Cycle or Mission Life Cycle of a System
or Product—for example, Pre-Mission, Mission, and
Post-Mission. Phases may consist of sub-phases. For
example, an aircraft’s Mission Phase of operations may
be partitioned into Phases of Flight (sub-phases) such
as takeoff, ascend, cruise, approach, or land.

• Prohibited Action—A system capability that is dis-
allowed or inhibited for specific modes of operation
and is not available as a User- or system-selectable op-
tion for a given set of circumstances or conditions. For
example, car doors cannot be opened unless the auto-
mobile is in Park Mode.

• State—An observable and measurable physical at-
tribute used to characterize the current configuration,
status, or performance-based condition of a System or
Entity. Based on principles of physics, states repre-
sent conditions that are observable, measurable, and
verifiable. We can classify them in terms of four con-
texts: System States, Operational States, Configuration
States, and Dynamic States (Wasson, 2014, p. 4).
∘ Configuration State—“An attribute that charac-

terizes the physical arrangement of components
and connectivity of a system, product, or service’s
multi-level architecture required to support achieve-
ment of one or more Use Case (UC)-based objectives
and levels of performance.” (Adapted from Wasson,
2014, p. 4).

∘ Dynamic State—“An attribute that characterizes
a brief, time-dependent, response, instability, or
perturbation—attitude, motion, or performance—
induced by self-interactions or external interactions
with specific types of Operating Environment con-
ditions” (Wasson, 2014, p. 4). Dynamic States, as
special conditions of an Operational State, have a
present participle “ing” suffix such as: initializing,
melting, landing, or accelerating.

∘ Operational State—“An attribute that character-
izes the operational status, readiness, availability, or
condition of a system, product, or service at a spe-
cific instant in time to conduct or continue a mission.
For example, a system or product is active or inac-
tive; operational/operating (On), or non-operating
(Off); failed; awaiting maintenance” (Adaption of
Wasson, 2014, p. 3).

∘ System State—“An attribute that represents the
current logistical employment, availability, or
performance-based condition of an Enterprise asset
such as a system, product, or service. System State
examples include: (in) Storage; (in) Deployment;
(in) Operation, (in) Maintenance, (in) Retirement,
(in) Disposal” (Adaption of Wasson, 2014, p. 3).
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• State Diagram—“A diagram that depicts the states
that a system or component can assume and shows
the events or circumstances that cause or result from
a change from one state to another” (Copyright © 2014
ISO/IEC/IEEE. Used by permission.). State Diagrams
are also called State Transition Diagrams.

• State of Operation—The current OH&S status
or operating condition of a System of Interest
(SOI) required to safely conduct or to continue its
mission.

• Triggering Event—An external Operating Envi-
ronment stimuli, excitation, or cue such as a command
or interrupt that causes a system, product, or service to
shift from a current mode or state to the next mode or
state.

7.2 APPROACH TO THIS CHAPTER

The concept of Modes and States of Operation is often very
challenging due to the lack of SE courses in Engineering ed-
ucation (Chapter 2) and abstract references in professional
standards. As a result, every Engineer, Enterprise, indus-
try, and professional organization has its own perspec-
tives, viewpoints, and applications concerning modes versus
states.

Modes and states are often treated as “after thoughts”
when a System design is complete. Engineers scramble

to develop operator manuals and user guides required as
contract or consumer product deliverables. As a result,
modes and states may implicitly exist in the System Design
but are often “discovered” and “labeled” as such when a
system, product, or service is nearing completion.

The untold reality is: modes and states serve as an
analytical decision aid framework for conceptualizing how
a User—operator, maintainer, trainer, et al—can MC2 a
system, product, or service as illustrated in Figure 7.1.

When (1) Engineers apply the ad hoc, endless loop,
Specify-Design-Build-Test-Fix (SDBTF)—Design Process
Model (DPM) Engineering Paradigm (Chapter 2) and (2)
take a “quantum leap” from requirements to physical design
illustrated in Figure 2.3 to modes and states, the result can
be devastating or even worse catastrophic. Imagine separate
Product Development Teams (PDTs) designing, building,
and verifying discrete automobile Park, Neutral, Re-
verse, Drive, Low1, and Low 2 transmission components.
Then, coming together to integrate them into he transmission
assembly. On completion, they perform System Integration,
Test, and Evaluation (SITE). During SITE, you and your
team discover that the transmission will not shift between
gears, and even worse … causes the parts to mechanically
disintegrate when they engage. The result is a lack of design
integration to achieve C2 of the vehicle in all aspects of User
UCs operation.

In contrast, System Phases, Modes, and States of Op-
eration enable SEs to conceptualize the analytical frame-
work “up front” in System Development that will C2

Operational
Needs

Specification
Requirements

Architectural
Solutions

System
Design

Use Cases
and

Scenarios 

System Phases, Modes, and States
Analytical Decision Aid Framework

Concept of
Operations 
(ConOps)

Figure 7.1 Phases, Modes, and States: Bridging UCs, Specification Requirements,
Architectural Solutions, and System Design
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the configuration and boundary conditions of the System
Architecture and subsequently the System Design Solution.
As an analytical framework, System Phases, Modes, and
States of Operation serve as a linking mechanism for key
technical decisions that influence development of specifi-
cation requirements, the Concept of Operations (ConOps)
Document, the system architecture, and subsequently the
System Design. Within System Phases of Operation, the
modes and states analytical framework provides the in-
frastructure for Model-Based Systems Engineering (MBSE)
addressed in Chapters 10 and 33.

This chapter addresses four questions that are often the
sources of controversial issues:

1. What are modes and states and how do they differ?

2. Do modes contain states or do states contain modes of
operation?

Due to the complexities and controversies concerning
system modes and states, our approach to this chapter will
be to define the terms and do so based on their their Entity

Relationships (ERs). Figure 7.2 provides an illustration of
the ERs that will guide our discussion.

Let’s begin with System Phases of Operation.

7.3 SYSTEM PHASES OF OPERATION

Since systems, products, or services are mission-oriented
and are characterized at the highest level by the System/
Product Life Cycle (Figure 3.3) consisting of System Phases
of Operation that serve as the analytical foundation for
analyzing and developing systems. Within the Operations
Phase, we establish the Mission Life Cycle (Figure 5.5)
consisting of the Pre-Mission, Mission, and Post-Mission
Phases.

Our earlier discussion of the System Operations
Model (Figures 6.1 and 6.2) introduced and described a
workflow of operational tasks that represented how Hu-
man Systems—Enterprise and Engineered—prepare for,
conduct, and follow-up after missions. We later partitioned
these operational tasks into Pre-Mission, Mission, and
Post-Mission operations in Table 6.2. Tables 6.3–6.7 listed

Use Case
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Figure 7.2 Illustration Depicting the Entity Relationships (ERs) of Modes and States
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Use Cases (UCs) for the various System/Product Life Cycle
Phases.

In general, the System/Product Life Cycle Phases
and Mission Life Cycle—Pre-Mission, Mission, and
Post-Mission—enable us to establish the foundational
infrastructure for System Analysis. However, for more com-
plex systems, these terms may be too abstract. This brings
us to our next topic, Sub-Phases of Operation.

7.3.1 Sub-Phases of Operation

Principle 7.1

Sub-Phases of Operation Principle

When Enterprise or Engineered system,
product, or service’s Mission Life Cycle
phases of operation become too abstract,

partition them into lower level sub-phases of operation, out-
comes, and objectives.

Mission Life Cycle phases of operation—Pre-Mission,
Mission, and Post-Mission—are characterized by
performance-based outcomes and objectives. When those
outcomes and objectives are abstract, SEs need to partition
them into lower level outcomes and objectives that contribute
to the accomplishment of the higher level. To illustrate this
point, consider aircraft operations.

Applying the naming convention introduced in Table 6.2,
an aircraft’s Mission Life Cycle consists of Pre-Flight, Flight,
and Post-Flight phases of operation. The question is: What do
each of these terms mean? We know that an airline transports
passengers between airports. Therefore, the aircraft needs
to be capable of supporting and performing several types
of sequential operations—Load passengers, cargo, fuel, and
food; Push Back from the terminal; Start the engines; Taxi
to the runway; Taking Off; Climbing to altitude; Cruise and
navigate to the destination; Descend for landing; Approach
the airport; possibly Hold in a pattern until cleared to land;
Land on the runway; Taxi to the terminal; Park at the
terminal; Unload passengers, cargo, and refuse; and perform
Maintenance (Figure 7.3). So, how do we link the abstract
Mission Life Cycle Pre-Mission, Mission, and Post-Mission
phases to these sequential operations?

Since aviation is based on Phases of Flight, we could
construct a matrix that maps—links—the two data sets. As a
result, we abstract:

• Load, Push Back, Start, and Taxi into Ground Depar-
ture Operations performed during the Pre-Flight Phase.

• Takeoff, Climb, Cruise, Descend, Approach, Hold,
and Land into Flight Operations performed during the
Mission Phase.

• Taxi, Park, Unload, and Maintenance into Ground
Arrival Operations performed during the Post-Flight
Phase.

Figure 7.3 illustrates the results. Note that due to space
restrictions, the Start, Hold, and Maintenance operations are
not shown in the figure.

Recognizing this was an aircraft example, how would
we analyze a device such as a medical infusion pump that
administers meds to a patient? Applying the naming conven-
tion from Table 6.2, we would designate the Mission Life
Cycle Phases as Pre-Infusion, Infusion, and Post-Infusion
Operations.

For simplicity, we use the terms Pre-XXXX, XXXX, and
Post-XXXX Phases to simply categorize Stakeholder—User
and End User—Mission Life Cycle operations. Tables
6.3–6.7 provided listings of Stakeholder UCs. Within a spe-
cific System/Product Life Cycle Phase, some Systems or
Products may have other phases of operation such as Stor-
age or Refurbishment. For example, assume an airline has
an excess of aircraft in inventory due to reduced traveler de-
mand. Some are placed in a Storage Phase—mothballed—in
desert Operating Environment conditions until market-
place demands motivate the need for return to active duty
service.

7.3.2 Phase-Based Mission System and Enabling
System Operations and Tasks

Using Figure 7.3 as a reference, we can identify specific
Stakeholders—Users and End Users, their UCs, and scenar-
ios for each of the Pre-Flight, Flight, and Post-Flight Oper-
ations. I turn, each UC and its primary and alternate flows
driven by various scenarios provide the basis for identifying
operational tasks to be accomplished. Each task requires spe-
cific capabilities, which can then be translated into System
Performance Specification (SPS) requirements.

Recognize that the preceding paragraph represents UCs
and operational tasks organized by Mission Life Cycle
Phase. To add meaning to the set, we need to use them
to construct a System Operations Model such as the one
shown in Figures 6.1 and 6.2. The context of here is the
SOI comprised a Mission System(s) and Enabling Sys-
tem(s). Since each operational task may represent Mission
System(s)—Enabling System(s) interactions, the descrip-
tion of each task would identify and describe those interac-
tions. Figure 7.4 serves as an example.

7.4 INTRODUCTION TO SYSTEM MODES
AND STATES

System modes and states are perhaps one of the most
controversial topics in Engineering and SE. Every industry,
profession, Enterprise, and Engineer has their own view as
to what a mode and a state are. Some Enterprises exhibit
an in-grained state machine paradigm and ignore modes. In
their minds, modes are just another name for a state.
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Figure 7.3 Example—Aircraft Mission Life Cycle Phases with Embedded Phases of
Flight

• In general, states are observable and measurable
physical attributes of a System or Entity. For
example, if an automobile dealer wants to know
the state of the dealership’s vehicle inventory, it is
a simple counting, categorization, and summation
exercise.

• Modes, however, are abstract labels applied by System
Developers to User selectable options required to C2
an Enterprise or Engineered System. In the case of a
computer word processor application, its modes might
be: Create, Edit, Save, Open, and Print a document.
Modes as abstract labels are not visible or measurable;
they are a state of mind. You might argue that you
can observe them being used but those are actually
steps performed by the User. However, modes of
operation enable you to accomplish objectives that
produce results you can observe and measure. For
example, you can Open, Create, Edit, Save, and Print
a file.

Wasson (2014, p. 5) observes that if you research defini-
tions of modes and states, two key points emerge:

• Dictionaries, standards, and authors use the terms to
define the other—“circular” references. “Modes” are
used to define “states” and vice versa.

• “Condition” is a common term to most modes and
states definitions.

In general, the term condition is appropriate for defining
states; however, modes have a different context of usage and
application. For example, modes of transportation—land,
sea, air, and space; Automatic/Manual Mode; Edit Mode;
Print Mode; and so forth.

Modes represent User selectable options that enable
accomplishment of performance-based outcomes and
objectives. In contrast, states represent physical condi-
tions, which characterize a “state of being or health.” In
general, states represent the Operational Health and Sta-
tus (OH&S)—physical operating condition—of a system,
product, or service.

How do modes and states influence Systems Engineering
and Development (SE&D)?

When you listen to the discussions at Engineering meet-
ings, Engineers and managers intermix usage of modes
and states. Terms such as On/Off, Loading/Unloading,
Open/Closed, Automatic/Manual Mode, Taking Off,
Launching, Operational/Non-Operational, Enroute, and
In-Maintenance flow around the room. Participants nod their
heads in agreement. Then, discover after the meeting that
everyone had a different perspective as to what was being
communicated. Is there any wonder why there is so much
confusion among Engineers?
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Interactions

Professional organizations and standards often treat
modes and states as abstractions as if “everyone clearly un-
derstands their meaning—why doesn’t the listener.” The re-
ality is: Engineers receive little or no education on this topic
(Chapter 2). Where Engineering education and standards
are lacking, chaos and confusion prevail. Since Enterprise
management is typically unaware of the problem other than
recognizing differing opinions within a project, they fail to
exercise technical leadership and correct the problem.

If you collect these terms and analyze them, you soon
discover that some are, by definition, modes and some are
states. However, you soon discover that those identified
as states are contextual and require further analysis. That
analysis leads to further delineation that a system, product, or
service has four types of states: System States, Operational
States, Configuration States, and Dynamic States. Analysis
of these four states reveals two types of usage: (1) an
Enterprise perspective and (2) an Engineering perspective.

• From the Enterprise perspective, a system, product, or
service has already been acquired. Their focus con-
cerns the employment of a system, product, or service as

an “organizational asset” to perform missions. In gen-
eral, they have a need to know: (1) if the system is in
use—System States—and (2) what is its current oper-
ating condition—Operational State—of OH&S.

• From an Engineering perspective, Users need to
know how to (1) C2 the system—Modes and UCs,
(2) configure its architecture—Configuration States,
and (3) accommodate time and location-dependent
perturbations—Dynamic States—resulting from
interactions with its Operating Environment.

Dynamic States are induced by a fifth type of
state—Environmental States, which characterize the external
Operating Environment.

As a final point, Engineered systems, products, and
services are objects developed by humans. As inanimate
objects, systems, products, or services are clueless as to
their mode or state other than “informed knowledge” pro-
grammed by their System Developer. As stimulus-behavioral
response devices, they simply control the flow of elec-
trons; absorb, direct, transfer mechanical forces; consume
and convert energy; and communicate via optical paths. The
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fact that humans refer to a mode is meaningless to these
devices.

Modes are like a virtual switching networks that enable
a User to C2 the system’s architectural configuration and
capabilities. Developers apply modal names to human in-
terfaces such as dashboards, control panels, and procedure
manuals … for their human Users, not the system. The sys-
tem components are simply configured for a specific mode
of operation to accomplish what is depicted in Figures 3.1
and 3.2.

In summary, the solution is not as simple as modes versus
states; Engineers must consider not only modes of operation
but also five types of states of operation. Given this founda-
tion, let’s begin with a discussion of the Enterprise perspec-
tive of System States. Then, introduce Modes of operation,
which enable us to address the Engineering perspective of
the Engineered System Operational, Configuration, Environ-
mental, and Dynamic States.

7.5 ENTERPRISE PERSPECTIVE—ENGINEERED
SYSTEM STATES

From an Enterprise perspective, Users need to answer two
key questions:

1. What is the state of deployment or employment -
System State—of a system, product, or service as an
organizational asset?

2. What is its current OH&S—Operational State?

To answer these questions, let’s begin with System
States.

7.5.1 System States

Principle 7.2

System States Principle

Every Enterprise and Engineered system,
product, or service is characterized by sys-
tem states that represent its current logistical
employment as an asset.

A system state is an attribute that represents the
current logistical employment, status of an Enterprise
asset such as a system, product, or service. The in-
tent is to establish an understanding based on a line of
questions:

• Has the system been fielded? Yes or no?

• Is it ready to perform missions? Yes or No? If not, why
not?

• Is the System undergoing maintenance? Yes or No?
What is required to return it to active duty service?
When will the System return to service?

If we employ Domain Analysis to analyze Mission Life
Cycle phase-based operations, we can identify System
States that represent the “state of logistical employ-
ment of an organizational asset.” Simply based on the
System/Product Life Cycle Phases, System States are
Deployment, Operations, Maintenance, Sustainment,
Retirement, or Disposal. Sustainment, for example,
supports the Operations System State and the Main-
tenance System State with consumables such as food,
fuel, and lubricants and expendables such as replacement
filters.

Within each of the System States, we further refine
them into key Use Cases (UCs). Tables 6.3 to 6.7 list
UCs that provide examples of System State Use Cases
(UCs).

Example 7.1

System States Example

• Consumer products, in general, require
Transport from their manufacturer
to discounters and retailers for dis-

tribution to consumers. By virtue of their
“out-of-the-box” capability, they typically do not
require Setup. In contrast, computers and TVs require
both Transport and Setup, either by the consumer or
a service technician.

• Large, complex systems such as cranes, carnival
amusement rides, and manufacturing machinery being
relocated to new sites require Teardown, Transport,
and Setup UCs.

If we depict System States graphically, Figure 7.5
emerges from Figure 6.4. Observe that System States are
depicted as rectangular boxes with rounded corners. Some
boxes include a 270∘ arc with an arrowhead. The symbology
indicates that a system, product, or service remains in a
current state until an external trigger initiates a transition to
the next state.

Let’s explore Figure 7.5 and its implementation.

7.5.1.1 Deployment Phase: System States Let’s assume
the System Deployment Phase consists of Disassemble,
Transport, and Setup UCs. Several options are available
to accommodate transition directly from a System Devel-
oper’s or manufacturer’s facility to a User’s designated
site:

• For Set-Up and transition to the Operations System
State.
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Figure 7.5 System States of Operation and Transitions as a Function System/Product of
Life Cycle Phases

• For transition from the Storage System State to Set-Up.
• For transition from Set-Up to the Operations System

State.

7.5.1.2 OM&S Phase: System States On completion of
the Deployment Phase Setup UC, a System or Product
transitions to its OM&S Phase. For example, assume the
OM&S Phase consists of the Operations and Main-
tenance System States. The System may be Parked
or Off-Line and being configured for its mission. The
Operations System State represents the reason for the Sys-
tem’s existence. At this point, the System could transition
to Standby to reduce energy consumption if it lacks a
purposeful mission.

Example 7.2

Office Copier System States Example

An office copier, for example, transitions
to Standby after a period of inactivity
to conserve energy during normal business

hours, after business hours, and during weekends. To resume
normal operation, a User presses a button to transition the
copier from Standby to Operate.

If a System requires maintenance while in Operate or
Standby Enabling System technicians transition it to the

Maintenance System State for repairs and upgrades. From
the Maintenance System State, there are several next state
options are available:

• Option 1—Place the System in Off (16) and leave in
place.

• Option 2—Transition (17) the System to the Storage
System State.

• Option 3—Transition the System to Standby.

• Option 4—Transition the System to Operate.

When the System has completed its missions and has
been tasked to relocate to another site, it transitions to the
Deployment Phase Teardown, Transport, and Setup as
applicable. If the system is no longer needed to conduct
missions, it may be transitioned to Transport for relocation
and transition to the Salvage State.

7.5.1.3 Retirement/Disposal: System State When the
System is ready for retirement/disposal, the System or
Product: (1) may be rented, leased, or sold; (2) enter a
Storage State placed in a warehouse; (3) or be designated
in Salvage for recycling of components, removal of toxic
or hazardous materials, and destruction.
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Heading 7.1

Our discussion of System States addressed
the Enterprise perspective of having a “need
to know” the deployment and employment
status of a system, product, or service. Once
that is determined, the next question is what

is its OH&S? This brings us to our next topic, Operational
states.

7.5.2 Operational States

Principle 7.3

Operational States Principle

Every Enterprise or Engineered system,
product, or service is characterized by
operational states that represent its current

condition, status, readiness, or availability to perform or
continue a mission or task.

Since an Enterprise employs systems, product, or ser-
vices as organizational assets, they must be maintained and
sustained to ensure they are operationally ready and avail-
able to conduct a new mission or continue their current mis-
sions. This requires understanding the System or Product’s
OH&S.

Enterprises and Users often have a “need to know
and track” the operational status, condition, or readiness
of an SOI, Mission System, Enabling System to per-
form or continue a mission. This means that the integrated
Personnel-Equipment System (Figure 10.16) is:

• Physically configured—A system’s architecture and
interfaces have been configured to deliver essential
mission capabilities that are considered necessary and
sufficient to conduct specific types of mission(s).

• Operationally ready—The System is in satisfactory
operating condition with no Critical Operational or
Technical Issues (COIs/CTIs) issues presently and
meets the minimum sufficiency requirements to safely
and reliably accomplish and complete the mission and
its objectives.

From an Enterprise project perspective in which
organizational assets are employed to perform missions,
any revenue-generating asset that is not operational is
consuming—wasting—valuable resources. For example, if
an airline has aircraft that are unable to fly, revenue is not
being generated. If passenger tickets have been sold for
a specific flight and the aircraft is unavailable to leave on
time, the airline has to scramble to either perform corrective
maintenance actions (Chapter 34) while passengers wait or
dispatch a replacement aircraft.

The airline’s resource manager has to constantly juggle
aircraft assets to ensure that operations remain seamless for

the passengers. Every one of a passenger’s interactions with
the airline is a “moment of truth” (Principle 4.9) with positive
or negative consequences. Therefore, to ensure continuity of
operations, the resource manager has a “need to know” at
all times what the OH&S—Operational State—is of any tail
number aircraft in their inventory.

Based on the discussion, Users “need to know” what the
OH&S of a system, product, or service is. Once the OH&S
status is assessed, there is a follow-on need for a risk-based
Situational Assessment (Chapter 24). For example, if a Sys-
tem’s OH&S indicates a COI/CTI, a Situational Assess-
ment needs to inform the User concerning: (1) what the
condition’s level of significance is in terms of threatening
the mission, User, Equipment, or the public and (2) if the
condition—fault—is contained (Figure 26.8), correctable,
and/or recoverable (Figure 10.17).

So, for a specific system, product, or service, how do SEs
assign labels to Operational States? SEs should understand:
(1) what the Users “need to know” about any system,
product, or service in their inventory and (2) how they
intend to track current status. Since every User and System
is different, a Domain Analysis should be performed to
determine the correct set of terms. For example, terms such
as operating, processing, navigating, and infusing.

Operational States, like System States, can be further
refined into four contexts: mission readiness and availability,
operating condition, and operational status. Consider the
following examples:

• Mission Readiness—Examples include Configured,
Loaded, Staffed Ready.

• Mission Availability—Examples include Awaiting
Orders or Clearance

• Operating Condition—Examples include Upgraded,
Degraded Ops, Loaded, Failed, Calibrated, Replen-
ished, Refurbished, or Aligned.

• Operational Status—Awaiting Maintenance, On-Hold,
Launching, Landing, Transmitting, Receiving, Pro-
cessing, Storing, Converting, or Reporting,

One of its noteworthy characteristics of an operational
state’s status is its grammatical usage as a present participle
with an “ing” suffix. For example, if a medical infusion
device is delivering meds to a patient, its operational status
is “infusing.” Consider the following example.

To better understand the identification and development
of Operational States, an office copier provides an example.
Operational States concerning its current operation include
Off, Warming Up, Idling, Copying, Printing, FAXing,
Scanning, Collating, Standby, Resetting, Powering
Down, or Off.
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Author’s Note 7.1

One of the challenges of creating
System State names is that PDT mem-
bers assign their own “favorite” names
without appropriate consideration of
the context. Inevitably, they assign

mode titles to states and vice versa.
For example, PDT members may try to introduce Copier

Setting features such as paper size, double-sided copying,
and black and white versus color copying, which are actually
physical Configuration State attributes, not System States.
Additionally, team members will try to apply terms such
as warming up, copying, or collating, which are actually
Operational States that will be introduced later.

7.5.3 Enterprise Perspective Summary

In summary, the preceding discussion addressed the two key
questions Enterprises need to answer concerning the deploy-
ment or employment of a system, product, or service as an
organizational asset. We now shift our focus to understand-
ing the Engineering perspective of how modes and states are
applied to System Development to enable Users to C2 sys-
tem capabilities and performance to accomplish Enterprise
mission objectives.

7.6 ENGINEERING PERSPECTIVE—MODES
AND STATES

7.6.1 Modes of Operation

Principle 7.4

Modes of Operation Principle

Every Enterprise or Engineered system,
product, or service is characterized by
User-selectable modes of operation that

enable the User to Command & Control (C2) unique sets of
UC-based architectural capabilities to accomplish a specific
mission outcome and its objectives.

When a Mission System or Enabling System
User operates or maintains a System or Product,
Personnel-Equipment interactions occur as illustrated
earlier in Figure 7.4 and later in Figures 10.15 and 10.16.
Their tasking requires that the User perform MC2 of the
Equipment Element, which responds and performs MC2 of
its own components and performance (Figure 24.12). Modes
of Operation provide a set of User selectable options based
on UCs that allow a User—Operator or Maintainer—to
safely MC2 System or Product performance-based out-
comes. Observe the phrase “User selectable options.” This
is a key attribute of modes of operation that delineate modes
from states.

One of the simplest illustrations of modes of operation is
an automobile. Modes enable the User to MC2 the automo-
bile’s performance to achieve performance-based objectives
such as drive forward, drive backward, and idle. Physically,
the automobile’s transmission gear-shift capabilities such as
Park, Neutral, Reverse, Drive, Low1, or Low2 represent User
selectable modes that enable the User to accomplish the for-
ward, reverse, or idle objectives.

Also observe that the mode transitions occur in a
bi-directional serial sequence—Park ←→ Neutral ←→
Reverse ←→ Drive ←→ Low2 ←→ Low1—for safety
as well as adjacency of related capabilities. This last point
illustrates the need to seamlessly transition between a cur-
rent mode and the next mode. In other words, these are not
just shift from Park ←→ Neutral ←→ Reverse ←→
Drive ←→ Low2 ←→ Low1 transitions. These sequences
are “interfaces” that require control flow operations and
interactions that enable seamless transitions from a current
mode to the next mode.

This leads to a key question: How does a system, product,
or service to transition from one mode to another during
a mission? This brings us to a discussion of Understanding
Modal Transitions.

7.6.1.1 Understanding Modal Transitions Modes of
operation can be illustrated with a table such as Table 7.1
or graphically. The graphical approach is the preferred
approach. Let’s begin with a basic construct for depict-
ing modes as shown in Figure 7.6. When creating Mode
Diagrams, there are some basic rules and conventions to
observe:

• Rule 1: Each mode configures the System or Prod-
uct’s architectural configuration or interconnection of
its components to enable the User to accomplish a
specified outcome. For example, an automobile’s Drive
Mode enables the driver to perform the Drive–Forward
UC.

• Rule 2: Systems are designed to remain in their
current mode until a triggering event forces System C2
operations to transition to the next mode. Graphically,
we depict modes as an oval or circle icon with a 270∘
arc consisting of an arrow at one end around one part
of the oval or circle.

• Rule 3: Modal Transitions Convention—The transition
path from the current mode to the next mode is illus-
trated via a straight or curved arrow with the arrowhead
touching the next mode.

We illustrate modes and their control flow (Figure 10.9)
from one mode to another. Figure 7.6 illustrates a simple,
two-mode system that transitions back and forth from Mode
1 to Mode 2. When Triggering Event 1 occurs, control flow
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TABLE 7.1 State Transition Table for an Office Copier

Current State Event Transition Trigger Next State

Off T10 Power-up command Operate
Off T11 Redeploy system Tear Down
Operate T12 Power-down command Off
Operate T15 Maintenance required Maintenance
Operate T13 Standby command Standby
Standby T14 Reactivate command Operate
Standby T20 Power-down command Off
Standby T17 Perform Maintenance Maintenance
Maintenance T16 Standby command Standby
Maintenance T18 Transfer to Storage Storage
Maintenance T20 Power-down command Operate
Storage T19 Transfer from Storage Maintenance

Mode 1 Mode 2

T1

T2

System

External Stimulus,

Excitation, or Cue

External Stimulus,

Excitation, or Cue

Transition

Transition

Triggering

Event 1

Triggering

Event 2

Performance Time
Constraints

Figure 7.6 Modal Transition Loop Construct

transitions from Mode 1 to Mode 2. The System idles in
Mode 2 until Triggering Event 2 occurs, thereby initiating
a control flow transition back to Mode 1. When making
the transition from one mode to another, the User may
impose specific time requirements and constraints on the
transition.

Modal transitions represent interfaces in which control
flow transitions from a current mode to the next mode.
Although modes characterize System operations, there may
be instances whereby different Products or Subsystems
drive the mode’s primary capabilities.

Author’s Note 7.2

If separate System or Product De-
velopment Teams (SDTs/PDTs) are
developing products for use in a
specific mode, make sure that both
interfacing teams operate with the

same set of assumptions, decisions, and transition criteria.
Otherwise, incompatibilities will be created that will not
emerge until SITE. If latent defects—design errors, flaws,
and deficiencies—are left undiscovered and untested, a
potential hazard can lead to System failures (Figure 24.1),
sometimes catastrophically.
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The challenge for SEs is to ensure compatibility and
interoperability (Chapter 27) between any two modes such
that initializations and conditions established for the current
mode are in place for the next mode processing. The intent
is to ensure that modal transitions are seamless. How do
you ensure consistency? Document the modes of operation,
Mission Event Timeline (MET), and modal transitions in the
ConOps document.

Author’s Note 7.3

Author’s Note

Our introduction of UCs in Chapter 5
noted several attributes including
Pre-Conditions. When a system, prod-

uct, or service shift receives an external triggering event
to transition from the current mode to the next mode, the
current mode’s Exit Criteria serve as Pre-Conditions for the
next mode and its UCs.

To better understand Triggering Event-Based Transitions,
let’s explore the topic further.

7.6.1.2 Triggering Event-Based Transitions

Principle 7.5

Triggering Event Criteria Principle

Every Enterprise or Engineered System
mode of operation requires a pre-defined
set of condition-based triggering event

criteria to initiate a transition from one mode of operation to
another mode.

Triggering events such as stimuli, excitations, or cues
originate external to an SOI. Each triggering event should
be characterized by a set of pre-defined criteria or condition
that initiate the transition. In the case of a Mission System’s
or Enabling System’s internal Personnel-Equipment
interactions, triggering events might originate from input
devices such as keyboards, mice, touchscreen displays,
switches, and buttons. External stimuli, excitations, or cues
from external Systems such as interrupts, data messages,
forces, energy application, optical movement, flashing lights,
or hand signals.

As state machines, most systems are designed to
cycle in an infinite—Do Until—loop until an exter-
nal stimulus, excitation, or cue initiates a triggering
action to transition from a current mode to the next
mode. The occurrence of the external trigger is re-
ferred to as a triggering event. For example, data-driven
triggering events may be synchronous—periodic—or
asynchronous—random—occurrences.

Author’s Note 7.4

Importance of a Model Transition
Convention

Enterprise Engineering should estab-
lish a modal transition convention. Do

you establish Entry criteria for the next mode or Exit criteria
for the current mode? Typically, by convention, a mode does
not have both Entry and Exit criteria. The transition from the
current mode, n, to the next mode, n+ 1, is a single transition.
You do not specify the Exit criteria for the current mode and
then duplicate the same as Entry criteria for the next mode of
the modal interface. Best practices suggest definition of Exit
criteria for the current mode of operation.

7.6.1.3 Types of Modes of Operation Modes of opera-
tions occur in at least two forms: (1) Outcome-Based Modes
and (2) Mission Profile-Based Modes.

7.6.1.3.1 Outcome-Based Modes of Operation Engi-
neered systems, products, or services, especially consumer
goods, have modes of operation that produce outcomes
based on the allowable UCs. For example, an office copier
might consist of Copy, Fax, Scan, Standby, Reset, and
Power Down modes of operation. This allows the User
at their own discretion to decide which mode of operation
satisfies that User’s requirements. The same is true for
consumer products such as smartphones or computers.

7.6.1.3.2 Mission Phase-Based Modes Approach
Mission phase-based modes are based on mission oper-
ations that must sequence through Mission Life Cycle
Phases—Pre-Mission, Mission, and Post-Mission—to
terminate. The difference in the Mission Phase-Based
Approach is that Mission Life Cycle phase is started,
safety considerations require completion of the mission
or abortion of the mission. For example, aircraft, rocket,
or missile launch in-flight preclude random switching out
of a Mission Life Cycle phase of Operation. An exception
might be a range safety self-destruct command to a wayward
missile.

Example 7.3

Mission-Based Modes of Operation
Example

Aviation partitions flight operations into
Phases of Flight such as Takeoff, Climb,

Cruise, Descend, Approach, Hold, and Land. Despite
being referred to as Phases of Flight, each represents a mode
of operation that has unique performance-based outcome
objectives.

7.6.1.4 Sub-Modes of Operation Some modes of opera-
tion require further refinement into sub-modes based on the
User’s mission outcomes, objectives, and application of the
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system, product, or service. Consider the example provided
below.

Example 7.4

Mission-Based Sub-Modes of Operation
Example

Let’s assume we designate an automobile’s
modes of operation as Park, Neutral,

Reverse, and Forward. Note the Forward Mode. Analysis
of typical Operating Environment driving conditions
indicates the need to partition Forward operations into three
Sub-Modes: (1) Forward–Drive; (2) Forward–Low 1;
and (3) Forward–Low 2. Recall our discussion in Chapter
5 concerning UCs and UC extensions. Observe that each
Sub-Mode is preceded by “Forward” to indicate traceability
to the UC objective; Drive, Low 1 and Low 2 represent UC
extensions.

Most automobile drivers are not Engineers and are
not interested in lengthy Engineering terminology such as
Forward–Drive. As a result, we simplify the User’s mode
options with simple terms and elevate the Drive, Low 1, and
Low 2 Sub-Modes to the mode level resulting in Park, Neu-
tral, Reverse, Drive, Low 1, and Low 2.

The preceding discussions provide an overview into what
modes of operation are. The question is: How do we identify
modes of operation? This brings us to our next topic,
Approaches to Deriving Modes of Operation.

7.6.1.5 Approaches to Deriving Modes of Operation
There are two basic approaches Systems Engineers (SEs)
and Analysts can employ for identifying modes of opera-
tion: (1) Abstracted Modes Approach and (2) Generalize
Modes Construct Approach. Let’s discuss each of these
approaches.

7.6.1.5.1 Abstracted Use Cases-Based Modes Approach

Principle 7.6

Abstracted UC Modes Principle

Each Enterprise and Engineered Sys-
tem mode of operation represents a User
selectable option to perform one or more

UCs that share similar outcomes and objectives.

If we analyze the collection of Stakeholder UCs for all
System/Product Life Cycle Phases and Sub-Phases, similar-
ities and common occurrences emerge among the data sets.
Using Affinity Analysis methods, we can mine and analyze
the UC outcomes to group or cluster sets of UCs.

Further analysis reveals that the common link among
these data sets is they represent refinements of a higher level
abstraction that represents a mode of operation. You may
discover that some modes, Sub-Modes, for example, can
be further abstracted into higher level modes. Where this

is the case, we establish a modal hierarchy and designate
sub-modes within each mode of operation.

You may ask: Are there guidelines for identifying modes
of operation? The answer is no, which contributes to the
confusion and ad hoc implementation. Independent PDTs of
equally capable SEs, analysts, and developers can hypothet-
ically develop the same System or Product to comply with
a set of User capability and performance requirements, yet
have variations in the naming of the system modes of oper-
ations. In both cases, the System or Product will comply
with the specification requirements and perform as expected
by the User.

When we analyze UCs that have been aligned with spe-
cific Mission Life Cycle phases of operation—Pre-Mission,
Mission, and Post-Mission, we soon discover that some UCs
share or support a common objective or outcome. Where
there is sufficient commonality in these sets or clusters of
UCs, we abstract them into higher level modes of operation.
This requires a two-step process.

Step 1: Align UCs by System/Product Life Cycle Phases
Based on the UCs collected from the System Operations
Model Construct (Figures 6.1 and 6.2) and Tables 6.2–6.7,
we align the UCs based on their usage during the Mis-
sion Life Cycle Pre-Mission, Mission, and Post-Mission
phases of operation as shown in Table 7.2.

Step 2: Abstract UCs into Modes
Once we have aligned UCs with Mission Phases, we
employ Affinity Analysis to abstract sets of UCs that share
a common objective into higher level Modes. Figure 7.7
shows the results of the abstraction based on the UCs
identified in Table 7.2.

To illustrate how modes might be abstracted, consider the
following example.

Example 7.5

UC-Based Modal Abstraction Example

Assume that UC #1 represents an objective
to power-up a System. UC #2 represents
an objective to initialize the System and

perform a diagnostic self-test prior to idling in a Desktop
Mode to await User commands. Due to the commonality of
UC #1 and UC #2 objectives derived from Affinity Analysis,
we abstract the UCs into a higher level Start-up Mode,
a User-selectable option, that has an overall objective of
ensuring that the System is operationally available and
ready-to-commence User operations.

As a result, each abstracted mode is symbolized by an oval
containing its related UCs. Some modes may have only one
UC; others accommodate two or more UCs.
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TABLE 7.2 Alignment of UCs to Mission Phases of Operation

Operational UC UC Description Pre-Mission Phase Mission Phase Post-Mission Phase

UC #1 XXXXXXXXXX X
UC #2 XXXXXXXXXX X
UC #3 XXXXXXXXXX X
UC #4 XXXXXXXXXX X
UC #5 XXXXXXXXXX X
UC #6 XXXXXXXXXX X
UC #7 XXXXXXXXXX X
UC #8 XXXXXXXXXX X
UC #9 XXXXXXXXXX X
UC #10 XXXXXXXXXX X
UC #11 XXXXXXXXXX X
UC #12 XXXXXXXXXX X
UC #13 XXXXXXXXXX X
UC #14 XXXXXXXXXX X

Pre-Mission
Phase

Mission Phase Post-Mission
Phase

UC #1

UC #3

UC #2
UC #7

UC #5

UC #8

UC #12

UC #4

UC #6

UC #13

UC #9

UC #14

UC #10

UC #11

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

Where:

UC #_ = Use Case ID

= Abstracted Mode

Figure 7.7 Illustration Depicting Abstraction of Use Cases into Higher Level Modes of
Operation

Author’s Note 7.5

Two key points:

1. In Figure 7.7, the hexagonal icons
representing UCs embedded within

each mode are unique to this illustration for instruc-
tional purposes. There are no hard rules requiring
hexagons or other shapes. If it enhances communica-
tions and understanding of a mode, use the hexagonal
symbols or simply include a bulleted list of applicable
UCs.

2. In some cases, there are no specific guidelines for
identifying modes of operation. Independent teams
of equally capable SE analysts and developers can

then hypothetically design and produce a System or
Product that complies with a set of User capability
and performance requirements. Each team nevertheless
may have variations of System modes of operation.
The point is to learn to recognize, understand, and
establish a team-based consensus concerning System
phases and modes of operation. Then, apply common
sense to abstracting UCs into modes of operation.

Observe in Figure 7.7 the curved lines connecting Modes.
These represent triggering events that initiate modal transi-
tions from the current mode to the next mode.

The preceding discussion described how Modes can be
abstracted from UCs. There is an easier method that serves
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as an initial starting point for identification of modes. It is the
Generalized Modes of Operation Construct, our next topic.

7.6.1.5.2 Generalized Modes of Operation Construct
Approach Theoretically, we can spend a lot of time
analyzing and abstracting UCs into modes of operation.
Once you develop several types of systems, you soon dis-
cover that System modes are similar across Engineered
systems and products. You begin to see common patterns of
modes emerge. This leads to the question: What are these
generalized modes?

If we perform a Domain Analysis of potential modes for
any type of system, Table 7.3 summarizes the results.

Further analysis of the modes identified in Table 7.3
reveals that these modes are more than simply discrete
modes. They have sequential interdependency relationships
as shown in Figure 7.8. Is this construct applicable to
every system as a starting point? Generally so, especially
Engineered Systems. Recognize that every system, product,
or service is different and has its own nuances based on
system application and customer preferences. This is simply
a starting point, not an end result.

The construct is divided into Pre-Mission, Mission,
and Post-Mission Phases of Operation to facilitate a gen-
eral left-to-right mission flow. Other than a generalized
left-to-right cyclical Pre-Mission to Mission to Post-Mission
modes of operation may or may not be time dependent.

TABLE 7.3 Generalized Phases and Modes of Opera-
tion Construct

Phase of Operation Example Mode of Operation

Pre-Mission phase Start-Up mode
Configure mode
Calibrate/Align mode
Training mode
Power-Down mode

Mission phase Normal Operations mode
Degraded Operations mode

Post-Mission phase Safe mode
Analysis mode
Report mode
Maintenance mode

Storage phase Optional—system dependent

Mission Systems such as a commercial airline
and military sorties establish METs that constrain
(1) the Pre-Mission-to-Mission transition, (2) Mission-
to-Post-Mission transition, and (3) Post-Mission back
to Pre-Mission transition during the system turnaround
such as a commercial aircraft. Within each mode of
operation, the MET event constraints may be further
subdivided.

OFF
Mode

POWER-UP/

INITIALIZE
Mode
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Mode

CALIBRATE/

ALIGN
Mode

NORMAL

OPERATIONS
Mode

ABNORMAL

OPERATIONS
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Figure 7.8 Generalized Modes of Operation Construct for Use as a Starting Point



ENGINEERING PERSPECTIVE—MODES AND STATES 163

7.6.1.5.3 Generalized Modes of Operation for Large, Com-
plex Systems The preceding discussions addressed a simple
product example as a means of introducing and illustrating
system modes of operation. When you investigate the
modes of operation for large, complex, multi-purpose,
reusable systems, additional factors must be consid-
ered. For example, large, complex systems may require
Reconfiguration, Recalibration, Realignment, Refurbish-
ment, or Replenishment of expendables and consumables
(Chapter 8).

7.6.1.5.4 Final Thoughts About Modal Transitions In
our discussion of System operations and applications
in Chapter 6, we highlighted various types of system
applications—single use, reusable, and recyclable. Most
reusable systems such as an aircraft, automobiles, and
smartphones are characterized by cyclical mission oper-
ations. Cyclical operations systems have a feedback loop
that typically returns workflow or control flow (Figures 6.1
and 6.2) back to the Pre-Mission Phase of Operation, either
powered down or refurbished and replenished for the next
mission.

Now, consider a system such as the former Space Shuttle’s
External Tank (ET). From a mission perspective, the ET’s

fuel resource is a consumable item, and the ET is an
expendable item. At a specific phase of flight and MET
event, the ET is jettisoned from the Orbiter Vehicle (OV),
tumbles back toward Earth, and burns up on reentry into the
atmosphere.

In the case of an expendable system such as the ET, one
might expect its modes of operation to be sequential with-
out any loop backs to previous modes. However, from an SE
design perspective, ET operations may require cycling back
to an initial mode due to UC scenarios such as “scrubbed”
launches. Therefore, expendable, single-use systems also re-
quire modes of operation that finally transition to a Termina-
tion mode—such as Reentry—to ET Impact.

7.6.1.6 Diagramming Modes of Operation The preced-
ing discussion depicts modal transitions by segmenting
Figure 7.8 into Mission Life Cycle Pre-Mission, Mis-
sion, and Post-Mission Phases of operation. While this
method—ovals and transitions - communicates content,
modal diagrams can be communicated in other ways.

Although the Space Shuttle Program ended in 2011, the
program serves as an excellent example for SE. Figure 7.9
illustrates Space Shuttle Launch Modes (NSTS, 1988a).
These include the:
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Figure 7.9 NASA Space Shuttle Flight Operations Modes (Source: NSTS (1988b))
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• Redundant Set Launch Sequencer (RSLS) Abort

• Return to Launch Site (RTLS)

• Abort Once Around (AOA)

• Abort to Orbit (ATO)

• Transoceanic Abort Landing (ATL)

Figure 7.4 highlighted the importance of defining Mis-
sion System and Enabling System interactions that oc-
cur for each of the operational tasks in Figures 6.1 and 6.2.
Figure 7.10 provides an illustrative example of the former
NASA Space Shuttle’s Post-Mission Phase Safing Mode
(Figure 7.8). In the case of a ConOps Document, the Main-
tenance Concept, for example, would describe the interac-
tions between the Space Shuttle Mission System and the
Enabling Systems required to safely deplane the astronauts
after removal of toxic gases at the end of a mission.
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Now that we have established the an under-
standing of modes and operational states, the
question is: What do we apply them to C2 of
a system, product, or service? This brings us
to our next topic, Configuration States.

7.6.2 Configuration States

Principle 7.7

Configuration States Principle

Each Enterprise or Engineered system,
product, or service mode of operation Com-
mands and Controls (C2) the Configuration
State(s) of its architectural configurations.

A configuration state represents a unique physical
arrangement—configuration or connectivity—of a system,
product, or service’s architectural components and exter-
nal interfaces. For a given mode of operation, the intent
is to configure sets of essential capabilities required to
enable achievement of one or more UC-based performance
objectives. Consider the following examples.

Example 7.6

Desktop Printer Configuration State
Example

The Print Mode for a computer system re-
quires that its Configuration State consist of:

• A computer that is accessible to the printer via cable or
wirelessly via a network.

• A printer driver that enables a software application to
MC2 the printer via the computer’s Operating System
(OS) services.

Example 7.7

Heavy Construction Crane
Configuration State Example

A crane for erecting tall buildings requires
Configuration States to support:

Figure 7.10 NASA Space Shuttle Post-Flight Operations/Safing Mode (Source: NASA
(2012))
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• Transport over public roads and highways.
• Off-loading and loading onto a transport carrier.
• Erecting itself to construct multi-story buildings.
• Counterbalanced lifting and turning to pick up and

deliver construction materials.

The context of the term configuration refers to the state
of physical components that impact overall performance.
Consider the following example of a commercial aircraft:

Example 7.8

Aircraft Configuration States Example

An aircraft’s:

• Landing gear is either: (1) Deployed
(wheels down) and Locked for landing or

ground operations or (2) Retracted for flight.
• Flaps may be set in a number of positions such as 0∘,

15∘, and 22∘.
• Doors are either (1) Open or (2) Closed and Locked.
• Fuel supply varies based on usage.
• Fuel remaining is XX pounds.
• Landing lights are On or Off.
• Take-Off weight is XX pounds; landing weight is YY

pounds.

When User missions are performed, a specific mode of
operation may require that the User dynamically C2 the
system’s Configuration States to accomplish the mode’s
objectives. The following aircraft example illustrates this
point.

Example 7.9

Aircraft Landing Configuration States
Example

During the Land Mode Phase of Flight, an
aircraft must reduce its airspeed, increase lift

due to the reduced airspeed for the remainder of its landing
profile, and be able to brake to safely stop before reaching
the end of the runway.

To achieve a reduction in airspeed, the pilot reduces
the engine thrust (Configuration State change) to slow the
aircraft to achieve a specific landing speed on arrival at
the runway. As a consequence of reduced airspeed, the
aircraft loses altitude thereby necessitating the need to
increase lift incrementally during final approach for a proper
glide slope.

To sustain lift as a function of glide slope, the air-
craft’s control surfaces are adjusted (Configuration State
change). Prior to landing, landing lights are activated (Con-
figuration State change) and the landing gear are Deployed
and Locked (Configuration State change). When the aircraft
touches down, the pilot deploys the engine thrust reversers
and applies brakes (Configuration State change) until the air-
craft comes to a full stop.

In summary, User-selectable modes of operation C2 a sys-
tem’s architectural configuration to accomplish specific UCs
and achieve mission outcomes and objectives for each mis-
sion phase of operation. Why we need to C2 the configuration
States brings us to our next topic, Environmental States.

7.6.3 Environmental States

Principle 7.8

Environmental States Principle

Every Enterprise or Engineered system,
product, or service must be capable of op-
erating in and interacting with various types

of time and location-dependent Environmental States that ex-
ist in its Operating Environment.

The preceding sections address how to design and
establish User selectable modes to C2 a system, product, or
service. These analytical frameworks are fine for Conceptual
Design; however, the system, product, or service still has to
physically perform missions in various types of Operating
Environment conditions. These conditions are typically
characterized in terms of (Chapter 8): (1) Natural Envi-
ronment such as weather phenomena - clouds, wind, rain,
snow, sleet, fog, and atmospheric, (2) Physical Environ-
ment conditions such as road and flight conditions—shock,
vibration, velocity, and acceleration, and (3) Induced Envi-
ronment conditions such as Electromagnetic Interference
(EMI). To characterize these conditions, Engineering and
Physics began to establish magnitude scales for gauging the
level of significance. For example:

• Naval operations classify sea waves in terms of Sea
States such as the Douglas Sea Scale.

• Geologists classify earthquake conditions in terms of
the logarithmic Richter magnitude scale.

• Climatologists classify hurricane conditions in Levels
1–7.

• Security organizations classify threat conditions in
terms of Threat Levels 1–5.

As a result, we introduce Environmental States character-
izing Operating Environment conditions. Since the Operat-
ing Environment is comprised of the Natural, Induced,
and Human Systems Environments, (Chapter 9), Environ-
mental States should be characterized in terms of these ele-
ments. Table 7.4 provides examples.
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When a system, product, or service’s Con-
figuration States interact with the Environ-
mental States, the results can range from
benign to catastrophic. When we Engineer
systems, the System Design Solution must:

(1) provide the essential capabilities required to reliably
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TABLE 7.4 Examples of Environmental States

Operating Environment States Category Example Attributes

Natural environment states Atmospheric conditions • Temperature, relative humidity, and pressure
• Sun, rain, sleet, and snow
• Fog and smog
• Winds and wind gusts
• Air density
• Thunderstorms, tornados, and blizzards
• Hurricanes and tropical depressions
• Lightning
• Blowing sand
• Salt spray
• Albedo
• Occulting
• Visibility

Geophysical conditions • Polar, desert, tropical, mountainous
• Earthquakes, hurricanes, and floods
• Landslides, and avalanches
• Background radiation

Sea conditions • Wave heights
• Tsunami levels

Space conditions • Van Allen belts
• Solar storms and radiation
• Asteroids, meteors

Induced environment states Radiation conditions • Radio frequencies (RF) and microwaves
• Electromagnetic interference (EMI)
• Nuclear radiation

Pollution conditions • Chemical spills

Space conditions • Satellites, space stations
• Space junk and debris

Human Systems environment states Traffic conditions • Road construction
• Accidents
• Traffic flow

Road conditions • International roughness index (IRI)
• Dirt, gravel, and pavement
• Washouts
• Icing, flooding
• Flat, hilly, curvy, and mountainous

accomplish a mission and (2) be sufficiently robust to sur-
vive encounters with its Operating Environment during
the mission. This brings us to our next topic, Dynamic or
Transitory States.

7.6.4 Dynamic or Transitory States

Principle 7.9

Dynamic States Principle

Every Enterprise or Engineered system,
product, or service must be capable of
withstanding and surviving dynamic

or transitory conditions created by interactions with its
Operating Environment.

Dynamic or Transitory States are the result of a system,
product, or service encountering and interacting with condi-
tions in its Operating Environment. Specifically, during
the course of normal mission operations, perturbations in the
Operating Environment, conditions or events occur that
may create System instabilities. Engineering’s challenge is
identifying and anticipating these conditions via modeling
and simulation and prototypes to ensure system stability and
structural integrity does not lead to an Abnormal or Emer-
gency situation (Figure 19.5). Dynamic States are typically
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externally induced. However, aircraft pilots and automobile
drivers who are not paying attention can create uncontrol-
lable system instabilities (Dynamic States) that may or may
not be recoverable. Consider the following examples.

Example 7.10

Dynamic or Transitory States

Externally induced aircraft Dynamic States
include Clear-Air Turbulence (CAT), wind
shear, strong crosswind gusts or impacts

with flocks of birds on Takeoff or Landing. Internally
induced aircraft Dynamic States include stalls and improper
procedure application.

Externally induced spacecraft Dynamic States include:

1. Apollo 12 Launch lightning strikes (Mini-Case
Study 11.1).

2. Space Shuttle Challenger SRB O-Ring failure
(Mini-Case Study 26.2).

3. Space Shuttle Columbia wing leading edge thermal tile
destruction during launch (Mini-Case Study 26.3).

In the case of computer systems Dynamic States, com-
pensating and mitigating design actions include exception
handling (Figure 10.17), hardware or software resets or

automatic “watchdog” timer restarts, file recovery, and virus
checkers.

As an illustration of Dynamic States, consider the NASA
Space Shuttle example in Figure 7.11.

This mini-case study has two purposes: (1) to recognize
and appreciate that Dynamic State events can create insta-
bilities that must be dampened quickly and controlled, and
(2) serve as a problem space for Engineers to solve analyt-
ically “up front” without having to discover during actual
flight testing or missions:

• Pre-launch Operations—Prior to launch, the Space
Shuttle’s ET was fueled (Dynamic State) with liquid
hydrogen propellant.

• Launch Operations

∘ During Launch, the Space Shuttle Stack—Orbiter
Vehicle (OV), ET, and Solid Rocket Boosters
(SRBs)—executes a Roll Maneuver (Dynamic
State) after it cleared the tower to rotate the stack so
that the OV would be on its back relative to Earth
(Figure 7.11).

∘ During Launch, ice formation created by weather
conditions and ET fueling presented risks of break-
ing Off and damaging thermal tiles (Dynamic State)

Orbit Mission Operations
Tail first – Upside Down

Orbit Entry Operations
Nose forward – Upside Down

Reentry Operations
Nose First – Rightside Up

Landing Operations
Nose Forward – Rightside Up

Launch Operations
Stack Configuration

Forward Direction Travel

Transport Operations
Nose Forward – Tail Fairing

Deorbit Operations
Nose first – Rightside Up

1
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Figure 7.11 Dynamic States Example: NASA Space Shuttle as a Free Body in Space
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that protected the wings. Unfortunately, Space Shut-
tle Columbia experienced a catastrophic event on
reentry into the Earth’s atmosphere as a result of this
condition (Mini-Case Study 26.3).

∘ During its Ascent, the SRBs were jettisoned (Dy-
namic State) followed by the ET jettison (Dynamic
State) in accordance with its MET.

• On-Orbit Operations
∘ On reaching orbit, the OV’s Cargo Bay doors were

opened (Dynamic State) to release heat and perform
other tasks such as launching and/or retrieving satel-
lites and conducting experiments.

∘ Due to the risk of being hit nose first by space debris
left over from previous launches as well as mete-
orites, the OV executed a Yaw Maneuver to rotate
180∘ (Dynamic State) to fly backward upside down.
This created a smaller, vehicular cross-sectional area
for debris to impact and avoided nose-first impacts
with leading edge thermal protective tile surfaces
critical for Reentry Operations.

• Deorbit Operations—When the OV’s pilot executed
vehicle commands to return to Earth, the OV’s main
engines were fired to slow its travel velocity causing
gravity to pull it toward Earth. Thrusters were fired to
execute Yaw and Roll maneuvers that rotated the OV to
a nose forward right-side up position in preparation for
reentry.

• Reentry Operations—During reentry into the Earth’s
atmosphere, the OV experienced significant thermal
stresses (Dynamic State) underside and leading edge
surfaces causing a temporary communications blackout
(Dynamic State).

• Landing Operations—During Landing, the OV had
to maneuver through various atmospheric conditions
to accomplish the load stresses (Dynamic State) on
landing.

• OV Transport Operations—If the OV landed in
California away from its Kennedy Space Center
(KSC) home base, the OV had to be transported
cross-country atop a special configured 747 aircraft
back to the KSC. Although the OV was not operational
at that time, its mounting onto the 747 carrier was
unconventional and required special consideration
of the effects of aerodynamic conditions as Dynamic
States during transport including altitude, airspeed, and
weather.

From a multi-disciplined SE perspective:

1. Identify scenarios and conditions that could potentially
lead to system instabilities.

2. Mitigate them with compensating design actions
(Chapters 24 and 34).

3. Highlight the conditions and appropriate actions in the
Procedural Data Element.

4. Train System Users to recognize the conditions and
how to safely and properly respond to them.

If the system, product, or service has been properly
designed and Users have been trained well, Dynamic States,
in general, should be recoverable, non-event operations.

7.6.5 Engineering Perspective Summary

In summary, we have addressed how modes and states
are applied to System Development. Let’s shift our focus
to applying modes and states information to an aircraft
example.

7.7 APPLYING PHASES, MODES, AND STATES OF
OPERATION

To illustrate how we might apply phases, modes, and states
of operation, let’s continue with our commercial aircraft
example. Figure 7.12 serves as a frame of reference for our
discussion. Due to space limitations:

• Ground Departure Operations also include a Push
Back Mode (not shown).

• Ground Arrival Operations also include a Park Mode
(not shown).

Several key points are as follows:

1. Mission Life Cycle Phases have been partitioned into
Pre-Flight, Flight, and Post-Flight Operations.

2. Pre-flight Operations are partitioned into Ground
Departure Operations consisting of two Modes—Load
and Taxi.

3. Flight Operations are partitioned into Phases of Flight
(Modes)—Takeoff, Ascend, Cruise, Descend, and
Land.

4. Post-Flight Operations are partitioned into Ground
Arrival Operations consisting of two Modes—Taxi
and Load.

5. Operational States:
∘ Are derived from Stakeholder UCs unique to the

Mode of Operation.

a. Are partitioned into Flight Crew (Personnel
Element) and Aircraft (Equipment Element)
Operational States.

b. Represent task-based operations and interactions
required to fulfill accomplishment of UCs.
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Figure 7.12 Aircraft Example—Mission Life Cycle Phases, Modes, and States of
Operation. (Flight Hold Phase is not shown due to space restrictions)

6. Environmental States represent types of conditions
the aircraft may encounter on the ground and in
flight due to the Natural Environment, Induced
Environment, and entities in the Human Systems
Environment.

7. Configuration States represent the one-to-many air-
craft architectural configurations the Flight Crew and
Autopilot must MC2 to safely communicate, aviate,
and navigate the aircraft.
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The preceding section introduced the con-
cepts of modes and the five types of states
Engineers must consider. However, missing
from these discussions are safety constraints.
Engineers tend to think of technical con-

straints such as safety factors or design margins (Chapter 31)
to ensure a margin of safety. Missing from these discussions
is operational safety for the Users—Operators, Maintainers,
and Trainers; the Equipment; the public; and the Operat-
ing Environment. These constraints bring us to our next
topic, Allowable and Prohibited Actions.

7.8 MODES AND STATES CONSTRAINTS

Principle 7.10

Allowable and Prohibited Actions
Principle

Every Enterprise or Engineered system,
product, or service mode of operation is

constrained by allowable and prohibited actions that serve
as safeguards to ensure the safety of its Users and prevent
damage to Equipment, the public, and external systems in
its Operating Environment.

A key question arises: If Modes of Operation are User
selectable options, what do they permit the User to MC2?
They enable the User to MC2 UCs and scenarios to achieve
specific mission outcomes and performance-based objec-
tives. However, there are limitations and restrictions referred
to as Allowable and Prohibited Actions.

• Allowable Actions—Represent User discretionary
actions that are allowed or authorized to be per-
formed without major disruptions to performing other
operational tasks with a primary focus on safety.
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Figure 7.13 Illustration of the System’s Command and Control (C2) Entity Relationships
(ERs) Constrained by Allowable and Prohibited Actions

• Prohibited Actions—Represent User actions that are
disallowed due to Personnel Element safety-related
consequences that may result in injury or death to
the Users or End-Users, damage to the Equipment
Element or disruption of performance, or damage or
pollution to the Operating Environment entities.

To illustrate the concept, consider the graphic shown in
Figure 7.13. Using a User’s C2 of a system as a frame of
reference, Mission Life Cycle phases employ one or more
modes of operation.

• Each mode of operation accommodates sets of UCs.

• Each UC controls specific Configuration States.

• Each Configuration State is constrained by Allowable
and Prohibited actions that are levied as constraints,
allocated, and flowed down to various architectural
entities such as Subsystems and Assemblies.

To illustrate the concept of Allowable and Prohibited
Actions, consider the following examples.

Example 7.11

Automobile Example—Allowable and
Prohibited Actions

Figure 7.14 provides an example of a hy-
pothetical automobile system. In general,

when the User drives an automobile, the vehicle has several
modes of operation—Park, Neutral, Reverse, Drive, and
Low. Low may be implemented as Low 1 and a lower gear,
Low 2. Symbolically, the graphic represents the vehicle’s
modes—User-selectable options—via a switch with con-
tacts. Each of these modes allows the User to C2 the motion
of the vehicle and negotiate its travel through parking lots or
traffic on highways to accomplish a mission—travel to work
or vacation.

For safety of the driver and passengers as well as the pub-
lic, the vehicle’s physical design incorporates various types
of mechanical and electrical safety interlocks that restrict
driver and passenger actions, especially when the vehicle is
in motion. We refer to these as Allowable and Prohibited
Actions. Allowable and Prohibited Actions represent the Ac-
ceptable and Unacceptable Inputs illustrated in Figure 3.2.
Several key points:

1. The vehicle’s Modes of Operation are represented
as rows in the matrix. Various types of UCs are
represented by columns. Each matrix cell intersection
is encoded as an Allowable Action, Not Advisable, or
as a Prohibited Action.

2. Automobile System UCs are categorized as Engine
UCs, Motion UCs, Braking UCs, Doors and Windows
UCs, and Accessory UCs.
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Figure 7.14 Automobile Example—Illustrating Command and Control (C2) Allowable
and Prohibited Actions as a Function of Mode of Operation

3. As a result, the matrix maps vehicle modes of oper-
ation to its System UCs and the applicability of UC
usage—Allowable, Not Advisable, or Prohibited.

For example, the vehicle must be in the Park Mode
to perform the Start Engine UC (Allowable Action). The
Open/Close doors UC is only permitted in the Park Mode
as an Allowable Action.

Given the matrix in Figure 7.14, what does this mean
in terms of SE and system design perspectives? It means
that each mode of operation needs to be able to safely
C2 the vehicle’s behavioral responses that are produced
by its physical architecture configuration and component
capabilities—engine, steering wheel, brakes, electrical sys-
tem, and mechanical system. Modes of operation provide the
conceptual framework that allows us to logically C2 the vehi-
cle’s physical architecture configuration. In turn, the physical
configuration, referred to as Configuration States, control the
automobile’s performance-based behavioral responses and
outcomes.

One of the challenges of SE is protecting humans
from the consequences of their own actions—the Law of
Unintended Consequences (Principle 3.5). Hypothetically,
you can design a System or Product to automatically
inform the Personnel Element or Equipment Element

via safety mechanisms and software about Allowable and
Prohibited Actions. However, these notifications can be-
come prohibitively expensive, unaffordable, and not cost
effective.

Unfortunately, Allowable and Prohibited Actions are
often imposed as constraint requirements or determined
“after the fact” based on restrictions of system applications
and usage. Despite the objective to identify Allowable and
Prohibited Actions “up front,” inevitably, they may be dis-
covered after the system has been designed or as latent
defects—design flaws, errors, or deficiencies—emerge after
the system has been fielded due to discovery of unknown
modes. Discovery of the latent defects may result in cor-
rective actions such as product recalls, retrofits, or upgrades
via Equipment capabilities, Procedural Data updates,
Personnel training, or combinations of these.

How do we establish Allowable and Prohibited Actions?
Obviously, we can embedded capabilities in Equipment -
Hardware and Software—such as (1) access, (2) per-
form error and range checking and (2) provide notifications
such as audible, vibratory, or visual cues. This could be
very expensive. Alternatives include: notes in Procedural
Data—operator’s manuals, training manuals, user’s guides,
and Equipment warning placards - as well as Personnel
training.
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These actions must come from specification requirements
such as Section 3.6 Design and Construction Constraints
(Table 20.1). Additionally:

• Chapter 31 addresses the need to establish nominal
design limit thresholds, cautionary limit thresholds,
and warning thresholds (Figure 30.1).

• Chapter 34 notes that a Failure Modes and Effects
Analysis (FMEA) (Figure 34.17) should be performed
at all levels of System Design to identify any potential
design flaws and recommend compensating actions for
correcting the designs.

7.9 CHAPTER SUMMARY

In summary, we have introduced the concept of Sys-
tem Phases, Modes, and States of operation. We defined,
described, and provided examples of each type as well as
their ERs.

Finally, regarding the question Do Modes contain States
or do States contain Modes? As illustrated in Figure 7.2, both
questions are true; System States consist of Modes; Modes
C2 Configuration States.

The question’s phrasing leaves the impression that only
one is correct. To summarize the answer’s logic:

• System States characterize the deployment and
employment of a system, product, or service as
Enterprise organizational asset.

• Modes of operation:

∘ Represent User selectable options for C2 of a system,
product, or service.

∘ Apply to one or more Mission Life Cycle Phase
System States.

∘ Control Configuration States of the system, product,
or service’s architecture.

• Configuration States:

∘ Represent different arrangements of behavioral and
physical architectural elements to provide the re-
quired capabilities to support mission operations.

∘ Interact with Environmental States during the con-
duct of a mission.

∘ Are constrained in use by Allowable and Prohib-
ited Actions that limit what the Personnel and
Equipment Elements can exploit.

• Environmental States characterize conditions that may
exist in a system, product, or service’s Operating
Environment.

• Dynamic States represent time and location-dependent
instabilities created by:

∘ Externally induced perturbations or disruptions
resulting from a system’s interactions with Envi-
ronmental States that characterize its Operating
Environment.

∘ Internally induced by failure of the User(s) to per-
form in accordance with the system, product, or ser-
vice’s Procedural Data.

• Collectively, identification and analysis of modes
and states requires that the System Design
Solution—Equipment, Personnel, Mission Re-
sources, Procedural Data, and System Responses
must be sufficiently robust operationally, behaviorally,
and physically to tolerate, survive, and recover from
their effects to successfully accomplish missions.

7.10 CHAPTER EXERCISES

7.10.1 Level 1: Chapter Knowledge Exercises

1. What is a Phase of Operation?

2. What is the objective of the Pre-Mission Phase of
Operation? How do we bound its starting and ending
points?

3. What is the objective of the Mission Phase of Operation?
How do we bound its starting and ending points?

4. What is the objective of the Post-Mission Phase of
Operation? How do we bound its starting and ending
points?

5. What is a Mode of Operation?

6. What is a State of Operation?

7. What is the difference between a Mode and a State?

8. Do Modes contain States or do States contain Modes?

9. When are Modes and States defined in a project? Why?

10. How do we derive Modes and States?

11. What are the relationships among Phases, Modes, and
States of Operation?

12. What is the relationship between UCs and Modes of
Operations?

13. What is a modal Triggering Event? How are Triggering
events characterized?

14. Why do Modes and States have a critical role in SE
problem-solving–solution development?

7.10.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e.

http://www.wiley.com/go/systemengineeringanalysis2e
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8
SYSTEM LEVELS OF ABSTRACTION, SEMANTICS, AND
ELEMENTS

Engineers and others will often tell you that they have
a full understanding of System Architecture Concepts as
evidenced by their developing architectures for years. Yet,
a review of their work products reveals a mixed venue of
types and levels of information with no continuity. For most
people, the concept of creating an architecture consists of
employing presentation software to “drag and drop” boxes
onto a slide and connect the boxes with lines. The net result is
an ad hoc conglomeration of the slide developer’s knowledge
and experiences. Unfortunately, the audience many times
does not recognize the inconsistencies that become obscured
the presenter’s presentation skills.

Today, Model-Based Systems Engineering (MBSE)
methods and tools are evolving. The same people who claim
to understand architectures are now embarking on new hori-
zons of creating the same dysfunctional, ad hoc, “drag and
drop” graphics into more complex MBSE tools, calling it an
architecture. Even more challenging are the Plug and Chug
… Specify–Build–Test–Fix (SBTF) Engineering Paradigm
organizations that view SE as a bureaucratic paperwork. As
a result, they refuse to learn SE methods and erroneously
perceive that if they purchase and use an MBSE tool, by
inference, they must be performing SE. When those efforts
fail, their reasoning is that SE and MBSE are faulty. So,
they revert to their traditional Plug and Chug … SBTF En-
gineering Paradigm, which they acknowledge is ineffective
and inefficient.

This chapter serves a very important purpose: to in-
troduce system architecture concepts that provide insights

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

concerning how to think about, conceptualize, and orga-
nize architectural information into a pattern of behavior
that provides analytical continuity and consistency of im-
plementation. For those performing MBSE, these founda-
tional concepts are absolutely essential to achieving MBSE
success and avoiding the path to failure discussed above.

Author’s Note 8.1

Chapters 8 and 9 introduce System
Architecture Concepts and focus on
the taxonomy of system architectural
structures. This information serves
as the foundational knowledge for

Chapter 26 System and Entity Architecture Development.
Why separate system architecture chapters in Parts 1
and 2?

• Part 1—represents requisite knowledge for understand-
ing the missions, operations, behavior, and taxonomy -
structure - of systems.

• Part 2—represents the application of that knowledge to
the architecting systems, products, or services.

8.1 DEFINITIONS OF KEY TERMS

• Entity Relationship (ER)—A logical or physical as-
sociation that exists between two or more entities and
expressed in terms such as one-to-one, one-to-many, or
many-to-one.

http://www.wiley.com/go/systemengineeringanalysis2e
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• Level of Abstraction—Knowledge about an entity
that suppresses lower-level information and details
such as its attributes, properties, or characteristics. For
example, the term “family” is a Level of Abstraction
that suppresses information such as the quantity of
family members – parents, children, and others; and
their gender and ages.

• Powered Ground Equipment (PGE)—“An assembly
of mechanical components including an internal com-
bustion engine or motor, gas turbine, or steam turbine
engine mounted as a single unit on an integral base or
chassis.
Equipment may pump gases, liquids, or solids;
or produce compressed, cooled, refrigerated or
heater air; or generate electricity and oxygen.
Examples of this equipment: portable cleaners, fil-
ters, hydraulic test stands, pumps and welders, air
compressors, air conditioners. Term applies primarily
to aeronautical systems” (MIL-HDBK-1908B, 1999,
p. 14).

• Support Equipment—“All equipment required to per-
form the support function, except that which is an inte-
gral part of the mission equipment. SE includes tools,
test equipment, Automatic Test Equipment (ATE)
(when the ATE is accomplishing a support func-
tion), organizational, intermediate, and related com-
puter projects and software. It does not include any of
the equipment required to perform mission operations
functions” (MIL-HDBK-1908B, 1999, p. 30).

8.2 ESTABLISHING AND BOUNDING THE
SYSTEM’S CONTEXT

One of the first steps in creating an architecture is to establish
the System’s context within the framework of systems. The
key point here is to express what is/is not part of our System.
We do this via a context diagram such as the one shown in
Figure 8.1.

In general, a context diagram resembles a wheel with a
hub in the center representing the System of Interest (SOI)

Aircraft
Mission System

• Flight Crew
Pilot

Co-Pilot
• Flight Attendants

• Aircraft

Passengers

Runway
System

Other
Aircraft

Earth
Environments

Navigation
Systems

Terminal
System

• Tarmac
• Taxiways
• Runways
• Lighting
• Markers

• Reservations
• Ticketing
• Fueling
• Baggage / Cargo
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• Maintenance and others

•
•
•
•
•

Airline
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• Facilities
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• Security
• Deicing
• Fire and

  others

• GPS
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• Ground
• IFR

Gnd / Air
Traffic
Control
System

• Tasking
• Communications

• Ground
• Air

• Landmass
• Weather
• Induced

• Travellers
• Threats
• Special Needs

Figure 8.1 Context Diagram for an Aircraft Mission System
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and spokes representing interfaces between the SOI and
external systems represented by ovals. The external sys-
tems represent other SOIs in its Operating Environment
that may encounter, engage, and interact with it during its
Pre-Mission, Mission, Post-Mission, and other Phases of Op-
eration. Interface arrows indicate directions of interchanges
such as stimuli, excitations, or cues. Since each of the ovals
may be abstract, bulleted lists are provided outside each oval
to annotate additional clarifying information.

Author’s Note 8.2

Context Diagram Annotations

Bulleted lists, which are uncommon in
most context diagrams, are a prefer-
ence based on the author’s experience.

Context diagrams, in general, lack this clarifying information
and are typically presented in briefings only to have mem-
bers of the audience ask more questions that detract from the
continuity of the presentation. To avoid this situation, sim-
ply annotate each external system with bulleted words that
preclude additional questions.

This point leads to a key heuristic.

Heuristic 8.1 Document Integrity

Every document – i.e., figure, table, report, presentation,
et al:

• Has a context.

• Should clearly and succinctly communicate a message
that precludes the need for further clarification.

• Explicitly answers the tasking that motivated the docu-
ment’s development.

• Identifies source material references and attribution.

If not, you may have failed.

To illustrate the application of a context diagram,
Figure 8.1 provides an example of a commercial aircraft sys-
tem. The Aircraft System and each of the external systems
have been annotated with clarification bullets.

A context diagram is a useful tool for bounding the con-
text for what is and is not part of the SOI, a Mission System
role, or Enabling System roles. These are high-level sys-
tems that consist of multiple levels of lower-level entities
such as Subsystems, Assemblies, Subassemblies, etc.

A Word of
Caution 8.1

Discipline-Based Paradigms in a
Multi-discipline Engineering
Environment

Engineering education and training some-
times unwittingly create paradigms that have

an application context. Such is the case for Software En-
gineering (SwE), which is data driven. SwEs sometimes

perceive context diagrams to identify external systems that
exchange data with the SOI and its software.

To illustrate this point, assume an SwE is promoted or
assigned to lead an Equipment development team for a
system that includes hardware. They recognize the need to
create a context diagram based on their information/data
driven paradigm. They challenge the team to create a context
diagram for the new system to define and establish its
boundaries.

Without recognizing that they are now in an
Equipment-based, multi-discipline, hardware-software
system, they direct that all physical interactions with any
external system such as weather, et al be removed from the
diagram. The rationale given is that physical interactions
are not relevant to a context diagram because they do not
exchange … data … with the SOI. This is erroneous!

If you believe that system interactions are restricted to
data only exchanges, please refer to the NASA photo in
Figure 8.2 capturing a lightning strike on Launch Pad 39A
prior to a NASA Space Shuttle launch. Decide if this was
a “data only” exchange or worthy of SE recognition as an
interface in a context diagram.

Context diagrams encompass any type of physical inter-
action – energy, forces, data, et al. – with external systems.
Recognize the context of your discipline and experience
paradigms and adjust accordingly. If you are going to carry
the title of SE, learn to “think outside your own disciplinary
box!”

One of the challenges in bounding a system relates to the
System’s Users and End Users. Are they internal – part of
- or external to the SOI? This is a very critical point that
a context diagram should reveal. For the Aircraft System
shown in Figure 8.1, the aircraft’s users—Flight Crew—that
Monitor, Command, and Control (MC2) the aircraft are
internal to the system. As End User’s that benefit from using
the system, the aircraft’s passengers are shown external to
the system.

The presence of multiple levels of entities within a
Mission System or Enabling System brings us to our next
concept concerning the need to establish levels of abstraction
and a language of semantics to communicate about each
level.

8.3 SYSTEM LEVELS OF ABSTRACTION AND
SEMANTICS

Principle 8.1

Levels of Abstraction Principle

Every SOI, its Mission System(s),
Enabling System(s), and Equipment –
Hardware and Software - consists of

one or more levels of abstraction with standardized titles
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Figure 8.2 Lightning Strike on NASA Space Shuttle, Pad 39A—July 10, 2009. (Source:
KSC (2009).)

indexed by levels or tiers relative to the System User’s SOI
frame of reference.

One of your first tasks as an SE or System Analyst is to
establish a semantics frame of reference for your SOI. When
most people refer to systems, their contextual view is based
on their own perspective—an observer’s frame of reference.
When you listen to communications between Users, the
Acquirer, and System Developers, you soon discover that one
person’s “System” equates to another person’s “Subsystem.”
In a leadership role as a Systems Engineer, your job is to
establish a consensus of levels of abstraction semantics that
unifies team members with a common frame of reference for
communications.

One of the ways to alleviate this problem is to estab-
lish a standard semantics convention that enables Engineers,
System Analysts, and others to communicate intelligibly us-
ing a common contextual language. Once the convention
is established, update the appropriate Enterprise command
media—policies and procedures—for use in training Engi-
neering personnel.

The best way to illustrate Levels of Abstraction is graphi-
cally. Figure 8.3 provides an illustration.

Beginning in the upper left corner, a system, product, or
service consists of an initial set of loosely coupled entities
such as ideas, objectives, concepts, and parts (i.e., items A
through N). If we analyze these entities or objects, we may
determine that various groupings share a common set of
objectives, characteristics, outcomes, etc. as illustrated in the
lower left portion of the figure. We identify several groupings
of items:

• Entity 10 consists of Entities A and E.

• Entity 20 consists of Entities C, F, and I.

• Entity 30 consists of Entities D, J, H, and M.

• Entity 40 consists of Entities B, K, L, N, and 0.

On the right side of the figure, we establish a hierarchi-
cal framework consisting of three levels of abstraction. Ob-
serve that the title of each level of abstraction suppresses
lower-level details. For example, the System Level repre-
sents everything below it but does not reveal details concern-
ing the number of levels of abstraction below it, quantities of
entities at each level, or their contents. The same is true for
Entities 10–40. As a result, we create an analytical frame-
work that represents the hierarchical structure, or taxonomy,
of a system and of its levels of abstraction.

The concept of generic levels of abstraction is useful
information for simple systems. However, large, complex
systems involve multiple levels of detail or abstraction. In
fact, up to 10 or more levels, depending on the SOI. Where
this is the case, how do SEs and System delineate one level
of abstraction from another? They do this by establishing an
observer’s frame of reference convention.

8.3.1 Establishing an Observer’s Frame of Reference
Convention

When establishing any type of convention for an observer’s
frame of reference, one of the first steps is to decide what
the origin is. For a consumer product or a contract System
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Figure 8.3 Abstracting Entities into levels of Abstraction

Development, the deliverable system – SOI – becomes the
origin for the frame of reference.

Figure 8.4 illustrates two analytical conventions used to
establish a convention for hierarchical levels of abstraction.
One example convention employs Level 0, Level 1, Level 2,
and so forth. Another convention employs Tier 0, Tier 1, and
so forth semantics.

Observe that the highest level is Level 0 or Tier 0. By
convention, Level 0 or Tier 0 represents the User’s System
that will serve as the frame of reference for integrating the
SOI—that is, your System, which is designated as a Level 1
or Tier 1 System. Recall from Principle 1.1 that SE begins
and ends with the User(s) and End User(s). Therefore, the
User’s system becomes the Level 0 origin of the frame of
reference. Since it does not make sense to communicate
in negative numbers, we use positive integers to represent
lower levels of abstraction. Remember, this is a reference
convention for communications, not mathematics.

A Word of
Caution 8.2

Levels of Abstraction Connotations

The Subsystem, Assembly, Subassembly,
and Part Levels of Abstraction naming con-
vention infers a hardware connotation. Since
Engineers, in general, often think of systems

in terms of deliverable hardware, the naming convention pro-
vides continuity with their mental models.

However, this text treats these terms as generic, hierar-
chical descriptors. Here’s why. As you will discover later in

the chapter, a Subsystem, Assembly and so on entity may
consist of: personnel, equipment – hardware and software,
mission resources, procedural data, and system responses. In
this context, the entity performs a mission and is therefore
considered to be a performing entity.

The establishment of a convention of hierarchical levels
of abstraction is fine as a framework. However, we still
have to solve the problem of communicating about entities
at various levels of abstraction. This brings us to our next
topic: establishing a semantics convention to express system
nomenclature levels.

8.3.2 Establishing a System Nomenclature Semantics
Convention

Continuing with Figure 8.4, observe the hierarchical struc-
ture on the right side. We begin with the highest-level system,
the User’s System, which consists of our SOI and Other En-
terprise Systems. Below this level, we establish a naming
convention of nomenclatures for each level of abstraction
such as System, Segment, Product, Subsystem, Assem-
bly, Subassembly, and Part Levels. This is an 8-level con-
vention that accommodates most types of systems. Your SOI,
for example, may only have 3 levels or 5 levels.

Observe that the filled SySMLTM diamond symbol
(Appendix C), which represents Composition by Aggrega-
tion expresses an Entity Relationship (ER) between levels of
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Figure 8.4 System Levels of Abstraction and Semantics Frame of Reference

abstraction. For example, each Product consists of one or
more Subsystems, each Assembly consists of one or more
Subassemblies, depending on tailoring discussed later in
this section. To understand the origins and rationale for this
naming convention, let’s explore some of the background
from industry.

8.3.2.1 Origins of the Semantics Nomenclature
Convention In general, most Enterprises view their deliv-
erable System as consisting of Subsystems. Interestingly,
some commercial Enterprises sometimes refer to their Level
1 System as “product” that is comprised of lower-level “sys-
tems,” not subsystems. Below the System and Subsystem
Levels, Enterprises may employ the terms Assemblies or
Subassemblies. Since organizations create parts lists, it is
only natural to have the Part Level as the lowest level of
abstraction.

8.3.2.1.1 Component Semantic Origins and Usage Ob-
serve that the term component is not used at any of the levels
of abstraction in Figure 8.4. The term component is a generic
term that has both explicit and ambiguous meanings: explicit
in terms of being a physical entity and ambiguous in terms of
being applicable to any level of abstraction. As a convention
for this text, we adopt the context that a component refers to

any entity at any level of abstraction – Product, Subsystem,
Assembly, Subassembly, or Part.

8.3.2.1.2 Segment Level Origins and Usage Large, com-
plex Enterprise Systems often have many levels of abstrac-
tion that represent land, sea, air, and space-based systems or
combinations of these. Examples include NASA, military,
and commercial organizations such as the United Parcel Ser-
vice (UPS), Federal Express, and so on. To accommodate
large, complex Enterprise Systems applications, we add a
Segment Level - Tier 2 - to accommodate land, sea, air, or
space applications.

8.3.2.1.3 Product Level of Abstraction Origins and
Usage As stated earlier, Enterprises often think of systems
consisting of subsystems. As you will discover in Part
2, “SYSTEM DESIGN AND DEVELOPMENT PRAC-
TICES,” system design should be a last resort (Principle
16.6) after you have exhausted all means to find an internally
developed or commercially available component that can
be used directly or modified to meet a specific purpose
at any level of abstraction. This being the case, a System
may be comprised of a combination of internally developed
components and externally procured commercial products.
To illustrate this point, consider the following example of a
computer system.
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Example 8.1

Computer System Example

In general, a computer system consists of
a processor (tower), keyboard, monitor,
printer, etc. The computer system devel-

oper may decide to develop these components internally or
purchase separately from various commercial vendors spe-
cializing in development of a component. So, the computer
system developer purchases “products” such as a keyboard,
mouse, power supply, and so forth from a vendor’s catalog,
packages them in enclosure with their name on it, and
then sells the item in their own catalog as replacement
components.

Additionally, some systems such as a computer sys-
tem are simply analytical abstractions that are virtual en-
tities. Rhetorically speaking, unless all components are
self-contained within a single enclosure, can you actually
“touch” a computer system? The answer is no; the so-called
computer system is a virtual, analytical abstraction as illus-
trated in Figure 8.5. You can only touch its Product or
Subsystem Level components - keyboard, tower, monitor,
printer, etc. From the computer system developer’s frame of
reference, products purchased from vendors will be desig-
nated as Subsystems within their computer system. Given
the virtual nature of some systems and commercial industry

views of selling a product, we adopt the Product Level of
abstraction – Tier 3 - below the Segment Level – Tier 2.

8.3.3 Tailoring Levels of Abstraction for Your
System’s Application

The preceding discussion introduced a set of semantics
for application to large, complex systems. You and your
organization may or may not have an 8-Level System. Tailor
the number of system levels of abstraction to match your
system’s application.

Figure 8.6 illustrates how a System’s levels of abstraction
can be tailored for a specific Enterprise application. The
left side of the figure represents the nomenclature naming
convention used in this text for System Levels of Abstraction.
The right side represents an Enterprise’s tailoring of the
standard system levels. In this case, a system development
project has adopted the following semantics: User’s Level
0 System, System Level, Subsystem Level, Assembly
Level, and Part Level. Reference level numbers (Level 1,
Level 2, etc.) have been sequentially applied to match the
tailoring. As a result, the dashed boxes for the Segment,
Product, and Subassembly Levels have been collapsed to
form 5-Level System.

Physical Implementation
In physical space, a “computer system” only exists as physical Subsystem components.
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Figure 8.5 Desktop Computer System as a Virtual Analytical Abstraction
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Figure 8.6 System Levels of Abstraction Tailoring Example

8.4 SYSTEM DECOMPOSITION VERSUS
INTEGRATION ENTITY RELATIONSHIPS

The preceding discussion establishes a naming convention
for analytical system decomposition. However, when we
integrate two Subsystems, for example, the integration
may require an installation kit consisting of Part Level
components such as brackets, nuts, and screws. to physically
integrate the two Subsystems.

From an analytical decomposition perspective, we
expect our System to be hierarchically composed of only
Subsystems, which is true. However, to accomplish inte-
gration of the Subsystems into a System, a System Level
parts list identifies the two Subsystems and an installation
kit composed of physical Part Level components. The same
occurs for the integration of Parts into Subassemblies,
Subassemblies into Assemblies, and Assemblies into
Subsystems.

Observe two different concepts here: analytical, hierar-
chical decomposition (Top–Down) versus multi-level phys-
ical integration (Bottom–Up) of components into what is
referred to as the System’s physical Product Structure. The
integration side of the issue typically emerges later during
physical system design. Why are lower-level Assemblies,

Subassemblies, or Parts found in a system’s analytical de-
composition structure but located at different levels of inte-
gration in its physical product structure?

To reconcile the differences between analytical decompo-
sition versus physical system integration, we do so contextu-
ally via Figure 8.7.

In general, Figure 8.7 expresses:

• Top–Down multi-level analytical decomposition ERs
• Bottom–Up multi-level physical system integration

ERs

Given these two points, observe that graphic consists of
the analytical decomposition structure – Levels of Abstrac-
tion, semantics, and ERs - depicted earlier in Figure 8.4.
However: (1) since the Levels of Abstraction can be tai-
lored as shown in Figure 8.6 and (2) system integration may
intermix components from different levels of abstraction,
the System Level entity may or may not be comprised of
Segments, Products, Subsystems, Assemblies, or Parts.

On inspection, Figure 8.6 may appear to be an academic
exercise. However, it is real world example that Project
Managers (PMs) and Project Engineers must address.
Specifically, Project Work Breakdown Structures (PWBSs)
typically depict the system’s analytical product structure -
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System comprised of Subsystems and so forth – plus a Sys-
tem Integration & Test line item at each level of integration.

The analytical product structure enables project man-
agers to collect weekly Project Work Order (PWO) labor
charges. SEs, System Analysts, and others are assigned ac-
countability via project memos for developing specific com-
ponents within the structure. However, the PWBS analytical
hierarchy product structure does not depict the reality that
Subassembly #1 such as a standard interface or software ap-
plication that may be required for integration into multiple
Subsystems. As a result, creation of separate analytical de-
composition and physical system integration structures simi-
lar to Figure 8.7 is critically important for planning projects.

Hierarchical decomposition employs the same rules as
outlining a document. Avoid having a single item subordi-
nated to a higher-level item. Best practice suggests that you
should always have at least two or more entities at a subordi-
nated level of indenture. In the case of systems, this does not
mean that the subordinate entities must be at the same level
of abstraction. For example, a System may be composed of
two Subsystems and an installation kit of Parts to mount of
connect the two Subsystems.

8.4.1 Problem Space–Solution Space Decomposition

The preceding discussion presents and describes an analyt-
ical framework of levels of abstraction and semantics that
form the structure of a system architecture. The question
is: how do these levels and entities within these levels ap-
ply to the development of physical consumer systems such
as smart phones or computers? The answer resides in the
Problem-Solving–Solution Development concept introduced
in Figure 4.7 illustrating the Problem Spaces and Solution
Spaces concept.

Beginning with a system’s mission as an abstract and
potentially complex Problem Space, we analytically partition
it into one of more Solution Spaces (Principle 4.18). The
boundaries on the Solution Spaces may be fuzzy or notional
and shift back and forth as we analyze the entity; perform
trade-offs such as cost, performance, risk, etc.; and make
decisions until the entity reaches a level of maturity that
enables us to establish firm boundaries.

In this raw form, we use a context diagram to establish
its context relative to its sibling Solution Spaces and ex-
ternal systems. Our challenge is: how do we deal with ab-
stractness and complexity? Analytically, the answer resides
in analytically partitioning - decomposing - complexity
(Principle 4.17) into successively lower levels that refine
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solutions, enable us to manage risk, and ultimately lead to
a physical solution. We will refer to this as the Problem
Space–Solution Space Decomposition. As a result, we de-
compose the System into Subsystems, into Assemblies,
and so forth.

8.4.2 Problem Space–Solution Space Decomposition
Approach

The Problem Space–Solution Space Decomposition Ap-
proach is illustrated in Figure 4.7. Beginning in the up-
per left corner, the abstract System Problem Space is par-
titioned and decomposed into one or more lower-level So-
lution Spaces based on the set of mission-based capabilities
to be provided by the system. The set of Solutions Spaces
are conceptualized and evaluated using SE methods such as
trade-off Analysis of Alternatives (AoA) (Chapter 32), Mod-
eling and Simulation (M&S) (Chapter 33), and other meth-
ods. As decisions regarding each Solution Space mature, des-
ignations such Subsystem #1, Subsystem #2, and so forth
emerge.

Now, we have a new challenge. Subsystem #1,
Subsystem #2, and others may also be abstract and complex
entities. So, Subsystem #1 Solution Space, for example,
becomes Subsystem #1 Problem Space that must be decom-
posed into lower-level Assembly Level Solution Spaces—
Assembly #1, Assembly #2, and others. We continue the
process until we finally reach the Part Level of abstraction.

Several key points:

1. The problem-solving and solution development
methodology required for conceptualization, for-
mulation, trade-off, selection process described
above is accomplished via the SE Process Model
(Figure 14.1).

2. Observe that we did not use the term functional de-
composition. Instead we partitioned capabilities into
notional Solution Spaces to achieve what has been tra-
ditionally referred to as decomposition, another am-
biguous term due to multiple connotations. Functional
decomposition as a concept has served modern SE
well for several decades. However, our SE knowledge
has advanced to a new stage of understanding that re-
veals the fallacy of functional decomposition; its fo-
cus on functions – i.e., actions to be performed, not
performance - how well. When we ultimately allocate
specification requirements (Chapter 21) that bound this
abstract Problem Space, we will do so based on capa-
bilities, not functions.

3. The concept of what versus how emerges in Figure 8.7.
Observe that Top-Down decomposition represents how
each level of abstraction will be implemented. Con-
versely, Bottom-Up integration reveals what is to be
accomplished at each higher level.

8.4.3 System Decomposition: Complicated versus
Complex Systems

The concept of complex systems may be ad hoc, dynamic,
autonomous, etc. Examples include social networks, political
systems, healthcare systems, complex Equipment Element
Systems, and others raises issues related to system decom-
position. The central issue centers on the view that complex
systems cannot be decomposed, while complicated systems
are decomposable. Warwick and Norris (2010) provide a dis-
cussion of this issue.

8.4.4 Summary: Levels of Abstraction

In summary, our discussion in this section introduced the
concept of system levels of abstraction and semantics.
This hierarchical framework enables SEs to standardize
analysis and communications about their SOI. The intent of a
semantics convention is to establish a common terminology
frame of reference across members of a System Developer’s
team, the Acquirer, and the User to facilitate communicating
complex hierarchies.

Given an understanding of a system’s taxonomy, we are
now ready to introduce System Elements Concept.

8.5 LOGICAL–PHYSICAL ENTITY
RELATIONSHIP (ER) CONCEPTS

Earlier in Chapter 1, we highlighted shortcomings in the
ad hoc, endless loop, Plug and Chug … SDBTF-DPM
Engineering Paradigm (Chapter 2). We noted that Enterprises
that foster the SDBTF-DPM Paradigm often take quantum
leaps from specification requirements to a physical, point
design solution without due consideration of selecting the
architecture from a set of viable candidates via an AoA
(Chapter 32).

Shifting the SDBTF–DPM Paradigm requires under-
standing what has to be accomplished—missions, objec-
tives, ConOps, Operational Concept Descriptions, and so
on—before defining how the system will be designed - phys-
ical design solution. One of the key steps in this process
is recognition that an ER or associative relationship exists
between two entities—System to System, Subsystem to
Subsystem, etc. We refer to this as a logical ER. The con-
cept is that if we can determine who interacts with whom, we
can employ SE methods to translate that relationship into a
physical ER. Let’s explore these two concepts further.

8.5.1 Logical Entity Relationships (ERs)

The first step in identifying logical ERs is to simply recog-
nize and acknowledge that some form of association exists
between two entities through deductive reasoning. You may
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not know the physical details of the relationship—that is,
how they link up—but you know a relationship does or will
exist. Graphically, we depict these relationships as simply a
line between the two entities.

The second step is to characterize the logical relationship
in terms of logical functions—what interaction occurs be-
tween them—that must be provided to enable the two entities
to associate with one another. When we assemble the logical
entities into a framework that graphically depicts their rela-
tionships, we refer to the diagram as logical architecture. To
illustrate, let’s assume we have a simple room lighting situa-
tion as shown in Figure 8.8.

Example 8.2

Room Lighting—Logical Architecture
Entity Relationships

The top portion of Figure 8.8 depicts a
simple Room Lighting System consisting of

a User (SysMLTM Actor – Appendix C) desiring to control a
room Light Source (Actor). As a logical representation, we
draw a line between the User (Actor) and the Light Source
(Actor) to acknowledge the relationship. Thus, we state that
the User (Actor) has a logical association or ER with the
Light Source.

Next, we need a control mechanism for the Light Source
(Actor), which derives its energy from a Power Source
(Actor). We complete the representation by connecting the
User (Actor) with the Lighting Control. The Lighting Control
enables the flow of current from the Power Source to the
Light Source. When energized, the Light Source illuminates
the room enabling the User to move around or perform tasks.

From this description, you should note that we purposely
avoided specifying how the:

• User interfaced with the Lighting Control.

• Lighting Control controlled the Power Source.

• Power Source provided current to the Light Source.

• Light Source illuminates the User.

The diagram simply documents associative relationships.
Additionally, we avoided specifying what physical mecha-
nisms such as light switches, lighting fixtures, quantity lights
and wattages, etc. will be used to implement the Lighting
Control, Power Source, or Light Source. These decisions will
be deferred to our next topic.

Based on this logical representation, let’s investigate its
physical implementation of the Room Lighting System.

8.5.2 Physical Entity Relationships (ERs)

The physical implementation of System interfaces requires
more in-depth analysis and decision making. Why? Typi-
cally, cost, schedule, technology, support, and risk become
key drivers that must be “in balance” for the actual imple-
mentation. Since there should be a number of viable candi-
date options available for implementing an interaction, trade
studies Analysis of Alternatives (AoA) (Chapter 32) may
be required to select the best selection and configuration of
physical components. Graphically, we refer to the physical
implementation of an interface as a physical representation.

“What Logical Association Exists Between Two System Entities”

Light
Source• Illumination

Step 1
Identify Logical Associations

Logical Association

Logical Association

• Light Control

• IlluminationStep 2
Identify Logical ER and their

Interactions
• Power

Power
Source

Lighting
Control • Power Control

Light
Source

Figure 8.8 Logical Entity Relationships (ERs) Example
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As Engineering designers select components such as cop-
per wire types and sizes, light switches, lighting fixtures, etc.,
we configure them into a System Block Diagram (SBD) and
electrical schematics that depict the physical ERs. These dia-
grams become the basis for the Physical System Architecture
continuing with the logical architecture. Consider the fol-
lowing example that expands on the preceding logical ERs
example:

Example 8.3

Room Lighting—Physical Architecture
Entity Relationships

After some analysis, we develop a phys-
ical representation or physical system ar-

chitecture of the Room Lighting System. As indicated by
Figure 8.9, the Physical Lighting System consists of the fol-
lowing physical entities: a Power Source, Wire #1, Wire
#2, Light Switch, a Building Structure, a User, and a Light
Receptacle containing a Light Bulb. The solid black lines
represent electrical interfaces; the dashed lines represent me-
chanical interfaces. In physical terms, the Building Structure
provides mechanical support for the Light Switch, Wire #1,
Wire #2, and Light Fixture that holds the Light Bulb.

When the User (physical entity) places the Light Switch
(physical entity) in the ON position, AC current (physical
entity) flows from the Power Source (physical entity) through
Wire #1 (physical entity) to the Light Switch (physical
entity). The AC current (physical entity) flows from the Light

Switch (physical entity) through Wire #2 (physical entity) to
the Light Receptacle (physical entity) and into the Light Bulb
(physical entity). Visible light is then transmitted to the User
until the Light Switch is placed in the Off position, the Light
Bulb burns out, or the Power Source is disconnected.

8.5.3 Logical - Physical Architecture Approach

The partitioning and sequencing of these discussions provide
a fundamental portion of the methodology for developing
systems, products, or services. If you observe and analyze
human behavior, you will discover that humans characteristi-
cally have difficulty deciding what decisions to make and the
strategic steps required to make those decisions. Humans of-
ten desire lots of information but are often unable to synthe-
size all of the data at the individual or team levels to arrive at
an encompassing, multi-level design solution in a single de-
cision. As a result, the ramifications of the decision-making
process increase exponentially with the size and complexity
of the system.

Given this characteristic, SEs, System Analysts, Engi-
neers, and others need to incrementally progress down a de-
cision path from simple, high-level decisions to lower-level
detail decisions based on the higher-level decisions. The
flow from logical-to-physical ERs enables us to incremen-
tally partition - decompose - complexity (Principle 4.17).

Logical Entity Relationship
(Association) Light

Source

Logical Representation

WHAT

Light
Bulb

Physical Representation

• Illumination

HOW

Light
Receptacle

Light
Switch

Power
Source

Building
Structure

Wire
#1

Wire
#2

Where: = Electrical Relationship = Mechanical Relationship

Figure 8.9 Translation of Logical ER into Physical ERs Example
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Illustrations enable us to progress from simply acknowledg-
ing the existence of a relationship to detailed decisions re-
garding how the logical ER can be physically implemented.

In summary, we evolved the logical architecture rep-
resentation of the Room Lighting System at the top of
Figure 8.9 from the abstract – what - to the detailed physi-
cal architecture representation shown in the lower portion of
Figure 8.9 – how.

8.6 ARCHITECTURAL SYSTEM ELEMENT
CONCEPTS

Every Human System—Enterprise and Engineered
Systems—and natural systems are characterized by a
structure and framework that supports and/or enables their
compositional elements to provide capabilities to perform
missions and survive. We refer to this integrated framework
as the System or Entity’s Architecture.

8.6.1 Introduction to the System Elements

As abstractions, an SOI can be a Mission System (e.g.,
system, product, or service) integrated with its Enabling
System(s) to interact with Higher-Order Systems - author-
itative Command & Control (C2), etc. - and its Operating
Environment. Each of these abstractions is comprised
of analytical building blocks referred to as the System
Elements. The System Elements, when integrated into an
architectural framework (Figure 10.14), form the System
Architecture that serves as a key construct for SE, analysis,
and development.

If you simply observe systems and their interactions,
you soon discover that successful system outcomes and
performance require the integrated efforts of Human Sys-
tems—Enterprises and Engineered Systems. The attributes
consist of:

• A mission such as an Enterprise task with sufficient
funding from Higher-Order Systems that serves as an
enabler to authorize, perform, and accomplish work.

• User – operator or maintainer - to perform the mission
or task by leveraging organizational tools such as
system, product, or service assets or personnel to
produce performance-based outcome results.

• The right tool available at the right time—Enterprise
system, product, or service asset—required to perform
the mission or task.

• Processes and methods that enable the User to
safely, efficiently, and effectively employ the tool
to accomplish the task without adverse or catastrophic
consequences and lasting effects such as injury to the
User, damage to the tool, impacts to public safety, or
the damage to the environment.

• A facility or location that is conducive to performing
the mission or task.

If we perform a Domain Analysis of these attributes, ac-
complishment of an Enterprise mission or task requires the
following: mission resources, personnel, equipment, proce-
dural data, system responses, and facilities. We designate
these categories as System Elements and use Small Caps to
represent them. To facilitate understanding of System Ele-
ments, consider the following example.

Example 8.4

System Element Examples

Applying the System Elements of the
Car-Driver System here are some examples
of each:

• Personnel Element – Driver and Passengers

• Equipment Element – Automobile

• Mission Resources Element – Mission, fuel, fluids,
maps, radio, etc.

• Procedural Data Element – Automobile instruction
manual

• System Responses Element – Proactive travel and
defensive driving

• Facilities Element – Home garage, automobile deal-
ership, repair shops.

Author’s Note 8.3

Observe the presence of the System
Responses Element. Unfortunately,
Engineers think of system responses as
something they measure with a digital
voltmeter, oscilloscope, or other type

of instrumentation. That is true; traditional Engineering
outcomes should be observable, measurable, verifiable,
etc. However, how do you measure an external system
response such as a human that has no intention of producing
a response? The reality is: Human Systems may or may
not produce an output to avoid detection, survival, and so
forth. Since the scope of Systems Engineering decision
making encompasses more than traditional Engineering
(Figure 1.2), System Responses are purposely elevated as a
System Element to ensure the proper level of consideration.

The previous System Elements example reveals a need to
refine the application of the System Elements to delineate
the following: (1) The Car–Driver System traveling to work
as a Mission System versus (2) the car requiring periodic
preventive maintenance by an Enabling System such as a
car dealership. In this context, the Car–Driver system does
not require the Facilities Element to travel to work. As a
result, we refine the application of the System Elements to
make the distinction shown in Table 8.1.
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TABLE 8.1 System Elements Comparison: Mission
System versus Enabling System

Mission System—
System Elements

Enabling System—
System Elements

Personnel Element Personnel Element
Equipment Element

• Hardware
• Software

Equipment Element

• Hardware
• Software

Mission Resources Element Mission Resources Element
Procedural Data Element Procedural Data Element
System Responses Element System Responses Element

Facilities Element

From the perspective of a Mission System, the
Facilities Element is unique to Enabling System roles.
For example, an aircraft performing as a Mission System
does not require a Facility to fly through the air from one
city to another. In general, we tend to think of facilities
as buildings. However, as we shall define in detail later,
Facilities include not only buildings but also vehicles and
structures such as platforms or frameworks that may or may
not be exposed to the weather conditions. To illustrate this
point, consider the following example.

Example 8.5

Airport Hanger as an Enabling System
Facility for an Aircraft

An airline may designate aircraft hangars in
certain cities as an Enabling System Fa-

cilities Element to perform major inspection and main-
tenance actions on Mission System aircraft. The Facility
provides protection for maintenance operations during all
types of weather conditions.

Likewise, an airport terminal serves as an Enabling
System Facilities Element to service an aircraft between
flights, load/unload passengers and cargo, and so forth.

Example 8.6

Tanker Aircraft as n Enabling System
Facility for Mid-Air Refueling

In performing its Mission System role, a
military jet fighter requires mid-air refueling

from a fuel tanker aircraft that serves as an Enabling
System Facilities Element.

Example 8.7

Aircraft Wing as an Enabling System
Facility for Mounting Components

An aircraft’s wing structure serves as an
Enabling System Facilities Element for

an aircraft Flight Control System (FCS) actuator developed
by a vendor installation on the aircraft.

8.6.2 System Element Descriptions

Based on the preceding introduction to the System Elements
for an SOI’s Mission System(s) and Enabling System’s,
let’s scope what is included in each one.

8.6.2.1 Personnel System Element The Personnel
System Element (1) consists of all human roles required to
perform the Mission System operations in accordance with
Standard Operating Practices and Procedures (SOPPs) and
(2) has overall accountability for accomplishing mission ob-
jectives assigned by Higher-Order Systems:

• Mission System Personnel Roles include all person-
nel directly required to operate the Mission System
and accomplish its mission objectives. In general, these
personnel are typically referred to as System Operators
such as a pilot/copilot, driver, etc.

• Enabling System Personnel Roles include person-
nel such as System Maintainers who perform tasks such
as maintenance, supply support, training, publications,
security, and other activities.

8.6.2.2 Equipment System Element The Equipment
System Element consists of any physical, multi-level, elec-
tromechanical, optical, or other types of physical systems.
Equipment examples include Products, Subsystems, As-
semblies, Subassemblies, and Parts shown earlier in
Figure 8.4. Observe that the inference here is physical hard-
ware, not necessarily true. The Equipment Element does (1)
consist of hardware and (2) may or may not consist of soft-
ware. For example, a simple garden shovel - hardware – does
not require software for use.

The ultimate success of the Mission System requires that
the Equipment Element be operationally available (Chapter
34) and fully capable of supporting the system missions and
the safety of its Personnel to ensure a level of success. As
a result, Specialty Engineering disciplines such as reliabil-
ity, availability, maintainability, vulnerability, survivability,
safety, and human become a key focus of the Equipment
Element. Depending on the application, the physical re-
quirements of the Equipment Element may require (1) a
fixed or permanent structure such as buildings, (2) trans-
portability such as heavy construction equipment, (3) ma-
neuverability such as an automobile or aircraft, (4) mobility
such as a trailer or cart, or (5) portability such as a smart-
phone.

To better understand the composition of the Equipment
Element, let’s explore its constituent hardware and software
components.

8.6.2.3 The Hardware System Element The
Hardware Element consists of the integrated set of
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physical, multi-level components - mechanical, electrical/
electronic, or optical—configured in accordance with the
System Architecture. Whereas the Hardware Element
is common to both Mission Systems and Enabling
Systems, there are differences in the classes of its
components:

• Mission System Hardware Components are physi-
cally integrated to provide the operational capabilities
required to accomplish mission objectives.

• Enabling System Hardware Components consist
of tools – systems and devices - required to deploy,
support, and retire or dispose of the Mission System.
Tools, for example, are categorized by military organi-
zations as:

∘ Common Support Equipment (CSE)

∘ Peculiar Support Equipment (PSE)

8.6.2.3.1 CSE CSE consists of the items required to de-
ploy, support, maintain, and retire the system or portions
of the system while not directly engaged in the perfor-
mance of its mission. CSE items, which are typically
commercially available or owned by the User, consists of
items such as hammers, screwdrivers, diagnostic equipment,
data loggers and analyzers. CSE excludes overall planning,
management, and task analysis functions inherent in the
Work Breakdown Structure (WBS) element, SE/Program
Management.

8.6.2.3.2 PSE MIL-HDBK-881 characterizes PSE as
“… the design, development, and production of those de-
liverable items and associated software required to support
and maintain the system or portions of the system while
the system is not directly engaged in the performance of its
mission, and which are not CSE” (MIL-STD-881C, p. 240).

PSE includes:

• “Vehicles, equipment, tools, etc., used to fuel, ser-
vice, transport, hoist, repair, overhaul, assemble, dis-
assemble, test, inspect, or otherwise maintain mission
equipment.

• Any production of duplicate or modified factory test or
tooling equipment delivered to the (Acquirer) for use
in maintaining the system. (Factory test and tooling
equipment initially used by the contractor in the pro-
duction process but subsequently delivered to the (Ac-
quirer) will be included as cost of the item produced.)

• Any additional equipment or software required to
maintain or modify the software portions of the system”
(MIL-STD-881C, p. 240).

8.6.2.4 Components Common to CSE and PSE CSE
and PSE each employ two categories of Equipment that
are common to both types: (1) Test and Measurement
and Diagnostics Equipment (TMDE) and (2) Support and
Handling Equipment.

8.6.2.4.1 TMDE In MIL-HDBK-881’s characterization,
Test, Measurement, and Diagnostics Equipment (TMDE)
“… consists of the peculiar or unique testing and measure-
ment equipment which allows an operator or maintenance
function to evaluate operational conditions of a system or
equipment by performing specific diagnostics, screening or
quality assurance effort at an organizational, intermediate, or
depot level of equipment support” (MIL-STD-881C, p. 228).

TME, for example, includes:

• “Test Measurement and Diagnostic Equipment
(TMDE), precision measuring equipment, Automatic
test equipment, manual test equipment, automatic
test systems, test program sets, appropriate inter-
connect devices, automated load modules, taps, and
related software, firmware and support hardware
(power supply equipment, etc.) used at all levels of
maintenance.

• Packages which enable line or shop replaceable
units, printed circuit boards, or similar items to
be diagnosed using automatic test equipment”
(MIL-STD-881C, p. 228).

8.6.2.4.2 Support and Handling Equipment Support
and Handling Equipment consists of the deliverable tools
and handling equipment used for support of the Mission
System. This includes “... Ground Support Equipment
(GSE), vehicular support equipment, powered support
equipment, unpowered support equipment, munitions ma-
terial handling equipment, material-handling equipment,
and software support equipment (hardware and software)”
(MIL-STD-881C, p. 228).

8.6.2.5 The Software System Element The Software
Element consists of all software code (source, object, ex-
ecutable, etc.) and documentation required for installation,
operation, and maintenance of the Equipment Element. You
may ask why some Enterprises separate the Software Ele-
ment from its Equipment Element. There are several rea-
sons:

• Equipment Element Hardware and Software may
be developed separately or procured from different
vendors.

• Software may provide the flexibility to alter sys-
tem capabilities and performance (decision making, be-
havior, etc.) without having to physically modify the
Equipment Element Hardware, assuming the current
design is adequate.
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Author’s Note 8.4

Two key points:

1. This text defines the Equipment
Element as consisting of inte-
grated Hardware and Software as

subordinated, supporting elements. Some Enterprises
treat the Software Element as a peer to the
Equipment Element, which is assumed to be
hardware. That is technically incorrect. In such cases,
the Hardware is useless without the Software and
vice versa. Their integrated capabilities form the
Equipment Element.

2. Engineers typically become prematurely focused with
hardware and software details (Figure 2.3) long before
higher level SOI decisions have been made—namely
Equipment Element requirements. Equipment Ele-
ment decisions lead to lower level Hardware and
Software use cases and decisions. These decisions
subsequently lead to a key system trade-off: What ca-
pabilities should be implemented in Hardware versus
those implemented in Software?

Equipment Element Hardware and Software may
be separately procurable items. The underlying philosophy
is Software, as a System Element, should be isolated to
accommodate modification without necessarily having to
modify the Hardware.

Application-specific Software can be procured as a
separate item, regardless of its position within the system
structure as long as a Software Requirements Specifica-
tion (SRS) requirements have been allocated and derived
from the higher level Equipment Elements specification
requirements. As new versions of application-specific
Software are released, the User can procure the item with-
out modifying the Equipment. There may be exceptions,
however, where externally driven Enterprise performance
objectives, product obsolescence, new technologies, and
priorities inevitably force it to upgrade the computer
Hardware capabilities and performance to meet those
requirements.

8.6.2.6 The Procedural Data System Element The
Procedural Data System Element consists of documen-
tation that specifies how to safely operate, maintain, de-
ploy, and store the Equipment Element. In general, the
Procedural Data Element represents procedures or a man-
ufacturer’s instructions such as User Guides or Operator
Manuals that specify the safe operation of the Equipment
to achieve its intended level of performance for a prescribed
Operating Environment.

The Procedural Data Element includes items such as
Enterprise roles and missions, operating constraints, refer-
ence manuals, operator guides, Standard Operating Practices
and Procedures (SOPPs), and checklists.

Author’s Note 8.5

The Value of Checklists

Unfortunately, people often view
checklists as bureaucratic nonsense,
especially for Enterprise processes.

Remember, checklists incorporate lessons learned and best
practices that keep you out of trouble. Checklists are a
state of mind - you can view them as “memory joggers” to
perform an action or as a “reminder” to “think about what
you may have overlooked.” As a colleague notes, when
landing an aircraft, if the checklist says to “place the landing
gear in the deployed and locked position” on landing, you
may want to at least consider putting the landing gear down
before you land! Bureaucratic or not, the consequences for a
lack of compliance can be catastrophic!

8.6.2.7 Mission Resources System Element The
Mission Resources System Element encompasses real-time
and nonreal-time mission data in various media, fluids, lu-
bricants, materials, energy, and so on. Examples include
those that are necessary for performing a mission with a
specified level of success. Mission Resources are catego-
rized in terms of consumables and expendables required to
support the Mission System or Enabling System during
its missions.

8.6.2.7.1 Consumable Mission Resources Consumable
mission resources consist of physical entities that are (1)
ingested, converted, or input into a processor such as a com-
bustible engine, solar converter, and so forth to transform
these into energy or (2) used to replenish existing resources.
Examples include items such as:

• Food, water, medicines for the Personnel Element

• Fuel, water, lubricants, and fluids for the Equipment
Element

8.6.2.7.2 Expendable Mission Resources Expendable
mission resources consist of physical entities that are used,
read, and disposed of during the course of mission operations
or after a mission. Examples include:

• Automobile—air, oil, and transmission filters; wind-
shield wiper blades; light bulbs; tires.

• Military aircraft—missiles.

• Data resources such as hardcopy or electronic mission
information that enable Personnel and Equipment
to successfully plan and conduct the mission based
on “informed” decisions. Examples include mission
tasks, tactical plans, Mission Event Timelines (METs),
cargo manifests, intelligence, previously recorded mis-
sion data, commands, data messages, navigational data,
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weather conditions and forecasts, situational assess-
ments, telecommunications, telemetry, and synchro-
nized time.

8.6.2.8 System Response System Element Every
Natural and Human System, as a stimulus–response
mechanism, responds internally or externally to stimuli,
excitations, or cues originating from external systems in its
Operating Environment. The responses may be:

• Explicit such as reports, communications, and altered
behavior

• Implicit such as mental thought strategies, lessons
learned, and behavioral patterns

System Responses occur in a variety of forms that we
characterize as behavioral patterns, products, services, and
by-products throughout the system’s Pre-Mission, Mission,
and Post-Mission Phases of Operation. So, what do we mean
by system behavior, products, services, and by-products?

• System behavior consists of system responses based
on a plan of action or physical stimuli and audiovisual
cues such as threats or opportunities. The stimuli, exci-
tations, and cues invoke system behavioral patterns or
actions that may be categorized as aggressive, benign,
defensive, and everywhere in between. Behavioral ac-
tions include strategic and tactical tactics and counter-
measures.

• System products include any type of physical outputs,
characteristics, or behavioral responses to planned and
unplanned events, external cues, or stimuli.

• System by-products include any type of physical
system output such as heat, exhaust emissions, and
thermal signatures or behavior that is not deemed to be
a system, product, or service.

• System services consists of any type of system be-
havior, excluding physical products, that assist another
entity in the conduct of its Mission System role.

8.6.3 Conceptualizing System Element Interactions

One approach to identifying System Element interactions
is to create a simple matrix such as the one shown in
Figure 8.10. For illustration purposes, each cell of the
matrix represents interactions between the row and column
System Elements. For your system, employ such a scheme
and document the interactions in the System Architecture
Description. Then, baseline and release this document to
promote communications among team members developing
and making System Element decisions.

The matrix in Figure 8.10 simply enables us to establish
who interacts with whom within the set of System Elements.
With skill and experience, one can jump to creating an Archi-
tecture Block Diagram (ABD) to illustrate the interactions.
The challenge is that valuable time is wasted pushing boxes
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and lines around a page instead of focusing on the substantive
content and getting agreement among your colleagues.

One method for overcoming this situation requires the in-
troduction of a tool referred to as the N2 Diagram as shown
in Figure 8.11. The N2 Diagram is a very powerful but
simple graphical representation of an N × N matrix of a
set of entities. Lano (1977, p. 244–271) introduced the tool
in a paper written in 1977. The tool consists of a virtual
row–column matrix with the entities distributed in a diag-
onal from left to right. The diagonal easily accommodates
external inputs – acceptable and unacceptable (Figure 3.2)
to enter any of the entities from the left side of the graphic
and outputs – acceptable and unacceptable (Figure 3.2) to
exit out the right side.

Some people expand concept based on the Integrated
Definition for Function Modeling (IDEF0) construct shown
in Figure 8.12. The construct (IDEF0, 1993, Figure 3, p. 12)
illustrates constraints entering downward from the top of
each entity and resources entering from the bottom of the
entity.

The N2 Diagram can be created as part of a presentation
using a spreadsheet or using tool that has the capability.
Engineers often create gigantic N2 Diagrams for highly
complex system that have small fonts, require an entire office
wall to post, and are extremely difficult to read. To mange
complexity, a rule of thumb based on managerial “span of
control” concepts is to limit the quantity of entities in an

architecture for a given level of abstraction to a maximum of
6–8. This is more manageable and keeps everyone focused.

The office wall approach, which is sometimes justified,
becomes so overwhelming with the amount of information
that it results in a case of proverbial “can’t see the forest for
the trees.” This violates the intent of being able to focus on
a substantive review of the ERs and architecture.

An N2 Diagram is generally used as an analytical working
paper that provides the basis that leads to the creation of the
System Element Architecture (SEA) Construct for an entity
shown in Figure 8.13.

8.6.4 Importance of the System Elements Concept

The System Elements concept taxonomy (Tables 8.1 and 8.2)
is important for three reasons:

• First, the System Elements enable us to organize,
classify, and bound System and Entity abstractions
and their interactions. That is, it is a way to differentiate
what is versus what is not included in the system.

• Second, the SEA establishes a common framework for
developing the logical and physical system architec-
tures of each entity within the system hierarchy.

• Third, the System Elements serve as an initial start-
ing point construct for allocations of multi-level per-
formance specification requirements.
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Figure 8.11 N x N (N2) Diagram Illustrating System Element ERs and Interface
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Figure 8.12 Integrated Definition for Function Modeling (IDEF0) Construct. (Source:
IDEF0 (1993), Figure 3, p. 12.)
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TABLE 8.2 System Entity Decomposition and Integration Guidelines

Level
or Tier Nomenclature Entity Decomposition/Integration Guidelines (Figure 8.7)

0 User’s System Level The User’s System is bounded by its Enterprise or organizational missions and consists of one or
more SOIs required to accomplish that mission within its Operating Environment.

1 System Level Each instance of a System consists of at least two or more instances of Segment, Product,
Subsystem, Assembly, Subassembly, or Part Level entities or combinations thereof.

2 Segment Level Entity If the Segment Level of abstraction or class is applicable, each Segment Level entity consists
of at least two or more instances of Product, Subsystem, Assembly, Subassembly, or Part
Level entities or combinations thereof.

3 Product Level Entity If the Product Level of abstraction or class is applicable, each instance of a Product Level
entity consists of at least two or more instances of Subsystem, Assembly, Subassembly, or
Part Level entities or combinations thereof.

4 Subsystem Level Entity If the Subsystem Level of abstraction or class is applicable, each instance of a Subsystem
Level entity consists of at least two or more instances of Assembly, Subassembly, or Part
Level entities or combinations thereof.

5 Assembly Level Entity If the Assembly Level of abstraction or class is applicable, each instance of an Assembly Level
entity consists of at least two or more instances of Subassembly or Part Level entities or
combinations thereof.

6 Subassembly Level Entity If the Subassembly Level of abstraction or class is applicable, each instance of a Subassembly
Level entity must consist of at least two or more instances of Part Level entities.

7 Part Level Entity The Part Level is the lowest decompositional element of a system.

Despite strong technical and analytical skills, Engineers
are sometimes poor organizers of information. Therein lies
a fundamental problem for the “Engineering of systems.”
Being able to understand, frame, and structure the problem is
50% of the solution. The framework of the SEA Construct in
Figure 8.13 provides the framework for defining the system
and its boundaries.

The challenge in analyzing and solving System Devel-
opment and Engineering problems is being able to identify,
organize, define, and articulate the relevant elements of a
problem (objectives, initial conditions, assumptions, etc.) in
an easy-to-understand, intelligible manner that enables us to
conceptualize and formulate the solution strategy. Establish-
ing a standard analytical framework and its interfaces fol-
lowed by decomposition and refinement of the architecture
enables traditional Engineering to apply “plug and chug”
mathematical and scientific principles, the core strength of
Engineering education and training.

8.6.5 Developing the SEA

Based on an analysis of the interactions among the System
Elements from the matrix in Figure 8.10, we can create the
SEA construct shown in Figure 8.13. This construct serves
as a “headwaters” template for developing systems, product,
or services. Whereas most ad hoc architectures reflect per-
sonal experiences, you can begin with this simple template.
Chapter 10 will discuss application of the SEA to the SOI
and external systems within its Operating Environment.

8.6.6 Integrating the System Levels of Abstraction and
System Elements Concepts

The preceding discussion of the System Elements im-
plies that an SOI’s Mission System and Enabling Sys-
tem(s) are comprised of Personnel, Equipment, Mission
Resources, Procedural Data, System Responses, and
Facilities System Elements. From the perspective of what
is required for a system, this is true. However, some sys-
tems may not require Personnel. Consider the following
examples.

Example 8.8

Some systems such as a commercial aircraft
performing its Mission System role require
an on-board Personnel Element - flight
crew consisting of pilots, flight attendants,
et al. Other systems such as a sending a plan-

etary space probe and rover to Mars as a Mission System
require a Personnel Element, not on-board the spacecraft,
but on Earth as part of the rover’s Enabling System.

When the Personnel Element is required, it may oc-
cur at the higher levels of abstraction such as System,
Product, or Subsystem Levels. For example, an
Enterprise – System Level - such as a TV station con-
sists of a Control Room—Subsystem Level— that consists
of numerous integrated Personnel–Equipment Element
workstations - Assembly Level, each as a performing entity,
working to achieve their respective missions.
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Observe that we said Control Room Subsystem and
Assembly Level Personnel-Equipment workstations.
However, avoid being lulled into believing that the
Subsystem Level or the Assembly Level by virtue of
their connotations are exclusively Hardware. Not true!
Equipment and its constituent Hardware and Software
when integrated and operated by a human – Personnel El-
ement – serve as a performing entity that may be designated
as a Subsystem, Assembly.

8.6.6.1 Performing Entities Concept

Principle 8.2

System levels of abstraction—System,
Product, Subsystem, etc.—within each rep-
resent integrated sets of performing entities
that (1) include Equipment—Hardware
and/or Software, Resources, Procedural

Data, System Responses and (2) may or may not include the
Personnel or Facilities Elements

The challenge for SEs is how do you know that the
Personnel Element is required? The answer resides in un-
derstanding the concept of a performing entity that requires
(1) Equipment Element only, Personnel Element only,
or the integration of Personnel–Equipment Elements.
As we will discuss in Chapter 24, a key trade-off occurs

for decisions concerning system implementation—what the
Personnel Element does best versus what the Equipment
does best (Figure 24.14)—as well as operational cost consid-
erations. The key decision is: what is the appropriate mix of
Personnel–Equipment tasks that results in achievement of
the required performance for the least cost for development
and life cycle Total Cost of Ownership (TCO)?

To illustrate how performing entities can occur at any
Level of Abstraction, Figure 8.14 illustrates the relationship
of System Levels of Abstraction and the System Elements.
On the left side, we have the System Level that might repre-
sent hierarchical decomposition of a Mission System or an
Enabling System. Each entity at each Level of Abstraction
may include one or more of the System Elements.

Referring to Figure 8.14, entities at each Level of Ab-
straction might be comprised of some or all of the System
Elements. However, in general, the Personnel Element
is typically limited to the Product or Subsystem Lev-
els, especially in control center applications depending on
complexity.

Author’s Note 8.6

Recognition of the performing entities
concept at various levels of abstrac-
tion is a key discussion point later for
Chapter 21. For example, there are dif-
ferent ways of filling a solution space
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such as (1) automated Equipment only, (2) Personnel only,
(3) Personnel manually operating the Equipment, or (4) Per-
sonnel operating automated or semi-automated Equipment.
When you specify a System Performance Specification (SPS)
or Entity Development Specification (EDS), you treat the
performing System/Entity as an object (Figures 3.2 and 20.4)
and avoid specifying how the solution space is to be imple-
mented physically as noted in list items 1 — 4 above.

Based on the preceding paragraph, Principle 8.2 may
appear to be obscure. Let’s clarify:

• Enterprise Systems
∘ Require all of the System Elements—Mission

Resources, Procedural Data, Personnel,
Equipment - Hardware and possibly Software,
System Responses, and Facilities. The
Equipment Element—owned, rented, or leased—
could be as simple as office desks and chairs, office
copier, FAX, telephone, desktop computers, etc.

• Engineered Systems
∘ Require Mission Resources, Procedural Data,

Equipment, and System Responses. Equipment
such as machined or mass-produced hand tools do
not require Software; however, computers require
Software.

∘ Typically depend on Enabling Systems to provide
the Personnel and Facilities Elements. Recall our
earlier discussion of Figure 8.1 and the importance
of delineating whether the User – operator or main-
tainer – is considered part of the system.

Example 8.9

Race Car-Driver Mission System
and Pit Crew Enabling System as
Integrated Performing Entities

To better illustrate the performing entities
concept, consider the illustration shown in Figure 8.15
(Christie, 2014). The figure illustrates two high level per-
forming entities: (1) a Race Car-Driver Mission System and
(1) its Pit Crew Enabling System. The Mission Event Time-
line (MET) for servicing the Race Car-Driver System is 3.5
seconds (Kolwell, 2013). Think about it! This includes jack-
ing the vehicle, changing tires, checking and replenishing
lubricants and coolants, fueling the vehicle, cleaning win-
dows, et al in 3.5 seconds or less. This is not simply a
case of training the Pit Crew to work faster. The racecar’s
Equipment design will ultimately limit how fast the Pit Crew
can perform preventive and corrective maintenance actions
(Chapter 34).

SE of the vehicle must factor in this MET in the de-
sign of the race car and its components – wheels, lift
points and devices, et al – to ensure completion of the
maintenance the tasks in 3.5 seconds. Each interaction be-
tween the Personnel – tire changers, jack men, et al;
Equipment - jacks, air wrenches, et al; Mission Re-
sources – ties, air, et al; Procedural Data – racing rules;
Facilities – bounded work safety areas; and System Re-
sponses – completed maintenance actions on time - are crit-
ical for success. Figure 8.15 illustrates and exemplifies the
concept of performing entities depicted in Figure 8.14.

Figure 8.15 Race Car Pit Crew – Performing Entities Example. (Source: Bryan (2014).)
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8.7 CHAPTER SUMMARY

In summary, this chapter provided the details of the System
Elements introduced in Chapter 3. Our discussions:

• Defined, scoped, and provided details for each of the
System Elements—Mission Resources, Procedural
Data, Personnel, Equipment, System Responses,
and Facilities.

• Introduced the concept of logical and physical relation-
ships as a basis for overcoming the ad hoc, endless loop
Plug and Chug … SBTF-DPM Engineering Paradigm
(Chapter 2).

• Introduced a matrix and N x N (N2) Diagram approach
to facilitate definition of logical and physical relation-
ships among the System Elements.

• Introduced the concept of an SEA Construct that
serves starting point for architecting an SOI, Mission
System(s), Enabling System(s), or the Equipment
Element.

• Introduced the concept of performing entities as
an abstraction without regard to their implemen-
tation via Personnel, Equipment, or integrated
Personnel-Equipment Systems.

Given this foundation, we are now ready to shift our
discussions to higher level systems – SOI Mission Systems
and Enabling Systems integration and interactions with
external system in their Operating Environment.

8.8 CHAPTER EXERCISES

8.8.1 Level 1: Chapter Knowledge Exercises

Answer each of the questions listed in “What You Should
Learn from This Chapter” section:

1. What graphical tool enables us to delineate what is
within the scope of a system, product, or service’s
boundaries?

2. What graphical tool enables us to investigate the interre-
lationships among a set of system entities?

3. What is a Context Diagram? What is its purpose and how
is it used?

4. Assume you have been tasked to describe a context
diagram to someone unfamiliar with it. Write a brief
description of its elements, how to construct it, and what
information should be depicted.

5. What is a System Element?

6. What are the key components of the Equipment Ele-
ment? Give examples.

7. What are the key components of the Mission Re-
sources Element? Give examples.

8. What are the key components of the Procedural Data
Element? Give examples.

9. What are the key components of the Personnel Ele-
ment? Give examples.

10. What are the key components of the Facilities Ele-
ment? Give examples.

11. What is CSE? Give examples.

12. What is PSE? Give examples.

13. What is TME? Give examples.

14. What is Support and Handling Equipment (CSE)? Give
examples.

15. How do the System Elements relate to the System
Architecture?

16. What is the System Element Architecture (SEA) Con-
struct? What purpose does it serve? Where is it applied?

17. Should the Software Element be separate from the
Equipment Element?

18. What types of systems comprised an SOI?

19. What are the key System Elements of an SOI’s Mission
System?

20. What are the key System Elements of the SOI’s
Enabling System?

21. What is an N2 Diagram? What is its purpose and how is
it used? What problem(s) does it solve for an SE?

22. Create an N2 Diagram for each of the following Mission
Systems using Figure 8.11 as a template create identi-
fiers for each interface. Annotate each box with bulleted
contents.

a. Fast food restaurant

b. Desktop computer system

c. Enterprise organization

23. Using information from Exercise 22, create an alphabet-
ized listing by Interface ID that describes the interactions
that occur across each interface by identifier.

24. Using information from Exercise 22, graphically cre-
ate each system’s architecture using the System El-
ement Architecture Construct shown in Figure 8.13.
Cross check interfaces and IDs of N2 Diagram with
the SEA.

25. Using Figure 8.15 as a reference, develop a description
of the Race Car-Driver Mission System and Pit Crew
Enabling System based on performing entity teams.
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Decompose the two systems into a graphical hierarchy
of teams using Levels of Abstraction, identify the Sys-
tem Elements for each team including Personnel roles,
assign specific mission objectives - maintenance actions
- to each team, and describe sequences of actions, and a
notional MET required to prepare the race car to return
to the race in 3.5 seconds.

8.8.2 Level 2: Knowledge Application Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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9
ARCHITECTURAL FRAMEWORKS OF THE SOI AND ITS
OPERATING ENVIRONMENT

Engineers, especially SEs, often sit at a computer and create
ad hoc, incoherent System level architectures comprised
of a random conglomeration of Subsystem, Assembly,
Subassembly, and Part Level components. Yes, Part
Level components!

• You know you are in trouble when … someone cre-
ates a complex System Level architecture and the di-
agram contains an Analog-to-Digital (A-D) integrated
circuit device with a part number and pinouts for wire
connections.

Unfortunately, this reality reflects a deficiency in Engi-
neering education, not necessarily the Engineers. When En-
gineers lack bona fide SE & Development (SE&D) courses,
they naturally gravitate to mimicking the so-called architec-
tures of others that are perceived to know what they are doing.
Attempts to create coherent system architectures often turn
into brainstorming sessions that “reinvent the wheel” despite
similarities with other projects. The results are often unpre-
dictable driven by different views in a meeting to achieve
a consensus based on “opinion polls” of the informed and
uninformed.

The System Element Architecture (SEA) Construct intro-
duced in Chapter 8 provides a simple “headwaters” template
for creating an architecture that applies to any Entity at
any Level of Abstraction. Since the construct reflects the pri-
mary System Elements that comprise many different types
of architectures, it serves as an informational starting point
to be tailored for a specific system.

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

Chapter 9 employs the SEA Construct as a “build-
ing block” that can be integrated into levels thereby pro-
viding a more coherent architecture. As a result, we can
create multi-level system architectures frameworks for (1)
the SOI, Mission System, Enabling Systems, and con-
stituent entity Levels of Abstraction and (2) external systems
within the SOI’s Operating Environment. The resulting
multi-level architectures enable us to identify, define, and
control interfaces and assign project teams such as Integrated
Product Teams, Product Development Teams.

9.1 DEFINITIONS OF KEY TERMS

• Entity Relationship (ER)—Refer to Chapter 8 Defi-
nition of Key Terms.

• Hierarchical Interactions—Actions between natural
and authoritarian Command and Control (C2) systems
that lead, direct, influence, or constrain Mission Sys-
tem and Enabling System actions, behavior, and per-
formance. For analytical purposes, we aggregate these
C2 systems into a single entity abstraction referred to
as the Higher-Order Systems Domain.

• Higher-Order Systems—Systems that exhibit C2
authority over Human Systems or Natural Systems
that are governed by natural and physical forces and
laws related to the sciences.

• Human Systems—Systems created by humans such
as Enterprises, organizations, or Engineered Sys-
tems – robots, remote control devices, an so forth -

http://www.wiley.com/go/systemengineeringanalysis2e
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that perform chartered missions to accomplish specific
outcomes and performance objectives. Enterprise or
Enterprise systems include those accountable for an
SOI and its missions or external systems – cooperative,
benign, aggressive, or hostile - within the SOI’s
Operating Environment. These systems exercise
hierarchical C2 over lower tier systems via “chain
of command” authoritative structures, policies, and
procedures and mission tasking; constitutions, laws,
and regulations; public acceptance and opinion; and
so on.

• Induced Environment Systems—Discontinuities,
perturbations, or disturbances created when natural
phenomenon and events occur or Human Systems
interact with the Natural Environment. Examples
include thunderstorms, oil spills, Electromagnetic In-
terference (EMI), and so forth.

• Natural Environment Systems—All natural,
non-human, living, atmospheric, and geophysical
entities that comprise the Earth and celestial bodies.

9.2 APPROACH TO THIS CHAPTER

Our discussions in Chapter 9 focus on creating an
all-encompassing, multi-level system architecture that

enables us to analytically represent the SOI and its inter-
actions with its OE. Figure 9.1 depicts a graphical model
that serves as the analytical framework of our discussions.
Observe that the graphic consists of:

• An Enterprise System consisting of Higher-Order
Systems and the SOI, which consists of Mission
System(s) and Enabling Systems.

• An OE comprised of a Higher-Order Systems
Domain and a Physical Environment Domain com-
prised of Natural Systems, Induced, and Human
Systems Environments.

Our discussion begins with the SOI and its architecture.
Since the SOI has various types of ERs with external systems
in its OE, we will introduce the concept of logical and
physical ERs. We will conclude the chapter with a discussion
of the OE’s architecture.

9.3 INTRODUCTION TO THE SOI
ARCHITECTURE

Systems, products, and services exist within the boundaries
of its User’s Level 0 System. The context of the User’s
Level 0 System could be a division, department, program,
or project level.

Mission System(s)
• Mission Resources
• Procedural Data
• Personnel
• Equipment – HW, SW 
• System Responses

Natural
Systems

Environment

Induced
Systems

EnvironmentEnabling System(s)
• Mission Resources
• Procedural Data
• Personnel
• Equipment – HW, SW 
• System Responses
• Facilities

User’s Level 0
System of Interest (SOI) Physical Environment Domain

Higher Order Systems

• Organization
• Roles and Missions 

• Resources
• Operating Constraints

Enterprise Operating Environment

• Friendly
• Cooperative
• Benign
• Adversarial
• Harsh
• Hostile

Human Systems
Environment

SOIs

Higher Order Systems

• Organization
• Roles and Missions 

• Resources
• Operating Constraints

Figure 9.1 An Analytical Perspective of a System of Interest’s (SOI) Mission Sys-
tem – Enabling System Interactions with External Systems in their Operating Envi-
ronment (OE)
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Within the User’s Enterprise, there are Higher-Order
Systems that exercise C2 over the various SOI assets. Each
SOI consists of at least one or more Mission Systems
supported by one or more Enabling Systems. Given this
overview, let’s begin by establishing the architecture of the
SOI’s Mission System and Enabling Systems.

9.3.1 Developing the SOI Architecture

To create an SOI’s architecture, the context of an SOI
might be (1) a Mission System and Enabling System(s)
that interact with each other, (2) one of the System Ele-
ments – Personnel Equipment, and so forth, or (3) an
Entity at any Level of Abstraction within the System
Elements. Recall that every system performs two contextual
roles (Figure 4.1): a Mission System (Producer) Role and
an Enabling System (Supplier) Role to serve as a “Supply
Chain” of contextual Enabling Systems to perform mis-
sions.

We also know that:

• A system, product, or service consists of an integrated
set of System Elements that collectively enable it to
operate as a performing entity.

• The SEA construct provided in Figure 8.13 graphi-
cally integrates those System Elements into an Ar-
chitecture Block Diagram (ABD) that serves as an

architectural “building block” for any type of Human
System—Enterprise or Engineered.

Therefore, we leverage the SEA’s construct as an archi-
tectural building block to represent the architecture of the
Mission Systems and its Enabling System as shown in
Figure 9.2.

The SOI’s Enabling System architecture, like the
Mission System, also employs the SEA as its architectural
starting point. Due to restricted space, we have abstracted
the Enabling System architecture in Figure 9.2 into a
listing of these System Elements.

In summary, the SOI Mission System and Enabling
Systems exploit the SEA construct to create an analytical
framework that provides consistency and continuity, which
is much easier to understand, provides a simple way of de-
veloping architectures, and provides more complete cover-
age than the ad hoc Plug and Chug … SBTF Engineering
Paradigm.

During Pre-Mission, Mission, and Post Mission oper-
ations, the Mission System and Enabling System are
integrated into the SOI shown on the left side of Figure 9.1,
interact with each other, and interact with the Natural Sys-
tems, Induced, and Human Systems Environments that
comprise the SOI’s Operating Environment (OE).
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Figure 9.2 An Analytical Perspective an SOI’s Architecture Depicting Interactions Be-
tween the Mission System, Its Enabling System(s), and their Operating Environment
(OE).
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9.3.2 OE Architecture Concepts

A significant aspect of Systems Engineering (SE) is recog-
nizing and appreciating the need to fully understand, ana-
lyze, and bound relevant portions of a Mission System’s or
Enabling System’s OE. Why? SEs and System Analysts
must be capable of:

1. Fully understanding the User’s Enterprise system mis-
sion, objectives, and most probable or likely Use Case
(UC) applications.

2. Analytically organizing, extracting, and decomposing
the mission relevant portions of the OE into manage-
able Problem Space(s) and Solution Space(s).

3. Effectively developing a system solution that ensures
mission success within the constraints of cost, sched-
ule, technology, support, and risk factors.

Engineers, scientists, and analysts can academically ana-
lyze a system’s OE’s Problem Space forever—a condition
referred to as “analysis paralysis.” However, success ulti-
mately depends on making informed decisions based on the
key facts, working within the reality of limited resources,
drawing on seasoned system design experience, and exercis-
ing good judgment. The challenge is that most large complex
problems require large numbers of disciplinary specialists to
solve these problems. This set of people often has diverging
rather than converging viewpoints of the OE.

As an SE or System Analyst, your job is to facilitate
a convergence and consensus of viewpoints concerning the
definition of the System’s OE. Convergence and consensus
must occur in three key areas:

1. What is/is not relevant to the mission in the OE?

2. What is the degree of importance, significance, or
influence of the OE’s characteristics on missions?

3. What is the probability of occurrence of those items of
significance?

So, how do you facilitate a convergence of viewpoints to
arrive at a consensus decision?

As leaders, the SE and the System Analyst must have a
strategy and approach for quickly organizing and leading the
key stakeholders to a convergence and consensus about the
OE. Without a strategy, chaos and indecision can prevail.
You need skills that enable you to establish an analytical
framework for OE definition decision-making.

As a professional, you have a moral and ethical obligation
to yourself, your Enterprise, and society to ensure the safety,
health, and well-being of the User and the public when it
comes to system operations. If you and your team overlook or
choose to ignore a key attribute of the OE that impacts human
life and property, there may be severe consequences and
penalties. Therefore, establish common analytical models

for you and your team to use in your business applications
to ensure you have thoroughly identified and considered all
OE entities and elements that impact system capabilities and
performance.

9.4 UNDERSTANDING THE OE ARCHITECTURE

Principle 9.1

OE Domains Principle

A system’s OE consists of two classes
of domains: a Higher-Order Systems
Domain and a Physical Environment
Domain.

Analytically, the OE that influences and impacts a sys-
tem’s missions can be abstracted several different ways. For
discussion purposes, the OE can be considered as consisting
of two high-level domains: (1) the Higher-Order Systems
and (2) the Physical Environment as shown in Figure 9.3.

9.4.1 Introduction to the OE Domains and System
Elements

When we think of a system’s OE, people naturally focus on
weather conditions. The reality is the OE consists of anything
outside a system’s boundaries. This leads to the question:
Where do we draw system’s boundaries?

• External to the system, product, or service?

• External to the Enterprise employing the system?

The answer is contextual depending on the frame of refer-
ence of the system. This includes (1) the Natural Systems
Environment such as weather conditions and atmospheric
conditions, (2) Engineered Systems under the C2 of other
humans (e.g., internal and external to the Enterprise), and
(3) the consequential effects of Engineered System interac-
tions with the Natural Systems Environment that produce
effects such as pollution and Electromagnetic Interference
(EMI).

Enterprise systems are hierarchical and serve at the plea-
sure of Higher-Order Systems such as executive manage-
ment and shareholders. For an Enterprise system such as a
project, its OE includes:

• Multi-level organizations within an Enterprise such as
marketing, accounting, and manufacturing, as well as
Higher-Order Systems such as executive manage-
ment, shareholders, industry, and government.

• External organizations such as customers, users, and
suppliers.
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Architecture

Human Systems—Enterprise and Engineered
systems—also must be capable of not only supporting
achievement of the required mission but also surviv-
ing encounters and interactions with Natural Systems,
Induced, and Human Systems Environments that comprise
the Physical Environment Domain.

As shown in Figure 9.3, the OE is partitioned analytically
into a Higher-Order Systems Domain and a Physical
Environment Domain. Let’s explore, define, and scope
each of these domains.

9.4.2 Higher-Order Systems Domain Architecture

Principle 9.2

Higher-Order Systems Principle

Every Human System exists and performs
missions under the C2 of Higher-Order
Systems Domain.

Human Systems—Enterprise and Engineered—perform
as individual SOIs within a hierarchical System of Sys-
tems (SoS). Each higher-level abstraction serves as a
Higher-Order System within the SoS hierarchy that has
its own scope of authority and operational boundaries.
Higher-Order Systems are characterized by:

• Enterprise purpose or mission.

• Enterprise objectives.

• An Enterprise organizational structure.

• Command media such as rules, policies, and proce-
dures of operation.

• Resource allocations.

• Operating constraints imposed on embedded system
entities.

• Accountability and objective evidence of value-added
tasks performed.

• Delivery of systems, products, and services.

For most Human Systems, we refer to the vertical
Higher-Order System to SOI interaction as authoritative
C2. Military systems refer to it as C4I—Command, Control,
Computers, Communications, and Intelligence.

Principle 9.3

Higher-Order System Elements
Principle

Higher-Order Systems are composed of
four analytical System Elements: (1) an

Organization Element, (2) a Roles and Missions Ele-
ment, (3) an Operating Constraints Element, and (4) a
Resources Element.
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If we observe the behavior of Higher-Order Systems
and analyze their interactions, we can derive four types of
System Elements: (1) Organization, (2) Roles and Mis-
sions, (3) Operating Constraints, and (4) Resources.
Let’s define each of these system element classes:

• Organization System Element—The hierarchical
C2 reporting structure, authority, and its assigned ac-
countability for Enterprise roles, missions, and objec-
tives.

• Roles and Missions System Element—The various
roles allocated to and performed by Higher-Order
Systems and the missions associated with these roles
and objectives to fulfill the Enterprise or organization’s
vision. Examples include strategic and tactical plans,
roles, and mission goals and objectives.

• Operating Constraints System Element—
International, federal, state, and local statutory, regula-
tory, policies, and procedures as well as physical laws
and principles that govern and constrain SOI actions
and behavior. Examples include assets; capabilities;
consumables and expendables; weather conditions;
doctrine, ethical, social, and cultural considerations;
and so forth.

• Resources System Element—The natural and phys-
ical raw materials, investments, and assets such as time,
money, and expertise that are allocated to the Physical
Environment and SOI to sustain missions—namely, de-
ployment, operations, support, and disposal.

9.4.2.1 Contexts of Higher-Order Systems
Higher-Order Systems have two application contexts:
(1) Human Systems, such as authoritative C2 or social
structure moirés, and (2) physical or natural laws of science.

• Human Systems Context—Enterprises and govern-
ments exercise hierarchical authority C2 over lower
tier systems via “chain of command” structures, poli-
cies, and procedures and mission tasking; constitutions,
laws, and regulations; public acceptance and opinion;
and so on.

• Physical or Natural Forces and Laws
Context—Physical and natural forces that influ-
ence, interact with, and exhibit levels of control over
Human Systems – Enterprise and Engineered – and
their missions.

Given this structural framework of the Higher-Order
Systems domain, let’s define its counterpart, the Physical
Environment Domain.

9.4.3 The Physical Environment Domain Architecture

Human Systems generally require some level of interaction
with external systems within the Physical Environment
Domain. In general, we characterize these interactions with
terms such as friendly, cooperative, benign, adversarial, or
hostile.

Principle 9.4

Physical Environment Domain
Composition Principle

A system’s Physical Environment
Domain is composed of three classes of

analytical System Elements: a Natural Systems Environ-
ment, a Human Systems Environment, and an Induced
Environment.

Natural and Human Systems Environments Sys-
tems interact; the Induced Environment represents the
time-dependent result of that interaction.

If we observe the Physical Environment Domain
and analyze its interactions with the SOI, we can identify
three classes of System Elements: (1) Natural Systems
Environment, (2) Human Systems, and (3) the Induced
Environment as shown in Figure 9.3. Let’s briefly define each
of these:

• Natural Environment System Element—All liv-
ing, atmospheric, aquatic, and geophysical entities that
comprise the Earth with varying amounts of these in
celestial bodies.

• Human Systems Element—External Enterprise or
Engineered systems created by humans that interact
with the SOI, its Mission System(s), and Enabling
Systems at all times, during Pre-Mission, Mission, and
Post-Mission.

• Induced Environment System Element—
Discontinuities, perturbations, or disturbances created
when natural phenomenon and events occur or Human
Systems interact with the Natural Environment.
Examples include thunderstorms, wars, and oil spills.

Based on this high-level introduction and identification of
the OE System Elements definitions, we are now ready to
address the structure of the OE architecture. Let’s begin with
the Physical Environment Domain.

9.4.3.1 Physical Environment Domain Levels of
Abstraction The Physical Environment Domain con-
sists of three types of System Elements, each with three
Levels of Abstraction as illustrated in Figure 9.4. For
example, the Human Systems Environment consists of
three levels of analytical abstractions: (1) a contextual
Local Environment, (2) a Global Environment, and (3) a
Cosmospheric Environment.
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• Human Systems (Earth Local Environment Level
of Abstraction) include anyone or anything that influ-
ences or interacts with an SOI such as cars, roads, ani-
mals, and so forth.

• Human Systems (Earth Global Environment Level
of Abstraction) include any one or anything that influ-
ences or interacts with an SOI such as carbon dioxide
emissions, space debris, and so forth.

• Human Systems (Cosmospheric Environment Level
of Abstraction) include spacecraft, space debris, so
forth.

Author’s Note 9.1

Analytical Representation of the
Physical Systems Environment

You may decide that some other quan-
tity of system levels of abstraction is

more applicable to your line of business. That’s okay. What
is important is that you and your team have a simple approach
for abstracting the complexity of the Physical Environ-
ment Domain into manageable pieces. The “pieces” must
support meaningful analysis and ensure coverage of all rele-
vant aspects that relate to your problem and solution spaces.
Remember, bounding abstractions for analysis is analogous
to cutting a pie into 6, 8, or 10 pieces. As long as you ac-
count for the totality, you can create as many abstractions as
are reasonable and practical; however, keep it simple!

9.4.3.1.1 The Natural Environment System Element
The Natural Environment System Element includes all
naturally occurring entities that are not created by humans.
These entities are actually environmental “systems” that
coexist within a precarious balance of power. In general,
these systems represent geophysical and life form classes of
objects.

9.4.3.1.2 Cosmospheric Environment Level of Abstraction
The Cosmospheric Environment is an analytical ab-
straction that represents the totality of the Cosmos—the
universe—as humans understand it. Analytically, the Cos-
mospheric Environment consists of an infinite number of
Global Environments—suns, stars, planets, moons, and
asteroids.

You may ask why the Cosmospheric Environment is
relevant to SE. Consider space probes that have flown beyond
the boundaries of our solar system. The SEs and physicists
who bounded the OE had to identify the global entities
that had a potential impact on the space probe’s mission.
Obviously, these global entities did not move out of the way
of the probe’s mission path. The SEs and physicists had to
understand:

1. What known entities they might encounter during the
missions.
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2. What each global entity’s performance characteristics
are.

3. How to navigate and maneuver among those entities
throughout the mission without an adverse or catas-
trophic impact.

9.4.3.1.3 Global Environment Level of Abstraction The
Global Environment is an analytical abstraction that repre-
sents the physical environment surrounding a heavenly body.
This includes entities such as stars, planets, moons, etc.
Analytically, we state that the Global Environment of any
heavenly body consists of an infinite number of Local Envi-
ronments, each relative to an SOI observer’s frame of refer-
ence. For example, a Local Environment – sphere - surrounds
your automobile as it travels down a highway. The challenge
is, how do you bound the Local environment for analysis pur-
poses in terms of boundary conditions – weather, size, and so
forth. If you operate an airline, each aircraft is surrounded by
a Local Environment sphere within the Earth’s Global Envi-
ronment. In contrast, NASA launches interplanetary space
probes experience an infinite number of Local Environments
throughout the mission and global environments—namely,
Earth, planets, and the planetary moons. Although Global
Environments may share a common set of physical at-
tributes, such as gravity and some level of atmosphere,
their physical magnitudes can vary significantly. As a re-
sult, OE requirements may require SEs to bound ranges of
worst-case parameters across the spectrum of global entities
encountered.

As humans, our observer’s frame of reference is planet
Earth. Therefore, we typically relate to the Global Environ-
ment as that of the Earth and its gaseous atmosphere. Some
simply refer to it as the Earth’s environment. Applying the
same convention to Mars, we could refer to it as the Mars’s
Global Environment.

The challenge question SEs need to answer is:

• How do we bound and model a varying continuum
between celestial bodies such as the electromagnetic
field, the atmosphere, or the gravity?

From an SE perspective, one approach is to delineate the
two environments by asking the question, What characteris-
tics below or above some arbitrary threshold are unique or
“native” to the “global” SOI? If the boundary conditions of
two or more entities overlap, the objective would be to de-
termine criteria for the boundary conditions relative to the
mission.

As an SE or Systems Analyst, you represent the technical
side of the program technical boundary for the discussions
that follow. Thus, you have a professional, technical obliga-
tion to ensure that the integrity of these decisions is supported
by:

1. Objective, factual data to the extent practical and
available.

2. Valid assumptions that withstand peer and stakeholder
scrutiny.

3. Most likely or probable operational scenarios and con-
ditions.

Remember, the analytical relevance of the decisions you
make here may have a major impact on your system’s design,
cost, reliability, maintainability, vulnerability, survivability,
safety, and risk considerations. These decisions may have
adverse impacts on human life, property, and environment.

Analytically, we can partition the Natural Environ-
ment’s Global and Local levels of abstraction into four
sub-elements:

• Atmospheric Systems Environment

• Geospheric Systems Environment

• Hydrospheric Systems Environment

• Biospheric Systems Environment

Author’s Note 9.2

Analytical Partitioning of the
Natural Environment

The point of our discussion here is not
to present a view of the physical sci-

ence. Our intent is to illustrate how SEs might approach anal-
ysis of the Natural Environment. Ultimately, you will
have to bound and specify applicable portions of this envi-
ronment that are applicable to your SOI. The approach you
and your team choose to use should be accurately and pre-
cisely representative of your system’s operating domain and
the relevant factors that drive Mission System capabilities
and levels of performance. However, you should always con-
sult Subject Matter Experts (SMEs), who can assist you and
your team in abstracting the correct environment.

9.4.3.1.4 Atmospheric Systems Environment The Atmo-
spheric Systems Environment is an abstraction that repre-
sents the gaseous layer continuum of varying density that
extends from the surface of a planetary body outward into
space.

9.4.3.1.5 Geospheric Systems Environment The Geo-
spheric Systems Environment is an analytical abstraction
that represents the physical landmass of a star, moon, or
planet. From an Earth sciences perspective, the Earth’s
Geospheric Systems Environment includes the Lithospheric
Systems Environment, the rigid or outer crust layer of the
Earth. In general, the Lithosphere includes the continents,
islands, mountains, and hills that appear predominantly at
the top layer of the Earth.
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9.4.3.1.6 Hydrospheric Systems Environment The Hydro-
spheric Systems Environment is an analytical abstraction
that represents all water systems, such as lakes, ponds,
rivers, streams, waterfalls, underground aquifers, oceans,
tidal pools, and ice packs, that are not part of the Atmospheric
Systems Environment. In general, the compositional enti-
ties within the Hydrospheric Systems Environment include
rainwater, soil waters, seawater, surface brines, subsurface
waters, and ice.

9.4.3.1.7 Biospheric System Environment The Biospheric
Systems Environment is an analytical abstraction that repre-
sents the environment comprising all living organisms on the
surface of the Earth or celestial body. In general, the Earth’s
Biosphere consists of all environments that are capable of
supporting life above, on, and beneath the Earth’s surface
as well as the oceans. Thus, the biosphere overlaps a por-
tion of the Atmosphere, a large amount of the Hydrosphere,
and portions of the Lithosphere. Examples include botanical,
entomological, ornithological, amphibian, and mammalian
systems. In general, biospheric systems function in terms of
two metabolic processes: photosynthesis and respiration.

9.4.3.1.8 Local Environment Level of Abstraction The
Local Environment is an analytical abstraction that repre-
sents the Physical Environment encompassing a system’s
current geophysical location. For example, if you are driving
your car, the Local Environment consists of the OE con-
ditions surrounding the vehicle. Therefore, the Local Envi-
ronment includes other vehicles and drivers, road hazards,
weather, and any other conditions on the roads that surround
you and your vehicle at any instant in time. As an SE, your
challenge is leading system developers to consensus on:

1. What is the Local Environment’s SOI observer’s frame
of reference?

2. What are the Local Environment’s bounds (initial
conditions, entities, etc.) at any point in time?

Author’s Note 9.3

Atomic Level Environments

If you are a chemist or physicist,
you may want to consider adding a
fourth Atomic Level environment as-
suming it is germane to your SOI.

Author’s Note 9.4

Discussion Summary

Your “take-away” from the preceding
discussion is not to create five types of
Natural Environment abstractions

and document each in detail for every system you analyze.
Instead, you should view these elements as a checklist to
prompt mental consideration for relevance and significance

and identify those Physical Environment entities that
have relevance to your system. Then, bound and specify
those entities.

9.4.3.1.9 The Human Systems Element Our discus-
sions of the Natural Environment omitted a key entity,
Humans. Since Engineering, in general, focuses on benefit-
ing society through the development of systems, products,
or services, we analytically isolate and abstract humans into
a category referred to as the Human Systems Environment
element. Human Systems include sub-elements that influ-
ence and control human decision-making and actions that
affect the balance of power on the planet.

If we observe Human Systems and analyze how these
systems are organized, we can identify seven types of
sub-elements: (1) historical or heritage systems, (2) cultural
systems, (3) urban systems, (4) business systems, (5) edu-
cational systems, (6) transportation systems, and (7) govern-
mental systems. Let’s explore each of these further.

9.4.3.1.10 Historical or Heritage Systems Historical or
heritage systems as an abstraction include all artifacts, relics,
traditions, and locations relevant to past human existence
such as folklore and historical records.

You may ask why the historical or heritage systems are
relevant to an SE. Consider the following example:

Example 9.1

Let’s assume that we are developing a sys-
tem such as a building that has a placement
or impact on a land use area that has his-
torical significance. The building construc-
tion may disturb artifacts and relics from the

legacy culture, and this may influence technical decisions re-
lating to the physical location of the system. One perspective
may be to provide physical space or a buffer area between the
historical area and our system. Conversely, if our system is a
museum relevant to an archeological discovery, the location
may be an integral element of the building design.

From another perspective, military tactical planners may
be confronted with planning a mission and have an objec-
tive to avoid an area that has historical, cultural, or religious
significance. Systems that have the potential to impact envi-
ronmental resources such as water aquifers, rivers, streams,
and various life forms are often required to assess the envi-
ronmental impact. In these cases, an Environmental Impact
Statement (EIS) is required as well as other supporting infor-
mation.

A Word of
Caution 9.1

Consult your Contracts and Legal organiza-
tions concerning laws and regulations that
may impose specific environmental compli-
ance constraints.
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9.4.3.1.11 Urban Systems Urban systems include all en-
tities that relate to how humans cluster or group them-
selves into communities and interact at various levels of
organization—neighborhood, city, state, national, and inter-
national.

Example 9.2

Urban System Infrastructures

Urban systems include the infrastructure
that supports the business systems environ-
ment, such as transportation systems, pub-

lic utilities, city services, shopping, recreational, medical,
telecommunications, and educational institutions.

SE, from an Urban Systems perspective, raises key issues
that require some form of dependence on predictive assump-
tions about future operational needs. How do SEs plan and
design a road system within resource constraints that provide
some level of insights into the future to facilitate growth and
expansion?

9.4.3.1.12 Cultural Systems Cultural systems are an ana-
lytical abstraction that represents multi-faceted entities that
consist of humans and communal traits and how humans in-
teract, consume, reproduce, and survive. Examples include
the performing arts of music and other entertainment, civic
endeavors, and patterns of behavior. As the commercial mar-
ketplace can attest, cultural systems have a major impact on
society’s acceptance of systems.

9.4.3.1.13 Business Systems Business systems are an
analytical abstraction that represents entities related to
how humans organize into economic-based enterprises and
commerce to produce products and services to sustain a
livelihood. These include research and development, manu-
facturing, products, and services for use in the marketplace.

9.4.3.1.14 Energy Systems Energy systems are an analyt-
ical abstraction that represents entities involved in the ex-
ploration, drilling, recovery, and delivery of energy products
such as oil, natural gas, solar, and wind. These include re-
search and development, manufacturing, products, and ser-
vices for use in the marketplace.

9.4.3.1.15 Communications Systems Communications
systems are an analytical abstraction that represents entities
involved in the preparation, broadcast, and transmission of
information to the marketplace. These include research and
development, manufacturing, products, and services for use
in the marketplace.

9.4.3.1.16 Educational Systems Educational systems are
an analytical abstraction that represents an institution as an
SOI dedicated to educating and improving society through
formal and informal institutions of learning.

9.4.3.1.17 Financial Systems Financial systems are an an-
alytical abstraction that represents institutions such as banks
and investment entities that support personal, commercial,
and government financial transactions.

9.4.3.1.18 Medical Systems Medical systems are an ana-
lytical abstraction that represents hospitals, doctors, and ther-
apeutic entities that administer to the healthcare needs of the
public.

9.4.3.1.19 Transportation Systems Transportation sys-
tems are an analytical abstraction that represents land, sea,
air, and space transportation systems that enable humans
to travel safely, economically, and efficiently from one
destination to another.

9.4.3.1.20 Government Systems Government systems are
an analytical abstraction that represents legal entities related
to governing humans as a society—international, federal,
state, county, and municipality.

9.4.3.1.21 Induced Environment Element The preced-
ing discussions focused on the Natural Environment
and Human Systems as abstractions. While these two el-
ements enable us to analytically organize OE entities, they
are dynamic and physically interactive. In fact, Human
and Natural Environment Systems each create intru-
sions, disruptions, perturbations, and discontinuities in the
other.

Analysis of these interactions can become very com-
plex. We can alleviate some of the complexity by creat-
ing the third Physical Environment Domain element,
the Induced Environment Element. The Induced Envi-
ronment enables us to isolate entities that represent the
existence of time-dependent intrusions, disruptions, pertur-
bations, and discontinuities until they diminish or are no
longer significant or relevant to the system’s mission or op-
eration. The degree of significance of Induced Environ-
ment entities may be temporary, permanent, or dampen as a
function of time. For example, when a just aircraft lands, it
creates vortices, thermal gradients, and so forth that dampen
over time. Depending on their physical size, air controllers
space aircraft distances to ensure a landing aircraft does
not create disturbances that impact the follow-on aircraft’s
landing.

9.4.3.1.22 Other architectural frameworks The
OE imposes various factors and constraints on the capabili-
ties and levels of performance of an SOI, thereby impacting
missions and survival over the planned service life. As an
SE or System Analyst, your responsibility is to:

1. Identify and delineate all of the critical OE conditions.
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2. Bound and describe technical parameters that charac-
terize the OE.

3. Ensure that those descriptions are incorporated into
the System Performance Specification (SPS) used to
procure the SOI.

The process of identifying the SOI’s OE requirements
employs a simple methodology as depicted in Figure 9.5.
In general, the methodology implements the logic reflected
in the Physical Environment levels of abstraction and
classes of environments previously described.

The methodology consists of three iterative loops:

• Loop 1: Cosmospheric level requirements.

• Loop 2: Global entity level requirements.

• Loop 3: Local level requirements.

When each of these iterations is applicable to an SOI,
the Human Systems logic branches out to a fourth
loop that investigates which of the three classes of
environments—Human Systems, Natural Environ-
ment, or Induced Environment—is relevant to the SOI.
For each type of environment that is applicable, require-
ments associated with that type are identified—Human,
Natural, and Induced. When the third loop completes its

types of environment decision-making process, it returns
to the appropriate level of abstraction and finishes with the
local level requirements.

9.4.3.1.23 Entity OE Frame of Reference The preceding
discussions address the OE from an SOI’s frame of refer-
ence. However, lower levels of abstraction within a System
are, by definition, self-contained systems of integrated en-
tities. The OE contextually must be established relative to
the Entity’s frame of reference as illustrated in Figure 9.6.
For example, what constitutes an Assembly Level Entity’s
OE? The OE is anything external to the Assembly’s bound-
ary, such as other Subsystems. Consider the following
example:

Example 9.3

A processor board within a desktop com-
puter chassis has an OE that consists of
the motherboard, other boards it interfaces
directly with, Electromagnetic Interference
(EMI) from power supplies, switching de-

vices, and so on.

9.4.3.1.24 Concluding Point You may ask: Isn’t the
Higher-Order Systems Domain part of the Physical
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Figure 9.6 Understanding the Context of an SOI’s Operating Environment Relative
to the Observer’s Frame of Reference

Environment Domain? You could argue this point. How-
ever, Figure 9.1 represents an analytical perspective with a
key focus on direct, peer-to-peer, and C2 interactions. You
can choose to analytically partition a system any way …
as long as you cover all aspects. Analytically, an SOI is
chartered, resourced, and responds to Enterprise or organi-
zational authority. Therefore, we depict the Higher-Order
Systems in terms of human authoritative or supervisory C2
the SOI.

Are Higher-Order Systems (human) above the Physical
Environment? No, in fact, one can argue that humans are
physically subject subject to its whims. Yet, as we see
in phenomena such as debates about global warming, our
collective actions can have an adverse impact on it long term
and in turn on our lives.

9.4.3.1.25 Summary: OE Concept Our discussion in
this chapter provides an orientation of the OE, its lev-
els of abstraction, and classes of environments. Based
on identification of these OE elements, we introduced
Figure 9.4 to depict analytical ERs among Physical En-
vironment Domain levels of abstraction and its System
Elements. Next, we introduced the concept of the OE
architecture as a framework for linking the OE System
Elements.

9.5 OTHER ARCHITECTURAL FRAMEWORKS

This chapter provides the foundational knowledge in under-
standing the architectural framework of systems. For addi-
tional information concerning domain-specific architectural
frameworks, Refer to ISO-Architecture (2014).

9.6 UNDERSTANDING THE SYSTEM THREAT
ENVIRONMENT

The exploitation of opportunities may be viewed by some or-
ganizations as threatening to the sustainment and survival of
an Enterprise or organization. Whether the scenario involves
increasing market share, defending national borders, or de-
veloping a secure Internet Web site, you must ensure that
your system is capable of sustaining itself and its long-term
survival.

Long-term survival hinges on having a thorough and
complete understanding of the potential threat environment
and having the system capabilities to counter the threats that
serve as obstacles to mission success. So, how does this relate
to SE? When you specify requirements for your system,
system requirements must include considerations of what
capabilities and levels of performance are required to counter
threat actions.



210 ARCHITECTURAL FRAMEWORKS OF THE SOI AND ITS OPERATING ENVIRONMENT

9.6.1 Threats Sources

System threats range from the known to the unknown; some
people refer to the unknown-unknowns. One approach to
identifying potential system threats can be derived from the
Physical Environment Domain—Human, Induced, and
Natural Systems Environments.

9.6.1.1 Natural Systems Environment Threat Sources
Natural Systems Environment threat sources, depending
on perspective, include lightning, hail, wind, rodents, and
disease. For example, squirrels often chew into unprotected
electrical cables, woodpeckers destroy some types of wooden
siding on homes, and so forth.

9.6.1.2 Human Systems Threat Sources Exter-
nal Human Systems—Enterprise and Engineered
systems—threat sources include primarily Personnel
and Equipment Elements. The motives and actions of the
external systems delineate friendly, competitive, adversarial,
or hostile intent.

9.6.1.3 Induced Environment Threat Sources
Induced Environment threat sources include examples
such as contaminated landfills leaking into underground
water aquifers, EMI, space debris high velocity impacts
on spacecraft, ship wakes on smaller vessels, and aircraft
vortices on other aircraft.

9.6.2 Types of System Threats

System threats occur in a number of forms, depending on the
environment—Human Systems, Induced, and Natural
System Environments.

Generally, most Human and Natural Systems
Environment aggressor threats fall into the categories
of strategic threats or tactical threats related to the balance
of power, motives, and objectives.

Other natural threats are attributes of the Natural Sys-
tems Environment that impact a system’s inherent ca-
pabilities and performance. Examples include temperature,
humidity, wind, salt spray, lightning, light rays, and rodents.
Although these entities do not reflect premeditated aggres-
sor characteristics, their mere existence in the environment,
seemingly benign or otherwise, can adversely impact system
capabilities and performance.

9.6.3 Threat Behavioral Characteristics, Actions, and
Reactions

Threats exhibit characteristics and actions that may be
described as adversarial, competitive, hostile, and benign.
Some threats may be viewed as aggressors. In other cases,
threats are generally benign and only take action when
someone “gets into their space.” Here’s an example:

Example 9.4

Unauthorized Intrusion of Sovereign
Airspace

An unauthorized aircraft purposefully or un-
intentionally intrudes on another country’s

airspace creating a provocation of tensions. The defending
system response course of action may be based on protocol
or a measured retaliatory strike or verbal warning.

Threats, in general, typically exhibit three types of behav-
ior patterns or combinations thereof: aggressive, concealed,
and benign. Threat patterns often depend on the circum-
stances. Here’s an example:

Example 9.5

Threat Behavior Patterns

Aggressors exhibit acts of aggression.
Benign threats may “tend to their busi-

ness” unless provoked.
Concealed or sleeper threats may appear to be friendly or

benign or disguised and strike Targets of Opportunity (TOO)
unexpectedly.

The threat environment should be characterized by at-
tributes such as ideology, doctrine, and training are often key
factors in threat actions.

9.6.4 Threat Encounters

When systems interact with known threats, the
interactions—such as encounters or engagements—should
be documented and characterized for later use by other
systems in similar encounters. Threat encounters intended
to probe another system’s defenses can be described with
a number of descriptors: aggressive, hostile, cooperative,
inquisitive, investigative, bump and run, and cat and mouse.

When threat encounters turn hostile provoking defensive
action, systems resort to various tactics and countermeasures
to ensure their survival.

9.6.4.1 System Tactics When systems interact with their
OE, they often engage threats or opportunities. Systems and
system threats often employ or exhibit a series of evasive
actions intended to conceal, deceive, or camouflage the TOO.
Generally, when evasive tactics do not work, systems deploy
countermeasures to disrupt or distract hostile actions. Let’s
examine this topic further.

9.6.4.2 Threat Countermeasures To counter the impact
or effects of threats on a system, systems often employ threat
countermeasures. Threat countermeasures are any physical
action performed by a system to deter a threatening action or
counter the impact of a threat (i.e., survivability). Sometimes
adversarial systems acquire or develop the technology to
counter the TOO’s system countermeasures.
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9.6.4.3 Threat Counter-Countermeasures (CCM)
Sometimes, system threats compromise the established
security mechanisms by deploying CCM to offset the effects
of a TOO’s countermeasures.

9.6.5 Concluding Thoughts

This concludes our overview of system threats and oppor-
tunities. You should emerge from this discussion with an
awareness of how the system you are using or developing
must be capable of interacting with threats and opportunities
in the OE. More explicitly, you will be expected to develop
a level of technical knowledge and understanding to enable
your team to specify or oversee the specification of system
capabilities and levels of performance related to threats and
opportunities.

Now that we have an understanding of the opportunistic
and potentially hostile entities, we are now ready to investi-
gate how a system interacts with external Human Systems
in its OE and the balance of power to perform missions.

9.7 SOI INTERFACES

One of the crucial factors of system success is determined
by what happens at its internal and external interfaces. You
can engineer the most elegant algorithms, equations, and de-
cision logic, but if the system does not perform at its inter-
faces, the elegance is of no value. System interface char-
acterizations range from cooperative interoperability with
external friendly systems to layers of protection to minimize
the system or entity’s susceptibility and vulnerability to ex-
ternal threats (environment, hostile adversary actions, etc.)
and structural integrity to ensure survivability.

This section provides an introduction to system interfaces,
their purpose, objectives, attributes, and how they are imple-
mented. Our discussions explore the various types of inter-
faces and factors that delineate success from failure.

9.7.1 What Is an Interface?

In general, most system development efforts often focus
on the following as their Systems Engineering primary
activities:

Creation of a physical system architecture and its compo-
nents.

Development of physical system interfaces with external
systems.

An interface represents a constraint based on the logical
any physical boundary conditions between two or more enti-
ties within a level of abstraction, between System Elements,
between the SOIs Mission System(s) and Enabling Sys-
tem(s), or between the SOI and its OE.

9.7.1.1 Interface Purpose The purpose of an interface is
to establish an ER, logical association, and physical con-
nection between entities—for example, System, Product,
Subsystem, Assembly, Subassembly, or Part Levels of ab-
straction and other external entities within its OE. An entity
may have logical and physical associations (Figures 8.8 and
8.9) with several entities; however, each linkage represents a
single interface. If an entity has multiple interfaces, the per-
formance of that interface may have an influence or impact
on the others due to an effect referred to loading that may
alias, bias, or degrade system or entity performance. The
question is: How does an interface accomplish this?

An interface has at least one or more objectives, depend-
ing on the component’s application. Typical interface objec-
tives include the following:

Objective 1: Physically link or bind two or more System
Elements or entities.

Objective 2: Adapt one or more incompatible System
Elements or entities.

Objective 3: Buffer the effects of incompatible System
Elements or entities.

Objective 4: Leverage Personnel or Equipment capa-
bilities.

Objective 5: Restrain an Entity’s usage.

Let’s explore each of the objectives further.

9.7.1.1.1 Objective 1: Physically Link or Bind Two or More
System Elements or Entities Some systems link or bind two
or more compatible System Elements or entities to anchor,
extend, support, or connect the adjoining interface. Here’s
an example:

Example 9.6

A TV or radio station communications tower
includes cables at critical attach points to
anchor the tower vertically and horizontally
to the ground for stability.

9.7.1.1.2 Objective 2: Adapt One or More Incompatible
System Elements or Entities Some System Elements such
as Equipment and Personnel or entities may not have
compatible or interoperable interfaces. However, they can
be adapted to become compatible. Software applications that
employ reusable models may create a “wrapper” around the
model to enable the model to communicate with an external
application, and vice versa.

9.7.1.1.3 Objective 3: Buffer the Effects of Incompatible
System Elements or Entities Some systems such as automo-
biles are generally not intended to interact with each other.
Where the unintended interactions occur, the effects of the
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interaction must be minimized in the interest of the safety
and health of the Users. Consider the following two cases:

Example 9.7

1. An automobile’s impact on another can be
lessened with a shock-absorbing bumper
and body crumple zones.

2. System A is required to transmit data to
System B. Due to the limited speed of the interfacing
components, System A includes a buffer area for storing data
for communication to free up its processor to perform other
tasks.

On the other side of the interface, System B may be
unable to process all of the incoming data immediately. To
avoid this scenario, a buffer area is created in System B
to store the incoming data until its processor can process
the data.

For this objective, SEs analyze the interface and take
reasonable measures to create a “boundary layer” or buffer
between System Elements or its entities. Thus, each is
buffered to minimize the effects of the impact to the system
or environment and, if applicable, safety to the operators or
the public.

9.7.1.1.4 Objective 4: Leverage Personnel or
Equipment Element Capabilities Humans employ inter-
face capabilities to leverage our own skills and capabilities.
Early humans recognized that simple machines could serve
as interface devices to expand or leverage our own physical
capabilities in accomplishing difficult or complex tasks.
Examples include the lever and fulcrum, the wheel, bow and
arrow, and spear.

9.7.1.1.5 Objective 5: Restrain an Entity’s Usage Some
interfaces serve as restraints to ensure a level of safety for
System Elements. Here’s an example:

Example 9.8

Interface Safety Constraints Example

1. A safety chain is required by law for
travel on public roads and highways as
a back-up safety mechanism to prevent

a trailer from detaching from a vehicle if its trailer hitch
fails.

2. A lock is added to an electrical, high-voltage, power
distribution box to prevent opening and tampering by
unauthorized individuals.

3. A machine fails in a manufacturing facility. For mainte-
nance safety, power is switched Off, the power breaker
box is Locked, and Safety Tag is attached to the power
breaker box until maintenance on the machine is com-
plete.

Each of these objectives illustrates how an interface is
implemented to achieve a purposeful action. Depending on
a systems application, other objectives may be required.
So, for each of the interfaces in the SOI, what is its pur-
pose and expected performance-based outcome? You should
know!

9.7.2 Interoperability: The Ultimate Interface
Challenge

The ultimate success of any interface resides in its capability
to interact with a diverse range of systems from friendly to
hostile in its intended OE as envisioned by the User, spec-
ified by the System Acquirer, and designed by the System
Developer. In general, the interoperability (Chapter 3) refers
to the ability of a systems or entities to mutually exchange,
understand, and process what is being communicated and
similarly provide responses where appropriate. This brings
another question: What is meant by understanding what is
being communicated? To be interoperable, an entity must be
able to accept, decode, interpret, process, act on, and encode
data for retransmission.

9.7.3 Interface Classes

Interfaces exhibit three types of operation: active, passive, or
active/passive.

9.7.3.1 Active Interfaces Active interfaces interact with
external systems or components in a friendly, benign, or
cooperative manner. Here’s an example:

Example 9.9

Active Interfaces Example

Radio stations, as active “on the air” sys-
tems, radiate signals at a designated carrier
frequency via patterns to specific areas for
coverage.

Active interfaces can also have negative consequences.
For example, when a radar is energized to sweep an area
or “paint” a target, those actions may be detectable by the
threats is seeks to illuminate and identify.

9.7.3.2 Passive Interfaces Passive interface interactions
with external components simply receive or accept data
without responding. Here’s an example:

Example 9.10

Passive Interfaces Example

A car radio, when powered On, passively
receives signals over a tuned frequency.
The radio provides an active audio inter-

face by transmitting signals on a designated frequency for
occupants in the car tuned to the station.
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9.7.3.3 Active/Passive Interfaces Active/passive inter-
faces perform under the control of a manual or automated
C2 authority such as humans and/or computer hardware and
software. Here’s an example:

Example 9.11

Active/Passive Interfaces

A two-way, hand-held radio has an active
interface when the User presses the “Push
to Talk” button to transmit audio informa-

tion to others listening on the same frequency within a spec-
ified transmission range and operating conditions. When the
“Push to Talk” button is OFF, the device has a passive inter-
face that monitors incoming radio signals for audio process-
ing and amplification as controlled by the User.

9.7.3.4 Inactive or Dormant Interfaces Some interfaces
are dormant or inactive until required for a specific Phase or
Mode of Operation. Here’s an example:

Example 9.12

Inactive or Dormant Interfaces

A space probe to Mars may consist of a
mother ship and a lander or rover. During
the flight from Earth to Mars, the mother

ship provides a communications link capable of passively
receiving mission data and commands, software updates,
etc. and actively transmitting mission data back to ground
controllers on Earth.

On arrival at Mars, the mother ship might land and deploy
the rover or circle Mars and deploy a lander. During the
flight, the lander or rover might be designed to be powered
down resulting in inactive or dormant communications,
camera, and other interfaces until activated by Earth-based
commands relayed via the mother ship.

9.7.4 Physical Interface Types

If we analyze how interfaces are implemented in the
Physical Environment Domain, our analysis will reveal
that interfaces occur in mechanical, electrical, optical, acous-
tical, nuclear, chemical, and natural forms, and as combina-
tions of these forms. For all these types of physical interfaces,
there are specialized solutions that must be documented in
some form of Interface Control Document (ICD). To further
understand the specialized nature of these interface solutions,
let’s explore each one.

9.7.4.1 Mechanical Interfaces Mechanical interfaces
consist of boundaries that exist between two physical objects
and include characterizations such as form, fit, and function.
Characterizations include properties such as:

• Dimensional properties include parameters such as
length, width, and depth.

• Mass properties include parameters such as materi-
als and composition, weight, density, weights and bal-
ances, moments of inertia, and Center of Gravity (CG).

• Structural properties include parameters such as duc-
tility, hardness, shear strength, and tensile strength.

• Aerodynamic properties such as drag and fluid flow.

• Thermal properties such as conductivity, insulation,
and coefficient of expansion/contraction.

• Thermodynamic properties include parameters related
to Pressure–Volume–Temperature (PVT) such as spe-
cific heat capacity.

9.7.4.2 Electrical Interfaces Electrical interfaces consist
of direct electrical or electronic connections as well as
electromagnetic transmission in free air space. Attributes
and properties include parameters such as voltages, current,
resistance, conductivity, inductance, capacitance, dielectric
constant, grounding, shielding, attenuation, and transmission
delays.

9.7.4.3 Optical Interfaces Optical interfaces consist of
the transmission and/or receipt of visible and invisible wave-
lengths of light. Attributes and properties include parameters
such as intensity, frequency, special ranges, resolution, con-
trast, reflectivity, refractive index, scattering, transmittance,
filtering, modulation, attenuation, polarization, albedo, and
insolation.

9.7.4.4 Acoustical Interfaces Acoustical interfaces con-
sist of the creation, transmission, and receipt of frequencies
that may be audible or inaudible to humans. Attributes and
properties include parameters such as volume, frequency,
modulation, attenuation, acoustical absorption, and air or
aquatic density.

9.7.4.5 Natural Systems Environment Interfaces
Natural Systems Environment interfaces consist of those
elements that are natural occurrences of nature. Attributes
and properties include temperature, humidity, barometric
pressure, altitude, wind, rain, snow, and ice.

9.7.4.6 Chemical Interfaces Chemical interfaces consist
of interactions that occur when chemical substances are
purposefully or inadvertently introduced or mixed with
other chemicals or other types of interfaces. Attributes and
properties include parameters such as corrosion resistance,
viscosity, pH, and toxicity.

9.7.4.7 Biological Interfaces Biological interfaces con-
sist of those interfaces between living organisms or other
types of interfaces. Attributes and properties such as the Five
Senses - touch, feel, smell, hearing, and sight.



214 ARCHITECTURAL FRAMEWORKS OF THE SOI AND ITS OPERATING ENVIRONMENT

9.7.4.8 Nuclear Interfaces Nuclear interfaces consist of
those interfaces between radioactive material sources, your
system, humans, and the environment concerning issues such
as containment, protection, vulnerability, and survivability.

9.7.5 Standard versus Dedicated Interfaces

Interfaces allow us to establish logical or physical relation-
ships between System Elements via a common, compatible,
and interoperable boundary. If you analyze the most common
types of interfaces, you will discover two basic categories:
(1) standard, modular interfaces and (2) unique, dedicated
interfaces. Let’s define the context of each type.

Standard, Modular Interfaces—System developers
typically agree to employ a modular, interchangeable
interface approach that complies with a “standard”
such as RS-232, Mil-Std-1553, Ethernet, and Universal
Serial Bus (USB).

Unique, Dedicated Interfaces—Where standard inter-
faces may not be available or adequate due to the
uniqueness of the interface, SE designers may elect to
create a unique, dedicated interface design for the sole
purpose of limiting compatibility with other System
Elements or entities. Examples include special form
factors and data encryption that make the interface
unique.

9.7.6 Electronic Data Interfaces

When the User’s logical interfaces are identified in the
System or Entity architecture, one of the first decisions is
to determine how the interface is to be implemented. Key
questions include:

• Does each interface require discrete inputs and outputs?

• What function does the interface perform (data entry/
output, event-driven interrupt, etc.)?

• Are the data periodic (i.e., synchronous or asyn-
chronous)?

• What is the quantity of data to be transmitted or
received?

• What are the time constraints for transmitting or receiv-
ing the data?

Electronic data communications mechanisms employ
analog or digital techniques to communicate information.

9.7.6.1 Analog Data Communications Analog mecha-
nisms include Amplitude-Modulated (AM) microphone and
speaker-based I/O devices such as telephones and modems.

9.7.6.2 Digital Data Communications Digital mecha-
nisms include synchronous and asynchronous signals that
employ specific transmission protocols to encapsulate en-
coded information content. Digital data communications
consists of three basic types of data formats: discrete, serial,
or parallel.

9.7.6.2.1 Discrete Data Communications Discrete data
consist of dedicated, independent instances state-based On
or Off data that enable a device such as a computer to moni-
tor the state or status condition(s) or initiate actions by remote
devices. Digital discrete data represent electronic representa-
tions for various conditions or physical configuration states
such as On/Off, initiated, complete, and Open/Closed.

Discrete data communications also include event-driven
interrupts. In these applications, a unique, dedicated signal
line is connected to a switch such as a hardware reset or an
external device that senses threshold conditions. When the
condition is detected, the device sets, toggles, or switches
the discrete signal line to notify the receiving device that
a conditional event such as an interrupt has occurred. In
other cases, a data message may be encoded with a specific
command that has a high priority that causes processing to
immediately transition to satisfying a specific objective.

9.7.6.2.2 Parallel Data Communications Some systems
require high-speed data communications between electronic
devices. Where this is the case, parallel data communica-
tions mechanisms may be employed to improve System
performance by simultaneously transmitting synchronous
data over discrete lines. Here’s an example:

Example 9.13

An output device may be configured to
set any one or combinations of all 8 bits
of discrete binary data to switch On/Off
individual, external devices.

Parallel Data Communications mechanisms include com-
puter address, data, and control data buses.

9.7.6.2.3 Serial Data Communications Some systems re-
quire the transmission of data to and from external systems
at rates that can be accomplished using serial data communi-
cations bandwidths. Where applicable, serial data communi-
cation approaches minimize parts counts, thereby affecting
PC board layouts, weight, or complexity.

Serial data communications mechanisms may be syn-
chronous (meaning periodic) or asynchronous (meaning
sporadic) depending on the application. Serial data
communications typically conform to a number of serial
data communications protocol standards such as RS-232,
RS-422, and the Ethernet.
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9.7.7 Understanding Logical and Physical Interfaces

One of the recurring themes of this book is the need to
decompose complexity into one or more manageable levels.
We do this by first identifying logical/functional interfaces
that ask several questions:

Who interacts with whom?

What is exchanged, transferred, and translated?

When does the transference or translation occur?

Under what conditions?

What are the expected results?

Then, we translate the logical/functional connectivity
into a physical interface solution that represents how and
where the interface will be implemented such as Personnel,
Equipment Hardware, and Software or combinations of
these.

Analytically, system interfaces provide the mechanism
for point-to-point connectivity. We characterize interface
connectivity at two levels: (1) logical and (2) physical.

Logical interfaces—Represent a direct or indirect associ-
ation or relationship between two entities. Logical interfaces
establish:

1. Who (Point A) communicates with whom (Point B).

2. Under what scenarios and conditions the communica-
tions occur.

3. When and where the communications occur.

Logical interfaces are referred to as “generalized” inter-
faces.

Physical interfaces—Represent physical interactions be-
tween two interfacing systems or entities. Physical interfaces
express how devices or components (boxes, wires, etc.) will
be configured to enable Point A to communicate with Point
B. Physical interfaces are referred to as “specialized” inter-
faces because of their dependency on specific mechanisms
(electronics, optics, etc.) required to implement the interface.

Here’s an example:

Example 9.14

The Internet provides a mechanism for a
User such as a computer equipped with the
appropriate hardware and software to com-
municate with an external Web site. In this
context, a logical interface or association

exists between the User and the Web site without regard to
how the computer is physically connected via fiber optics,
landlines, satellite connections, and so forth.

The preceding discussion highlighted two “levels”
of connectivity. This is an important point, especially
from a system design perspective involving humans.

Enterprise cultures that employ the Plug and Chug …
Specify-Design-Build-Test-Fix (SDBTF) Engineering
Paradigm have a propensity to jump to defining the physical
interfaces (Figure 2.3) before anyone has decided what the
interface, in general, is to accomplish. Therefore, you must:

1. Identify which System Elements or entities must asso-
ciate or interact.

2. Understand why the “need to connect.”

3. Determine when the associations or interactions occur.

4. Identify performance-based outcomes—System
Responses—entities on each side of the interface
expect from each other.

9.7.8 Interface Definition Methodology

Principle 9.5

Logical-Physical Interfaces Principle

Logical interfaces establish associative rela-
tionships with performance-based outcomes
(e.g., what is to be achieved). Physical inter-

faces establish how a logical interface will be implemented.

The preceding discussions enable SEs to establish a basic
methodology for identifying and characterizing interfaces:

Step 1: Identify logical interfaces for each entity. When
systems are designed, logical interfaces enable us to ac-
knowledge that an association or relationship concerning
what is to be accomplished, not how. Logical interfaces
become a key part of each entity’s Context Diagram and
logical capability architecture.

Step 2: Identify and define physical interfaces for each entity.
The physical implementation of a logical or generalized
interface requires selection from a range of candidate so-
lutions subject to technical, technology, cost, schedule,
and risk constraints. SEs typically conduct one or more
trade studies to select the most appropriate implementa-
tion.

Step 3: Standardize interfaces. Every unique interface re-
quires specialized expertise and increases the Total Cost
of Ownership (TCO) to maintain. Therefore, where prac-
tical, select widely accepted interface protocols and stan-
dards.

Principle 9.6

Interface Complexity Reduction
Principle

Where practical, minimize the number of in-
terfaces and to reduce complexity, technical
risk, increase reliability, and reduce main-

tainability cost by standardizing on widely accepted and
proven protocols and standards.
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9.7.9 Understanding Interface Performance and
Integrity

Interfaces, as an entry point, portal, or access point into a
system, are vulnerable to threats and failures, both internally
and externally. Depending on the extent of the physical
interface interaction and resulting damage or failure, the
interface capability or performance may be compromised or
terminated. Our discussion here focuses on understanding
interface design performance and integrity. Let’s begin by
first defining the context of an interface failure.

9.7.9.1 Limiting Access to System Interfaces Some inter-
faces require restricted access to only those devices accessi-
ble by authorized Users. In general, these interfaces consist
of those applications whereby the User pays a fee for access,
data security on a need-to-know basis, posting of configura-
tion data for decision-making, and so on.

System access can be implemented and limited via several
mechanisms. Examples include: (1) authorized log-on ac-
counts, (2) data encryption/decryption devices and methods,
(3) floating access keys, (4) personal ID cards, (5) personal
ID scanners, and (6) levels of need-to-know access.

Authorized User Accounts—Employed by Web sites
or internal computer systems and require a User ID
and a password. If the User forgets the password,
some systems allow the User to post a question related
to the password that will serve as memory jogger.
These accounts also must make provisions to reset
the password as a contingency provided the user can
authenticate themselves to the computer system via
personal ID information and answers to pre-selected
security questions.

Communications Security (ComSec)—The phys-
ical planning, implementation, and orchestration
of communications methods and techniques such
as encryption/decryption, shielding, etc. to prevent
interception and exploitation by competitors or
adversaries.

Data Encryption Methods and Techniques—Employed
to encrypt/decrypt data during transmission to prevent
unauthorized disclosure. These devices employ data
“keys” to limit access. Encryption applications range
from desktop computer communications to highly
sophisticated banking and military implementations.

Floating Access Key—Software applications on a net-
work that allow simultaneous usage by a subset of
the total number of personnel at any given point in
time. Since organizations do not want to pay for un-
used licenses, floating licenses are procured based on
projected peak demand. When a user logs onto the ap-
plication, one of the license keys or tokens is locked
until the user logs out. Since some users tend to forget

to log out and thereby locking other users from using
the key, systems may incorporate time-out features that
automatically log out a user and make the key accessi-
ble to others in the queue.

Operations Security (OPSEC)—A process that identi-
fies critical information to determine if friendly actions
can be observed by adversary intelligence systems, de-
termines if information obtained by adversaries could
be interpreted to be useful to them, and then exe-
cutes selected measures that eliminate or reduce ad-
versary exploitation of friendly critical information.
(AcqNotes, 2014)

Personal ID Cards—Magnetically striped or Radio Fre-
quency (RF) ID badges or cards assigned to personnel
that allow access to facilities via security guards or ac-
cess to closed facilities via badge or card readers and
passwords.

Personal Authentication Scanners—Systems enabling
limited access by authenticating the individual via opti-
cal scanners that scan the retina of an eye or thumbprint
and match the scanned image against previously stored
images of the authorized person.

Physical Security (PhySec)—The physical planning,
implementation, and orchestration of ground, sea, air,
or space-based assets to prevent physical entry or
intrusion into a system.

“Need-to-Know” Access—Restricted access based on
the individual’s need-to-know. Where this is the case,
additional authentication may be required. This may
require compartmentalizing data into levels of access.

9.7.9.2 Interface Latency Latency is a critical interface
issue for some systems, especially if one interfacing element
requires a response within a specified timeframe. As an SE,
you will be expected to lead the effort that determines and
specifies time constraints that must be placed on interface
response time. If time constraints are critical, what is the
allowable time budget that ensures the overall system can
meet its own time constraints?

9.7.9.3 What Constitutes an Interface Failure? There
are differing contexts regarding what constitutes an interface
failure including degrees of failure. As a general rule,
Systems Engineering considers an entity or interface to be
in a Failed condition if it performs outside of its specified
performance (Chapter 34). Therefore, an interface might
be considered failed if it ceases to provide the required
capability at a specified level of performance when required
as part of an overall system mission. Interface failures may
or may not jeopardize a system mission.

9.7.9.4 Interface Failure Types Interfaces fail in a num-
ber of ways. In general, physical interfaces can fail in at least
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four types of scenarios: (1) disruption of services, (2) in-
trusion, (3) stress loading, (4) physical destruction, and (5)
monitoring.

Disruption of Services can be created by acts of nature,
animals, component reliability, poor quality work,
lack of proper maintenance, and sabotage. Examples
include (1) failed components; (2) cable disconnects;
(3) loss of power; (4) poor data transmission; (5) lack
of security; (6) mechanical wear, compression, tension,
friction, shock, and vibration; (7) optical attenuation
and scattering; and (8) signal blocking.

Intrusion examples include (1) unauthorized Electro-
magnetic Environment Effects (E3); (2) data capture
through monitoring, tapping, or listening; (3) computer
viruses; and (4) injection of spurious signals. Intru-
sion sources include electrical storms and espionage.
Intrusion prevention solutions include physical, opera-
tions, and communications security and proper shield-
ing, grounding, and encryption.

Stress Loading includes the installation of devices that
load, impede, fatigue, or degrade the quality or perfor-
mance of an interface.

Physical Destruction includes physical threat contact by
accident or purposeful action by an external system
such as a Human system with the willful intent to inflict
physical harm, damage, or destruction to a System,
entity, or one of their capabilities or an intrusion by
rodents.

Monitoring by external threats via listening devices.

9.7.9.5 Interface Vulnerabilities Interface integrity can
be compromised through inherent design defects, errors,
flaws, or vulnerabilities. Interface integrity and vulnerability
issues encompass electrical, mechanical, chemical, optical,
and environmental aspects of interface design. Today, most
interface vulnerability awareness tends to focus on secure
voice and data transmissions and network firewalls. Vulner-
ability solutions include secure voice and data encryption;
special, shielded facilities; armor plating; compartmental-
ization of tanks; cable routing and physical proximity; and
operational tactics.

9.7.9.6 Interface Failure Events and Consequences
When you design system interfaces, there are a number of
approaches to mitigate the occurrence of interface failures
or results. In general, the set of solutions have a broad
range of costs. SEs often focus exclusively on the hardware
and software aspects of the interface design. Here’s an
example:

Example 9.15

Optical Interface Mitigation Example

Mirrors on vehicles provide a critical in-
terface for the vehicle operator. The mir-
rors optically “bend” the operator’s line of

sight, thereby enabling the operator to maneuver the vehicle
in close proximity to other vehicles or structures. Vehicles
with side mirrors that extend away from the cab are espe-
cially vulnerable to being damaged or destroyed.

Hypothetically, one solution is to design outside mirrors
with deflectors that protect the mirrors from damage. How-
ever, since vehicles move forward and backward, deflectors
on the front side of the mirror may limit the operator’s line
of sight. To minimize damage effects on impact with exter-
nal systems or objects, mirrors are designed to simply fold
away. Thus, we preserve system performance while minimiz-
ing Equipment Element costs.

9.7.9.7 Interface Failure Events, Consequences, Detec-
tion, Containment, & Mitigation

Principle 9.7

Interface Failure Mitigation Principle

Every interface should be specified and
designed to 1) detect failures, (2) contain
them to their sources to prevent propagation,

and (3) mitigate their effects on mission performance.

The preceding discussion illustrates traditional “Engi-
neering the Box” versus “Engineering the System” concepts
introduced in Chapter 1. The reality is: failures are not nec-
essarily static, self-contained events; they can have lasting
effects and consequences such as the Apollo 13 Accident ad-
dressed in Mini-Case Study 1.1.

Interface failures can result in the loss of system C2 and/or
critical data disruption or loss; physical injury to System
operators, maintainers, an others; and physical damage to
Equipment, property, the public, or the environment. Let’s
examine how interface failures may occur. When an interface
fails, there are numerous types of ramifications and conse-
quences. Example effects include electrical shorts or high
voltage arcing; depressurization, implosion, or explosion; jet
engine compressor blade separation (1) penetrating aircraft
cabins causing injury or death or (2) causing loss of hydraulic
systems and flight control that lead to a crash (United Air-
lines Flight 232); oil spills; and so forth. The point here is
not only do SEs have to deal with the loss of an interface but
also how to (1) detect and (2) contain the failure to prevent
it from propagating into other nearby systems (Figure 26.8)
with catastrophic results.

How do you prevent and contain interface failure effects?

• The first step begins with the System Performance
Specification (SPS). Specification developers tend to
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write specification requirements for ideal operating
conditions and ignore requirements for detecting, con-
taining, and mitigating failures (Principle 9.7).

• The second step consists of conducting a Failure Modes
& Effects Analysis (FMEA) (Chapter 34) during the
System Design Process based on the selected physical
design solution, not functional solution. For mission
critical applications, the FMEA should be expanded
into a Failure Modes & Effects Criticality Analysis
(FMECA).

Remember – the results of the two steps above are only as
valid as the competency, experience, and the diligence of the
Engineers or System Analysts performing the task.

9.8 CHAPTER SUMMARY

During our discussion of system interface practices, we
identified the key objectives of interfaces, identified various
types, and emphasized the importance of system interface
integrity.

Our discussion of logical and physical ERs should enable
you to describe how the System Elements interact at various
levels of detail. The logical and physical ERs, in turn, should
enable you to assimilate the relationships into an architec-
tural framework. To facilitate the decision-making process,
we established the logical ERs or associations between the
System Elements via a Logical Architectural representation.
Once the logical capability architecture is established, we
progressed the decision-making process to the Physical Ar-
chitecture representation or physical architecture.

We concluded our discussion with a focus on SOI inter-
faces - types of failures, failure effects, detection, mitigation,
and containment.

9.9 CHAPTER EXERCISES

9.9.1 Level 1: Chapter Knowledge Exercises

1. How does the Mission System SEA differ from the
Enabling System SEA?

2. Identify the System Elements of the Mission System and
its Enabling System.

3. How do the System Elements differ between the Mission
System and Enabling System?

4. What is the purpose of an interface?

5. What is a logical interface?

6. What is a physical interface?

7. What problem does developing logical ERs before phys-
ical ERs solve?

8. What are the two classes of OE domains?

9. What System Elements comprise a system’s
Higher-Order Systems domain?

10. What System Elements comprise a system’s Physical
Environment domain?

11. How do you graphically depict the OE architecture
that includes detail interactions of the Higher-Order
Systems and Physical Environment domains?

12. What are examples of Human Systems Environment
threats and their sources?

13. What are examples of Natural Systems Environment
threats and their sources?

14. What are examples of Induced Environment threats and
their sources?

15. Boundaries for an OE are relative to what frame of
reference?

9.9.2 Level 2: Knowledge Application Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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MODELING MISSION SYSTEM AND ENABLING SYSTEM
OPERATIONS

Every Natural and Human Systems Environment exhibits
a fundamental stimulus–response behavior pattern. For
example, systems may respond positively to good news.
Conversely, a system may respond negatively to threats
and employ defensive tactics, pre-emptive, or retaliatory
strikes. The response ultimately depends on how your sys-
tem is designed and trained to respond to various types of
inputs—stimuli and information—under specified types of
operating conditions and constraints.

This chapter builds on the system architecture concepts
in Chapters 8 and 9. Each System of Interest (SOI) coex-
ists, encounters, engages, and interacts with external sys-
tems that comprise its Operating Environment—namely,
Human Systems, the Natural Systems, and the Induced
Environment.

Development of systems, product, or services that oper-
ate and survive successfully in these environments requires
that System Developers–System Engineers (SEs), analysts,
designers, and specialty engineers - have an understanding
of how those systems interact with and respond to stim-
uli, excitations, and cues from external systems in their
Operating Environment. Responses include patterns of
behavior, production of systems, products, or services, as
well as by-products.

Chapter 10 provides the foundation for Model-Based
Systems Engineering (MBSE).

10.1 DEFINITIONS OF KEY TERMS

• Construct—A graphical model or template that can be
used to represent entities, architectures, operations, and
capabilities.

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

• Model—A graphical and/or mathematical representa-
tion of the architectural framework; stimuli, excita-
tions, or cues; sequence of operations and decision
logic; and communications of an entity’s processing,
storage, Command and Control (C2), and performance
capabilities.

• Model-Based Systems Engineering (MBSE)—“The
formalized application of modeling to support system
requirements, design, analysis, verification, and valida-
tion activities beginning in the conceptual design phase
and continuing throughout development and later life
cycle phases” (INCOSE, 2007, p. 15).

• Transfer Function—A mathematical expression that
represents the relationship between a system’s outputs,
behavioral responses, as a function of its inputs within
a bounded set of limitations or constraints.

10.2 APPROACH TO THIS CHAPTER

Our discussion begins with the fundamentals of system
behavior. We establish a basic system behavioral model
that depicts how an SOI interacts with and responds to its
Operating Environment. We expand the discussion with
the introduction of six behavioral interaction models that
illustrate common type of system interaction models such
as open loop and closed loop C2 systems, peer-to-peer data
exchange interactions, status and health broadcast interac-
tions, issue arbitration and resolution, and hostile encounter
interactions.

Next, we introduce the basic concept of modeling
end-to-end mission operations with a simple model of a

http://www.wiley.com/go/systemengineeringanalysis2e
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Car–Driver System. To expand the basic modeling concept
to accommodate interactions between entities in the model,
we introduce the concepts of control flow and data flow as
a graphical modeling convention. Our discussion includes
(1) modeling of integrated Personnel–Equipment inter-
actions of the Mission System and Enabling System and
(2) independent, autonomous systems.

Given this foundational understanding of system model-
ing, we introduce a series of multi-level modeling constructs
or templates that enable us to model the User’s Level 0 Enter-
prise System, SOI, and a Personnel–Equipment Use Case
(UC) Task Sequences Model. Most people view a capabil-
ity as simply an abstract object and fail to recognize that an
operational capability may be manual, semi-automated, or
fully automated and consist of three Phases of Operation:
Pre-Capability, Capability, and Post-Capability Operations
(Table 6.2). This deficiency is reflected in specification ca-
pability requirements. To solve this deficiency, we introduce
the System Capability Construct that with a phase-based se-
quence of operations and exception handling to accommo-
date error conditions.

We close the chapter with a general discussion of MBSE,
its application to modeling, its misperceptions, and how to
ensure its success.

10.3 THE SYSTEM BEHAVIORAL RESPONSE
MODEL

During our discussion of the Operating Environment
Architecture, Figure 9.3 served as a high-level model to

illustrate an SOI’s interactions with its Operating Environ-
ment. To see how this interaction occurs, let’s investigate a
simple behavioral response model.

Principle 10.1

System Responses Principle

Every system responds to stimuli, excita-
tions, and cues in its Operating Environ-
ment with behavioral actions, products,
by-products, services, or combinations
thereof.

If we treat the SOI shown in Figure 9.3 as a
stimulus–response box, we can create a simple model
that represents how the SOI responds to its Operating
Environment as shown in Figure 10.1. The system model
consists of the Physical Environment Domain (Figure 9.4)
and the SOI, both of which are controlled by Higher
Order Systems. The Higher Order System provides
an Organization, allocates Roles and Missions, imposes
Operating Constraints, and provides Resources to the SOI.
Elements of the Physical Environment Domain—such
as Human Systems, Induced, and Natural Systems
Environments—provide input stimuli into the SOI as well
as affect its operating capabilities and performance.

Stimuli, excitations, and cues serve as inputs such as in-
formation, data, interrupts, and actions to the SOI’s Sensory
Receiver. The Sensory Receiver decodes the stimuli and in-
formation and supplies them as inputs to the Processor. The
Processor adds value to the data by performing User-defined
actions.

Human
System(s)

Sensory
Receiver

Processor
System

Response

Roles and
Missions

Resources

System of Interest (SOI)
Physical

Environment

Internal
Feedback

Loop

Response
Sampler

Corrective
Action(s)

External Feedback Loop

Higher Order
Systems 

Induced
Environment

System(s)

Natural
System(s)

Operating
Constraints

Organization

Inputs Self
Interactions

Figure 10.1 System Behavioral Responses Model
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The Response Sampler samples the results of the
value-added processing and compares those results to
Operating Constraints—namely, mission tasking—
established by a Higher Order System. Based on the
results of the Comparison, Corrective Actions are initiated
as feedback—Internal Feedback Loop—to the Proces-
sor. When the processing is deemed acceptable relative
to the Operating Constraints, System Responses are
produced. System Responses are then fed back to the
Operating Environment thereby completing the External
Feedback Loop.

An SOI such as electromechanical engine, nuclear
plant generator, jet engine, and electrical power system
are examples that could be represented by this model. As
such, we could create a mathematical model to represent the
Input–Output Transfer function performed by the SOI.

10.3.1 Several Key Points

Figure 10.1 illustrates several key points regarding system
interactions with its Operating Environment:

• Input Data—External stimuli or data may occur as
a triggering event such as communications data, an
observation, or transfer of information—or as “trend
data” over time.

• Measured or Conditioned System Response—
Internal Control Loop that produces a measured re-
sponse appropriate for the stimuli, excitations, and
cues.

• System Transfer Function—The Sensory Receiver,
Processor, Response Sampler, and Corrective Action(s)
form a system transfer function that shapes the System
Response.

• System Latency—The time required from the SOI
to respond to external stimuli and information until
a system response is produced is referred to as sys-
tem responsiveness, system response time, or system
throughput.

• System Interactions—Stimuli or data, composed of
cues, information, and behavior, as well as the System
Response to its Operating Environment form a
closed loop of system interactions.

The preceding discussion focused on a simple through-
put model representing an SOIs encounters and interactions
with its Operating Environment consisting of Human,
Induced, and Natural Systems Environments. As previ-
ously introduced, these encounters and interactions may be
characterized as friendly, cooperative, defensive, benign, ag-
gressive, harsh, or hostile.

This leads us to another key concept, Example Constructs
of System Behavioral Encounters and Interactions.

10.4 SYSTEM COMMAND & CONTROL (C2)
INTERACTION CONSTRUCTS

If we observe and analyze the pattern of interactions between
Human Systems, we can identify some of the primary
interaction constructs. In general, examples of common
interactions of most friendly systems include the following.

10.4.1 Open Loop Command Interactions Construct

The Open Loop Command Interactions Construct shown in
Figure 10.2 represents a simple system in which a Higher
Order System issues C2 Tasking stimuli to the SOI to
perform a task and respond to its Operating Environment.
Observe that no feedback concerning task completion or
success occurs.

10.4.2 Closed Loop C2 Interactions

The Closed Loop C2 Interactions Construct shown in
Figure 10.3 corrects the feedback deficiency of the Open
Loop Command System. In this case, the SOI responds to the
Higher Order Systems tasking by providing continuous
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System

Mi i S t

System of
Interest

(SOI)

Operating
Environment

• Higher Order Systems
• Physical Environment

4

Interactions

• Encounters
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Figure 10.2 Open Loop C2 System Examples
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Figure 10.3 Closed Loop C2 System Examples

Performance Monitoring concerning task progress, comple-
tion, and success. As part of this process, the SOI moni-
tors the Operating Environment’s response and feeds that
back to the Higher Order System as part of Performance
Monitoring. Example applications of this construct include:

• Enterprise Systems C2– Inter and Intra-organizational
tasking

• Enterprise to SOI C2 - mission tasking

• Mission System and Enabling System C2-
Personnel-Equipment interactions

• Equipment C2–Subsystem-to-Subsystem interactions

10.4.3 Operational Status and Health (OS&H)
Broadcast System Interactions Construct

The Operational Status and Health (OS&H) Broadcast Sys-
tem Interactions Construct shown in Figure 10.4 illustrates a
simple system that merely provides synchronous (periodic)
or asynchronous (random) data to a Higher Order System.
The Higher Order System may or may not acknowledge
receipt of the data. Here’s an example.

Example 10.1

Remote Broadcast Weather System

Remote weather collection systems (SOIs)
are installed in the vicinity of an airport
to transmit synchronous weather data 24

hours per day and 7 days per week at a 1 Hz rate to a
Higher Order System at the airport for processing and
dissemination to aircraft.

Example 10.2

Personnel-Equipment Situational
Assessment

Part of Monitoring, Command, and Control
(MC2) requires continuous updates that

present Situational Assessment of (1) system performance,
and OS&H status and (2) Operating Environment con-
ditions. The User – operator or maintainer – has a “need
to know” Situational Assessment from the Equipment to
perform their mission tasking. Likewise, the Equipment’s
internal MC2 requires Situational Assessment informa-
tion from Subsystem Assembly, Subassembly compo-
nents such as sensors to report to the User to MC2 the
Equipment.

10.4.4 Peer-to-Peer Data Exchange System
Interactions

The Peer-to-Peer Data Exchange System Interactions Con-
struct shown in Figure 10.5 represents an interchange
between two peer-level, cooperative systems. Here’s a hy-
pothetical encounter and interaction scenario:

1. System A transmits a Request for Information (RFI)
/Status from System B.

2. System B may or may not - dashed line - transmit an
Acknowledgement of receipt of the request.

3. System B transmits Data to System A.

4. System A may or may not transmit an Acknowledge-
ment of receipt of the data.
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Figure 10.4 Status and Health Broadcast System Interactions Example
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Figure 10.5 Peer-to-Peer Data Exchange Interactions Construct

5. If System A does not receive a response or determines
the Data is invalid due to errors, it may send a Retrans-
mit Request.

An important point here is to recognize that the phrase
may or may not is system dependent. If you believe your
System should Acknowledge requests and receipts, then
make it a requirement. Here’s an example of peer-to-peer
systems interactions.

Example 10.3

Bank Card Transaction Example

A bank card User arrives at an Automated
Teller Machine (ATM) location. The ATM
displays a welcome and instructs the User

to insert their card into the ATM. The ATM reads the card
information and returns it to the User. If the account is valid,
the ATM issues a Request for Information (RFI) to the User
to enter a password to access account information.
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On verification of the User’s password - Acknowledge-
ment, account access is granted. The ATM issues an RFI to
the User concerning what type of transaction the User needs
to perform. The User selects from a set of transaction options
and enters the amount to be transacted – Data Exchange.
The ATM Acknowledges the User’s response by parroting
the data on the display as it is selected or entered.

The ATM processes the transaction, provides a receipt of
the transaction and/or money, and inquires (RFI) if the User
needs to perform any additional transactions. If not, the ATM
thanks the User for their business – Data Exchange, asks
them to return again, and displays a welcome message for
the next User.

Observe the series of acknowledgements in this Peer-to-
Peer User–ATM information and data exchange.

10.4.5 Issue Arbitration/Resolution System
Interactions Construct

Issue Arbitration/Resolution System Interactions Construct
shown in Figure 10.6 illustrates a conflict that has been
elevated by an SOI to a Higher Order System. Here’s a
hypothetical encounter and interaction scenario:

1. The SOI issues a Request for Arbitration/Resolution to
a Higher Order System.

2. The Higher Order System may or may not Acknowl-
edge the request.

3. The Higher Order System responds by issuing a
Resolution Decision as a corrective action to resolve
the matter.

Example 10.4

Conflict Resolution Example

1. Within an Enterprise, Personnel may
encounter conflicts related to other
personnel, working hours, etc. As a

result, the individual elevates the matter to their
manager—Higher Order System.

2. A system may require three redundant computers to
make a decision. Results from two of the computers are
polled and used to validate a third computer’s decision.
If results from the two polled computers conflict, the
third computer has to make a decision that may involve
determination of one of the conflicting computers has
failed. The question is: what if results from the other
two are non-conflicting, and the supervisory computer
is the one that has failed? The architecture’s decision
control logic has to be provided to accommodate this
situation.

10.4.6 Hostile Encounter Interactions Construct

Issue Arbitration/Resolution System Interactions shown in
Figure 10.7 represents a hostile encounter between an SOI
and an external system in its Operating Environment.
Here’s a hypothetical encounter and interaction scenario:

1. System A performing an Aggressor Role initiates a
Hostile action against System B.

2. System B acting in a Defensive Role responds with
Countermeasures as a warning.

3. System A responds to System B’s Countermeasures
with a Counter-Countermeasures (CCM) response.
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Figure 10.6 Issue Arbitration/Resolution System Interactions Construct
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4. Sensing attack, System B switches to an Aggres-
sor Role and returns a Tactical Response that forces
System B to retreat.

10.5 MODELING SYSTEM CONTROL FLOW AND
DATA FLOW OPERATIONS

One of the first steps in developing a model is to create
a simple, high-level version. As an example, let’s create a
model for an automobile driver with a mission to go to and
from work each day. Figure 10.8 provides an illustrative
example.

1. The Driver enters the car at its Initial State, thereby
creating the Car–Driver System. The Driver performs
Pre-Mission Operations to check out the vehicle to
verify everything is working properly.

2. On completion of the Pre-Mission Operations, control
flow sequences to Operation Mission Operations repre-
senting the drive to the Driver’s mission destination.

3. During the drive, the Car–Driver System drives
defensively and interacts with its Operating
Environment—Higher Order Systems Domain
and Physical Environment Domain.

4. On arrival, the Driver exits the vehicle and locks
its doors. When ready to return home, they perform
Operations 1.0 through 3.0 again.

This illustrated example represents a simple operations
model. However, it does not illustrate the interactions that
occur between the Driver and the Car or the tasks each
is performing that enable them to interact with each other.
This leads to the introduction of our next topic, Operational
Control Flow and Data Flow Concepts.

10.5.1 Operational Control Flow and Data Flow
Concepts

When you analyze systems, two types of flows occur: (1)
control flow or workflow and (2) data flow:

• Control flow or workflow enables us to understand how
system operations are sequenced.

• Data flows enable us to model information, data, or
energy exchanges between system entities such as
electrical, optical, or mechanical.

To illustrate these points, let’s investigate the control flow
and data flow aspects further.

Figure 10.9 depicts intersecting arrows on the left side that
represent the graphical convention for control flow and data
flow. The top-down vertical arrow represents control flow;
the horizontal arrow represents data flow exchanges between
entities.

Applying the control flow or workflow to Figure 10.8:

• Sequences from the Initial State to Operation 1.0
Pre-Mission Operations
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• Sequences from Operation 2.0 Mission Operations

• Sequences from Operation 3.0 Post-Mission Opera-
tions

• Sequences to the Final State

Cyclical systems—Do Until— such as electronic
Equipment when activated may employ a feedback loop as
indicated by the line from the Final State decision block back
to Initial State. From a data flow perspective, information is
exchanged between Operation 2.1 Mission System Opera-
tions and Operation 2.2 Enabling System Operations as a
part of Operation 2.0 Mission Operations.

If we expand the Mission System and Enabling
System operational interactions to include all
Phases of Operation—Pre-Mission, Mission, and
Post-Mission—Figure 10.10 emerges. Each of the Phases of
Operation is expanded into concurrent Mission System and
Enabling System operations.

Author’s Note 10.1

Referring to Figure 10.10, observe
2.0 Mission Operations interactions
between the Mission System and its
Enabling Systems. This interaction
represents Figure 6.2 Operation 10

Conduct Mission Operations and Operation 11 Provide
Mission Oversight and Support. In the case of an airline, the
aircraft – Mission System – flying passengers to another city
is under the MC2 (Figure 10.3) of air traffic controllers –
Enabling Systems.

10.5.2 Modeling Multiple Concurrent Operations

The preceding discussions focused on the SOI executing a
sequential end-to-end control flow until terminated due to a
common time-out, resource depletion, or failure. We expand
on that concept to illustrate a more complex system that
has multiple SOIs working together to achieve an overall
Enterprise mission. Examples include a restaurant, a car
dealership, or an airline. Figure 10.11 provides an example.

Example 10.5

Customer Retail Enterprise Example

Let’s assume a business such as a retail
store – Mission System - in a shopping
plaza has normal business hours – Mission

Phase of Operations - from 10:00 AM until 9:00 PM.
In preparation for the next business day – Enterprise

Pre-Mission Phase of Operations, merchandise may be re-
plenished, moved.
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At 10:00 AM, the store’s doors open for busi-
ness – Enterprise Mission Phase of Operations. At that
time each department in the store is staffed with trained
sales clerks - Enabling Systems Personnel - to assistance
customers – Mission Systems - in purchasing merchandise.

The customer’s workflow consists of traveling to the
store – Pre-Mission Phase of Operations, purchasing mer-
chandise – Mission Phase of Operations, and leaving – Post
Mission Phase of Operations.

Customers as Mission Systems enter the store and have a
horizontal control flow shopping experience that goes from
Operation A to Operation B to Operation “n” before existing
the store. Observe the orthogonally of the store’s vertical
control workflow versus the horizontal control flow of the
customer – intersecting Customer and Enterprise Mission
Phases of Operations.

At 9:00 PM, the store completes its Enterprise Mis-
sion Phase of Operations, locks the doors, and initiates its
Post-Mission Operations such as clean-up and repeats its
Pre-Mission phase of Operations for the next business day.

The example above exemplifies automobile dealerships,
restaurants, aircraft, hospital, schools, and other types of
Enterprise operations. Understand this concept because it
provides the foundation for modeling systems, product, or
services in the discussions that follow.

The example above Mission System – Enabling Sys-
tem interactions illustrate a key consideration to remember
when developing systems—customer interactions and satis-
faction. Carlzon (1989) in his text Moments of Truth high-
lights that every interaction a stakeholder such as a User or
End User has with your system, product, or service is a “mo-
ment of truth” that leaves lasting impressions. This concept
exemplifies the Mission System – Enabling System Supply
Chain illustrated in Figure 4.1 and its Fitness for Use stan-
dards – merchandise – and Customer Acceptance Criteria.

Example 10.6

System, Product, and Service Moments
of Truth

• When a User interacts with your system
or product such as a computer to turn

power on, attempt to load software, find technical
answers in operator manuals, create reports, it is
a moment of truth.

• When that same User contacts the computer manufac-
turer for service – answers to how to questions, it is a
moment of truth. Did you talk with a live technical sup-
port person or did you get “punch the buttons” recorded
messages to submit a question to an obscure commu-
nity blog – moments of truth.
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This entire chain of events are moments of truth that leave
lasting impressions that impacts future purchases. When
you sell your products, think about these interactions and
their consequences. This is especially true for hardware and
software components when they are installed in your system
or you connect via e-mail of the Internet. This brings us to
our next concept, System Compatibility and Interoperability.

10.5.3 System Interaction Compatibility
and Interoperability

Principle 10.2

System Encounters and Interactions
Principle

System encounters and interactions with
external systems in its Operating En-

vironment during an engagement may be cooperative,
friendly, benign, competitive, adversarial, hostile, or combi-
nation of these.

When two or more systems interact, we refer to the
interaction as an engagement or encounter. Engagements
can be characterized with a number of terms. The effects
or results of the engagement can be described as positive,
benign, negative, damaging, or catastrophic, depending on
the system roles, missions, and objectives. Generally, the
effects or outcomes can be condensed into a key question.
Was the engagement compatible and interoperable from each
system’s perspective? Let’s explore the context of both of
these terms.

Principle 10.3

Compatibility and Interoperability
Principle

Interfaces must be compatible in terms of
form and fit. Where applicable, they must

be interoperable to be able to intelligibly encode/decode,
interpret, process, and exchange data.

Compatibility often has different contextual meanings.
We use the term in the context of physical capability—form
and fit—such as mechanical connections, electrical signals,
current capacity, memory storage, and cargo. Observe that
we used the operative term capability. Possessing a capa-
bility does not mean the engagement or interface will be
interoperable.

When interfaces require information or data exchange,
compatibility is a necessary but insufficient condition in
terms of both sides of the interface being able to commu-
nicate with each other and understand what is being commu-
nicated. That requires interoperability.

To illustrate the application of the terms compatibility
and interoperability, consider the following examples of
international aircraft voice communications and electronic
data communications.

Example 10.7

Language Compatibility Versus
Interoperability

Two people from different countries speak-
ing different languages may attempt to

communicate—an interaction or engagement between sys-
tem entities. We could say their voice communications are
compatible—transmitting and receiving. However, due to a
lack of interoperability, they are unable to decode, process,
assimilate, or “connect” what information is being commu-
nicated. Due to the criticality of public flight safety, the
International Civil Aviation Organization (ICAO) Assembly
in October 2013 adopted Resolution 38/8 – “Proficiency in
the English language used for radiotelephony communica-
tions” as the standard language are be used in communica-
tions between Air Traffic Controllers (ATCs) and pilots for
international travel (ICAO, 2015).

Example 10.8

Electronic Communications
Compatibility Versus Interoperability

RS-232 data communications interface be-
tween two systems use a standard cable and

connectors for transmitting and receiving data. Thus, the in-
terface is physically compatible. However, the data port may
not be enabled or the receiving system’s software capable of
decoding and interpreting the information—interoperability.

10.5.4 System Interactions Synthesis

As an SE, you must learn to synthesize these interactions in
terms of an overall system solution. Figure 10.12 provides an
illustration.

Here, we have a diagram that captures the high-level in-
teractions between the SOI, Higher Order System, and
the Operating Environment. The SOI is illustrated via
an Ishikawa or “fishbone” diagram. The diagram includes
System Elements that are performance effector factors that
must integrate harmoniously to achieve the mission objec-
tives. In combination, the SOI elements produce the System
Responses Element, which consists of behavior, products,
by-products, and services.

In operation, the SOI responds to C2 guidance and di-
rection from the Higher Order Systems Element that con-
sists of Organization, Roles and Missions, Operating
Constraints, and Resources System Elements. Based on
this direction, the SOI System Elements interact with the
Operating Environment and provide system responses
back to the Operating Environment and the Higher Or-
der Systems Domain Element.

10.5.5 Modeling Operations Summary

During our discussion of system interactions with its op-
erating environment, we described a system’s interactions
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via the Behavioral Responses Model. A system’s responses
are driven by strategic and tactical interactions related to
opportunities and threats in the environment. Systems gen-
erally interact with cooperative, benign, competitive, or
aggressor systems. Based on those responses, we indi-
cated how a system might employ countermeasures and
counter-countermeasures to distract, confuse, defend or in-
teract with other systems. We concluded our discussion by
highlighting the context of the Operating Environment
based on the SOI perspective.

10.6 MODELING MISSION SYSTEM AND
ENABLING SYSTEM OPERATIONS

People often erroneously ingrained to think of System
Engineering and Development as simply the identifi-
cation and decomposition of functions into arbitrary
architectural structures. Beyond that point, magic hap-
pens! Both aspects contribute to ad hoc, endless loop,
Specify-Design-Build-Test-Fix (SDBTF) Engineering En-
terprises that are prone to non-compliance with specification
requirements, latent defects - design flaws, errors, and
deficiencies, and so forth. Sometimes, uninformed System
Acquirers and System Developers impose unreasonable and

impractical schedules and budgets that force these types
of behaviors. Where practicality and informed decisions
prevail, there are better ways of producing systems without
non-compliances, cost overruns, and missed schedules.

A key tenet of Systems Engineering and Development
(SE&D) is making informed, fact-based decisions related
to multi-level specification performance requirements and
multi-level system architecture development. The mech-
anism for supporting informed decisions is modeling the
behavioral interactions of the SOI Mission Systems,
Enabling Systems, and their Operating Environments
with validated models (Chapter 33).

Some Enterprises model system behavior. Customers are
impresses! On inspection, you soon discover that the model-
ers exist autonomously in a domain separate from software
developers. Since software modeling of a system involves al-
gorithmic models as mathematical, logical, and physical rep-
resentations of systems, common sense says that those same
models should be used, where applicable, in the actual soft-
ware executing in the deliverable system or product. Unfor-
tunately, that is often not the case. The potential dichotomy is
as follows: modeling software is used to make SE technical
performance decisions; the deliverable software was created
independently with little or no collaboration. Does this sound
like sound engineering practices?
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As an introductory overview to Behavioral Model con-
cepts, let’s walk through the process and proceed into some
of the details. Although there are numerous ways of model-
ing systems, we will employ a simple approach as the basis
for introducing the topic. Remember that we are creating
models of the actual, multi-level system as it evolves.

The models we create of the actual system are context
based. To illustrate, consider the following system contexts
of operation:

• Phase of Operation—Pre-Mission, Mission, and
Post-Mission to Modes of Operation

∘ Modes of Operation accommodate UCs

▪ UCs are implemented by Operational Tasks, each
representing an Operational Capability

∘ Operational Capabilities are constrained by
Allowable and Prohibited

▪ Operational Capabilities translate into Spec-
ification Requirements

Each of these behavioral modeling contexts applies to and
within the SOI, Mission System, and Enabling Systems.
Given this framework, let’s begin with Figure 10.13.

10.6.1 Behavioral Modeling Details

Systems, products, and services can be modeled in any
context and level of abstraction. The discussions that follow
will illustrate four types of models:

• Generalized User’s Multi-Mode Model (Figure 10.13)
• System Element Architecture (SEA) Model (Figure

10.14)

• Personnel–Equipment UC-Based Task Sequence
Model (Figure 10.16)

• System Capability Construct (Figure 10.17)

Let’s explore each of these further.

10.6.2 Generalized User’s Level 0 Life Cycle Phases
Model

One of the first steps in modeling SOI Mission System
and Enabling System Operations is to establish its context
within the User’s Level 0 Enterprise System as shown in
Figure 10.13. This model is a construct that can be used
to represent SOI Pre-Mission, Mission, and Post-Mission
operations and interactions between the Mission Systems,
Enabling Systems, and their OE.
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As illustrated, an Enterprise-Level model is created con-
sisting of the Higher Order Systems Domain and the SOI.
As an Enterprise asset, the SOI is activated and deactivated
by the Higher Order Systems Domain. Activation refers
to Higher Order Systems authority to make assignments
or issue Task Orders (TOs) to conduct missions based on its
System Elements—Roles and Missions, Operating Con-
straints, and Resources.

On activation, the SOI’s Mission System and Enabling
System models begin with an Initial State—gray circle—and
cycles continuously in the current mission until it has been
completed. The 270 degree arch with arrowhead at one
corner of the model symbolizes cycling of their respective
Pre-Mission, Mission, and Post-Mission Phases of Operation
until the mission is complete. On completion, control flow
transitions to the Final State—double circle with gray center.

During Mission Operations, the SOI Model interacts with
external systems in its Operating Environment—Human
Systems, Induced, and Natural Environment System
Models. Each of these Physical Environment Domain
models performs under the authority of the OE’s Higher
Order Systems Model.

Author’s Note 10.2

As a reminder, please note that due to
space restrictions, the bi-directional
SOI–Operating Environment in-
teraction arrows touching the SOI’s
dashed boundary represent connec-

tivity to the Mission System and Enabling System models.

A review of the figure leads to a question, what is the
structure of the Mission System and Enabling System
Models? This leads to introduction of our next model, the
Generalized SEA Architecture Model.

10.6.3 Generalized SEA Model

Earlier in Figure 8.13, we introduced the SEA that illustrated
the relationships among Mission System or Enabling Sys-
tem Elements. The architecture provides the infrastructure
for the Generalized SEA Model shown in Figure 10.14.
This model serves as template for the Mission System and
Enabling System models.

The SEA Model is comprised of the six System Elements
that operate concurrently. Data flow between each Element’s
model occurs horizontally.
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Observe the dashed boundary encompassing the
Personnel and Equipment Elements. As a perform-
ing entity, the Personnel–Equipment interaction is tightly
coupled for most Human Systems. The remaining Sys-
tem Elements—Mission Resources, Procedural Data,
System Responses, and Facilities Element models—are
supporting entities. Due to space restrictions, the graphic
deviates from standard SysMLTM practices and simply uses
arrows touching the boxes to represent interactions with
external Operating Environment—Human Systems,
Induced, and Natural Systems Environments.

A review of the figure leads to a question, what is the
structure of the Personnel–Equipment Model? This leads to
introduction of our next model, the Personnel–Equipment
Interactions Model.

10.6.4 Personnel–Equipment UC Task Sequence
Model

The Mission Phases of Operation Concept shown in
Figure 7.4 highlighted the interactions that need to occur
between the Mission System and the Enabling System
during all Phases of a mission, especially between their
respective Personnel and Equipment System Elements.

We know that Personnel–Equipment interactions re-
quire some level of synchronization due to the uniqueness

of the Equipment design. Specifically, trade-offs must be
performed to balance costs, performance, and human fac-
tors concerning what the human can do best versus what the
Equipment can do best (Figure 24.14). As a result, each
UC requires orchestrating a set of interactions between the
Personnel and the Equipment Elements (Figures 10.15
and 10.16).

During Pre-Mission, Mission, and Post-Mission Phases
of Operations, the Mission System and Enabling Sys-
tem have their own sets of Personnel–Equipment inter-
actions. In each interaction, Personnel and Equipment
perform operational tasks that leverage their respective ca-
pabilities. Actually, the Personnel–Equipment interac-
tions represent Mission and System UCs as shown in
Figure 10.15.

In performing a UC, the Personnel Element Model,
operator, performs C2 tasks that initiate Equipment El-
ement Model tasks via its interfaces—keyboard, touch
screens, mouse, trackball, etc.—physical models. When the
Equipment Element performs its tasks—C2 of its capabil-
ities, it produces performance-based outcomes and behav-
ioral response feedback via physical models, display, lights,
audible and visual cautions, warnings, etc., to the Personnel
Element Model, operator.
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Several key points about the figure are as follows:

1. Both the Mission System and Enabling System have
identical, generalized interactions models except for
the applicability of the Enabling System Facilities
Element (Figure 10.14).

∘ In general, each interaction model is based on an
operator performing UCs and responding to scenar-
ios unique to the Mission System or Enabling
System.

∘ To perform a UC, the User - operator or maintainer
- must be trained to have specific capabilities to
understand how to perform the UCs and operate the
Equipment.

∘ In general, the Mission System and Enabling
System Equipment Elements have Task Sequence
Models that process User inputs, configure the
Equipment for the UC, and exploit the Equipment
Capabilities Models.

∘ The Equipment Capabilities Models represent time-
and performance-based transfer functions that pro-
vide outcomes and feedback—results, completion,
cautions, warnings, etc.—to the Task Sequence
Models.

So, we create the Personnel–Equipment Task Sequence
Model template as shown in Figure 10.16; for a given UC,

the Personnel–Equipment Element interactions within the
Mission System, Enabling System, and between the two
must be synchronized into an integrated model structure.

Several observations are as follows:

1. Observe that the model has a Mission Phase- and
UC-specific context. Recall from our discussions
in Chapter 5, that Modes control Configuration
States—architectural configurations—and accom-
modate specific Stakeholder UCs. Each UC consists
of a sequence of operational tasks—automated or
semi-automated—to be performed by the System’s
UC Actors, Personnel and Equipment System El-
ements. The model represents the prescribed flow of
those tasks. In the case of an aircraft, pilot deviation
from a checklist representing required performance
of these tasks in a specific sequence could result in
catastrophic consequences.

2. Each UC-based task represents a capability the
Personnel and Equipment Elements must provide to
accomplish the UC.

3. The Equipment Element model presented here rep-
resents a computer-based system that is capable of
performing manual, semi-automated, or automated
sequences of pre-defined operations. In the case of
an Enabling System performing maintenance, the
Personnel Element—User—may have to C2 a test
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Figure 10.16 Personnel–Equipment Task Sequence Model
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instrument that can only provide readings, not auto-
mated sequences of tasks.

10.7 MODELING AN OPERATIONAL
CAPABILITY

Engineers, managers, executives, and others talk about capa-
bilities as if they were abstract objects in sales presentations
or specifications. However, a capability is more than a life-
less, abstract object. Capabilities are the mechanisms that
fulfill SPS or EDS requirements and are the enablers for mis-
sion success. To better understand this point, let’s begin with
an exploration of the anatomy of an operational capability.

10.7.1 Understanding the Anatomy of an Operational
Capability

Principle 10.4

System Capability Operations Principle

Every operational capability, as an inte-
grated system, consists of a minimum of
three phases of operations:

• Pre-Capability Operations
• Capability Operations
• Post-Capability Operations.

Principle 10.5

Exception Handling and Recovery
Operations Principle

Every capability requires a safety or con-
tingency mechanism to detect exceptions,

mitigate, and attempt recovery to return to and restore normal
operations without doing any harm.

Contextually, a capability is a form of system that per-
forms missions composed of a minimum of three phases of
operation: Pre-Capability Operations, Capability Operations,
and Post-Capability Operations. Figure 10.17 provides an il-
lustration. When unplanned events referred to as exceptions
such as Abnormal, Emergency, and Catastrophic scenarios
(Figure 19.2) occur, Exception Handling and Recovery Oper-
ations are initiated to enable recovery, resumption of Normal
Operations, and a safe completion of the capability’s mission.
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Principle 10.6

Capability Initiation Principle

Every operational capability requires
an external trigger such as a stimulus,
excitation, or visual cue to initiate its

performance-based outcome processing.

To better understand the point about capabilities being
more than abstract objects, Figure 10.17 provides a reference
graphic for our discussion. Observe the general control
flow sequences that begin with a Capability’s Initial State.
When an external stimulus, excitation, or cue commands
that a capability be performed, control flow sequences to
Pre-Capability Operations.

10.7.1.1 Pre-Capability Operations Unlike a simple
room light capability, which is activated by a User flipping
a light switch On/Off, some systems require more complex
capabilities that require a series of decisions to be made
before initiation. Decisions include the following:

1. Energy State Decision—What is the capability’s
current Energy State – Energized or De-energized?
For example, are (1) direct electrical, kinetic, solar,
wind, hydro, hydraulic, and other forms of energy or
(2) back-up power sources immediately available to
power the capability on-demand?

2. Activation State Decision—What is the current Ac-
tivation State of the capability– Enabled, Disabled,
Standby, or Hibernation? For example, consider a
Mars mission consisting of a mother craft carrying a
rover vehicle. The rover vehicle may not be required
to be fully operational between Earth and Mars for en-
ergy conservation. However, low levels of energy may
be required for heating – warmth, periodically reporting
OH&S status when interrogated, or receiving software
uploads.

3. Stabilization State Decision—When energized, does
the capability require a period of stabilization such as
warm-up, cool down, electrical or mechanical damp-
ening, and so forth to reach a specified level suitable
for performing tasks such as measurements?

4. Availability State Decision—Is the capability oper-
ationally available to perform on-demand? Is it fully
operational, does it exhibit degraded performance, or
is it failed—out of specification or destroyed?

5. Initialization State Decision—Does the capability re-
quire initialization such as (1) calibration or align-
ment of electro-mechanical or optical components or
(2) initialization of Software parameters such as
gravitational constants, pi, or magnetic North Pole
movement.

Answers to these questions require establishing Opera-
tional Health & Status (OH&S) checks to interrogate the
capability to determine the states listed above. For example,
an OH&S checkout may be as simple as assessing a set
of Software “flags,” polling Hardware configurations of
switches or batteries. This may require (1) an OH&S as-
sessment each time the capability is used or (2) an over-
all Operational Readiness Test (ORT) performed Daily
(DORT), Hourly (HORT), or continuous (CORT) in the
background.

The Energy, Activation, Stabilization, Availability, and
Initialization Decision States are System/Product and appli-
cation dependent and should be tailored to best fit the needs
of the capability. Specific capabilities for your system and its
application may require more or less Decision States.

When the Pre-Capability Operations are complete,
control flow sequences to the Capability Operations. If
exceptions occur during Pre-Capability Operations, con-
trol flow sequences to Exception Handling and Recovery
Operations.

10.7.1.2 Capability Operations Capability Opera-
tions represent the core processing required to produce
one or more performance-based outcomes. It may be
asynchronous—sporadic—or synchronous—periodic.
Examples include the following:

• Transmit Capability—Broadcast sensor data measure-
ments at a 1 Hz rate.

• Command and Control (C2) Propulsion—Activate,
command, and control propulsion based on User C2.

Capability Operations, in general, include tasks such
as processing, storing, navigating, commanding, control-
ling, transforming, converting, encoding/decoding, open-
ing/closing, assessing, and so forth. Observe the “ing” suffix
for each of the actions. You should recall from our discussion
in Chapter 7 that these actions represent Operational States of
a capability. This is a very key point that will be applied later
in Chapter 22 (Principle 22.8) concerning the development
of specification requirement statements.

When Capability Operations are completed via (1) com-
manded termination, (2) time-out, or (3) resource deple-
tion, control flow sequences to the Post-Capability Opera-
tions. If exceptions occur during Capability Operations, con-
trol flow sequences to Exception Handling and Recovery
Operations.

10.7.1.3 Post-Capability Operations

Principle 10.7

Outcome Results Reporting Principle

On completion of its required perfor-
mance, every capability should report
successful completion of the task.
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Post-Capability Operations represent physical-
implementation-driven “Housekeeping” tasks that must
be completed prior to the next initiation of the capability.
For example:

1. Does completion of the capability require notification
to the User, external systems, or internal record keep-
ing? If so, in what form, audio, visual, or simply event
data logging?

2. In the case of mechanical Hardware, are there me-
chanical arms such as NASA’s Spec Shuttle Cargo Bay
Arm or a robotic arm (Figure 25.7) that need to be
“parked” in a Safe Mode—positioned and locked—to
prevent damage to itself or from external systems? For
example, an office copier scans a document for copying
and then “parks” the scanning sensor at a preset loca-
tion for reproduction of the copy.

3. In the case of electro-optical systems, does a pro-
tective lens cover need to be closed—NASA’s Hub-
ble Space Telescope—or an aperture closed to prevent
high-intensity light damage to sensitive sensors?

4. Is the capability fully operational and ready for its next
application?

Answers to these questions drive the need for specific
operational tasks to be performed such as those shown in
Figure 10.17.

When the Post-Capability Operations are complete, con-
trol flow sequences to the Final State. If exceptions occur
during Postcapability Operations, control flow sequences to
Exception Handling and Recovery Operations.

10.7.1.4 Exception Handling and Recovery Operations
The control flow sequences of the three preceding
operations—Pre-Capability → Capability → Post-Capability
Operations represent Cockburn’s “main success scenario”
(Chapter 5). Inevitably, disruptions or interruptions occur in
the performance of a capability that may be driven by

1. External system interface failures with Human Sys-
tems in its Operating Environment.

2. Internal system failures due to interface disconnection,
propagation of failures (Figure 26.8), or component
failures.

Principle 19.22 addresses these scenarios later.
Some of these failures may be critical, especially for

computer operations. For example, the loss of external power
may require a back-up power system to enable software
applications to save critical data and close out applications
before back-up power is lost. So, how does a capability
accommodate these exceptions? The answer is via a concept
referred to as Exception Handling and Recovery Operations.

The purpose of Exception Handling and Recovery Op-
erations is to restore system operations to a level that
enables resumption of the capability to complete a mis-
sion. Exception Handling and Recovery Operations are a
form of corrective maintenance actions addressed later in
Chapter 34.

Author’s Note 10.3

Allocation of Exception Handling
and Recovery Operations
Requirements

Human beings instinctively think of
Equipment—Hardware and Software—as the mecha-
nisms for achieving capability recovery. This point illus-
trates the fallacy of the SDBTF-DPM Engineering Paradigm
Enterprises that allocate SPS or EDS Exception Han-
dling and Recovery Operations requirements directly to
Hardware and Software (Figure 2.3). The reality is
All System Elements—Personnel, Equipment, Mission
Resources, Procedural Data, System Responses, and
Facilities—have some contribution and accountability for
Exception Handling and Recovery Operations as illustrated
in Reason’s Swiss Cheese Model introduced later in Figure
24.1. For example, failure to maintain control of an automo-
bile while driving is a Driver–Personnel Element issue, not
an Equipment Element Hardware or Software problem
per se.

When exceptions occur, the challenge question is: at what
point is recovery of a degraded or failed capability futile?
So, key questions that need to be answered include the
following:

1. How long or how many attempts are allowable to
restore and recover Pre-Capability, Capability, and
Postcapability Operations before a decision is made to
terminate that effort?

2. How do you safely disable, deactivate, or de-energize
the capability?

3. Who and what systems require notification when a
capability experiences a disruption, has “failed,” and
is no longer available?

4. Is the failure a temporary condition such as overheating
or freezing that warrants periodic follow-up recovery
attempts when conditions have changed?

5. In the interest of energy conservation, should power be
removed from a failed capability’s devices?

One common scenario that leads to exceptions occurs in
computational processing. For example: “divide by zero,”
applications that have been corrupted, or disconnected inter-
faces. When processors go into an infinite loop, the only way
to recover is to reset the processor. For applications such as
space travel, the User cannot easily reset a processor unless
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it has a remote reset capability. Where communications are
disrupted, this becomes a long-distance telecommunications
challenge.

To solve the Hardware reset capability issues, some sys-
tems employ a “Watch Dog Timer.” The timer automatically
performs a Hardware reset to restart a computer system un-
less the computer restarts the timer within a specified timeout
window such as 1 second. When the computer cycles in an
infinite loop, obviously it does not reset the timer with the
specified timeout period leading to a System reset as the only
alternative to alleviate the issue.

As part of a System’s Postmission analysis activities,
mission data logs should be analyzed to understand the
facts leading to the exception events. Consider the following
example:

Example 10.9

Event Data Recovery Example

A flight data recorder, referred to as the
“black box,” records vital aircraft systems
information such as aircraft performance,

sequences of events, and flight environment conditions.
Data recorded by the device provide an historical record
of events such as Personnel actions and Equipment
performance—that may have led to a specific event for mit-
igation in future missions via upgrades, training, procedure
updates, and so forth.

If the exception is recoverable, the recovery should be
logged as an event, corrected, and control flow returns to
the Pre-Capability, Capability, or Post-Capability Operations
that were the source of the exception for continuation of
processing. If the exception is unrecoverable, the capability
is Disabled and De-Energized and directed to the Final
State.

10.7.2 System Operational Capability Analysis Rules

To illustrate how the System Capability Construct can be
applied to Personnel–Equipment interactions, let’s return
to the Car–Driver System illustrated in Figure 10.8. Rec-
ognize that the integrated Car–Driver System can be repre-
sented by the construct. Similarly, the construct can be used
to represent the Car and the Driver individually as shown in
Figure 10.18.

In modeling the Car and Driver capabilities, we would
synchronize their respective Pre-Mission, Mission, and
Post-Mission operations beginning with the Initial State
through the Final State.

During these interactions, the Driver can C2 various
car capabilities as shown in Figure 10.19. Observe that
the Driver can C2 the Engine, Lights, and Radio through
“n” capabilities. This illustration represents a model of
the Car–Driver System Modes matrix shown earlier in
Figure 7.14.

System Capability
Construct 

Initial
State

Provide
Driver

Capability  

1.0

Provide
Vehicle

Capability

1.0

Continue

Stop

Final
State

System Capability
Construct

Figure 10.18 Application of the System Capability construct to a Car–Driver System
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2.0 Car Capability

Initial
State 

Provide
Driver

Capability

1.0

Provide
Propulsion
Capability*

2.1

Provide
Steering

Capability*

2.2

Provide
Radio

Capability*

2.3

Provide
“n”

Capabilities*

2.4

Continue Stop

* Application of the System
Capability Construct

Final
State

Figure 10.19 Driver Capability C2 of Car Capabilities

If you ask a sampling of engineers how they specify a
system’s capabilities, most will respond, “We write require-
ments.” Although this response has a degree of correctness,
requirements are merely mechanisms for documenting and
communicating what the User requires in terms of accep-
tance at delivery. The response you should hear from SEs is:
“We specify system capabilities and levels of performance to
achieve specific outcomes required by the User.”

When Engineers focus on writing requirement statements
(requirements-centric approach) rather than specifying
capabilities (capability-centric approach), requirements
statements are what you get. When you attempt to analyze
specifications written with a requirements-centric approach,
you will encounter a “wish list” domain that is characterized
by random, semi-organized thoughts; overlapping, conflict-
ing, replicated, and missing requirements (Figure 20.3);
ambiguous statements subject to interpretation; compound
requirements; Statement of Work (SOW) tasks; mixtures of
goals and requirements.

In contrast, specifications written by SEs who employ
model-based requirements derived from coherent structures
of system capabilities generally produce documents that
eliminate or reduce the number and types of deficiencies 0.
These specifications also tend to require less maintenance
and facilitate verification during the system integration and
test phase of the program.

If you analyze and characterize work products
of the requirements-centric approach, several points
emerge:

• Lack of understanding of the end product—bounding
system capabilities—and its interactions with its
Operating Environment.

• Lack of training and experience in how to identify and
derive capability-based requirements.

• Poor understanding of the key elements of a require-
ments statement.

We will address the last two points in Chapter 11.
Our discussion in this chapter focuses on the first item:
understanding system capabilities.

Our discussion of the automated or semi-automated
system capability construct and its application as a generic
template enables us to establish the System Operational Ca-
pability analysis rules identified in Table 10.1.

10.7.3 The Importance of the System Capability
Construct

At the start of this chapter, we contrasted traditional, ad hoc
endless loop, Plug and Chug … SDBTF-DPM Engineering
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TABLE 10.1 System Operational Capability Analysis Rules

Rule Title System Analysis and Design Rule

CAP_1 Multi-phase
Operations

Every automated or semi-automated System capability consists of at least three types of
operations: Pre-Mission, Mission, and Post-Mission

CAP_2 Capability Activation Each capability must be enabled or activated to perform its intended mission. If not, the
capability remains deactivated or disabled until the decision is revisited in the next cycle

CAP_3 Capability
Initialization

Each automated or semi-automated System capability, when activated or enabled, may
require initialization to establish a set of initial conditions that enable the capability to
perform its mission. If initialization is not required, workflow progresses to the next cycle,
Perform Capability

CAP_4 Perform Capability Each automated or semi-automated System capability must perform a primary mission that
focuses on accomplishing a performance-based outcome that is documented as a
requirement in the SPS or Entity Development Specification (EDS)

CAP_5 Exception Handling Each automated or semi-automated System capability should provide a mechanism for
recognizing, recording, and processing exceptions and errors

CAP_6 Exception Recovery
Operations

Every automated or semi-automated System capability should provide an exception handling
mechanism to enable recovery from exceptions and errors without having to restart the
System or result in destructive consequences to the system, life, property, or the
environment

CAP_7 Exception Recovery
Attempts

As each recovery operation is attempted, the System must decide whether additional recovery
attempts are justified

CAP_8 Completion
Notification

Every automated or semi-automated System capability may require automatic or manual
notification of completion of the capability’s mission and outcome to internal and external
entities

CAP_9 Capability Safety and
Security

Every automated or semi-automated System capability may require a set of operations or
actions to safely and securely store or stow the capability to protect it from external threats
or itself

CAP_10 Capability Cycling Once a capability has cycled through its planned operations, it may: Continue to cycle—Do
Until—until terminated by an external command, timed completion, or resource depletion
Sequence to a Final State when either of the preceding conditions occur

Paradigms that focus on “deriving and writing” specification
requirements from random thoughts from personal experi-
ences. Our discussion of the System Capability Construct
serves as compelling objective evidence as to why it is im-
portant to structure and specify a capability and then trans-
late it into a requirements statement. Operations within the
structure serve as a graphical checklist for specification re-
quirements, namely, what is to be accomplished and how
well—performance—without stating how it is to be imple-
mented.

As our discussion illustrated, a capability consists of a
series of operational tasks, decisions, inputs, and outcomes.
Each of these operations is translated into a specification ca-
pability requirement statement and is integrated into a set of
requirements that bound the total set of capabilities. With-
out the capability-centric focus, a specification is nothing
more than a set of random, loosely coupled text statements
with missing requirements representing overlooked opera-
tions within the capability construct.

Does this mean every operation within the construct
must have a requirements statement? No, you have to
apply good judgment and identify which operations require

special consideration by designers during the capability’s
implementation.

Author’s Note 10.4

Bounding and Specifying a
Capability

Remember the old adage: If you do
not tell someone what you want, you

cannot complain about what gets delivered. If you forget
to specify a specific operational aspect of a capability,
the System Developer will be pleased to accommodate
that requirement for a price—and, in some cases, a very
large price. Therefore, do your homework and make sure
all capability requirements are complete. The capability
construct provides one approach for doing this, but the
approach is only as good as your efforts to define it.

Our discussion introduced the concept of automated or
semi-automated system capabilities. We described how most
Human System capabilities can be modeled using the
System Capability Construct as a template. The construct
provides an initial framework for describing requirements
that specify and bound the capability.
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Figure 10.20 Business Operational Cycles within Cycles

10.8 NESTED OPERATIONAL CYCLES

While businesses have daily, cyclical operations at the enter-
prise level, entities within the business may have iterative cy-
cles. If you investigate the context of the Mission System’s
application, analysis reveals several embedded or nested op-
erational cycles. Let’s explore an example of this type.

Let’s assume we have a city bus transportation system that
makes a loop around the city several times a day, every day of
the week, seven days a week. As part of each route, the bus
makes scheduled stops at designated passenger pickup and
drop-off points, passengers board, pay a token, ride to their
destination, and exit the vehicle.

At the end of each route, the vehicle is returned to a
maintenance facility for routine preventive maintenance. If
additional corrective maintenance is required, the vehicle is
removed from active service until the maintenance action is
performed. During maintenance, an assessment determines
if the vehicle is scheduled for replacement.

• If repairable, the vehicle is returned to active service.

• If the vehicle is to be replaced, a new vehicle is
acquired.

The current vehicle remains inactive service until it
is decommissioned, which may or may not be linked to
the new vehicle entering service, depending on business
needs.

Figure 10.20 provides an operational model for this
example to illustrate nested operational cycle within cycles.
The six operational cycles, which are assigned reference
identifiers, include a Vehicle Life Cycle, a Daily Schedule
Cycle, a Driver Shift Cycle, a Route Cycle, a Passenger
Cycle, and a Maintenance Cycle. Depending on the structure
of the business, a seventh Vehicle Fleet Cycle may be
applicable. Such is the case with aircraft, delivery vehicles,
rental cars, police cars. While there are numerous ways of
creating this graphic, the primary message here is learn
to recognize embedded operational cycles that include the
integration of the Mission System with the Enabling
System during various cycles.

10.9 MODEL-BASED SYSTEMS ENGINEERING
(MBSE)

Concepts for Modeling and Simulation (M&S) of system
capabilities and performance as a means to identify, bound,
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and specify system capabilities; assess and resolve Critical
Technical and Operational Issues (CTIs/COIs); etc. have
been in existence since the 1950s and 1960s. Part of the
challenge was the maturity and performance of computer
hardware technologies. Computer hardware technologies
performance, however, was only one aspect of the system
Problem Space. Other Problem Space issues related to
the evolution and maturity of Systems Engineering and
software development education and training, processes and
methods, the need for a universal descriptive language for
characterizing systems, and cross-platform and operating
system compatibility, interoperability, and portability of
system M&S designs and data.

Over several decades—1970–1990s—computer hard-
ware and software technologies and methods maturity
increased significantly. Organizations began creating M&S
standards in the 1980s such as the DoD. What was needed
was a universal descriptive language for characterizing
systems and data standards for M&S software. As a result,
work on the Universal Modeling Language (UML™) began
in the 1990s at Rational Software for software intensive
systems. However, due to the critical, tightly coupled link
between Systems, Hardware, and Software Engineering,
industry and government recognized that UML™ required
additional features to serve as a descriptive language for SE
applications to systems.

In 2001, the International Council for Systems Engineer-
ing (INCOSE) began a SysMLTM Initiative to customize
UML™ for SE applications. Subsequently, this leads to the
development of Systems Modeling Language (SysML™) as
a subset of UML™. In September 2006, the Object Manage-
ment Group (OMG) released the OMG SysML™ Version 1.0
as an available specification in September 2007. Once the
OMG standard for SysML™ was established, tool vendors
began development and certification of MBSE tools to the
OMG UML™ and SysML™ standards.

As a result of these advancements, one aspect of the
original problem space remains. During the introduction to
this text, we highlighted and contrasted the traditional, ad
hoc, never-ending Plug and Chug … SBTF Engineering
Paradigm many organizations continue to use. This is driven
by the erroneous perception that since the System Engineer-
ing Process is iterative and recursive, (Figure 12.3 and 14.2)
so is the SBTF Engineering Paradigm. Therefore, it must be
SE. Not true!!

Wasson (2011) observes that since MBSE concepts and
publicity have gained the attention of customers as the next
panacea for improving organizational and contract perfor-
mance, some SBTF organizations that refused to learn SE
methods view MBSE tools as promotional “brochureware”
publicity to secure business. They rush out and purchase
MBSE tools with the perception that if they are using a

SysMLTM MBSE tool, they are, by definition, perform-
ing Systems Engineering. The inference here is that “if
you own a paint brush, by definition, you must be an
artist.”

The reality is UML™ and SysML™ provide the descrip-
tive language for modeling systems via certified MSBE tools.
In general, they do not supply the requisite SE knowledge
and methodology in analyzing and defining System / Entity,
Missions, Operations, Architectures, Capability, and Specifi-
cations concepts that are required by the User to competently
create, organize, and structure system information in the tool
using UML™ and SysML™. That knowledge is the focus of
this text—System Engineering, Analysis, and Development:
Concepts, Principles, and Practices.

Lacking this requisite knowledge, MBSE tools become
amateurish drag and drop graphics of incoherent systems.
Unfortunately, when the ad hoc Plug and Chug … SBTF
Enterprises fail because of this lack of SE knowledge and
willingness to learn it, Systems Engineering, MBSE, MBSE
tools, UML™, and SysML™ become casualties of bad
publicity though no fault of their own. As Wasson (2011)
observes, MBSE requires due diligence research; strategic
and tactical planning, training, rollout, and implementation
for its success; and long-term management commitment and
support.

In summary, MBSE is a very powerful method, useful,
and beneficial method for modeling and simulating system
architectures and interfaces, operations, capabilities, etc.
Consider its application to your Enterprise but do it right.
Plan for its success; MBSE is not a “flavor of the month”
activity.

10.9.1 Simple MBSE Example

To illustrate the essence of MBSE, consider the graphic
shown in Figure 10.15, Here, we model the interactions
within a Mission System or Enabling System between
the repsective Personnel - Equipment Elements for a given
Mode of Operation.

On entry from the previous Mode of Operation, the Mode
has an Initial State that sequences via a SysML™ “fork” to
Personnel Element and Equipment Element operations.
Personnel Element and Equipment Element Operations be-
gin with an Initial State and sequence through a series of
tasks based on Allowable and Prohibited Actions. Each pro-
cessing cycle sequences through a control or staging point
decision block until a stimulus, excitation, or cue terminates
the cycle. Concurrent task processing with each Element cul-
minates in the SysML™ “join” as noted by its Final State,
and subsequent control flow shifts back to the Mode via
its SysML™ “Join” and termination as noted by its Final
State.



REFERENCES 243

10.10 CHAPTER SUMMARY

In summary, we have introduced the concept of Modeling
Mission System and Enabling System operations. Our
discussions introduced:

• A simple behavioral system response mode that illus-
trated the overall concept of how a system responds to
stimuli, excitation, and cues in its Operating Envi-
ronment and produces behavioral responses, systems,
products, by-products, and services.

• Six behavioral interactions constructs common to most
systems.

• Graphical control flow and data flow concepts for
sequencing a system operations model and exchanging
data between entities within the model.

• A series of top-down SysML™ templates that represent
how we can model a Mission System and Enabling
System interactions with its Operating Environ-
ment.

• The System Capability Construct that represents what
is required to prepare, perform, and complete a capa-
bility for single-use or cyclical application.

• The concept of MBSE and its application to modeling
Mission System and Enabling System operations.

In closing, our discussions here provide the foundation for
Chapters 11–15 System Specification Concepts that ad-
dress the development of multi-level specifications via the
translation of UC-based tasks and capabilities into specifica-
tion requirements statements.

10.11 CHAPTER EXERCISES

10.11.1 Level 1: Chapter Knowledge Application
Exercises

1. What is a model?

2. How does a model represent a System or Entity?

3. What is a transfer function?

4. What is Model-Based Systems Engineering (MBSE),
its purpose, descriptive language, and application
to SE?

5. If MBSE is a tool that satisfies an SE solution space,
define the problem space it is intended fill.

6. How do you develop a simple behavioral response model
for a system?

7. What are the six basic types of behavioral interactions
constructs?

8. How do you model multi-phase system operations?

9. How do you define, describe, and represent multi-level
modeling constructs or template for modeling Mission
System and Enabling System operations.

∘ What is the purpose of the system behavioral response
model (Figure 10.1)?

∘ What are the key elements and interfaces of the
model?

10. What is system compatibility?

11. What is system interoperability?

12. Identify and describe six types of system interactions
with its Operating Environment?

13. What is meant by a system’s control flow?

14. What is meant by a system’s data flow?

15. How are control flow and data flow related?

16. What is the User’s Level 0 Enterprise Model?

17. What is the System Element Architecture (SEA)
Model?

18. What is the Personnel–-Equipment Interactions
Model?

19. What is the System Capability Construct?

20. Graphically depict, label, and describe the operations
within the System Capability Construct (Figure 10.17).

21. Using the System Capability Construct (Figure 10.17) as
a template, develop textual and graphical descriptions of
its application to a tablet computer, smartphone, or other
devices.

22. What are system operational cycles?

10.11.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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11
ANALYTICAL PROBLEM-SOLVING AND SOLUTION
DEVELOPMENT SYNTHESIS

Throughout Part I, “System Engineering and Analysis
Concepts,” we sequenced through a series of chapters that
provide an analytical perspective into how to conceptualize,
analyze, organize, and characterize systems. These discus-
sions provide the foundation for Part II, “System Design
and Development Practices,” which enables us to trans-
late a Stakeholder’s vision that could be abstract into a de-
liverable system, product, or service that can be verified and
validated as meeting their needs.

11.1 DEFINITIONS OF KEY TERMS

• Synthesis—The analysis and assimilation of specifica-
tion operational, capability, and interface requirements
into candidate architectural solutions for evaluation, se-
lection, and development of an optimal solution within
environmental, design and construction, technology,
budgetary, schedule, and risk constraints.

• Synthesis—The creative process that translates re-
quirements (performance, function, and interface) into
alternative solutions resulting in a physical architecture
for the “best-value” design solution, made up of people,
products, and process solutions for the logical, func-
tional grouping of the requirements (FAA, 2006, Vol. 3,
p. B-12)

A Word of
Caution 11.1

Please note that the Synthesis definitions
above summarize Chapters 1–11. As a
level of abstraction, they do not correct
the SDBTF-DPM Engineering Paradigm
quantum leap represented by in Figure 2.3.
Chapter 11 introduces a new methodology

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

referred to as the Four Domain Solutions illustrated in Figure
2.3 to avoid the pitfalls of the SDBTF-DPM Paradigm.

11.2 PART I: SYSTEM ENGINEERING AND
ANALYSIS CONCEPTS SYNTHESIS

Part I, “System Engineering and Analysis Concepts,”
embodied several key themes that System Engineers (SEs),
Systems Analysts, managers, and executives need to un-
derstand when developing an Enterprise, system, prod-
uct, or service. In Chapter 2, we highlighted the fallacies
of the ad hoc, inefficient, and ineffective Plug and Chug
… Specify-Design-Build-Test-Fix (SDBTF)-Design Pro-
cess Model (DPM) Engineering Paradigm with deeply rooted
origins in the Scientific Method. Although the SDBTF-DPM
Paradigm may be fine as a Research & Development (R&D)
and as an educational instructional model, a different type
of problem-solving and solution-development model is re-
quired for Systems Engineering and Development (SE&D).

SE&D is intended for knowledge-based application
of maturing technologies, not Research and Development
(R&D). When individuals and Enterprises employ the
SBTF-DPM paradigm, latent defects such as design flaws,
errors, and deficiencies increase.

Unfortunately, these individuals and Enterprises often
erroneously believe they are applying Systems Engineering
methods and their customers, in good faith, believe them.

There is, however, a more efficient and effective approach
to SE&D. We can employ a methodology that overcomes
the quantum leap from requirements to the physical solution
addressed earlier in Figure 2.3.

http://www.wiley.com/go/systemengineeringanalysis2e
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Author’s Note 11.1

Shifting Engineering Paradigms

Let’s be clear about the SE&D
Paradigm proposed here. When En-
terprises and individuals have deeply

ingrained paradigms that are part of the organizational
culture, it can be a challenge shifting the paradigms due to
the Not Invented Here (NIH) syndrome. Where these con-
ditions exist, a mental model – the Earth is flat - groupthink
rejects the notion that there are better approaches. They will
acknowledge that the SDBTF-DPM Engineering Paradigm
is ad hoc, chaotic, inefficient, ineffective, and unscalable
for different sized systems … “but that’s the way we have
always done it.” You can introduce new technologies, design
methods, and so forth; however, if the Enterprise paradigm
rejects acceptance, it takes effective, visionary leadership to
shift the paradigm and then over a period of time.

Given this introduction, let’s recap key aspects of the
analytical thought process addressed in Part I:

• What is the problem space Users need to resolve via
new system development or upgrades to fulfill their
Enterprise mission performance objectives?

• What are the boundary conditions and constraints—
operational, Enterprise, and regulatory—imposed by
the System Acquirer on a system, product, or service
in terms of missions within a prescribed Operating
Environment?

• Given the set of boundary conditions and constraints,
how does the User envision:
a. Deploying, operating, maintaining, sustaining, re-

tiring, and disposing of the system, product, or ser-
vice.

b. Performing missions within specific time and re-
source limitations.

• Given: (1) deployment; (2) operation, maintenance,
and sustainment (OM&S); and (3) retirement/
disposal constraints; what behavioral responses and
performance-based outcomes does the User require to
achieve mission success?

• Given those behavioral responses and performance-
based outcomes, how can the deliverable system be
physically and cost-effectively produced to perform
those missions with acceptable risk?

11.3 SHIFTING TO A NEW SYSTEMS
ENGINEERING PARADIGM

The SDBTF-DPM Engineering Paradigm is characterized as
ad hoc, chaotic, inconsistent, inefficient, and ineffective. As
an endless loop with no apparent completion, it typically
results in cost and schedule overruns, increases technical

risk, and is unpredictable. One of the problems is that
Engineers pre-maturely take a quantum leap or shortcut from
requirements to physical solution without understanding
interim steps (Figure 2.3).

Project Managers deplore the endless loop perfor-
mance with one step forward, two steps backward progress
and continual redesign and rework. What is needed is a
problem-solving and solution development methodology
that approaches technical decision-making in a logical and
insightful manner in which decisions are made with minimal
redesign and rework. How do we accomplish this?

If we distill and analyze the points made in Chapter 11’s
Introduction key steps for a new methodology emerge:

• Step 1—Understand the User’s Operational Needs,
Problem, or Issue Space.

• Step 2—Bound and Specify the User’s Problem and
Solution Spaces.

• Step 3—Understand How the User Intends to Employ
the System.

• Step 4—Model System Engagements and Behavioral
Interactions with Its Operating Environment.

• Step 5—Determine a Cost-Effective, Acceptable Risk,
Physical Implementation.

11.3.1 Step 1—Understand the User’s Operational
Needs

Boundary conditions and constraints are imposed by the En-
terprise that owns or acquires the system, product, or service
to accomplish missions with one or more performance-based
outcome objectives. The following chapters provided foun-
dational concepts in understanding User Enterprise roles and
missions, User Stories, Use Cases (UCs), and UC scenar-
ios. These concepts were addressed earlier in the following
chapters:

• Chapter 4: “User Enterprise Roles, Missions, and
System Applications”

• Chapter 5: “User Needs, Mission Analysis, Use
Cases, and Scenarios”

11.3.2 Step 2—Bound and Specify the User’s Problem
and Solution Spaces

Once we understand the User’s Operational Needs, we need
to define and specify the problem space boundaries. Then,
partition the problem space into one of more practical and
affordable solution spaces that have an acceptable level of
risk. These concepts were addressed earlier in Chapters 4
and 5

• Chapter 4: “User Enterprise Roles, Missions, and
System Applications”
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• Chapter 5: “User needs, Mission Analysis, Stories,
Use Cases, and Scenarios”

Later in Part 2, Chapters 19–23, “System Specification
Practices,” will address how specifications are used to
bound and specify the system, product, or service’s solution
space(s).

11.3.3 Step 3—Understand How the User Intends
to Employ the System

Once we understand the User’s operational needs, problem
or issue space, we need to understand how the User envi-
sions deploying, operating, supporting, sustaining, and retir-
ing/disposing of the System. This enables us to build an an-
alytical framework of interactions between the User, system,
product, or service and external systems in its Operating
Environment. The following chapters provided founda-
tional concepts:

• Chapter 5: “User needs, Mission Analysis, Stories,
Use Cases, and Scenarios”

• Chapter 6: “System Concepts Formulation and
Development”

• Chapter 7: “System Command & Control
(C2)—Phases, Modes, and States of Operation”

11.3.4 Step 4—Model System Behavioral Interactions
with Its Operating Environment

The analytical framework representing how the User intends
to use a system, product, or service enables us construct and
model capability-based behaviors and response outcomes re-
quired to engage and behaviorally interact with the exter-
nal systems in its Operating Environment. The following
chapters provided the framework and modeling of a system,
product, or service, its engagements, and behavioral interac-
tions.

• Chapter 8: “System Levels of Abstraction, Seman-
tics, and Elements”

• Chapter 9: “Architectural Frameworks of the
System of Interest (SOI) and Its Operating En-
vironment”

• Chapter 10: “Modeling Mission and Enabling Sys-
tems Operations and Behavior”

11.3.5 Step 5—Determine a Cost-Effective, Acceptable
Risk, Physical Implementation

Once the System’s behavioral responses and interactions
with external systems are understood and defined, the
question is: how do we physically implement cost-effective,
acceptable risk solution to perform those missions? The
following chapters provide the physical architectural

framework foundation for understanding how systems,
products, or services are physically implemented:

• Chapter 8: “System Levels of Abstraction, Seman-
tics, and Elements”

• Chapter 9: “Architectural Frameworks of the
System of Interest (SOI) and Its Operating
Environment”

We used the phrase “acceptable risk” in Chapter 1 to
define SE. As an abstract phrase, what does acceptable risk
really mean? Consider Mini-Case Study 11.1 below:

MINIMINIIN

Mini-Case
Study 11.1

Acceptable Risk – Case of the Apollo 12
Lightning Strike

“The Apollo 12 space vehicle was launched
on November 14, 1969, at 11:22 a.m.e.s.t,
from launch complex 39A at Kennedy Space

Center, Florida. At 36.5 seconds and again at 52 seconds, a
major electrical disturbance was caused by lightning. As a
result, many temporary effects were noted in both the launch
vehicle and spacecraft. Some permanent effects were noted
in the spacecraft and involved the loss of nine non-essential
instrumentation sensors. All noted effects were associated
with solid-state circuits, which are the most susceptible to
the effects of a discharge.

Analysis shows that lightning can be triggered by the
presence of the long electrical length created by the space
vehicle and its exhaust plume in an electric field which would
not otherwise have produced natural lightning. Electric fields
with sufficient charge for triggered lightning can be expected
to contain weather conditions such as the clouds associated
with the cold front through which the Apollo 12 vehicle
was launched. The possibility that the Apollo vehicle might
trigger lightning had not been considered previously.

The Apollo space vehicle design is such that a small risk
of triggered lightning is acceptable. In accepting this mini-
mal risk for future flights, launch rule restrictions have been
imposed with respect to operations in weather conditions as-
sociated with potentially hazardous electric fields.” NASA
(1970, p. 1).

By inspection, these themes range from the abstract,
visionary concepts to the physical implementation; this is
not coincidence. This progression is intended to illustrate a
methodology that enables SEs and System Analysts to:

• Evolve a System Design Solution from abstract vision
to physical realization.

• Avoid the pitfalls of the quantum leaps or short-
cuts from requirements to physical solution shown in
Figure 2.3.

These steps form the basis for our next topic, Introduction
to the Four Domains of Problem-Solving and Solution
Development.
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11.4 THE FOUR DOMAIN SOLUTIONS
METHODOLOGY

Principle 11.1

Four Domain Solutions Principle

A System or Entity’s design regardless
of Level of Abstraction is composed of
Four Domain Solutions sequenced in a

logical workflow—Requirements, Operations, Behavioral,
and Physical—based on decision dependencies to minimize
redesign and rework.

If we simplify and reduce these thematic groupings, we
find that they represent four types of solution domain depen-
dencies for logical Problem-Solving and Solution Develop-
ment actions. Table 11.1 illustrates the mapping between Part

I’s SE and Analysis Concepts themes and the four domain
solutions.

The Four Domain Solutions represent a logical problem-
solving and solution-development methodology for “bridg-
ing the gap” between a User’s abstract vision and the physical
realization of the system, product, or service. Each domain
solution elaborates decisions established by its predecessor
and expands the level of detail of the evolving System Design
Solution as illustrated in Figure 11.1.

In summary, the SE Problem-Solving and Solution De-
velopment Methodology enables us to elaborate an abstract
Mission into successive levels detail to select the optimal
Physical Domain Solution. This approach enables us to avoid
ad hoc SDBTF-DPM Paradigm “quantum leaps” (Figure 2.3)
from Requirements to Physical Solution that are inefficient,

TABLE 11.1 Linking Part I SE and Analysis Concept Themes into Part II System Design and
Development Practices

Step Thematic Objective Outcome

1. Understand the User’s operational needs, problem, or issue space(s) Problem definition
2. Bound and specify the user’s problem and solution space(s) Requirements Domain Solution
3. Understand how the user intends to deploy; operate, maintain, and

sustain (OM&S), and retire/dispose of the system
Operations Domain Solution

4. Model system logical/behavioral interactions with its Operating
Environment

Behavioral Domain Solution

5. Determine a cost-effective, acceptable risk, physical implementation Physical Domain Solution
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ineffective, and often lead to project cost and schedule
overruns.

This allows us to make several observations about SE&D
workflow over time:

1. The Mission as defined by the Opportunity/Problem
Space forms the foundation for the User to formulate,
bound, and specify a Requirements Domain Solution in
which requirements, technology, development cost and
schedule, and risk are in balance.

2. As the Requirements Domain Solution evolves and
matures, it establishes the basis for conceptualizing,
developing, and maturing the Operations Domain Solu-
tion. This solution is developed collaboratively with the
User to collect, define, and review User Stories, UCs,
and Scenarios that will be used to derive System capa-
bilities and subsequently specification requirements.

3. As the Operations Domain Solution evolves and ma-
tures, it establishes the basis for conceptualizing, devel-
oping, and maturing the Behavioral Domain Solution.
The solution defines how the System is envisioned to
engage and interact with systems in its Operating En-
vironment.

4. As the Behavioral Domain Solution evolves and ma-
tures, it establishes the foundation for developing and
maturing the Physical Domain Solution based on phys-
ical components, and their technologies and application
knowledge are readily available.

From a workflow perspective, the design and develop-
ment of the System Design Solution - composed of the Re-
quirements, Operations, Behavioral, and Physical Domain
Solutions-evolves and matures from the abstract to the physi-
cal over time. However, the workflow progression consists of
numerous iterations of feedback loops (Figure 14.2) to pre-
ceding solutions to reconcile Critical Operational and Tech-
nical Issues (COIs/CTIs). As a result, we symbolize the iter-
ative loops of System Domain Solution shown at the left side
of Figure 11.2.

11.4.1 Workflow Sequencing of the System Domain
Solution

Figure 11.2 illustrates how the System Domain Solution is
developed, evolves, and matures over time. The Require-
ments Domain Solution is initiated first, either in the form
of a contract SPS or an Entity’s Development Specification
(EDS). The sequencing occurs as follows:

1. When the Requirements Domain Solution is under-
stood and reaches a sufficient level of maturity, initiate
development of the Operations Domain Solution. This
includes:

a. Development of the System’s Concepts of Oper-
ation (ConOps)—deployment, operations, mainte-
nance, sustainment, retirement, and disposal.

Physical
Domain
Solution

Behavioral
Domain
Solution

Reqmts.
Domain
Solution

Operations
Domain
Solution

Entry/Exit

1

23

4

Each entity at every level of abstraction has a:
Level

of
Detail

Time

Highly Iterative

Highly Iterative

Highly Iterative

Requirements Domain Solution
1

Operations Domain Solution

Behavioral Domain Solution

Physical Domain Solution
4

2

3

Figure 11.2 System Design Solution Domain Time-Based Implementation
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b. Formulation, evaluation, and selection of an opti-
mal Operational Architecture from a set of viable
candidates.

2. When the Operations Domain Solution reaches a suffi-
cient level of maturity, formulate, evaluate, and select
an optimal Behavioral/Logical Solution from a set of
viable candidates.

3. When the Behavioral/Logical Domain Solution
reaches a level of maturity, formulate, evaluate, and
select an optimal Physical Domain Solution from a set
of viable candidates.

4. Once initiated, the Requirements, Operations, Behav-
ioral, and Physical Domain Solutions evolve concur-
rently, mature, and stabilize as a fully integrated Sys-
tem Design Solution. Therefore, the Word of Caution
11.1 noted earlier.

11.4.2 Implementation of the Four Domain Solutions

To illustrate how the Four Domain Solutions methodology
is implemented and its workflow from the abstract to
the physical and iterative feedback loop interdependencies
between each Domain Solution, refer to Figure 14.2 that
forms the framework for the Systems Engineering Process.

N

E

S

W

Heading 11.1

The methodological flow of the Four
Domain Solutions precludes the quantum
leap problem from Requirements to Phys-
ical illustrated in Figure 2.3. This brings
us to a pivotal point in SE—understanding

how Archer’s DPM introduced in Chapter 2 can be valid yet
deficient in fostering a concept perceived incorrectly by Plug
and Chug … SDBTF-DPM Engineering Paradigm Engi-
neers, managers, and executives to be System Engineering.
We now shift our focus to address these deficiencies.

Principle 11.2

Task-Based Outcome and Rewards
Principle

If you reward Engineers for activities,
you get … activities. If you equip

Engineers with the right processes, tools, and methods
to accomplish performance-based outcomes, you get …
performance-based outcomes.

You may ask: how is Archer’s DPM deficient as a
problem-solving and solution development methodology?
Engineering is highly iterative; that’s how it is performed.
Conceptually, this is true. However, Archer’s DPM (Figure
2.9) is an abstract, observational model that iterates within
the development of each of the Four Domain Solutions.
Contrary to misguided interpretations, the DPM is an endless
loop, analytical model that has validity and relevance to SE

but not closure to the Problem Space or Solution Space it is
perceived to solve.

Reexamine Archer’s DPM in Figure 2.9; analyze its
contents. What do you observe? Data Collection, Analysis,
Synthesis, Development, and Communication. What is com-
mon across each of these items? These are Engineering ac-
tivities, not outcomes! Now, factor in the feedback loops of
the DPM into the Plug and Chug … SDBTF Engineering
Paradigm and what do you get? The Plug and Chug …
SDBTF-DPM Paradigm (Figure 2.8).

Is there any wonder why systems and projects fail due
to technical compliance, cost, and schedule issues? Because
Enterprises, organizations, projects, and Engineers are out
wandering around doing what they are tasked to do -
“perform activities!”

Objective evidence of this paradigm is reflected in project
schedule line items such as: Write Specification, Design PC
Board, Order Components, Test HW or SW, and so forth.
Abstract activities such as these illustrate why System Ac-
quirers impose Earned Value Management System (EVMS)
requirements to measure progress as a basis for assessing
the risk of on-time project completion within budget. Key
EVMS tools include an Integrated Master Plan (IMP) and its
supporting Integrated Master Schedule (IMS), which are out-
come result-driven progress measurement tools. The IMS,
as an integrated network of outcome-based tasks and de-
pendencies, provides a measurement snapshot of the status,
progress, completion, and risks and their impact on the de-
velopment of the overall schedule.

Engineers often deplore IMPs and IMS for a variety of
reasons, some of which are warranted! Simply stated, the
IMS and IMP are based on accountability. Engineers are
required to demonstrate objective evidence that timely and
substantive technical decisions are being made that actually
produce outcome-based results as planned! It is hard to
produce results and deliver a System or Product on time
and within budget if all you do is “perform activities.”
Recognize and appreciate the difference!

How do the Four Domain Solutions correct Archer’s DPM
“activities” paradigm? Figure 11.3 provides an illustration.

As a high-level abstraction, Archer’s DPM is valid from
the perspective of orthogonal activities performed within
each of the Four Domain Solutions. For example, the Re-
quirements, Operations, Behavioral, and Physical Domain
Solutions have their own embedded Data Collection, Anal-
ysis, and Synthesis activities that enable the sequential
flow of the Four Domain Solutions. However, Archer’s
DPM is inappropriate as an overall SE&D outcome-based
problem-solving and solution development methodology.
Based on this explanation, the fallacy of the Plug and Chug
… SDBTF-DPM Engineering Paradigm should be obvious
based on a focus on activities, not outcomes. It also illustrates
a major factor that contributes to Engineering’s reputation
with Project Managers and Executives—deserved or not—
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Figure 11.3 Illustration of the Relationship of Archer’s DPM to Each of the Four Domain
Solutions

for being unable to finish a system or product’s design within
project schedule or budget constraints, assuming those were
realistically achievable at project start.

11.5 CHAPTER SUMMARY

Chapter 11 synthesizes our discussions in Part I, “Sys-
tem Engineering and Analysis Concepts,” and estab-
lishes the foundation for Part II, “System Design and De-
velopment Practices.” The introduction of the Require-
ments, Operations, Behavioral, and Physical Solution Do-
mains, coupled with chapter references in each domain, en-
capsulates the key analytical concepts that enable SEs and
System Analysts to think about, communicate, analyze, and
organize systems, products, and services for SE&D.

Remember:

• The Four Domain Solutions provide a logical decision
dependency method that shifts the ad hoc, chaotic,
inconsistent, inefficient, and ineffective Engineering
SDBTF Paradigm inferred by Archer’s DPM to a new
level of System Thinking (Chapter 1).

• The Four Domain Solutions Methodology consists of a
series of logically sequenced decision dependencies—
Requirements → Operations → Behaviors →
Physical—that form each System or Entity’s design
solution and minimize redesign and rework.

Figure 11.4 illustrates the essence of SE. Observe that the
Four Domain Solutions introduced in Figures 11.1 and 11.2
are expanded top-down into four levels. The analysis for each
Phase of Operation consists of the following solutions.

• Requirements Domain Solution—Specifies and
bounds performance-based objectives, outcomes, and
results to be achieved for each Mission Phase or
subphase of Operation. Requirements at all levels
of abstraction must be traceable to User Mission
Requirements.

• Operations Domain Solution—The User performs
Use Case (UC)-based Operational Tasks (OTs) re-
quired to accomplish the mission. Each OT requires
that the User Monitor, Command, and Control (MC2)
a system, product, or service’s Modes of Operation.
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Figure 11.4 Conceptual Overview of System Engineering & Analysis Synthesis

Operations and OTs must be traceable to and compliant
with the Requirements Domain Solution.

• Behavioral Domain Solution—For a given Mode of
Operation, characterize the stimulus–response behav-
ior required to achieve specific UC and Scenario per-
formance outcomes. This requires configuration of sets
of a system, product, or service’s logical capabilities
via User and System C2 to enable UCs and Scenarios
to be achieved. We represent the Behavioral Domain
Solution via methods and tools such as Model-Based
Systems Engineering (MBSE). Logical capabilities and
performance-based outcomes must be traceable to the
Operations Domain Solution and compliant with the
Requirements Domain Solution.

• Physical Domain Solution—The Physical Domain
Solution is composed of physical components that have
been selected to implement the Behavioral Domain So-
lution. Components must be traceable to the Behavioral
Domain Solution and compliant with the Requirements
Domain Solution.

As a bonafide problem-solving and solution develop-
ment methodology, the Four Domain solutions serve as

the “engine” for the Systems Engineering Process Model
(Figure 14.1) introduced later in Chapter 14.

Conceptually, as the System Design Solution evolves, we
can create an overview of the System or Product’s System
Design Solution using the matrix shown in Figure 11.5. Each
bubble identifier links technical requirements, descriptions,
decisions, etc. that can be tailored as Applicable or Not
Applicable to the specific System or Product.

Author’s Note 11.2

Figure 11.5 and Its Application

Please note that on inspection, you
may say that there is no way any-
one could have the time to address

all of the bubble identifiers in Figure 11.5. The reality is
that every SDBTF-DPM Paradigm project typically spends
time in an ad hoc, inefficient, and ineffective manner in each
of these area making technical decisions. These time in-
crements add up. So, there should be nothing new here.
Remember - this chart should be tailored for each spe-
cific System or Product. Many of the bubble IDs may
be Not Applicable (N/A) to a specific SOI. The graphic
simply serves as a high-level, visual audit checklist to
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Figure 11.5 Matrix Summarizing Mission System and Enabling System Design
Synthesis

ensure various aspects of System Development have been
addressed.

The intent of the matrix in Figure 11.5 is two-fold:

1. To provide a analytical framework of technical deci-
sions and solutions that need to be addressed during
SE&D - knowledge creation.

2. To use the analytical framework as a checklist for au-
diting a technical project performance during various
reviews to identify deficiencies.

The second point is crucial. You do not want to discover
these deficiencies during System Integration, Test, and Eval-
uation (SITE) or for the User to discover these during the Op-
erations, Maintenance, and Sustainment Phase. As we shall
address later in Chapter 13, the cost-to-correct latents defects
increases almost exponentially downstream in the System
Development Phase.

The matrix illustrates the overall C2 of the System
or Product as a function of its relationships between

Modes and Phases of Operation, System Element capa-
bilities, Operating Environment conditions, Design and
Construction Constraints, and Physical Architecture Config-
uration. For example:

• Is the Calibrate/Align Mode allowed in the Pre-
Mission, Mission, or Post-Mission Phases?

• If so:
∘ What capabilities are required for each System El-

ement for a given set of Operating Environment
conditions?

∘ Are there any unique Design and Construction Con-
straints implications or ramifications?

∘ What behavioral and physical architectural
configurations and Allowable/Prohibited Actions
are required?

To illustrate answers to these questions, let’s assume
that each of the Bubble IDs in Figure 11.5 represents
a knowledgebase of technical decision information. For
example:
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• Bubble ID 110 would define the Procedural Data
requirements and solutions to support the Safing (small
caps) Mode of Operation.

• Bubble ID 86 would identify System Threats require-
ments and solutions for the Normal Operations Mode.

Based on fundamental analytical knowledge of what a
System is, who its Users are, and how they intend to deploy,
operate, maintain, sustain, retire, and dispose of it, we are
now ready to proceed to Part II, “System Design and
Development Practices.”
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12
INTRODUCTION TO SYSTEM DEVELOPMENT
STRATEGIES

The award of a system development contract to a System
Developer or Services Provider or the initiation of a project
charter for commercial product development signifies the
beginning of the System Development Phase. This phase
covers all activities required to meet the provisions of the
contract; produce the end item deliverable(s); and deploy
or distribute the deliverables to the designated contract
delivery site.

On Contract Award or project charter start, a project trans-
forms itself from a proposal organization to a System Devel-
oper or Services Provider organization. The challenge is for
the selected System Developer to “live up to their proposal
claims” that enabled them to capture the System Develop-
ment effort. This requires the Enterprise to demonstrate that
they can competently deliver the proposed system on time,
within budget in accordance with the provisions of the con-
tract and risk understood by the Acquirer.

Chapter 12 focuses on how a proposed System is devel-
oped under a contract, project charter, or task and delivered to
the User. We explore how the System Developer or Services
Provider evolves the visionary and abstract set of Stakeholder
requirements through the various phases of system develop-
ment to ultimately produce a deliverable system, product, or
service. The “system” might be a a spacecraft, a smartphone,
a mass mailing service, a trucking company, a hospital, a
symposium or may others.

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

Author’s Note 12.1

The System Development Phase
described here, in conjunction with
the System Procurement Phase
(Chapter 3), may be repeated sev-
eral times before a final system is

fielded. For example, in some business domains, the se-
lection of a System Developer may require a sequence of
System Development Phase contracts to evolve and ma-
ture the System requirements in stages and subsequently
“down select” a field of qualified contractors to one or two
contractors.

For a System Services Provider contract, project charter,
or task, the System Development Phase might require de-
veloping or adapting reusable system operations, processes,
and procedures to support the User’s mission and support
services for the System Operations, Maintenance, and Sus-
tainment (OM&S) Phase. For example, a computer Services
Provider may win a contract or task to deliver “outsourced”
support services for an Enterprise’s computer maintenance
program. The delivered services may be a “tailored” version
similar to projects the contractor provides to other organiza-
tions.

The key to successful development begins with formu-
lation and development of technical strategies that enable
the System Developer or Services Provider to transform

http://www.wiley.com/go/systemengineeringanalysis2e
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the User’s operational needs into a physical System De-
sign Solution. As an introductory overview, this chapter
provides the high-level infrastructure for Chapters 12–18
that comprise the System Development Strategies
series.

12.1 DEFINITIONS OF KEY TERMS

• Corrective Action The set of tasks required to correct
latent defects in specification contents, errors, or omis-
sions; designs flaws, errors, or deficiencies; component
workmanship and defective materials or parts; or cor-
rect flaws, errors, or omissions in test procedures.

• Discrepancy Report (DR) A report that identifies a
condition in which a document or test results indicate
a noncompliance with a capability and performance re-
quirement specified in a performance or item develop-
ment specification.

• Developmental Test & Evaluation (DT&E) “Test and
evaluation performed to:
a. Identify potential operational and technological lim-

itations of the alternative concepts and design op-
tions being pursued.

b. Support the identification of cost-performance
trade-offs.

c. Support the identification and description of design
risks.

d. Substantiate that contract technical performance
and manufacturing process requirements have been
achieved.

e. Support the decision to certify the system
ready for operational test and evaluation.”
(MIL-HDBK-1908B, p. 12)

• Design Requirements Requirements specified via
drawings, schematics, wire lists, notes, or Engineering
Bill of Materials (EBOM) concerning the configuration
of components and connections, and instructions.

• Developmental Configuration “The contractor’s de-
sign and associated technical documentation that de-
fines the evolving configuration of a configuration item
during development. It is under the developing contrac-
tor’s configuration control and describes the design def-
inition and implementation. The developmental config-
uration for a configuration item consists of the con-
tractor’s released hardware and software designs and
associated technical documentation until establishment
of the formal product baseline” (MIL-STD-973, 1992
Cancelled para. 3.30).

• First Article “First article includes pre-production
models, initial production samples, test samples, first
lots, pilot models, and pilot lots; and approval involves

testing and evaluating the first article for confor-
mance with specified contract requirements before
or in the initial stage of production under a contract”
(MIL-HDBK-1908B, p. 12).
“Includes pre-production models, initial production
samples, test samples, first lots, pilot models, and pilot
lots; and approval involves testing and evaluating the
first article for conformance with specified contract
requirements before or in the initial stage of production
under a contract” (DAU, 2012, p. B-85).

• Functional Configuration Audit (FCA) “An audit
conducted to verify that the development of a config-
uration item has been completed satisfactorily, that the
item has achieved the performance and functional char-
acteristics specified in the functional or allocated con-
figuration identification, and that its operational and
support documents are complete and satisfactory” (SE-
VOCAB, 2014, p. 132 - Copyright 2012 by IEEE.
Used by permission). (Source: ISO/IEC/IEEE 24765
:2010).

• Independent Test Agency (ITA) An independent or-
ganization employed by the Acquirer to represent the
User’s interests and evaluate how well the verified
system satisfies the User’s validated operational needs
under field operating conditions in areas such as oper-
ational utility, suitability, and effectiveness.

• Operational Test & Evaluation (OT&E) Field test
and evaluation activities performed by the User or an
ITA under actual Operating Environment condi-
tions to assess the operational utility, suitability, avail-
ability, usability, efficiency, and effectiveness (Princi-
ple 3.11) of a system based on validated User opera-
tional needs. The activities may include considerations
such as training effectiveness, logistics supportability,
reliability and maintainability demonstrations, and ef-
ficiency.

• Physical Configuration Audit (PCA) “An audit con-
ducted to verify that a configuration item, as built, con-
forms to the technical documentation that defines it”
(SEVOCAB, 2014, p. 221 - Copyright, 2012, IEEE.
Used with permission) (IEEE 828-2012 IEEE Standard
for Configuration Management in Systems and Soft-
ware Engineering, 2.1).

• Problem Report (PR) A document that (1) identifies
a non-compliance, discrepancy, discrepancy, or prob-
lem and (2) characterizes the event including the con-
figuration and sequence of steps performed that may
have led to the problem. A PR does not identify or
speculate about the source or root cause of the prob-
lem or its corrective action. Determination of root
causes and corrective actions are accomplished as sepa-
rate tasking using investigative, forensic, and analytical
methods.
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• Product Development Team (PDT)—A multi
-discipline team accountable for the development
of a specific system or entity such as a Product,
Subsystem, Assembly, or Subassembly. PDT lead-
ership and membership varies as a function of the key
specialties required for integrated decision-making
as a function of the System Development Process
(Figure 12.2).

• Proof of Concept—Verification and Validation (V&V)
that a strategy will accomplish the required outcomes.
For example, create a communications network that
can detect problems and reroute messages or signals
without disruption.

• Proof of Principle—V&V that an idea is realistically
achievable and feasible. For example, can millions of
cars be designed to safely fly in the air simultaneously
and arrive at their destinations without incident?

• Proof of Technology—V&V that a new or exist-
ing technology is sufficiently mature and rugged for
use in a specific application or implementation of
a system in terms of size, weight, strength, and
performance—accuracy, precision, reliability, environ-
mental, and mass production.

• Quality Record (QR) A document such as a memo,
email, report, analysis, meeting minutes, and action
items that serves as objective evidence that a planned
task action, event, or decision has been accomplished
and completed.

• Source or Originating Requirements – Requirements
released by a System Acquirer specifying Stakeholder
operational needs that serve as the frame of reference
for acquisition of a system, product, or service.

12.2 APPROACH TO THIS CHAPTER

Successful development of systems, products, or services
requires insightful implementation of a System Develop-
ment Strategy based on proven processes, methods, and
tools. The strategy needs to answer a key question: How
does a project get from Contract Award to delivery and ac-
ceptance by the System Acquirer or User with the avail-
able resources, expertise, and acceptable risk? During the
Request for Proposal (RFP), this question has two key
points:

1. The System Acquirer and/or User wants a level of con-
fidence that the set of qualified System Developer or
Services Provider offerors understand the User’s Prob-
lem Space and Solution Spaces and can competently
develop a deliverable system, product, or service on
time and within budget to meet the RFP and subsequent
contract requirements.

2. Each System Developer or Services Provider is chal-
lenged with how do we apply our Enterprise capabil-
ities to efficiently and effectively develop the system,
product, or service with current technologies on time,
within budget and acceptable risk while minimizing the
Total Cost of Ownership (TCO) of the System.

To address these two points, competent System Devel-
opers establish multi-faceted technical strategies that enable
them to transform a set of abstract User requirements into the
physical realization of a system, product, or service.

You will discover that implementing SE methods in an-
tiquated, Enterprise “stovepipes” that purposely limit SE in-
teractions with the customers—Stakeholder Users and End
Users—may not necessarily lead to customer satisfaction. As
a result, SE is often relegated to a reactionary environment
that responds to System Acquirer RFP requirements or con-
tract System Performance Specification (SPS) requirements.
What if these requirements do not accurately and completely
document the Customer’s prioritized set of needs, demands,
or requirements?

Traditional Engineering (SE) begins with the assumption
that a System Acquirer or User will provide a base set of
requirements such as a DoD Statement of Objectives (SOOs)
or an RFP System Requirements Document (SRD). You need
to understand what the User is really thinking. Technically,
the Enterprise that wins many System Development efforts
is one that understands the underlying lessons learned that
motivate those needs and are able to clearly articulate and
communicate that understanding in their proposal.

Chapter 12 serves as an Introduction to the System Devel-
opment Strategies consisting of Chapters 12–18 as illustrated
in Figure 12.1. As the central focal point for this series of
chapters, Chapter 12 establishes the foundation and infras-
tructure via its System Development Workflow Strategies.
This raises a question: How do we establish a robust System
Development Workflow Strategy that will improve our proba-
bility of success and achieve the outcomes established by the
User’s constraints—technical, cost, schedule, and risk? The
answer resides in several supporting strategies discussed in
the following chapters:

• Chapter 13 establishes the strategy for verifying com-
ponent compliance to specifications, designs, and test
procedures and validating that those components and
the final System will satisfy the User’s operational
needs.

• Chapter 14 establishes an SE Process Model that serves
as the multi-level problem-solving and solution devel-
opment methodology for developing entities at every
level of abstraction. This model serves as the core
problem-solving and solution-development methodol-
ogy to:
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Figure 12.1 Overview Graphic of the System Development Strategies

∘ Correct Engineering efficiency and effectiveness
problems created by the SDBTF-DPM Engineering
Paradigm.

∘ Avoid the quantum leaps (Figure 2.3) from require-
ments to a single, point design solution.

• Chapter 15 addresses various types of System Develop-
ment Models that represent strategies for how a project
approaches design and development of Systems, Sub-
systems, Assemblies, Subassemblies, and so forth.

• Chapter 16 introduces the System Configuration Iden-
tification and Component Selection Strategy for phys-
ically implementing the System each entity’s System
Design Solution.

• Chapter 17 addresses documentation strategies for cap-
turing key technical decision artifacts—specifications,
designs, drawings, and so forth—that facilitate devel-
opment of the System Design Solution.

• Chapter 18 establishes the strategy for reviewing and
assessing the progress, status, maturity, and risk of
the evolving System Design Solution and each of
its multi-level components at various decision-making
staging or control points during the System Develop-
ment Phase.

12.3 SYSTEM DEVELOPMENT WORKFLOW
STRATEGY

The System Development Workflow Strategy shown in
Figure 12.2 establishes the primary roadmap of project tech-
nical activities required to get from Contract Award or project
charter start to System Acceptance and delivery of a system,
product, or service. In general, our discussion implements the
general System Development Phase description provided in
Chapter 3.

The System Development Phase consists of a series of
workflow processes required to translate the contract SPS
into the deliverable System Design Solution. The primary
infrastructure for the SE&D Workflow Strategy originates
from general Engineering practice:

• From a System Developer’s perspective, their mission
is to (1) design the System; (2) procure and/or develop
System components; (3) integrate, test, and evaluate
the System; and (4) demonstrate the System’s com-
pliance to its SPS and documentation—for example,
System Verification—for the Acquirer and User prior
to final acceptance and delivery.
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Figure 12.2 The System Development Process Workflow

• From the User’s perspective, their mission is to
validate—System Validation—that the System fulfills
the User’s operational needs.

• From a System Acquirer’s contract perspective, User
validation is optional unless it is explicitly specified in
the contract.

Given the preceding points including the need to
accommodate validation options, we establish the System
Development Workflow consisting of the five sequential
processes illustrated in Figure 12.2. These include the:

• System Design Process

• Component Procurement and Development Process

• System Integration, Test, and Evaluation (SITE)
Process

• Authenticate System Baselines Process

• (Optional) Operational Test & Evaluation (OT&E)
Process

Author’s Note 12.2

System Development Process
Workflow Direction

Although the general left-to-right
workflow appears to be sequential

in Figure 12.2, there are highly iterative feedback loops

(Figure 13.6) that connect back to earlier processes to
initiate refinements and corrective actions.

The System Development Workflow processes are sup-
ported by two enabling processes, Technical Management
and Decision Support:

• The primary objective of the Technical Management
Process is to plan, organize, staff, resource, orches-
trate, and control Product Development Teams (PDTs)
tasked with accountability for delivering their assigned
entities—Products, Subsystems, Assemblies, and so
forth—within technical, technology, cost, schedule,
and risk constraints.

• The primary objective of the Decision Support Process
is to provide meaningful data to support informed
technical decision-making within each of the workflow
processes through the development and use of analyses
and trade studies such as Analysis of Alternative
(AoA), prototypes, models, simulations, tests, proof of
concept or technology demonstrations or methods. Part
3, “Decision Support Practices,” Chapters 30–34
address Decision Support Process activities.

When the System Development Phase is completed, the
workflow progresses to the System Production Phase or
System OM&S Phase, whichever is applicable.
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In summary, the SE&D Workflow Strategy, as a high-level
technical project management process, provides the infras-
tructure for developing systems, products, or services.
The challenge is: How do we leverage this infrastruc-
ture to transform SPS requirements into a System Design
Solution—drawings, parts lists, etc.—sufficient for internal
development and/or external procurement of components?
To answer this challenge, we need to establish a logical,
technical strategy that enables us to “Engineer” the System
including all of its constituent components. This brings
us to the Multi-Level Systems Design & Development
Strategy.

12.4 MULTI-LEVEL SYSTEMS DESIGN AND
DEVELOPMENT STRATEGY

If we expand the SE Design Process; Component Procure-
ment and Development Process; and SITE Process shown in
Figure 12.2 into lower-level strategies, Figure 12.3 emerges.

Observe that Figure 12.3 depicts a multi-level
System architectural decomposition, component devel-
opment, and SITE Strategy. This strategy represents
what has to be accomplished without regard to the

temporal—time-based—aspects. The reason is that there are
different System Development Models that can be employed
for the implementation at the System Development Work-
flow Strategy level and for specific entities—Products
and Subsystems—within the System. We will defer a
discussion on this topic until Chapter 15.

Referring to Figure 12.3:

• The left side represents how the SE Design Process
is accomplished. SE Analysis and Design, concepts,
principles, and practices are employed to decompose
and partition SPS requirements into architectural levels
of abstraction entities such as Products, Subsystems,
Assemblies, and so forth. SPS requirements are allo-
cated and flowed down to lower levels via their respec-
tive Entity Development Specifications (EDSs) such as
a Subsystem EDS or and Assembly EDS and traced
vertically back to the Acquirer’s source or originating
requirements.

• The bottom center represents how the Component
Procurement and Development Process acquires or
develops components using SE Design Process work
products such as designs, drawings, wiring lists, parts
lists, and so forth.
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Figure 12.3 Multi-Level System Design & Development Strategy
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• The right side represents how the SITE Process is
implemented to verify technical compliance of entities
at various levels of abstraction to their respective EDSs
and ultimately to the SPS.

On inspection, the top-down decomposition of the left
side of Figure 12.3 may appear simple. For ad hoc Plug and
Chug … SDBTF Engineering Paradigm Enterprises, this is
accomplished by “hacking” their way to a System Design
Solution. Despite the simplistic top-down appearance, a lot
of collaboration and interaction occurs between and within
each of the levels of abstraction. So, how do we establish
a strategy that avoids the ad hoc Plug and Chug …
SDBTF and enables us to effectively deal with the multi-level
collaboration and iterations? After all, any entity within any
Level of Abstraction represents a Problem Space to be solved
via decomposition or partitioning into lower-level Solutions
Spaces. Surely, there is a common problem-solving/solution
development method that we can apply. The answer is yes as
indicated by the oval icon—The SE Process Strategy—in the
left side center of Figure 12.3 detailed in Chapter 14.

12.4.1 Architectural Decomposition Strategy

Principle 12.1

System Design Principle

System design is a highly iterative, collab-
orative, and multi-level process with each
Level of Abstraction dependent on the mat-

uration, stability, and integrity of higher-level specification
requirements and design decisions.

To better understand what we would expect an SE
problem-solving and solution development method to ac-
complish, Figure 12.4 provides an example. Several key
points emerge from the figure:

• Specifications for entities at each level of abstraction
represent an abstract Problem Space to be solved.

• Multi-discipline SEs analyze each Problem Space,
formulate several viable candidate Solution Spaces,
evaluate each solution via an AoA (Chapter 32), and
select an optimal solution.
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• The multi-level decomposition is based on capabilities,
not physical entities. Ultimately, the architectural capa-
bility requirements will be allocated to physical system
entities.

As the SE Design Process Strategy evolves and matures
the System Design Solution, Figure 12.5 illustrates the
typical outcomes of requirements allocations, flow down,
and traceability. Observe that Engineering Designs at all
Levels of Abstraction—System, Product, and Subsystem
—are:

• Derived from (1) analysis of their respective SPS
or EDS requirements and (2) formulation and se-
lection of the architecture that structurally serves as

the basis for allocating the requirements to lower
levels.

• Traceable to higher-level EDS and SPS requirements
and subsequently to Acquirer source or originating
requirements.

• Highly iterative within and between Levels of
Abstraction.

• Are verified for compliance to their respective SPS and
EDS requirements.

12.4.2 Multi-level SITE Technical Strategy

As components become available from internal development,
subcontractors, and vendors, we need a strategy that enables
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us to integrate Parts bottom-up into Subassemblies, Sub-
assemblies into Assemblies, Assemblies into Subsystems,
Subsystems into Products, and Products into the deliver-
able System. The challenge is: How do we ensure that we
are integrating entities into higher levels of complexity that
are free from latent defects—design flaws, errors, and defi-
ciencies - and comply with their EDS or SPS requirements?
This brings us to the need for a SITE Strategy shown in
Figure 12.6.

Observe how SITE is accomplished in a generalized,
bottom-up, workflow that integrates components at various
levels of abstraction. Each integration step encompasses
verification of each Entity for compliance to its EDS
requirements culminating System Level verification for
compliance to its SPS.

12.4.3 DT&E Strategy

Principle 12.2

DT&E Principle

DT&E is performed by the System Devel-
oper to:

• Mitigate Developmental Configuration technology,
design, and other risks

• Provide insights and assurance that the evolving
System Design Solution will comply with its SPS
requirements.

DT&E serves as a technical risk mitigation strategy
to ensure that the evolving and maturing System Design
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Solution, including its components, will be compliant with
its SPS requirements. So, what is DT&E and how does it
apply to the System Development Workflow Strategy?

The DAU T&E Management Guide (2005, p. B-6), for
example, states that the objectives of DT&E are to:

1. “Identify potential operational and technological capa-
bilities and limitations of the alternative concepts and
design options being pursued.

2. Support the identification of cost-performance trade-
offs by providing analyses of the capabilities and
limitations of alternatives.

3. Support the identification and description of design
technical risks.

4. Assess progress toward meeting Critical Operational
Issues (COIs), mitigation of acquisition technical risk,
achievement of manufacturing process requirements
and system maturity.

5. Assess validity of assumptions and conclusions from
the AoA.

6. Provide data and analysis in support of the decision to
certify the system ready for OT&E.

7. (In the case of Automated Information Systems
(AISs)), support an information systems security cer-
tification prior to processing classified or sensitive data
and ensure a standards conformance certification.”

DT&E is performed throughout the System Design, Com-
ponent and Procurement, and SITE Processes shown in
Figure 13.6. Using the Supply Chain Concept (Figure 4.1),
each process verifies that the Developmental Configura-
tion of the evolving and maturing System Design Solution
complies with the SPS and lower-level EDS requirements.
This is accomplished via in-process and project reviews,
Proof of Principle, Proof of Concept, and Proof of Technol-
ogy demonstrations; engineering models: simulations, brass
boards; and prototypes.

12.4.4 When Is the System Design Solution Complete?

Principle 12.3

System Design Solution Completion
Principle

Contractually, a System Design Solution is
not considered complete until it has been

formally verified as compliant with its System Performance

Specification (SPS) by the System Acquirer or User accep-
tance.

Technically, a System Design Solution is not complete
until all latent defects such as design flaws, errors, and defi-
ciencies are removed; most systems exist between these two
extremes even after fielding.

Enterprises and engineers tend to believe that the System
Design Solution is complete when approved at the Critical
Design Review (CDR). Technically, the System Design
Solution has a level of maturity at the CDR that is yet to be
proven until formal System Acceptance is complete. Prior to
that event, the evolving System Design Solution, which was
placed under formal Configuration Management following
the CDR, is subject to formal baseline change management
procedures.

Our discussion to this point has addressed a general-
ized System Development Workflow Strategy. In fact, En-
terprises that employ the Plug & Chug … SDBTF-DPM
Engineering Paradigm will contend that this is what they
do. However, remember that one of the fallacies of the
SDBTF-DPM Paradigm is the ad hoc, endless loop that
never seems to come to completion. Since one of the ma-
jor challenges of System Development is the elimination
of latent defects prior to User acceptance and field usage,
SDBTF-DPM projects have a tendency to casually defer
their “discovery” until SITE when insufficient time allows
this to occur. This will be a key point of discussion in
Chapter 13.

How does this discussion relate to the System Develop-
ment Workflow Strategies? The reality is: the SITE Process
is the last line of defense before User acceptance. The more
time you spend testing the System/Product, the more latent
defects are identified and corrected. However, this leads to
a challenging question: How much testing is both necessary
and sufficient? You can never eliminate all defects, especially
on large, complex systems; however, you need to ensure that
all mission-critical defects are eliminated to the greatest ex-
tent practical.

Author’s Note 12.3

For an interesting perspective on this
topic, refer to the Epilog for ob-
servations by Brian Muirhead, Jet
Propulsion Laboratory (JPL) Chief
Engineer.

What is the optimal amount of testing? There are
no magic answers; it depends on your system and its
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complexity; competency of the designers, manufacturing
personnel, testers; material and component integrity; and
many other factors. As a general rule of thumb, some sug-
gest at least 40% of the total project schedule is a nominal
starting point; it could be as low as 20% or require 60%.
This brings us to a key differentiating point that contrasts
the SDBTF-DPM Paradigm versus SE&D. Let’s explore
this point further.

Figure 12.7 consists of two parallel tracks: the upper
track for ad hoc, SDBTF-DPM Paradigm Enterprises and
the lower track for SE&D Enterprises. Both tracks originate
with the same fuzzy, inadequate, incomplete User needs, and
requirements.

In general, due to a lack of an outcome-based
problem-solving and solution development methodol-
ogy leading to an integrated System Design Solution,
SDBTF-DPM Enterprises apply their ad hoc, endless loop
methods. Designs are not well integrated, interfaces are
ill defined, and so forth. As a result, schedules begin of
overrun completion dates. Finally, out of frustration the

project rushes the design into Component Procurement and
Development and subsequently into SITE. Remember our
earlier discussion of Figure 2.2 (Mini-Case Study 2.1) and
redesign efforts to deal with the latent defects?

Since the System Design Process overran its schedule,
the length of the SDBTF-DPM SITE is significantly
shortened to ensure “on-time delivery.” When deliv-
ered, the System/Product has a large quantity of latent
defects—unknown–unknowns—as indicated by the curve
on the right side. The User may be required to issue
a maintenance contract to discover and eliminate la-
tent defects, which could take months or years. This
adds another dimension of complexity—who is account-
able for paying for corrective actions to eliminate the
defects.

Now, consider an SE&D Enterprise, which employs
a problem-solving and solution development methodology
based on the SE Process Model addressed in Chapter 14.
Although the SE&D Design Phase may be same or slightly
longer, it completes the design on schedule. When the
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System/Product enters SITE, the project activities are
properly focused where they should be—verifying compli-
ance to specification requirements, testing the design’s ro-
bustness of the design to drive out weak components, and
eliminating any remaining latent defects. On completion of
System/Product acceptance, it may still contain some la-
tent defects; however, the quantity should be small compared
to the SDBTF-DPM Paradigm – right side of Figure 12.7.
The User is satisfied and the Enterprise’s performance and
reputation are highly regarded.

12.5 CHAPTER SUMMARY

Chapter 12 provided: (1) an overview of the System De-
velopment Strategies addressed in Chapters 12–18 and (2)
introduced the central framework of systems, the System
Development Workflow Strategies.

In general, System/Product development processes are
common across industry and government. Both types of
Enterprises specify, design, build, integrate, and test the
System/Product. However, there are pronounced differ-
ences between Commercial Product Development and Con-
tract System Development as shown in Figure 5.1.

Next, we defined the System Development Process
Workflow and identified a sequence of five key processes
(Figure 12.2) used to develop a System/Product. These
include the:

• System Engineering Design Process

• Component Procurement and Development Process

• SITE Process

• Authenticate System Baselines Process

• (Optional) OT&E Process

To perform the SE Design Process, we established an
overall Multi-Level SE Technical Development Strategy
(Figure 12.3), which encompasses both System Design and
System Integration, Test, & Evaluation (SITE). We cre-
ated a Multi-Level Problem Solving and Solution Devel-
opment Strategy (Figures 12.4 and 12.5) for performing
System Design and a Multi-Level SITE Technical Strategy
(Figure 12.6). Since a key aspect of SE&D is risk mitigation,
we established an overall DT&E Strategy addressed later in
Chapter 13.

As our final topic, we addressed the question: When
is the System Design Solution Complete? Enterprises and
Engineers often believe that the System Design is complete
when it is approved at a CDR. A System Design Solution
is not officially complete until it has been verified and
validated, if required, and accepted by the System Acquirer.
Technically, a System Design is not considered complete
until all latent defects have been removed.

12.6 CHAPTER EXERCISES

12.6.1 Level 1: Chapter Knowledge Exercises

1. What are the workflow sequence steps in System Devel-
opment Phase?

2. What is the Developmental Configuration?

3. When is the Developmental Configuration initiated?
When is it complete?

4. What is a first article system? Is there only one instance
of a first article system?

5. What is DT&E?

6. What is the objective of DT&E?

7. When is DT&E performed during the System Develop-
ment Phase?

8. Who is responsible for performing DT&E?

9. What is OT&E?

10. When is OT&E performed during the System Develop-
ment Phase?

11. What is the objective of OT&E?

12. Who is responsible for performing OT&E?

13. What is the System Developer’s role in OT&E?

12.6.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e

http://www.wiley.com/go/systemengineeringanalysis2e
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13
SYSTEM VERIFICATION AND VALIDATION (V&V)
STRATEGY

Principle 13.1

Engineering Truth Principle

If Engineering fails to perform its job
well, System Users – Personnel, the
Equipment, the general public, and the
environment may be placed at risk.

Engineering has a simple truth as noted by Principle 13.1.
You can create the most “elegant” Engineering design;
however, if it fails and/or hurts people or the customer does
not like it, elegance is inconsequential.

A colleague tells a story that during the National Aero-
nautics and Space Administration (NASA) Apollo Space
Program, astronauts travelled to field centers to meet with
Engineers, designers, to discuss the progress, status, and is-
sues concerning development of the launch vehicle, space
capsule, and components. Standing before the gathering, the
individual introducing the astronaut(s) made a simple state-
ment: if you do not do your job well, the astronaut standing
before you could die.

As the astronauts met and shook hands with the individ-
uals, it was a very sobering experience physically shaking
hands with someone totally dependent on how well you did
your job no matter how large or small. Every project is not
an Apollo Project; however, the Engineering integrity and ac-
countability as a professional and as a human is no less.

With the preceding paragraph as a theme, this chapter
addresses multi-level System Verification and Validation
(V&V). In general:

• Verification seeks to answer the question: Is the system
or product being developed in compliance with its
contract, specification, and requirements?

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

• Validation seeks to answer the question: Will the
system, product, or service being developed to fulfill
its Users’ operational needs?

For many years, Enterprises believed that V&V were
activities you performed after a system, product, or ser-
vice was developed prior to delivery. That approach re-
sults in many problems including increased costs, overrun
budgets, schedule slips, risk, and factors. Even worse as
noted in the NASA example earlier, people could die, be
injured, or be placed at risk if the Engineering was not
performed properly. As discussions will reveal, to ensure
the technical validity and integrity of the system, product,
or service, V&V must be performed by everyone begin-
ning on Day #1 and continuing throughout the System
Development Phase. Then, when the system, product, or
service is fielded, V&V are transferred to the User to
continue.

13.1 DEFINITIONS OF KEY TERMS

• Analysis (Verification Method)—“Use of analytical
data or simulations under defined conditions to show
theoretical compliance. Used where testing to realistic
conditions cannot be achieved or is not cost-effective”
(INCOSE, 2011, p. 129).
“Use of mathematical modeling and analytical tech-
niques to predict the compliance of a design to its re-
quirements based on calculated data or data derived
from lower system structure end product validations.”
(NASA, 2007, p. 266)

http://www.wiley.com/go/systemengineeringanalysis2e
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Certification—“Written assurance that the product
or article has been developed and can perform its as-
signed functions in accordance with legal or industrial
standards. The development reviews and verification
results form the basis for certification; however, certi-
fication is typically performed by outside authorities,
without direction as to how the requirements are to be
verified. For example, this method is used for electronics
devices via CE certification in Europe and UL certifica-
tion in the United States and Canada” (INCOSE, 2011,
p. 130).

• Classification of Defects—“The enumeration of pos-
sible defects of the unit or product, classified ac-
cording to their seriousness. Defects will normally be
grouped into the classes of critical, major or minor:
however, they may be grouped into other classes, or
into subclasses within these classes” (MIL-STD-105E,
p. 2).

• Critical Staging or Control Point—A key milestone
such as a technical review or audit programmed into a
project schedule to assess the status, progress, maturity,
or risk of the evolving System Design Solution as a ba-
sis for grant an authority to proceed including resource
commitments. Comparable in concept to commercial
industry stage–gate reviews.

• Deficiency—“Operational need minus existing and
planned capability. The degree of inability to success-
fully accomplish one or more mission tasks or functions
required to achieve a mission or mission area. Defi-
ciencies might arise from changing mission objectives,
opposing threat systems, changes in the environment,
obsolescence, or depreciation in current military assets.
2. In contract management—any part of a proposal that
fails to satisfy the government’s requirements” (DAU,
2011, p. B-64).

“Deficiencies consist of two types:
∘ Conditions or characteristics in any item which are

not in accordance with the item’s current approved
configuration documentation.

∘ Inadequate (or erroneous) item configuration docu-
mentation, which has resulted, or may result, in units
of the item that do not meet the requirements for the
item” (MIL-STD-973, 1992, p. 10).

• Demonstration (Verification Method)—“A qualitative
exhibition of functional performance, usually accom-
plished with no or minimal instrumentation” (INCOSE,
2011, p. 130).

“A qualitative exhibition of functional performance,
usually accomplished with no or minimal instrumenta-
tion.” (NASA, 2007, p. 275)

• Developmental Design Verification—A rigorous pro-
cess that evaluates a System or Entity using one or
more Verification Methods by collecting and presenting

performance outcomes and data as objective evidence
that a design complies with its specification or design
requirements. You only verify a design once. Refer to
Product Verification for verification of production in-
stances of a previously verified design.

• Deviation—Refer to Chapter 19’s Definitions of Key
Terms.

• Discrepancy—A statement documenting the perfor-
mance variance between what has been observed or
measured versus specified requirements.

• IV&V—“Systematic evaluation of software products
and activities by an organization that is not responsi-
ble for developing the product or performing the ac-
tivity being evaluated.” (SEVOCAB, 2014. P. 149 -
Copyright, 2012, IEEE. Used by permission.) (Source:
ISO/IEC/IEEE 24765:2010, 2010).

• Inspection (Verification Method)—“Visual exam-
ination of the item (hardware and software) and
associated descriptive documentation which com-
pares appropriate characteristics with predetermined
standards to determine conformance to requirements
without the use of special laboratory equipment or
procedures” (Adapted from DAU, 2012, pp. B-108).

“An examination of the item against applicable
documentation to confirm compliance with require-
ments. Inspection is used to verify properties best de-
termined by examination and observation (e.g., paint
color, weight)” (INCOSE 2011, p. 129).

• Product Verification—A type of verification in which
each physical instance of a System or Entity—for
example, model and serial number—is (1) imple-
mented in accordance with a previously verified
Developmental or Production Design, (2) verified to
be functioning as required, and (3) deemed to be free
from latent, workmanship, and material defects.

• Requirements Verification Traceability Matrix
(RVTM)—“Matrix correlating requirements and
the associated verification method(s). The VRTM
(RVTM) defines how each requirement (functional,
performance, and design) is to be verified, the stage
in which verification is to occur, and the applicable
verification levels” (FAA SEM, 2006, Vol. 3, p. B-14).

• Similarity (Verification Method)—The process of
demonstrating, by traceability to source documen-
tation, that a previously developed and verified SE
design or item applied to a new program complies with
the same requirements thereby eliminating the need
for design level reverification.

• Test (Verification Method)—The act of executing a
formal or informal scripted procedure, measuring and
recording the data and observations, and comparing to
expected results for purposes of evaluating a system’s
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response to a specified stimuli in a prescribed environ-
ment with a set of constraints and initial conditions.

“An action by which the operability, supportability,
or performance capability of an item is verified when
subjected to controlled conditions that are real or
simulated. These verifications often use special test
equipment or instrumentation to obtain very accurate
quantitative data for analysis” (INCOSE, 2011, p. 130).

• Testbed—“A system representation consisting of ac-
tual hardware and/or software and computer models
or prototype hardware and/or software” (DAU, 2012,
p. B 229).

• Validation of Records (Verification Method)—The
process of demonstrating, by presentation of authen-
ticated verification data, that a previously verified
design complies with its specification and design re-
quirements, that is, drawings, thereby eliminating the
need for System- or Entity-level design reverification,
assuming that no changes to the Product Baseline have
been made.

• Validation Table—“A listing of all requirements that
describes if a requirement has been validated, where
the requirement may be found, source of validation,
corrective action to be taken if necessary, and the
corrective action owner” (FAA SEM, 2006, Vol. 3,
p. B-14).

• Verification—Refer to Chapter 2’s Definitions of Key
Terms.

• V&V—“The process of determining whether the re-
quirements for a system or component are complete and
correct, the products of each development phase fulfill
the requirements or conditions imposed by the previous
phase, and the final system or component complies with
specified requirements.” (SEVOCAB, 2014, p. 347 -
Copyright, 2012, IEEE. Used by permission.) (Source:
ISO/IEC/IEEE 24765:2010, 2010).

• Waiver—Refer to Chapter 19’s Definition of Key
Terms.

13.2 APPROACH TO THIS CHAPTER

Chapter 12 established a technical strategy or roadmap from
logically transforming a User’s abstract operational needs
and vision into a deliverable system, product, or service.
Implementation of this strategy, however, has a probability
of success. Why?

Overall, the probability of success of any strategy is de-
pendent on the education, training, discipline, processes,
methods, and tools employed by project personnel. Even in
the best of situations, humans are naturally prone to make
mistakes, based on interpretations, miscommunications, and
so forth. Without a robust strategy of checks and cross-checks
to eliminate or reduce latent defects—design errors, flaws,
and deficiencies—the probability of success is reduced sig-
nificantly and diminishes with increasing system complexity
and project size. If a system, product, or service is delivered

to the User with latent defects, the User’s mission can be
jeopardized. The net result can be injury or loss of life to its
Users - operators, maintainers, and, and the general public,
or damage or destruction to the Equipment, property, or the
environment.

From the System Acquirer’s and User’s perspectives,
there are three key technical outcomes that determine sys-
tem success: (1) compliance to specification requirements;
(2) satisfaction of the User’s operational need in terms of
its operational utility, suitability, usability, availability, effec-
tiveness, and efficiency (Principle 3.11); and (3) a system
that is free of latent defects, workmanship, and component
integrity issues.

Chapter 13 introduces the V&V strategy for System
Engineering and Development (SE&D) with a focus on
ensuring that the three key technical outcomes above are
achieved. Key questions to be addressed by the System
Acquirer, User, and Developer are:

1. Is the system, product, or service being developed in
compliance with the contract, project charter, or task
order specification or design requirements?

2. What objective evidence is being collected to prove
compliance?

3. What methods do we employ to prove compliance for
the least cost and schedule impact?

4. What assurance do we have that the deliverable system
or product will be compliant with its requirements and
free of latent defects?

On System Acceptance and delivery:

1. How do we – Acquirer and User - know that the
system, product, or service will satisfy our documented
operational need(s) in terms of resolving one or more
Problem Space(s)? - Critical Operational or Technical
Issues (COIs/CTIs)

2. How do we know that the system or product delivered
will identically match its documentation to facilitate
maintenance?

3. How do we ensure that the System or Product can be
easily maintained?

For many years, System Development was a simple,
two-step approach:

Step 1—Design, develop, and test the System or Product.
Step 2—Verify compliance to requirements. If not, go back

to Step 1 and repeat until complete.

This exemplifies the ad hoc, endless loop, Plug and Chug
… Specify–Design–Build–Test–Fix (SDBTF). Design Pro-
cess Model (DPM) Engineering Paradigm (Chapter 2) in ac-
tion. The two steps above worked until Enterprises driven
by global competition and profit came to a stark realization.
Inefficient and ineffective System Development, especially
Engineering design that resulted in large amounts of rework
or scrap, became prohibitively expensive.
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In commercial production environments, warehouses of
unusable components stood as a monument to these methods.
Root cause analysis such as the 5 Whys Analysis (Chapter 5)
revealed that latent defects resulting from poor Engineering
design methods and quality control were a major technical
issue. During the 1980’s to minimize waste and improve
profitability, Enterprises believed that “documenting” their
processes would solve the problem. They did correct some
of the waste and profitability issues. However, as addressed
earlier in Chapter 2, processes did not correct latent defects
in poor SDBTF-DPM Engineering Paradigms.

How do latent defects migrate into a multi-level Sys-
tem Design Solution? The DAU (2005) illustrates the point
very succinctly using Figure 13.1. Observe how errors pro-
liferate through the System Development Phases. Two key
points:

1. Errors originate in the form of incorrect and
poorly written specification requirements; latent
defects—misinterpretation of specification require-
ments, design errors, design flaws, and deficiencies;
inadequate, marginal, or weak components or materi-
als; poor manufacturing processes and workmanship
practices; poor test procedures; and inadequate testing.

2. Failure to correct errors when they occur results in a
proliferation of errors downstream. Error proliferation
downstream, in turn, translates into unnecessary costs
and schedule slips that impact delivery, profitability,
and customer satisfaction.

Author’s Note 13.1

Proliferation of Latent Defects

Observe that Figure 13.1 illustrates
how latent defects multiply as they
progress in time “down the rapids”

of SE&D. In that context, Figure 13.1 merely addresses the
technical aspects of latent defects. The cost-to-correct latent
defects increases similarly. Principle 13.2 and Table 13.1 will
address this point later. To further illustrate the challenges of
eliminating latent defects, consider the graphic illustrated in
Figure 13.2. Latent defects enter the User Needs Analysis;
the System Design Process; Component Procurement &
Development Process; and System Integration, Test, and
Evaluation (SITE) Strategy (Figure 12.3). Latent defects that
are left undiscovered migrate with the deliverable system,
product, or service to the User. Unless the User discovers
them during the Deployment and Operations, Maintenance,
and Sustainment (OM&S) Phases, they may lie dormant as
hazards that culminate in system incidents or accidents when
specific conditions occur (Figure 24.1).

Observe the Analytical Time Deficiency and Depth an-
notations on the left side of Figure 13.2. Metaphorically,
these are the “headwaters” where latent defects enter SE&D.
Wasson’s Task Significance Principle 23.1 introduced later
very succinctly addresses how SDBTF-DPM Paradigm man-
agers and executives naively impose unrealistic time restric-
tions on these critical analyses. Then, act surprised when it
is discovered that the User’s Problem Space was so poorly
understood.
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Figure 13.2 The Cumulative Effects of Undiscovered Latent Defects

Principle 13.2

Latent Defects Cost Principle

Identify and correct latent defects imme-
diately. Depending on when a latent de-
fect enters the System Development Phase,

the cost-to-correct may increase as much as a 100 times by
the time System Integration, Test, & Evaluation (SITE) is
performed.

With the increasing complexity and growing expenses
of software development, Dr. Barry Boehm (1981, pp.
39–40) published results of studies in his 1981 text, System
Engineering Economics, to quantify the cost-to-correct latent
software defects as a function of the System Development
Phase processes. The cost-to-correct concept was labeled
by some as the 100X Cost Rule for software. Table 13.1
provides results from a 2004 NASA study (Stecklein, et al,
2004) comparing the cost to correct latent defects in software
and systems.

Dr. Boehm (1981, p. 41) notes that the data, reflecting
a sequential approach – Requirements Design → Code →
Development Test → Acceptance Test → Operation, has a
trade-off curve indicating less cost using a “first-cut” proto-
typing approach in lieu of more time-defining requirements.
The point is that you have a choice: (1) correct latent de-
fects such as design errors, design flaws, or deficiencies early
or (2) pay an exponentially increasing cost as you progress
through each of the System Development Phase processes
(Figure 12.2).

TABLE 13.1 Comparison of Software and Systems Cost
Factors to Correct latent Defects

Life Cycle
Phase

Software Cost
Factors

Systems Cost
Factors

Requirements 1X 1X

Design 5X–7X 3X–8X

Build 10X–26X 7X–16X

Test 50X–177X 21X–78X

Operation 100X–1000X 29X–1615X

Source: Steckleinet al. (2004), Table 13, p. 10.

The 100X Cost Rule proliferated throughout industry,
government, and textbooks for decades until 2006. Dr.
Boehm (Shull, et al., 2006) and his colleagues with the Cen-
ter for Empirically-Based Software Engineering (CeBASE)
offered the following guidance in a paper titled “What We
Have Learned about Fighting Defects”:

1. “Item 1’ Finding and fixing a severe software problem
after delivery is often 100 times more expensive than
finding and fixing it during the requirements and design
phase.

2. Item 1.1. Finding and fixing non-severe software de-
fects after delivery is about twice as expensive as
finding these defects predelivery.” (CeBASE, 2006,
p. 3)
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Figure 13.3 System V&V Concept Overview

Most Engineers receive little or no SE education and min-
imal training about avoiding, minimizing, and eliminating
latent defects. After all, Engineers spend four years obtain-
ing a degree learning to innovate and create elegant designs,
not eliminating latent defects unless the outputs fail to ac-
complish the required performance values! As a result, the
Defect Quantity (Figure 13.2) in fielded systems or prod-
ucts may take years to discover, isolate, and eliminate as
illustrated by the graph in the lower right corner. Hope-
fully, these are found with minimal impact to mission and
System performance without catastrophic injury or loss of
life!

Given this backdrop concerning the importance of deliv-
ering systems, products, and service that are free from la-
tent defects, let’s begin our discussion with an introductory
overview of System V&V Concepts.

13.3 SYSTEM V&V CONCEPTS OVERVIEW

Principle 13.3

Verification Principle

Verification answers the Stakeholder and
Developer’s question: Are we developing
a System, Entity, or task in compliance
with its specified requirements?

Principle 13.4

Validation Principle

Validation answers the User’s question:
Did we acquire the right System, Entity,
or work product to satisfy our operational
needs?

Figure 13.3 provides a System-Level illustration of the
V&V concept. In general, System Verification seeks to
answer the question:

• Was the system, product, or service developed in
compliance with its Multi-level Specifications?

Author’s Note 13.2

Colloquial Characterizations of
Verification

For the Verification question above
written as “Was the system built

right?” the problem with this statement is:

1. “Built” refers to the Fabrication, Assembly, Integra-
tion, and Test—Verification—(FAIT) of each individ-
ual component and higher levels of integration.

2. What qualifies as “right”? Is anything considered
“right” in the eyes of the beholder acceptable? Us-
ing sound Engineering practices? In accordance with
standards? User specification requirements? All of the
above?
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Verification encompasses more than “built right.” This
includes everything required to perform SE and Develop-
ment (SE&D) of a system, product, or service and prove
compliance. In the truest sense of the term, verification
is a method requiring independent evaluation, comparison,
and assessment. “You said you were going to do this.
Where’s the objective evidence—Quality Records (QRs) -
to prove it? Does it comply—meet or exceed—the specified
requirements?”

Returning to Figure 13.3, observe the focus on compliance
to Multi-Level Specifications. The implicit assumption here
is that the System Acquirer translated the User’s Operational
Need—Problem Space—into a set of well-defined System
Requirements Document (SRD) requirements that specify
and bound a Request for Proposal (RFP) Solution Space in
terms of their accuracy, preciseness, and completeness.

Author’s Note 13.3

System Acquirer Specifications

Many times a System Acquirer’s RFP
will include an SRD. The offerors
then submit a proposal that includes

a DRAFT System Performance Specification (SPS). In turn,
the offeror’s proposal including the SPS will be evaluated. If
selected, the offeror’s SPS requirements will be negotiated
and finalized as part of an element of a contract.

Once the system, product, or service has completed
System-Level Verification, the System Acquirer or User may
choose to perform System Validation, which answers the
question:

• Does the System, product, or service satisfy our Oper-
ational Need?

If the answer at system or product delivery turns out to be
No, then the implicit assumption about how well the original
SRD and subsequently the SPS specified and bounded the
Solution Space(s) in terms of resolving the Problem Space
was flawed or incorrect.

Author’s Note 13.4

Colloquial Characterizations of
Validation

Again, as in Author’s Note 13.2, the
colloquial question is often: Did we

acquire the “right” system to satisfy our Operational Need?
What constitutes “right”? Either the system, product, or serve
meets the need or it does not. “Right” infers there is some
magical threshold for comparison. The central question then
becomes: where is the “threshold” articulated in a document
that defines “rightness” (Principle 13.3)?

Unless the need is well documented, humans tend to shift
the threshold for satisfaction, especially when they discover
they acquired the wrong system or capabilities required to

fulfill their operational need. “We will know it when we
see it” is a common expression. User performance-based
outcome Operational Requirements Documents (ORDs)
or Capability Development Document (CDD), Statements
of Objectives (SOOs), Test and Evaluation Master Plans
(TEMPs) that include Key Performance Parameters (KPPs),
Measures of Effectiveness (MOEs), and Measures of Suit-
ability (MOSs) are key to establishing operational need
thresholds for determining what constitutes system, product,
or service success in the User’s mind.

As an introductory overview, this provides a basic under-
standing of the System V&V concept.

Enterprises and Engineers often proliferate myths about
System Verification that are untrue. That brings us to De-
bunking the SE Document Centric Myth.

13.3.1 Debunking the V&V Myth

Principle 13.5

Life Cycle V&V Principle

V&V are performed continuously and
relentlessly throughout every System/
Product Life Cycle Phase, contract/

subcontract, project charter, or task.

Some SDBTF-DPM Enterprises and engineers have a
misperception that V&V are only performed on the com-
pleted System prior to System Acceptance. This is factually
incorrect and misguided! V&V are performed throughout ev-
ery phase of the System/Product Life Cycle by the System
Acquirer, User, System Developer, Services Provider, and
subcontractor Enterprises.

Unfortunately, this myth proliferates when uninformed
people with limited understanding of V&V create graphics
similar to the one shown in Panel A of Figure 13.4. Observe
the symbolic V-Model (Figure 15.2) in Panel A with boxes
labeled “Verification” and “Validation.” This is a partial
truth; however, the problem is one of context. The boxes
should be labeled “System-Level Verification” and “System
Validation” as shown in Panel B. The incorrect labeling in
Panel A is often shown in presentations as well as documents
posted on the World Wide Web. Then, others, who are
equally uninformed, naively proliferate these incorrect forms
(misinformation). Learn to recognize and appreciate the
difference!

In summary, it is important to remember that System De-
veloper V&V are performed simultaneously, continuously,
and relentlessly beginning with release of a System Ac-
quirer’s Request for Proposal (RFP), contract award, project
charter, or task order approval, whichever is applicable.
Then, continues through System delivery and acceptance by
the System Acquirer. On System acceptance, the System Ac-
quirer / User accepts accountability for V&V for the remain-
der of the System/Product Life Cycle.
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Figure 13.4 How Incorrectly Labeled V&V Graphics unwittingly Promote
Misinformation

13.3.2 V&V Activities throughout the System/Product
Life Cycle

Principle 13.6

V&V Applicability Principle

V&V applies to every stage of system
development beginning with the proposal
phase and continuing after Contract Award

until system delivery and acceptance completion.

Principle 13.7

Defects Elimination Principle

The number of latent defects in the
fielded system, product, or service is
dependent on (1) a willingness and com-

mitment or provide resources to avoid and eliminate them;
(2) personnel competency—experience, knowledge, and
training; (3) employment of the right tools, processes,
and methods; and (4) time available to perform the job
correctly.

V&V activities are performed throughout the System/
Product Life Cycle. They are:

1. Performed throughout the duration of a contract,
project charter, or task order.

2. Conducted for any type of work activities and their
work products such as proposals, contracts, demon-
strations, prototypes, models, and simulations.

3. Conducted as formal and informal conferences, meet-
ings, technical reviews, audits demonstrations, and
tests.

4. Performed to review decision artifacts QRs at critical
staging, control, or gating points to assess compliance
of the evolving system design solution to technical
plans, specifications, and tasks.

5. Performed periodically to assess the quality and in-
tegrity of the evolving and maturing multi-level Sys-
tem Design Solution in terms of:
a. Technical compliance with requirements.
b. Traceability to User source or originating require-

ments.
c. Validity of the solution to solve the User’s Problem

Space.
d. Consistency and completeness of decision artifacts

that guide SE&D.
6. Performed to identify latent defects such as design

errors, flaws, and deficiencies.

Observe that Item 4 complies with the ISO 9001 re-
quirements but does not assess the validity of the System
Design Solution. Item 5 assesses the technical validity of
the System Design Solution. When technical reviews and
audits are conducted, Items 4 and 5 should be addressed
simultaneously.

13.3.3 V&V Standards

From a Systems Engineering perspective, three key standards
establish guidance for organizational and project V&V activ-
ities: ISO/IEC 15288:2008, the Capability Maturity Model
Integration (CMMI), and ISO 9001:2008. Let’s briefly ex-
plore each of these.
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13.3.3.1 ISO 15288:2008 V&V Requirements ISO/IEC
15288:2008 establishes requirements for V&V processes in
the following sections:

• Para. 6.4.6—Verification Process.
• Para. 6.4.8—Validation Process.

13.3.3.2 CMMI V&V Requirements Chapter 2 intro-
duced the role of the Carnegie Mellon CMMI Institute
administration of several CMMI models. These models in-
clude Services (CMMI-SVC), Development (CMMI-DEV),
and Acquisition (CMMI-ACQ). The CMMI-DEV estab-
lishes guidance for establishing and improving their orga-
nizational V&V capabilities in two key areas (CMMI-DEV,
2010):

• Process Area 21—Validation (Maturity Level 3).
• Process Area 22—Verification (Maturity Level 3).

13.3.3.3 ISO 9001:2008 V&V Requirements V&V
should be an integral part of any Enterprise’s Organiza-
tional Standard Process (OSP). For those Enterprises that
have attained or plan to attain ISO 9001 certification,
V&V are key elements of an organizational Quality Man-
agement System (QMS). ISO 9001:2008, for example,
establishes the following requirements for QMS V&V
activities:

• Section 7.2.2—Review of Requirements Related to the
Product.

• Section 7.3.5—Design and Development Verification.
• Section 7.3.6—Design and Development Validation.

13.3.3.4 What the Standards Require

Principle 13.8

System Development V&V Strategy
Principle

A System Development V&V Strategy
requires three elements:

1. A roadmap consisting of incremental V&V activities
to progress from Contract Award to system, product, or
service delivery and acceptance

2. A task-based plan of action for implementing the strat-
egy synchronized to milestone-driven events, accom-
plishments, and criteria.

3. Documented objective evidence of task completions—
that is, QRs—that demonstrates that you accomplished
the planned results.

In general, these standards require Enterprises and
projects to perform three types of actions:

1. Plan activities to be performed with measurable work
product outcomes.

2. Perform the planned activities.
3. Produce QRs—for example, work products—as objec-

tive evidence that you accomplished what you planned
to do. QRs include work products such as conference

meeting minutes, presentations, documents, drawings,
and email.

Given this introductory overview of System V&V, let’s
explore each topic in-depth beginning with System Verifica-
tion Practices.

13.4 SYSTEM VERIFICATION PRACTICES

Principle 13.9

System Verification Principle

System verification assesses the compli-
ance of a work product’s attributes, charac-
teristics, and performance-based outcomes

to one or more contract, project charter, specification, or task
requirements.

13.4.1 System Verification Overview

Verification includes activities that assess compliance of:

• Project work products, such as plans, schedules, bud-
gets, technical decisions, specifications, designs, pro-
totypes, and test results, for consistency, adequacy,
completeness, and traceability to contract or task
requirements

• The deliverable system, product, or service to its
specification requirements

When latent defects or discrepancies in system outcomes
and performance are identified, corrective actions are taken
leading to reverification to ensure that latent defects or
discrepancies have been eliminated.

System Acquirers and System Developers have two per-
spectives of V&V. For example:

• System Acquirer V&V Perspective - Continuously
verify System Developer work product compliance to
contract or specification requirements.

• System Developer V&V Perspective - Continuously
verify compliance to contract, project charter, and
specification work products as well as those developed
externally by subcontractors, vendors, and Service
Providers.

Referring to Figure 13.3, the User or their System Ac-
quirer technical representative translates the User’s Opera-
tional Need into a set of SRD requirements that form the basis
for developing a system, product, or service.

Every industry employs various types of documents to
capture and document Customer or User requirements. From
a System Verification perspective, it is critically important
throughout the System Development Phase to ensure that
the technical integrity of the evolving and maturing System
Design Solution is preserved and not compromised by the
introduction of latent defects. As one of several conditions of
acceptance, the System Acquirer representing the User will
attest that the System Developer delivered what was required
(by contract) or demanded (by marketplace surveys or
testimonials) to meet the User’s or consumer marketplace’s
operational need(s).
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Observe that compliance verification does not ensure
that the deliverable system, product, or service is what the
Stakeholder Users and End Users actually need to satisfy
their operational needs; that is System Validation. Verifica-
tion only proves that a system, product, or service produces
performance-based outcomes that comply with specification
requirements, which may or may not reflect the User ac-
tual operational need(s). Those specification requirements
are subject to how well the specification developer specified
and bounded the system, product, or service as a Solution
Space or one of several Solution Spaces intended to satisfy a
User’s Problem Space.

If we expand the System V&V Overview shown in
Figure 13.3 to illustrate how V&V are applied to SE&D,
Figure 13.5 emerges. Observe that the expansion:

• Highlights the importance of User/End User collabo-
ration and feedback, Decision Support, SE&D, and a
series of Technical Reviews.

• Introduces the concepts of Developmental Test and
Evaluation (DT&E) and Operational Test and Evalu-
ation (OT&E) discussed later in this section.

During the System Development Phase, the evolving and
maturing System Design Solution is prototyped, modeled,
simulated, and tested to mitigate risk and collect performance
data to validate design decisions. These activities are referred
to as DT&E of the Developmental Configuration (Chapters
12 and 16). The intent is to incrementally verify that the
System Design Solution:

• is technically compliant with specification and design
requirements.

• is traceable to the User’s source or originating require-
ments.

• has acceptable risk.

On completion of System Verification, the system, prod-
uct, or service may undergo System Validation assessments
by the User. System Validation may be required by contract
or be performed via test marketing in the case of consumer
products or User field exercises of contract-based systems
(Figure 5.1).

13.4.2 System Verification Objectives

Since SE&D requires transformation of abstract User opera-
tional needs into specifications that lead to a System Design
Solution, component selection, and SITE, humans require a
mechanism to express and communicate how the System
or Product will be developed to ensure consistency of
thought.

Work products document technical decision artifacts—
specifications, drawings, and test procedures. Until a work-
ing prototype and actual deliverable system is physically
available to instrument and measure, documentation is the
only stable form of knowledge expression that factually rep-
resents a consensus of agreement within the System Devel-
oper’s Enterprise or with Users. Therefore, verification is de-
pendent on these work products as a frame of reference to (1)
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Figure 13.5 System V&V: Programmatic Perspective
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ensure specification compliance and (2) eliminate what is or
is not a latent defect.

One of the erroneous myths promulgated by the ad hoc
SDBTF-DPM Paradigm (Chapter 2) Enterprises and en-
gineers is the notion that SE focuses on producing doc-
uments. Absolutely not true! SE focuses on developing a
compliant System Design Solution; documentation is simply
a means to document decision-making process artifacts. Un-
til the System Design Solution manifests itself in the form of
physical components, the only objective evidence available
for evaluating and verifying decisions and designs are the
document artifacts. Recognize and appreciate the difference
between creating documents versus documenting decision
artifacts!

Given an overview of System Verification, let’s briefly
explore some types of verification.

13.4.3 Types of System Verification

The development of a System Verification strategy requires
more than simply performing the activity. Two types of
verification are used to answer specific questions:

• Design Verification answers the question: If the com-
ponents of a system, product, or service are ideal, does
the architectural arrangement and interconnectivity of
those components representing its design configura-
tions produce the required behavioral responses and
performance based outcomes?

• Product Verification answers the question: If a sys-
tem or product’s design configuration has been veri-
fied to produce the required behavioral responses and
outcomes, does the workmanship, material composi-
tion, and integrity of a specific instance of the system
or product reliably and predictably produce the same
results?

13.4.3.1 Developmental Configuration Design Verifi-
cation Design Verification includes prototyping, such
as breadboards and brassboards, and subjects a new
System or Product to a set of functional and environ-
mental operating conditions to demonstrate its compliance
and robustness to accommodate failure and continue to
operate.

We know that verifying every system, product, or service
for compliance to its specification requirements is very
expensive and time-consuming. In fact, it is impractical and
doesn’t make sense to reverify a design that has already been
proven to be compliant. So, how do we solve the problem?

13.4.3.2 Developmental Configuration or Production
Article Verification Systems Thinking (Chapter 1) helps us
recognize that once we have verified a new system or prod-
uct’s design, the design never changes from one deliverable
instance to another until a decision is made to change the
design and produce a new model. So, if the design has been
verified—Design Verification—the only remaining variable
to be verified is detection and correction of workmanship

and material defects. That brings us to the second type of
System Verification, Product Verification:

• Product Verification verifies that each deliverable
system or product is fully operational based on
performance of a limited number of tests in an
ambient—room temperature—environment.

As an illustration of Product Verification, consider the
following example.

Example 13.1

Product Verification: Portable
Electronic Device

A portable electronic device is designed to
automatically perform self-test diagnostics

when it is powered up. If the self-test indicates that all
capabilities are fully operational, it ends with a desktop
display. If not, the display indicates a problem via a light or
error code. During production, each unit is typically powered
up to ensure that it is fully operational and then packaged for
delivery to stores.

13.4.3.3 Production Design Verification Once a system
or product has been fielded for a period of time, the
User may decide to contract for production in small to
mass quantities. Remember that just because the Devel-
opmental Configuration complies with its SPS require-
ments does not necessarily mean that it can be produced
cost-effectively. That requires another form of System De-
velopment project to make it producible and cost-effective.
Typically, this requires another contract to modify the De-
velopmental Configuration baselined at System acceptance
delivery.

When the Production System Design is completed, Pro-
duction Design Verification is conducted against the Produc-
tion SPS requirements. Once the Production Design has been
verified and a decision is made to mass produce the system or
product, production units are verified via a subset of Produc-
tion Design Verification referred to as Product Verification in
the same manner as the original Developmental Configura-
tion systems.

Given these insights into Developmental Design Verifica-
tion, Product Verification, and Production Design Verifica-
tion, let’s investigate how V&V are performed.

13.4.4 Verification Methods

Principle 13.10

Verification Methods Principle

Verification methods consist of Inspec-
tion, Examination, Analysis, Demonstra-
tion, and Test or combinations of these;

Similarity is permitted by some Enterprises.

The process of verifying multi-level SE design in com-
pliance to the SPS or Entity Development Specification
(EDS) requires standard verification methods that are
well defined and understood. Verification includes five (5)
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commonly recognized methods: (1) Inspection, (2) Ex-
amination, (3) Analysis, (4) Demonstration, and (5) Test.
A sixth method, Verification by Validation of Records,
is permitted as a verification method in some business
domains.

Before we describe each of the verification methods, be
aware that each verification method has a cost in terms of
labor and time. Therefore, you should use the least number
of verification methods to prove compliance.

Let’s begin our discussion with Verification by
Inspection.

13.4.4.1 Verification by Inspection NASA (2007, p. 86)
defines Verification by Inspection as:

“The visual examination of a realized end product. Inspec-
tion is generally used to verify physical design features or
specific manufacturer identification. For example, if there is
a requirement that the safety arming pin has a red flag with
the words “Remove Before Flight” stenciled on the flag in
black letters, a visual inspection of the arming pin flag can
be used to determine if this requirement was met.”

To illustrate Verification by Inspection, consider the fol-
lowing example.

Example 13.2

Verification by Inspection: Metal Plate
Hole Pattern Layout

A drawing specifies that a metal plate
consists of 6 holes 1.0’’ ± 0.1’’ in diameter

each laid out in a dimensional pattern shown on the drawing.
Verification by Inspection would consist of verifying that:

• The hole pattern and centers comply with the draw-
ing. ✓

• A quantity of 6 holes are drilled in the plate as specified
by a drawing. ✓

• Hole #1 is 1.0’’ ± 0.1’’ in diameter. ✓
• Hole #2 is 1.0’’ ± 0.1’’ in diameter. ✓
• And so forth.

13.4.4.2 Verification by Examination Verification by Ex-
amination consists of a detailed visual examination of a
component or specimen to determine the integrity of its
workmanship, material composition, or defects. Verification
by Examination has a number of contexts that are deter-
mined by the operating environment. Consider the following
examples:

Example 13.3

Verification by Examination: Human
Experience and Judgment Factors

Humans perform microscopic and visual
analysis due to their superior ability to

detect and make experience-based judgment decisions about
specific types of abnormalities. When compared to machines,
for example, a human’s ability to detect fractures or cracks in
jet engine compressor blades or analysis of mammography

for breast cancer is superior to machines. Humans simply
exploit what machines do best to enable us to exercise
capabilities we have. This is exemplified in Figure 24.14 and
Principle 24.13.

Example 13.4

Verification by Examination: Harsh
Environment Conditions

Robots equipped with an array of cameras
and sensors are sent to Mars, underground

sewers, and nuclear reactor buildings to report conditions in
a harsh environment that may not be conducive to human
health or survival.

Example 13.5

Verification by Examination: Human
Health Conditions

Non-invasive camera devices with RF
transmitters or surgical tools inserted into

the human body to enable an operator to view and assess
health conditions along a pathway such as an intestinal or
cardiovascular tract.

13.4.4.3 Verification by Demonstration Verification by
Demonstration is typically performed without instrumenta-
tion. The System or Product is exercised in various facets
of operation for witnesses to observe and document the re-
sults. Demonstration is often used in operational scenar-
ios involving reliability, maintainability, human engineering,
and final on-site acceptance following formal verification.

The NASA SE Handbook (2007, p. 86), for example,
describes Verification by Demonstration as follows:

“Showing that the use of an end product achieves the indi-
vidual specified requirement. It is generally a basic confir-
mation of performance capability, differentiated from testing
by the lack of detailed data gathering. Demonstrations can in-
volve the use of physical models or mockups; for example,
a requirement that all controls shall be reachable by the pi-
lot could be verified by having a pilot perform flight-related
tasks in a cockpit mockup or simulator. A demonstration
could also be the actual operation of the end product by
highly qualified personnel, such as test pilots, who per-
form a one-time event that demonstrates a capability to op-
erate at extreme limits of system performance, an opera-
tion not normally expected from a representative operational
pilot.”

To illustrate Verification by Demonstration, consider the
following example:

Example 13.6

Verification by Demonstration:
Accessibility of Organizational Forms

A specification requirement states that En-
gineering forms on a Web site are required

to be accessible by personnel within a maximum of 3 mouse
clicks. The System Developer develops a rapid prototype of
the Web site. They collaborate with the User to elicit feed-
back about the design. Prior via a demonstration to verify
accomplishment of the requirement.
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13.4.4.4 Verification by Test Verification by Test is used
as a verification method to collect instrumented data mea-
surements and results that the performance of a System or
Product complies with its specification or design require-
ments. Testing requires creating a prescribed set of operating
environment conditions and conducting the test in accor-
dance with approved and baselined test procedures.

The NASA SE Handbook (2007, p. 86), for example,
describes Verification by Test as follows:

“The use of an end product to obtain detailed data
needed to verify performance, or provide sufficient infor-
mation to verify performance through further analysis. Test-
ing can be conducted on final end products, breadboards,
brass boards, or prototypes. Testing produces data at dis-
crete points for each specified requirement under controlled
conditions and is the most resource-intensive verification
technique.”

Testing can be very expensive. When Inspection, Analy-
sis, and Demonstration-individually or collectively - are in-
sufficient in producing objective evidence required to prove
compliance (Figure 22.1), testing may be required. Remem-
ber that the objective is to demonstrate compliance with the
least number of verification methods including tests. To il-
lustrate this point, observe how the following Verification by
Test example provides the basis for our next topic Verifica-
tion by Analysis.

Example 13.7

Verification by Test: Electric Motor
Speed and Torque

The specification for a small electric motor
includes requirements to achieve a spec-

ified speed and torque for a given set of loading and
Operating Environment conditions. The System Devel-
oper places the Unit Under Test (UUT) in a test fixture, in-
struments the UUT, and conducts a single test to collect both
speed and torque measurements. During the test, the motor’s
speed and torque data are documented. Results of the test
are compared to the specified motor speed and torque per-
formance requirements as verification of compliance.

13.4.4.5 Verification by Analysis Verification of some
specification requirements related to performance parame-
ters such as efficiency, effectiveness, time dependence, and
characteristics may not be directly measurable by test. They
can be, however, derived from test measurement data. If not,
why are they requirements?

The NASA SE Handbook (2007, p. 86), for example,
defines Verification by Analysis as:

• “The use of mathematical modeling and analytical
techniques to predict the suitability of a design to stake-
holder expectations based on calculated data or data
derived from lower system structure end product ver-
ifications. Analysis is generally used when a physical

working prototype; engineering model; or Fabrication,
Assembled, Integrated, and Tested (FAIT) System or
Product is not available. Analysis includes the use of
modeling and simulation as analytical tools. A model
(in this context) is a mathematical representation of a
System or Product. A simulation is the manipulation
of a model.”

Verification by Analysis, which is typically documented in
a formal technical report, is placed under formal configura-
tion control and may or may not be a deliverable. To illustrate
an example of Verification by Analysis, let’s continue with
the electric motor from Example 13.7.

Example 13.8

Verification by Analysis: Electric Motor
Efficiency

The small electric motor in Example 13.7
is required to have an efficiency equal to or

greater than 80% for a specific set of loading and environ-
mental conditions. Based on advanced verification planning,
the System Developer extracts the recorded motor speed and
torque test data and computes the engine efficiency. Results
are documented in an analysis presented as objective evi-
dence of compliance to the efficiency requirement.

13.4.4.6 Verification by Validation of Records As stipu-
lated earlier in Principle 16.7, new System Design should
be a last resort when all other options—existing in-house
or legacy designs and vendor catalog items—have been ex-
hausted in terms of meeting the specification requirements.
For example, consider legacy designs. If (1) the original
design was verified as being compliant with specification
capability requirements and environmental performance re-
quirements that were equal to or exceeded the current specifi-
cation requirements and (2) no modifications have been made
or are planned to be made to the original design, then Verifi-
cation by Validation of Records may be an option.

Verification by Validation of Records simply requires the
presentation of objective evidence of the original design’s
specification requirements, verification data, and compli-
ance as a condition for verification of the new System or
Product.

Example 13.9

Verification by Validation of Records:
Processor Board

A System Developer has a contract to
develop a Sensor System for an aircraft.

Due to the complexity of the Sensor System, the conceptual
architecture calls for a Processor Board that will serve
as a controller for the sensor. An Engineering analysis is
conducted and has determined that the Processor Board used
on a previous system: (1) fully complies with the new SPS
requirements and (2) has already been verified. A decision
is made to reuse the Processor Board without modifications
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in the new design, retrieve the verification records for the
original design, and present the records as objective evidence
for proof of compliance to the new specification.

Author’s Note 13.5

Be aware that the Verification by Val-
idation of Records may be easier said
than done, especially if the Enterprise
has very poor discipline in maintain-
ing records from the past. When a de-

cision such as this is made, you should always initiate a
search immediately for copies of the records. Do yourself and
your Enterprise a favor. Avoid the professional embarrass-
ment of getting to formal verification and then being unable
to find the records! Then, incur the expense of reverifying a
legacy design.

13.4.4.7 Verification Method Selection

Principle 13.11

Verification Method Selection
Principle

Select the least number of verification
methods required to prove compliance to
a single requirement.

Every verification method has an impact in terms of (1) the
quantity of requirements verified, (2) labor cost and schedule
duration, and (3) risk. In general, the cost to perform these
verification methods varies significantly. Relative costs by
verification method are:

1. Inspection (least cost)

2. Validation of Records (low cost)

3. Examination (low cost)

4. Analysis (low to moderate cost)

5. Demonstration (moderate cost)

6. Test (moderate to high cost)

When proposing a new system, strive to identify the
method with the lowest cost, schedule, and risk that will pro-
vide compelling, objective evidence that a requirement has
been satisfactorily accomplished. If you have a requirement
that you can verify by Analysis (low to moderate cost), why
would you want to commit to Test (moderate to high cost) as
the verification method and drive up your proposal price and
potentially risk losing the contract?

13.4.5 Verification Compliance Strategies

People often believe you have to verify each specification
or design requirement … and you do! However, there are
two different concepts here: (1) the collection of verification
data to prove compliance and (2) the process of proving
compliance. Let’s examine this point further by starting at
the end and working backwards.

13.4.5.1 Specification Compliance Verification Strategy
A formal review such as a DoD System Verification Re-
view (SVR) (Chapter 18) requires that you present Quality
Records (QRs)—measurements, data logs, etc. These items
serve as objective evidence of verification results that have
been authenticated by witnesses and compliance to specifica-
tion and design requirements. The SVR reviews authenticate
data collected in accordance with the Terms and Conditions
(Ts&Cs) of the contract, specification requirements, pre-
scribed test procedures approved by the User or project, and
legal, ethical, and moral principles.

So, how did you collect the data? This brings us to the first
part, Verification Data Collection Strategy.

13.4.5.2 Verification Data Collection Strategy

Principle 13.12

Compliance Testing Principle

Leverage each test to collect as much data
that will enable you to verify compliance
to the largest number of requirements.

We could perform separate verification tasks for each
specification requirement. However, that can become very
expensive and time-consuming. Let’s step back and apply
systems thinking.

We know that a specification specifies and bounds
operational requirements—integrated sets of capability
requirements—and discrete capability requirements. When
the System or Entity is operational, combinations of capa-
bilities subject to Allowable and Prohibited Actions (Figure
7.13) are physically configured by the System Architecture
to produce performance-based outcomes. In other words,
the System Architecture configures “chains” of Use Case
(UC) capabilities.

Each capability was derived from those UC outcomes via
Model-Based Systems Engineering (MBSE), for example,
and translated into specification requirements. Therefore,
we should be strive to instrument System or Entity
capabilities at specific test points to collect data that
can be used to provide compliance to several specifica-
tion requirements. Leverage a single test to verify XX
requirements.

Given an in-depth understanding of System Verifica-
tion Practices, let’s shift our focus to System Validation
Practices.

13.5 SYSTEM VALIDATION PRACTICES

Whereas Verification asks if we built the work prod-
uct right—in compliance with its specified requirements—
Validation answers the Acquirer’s question: Did we acquire
the right system to meet the User’s validated operational
needs? Validation employs a number of methods for System
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Developers to collaborate with the Users. Let’s begin with an
overview of Validation.

Principle 13.13

System Validation Principle

System validation assesses a Stake-
holder’s satisfaction with a work
product’s performance-based outcome(s)

to their documented operational needs and expectations.

13.5.1 System Validation Overview

Validation, like verification, occurs throughout the System
Development Phase beginning with contract award or project
charter start and continuing until system acceptance and
delivery. Validation, however, is not limited to external
Stakeholders; it also applies to internal Stakeholders within
the System Developer’s Enterprise.

As levels of internal Stakeholders decompose or partition
the System into lower levels of abstraction—System into
Products, Products into Subsystems, and so forth—each
entity within each level of abstraction represents a Stake-
holder Problem Space that requires one or more lower-level
Solution Spaces (Figure 4.7).

Solution Space teams such as internal developer teams,
subcontractors, or vendors develop Systems or Products to
satisfy or contribute to satisfying the higher-level Problem
Space need. As in the case of external Stakeholders, internal
Stakeholders must also ask the question: will the Solution
Space entities we have acquired fulfill our operational
needs?

Referring to Figure 13.3, the User’s question at the
System Level following the completion of System Verifica-
tion becomes: Did we acquire the right system to fulfill our
operational needs?

Based on the Validation Overview, let’s define objectives
Validation is intended to accomplish.

13.5.2 System Validation Objectives

Validation, like Verification, applies to the System or any
of its lower-level entities and work products. So, validation
objectives are written for general application for all contexts.
Validation objectives include:

• Evaluating and assessing the multi-level System
Design Solution or one of its Entities during System
Development to determine if it will satisfy its User’s
operational needs. Remember that a User could be
the external User or System Developer SE, Engineer,
designer, or tester.

• Conducting field exercises with the actual Users that
have been trained to operate the deliverable system,
product, or service to conduct missions.

13.5.3 Validation Methods

Validation employs a number of methods such as User in-
terviews, prototyping, demonstration, qualification tests, test

markets, and field trials. In general, validation consists of any
collaborative method that enables the Acquirer (contextual
role) of a system, product, or service to provide candid, con-
structive feedback that an evolving work product will satisfy
their documented operational need(s). Two key points are as
follows:

1. Observe usage of the term System Acquirer (role) in
the earlier text. There are two contexts here:
a. System Acquisition (role) Context—A System Ac-

quirer external to a System Developer representing
the technical interests of the User that acquires a
system, product, or service via a contract.

b. Entity Acquisition (role) Context—An individual
or team within the System Developer’s project
that allocates specification requirements to a
lower-level team or issues a subcontract to de-
velop an Entity—Product, Subsystem, and
Assembly—in accordance with the specification.

2. Note the use of the term documented operational needs.
Humans tend to change their minds about what they
said or intended to say. To avoid any misinterpretation
by either party:

a. Document the mutual understanding of User oper-
ational needs prior to contract award.

b. Document the criteria that constitute system accep-
tance in the contract.

13.5.4 System Validation: System Developer Context

Validation employs User feedback mechanisms to keep
the activities that produce work products focused on the
key factors critical to the Voice of the Customer (VOC)
and their satisfaction. Agile Development User Stories
and Quality Function Deployment (QFD) (Chapter 5)
analyses serve as examples for driving out User opera-
tional needs, preferences, and outcome-based performance
requirements.

The scope of validation encompasses more than a User
function. Remember that the SPS provides a basis to de-
compose a high-level Problem Space into lower levels of
Solution Spaces (Figure 4.7), even within the System De-
veloper’s program Enterprise. In this context, the User (role)
is the higher-level team assigned to the Product, Subsys-
tem, Assembly, and Subassembly Problem Space. As the
lower-level Solution Space “designs” evolve, higher-level
Users must validate that the evolving and maturing item will
satisfy their needs. Consider the following example.

MINIMINIIN

Mini-Case
Study 13.1

Internal Validation with a Project

A Product Development Team (PDT), which
is assigned accountability for developing a
Control Station Performance Specification,
has a Problem Space to resolve. The IPT

analyzes the Problem Space and decomposes it into sev-
eral potential Solution Spaces (Figure 4.7). Requirements
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for Computer Software Configuration Item (CSCI) #1 are
allocated and documented in the CSCI #1’s Software Re-
quirements Specification (SRS) and assigned to the CSCI #1
PDT.

As CSCI #1’s design is formulated, its PDT employs
iterative rapid prototyping methods such as Spiral De-
velopment (Figure 15.4) to generate sample operator
displays and transitions for evaluation. Users are in-
vited via Acquirer contract protocol to participate in
a demonstration to review and provide feedback. The
outcome of the evaluation is to validate that the evolv-
ing display designs and transitions satisfy the User’s
operational needs. Results of the demonstration are doc-
umented as a QR and used to support System Developer
decision-making.

Example 13.10

An SE is tasked to perform a Stakeholder
Needs Analysis. The SE performs vali-
dation by talking with the User or task
source to:

• Fully understand the Critical Operational or Technical
Issue (COI/CTI) to be resolved.

• Scope areas for investigation, objectives, and con-
straints.

• Understand how the results are to be documented to
ensure the deliverable work product will meet the task
source’s needs.

As a final reminder –System validation continues after
the work product such as a Product and Subsystem
is delivered until the User’s intended operational need is
satisfied. Beyond that point, “gap” analysis becomes the
focal point for assessing gaps in the system, product, or
service’s capabilities.

13.5.5 System Validation: User Context

The ultimate proof of a System Validation resides with
the User community. How this is accomplished is typ-
ically unique to the business domain and Users. For
example:

• Commercial product developers test market ideas and
new products during development and incorporate their
feedback. After product release to the public, surveys,
sales, interviews, and other methods are used to collect
customer satisfaction data.

• Military and government System Acquirers and Users
employ the services of an Independent Test Agency
(ITA). The ITA validates the system based on User
Personnel trained by the System Developer. During
validation, the system or product is subjected to actual
field Operating Environment conditions and scenar-
ios. This is referred to as OT&E and will be discussed
later in this chapter.

13.6 APPLYING V&V TO THE SYSTEM
DEVELOPMENT WORKFLOW PROCESSES

The preceding discussions provide a general overview of
the V&V concepts and technical methods. Given this under-
standing, let’s shift our attention to applying V&V strate-
gies to Chapter 12 Introduction to System Development
Strategies processes.

To fully understand how V&V apply to these processes,
let’s employ a rigorous example that you can use as the basis
for tailoring a simpler model that fits your project’s needs.
Figure 13.6 provides a reference for our discussions. Bubble
identifiers are provided to serve as navigational aids for our
discussion.

13.6.1 System Specification Process: V&V Strategy

The primary objectives of the System Specification V&V
Strategy are to:

• Understand the Problem Space—Critical Operational
Issue (COI) or Critical Technical Issue (CTI)—an
Acquirer or User needs to solve.

• Understand how the Acquirer’s SPS specifies and
bounds the User’s Solution Space that leads to resolu-
tion of a mission or existing system COI or CTI.

• Ensure that an Acquirer’s SPS accurately and suffi-
ciently bounds and specifies the essential requirements
for the Solution Space to be filled by a system, product,
service, or capability upgrade.

During the User’s System/Product Life Cycle - System
Procurement Phase, Operational Needs identified by the
User and System Acquirer are documented in the SPS.
This is a critical step. The reason is that by this point the
System Acquirer, in collaboration with the User, partitions
an Enterprise Problem Space (Figure 4.3) such as a COI
or CTI related to current capabilities into one or more
Solution Spaces to be filled by systems, products, services,
and upgrades. Each Solution Space is then bounded and
specified in terms of what the system, product, or service is
to accomplish and how well but not how to design it.

If human errors in Engineering judgment are made con-
cerning bounding and specifying a Solution Space, they man-
ifest themselves as latent defects in the requirements doc-
umented in the SPS. For example, has the Problem Space
been accurately identified, or is it a symptom of a larger
Problem Space (Principle 2.1)? Therefore, the challenge
question for the System Acquirer, User, and ultimately the
System Developer is: Have we specified the right Solution
Space (system or entity) to satisfy one or more User op-
erational needs (Problem Space)? How do we answer this
question?

SPS requirements are subjected to Requirements Valida-
tion against the Operational Need to validate that the right so-
lution space description has been concisely, accurately, and
completely bounded by the SPS.
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Figure 13.6 SE Design Process V & V Strategy Applied to the System Development
Processes Workflow (Figure 12.2)

A Word of
Caution 13.1

Please note that any discussions with the
Acquirer and User regarding the SPS re-
quirements validation require tactful profes-
sionalism and diplomacy. In effect, you are
validating that the Acquirer performed their
job correctly.

On the one hand, they may be grateful you may have
identified any potential deficiencies in their assessment and
brought it to their attention. Conversely, you may offend
them!

Approach any discussions in a tactful, well-conceived,
professional manner. Develop strong rapport with the System
Acquirer/User in advance of a procurement action to build
confidence and acceptance of your recommendations.

13.6.2 SE Design Process: V&V Strategy

The primary objectives of the SE Design Process V&V
Strategy are to:

1. Verify that the multi-level System Design Solution is
evolving, maturing, traceable to, and compliant with its
specification or task requirements.

2. Validate that the System Design Solution will satisfy
the Stakeholder’s operational needs.

3. Verify that design requirements—drawings and parts
lists—are accurate, compliant, and mature for procure-
ment of physical components.

Let’s investigate how the System Design Process V&V
Strategy is applied to the System Development Workflow
Processes (Figure 12.2).

When the SPS requirements have been validated via
analysis and interviews with the User, the SPS serves as
source or originating requirements inputs to the System
Design Process. Throughout the System Design Process,
Design Verification is performed on the evolving System
Design Solution by tracing allocated requirements back to
the SPS and prototyping design areas for risk mitigation
and COI/CTI resolution. Design Validation activities are
performed to confirm that the User and System Acquirer, as
the User’s technical representative, agree that the evolving
System Design Solution will satisfy their operational needs.

Author’s Note 13.6

Please note that despite the location
of the System Design Process within
the workflow sequence, Design
Verification, and Design Validation
activities—that is, Design V&V—are

not considered complete until the System has been verified,
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validated, and legally accepted by the User via the System
Acquirer in accordance with the contract, project charter, or
task requirements.

Design V&V activities, which are performed throughout
the SE Design Process, are:

• Used to elicit System Acquirer and User valida-
tion feedback, acceptance, and approval, as appropri-
ate based on prototypes and mock-ups and technical
demonstrations.

• Accomplished via major technical reviews (e.g., SDR,
SSR, PDR, and CDR) addressed later in Chapter 18.

The SE Design V&V Strategy culminates with a System
Level Critical Design Review (CDR) to assess the sta-
tus, maturity, and risk of committing project resources to
proceed to the Component Procurement and Development
Process.

13.6.3 Component Procurement and Development
Process: V&V Strategy

The primary objective of the Component Procurement and
Development V&V Strategy is to verify that the internally
developed or externally procured components are fully com-
pliant with their design requirements—drawings, parts lists,
and wiring lists. Let’s investigate how the Component Pro-
curement and Development V&V Strategy (Figure 13.6) is
implemented.

During Component Procurement and Development, de-
sign requirements from the SE Design Process serve as the
basis for procuring, fabricating, coding, and assembling sys-
tem components. Each internally developed or externally
procured Part-Level hardware or software component un-
dergoes Component Verification for compliance to its De-
sign Requirements such as drawings, parts lists, schematics,
wiring lists, and software design.

Component procurement and development verification
activities occur in several ways:

1. Vendor or internal development verification following
component FAIT. Vendor verification of components
may be accomplished by System Developer on-site
witnesses or witnessed by vendor QA and authenticated
via a Certificate of Compliance (C of C) delivered with
the component to the System Developer.

2. System Developer verification via receiving inspection
of external vendor products such as components and
raw materials based on procurement “Fitness-for-Use”
criteria (Figure 4.1).

3. System Developer verification of internally produced
or modified components.

Externally procured components and materials undergo
receiving inspection verification that the components comply
with their procurement or product specifications. The verifi-
cation may be accomplished by:

• Random selections of component samples for analysis
and test.

• Inspection of Certificates of Compliance (CofCs) is-
sued by the vendor’s Quality Assurance (QA) organi-
zation.

• Sampled testing or 100% testing of each component.

In all cases, component material and performance discrep-
ancies such as deficiencies, incorrect mass properties, and
substandard work quality – workmanship - are recorded as
Discrepancy Reports (DRs) and dispositioned for subsequent
corrective action, as appropriate.

As internally developed components are verified and
externally procured components pass receiving inspection,
they are stored until required for integration into higher-level
entities such as Subassemblies, Assemblies, Subsystems,
Products, or the System. When ready, Parts are integrated
into higher-level entities such as Subassemblies for entry
into the SITE verification.

13.6.4 SITE Process: V&V Strategy

The primary objectives of the SITE V&V Strategy
are to verify that components and levels of integrated
entities—Products, Subassemblies, Assemblies, and
Subsystems—are:

1. Tested using a test configuration that is documented and
under CM Control.

2. Compatible and interoperable.

3. Performance compliant with their specification require-
ments.

4. Ready for integration at higher levels, as appropriate.

Let’s investigate how the SITE V&V Strategy
(Figure 13.6) is implemented.

The SITE Strategy (Figure 12.6) provides the basis to
verify that each entity at various levels of integration—for
example, Part, Subassembly, Assembly, Subsystem,
Product, and System Levels:

• Performs and produces results that comply with its
specified performance-based capability requirements
prior to, during, and after being subjected to the
specified operational and Operating Environment
conditions.

• Is compatible and interoperable with internal entities
within the System’s Architecture and with external
system entities, if required.
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To implement the SITE Process, Verification Methods
and Requirements specified in the SPS are used to develop
System Verification Procedures. Verification methods such
as Inspection, Analysis, Demonstration, Test, and Similar-
ity (conditional) are specified as verification requirements
for each SPS requirement. Each System Test Procedure pre-
scribes the test environment configuration, Operating En-
vironment (initial and dynamic), data inputs, and expected
test results required to produce compliance data to sup-
port verification of each SPS or lower-level specification
requirement.

During SITE, the System Developer formally verifies
the System using preapproved test procedures with QA,
Software Quality Assurance (SQA), representatives of the
System Acquirer, User, and System Developer present as
witnesses. Multi-level verification activities compare actual
test data and results against the System Verification Proce-
dures. SITE culminates with a formal System Verification
Test (SVT) to assess compliance of the overall System to
SPS requirements. If discrepancies are identified between
SPS required performance and actual performance results,
a DR is recorded and submitted for corrective action.

13.6.5 Authenticate System Baselines Process (First
Pass): V&V Strategy

The primary objective of the Authenticate System Baselines
Process V&V Strategy is to ensure that the System or its
components:

• Comply with its SPS or lower-level specification re-
quirements.

• Identically match its assembly drawings, design draw-
ings, cable wiring lists, parts lists, and documentation.

Let’s investigate how the Authenticate System Baselines
Process V&V Strategy (Figure 13.6) is implemented.

When the SVT is completed, workflow progresses to
Authenticate System Baselines Process as the first of two
potential passes:

• First Pass—Assesses the System Design Solution
Developmental Configuration results immediately
following the SVT at the conclusion of the System
Development contract, project charter, or task.

• Second Pass—Assesses any “delta” changes to the
Developmental Configuration that may have occurred
during User System Validation following the First
Pass and prior to System Acceptance and delivery,
depending on contract requirements.

The process consists of Configuration Management (CM)
(Chapter 16) Audits followed by an SVR to assess the results
of the CM audits. The SVR reviews the QRs of a Func-
tional Configuration Audit (FCA) and a Physical Configura-
tion Audit (PCA). The FAC and PCA authenticate the System

Design Solution documentation baselines—for example, De-
velopmental Configuration—for accuracy, consistency, and
completeness with the actual verified System:

• The FCA reviews and validates authenticated
QRs—for example, performance-based capability
(functional) test results—from SPS and EDS re-
quirements compliance verification. During the FCA,
discrepancies between SPS or lower-level specifi-
cation requirements and test results—for example,
non-compliances—are noted in DRs and referenced
in FCA Conference Minutes for corrective action and
closure of the DR.

• The PCA reviews and validates QRs that entities,
for example, Parts, Subassemblies, Assemblies,
Subsystems, Product, and the System, physically
comply with design requirements—for example, di-
mensional drawings, parts lists, schematics, and wiring
lists. Since the PCA may require “after the fact”
disassembly of the verified System to perform the vali-
dation, it may be cost-effective to perform incremental
PCAs at each Integration Point (IP). During the PCA,
discrepancies between design requirements such as
noncompliances are noted in DRs and referenced in
PCA Conference Minutes for corrective action and
closure of the DR.

Entry criteria for the SVR require successful completion
of the FCA and PCA for scheduling the event. System
Acquirer contracts may or may not require the conduct of an
FCA, PCA, or both. However, it is advisable that Enterprise
command media require at least an FCA and possibly a PCA
for legal record purposes whether required by contract or not.
In any case, the SVR marks the completion of Developmental
Test and Evaluation (DT&E).

At this juncture, several options may be available to the
System Acquirer and User and established by the contract:

• Option #1—The System Acquirer may perform final
acceptance of the System or Product at a designated
facility such as the System Developer or designated
field site.

• Option #2—The System Developer’s contract may re-
quire delivery of a System or Product to a User’s
designated site for installation, integration, and check-
out prior to final System Acquirer and User acceptance.

• Option #3—The System Acquirer may require deliv-
ery of the System or Product to a User’s designated
field site for OT&E by an ITA.

Option 3 requires that the System Acquirer and User
establish a System OT&E Validation Strategy.
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13.6.5.1 OT&E: Validation Strategy

Principle 13.14

OT&E Principle

OT&E enables Users to assess how well a
system, product, or service satisfies their
operational needs based on independent

field trials with trained User Personnel operating the
system in a realistic Operating Environment.

The primary objectives of the OT&E Validation Strategy
are to enable the User to:

1. Conduct field trials that employ the system, product,
or service to perform representative missions in a real-
istic Operating Environment; component integrity
issues; and manufacturing process and workmanship
issues.

2. Evaluate how well the system, product, or service:

a. Satisfies their operational needs

b. Resolves COIs/CTIs from the User’s perspective

c. Reveals any latent defects such as design errors,
flaws, or deficiencies related to OM&S

OT&E activities are typically conducted on large, com-
plex systems such as aircraft and military acquirer activity
systems. The theme of OT&E is: Did we acquire the right
system or product to satisfy our operational need(s)? OT&E
consists of subjecting the test articles to actual field environ-
mental conditions with operators from the User’s Enterprise.
An ITA designated by the Acquirer or User typically con-
ducts this testing. To ensure independence and avoid conflicts
of interest, the contract precludes the System Developer from
direct participation in OT&E; the System Developer may,
however, provide maintenance support, if required.

Since OT&E is dependent on how well the Users perform
with the Developmental Configuration System or Product,
the System Developer typically trains the User’s Personnel
to safely operate and maintain the system, product, or ser-
vice. During the OT&E, the ITA oversees User’s personnel
mission operations and System usage based on operational
Use Cases (UCs) and scenarios under actual field Operating
Environment conditions. UCs and scenarios are structured
to evaluate system operational utility, suitability, availability,
and effectiveness.

ITA Personnel monitor and instrument the System to:

• Assess how well the system, product, or service re-
solves the Stakeholder User and End User COI(s) or
CTI(s) that motivated the need for the system, product,
service, or upgrade.

• Observe the Human–System interactions and re-
sponses, efficiency, effectiveness, and so forth.

Let’s investigate how the System Validation Strategy
(Figure 13.6) is implemented.

Principle 13.15

Validation Independence Principle

To ensure independence and avoid a con-
flict of interest, OT&E is typically per-
formed by an ITA with User Personnel

that have been trained to operate and maintain the System
under actual field Operating Environment conditions
based on scripted scenarios.

System Validation activities (Figure 13.6) referred to as
OT&E assess how well the fielded system performs missions
in its prescribed Operating Environment as originally
envisioned by the User.

During the OT&E, the System Developer is normally pre-
cluded from being present and participating in the activ-
ity. Generally, the System Developer is kept informed by
the User or System Acquirer’s Contracting Officer (ACO)
about the evolving results of OT&E. Qualification tests
should be conducted by the User personnel under field
conditions to assess not only the System (Equipment
Element performance) but also the overall Human Sys-
tems Integration (HSI) (Personnel Element) effectiveness.
This includes evaluation of MOEs, MOSs, COIs, and CTIs
(Chapter 5).

If OT&E determines that a documented deficiency is
unspecified in the original contract’s SPS, this is a critical
issue for the System Acquirer and User. For example, did
the User or Acquirer overlook a specific capability as an
operational need and failed to document it via requirements
in their System Requirements Document (SRD)?

This point reinforces the need to perform a credible Re-
quirements Validation activity (Figure 13.6) prior to or im-
mediately after Contract Award to avoid surprises during
System Acceptance. If the deficiency is not within the scope
of the contract, the System Acquirer may be confronted with
modifying the contract and funding additional design imple-
mentation and efforts to incorporate changes to correct the
deficiency. Any latent defects discovered during System Val-
idation are recorded as Problem Reports (PRs) and submitted
to the appropriate decision authority for disposition and cor-
rective action, if required.

Principle 13.16

Verified System Modifications
Principle

Any uncoordinated, unapproved, and un-
verified modifications to a verified Devel-

opmental Configuration of a Physical System without prior
authorization during OT&E effectively invalidate the Devel-
opmental Configuration SVR results.

If deficiencies are discovered during OT&E, corrective
actions that require rework of the physical System may
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be required to be performed by the System Developer,
either under their existing contract or a modified contract.
If this occurs, the System may be returned to the System
Developer’s facility to undergo SITE to achieve a new
version verified system.

The reality is minor modifications of the fielded system,
product, or service will probably have to be made during
OT&E. When this occurs, the ITA, System Acquirer, and
System Developer must have “open” lines of communica-
tion and decision-making channels. Since any modification
typically has legal ramifications concerning ownership, ac-
countability, roles, and authorities, contact your Contracts
organization for guidance.

Legally, the challenge question is has the validated Sys-
tem been altered or modified from its SVR authenticated
baseline (First Pass) by the ITA, User, or System Developer?
If this occurs, the physical System may no longer be in com-
pliance with its verified system documentation. This leads us
back to the Authenticate System Baselines Process—Second
Pass.

13.6.6 Authenticate System Baselines V&V Strategy
(Second Pass): V&V Strategy

The primary objective of the Authenticate System Base-
lines V&V Strategy—Second Pass is to verify that any
changes to the system, product, or service baselines have
been updated and authenticated. Let’s investigate how the
Authenticate System Baselines V&V Strategy—Second Pass
(Figure 13.6) is implemented.

During the Authenticate System Baselines Process—
Second Pass, V&V activities assess the validated System
against its System Design Solution documentation. If mod-
ifications have been made during OT&E, this may require
conducting another PCA. The assumption here is that any
changes were verified prior to installation and checkout on
the fielded System during OT&E. On successful completion
of the PCA, a follow-up SVR should be considered to:

• Resolve any outstanding Post-OT&E, FCA/PCA
issues.

• Recertify the results of the Post-OT&E, FCA and PCA,
if required.

• Assess System readiness for final acceptance.

On successful completion of the Authenticate System
Baselines Process—Second Pass, the Verified and Validated
System should be ready for formal System Acceptance
by the System Acquirer, as the User’s representative, and
subsequent delivery to the User.

13.6.7 System Acceptance

Final acceptance of the system, product, or service by the
System Acquirer representing the User is accomplished
in accordance with contract, project charter, or task
requirements.

A Word of
Caution 13.2

Refurbishment and Deliverables If the
validated system is to be delivered fol-
lowing an OT&E activity, chances are
it has blemishes such as scratches from
operating in a field environment. The
question is what level of refurbishment,

such as spot painting, is permitted by the contract? Some
Users may accept First Article systems assuming that
they have been refurbished to meet specific standards.
Always consult your contract, project charter, or task for
guidance.

13.7 INDEPENDENT VERIFICATION &
VALIDATION (IV&V)

Due to technical issues such as risk, interoperability, safety,
and health related to large, complex, expensive systems,
government organizations such as the US DoD, DoE, and
NASA may issue IV&V contracts to assess the work of
System Developers during the System Development Phase.
The IV&V contractor is tasked to provide an independent
assessment to the System Acquirer that the provisions of
the System Development contract are being implemented
properly.

13.7.1 Need for Independence

IV&V can be an important supporter to the System Ac-
quirer in preventing these problems. Potential hardware and
software latent defects such as design flaws, deficiencies, or
human errors are sometimes missed due to limited person-
nel availability and skills, incorrect requirements, or changes
in hardware or software platforms. Critical flaws can result
in cost overruns or even catastrophic mission failure that
poses safety risks to the general public and the Natural
Environment.

13.7.2 Degree of Independence

A common question is: How “independent” must an IV&V
Enterprise be? ISO/IEC/IEEE 24765 (2010) describes an
IV&V organization as “technically, managerially, and fi-
nancially independent of the development organization”
(SEVOCAB, 2014, p. 149 - Copyright 2012, IEEE. Used by
permission).

13.7.3 Benefits of IV&V

Users and System Developers often ask why should they go
to the expense of performing IV&V, either by contract or
by internal assessments? What’s the Return on Investment
(ROI)? There are several reasons; some are objective and
others subjective. In general, IV&V:

1. Improves system or product safety.
2. Provides increased visibility into the System Develop-

ment Process.
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3. Identifies non-essential requirements and design
features.

4. Assesses compliance between specification and perfor-
mance.

5. Identifies potential risk areas.
6. Reduces the quantity of latent defects such as design

flaws, errors, defective materials or components, and
workmanship problems.

7. Helps reduces development, operations, and support
costs.

When performed competently and essential results re-
ported constructively, IV&V can be of benefit to both the
Acquirer and the System Developer. Depending on the role
assigned by the Acquirer to the IV&V contractor, adding an-
other contractor into the System Development Process may
require the System Developer to plan for and obtain supple-
mental resources. The challenge for the System Developer
may be dealing in an environment whereby the Acquirer be-
lieves the IV&V contractor is not “earning their keep” unless
they find a lot of microscopic deficiencies, even if the work
products are more than adequate technically, professionally,
and contractually.

Example 13.11

NASA IV&V

As an example, software is playing an
increasing role in day to day. For each
NASA mission or project to execute suc-

cessfully, it is imperative that the software operates safely
and within its designed parameters. Failure of a single unit
of mission critical software within a NASA mission can po-
tentially result in loss of life, dollars, and/or data. IV&V
serves as a mechanism to underscore the importance of soft-
ware safety and helps ensure safe and successful NASA
missions.

13.7.4 Is IV&V a Help or Hindrance?

People typically view IV&V activities as unnecessary tasks
that consume critical skills, cost, and schedule resources
that could be better spend on additional system or product
capabilities. Contrary to this shortsighted mind-set, IV&V
activities should result in a higher-quality product and typ-
ically reduce costly rework – cost of IV&V effort ver-
sus cost of rework. Project Managers (PMs), Technical
Directors (TDs), Project Engineers, SEs, and others who
are accountable for technical project performance and cus-
tomer acceptance must live with the consequences of their
decisions.

Some people apply IV&V and view it as a pathway lead-
ing to success; others view it as an unnecessary hindrance.
Project performance tends to correlate with these two per-
spectives. The bottom line is as follows: invest in correcting
defects such as design flaws, errors, discrepancies, and defi-
ciencies up front or pay significantly more to correct prob-
lems at higher levels of integration.

Author’s Note 13.7

Ensure that checks and balances are
in place to verify that the system
development effort will produce
systems, products, and services that
comply with contract requirements.

IV&V activities serve as one option to accomplish this.
Does IV&V guarantee success? Absolutely not! Like most
human activities, the quality of the IV&V effort is only as
good as the competency of the personnel who perform the
work, methods and tools used, and the resources allocated to
the activity. Perform due diligence and select qualified and
competent IV&V vendors that provide good value.

13.8 CHAPTER SUMMARY

During our discussion of system V&V practices, we defined
V&V; its objectives; how, when, and where V&V is accom-
plished; who is accountable; and methods for conducting
V&V activities. In support of this overview, Chapter 18 ad-
dresses specific verification activities that support key deci-
sion control points. Key points of discussion include:

1. Verification (Principle 13.3) asks the question: Are we
developing the system in compliance with the specified
requirements?

2. Validation (Principle 13.4) asks the question: Did we
acquire the right system to satisfy our operational
needs?

Standards that specify V&V requirements expect a project
to 1) define performance-based outcome plans and tasks for
what they want to accomplish, 2) perform to the plan, and
3) produce work products and QRs as objective evidence
of performance to the plan and accomplishment of each
task.

QRs include items such as meeting and technical review
minutes, technical audit results, analyses, trade study reports,
and modeling and simulation (M&S) results.

V&V are performed throughout every contract, project
charter, or task from initiation to completion. The notion that
V&V are only performed at the end of a project (Figure 13.4
left side) is a factually incorrect myth. As evidence, refer
to Figure 13.6 concerning the application of V&V to the
System Development Processes Workflow, if implemented
properly.

There are three types of System Verification: (1) Devel-
opmental Design Verification, (2) Product Verification, and
(3) Production Design Verification.

• Developmental Design and Production Design Verifi-
cation demonstrate technical compliance to specifica-
tion or design requirements.

• Once a Developmental Design and Production De-
sign have been verified, the only remaining technical
compliance issue is the detection of (1) manufacturing
process and workmanship issues and (2) material de-
fects in each physical implementation of the design.
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The primary verification methods consist of (1) Inspec-
tion, (2) Examination, (3) Analysis, (4) Demonstration, (5)
Test, and (6) Validation of Records.

Compliance verification of each and every requirement re-
quires presentation of QRs as objective evidence obtained
from one or more verification methods. Since every verifica-
tion method has a cost and time required to perform, select
only the least number of methods that prove compliance for
the least cost.

The System Acquirer approves which verification meth-
ods are deemed acceptable.

V&V are ongoing activities performed relentlessly every
day by project personnel—professionals—accountable for
eliminating or reducing defects, such as design flaws, errors,
and deficiencies. V&V are not reserved exclusively for
scheduled events on someone’s schedule.

IV&V is an approach used on large complex projects by
the System Acquirer to employ the services of an external
Enterprise specializing in V&V to assess the work of a
System Developer.

13.9 CHAPTER EXERCISES

13.9.1 Level 1: Chapter Knowledge Exercises

1. What is verification, what is its primary objective, and
what constitutes Verification success?

2. When is verification started and when does it end? At
what levels of abstraction are V&V performed?

3. Who is accountable for performing verification?

4. Name six verification methods, define each method,
and scope the activities required to accomplish the
verification method.

5. What is validation, what is its primary objective, and
what constitutes Validation success?

6. When is validation started and when does it end?

7. Who is accountable for performing validation?

8. What is the difference between V&V?

9. What is the 100X Software Rule and what are its
implications to System Development?

10. Why is the 100X Software Rule important concerning
latent defects?

11. What is IV&V and how is it applied?

12. How do you apply IV&V internally?

13.9.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e

13.10 REFERENCES

Boehm, Barry W. (1981), Software Engineering Economics.
Englewood Cliffs, NJ: Prentice-Hall.

CMMI-DEV (2010), Capability Maturity Model Integration
(CMMI) for Development, Version 1.3, Pittsburgh, PA:
Carnegie-Mellon University – CMMI Institute.

DAU (2012), Glossary: Defense Acquisition Acronyms
and Terms, 15th ed. Ft. Belvoir, VA: Defense Acquisi-
tion University (DAU) Press. Retrieved on 6/1/15 from
http://www.dau.mil/publications/publicationsDocs/Glossary
_15th_ed.pdf.

FAA SEM (2006), System Engineering Manual, Version 3.1,
Vol. 3, National Airspace System (NAS), Washington, DC:
Federal Aviation Administration (FAA).

INCOSE (2011), System Engineering Handbook,
TP-2003-002-03.2.2, Seattle, WA: International Council on
System Engineering (INCOSE), Version 3.2.2.

ISO 9001:2008 (2008) Quality management sys-
tems – Requirements, International Organization for
Standardization (ISO). Geneva, Sweden.

ISO/IEC 15288:2008 (2008), System Engineering - System
Life Cycle Processes, Geneva: International Organization for
Standardization (ISO).

ISO/IEC/IEEE 24765:2010 (2010), Systems and software
engineering—Vocabulary, International Organization for
Standardization, Geneva: ISO Central Secretariat.

MIL-STD-105E (1989), Military Standard: Sampling Proce-
dures and Tables for Inspection by Attributes, Washington,
DC: Department of Defense (DoD).

MIL-STD-973 (1992, Canceled 2000), Military Standard: Con-
figuration Management, Washington, DC: Department of
Defense (DoD).

Stecklein, J. (NASA); Dabney, J. (NASA); Dick, B. (Boeing);
Haskins, B. (Boeing); Lovell, R. (Northrop Grumman); and
Moroney, G. (Wylie Labs) (2004), Error Cost Escalation
Throughout the Project Life Cycle, Table 13, NASA Tech-
nical Reports Server (NTRS), Washington, DC: NASA.
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/2010003
6670.pdf. Retrieved on 1/17/14.

NASA SP 2007-6105 (2007), System Engineering Handbook,
Rev. 1., Washington, DC: National Aeronautics and Space
Administration (NASA). Retrieved on 5/1/13 from https
://acc.dau.mil/adl/en-US/196055/file/33180/NASA%20SP-
2007-6105%20Rev%201%20Final%2031Dec2007.pdf.

SEVOCAB (2014), Software and Systems Engineering Vocabu-
lary, New York, NY: IEEE Computer Society. Accessed on
5/19/14 from www.computer.org/sevocab.

Shull, Forrest; Basili, Vic; Boehm, Barry; Brown, A. Winsor;
Costa, Patricia; Mikael; Lindvall, Dan Port; Rus, Ioana;
Tesoriero , Roseanne; and Zelkowitz , Marvin (2003),
What We Have Learned About Fighting Defects: NSF Cen-
ter for Empirically Based Software Engineering CeBASE).
Retrieved on 4/9/14 from http://www.cs.umd.edu/%7Emvz
/pub/eworkshop02.pdf.

http://www.wiley.com/go/systemengineeringanalysis2e
http://www.dau.mil/publications/publicationsDocs/Glossary_15th_ed.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100036670.pdf
http://www.computer.org/sevocab
http://www.cs.umd.edu/%7Emvz/pub/eworkshop02.pdf
https://acc.dau.mil/adl/en-US/196055/file/33180/NASA%20SP-2007-6105%20Rev%201%20Final%2031Dec2007.pdf
https://acc.dau.mil/adl/en-US/196055/file/33180/NASA%20SP-2007-6105%20Rev%201%20Final%2031Dec2007.pdf


14
THE WASSON SYSTEMS ENGINEERING PROCESS

If we investigate how organizations develop systems, the
responses range from the traditional, ad hoc Plug and
Chug … Specify–Build–Test–Fix (SBTF) Design Process
Model (DPM) Paradigm methods to authentic SE-based
models. Wasson (2012a) observes that due to the dilution of
the SE discipline concerning what it is or is not SE, most En-
terprises that employ the SBTF paradigm mistakenly believe
they are performing SE and boldly proclaim their capabilities
to Acquirers who mistakenly believe and accept the approach
as SE. Then, both parties are unable to understand why pro-
grams fail and unfortunately blame SE as the culprit.

Since World War II, considered to be the beginning of
modern SE, organizations such as the US Army, USAF, DoD,
and IEEE developed a variety of SE Processes that have
helped advance the state of SE practice. Research of the
evolution of these models reveals how SE advanced, and
newer models attempted to correct deficiencies in previous
models and Enterprise practices at the time. Since Aerospace
& Defense (A&D), for example, required a significant
amount of rigor and traceability due to national security and
lives at risk, commercial domains erroneously attached a
bureaucratic paperwork stigma to SE.

Since the 1980s, the highly competitive global market-
place and economy have forced many commercial Enter-
prises to rethink their Engineering, System Development,
and Quality System (QS) paradigms. Driven by the need
to improve System/Product performance, customer sat-
isfaction, and profitability to survive, they are discovering
that SE provides a key solution for achieving their business
objectives.

Humans, by nature, generally deplore structured meth-
ods and will go to great lengths to avoid them without

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

understanding (1) why they exist and (2) how they benefit
from them. While traditional, ad hoc SBTF Paradigm en-
gineering methods may be successful on simple, small sys-
tems and products, their lack of consistency and scalability of
these methods to large, complex programs employing dozens
or hundreds of people can lead to dysfunctional projects
characterized by disorder and chaos. The same is true for
development of upgrades to an existing system, product, or
service. So, the question is: Does a simple methodology exist
that is explicit, easily understood, scalable, and can be ap-
plied for all size projects in any type of business domain? The
answer is yes!

14.1 DEFINITIONS OF KEY TERMS

• Behavioral Domain Solution—A multi-faceted,
technical design that describes a System or Entity’s
behavioral responses to encounters, interactions,
and reactions to stimuli, excitations, or cues from
external Systems within its Operating Environ-
ment. Decision artifacts include logical capabilities
and architecture, SySMLTM Sequence and Activity
Diagrams, design descriptions and Requirements
Traceability Matrices (RTMs).

• Hypothesis—“A proposition tentatively assumed in
order to draw out its logical or empirical consequences
and test its consistency with facts that are known or may
be determined” (Merriam-Webster, 2013).

• Iterative Characteristic—An attribute that describes
the interactions between each of the SE Process
Model’s elements.

http://www.wiley.com/go/systemengineeringanalysis2e
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• Operations Domain Solution—A multi-faceted, tech-
nical solution of a System or Entity that describes
how the System Developer, in collaboration with the
User(s) and System Acquirer, envision deploying, op-
erating, maintaining, sustaining, retiring, and dispos-
ing of the system. Decision artifacts include ConOps
document containing an Operational Architecture and
Operational Concept Descriptions (OCDs), M&S, and
RTM.

• Physical Domain Solution—A multi-faceted, tech-
nical design of a System or Entity that describes
its selected physical implementation. Decision arti-
facts include design descriptions, RTMs, conference
and review minutes, assembly drawings, schematics,
wiring lists, parts lists, test cases, and procedures.

• Point Design Solution—A solution selected by
reading specification requirements and immedi-
ately jumping to a single physical design without
due consideration of (1) how the User plans to use
the System and (2) expects it to interact with or
respond behaviorally to its User(s) and external
Systems in its Operating Environment or (3) an
Analysis of Alternatives (AoA) in making those
decisions.

• Recursive Characteristic—An attribute of the
SE Process Model that enables it to be applied to
any entity within a System regardless of level of
abstraction.

• Requirements Domain Solution—A hierarchi-
cal framework of requirements traceable to User
originating or source requirements that bound and
specify the capabilities, performance, interfaces,
environmental conditions, design and construction
constraints, quality factors, and verification meth-
ods that characterize a System or Entity to be
developed. Decision artifacts include stakeholder
identification, user stories, use cases and scenarios,
specifications, Design Criteria Lists (DCLs), RTMs,
analyses, trade studies, Models & Simulations (M&S),
key decision artifacts, conference and review minutes
used to derive the requirements and their levels of
performance.

• SE Process Model—A construct derived from a
highly iterative, problem-solving–solution develop-
ment methodology that can be applied recursively to
multiple levels of system design.

• Solution Domain—A unique requirements, opera-
tions, behavioral, or physical solution traceable to User
source or originating requirements that expresses how
a system, product, or service is bounded and speci-
fied, envisioned to operate, engage, and respond be-
haviorally to external systems, and be physically im-
plemented.

14.2 APPROACH TO THIS CHAPTER

Chapter 14 introduces the Wasson SE Process Model, its un-
derlying problem-solving and solution development method-
ology, and application to development of a System or
Entity’s design. To better understand what an SE Process
is, we:

• Provide a brief background discussion of the evolution
of SE Processes that have enabled SE to advance as a
discipline.

• Highlight shortcomings in current SE process
paradigms that drive the need to shift to a new
level of SE performance.

• Illustrate how the Scientific Method contributes to
and influences the ad hoc Plug and Chug … SBTF
Paradigm.

To address the need for a new level of SE Process
performance, we introduce the Wasson SE Process Model as
a solution. We provide a graphical and text description of the
model and address its two characteristics: highly iterative and
recursive. We illustrate the model’s highly iterative internal
activities iterate and how the model applies recursively to
multiple levels of abstraction within the System Design
Process shown in Figures 12.4 and 14.9.

Given an understanding of the Wasson SE Process Model,
we provide a high-level example of how the model is applied
to the development of a Tablet Computer System.

We conclude the chapter with a summary discus-
sion concerning the strength of the Wasson SE Process
Model.

14.3 EVOLUTION OF SE PROCESSES

Since World War II, several types of SE processes
have evolved. Organizations such as the US Depart-
ment of Defense (DoD), the Institute of Electrical and
Electronic Engineers (IEEE), the International Coun-
cil on Systems Engineering (INCOSE), and others have
documented a series of SE process methodologies. Spe-
cific examples include the AFSCM 375-5 (1966), US
Army FM 770-78 (1979), DoD MIL-STD-499B DRAFT
(1994), and IEEE 1220-1994. Each of these SE process
methodologies highlights key aspects its developers con-
sidered fundamental to Systems Engineering practice at a
specific time.

14.3.1 Commonly Used SE Process Model

One of the commonly used SE Processes today originates
from AFSC 375-5 (1966) that evolved over many years into
DoD MIL-STD-499B DRAFT (1994), which was canceled
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in 1994 before approval. The key activities of the process
are:

1. Requirements Analysis

2. Functional Analysis and Allocation

3. Synthesis

4. System Analysis and Control

At the time it was created, the process advanced SE
thinking. However, newcomers to SE view its primary
features—Requirements Analysis, Functional Analysis and
Allocation, and Synthesis—as being too abstract to un-
derstand. Additionally, two of the features—Requirements
Analysis and Functional Analysis—are relevant but are in-
sufficient to meet today’s needs for Engineering system,
product, or services. Specifically:

1. Requirements Analysis—Infers that requirements
exist and can be analyzed. Perhaps this might be the
case for an Electrical, Mechanical, and Software En-
gineering after multi-discipline SE teams have flowed
specification requirements down for a printed circuit
board, designing a software module. The reality is re-
quirements begin in the form of abstract, visionary
User mission objectives, UCs, and scenarios that will
be ultimately translated into capability-based require-
ments. Although seasoned SEs who have applied the
MIL-STD-499B DRAFT process may understand the
context and scope of Requirements Analysis, this does
not mean that its title explicitly communicates what
SEs are required to understand or what Requirements
Analysis entails.

2. Functional Analysis and Allocation—Although this
topic is relevant to defining system behaviors, it is
deficient in terms of meeting today’s SE needs. In
Chapter 3, stated that a function identifies an action
to be performed to achieve an outcome. An action,
however, does not embody performance, a separate
attribute. In contrast, a capability encompasses both
function and performance.
When SEs and others say they are going to perform
Functional Analysis and Allocation and identify func-
tions, that activity is the easy part. The challenge is
often quantifying the level of performance within the
context of the System and User priorities coupled with
cost and schedule impacts.
Additionally, flowing down specification require-
ments allocations to lower levels is more than simply
“decomposition of functions.” Performance alloca-
tions related to the “functional requirements” are
often a major issue. Assigning a performance value
to a functional requirement can be difficult; allocating
the performance value to lower level components

can be even more challenging. The reality of need-
ing to simultaneously allocate and flow down both
function and performance illustrates the inadequacy
of performing Functional Analysis as a primary SE
activity:

Although the SE standards noted above advanced the state
of the practice in SE, in the author’s opinion, no single SE
process captures the actual steps performed in Engineering a
System, Product, or Service.

Over the years, SEs and Enterprises have often formulated
their own variations of the SE Process. Here’s the challenge:
what many Enterprises and SEs believe or perceive to be
an SE Process implementation is actually an nothing more
than the ad hoc, endless loop paradigm referred to by
Wasson (2012a) as the Plug & Chug … SDBTF Paradigm.
The paradigm, which is intended as a problem-solving and
solution development methodology, reflects a convolution of
the Scientific Method of Inquiry and Archer’s Design Process
Model (1965).

To better understand this last point as a backdrop to the
Wasson SE Process Model, let’s briefly explore the relation-
ship between the Scientific Method and the Engineering De-
sign Process employed by Engineers.

14.3.2 Comparison of Archer’s Design Process and the
Scientific Method to Engineering Design

Archer’s DPM (1965) shown earlier in Figure 2.9 and
the Scientific Method provide a key foundation as a gen-
eral problem-solving and solution development method. Al-
though the operative term is scientific in Scientific Method,
it is not unique to science and has general application to any
type of problem or issue requiring scientific inquiry or in-
vestigation. As introduced earlier in Chapters 2 and 11, En-
gineers enter the workforce with an in-grained culture that
is exemplified by a traditional SDBTF-DPM Engineering
Paradigm that is perceived to be SE.

To better understand how this occurs, let’s explore a com-
parison of similarities between the Archer’s DPM (1965),
the Scientific Method, and Engineering Design Process.
Table 14.1 provides an illustrative comparison.

Observe several key points about the Engineering Design
Process:

Step 1: Identify and Analyze Requirements

Step 2: Research Legacy Designs and Vendor Catalogs

Step 3: Hypothesize System or Entity Design Solution

Step 4: Develop Prototype, Model, or Simulate Areas of
Interest or Risk

Step 5: Develop Test Procedure

Step 6: Test the Prototype, Model, or Simulation and Docu-
ment Results
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TABLE 14.1 A Comparison of Similarities Between Traditional Engineering Design Process, Archer’s DPM (1965),
and the Scientific Method

Sequence Scientific Method Archer’s DPM (1965) Traditional Engineering Design Process

Step 1 State the question, issue, or problem
you need to answer

Data Collection Identify and analyze
requirements

Step 2 Conduct background research
related to the question, issue, or
problem

Data Collection &
Analysis

Research legacy designs and
vendor component catalogs
for potential solutions

Step 3 Formulate an hypothesis Synthesis Hypothesize System or Entity
Design Solution

Step 4 Design experiment to validate the
hypothesis

Synthesis & Development Develop prototype, model, or
simulate areas of interest or
risk

Step 5 Develop experiment test procedure Development Develop test procedure
Step 6 Conduct experiment and document

results
Development Test the prototype, model, or

simulate and document the
results

Step 7 Analyze experiment results Analysis Analyze lab test results
Step 8 Develop reasoned conclusions

concerning the validity of the
hypothesis

Synthesis Redesign, rework, or tweak
System or Entity design

Step 9 Repeat Steps 2–8 as necessary Repeat Steps 2–8 as
necessary

Repeat Steps 2–8 as necessary.

Step 10 Communicate the results Communication Review, approve, and release
design

Step 7: Analyze Lab Test Results

Step 8: Redesign, Rework, or Tweak System or Component
Design

Step 9: Repeat Steps 2 through 8 (endless loop)

Step 10: Review, Approve, and Release Design

The preceding points illustrate the ad hoc, endless loop
SDBTF-DPM Paradigm employed by some Enterprises and
Engineers. Is there any wonder why:

• Teams are often dysfunctional and exhibit chaos due to
of a lack of consensus into how to perform SE design
as a result of a lack of Engineering education?

• Engineers always have to redesign some aspect of the
System or Entity during the System Integration, Test,
and Evaluation (SITE) Phase due to:

a. “Quantum leaps” from requirements to a point
design solution (Figure 2.3) resulting in rework and
redesign at significant cost (Chapter 12 - Boehm).

b. Incompatibility and interoperability issues resulting
in cost overruns and schedule problems?

• Project Managers complain that Engineers “gold-plate”
their designs as evidenced by overrun project budgets

and schedules and have to be told when to stop working
on a design?

Principle 14.1

Problem-Solving–Solution
Development Principle

A quantum leap from requirements to
a point design solution does not reflect
Problem Solving or Solution Development.

System development success can only be as good as
the process employed and its human knowledge, imple-
mentation, and adherence to the process. Since human
decision-making is compounded by politics, no SE Pro-
cess is perfect. However, SEs can establish a process for a
project and exercise “intellectual control” (McCumber and
Sloan, 2002, p. 4) over its performance. This brings us to
this chapter’s topic, the Wasson SE Process Model, as a
solution to shift current SE Paradigms to a new level of
performance.

14.4 THE WASSON SE PROCESS MODEL

Whereas the Scientific Method serves as a universal
problem-solving and solution development methodol-
ogy for scientific inquiry and investigation, the Wasson SE
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Process Model enables SEs, Engineers, System Analysts,
et al to:

• Understand the Problem or Opportunity Space a User
needs to resolve at any level of abstraction.

• Analyze, bound and specify, and decompose a
contextual Problem Space at any level of abstrac-
tion – System, Product, Subsystem, - into one or
more Solution Spaces.

• Formulate, develop, evaluate, and select each of the
System/Entity’s Four Domain Solutions.

• Balance the System/Entity’s technical, technology,
development and life cycle cost, schedule, and support
solutions and risks.

These points illustrate what the Wasson SE Process
Model accomplishes for SE&D. Additionally, the Model
provides additional benefits related to our discussions earlier
in Chapter 2. It:

• Provides a common problem-solving and solution de-
velopment method that is Engineering discipline in-
dependent and can be employed by multi-discipline
teams.

• Overcomes the quantum leap from requirements to sin-
gle point design solution (Figure 2.3) problems related
to the ad hoc, endless loop SBTF-DPM Engineering
Paradigm.

Let’s begin with a discussion of the model’s
methodological-based structure.

14.4.1 Wasson SE Process: Methodological-Based
Structure

The conceptual foundation for the Wasson SE Process
originates from the Four Solution Domains - Require-
ments, Operations, Behavioral, and Physical Domain So-
lutions – introduced in Chapter 11. Although the Four
Domain Solutions provide a strategic roadmap to develop
and characterize a System/Entity’s requirements, opera-
tions, behavior, and physical implementation; the challenge
is they require additional steps related to:

• Understanding the System/Entity’s contribution to
the User’s Problem Space.

• Ensuring that the overall System Design Solution
performance is optimal to meet the User’s mission
needs.

The underlying methodology for the model consists of the
following steps:

• Step 1: Understand the Problem/Opportunity and Solu-
tion Spaces.

• Step 2: Develop the Requirements Domain Solution.

• Step 3: Develop the Operations Domain Solution.

• Step 4: Develop the Behavioral Domain Solution.

• Step 5: Develop the Physical Domain Solution.

• Step 6: Evaluate and Optimize the System Design
Solution.

Figure 14.1 provides a graphical representation of the
Wasson SE Process Model. Within the model, workflow ac-
tivities include a number of iterative dependencies as illus-
trated in Figure 14.2 coupled with staged Verification and
Validation (V&V) as well as corrective action, if necessary.

As a problem-solving and solution-development method,
the Wasson SE Process Model applies to the System and
Entities at any level of abstraction or entity with a level.
Therefore, role-based terms such as System Acquirer, User,
and System Developer are contextual. Consider the following
example:

Example 14.1

Contextual System Acquirer, User, and
System Developer Roles

A System Acquirer (role) contracts with
a System Developer (role) Enterprise to

develop a System.
Within the System Developer’s project organization, a

Product-Level Team (Acquirer role) allocates requirements
for developing a Subsystem to an internal Subsystem Prod-
uct Development Team (PDT) or subcontractor performing a
System Developer (contextual role) to develop and deliver a
Subsystem.

Step 1: Understand the Problem/Opportunity and Solution
Spaces
The first step of the Wasson SE Process Model is to simply
understand the User’s Problem/Opportunity and Solution
Spaces. SEs and System Analysts need to understand and
validate how the User envisions employing the System
to accomplish performance-based outcomes to achieve
mission objectives. This requires understanding:

1. The System/Entity’s role in the User’s Level
0 System.

2. How the User plans to deploy; operate, maintain,
sustain (OM&S); retire, and dispose of the System/
Entity - its Use Cases (UCs) and scenarios.

3. The System/Entity’s interfaces and interactions with
external Systems such as Human Systems, Natural
Systems, and Induced Environments (Chapter 9).

4. The expected performance-based behavioral responses
and outcomes to interactions with external systems in
its Operating Environment.
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Figure 14.1 The Wasson System Engineering Process Model

5. The System/Entity’s Mission Event Timeline (MET)
related to Pre-Mission, Mission, and Post-Mission
operations.

Work products of the Understand the Problem/
Opportunity and Solution Spaces include:

∘ Identification of the User’s Problem Statement
(Chapter 4).

∘ Definition of User missions and performance-based
objectives and outcomes (Chapter 5).

∘ A Context Diagram (Figure 8.1) illustrating System’s
context within its Operating Environment and inter-
faces.

∘ Partitioning of the Problem/Opportunity Space into one
or more Solution Spaces (Figure 4.7).

∘ Identification of Key Performance Parameters (KPPs),
Measures of Effectiveness (MOEs), and Measures of
Suitability (MOSs) (Chapter 5).

∘ Technology constraints.

∘ Cost constraints.

Step 2: Formulate, Select, and Develop the Requirements
Domain Solution

As the understanding of the System’s or Entity’s Prob-
lem/Opportunity and Solution Spaces evolves and ma-
tures, the next step is to formulate, evaluate, select, and
mature the Requirements Domain Solution.
The Requirements Domain Solution consists of a hierar-
chical set of requirements derived from a User’s source or
originating requirements as shown in Figure 14.3. These
requirements are typically documented in marketing anal-
ysis documents and contract documents such as Statement
of Objectives (SOO) and System Requirements Docu-
ment (SRD). Our objective is to derive requirements to a
lower level that is explicitly sufficient for allocating each
requirement directly to one and only one architectural en-
tities.
The Requirements Domain Solution is represented by
a Requirements Architecture consisting of a multi-level
framework of requirements traceable to the User’s source
or originating requirements. When the requirements are
partitioned into specifications such as an SPS and lower
level EDSs, the framework of specifications is referred
to as a Specification Tree (Figure 19.2). Since some
systems may contain 10’s of thousands of requirements,
the Spec Tree provides a simpler representation of the
Requirements Domain Solution.
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The Requirements Domain Solution encompasses more
than a Spec Tree and its specifications. It also includes
the analyses, trade-studies, Models & Simulations, and so
forth that were used to create the specifications, especially
requirement performance values.
Referring to Figures 14.1 and 14.2, System/Entity
Requirements Domain Solution activities include:

∘ Understanding, analyzing, bounding, and specifying
the System/Entity’s Solution Space, operational
capabilities, interfaces, environmental, and other
constraints.

∘ Iterating with the Understand the Entity’s Prob-
lem/Opportunity and Solution Spaces to reconcile
COIs/CTIs.

∘ Deriving SPS or Entity EDS requirements to lower
levels within the document for direct allocation and
flow down to lower level architectural entities. For
example, a Product EDS to a Subsystem EDS and
a Subsystem EDS to an Assembly EDS.

∘ Ensuring traceability to higher level specifications
such as the SPS or lower level specifications such as
Product, Subsystem, or Assembly Level EDSs.

Requirements Domain Solution work products include:

∘ Quality Records (QRs) that document technical de-
cision artifacts, User Design Criteria Lists (DCLs –
Chapter 17), conference and review minutes, analyses,
and technical reports.

∘ Specification Tree consisting of the SPS and lower level
Entity development specifications.

∘ Supporting analyses, models, and simulations.

Step 3: Formulate, Select, and Mature the Operations Do-
main Solution
As the System/Entity’s Requirements Domain Solu-
tion evolves and matures, System Developers initiate the
activities to formulate, evaluate, select, and mature the
System/Entity’s Operations Domain Solution from a set
of viable candidate solutions (Chapter 32). In general, the
System Level Operations Domain Solution captures how
the User envisions deploying, operating, maintaining, sus-
taining, retiring, and disposing of the System. Opera-
tional concepts for each of these activities are documented
in the System/Entity’s Concept of Operations (ConOps)
document or Theory of Operations that serves as the focal
point to guide early development of the System Design
Solution.
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The Operations Domain Solution serves as a critical step
in expressing the Conceptual System Design. Typically,
the ConOps Document serves that purpose. One of the
key topics in the ConOps is the Operational Architecture
shown in Figure 14.4.
Operational Architectures can be expressed in a number
of forms and media. Two key points need to be expressed
and communicated by an Operational Architecture:

1. What is required to deploy, operate, maintain, and
sustain (OM&S), retire, and dispose of a system,
product, or service similar to Figures 6.1 and 6.2. This
graphic depicts “A Day in the Life Cycle of a System”
as well as “A Day in the Life Cycle of a System’s
Mission.”

2. Large systems with mega budgets often create artist
or architectural renderings or cartoon illustrations de-
picting real-life images of the system’s interactions
with external systems in its Operating Environment
such as the one shown in Figure 14.4. These illus-
trations provide an enhanced understanding of a sys-
tem and its interactions with external systems in its
Operating Environment. For example, compare the
System Block Diagram (SBD) at the bottom of the

page with the cartoon graphic at the top of the page
containing the same information.

Referring to Figures 14.1 and 14.2, System/Entity
Operations Domain Solution activities include:

1. Continuously monitoring the System/Entity’s Re-
quirements Domain Solution for updates.

2. Establishing the Level 0 User’s Operational Archi-
tecture that characterizes interactions between the
System/Entity and friendly, benign, or hostile Sys-
tems and threats in its Operating Environment.

3. Developing and modeling the end-to-end – Pre-Mission
→ Mission → Post-Mission - sequences of operations
and tasks that comprise the System/Entity’s mission
cycle.

4. Identifying the System/Entity’s performance-based
outcomes to be accomplished.

5. Synchronizing operational tasks with the MET.

6. Verifying coverage, consistency, completeness, and
compliance to the respective Requirements Domain
Solution specification requirements.

7. Reconciling COIs/CTIs with the Requirements and
Behavioral Domain Solutions.
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8. Integrating the solution into the next higher level
(Figure 14.12) such as the User’s Level 0 System
or the project’s System, Product, Assembly, and
Subassembly Operations Domain Solutions.

9. Responding to change initiated by the Requirements,
Behavioral, and Physical Domain Solutions.

The Operations Domain Solution work products consist
of documented decision artifacts such as:

∘ Quality Records (QRs) that document technical deci-
sion artifacts, such as conference and review minutes,
analyses, and technical reports.

∘ The ConOps that provides Operational Concept
Descriptions (OCDs) for deploying, operating, sup-
porting, sustaining, retiring, and disposing of the
System/Entity (Chapter 6).

∘ The Operational Architecture that identifies the
System/Entity’s mission cycle including interac-
tions with external Systems— SysMLTM Actors—
within its Operating Environment.

∘ Establishment of the System or Product’s Develop-
mental Configuration Baseline (Chapter 16) includ-
ing Requirements Domain Solution work products that
have been reviewed, approved, and released.

∘ Mission Event Timeline (MET).

∘ System Phases, Modes, and States of Operation
(Chapter 7).

Step 4: Formulate, Select, and Mature the Behavioral
Domain Solution
As each Entity’s Operations Domain Solution evolves
and matures, System Developers initiate activities to for-
mulate, evaluate, select, and mature the Behavioral Do-
main Solution from a set of viable candidate solutions
(Chapter 32). In general, the Behavioral Domain Solution
describes what has to be accomplished in terms of log-
ical interactions and sequences of capability-based tasks
required to produce the desired performance-based out-
comes.
Referring to Figures 14.1 and 14.2, System/Entity
Behavioral Domain Solution activities include:

1. Modeling System/Entity internal capability transfer
functions and interactions with external Systems in
its Operating Environment throughout its mission
cycles such as the example shown in Figure 14.5.

2. Synchronizing System/Entity operations with the
MET such as the example shown in Figure 14.6.

3. Reconciling COIs/CTIs with the Requirements, Oper-
ations, and Physical Domain Solutions (Figure 14.2).

4. Ensuring its:
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a. Horizontal consistency with and traceability to the
Requirements and Operations Domain Solutions
(Figure 14.2).

b. Vertical consistency with and traceability to the
next higher-level Behavioral Domain Solution
(Figure 14.12).

5. Responding to changes from the Evaluate and Opti-
mize the System Design Solution Process.

Behavioral Domain Solution work products consist of
decision artifacts such as:

1. Quality Records (QRs) that document technical deci-
sion artifacts such as conference and review minutes,
analyzes, trade studies, models, and simulations.

2. The Logical Capability Architecture that de-
picts the configuration and interactions between
System/Entity capabilities.

3. Models of System/Entity behavior consisting of N2
Diagrams (Figure 8.11) and SysMLTM Sequence and
Activity Diagrams (Figures 5.10, 5.11, and 14.5).

4. Update of the System or Product’s Developmental
Configuration Baseline (Chapter 16) to include Be-
havior Domain Solution work products that have been
reviewed, approved, and released.

Step 5: Formulate, Select, and Develop the Physical Domain
Solution
As the Entity’s Behavioral Domain Solution evolves
and matures, System Developers initiate activities to
formulate, evaluate, select, and mature the Physical
Domain Solution from a set of viable candidate solutions
(Chapter 32). In general, this solution implements the
Behavioral Domain Solution via physical components
that have been architecturally configured and selected
to provide the capabilities required to accomplish User
missions.
Referring to Figures 14.1 and 14.2, System/Entity
Physical Domain Solution activities include:

∘ Continuously monitoring the System/Entity’s Re-
quirements, Operations, and Behavioral Domain
Solutions for updates.

∘ Formulating, evaluating, and selecting an optimal
Physical Architecture via an AoA based on a set of
viable candidate architectures.

∘ Linking Behavioral Domain Solution capabilities to
the Physical Architecture components as shown in
Figure 14.7.
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∘ Establishing performance budgets and design safety
margins for physical attributes such as electrical power,
size, and weight.

∘ Finalizing selection of physical components via Make
versus Buy versus Buy–Modify decisions (Chapter 16)
to attain the best mix of components within the archi-
tecture to achieve technical and project performance,
costs, technology, schedule, and risk objectives.

∘ Translating the Physical Architecture into a detailed
System Design Solution consisting of hardware as-
sembly drawings, schematics, wiring diagrams, and
software designs that meet necessary and sufficiency
criteria for procurement and/or development.

∘ Assessing the solution’s compatibility and interoper-
ability with external Systems in its Operating Envi-
ronment.

∘ Reconciling COIs/CTIs with the Requirements and
Behavioral Domain Solutions.

∘ Integrating the solution into the next higher level
(Figure 14.12) such as the project’s System, Product,
Assembly, and Subassembly Physical Domain Solu-
tion.

∘ Ensuring consistency and completeness with the Oper-
ations Domain Solution.

∘ Ensuring traceability to the Requirements Domain
Solution.

∘ Responding to changes requested by the Evaluate and
Optimize System Design Solution Process.

∘ Update of the System or Product’s Configuration
Baseline (Chapter 16) to include Physical Domain So-
lution work products that have been reviewed, ap-
proved, and released.

Referring to Figures 14.1 and 14.2, each Physical Domain
Solution consists of decision artifacts documented in
work products such as the System/Entity’s:

∘ Quality Records (QRs) that document technical deci-
sion artifacts such as conference and review minutes,
analyzes, trade studies, models, and simulations.

∘ Physical System Architecture (Chapter 8).

∘ Matrix linking Behavioral capabilities to Physical Ar-
chitecture components (Figure 14.7).

∘ Product Work Breakdown Structure (PWBS).

∘ System/Segment Design Description (SSDD).
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∘ Hardware Design Description (HDD).
∘ HW Interface Control Documents (ICDs).

∘ System Design Descriptions (SDD).

∘ SW Interface Design Descriptions (IDDs).

∘ SW Database Design Descriptions (DBDDs).
∘ Component procurement specifications.

∘ Design requirements such as assembly drawings,
parts lists, schematics, cabling diagrams, and wiring
lists.

∘ HW and SW Test Cases (TCs) and procedures for
verifying the Physical Domain Solution.

Step 6: Evaluate and Optimize the Entity’s Total Design
Solution
As the Physical Domain Solution evolves and matures,
the Evaluate and Optimize the System Design Solution
process continuously assesses the Operations, Behavioral,
and Physical Domain Solutions. Observe that we said Sys-
tem Design Solution, which represents the Developmental
Configuration, will ultimately include all levels of ab-
straction over time. Since we start at the top level, the first
instance of the Developmental Configuration begins with
the System Level followed by Products and Subsystem
levels as illustrated in Figure 8.4.
The objective of this step is to review and respond to re-
quests from PDTs at various levels of abstraction to pro-
vide meaningful data that will support informed decision

making in areas such as (1) achievement of specification
requirements performance, (2) analysis of COIs/CTIs,
and (3) evaluation of viable candidate solutions.

Author’s Note 14.1

Organizational Decision Support

It is important to note here the or-
ganizational relationship between a
PDT and Decision Support. Decision
Support:

• May be performed by (1) a System Analysis team
within the project, (2) an independent Enter-
prise organization external to the project, or (3) a
subcontractor.

• Provides specialized analytical methods, tools, exper-
tise, models & simulations, and prototyping capabili-
ties that the PDT may not possess.

In their multi-discipline role, a PDT uses the data provided
by Decision Support to make informed decisions that reflect
the definition of SE:

• Achieve the right balance in terms of System Design
Solution technical performance and compliance.

• Apply the right technology.
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• Minimize development and life cycle costs.

• Determine acceptable risk.

Chapters 30–34 focus on Decision Support Practices.
You will encounter people who contend that it is imprac-

tical to optimize a system, product, or service for a diverse
set of operating scenarios and conditions—it can only be op-
timal. For a prescribed set of User priorities and Operating
Environment conditions, you can mathematically optimize
a System. The challenge is that these conditions are of-
ten independent and statistically random occurrences in the
Operating Environment. As a result, a system, product,
or service performance may not be optimized across all sets
of random variable conditions as shown in Figure 14.8. So,
people characterize the System’s performance as optimal in
dealing with these random variables.

Author’s Note 14.2

System Design Solution Technical
Accountability

Developing the Requirements, Oper-
ations, Behavioral, and Physical Do-

main Solutions simply implements a technical strategy. The
success of any process is determined by the knowledge,
experience, and discipline of the humans performing the
work. Ultimately, someone has to be accountable. There-
fore, assign accountability for developing and maintaining
the overall System Design Solution for the project and its
multi-level Requirements, Operations, Behavioral, and Phys-
ical Domain Solutions. Within each Product, Subsystem,
and Assembly PDT, such as an Integrated Product Team
(IPT), assign accountability for the Entity-Level Design

Solution and its Requirements, Operations, Behavioral, and
Physical Domain Solutions. Ultimately, the Project Engineer,
Lead SE (LSE), and IPT Leads are accountable.

14.4.2 Exit Criteria

Since the SE Process Model is highly iterative and subject
to development time constraints of the Entity, exit criteria
in general are determined by the level of maturity and risk
assessed at a Critical Design Review (CDR) (Figure 14.9) to
commit resources to proceed to the Component Procurement
& Development Phase (Figure 12.2). Risk considerations
include level of urgency and confidence in terms of correcting
latent defects. Refer to Principle 12.3 for a more explicit
answer.

14.4.3 SE Process Model: Work Products and QRs

The Wasson SE Process Model supports the development
of numerous System/Product Life Cycle phase work prod-
ucts – deliverable system or product - and QRs. When applied
to the development of the System or Entity, the SE Process
Model produces four categories of work products for each
entity: (1) the Requirements Domain Solution, (2) the Opera-
tions Domain Solution, (3) the Behavioral Domain Solution,
and (4) the Physical Domain Solution.

General examples of work products and QRs include
specifications, Specification Tree, verified and validated
Models & Simulations (M&S), architectures, analyses, trade
studies, technical reports, drawings, verification records, and
meeting minutes.
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Author’s Note 14.3

SE Process Purpose

People often confuse the purpose of
any SE Process. They believe that the
SE Process is established to create

documentation; this is factually incorrect and misguided!
The purpose of the SE Process Model is to establish

a Problem-Solving–Solution Development methodology to
solve problems and produce an optimal solution that satisfies
contract requirements within technical, technology, cost,
schedule, and risk constraints. Work products and QRs are
simply artifacts of the technical decision-making process.
They are simply a means to an end, not a destination.

Applying Principle 11.2:

• If you reward people for producing documentation, you
get documentation and a System Design Solution that
may or may not meet specification requirements.

• If you reward people producing the SE Process
Model’s Four Domain Solutions, the result should be
a System/Entity that complies with and is traceable
to its specification or design requirements supported
by documentation artifacts that provide objective

evidence of its integrity and validity of the solution to
meet the User’s operational needs.

14.5 WASSON SE PROCESS MODEL
CHARACTERISTICS

As a problem-solving and solution development method-
ology applicable to a System or Entity at any level of
abstraction, the Wasson SE Process Model is characterized
as being highly iterative and recursive. To better understand
the context of these descriptors, let’s explore each one.

14.5.1 Highly Iterative Characteristic

The Wasson SE Process Model, when applied to a specific
entity within a level of abstraction, is characterized as
highly iterative as illustrated earlier in Figure 14.2. Although
sequence of steps in the methodology has a workflow
progression, each step also has feedback loops that allow
a return to preceding steps to reassess decisions when
Critical Operational or Technical Issues (COIs/CTIs) issues
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are encountered. As a result, the horizontal, left-to-right
workflow progression over time through the Four Domain
Solutions and their feedback loops (Figure 14.2) illustrate the
highly iterative characteristic within the System/Entity.

14.5.2 Recursive Characteristic

Principle 14.2

Decision-Making Stability Principle

Mature and stabilize decision-making at
higher-levels as soon as practical to enable
decision-making at each successive lower
levels to mature and stabilize.

Referring to Figure 14.9, observe that the Wasson SE
Process Model applies to every level of abstraction. We
refer to this as its recursive characteristic, meaning the
problem-solving–solution development methodology has
universal application to any Entity within the System
regardless of level of abstraction.

To better understand how the Wasson SE Process Model
applies to System Development, Figure 14.9 shows the
V-Model implementation of the SE Design Process. Ob-
serve the recursive characteristic represented by the SE Pro-
cess oval icon application to each level of abstraction. As
a reminder, the multi-level SE Design Process shown in
Figure 14.9 illustrates two key points that require emphasis:

1. In general, each level of the System Development
Process matures in time ahead of lower levels (Figure

11.2). It is the LSE’s responsibility to mature and bring
stability to the decision-making at higher levels to
enable successively lower levels of the System Design
Solution to mature and stabilize (Principle 14.2).

2. The multi-level System Design Solution is not consid-
ered complete until Entities at all levels of abstraction
are mature and have been reviewed for compliance and
Engineering best practices and corrective actions com-
pleted (Figure 14.9). If a COI/CTI is discovered at any
level of abstraction that impacts specification require-
ments compliance or the design and its interfaces, cor-
rective actions could have a rippling effect upward as
high as the System Level of abstraction.

To illustrate the highly iterative and recursive character-
istics of the Wasson SE Process Model, let’s build on the
Four Domain Solutions concept introduced in Figures 11.1
and 11.2. Figure 14.10 provides a starting point. Observe
the four alternating gray quadrants annotated with symbols
representing interactions among the Four Domain solutions
- R (Requirements), 0 (Operations), B (Behavioral), and P
(Physical) (ROBP).

Now, let’s assume we have the System shown in
Figure 14.11 consisting of Products 1 and 2. Product 1,
a large, complex design, consists of Subsystems 11 and
12; Product 2 consists of Subsystems 21 and 22. We apply
the SE Process Model to each Entity as illustrated by the
ROBP cyclical iterations. Application of the Wasson SE
Process Model to each Entity continues to lower levels of
abstraction until the System Design Solution is mature and
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  Domain
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   Domain
   Solution
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   Domain
   Solution

Deliverable System,
Product, or Service

System
Performance
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Figure 14.10 Quadrant Representation Symbolizing the Sequential Dependencies of the
Four Solution Domains within the Wasson SE Process Model
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Where:
• R = Requirements Solution Domain
• O = Operations Solution Domain
• B = Logical Solution Domain
• P = Physical Solution Domain
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Figure 14.11 Recursive Application of the Wasson SE Process to System Levels of
Abstraction and Entities Within Each Level

ready to commit to implementation. Please note that due to
space restrictions, External Interfaces to Products 1 and 2
are not show to Subsystems 11 and 22 where the physical
interactions actually occur.

Figure 14.12 represents the state of the System Design
Solution at completion. Here, we see a multi-level framework
that depicts the horizontal workflow progression over time.
Vertically, the ROBP Domain Solutions are decomposed into
various levels of abstraction. Collectively, the framework
graphically represents the System, which, by definition, is
the integration of multiple levels of capabilities to achieve a
higher level purpose—emergence—that is greater than their
individual capabilities.

Leveraging the highly iterative and recursive character-
istics of the Wasson SE Process, System Developers evolve
the System Design Solution over time from the SPS into a
series of workflow progressions through each level of ab-
straction until the Developmental Configuration is mature.
Figure 14.13 illustrates how the total System Design Solu-
tion iterates and evolves through the Four Domain Solutions
culminating with the Critical Design Review (CDR) at the
center of the graphic.

Symbolically, the inner loops of the spiral represent
increasing levels of Engineering design detail at lower
levels until the CDR is conducted. Each loop of the spiral
culminates in a technical review that serves as a critical
staging or control point for assessing the System/Entity’s
status, progress, maturity, and risk for committing resources
to initiate the next level of abstraction. Each loop also
includes a breakout point to permit cyclical iterations and
reconciliation of COIs/CTIs from lower levels.

Author’s Note 14.4

Finalization of the System Design
Solution

Figure 14.13 reflects the iterations
of the SE Design Process shown in

Figures 12.4 and 14.9. This characterizes the System Design
Process (Figure 12.3) from Contract Award through CDR
when the total System Design Solution is approved and re-
leased to the Component Procurement and Development Pro-
cess. However, please note that the System Design Solution
is not contractually finalized until the First Article System
or Product has been integrated, tested, verified, validated
(optional), and formally accepted by the Acquirer or User.
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14.6 APPLICATION OF THE WASSON SE
PROCESS MODEL

To better understand the application of the Wasson SE
Process Model, let’s use a simple Tablet Computer System
example.

14.6.1 Understand the User’s Problem/Opportunity
and Solution Spaces

Problem Statement: If I had a tablet computer that is small
and portable, I could research the Internet, send and receive
e-mail, and perform work from remote locations.

Once the Stakeholders are understood, SEs and System
Analysts interview and collaborate with the Users. These
discussions seek to to understand how the User envisions
deploying, operating, maintaining, sustaining, retiring, and
disposing of a new System prior to Request for Proposals
(RFPs) or other procurements are released. For each of
the System/Product Life Cycle Phases, we identify and
document their UCs, expected performance-based outcomes,
priorities, estimated frequency, and potential scenarios.

Next, we collaborate the User to formulate a Problem
Statement, bound and partition the Problem Space into one or
more Solution Spaces (Figure 4.7), develop a System Context
Diagram (Figure 8.1) with external interfaces, and delineate
what is/is not part of the Tablet Computer System.

14.6.2 Develop the Tablet Computer’s Requirements
Domain Solution

Based on analysis of the Problem Statement, we use the
Context Diagram to clearly delineate (1) the Tablet Computer
System context relative to its Operating Environment
and (2) boundaries concerning what is/is not part of the
System. We analyze the User UCs and scenarios and derive
a basic set of System capabilities that we translate into SPS
requirements. Examples of the requirements include:

• Physical Characteristics
∘ Size—6′′ × 9′′ × 1/2′′

∘ Power—Internal, rechargeable, battery with external
110 vac and 60 Hz AC adapter

∘ Display—8′′ LED backlit, touch screen, and 1024 ×
768 resolution

∘ Wireless Communications—802.11a/b/g/n Wi-Fi

∘ Cellular Communications—Bluetooth X.X

∘ Memory Capacity—16 GB expandable to 64 GB

∘ Weight—0.5 lb. max.
• General Use Cases (UCs)
∘ Perform web searches

∘ Send/receive e-mail

∘ Take personal notes

∘ Maintain an appointment schedule

∘ Determine GPS location

∘ Download software updates
∘ Download e-books, newspapers, music, and games

∘ Conference with external parties in real-time video

∘ Photograph and store images; make movies

∘ Link real-time video to other Users

∘ Create photo albums

∘ Create, retrieve, save, and delete text document,
presentation, and spreadsheet types of applications

∘ Print out documents
• Environmental Constraints

14.6.3 Develop the Tablet Computer’s Operations
Domain Solution

Based on an analysis of the SPS requirements, we formulate,
evaluate, and select an Operational Architecture via an
Analysis of Alternatives (AoA) (Chapter 32) from a set of
viable candidates. Consider the following example.

Example 14.2

Operations Domain Solution Scenario
Example

Assume that the User’s mission is to go to
a wi-fi hotspot with free Internet accessi-

bility to enjoy coffee and perform research. An initial UC
narrative description might read as follows:

Power down the computer, store it in a backpack, drive to
a coffee shop, remove computer from backpack, power up
computer, access local Wi-Fi, perform research, create and
save files, power down and pack up computer, drive home,
unpack computer, power up computer, print out files, and
read e-mail.

Using content such as Example 14.2 above, we begin to
populate a ConOps document (Chapter 6).

14.6.4 Develop the Tablet Computer’s Behavioral
Domain Solution

Based on the Operations Domain Solution, we need to
define how the Tablet Computer System should interact with
and respond to the User. For example, the User opens the
laptop, presses the Power button, and the computer boots
up, initializes, and displays the desktop. If the User wants to
search the web, they select an Internet icon, which initiates
a web browser application, and so forth. Likewise for other
types of applications such as email.

From an SE perspective, we employ tools such
as SysMLTM to model the interactions between the
Actors—computer, User, facility power, facility Wi-Fi,
and external Systems. Observe that the focus here is on
what has to be accomplished and how well, not how to
design the physical System.

We also update the System Design Description (SDD) that
describes the Logical/Behavioral Architecture, components,
interface details, and performance allocations.
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14.6.5 Develop the Tablet Computer’s Physical
Domain Solution

Given a Behavioral Domain Solution in the form of behav-
ioral interaction models, we formulate, evaluate, and select
via an AoA an optimal Physical Domain Solution from a
set of viable candidate architectures. This includes the Tablet
Computer’s System, Subsystem, and Physical Architecture;
interfaces—mechanical, electrical, data, protocol, and data;
and performance allocations such as weight and power.

Next, we map the capabilities identified in the Behavioral
Domain Solution’s Logical Architecture to the Physical Ar-
chitecture component(s) shown in Figure 14.7. The mapping
can be implemented via a simple spreadsheet or tool.

Next, we allocate and flow down SPS or lower level
specification requirements to the physical components and
trace requirements back to the User’s source or originating
requirements.

Finally, we update the System Design Description (SDD)
that describes the Physical Architecture, components, inter-
face details, and performance allocations.

14.6.6 Initiate the Tablet Computer’s Decision Support
Process

Selection of the Operational, Behavioral, and Physical
Domain Solutions requires evaluation and selection via an
AoA of a viable set of candidates. SEs and System Analysts,
as generalists and generalist–specialists, require System
Analysis and Specialty Engineering support from Electrical,
Mechanical, and Software Engineering disciplines; Hu-
man Factors; Reliability, Maintainability, and Availability
(RMA); and Safety to support informed PDT decision
making.

Where specialized expertise is required, we initiate the
Decision Support Process to analyze, prototype, model, and
simulate conceptual designs of the computer. The Decision
Support Process provides analytical and performance-based
feedback such as system effectiveness, COIs/CTIs, perfor-
mance values for the computer’s specification requirements,
and timing. These inputs facilitate SE Process operational
and technical decisions that may impact specifications and
performance allocations.

14.6.7 Evaluate and Optimize the Tablet Computer’s
System Design Solution

Principle 14.3

Suboptimization Principle

Avoid degrading or suboptimizing overall
System or Entity technical, cost, or risk
performance just to optimize a lower level
specific aspect.

Since decisions at all levels of abstraction can im-
pact overall System performance, SEs need to ensure that
the total System Design Solution is “optimized” for the
User(s) and their operational needs. Remember that the in-

tent is to avoid a condition referred to as suboptimiza-
tion in which a Subsystem and Assembly, for example,
is optimized at the expense of the overall System-Level
performance.

For our Tablet Computer System example, we could
increase the battery capacity for longer operation but at
the expense of User undesirables such as increased weight
and physical product size without User-desired performance
improvements.

14.7 THE STRENGTH OF THE WASSON SE
PROCESS MODEL

Observe that the Wasson SE Process Model provides a log-
ical, step-wise, problem-solving and solution development
model that precludes the requirements “quantum leap” to a
point design solution illustrated in Figure 2.3. Each step in
the model focuses on convergent decision making to achieve
specific outcomes. This ensures that technical dependency
decisions are sequenced properly without taking pre-mature
design shortcuts. Overall System Design Solution integration
is improved thereby resulting in fewer System Integration,
Test, & Evaluation (SITE) incompatibility and interoperabil-
ity issues. The quantity of latent defects should be reduced
leading to delivery on-time and within budget.

In contrast, the traditional, ad hoc, endless loop Plug
& Chug … SDBTF-DPM Engineering Paradigm wanders
around inefficiently and ineffectively “performing activities.”
Then, when the system goes into System Integration, Test,
& Evaluation (SITE), incompatibility and interoperability
issues emerge due to poor design integration. Additionally,
the quantity of latent defects is greater, which results in
significant cost and schedule overruns to correct.

14.8 CHAPTER SUMMARY

Chapter 14 introduced the Wasson SE Process Model as a
problem-solving–solution development methodology that:

• Is characterized by explicitly labeled activities that are
easy to understand.

• Applies to any type of business domain—medical,
energy, A&D, transportation, and telecommunications.

• Overcomes the fallacies of the ad hoc SDBTF–DPM
Paradigm

Our discussion described how the Wasson SE Process
Model integrates the ROBP Domain Solutions at any level
of abstraction into a highly iterative, multi-level framework
(Figure 14.12). The power of the SE Process Model is its re-
cursive characteristic application to any level of abstraction.

In summary, the Wasson SE Process Model:

1. Is an analytical problem-solving–solution develop-
ment methodology that can be applied to any type
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of User problem, issue, or concern, not just Systems
Engineering and Analysis. This encompasses govern-
ment, healthcare, transportation, energy, and so forth
that may not require Engineering per se.

2. Is scalable to any type or size of System or project. In
contrast, the ad hoc Plug and Chug … SBTF-DPM
Paradigm is acknowledged as being unscalable to
any size project, labor-intensive, subject to chaos, and
prone to latent defects such as design flaws, errors, and
deficiencies.

3. Applies iteratively and recursively to any level of
abstraction or Entity within each level.

4. Includes multiple control or staging points to
verify and validate decisions prior to commit-
ment to the next stage of System/Entity design
activities—Requirements to Operations, Operations
to Behavior, and Behavior to Physical. Breakout
points for each activity facilitate corrective actions to
previous activities.

5. Is a convergent technical decision-making-centric pro-
cess that captures decision artifacts in the form of
work products such as specifications and designs. Con-
trary to myths and misguided perceptions promulgated
by ad hoc SBTF-DPM Engineering Paradigm Enter-
prises, the focus is on making timely and informed
technical decisions instead of producing documents.
Learn to recognize the difference!

6. Establishes the analytical linkages for problem-
solving–solution development. Inevitably, sched-
ules may not permit full implementation. Therefore,
learn to apply SE knowledge, experience, and in-
sightful wisdom to tailor the process by scaling
the formalities while preserving the underlying
methodology—Requirements to Operations to Be-
havioral to Physical. Observe that we said “tailor
the process by scaling the formalities.” Tailoring and
scaling formalities do not mean taking shortcuts.

14.9 CHAPTER EXERCISES

14.9.1 Level 1: Chapter Knowledge Exercises

1. What is the Wasson SE Process Model?

2. What problems with existing Engineering paradigms is it
intended to correct?

3. What are the key elements of the SE Process Model?

4. What are the sequences, interdependencies, and relation-
ships within SE Process Model?

5. What are the steps of the underlying SE Process Model
methodology?

6. What is meant by the SE Process Model’s highly iterative
characteristic?

7. What is meant by the SE Process Model’s recursive
characteristic?

14.9.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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SYSTEM DEVELOPMENT PROCESS MODELS

Chapter 12 defined the challenge facing Systems Engineers
(SEs) translating a User’s abstract vision into the physical
realization of a system, product, or service. We highlighted
the importance of developing an integrated, multi-level
System Development Strategy as the solution. This presents
a new challenge: how do SEs plan, organize, and orchestrate
implementation of the strategy?

On initial inspection, traditional management methods
say that SEs need to analytically “decompose” the system
into smaller parts that can be assigned to multi-discipline
teams to accomplish the work. However, you soon learn
that traditional management “division of labor” methods
of assigning tasks to everyone are not always efficient and
effective. For example, the concept of “decomposing” a
system or product always had such an odd connotation and
is not an accurate representation of what SEs actually do.
We (1) arbitrarily bound notional Problem Spaces that are
often dynamic and partition them into one or more potential
Solution Spaces, (2) readjust the boundaries to find the
optimal solution, and (3) derive, allocate, and flow down
requirements through successive lower levels. Approaches
for what works for one system may not necessarily work for
the next system. Such is the case for System Development
Models.

If you study the spectrum of types of projects, you will
find a variety of unique circumstances and opportunities that
range from:

• A diverse set of Stakeholders that have known or un-
known requirements that may be stable or dynamically
change constantly.

• Exploratory, new, or existing technologies.

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

• Components that range from simple to highly
complex.

So, the question for SEs becomes: what approach do
we employ to deal with these circumstances? Is there a
one-size-fits-all approach?

In response to the first question, over the past sev-
eral decades, advancements in SE have evolved a series
of System Development models to develop systems, prod-
ucts, or services. However, viewing a project organization
as a “Development System” has its own levels of perfor-
mance, effectiveness, and efficiency driven by factors such
as technical leadership, culture, education and training, ex-
perience, tools, and facilities. Application of some System
Development models works well where requirements are
generally well known and stable, other models apply to
situations where requirements are unknown and possibly un-
stable. As a result, a one type of model may be applicable
for one project; multiple models may be required for other
projects.

This chapter introduces and investigates the primary
System Development Models that represent approaches for
developing systems, products, or services. Models include
the:

• Waterfall Development Model

• V-Model

• Spiral Development Model

• Evolutionary Development Model

• Incremental Development Model

• Agile Development Model

http://www.wiley.com/go/systemengineeringanalysis2e
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Our discussions describe each model, identify how each
evolved, highlight flaws, and provide illustrative real-world
examples.

You may ask why topics such as these are worthy of
discussion in an SE book. Isn’t this project management?
There are two reasons:

• First, SEs need a toolkit of System Development
approaches that enables you to leverage a variety of
requirements definition, risk, and maturity challenges.

• Second, you need to fully understand each of the
models; their origins, attributes, and flaws enable you
to select the right approach to specific types of System
Development challenges.

As an SE, you need to fully understand the history of how
some of the models evolved and apply to various types of
System Development scenarios.

15.1 DEFINITIONS OF KEY TERMS

• Agile Development—A development approach that
focuses on quick reaction responses to changing User
requirements via a series of incremental product devel-
opment cycles comprised of short, iterative develop-
ment cycles referred to as Sprints. Agile Development
consists of several supporting terms that include the
following:
∘ Daily Scrum—A daily, 15 minute stand-up meeting

in which Agile Development or Scrum Team mem-
bers account for 3 questions: (1) what did I accom-
plish the previous workday, (2) what issues remain
to be solved, and (3) what do I intend to accomplish
today.

∘ Exploration Factor (EF)—An assessment of a soft-
ware project or entity’s requirements or technology
uncertainty or risk on a scale of 1 (low) to 10 (high)
(Highsmith 2013).

∘ Feature—A noteworthy, distinguishing character-
istic of a system, product, or service such as its
usability, capability, performance, compatibility, in-
teroperability, or non-functional attributes such as
size or weight that are perceived by the User as ben-
efits. For example, a key feature of an AC-powered
digital clock might be its ability to maintain time dur-
ing a power loss via an internal battery.

∘ Feature-Boxed—A term representing a bounded
set of User capabilities or features to be delivered
without regard to their relative priorities within the
set. Uncompleted features are returned to a Product
Backlog for reassignment to the next or later Sprint.
Contrast to Time-Boxed.

∘ Product Backlog—A repository of User capability
or feature requirements that have been prioritized
by the User into categories such as mandatory,
must-have desired, and nice-to-have.

∘ Product Backlog Burndown Chart—A graph used
to track the reduction in the quantity of User capa-
bility requirements registered in a Product Backlog
over time.

∘ Product Increment (Build)—An optional step rep-
resenting incremental deliveries consisting of a
prioritized set of User Stories, capability require-
ments, or features to be delivered within a specific
timeframe. A Product Increment is sometimes re-
ferred to as a “build” in software development and
consists of several Sprints performed in sequence or
concurrently.

∘ Product Increment (Build) Backlog—An optional
repository of prioritized User Story or feature re-
quirements assigned to a Product Increment or soft-
ware “build.”

∘ Scrum—A structured framework governing the de-
velopment and incremental delivery of User Stories
or requirements based on a defined theory and set of
practices and rules. Refer to Schwaber and Suther-
land (2011).

∘ Sprint—A short, iterative, and incremental develop-
ment cycle within a Scrum that varies from 7 to 14
days in which Agile Development or Scrum Teams
analyze a set of prioritized User Stories or require-
ments assigned from a Product Backlog; incremen-
tally design, code, and test the software; conduct
daily stand-up reviews or scrums to assess progress,
status, and issues from the previous day’s activities
and plans for the day; review and approve Prod-
uct Releases; demo each release to the Customer
or User; and proceed to the next Product Increment
Sprint.

∘ Sprint Backlog—A repository of User Story, ca-
pability, or feature requirements that have been as-
signed to a Sprint. Reduction in the quantity of Sprint
Backlog capability or feature requirements is tracked
via a Spring Backlog Burndown metric.

∘ Sprint Iteration Cycle—A sequence of Itera-
tive and Incremental Development (IID) activities
required to transform a set of User capabilities
or features assigned to a Sprint into one or more
deliverable work product releases.

∘ Sprint Release—The delivery of a Sprint work
product that complies with one or more User capa-
bility or feature requirements registered in a Sprint
Backlog.
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∘ Time-Boxed—A term representing time constraints
placed on a Sprint to deliver a set of prioritized User
capabilities or features based on that order. Uncom-
pleted capabilities or features with a lesser priority
are returned to the Product Increment Backlog for
assignment to the next or a later Sprint. Contrast with
Feature-Boxed.

∘ User Story—A brief statement of a Customer’s,
User’s, or End User’s role-based business or mission
operational need typically using a syntax such as “As
a (role), we need (what) … so that (reason) . . . .”
(Cohn, 2008) A constraining criterion for the scope
of a User Story is that it must be accomplished within
the time-box of a Sprint. Two or more User Stories
may comprise an Epic.

∘ Theme—Customer or User’s vision or overarching
objective for a class of systems, products, or services
to satisfy a variety of operational needs.

∘ Epic—Customer or User’s abstraction representing
a collection of User Stories.

• Evolutionary Development Strategy—A develop-
ment strategy used to develop “a system in builds, but
differs from the Incremental Strategy in acknowledg-
ing that the user need is not fully understood and all
requirements cannot be defined up front. In this strat-
egy, user needs and system requirements are partially
defined up front, then are refined in each succeeding
build” (MIL-STD-498, p. 37).

• Full Operational Capability (FOC)—The attain-
ment of a planned set of incremental development
capabilities to meet User operational needs and
performance-based objectives within a specified
timeframe. Contextually, an FOC could refer to a
specific system, product, or service or the deployment
of a Systems or Products to all elements of an
organization.

• Grand Design Development Strategy—A devel-
opment strategy that is “essentially a once-through,
do-each-step-once’ strategy. Simplistically: deter-
mine user needs, define requirements, design the
system, implement the system, test, fix, and deliver”
(MIL-STD-498, p. 37).

• Incremental Approach—“Determines user needs and
defines the overall architecture, but then delivers the
system in a series of increments (“software builds”).
The first build incorporates a part of the total planned
capabilities, the next build adds more capabilities, and
so on, until the entire system is complete” (DAU 2012,
p. B-205).

• Initial Operational Capability (IOC)—“In general,
attained when some units and/or organizations in the
force structure scheduled to receive a system have re-
ceived it and have the ability to employ and maintain it.

The specifics for any particular system IOC are defined
in that system’s Capability Development Document
(CDD) and Capability Production Document (CPD)”
(DAU 2012, p. B-107).

• Proof of Concept—Refer to Chapter 12’s Definition of
Key Terms.

• Proof of Principle—Refer to Chapter 12’s Definition
of Key Terms.

• Proof of Technology—Refer to Chapter 12’s Defini-
tion of Key Terms.

• Quality Function Deployment (QFD)—An inte-
grated business, marketing, and technical strategy that
focuses on the Customer—Stakeholder Users and End
Users—to capture and understand their operational
needs, priorities, preferences, and desires as a basis for
specifying the capability and performance characteris-
tics of a system, product, or service that will deliver an
expected level of customer satisfaction.

• Spiral Approach—“A risk-driven controlled proto-
typing approach that develops prototypes early in the
development process to specifically address risk areas
followed by assessment of prototyping results and fur-
ther determination of risk areas to prototype. Areas that
are prototyped frequently include user requirements
and algorithm performance. Prototyping continues un-
til high risk areas are resolved and mitigated to an ac-
ceptable level” (DAU 2012, p. B-205).

• V-Model—A graphical model that illustrates the
time-based, multi-level strategy for (1) decomposing
specification requirements, (2) procuring and develop-
ing physical components, and (3) integrating, testing,
evaluating, and verifying each set of integrated com-
ponents. The V-Model is one of the most commonly
used System Development models. Forsberg and Mooz
(1991, p. 4), the originators, refer to it as the “Vee”
Model.

• Waterfall Approach—“Development activities are
performed in order, with possibly minor overlap, but
with little or no iteration between activities. User needs
are determined, requirements are defined, and the full
system is designed, built, and tested for ultimate deliv-
ery at one point in time. A document-driven approach
best suited for highly precedented systems with stable
requirements” (DAU 2012, p. B-205).

15.2 INTRODUCTION TO THE SYSTEM
DEVELOPMENT MODELS

Heuristic 15.1 System Development Improvements

System Development Improvements requires four objec-
tives: (1) understanding where you have been, (2) knowing
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where you are now, (3) deciding where you want to go, and
(4) leveraging your strengths to navigate and avoid obstacles.

The heuristic above serves as a compass heading for
the structure of this chapter. People often think of new
models as innovations. In general, this is true; however, new
models encompass more than just an innovation; they correct
deficiencies and mistakes of the past.

Most System Development models are unprecedented
in the sense that each new model attempts to correct cur-
rent shortcomings in System Development approaches while
building on key strengths of previous models. For example,
many people believe that Agile Development is a new cre-
ation in terms of its title and implementation. However, Agile
Development builds on selective attributes of prior models
such as Iterative and Incremental (IID), Evolutionary Devel-
opment, V-Model, and Spiral Development discussed in this
chapter. So, it is important to understand the background of
these models as a basis for understanding and appreciating
the state and application of current models to system or prod-
uct development. Let’s begin with a brief background that
drives the need for System Development models.

Author’s Note 15.1

System Development Approaches
versus Models

Industry, academia, and government
often refer to System Development

approaches versus System Development models. What is the
difference?

• An approach is a high-level, hypothesis-based, concep-
tual roadmap that describes sequences of actions to be
performed for achieving a desired outcome.

• A model implements an approach using a logical and/or
mathematical transfer function for transforming a set
of Acceptable Inputs into a specific set of Acceptable
Outputs–Outcomes (Figures 3.1, 3.2, and 20.4).

Since our discussion employs graphical models that im-
part an underlying approach, we will use both terms.

Chapter 15 addresses the primary types of models used
for System Development. The models include the (1) Wa-
terfall Development Model, (2) V-Model, (3) Evolutionary
Development Model, (4) Iterative and Incremental Develop-
ment (IID) Model, (5) Spiral Development Model, and (6)
Agile Development Model. On inspection, these models may
appear to be peers; however, they have specific System De-
velopment applications. In fact, System Development may
require application of several different types of these mod-
els depending on the system or product, level of risk, and so
forth.

In the mid- to late 1980s, as system complexity increased
and became more software intensive, industry, academia,
and government began to recognize that SE decision-making

required tighter coupling in multi-discipline integration.
Until that time, SE and Software Engineering restricted
their—“stovepipe”—methodologies and processes to focus
on their own activities. Boehm (2006, p. 8), one of today’s
Software Engineering thought leaders, made the following
observation:

“Traditionally (and even recently for some forms of agile
methods), systems and software development processes were
recipes for standalone “stovepipe” systems with high risks
of inadequate interoperability with other stovepipe systems.
Experience has shown that such collections of stovepipe
systems cause unacceptable delays in service, uncoordinated
and conflicting plans, ineffective or dangerous decisions, and
inability to cope with rapid change.”

—(Wasson emphasis)

The history of System Development models exposes more
than the need for multi-discipline SE. The models must be
supported by common, multi-discipline problem-solving and
solution development methodologies such as the Wasson SE
Process Model (Figure 14.1).

Our first topic begins with the Waterfall Development
Model, which is no longer used by most organizations due
to its flawed approach. You may ask: if it is no longer
used, why is it addressed here, especially since education
and knowledge are driven by learning new concepts and
approaches? This is true. However, education and knowledge
require understanding how SE as a discipline evolved to its
present state based on (1) why projects and systems fail and
(2) fallacies of previous methods to avoid repeating those
mistakes in the future. To understand where you need to
go, you have to understand where you have been (Heuristic
15.1). The Waterfall Model serves as a mini case study for
better understanding of how System Development Models
have evolved.

15.3 WATERFALL DEVELOPMENT STRATEGY
AND MODEL

The Waterfall Development Model shown in Figure 15.1
represents one of the early attempts to characterize software
development in terms of a model. The model’s name is based
on its cascading appearance resembling a waterfall.

Bennington (1983, p. 1) states that the Waterfall Model
was introduced in a presentation made “in Washington, D.C.,
in June 1956 at a symposium on advanced programming
methods for digital computers, sponsored by the Navy
Mathematical Computing Advisory Panel and the Office of
Naval Research.”

Some literature incorrectly attributes the Waterfall Model
to Dr. Winston W. Royce. The fact is that Royce (1970) made
a presentation at IEEE WESCON in August 1970 entitled
“Managing Large Software Development Projects.” In his
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presentation, he presented a paper that later became associ-
ated with the Waterfall Model as the basis for pointing out
the fallacies of the current software development paradigm
(Royce 1970, pp. 328–329).

Unfortunately, the Waterfall Model is often incorrectly
attributed to Royce as an innovation. It was simply an illus-
trative graphic representing Royce’s observations of the state
of SW development at the time. Larman and Basili (2003)
note that Royce (1970) simply presented his opinions con-
cerning government contracting at that time—Requirements
Analysis → Design → Development in rigid sequence.
In fact, Royce’s approach was to “do it twice.” His pre-
sentation eventually led to the designation of the graphic
as the “Waterfall.” Although, the term waterfall is never
mentioned in Royce’s paper, his name became incorrectly
identified with the Waterfall. He simply presented his
views as an observer, not its innovator (Larman and Basili
2003, p. 3).

The Waterfall Model is often described as a lockstep,
sequentially linear process with essentially no overlaps or
opportunities to return to a previous step. Therein lies its
primary shortcoming in addition to other issues.

Boehm (1985, p. 63) described the Waterfall Model as “a
highly influential 1970 refinement of the stagewise model.”
It provided two primary enhancements to the stagewise
model:

• Recognition of the feedback loops between stages and
a guideline to confine the feedback loops to successive
stages to minimize the expensive rework involved in
feedback across many stages

• An initial incorporation of prototyping in the software
life cycle, via a “build-it-twice” step running in parallel
with requirements analysis and design:

“The waterfall model’s approach helped eliminate
many difficulties previously encountered on software
projects. … A primary source of difficulty with
the waterfall model has been its emphasis on fully
elaborated documents as completion criteria for early
requirements and design phases.”

In comparing the Waterfall Model with IID, Larman
and Basili (2003, p. 2) reference a paper by Walker Royce
indicating his father, Dr. Winston W. Royce, described the
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Waterfall Model as “… the simplest description, but that
it would not work for all but the most straightforward
projects… ”

Referral Refer to Wikipedia (2014), Winston (1970), and
Boehm (1988) for additional information about the history
of the Waterfall Model.

15.4 “V” SYSTEM DEVELOPMENT STRATEGY
AND MODEL

Chapter 12 established a sequence of highly interdependent
processes that depict the workflow for transforming the User
requirements into a System Design Solution. In general, the
strategy provides an end-to-end framework for:

• Verifying compliance with the System Performance
Specification (SPS) requirements

• Validating that the deliverable system, product, or
service satisfies the User’s validated operational needs

Figure 12.3 illustrates a “U”-shaped strategy for (1) de-
composing and refining an abstract Problem Space into mul-
tiple levels of Solution Space systems and (2) integrating the

multi-level systems. This infrastructure provides the founda-
tion for the V-Model. Before we get into that discussion, let’s
shift to a higher-level discussion.

We introduced Figure 12.2 as a generalized System
Development Process Workflow that included these primary
processes. For the V-Model, the System Design, Component
Procurement and Development, and System Integration,
Test, and Evaluation (SITE) Processes form the foundation
of Figure 12.3. Specifically:

• The System Design Process is implemented by the
downward-facing left arrow.

• The Component Procurement and Development Pro-
cess is represented at the bottom center by the Pro-
cure/Develop Components box.

• The SITE Process is implemented by the
upward-facing arrow on the right side.

Despite the “U-shaped” pattern of the structure in Figure
12.3, these activities occur over time resulting in a V-shaped
structure; Figure 15.2 illustrates a representation V-Model.

The V-Model was originally described in a formal presen-
tation by Forsberg and Mooz (1991). By appearance, some
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will say the V-Model is another instance of the Waterfall
Model. Given its downward, stepwise form, it does infer a
Waterfall shape. However, the graphic is highly iterative. To
illustrate this point, let’s describe how the V-Model is applied
to implementing the System Development Process Workflow
shown in Figure 12.2.

15.4.1 System Development Process: V-Model
Implementation

The V-Model is a highly iterative, pseudo time-based,
stage–gate model. In general, workflow progresses from left
to right over time. However, the highly iterative characteristic
of the SE Design Process (Chapter 14) and verification
corrective action aspects of SITE allow loopbacks to a
preceding step in time. Corrective actions may require reeval-
uation of lower-level Critical Operational Issues (COIs)
or Critical Technical Issues (CTIs), specifications, designs,
and components. So, as the corrective actions are imple-
mented over time, workflow progresses from left to right
to delivery and acceptance of the system, product, or
service.

To better understand how the V-Model is applied, let’s
link key activities of the System Development in terms of
the processes they represent.

15.4.2 System Design Strategy: V-Model
Implementation

The System Design Process requires derivation, allocation,
and flow down - decomposition - of high-level SPS require-
ments (System Developers Problem Space) into multiple lev-
els of abstraction (Solution Spaces) over time to form an
overall System Design Solution as shown in Figure 15.3.

Observe the initially staggered parallel tracks of develop-
ment activities shown in Figure 14.9. The duration of each
track extends to the right culminating in a CDR. The track
duration symbology represents maturing design solutions
at each level of abstraction. As stated in Principle 12.1, it
is the Lead SE’s (LSE’s) job to bring maturity and stabil-
ity to higher levels to enable lower levels to finalize their
design decisions. Referring to Principle 12.3 concerning
when a System Design Solution is complete, the track du-
rations represent that the design solution at any level is
subject to change if COIs or CTIs are discovered at lower
levels.

Also observe the oval icons down the lower left side of
Figure 14.9. The icons signify the application of the SE
Process (Chapter 14) to each level of abstraction and Entities
within each level. As a result, the SE Process creates the
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Figure 15.3 Wasson Adaptation of the V-Model System Design Activities
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Requirements, Operations, Behavioral, and Physical Domain
solutions for each Entity.

Now, consider the “V” shown in Figure 13.4. Enterprises
and Engineers for simple convenience take liberties to depict
the V-Model as slanted, mirror image facing bars connected
at the bottom. Uninformed managers and Engineers often
erroneously portray the left side of the V-Model as the
Waterfall Model (Figure 15.1). That is factually incorrect!
As illustrated in Figures 15.2 and 15.3, the V-Model iterates
over time between each of its levels of abstraction to enable
resolution of most, if not all, of the COIs and CTIs up until
its CDRs.

15.4.3 Component Procurement and Development
Process: V-Model Implementation

The V-Model Component Procurement and Development
Process implements the TDP based on component Make
versus Buy versus Buy–Modify decisions made during the
System Design Process. Key activities include:

1. Procurement/acquisition of external hardware and soft-
ware components from subcontractors or vendors.

2. Fabrication, Assembly, Integration, and Test (FAIT) as
well as verification of hardware and software compo-
nents developed in-house from new or legacy designs.

3. Receiving inspection of procured components accom-
panied by vendor Certificates of Compliance (CofCs).

4. Verified component transfers to the SITE Process as
they become available.

15.4.4 SITE Strategy: V-Model Implementation

The V-Model SITE Process consists of key activities
required to integrate and verify components bottom-up
into a working System that fully complies with its SPS
and lower-level specification requirements as shown in
Figure 15.2. Key activities include:

1. Integration of components into an Entity such as a
Subassembly, Assembly, Subsystem, and Product
as shown in Figures 12.6 and 15.2.

2. Verification of integrated sets of Entities at various
levels of abstraction for compliance to its specification
requirements using Test Cases (TCs) and Test Proce-
dures.

3. Data capture and authentication of verification compli-
ance results (Chapter 13).

4. Assessment of verification results for compliance with
specification requirement(s) as a condition for achieve-
ment of each requirement.

15.4.5 V-Model Application and Software
Development: Criticisms

Software development activities have attempted to develop
SW components in lockstep with the V-Model and lament
that it is simply unworkable. They contend that there are
much better methods such as Agile Development discussed
later in this chapter that can produce better software. So,
what is the problem with software development using the
V-Model?

The V-Model is essentially a hardware-driven, stage–gate
paradigm process. For example, due to the expense and risk
of developing physical Systems, the V-Model includes three
high-level stages and control gates at the completion of the
System Design, Component Procurement and Development,
and SITE Processes (Figures 12.2 and 12.3). Everything in
a System Development Project moves in lockstep through
these stages. To illustrate this point, observe the example
work products shown in Table 15.1 that are typically required
for each of the System Development Strategy processes.

You may ask: why is the V-Model staged? The answer is
risk. Each process stage assesses the status, progress, matu-
rity, and risk of the evolving System Design Solution and its
technical compliance, technology, budget, and schedule risk
of committing resources before proceeding to the next pro-
cess. So, the V-Model is staged as a risk mitigation process
with a focus on multi-level integration of physical Entities
that comprise the System.

Engineering best practices say: (1) create designs that
comply with specification requirements; (2) prototype tech-
nical risk areas; (3) document design decision artifacts via
meeting notes, drawings, and parts lists for review and
approval; (4) Fabrication, Assembly, Integration, and Test
(FAIT) components in accordance with the drawings; and
(5) test and verify levels of integrated components. Parts
have to be formed or machined, printed circuit boards have
to be populated and soldered, complex wiring bundles have
to be created, and all have to be integrated into very tight
spaces. The implementation of these physical work products
consumes valuable resources—time and money—and there-
fore poses some level of risk. Did you observe the underlying
hardware decision-making stage–gate flow of the V-Model?

If we investigate the evolution of a hardware or software
component, especially prototypes, consider the following:

• When a machined component is discovered to have
a defect—design flaw, tolerance problem, material
composition problem, or workmanship problem—it
may have to be reworked, scrapped, or replaced.

• When a printed circuit board assembly fails compliance
testing, has a long-lead item component failure, or has
a workmanship problem, it is either reworked, awaits a
long delivery of a replacement part, or scrapped.
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TABLE 15.1 Example Hardware and Software Work Products in Lockstep: V-Model Process Implementation

Domain

System Design Process
CDR Stage–Gate

Example Work Products

Component Procurement
and Development Process

Inspection and Verification Stage–Gate
Example Work Products

SITE
SVT State–Gate

Example Work Products

System • SPS
• System architecture
• System Test Cases (TCs)
• System test procedures
• System level drawings
• System Design Descriptions (SDDs)

• System test and compliance results

Hardware • Entity specifications
• HW specifications
• HW drawings
• HW design descriptions
• HW TCs
• HW test procedures

• Material and Component Acquisition
• Component Fabrication, Assembly,

Integration, & Test (FAIT)

• HW test and compliance results
• Verified and Integrated HW and SW

components

Software • Software specs
• Software designs
• SW TCs
• SW test procedures
• Software Test Descriptions (STDs)

• Computer SW Unit (CSU) Code and
Unit Test (CUT)

• Code Walkthroughs

• SW test and compliance results
• Unit and component level testing and

integration

CDR, Critical Design Review; SVT, System Verification Test.

• When software code fails or a defect is discovered, it
is recoded and compiled “on the spot” assuming that
there are no structural or logic issues.

So, when software developers suggest that the V-Model
is unworkable, hardware paradigms respond with: what is
their problem? They design software, prototype risk areas,
code components, and integrate, test, and verify them just
like hardware. Therein lies the problem.

Software does perform these activities. However, there are
several reasons for the software response:

1. Whereas hardware laboratory prototypes are typically
non-deliverable and throwaway, prototype algorithms
and code are reusable and can be reused from legacy
deigns, refined, verified, and delivered.

2. If the System Design Process duration is 8 months,
hypothetically, is it really necessary to “park” proto-
type software code and wait until the completion of
the scheduled System Level CDR to begin coding the
deliverable software as part of the Component Procure-
ment and Development Process? There should be better
alternatives.

3. Hardware and software, as work products of human
decision-making and collaboration, inherently have la-
tent defects such as design flaws, errors, and deficien-
cies, due to late discovery during the SITE Process.

Development tools, V&V, and technical reviews facil-
itate defect discovery and reduction prior to the SITE
Process.

Software developers tend to reject V-Model mandates
for all System Development. The V-Model’s stages unwit-
tingly postpone coding of deliverable software components
until the Component Procurement and Development Process
where later discovery of latent defects increases risk resulting
in schedule and costs impacts.

Since the late 1980s, software developers have led the
way in innovating models that enable them to work more
efficiently and effectively. The models and methods are more
conducive to the nature of their environments—designing,
coding and unit testing, integrating, testing, and verifying
software. If you ask software developers today what model
they would use, a common response is Spiral Development
or Agile Development discussed later in this chapter.

To properly understand software development criticism of
the V-Model and interest in Spiral and Agile Development,
let’s defer our continuation of this discussion until we
introduce these development models.

N

E

S

W

Heading 15.1

The preceding V-Model discussion pro-
vided a general foundation in how systems,
products, or services are developed from a
project and technical perspective. System
Development models have two contexts:
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• Context #1—Models multi-discipline SEs employ to
transform an abstract Stakeholder Problem Space
into the physical realization of a system, prod-
uct, or service to address that need. These models
include the V-Model, Spiral Model, Agile Devel-
opment Model, and Wasson SE Process Model
(Figure 14.1).

• Context #2—Models multi-discipline SEs employ to
enable Stakeholders to deal with affordability and
market-driven issues such as the Iterative and Incre-
mental Development (IID) Model and Evolutionary
Development Model.

Since the IID and Evolutionary Development Models
have influences on the Spiral and the Agile Development
Models, let’s investigate these in that sequence.

15.5 SPIRAL DEVELOPMENT STRATEGY AND
MODEL

Because of inherent flaws in the Evolutionary Development
Model, coupled with a lack of understanding, maturity, and
risk in system requirements up front, Dr. Barry Boehm
introduced the Spiral Development Model illustrated in
Figure 15.4.

Although Dr. Boehm’s original paper was published in
1985, Larman and Basili (2003) observe that most citations
refer to the 1986 version (Larman and Basili 2003, p. 6).

Spiral Development employs a series of highly iterative
development activities whereby the deliverable work product
of each activity may not be the deliverable system. Instead,
the evolving set of knowledge and subsequent system require-
ments that lead to the development of a deliverable System
or Product contribute to the maturing System Design So-
lution. The knowledge base evolves via proof of concept or
proof of technology demonstrations to a level of maturity
worthy of (1) introduction to the marketplace and (2) pro-
duction investments from an acceptable risk perspective.

DSMC (2001) described Spiral Development as follows:

“The spiral approach also develops and delivers a system
in builds, but differs from the Incremental Approach by ac-
knowledging that the user need is not fully formed at the
beginning of development, so that all requirements are not
initially defined. The initial build delivers a system based on
the requirements, as they are known at the time development
is initiated, and then succeeding builds are delivered that
meet additional requirements as they become known. (Addi-
tional needs are usually identified and requirements defined
as a result of user experience with the initial build).”

The development spiral consists of four quadrants as
shown in Figure 15.4:
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• Quadrant 1: Determine objectives, alternatives, and
constraints.

• Quadrant 2: Evaluate alternatives, identify, and re-
solve risks.

• Quadrant 3: Develop and verify next-level product.

• Quadrant 4: Plan next phases.

Although Spiral Development originates from software
development, the concept is equally applicable to systems,
hardware, and training, for example. Consider the following
example.

Example 15.1

Discovery of Unprecedented System
Requirements

Assume that an Enterprise has an opera-
tional need for a commercial product that

does not exist—an unprecedented System. Requirements for
the System may be unknown or science may lack definitive
characterizations of the Operating Environment. So, how
do you solve the issue?

The answer may consist of a series of projects using
Spiral Development. Each project develops prototype system
that results in a set of specification requirements. Each
set of project specification requirements evolves until the
requirements finally mature and lead to the unprecedented
system.

Given this example of undefined requirements, let’s in-
vestigate how Spiral Development can be applied to driving
out requirements for a system, product, or service that can be
developed.

15.5.1 Quadrant 1: Determine Objectives,
Alternatives, and Constraints

Activities performed in this quadrant include the following:

• Establish an understanding of the System or Product
objectives—namely, performance, functionality, and
ability to accommodate change (Boehm 1988, p. 65).

• Investigate implementation alternatives—namely, de-
sign, reuse, procure, and procure/modify.

• Investigate constraints imposed on the alternatives—
namely, technology, cost, schedule, support, and risk.

Once the System or Product’s objectives, alternatives,
and constraints are understood, development proceeds to
Quadrant 2 (Evaluate Alternatives, Identify, and Resolve
Risks).

15.5.2 Quadrant 2: Evaluate Alternatives, Identify,
and Resolve Risks

Engineering activities performed in this quadrant select an
alternative approach that best satisfies technical, technology,
cost, schedule, support, and risk constraints. The focus here
is on risk mitigation. Each alternative is investigated and pro-
totyped to reduce the risk associated with the development
decisions. Boehm (1988, p. 65) describes these activities as
follows:

“… This may involve prototyping, simulation, benchmark-
ing, reference checking, administering user questionnaires,
analytic modeling, or combinations of these and other risk
resolution techniques.”

The outcome of the evaluation determines the next course
of action. If COIs/CTIs such as performance and interoper-
ability (i.e., external and internal) risks remain, more detailed
prototyping may need to be added before progressing to the
next quadrant. Boehm (1988, p. 65) adds that if the alter-
native chosen is “operationally useful and robust enough to
serve as a low-risk base for future product evolution, the
subsequent risk-driven steps would be the evolving series of
evolutionary prototypes going toward the right (hand side of
the graphic) … the option of writing specifications would be
addressed but not exercised.” This brings us to Quadrant 3.

15.5.3 Quadrant 3: Develop and Verify Next-Level
Product

If a determination is made that the previous prototyping
efforts have resolved the COIs/CTIs, activities to develop
and verify the next-level product are performed. As a result,
a basic approach such as the V-Model or other model
may be employed. If appropriate, incremental development
approaches may also be applicable.

15.5.4 Quadrant 4: Plan Next Phases

The Spiral Development Model has one characteristic that
is common to all models—the need for advanced technical
planning and multi-discipline reviews at critical staging or
control points. Each cycle of the spiral culminates with a
technical review that assesses the status, progress, maturity,
merits, and risk of development efforts to date; resolves
COIs/CTIs; and reviews plans and identifies COIs/CTIs to
be resolved for the next iteration of the spiral.

Subsequent implementations of the spiral may involve
lower-level spirals that follow the same quadrant paths and
decision considerations.

Referral For a more detailed description of the Spiral
Development Model, refer to Boehm (1988) or any of his
textbooks.



324 SYSTEM DEVELOPMENT PROCESS MODELS

15.6 ITERATIVE AND INCREMENTAL
DEVELOPMENT MODEL

Sometimes, the development of Systems and Products is
constrained by a variety of reasons such as:

• Availability of resources (expertise)
• Lack of availability of interfacing systems
• Evolving interfaces
• Lack of funding resources
• Technology risk
• Logistical support

When confronted with these constraints, the Users, the
Acquirer, and the System Developer may be confronted with
formulating an IID Strategy. IID has origins that are traceable
back to the 1930s to Walter Shewhart at Bell Labs as a
method for quality improvement (Larman and Basili 2003,
p. 2).

The strategy may require establishing an Initial Opera-
tional Capability (IOC) followed by a series of Incremental
Development “builds” that enhance and refine a System’s or
Product’s capabilities to achieve an FOC by some future
date. Figure 15.5 illustrates how Incremental Development
is phased.

The DAU (2012, p. B-205) characterizes Incremental
Development as follows:

“The incremental approach determines user needs and de-
fines the overall architecture, but then delivers the system in
a series of increments - i.e., software builds. The first build
incorporates a part of the total planned capabilities, the next
build adds more capabilities, and so on, until the entire sys-
tem is complete.”

Boehm (1981, p. 41) characterized Incremental Devel-
opment as simply “a refinement of the build-it-twice full
prototype approach and of the level by level, top-down
approach.”

15.6.1 Implementation

Current implementation of the Incremental Development
Model requires that a sound “build” strategy be established
“up front.” As each build cycle is initiated, development
teams establish unique system requirements for each
build—either by separate specification or by delineated
portions of the SPS. Each build is designed, developed,
integrated, tested, and verified via a series of overlap-
ping development models such as the V-Model example
illustrated in Figure 15.6.

Referral For additional information concerning the history
of IID, refer to Larman and Basili (2003).
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15.6.2 The Challenge for Systems Engineering (SE)

When implementing the Incremental Development Model
approach, SEs, in collaboration with other disciplines, must:

1. Using the SPS, thoroughly analyze and partition the set
of capabilities into “builds.”

2. Schedule the “builds” over time to reflect User
priorities such as capability gaps, degree of urgency,
available resources, and schedules.

3. Flow down and allocate the requirements—System to
Products to Subsystems to Assemblies.

Incremental “builds” may include integrating newer com-
ponents into the system and upgrading existing components.
The challenge for SEs is to determine how to establish and
partition the initial set of capabilities and integrate other ca-
pabilities over time without disrupting existing system oper-
ations or degrading performance. Intensive interface analysis
is required to ensure the “build” integration occurs in the
proper sequence and the support tools are available.

15.7 EVOLUTIONARY DEVELOPMENT
STRATEGY AND MODEL

Boehm (1988, p. 63) states that the Evolutionary Develop-
ment Model is based on the premise that “stages consist of

expanding increments of an operational software product,
with the directions of evolution being determined by oper-
ational experience.” This conception is based on an evolu-
tionary strategy of a system or product development through
a series of Preplanned Product Improvement (P3I) releases.

Evolutionary development provides a potential solution
for Acquirers, Users, and System Developers to evolve a Sys-
tem Design Solution over time as requirements are refined.
As discussed in Chapter 20, some Systems or Products are
single-use items; others are longer-term, multi-application
items. For some mission and system applications, you gen-
erally know at system acquisition what the requirements
are. In other applications, you may only be able to define
a few “up-front” objectives and capabilities. Over time, the
fielded System/Product requires new capabilities as Enter-
prise Problem/Opportunity Spaces evolve due to competitive
or security threats.

Some Systems, such as computers, become obsolete in a
very short period of time and are retired and disposed. From
a business perspective, the cost to upgrade and maintain
the devices becomes prohibitive; for example, the marginal
utility and Return on Investment (ROI) of upgrading an
existing computer’s hardware and software versus buying a
new computer.

In contrast, some Users, driven by decreasing budgets and
slow changes in the external environments, may use systems
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and products far beyond their original intended service lives.
Consider the following example.

Example 15.2

B-52 Stratofortress Service Life

The US Air Force B-52 aircraft is pos-
tured to achieve a service life well into
the 21st century (Global Security—B-52

Stratofortress Service Life, 2011). During its lifetime, the
aircraft’s systems and missions have evolved from their
IOC when the aircraft was first introduced in 1955 to the
present via capability upgrades (Global Security—B-52 His-
tory, 2011). The projected service life span far exceeds what
the aircraft’s innovators envisioned.

15.7.1 Fallacies of the Evolutionary Development
Model

Conceptually, the Evolutionary Development Model may be
suited for some applications; however, it too has its fallacies.
Boehm notes the following points:

Fallacy 1: Evolutionary Development is “generally
difficult to delineate from the old code-and-fix model,
whose spaghetti code and lack of planning were the
initial motivation for the waterfall model.” (Boehm
1988, p. 63)

Fallacy 2: Evolutionary Development is “also based on
the often-unrealistic assumption that the user’s opera-
tional system will be flexible enough to accommodate
unplanned evolution paths.” (Boehm 1988, p. 63)

Regarding Fallacy 2, Boehm (1988, p. 63) states that
“This assumption is unjustified in three primary circum-
stances:

1. Circumstance in which several independently evolved
applications must subsequently be closely integrated.

2. Information sclerosis cases, in which temporary
work-around for software deficiencies increasingly
solidify into unchangeable constraints on evolution,
…

3. Bridging situations, in which the new software is
incrementally replacing a large existing system. If the
system is poorly modularized, it is difficult to provide
a good sequence of ‘bridges’ between old software and
the expanding increments of new software.”

One of the challenges of any type of iterative development
such as Spiral Development is the need for convergence
and closure to a System Design Solution. That is, avoid
the attributes associated with the ad hoc, endless loop
SDBTF-DPM Engineering Paradigm that never seems to
come to completion. This brings us to the Agile Development
Model.

15.8 AGILE DEVELOPMENT STRATEGY AND
MODEL

Principle 15.1

Agile Incremental Product Releases
Principle

Incrementally develop and deliver
Just-in-Time (JIT) product releases using

short iterative development cycles called Sprints based on
the value and priority of each to the User.

15.8.1 What Is Agile Development?

When people think of something as “agile,” the connotation
is of a human with the flexibility to make decisions and
do whatever they please “just to get the job done.” The
reality is that everyone working on a project simply cannot
do whatever they please. The result would be chaos and
bedlam. However, the intent of the term stems from a need
for an Enterprise or project to provide the capability and
flexibility to rapidly respond to customer requirements that
are often dynamic. In this context, consider the following
definition:

• Agile Development—A highly iterative,
methodology-based development process employed by
a team to (1) respond to an environment of changing or
evolving Customer, User, or marketplace requirements
and priorities; (2) collaborate with the Customers to
understand, clarify, and prioritize operational needs;
(3) instill daily team member interactions and account-
ability; and (4) incrementally produce and deliver
high-value–high-return system, product, or service
releases JIT to meet those needs.

Author’s Note 15.2

Customers versus Users

Observe the choice of terms, Cus-
tomer and User. Agile software
developers typically refer to the

Customer. However, the term Customer is an abstract term
that has numerous connotations. In SE, we differentiate in
terms of roles—User, End User, and System Acquirer as
the User’s acquisition and technical representative. This
will become a very important point of distinction in a later
discussion in this section.

Author’s Note 15.3

Product Releases Context

Note the operative term release. A
release could have two contexts:

• Context #1—Internal distribution within the project
• Context #2—External distribution to existing cus-

tomers such as an urgent security update due to a new
computer virus
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15.8.2 Why Does System, HW, or SW Development
Need to Be “Agile”?

In 2004, IBM started conducting biannual surveys of “CEOs
and public sector leaders in every part of the world to gauge
their perspective on emerging trends and issues” (IBM 2012,
p. 3). The 2012 IBM survey, for example, posed the following
question:

“How are Chief Executive Officers (CEOs) responding to
the complexity of increasingly interconnected organizations,
markets, societies and governments – what we call the
connected economy?”

—(IBM 2012, p. 13)

Since 2004, Market Factors were Priority #1 among CEOs
every year through 2010. In contrast, Technology Factors
progressed from Priority #6 in 2004 to #3 in 2006, 2008,
and 2010. In the 2012 survey, Technology Factors replaced
Market Factors, which fell to Priority #3 (IBM 2012, p. 13).

Recognizing that the focus of the IBM study was on
the connected economy, there is an important lesson to be
learned here. Observe the phrase “… responding to the com-
plexity of . . . .” Enterprises that plan to be in business in
the years ahead have to shift their System Development
paradigms in response to Customer, marketplace, and com-
petition forces such as time to market. Otherwise, they may
not survive or will be devoured by their competitors. Respon-
siveness to change is an integral part of the Agile Develop-
ment methodology.

15.8.3 Agile Development Origins

Many people erroneously believe that the concept of Agile
Development is a new innovation and originated in software
development. This is partially true and has contributed
to many popular misconceptions. The reality is that the
Agile Software Development title is the convolution of two
sources:

1. A 1991 Agile Manufacturing study by Nagel and Dove
at the Lehigh University Iacocca Institute

2. The “packaging” (Highsmith 2013) of a series of
iterative and incremental software development frame-
works, especially from the 1980s through the 1990s,
that had evolved since the 1960s and earlier

Let’s explore each of these contributing origins.

15.8.4 1991 Agile Manufacturing Study

The concept and naming of Agile Development was influ-
enced by a Lehigh University Iacocca Institute Study com-
missioned by the US Office of the Secretary of Defense
Manufacturing Technology (MANTECH) Program. Results

of the study were published by Nagel and Dove (1991) in
a two-volume report entitled 21st Century Manufacturing
Enterprise Strategy: An Industry-Led View (Volume 1) and
Infrastructure (Volume 2). Within the report, “Crossing the
threshold: A Vision of the Agile Manufacturing Enterprise”
establishes the vision for an agile manufacturing culture. The
significance of this concept and the agile name provided the
foundational name for the Agile Software Development as a
philosophy.

15.8.5 The Origins of Agile Software Development

From an SW perspective, the “Agile” attributes originate
from early models related to the evolution of IID methods.
Larman and Basili (2003, p. 2) indicate that IID methods
trace back to the 1950s. They also note that Agile Devel-
opment practices existed in NASA’s Project Mercury from
the 1960s. The Mercury Project, which was “time-boxed,”
was similar to Extreme Programming practice. Software de-
velopers employed a “test-first” development approach in
which they planned and wrote tests prior to each “micro-
increment.”

During the 1980s and 1990s, software development ap-
proaches continued to advance earlier IID methods with a
focus on prototyping software as a risk mitigation method.
Boehm’s (1988) Spiral Model is an example.

In the 1990s, various thought leaders created a va-
riety of software development prototyping approaches.
Examples included Adaptive Software Development, Ex-
treme Programming, Crystal Light, and Scrum. Many of
these leaders authored books on these software development
approaches.

Highsmith (2013) observes that beginning in the late
1990s, many of these innovators began to recognize similari-
ties in their approaches and began a series of dialogs seeking
ways to leverage their work. After several preliminary meet-
ings, the group decided to convene a meeting in 2001 to
create a new philosophy for software development. Seven-
teen representatives from organizations that created software
concepts such as “Extreme Programming, SCRUM, DSDM,
Adaptive Software Development, Crystal, Feature-Driven
Development, Pragmatic Programming, and others sympa-
thetic to the need for an alternative to documentation driven,
heavyweight software development processes … ” partici-
pated in the meeting (Agile Manifesto 2001a).

One of the decision outcomes from the meeting was a
framework that became known as the Manifesto for Agile
Software Development. As a new philosophy for software
development, the Manifesto states:

“We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have
come to value:
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• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

That is, while there is value in the items on the right (plain
text), we value the items on the left (Boldface) more.”

—(Webpage—Manifesto for Agile
Software Development 2001c)

On inspection, most people instinctively—and
incorrectly—interpret the paradox in each of the four
statements above as being mutually exclusive. Highsmith
(2013) acknowledges that this has been a communications
challenge. However, reread the statements. First, observe
the word “over.” He adds that the statements do not state
that Individuals and Interactions are more important than
Processes and Tools. The statements are simply presented
as paradoxical choices. Given a choice, which would you
choose?

• (Competent) Individuals and interactions or (mediocre)
processes and tools?

• Working software or comprehensive documentation?

• Customer collaboration or contract negotiation?

• Responding to change or following a plan?

The reality is that System Development projects require
some level of each of the paradoxical choices. However, re-
gardless of the development process used—V-Model, Spiral,
and Agile, Customers expect to collaborate with developers
who know how to think and respond to their needs without
being overwhelmed by rigid plans, processes, and documen-
tation practices.

Another key aspect of the meeting was the identification
of a set of key principles by the participants. These became
known as the Twelve Principles of Agile Software (Agile
Manifesto, 2001b).

With the new philosophy for software development, the
decision challenge became: what shall we name it? High-
smith (2013) says that the team identified a number of de-
scriptive terms on individual notecards and placed them on a
wall for collaborative review and discussion. During the col-
laboration, several of the team members that were familiar
with Nagel and Dove’s (1991) concept of Agile Manufac-
turing characterized it as one of the best descriptors of the
approach expressed by the proposed software manifesto. As a
result, the new philosophy became known as the Agile Man-
ifesto for Software Development.

Given this background on the origins of Agile Devel-
opment, let’s investigate how Agile Software Development
is performed. As an overview, the intent here is to provide
an overview of the fundamental concepts of Agile Develop-
ment.

Referral You are encouraged to read the works of authors
listed at the Manifesto for Agile Software Development Web
site (Agile Manifesto 2001c).

15.8.6 Agile Software Development Overview

The thrust of Agile Software Development focuses on deliv-
ering incremental releases of a system, product, or service
that provide the highest value–highest return and priority to
the Customer or User. Traditional System Development tasks
focus on an end deliverable based on tasks that are often
measured in weeks or months. In contrast, Agile Software
Development focuses on short development cycles of incre-
mental releases measured in days, not weeks, months, or
years.

Whereas traditional V-Model and Spiral Development
Model employing Earned Value Management (EVM) meth-
ods have task milestones that may be spaced a few weeks
to a few months apart that lead to inefficiencies, daily Ag-
ile meetings referred to as Daily Scrums ensure a disci-
plined focus on convergence and closure for accomplish-
ing specific performance-based results. Some may view
this as micromanaging System Development; others view
it improving the efficiency similar to Design for Six Sigma
(DFSS) in driving out unnecessary documentation, steps, and
waste.

Conceptually, if you focus and measure progress based
on (1) accountability for daily task outcomes as opposed
to weeks or months and (2) deliver high-value–high-return
releases to the Customer, you should be more efficient and
effective in achieving the same end result—a deliverable
system, product, or service on time and within budget with
acceptable risk.

Author’s Note 15.4

Accountability, Efficiency, and
Effectiveness

Note that we said conceptually. This
last statement sounds great on paper

but has serious contextual implications and ramifications
for various types of marketplaces, business domains, and
contracting environments.

To understand how Agile Software Development is per-
formed, let’s begin with an overview description followed
by some of the details. Figure 15.7 provides a generalized
example for the overview.

Agile Software Development begins with collaboration
between the software developers and their Customers. The
collaboration results in a series of User Stories, which
are brief statements that express an operational need or
requirement that is unique to each Customer’s role. Software
developers analyze the User Stories and follow up with the
Customers to:
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Figure 15.7 Agile Product Development Cycle (Scrum)

• Clarify their understanding of the operational needs and
semantics.

• Establish Customer priorities in terms of high-value
needs and delivery sequences.

The set of requirements is then prioritized and reviewed
collaboratively with the Customer to finalize the set of
priorities. The prioritized repository is referred to as the
Product Backlog.

As a performance tracking tool, Customer requirements in
the Product Backlog are tracked with a graphic referred to as
a Burndown Chart such as the example shown in Figure 15.8.
The state of the Product Backlog represents a repository of
prioritized requirements remaining to be implemented via a
series of Product Increment Development Cycles or Scrums.

15.8.7 Themes, Epics, and User Stories

Principle 15.2

User Story Authoring Principle

Every User Story should be written by
the User in their own words from the
perspective of a specific role-based use of
a system, product, or service.

Principle 15.3

User Story Composition Principle

Each User Story consists of two parts: (1)
a Statement of Need and (2) Conditions of
Satisfaction (COS) (Cohn 2008).

Principle 15.4

User Story Priority Principle

Express each User Story in terms of the
originator’s role, need, value, and priority
to their Enterprise or mission.

Agile Software Development employs terms such as
themes, epics, and User Stories to characterize collaboration
with their Customers. There are also differing views by En-
terprises and developers as to which is relevant. User Stories
tend to be the primary preference. To better understand the
scope of each term, let’s begin with User Stories and then
relate User Stories to themes and epics.

Each User Story consists of two parts:

• Statement of Need—Customer or User’s personal
Statement of Need
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Figure 15.8 Product Burndown Chart Example (Source: Straub (2009), Wikimedia
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• COS (Cohn 2008)—How the Customer or User intends
to validate the deliverable product as satisfying the
Statement of Need

Typically, each part of a User’s Story is handwritten by
the Customer or User on the front of an index card or sticky
note that can be easily pinned or stuck to a wall. One side of
the card or note expresses the operational need; the obverse
side expresses the validation of the need. Since a key aspect
of Agile Development is Customer or User determination
of high-value–high-return needs, the wall exercise enables
moving the notes or cards around. Let’s address each of these
two parts beginning with the Statement of Need.

15.8.7.1 Statement of Need

Principle 15.5

User Story Syntax

Format each User Story using an “As a
<type of user>, I want <some goal> so
that <some reason>” syntax (Cohn, 2008).

Cohn (2008) suggests using a standard format such as

“As a <type of user>, I want <some goal> so that <some
reason>.”

To illustrate Cohn’s standard format, consider the
example below.

Example 15.3

User Story Capture

As a business traveler (User Role), I want a
portable device with wireless connectivity (goal)
so that I can download current and future

weather reports from the Internet for planning job tasks outdoors that
are dependent on the weather (reason).

Cohn (2008) suggests that User Stories are often “more
informative to write the story with the specific user most
likely to perform the action.” He also observes that people
often question the value of the “reason” attribute in the User
Story template.

Cohn (2008) cites two advantages of the “so that” con-
struct: … it helps in identifying:

1. “the meaning and relative importance of a story even
long after it has been written” and

2. “identify potential alternative solutions.”

Others point out that the “so that” provides insights into
the User’s motivation.

Once the User Stories are collected, some organizations
capture them in a spreadsheet or database with separate
columns for the User Role, Goal, and Reason. This provides
a means for quickly analyzing and mining the data set,
especially in identifying commonalities across a set of User
Stories, Customers, and Users.
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Every User Story has a personal context that is unique
to their role as a User—Administrator, Operator, Maintainer,
Trainer, or End User—and expected outcomes that will
provide some benefit or overcome some problem based on
past experience. Therefore, every User Story should:

1. Be written in terms of the originator’s role, not name,
that establishes the context of the story. However, you
still need to ID the User’s name and contact information
for follow-up collaboration, as required.

2. Be date stamped.

3. Express a level of importance (such as 1–10) to the
User.

Here’s another example.

Example 15.4

User Story: Computer Virus Checker
Updates Date: XX/XX/XX

As a manager (User) accountable for the integrity
of our computer network, I need an immediate

quick fix (goal) so that we can quarantine viruses and prevent their
further proliferation (reason).

Personal Value: 10 on a scale of 1 (low) to 10 (high).

Agile software developers value the User Stories as a
means of documenting the User’s perspective of a real or
perceived operational need in their own words.

Once the initial set of User Stories has been reviewed and
analyzed, it provides a basis for Agile software developers
to follow up with each User Story’s originator to discuss
requirements implementation. Observe that the reference to
requirements in the last sentence does not say specification
requirements or capability requirements … only “require-
ments” at least in an Agile Software Development context.

15.8.7.2 Conditions of Satisfaction (COS) Since suc-
cessful achievement of a system, product, or service, at least
commercially, resides in the eyes, minds, and experiences of
the Customer, it is equally important to have them describe
in their own words how they expect to validate that the State-
ment of Need has been met. Cohn (2008) refers to these as
COS. He notes that “The COS aren’t executable tests but they
do say what should be tested at a high level.” Each COS
should be written on the side of an index card or note op-
posite from the User Story. Here’s how a COS for Example
15.4 might read for a skilled User familiar with the process.

Example 15.5

COS (Back of Index Card)

I would turn the device on, go out to the web,
enter the URL for the weather Web site or select a
bookmarked URL, enter in my location, and view,

download, or printout current weather conditions or future weather
reports.

Agile software developers often refer to a User Story as
a form of contract with the Users (Customers). In principle,
this is true figuratively speaking. However, in other business
domains, this is a misnomer unless the requirements are
formally documented in a specification incorporated by
reference into a legally binding contract.

The concept of allowing User Stories to evolve and change
over time infers that software development is in a contin-
ual state of change. Software updates include not only in-
cremental updates but also revisions to previous deliveries
of a product. In a commercial Agile Software Development
environment where numerous iterations of a product are pro-
totyped and test marketed at internal expense, this may be
acceptable. However, this is not the case in other environ-
ments, especially development of larger systems based on
Firm-Fixed Price (FFP) contracts. Where User Stories are al-
lowed to evolve and change over time, Cost-Plus-Fixed-Fee
(CPFF) contracts or a series of contracts that evolve and ma-
ture User requirements may be the appropriate solution to
accommodate evolving User Stories.

Lastly, the relationship of Themes and Epics to User
Stories simply stated:

• An Epic is an abstraction representing a collection of
User Stories. Cohn (2008) suggests keeping large Epics
that contain numerous User Stories with dependencies
intact as long as possible.

• A Theme is a Customer’s overarching description of a
class of products that cover a variety of User Stories.
Examples include medical infusion devices and radar
technologies.

Views and usage of relevance and usage of the terms
Themes and Epics vary among organizations.

Given a basic understanding of User Stories, Themes, and
Epics, let’s address how User Stories are implemented via
Agile Product Development Cycles.

15.8.7.3 User Stories versus UCs: What’s the Difference?
The concepts of User Stories and UCs are sometimes con-
fusing to engineers, analysts, and PMs, functional managers,
and executives. User Stories are a key operative term in Ag-
ile software developer semantics. Agile software developers
tend to become polarized in terms of preferences for one term
versus the other. What is the difference?

• A User Story is simply a brief personal statement that
expresses a User’s role-based operational need in their
own words. User Stories and other tools such as Quality
Function Deployment (QFD) are useful in performing
User Needs Analysis (Chapter 5).

• A UC simply expresses a performance-based
capability—Print Report—the User expects a sys-
tem, product, or service to produce in response to a set
of stimuli, excitations, or cues.
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A User Story documents an expressed need, want, or
desire; a UC elaborates how the User in collaboration with
the System Developer envisions a system, product, or service
to satisfy that need. The UC is then elaborated into a
sequence of operational tasks (a primary UC flow) and
scenario-driven alternative tasks (alternative flows), each
with a performance-based outcome to be accomplished.
Despite differences, both are written in collaboration with
the User using words they can easily understand, review, and
feed back comments.

Author’s Note 15.5

Misapplication of UCs

SEs, Engineers, and Analysts often
convolute usage of terms such as User
Stories and UCs. Comments such as

Use(less) Cases are common as a result of misapplication.
For example, SEs and others amateurishly attempt to em-
ploy UCs—an ounce of knowledge—to identify User op-
erational needs, have difficulty, and then blame UCs. Once
again:

• User Stories are useful in identifying User operational
“use-based” needs.

• UCs simply elaborate a concept for how those
needs enable us to define primary and alternate
flow tasks—capabilities—that become the basis to
bound and specify a system, product, or service’s
specification requirements.

Think about it! If User Stories identify a “use-based”
need, the next logical step is to identify various UCs and
scenarios of usage. Simply stated: (1) what is the system,
product, or service expected to accomplish to produce an
outcome that satisfies the User’s need and (2) what could
go wrong?

The polarization of Agile software developer preferences
for User Stories versus UCs often centers around two key
arguments that are dependent on personnel capabilities. For
example, here are viewpoints arguments:

• User Story Preferences Argument—Why write a
formal XX page System UCs Document when we can
collaborate with the User based on their User Stories.
If the story changes, we can change the software to
accommodate their needs. No need for a lot of “paper
pushing.”

• UC Preferences Argument—User Stories are okay.
However, I can’t take a set of User Stories and turn
them over to lesser experienced personnel. They keep
coming back to me wanting clarification and an expla-
nation of how to implement the high-level statements.

That’s why UC documents provide definitive informa-
tion that can be used by System Developers and User
Enterprises regardless of experience.

The argument, however, goes deeper than simply prefer-
ences for User Stories versus UCs. This last point illustrates
a dichotomy among Agile software developers:

• Some say that User Stories are derived from UCs.
They contend that User Stories represent segments
or branches of UC SysMLTM Activity Diagrams
that model User interactions and System behavioral
responses.

• Others contend that UCs are derived from User Stories.
Cohn (2008), referring to Agile Software Develop-
ment, observes that some people mix User Stories and
UCs. They start with large Epics as User Stories and
then employ UCs to provide additional detail. Eventu-
ally, the organization evolves to User Stories.

Given that some contend that User Stories are too ab-
stract for lesser experienced personnel, the User Stories
transformation into UCs may be reflective of that situation.
It is unclear if the evolution to User Stories over time is
the result of an Enterprise personnel maturing to the point
that User Stories are adequate for their experience and skill
levels.

So, what is the relevance of this discussion to SE and how
can Agile Development methods benefit SE? User Stories and
UCs both have relevance and significance to SE. That brings
us to our next topic, Understanding User Stories, UCs, and
Specification Requirements.

15.8.8 Agile Development (Scrum) Cycles

Agile Development Cycles are typically referred to as
Scrums. The concept of scrums was developed by Schwaber
and Sutherland (2011) in the 1990s. As a foundational con-
cept, scrums were a key contribution to the new Agile Man-
ifesto philosophy of software development.

Schwaber and Sutherland (2011, p. 5) describe a scrum as
follows:

“Scrum is a framework structured to support complex prod-
uct development. Scrum consists of Scrum Teams and their
associated roles, events, artifacts, and rules. Each component
within the framework serves a specific purpose and is essen-
tial to Scrum’s success and usage.”

The term Scrum:

• Originates from Rugby football concerning a formation
for restarting play after an infraction or game stoppage
(Rugby IRB 2013, Law 20, p. 134)
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• Is sometimes referred to as development cycles or
iterations

An Agile Development Team or Scrum Team is com-
prised of a Product Owner, a Development Team, and a
Scrum Master. A brief synopsis of these roles is provided
below (Schwaber and Sutherland 2011, pp. 5–7):

• Product Owner—An individual accountable for com-
pletion of the work, serves as the Voice of the Customer
(VOC), maximizes the Agile Development Team value,
and maintains the priorities of User Stories and any
changes

• Development Team—A self-organizing, possibly
multi-discipline team accountable for performing the
work to incrementally release work products

• Scrum Master—An individual that serves as a
“servant-leader” to the Scrum Team to ensure compli-
ance to “Scrum theory, practices, and rules”

Referral Refer to Schwaber and Sutherland (2011) for
a detailed description of the Scrum framework and its
implementation.

15.8.9 Agile Product Development Cycles or Scrums

Principle 15.6

User Stories Repository

Create a Product Backlog managed by
a Product Owner to serve as the single
repository for storing and managing all
User Stories.

Principle 15.7

User Story Scope Principle

Scope the selected set of User Stories
for completion within the time-boxed con-
straints of a Sprint.

One of the objectives of Agile Development is to in-
crementally deliver high-value product releases to the Cus-
tomer in a series of short 7–14-day iterations referred to as
Sprints. The endgame is to identify a set of higher-value
requirements or User Stories that can be implemented
by an Agile Development or Scrum Team(s) over a se-
ries of Sprints. Sprints are conducted until all User Sto-
ries in the Product Backlog are implemented within the
time-boxed constraints. Cohn (2008) observes that a “good
Product Backlog” will be comprised of 90% User Sto-
ries and the remaining 10% is “just stuff” people placed
there that could potentially be converted into User Sto-
ries.

The challenge becomes: how does an Agile Development
or Scrum Team get from a large number of prioritized Cus-

tomer User Stories or requirements in the Product Backlog
to a small set of requirements that can be implemented and
released in 7–14 days? That is the focus of our remaining
discussion.

Author’s Note 15.6

Incremental Release Context

The context of an Agile Development
incremental release is important
here. A release can have one of two
contexts:

• Context #1—Internal distribution within the project to
other developers such as System Analysts developing
models and simulations

• Context #2—External distribution to existing Cus-
tomers such as an urgent security update due to a new
computer virus

15.8.10 Product Increments (Optional)

Principle 15.8

Agile Product Increment Principle

Create optional Product Increments based
on a grouping of User Stories that form a
planned software “build.”

Although the Scrum Guide (Schwaber and Sutherland
2011) does not address Product Increments per se, some En-
terprises prefer to include these as an optional step, espe-
cially if multiple Sprints are being performed simultaneously
on larger projects.

Referring to Figure 15.7, the Agile Development or
Scrum Team partitions the highest-priority User Stories or
requirements into a series of Product Increments such as
Product Increments #1 and #2. Each Product Increment is
scoped to be accomplished within a specified time period or
time-box such as 30–45 days.

Principle 15.9

Product Backlog Completion Principle

Track planned versus actual performance
of Product Backlog User Stories in terms
of those completed, those in-process, and
those remaining to be implemented.

In Agile Software Development, a Product Increment
Backlog repository of requirements typically does not ex-
ist per se; however, it is recommended for performance
tracking purposes. Ultimately, any Product Increment
requirements that were not completed within the des-
ignated time-box must be returned to the higher-level
Product Backlog for assignment to a subsequent Product
Increment.
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15.8.11 Sprint Development Cycles or Scrums

Principle 15.10

Sprint Backlog Completion Principle

Track planned versus actual performance
of Sprint Backlog User Stories in terms
of those completed, those in-process, and
those remaining to be implemented.

Beginning with Product Increment #1, Customer require-
ments are analyzed and partitioned into a series of 7–14-day
Sprint Scrums for implementation and incremental delivery.
Product Increment requirements allocated to each Sprint are
allocated and flowed down to a Sprint Backlog repository for
performance tracking such as the Burndown Chart example
shown in Figure 15.8.

Principle 15.11

Daily Scrums Principle

Conduct brief daily scrums to assess in-
dividual or team accountability for three
questions:

1. What did you accomplish yesterday?

2. What issues need to be addressed today?

3. What do you plan to accomplish today?

Each Sprint consists of Daily Scrum Meetings at the start
of each workday. Daily Scrums are staged as 15 minute
“stand-up” accountability forums for the Agile Development
Team members to answer three key questions (Principle
15.11):

1. What did you accomplish yesterday?

2. What issues need to be addressed today?

3. What do you plan to accomplish today?

Principle 15.12

Incomplete User Stories Principle

Return User Stories that are incomplete
at the end of a time-boxed Sprint to the
Product Increment Backlog (optional) or

Product Backlog for reprioritization and reassignment to a
subsequent Sprint.

As each Sprint incrementally releases product require-
ments and their implementations, the Sprint Backlog is
decremented. When the Sprint time-box expires, residual re-
quirements that have not been implemented are returned to
the higher-level Product Increment Backlog, as applicable,
for reallocation to the next or a subsequent Sprint.

Given this overview discussion, let’s delve into an
example of a Sprint methodology.

Each Sprint Iteration Cycle is an iterative,
methodology-based process such as the example shown

in Figure 15.9. As an example, key steps in a Sprint
Methodology consist of:

1. Plan Sprint

2. Establish Sprint Task Backlog

3. Prioritize Sprint Backlog Tasks

4. Perform Sprint Backlog

5. Conduct Daily Scrum Meeting

6. Iterate Tasks to Completion

7. Review Incremental Release

8. Demonstrate and Deliver Incremental Release

9. Decrement Sprint Backlog

10. Cycle Back to Next Sprint Backlog Task

11. Conduct Sprint Retrospective

12. Exit to Next Sprint

15.8.12 Minimal Documentation Approach

Agile Development Teams partition User Stories into
smaller increments to fit within a Sprint. It is important
to note that Sprints focus on development of the prod-
uct with minimal documentation. Recall the paradoxical
statements in the Agile Software Manifesto. Solarte (2012)
provides insights concerning considerations for “minimal”
documentation.

Our discussions above focused on prioritized User Story
implementation via the Sprints. The implementation of User
Stories requires two concurrent efforts: (1) development
of the product and (2) its documentation. With the focus
on incremental product deliveries, documentation has a
tendency to lag behind. Inquiries concerning both are often
met with the paradoxical statement “Which do you want
me to produce? Product or documentation? Given our tight
schedule, pick one or the other; you can’t have both.” How
far the documentation lags behind is an issue. Some suggest
including the documentation as a User Story that goes into
the Product Backlog. We will address this topic in more detail
later in the chapter.

15.8.13 Agile Software Development: Risk Approaches

Principle 15.13

Development Process Model Principle

Select a development process model
based on requirements, technology, team
skills, and schedule risk constraints

unique to the product, not the project.

In selecting an appropriate Development Process Model,
Highsmith (2013) suggests consideration of what he refers
to as Exploration Factors (EFs). In general, an EF represents
the level of uncertainty or risk associated with a new
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development. For example, an EF = 1 represents a low-risk
development in which the requirements are well known. An
EF = 10 represents a high risk in which the requirements
and/or technologies are relatively unknown. An EF 3–4
project, for example, might use any one of a number of
development methods such as V-Model, Spiral, and Agile.

Most organizations perform R&D to meet future mar-
ketplace projections to ensure a competitive advantage. The
objective is to initiate a “pipeline” of new technologies or
technology applications to mature JIT for a key project’s
needs. This leads to key question: if this is the Enterprise
strategy, what was R&D doing or not doing that lead to the
project having an EF 10 Agile Development effort on a cus-
tomer deliverable? Highsmith (2013) observes: “There are
many flavors of Agile depending on the EF. If the EF is
low, then iterations will mostly go as planned, even at the
release plan level—6+ months or so. If the EF is high, iter-
ations will be more R&D like. Short iterations are still valu-
able even when you think you know what the requirements
are—because often it doesn’t work out that way.”

Principle 15.14

Risk–Success Expectations Principle

Adjust project expectations of success
based on the level of risk (Highsmith,
2013).

Highsmith offers a word of caution about high EF
projects. As you go higher from 1 to 10 along the EF scale,
you have to change your expectations of success. Success on
high-risk EF 10 requirements and technology projects will
probably be different than on an EF 1 project.

15.8.14 Test-Driven Development (TDD)

One of the key Agile Development methods involves a
concept referred to as TDD. TDD, which is commonly
used for software development, consists of writing the
software test for a capability or feature before developing the
deliverable product’s (production) code.

Conceptually, the intent of TDD is to use the requirement
statement to establish a threshold that says “develop no
more code than is required to pass the test.” The underlying
assumption here is that the requirement and test are both
valid and accurately address the capability Problem Space
to be solved. Some will argue that the focus shifts from
Engineering design to an endless loop of the SBTF Paradigm
to “pass a test.” Ultimately, the result depends on the culture
and discipline of the Agile Development Team.

Given that test procedures are typically written after a
hardware or software component has been designed, the pos-
sibility exists that a Unit-Under-Test (UUT) may be overde-
signed. Additionally, there is a risk that the specification
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TABLE 15.2 Bridging SE and Agile Development
Semantics

SE Semantics
and Concepts

Agile Software Semantics
and Concepts

Users, End Users, System
Acquirer

Customers

Operational needs Requirements

UCs and scenarios User Stories, Epics, Themes

System levels of abstraction Multi-level scrums

Capabilities Features

Essential documentation Minimal documentation

Multi-level component
verification System
acceptance and delivery

Incremental product releases

requirement used as the basis for the test was poorly written,
untestable, or expensive (Chapter 22). So, the TDD concept
has merit.

15.8.15 Special Topics: SE and Agile Software
Development

The preceding overview of Agile Software Development
leads to a key question: how can SE leverage Agile Develop-
ment concepts to improve overall SE and project efficiency
and effectiveness? At this point, you have probably noticed
that Agile Software Development employs concepts and se-
mantics that are different from others addressed in this text.
Table 15.2 provides a general comparison of SE versus Agile
Development concept and semantics differences.

15.8.15.1 Agile Application to Multi-discipline SE Peo-
ple often ask: how does Agile Development apply to SE? In
general, for moderate to large, complex systems that require
multi-discipline integration with various types of unique
workflows, perhaps there might be a better question to ask.
Does SE have task-based activities for which Agile Devel-
opment methods might improve performance? The answer
is yes. Before we list some examples, there are a couple of
points we need to make:

• Agile Development produces incremental, high-value
product releases in response to Customer require-
ments and priorities. Observe the generic usage
of the term product or more appropriately work
product releases. For software, the Agile Manifesto
emphasizes working software over comprehensive
documentation—working software. Working software
may or may not be in the final form as the deliverable;
it could be algorithmic prototypes.

• SEs and System Analysts do not design hard-
ware or software products per se. SEs apply their

multi-discipline experience to orchestrate, integrate,
and facilitate technical decision-making of teams
that develop hardware and software. SE and System
Analyst work products capture these decision-making
artifacts. Whereas the context of applying Agile De-
velopment methods to software development produces
working software, the application of Agile Devel-
opment to SE and System Analysis produces work
products—such as specifications, architectures, de-
scriptions, and so forth. These work product releases
provide information that feeds a Sprint’s Supply Chain
(Figure 4.1).

Examples of multi-discipline SE activities include:

• Identification of Stakeholders—Users and End Users,
their needs, and priorities

• Identification and development of System or Entity
UCs and scenarios

• System architecture selection, Analysis of Alternatives
(AoA) selections, and so forth

• Concept of Operations (ConOps) and its Operational
Concept Descriptions (OCDs)

• Specification requirements development

• Interface definition

• System TCs

In each of these cases:

• Multi-discipline SE activities would be performed
based on Supply Chain (Figure 4.1) internal or external
customer priorities.

• Requirements might be unknown and fuzzy—at least
initially—and continue to evolve and mature over time.

• Details could be derived top-down iteratively through
a series of multi-level Product Increments and Sprints.

You may ask: what is different about Agile Development
of these work products that is not already being done?
Consider the following example.

Example 15.6

Traditional versus Agile Specification
Development

In some business domains, development,
approval, and release of a specification

could require up to three (3) calendar months. Why three
months?

In general, a single SE is assigned a task as a specification
developer. They spend from 2 weeks to a month collecting
Stakeholder requirements and developing the initial draft of
the document. Then, an additional two months are spent
conducting reviews of the specification, resolving issues
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and making corrective actions, and obtaining approval for
release. So, why 2 months?

The multi-discipline stakeholders required to participate
contend that they can only afford to spend a maximum of 1
hour preparing for and a maximum of 1 hour participating
in a review per week due to “higher” priorities—sounds
like a management performance problem. So, the process is
piecemeal, disruptive, inefficient, and ineffective and requires
a learning curve each week to reestablish their understanding
of (1) the level of maturity and current issues and (2) changes
that have been made. As a result, up to eight (8) weeks may be
required to complete the reviews and obtain approvals unless
the Customer or the PM or Project Engineer steps in and
changes reviewer priorities.

Now, suppose an Agile Development Team could deliver a
90% complete version of the same document within a Sprint
Iteration of 5 days instead of 3 months.

15.8.15.2 Agile Application to SE Proposal Development
Given Agile Development’s focus on high-value–high-return
strategy for incremental product development, another
example application is proposal development. Enterprises
sometimes have “must win” procurement opportunities
that require leadership by external proposal consultants.
Requests for Proposals (RFPs) typically have “time-boxed”
constraints such as 30 or 45 days. The proposal strategy,
in general, is dependent on fast-paced, multi-discipline
teams that address specific topics within the technical,
management, cost, and volumes with highly aggressive
schedules.

Many of these efforts resemble Agile Develop-
ment activities. Teams attend daily mandatory proposal
meetings—Daily Scrums. The difference is that the proposal
consultant leader addresses group level progress and sta-
tus, issues, plans, communications, and corrective actions.
Additionally, there are often impromptu Daily Scrums
with individual teams to address team progress and status,
issues, plans, communications, and corrective actions. The
whole exercise is focused on meeting proposal development
milestones—incremental development with highly iterative
interactions among teams, proposal peer and independent
reviews, and culminating with the delivery of the proposal.

15.8.15.3 User Stories, UCs, and Specification Require-
ments Dependencies User Stories and UCs provide a log-
ical pathway to specification requirements. Figure 15.10
provides an illustration of this point.

Observe the general left-to-right workflow over time from
User Stories to System UCs to Specification Requirements
in the lower portion of the graphic. Note that we said
general workflow; these steps are highly interactive.
Customers–Stakeholders, Users, and End Users consist-
ing of Mission System and Enabling System operators,

maintainers, trainers, and administrators are candidates for
contributing one or more User Stories. The set of User
Stories should represent the system, product, or service User
community. SEs and System Analysts analyze the data from
User Stories and conduct follow-up collaborations with the
Users to clarify and avoid misinterpretation.

Author’s Note 15.7

SE Involvement in Customer
Operational Needs Meetings

The collection of User Stories rein-
forces that point that an SE should

always accompany a Business Development or Marketing
representative after the first contact.

User Stories provide the basis for developing a System
UCs Document that expands or refines each UC into a set
of User operational tasks and interactions that stimulate or
excite a system, product, or service to produce the required
behavioral outcomes.

15.8.15.4 Semantics: Linking Agile Customers to SE
Stakeholder Users and End Users Agile Software Devel-
opment uses the term Customers; SE refers to role-based
Stakeholders such as System Acquirers, Users (operators
and maintainers), and End Users (Chapter 3). What are the
differences?

Software developers have a number of types of pro-
totyping tools including simulations they can employ to
collaborate with “customers” concerning displays, layouts,
transitions, and so forth as in interim step without having
to have the deliverable product hardware. This enables them
to have direct access to and collaboration with User opera-
tors and maintainers. However, the scope of “System” De-
velopment involves more than “software” development. SEs
and Analysts must consider User operations such as deploy-
ment; operations, maintenance, and sustainment (OM&S);
hardware, software, and courseware; Specialty Engineering
Integration such as human factors, safety, Reliability, Main-
tainability, and Availability (RMA); and other considera-
tions. Consider the following example.

Example 15.7

Enterprise Context: Internal and
External Customers

From an Enterprise project perspective, a
System Developer has external (Customer)

Users and internal (System Developer) Users. For example,
a System Developer has an internal Supply Chain such as
the one shown in Figure 4.1. Contextually, internal Users
(Customers) consist of higher-level System Development
project teams at the System, Product, and Subsystem lev-
els of abstraction that allocate and flow down requirements
to the next lower level. A Product Level Team performing
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a System Acquirer (role) acquires, integrates, tests, and ver-
ifies Subsystems. The Subsystem Level Team delivers its
Subsystem to the high-level (internal customer) team for in-
tegration into their Product.

To better understand the context and importance of exter-
nal and internal Users in Agile Development, Figure 15.11
provides an illustration.

15.8.15.4.1 External System Users Observe the line di-
viding a System Developer’s External and Internal Cus-
tomers. External Customers such as a SOI Mission System
and Enabling System Users performing operator or main-
tainer roles provide the primary inputs for Agile Develop-
ment User Stories.

As details of the System Design Solution evolve and
mature over time at lower levels of abstraction, Exter-
nal Customer specialists collaborate with System Develop-
ers. Collaboration occurs throughout the development of
Products, Subsystems, and Assemblies, via informal con-
versations and technical reviews such as Preliminary Design
Reviews (PDRs) and CDRs. External Customer Specialist

examples include sensors, electronics, propulsion, algorith-
mic, and medical technologies; energy such as oil, gas, wind,
solar, and nuclear; transportation; aerospace and defense
(A&D) such as aircraft; ship and spacecraft; and domains.

Author’s Note 15.8

User Priorities

For small to large, complex system
development efforts, the System Ac-
quirer representing the User’s techni-

cal interests will state that contract requirements including
specification requirements have the same priority. Unless
specified otherwise in the contract, the notion of Product In-
crement releases (Figure 15.7) is strictly internal.

In contrast, commercial ventures are often characterized
by highly open collaborative efforts in which the User(s),
Business Development, or Marketing decides and drives
Product Increment Backlog priorities.

15.8.15.4.2 Internal System Users Given a set of Exter-
nal Customer User Stories as inputs, System Developer
SEs and Analysts derive System Level UCs and the SPS
(Figure 15.11). In theory, SEs formulate and select archi-
tectures from a set of viable candidates based on System,
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Product, and Subsystem, specification requirements as il-
lustrated in Figure 20.4. Specification requirements become
the hierarchical framework of capability requirements and
constraints that will ultimately be used for verification of
the specified Entities such as the right side of the V-Model
shown in Figure 15.2.

The reality is that specification requirements that are
derived, allocated, and flowed down to lower levels are
influenced by the User Stories, written or unwritten, of
each higher-level team. Figure 15.11 provides an illustration.
Each requirement statement is a reflection not only of the
literal capability or constraint to be flowed down but also
nuances of each team member’s experiences, lessons learned,
and skills in wording. Requirements are derived from UC
capability threads such as Figures 21.6 and 21.7 introduced
later. Each UC thread expands or refines a User Story.

Does the lower-level Product, Subsystem, and Assem-
bly team that is the recipient of allocated and flowed down
requirements know about the higher-level UC thread? Typi-
cally, no, unless an informal request is made for clarification
of a specific requirement. The clarification may be due to
the (1) requirement being incomplete, ambiguous, or hav-
ing a conflict with another requirement or (2) an attempt to

understand the rationale for the requirement—namely, how
the capability fits into the higher-level UC thread. This same
process repeats for lower levels.

15.8.15.5 Agile Software Development: System Develop-
ment Models

Principle 15.15

Non-prescriptive Methods Principle

As a process, Agile Development does
not prescribe a specific development
method or model to be used to create a
system, product, or service.

Earlier in this chapter, we noted that customers often
want to know what type of System Development Model
a project is using—that is, one size fits all. The reality
is that you select the model(s) that makes sense for a
given system entity at any level of abstraction (Figure 8.7).
The selection is based on the risk-dependent circumstances
such as unknown, fuzzy, or poorly defined requirements,
technologies, and the Enterprises competency in applying the
model(s). The answer might be one model or several models,
depending on the project. The overall project might decide
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to use the V-Model for overall System Development, Spiral
Development for developing Subsystem #1’s hardware or
software, and Agile Development for developing Subsystem
#2’s software.

Agile Development, as is the case with any model, is one
of several methods that can be applied for application to any
Entity such as a Subsystem, Assembly, and Subassembly
or its Hardware/Software. There are caveats, however, in
which Agile Development methods may be better suited for
specific system, HW, or SW development tasks, applications,
and deliverables for which a dedicated team is assigned with
minimal external distractions. In development environments
that thrive on “multi-tasking” of personnel, Agile Develop-
ment may not be practical.

Due to Agile Development’s adoption in the software
community, people often erroneously perceive it to be a
method for coding software faster. This is factually incorrect!
Agile Development is an approach for focusing software
development activities on high-value–high-return customer
priorities. Schwaber and Sutherland (2011) refer to it as a
framework.

Remember that as stated in Principle 15.13, Agile De-
velopment does not prescribe a specific System Develop-
ment Model. During our earlier discussions of the V-Model
and Spiral Development in this chapter, we noted that SW
developers contend that the stage–gate models such as the
V-Model are impediments for producing deliverables effi-
ciently. The irony here is that Software Developers still have
to specify, design, build, integrate, and test each Sprint User
Story to “Engineer” the product. As a result, they come
full circle back to a form of scaled-down Development Pro-
cess Model such as the V-Model or Spiral Model within the
Sprint to produce incremental software deliveries as shown
in Figures 15.7.

15.8.15.6 SE Essential versus Agile Minimalist
Documentation

Principle 15.16

Minimal–Essential SE Documentation
Principle

Produce only minimal, essential docu-
mentation that is necessary and sufficient
for the:

1. Developers to specify, design, build, integrate, test,
train, and maintain (optional) the product.

2. User’s to operate, maintain, and sustain (where ap-
plicable) the system, product, or service to perform
missions.

One of the Agile Software Manifesto’s statements ex-
presses the paradoxical choice of “working software over
comprehensive documentation.” An illustrative example
of “comprehensive documentation” occurs in the A&D,

medical, nuclear, and other domains for contracts issued by
a government or subject to government oversight and regula-
tions. Requirements originate in the interest of flight, ground,
or medical safety for (1) the operators, the maintainers, and
the public and (2) the need for maintainers with various lev-
els of skills to easily understand and maintain the systems for
many years.

With the advent of the Agile Software Manifesto, it
is good to challenge ourselves to determine “where truth
resides.” What is the least costly, minimal, and essential
approach to documenting a System Design Solution? The
answer depends on the Users and their skill levels. Agile
Developers contend that Agile principles do not say “no
documentation”: only the minimal amount—as abstract as
the term is—of documentation needed to help someone
understand how the System or Product is designed. The
fallacy of this assertion is as follows:

1. What is easy for a software developer to understand a
design decision within their skillset may be difficult for
someone else with a different skillset.

2. The fielding of a system, product, or service require-
ments requires more than simply understanding its de-
sign. You must understand its deployment, operation,
maintenance, and sustainability (OM&S) as well as re-
tirement and disposal, which are contributors to the
overall TCO.

A Word of
Caution 15.1

The Minimal Documentation
Conundrum

One of the shortcomings of the human
condition is a general dislike for docu-
mentation. Where Product Owner and

Agile Development or Scrum Team leadership is weak or
inexperienced, a “minimum” documentation objective can
evolve into a culture that rationalizes their decisions—“no
documentation is great!”—contrary to sound engineering
practices. Comments such as these express personal opin-
ions, not SE User advocacy values. Insightful, experienced
leadership with decision-making wisdom is critical to ensure
the necessary level of essential documentation. Challenge
yourself and your team: if I (we) had to operate or maintain
this system or software, would there be sufficient information
to enable us to perform the task without having to spend
hours searching for it or trying to figure out what the original
developer intended?

In SE, we emphasize the need for only essential
documentation—as abstract as that term is. We can say
that essential means that reasonably competent designers
and maintainers should be able to read, understand, or
analyze a System or Product’s design, understand what
decisions and trade-offs were made and why, be able to
train other Users, and maintain the system in the field.
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Therefore, you might expect to see decision artifacts such
as specification requirements; ConOps; architecture, design,
and performance trade-offs and selections; and a design de-
scription of the System including its Equipment (hardware
and software); drawings, wiring lists, and parts lists; and
TCs and procedures.

The challenge question is what level of documentation is
both necessary and sufficient? Viewing the documentation
for an Entity such as a Subsystem, Assembly, Computer
Software Component (CSC), or Computer Software Unit
(CSU) as a “system” requires understanding who its Stake-
holder Users and End Users are and their role-based UCs.
Then and only then can you determine what is minimal and
essential to satisfy the component’s necessary and sufficiency
documentation criteria.

15.8.15.7 Agile Application to Integrated Hardware and
Software Development Initial responses about applying
Agile Development to a System or integrated HW and SE
Product raise eyebrows, especially for medium to large,
complex systems. Some will argue that changes can be made
in software in a matter of minutes. In contrast, mechanical
and electrical/electronic HW that executes the SW changes
may require more time such as hours, days, weeks, or months
to modify.

Suppose we have a tightly packaged electromechanical
device—Subsystem, Assembly, and Subassembly—with
no space for modification without disassembling the whole
package. Although software changes may be easily uploaded
onto the device, electronic and mechanical hardware modi-
fications may require days, weeks, or months. But also ob-
serve that if the device is physically assembled as a packaged
electromechanical device, application of Agile Development
may be more applicable to the software changes within the
device. Remember that one of the motivations for moving to
software-intensive systems is to accommodate quick changes
to avoid expensive, time-consuming hardware changes, as-
suming they are not impacted.

Now, consider the application of Agile Development
methods to the early design of the device.

Example 15.8

Application of Agile Development to
Integrated HW and SW Designs

Assume that a multi-discipline project
team is assigned accountability for de-

veloping a microprocessor-based controller device with
Input/Output (I/O) ports. The team formulates and selects
an architectural design and creates a laboratory breadboard
model using wire-wrap or other technology.

As the design evolves and matures, from time to time,
modifications may be made to accommodate changing User
requirements. In that case, reconfiguration and modification
of electronic connections, port addresses, as well as the
I/O driver software might take 30 minutes to an hour.

Remember that the breadboard prototype is an unpackaged
working model. So, in this context, multi-discipline Agile
Development methods apply to early integration of hardware
and software designs and components such as Assembly or
Subassembly Level prototypes.

You may ask: what about mechanical components?
Changes in today’s mechanical technologies are also becom-
ing responsive to changing requirements. Such is the case
with 3-D printing for parts manufacturing that can employ
lasers or depositions to create components that would oth-
erwise take weeks or months to machine. Example tech-
nologies include Stereolithography (SLA), Fused Deposition
Modeling (FDM), Selective Laser Sintering, and others.

15.8.16 Agile Development Summary

In summary, Agile Development methods offer opportunities
for SE to improve its efficiency and effectiveness, especially
where dedicated task teams are able to work undistracted or
with minimal interruption. However, a word of caution!

A Word of
Caution 15.2

Due Diligence Decisions

As with any business decision, it is crucial
that an Enterprise perform due diligence
before amateurishly deciding to employ the
latest marketplace methods. What works

for one Enterprise or project may not work for others
depending on personnel education and training, in-grained
cultures, management, and discipline. You need to “fit
check” concepts such as Agile Development beginning with
small pilot projects and teams. Deciding to employ Agile
Development or any method for the first time on a moderate
to large, complex System Development project is high risk
and is a recipe for failure. There is a difference between
making risk mitigated, informed decisions versus ad hoc,
uninformed decisions.

15.9 SELECTION OF SYSTEM VERSUS
COMPONENT DEVELOPMENT MODELS

Principle 15.17

Project Development Models Principle

Select System Development process
models to uniquely satisfy System,
Product, Subsystem, Assembly, de-

velopment requirements, technology, risk, team skills, and
development constraints.

Principle 15.18

Development Model Rationale
Principle

Document each development model se-
lection including rationale for:
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• Selection

• Rejection of other models

Recognize that system development projects may employ
several different development strategies, depending on the
system or entity. You may find instances where the system
is developed using IID of which one or more of its “builds”
may employ another development strategy such as Spiral
Development.

If you analyze most systems, you will find Subsystems,
Assemblies, and Subassemblies that:

• Have well-defined requirements.

• Employ mature, off-the-shelf technologies and design
methods that have matured over several years.

• Are developed by highly competent and experienced
developers.

Other Subsystems and Assemblies may have the oppo-
site situation. They may have:

• Ill-defined or immature requirements.

• Immature technologies and design methods.

• Inexperienced developers.

• All of these.

Where this is the case, you may have to select a specific
development strategy that enables you to reduce the develop-
ment risk. Consider the following example.

Example 15.9

Multiple Development Process Models

Over the years, automobile technology
has evolved and increased in complexity.
Today, we enjoy the benefits of new tech-

nologies such as fuel injection systems, Antilock Braking
Systems (ABS), front-wheel drive, airbag Safety Restraint
Systems (SRS), crumple zones, GPS mapping, and so on.
All facets of automobile design have evolved over the years.
However, for illustration purposes, imagine for a moment
that the fundamental automobile at higher levels of abstrac-
tion did not change drastically. Most still have four doors,
a passenger compartment, trunk, windshield, and steering.
However, the maturation of the major technologies noted
earlier required strategies such as Spiral Development that
enabled them to mature and productize technologies such as
hybrid engine or ABS for application and integration into an
Evolutionary Development Model of the basic automobile.

15.10 CHAPTER SUMMARY

Our discussion in this chapter provided an overview of the
various System Development Strategy practices. System and

Product development approaches require implementing a
smart strategy that enables you to meet technical, cost, and
schedule requirements with acceptable risk as well as User
operational needs. Selecting the right system or product
development strategy is a key competitive step. From an
SE perspective, familiarize yourself and team with the basic
attributes of each type of model and understand how to apply
it to meet your specific application needs.

15.11 CHAPTER EXERCISES

15.11.1 Level 1: Chapter Knowledge Exercises

1. What is a system development process model?

2. What are the six primary system development process
models?

3. Describe the “V”-Model, its characteristics, and short-
comings.

4. Describe the Waterfall Development Model, its charac-
teristics, and shortcomings.

5. Describe the Evolutionary Development Model, its
characteristics, and shortcomings.

6. Describe the Incremental Development Model, its
characteristics, and shortcomings.

7. Describe the Spiral Development Model, its characteris-
tics, and shortcomings.

8. Describe the Agile Development Model, its characteris-
tics, and shortcomings.

9. How is the SE Process Model applied to these
development process models?

10. Does the Agile Development Method prescribe a spe-
cific Development Model? If so, which one(s)?

15.11.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e.
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16
SYSTEM CONFIGURATION IDENTIFICATION
AND COMPONENT SELECTION STRATEGY

From the moment of system inception, System Users, Acq-
uirers, Developers, Maintainers, and others begin making
system development decisions that evolve over time. Such is
the case for System Engineering and Development … de-
liver the verified physical system within the triple project
constraints of compliance to technical requirements, on
schedule, and within cost. This requires a highly structured,
organized, and orchestrated approach to progressively mea-
sure and report technical status and maturity of the evolving
system design solution. From a programmatic perspective,
the accountability, corrective action, and periodic progress
reporting of the status and maturity of the evolving system
design solution resides with the project engineer or Lead SE
(LSE) at key technical program events such as reviews, tech-
nical status reports, etc.

As part of their accountability, the project engineer or LSE
must capture the state of the evolving system design solution
that represents a “snapshot in time” of technical decisions.
Examples include stakeholder operational needs, use cases
and most likely or probable scenarios, required operational
capabilities, operations, behaviors, physical implementation,
and others. This chain of topics also represents dependencies
that evolve and mature at key staging points throughout
the System/Product Life Cycle phases. Since humans must
have physical objective evidence to review, documentation
such as specifications, architectures, designs, drawings, etc.;
prototypes; demonstrations; and models and simulations
become the basis for assessment. As a “snapshot in time,”
they represent arrangements and time-dependent interactions
of operational, behavioral, or physical entities or components

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

that require unique configuration identification, version,
and time stamp—that is, Configuration A, Version 1.1,
Month/Day/Year.

Collectively, the set of configurations become part of what
is referred to as the Developmental Configuration of the sys-
tem, product, or service. As technical reviews are conducted
throughout the project, the evolving Developmental Config-
uration becomes the framework for measuring and reporting
the progress, status, and maturity of the evolving system de-
sign solution.

One of the frailties of the human condition is the ability
to: (1) make and commit to timely, informed decisions
when required and (2) to build on those decisions that
lead to other decisions and subsequently to delivery of
the system, product, or service. Dr. William McCumber
and Sloan (2002, p. 4) observed that the job of SEs (and
Project Engineer) is to “maintain intellectual control of
the problem solution” (Principle 1.3). Otherwise, ad hoc,
Plug and Chug … Specify-Build-Test-Fix (SBTF) - Design
Process Model (DPM) Paradigm Engineering will prevail
and lead to confusion and chaos.

The LSE or Project Engineer in collaboration with the
System Architect, appropriate team leads or engineers, the
Configuration Manager, and others must define a strategy
that identifies when and how the Developmental Con-
figuration of the evolving System Design Solution and
configurations of its lower level hierarchical entities will
be identified, captured, reviewed, approved, baselined,
released, and controlled. The planning for these decisions
and their criteria are synchronized and documented in the

http://www.wiley.com/go/systemengineeringanalysis2e
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project’s Systems Engineering Management Plan (SEMP)
and Configuration Management Plan (CMP).

This chapter describes how elements of a system’s ar-
chitectural configuration are identified and designated for
configuration control and tracking. Our discussions begin
with establishing Configuration Management (CM) seman-
tics and explain why these terms are often confusing.
We explore how architectural items are selected from ex-
ternal vendor Commercial-Off-the-Shelf (COTS) items or
Non-Developmental Items (NDIs), or Acquirer Furnished
Property (AFP), or developed in-house from legacy designs
or new development. We provide illustrations of how items
are assigned to engineering development teams. We conclude
with a discussion of when to establish Developmental Con-
figuration baselines and contrast SE and CM viewpoints.

16.1 DEFINITIONS OF KEY TERMS

• Allocated Baseline—“Documentation that designates
the Configuration Items (CIs) making up a system and
then allocates the system function and performance re-
quirements across the CIs (hence the term - allocated
baseline). It includes all functional and interface char-
acteristics that are allocated from those of a higher
level CI or from the system itself, derived require-
ments, interface requirements with other CIs, design
restraints, and the verification required to demonstrate
the achievement of specified functional and interface
characteristics. The performance of each CI in the al-
located baseline is described in its item performance
specification” (DAU, 2012, p. B-10).

• Acquirer Furnished Property (AFP)—“Physical as-
sets such as Equipment, Mission Resources, Hard-
ware, Software, and Facilities provided by the User
or other organizations via the Acquirer contract to the
System Developer for modification and/or integration
into a deliverable system, product, or service.”

• Baseline—A collection of configuration-controlled,
specification and design requirements documentation
for a Configuration Item (CI) or set of CIs that repre-
sents the current, approved, and released version of a
document or data item available for decision making.

• Baseline Management—“In configuration manage-
ment, the application of technical and administrative
direction to designate the documents and changes to
those documents that formally identify and establish
baselines at specific times during the life cycle of a con-
figuration item” (SEVOCAB, 2014, p. 28 - Copyright
2012 ISO/IEC. Used with Permission) (ISO/IEC/IEEE
24765:2010).

• Change Request (CR)—A formal document submit-
ted to Configuration Management (CM) requesting
and specifying a corrective action to a Developmental
Configuration Baseline document that contains a latent
defect such as an error, inaccuracy, deficiency, design

flaw, and so forth. CRs are typically: (1) initiated as a
result of an investigative analysis triggered by a Prob-
lem Report (PR); (2) reviewed by a Configuration Con-
trol Board (CCB); (3) reviewed and approved, rejected,
or placed on hold by the CCB; and (4) tracked to com-
pletion by CM based on successful verification of the
corrective action. CRs for software corrective actions
are referred to as Software Change Requests (SCRs);
SCRs follow the same process as CRs with the excep-
tion of review and approval by a Software Configura-
tion Control Board (SCCB).

• Commercially Available Off-the-Shelf (COTS)—“A
Commercial Item (CI) sold in substantial quantities
in the commercial marketplace and offered to the
government under a contract or subcontract at any
tier, without modification, in the same form in which
it was sold in the marketplace. This definition does
not include bulk cargo such as agricultural prod-
ucts or petroleum” (FAR, Subpart 2.101) DAU, 2012,
p. B-34.

• Commercial-Off-the-Shelf (COTS) Product—A
product available via a catalog or web site that is desi-
gned for ambient or industrial operating environments.

• Computer Software Configuration Item (CSCI)—
“An aggregation of software that satisfies an end use
function and is designated for separate configuration
management by the acquirer. CSCIs are selected based
on trade-offs among software function, size, host or
target computers, developer, support concept, plans
for reuse, criticality, interface considerations, need to
be separately documented and controlled, and other
factors” (MIL-STD-498, 1994, p. 5).

• Configuration—“A collection of an item’s descriptive
and governing characteristics, which can be expressed
in functional terms, i.e., what performance the item is
expected to achieve; and in physical terms, i.e., what
the item should look like and consist of when it is built”
(DAU, 2012, p. B-39).

• Configuration Baseline—A snapshot at a specific
instant in time representing the current state of a
system, product, or service’s Developmental Configu-
ration technical work products such as specifications,
designs, drawings, schematics, parts lists, analyses,
trade studies, and so forth that are new or have been
revised, reviewed, approved by an approval authority,
and released for project decision making.

• Configuration Control—“(1) A systematic process
that ensures that changes to released configuration
documentation are properly identified, documented,
evaluated for impact, approved by an appropriate
level of authority, incorporated, and verified. (2) The
configuration management activity concerning: the
systematic proposal, justification, evaluation, coordi-
nation, and disposition of proposed changes; and the
implementation of all approved and released changes
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into (a) the applicable configurations of a product,
(b) associated product information, and (c) supporting
and interfacing products and their associated product
information.” (MIL-STD-61A (SE), p. 3–4 and 3-5)

• Configuration Change Management - The CM pro-
cess of administering formal change management pro-
cedures. Formal process activities include receipt and
logging of new document work products or Change
Requests (CRs) to current baselines, coordination and
conduct of reviews of proposed changes, approval of
changes by an approval authority, follow-up corrective
actions, incorporation of changes into current baseline,
and formal release for project decision making.

• Configuration Identification—“(1) The systematic
process of selecting the product attributes, organizing
associated information about the attributes, and stating
the attributes. (2) Unique identifiers for a product
and its configuration documents. (3) The configura-
tion management activity that encompasses selecting
configuration documents; assigning and applying
unique identifiers to a product, its components, and
associated documents; and maintaining document
revision relationships to product configurations”
(MIL-STD-61A, p. 3–5).

• Configuration Item—A System or Entity at any
level of abstraction such as Equipment, Hardware,
Software, or Courseware item that has been sep-
arately identified and designated for: (1) development
under formal Configuration Control Management pro-
cedures and version control and (2) assignment of
model numbers and serial numbers.

• Configuration Management—“A management pro-
cess for establishing and maintaining consistency of
a product’s performance, functional, and physical
attributes with its requirements, design and opera-
tional information throughout its life. (MIL-STD-61A,
p. 3–5)

• Configuration Status Accounting (CSA)— A CM
process that: (1) implements one of the four CM func-
tions, (2) formally documents the state of the Devel-
opmental Configuration of a system or product at a
specific instance in time, (3) maintains and accounts
for current configuration status of the Developmen-
tal Configuration and any of its baselined documents,
(4) records the current disposition of Acquirer Fur-
nished Equipment (AFP) and contract documents, and
(5) archives and tracks approved Change Requests
(CRs).

• Data—Information documented in any form of me-
dia such as documents, audio and video recordings,
photographs, drawings, personal notes, measurements,

and so forth that contain Enterprise, contractual, se-
curity, programmatic, technical, and personnel in-
formation that can be read, deciphered, aggregated,
transferred, and analyzed for decision making.

• Developmental Configuration: Refer to the Chapter 12
Definition of Key Terms.

• Effectivity—Designation defining the point in time,
an event, or a product range (e.g., serial, lot number,
model, date) at which changes or variances to spe-
cific products are to be effected. The authorized and
documented point of usage for a specific configuration
of a part/assembly/installation, etc. (FAA SEM, 2006,
Vol. 3, p. B-3).

• Firmware—“The combination of a hardware device
and computer instructions or computer data that reside
as read-only software on the hardware device. The
software cannot be readily modified under program
control” (DAU, 2012, p. B-85.).

• Hardware Configuration Item (HWCI)—“An aggre-
gation of hardware that satisfies an end use function
and is designated for separate configuration manage-
ment by the Acquirer” (MIL-STD-498, p. 5).

• Item—“A nonspecific term used to denote any prod-
uct, including systems, materiels, parts, subassemblies,
sets, accessories, etc.” (MIL-HDBK-61A (SE), 2001,
p. 3–8).

• Legacy System—An existing system design that has
been verified and subjected to field use and may or may
not be operational.

• Line Replaceable Unit (LRU)—“An essential support
item removed and replaced at field level to restore an
end item to an operationally ready condition” (DAU,
2012, p. B-144).

• Make–Buy–Modify Decisions—Technical decisions
that determine whether to develop an item or lower
level item internally, procure as a COTS/NDI or sub-
contract item from an external vendor, or procure an
item from an external vendor and modify internally to
meet Entity Development Specification (EDS) require-
ments.

• Non-conformance—“The failure of a unit or product
to meet a specified requirement” (MIL-HDBK-61A
(SE), 2001, p. 3–8).

• Non-Developmental Item (NDI)—A COTS product
that has been modified or adapted (i.e., customized or
tailored) by its developer to meet procurement spec-
ification requirements for application in a prescribed
operating environment.

• Out-of-the-Box Functionality—Specified capabil-
ities and levels of performance inherent to a COTS
product or NDI as specified in a vendor catalog or
Production Specification.
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• Outsourcing—A business decision to procure sys-
tems, products, or services from external organizations
based on cost avoidance resource availability, or other
factors.

• Product Breakdown Structure (PBS)—The phys-
ical hierarchical structure of a system, product, or
service.

• Release—A formal CM event announced by a formal
letter and/or electronic notification stating that an item
has been formally baselined and placed under formal
CM Control or an updated version is now approved for
decision making.

• Technical Data Package (TDP) “A technical descrip-
tion of an item adequate for supporting an acquisi-
tion strategy, production, engineering, and logistics
support. The description defines the required design
configuration and procedures required to ensure ad-
equacy of item performance. It consists of all appli-
cable technical data such as drawings and associated
lists, specifications, standards, performance require-
ments, quality assurance provisions, and packaging de-
tails.” (MIL-HDBK-61A (SE), 2001, p. 3-10)

• Variance—A non-compliance such as an error or
inaccuracy in information; physical items such as
Equipment, Hardware, Software, or Courseware;
material composition; or workmanship practices that
deviates from a standard reference for compliance such
as a specification, drawing, and so forth.

Author’s Note 16.1

In previous discussions, our seman-
tics have used terms such as entities
and components that have contextual
definitions. The CM community uses
the term item to connote physical en-

tities in the same manner SEs refer to components. In this
chapter, we will use item due to the chapter’s context. When
you read item, equate it to entities or components.

16.2 ITEMS: BUILDING BLOCKS OF SYSTEMS

Principle 16.1

Configuration Items (CIs) Principle

Every physical component within a system
as an item by CM. Some items are desig-
nated as CIs for internal development; oth-

ers as COTS products or NDIs available for procurement
from external vendors for procurement.

Depending on the size and complexity of the system or
item being developed, Product Development Teams (PDTs)
such as Integrated Product Teams (IPTs) are assigned roles
and responsibilities for specifying, designing, developing,
integrating, and verifying various components within the
system. This presents some significant challenges:

• How do you partition the architecture of the
Equipment Element into a PBS with multiple levels
of Physical CIs?

• How can projects establish semantics that enable them
to communicate with others about the types of items
being developed internally or procured from external
vendors?

• How can project teams communicate about the evolu-
tion of system items that go through various stages from
abstract system specification entities into physical com-
ponents used to build the system?

The solution resides in integrated “building blocks” re-
ferred to as items, CIs, HWCIs, and CSCIs. Each of these
building blocks represents semantics used to identify abstract
entities within a system or product and their evolution from
the System Performance Specification (SPS) or Entity De-
velopment Specification (EDS) to deliverables.

16.3 UNDERSTANDING CONFIGURATION
IDENTIFICATION SEMANTICS

Configuration identification knowledge for most SEs typi-
cally comes from informal exposure via verbal discussions
in meetings and On-the-Job Training (OJT) over many years.
Most engineers:

• Have little or no formal training in the four functions of
CM: Configuration Identification, Configuration Con-
trol, CSA, and Configuration Audits.

• Are self-taught through observation and experiential
knowledge of general CM standards and concepts.

As a result, some may perceive themselves to be configu-
ration experts.

These rudimentary skills provide basic insights about sys-
tem architectural configuration decisions. Instead of seeking
insightful guidance from a competent CM, technical leads
exercise their authority, make decisions, and wander down
self-directed decision-making paths leaving the project engi-
neer, LSE, or CM and others to needlessly expend valuable
time and resources contending with the Law of Unintended
Consequences and cleaning up the after effects of their poor
decisions. So, to minimize the confusion and chaos, let’s be-
gin by introducing some key terms. Figure 16.1 depicts entity
relationships to support our discussions.

16.3.1 Configuration Items (CIs)

When a System Developer decides to develop a major
item such as a Product, Subsystem, or Assembly, or
Subassembly in-house, the project designates the item –
entity or component - as a CI. Since the item will be new,
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Figure 16.1 System Configuration Identification Elements

has an unproven design solution, and requires verification,
CIs typically require a specification that specifies and bounds
its capabilities and performance.

A CI, as a major item such as a Product, Subsystem,
or Assembly, integrates lower level items - entities or
components - that may consist of combinations of AFP,
COTS products, NDIs, and two other types developed by the
System Developer in-house:

• Hardware Configuration Items (HWCIs)

• Computer Software Configuration Items (CSCIs)

16.3.2 HWCIs and CSCIs

HWCIs are major hardware items and CSCIs are major
software applications designated for formal configuration
control. Using an automobile as an example:

• HWCIs might consist of end use Systems, Products, or
Assemblies such as engine, mission computer system,
entertainment system, and so forth.

• CSCIs might consist of the end use software operating
on computers such as the mission computer, Anti-Lock
Braking System (ABS) distributed computers, and so
forth.

Referring to Figure 16.1, an HWCI or CSCI may consist
of COTS products, NDIs, AFP internally developed or legacy
items, or combinations of these.

• For items designated as an HWCI, its requirements are
documented in an HWCI Requirements Specification
(HRS). Typically, the scope of each HRS addresses
only one HWCI.

• For items designated CSCI, its requirements are typ-
ically documented in a CSCI Software Requirements
Specification (SRS). Typically, the scope of each SRS
addresses only one CSCI.

These guidelines for HWCIs and CSCIs may evolve over
time. Always consult your contract and Project Engineer for
guidance.

A Word of
Caution 16.1

Specification of CSCIs and HWCIs

Traditionally, one specification documents
an HWCI or CSCI. In that context, a Sys-
tem Acquirer can easily acquire a single
HWCI or CSCI. For odd reasons, some

Enterprises today document multiple HWCIs or CSCIs
within a single specification such as an HRS or SRS.
That may be acceptable for strictly internal development,
especially software. However, you certainly would not
send an SRS specifying all your CSCIs to your com-
petitor when requirements for one and only one CSCI
are required – yes, competitors do team together. Think
smartly before you decide to document multiple CSCIs
within a single SRS. Traditional Engineering practice says
avoid it!



UNDERSTANDING CONFIGURATION IDENTIFICATION SEMANTICS 349

16.3.3 CI Boundaries

Principle 16.2

CI Boundary Principle

CIs are constrained to the confines of a
physical boundary such as a Subsystem,
Assembly, Subassembly, HWCI, CSCI,

or Part; they do not physically exist beyond that boundary.

Items and CIs should not be partitioned across physical
device boundaries; this is a violation of Principle 16.2 and
addressed later in Figure 27.8. In general, CIs:

• Are bounded by an SPS, EDS, HRS or CSCI SRS.

• Reside within the boundaries of a physical item—such
as System, Subsystem, Assembly, or Subassembly
such as a computer system, printed circuit board, or
software application.

• Must be verified for compliance against their respective
HRS or SRS.

To illustrate this point, consider the hypothetical example
below.

Example 16.1

Computer Word Processing Software
Application Example

Assume you are tasked to develop a word
processing software application for an

Equipment Element desktop computer system (HWCI)
and a printer (HWCI) being developed by your project. The
team designates the word processor application as a CSCI.
When installed properly, the Word Processing CSCI resides
on the Desktop Computer System (HWCI), not the Printer
(HWCI). When the word processor User decides to print a
document, the Word Processor CSCI invokes the Desktop
Computer System’s (HWCI) operating system services to
transfer the document to the the Printer CSCI for printing.

16.3.4 Firmware

Some processor-based applications such as Single-Board
Computers (SBC) employ software encoded into an Inte-
grated Circuit (IC) referred to as firmware. Firmware, which
is nonvolatile memory devices, may be implemented as
single-use, read-only, or reprogrammable devices as shown
in Figure 16.2.

Initially, a software program to be executed by an SBC
is developed as a CSCI software application and debugged
on laboratory prototype SBC hardware using emulators and
other devices. Emulator hardware on software development
devices usually have a cable with connector that plugs into
the socket where a microprocessor will reside on the PC
board. As a result the emulator – emulating the actual
processor - can exercise the SBC’s I/O, memory, and so forth
as part of the software debugging process.

When the software application reaches maturity and is
ready for final installation on the SBC, the CSCI’s code is
electronically programmed into the firmware device, either
separately or once installed on the SBC. Once programmed,
the firmware is:

• Designated as an HWCI.

• Assigned a part number, serial number, version, and
date.

Both the CSCI and HWCI are controlled in accordance
with the formal CM change management procedures.
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Heading 16.1

The preceding discussions introduced the
semantics of configuration identification.
Our follow-on discussions illustrate why
the referential nature of Configuration Iden-
tification semantics when applied to levels

of abstraction sometimes result in confusion.

16.3.5 Configuration Semantics Synthesis

To understand how Configuration Identification semantics
relate to multi-level system architectures, Figures 16.1 and
16.3 depict the Entity Relationships (ERs). Table 16.1 pro-
vides a listing of ER rules that govern the implementation of
this graphic.

N

E

S

W

Heading 16.2

At this juncture, we have established the se-
mantics framework for understanding Cls.
The question is: How do we determine
which items should be designated as Cls?
This brings us to our next topic on the
Selection of CIs.

16.3.6 Selection of CIs

The preceding discussions established that CIs are typically
items, especially major items, developed internal to the
System Developer. While this is an important criterion, CIs
often require additional considerations. The best approach
for selecting CIs is to simply establish a set of selection
criteria. Then, perform a reasonableness check to ensure that
the selection:

1. Is logical.

2. Provides the proper visibility concerning technical,
cost, and schedule performance; risk; and configuration
control.

3. Exposes development activities at a level that can be
used for assessing risk.

Some organizations establish specific criteria for selecting
CIs that go beyond simply deciding to develop an item
internally. These decisions should be made in collaboration
with a project’s CM.
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The selection of CIs often varies from one organization
or business domain to another. To standardize thinking about
selecting CIs, MIL-HDBK-61A, for example, offers the
following guidance in selecting CIs:

1. Does the item implement critical capabilities (e.g., se-
curity protection, collision avoidance, human safety,
nuclear safety)?

2. Would CI designation enhance the required level of
control and verification of these capabilities?

3. Will the item require development of a new design or
a significant modification to an existing design?

4. Is the item computer hardware or software?

5. Does the item incorporate unproven technologies?

6. Does the item have an interface with a CI developed
under another contract?
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TABLE 16.1 Configuration Semantics Rules

Rule Title Configuration Identification and Development Rule

16-1 Items Every physical component within a system, regardless of level of abstraction, is referred to as an item

16-2 CIs Items at all levels of abstraction selected for internal development are referred to as CIs

16-3 CIs Items originate from several types of sources:

1. Replicated from existing legacy component designs

2. Acquired as COTS, NDI, or AFP components or materials

3. Acquired as COTS, NDI, or AFP components or materials and modified in-house

4. Developed as new designs such as an HWCI(s) or CSCI(s)

16-4 CI Composition A CI’s composition may consist of one or more COTS products, NDIs, HWCIs, CSCIs, AFPs, or
combinations thereof

16-5 HWCIs and CSCIs Develop an HRS for each HWCI; develop a CSCI SRS for each CSCI

16-6 CI Solution Domains Each CI, HWCI, and CSCI is characterized by its Four Domain Solutions (Chapters 11 and 14)
Requirements Domain, an Operations Domain, a Behavioral Domain, and a Physical Domain
Solution

16-7 CSCIs The Product Structure for each CSCI consists of at least two or more Computer Software Components
(CSCs), each of which consists of at least two or more Computer Software Units (CSUs)

16-8 CI Ownership Each CI, HWCI, and CSCI must be assigned to an accountable individual or team responsible for its
design, development, and integration and verification

7. Can the item be readily marked to identify it as a
separate, controlled item?

8. Does the item interface with a CI controlled by
another design activity?

9. Will it be necessary to have an accurate record of the
item’s exact configuration and the status of changes to
it during its life cycle?

10. Can (or must) the item be independently tested?
11. Is the item required for logistic support?
12. Is it, or does it have the potential to be designated for

separate procurement?
13. Have different activities have been identified to logis-

tically support various parts of the system?
14. Is the item at an appropriate level for Government

configuration control? (MIL-HDBK-61A , Table 5.2.
p. 5–8)

16.3.7 Configuration Identification Responsibility

Configuration Identification, as an informed, multi-
discipline, decision-making process, requires collabora-
tion with stakeholders. Contrary to what many people
believe, it is not a decision by one individual exercising
their discretionary authority without inputs from the key
decision stakeholders. As the multi-level system or en-
tity architectures evolve, the CM, Software Configuration
Manager (SCM), LSE, development team leads, and others
collaborate to establish criteria for identifying items and CIs
and avoid costly corrective actions.

At this point, we have established the basic set of Con-
figuration Identification semantics and how they are applied
to multi-level system architectures. These discussions high-
lighted the need during internal development to prepare an
EDS for each CI, HWCI, and CSCI. For the first article
produced as part of the Developmental Configuration, this
is a straightforward process. However, two key questions
emerge:

• How are these specifications maintained for production
systems that evolve over time as new capabilities and
refinements are added to established designs as new
models or versions?

• How do these impacts affect systems or products that
are already fielded but may require retrofitting?

This brings us to our next topic, Configuration Effectivity.

16.3.8 Configuration Effectivity

Production systems or products may evolve over several
years as newer technologies, capabilities, and improvements
are incorporated into the evolutionary System Design So-
lution. As such, the capabilities and CIs may change. The
question becomes: How do we delineate the changes in con-
figuration to a given CI, HWCI, or CSCI? CM addresses
these configurations via a concept referred to as configura-
tion effectivity?

Every CI, HWCI, and CSCI is formally assigned a unique
identifier that delineates it from all others. Examples include
(1) model number and (2) serial number. As a System or
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Product’s physical configurations evolve over the years
requiring changes to the SPS, HRS, or SRS, there is a need
to delineate those items from their predecessors. In general,
organizations simply reference the effectivity beginning with
Serial Number XXX; others append a “dash number” to
the model number such as Model 123456-1 to indicate a
specific version. Most Enterprises affix barcode labels to CIs,
HWCIs, and CSCIs to facilitate automated scanner version or
configuration tracking.

Versioning provides the System Developer a couple of
options: (1) it allows evolutionary tracking of a product
line over its life span and (2) it provides a means to
account for special customizations delivered to an Acquirer.
In lieu of model numbers and versioning, some vendors may
be required to designate and label the item with contract
numbers, serial numbers, and other information. Here’s an
example.

Example 16.2

System or Entity CI Labeling

Developers of military systems may be
required to install CI labels in accordance
with the current version of MIL-STD-130.

Commercial product labeling may be required in accordance
with government or industry standards such as Underwriters’
Laboratories (UL).

Changes are versioned via new drawings, part lists, etc.
and labeled accordingly. But what happens to the SPS,
HRS, or SRS that serves as the source or originating
requirements for a product line? This brings us to our next
topic, Effectivity-Based Specifications.

16.3.9 Effectivity-Based Specifications

During the development of a System or Product,
multi-discipline SEs prepare EDSs for Products or
Subsystems, HRSs for HWCIs, and SRSs for CSCIs
that form the Developmental Configuration. Although cost
is a key constraint, most first article systems or products
may not represent the most cost-effective solution due to
schedule and other constraints. First articles are simply an
Engineering solution that complies with specification re-
quirements. Typically, each deliverable is assigned contract,
model, and serial numbers.

If a system is planned for production, Product Engineer-
ing focuses on reducing the recurring per unit production cost
via design improvements, component and material selection
and procurement, manufacturing methods, and so forth. Sub-
sequently, the improvements culminate in a revised EDS with
effectivity beginning with S/N XXX forward.

After production starts, CIs, HWCIs, and CSCIs evolve
over time. Whereas during the original system development,
revisions to the Developmental Configuration specifications
were issued when changes occurred. So, when production

item changes occur, you have to revise not only the specifi-
cation level but also the scope of the S/N effectivity.

When this occurs, SEs are confronted with a decision.
Do we (1) create a new specification unique to a specific
configuration effectivity - models and S/Ns or (2) update the
original specification to delineate which requirements apply
to specific models and serial number effectivity within the
document? The update approach enables requirements to be
kept in a single document but may become confusing and
difficult to manage over time.

16.4 CONFIGURATION ITEM (CI)
IMPLEMENTATION

16.4.1 Aligning CIs with the Specification Tree

Once CIs are identified, the key question is: How do you
designate their location within the system’s product struc-
ture? The answer is: CIs should be explicitly identified in
the Specification Tree based on the component it specifies
within the System Architecture’s hierarchical PBS as shown
in Figure 16.4.

Here, the System Development Team (SDT) analyzes the
SPS requirements to create the System Level architecture, as
shown in the lower left corner of the graphic. The architecture
consists of Products A and B. Product B, which will be
developed internally, is designated as a CI consisting of Items
B_1 through B_3.

As the system architecture evolves, the specification tree
changes accordingly as shown on the right side of the
graphic. Based on the designation of CIs and items, EDSs
are identified:

• Requirements for Product A are specified in the
Product A Development Specification.

• Requirements for Product B are specified in the
Product B Development Specification.

As the Product B’s architecture evolves, Items B_1–B_3
are identified as architectural components. Trade studies are
conducted for each item to determine if they are available
as COTS products, developed internally, procured externally,
and so forth:

• Since specific Product B Development Specification
requirements can be met by two separate COTS prod-
ucts, Items B_1 and B_2 are identified and will be pro-
cured as COTS products from different vendors.

• The remaining Product B Development Specification
requirements will be tentatively allocated to Item B_3.
The requirements are analyzed and a decision is made
to develop Item B_3 internally as a CI. Thus, the
requirements allocated and flowed down from the
Product B Development Specification to Item B_3
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will be incorporated into the Item B_3 Development
Specification.

16.4.2 Assigning Ownership of CIs and Items

Principle 16.3

CI Ownership and Accountability
Principle

Every Configuration Item (CI) should be
assigned to an owner accountable for its

design, implementation, integration & test, verification, and
validation.

As the Specification Tree evolves, accountability for CI
development should be assigned to owners such as PDTs or
IPTs. Figure 16.5 provides an illustrative example. Note how
the System’s architecture decomposes along PBS lines. This
is a key point, especially the operative word product.

For programs that employ PDTs or IPTs, each IPT fo-
cuses on “product” development and collaborates with IPTs
developing items that interface to their assigned product. For
example, IPT #1 collaborates with IPT #2 concerning mutual
interface definition and design compatibility and interoper-
ability issues.

Accountability for developing one product is assigned
to one and only one PDT or IPT. Depending on the size,

complexity, and risk of the multi-level items, an IPT may be
assigned accountability for items as illustrated in Figure 16.5.
Accountability for developing Products A and B, which
have a moderate degree of complexity and risk, is assigned to
IPT #1. In contrast, accountability for Product C is assigned
to IPT #2 due to its complexity and risk. This brings us to a
final point.

Projects often get into trouble because they establish a
functional project organizational team structure – EE, ME,
SwE, and so forth - instead of using the System Architecture
as the basis to derive the project team structure. With the
exception of SE, project functional organizations became
outdated decades ago.

Example 16.3

Project Organizations

If a project’s organizational structure were
developed first, Products A and B, which
have totally separate “end uses,” may be

arbitrarily and amateurishly bundled together and labeled as
a Product or Subsystem. Net result—A team is assigned to
develop the specification requirements for two entities that
share no interfaces or have any relevance to one another.

Remember that SE principles require a Product, Sub-
system, Assembly, etc. to consist of an integrated set of



354 SYSTEM CONFIGURATION IDENTIFICATION AND COMPONENT SELECTION STRATEGY

Configuration
Item Hierarchy

Product B
Configuration Item

Item
B_1

Item
B_2

System

Product A
Configuration Item

Item B_3
Configuration

Item

Product C
Configuration Item

Item
C_1

Item
C_2

PDT
#1

PDT
#2

CI A Lead

ITEM  B_1 Lead

ITEM  B_2 Lead

CI  B_3 Lead

ITEM C_1 Lead

ITEM C_2 Team Lead

PDT #1

PDT #2

PDT Responsibility &
Accountability

PDT #1 Accountability PDT #2 Accountability

Where:
• CI = Configuration Item
• PDT = Product Development Team

Figure 16.5 Configuration Item (CI) Accountability Assignments Matrix

components to produce an outcome that is greater than the in-
dividual components can achieve—for example, emergence
(Chapter 3).

The reality is projects develop “end use” Systems, Prod-
ucts, Subsystems, and so forth that require multi-discipline
Engineering, not “stovepipe” disciplines. As a result, projects
organizational structures are typically established along de-
liverable product lines. Consider the following example.

16.4.3 Recognizing Types of Architectural Item
Boundaries

The Industrial Revolution introduced new concepts for stan-
dardizing and reproducing modular and interchangeable
components via repeatable and predictable methods. Stan-
dardization enables us to leverage the benefits of economies
of scale by simplifying the number of components and,
in turn, reducing inventory costs. Our discussions about
System, Product, Subsystem, Assembly, Subassembly,
and Part levels of abstraction expound on these themes.

The concept of modularity can easily lead to an SE
mind-set that all items and CIs are constructed as modular
plug and play boxes. However, there are systems that require
integration across the traditional “box” boundaries. We tend
to think in terms of pure hierarchical structures consisting
of peer level Subsystems, Assemblies, and so forth. Hier-
archically, this is correct. However, some of the peer level
Subsystems or Assemblies are Enabling Systems provid-
ing capabilities that support other Mission System peers that
perform specific missions.

In general, systems often consist of two classes of
Products or Subsystems:

• Mission-specific Products or Subsystems – Mission
Systems.

• Infrastructure Products or Subsystems – Enabling
Systems

Figure 16.6 illustrates this type of architecture. Consider
the following example.

Example 16.4

Subsystems Versus Enabling
Subsystems

Office building systems have well-defined
architectural “box” boundaries comprised

of floors and office areas unique to Enterprises supported by
plumbing and electrical; Heating, Ventilation, and Air Con-
ditioning (HVAC); communications; and others represent the
building’s infrastructure systems as shown in Figure 16.6.
As illustrated, the infrastructure or Enabling Subsystems
transcend and support each of the Mission Subsystems. Fuel,
electrical, communications, and air subsystems traverse the
entire structure—for example, propulsion, passenger cabin,
and storage subsystems—of aircraft and automobiles.

16.4.4 Multiple Instances of CI Implementation

Although we tend to think that every item in a system
is unique, Systems and Products often have multiple
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instances of a single CI throughout the system. One of
the roles of SE and the SEIT is to reduce the Total Cost
of Ownership (TCO) – development and life cycle costs,
schedule, and risk. You do this by investigating the evolving
System Design Solution and searching for opportunities to
standardize components and interfaces. The bottom line is:
avoid “reinventing the wheel” by creating specialized CI
designs that can be satisfied by one common CI design. How
can this be accomplished?

One method for standardizing for design reuse is to sim-
ply perform a Domain Analysis of the System or Product
to identify similar design needs as opportunities for lever-
aging a single, multi-purpose design solution in hardware
or software. A common example occurs with standardizing
interfaces such as communications data protocols, electrical
signals, and mechanical layouts types.

16.5 DEVELOPMENTAL CONFIGURATION
BASELINES

System development requires translation of abstract SPS
requirements into a deliverable physical solution. The trans-
lation decomposes or refines abstract complexity into more
manageable lower levels of detail. Ultimately, a detailed

design emerges and matures to a point whereby design
requirements such as drawings and software designs are
sufficient in detail to support procurement, fabrication, and
coding of all items in the system.

Lower levels of design decisions, as refinements of higher
level decisions, are totally dependent on the maturation and
stability of the higher level design decisions (Principle 14.2).
Otherwise, the entire System Design Solution evolves into
multi-level confusion and chaos. So, as higher level decisions
stabilize, it is important to capture and control the state
of the evolving system design solution referred to as the
Developmental Configuration.

Principle 16.4

Primary Configuration Baselines
Principle

CM views every System as having three
primary Developmental Configuration
Baselines:

1. System Requirements or Functional Baseline
2. Allocated Baseline
3. Product Baseline

Systems in production have a Production Baseline.
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The Developmental Configuration is characterized by a
series of configuration “snapshots” that capture the evolving
System Design Solution at strategic stages of maturity.
Baseline management of the Developmental Configuration
provides a mechanism for SEs to maintain “intellectual
control” (Principle 1.3 - McCumber and Sloan, 2002, p. 4)
of the evolving and maturing System Design Solution via
configuration change management. Therefore, the scope of
the Development Configuration spans the time period from
Contract Award until System or Product delivery and
acceptance or is subsequently committed to a Production
Baseline.

Principle 16.5

SE Design Configurations Principle

Every System or Entity at any level of
abstraction has eight SE design configura-
tions: As Specified, As Allocated, As De-

signed, As Built, As Verified, As Validated, As Maintained,
and As Produced that must be current and consistent with
each other.

From a System Development perspective, there are a
series of System/Product Life Cycle Phase technical reviews
or events that assess the progress, status, and maturity
of the evolving System Developmental Configuration as a
condition for committing resources to begin the next stage
of development. Table 16.2 provides a listing of key staging
or control points.

Let’s briefly synopsize each of these SE configurations.
Each configuration is reviewed, approved, baselined, re-
leased, and controlled via formal CM procedures.

16.5.1 “As-Specified” Developmental Configuration

Principle 16.6

SPS Ownership Principle

As a contract element, the System Ac-
quirer owns and controls the contract SPS;
the System Developer maintains the SPS in

accordance with the contract direction authorized and pro-
vided by the Acquirer Contracting Officer (ACO).

The “As-Specified” Configuration represents the incre-
mental state of the evolving System, Subsystem, Assem-
bly, and others’ specification requirements, collectively and
individually, that comprise the System Requirements Base-
line of the Developmental Configuration as it evolves over
time. The initial instance of the “As-Specified” Config-
uration is established as the System Requirements Base-
line by some organizations based on formal review and
approval of the SPS by the System Acquirer and Sys-
tem Developer at the System Specification Review (SSR)
(Chapter 18).

16.5.2 “As-Allocated” Configuration

The “As-Allocated” Configuration represents the incremen-
tal state of the evolving incremental state of the evolving
System, Subsystem, Assembly, and others’ specification
requirements allocations to items within their respective ar-
chitecture. For example, allocation of:

• SPS requirements to Subsystems in the System Level
architecture

• Subsystem specification requirements to Assemblies
in the Subsystem Level architecture

16.5.3 “As-Designed” Developmental Configuration

The “As-Designed” Configuration represents the incremen-
tal state of evolving System, Subsystem, Assembly, and
others’ detailed design documentation derived from their re-
spective specifications in the System Requirements Baseline.
The initial instance of the “As-Designed” Configuration be-
gins with formal review and approval of the System Level
Architecture by some organizations at the System Design Re-
view (SDR) (Chapter 18).

TABLE 16.2 Key Developmental Configuration Staging Points as a Function of System/Product Life Cycle Phase

System Life Cycle Phase Process
Developmental Configuration

SE Baselines Technical Review

System Development System Design “As Specified” System Specification Review (SSR)
System Design “As Allocated” System Design Review (SDR)
System Design “As Designed” Critical Design Review (CDR)
Component Procurement and

Development
“As Built” Component Verification

System Verification “As Verified” System Verification Review (SVR)
System Validation “As Validated”

System Production Production Process “As Produced” Production Readiness Review (PRR)
System Operations, Maintenance and

Sustainment (OM&S)
“As Maintained” Fielded System
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16.5.4 “As-Built” Developmental Configuration

The “As-Built” Configuration represents the state of the
Developmental Configuration of any physical entity such as
System, Subsystem, Assembly, and others that have been:

1. Procured, modified, and/or developed internally or
externally.

2. Physically labeled with Model, Serial Number (S/N),
and version designations.

3. Formally verified for compliance to its SPS, EDS, or
design requirements such as engineering drawings, etc.

16.5.5 “As-Verified” Developmental Configuration

The “As-Verified” Configuration represents the incremental
state of the multi-level Developmental Configuration doc-
umentation and physical system at completion of its for-
mal System Verification Review (SVR) (Chapter 18). At this
stage, the “As-Specified,” “As-Designed,” and “As-Built”
Configurations should be identically consistent with each
other, complete, and compliant with the multi-level System
Requirements Baseline specification requirements.

16.5.6 “As-Validated” Developmental Configuration

The “As-Validated” Configuration represents the state of the
Developmental Configuration documentation and physical
system as validated by the User or an Independent Test
Agency (ITA) representing the User during the Operational
Test and Evaluation (OT&E) under prescribed field operating
environments and conditions.

16.5.7 “As-Maintained” Developmental or Production
Configuration

The “As-Maintained” Configuration represents the state of
the Developmental Configuration or Production Configura-
tion of the fielded system or product as maintained by the
User or their designated representative. From a User, SE, and
a CM perspective, failure to keep the “As-Maintained” Con-
figuration documentation current and synchronized with the
physical system or entity is a major risk area, especially for
developmental systems planned for production.

Author’s Note 16.2

Maintenance of Fielded System
Configuration Documentation

The “As-Maintained” Configuration
is a crucial staging point for SE. It is

not uncommon for the User to forgo maintaining System
or Product documentation due to the lack of discipline,
management, or budgets. The result is a physical System
or Product that does not identically match its configuration

documentation, which is a major risk factor for the System
Developer.

16.5.8 “As-Produced” Production Configuration

The “As-Produced” Configuration represents the state of
the Production Baseline used to manufacture the system
or product in production quantities. The initial instance
of the “As-Produced” Configuration is established at the
Production Readiness Review (PRR) (Chapter 18).

16.5.9 Developmental Configuration Staging or
Control Points

As the Developmental Configuration evolves through a series
of design and development stages, it is important to establish
agreement among the Acquirer, User, and System Developer
about the evolving and maturing System Design Solution.
Depending on the type of contract and what authority each
party has in the decision-making process, we do this via
staging or control points.

Staging or control points, which consist of major techni-
cal review events, are intended to represent stages of maturity
of the evolving system design solution as it advances into
lower levels of abstraction or detail over time. We do this via
a series of Configuration Baselines.

From a CM perspective, there are four configuration
baselines:

• System Requirements or Functional Baseline

• Allocated Baseline

• Product Baseline

• Production Baseline

Note that our discussions identified two perspectives of
the evolving and maturing Developmental Configuration:
(1) an SE configuration perspective and (2) a CM perspective.
Despite the semantics, both sets correlate as illustrated in
Table 16.2.

16.5.10 Configuration Identification and Baseline
Management Summary

During our Configuration Identification discussions, we:

• Introduced a set of CM terms such as item, CI, COTS,
NDI, and AFP.

• Identified options available for developing items and
CIs.

• Noted that CIs are constrained to the boundaries of
itself as a physical entity.

• Addressed issues related to Configuration Effectivity.
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This brings us to our next topics concerning how compo-
nents are selected for Items and CIs.

16.6 COMPONENT SELECTION AND
DEVELOPMENT

The allocation of SPS and EDS requirements to lower level
items is a highly iterative process driven by component
selection decisions. In general, System Developers have to
answer the question: What is the best value, lowest cost, and
acceptable risk approach to selecting components to meet
contract requirements?

1. Are there in-house, reusable component designs al-
ready available?

2. Do we procure commercially available components
from external vendors?

3. Are there commercially available components that re-
quire only minor modifications to meet our require-
ments?

4. Do we procure commercially available components
from external vendors and modify them in-house or
have the vendor modify them?

5. Do we obtain components from the User as AFP?

6. Do we create the component in-house as new develop-
ment?

Depending on the outcome of these questions and the
item’s specified requirements, the initial requirements may
have to be reallocated to reconcile capabilities provided by
commercial components.

Our discussion in this section focuses on Compo-
nent Selection and Development Practices that drive SE
decision-making. After a brief discussion of options avail-
able for system development, we introduce the concepts of
COTS and NDIs. Next, we define a methodology that de-
scribes a decision-making method for selecting the strategy
for component development. We conclude with a summary
of driving issues that influence COTS/NDI selection.

16.6.1 Reducing System Costs and Risk

One of the key objectives of SE is to minimize TCO - devel-
opment and life cycle - costs as well as risk. Achievement
of these objectives requires insightful strategies that include
selection of components at all levels of abstraction.

Most Engineers enter the workforce with noble aspira-
tions to innovate and create elegant designs. Although this
is partially true, it is also a reflection of misunderstood pri-
orities. New design should be a resort after attempts to find

existing components that meet specification requirements
have been exhausted (Principle 4.19).

Principle 16.7

Design as a Last Resort Principle

System design of a new CI should be a last
resort option after all practical efforts have
been exhausted to identify legacy designs

that are reusable COTS, NDI, or AFP components to meet
entity requirements.

So, what should the priorities be? This brings us to Item
Design Implementation Options and Priorities.

16.6.2 Item Design Implementation Options
and Priorities

From a CM perspective, every item or entity within a System
or Product, regardless of level of abstraction, is generically
referred to as an item. Items originate from at least seven
different options available for Engineering the development
of physical components:

Option #1: Procure Component(s) from an external
vendor’s catalog.

Option #2: Procure Vendor Component(s) and Cus-
tomize In-House
Procure a component from a vendor’s catalog and cus-
tomize or adapt it in-house to comply with Engineering
drawings.

Option #3: Procure Customized Component(s) from
External Vendor
Procure a component from a vendor’s catalog and pay
them to modify or customize it in accordance with a
procurement contract and specification, assuming the
service is available.

Option #4: Reuse Legacy Component Design(s)
Procure parts, components, or raw materials from ex-
ternal suppliers. Then, Fabricate, Assemble, Integrate,
and Test (FAIT) in-house by reusing existing, legacy
designs.

Option #5: Design and Develop New Component(s)
In-House
Design a new component in-house; procure parts,
components, or raw materials from external suppliers;
and FAIT in accordance with new component design
requirements specified in engineering drawings.

Option #6: Subcontract New Component(s) Develop-
ment
Design a component in-house and procure from an
external vendor.

Option #7: Subcontract New Component Develop-
ment
Procure component design and development from
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an external System Developer in accordance with a
performance specification.

A Word of
Caution 16.2

Legacy Design Reuse Issues

Be advised that reuse of existing or legacy
designs may present legal and contractual
issues regarding the type of funding used
to develop the product, data rights, and so

forth. Always consult with your Enterprise’s program, con-
tracts, legal, and export control organizations for guidance in
these areas.

Based on these design/procurement options, the System
Design Solution for any item at any level of abstraction
within the System or Product may consist of one or
more combination of these implementations. As a result,
the COTS/NDI/new development composition of any design
implementation depends on the application as illustrated
in Figure 16.7. Observe that design implementation ranges
from two extremes: 100% COTS to 100% new development.
So, the challenge for the SEIT and component selection
decision-makers is to determine the right combination of
options that reduce the TCO - development and life cycle
costs - as well as risk.1

Items procured from a vendor’s catalog are referred to
as COTS products. When COTS products are contracted
to be customized or modified by the vendor for a specific
application, they are referred to as Non-Developmental
Items (NDIs). When the System Acquirer provides items –

1Referral—For additional information about Make versus Buy versus
Buy–Modify decisions, refer to the most recent edition of the Project
Management Institute (PMI) A Guide to the Project Management Body of
Knowledge (PMBOK®).

property - that may be available for consideration as a
design option or required by contract to be modified and/or
integrated into the deliverable system, they are referred to as
Acquirer Furnished Property (AFP).

Author’s Note 16.3

Acquirer Furnished Property
(AFP)

When the System Acquirer serving
as the User’s contract and technical
representative delivers AFP prop-

erty to the System Developer, each item must be formally
logged, tagged, tracked, and controlled in accordance with
the contract Terms and Conditions (Ts & Cs). Planned
modifications to AFP typically require written authorization
by the ACO. Ensure that the Ts & Cs clearly delineate who
is accountable for:

• Providing the complete set of AFP documentation

• Dealing with AFP maintenance and failures while in
the possession of the System Developer

16.7 VENDOR PRODUCT SEMANTICS

In general, there are two basic classes of commercial vendor
products: COTS products and NDIs. Let’s scope each of
these classes.

16.7.1 COTS Products

COTS products represent a class of products that can be pro-
cured from a vendor’s catalog by part number. Procurement
of COTS products is accomplished via a purchase order or

Solution Space
Requirements

• xxxxxxxxxxxxxxxxx
• xxxxxxxxxxxxxxxx
• xxxxxxxxxxxxxxxxx

• xxxxxxxxxxxxxx
• ……

• xxxxxxxxxxxxxx

COTS/NDI/
Reuse 

Solution

New 
Development 

Solution

Range of Solution Alternatives

COTS-NDI-Reuse or
New Development

Hybrid Solution

COTS Solution Best Approach

New 
Development 

Solution
Best Approach

Figure 16.7 Decision Making to Find the Optimal Mix of COTS/NDI/Reuse/New
Development Items to Meet Configuration Item (CI) Technical, Total Cost of Ownership
(TCO), Schedule, and Risk Factors.
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other procurement mechanism. Generally, vendors provide a
Certificate of Compliance (C of C) verifying that the product
meets its published Product Specification requirements.

16.7.2 NDIs

NDIs represent COTS products that have been modified
or customized to meet a set of Procurement Specification
requirements. Procurement of NDIs is accomplished via a
purchase order that references a Procurement Specification
that specifies and bounds the capabilities and performance
of the modified COTS product. Prior to delivery, the System
Developer as Acquirer (role) verifies the NDI, in the presence
of Acquirer (role) witnesses, typically for compliance to its
procurement specification.

16.8 COMPONENT SELECTION METHODOLOGY

The selection of components to fulfill EDS requirements re-
quires a methodology that enables the item’s development
team to minimize technical, cost, schedule, and risk. In gen-
eral, the selection process involves answering the questions
posed during the introduction to this practice. So, how do we
answer these questions?

One solution is to establish a basic methodology that
facilitates component selection based on an Analysis of
Alternatives (AoA) (Chapter 32). Although there are a
number of ways the methodology can be created, Figure 16.8
illustrates one example.

16.8.1 COTS Selection Methodology

The methodology used to select item components can be
described in a six-step, highly iterative process as illustrated
in Figure 16.8.

• Step 1: Identify candidate components.

∘ Step 1.1. Identify potential in-house legacy of
reusable design solutions.

∘ Step 1.2. Assess in-house solution(s) feasibility,
capabilities, and performance.

∘ Step 1.3. Identify potential COTS/NDI product so-
lution(s).

∘ Step 1.4. Assess COTS/NDI solution(s) feasibility,
capabilities, and performance.

∘ Step 1.5. Investigate the feasibility of modifying
COTS products in-house.

?

?

Reusable
In-House
Solution

NDI
Solution

COTS
Solution

New
Development

Solution

In-House COTS
Modification

Solution

Acceptable

Unacceptable

NDI

Modify
COTS New Dev.

COTS

No

Final
State

Initial
State

?

Identify Candidate
Components

Evaluate System
Impact of Component

Approaches

Validate Component
Selection Approaches

Solicit & Evaluate COTS
/ NDI Vendor Proposals

Select Component
Development Approach

Implement Component
Selection Decision

Identify Potential In-
House Reusable

Solutions

Identify Potential
COTS/NDI Solutions

Assess Feasibility

Assess In-House
Modification of COTS

Assess Feasibility
• Adjust Solution Space
  Boundaries
• EDS Updates

Figure 16.8 Example Component Development Methodology
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• Step 2: Evaluate the overall impact of component
approaches to item and system performance.

• Step 3: Validate component selection approaches (re-
peat Step 1).

• Step 4: Solicit and evaluate vendor COTS/NDI propos-
als.

• Step 5: Select component development approach.

• Step 6: Implement component selection decision.

A Word of
Caution 16.3

COTS Products Meeting Specification
Requirements

Avoid the notion that you can simply find
a COTS solution “off-the-shelf” that meets
specification requirements. You may dis-

cover you have a paradox: select a COTS product that is
reasonably or somewhat complaint to specification require-
ments versus an NDI product or new development that may
be cost and/or schedule prohibitive. The solution may be to
reassess the driving requirements, if reasonable and practical,
to accommodate the COTS product’s capabilities and levels
of performance.

Boehm (2006, p. 10) observes that “COTS economics
generally makes sequential waterfall processes (in which the
pre-specified system requirements determine the capabili-
ties) incompatible with COTS-based solutions (in which the
COTS capabilities largely determine the requirements; a de-
sired capability is not a requirement if you can’t afford the
non-COTS solution that would provide it).”

16.8.2 Component Selection Summary

When the component selection and development decision-
making process is complete, each item within the multi-level
System Architecture hierarchy and the Product Breakdown
Structure (PBS) may have a combination of various types
of components such as in-house, COTS, NDI, or AFP that
satisfy specification requirements allocated to the item.

Now that we have established a basic methodology, let’s
examine some of the driving issues that influence COTS/NDI
selection.

16.9 DRIVING ISSUES THAT INFLUENCE
COTS/NDI SELECTION

COTS/NDI products may or may not be applicable to
your contract application. Only you, your Enterprise or
project and the Acquirer/User, if appropriate, can make that
determination. Let’s look at examples of some of the types
of questions that you should consider asking when selecting
COTS/NDI products.

A Word of
Caution 16.4

Acquisition Questions COTS/NDI
Vendors

The lists of questions that follow are illus-
trative examples for each category. Every
set of Acquirer requirements, applications,

COTS/NDI products, and perspectives is unique. Consult
with Subject Matter Experts (SMEs) in your Enterprise or
employ the services of a qualified, credible consultant of your
choice and expense to assist you in formulating the list of
questions. Thoroughly investigate potential COTS products
solutions and perform due diligence before you commit to a
decision.

COTS Product Line Example Questions

1. What is the heritage, maturity, and future of the COTS
product line and family?

2. What is the vendor and parent company’s commitment
to the COTS product line and family?

3. What is the size of the COTS product user base?

4. What Enterprises or industries are the primary users of
the COTS product?

5. What are the current technology trends relative to the
product line directions?

6. At what stage of maturity is the COTS product in its
maturity cycle as well as the marketplace?

7. How long has this version of the COTS product been
produced?

8. Is the COTS product in Alpha and Beta testing? If not,
how long ago did this occur?

Customer Satisfaction Example Questions

1. Is the vendor willing to provide a list of customer ref-
erences to discuss their experiences with the product?

2. What is the degree of customer satisfaction with current
COTS product and prior versions?

3. Do customer testimonials, complaints, and applications
of usage correlate?

4. Is the customer satisfaction based on using the product
in accordance with the vendor’s prescribed operating
environment?

16.9.1 Corporate Commitment to and Stability of the
COTS Product Example Questions

1. How long will the vendor commit on paper to
(1) producing and (2) supporting the version the
COTS product under consideration?

2. How financially stable is the vendor and parent
company?
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3. How stable is the vendor’s workforce (i.e., turnover)
that develops and supports the COTS product.

4. For future reference, who are the vendor’s SMEs and
how long they have been with the organization and
worked on the COTS product?

5. What are their roles relative to the COTS product?

COTS Product Design Example Questions

1. Assuming you have some level of access to the
vendor’s documentation, what is the quality and depth
of COTS product documentation?

2. What degree of verification and validation (V&V) has
been performed on the COTS product?

3. Was the Product Verification and Validation (V&V)
performed internally, by an independent laboratory, or
did the vendor depend on the User community to “find
the defects”?

4. Does the COTS product have documented an acces-
sible test points, test hooks, entry/exit points in the
design? Are these available to the developers and
maintainers?

5. Does the COTS product use an industry standard
interface that fully complies with the standard or just
a subset of the standard? What are the compliance
exceptions?

6. What liberties such as interpretations and assump-
tions has the vendor taken with implementing the
standard?

7. Is the vendor willing to modify the COTS product
interface to meet your system or product’s interface?
To what degree?

8. What systems or products does the vendor certify that
the COTS product is compatible and interoperable
with? For example, Microsoft Windows, MAC OS,
and others.

9. What are the current known defects in the existing
COTS product? Are there plans and priorities to
correct them?

10. How many known and latent defects remain in the
current “new and improved” product version?

11. How many undocumented and untested “features”
such as latent defects cannot be or will not be cor-
rected remain in the COTS product?

12. What detailed design information and “on call” sup-
port is available to support System Developer integra-
tion of the COTS product into their system or product?
Are there fees required for this support?

13. Will future versions of the COTS product be forward
and backward compatible with the current version
being considered?

COTS Product Production Example Questions

1. What is the quality and discipline of the COTS vendor’s
quality assurance (QA) organization as well as its CM
system and version control, assuming it exists?

2. Are the COTS products serialized and tracked for
upgrades and recalls?

COTS Product Support Example Questions

1. What degree of 24/7 support (i.e., 24 hours per day/7
days per week) is the vendor willing to support the
COTS product? From what country, time zone, and
hours of availability; Internet on-line support and
documentation; and “live support” via 800 numbers
or “read what is on-line”?

2. What level of responsiveness to technical support
is the vendor willing to provide (4 hours, one
week, etc.)?

3. What level of accessibility to COTS product SMEs is
the vendor willing to provide?

4. Does the COTS product have Operations and Support
(O&S) and technical manuals?

5. Are Operations and Maintenance (O&M) and techni-
cal manuals delivered with the COTS product, avail-
able freely on-line, or do you have to purchase them?
If purchase, how readily available are they?

6. What plans does the vendor have for sustainment of
the COTS product? How long?

7. Are alignment and calibration procedures and data
documented and available to System Developers?

8. Does the vendor provide field service support? How
responsive? What constraints (days of the week,
holidays, hours, etc.)?

9. If you purchase the COTS/NDI product, are you re-
quired to contact the vendor to perform field ser-
vice on site to “remove and replace, align, and
calibrate,” or can the System Developer perform
this?

10. Who pays for field service calls and expenses?

COTS Product Warranty Example Questions

1. Is each COTS product covered by an expressed
or implied warranty? Will the vendor provide a
copy?

2. What actions or physical modifications by the Acquirer
may invalidate or void the manufacturer’s warranty?

3. What are acceptable System Developer modifications
to the COTS product that do not void the warranty?

4. Is the vendor willing to modify the COTS product or do
they recommend third parties?
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5. Do third-party modifications to the product impact the
warranty? What authorizations are required to modify
the product and maintain a warranty

COTS Product Procurement Example Questions

1. Does the COTS product require usage licenses for
software, hardware, and export control (Chapter 18)?

2. Are licenses based on a per platform basis or is a
site license available subject to a maximum number
of “floating” users?

3. If a site license is available, how is the number of users
restricted (simultaneous, total population, number of
available “keys,” etc.)?

4. Are there “other bundled” products included in the
COTS product or must be procured for a small
additional cost? Do they require licenses?

5. Is there a minimum buy quantity requirement for the
COTS product?

6. If there is a minimum buy, is this on a per purchase
basis, cumulative over the year, or cumulative over
several years?

7. What quantities are the price breakpoint thresholds?

8. What product quality assurance processes are in place
to ensure the quality of the COTS product?

9. What certifications is the vendor willing to provide re-
garding the integrity of the product and its materials?

10. Are COTS product specifications, processes, and test
procedures available for review and inspection?

Principle 16.8

Caveat Emptor Principle

When procuring COTS/NDI, thoroughly
investigate and understand the TCO - de-
velopment and life cycle - and support;
otherwise, caveat emptor—buyer beware!

• Since vendors will only answer the question you ask,
always ask what you need-to-know about the product
that you may not have asked.

• Finally, caveat emptor—let the buyer beware!

In summary, you, your project, and your Enterprise are
fully and solely accountable for the decisions you make.
Thoroughly conduct a 360∘ search of all factors surrounding
a COTS/NDI product or any type of system, product, or
service utilization including Stakeholders – Users and End
Users … before … you make a decision.

16.10 CHAPTER SUMMARY

In summary, our discussions in Chapter 16 focused on Sys-
tem Configuration Identification and Component Selection.
Although addressed as a chapter, they are rules that bind the

development of System Architecting and Architectures ad-
dressed in Chapter 26.

How does this relate to SE?
System Configuration Identification and Component

Selection can be distilled into three words by Dr. William
McCumber. Your job as an SE is to “maintain intellectual
control” (McCumber and Sloan, 2002, p. 4) (Principle 1.3
- McCumber and Sloan, 2002, p. 4) of the evolving and
maturing System Design Solution. via baseline management
oversight. If you fail to do this, you have lost control of the
project.

Your other mission is to ensure that the System Design
Solution’s physical components are selected, procured, or
developed to not only to comply with specification require-
ments but also to minimize the Total Cost of Ownership
(TCO) – development and life cycle costs – and achieve
acceptable risk within budgetary, schedule, and technology
risks. Selection of those components may come from a
variety of sources.

COTS/NDI solutions may be a right choice for you and
your application; in other cases, they may not be. As an
SE leading the selection process, you must make informed
decisions based on:

1. The facts corroborated by field evidence.

2. Trade-offs to meet requirements, minimize develop-
ment and life cycle costs, and reduce risk to an accept-
able level.

3. Other User’s application experiences.

COTS products can be very powerful tool to reducing
development and life cycle costs; they can also become a
major problem as well. Perhaps the best way to think of
COTS is to use a mirage analogy: make sure that what you
find when you implement the product matches the virtual
image you perceived. Whatever decision you make, you will
have to live with your action(s) and consequences. Research
component selections and vendors carefully and thoroughly
incorporate flexibility for contingency planning and make
wise choices. The bottom line is caveat emptor—let the
buyer beware!

16.11 CHAPTER EXERCISES

16.11.1 Level 1: Chapter Knowledge Exercises

Answer each of the What You Should Learn from This
Chapter questions identified in the chapter’s Introduction.

1. What is Configuration Management (CM)?

2. What are the four functions of CM?

3. What is Configuration Identification? Give examples.

4. What is Configuration Status Accounting (CSA)? Give
examples.
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5. What is Configuration Change Management?

6. If you wanted to know the current status of a drawing,
which of the four CM functions would provide the
information?

7. What is a Developmental Configuration, when and
how does it evolve, and who is accountable for its
establishment and maintenance?

8. Delineate the differences between components, entities,
items, and CIs and their Entity Relationships (ERs)?

9. Who is responsible for identifying CIs?

10. What decision-making criteria are used to select CIs?

11. How do CIs relate to the specification tree?

12. What are COTS products and NDIs and how do they
relate to items and CIs?

13. What is a configuration baseline?

14. What is the relationship between baselines and the
Developmental Configuration?

15. What is meant by configuration effectivity?

16. Describe the evolution of the Developmental Configura-
tion and its baseline.

17. What is the “As-Specified” Configuration, and when is
it established?

18. What is the “As-Designed” Configuration, and when is
it established?

19. What is the “As-Built” Configuration, and when is it
established?

20. What is the “As-Verified” Configuration, and when is it
established?

21. What is the “As-Validated” Configuration, and when is
it established?

22. What is the “As-Maintained” Configuration, and when
is it established?

23. What is the “As-Produced” Configuration, and when is
it established?

24. What is the difference between Mission System versus
Enabling System CIs? What are their relationships.
Using an office building, automobile, and an aircraft,
illustrate the relationships.

25. What is the difference between baseline management
and CM?

26. What are the six primary approaches for developing
components?

27. What is a COTS product?

28. What is a NDI?

29. What is AFP?

30. Who is the source of AFP?

31. How are COTS products procured?

32. How are NDIs procured?

33. What are the steps of the Component Selection Method-
ology?

34. What questions should you ask vendors that may have
products or services you are considering selecting?

16.11.2 Level 2: Knowledge Application Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e

16.12 REFERENCES

Boehm, Barry, (2006), “Some Future Trends and Implications for
Systems and Software Engineering,” International Council on
Systems Engineering (INCOSE), Journal of Systems Engineer-
ing, Vol. 9, No. 1, Malden, MA: John Wiley & Sons, Inc.

DAU (2012), Glossary: Defense Acquisition Acronyms and Terms,
15th ed. Ft. Belvoir, VA: Defense Acquisition University
(DAU) Press. Retrieved on 6/1/15 from http://www.dau.mil/
publications/publicationsDocs/Glossary_15th_ed.pdf

FAA SEM (2006), System Engineering Manual, Version 3.1, Vol.
3, National Airspace System (NAS), Washington, DC: Federal
Aviation Administration (FAA).

McCumber, William H. and Sloan Crystal (2002), Educating Sys-
tems Engineers: Encouraging Divergent Thinking, Rockwood,
TN: EagleRidge Technologies, Inc.

MIL-HDBK-61A(SE) (2001), Military Handbook: Configuration
Management Guidance, Washington, DC: US Department of
Defense (DoD).

MIL-STD-498 (1994), Software Development and Documentation,
Washington, DC: US Department of Defense (DoD).

SEVOCAB (2014), Software and Systems Engineering Vocabulary,
New York, NY: IEEE Computer Society. Accessed on 5/19/14
from www.computer.org/sevocab

http://www.wiley.com/go/systemengineeringanalysis2e
http://www.dau.mil/publications/publicationsDocs/Glossary_15th_ed.pdf
http://www.computer.org/sevocab


17
SYSTEM DOCUMENTATION STRATEGY

When systems, products, or services are developed,
documentation of key decision-making events and their
artifacts becomes very important for “maintaining intellec-
tual control” (Principle 1.3 – McCumber and Sloan, 2002,
p. 4) of the technical program. Documentation, especially
formal documentation, can become very costly and consume
valuable project resources to produce. If you are the System
Acquirer, inevitably, every document has a value to the User
with Return on Investment (ROI) that must be traded off
for System capabilities. Do we purchase documentation or
system capabilities and where is the balance?

Unfortunately, Enterprises often view that the role of
the System Development and Systems Engineering (SE)
Processes is to produce documentation for delivery. The
reality is that the focus of the System Development and SE
Processes is on producing systems, products, or services that
can be verified as compliant with the specified requirements
and validated as satisfying the User’s operational needs. In
sharp contrast, documentation is simply a mechanism to
capture and describe key technical decision-making artifacts.

Hypothetically, you can informally document essential
decision artifacts on every square inch of the “back of a
napkin.” However, it would lack organization, substantive
content, coherent meaning, be subject to interpretation, and
so forth. Configuration Management (CM) version control
(Chapter 16) and Change Request (CR) reviews and ap-
provals would be a disaster!

When a technical project Request for Proposal (RFP) is
released and proposed, there are several key questions SEs
need to be able to answer:

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

• Question #1: What is the minimum, essential set of
System Development documentation (Principal 15.16)
that should be produced during the development of
Systems, Products, or Services to document key
technical decisions and satisfy development, deploy-
ment, operations, maintenance, sustainment retirement,
and disposal operational needs?

• Question #2: How can we tailor documentation require-
ments to obtain the essential documentation we need?

• Question #3: Is there a way to reduce the level of
formality for specific documents to capture essential
information?

• Question #4 emerges: Of all the decision documenta-
tion produced during the development of a System,
Product, or Service, how can we get an inventory list-
ing for future reference to purchase? This last question
presents potential legal issues.

Chapter 17 explores the types of documentation com-
monly produced for system design and development projects
to support development of the overall System Design Doc-
umentation Strategy. Our discussions introduce key con-
tracting terms such as Contract Data Requirements Lists
(CDRLs), Data Accession List (DAL), and Design Criteria
List (DCL) and describe each one and its relationship to the
overall system development contract. We identify four types
of documents such as plans, specifications, design, and test
documentation and provide a graphical schedule of their re-
lease points.

http://www.wiley.com/go/systemengineeringanalysis2e
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Our discussions also provide commonly applied rules for
developing SE and development documentation. We em-
phasize the importance and criticality of assessing docu-
mentation for export control of sensitive data, proprietary
information, and technology. Our final discussion topic
identifies several types of documentation issues SEs need to
be prepared to address.

17.1 DEFINITIONS OF KEY TERMS

• Authorized Access—A formal approval issued by
an Acquirer or Enterprise project signifying that an
internal or external individual or Enterprise with a
need to know is authorized for limited access rights
to specific types of data for a restricted period of time
subject to handling and control procedures established
by the contract or project.

• Contract Data Requirements List (CDRL) —An at-
tachment to a contract that identifies a list of doc-
uments to be delivered under the Terms and Condi-
tions (Ts&Cs) of the contract. Each CDRL item should
reference delivery instructions including (1) when the
documents are to be delivered; (2) what outline, for-
mat, and media to be used; (3) to whom and in what
quantities; (4) level of maturity such as outline, draft,
and final; (5) requirements for corrective action; and
(6) approvals.

• Data Accession List (DAL) —“An index of the
generated data that is made available upon request”
(DI-MGMT-81453, 2007).

• Design Criteria List (DCL)—A listing of design data
that characterize the capabilities, performance, and
Operating Environment boundary conditions of an
external system or entity.

• Engineering Release Record—A record prepared by
a project Configuration Manager publicizing the of-
ficial release of an engineering document such as a
plan, specification, design, and drawing that has been
formally approved, baselined, and authorized for inter-
nal technical decision-making use.

• Released Data—The collection of project documen-
tation including revisions that have been formally ap-
proved, baselined, and authorized for internal technical
decision-making use since contract award, beginning of
a phase of development, or new version of a System or
Product.

• Subcontract Data Requirements List (SDRL)—A
listing of data deliverables required by a subcontract.
Refer to CDRL definition above.

• Technical Data—“Technical data is recorded informa-
tion (regardless of the form or method of recording) of a
scientific or technical nature (including computer soft-
ware documentation)” (MIL-HDBK-61A, p. 3-10).

• Technical Data Package—“A technical description
that is adequate to support acquisition of an item, in-
cluding engineering, production, and logistics support.
The technical description defines the design config-
uration and procedures required to ensure adequacy
of item performance. It consists of all applicable
technical data, such as engineering drawings, associ-
ated lists, product and process specifications and stan-
dards, performance requirements, quality assurance
provisions, and packaging details” (MIL-HDBK-61A,
p. 3-10).

• Working Data—Data such as informal working pa-
pers (e.g., draft, preliminary, etc.), decisions, designs,
analyses, trade studies, etc. that may or may not be de-
liverable as formal documents and are considered to be
works in progress with levels of maturity. Some En-
terprises loosely refer to documentation from external
Enterprises required for technical decision-making as
working data.

17.2 QUALITY SYSTEM AND ENGINEERING
DATA RECORDS

System development, as an incremental decision-making
process, requires that technical specifications, plans, de-
sign documentation, test procedures, and test results be
documented for deliverables and decision-making, and be
archived for historical purposes. The integrity of the docu-
mentation data requires Verification and Validation (V&V)
reviews to ensure accuracy, preciseness, consistency, and
completeness.

For ISO 9001-based Quality Systems, each step of the
documentation process produces decision artifacts as data
records that provide objective evidence as proof that you
accomplished what you planned to do. When you plan
your technical program, you must establish and commu-
nicate the strategy for creating and capturing data records
for key decisions, technical meeting and review confer-
ence minutes, development of design documentation, and
results from tests, analyses, and trade studies. The strat-
egy will be documented across a variety of plans begin-
ning with the Program/Project Management Plan (PMP).
Discipline specific implementations are provided in Tech-
nical Management Plans (TMPs) such as an Engineering
Management Plan (EMP) or Systems Engineering Manage-
ment Plan (SEMP), Configuration and Data Management
Plan (DMP), Quality Assurance Plan (QAP), Risk Manage-
ment Plan (RMP), Hardware Development Plans (HDPs),
Software Development Plans (SDPs), Test Plans, and oth-
ers.

Based on this introduction, let’s begin with a high-level
perspective of documentation typically produced by a
project.
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Author’s Note 17.1

Documentation Titles

Documents introduced in this chapter
identify types of documents com-
monly used in SE. Your Enterprise

or industry may employ different names. Regardless of
what titles your discipline or industry employs, the con-
cepts, principles, or practices presented apply universally
to the development of systems, products, or services devel-
oped in business domains such as medical, transportation,
aerospace and defense, energy, telecommunications, and
others.

17.3 SYSTEM DESIGN AND DEVELOPMENT
DATA

System data consist of six basic types:

• Contract deliverable data
• Subcontract, vendor, supplier-required data
• Operation and support data
• Working data
• Organizational command media
• Engineering personnel data records

Let’s explore each of these.

17.3.1 Contract Deliverable Data

The Acquirer of a system levies documentation require-
ments on a System Developer via Ts&Cs of the contract.
Enterprises issue contracts containing a CDRL that lists spe-
cific documents such as plans, analyses, conference min-
utes, etc. to be delivered throughout the contract. CDRL
items are assigned a unique item number such as A001
and provide delivery instructions concerning documenta-
tion format and media, and conditions for submittal, sub-
mittal dates, and distribution lists. Regarding documenta-
tion format, some Enterprises use Data Item Descriptions
(DIDs) that provide detailed instructions for a specific type
of document that includes the CDRL item’s outline and
contents.

17.3.1.1 CDRL Items CDRL items typically employ a
form that identifies the unique item number, title, quantity,
documentation format, instructions for preparation, condi-
tions for submittal, submittal dates, distribution lists, etc.

17.3.1.2 DIDs Most contracts require CDRLs to be de-
livered in a specific format. The DoD, for example, employs
DIDs that provide preparation instructions regarding the de-
liverable document’s outline and contents. In general, a DID
is simply a description of a specific type of document to be
delivered. Contents include an outline annotated with spe-
cific content instructions.

17.3.2 Subcontractor, Vendor, and Supplier Data

Acquirers (role) levy data requirements on contractors via
contracts and subcontracts. These data apply to:

1. Configuration Items (CIs) and items such as
Commercial Off-the-Shelf (COTS) items and
Non-Developmental Items (NDIs) procured under
subcontract.

2. Certificates of Compliance (CofC) that purchased items
are compliant with a vendor’s product specification.

3. Design and management reporting data to support SE
design activities.

Subcontracts include an SDRL that identifies the set
of data deliverables. In some cases, the System Developer
may directly flow down CDRL requirements via SDRLs
to subcontractors or extract specific CDRL requirements
and incorporate into SDRLs to serve as inputs to support
System Developer CDRL documents delivered to the System
Acquirer.

Vendor and supplier deliverables and data are often
procured as part of a purchase order, for example. The order
may require the vendor to supply a CofC certifying that
the delivered item meets or exceeds the vendor or supplier’s
product specification requirements.

17.3.3 Operations, Maintenance, and Sustainment
(OM&S) Data

Operations and support data consist of the data required
to operate and maintain the system, product, or service.
Examples include Standard Operating Practices and Proce-
dures (SOPPs), installation guides, and operator’s manuals.
OM&S data for a system may be delivered as part of the Sys-
tem Developer’s contract or support contract or developed
internally by the User.

17.3.4 Working Data

Working data represent data such as analyses, trade studies,
modeling and simulation results, test data, technical deci-
sions and rationale generated during the course of designing,
developing, integrating, and testing the system. Unless these
data are explicitly identified as CDRL items under the Terms
& Conditions (Ts&Cs) of the contract, they are for internal
usage only by the System Developer’s personnel.

Documentation as viewed by the System Acquirer and
User is often expensive. Confronted with a decision to pur-
chase formal documentation versus system capabilities, they
typically go with additional capabilities based on operational
needs and affordability. As a result, the Acquirer and User
may request the opportunity to view these data on the Sys-
tem Developer’s premises with the understanding that they
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are not deliverables. An inventory of data produced on the
project is documented via a Data Accession List (DAL).

Occasionally, the Acquirer may request the opportunity
to view these data on the System Developer’s premises with
the understanding that they are not deliverables but may be
available for purchase.

Once the System is fielded, if it is determined that specific
types of data are needed as formal documentation, the
DAL enables the Acquirer and User to procure it within a
reasonable timeframe subject to retention of data records
requirements specified by the contract’s Ts&Cs.

17.3.5 Enterprise Command Media Required Data

Another type of system development data are work products
required by Enterprise command media such as policies,
processes, and procedures. Data required by Enterprise
command media may include plans, briefings, drawings,
wiring lists, analyses, reports, models, and simulations.
Unless explicitly specified by the contract CDRL or SDRL,
these data are considered to be non-deliverables.

You may ask: If a document is not required by contract,
why consume resources producing it? In general, the an-
swer is Enterprises that possess levels of SE capability know
and understand that specific data such as plans, specifica-
tions, and test procedures are crucial for success, regardless
of CDRL or SDRL data requirements. CDRL and SDRL data
requirements may be inadvertently overlooked or unafford-
able by the System Acquirer during the formal solicitation
process or, as is often the case, the Acquirer decides not to
procure the data. If you determine that specific data items are
missing during the formal RFP solicitation process, confer
with the proposal leader regarding how to address the miss-
ing data items.

WARNING

Warning 17.1

Improper Use of Acquirer Contract
Funding

Be aware that if you use Acquirer funding
to develop a document required by Enterprise command me-
dia but not required by the Acquirer’s contract, the Acquirer
effectively “owns” the document. Even worse is naively
using Acquirer project funding to produce documents re-
quired by Enterprise command media and then listing the
document in the DAL as being “available for purchase.”
Always confer with your Enterprise’s project and legal
organizations.

17.3.6 Engineering Personnel Data Records

The final type of SE data includes engineering personnel
data records as part of their normal tasking. Personnel data
records should be maintained in an electronic Engineering
Notebook or an assigned folder on a project network drive.
Personnel data records include plans, schedules, analyses,

sketches, reports, conferences, meeting minutes, action
items, tests conducted, and test results. These data types
are summarized in technical reports and progress and status
reports.

17.4 DATA ACCESSION LIST (DAL) AND DATA
CRITERIA LIST (DCL)

Contracts and subcontracts often require two types of docu-
mentation as part of the CDRL or SDRL deliveries:

1. DAL

2. DCL

Let’s describe each of these documents.

17.4.1 DAL

The development of most systems and products in-
volves two types of documentation: deliverable data and
non-deliverable data. An Acquirer (role) specifies and ne-
gotiates the documentation to be delivered as part of the
contract delivery work products. During the contract, the
System Developer or subcontractor may produce additional
documentation that is not a contract/subcontract deliverable
but may be needed later by the Acquirer or User.

Where this is the case, Acquirer (role) con-
tracts/subcontracts often require the System Developer
(role) to prepare and maintain a DAL that lists all docu-
mentation produced under the contract or subcontract for
deliverables and non-deliverables. DI-MGMT-81453A
(2007) states, “The purpose of the DAL is to provide a
medium for identifying contractor internal data which has
been generated by the contractor in compliance with the
work effort described in the Statement of Work (SOW) . . . .”
This enables the Acquirer to determine if additional data are
available for procurement to support system maintenance.
If so, the Acquirer may negotiate with the contractor or
subcontractor and modify the original contract to procure
that data.

Each contract or subcontract should include a requirement
for a System Developer to provide a DAL as a CDRL/SDRL
item to identify all CDRL/SDRL and non-deliverable
documentation produced under the contract/subcontract for
review and an opportunity to procure the data at a later
date.

A Word of
Caution 17.1

Always confer with your project’s Config-
uration Manager (CM), Project Engineer,
Project Manager, and legal organization
for specific guidance concerning deliverable
documentation, who pays for it, who owns
the data, what data rights are associated with
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delivery, etc. Different funding sources create significant
legal issues.

17.4.2 DCL

Systems, products, and services are often required to be in-
tegrated into Higher Order Systems. For physical sys-
tems, interoperable interfaces or models are crucial. For
simulations and emulations, each model must provide the
precise form, fit, and function of the simulated or emulated
device.

In each of these cases, the physical system, model, sim-
ulation, or emulation must comply with specific design cri-
teria. Source data authentication, verification, and validation
are critical to ensure the integrity of the SE decision-making
efforts.

How do you identify the design data that will be required
to support the SE design effort? The process of procuring
this data begins with a Design Criteria List (DCL). The DCL
is developed and evolves to identify specific design docu-
ments required to support the System Development effort.
Generally, SEs and Product Development Teams (PDTs) are
responsible for submitting a detailed list of external docu-
ments such as title and document ID to the Data Manager for
acquisition. On receipt of the requested documents, the Data
Manager:

1. Forwards the documents to CM for processing and
archival storage.

2. Notifies the design data requestors regarding receipt of
the documents.

Each contract or subcontract should require publication
of a DCL by the System Developer identifying specific
documentation sources.

17.5 SE AND DEVELOPMENT DOCUMENTATION
SEQUENCING

One of the challenges for SEs is determining when various
documents should be prepared, reviewed, approved, base-
lined, and released. Although every contract and project
requirements vary by Acquirer, there are some general
schedules that can be used to prepare SE and development
documentation. In general, we can categorize most SE doc-
umentation into four classes:

• Planning documentation

• Specification documentation

• System design documentation

• Test documentation

17.5.1 Planning Documentation

Figure 17.1 illustrates a basic schedule as general guidance
for preparing and releasing various types of technical plans.
These documents include:

1. Key Technical Management Plans (TMPs) such as
Hardware Development Plans (HDPs), Software
Development Plans (SDPs), Configuration and Data
Management Plans (DMPs), and Risk Management
Plans (RMPs).

2. Test plans such as System Integration, Test, and Veri-
fication Plans as well as Hardware and Software Test
Plans (HTPs/STPs).

3. Supporting technical plans such as System Safety
Plans, Procurement Plans, Manufacturing Plans, and
System Sustainment Plans.

17.5.2 Specification Documentation

Figure 17.2 illustrates a basic schedule as general guidance
for preparing and releasing various types of specifications.
These documents include:

1. System Performance Specification (SPS)

2. Product/Subsystem Entity Development Specifications
(EDS)

3. HWCl/CSCI Requirements Specifications (HRS/SRS)

17.5.3 System Design Documentation

Figure 17.3 illustrates a basic schedule as general guidance
for preparing and releasing various types of technical design
documentation. These documents include:

1. Concept of Operations (ConOps)

2. System/Segment Design Description (SSDD)

3. Interface Control Documents (ICDs) and drawings for
hardware items

4. Interface Design Descriptions (IDDs) for software

5. Software Design Description (SDD)

6. Database Design Description (DBDD)

17.5.4 Test Documentation

Figure 17.4 illustrates a basic schedule as general guidance
for preparing and releasing test documentation. These docu-
ments include various levels of test procedures and test qual-
ity records.
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Key Technical Management Plans (System, HDP, SDP, CM & DM, et al)

Submitted
Negotiated

Revisions, Deviations, & Waivers via Formal Contract Modifications

Supporting Technical Plans (System Safety, Manufacturing, Support, et al)

Submitted Revisions via formal Change Management Process Procedures

Optional

RFP

Test Plans (SITV, Hardware, Software, et al)

Revisions via formal Change Management Process Procedures

RFP

CA Contract Award
CDR Critical Design Review
CMP Configuration Management Plan
CMP Data Management Plan 
FCA Functional Configuration Audit
HDP Hardware Development Plan

HSR Hardware Specification Review 
I&CO Installation & Checkout
PCA Physical Configuration Audit
PDR Preliminary Design Review 
RFP Request for Proposal
SDP Software Development Plan

SDR System Design Review
SITV System Integration, Test, & Verification 
SSR Software Specification Review 
SVT System Verification Test
TRR Test Readiness Review
VAL Validation

Where:

System Procurement
Phase

SE Design Process
Component Procurement &

Development Process
System Integration, Test, 

& Evaluation Process Deployment
Phase

System Development Phase

System
Acceptance

Contract
Dependent

Allocated
Baseline 

System
Requirements

Baseline 

Product
Baseline

Contract
Award SRR SDR PDR CDR

HSR/
SSR SVTTRRs

Install & C.O.RFP
Release VAL

FCA/ 
PCA

SVR

Figure 17.1 Example—Planning Documentation Development and Release Strategy

17.6 DOCUMENTATION LEVELS
OF FORMALITY

Most people avoid documentation tasks. The general view-
point is that documentation is non-value-added bureaucracy.
Engineers, in particular, rationalize that if they had wanted to
specialize in documentation, they would have pursued it as
a course of study. This attitude is counter to a professional
engineering development environment that is so dependent
on documented data maturity and integrity to make informed
decisions.

SE development documentation involves two key deci-
sions:

1. What must be documented?
2. To what degree of formality do you document the

details?

The preceding discussions addressed what you should
document. Let’s explore the second point further.

If you ask Engineers and Analysts to prepare a doc-
ument, they lament about having an impossible task, re-
gardless of timeframe to complete. The knowledge and

maturity of a professional is reflected in the individual’s
ability to sift rapidly through a large amount of data, iden-
tify the key points, and articulate the results in summary
form.

Principle 17.1

Task Expectations Principle

A 40-hour task with an 8 hour limitation
produces an 8 hour summary of key points.
The same task with a 40-hour limitation

produces a summary with key points and elaborated levels
of details. Recognize the difference!

When you document plans, specifications, and reports,
there are key points relevant to the subject that must be
presented in the document outline. These points, in turn,
require various levels of details. The key points are:

1. Engineers need to learn to identify what information -
major points - is required to be communicated.

2. Apply common sense to scale the level of detail to fit
the outcome based on the time and resources available.
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System Performance Specification (SPS)

RFP
Submitted

Product / Subsystem Development Specifications

Submitted

Optional

RFP

HWCI / CSCI Requirements Specifications (HRS/SRS)

RFP

CA Contract Award
CDR Critical Design Review
FCA Functional Configuration Audit
HSR Hardware Specification Review

ICO Installation & Checkout
PCA Physical Configuration Audit
PDR Preliminary Design Review 
RFP Request for Proposal
SDR System Design Review

SSR Software Specification Review 
SVT System Verification Test
TRR Test Readiness Review
VAL Validation

Where:

System Procurement
Phase

SE Design Process
Component Procurement &

Development Process
System Integration, Test,

& Evaluation Process Deployment
Phase

System Development Phase

System
Acceptance

Contract
Dependent

Allocated
Baseline 

System
Requirements

Baseline 

Product
Baseline 

Contract
Award SRR SDR PDR CDR

HSR/
SSR SVTTRRs

Install & C.O.RFP
Release VAL

FCA/
PCA

SVR

Revisions, Deviations, & Waivers via Formal Contract Modifications

Revisions via formal Change Management Process Procedures

Revisions via formal Change Management Process Procedures

Figure 17.2 Example—Specification Development and Release Strategy

Author’s Note 17.2

Responding to Management
Quick Reaction Tasks

If you have addressed the critical
points, anything else should be just

supporting detail. The ability to scale these levels of detail
and still address the key points in a short period of time
depends on an SE’s competence—personal knowledge, ex-
perience, and seasoned decision-making maturity. Work to
achieve this level of performance and become recognized as
a competent professional.

17.7 EXPORT CONTROL OF SENSITIVE DATA
AND TECHNOLOGY

Today, the Internet provides a mechanism for immediate data
communications and access between Enterprises in-country
as well as internationally. As a result, the Internet offers
tremendous opportunities for contract programs to exploit
the technology by establishing Web sites that enable au-
thorized Enterprises and individuals who are geographically
dispersed to post and access technical program information.

This environment, when uncontrolled, however, adds new di-
mensions and threats to information access.

People often confuse Export Control information with se-
curity classification systems. Although both are certainly in-
terrelated, Export Control information includes sensitive but
unclassified data. Classified data handling and procedures are
yet another issue.

WARNING

Warning 17.2

Export Control and Security
Information Protection

Always consult with your Enterprise’s Ex-
port Control Officer and Security, Legal, and Contracts orga-
nizations for specific requirements before initiating an action
that may potentially violate Export Control or security laws,
regulations, and procedures. The laws carry severe penalties
for non-compliance.

Many people erroneously believe that a technology or in-
formation export to a foreign national, organization, or coun-
try occurs when that information is physically transferred
outside the country. ABSOLUTELY NOT TRUE!!! The US
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Allocated
Baseline 

System Procurement
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SE Design Process
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Design Descriptions
• Interface Control Documents (ICDs)
• Interface Design Descriptions (IDDs)
• Software Design Descriptions (SDDs)

• Database Design Descriptions (DBDDs)
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Dependent
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Figure 17.3 Example—System Design Documentation Development and Release
Strategy
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government and other countries have explicit laws and regu-
lations that govern the export of technology and data to for-
eign nationals, organizations, and countries. The laws carry
severe penalties for non-compliance.

The fact is technology transfer also occurs in-country
with foreign nationals, whether direct or via the Internet.
In the United States, technology transfer is governed by
Export Control laws and regulations such as the most current
International Traffic and Arms Regulations (ITAR) (US
Department of State).

In general, you have violated the export control gover-
nance if you:

1. Post Export Control technology or information to an
unsecure Web site.

2. E-mail or transfer Export Control technology or infor-
mation via the Internet.

3. Simply transfer Export Control technology or infor-
mation to foreign nationals, organizations, or govern-
ments, irrespective of location, without being licensed
and have taken reasonable measures to restrict access
to only authorized users.

17.8 SYSTEM DOCUMENTATION ISSUES

Principle 17.2

Sensitive Information Protection
Principle

Establish a sensitive information pro-
tection program within your Enterprise,

identify a central Point of Contact (POC), develop and
disseminate guidelines and protocols; and train personnel to
implement them properly.

System documentation has a number of issues that SEs
must address. Here are several issues that commonly chal-
lenge programs:

• Issue 1: Data validation and authentication.

• Issue 2: Posting acquirer and vendor documentation on
the Internet.

• Issue 3: Proprietary Information (PI), Intellectual Prop-
erty (IP), and Non-Disclosure Agreements (NDAs).

• Issue 4: Vendor-owned data.

• Issue 5: Electronic signatures.

Issue 1: Data Validation and Authentication
Since SE technical decision-making is predicated on
data integrity, the challenge is determining if external
and internal data are valid and authentic and what re-
strictions govern their use. This includes DCL items
for models and simulations, interfaces, and test data.
Additionally, production contracts may require using

SE documentation created by the original System De-
veloper or vendor. How do you determine the validity
and authenticity of the data?
Data validity and authenticity require rigorous investi-
gation. Data integrity is particularly troublesome when
the original System Developer delivered the Product
Baseline and transferred CM control via the Acquirer
to the User that did not maintain the documentation.
The challenge is: Does the “As-Maintained” System or
Product reflect the “As-Designed, Built, Verified, and
Validated” documentation (Chapter 16)? Thoroughly
investigate the User’s change history for the System
and its documentation for the period following delivery
by the original System Developer.

Issue 2: Posting Acquirer and Vendor Documentation
on the Internet
People, in general, often naively believe that they
can arbitrarily copy and post Acquirer and vendor
documentation on a project Web site.
If you need to provide project personnel access to
this data, simply provide links from the project’s Web
site to the Acquirer or vendor Web site, assuming
they approve. This avoids ownership, proprietary data,
concurrency, copyright, and other issues.

Issue 3: Proprietary Information (PI) and
Non-Disclosure Agreements (NDAs)
Finally, before any data exchange can occur between
any Enterprise and the Acquirer, User, subcontractors,
and vendors, execute Proprietary Information Agree-
ments (PIAs) and/or NDAs between the parties.

Issue 4: Vendor-Owned Data
When Acquirers procure a system, they are often will-
ing to trade off documentation funds for system ca-
pabilities, especially when they have limited budgets.
Later, if they decide to procure system upgrades that
are dependent on these data, the System Acquirer shifts
the burden and risk of obtaining the data to the System
Developer. If the original developer and new System
Developer are competitors, this creates a very chal-
lenging problem for projects and SEs to solve.
The challenge is one of cost versus schedule. In a
highly competitive marketplace, projects inevitably
underestimate the amount of resources required to
acquire documentation owned by other Enterprises.
Thoroughly investigate these issues during the pro-
posal phase and establish data exchange agreements
and Ts&Cs prior to Contract Award. As an Acquirer, if
you wait until after Contract Award to help the System
Developer you have selected to acquire this informa-
tion, guess who is in the power position to control the
negotiation? The supplier is and you can rest assured
that the procrastination will cost you and the System
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Developer significantly, especially if the supplier was
a competitor that lost the acquisition!

Issue 5: Electronic Signatures
Paper systems have been replaced by electronically
networked Enterprises sometimes referred to as Inte-
grated Data Environment (IDE) based on Enterprise
Resource Planning (ERP) tools. In general, IDEs en-
able projects to create virtual development environ-
ments in which geographically dispersed Enterprises
and their personnel with an authorized “need to know”
can have desktop access to specific information. This
includes being able to open data files and view the in-
formation.
When implementing an IDE, one of the key issues is
establishing a secure method for SE documentation re-
viewers to electronically access, review, comment, and
approve the documents. Establish “electronic signa-
ture” standards, protocols, methods, and tools to ensure
that only authorized reviewers can approve documen-
tation for decision-making implementation.

WARNING

Warning 17.3

Unauthorized Posting of System
Acquirer Documentation

Although Acquirer Request for Informa-
tion or Proposal (RFI/RFP) solicitation and other data may
be posted for public access, do not copy this material and
post it unless your Enterprise has prior written authorization
from the Acquirer or Vendor. Posting creates configuration
management control, proprietary data, data concurrency, and
copyright issues.

A Word of
Caution 17.2

Proprietary Information Agreements
(PIAs) and/or NDAs

Always consult with the Project Manager
and/or Technical Director first for proper
protocol and procedures for:

1. Communicating and exchanging data with external
organizations

2. Establishing Proprietary Information Agreements
and/or NDAs

Lastly, obtain approval from your Enterprise’s Contracts,
Legal, and Export Control Officers.

17.9 CHAPTER SUMMARY

Principle 17.3

Contract Issues Principle

Rule #1: Always read the contract!

Rule #2: When contract issues arise, go
back to Rule #1!

This concludes our overview discussion of the System
Documentation Strategy. In summary, establish the project’s
SE design and documentation strategy “up front” during the
proposal phase concerning

• Who pays for what documentation?

• Who requires what types of documentation?

• Who is authorized to have “need to know” access to
specific types of information?

• Who has what data rights?

• What Quality Records (QRs) will be maintained by the
project concerning who is responsible and accountable,
levels of formality, etc. Where are these documented?

• How will sensitive information will be protected.

• When will documentation at various levels of maturity
will be released.

• What are the ground rules for what goes onto the
project’s DCL and DAL.

• What ownership, data rights, etc. will be established for
CDRLs, SDRLs, etc.

In general, if System Acquirer contract funds were ex-
pended to document decision artifacts, the information
belongs to the Acquirer. Information, in this context, includes
(1) formal documentation such as plans, conference min-
utes, specifications, analyses, trade studies, and drawings and
(2) less formal documentation such as meeting notes, anal-
yses, trade studies, models, simulations, etc. The difference
resides in what the contract requires as formal deliverable
documentation. Always read the contract; when all else fails
… read the contract!

The System Developer may be contractually obligated to
deliver all documentation, except for proprietary information
developed internally or by third parties such as subcontrac-
tors, vendors, etc. After delivery, System Acquirer may or
may not find reading someone’s notes, sketches, etc. easy
to read or useful. The conversion of less formal data by
a System Developer into coherent, meaningful documenta-
tion requires more formality that translates into affordability
trade-offs such as cost and time.

Finally, fully understand: (1) all federal and state laws
and regulations and (2) Enterprise command media, con-
tract, and protocol requirements that govern Export Control,
Proprietary Information (PI), Intellectual Property (IP), and
copyrights.

17.10 CHAPTER EXERCISES

17.10.1 Level 1: Chapter Knowledge Exercises

1. What is project data?

2. What is technical data?
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3. What is a CDRL?

4. What is the nominal sequencing and release of SE
documentation?

5. What is a Subcontract Data Requirements List (SDRL)?

6. What is a DID?

7. What is a DAL?

8. What is a Design Criteria List (DCL)?

9. What are product data?

10. What are product description data?

11. What are product design data?

12. What are product support data?

13. What is the difference between approved data and
released data?

14. What mechanisms are used to officially release SE
documentation?

15. How should sensitive information data exchanges be-
tween Enterprises be orchestrated?

16. Why is Export Control so critically important in An
enterprise?

17.10.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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Successful system development requires incremental
assessments of the status, progress, maturity, and risk
of the evolving System Design Solution at critical staging
or control points. These milestone events serve as decision
gates to authorize and commit project resources to the next
stage of System Development. At various stages of the
System Development Processes Workflow (Figure 12.3),
decision gates are intended to answer the following types of
questions:

• Is there an agreement between the key Stakeholders—
the User, End User, Acquirer, and System Developer—
concerning the adequacy, validity, and completeness of
requirements for the system, product, or service? Do
the Stakeholders share a common understanding and
interpretation of the requirements? Have all require-
ments issues been resolved? Are the requirements re-
alistically achievable, measurable, testable, and verifi-
able within the planned technical, technology, cost, and
schedule constraints and acceptable risk?

• Are we confident that the System Developer has a
System Design Solution selected from a set of viable
candidate solutions that represent the best balance
of technical, technology, cost, schedule, and support
performance and risks?

• Have System Performance Specification (SPS) require-
ments been derived, allocated, and flowed down to
entities at the Product, Subsystem, Assembly, and
Subassembly levels of abstraction?

• Do we have a Preliminary System Design Solution that
is necessary and sufficient to commit to detailed de-
sign with acceptable risk in terms of meeting technical,

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

technology, cost, and schedule performance require-
ments?

• Does the System Design Solution provide the right
level of detail that is necessary and sufficient to com-
mit to the Component Procurement and Development
Process (Figure 12.2) with acceptable risk in terms of
meeting technical, cost, and schedule performance re-
quirements?

• Are components that were procured and/or developed
completed Fabrication, Assembly, Integration, & Test
(FAIT) ready to enter System Integration, Test, and
Evaluation (SITE)?

• Is the System or Product ready to undergo formal
System Level verification and acceptance by the Sys-
tem Acquirer, as the User/End User’s contractual and
technical representative?

• Does the System or Product meet the User’s val-
idated operational needs—its operational utility,
suitability, usability availability, efficiency, and effec-
tiveness (Principle 3.11)?

To address these questions, technical reviews enable the
System Acquirer to verify that the evolving and maturing
System Development Solution complies with contract or task
specification requirements and is progressing with accept-
able risk toward delivery on schedule and within budget.

18.1 DEFINITIONS OF KEY TERMS

• Accomplishment “An accomplishment is the desired
result(s) prior to or at completion of an event that

http://www.wiley.com/go/systemengineeringanalysis2e
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indicates a level of the program’s progress” (DoD
IMP-IMS Guide, 2005, p. 4).

• Conference Minutes A quality record that serves
as a written summary of a formal project event and
documents the attendees, agenda, discussion topics,
decisions, actions items, and handouts.

• Critical Design Review (CDR) A major technical
project event conducted by a System Developer with
the System Acquirer and User to assess the progress,
status, maturity, plans, and risks of each Configuration
Item’s (CI) detailed design solution. The event serves as
a critical staging point for authorizing and committing
resources for the Component Procurement and Devel-
opment Process of the System Development Phase.

• Criteria “Criteria provide definitive evidence that a
specific (Integrated Master Plan) accomplishment has
been completed. Entry criteria reflect what must be
done to be ready to initiate a review, demonstration, or
test. Exit criteria reflect what must be done to clearly
ascertain the event has been successfully completed”
(DoD IMP-IMS Guide, 2005, p. 4).

• Event “An event is a program assessment point that
occurs at the culmination of significant program ac-
tivities: accomplishments and criteria” (DoD IMP-IMS
Guide, 2005, p. 4).

• Gate “A checkpoint, or point in time, where a decision
is made to ‘Go Forward’ with a project. ‘Return’ to a
previous stage to obtain more information or ‘Stop’ it
permanently” (DOE, 2007, p. 21).

• Gate Decision “Project decisions made by gatekeepers
at each gate; may include Go Forward, Stop, Hold, or
Return” (DOE, 2007, p. 21).

• Gate Review “A meeting with gatekeepers and project
team at each gate to review results, assess them against
criteria, and make project decisions” (DOE, 2007,
p. 21).

• Hardware/Software Specification Review (HSR/
SSR An assessment of each unique Hardware
Configuration Item (HWCI) or Computer Software
Configuration Item (CSCI) requirements specifications
to determine their adequacy to authorize preliminary
hardware design or preliminary software design and
commit resources to support those activities.

• In-Process Review (IPR) An interim or incremental
assessment of a work product such as a document or
design solution during its development to provide “ear-
ly” Stakeholder feedback as an independent, peer level,
assessment including guidance and recommendations
for resolving COIs and CTIs.

• Integrated Master Plan (IMP) “The IMP is an
event-based plan consisting of a hierarchy of program

events, with each event being supported by specific ac-
complishments, and each accomplishment associated
with specific criteria to be satisfied for its completion”
(DoD IMP-IMS Guide, 2005, p. 4).

• Integrated Master Schedule (IMS) “The IMS is
an integrated, networked schedule containing all the
detailed discrete work packages and planning packages
(or lower-level tasks or activities) necessary to support
the events, accomplishments, and criteria of the IMP
(if applicable). The IMP events, accomplishments, and
criteria are duplicated in the IMS… ” (DoD IMP-IMS
Guide, 2005, p. 5).

• Master Program Schedule (MPS) An MPS is a Gantt
chart project schedule depicting major program and
technical activities, key milestones, and events.

• Major Technical Review A formal review mandated
by contract, task, or Enterprise command media that
requires System Acquirer and System Developer stake-
holder participation to achieve review objectives and
outcomes.

• Peer Review A formal or informal review of an SE’s
or Integrated Product Team’s (IPT) work products by
knowledgeable Subject Matter Experts (SMEs).

• Performance Measurement Baseline (PMB) A PMB
represents a baseline that documents the current project
resource budget allocations, schedule, and technical re-
quirements that have been evaluated to be reasonable to
achieve and measure using Earned Value Measurement
(EVM) methods.

• Preliminary Design Review (PDR) A major technical
project event conducted by a System Developer with
the System Acquirer and User to review a system’s
HWCI or CSCI designs with intent to authorize and
commit resources to detailed design.

• Production Readiness Review (PRR) “A formal as-
sessment by system stakeholders to authenticate the
current Product Baseline and the readiness of the Tech-
nical Data Package (TDP) for production” (Former
MIL-STD-1521B, 1992 p. 7/8).

• Ready-to-Ship Review (RTSR) A formal assessment
by system stakeholders to determine the readiness of
the system to be disassembled and shipped to a User’s
designated location.

• System Design Review (SDR) An assessment of the
evolving system design solution to evaluate the com-
pleteness and maturity of the system architecture and its
interfaces, identification of Products/Subsystems, al-
location of SPS requirements to products/subsystems,
and risks.

• System Requirements Review (SRR) “An assessment
of the conciseness, completeness, accuracy, reason-
ableness, and risk of the SPS requirements to permit
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the development of a system with an intent to avoid
misinterpretations, inconsistencies, and errors, espe-
cially during system verification, validation, and accep-
tance.”

• System Verification Review (SVR) A formal as-
sessment by system stakeholders to authenticate the
results of the Functional Configuration Audit (FCA)
and Physical Configuration Audits (PCA) relative to
SPS requirements and verification methods.

• Technical Reviews “A series of system engineering ac-
tivities by which the technical progress on a project
is assessed relative to its technical or contractual re-
quirements. The reviews are conducted at logical tran-
sition points in the development effort to identify
and correct problems resulting from the work com-
pleted thus far before the problems can disrupt or
delay the technical progress. The reviews provide a
method for the performing activity and tasking activ-
ity to determine that the development of a configura-
tion item and its documentation have a high probability
of meeting contract requirements.” (MIL-HDBK-61A,
2001, p. 3-10).

• Test Readiness Review (TRR) An assessment of the
maturity of all aspects of a multi-item/CI to determine
(1) its state of readiness to proceed with testing with
a critical focus on Environmental, Safety, and Health
(ES&H) concerns and (2) authorize initiation of the
tests.

18.2 APPROACH TO THIS CHAPTER

Technical reviews are one area in which there is a diversity of
opinions and implementations that are Enterprise dependent.
Commercial industry, which operates from a speculative
business model that projects and anticipates marketplace
needs, employs a Stage-Gate Process (Figure 3.4) to vali-
date, authorize, and commit resources for system or product
development. Governmental agencies acquire systems,
products, or services typically via solicitation-based procure-
ments processes that employ contract-driven decision stage
gates.

If you investigate these processes, they do share com-
monalities from a Systems Engineering and Development
(SE&D) perspective. They require:

• Assessment of the completeness, consistency, coordi-
nation, and risk of technical plans and resources.

• Validation of the necessity and sufficiency of specifi-
cation requirements for system boundaries, interfaces,
capabilities, performance levels, and design and con-
struction constraints.

• A conceptual view such as a Concept of Operations
(ConOps) that describes how the Stakeholders - Users

and End Users - envision integrating the system, prod-
uct, or service into their Enterprise assets, deploying
the asset to the field or marketplace, operating and sup-
porting the asset, and disposing of the asset.

• An assessment of the status, progress, maturity, and
risk of an evolving multi-level System Design So-
lution that includes architectures, interfaces, designs,
Specialty Engineering disciplines—Safety, Reliability,
Maintainability, Sustainment, Human Factors.

• Establishment and continual assessment of the integrity
of the Developmental Configuration and Production
Baselines (Chapter 16) and corrective actions.

• Validation of the integrity, completeness, and consis-
tency of a TDP to commit to component procure-
ment and development and corrective action evaluation
throughout procurement.

• Advance planning, coordination, and resource ade-
quacy for SITE.

• An assessment of the readiness for System or Product
acceptance and delivery.

Beyond these words, the scope of actual implementa-
tions differs by country and business domain—medical,
aerospace and defense, transportation, energy, and so forth.
As a result, our approach is to highlight what technical
reviews need to accomplish from a Systems Engineering
(SE) perspective. You should refer to your Enterprise com-
mand media for your business domain for specific policy
and implementation guidance. To facilitate our discussion,
we will use technical reviews employed by the US Depart-
ment of Defense (DoD) as a frame of reference to illus-
trate some of the types of technical decision-making to be
accomplished. The contexts of these reviews are universal
for system development and equally apply to medical, en-
ergy, transportation, communications, and other business do-
mains.

18.3 TECHNICAL REVIEWS OVERVIEW

System development is highly dependent on a proactive,
efficient, technical decision-making throughout the Sys-
tem Development Phase that involves the System Acquirer
and User. The timing of constructive technical assessment
and feedback by stakeholders at critical control or staging
points enables the System Engineering and Integration Team
(SEIT) to evolve the System Design Solution to maturity
to ensure it meets their needs within resource constraints.
The mechanisms for staging these assessments and mak-
ing key technical decisions consist of a series of technical
reviews.
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Principle 18.1

Technical Review Scheduling Principle

Schedule technical reviews at critical
control or staging points in system de-
velopment to assess the status, progress,

maturity, compliance, and risk of the evolving System
Design Solution in meeting its contract and specification
requirements; no sooner, no later.

The objective of a technical review is to enable key
stakeholders to assess the evolving system design solution at
critical staging or control points to determine the progress,
status, maturity, integrity, plans, and risk as a condition
of a System, CI, or Non-Developmental Item (NDI) for
committing resources for the next segment or phase of
project activities.

18.3.1 Categories of Technical Reviews

Technical reviews consist of major reviews conducted for-
mally and internal reviews that tend to be less formal. In
general, the major reviews are typically required by contract
and involve the System Acquirer and User stakeholder rep-
resentatives as participants.

18.3.2 Formal Contract Technical Reviews

Contract reviews, which are referred to as project events,
are formally conducted in accordance with the contract’s
Terms and Conditions (Ts&Cs) of the contract. Generally,
the contract identifies the reviews to be conducted and
specifies guidance for preparing, conducting, and completing
the review. In addition to the contract guidance that defines
how the reviews are to be conducted, there is also a protocol
associated with providing directions and guidance during the
review, attendees to be invited and by whom, and so forth.

Principle 18.2

Conference Invitations Protocol
Principle

Under contract protocol, System Develop-
ers invite the System Acquirer to project

events; the System Acquirer extends invitations to the User
and End Users unless the System Acquirer has authorized the
System Developer to send invitations.

18.3.3 Traditional Contract Technical Reviews

Years ago, contracts used technical reviews as a limited, but
important, window for the customer (System Acquirer) to
look into the contractor’s operations and assess how well
the effort was progressing. Depending on contract size, com-
plexity, and priority, the customer assigned and deployed an
on-site representative to the contractor’s facility. This indi-
vidual’s task was to monitor day-to-day operations and com-
municate to the “home organization” views on how well the

contractor efforts were progressing. In general, the reviews
enable customer project managers to ask themselves “does
the System Developer’s design solution review materials cor-
relate with the progress depicted in prior phone conversa-
tions with the contractor—‘glowing’ contractor status and
progress reports and so forth?”

Several weeks prior to a technical review, the System
Developer prepared large documentation packages for dis-
tribution to the customer and User for review. During this
review, the contents of the Technical Data Package (TDP)
were discussed over a period of several days in agoniz-
ing detail. As a result, technical reviews consumed large
amounts of time, were costly, and provided “feedback” too
late, which caused rework and impacted customer schedules.
These issues, in conjunction with escalating contract costs
and process inefficiencies, prompted the need for current
System Development status information in terms of hours or
days, not weeks or months.

18.3.4 Integrated Process and Product Development
(IPPD)

The need for acquisition reform, streamlining, process im-
provement, and reduced rework influenced a move toward
IPPD environments. IPPD environments, which include the
System Acquirer as an integral part of the “team,” provide
on-site access to the details and nuances of the product de-
velopment effort.

As a result of the DoD Acquisition Reform initiatives in
the DoD, for example, the technical reviews paradigm began
to shift. Whereas technical reviews consumed several days
agonizing over documentation details, the paradigm shifted
to simply spending a few hours resolving Critical Opera-
tional Issue (COI) and Critical Technical Issue (CTI) deci-
sions. Why? If the User and System Acquirer are participants
in the IPPD team processes, either on-site or virtually, they
should be intimately familiar with the design details. The
only agenda topics remaining should focus on resolution of
issues between the System Acquirer and the System Devel-
oper.

Finally, another aspect was the shift from date-driven to
event-driven contract reviews.

18.3.5 Date-Driven versus Event-Driven Reviews

Technical reviews, specified by contract, are typically of two
types: date-driven or event-driven.

• Date-driven reviews mandate that a review be con-
ducted “X” days After Contract Award (ACA)—on a
specific calendar date.

• Event-driven reviews are conducted when the devel-
opment efforts reach specific maturity levels, usually
within a general timeframe. The timeframe may be
specified as “within XX days or months ACA.”
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18.4 CONDUCT OF TECHNICAL REVIEWS

Technical reviews are conducted in accordance with the
Ts&Cs of the contract, subcontract, or associated agree-
ments. Every contract should specify the who, what, when,
where, how, and why technical and programmatic reviews are
to be accomplished. If not, do not sign until all of the con-
tract’s Ts&Cs of the technical reviews have been clearly and
explicitly delineated, mutually understood, and agreed to by
all parties.

Principle 18.3

Technical Review Entry/Exit Criteria
Principle

Avoid signing contracts with ambiguous
technical review entry and exit criteria

language that may be open to interpretation, especially when
it comes to getting paid.

Technical reviews are more than simply forums to make
nice and orderly presentations. The reviews are an opportu-
nity to brief the System Acquirer and User “for the record”
on what progress has been made in maturing the System De-
sign Solution since the last review. Reviews provide an op-
portunity for the System Acquirer to validate what has been
documented in the monthly contract progress reports.

18.4.1 Staging and Conduct of Technical Reviews

In their truest technical form, professionally objective and
constructive technical reviews strive to ensure that the evolv-
ing System Design Solution is maturing as planned, will
yield a final system, product, or service that satisfies the
Stakeholder - User and End User - operational needs with
no or limited latent defects, and makes corrective actions
to achieve these results. This requires serious, positive, and
open collaboration between the System Acquirer and Sys-
tem Developer. Unfortunately, technical reviews sometimes
become “dog and pony shows” as a perfunctory “check the
box” event to satisfy contract payment criteria and so forth. In
these situations, the System Developer showcases a parade of
presentations—parade floats—for the System Acquirer and
then asks how they liked the System Design Solution.

Inviting a System Acquirer to review moderate to highly
complex System Design Solutions without adequate prior
review is problematic for all parties in terms of achieving
professional objective stated previously. In all fairness to the
System Acquirer, comprehending the breadth and depth of
the System Design Solution is often impractical, especially
if the System Acquirer review team lacks sufficient staffing
and technically qualified and experienced reviewers.

One solution to this problem was instituted in the late
1980s with the introduction of the IPT concept. In this con-
cept, the System Developer creates a project organizational

framework of IPTs that are uniquely assigned to focusing on
developing a specific System, Product, Subsystem Assem-
bly, and so forth. The System Acquirer also has IPTs related
to system planning for system deployment, operations and
support, and disposal. In some cases, these IPT discussions
may be germane to the scope of System Developer activities,
in other cases not due to Acquirer unique Enterprise coordi-
nation and planning.

Conceptually, the intent is to provide open access to
System Developer IPTs for the Acquirer to review work
products, status, progress, and risk. Having System Acquirer
personnel intimately familiar with the respective System,
Product, Subsystem, Assembly, and Subassembly Level
solutions avoids the need for days of consuming project
resources agonizing over unfamiliar detail design presenta-
tions. As a result, major technical reviews shifted to a focus
on resolving COIs/CTIs thereby requiring less meeting time.
Ideally, the IPT approach yields positive results, assuming
all parties are able to work together in a positive, constructive
manner.

To work successfully, System Developer IPT environ-
ments do require constraints such as:

• System Acquirer personnel attending IPT meetings are
not permitted to provide technical decisions or direc-
tion; only the System Acquirer Contracting Officer
(ACO) is officially authorized to provide contract di-
rection.

• Both parties have to recognize that meeting work
products, discussions, and decisions are limited to the
meeting environments and should not enter the “water
cooler” gossip chain to become unplanned distortions
of the facts, hearsay, etc.—the Law of Unintended Con-
sequences. The project resources required to manage
these situations trump System Acquirer open partici-
pation in IPT meetings. When both parties profession-
ally respect the meeting constraints, open participation
can be very productive for all parties and yield mutual
benefits.

18.4.1.1 Checks and Balances Benefits Technical re-
views provide checks and balances for the System Developer,
System Acquirer, and User with inherent benefits for all.

18.4.1.2 System Acquirer and User Perspectives For the
System Acquirer and User, technical reviews provide the
opportunity to:

1. Assess the status, progress, maturity, and risks of the
product development efforts.

2. Factor project technical review results into the realism
of User deployment schedules.

3. Express priorities and preferences.
4. Provide legal technical direction, depending on con-

tract type Ts&Cs.
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18.4.1.3 System Developer Perspective For the System
Developer or Service Provider, the technical reviews provide
the opportunity to:

1. Clearly demonstrate product development maturity and
progress.

2. Address and resolve COIs/CTIs.

3. Validate System Acquirer priorities and preferences.

4. Obtain System Acquirer agreement, if appropriate for
the type of contract, baseline system documentation to
serve as a reference for future discussion, and scope for
technical guidance and direction.

18.4.1.4 Type of Contract In general, the type of contract
determines how a review is accomplished and the degree of
influence or approval the customer has over the information
presented. In the case of Firm-Fixed Price (FFPs) contracts,
the System Developer conducts technical reviews to inform
the System Acquirer and User about progress to date, current
status, and risks.

Depending on the type of the contract,1 the System Ac-
quirer may be limited in the degree to which they can approve
or reject the System Developer’s solution without contract
modification. In contrast, Cost Plus Fixed Fee (CPFF) con-
tracts typically enable the System Acquirer to exert a large
amount of control over the contractor’s decision-making and
make adjustments in cost and schedule to accommodate
changes in the contract’s technical direction.

Principle 18.4

Contract Protocol Principle

Read and thoroughly understand your
contract. If unclear, consult with your
Enterprise’s Project Management Team

(PMT). The PMT, in turn, consults with internal Contract
and Legal organizations for specific guidance and expertise
in interpreting the contract’s Ts&Cs.

18.5 CONTRACT REVIEW REQUIREMENTS

Major technical reviews are conducted by the System Devel-
oper as a contract event in accordance with the Master Project
Schedule (MPS), IMP, or IMS, as appropriate.

18.5.1 Technical Reviews Location

Technical reviews are conducted at locations specified in ac-
cordance with the contract’s Ts&Cs. Generally, the reviews
are performed at the item’s System Developer’s facility due

1Refer to the Project Management Institute (PMI) A Guide to the Project
Management Body of Knowledge (PMBOK®) for additional information
about project management contract types.

to close proximity to the documentation and actual hardware
and software for demonstrations.

Author’s Note 18.1

“Item” Context

Remember, “item” in the previ-
ous context represents a System,
Product, Subsystem, and so forth

(Chapter 16). For example, if a subcontractor is developing
a Subsystem, reviews are conducted at the subcontractor’s
facility and include invitations to the prime System Develop-
ment contractor, who may elect to invite their customer, the
System Acquirer. Under contract protocols (Principle 18.2),
the System Acquirer always invites the User unless prior
authorization has been made with the System Developer.

18.5.2 Planning and Orchestrating the Review
Conferences

Major technical reviews are often referred to as conferences.
Each conference consists of three phases of activities to
ensure successful completion of the review: Pre-Conference,
Conference, and Post-Conference.

• Pre-Conference Phase activities include coordination
between the System Developer and System Acquirer to
set the date, time, and location of the review, as well as
to set the agenda, invitees, special facility access, and
arrangements such as security, parking, and protocols.

• Conference Phase activities include conducting the
conference in accordance with the planned agenda,
classification level, rules of conduct/engagement,
recording of conference notes, and action items.

• Post-Conference Phase activities include resolving
conference action items, preparing and approving the
conference minutes, incorporating corrections into
documentation, and establishing baselines, where
applicable.

Principle 18.5

Conference Documentation Principle

Conference minutes document attendees,
agenda, discussion topics, meeting, and
action items. Perform the task well and

obtain System Acquirer acceptance via the ACO.

Principle 18.6

Conference Minutes Principle

Technical review agendas, attendees, dis-
cussions, decisions, and action items are
documented via conference minutes and

reviewed, approved, and released via contract protocol.
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18.5.3 Contract Review Completion Exit Criteria

Some contracts require completion of technical events, such
as reviews, as a prerequisite for obtaining contract progress
payments. Exit criteria are employed to explicitly identify
what must be accomplished as a contract condition for
System Acquirer acceptance.

Some formal solicitations such as Request for Propos-
als (RFPs) require identification of exit criteria as a re-
quirement. Where this is the case, the Offeror’s proposal
may become part of the contract. If contract progress pay-
ments to the System Developer are linked to project events,
such as reviews, make sure that exit criteria are explicitly
stated in language that does not require interpretation when
time comes to contractually close the review and pay the
contractor.

A Word of
Caution 18.1

Review Entry and Exit Criteria

Review entry and exit criteria may appear
simple on initial inspection. However, they
can easily become major showstoppers due
to misinterpretation(s), especially where

contract progress payments are “on the line.”
When you state that the software design is complete,

be very explicit as to what you mean by “Software
Design Complete.” It bears emphasizing that the Sys-
tem Acquirer interprets “Software Design Complete” as
everything:

• Think about these statements!

• Recognize the scope of your intent before you write
them into a proposal and sign a contract, especially if
progress payments are at risk. This includes the IMP
and associated dictionaries.

Why? Simply stated, if you do not follow the contract
words, you do not get PAID! And guess who negotiated the
contract words? Your Enterprise and project did!

18.5.4 Posting and Distribution of Technical Review
Materials

Today’s contracting environment often involves contrac-
tor teams across the country and around the globe to
integrate their efforts via collaborative development and
review environments. For technical reviews, World Wide
Web (WWW)-based reviews provide opportunities to per-
form IPRs without the expense of travel or disruption
of work. However, keep in mind that this media also
presents major data security issues related to proprietary
data, copyright law, security classification, and export
control.

WARNING

Warning 18.1

Export Control of Technology

The US ITAR governs the export of critical
technologies and data by any means includ-

ing the Internet. Refer to the Export Control Warning (Warn-
ing 17.2). Always refer to your Legal and Contracts organi-
zations as well as the Export Control Officer for guidance in
these areas.

18.5.5 Technical Review Contract Direction

Principle 18.7

Official Contract Direction Principle

Under contract protocol, only the System
Acquirer’s Contracting Officer (ACO) is
officially authorized to issue technical di-

rection to the System Developer in response to technical re-
view comments, conference minutes, action items, contract
modifications, and acceptance of contract documents.

The conduct of contract technical reviews is often viewed
as a causal event. Beware! Despite the suave coolness of
the System Developer’s “we’re glad you are here” and the
System Acquirer’s “we’re glad to be here” pleasantries,
the activity carries some very serious political and legal
implications that demand your full attention and awareness.

Remember, only the ACO is officially authorized to
provide contract direction to the System Developer regarding
the technical review. The System Acquirer’s Project Manager
(PM) provides project and technical guidance to the ACO to
convey officially to the System Developer. As a result, you
will often hear an System Acquirer Project Manager make
introductory remarks at the beginning of the review and begin
with a disclaimer: “we are here to listen … anything we say
or ask does not infer or should be construed as technical
direction … Our (System Acquirer) Contracting Officer
is the only one officially authorized to provide contract
direction.”

18.5.6 Technical Issue Resolution

One of the greatest challenges of technical reviews is making
sure all showstopper COIs/CTIs are resolved to the mutual
satisfaction of the System Acquirer and System Developer
Enterprises.

COIs/CTIs often have far-reaching impacts that range
from achieving the mission objectives to simply printing
out a report. COIs impact one of more of the integrated set
of SE System Elements—Equipment, Personnel, Facili-
ties, and so forth. COI and CTI impacts span the spectrum
from SPS requirements to Part Level design requirements,
and vice versa. Therefore, it is imperative that COI/CTI is-
sues be introduced, understood, and resolved at the technical
reviews to avoid schedule impacts.
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Projects often refuse to acknowledge or publicize
COIs/CTIs. Ironically, these issues are often ignored until
the project finally has to confront them. Humans have a nat-
ural propensity to pretend and believe that problems—such
as COIs/CTIs—will simply “just go away.”

Sometimes this happens; however, in most cases this is a
panacea. Although there are reasonable and practical bounds
to issue resolution, sooner or later you will learn to confront
these issues “early on.” Historically, you either pay the
price now or pay an even greater price farther downstream
(Chapter 13 cost-to-correct) to resolve an outstanding issue,
assuming the set of potential solutions are viable at that point
in time in terms of cost and schedule performance.

The realities are Users, System Acquirers, and Sys-
tem Developers procrastinate on resolving COIs/CTIs. En-
terprises spend millions of dollars every year publicizing
how they have cut back expenses by reducing the num-
ber of pencils and paper people use. Yet, these expenses
are often insignificant when compared to the dollars wasted
procrastinating to resolve the inefficiencies of COIs/CTIs
decision-making. There are no easy solutions or “quick
fixes” other than to say that all parties—Users, System
Acquirers, System Developers, and subcontractors among
these—collectively need to do a better job confronting these
challenges. So, how does resolution of COIs/CTIs relate to
technical reviews?

Technical reviews, in general, provide the forum for
time-constrained “open technical debate” to resolve any
outstanding or lingering COIs/CTIs. Granted, some people
“debate” just to hear themselves talk. The context here
is the need for an environment in which the participants
remove their Enterprise “hats and badges” and focus all
energies on alternative paths to bring an issue to consensual
closure to the mutual satisfaction of all parties. Tough
to accomplish? Yes! Are there alternatives? Yes, there is
a “programmatic direction approach” whereby the project
managers for the System Acquirer or System Developer PMs
may dictate a solution to meet schedule. This is not a desired
path technically or programmatically. If you don’t like the
“programmatic direction approach,” take the necessary steps
to ensure that the “technical approach” works.

Obviously, you do not want to consume valuable time
and resources in a technical review “debating” COIs
and CTIs, unless they surface unexpectedly from the un-
known – unknown-unknowns. If COIs/CTIs are known prior
to a review, special arrangements should be made before a
review to schedule some form of “working group” meeting
of all parties. The session must be constrained with the
understanding that a group must bring the issue to closure
and employ the review to present the recommendations and
finalize resolution.

One of the most overlooked aspects of technical reviews
is the psychology of managing customer perceptions. From

a System Developer’s perspective, the reviews are opportu-
nities to manage customer expectations. Likewise, System
Acquirers and Users formulate perceptions during the review
as well as throughout contract performance. Perceptions of
System Developer contract performance influence future in-
teractions, be it future business, follow-on business, or ne-
gotiable items of the contract. While the primary focus on
a technical review is the current contract or task, the User
and System Acquirer may be subconsciously asking them-
selves, “do we want to do business with this System Devel-
oper again?”

Although not discussed openly, the reviews enable System
Acquirers to validate levels of confidence that they made the
right choice in selecting your Enterprise to perform on this
contract as opposed to your competition. Remember, suc-
cessful contract performance reflects on System Acquirers
and how their Stakeholders, the User, and executive manage-
ment view your Enterprise.

18.6 IN-PROCESS REVIEWS (IPRs)

IPRs, which represent another class of technical reviews,
occur in two forms:

1. As a System Developer’s incremental assessment of its
evolving work products.

2. As an Acquirer’s readiness assessment for conducting
a major technical review for a contract.

Let’s describe each of these types.

18.6.1 System Developer IPRs or Peer Reviews2

System Developer personnel conduct peer level IPRs for
their evolving work products with internal Stakeholders.
IPRs serve three primary purposes:

1. To assess compliance of an evolving and maturing work
product relative to SPS or EDS requirements, contract
requirements, and Enterprise OSPs.

2. To identify COIs and CTIs and provide collaborative
recommendations for corrective action.

3. To identify Action Items (AIs) for corrective action and
address completion of previous IPR AIs.

IPRs review evolving and maturing work products such
as plans, specifications, designs, test procedures, and so
forth. Where project organizations are based on Product

2For additional information about Peer Reviews, refer to the NASA
System Engineering Handbook NASA/SP-2007-6105 Rev1 Appendix N:
“Guidance on Technical Peer Reviews/Inspections,” pp. 312–314, as an
example.
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Development Teams (PDTs), the System Acquirer and User
may have standing invitations to participate in the reviews.

IPRs, like any type of review, should be prescribed by
Enterprise command media such as Organizational Standard
Processes (OSPs). OSPs define how IPRs are to be con-
ducted, who is to be invited, conditions for cancellations,
meeting minutes, action items and tracking, and so forth.
Projects typically issue internal OSPs such as a project memo
that defines “up front” role-based personnel such as the LSE,
QA, Safety, and others that are required to be invited to IPRs.
Since IPRs are a critical staging point for efficient usage of
resources, peer level participation is important. As a result,
OSPs typically have ground rules for IPR cancellation if spe-
cific roles and levels of participation are not met thereby
resulting in rescheduling.IPR participants primarily include
project personnel. However, due to the need for an indepen-
dent assessment, Enterprise Subject Matter Experts (SMEs)
external to a project as well as System Acquirer personnel
may be invited to attend, especially if they have field offices
within the System Developer’s facility.

Author’s Note 18.2

System Acquirer Participation in
Informal IPRs

System Acquirer participation in Sys-
tem Developer project IPRs has a lot

of serious implications. System Acquirer personnel some-
times unwittingly attempt to provide direction, which is a
serious violation of contract protocol. Only the ACO can
legally provide System Acquirer contract direction (Princi-
ple 18.7).

Given this constraint, System Acquirer participation be-
comes an assignment of “reporting back,” which is fine.
However, any misperceptions or misinterpretations gyrate
into an issue that unnecessarily spirals out of control for
political purposes.

Conceptually, in the “spirit of openness,” System
Acquirer participation in IPRs should be fine. However,
given the risk of unintended and unnecessary political ram-
ifications, the decision needs to be made on an individual
contract basis.

18.6.2 Contract IPRs

Major technical reviews can be very costly, especially if con-
ducted prematurely. Some contracts may require the System
Developer to conduct Contract IPRs to assess project readi-
ness for conducting the formal technical review. Contract
IPRs are conducted 30 to 60 days prior to a major technical
review to assess the readiness to “go-ahead” with SDR, PDR,
CDR, and so forth. Due to the increasing expenses of travel
to attend review events, this approach increases the level
of confidence that the System Developer will be prepared
on the required date and minimize the cost inefficiencies of
rescheduling immature or poorly prepared project reviews.

18.7 CONTRACT TECHNICAL REVIEWS

Technical review agendas consist of two types of discussion
topics:

1. Programmatic topics

2. Technical topics unique to the type of review

In general, more than 90% of the review time should be
devoted to technical agenda items. Sometimes, this is not the
case and the System Acquirer and System Developer have
to resolve programmatic issues that may be stagnating as a
barrier to technical progress.

18.7.1 Success Criteria: Technical Reviews

Technical reviews, in general, should be an uneventful assess-
ment of the technical progress, status, and maturity of the
evolving System Design Solution and Developmental Con-
figuration. Unfortunately, technical reviews become emo-
tional events when the technical review fails to meet System
Acquirer of System Developer expectations. Technical re-
view success is dependent on managing expectations of:

• Entry criteria—What performance-based outcomes
and objectives have the System Acquirer and System
Developer agreed via the contract or other agreements
to be necessary and sufficient for conducting a technical
review?

• Exit criteria—What performance-based outcomes and
objectives have the System Acquirer and System De-
veloper agreed via the contract or other agreements to
be necessary and sufficient to declare a technical review
as “complete” or “closed?”

18.7.2 Entry Criteria: Technical Reviews

Principle 18.8

Technical Review Entry Criteria
Principle

At a minimum, establish explicit entry cri-
teria for technical reviews based on:

• Level of maturity of work products to be reviewed.

• COIs or CTIs to be resolved.

• Closure status of outstanding AIs.

• Assessment of System Design Solution supporting
data—analyses, trade studies, etc.

• Configuration Status Accounting (CSA) of the Devel-
opment Configuration.

• Other criterion, as required.
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One way to manage System Acquirer, User, and System
Developer technical review expectations is to establish a
set of entry criteria as part of contract Statement of Work
(SOW). Since technical reviews as conferences have a cost
in terms of budget and schedule, both parties negotiate
expectations. This does not preclude the System Acquirer
and System Developer Project Managers from coordinating
via contract protocol on other topics for discussion.

One of the challenges of technical reviews is their
efficiency and effectiveness in conducting business. Often,
discussions become bogged down in esoteric topics that
needlessly consume time that is better spent on more im-
portant topics that may not get addressed. Therefore, it is
imperative that the System Acquirer and System Developer
PMs jointly manage this time.

18.7.3 Conduct of the Technical Review

Effective technical reviews should be of short duration and
focus on the key issues to be resolved, not a line-by-line
or presentation chart educational exercise for the System
Acquirer and User personnel. There are always exceptions
when a System Acquirer or User decision-maker decides
they need to attend. How should we solve these issues?

• First, assuming the project employs IPTs that have
open, on-site access for System Acquirer and User per-
sonnel, those personnel should be intimately familiar
with the evolving System Design Solution and issues
prior to the review including keeping their management
informed.

• Second, System Developers should provide advance
review material to the System Acquirer for distribution
to their personnel and the User with appropriate time
to prepare for the review. Typically, advance review
materials are required in many SOWs.

18.7.4 Exit Criteria: Technical Reviews

Principle 18.9

Technical Review Exit Criteria
Principle

At a minimum, establish explicit exit crite-
ria for technical reviews based on:

• Closure of outstanding and new AIs.

• Resolution of COIs or CTIs.

• Acceptable assessment of System Design Solution
maturity and risk.

• Approval of conference minutes.

• Other criterion, as required.

Technical review exit criteria simply posture the review
for success; however, they do not guarantee success. This

requires establishing objectives for successful outcomes to
be achieved. The results are technical review exit criteria
documented in the SOW as well coordinated by the System
Developer and System Acquirer PMs prior to the review.
Tables 18.1–18.10 provide examples of types of outcomes
expected from various types of technical reviews.

18.7.5 Standard Review Work Products and Quality
Records (QR)

The preceding discussions highlighted what is to be accom-
plished at reviews. In a decision-making event, it is important
to document the review materials and results for historical
and reference purposes. The following is a list of example
work products and QRs that, at a minimum, should be pro-
duced for each of the major technical reviews:

Example 18.1

Technical Review Work Products and
QR Examples

• Conference agenda (e.g., meeting min-
utes and action items)

• Attendee lists

• Presentation materials

• Handouts (analyses, trade studies, modeling and simu-
lation results, etc.)

• Conference notes

• Conference minutes

• Action items (AIs) Open/On-Hold/Closed

• Other supporting documentation, as required

18.7.6 Standard Technical Review Items

Standard technical review topics include the following
examples:

Example 18.2

Technical Review Topic Examples

• Review updates to technical plans, ap-
proaches, or procedures.

• Review risk mitigation plans and
approaches.

• Review of current schedule status and progress.

• Review Contract Data Requirements List (CDRL) item
status.

• Review Contract Line Item Number (CLIN) status.

• Review results of the Requirements Traceability Audit
(RTA).

• Provide authority, if applicable to the contract, to
proceed and commit resources to the next System
Development Phase Process segment (Figure 12.2).
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TABLE 18.1 Example IBR Supporting Objectives/Exit Criteria and Expected Decisions

Item Example IBR Objectives/Exit Criteria Expected Decision(s)

IBR-1 Assess the adequacy, completeness, consistency, and risk of the SPS • Action item(s) or
• Concurrence/approval

IBR-2 Assess the adequacy, completeness, consistency, and risk of the
contract and program schedule elements:
• MPS
• IMP
• IMS

• Action item(s) or
• Concurrence/approval

IBR-3 Assess the adequacy, completeness, consistency, and risk of the
contract and program cost elements:
• CSOW
• CWBS
• CDRL items
• CLINs
• Control accounts
• Work packages

• Action item(s) or
• Concurrence/approval

IBR-4 • Establish the PMB:
• Technical performance baseline elements
• Schedule performance baseline elements
• Cost performance baseline elements

• Action item(s) or
• Concurrence/approval

TABLE 18.2 Example SRR Supporting Objectives/Exit Criteria and Expected Decisions

Item Example SRR Objectives/Exit Criteria Expected Decision(s)

SRR-1 Verify that the User’s problem space and solution(s) space(s) are properly
understood and bounded (e.g., what IS/IS NOT part of the solution
space)

• Action item(s) or
• Concurrence/approval

SRR-2 Verify that the requirements completely, consistently, accurately, and
concisely articulate and bound the User’s solution space (s) for the
System in a manner that avoids misinterpretation by multiple
reviewers

• Action item(s) or
• Concurrence/approval

SRR-3 Verify that any ambiguous, overlapping, incomplete, inconsistent, or
unbounded requirements are eliminated

• Action item(s) or
• Concurrence/approval

SRR-4 Evaluate the quality (e.g., bounded, measurable, testable, and verifiable)
of the requirements in terms of required capabilities and performance

• Action item(s) or
• Concurrence/approval

SRR-5 Determine if all stakeholder requirements have been adequately
addressed subject to contract cost schedule constraints

• Action item(s) or
• Concurrence/approval

SRR-6 Verify each SPS Section 3.X requirement (Table 20.1) has at least one or
more Section 4.X verification methods such as Inspection, Analysis,
Demonstration, Test, or combinations of these

• Action item(s) or
• Concurrence/approval

SRR-7 Verify that the Section 4.0 Qualification Provision (Table 20.1)
verification methods represent the least cost, schedule, and technical
risk approach to proving the requirements compliance

• Action item(s) or
• Concurrence/approval

SRR-8 Where appropriate, obtain consensus of SPS requirements, interpretations
and clarifications, modifications, etc. subject to ACO approval

• Action item(s) or
• Concurrence/approval

SRR-9 Where applicable, obtain authorization to establish the System
Requirements Baseline

• Action item(s) or
• Concurrence/approval
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TABLE 18.3 Example SDR Supporting Objectives/Exit Criteria and Decisions Expected

Item Example SDR Objectives/Exit Criteria Expected Decision(s)

SDR-1 Assess the progress, status, maturity, and risk of the System Level design
solution—architecture, interfaces, etc.

• Action item(s) or
• Concurrence/approval

SDR-2 Review of the Preliminary ConOps • Action item(s) or
• Concurrence/approval

SDR-3 Review Mission Event Timeline (MET) allocations • Action item(s) or
• Concurrence/approval

SDR-4 Review and approve, if appropriate, SPS requirements allocations to Products or
Subsystems and other components

• Action item(s) or
• Concurrence/approval

SDR-5 Review any supporting analyses and trade studies relevant to SDR decision-making • Action item(s) or
• Concurrence/approval

SDR-6 Review Preliminary Product or Subsystem Level EDS • Action item(s) or
• Concurrence/approval

SDR-7 Resolve any critical operational or technical issues related to system capabilities,
performance, interfaces, and design criteria (e.g. data)

• Mutual resolution
• Closure

SDR-8 Review the system Life Cycle Cost analysis • Action item(s) or
• Concurrence/approval

SDR-9 Establish the Allocated Baseline plus any corrective actions required as criteria for
acceptance

• Action item(s) or
• Concurrence/approval

These topics serve as standard agenda topics for every
review and are presented in summary form as part of the
introductory remarks. In addition to the standard review
topics, review unique topics are provided in the discussions
of each review that follow.

Author’s Note 18.3

DoD Technical Reviews

As a very rigorous and disciplined
technical review process, US DoD
technical review process provides in-

sights into the types of reviews and topics required to assess
the status, progress, maturity, and risk of the evolving System
Design Solution. In the discussions that follow, we will use
the DoD process as an example reference model. The impor-
tant take-away here is that if you develop commercial sys-
tems, products, or services, you and your Enterprise should
have your own technical review process appropriate for your
line of business and industry.

18.7.7 Common Types of Technical Reviews

Common types of major system level technical reviews
include:

• Integrated Baseline Review (IBR)

• System Requirements Review (SRR)

• System Design Review (SDR)

• Software Specification Reviews (SSRs)

• Hardware Specification Reviews (HSRs)

• Preliminary Design Review (PDR)

• Critical Design Review (CDR)

• Test Readiness Reviews (TRRs)

• System Verification Review (SVR)

• Production Readiness Review (PRR)

The sequencing of these reviews is illustrated in
Figure 18.1.

Each of the System Level technical reviews is supported
by Product, Subsystem, and Assembly Level assessments
that culminate in a baseline for each item or CI. Because
of the expense of travel, some reviews may be conducted
virtually via audio teleconferences, Audio and Video Tele-
conferences (ATCs / VTCs), or on-site, depending on item
maturity. In some instances, several Product, Subsystem,
or Assembly Level reviews may be conducted sequentially
during the same timeframe at a location, typically the System
Developer’s facility. Consider the following example:
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TABLE 18.4 Example HSR/SSR Objectives/Exit Criteria and Decisions Expected

Item Example HSR/SSR Objectives/Exit Criteria Expected Decision(s)

HSR/SSR-1 Assess the adequacy and completeness of requirements allocations
and traceability of an HWCI or CSCI to its higher-level item
development specification

• Action items or
• Concurrence/approval

HSR/SSR-2 Resolve any COIs or CTIs related to HWCI or CSCI capabilities,
performance, interfaces, and design criteria (e.g. data)

• Action items or
• Concurrence/approval

HSR/SSR-3 Establish the criteria and corrective actions required to baseline the
HWCI or CSCI requirements

• Action items or
• Concurrence/approval

HSR/SSR-4 Review each HWCI/CSCI, including use cases and scenarios,
inputs, processing capabilities, and outputs

• Action items or
• Concurrence/approval

HSR/SSR-5 Review HWCI/CSCI performance requirements, including those
for execution time, storage requirements, and similar constraints

• Action items or
• Concurrence/approval

HSR/SSR-6 Review control flow and data flow interactions between each of the
entities that comprise the HWCI/CSCI

• Action items or
• Concurrence/approval

HSR/SSR-7 Review interface requirements between the HWCI/CSCI and all
other CIs both internal and external to the HWCI/CSCI

• Action items or
• Concurrence/approval

HSR/SSR-8 Review qualification or verification requirements that identify ap-
plicable levels and methods of testing for the software requirements
that comprise the HWCI/CSCI

• Action items or
• Concurrence/approval

HSR/SSR-9 Review any special delivery requirements for the HWCI/CSCI • Action items or
• Concurrence/approval

HSR/SSR-10 Review Quality Factor requirements:
• Reliability, Maintainability, Availability (RMA),
• Usability,
• Testability,
• Flexibility,
• Portability,
• Reusability,
• Security,
• Interoperability

• Action items or
• Concurrence/approval

HSR/SSR-11 Review mission requirements of the System and its associated
operational and support environments related to the HWCI/CSCI

• Action items or
• Concurrence/approval

HSR/SSR-12 Review HWCI/CSCI capabilities and characteristics within the
overall system

• Action items or
• Concurrence/approval

HSR/SSR-13 Identify any HSR/SSR corrective actions required to establish the
HWCI/CSCI Requirements baseline

• Action items or
• Concurrence/approval

Example 18.3

Successful completion of Subsystem
CDRs serve as entry criteria to a System
Level CDR, which then determines if
the system design is mature enough to
proceed with the Component Procurement

and Development Process of the System Development
Phase.

18.7.8 Integrated Baseline Review (IBR)

The IBR is typically the first review event conducted for
a System Development project. Whereas most reviews are
one-time events, the IBR is a process that occurs continu-
ously throughout the contract period of performance. IBRs
are commonly found in government contracts; however, the
IBR is a sound concept that applies to any type of System
Development or Services contract.
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TABLE 18.5 Example PDR Objectives/Exit Criteria and Expected Decisions

Item Example PDR Objectives/Exit Criteria Expected Decision(s)

PDR-1 Briefly review any updates to the System Level architecture None

PDR-2 Briefly review any updates to the Product or Subsystem Architectures None

PDR-3 Review HWCI Design Solutions:
• HWCI specification requirements and traceability
• HWCI use cases
• HWCI theory of operations
• HWCI architecture
• HWCI requirements allocations
• HWCI support of system phases, modes, and states of operation
• HWCI performance budgets and margins
• HWCI technical performance measures (TPMs)
• HWCI analyses and trade studies
• HWCI-to-HWCI interoperability
• HWCI CTIs
• HWCI-to-CSCI(s) integration

• Action items or
• Concurrence/approval

PDR-4 Review CSCI Design Solutions:
• CSCI specification requirements and traceability
• CSCI use cases
• CSCI theory of operations
• CSCI architecture
• CSCI requirements allocations
• CSCI support of SYSTEM Level phases, modes, and states of operation
• CSCI analyses and trade studies
• CSCI performance budgets and margins
• CSCI-to-CSCI interoperability
• CSCI-to-HWCI integration
• CSCI CTIs
• CSCI critical technology issues

• Action items or
• Concurrence/approval

PDR-5 Review Specialty Engineering considerations such as:
• Human Factors Engineering (HFE),
• Logistics,
• Reliability,
• Availability,
• Maintainability,
• Supportability,
• Sustainability,
• Security,
• Producibility,
• Environmental,
• Training,
• Vulnerability,
• Survivability,
• Susceptibility,
• And so on

• Action items or
• Concurrence/approval

PDR-6 Review Hardware/Software/Human System Integration (HSI)issues • Action items or
• Concurrence/approval
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TABLE 18.6 Example CDR Objectives/Exit Criteria and Expected Decisions

Item Example CDR Objectives/Exit Criteria Decision(s) Expected

CDR-1 Determine if the detailed design satisfies the performance and engineering
requirements specified in an item’s development specification

• Action items or
• Concurrence/approval

CDR-2 Assess the detailed design compatibility and interoperability internal to
the item and externally to other System Elements:
• Equipment (Hardware and Software)
• Facilities
• Personnel
• Mission Resources
• Procedural Data
• System Responses (i.e., behavior, products, by-products, or services)

• Action items or
• Concurrence/approval

CDR-3 Assess item achievement of allocated technical performance budgets and
safety margins

• Action items or
• Concurrence/approval

CDR-4 Assess specialty engineering considerations such as:
• Reliability, Maintainability and Availability (RMA)
• Producibility
• Logistics
• Security
• Survivability
• Vulnerability
• Environmental
• Susceptibility
• Human Factors Engineering

• Action items or
• Concurrence/approval

CDR-5 Assess any detailed analyses, trade studies, modeling and simulation, or
demonstration results, etc. that support decision-making

• Action items or
• Concurrence/approval

CDR-6 Assess the adequacy of verification test plans for each item • Action items or
• Concurrence/approval

CDR-7 Review preliminary test cases and procedures • Action items or
• Concurrence/approval

CDR-8 Freeze the Developmental Configuration • Action items or
• Concurrence/approval

In general, the objective of the IBR is to establish a
mutual understanding between the System Acquirer and
System Developer that contract and technical require-
ments can be reasonably accomplished within the contract
period of performance and delivery schedule with the
resources—personnel, facilities, etc.—available. The IBR
consists of an integrated assessment of all key contract
technical, cost, and schedule documents. As such, the IBR
seeks to assess and answer the who, what, when, where, and
how for establishing the PMB:

1. What work is to be performed as specified in the
Contract CSOW, Work Breakdown Structure (WBS),
IMP, SPS, CDRL, CLINs, Enterprise command media,
and so forth.

2. Who is accountable for performing the work—for
example, project organization and IPT charters.

3. When the work is to be accomplished—for example,
MPS and IMS.

4. Where the work will be performed—System Devel-
oper’s facility, subcontractor or vendor facility, etc.

5. How the work will be resourced and controlled—for
example, control accounts and work packages linked
to the Contract Work Breakdown Statement (CWBS).

On completion of the IBR, a PMB is established that will
serve as the frame of reference for assessing work progress,
performance, and risk.3,4

3Refer to DAU (2015) and NDIA (2010) for additional information.
4Refer to the ANSI/PMI 99-001-2013 (2013) Project Management Institute
(PMI) A Guide to the Project Management Body of Knowledge (PMBOK®)
for additional information.
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TABLE 18.7 Example TRR Objectives/Exit Criteria and Expected Decisions

Item Example TRR Objectives/Exit Criteria Expected Decision(s)

TRR-1 Assess the readiness of the test article to undergo testing (e.g., destructive
or non-destructive)

• Action item(s) or
• Concurrence/approval

TRR-2 Coordinate and assess the readiness of all test article interfaces and
resources

• Action item(s) or
• Concurrence/approval

TRR-3 Verify that test plans and procedures are approved and communicated • Action item(s) or
• Concurrence/approval

TRR-4 Identify and resolve all critical technical, test, statutory, and regulatory
issues

• Action item(s) or
• Concurrence/approval

TRR-5 Verify all safety, health, and environmental concerns are resolved and
adequate emergency processes, services, and equipment are in place to
support all aspects of the test

• Action item(s) or
• Concurrence/approval

TRR-6 Verify all lower-level Discrepancy Report (DR) corrective actions have
been completed and verified for HWCIs and CSCIs

• Action item(s) or
• Concurrence/approval

TRR-7 Verify that the “As Built” test article identically matches its “As Designed”
documentation

• Action item(s) or
• Concurrence/approval

TRR-8 Coordination of Responsibilities for Test Conduct, Measurement, and
Reporting

• Action item(s) or
• Concurrence/approval

TRR-9 Designation of Test Safety Officers (RSOs), Range Safety Officers
(RSOs), and Security Personnel, as appropriate

• Action item(s) or
• Concurrence/approval

TRR-10 Obtain Authority to Proceed with specific tests • Action item(s) or
• Concurrence/approval

TABLE 18.8 Example SVR Objectives/Exit Criteria and Expected Decisions

Objective Example SVR Objective/Exit Criteria Expected Decision(s)

SVR-1 Audit and certify the results of the Functional Configuration Audit (FCA) • Action item(s) or
• Concurrence/approval

SVR-2 Audit and certify the results of the Physical Configuration Audit (PCA) • Action item(s) or
• Concurrence/approval

SVR-3 Identify any outstanding inconsistencies, latent defects such as design
errors, deficiencies, flaws, etc.

• Action item(s) or
• Concurrence/approval

SVR-4 Verify all approved Engineering Change Proposals (ECPs), Discrepancy
Reports (DRs), etc. have been incorporated and verified

• Action item(s) or
• Concurrence/approval

SVR-5 Authorization to establish the Product Baseline for the As Specified, As
Designed, As Built, and As Verified configurations

• Action item(s) or
• Concurrence/approval
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TABLE 18.9 Example RTSR Objectives/Exit Criteria and Expected Decisions

Item Example RTSR Objectives/Exit Criteria Expected Decision(s)

RTSR-1 Verify that all compliance test data have been collected, documented, and
certified

• Action item(s) or
• Concurrence/approval

RTSR-2 Verify all cabling and equipment items are inventoried and properly
identified

• Action item(s) or
• Concurrence/approval

RTSR-3 Verify that anything related to the configuration installation is documented • Action item(s) or
• Concurrence/approval

RTSR-4 Assess verification data completeness to process with system disassembly,
reconfiguration, packaging, packing, crating, and shipping

• Action item(s) or
• Concurrence/approval

RTSR-5 Assess storage or deployment site facility readiness to accept system
delivery for installation and integration:
• Environmental conditions
• Interfaces
• “Gate keeper” decision authority approvals

• Action item(s) or
• Concurrence/approval

RTSR-6 Verify coordination of enroute system transportation support including:
• Licenses and permits
• Route selection
• Security
• Resources

• Action item(s) or
• Concurrence/approval

TABLE 18.10 Example PRR Review Objectives/Exit Criteria and Decisions Expected

Item Example PRR Objectives/Exit Criteria Decision(s) Expected

PRR-1 Authenticate the integrity, adequacy, and completeness of the
current Product Baseline and place it under configuration control

• Action item(s) or
• Concurrence/approval

PRR-2 Verify that design improvements (e.g., approved Engineering
Change Proposals (ECPs)) to facilitate production have been incor-
porated, verified, and validated

• Action item(s) or
• Concurrence/approval

PRR-3 Resolve any vendor, production, materials, or process issues • Action item(s) or
• Concurrence/approval

PRR-4 Make a Production “Go-Ahead” Decision and determine the scope
of production

• Action item(s) or
• Concurrence/approval

PRR-5 Establish the Production Baseline • Action item(s) or
• Concurrence/approval

Accomplishment of the primary IBR objectives is
supported by secondary objectives and exit criteria that
culminate in key decisions. Table 18.1 provides example
objectives, exit criteria, and expected decisions.

Author’s Note 18.4

The tables of examples that follow
were originally derived from former
MIL-STD-1521B that was canceled
in 1995. The relevance of this docu-
ment as a valued source remains to-

day as evidenced by a DAU Web site note indicating “that

if we were to bring back a Mil-Standard, this would be the
first.” (DAU, 2013a).

On successful completion of the IBR exit criteria, project
control accounts and work packages are activated, and work
is initiated for the SE Design Process (Figures 12.3, 15.2, and
15.3) of the System Development Phase.

18.7.9 System Requirements Review (SRR)

The SRR is typically the first opportunity for technical
representatives from the User, System Acquirer, and System
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Figure 18.1 Technical Review Sequencing

Developer Enterprises to get together in a common forum
to review, interpret, clarify, and correct, if appropriate, the
system requirements.

The primary objectives of the SRR are to:

• Review, clarify, correct, and baseline the set of SPS
requirements to ensure a common interpretation and
understanding among decision-makers.

• Establish the System Requirements Baseline (SRB).

Accomplishment of the primary SRR objectives is sup-
ported by secondary objectives and exit criteria that cul-
minate in key decisions. Table 18.2 provides example
objectives/exit criteria and expected decisions.

18.7.10 System Design Review (SDR)

The SDR follows the SRR and is conducted in accordance
with the contract Ts&Cs of the Contract Statement of Work
(CSOW), SDR entry criteria, and project schedule. Follow-
ing the SRR, the System Developer matures the system
design solution derived from the System Requirements Base-
line. At a minimum, the System Design Solution includes
development and maturation of the System Architecture and
interface requirements, ConOps, and preliminary allocations
of SPS requirements to the product or subsystem levels of
abstraction.

The primary objective of the SDR is to establish the
System Level design solution and Allocated Baseline as

part of the evolving Developmental Configuration. Accom-
plishment of the primary SDR objectives is supported by
secondary objectives and exit criteria that culminate in key
decisions. Table 18.3 provides example objectives/exit crite-
ria and expected decisions.

On successful completion of the SDR exit criteria, em-
phasis shifts to formulating and maturing HWCI-unique and
CSCI-unique requirements specifications (HRS/SRS).

18.7.11 Hardware/Software Specification Reviews
(HSRs/SSRs)

Once the Product or Subsystem Level requirements allo-
cations have been established as the Allocated Baseline at the
PDR, the architectures for product or subsystem level solu-
tions are developed and matured. Each solution evolves from
analyses of allocated requirements.

Trade studies are conducted as an Analysis of Alterna-
tives (AoA) (Chapter 32) to select a preferred Product or
Subsystem Architecture consisting of items, HWCIs, and
CSCIs from a set of viable candidate solutions. Product
or Subsystem Development Specification requirements are
next allocated to items such as HWCIs, and CSCIs, as appli-
cable. Requirements allocated to HWCIs and CSCIs are doc-
umented respectively in Preliminary HWCI Requirements
Specifications (HRSs) and Preliminary CSCI Software Re-
quirements Specifications (SRSs). The culmination of this
activity results is an HSR or SSR, as applicable.

In addition to the standard review items, the primary
objective of the HSR/SSR is to establish an HWCI’s or
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CSCI’s requirements specification (HRS/SRS) baseline for
its Developmental Configuration to provide a basis for peer
level and lower-level decision-making (Principle 14.2).

Accomplishment of the primary HSR/SSR objectives is
supported by secondary objectives and exit criteria that
culminate in key decisions. Table 18.4 provides example
objectives/exit criteria and expected decisions.

On successful completion of each HWCI’s HSR and
each CSCI’s SSR exit criteria for their emphasis shifts to
formulating and maturing the Preliminary System Design
Solution. This includes development of HWCI and CSCI
Level designs that respond to their respective HRS and SRS.

18.7.12 Preliminary Design Review (PDR)

The PDR represents the fourth major technical review in the
design of a System, Product, Subsystem, Assembly, and
so forth. The review is conducted as a project event to assess
the adequacy, maturity, completeness, consistency, and risk
of the evolving System Design Solution down to the HWCI
and CSCI design levels.

Following the HSR/SSR, the architectural solution of
each HWCI and CSCI evolves and matures. Analyses and
trade studies are performed to select a preferred HWCI or
CSCI architecture that represents the best solution as deter-
mined by a set of pre-defined evaluation criteria. As each
HWCI and CSCI solution reaches a level of maturity, PDRs
are conducted for each HWCI and CSCI. On successful com-
pletion of all HWCIs and CSCIs, the System Level PDR is
scheduled and conducted.

In addition to the standard review objectives, the primary
objective of the PDR is to review and concur/approve the
Preliminary System Design Solution down to HWCI/CSCI
architecture levels. Accomplishment of the primary PDR
objectives is supported by secondary objectives and exit
criteria that culminate in key decisions. Table 18.5 provides
example objectives/exit criteria and expected decisions.

Author’s Note 18.5

Producibility

The term producibility is seldom
used; however, the term has an
explicit connotation most people

understand. You can create the most elegant design but if it
cannot be feasibly produced; it has little value. As a result,
we use producibility here.

On successful completion of the PDR exit criteria, em-
phasis shifts to formulating and maturing HWCI-unique and
CSCI-unique detailed designs for presentation at the CDR.

18.7.13 Critical Design Review (CDR)

The CDR is the fifth major technical review in the de-
velopment of a Product, Subsystem, Assembly, and so

forth. The review is conducted as a project event to as-
sess the adequacy, maturity, completeness, consistency, and
risk of the evolving System Design Solution down to the
HWCI, Assembly, and Part Levels and CSCI Computer
Software Component (CSC) and Computer Software Unit
(CSU) levels.

In addition to the standard review objectives, the primary
objectives of the system level CDR are to:

1. Review and concur/approve the System/CI design so-
lution.

2. Make a decision to authorize and commit resources to
the Component Procurement and Development Process
(Figure 12.2) of the System Development Phase.

Accomplishment of the primary CDR objectives is
supported by secondary objectives and exit criteria that
culminate in key decisions. Table 18.6 provides example
objectives/exit criteria and expected decisions.

On successful completion of the CDR exit criteria, em-
phasis shifts to procurement and development of physi-
cal components that implement the detailed design require-
ments. This includes new development or selection and ac-
quisition of Commercial Off-the-Shelf (COTS) and NDIs
(Figures 16.7 and 16.8).

Author’s Note 18.6

CDR: Long Lead Item Scheduling
Conflicts

For some projects, the timing of the
CDR may be incompatible with long

lead item procurement required to meet contract deliveries.
Where this is the case, the System Developer may have to
assume a risk by procuring long lead items early recognizing
the Acquirer has not approved the CDR design.

18.7.14 Test Readiness Reviews (TRRs)

At each level of abstraction—Part, Subassembly, Assem-
bly, or Subsystem—some systems require TRRs to be con-
ducted. TRRs range from major project events for large
complex systems to simple team coordination meetings
among development team members.

The primary objectives of a TRR are to:

1. Assess the readiness and risks of the test article,
environment, and team to conduct a test or series of
tests.

2. Ensure that all test roles are identified, assigned to
personnel, and allocated responsibilities.

3. Authorize initiation of test activities.
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Accomplishment of the primary TRR objectives is sup-
ported by secondary objectives and exit criteria that culmi-
nate in key decisions. Table 18.7 provides example objec-
tives/exit criteria and expected decisions.

On successful completion of a TRR exit criteria, an
authorization to proceed with specific tests is granted.

18.7.15 System Verification Review (SVR)

When System Level verification testing is completed, an
SVR is conducted. The primary objectives of the SVR are:

1. Authenticate the results of System Verification Test
(SVT), including the FCA and PCA results.

2. Establish the Product Baseline.

Accomplishment of the primary SVR objectives is sup-
ported by secondary objectives and exit criteria that culmi-
nate in key decisions. Table 18.8 provides example objec-
tives/exit criteria and expected decisions.

On successful completion of the SVR exit criteria, the
workflow progresses to a RTSR decision.

18.7.16 Ready-to-Ship Review (RTSR)

Following the SVR, an RTSR is conducted. The primary
objective of the RTSR is to determine the system’s state of
readiness for disassembly and deployment to the designated
delivery site.

Accomplishment of the primary RTSR objectives is
supported by secondary objectives and exit criteria that
culminate in key decisions. Table 18.9 provides example ob-
jectives/exit criteria and expected decisions.

On successful completion of the RTSR exit criteria,
the system may require disassembly or reconfiguration,
packaging, packing, crating, and shipping to the designated
deployment or job site in accordance with the contract or
direction from the ACO (Principle 18.7).

18.7.17 Production Readiness Review (PRR)

For Systems or Products planned for production, a PRR
is conducted shortly after production contract award. The
primary objectives of the PRR are to:

1. Authenticate the Production Baseline configuration.

2. Make a production “go-ahead” decision to commit
to Low-Rate Initial Production (LRIP) or Full-Scale
Production (FSP).

Accomplishment of the primary PRR objectives is
supported by secondary objectives and exit criteria that
culminate in key decisions. Table 18.10 provides example
objectives/exit criteria and expected decisions.

On successful completion of the PRR exit criteria, em-
phasis shifts to LRIP. Subsequent PRRs address readiness
for FSP.

18.8 CHAPTER SUMMARY

In our discussion of technical reviews, we introduced the
various types of reviews and their occurrence as critical
control or staging points in a system’s development. For
each review, we identified the key objectives and referenced
checklists for conducting the review. We also highlighted
the importance of conducting maturity-based event reviews
for each stage of development. Finally, we provided guiding
principles to consider when conducting the review.

18.9 CHAPTER EXERCISES

18.9.1 Level 1: Chapter Knowledge Exercises

1. What is a technical review?

2. Why should you conduct technical reviews?

3. Who is responsible for conducting technical reviews?

4. What types of technical reviews should be conducted?

5. How are technical reviews results documented?

6. What is the relationship between technical reviews and
System Development Processes (Figure 12.2)?

7. What is an IPR and what is it intended to accomplish?

8. What is a PMB?

9. What is an IBR and what is it intended to accomplish?

10. What is an SRR and what is it intended to accomplish?

11. What is an SDR and what is it intended to accomplish?

12. What is an HSR and SSR and what is it intended to
accomplish?

13. What is an SSR and what is it intended to accomplish?

14. What is a PDR and what is it intended to accomplish?

15. What is a CDR and what is it intended to accomplish?

16. What is a TRR and what is it intended to accomplish?

17. What is a PRR and what is it intended to accomplish?

18.9.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e

http://www.wiley.com/go/systemengineeringanalysis2e
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19
SYSTEM SPECIFICATION CONCEPTS

The formal mechanism for specifying what capabilities a
system is required to provide, and how well the capabilities
are to be performed is the System Performance Specifica-
tion (SPS). The SPS establishes the formal technical require-
ments of the contract between the System Acquirer, as the
User’s contract and technical representative, and the System
Developer.

Many people erroneously believe specifications are doc-
uments used on the “front end” of a program to design the
system; this is only partially true. Specifications serve as
the basis for decision-making throughout the System De-
velopment, Component Procurement and Development, and
System Integration, Test, and Evaluation (SITE) Phases.
They:

• Represent human attempts to translate, bound, and
communicate the User’s prescribed solution space into
a language of text and graphics for capability (i.e.,
functional and performance) requirements to produce
a physical system, product, or service that satisfies the
intended operational need.

• Serve as a frame of reference for decision-making by
establishing the thresholds for evaluating and verifying
technical compliance as a precursor for final System or
Product acceptance and delivery.

Specification development requires support from a
multi-level System Analysis process. The analysis decom-
poses bounded solution space capabilities into manageable,
lower level specifications for the Subsystems, Products,
and Assemblies that ultimately form the totality of the
system.

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

Chapter 19 introduces System Specification Practices that
establish the multi-level, integrated framework of specifi-
cations required to develop a system, product, or service.
Our discussions introduce the various types of specifications,
their contents, and relationships to other specifications,
standards, and regulations. The discussion includes a gen-
eral specification outline that can be used as reference
model.

19.1 DEFINITIONS OF KEY TERMS

• Deviation—“A specific written authorization to depart
from a particular requirement(s) of an item’s current
approved configuration documentation for a specific
number of units or a specified period of time, and to
accept an item which is found to depart from specified
requirements, but nevertheless is considered suitable
for use ‘as is’ or after repair by an approved method.
(A deviation differs from an engineering change in that
an approved engineering change requires correspond-
ing revision of the item’s current approved configu-
ration documentation, whereas a deviation does not)”
(MIL-HDBK-61A, p. 3–6).

• Requirement—“Any condition, characteristic, or ca-
pability that must be achieved and is essential to the end
item’s ability to perform its mission in the environment
in which it must operate is a requirement. Requirements
must be verifiable” (SD-15, 1995, p. 9).

• Requirement—An essential characteristic, condition
or capability that shall be met or exceeded by a
system or a component to satisfy a contract, standard,

http://www.wiley.com/go/systemengineeringanalysis2e
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specification, or other formally imposed document
(FAA SEM, 2006, Vol. 3, p. B-11).
∘ Essential Requirement—A statement that specifies

and bounds a key system, product, or service capa-
bility required for mission success without unneces-
sarily constraining the solution set.

∘ Performance Requirement—The quantitative
magnitude of an action-based outcome to be
accomplished.

∘ Source or Originating Requirements—The set of
requirements that serve as the publicly released re-
quirements used as the basis to acquire a system,
product, or service. In general, a formal Request
for Proposal (RFP), solicitation’s Statement of Ob-
jectives (SOO) or System Requirements Document
(SRD) are viewed as User source or originating
requirements (Chapter 12).

∘ Specification Requirements—A collection of es-
sential capability requirements statements that spec-
ify and bound the performance-based capabilities of
a system, product, or service entity such as a System,
Product, Subsystem, and Assembly.

• Requirements Creep—“The tendency of the user (or
developer) to add to the original mission responsibil-
ities and/or performance requirements for a system
while it is still in development” (DAU, 2012, p. B-192).

• Requirements Elicitation—The process of identify-
ing and collecting stakeholder requirements through
understanding of the Problem and Solution Spaces
(Chapter 4) such as via personal interviews and
observation.

• Requirement Owner—An individual or team as-
signed with accountability for implementing a specific
requirement in a specification or drawing.

• Requirement Stakeholder—Anyone who has a stake
or vested interest in identifying, defining, specify-
ing, prioritizing, verifying, and validating system ca-
pability and performance requirements. Requirements
stakeholders include all personnel responsible for sys-
tem definition, procurement, development, production,
operations, maintenance, sustainment, retirement, and
disposal of a system, product, or service.

• Specification—A document that describes the es-
sential requirements for items, materials, processes,
or services of a prescribed solution space, data re-
quired to implement the requirements, and methods
of verification to satisfy specific criteria for formal
acceptance.

• Specification Owner—An individual or team assigned
with accountability for developing and controlling
all requirements within a specification or drawing.
Specification ownership resides with the individual or

team that owns the System / Entity Architecture in
which the Entity being specified by the specification is
represented including its interfaces.

• Specification Tree—“The hierarchical depiction of all
the specifications needed to control the development,
manufacture, and integration of items in the transition
from customer needs to the complete set of system
solutions that satisfy those needs” (MIL-STD-499B
Draft (canceled), Appendix A, Glossary, p. 39).

• Tailoring—“The process by which individual require-
ments (sections, paragraphs, or sentences) of the se-
lected specifications, standards, and related documents
are evaluated to determine the extent to which they are
most suitable for a specific system and equipment ac-
quisition, and the modification of these requirements to
ensure that each achieves an optimal balance between
operational needs and cost” (MIL-STD-961E, p. 7).

• Waiver—“A written authorization to accept a Con-
figuration Item (CI) or other designated item, which,
during production or after having been submitted for
inspection, is found to depart from specified require-
ments, but nevertheless is considered suitable ‘as is’
or after rework by an approved method” (DAU, 2012,
p. B-239).

19.2 WHAT IS A SPECIFICATION?

Development of any type of requirements requires that you
establish a firm understanding of:

1. What is a specification?

2. What is the purpose of a specification?

3. How does a specification accomplish a specific
objective?

If you analyze the definition of a specification provided
in this chapter’s Definition of Key Terms, there are three key
parts of this definition. Let’s briefly examine each part.

• First, “… essential requirements for items, materials,
processes, or services.” Specifications are also written
for services and multi-level components, materials that
compose those components, and procedural processes
required to convert those materials into a usable com-
ponent.

• Second, “data required to implement the requirements
. . . .” System development is often constrained by the
need to adhere to and comply with other contract
or task documents such as: SOO, design criteria,
specifications, standards, and regulations.
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• Third, “…methods of verification to satisfy specific
criteria for formal acceptance.” Specifications establish
the formal technical agreement between the System
Acquirer and System Developer concerning how each
requirement will be formally verified to demonstrate
the physical System / Entity has fully achieved com-
pliance to the specified capability and associated level
of performance. Note that verifying the achievement
of a requirement may only satisfy incremental criteria
required by contract for formal Acquirer acceptance.
The contract may require other criteria such as installa-
tion and checkout in the field; field trails and demon-
strations; Operational Test and Evaluation (OT&E);
and resolution and corrective action of outstanding la-
tent defects - errors, design flaws, and deficiencies.
Remember, an SPS is a subordinate elements of the
contract and represent only a portion of criteria for de-
liverable system acceptance and subsequent contract
completion.

Given these comments concerning the definition of a
specification, let’s establish the objective of a specification.

19.2.1 Specification Objectives

The objective of a specification is to document and
communicate:

1. What essential operational capabilities are required of
an item (System, Product, and Subsystem).

2. How well the capabilities must be performed.

3. When the capabilities are to be performed.

4. What external interfaces must be provided and with
whom.

5. Under what prescribed Operating Environment.

6. What design and construction constraints are levied.

7. How capability compliance will be verified.

19.2.2 Why Do We Need Specifications?

Principle 19.1

Objective Evidence Principle

If an analysis, review, decision, result, or
event is not corraborated by a Quality
Record (QR) as objective evidence of ac-

complishment, it is nothing more than hearsay.

A common question is: why do we need specifications?
The best response is to begin with an old adage: If you do
not tell people what you want, you can’t complain about what
they deliver. “But that’s not what we asked for” is a frequent
response, which may bring a retort “we delivered what you
put on a piece of paper … [nothing!].”

In any case, if the technical wrangling continues, legal
remedies may be pursued. The legal community seeks to
unravel and enlighten via who, what when, where, and how
discovery process:

1. What did you specify via the contract, meeting minutes,
official correspondence, and conversations?

2. Who did you talk to?

3. When did you discuss it?

4. Where did you discuss the matter?

5. How did you document what both parties agreed to?

The best way to avoid these conflicts is to establish
a mechanism “up front” prior to Contract Award (CA).
The mechanism should capture the technical agreements
between the Acquirer and the System Developer to the
mutual satisfaction and understanding of both parties. From
a technical perspective, that mechanism is the SPS.

The conflicts discussed previously, which characterize
the Acquirer and System Developer/Services Provider or
Subcontractor interfaces, are not limited to Enterprises.
In fact, the same issues occur vertically within the Sys-
tem Developer’s program organization between the System,
Product, Subsystem, Assembly, Subassembly, and Part
levels of abstraction. As a result, the allocation and flow
down of requirements from the SPS to lower levels requires
similar technical agreements between system development
teams. This occurs as each allocated and assigned problem
space is partitioned (Figure 4.7) into lower level Solution
Spaces bounded by specification performance-based capabil-
ity requirements.

In summary, why do we need specifications? To explicitly
articulate and communicate in a language that:

• Employs terms that are simple and easy for the
Acquirer, User, and System Developer Stakeholders to
understand.

• Expresses essential features and characteristics of the
deliverable system, product, or service.

• Avoids the need for “open” interpretation or further
clarification that may lead to potential conflict at final
system, product, or service acceptance.

19.2.3 What Makes a Specification “Good?”

People commonly ask: What constitutes a “good” specifi-
cation? “Good” is a colloquial term. What is good to one
User may be judged as “poor” by another User. Others refer
to “well-written” specifications. But what does this mean?
Proper grammar? Proper grammar does not mean that the
document has substantive content. A better term may be
“well defined.” This leads to the question: What makes a
well-defined specification “good” or “well written”?
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SEs often respond to this question with comments such
as “It’s easy to work with,” … “We didn’t have to make
too many changes to get it right,” “we didn’t have any
problems with the Acquirer at acceptance.” However, there
are attributes of well-defined specifications that distinguish
them from others as models. So let’s propose some general
attributes of well-defined specifications.

19.3 ATTRIBUTES OF A WELL-DEFINED
SPECIFICATION

A specification, as a potentially legally binding document, is
a formal document that requires development in accordance
with professional standards based on lessons learned, best
practices, and so forth. As such, there are specific technical
attributes that form the basis for its development. The
attributes list in the following text represents the minimum
level for a specification. You are advised to supplement
this list with additional attributes that represent technical
performance standards required by your contract, project,
Enterprise, business domain, and profession.

19.3.1 Attribute 1: Specification Ownership and
Accountability

Principle 19.2

Specification Developer Principle

Every specification requires assignment of
a developer accountable for its: develop-
ment, approval by the next higher-level ar-

chitecture owner, implementation, verification, compliance,
and configuration controlled baseline maintenance.

Well-defined specifications are assigned to and owned by
an System or Product Development Team (SDT/PDT) that is
accountable for the implementation of the specification re-
quirements, maintenance, verification, and final acceptance
of the deliverable system, product, or service.

In general, there is a belief that a specification is “owned”
by the PDT developing an Entity. The reality is: a speci-
fication should be “owned” by the team that “owns” and
is accountable for the architecture in which the Entity
being specified appears as a component. For example, a
Subsystem EDS is “owned” by the SDT that is accountable
for the System Level architecture in which the Subsystem
appears. Why? If PDT #1 that implements the Subsystem #1
EDS were to decide unilaterally to change the requirements
that impact an external interface with Subsystem #2 without
informing PDT #2, major problems can occur. Best prac-
tices dictate that the SDT owns Subsystem #1’s EDS and
Subsystem #2’s EDS and their interfaces to avoid these sit-
uations. Refer to the discussion of Figure 27.1 for additional
information.

19.3.2 Attribute 2: Standard Outline

Principle 19.3

Specification Outline Principle

Every specification should be based on
an Enterprise standard topical outline that
provides continuity and consistency with
other specifications.

Well-defined specifications are based on standard outline
topics that are recognized by industry as best practices and
derived from lessons learned. The outline should:

• Be based on an Organizational Standard Process
(OSP).

• Cover the spectrum of Stakeholder—User and End
User—Engineering topics to ensure all aspects of
technical performance are addressed.

A Word of
Caution 19.1

Contract Requirements Guidance

Always consult your contract for guidance
about performance specification formats
and your Contract Data Requirements List
(CDRL) for Entity Development Speci-

fication (EDS) formats. If guidance is not provided, confer
with the Project’s Project Engineer (PE). (Principal 18.7).

19.3.3 Attribute 3: Feasibility and Affordability

Principle 19.4

Specification Feasibility and
Affordability Principle

Every specification should specify and
bound a solution space that is feasible to

implement, affordable, and has acceptable risk to the User.

A well-defined specification must be feasible and afford-
able to implement within realistically achievable technolo-
gies, skills, processes, tools, and resources with acceptable
technical, cost, schedule, and support risk to the System Ac-
quirer and the System Developer or Services Provider.

19.3.4 Attribute 4: Specification Uniqueness

Principle 19.5

Specification Uniqueness Principle

Each specification documents capability
requirements that are unique to one and
only one System / Entity with no other
instances within the System.

Each System / Entity should be specified and bounded
by a set of specification requirements that are unique and
exist without duplication or confliction.
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Author’s Note 19.1

A word about the context of unique-
ness. In the case of Safety, Human
Factors, and Security requirements
that have a direct flow down to lower
level entities (Chapter 21), only the

subject of the requirement statement may be the only differ-
ence in the wording of the requirement. For example, (Entity)
shall be designed in accordance with Para. X.X.X (Title)
of MIL-STD-XXX. Even though the general statement has
identical wording in other specifications, the Entity subject
makes the statement unique, which establishes the contextual
uniqueness of the requirement.

19.3.5 Attribute 5: Solution Independence

Principle 19.6

Solution Independence Principle

A specification specifies what is to be
accomplished and how well, not how to
design the system, product, or service.

Well-defined specifications specify: (1) what capabilities
are required to accomplish missions and (2) how well they
are to be performed. Specifying how to design the system
imposes constraints and reduces the System Developer’s
flexibility in achieving at an optimal System Design Solution.

19.3.6 Attribute 6: Essential Requirements

Principle 19.7

Essential Requirements Principle

A specification contains only essential
requirements that are necessary and
sufficient to develop a system, product,
or service without constraining the set of
viable solution options.

Well-defined specifications state only the essential
requirements that are necessary and sufficient to design or
procure a system, product, or service without the need for
additional clarification requirements or language.

19.3.7 Attribute 7: Specification and Requirements
Accountability

Principle 19.8

Specification and Requirement
Accountability Principle

Assign: (1) specification level and (2) indi-
vidual requirement level responsibility to

an individual who is accountable for its analysis, implemen-
tation, verification, traceability, and proposed updates.

One of the first steps in achieving System Development
success is to ensure that every specification and each of
its requirements will be implemented in the System Design

Solution. This begins with assignment of responsibility
and accountability. Enterprises assign accountability for the
specification level; however, individual requirement account-
ability is often overlooked. Even when accountability is as-
signed, it is often unclear to the assignee what the scope of
their accountability is - analysis, implementation, verifica-
tion, traceability, and proposed updates.

19.3.8 Attribute 8: Explicit, Unambiguous,
Outcome-Based Requirements

Principle 19.9

Single Interpretation Principle

Every specification requirement must
be stated in a brief, clear, and concise
manner that results in one and only one
interpretation.

Well-defined specifications explicitly specify capability
requirements using brief, concise, outcome-based, capability
requirements statements.

One of the challenges of our educational system is the no-
tion that specifications are written like novels. Requirements
statements are “open to interpretation.” During System In-
tegration, Test, & Evaluation (SITE), verification becomes
conflict in which the System Acquirer has one interpretation
of compliance to specification requirements while the Sys-
tem Developer has another interpretation.

Well-defined specifications require every requirement
statement to be articulated in a brief, clear, and concise man-
ner that results in one and only one interpretation.

19.3.9 Attribute 9: Requirements Coverage

Principle 19.10

Specification Requirements Coverage
Principle

Every specification must specify the
set of essential capabilities required to
perform User-defined missions with no
deficiencies.

Well-defined specifications are:

• Complete, contain no voids, and require no further
clarification.

• Do not contain any undefined performance values such
as To Be Determined (TBD) or To Be Supplied (TBS)
performance values.

• Specify one or more verification methods for each
requirement statement that will serve as the basis for
proving compliance.
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19.3.10 Attribute 10: Requirements Consistency

Principle 19.11

Specification Requirements
Consistency Principle

Specification requirements must be con-
sistent in language, meanings, semantics,

terminology, and standards of units with all project Sys-
tem/Entity specifications.

Well-defined specifications read as if they were written
by a single developer. Therefore, to ensure readability and
avoid ambiguities, all specifications within a System should
be consistent in language, meanings, semantics, terminology,
and standards of units.

19.3.11 Attribute 11: Semantics and Terminology

Principle 19.12

Semantics and Terminology Principle

Specifications should employ semantics
and terminology that are familiar to its
readers.

Well-defined specifications are written in a language that
uses terms that are easy to understand. In general, many
qualified people should independently read any requirement
statement and emerge with the same interpretation and
understanding of technical performance requirements. For
example, the SPS should be written using semantics and
terminology that has meaning to the System Acquirer/User
and System Developer. Lower level EDS specifications
should be written with semantics and terminology that is
familiar to the System Developers.

19.3.12 Attribute 12: Requirements Traceability

Principle 19.13

Requirements Traceability Principle

Every specification and requirement must
be traceable to the User’s source or orig-
inating requirements.

Specifications should not be random, ad hoc “wish lists”
of requirements. The validity and integrity of a specifica-
tion requires that every requirement exists to accomplish
a specific outcome that ultimately contributes to achieve-
ment of mission objectives. Since every requirement has
a cost and risk for implementation (Principle 19.4), any
specification requirement that is not traceable to the User’s
source or originating requirements should be eliminated as
non-value-added waste.

19.3.13 Attribute 13: Requirement Performance
Measure Traceability

Principle 19.14

Requirement MOP Traceability
Principle

Where required, specification require-
ment performance measures must be
traceable to a documented analysis that
is baselined and controlled.

Well-defined specifications are traceable to a struc-
tured analysis—approach, methodology, and behavioral
model such as Model-Based Systems Engineering (MBSE)
(Chapters 10 and 33). One of the challenges in developing
specifications is that requirements statement performance
measures are often derived informally and discarded. This
places the entire project at risk when months later the
Project Manager (PM) and Project Engineer (PE) discover
that no one can authenticate the validity of a specification
performance measure … since it’s source analysis was
discarded!

19.3.14 Attribute 14: Stakeholder Community
Requirements Priorities

Principle 19.15

Requirement Value-Based Priority
Principle

Every specification requirement has a
value-based priority to the Stakeholder
community.

When requirements are elicited, each stakeholder places
a value on the importance of the requirement to enable them
to achieve their Enterprise missions. We refer to the value as
a priority. The realities of system development are that ev-
ery requirement has a cost to implement and deliver. Given
limited resources and stakeholder values, bounding the so-
lution space requires reconciling the cost of the desired
requirements with the available resources. As a result, re-
quirements should be prioritized for implementation, espe-
cially for Agile Development (Chapter 15) and Commercial
Product Development (Figure 5.1). In contrast, Contract Sys-
tem Development (Figure 5.1) typically views all specifica-
tion requirements as having the same priority.

19.3.15 Attribute 15: Acceptable Stakeholder Risk

Principle 19.16

Specification Risk Principle

Every specification has a level of cost,
technical, technology, and schedule risk
to develop and maintain that must be
acceptable to the User.
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Well-defined specifications represent a level of cost, tech-
nical, technology, or schedule risk that is acceptable to the
stakeholders—System Acquirer or System Developer—and
does not impose additional financial or schedule risks.

19.3.16 Attribute 16: Maturity and Stability

Principle 19.17

Specification Baseline Principle

Every specification should be reviewed,
approved, and placed under Configura-
tion Control as soon as it reaches a level of

maturity and stability to enable technical decisions at lower
levels to be made with acceptable risk.

Specifications are baselined at strategic staging or control
points when all stakeholders are in mutual agreement with
its contents.

Once the baseline is established, specifications are up-
dated and verified through a Stakeholder review agreement
process - Configuration Control (Chapter 16) - that ensures
that the document properly reflects the current consensus of
stakeholder requirements.

19.4 TYPES OF SPECIFICATIONS

When SEs specify the items, materials, and processes re-
quired to support system, product, or service development,
how is this accomplished? These work products are specified
via a hierarchical set of specifications that focus on bounding
and specifying requirements for:

• Individual entities at various levels of abstraction—for
example, Specification Tree.

• Materials and processes to support development of
those items.

The hierarchical set of specifications is documented via
a framework referred to as the Specification Tree (Figure
19.2). To understand the hierarchical structure within the
specification tree, we need to first establish the types of
specifications that may appear in the framework.

The classes of specifications include the following:

• Detail Specification—“A specification that specifies
design requirements, such as materials to be used, how
a requirement is to be achieved, or how an item is to
be fabricated or constructed. A specification that con-
tains both performance and detail requirements is still
considered a detail specification. Both defense spec-
ifications and program-unique specifications may be
designated as a detail specification” (MIL-STD-961E,
p. 4).

• Development Specification—A document that speci-
fies and bounds the capabilities of an entity or item be-
low the System Level such as a Product, Subsystem,
Assembly, or Subassembly.

• Material Specification—“A type of program-unique
specification that describes such raw or processed
materials as metals, plastics, chemicals, synthetics,
fabrics, and any other material that has not been
fabricated into a finished part or item (MIL-STD-961E,
p. 5).”

• Performance Specification—“A specification that
states requirements in terms of the required results
with criteria for verifying compliance, but without
stating the methods for achieving the required results
. . . . A performance specification defines the functional
requirements for the item, the environment in which
it must operate, and interface and interchangeability
characteristics (MIL-STD-961E, p. 6).”

• Process Specification—“A type of program-unique
specification that describes the procedures for fabricat-
ing or treating materials and items (MIL-STD-961E,
p. 6).”

• Procurement Specification—A statement that speci-
fies and bounds a set of capability requirements for an
entity such as a System, Subsystem, Assembly being
procured as part of a contract, subcontract, or purchase
order.

• Product Specification—A document that specifies and
bounds performance characteristics for an entity such
as a Subsystem, Assembly, or Subassembly after de-
velopment and verification. For example, a commercial
product specification for a computer system highlights
key features and performance.

Descriptive definitions of each of these types of specifi-
cations are provided in the Definitions of Key Terms to this
chapter.

19.4.1 Specification Types

To place all of these various types of specifications into per-
spective, let’s use the example illustrated in Figure 19.1.
Requirements for a system, as documented in the SPS,
are allocated and flowed down one or more levels to
one or more items such as Products, Subsystems, or
Assemblies. Requirements for these items are captured in
their respective development or procurement specifications
that document the “As-Specified” Developmental Config-
uration (Chapter 16) for the Subsystem, Assembly, and
Subassembly.

As the highly iterative, multi-level, and recursive SE
process and design effort evolves, SEs develop one or more
design or fabrication specifications to capture the attributes
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and characteristics of the physical parts to be developed.
In the design effort, one or more process specifications
and material specifications are developed to aid in the
procurement, fabrication, coding, assembly, inspection, and
test of the item. The collective set of baseline specifications
represent the “As-Designed” Developmental Configuration
(Chapter 16) that documents how to develop or procure
the item.

The set of specifications generated for each item or CI
serve as the basis for its development, as well as facilities,
either internally or via external subcontractors or vendors.
When the CI completes the SITE that includes system
verification, the “As-Verified” Developmental Configuration
is documented as the Product Baseline (Chapter 16) and
captured as the CI’s product specification.

19.4.2 The Specification Tree

Principle 19.18

Specification Tree Principle

Every system, product, or service should
include a Specification Tree based on
the System Architecture that serves as a

hierarchy of linkable requirements.

The multi-level allocation and flow down of requirements
employ a hierarchical framework that logically links system

entities vertically into a structure referred to as the specifica-
tion tree. The right side of Figure 19.2 provides an example
of a Specification Tree.

19.4.2.1 Specification Tree Ownership and Control The
Specification Tree is typically owned and controlled by
a project’s Technical Director, Project Engineer, System
Development Team (SDT), or a System Engineering and
Integration Team (SEIT). The SEIT, as the highest-level
technical team, also functions as a Configuration Control
Board (CCB) to manage changes to the current baseline of
a specification.

19.4.2.2 Linking the Specification Tree to the CWBS and
System Architecture People often mistakenly develop the
Specification Tree as an independent activity unrelated to the
system architecture and Contract Work Breakdown structure
(CWBS). This is a serious error! The Specification Tree
and the CWBS should reflect the primary structure of the
System Architecture and be linked accordingly. To illustrate
this point, consider the graphic shown in Figure 19.2.

N

E

S

W

Heading 19.1

Now that we have established the Spec-
ification Tree as the framework for link-
ing System/Entity specifications, let’s shift
our focus to understanding the content of
specifications.
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19.4.3 Specification Development Evolution
and Sequencing

To better understand the development and sequencing of
specifications, we use the System Development Process
workflow as illustrated in Figure 12.2. If we generalize the
System Development Process, Figure 19.3 illustrates how
the multi-level specification development occurs over time
from Contract Award (CA) through System Verification Test
(SVT) (Chapter 18).

19.5 KEY ELEMENTS OF A SPECIFICATION

The specification development learning process for most
Engineers begins with a specification outline. However, most
Engineers lack exposure and understanding as to how the
specification outline was derived. To eliminate the gap in
this learning process, let’s back away from the details of
specification outlines and address what specifications should
specify. Let’s begin by graphically depicting a System /
Entity and the key factors that drive its implementation.
Figure 19.4 serves as a reference for our discussion.

Author’s Note 19.2

Remember, the term System/Entity
is used here in a generic sense. By
definition, Segments, Products,
Subsystems, Assemblies, Hard-
ware Configuration Items (HWCIs)
and Computer Software Configura-

tion Items (CSCIs) are systems. Thus, the discussion here
applies to any level of abstraction.

The System / Entity, for which the specification is to
be written, is shown in the central part of the figure. If
we analyze systems, we will find that there are several key
factors that characterize a system entity or item. The intent
here is to characterize the entity’s behavioral and physical
characteristics and properties. The challenge question is,
however, how do we arrive at this set of attributes? The
answer resides in a variety of external factors that influence
and constrain the entity. Let’s investigate these factors.

19.5.1 Factor #1: Context

A specification should begin with an introductory statement
of its context within the Level 1 System (Figure 8.4).
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19.5.2 Factor #2: Specifications, Standards, and
Statutory Constraints

The design of any System / Entity often requires strict com-
pliance with existing specifications, standards, statutory, and
regulatory constraints that may include interfacing systems,
workmanship, and materials.

19.5.3 Factor #3: Notes and Assumptions

Since requirements are specified with text and graphics, they
often call for contextual clarifications. Where some require-
ments are unknown, assumptions may be required though un-
desirable. Additionally, graphical conventions may have to
be clarified. Therefore, specifications may require a section
of Notes and Assumptions to provide a definition, context
and usage information, terms, and conventions.

19.5.4 Factor #4: Verification Methods

Requirements that specify key attributes of a system entity
are often written in language and terms the system designers
understand. The challenge is, however, how do you verify
and validate that the physical entity complies with the
requirements? To solve this dilemma, specifications include
a section that specifies requirements for System / Entity
Verification and Validation (V&V) (User option).

19.5.5 Factor #5: System Engineering Practices

Successful system development requires that best practices
derived from lessons learned and Engineering discipline be
consistently applied to minimize risk. Therefore, specifica-
tions invoke SE practices to ensure that the deliverable prod-
uct will achieve SPS requirements.

19.5.6 Factor #6: Design and Construction Constraints

Principle 19.19

Design and Construction Constraints
Principle

Every specification should specify design
and construction requirements that con-

strain the development of System/Entity’s capabilities.

Specifications do more than communicate what and how
well a System / Entity must accomplish. They communi-
cate the constraints that are levied on the System and Sys-
tem Development decisions related to system operations and
capabilities. We refer to these as Design and Construction
Constraints. In general, design and construction constraints
consist of non-functional requirements such as size, weight,
color, mass properties, maintenance, safety restrictions, hu-
man factors, and workmanship. Specifications also specify
verification methods (Chapter 13) to be used to verify com-
pliance to a requirement.

19.5.7 Factor #7: Preservation, Packaging, and
Delivery

When the System / Entity is to be delivered, care must
be taken to ensure that it arrives fully capable and avail-
able to support operational missions. Preservation, packag-
ing, and delivery requirements specify how the deliverable
system/entity is to be prepared, shipped, and delivered.

19.5.8 Factor #8: Enabling System Element
Requirements

Mission Systems require sustainable Pre-Mission, Mission,
and Post-Mission Support Test Equipment (STE) at critical
staging events and areas. This may require the use of existing
Enabling System Equipment such as Common Support
Equipment (CSE) or Peculiar Support Equipment (PSE) and
Facilities (Chapter 8) or the need to develop those items.
Therefore, specification outlines include Enabling System
requirements.

19.5.9 Factor #9: Personnel Element Requirements

Systems typically require the Personnel Element for
“hands-on” Command and Control (C2) of the System
during Pre-Mission, Mission, and Post-Mission operations.
Additionally, human–machine trade-offs must be made to
optimize system performance. This requires delineating and
specifying what humans do best versus what the Equipment
Element does best (Figure 24.14). Therefore, specifications
identify the skill and training requirements to be levied on the
Personnel Element to ensure Human System Integration
(HSI) success (Chapter 24).

19.5.10 Factor #10: Operating Environment
Conditions

Principle 19.20

Environmental Conditions Principle

Every specification should specify
the Environmental Conditions a Sys-
tem/Entity must operate and survive.

Every Product, Subsystem, and Assembly must be
capable of performing missions in a prescribed Operating
Environment at a level of performance that will enable
achievement of mission success. Therefore, specifications
must define and constrain the Operating Environment
conditions that drive and bound entity capabilities and levels
of performance.
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19.5.11 Factor #11: Design Performance Criteria

System entities are often required to operate within per-
formance envelopes, especially when simulating the
performance of or interfacing with the physical systems.
When this occurs, the specification must invoke external
performance requirements that are characterized as de-
sign criteria. In these cases, a Design Criteria List (DCL)
(Chapter 17) for the interfacing systems or system to be
simulated is produced to serve as a reference.

19.5.12 Summary

In our discussion of the specification practices, we identified
key challenges, issues, and methods related to developing
system specifications. As the final part of the concept, we
introduced the structure for a general specification. Given
a fundamental understanding of specifications, we are now
ready to explore types of requirements documented in a
specification via the next topic, Understanding Specification
Requirements.

19.6 SPECIFICATION REQUIREMENTS

Specifications establish the agreement of the technical capa-
bilities and levels of performance required for a system, prod-
uct, or service to achieve its mission and objectives within a
prescribed solution space. As such, specifications represent

human efforts to specify and bound the prescribed solution
space that will enable the User to accomplish their Enterprise
mission and objectives.

This section provides the foundation for specifying
system, product, or service requirements. We explore the
various categories and types of stakeholder and speci-
fication requirements—such as operational, capability,
non-functional, interface, verification, and validation re-
quirements. We expand the discussion of operational
requirements and link them to the four types of such as
Normal, Abnormal, Emergency, and Catastrophic as shown
in Figure 19.5.

Specification requirements that bound a solution space
are hierarchical and interrelated. We discuss the hierar-
chical structure and relationships among the various types
of requirements. We illustrate why specifications prepared
by the ad hoc, endless loop, Specify-Design-Build-Test-Fix
(SDBTF)–Design Process Model (DPM) Paradigm Enter-
prise are prone to problems of missing, misplaced, con-
flicting, and duplicated requirements (Figure 20.3). These
problems represent risk areas that SEs need to understand
and recognize.

19.6.1 What is a Requirement?

The heart of a specification resides in its requirements.
Each requirement statement serves to specify and bound the
deliverable system, product, or service capability and level
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of performance to be developed or modified. The prerequisite
to developing requirements is to first identity what capability
is required. Therefore, you need to understand how require-
ments are categorized.

19.6.2 Types of Specification Requirements

People often think of requirements in a generic sense and fail
to recognize that requirements also have specific missions
and objectives. If you analyze the requirements stated in the
specifications, you will discover that requirements can be
grouped into various categories. This discussion identifies
the types of requirements and delineates usage of terms that
sometimes complicate the application.

19.6.2.1 Source or Originating Requirements When a
System Acquirer formally releases a requirements document
that specifies and bounds the System / Entity for procure-
ment, the specifications are often referred to as the source
or originating requirements. These requirements can encom-
pass multiple categories of requirements in a single docu-
ment or several documents, such as a SRD and a SOO.

One of the problems in applying the term source or
originating requirements is that it is relative. Relative to
whom? From a System Acquirer’s perspective, the User’s
source or originating requirements should be traceable to the
User’s validated and documented operational need. These
needs may evolve through a chain of decision documents that
culminate in a procurement specification.

As a paradigm, we typically expect a document called a
specification to specify requirements and it does. However,
there are other documents such as contracts, Ts & Cs,
and SOW that serve as source or originating requirements
documents.

Another type of document, the SOO, specifies require-
ments but in the form of performance-based outcome objec-
tives. The SOO consists of very brief and concise objectives
that express the performance-based outcomes to be achieved.
Typically, the scope of the SOO focuses on critical opera-
tional and technical objectives characterized by Measures of
Effectiveness (MOEs) and Measures of Suitability (MOSs)
(Chapter 5) but may include cost-effectiveness objectives. In
short form:

• Land two astronauts on Mars by the Year 20XX.

• Develop an unmanned aircraft that can safely transport
(TBD) passengers between Point A and Point B in less
than Y hours.

Whereas an SPS bounds and specifies the solution space,
the SOO is a higher level of abstraction that effectively
defines the User’s problem space and elicits qualified System
Developers to analyze the SOO’s problem space and propose
a cost-effective Solution that may include a draft SPS. When

Users have an abstract problem space to be solved, the SOO
may become the source or originating requirements.

In summary, a System Acquirer might release RFP solic-
itation that consists of a SOO or a SRD. Based on the User’s
sources or originating requirements, the System Developer
responds to the RFP with a proposed SPS.

19.6.2.2 Stakeholder Requirements A specification cap-
tures all essential and prioritized stakeholder requirements
that fit within User’s technical, technology, budget, develop-
ment schedule, and risk constraints.

The primary objectives of the requirements stakeholders
are to ensure that:

• All requirements essential to their task domain are
identified, analyzed, and documented in an SPS.

• Performance requirements are accurately and precisely
specified and given an equitable priority relative to
other Stakeholder requirements.

Principle 19.21

SE User–End User Advocacy
Principle

One of Systems Engineering’s project
roles is to serve as a User and End
User advocate to preserve the intent and
integrity of their requirements.

You will often hear Enterprises and Engineers comment
“if a requirement is ‘open to interpretation,’ we will interpret
it our way.” First, based on the concepts, principles, and
practices discussed in this text, you should avoid getting into
a need to “interpret a requirement your way.” Conversely,
requesting clarification can also be potentially problematic
and not turn out the way you desire; it certainly will not
be any different during SITE. The best solution is deal with
these matters before the contract is signed.

19.6.2.3 Requirements Stakeholder Elicitation and
Documentation Since Stakeholder requirements reside on
both sides of the contract interface boundary, each Enter-
prise Entity—User, Acquirer, and System Developer—is
accountable for stakeholder requirements identification. So,
how does this occur?

The System Acquirer is typically accountable for estab-
lishing a consensus of agreement among the User Commu-
nity, preferably before the contract is awarded. This includes
Stakeholders – Users and End user - with accountability for
the System outcomes and performance during the System
Production, System Deployment; System Operations, Main-
tenance, and Sustainment (OM&S); and System Disposal
Phases (Figure 3.3).
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Author’s Note 19.3

System Developer Stakeholder
Requirements

The System Developer also has con-
tract Stakeholder performance and

financial interests in clarifying any internal Stakeholder
requirements that relate to the System Development and Sys-
tem Production Phases, if applicable, of the contract. Thus,
the System Developer Stakeholder requirements must be ad-
dressed prior to submitting the SPS as part of a proposal as
well as during contract negotiations. This includes agreement
on the relevance to the Enterprise and its long term strate-
gies, Return on Investment (ROI), profitability, and resource
availability.

WARNING

Warning 19.1

Fully Understand Contract
Requirements Before Signing!

Read, fully understand, and comprehend
what commitments you are making when you sign a contract.
System Acquirer and Users are often very reluctant to make
contract modifications even when justified.

19.6.2.4 Threshold and Objective Requirements One
method of expressing and delineating requirements prior-
ities is to establish threshold and objective requirements.
Definitions include:

• Threshold Requirements—Requirements that have
“A minimum acceptable operational value below,
which the utility of the system becomes questionable”
(DAU, 2011, p. B-274).

• Objective Requirement—“The objective value rep-
resents an incremental, operationally meaningful,
time-critical, and cost-effective improvement to the
threshold value of each program parameter.” (DoD
5000.2R, 2002, Section C1.2.2.2, p. 19)

Example 19.1

Threshold and Objective Requirements
Example

A User may require a minimum level of ac-
ceptable system performance—threshold

requirement—with an expressed desire to achieve a spec-
ified higher level. Achievement of a higher-level objective
requirement may be dependent on the maturity of the tech-
nology and a vendor’s ability to consistently and reliably
produce or implement the technology.

Threshold and objective requirements must be consistent
with the Operational Requirements Document (ORD) or
Capability Development Document (CDD), SRD, and a Test
& Evaluation Master Plan (TEMP).

When you specify threshold and objective requirements,
you should explicitly identify as such. There are several ways
of doing this.

• Option 1: Explicitly label each threshold or objective
requirement using parenthesis marks such as XYZ Ca-
pability (Threshold) and ABC Capability (Objective).

• Option 2: Specify “up front” in the specification
that unless specified otherwise, all requirements are
“threshold requirements.” Later in the document when
objective requirements are stated, the following label
might be used “… ABC Capability (Objective) … ”

Additionally, you should always define the terms (i.e.,
threshold and objective) in the requirements section—for
example, Section 3.0—of the specification. Option 3 might
involve a summary matrix of threshold and objective require-
ments. A shortcoming of the matrix approach is that it is
physically located away from the stated requirement. This
approach, which may be confusing to the reader, creates ex-
tra work flipping back and forth between text and the matrix.
Keep it simple and tag the statement (threshold or objective)
with the appropriate label.

19.6.2.5 Requirements versus Specification versus
Design Requirements Some people refer to the “require-
ments” while others refer to “specification requirements.”
What is the difference? The answer depends on the
context.

The contract, as the overarching document, establishes re-
quirements that encompass, among other things specification
requirements, schedule requirements, compliance require-
ments, and cost requirements. For brevity, people often avoid
saying “specification requirements” and shorten the form to
simply “requirements.” As we will see, for systems with mul-
tiple levels of specifications and specifications within levels,
general usage of the term “requirements” requires identifica-
tion of the specification that is the frame of reference.

19.6.3 Specification Requirements Categories

Requirements can be organized into various categories to
best capture their intended use and objectives. Typical
categories include: (1) operational requirements, (2) capa-
bility requirements, (3) non-functional requirements, (4) in-
terface requirements, (5) design and construction constraints
requirements, (6) verification requirements, and (7) valida-
tion requirements. Let’s briefly describe each of these cate-
gories of requirements.

19.6.3.1 Operational Requirements
Operational requirements specify high-level requirements
required to achieve system mission objectives and behavioral
interactions and responses within a prescribed Operating
Environment and conditions. These requirements answer
the question: what is the operational need solution space the
System/Entity is expected to satisfy?
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19.6.3.1.1 Types of Operational Requirements Systems,
products, and services perform in operational phases. As
such, SEs must ensure that the requirements that express
stakeholder expectations for each phase are adequately ad-
dressed. At a minimum, this includes Pre-Mission Phase,
Mission Phase, and Post-Mission Phases of Operations
(Figure 5.5).

Each phase of operation includes at least one or more
modes of operation that require a specified set of capabilities
to support achievement of mission phases of operation
objectives. If you investigate and analyze most Mission
System operations, you will discover that the System
must be prepared to cope with four types of Operating
Environment scenarios and conditions: (1) Normal,
(2) Abnormal, (3) Emergency, and (4) Catastrophic as
shown in Figure 19.5. Let’s define the context of each of
these conditions.

19.6.3.1.2 Normal Operations Requirements
Normal operations consist of a set of Mission System
activities and tasks that apply to system capabilities and
performance operating within their specified performance
limits and resources.

When specification developers derive and develop
requirements, human tendencies naturally focus on the
System/Product operating ideally—meaning as specified.
Cockburn, for example, referring to UCs calls this condition
a “main success scenario” (Cockburn, 2001, p. 87) or the
“happy day case” (Cockburn, 2005, p. 49). Most specifi-
cations are written for a mission success result and fail to
accommodate UC scenario requirements.

In the ideal world, this may be true, but in the real world
systems, products, and services have finite reliabilities and
life cycles. As such, Systems may not always operate nor-
mally. As a result, UCs and scenarios become very impor-
tant in specifying SPS requirements that cover a prescribed
set of Operating Environment scenarios and conditions
such as Abnormal, Emergency, and Catastrophic Operations
requirements.

19.6.3.1.3 Abnormal Operations Requirements

Principle 19.22

Condition-Based Requirements
Principle

Every specification must specify require-
ments that address three types of Abnor-
mal Operations:

• External system failures

• Degraded operations

• Internal system failures such as components and
interfaces

Abnormal operations consist of a set of system oper-
ations and tasks that focus on detecting, troubleshooting,
identifying, isolating, and correcting a physical capability
condition. These conditions represent levels of performance
that are outside the tolerance band for nominal mission per-
formance but may not be critical to the safety of humans,
property, or the environment.

Abnormal Operations encompass capabilities required to
address External system failures, degraded operations, and
internal system failures. For example:

• Figure 10.17 identifies the need for Abnormal Recov-
ery Operations as part of exception Handling.

• Figure 26.8 addresses fault detection and containment.

19.6.3.1.4 Emergency Operations Requirements
Emergency operations consist of an urgent set of system
operations and tasks that focus exclusively on correcting,
terminating, or eliminating a life threatening or hazardous
situation. This includes: safety, physical capability condition
that has the potential to pose a major health, safety, financial,
or security risk to humans, Enterprise, property, or the
environment.

19.6.3.1.5 Catastrophic Operations Requirements
Catastrophic operations consist of a set of operations or
tasks performed following a major system malfunction event
that resulted in system failure and adversely affected the
health, safety, financial, and security of humans, Enterprise,
property, and the Operating Environment conditions in
the immediate area.

You may ask: how can you have catastrophic operations
requirements if the System or Entity is destroyed? These
requirements, where appropriate, would address Enterprise
level operations for an Enabling System to recover the
System/Entity. In that context, the SPS is written for
the System of Interest (SOI), which includes the Mission
System and its Enabling System(s).

19.6.3.1.6 Relationships between Operating Condition
Categories Requirements for System / Entity Operat-
ing Environment conditions must not only scope and
bound the UC scenario or the condition but also the transi-
tory modes and states that contributed to the conditions. To
better understand this statement, refer to Figure 19.5.

As indicated in the figure, a system performs Normal
Operations. The challenge for SEs is to derive Reliabil-
ity, Maintainability, Availability (RMA) (Chapter 34), and
spares requirements to support on-board preventive and cor-
rective maintenance operations to sustain Normal operations.
If a condition or event occurs prior to, during, or after a mis-
sion, the System may be forced to transition to Abnormal
Operations. Normal Operations may encounter a situation
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requiring an immediate transition to Emergency Operations.
Analytically, Figure 19.5 assumes some Abnormal Condi-
tions that precede the Emergency Operations.

During Abnormal Operations, a System/Entity or its op-
erators institute recovery operations, correct or eliminate the
condition, and hopefully return to Normal Operations. Dur-
ing Abnormal Operations, an emergency condition or event
may occur forcing the system into a state of Emergency Op-
erations. Depending on the system and its post-emergency
health condition, the system may be able to revert to Abnor-
mal Operations.

If Emergency Operation corrective actions are unsuccess-
ful, the system may encounter a catastrophic event, thereby
requiring Catastrophic Operations.

19.6.3.1.7 How Do These Categories Relate to System
Requirements? Depending on the system and its mission
applications, the SPS must specify operational and capabil-
ity requirements that cover these conditions to ensure the
safety of humans, property, and the environment. Will you
find a section in the SPS titled Normal, Abnormal, Emer-
gency, or Catastrophic operations? Generally, no. Instead,
requirements for these types of conditions are distributed
throughout the SPS due to a general lack of knowledge about
how to organize requirements. As a matter of good practice,
however, it is recommended that Acquirer and System Devel-
opers maintain some type of documentation that links SPS
requirements to these conditions to ensure proper coverage
and consideration.

19.6.3.1.8 Failure to Define Requirements for These
Categories History is filled with events that exemplify a
System’s or Product’s inability to cope with physical
conditions in its Operating Environment. These occur
simply because the conditional and scenario requirements
were ignored, overlooked, or assumed to have only a remote
probability of occurrence.

19.6.3.1.9 Allocation of Operational Requirements to Sys-
tem Elements When you develop the SPS, recognize that
an SOI, Mission System, or Enabling System must be
capable of supporting all types of scenarios and conditions
- Normal, Abnormal, Emergency, or Catastrophic - within
the practicality of budgets. Remember, a System encom-
passes all System Elements (Chapter 8). Ultimately, when
the Equipment Element is specified, SEs also allocate condi-
tional requirements to the Procedural Data, Personnel,
Mission Resources, or Enabling System Elements that
satisfy safety requirements.

19.6.3.2 Capability Requirements
Capability requirements specify and bound a solution
space with functional/logical performance actions each
System/Entity or item must be capable of producing

such as outcome(s), products, by-products, or services.
Traditionally, these requirements were often referred to as
functional requirements and focused on the function to be
performed. Capability requirements, however, encompass
both the action and level of performance associated with
how well the action must be performed.

19.6.3.3 Non-functional Requirements
Non-functional requirements relate to physical constraints
such as System/Entity attributes and characteristics - color,
weight, safety, and so forth. Non-functional requirements
do not perform any behavioral actions but may influence a
specific operational outcome or effect. For example, does a
non-functional requirement for bright yellow paint improve
a system’s capability or safety? No, but it improves system
safety in terms of its “capability to be seen.” If paint color is
considered “non-functional,” why then do camouflage paint
patterns or coverings provide a capability of deception?

19.6.3.4 Interface Requirements
Interface requirements consist of those statements that spec-
ify and bound a system’s direct or indirect connectivity or
logical relationships with external systems beyond its own
physical boundary.

19.6.3.5 Environmental Conditions Requirements
Environmental Conditions requirements specify and bound a
system, product, or service’s Operating Environment condi-
tions such as temperature, humidity, altitude, wind, ice, snow,
salt spray, and so forth. It is important to note that a spec-
ification requires a system, product, or service to perform
to requirements before, during, and after exposure to these
Environmental Conditions.

19.6.3.6 Design and Construction Constraints
Requirements
Design and Construction Constraints requirements levy con-
straints on System/Entity design such as manufacturing,
Human Factors (HF), Safety, security, and so forth.

Design requirements consist of any requirement spec-
ified on a drawing, wiring list, parts list, or standard
concerning the implementation of a specification require-
ment, design and construction constraint, and manufacturing
methods.

Please be advised that Engineers in various business
domains such as aerospace and defense, commercial, have
different usage of specification requirements.

• In most business domains such as Aerospace and
Defense (A&D), a “specification” is a document for
an entity such as a System, Product, Subsystem,
and Assembly that contains “shall” based syntactical
statements that express a capability to be provided
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including its level of performance and verification
methods for proving compliance. Specification re-
quirements are then translated into multi-level designs
that consist of drawings, wiring lists, parts lists, and
documents containing information is referred to as “de-
sign requirements.”

• In some commercial domains, a drawing is viewed as
a “specification,” and its contents such as notes, part
numbers, resistor, or capacitor values are referred to as
“specification requirements.”

19.6.3.7 Verification Requirements
Verification requirements specify methods to be employed
to assess System/Entity compliance with an operational,
capability, interface, or non-functional requirement. Verifi-
cation requirements are typically stated in terms of verifi-
cation methods such as inspection, analysis, demonstration,
test, and similarity (if allowable).

19.6.3.8 Validation Requirements
Validation requirements consist of mission-oriented, Use
Case (UC) scenario statements intended to describe what
must be performed to clearly demonstrate that the right sys-
tem has been built to satisfy the User’s intended operational
needs. Validation requirements are typically documented
in a Test and Evaluation Master Plan (TEMP) or OT&E
Plan prepared by the User or an Independent Test Agency
(ITA) representing the User. Since UCs represent how the
User envisions using the system, a UCs Document would
serve a comparable purpose. In general, validation should
demonstrate that Critical Operational or Technical Issues
(COIs/CTIs) or concerns have been resolved or minimized.

19.7 CHAPTER SUMMARY

In summary, Chapter 19 provides an introduction to specifi-
cation Development. Key points include:

• A discussion of what a specification is, its objectives,
and need.

• What is meant by a “Good” Specification versus a
“Well-Defined” Specification.

• Attributes of Well-Defined Specifications.

• Types of specifications that can be used for various
types of specification applications and when they are
developed.

• An overview of specification topical contents.

• What is a requirement and various types of require-
ments within a specification.

• The need to address four types of System operational
requirements in an SPS: Normal Operations, Abnormal

Operations, Emergency Operations, and Catastrophic
Operations.

• We noted that abnormal Operations should address
three types of Abnormal Operations (1) external system
failures, (2) degraded operations, and (3) internal fail-
ures such as components and interfaces and their pos-
sible recovery (Figure 10.17).

19.8 CHAPTER EXERCISES

19.8.1 Level 1: Chapter Knowledge Exercises

Answer each of the What You Should Learn from This
Chapter questions identified in the Introduction.
1. What is a specification?

2. What is a well-defined specification?

3. Describe the evolution of specifications from initial
System Concept to SPS.

4. What are the basic types of specifications?

5. How does each type of specification apply to system
development?

6. What is a Specification Tree and how is it structured?

7. Who “owns” a specification and what is their authority
to implement changes?

8. What is the generalized format for most specifications?

9. What is a requirement?

10. What is a source or originating requirement?

11. What is a stakeholder requirement?

12. What is an objective requirement?

13. What is a threshold requirement?

14. What are the categories of specification requirements?

15. What are operational requirements?

16. What are capability requirements?

17. What are non-functional requirements?

18. What are design requirements?

19. What are interface requirements?

20. What are verification requirements?

21. What are validation requirements?

22. What are requirement priorities?

23. What are the four types of operational requirements?

24. What are four common problems with requirements?
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19.8.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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20
SPECIFICATION DEVELOPMENT APPROACHES

System Performance Specifications (SPS) and Entity Devel-
opment Specifications (EDSs) provide the formal vehicle for
a System Acquirer (role), System Developer (role), or Ser-
vices Provider to:

1. Specify what capabilities a deliverable System/Entity
is required to provide.

2. Bound how well the capabilities are to be performed.

3. Identify external interfaces the System/Entity must
accommodate.

4. Levy constraints on the solution set.

5. Establish criteria concerning how the System De-
veloper is to demonstrate proof of compliance as a
prerequisite for delivery and acceptance.

At the highest level, the Statement of Objectives (S00) or
an SPS or establish a contract’s technical agreement between
the System Acquirer, as the User’s technical representative,
and the System Developer.

20.1 DEFINITIONS OF KEY TERMS

• Architecture-Based Approach—A structured, ana-
lytical approach that employs (1) a multi-level, logical
capabilities architecture framework and (2) behavioral
modeling to specify system capabilities and perfor-
mance requirements.

• Feature—A key capability expected or perceived by
Stakeholders - Users and End Users – as a benefit

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

that motivates them to purchase a system, product,
or service. For example, battery operated and Internet
ready.

• Feature-Based Approach—An ad hoc, brainstormed
approach to specification requirements development.
This approach, by virtue of its feature-based nature, is
subject to omissions in the hierarchy of requirements
and is highly dependent on reviewer assimilation and
recognition of the omissions to correct them.

• Performance-Based Approach—A specification de-
velopment approach that analytically treats a System
or Entity as a “black box” that is bounded and spec-
ified by (1) acceptable and unacceptable inputs, (2)
external interface constraints, (3) acceptable and un-
acceptable performance-based outcomes, (4) constraint
requirements, and (5) verification requirements.

• Reuse-Based Approach—An approach that (1) ex-
ploits or plagiarizes an existing specification text from
one domain that may or may not to be applicable to
a specific application in another domain and (2) es-
sentially replaces semantics to create a new specifica-
tion. This approach, which is typically prone to errors
and omissions, is highly dependent on the specifica-
tion writer’s and reviewer’s knowledge and expertise
to identify and correct errors and omissions.

• Specification Review—A technical review by Stake-
holders, peers, and Subject Matter Experts (SMEs) to
assess the completeness, accuracy, validity, testability,
verifiability, producibility, and risk of a specification
and its requirements.

http://www.wiley.com/go/systemengineeringanalysis2e
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20.2 APPROACH TO THIS CHAPTER

Chapter 20 introduces Specification Development Prac-
tices emphasizes the need for Enterprises to establish
Organizational Standard Processes (OSPs) that establish a
standard outline for use on projects. We introduce a standard
outline that serves as an example for our discussions.

Establishing a standard specification outline, however,
does not mean that it will be developed in a way that covers
essential requirements for developing a system, product, or
service. Our discussion introduces four common specifica-
tion development approaches and highlights advantages and
disadvantages.

Next we address special topics in specification develop-
ment.

We conclude with a discussion of specification reviews,
how to perform them, identify challenges, and address
various approaches for reviewing specifications.

20.3 INTRODUCTION TO SPECIFICATION
DEVELOPMENT

There are numerous ways of structuring a specification out-
line. Rather than elaborate on commonly available specifi-
cation outlines, let’s apply some systems thinking to what
specifications are intended to communicate. Then, based on
that discussion, translate the information into a meaningful
outline structure that best fits your Enterprise or application.

20.3.1 Specification Outlines

As stated in Chapter 19, a well-defined specification begins
with a standard outline (Principle 19.3). In general, spec-
ification outlines originate from System Acquirer contract
requirements or internally from Enterprise command media
such as Standard Engineering Practices. If you do not have
one, consider establishing one in your Enterprise command
media.

Heuristic 20.1 Specification Writing Versus
Development

Structure a specification to present the
highest-level requirements by the third level of the outline.

If you analyze and implement most specification outlines,
you will discover two things:

1. Development of specification outlines are sometimes
assigned to personnel with limited experience or may
be between projects and need a task.

2. Specification outlines tend to be organized around
major headings. You can organize a specification with
many levels of abstract, esoteric topics resulting in the

first meaningful requirement appearing at the fourth,
fifth, or sixth level. Imagine having the highest-level
requirement statement appear at the 5th level in Section
3.X.X.X.X. Since specifications for large, complex
systems often require four to ten levels of detail,
placing the first requirements at the 5th level makes
the document unwieldy and impractical to read and
reference.

20.3.2 Example Specification Outline

Figure 19.4 identified the key elements of a specification
representing what needs to be communicated. Table 20.1
provides an example outline.

20.3.3 Specification Outline Notes

The example specification outline is simply one approach.
You should tailor this outline to best meet the needs of your
Enterprise and project.

Topics in this outline are similar to those such provided
in DI-IPSC-81431A (FAA, 2000). The contents of that
document have been proven over many decades. However,
the outline above differs in several key areas for valid
reasons.

20.3.3.1 Section 3.0 Requirements The introduction
to Section 3.0 REQUIREMENTS should state that “The
System/Entity shall: (1) comply with the requirements
specified herein before, during, and after exposure to the
Environmental conditions specified in Section 3.5 Operating
Environment Conditions, (2) be designed in accordance with
Section 3.6 Design and Construction Constraints, and be
(3) be verified in accordance with Section 4.0 Qualification
Provisions.

20.3.3.2 Section 3.1 Missions Users acquire systems,
products, and services as physical assets for personnel to
use to perform their Enterprise missions. In that context, it
is important to acquire the right tool suitable for performing
specific types of missions. The Measure of Suitability (MOS)
metric introduced in Chapter 5 quantifies this point. There-
fore, it is useful for the System Developer to understand what
types of User missions the system, product, or service is ex-
pected to perform.

Referring to Figure 20.1 - As a caveat to the preced-
ing point, some Users create Operational Requirements
Documents (ORDs) or Capability Development Documents
(CDDs) that employ MOEs and MOSs as a conceptual basis
for defining and acquiring a system, product, or service. Sys-
tem Acquirer derives capability requirements from the ORD
or CDD for insertion into in a System Requirements Docu-
ment (SRD) as part of a Request for Proposal (RFP). In that
case, these topics may not be relevant in the specification.
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TABLE 20.1 Example Specification Outline

1.0 INTRODUCTION

1.1. Scope
1.2. System Overview
1.3. Definitions of Key Terms (optional)

2.0 REFERENCED DOCUMENTS

2.1. User Documents
2.2. System Acquirer Documents
2.3. Project Documents
2.4. Specifications, Standards, and Handbooks
2.5. Usage and Definition of “Shall,” “Will,”

and “Goals” (Chapter 21)

3.0 REQUIREMENTS

3.1. Missions
3.2. Operational Performance Characteristics 3.2.1. MOE #1

…
3.2.n. MOE #n

3.2._. Mission Reliability

3.2._. Mission Maintainability

3.2._. Mission Availability

3.3. Capabilities 3.3.1. Capability #1

3.3.2. Capability #2

3.3.3. Capability #3
…
3.3.n. Capability #n

3.4. Interfaces 3.4.1. External Interfaces

3.4.1.1. External Interface #1

…
3.4.1.n. External Interface #n

3.4.2. Internal Interfaces (Not recommended - See
discussion)

3.5. Operating Environment Conditions
3.6. Design and Construction Constraints 3.6.1. Standards of Manufacture

3.6.2. Workmanship

3.6.3. Component Parts

3.6.4. Human Factors (HF)

3.6.5. System Safety

3.6.6. Security and Privacy

3.6.7. Computer Resources

3.6.8. Physical Characteristics

3.6.9. Adaption

3.6.10. Personnel and Trainin

3.6.11. Special Test Equipment

3.6.12. Transportability

3.6.13. Logistics

3.6.14. Sustainment

3.6.15. Technical Documentation

3.7. Precedence and Criticality of Requirements

(continued)
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TABLE 20.1 (Continued)

4.0 QUALIFICATION PROVISIONS
4.1. Responsibility for Verification
4.2. Verification Methods
4.3. Quality Conformance Inspections
4.4. Qualification Tests

5.0 PREPARATION FOR DELIVERY (PHS&T)
5.1. Packaging
5.2. Handling
5.3. Storage
5.4. Transportation

6.0 NOTES
6.1. Acronyms and Abbreviations
6.2. Definitions
6.3. Assumptions

7.0 APPENDICES
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Figure 20.1 MOE, MOS, MOP, and TPM Entity Relationships (ERs) within
Specifications

20.3.3.3 Section 3.2 Operational Performance Character-
istics

Principle 20.1

Measure of Performance (MOP)
Principle

Each specification requirement should
specify by one and only one Measure

of Performance (MOP) characterized by (1) a Technical
Performance Parameter (TPP), (2) a magnitude, and (3) a
unit of measure.

When a system, product, or service is employed to perform
missions, the System Developer needs to understand what
constitutes mission success from the perspective of the User.
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Figure 20.2 Aircraft Mission Cycle MOEs and MOPs

Therefore, this section specifies Measure of Effectiveness
(MOE) requirements that express what the User expects it
to accomplish. MOEs quantify “operational” performance
in which the system or product is treated as an object
that performs missions. Figure 20.2 illustrates an aircraft
mission life cycle in which each Mission phases of Operation
and embedded Phases of Flight has an MOE from which
contributory MOP requirements are derived.

Based on the operative term effectiveness, the metric
should be based on a frame of reference such as Miles
Per Gallon (MPG), energy/mile/pound (kg) of cargo, For
example, 0 - 60 (0 to 97 km/h or 0 to 27 m/s ) or 0–100 Miles
Per Hour (MPH) are used as the standard for measuring auto-
mobile performance in various parts of the world. Therefore,
the MOE becomes the number of seconds required to achieve
the 60 MPH (97 km/h ) or 100 MPH thresholds.

20.3.3.4 Sections 3.2.X Mission Reliability, Maintain-
ability, and Availability (RMA) RMA is often embedded
in Section 3.6 DESIGN AND CONSTRUCTION CON-
STRAINTS in the back of the document. If you are a Sys-
tem Developer, the RMA requirements can easily become a

showstopper. Since missions and RMA are mutually depen-
dent (Chapter 34), they need to be stated “up front” as part of
the Section 3.2 Operational Performance Characteristics, not
in the back of the document. Therefore, RMA is relocated to
this section.

20.3.3.5 Section 3.3 Capabilities You may ask: what is
the difference between Section 3.2 Operational Performance
Characteristics and Section 3.3 Capabilities? As noted
above Section 3.2 addresses “operational” MOEs. Section
3.3 Capabilities addresses requirements for specific logical
capabilities that are contributory performance effectors such
as propulsion, steering, energy source, and so forth.

MINIMINIIN

Mini-Case
Study 20.1

Operational Performance Characteristics
Specifications

Let’s assume you decide to eliminate specifi-
cation Section 3.2 Operational Performance
Characteristics and derive Section 3.3 Capa-

bilities directly from a User’s ORD, CDD, or SRD and spec-
ify capabilities for the propulsion, steering, energy source,
and so forth. How do you know that the vehicle delivered by
the System Developer will actually go from 0 – 60 MPH in X
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seconds? Specifying discrete capabilities such as engine size
and horsepower (hp) does not mean that the automobile, as a
system, will achieve that requirement. Where is the overar-
ching operational requirement to go from 0 to 60 MPH in X
seconds? The requirement only exists in the User’s ORD or
CDD; the System Developer is only obligated by contract to
verify compliance to the SPS based on the System Acquirer’s
or Users derivation of the SRD from the ORD or CDD.

You may challenge this last statement and observe that
deriving SPS requirements from the User’s SRD is no
different from a System Developer deriving Subsystem EDS
requirements from the SPS. It is still requirements derivation,
allocation, and flow down. In principle, that is true. However,
here is the difference.

If the System Acquirer/User derived the SRD and issue a
contract to deliver to those requirements, what if that system
does not perform. The System Developer will contend they
delivered the system specified by the contract. In contrast,
assume that an SPS contains a Section 3.2 Operational
Performance Characteristics. SPS requirements are derived,
allocated, and flowed down to Subsystems. At delivery,
the System Developer is still legally obligated by contract
to deliver a System that is compliant with Section 3.2
Operational Performance Characteristics.

20.3.3.6 Section 3.4 Interfaces Some specification out-
lines include Section 3.4.1 External Interfaces and Section
3.4.2 Internal Interfaces. As we shall see in the specification
development approaches discussion that follows, a specifica-
tion specifies what has to be accomplished and how well, not
how to design the System / Entity. If you treat any Entity
from the System Level or lower as a “black box,” the internal
interfaces are unknown and undefined until the Entity’s
Architecture has been selected—based on the requirements
in this specification. Therefore, it is recommended that you
consider specifying only external interfaces unless there is
some compelling reason to do otherwise based on an in-
formed, fact-based decision.

We now shift our focus to understanding various ap-
proaches used by Enterprises and Engineers to develop spec-
ifications.

20.4 SPECIFICATION DEVELOPMENT
APPROACHES

Principle 20.2

Specification Writing Versus
Development Principle

Anyone with basic grammar skills can
“write” a random set of requirement

“shall” statements. However, “development” of a speci-
fication requires a higher level of Systems Thinking that
requires understanding, organizing, modeling, and trans-
lating a User’s operational needs and constraints into a

coherent set of various types of System/Entity specification
requirements.

Enterprises and SEs employ a number of approaches to
develop specifications. Typical approaches include:

1. Approach #1—Feature-Based Specification Develop-
ment.

2. Approach #2—Reuse-Based Specification Develop-
ment.

3. Approach #3—Performance-Based Specification De-
velopment.

4. Approach #4—Architectural Model-Based Specifica-
tion Development (MBSD).

Let’s explore a brief description of each type beginning
with the most informal, the Feature-Based Approach.

20.4.1 Feature-Based Specification Development
Approach

Principle 20.3

Specification Requirements Deficiencies
Principle

Ensure that every specification is free from
missing, misplaced, contradictory, and
duplicated requirements.

Feature-based specifications are essentially ad hoc, brain-
stormed requirements that capture the Stakeholders’ - Users
or End Users - imagination and attention. Specifications de-
veloped in this manner are often just formalized, loosely cou-
pled wish lists.

People who lack formal training in specification devel-
opment commonly use a feature-based approach. Although
Feature-Based specifications may use standard specification
outlines, they are often poorly organized and prone to miss-
ing, misplaced, conflicting, and duplicated requirements.
Figure 20.3 provides an illustration.

20.4.1.1 Advantages of the Feature-Based Approach

Principle 20.4

Irrational Logic Principle

It is always easy to rationalize erroneous
logic that ignores best practices and com-
mon sense for the sake of meeting schedule
and budget constraints.

The Feature-Based Approach enables developers to
quickly elicit and collect requirements inputs with a minimal
effort. Specification “writers” spend their time “writing” re-
quirements and very little time analyzing and understanding
potential implications and impacts of those requirements.
When time is limited or a new system is being developed
from minor modifications of an existing system, this method
may be marginally acceptable. Every system is different and
should be evaluated on a case-by-case basis.
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Figure 20.3 Requirements Hierarchy Tree Illustrating Common Specification Require-
ments Problems

20.4.1.2 Disadvantages of the Feature-Based Approach
Feature-Based specifications, by virtue of the ad hoc ap-
proach, exhibit a number of latent defects – errors, omis-
sions, flaws, and so forth. When left uncorrected, the
cost-to-correct (Table 13.1) increases over time almost
exponentially throughout the System Development Phase.
Figure 20.3 provides an illustration of the requirements hi-
erarchy illustrating the following types of latent defects.

1. Missing requirements that were overlooked due to the
ad hoc approach.

2. Compound requirements written in paragraph style
prose.

3. Conflicts with other requirements.

4. Duplication of requirements.

5. Vague and ambiguous requirements statements open to
interpretation.

Latent defects such as these often occur in the
SDBTF-DPM Engineering Enterprises.

As an illustration of Principle 20.3, consider Require-
ments R31222 and 31223 in Figure 20.3. These are require-
ments appear in the specification as random, ad hoc, “wish
list” items with no derivation from higher level requirements
- R3122 and R312, which are missing. As a result, there is

no traceability to the System Level requirement. This point
illustrates how a lack of an SE course in Engineering Educa-
tion (Figure 2.11) allows amateurish methods to proliferate
in industry and government.

20.4.2 Reuse-Based Specification Development
Approach

The Reuse-Based Approach simply exploits or plagiarizes an
existing specification or may integrate “requirements” from
several specifications. The underlying assumption is that if
the existing specifications were “good enough” for those
systems, they should apply to this System or Entity as well.
This can potentially be a big mistake! Think about it! The
source specification you plan to use as a starting point may
be (1) of poor quality or (2) for an entirely different System
or application and Operating Environment conditions!

The Reuse-Based Approach, which may be the only type
of experience an Engineer has, is often used under the guise
of economy - saving time and money. The specification “writ-
ers” fail to recognize that corrections during System Inte-
gration, Test, and Evaluation (SITE) due to rework, scrap,
and redesign caused by deficiencies in this approach, such
as overlooked and incorrect requirements, often cost more
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than employing the Architectural Model-Based Approach
discussed later in this chapter.

Specification reuse often occurs where there is a stan-
dard product line or application similar to a legacy system.
You are working from a known System or Entity accepted
and refined by the Enterprise. However, the problem with
specification reuse occurs across product domains, system
applications, and product lines that may have not relevance
to each other, which can cause significant technical and pro-
grammatic risk. For example, smartphone specifications are
significantly different from desktop compute specification
despite commonalities in some capabilities.

The Reuse-Based Specification Approach is generally the
standard repertoire for new Engineers, especially if they
have not been given formal training in the proper ways
to develop specifications. A manager tasks an Engineer to
develop a specification. Confronted with meeting schedule
commitments, the Engineer decides to contact someone who
might have an existing specification and simply adapt it to
meet the needs of the task. Constructively speaking, this
approach becomes the default survival mechanism for the
Engineer – why reinvent the wheel every time - without ever
learning the proper way. Unfortunately, most Enterprises and
managers contribute to the problem. They lack knowledge
themselves and fail to recognize the need to provide the
proper training.

The risk of using the Reuse-Based Approach as the
source or “model” specification may be intended for a totally
different system, system application, or mission. The only
commonalities between applications may be the high-level
topics of the outline. As a result, the specification could
potentially contain two types of flaws:

• References to external specifications and standards that
may have been updated to a new version, become
obsolete, or cancelled.

• Retention of requirements that are no longer relevant or
applicable.

Even if the requirements are topically relevant, they may
miss or over/under specify the capabilities and levels of
performance required for the new system’s field application.

N
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Heading 20.1

Our discussion of the Performance-Based
and Model-Based Approaches provide
better methods of developing a specifi-
cation. As we will see, the Architectural
Model-Based Approach presumes some

knowledge of the System/Entity architecture to specify
entities with the architecture.

20.4.3 Performance-Based Specification Development
Approach

The Performance-Based Approach specifies System/Entity
capability requirements in terms of performance boundary
conditions, value-added transfer function, and interactions
with external systems. The System/Entity is analytically
treated as a simple box as illustrated in Figure 20.4. The
specification outline presented earlier is then used to bound
and specify the System/Entity.

Performance-based specifications represent the preferred
approach to specification development for many appli-
cations, particularly unprecedented systems. By avoiding
design-specific requirements (Principle 20.5), the System
Acquirer provides the System Developer with the flex-
ibility to innovate and create any number of architec-
tural solutions within contract cost, schedule, and risk
constraints. Depending on the System Acquirer’s intent,
performance-based specifications require extensive System
Developer/Subcontractor’s structured analysis and deriva-
tion of requirements to select a preferred system architecture.
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Figure 20.5 Architectural Model-Based Approach to Specification Development

System Acquirers developing an unprecedented system
tend to favor the Performance-Based Specification Approach
as the initial step of a multi-phase acquisition strategy where
requirements may be unknown or immature. The strategy
may require a series of Spiral Development (Figure 15.4)
contracts to evolve and mature the system requirements.
Consider the following example.

Example 20.1

Unprecedented System Specification
Development

A System Acquirer plans to develop an un-
precedented system. After due considera-

tion, the System Acquirer decides to establish a multi-phase
acquisition strategy. Phase 1 of the acquisition strategy re-
sults in the award of a performance specification-based con-
tract to develop initial prototypes for testing, collecting, and
analyzing performance data; selecting a system architecture;
and producing a set of requirements as the work product for
a Phase 2 follow-on prototype or system. There may even be
several other Spiral Development (Figure 15.4) phases, all
focused on derisking the final system development.

20.4.4 Architectural Model-Based Specification
Approach

The Architectural Model-Based Approach focuses to specifi-
cation development on bounding and specifying capabilities

and performance for a high-level System/Entity capabil-
ities architecture similar to the one shown in Figure 20.5.
This approach is best accomplished via Model-Based Sys-
tems Engineering (MBSE) (Chapters 10 and 33).

The Architectural Model-Based Approach begins
with treating the System as a “black box” similar to
the Performance-Based Approach. The system is derived
architecturally in successive iterations to create capability
behavioral models of System/Entity capabilities based on
system UCs and scenarios. To illustrate this approach,
consider the following example.

Let’s assume we have been tasked to develop the SPS
for a land-based vehicle. Specification developers establish
Section 3.2 Operational Performance Characteristics. Mov-
ing on to Section 3.3 Capabilities, we identify and list the
capabilities of the vehicle.

3.3. Capabilities
3.3.1. Vehicle Frame Subsystem

3.3.2. Body Subsystem

3.3.3. Propulsion Subsystem

3.3.4. Fuel Subsystem

3.3.5. Electrical Subsystem

3.3.6. Command and Control (C2) (Chapters 7 and 26)

3.3.7. Situational Assessment (Chapter 26)
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3.3.8. Cooling Subsystem

3.3.9. Environmental Control Subsystem

3.3.10. Steering Subsystem

3.3.11. Entertainment Subsystem

3.3.12. Storage Subsystem

Let’s assume that the vehicle is a precedented system.
Therefore, we can assume that the automobile requires the
capabilities listed. For example, most automobiles have four
passenger doors. You do not have to question the need for
four doors unless there is a compelling reason to do so such
as shift to a new paradigm.

Given these Capabilities, we can employ tools such as
a matrix (Figure 8.10) and N2 Diagram (Figure 8.11) as
interim steps to create Entity Relationships (ERs) among
System capabilities for an Architectural Block Diagram
(ABD) or model similar to Figure 20.5.

Then, for each Section 3.3 Capability, derive the next
lower level capability requirements from the parent capa-
bility (Sections 3.3.1 – 3.3.12) and interactions with other
capabilities based on System/Entity level UCs and sce-
narios. Once these are in place, develop SySMLTM Use
Case Diagrams, Sequence Diagrams, and Activity Dia-
grams (Chapter 5) to establish behavioral models of each
capability.

20.4.4.1 Implementing the Architectural Model-Based
Approach To illustrate the application of the Archi-
tectural Model-Based Approach, let’s assume a System
or Product Development Team (SDT/PDT) creates
an analytical architecture for a System or Product
that includes Subsystems A through D as illustrated in
Figure 20.5.

Subsystems A–D represent solution spaces to fill the
overall System Level problem space (Figure 4.7). In general,
Subsystems A–D represent Capabilities A–D. To simplify
our model, let’s assume that the System Developer has
already decided that these are Subsystems and is ready to
derive and define each Subsystem’s capabilities.

Continuing our iterative elaboration of each level of
abstraction, Subsystem A becomes a contextual prob-
lem space (Figure 4.7) and has been determined to be
solved by Capability Al through A4 solution spaces.
The same goes for the Subsystem B problem space
consisting of Capability B1 and B2 solution spaces.
The team constructs a logical capabilities architecture
shown in Figure 20.5 that expresses the relationships
between:

1. The System and External Systems #1 through #7.

2. Capabilities A through D.

3. Capabilities Al–A4, B1–B2, System Monitoring.

Author’s Note 20.1

Architectural Models

Observe usage of the term “architec-
tural model.” The specification devel-
opment team creates a model of the

System / Entity that is informally or formally controlled by
the team for their exclusive use.

Based on the analysis, the specification developer(s) elab-
orates and specifies specification Section 3.3 Capabilities as
follows:

3.3. Capabilities (Entity—System, Product,
Subsystem)
3.3.1. Capability A

3.3.1.1. Capability A1

3.3.1.2. Capability A2

3.3.1.3. Capability A3

3.3.1.4. Capability A4

3.3.2. Capability B
3.3.2.1. Capability B1

3.3.2.2. Capability B2

3.3.3. Capability C
3.3.3.1. Capability C1

3.3.3.2. Capability C2

3.3.3.3. Capability C3

3.3.4. Capability D
3.3.4.1 Capability D1

3.3.4.2 Capability D2

3.3.4.3 Capability D3

3.3.4.4 Capability D4

The model represents the configuration of capabilities
that supports System or Entity UCs and scenarios. This
means that for any UC or scenario, the analysts can trace
the “thread” from input through each capability to produce
a performance-based outcome (Figures 21.6 and 21.7).

Using this method, the specification developer(s) trans-
late what capabilities the System / Entity is required
to provide via text statements positioned in the speci-
fication outline. For analysis “working paper” purposes,
consider inserting specification paragraph references in
the appropriate graphical model element. Each capability
is then decomposed into multi-level sub-capabilities that
form the basis for outcome-based performance requirement
statements.

Principle 20.5

Point Design Avoidance Principle

Specifications do not specify a point design
solution unless there is a compelling tech-
nical reason to do so.
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For specifications developed for implementation internal
to the System Developer’s Enterprise such as Configura-
tion Items (CIs) (Chapter 16), you may decide to include
Figure 20.5 as a convenient reference. However, if you in-
tend to procure the System or one or more Subsystems from
external vendors, you are violating Principle 20.5 by man-
dating a specific solution. Remember - specifications specify
what has to be accomplished and how well, not how to de-
sign the System. Think about the implications! What if you
architecturally:

• Specify the wrong solution or one that does not per-
form?

• Exclude solution options that may prove to have been
optimal?

Later, if you or the vendor determines that the graphic
overlooked a key capability, you may be confronted with
modifying the contract and paying additional money to
incorporate the missed capability. The downside here is that
it “opens the door” - provides an opportunity - for the vendor
to recover costs at your expense for other capabilities they
overlooked in their original estimate.

Additionally, if the System Developer (1) develops the
System/Entity you mandated graphically in a specification
and (2) it fails to satisfy your needs, their response may be
“We built the system … you … contracted us to develop.”

A Word of
Caution 20.1

Risk of Inserting Architectural
Graphics into Specifications

Exercise caution when inserting architec-
tural graphics into specifications, especially
System / Entity architecture graphics. Ex-

ploit ABDs as analytical working documents for internal
use only, not in specifications. Under certain conditions,
ABDs may be fine for internal specifications being devel-
oped in-house.

Recognize that when you create an Architectural (Ca-
pabilities) Model (Figure 20.5) and model System opera-
tions (Figures 10.13 – 10.16), each “box” within the model’s
structure represents a capability that can be translated into
a specification requirement statement. As a result, the SPS’s
structure represents the requirements hierarchy of essential
requirements. Since the Architectural Model is for internal
analytical use by the System developer, it is the SPS that is
delivered as part of an RFP response, not the architectural
model.

By creating an analytical Architectural Model of logical
capabilities and relationships such as Figure 20.5 to sup-
port specification development, you improve your chances
of covering and expressing capabilities without mandating a
specific solution or specific architectural graphic. If you per-
form the analysis well and translate the working architecture

into capability-based requirements, an Engineer with some
intuitive insight should be able to “reverse engineer” the sys-
tem graphic. The difference is you did not violate Principle
20.5 and mandate how to design the system to the System
Developer.

20.4.4.2 Implementing the Architectural Model-Based
Approach Architectural Model-Based specifications are
well suited for both precedented and unprecedented sys-
tem applications. For example, Human Systems often re-
quire Command & Control (C2) and situational assessments
(Figures 24.12 and 26.6) for steering, propulsion, power, and
communications (Chapter 26). However, when the specifi-
cation developers specify the primary architectural compo-
nents, they may limit the potential for new and innovative
architectures that may be able to exploit new technologies
and methods such as combining two traditional components
into one.

Additionally, there is always the risk that specifying
requirements for a Subsystem may unintentionally constrain
the design of an interfacing Subsystem (Principle 14.3).
As a result, cost and schedule impacts may be incurred.
Simply state the architectural component capabilities as
performance-based entities.

20.4.4.3 Engineering Modeling Paradigms When you
model systems, be aware of the influences of Engineering
paradigms on your models. Consider the following example.

Example 20.2

Specification of Physical Entities

Traditionally, a commercial aircraft flight
crew physically consisted of a Pilot, a
Copilot, and a Navigator. However, tech-

nology advances, in combination with the need to reduce
operating costs, lead to the elimination of the Flight Engi-
neer position. Thus, the paradigm shifted to integrating the
Flight Engineer Role into the Pilot and Copilot (1st Officer)
Roles and designing navigation systems to support those two
roles.

Using the example above, mentally contrast a specifi-
cation developed using the Architectural Model-Based Ap-
proach that would have specified the traditional three cockpit
crewmember paradigm versus the Performance-Based Spec-
ification Approach that simply leaves the identification of
Personnel Element roles to emerge from the System De-
veloper’s Command and Control (C2) analysis of the SPS.

Recognize that the preceding point is not a fallacy of the
Architectural Model-Based Approach. The Architectural-
Based Approach was simply a method the SEs chose to erro-
neously instantiate their mental paradigms, which eventually
had to shift.
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20.4.4.4 Summary Recognize that the Performance-
Based Approach and Architectural Model-Based Ap-
proaches are not mutually exclusive. For example, if a
System Acquirer employs the Performance-Based Speci-
fication Approach, the System Developer can employ the
Architectural Model-Based Approach to derive an SPS that
is submitted in response to an RFP. During the System
Development Phase, the System Developer may choose
to employ the Performance-Based Approach to acquire a
Subsystem from a subcontractor, and so forth.

20.5 SPECIAL TOPICS

Specification development often has nuances that you should
learn to recognize. Let’s address some these as special topics.

20.5.1 Developing versus Writing Specifications

People often have the misperception that you “write” speci-
fication requirements as if they were in a Language Writing
Composition 101 course; that is what Engineers are educated
to do. They provide no supporting analyses or rationale as
to how they arrived at the capabilities and levels of perfor-
mance specified in the document (Principle 19.14). This is
a paradigm that exemplifies why many contracts and System
Development efforts “get off to the wrong start” at Contract
Award.

Specification development is a multi-level, concurrent,
system analysis, conceptual design effort that requires de-
cision artifacts and supporting rationale. Some Enterprises
and SEs say, “We do this. If Person A is writing a specifi-
cation and has a To Be determined (TBD) that needs to be
replaced with a numeric value, they go to Person B who
performs a ‘back of the envelope’ analysis, goes into the
lab and runs a simulation, and returns with a performance
value. Problem solved!” … That is not what we are referring
to here.

The point is when you develop a specification, you employ
a structured analytical approach such as the Capability
Architecture-Based approach. Additionally, you need to
know the decision criteria and artifacts that compelled you
to make informed decisions about a requirement statement’s
Measure of Performance (MOP) value. How did you:

1. Identify and derive requirements.

2. Avoid missing, misplaced, conflicting, contradictory, or
duplicated specification requirements (Principle 20.3)?

3. Derive each requirement’s Measure of Performance
(MOP)?

4. Rationalize requirement allocations to lower level spec-
ifications?

In contrast, people refer to “writing” specification require-
ments, which is often ad hoc. Typically, the Feature-Based

Approach is their in-grained method of choice. Recognize
the differences between developing versus writing require-
ments

20.5.2 Delineating Specifications and Statements of
Work (SOW)

Principle 20.6

Specification Scope Principle

Specifications specify what Systems or
Entities are expected to accomplish and
how well, not work tasks to be performed
and accomplished by the project.

Principle 20.7

Project Work Scope Principle

A project contract’s work scope—Contract
Statement of Work (CSOW) or Project
Charter—specifies work tasks to be ac-

complished, not Systems or Entity specification require-
ments.

People often have problems delineating a specification
from SOW. As evidence of this confusion, you will typically
see SOW language such as activities, tasks, and work
products written into specifications. So, what is the difference
between the two types of documents?

The SOW is an Acquirer’s contract document that speci-
fies the work activities to be performed, and their work prod-
ucts to be delivered by the System Developer, subcontractor,
or vendor to fulfill the Terms and Conditions (Ts&Cs) of the
contract. In contrast, the specification specifies and bounds
the capabilities, characteristics, and their associated levels of
performance required of the deliverable system, product, or
service.

How can you avoid these situations or lessen their
impact? Develop a rapport and work with the customers
long before procurement actions are released to gain their
confidence in your enterprise. Professionally and tactfully
provide constructive feedback that illustrates how everyone
benefits from ensuring the contents of contract documents
comply with best practices. There is a reason best practices
exist—learn to recognize the difference!!

20.6 SPECIFICATION REVIEWS

When a specification reaches a level of maturity, conduct a
specification review with stakeholders, peers, Subject Matter
Experts (SMEs), and others. Specification reviews provide
a valuable opportunity to assess how well the specification
specifies the essential capabilities, Operating Environ-
ment conditions, design and construction constraints, con-
sistency, and compatibility with interfacing entities.
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20.6.1 Specification Review Challenges

Unfortunately, specification reviews often have limited util-
ity and value. Why? Specification reviews often turn into
grammar correction exercises with little or no substantive re-
view. Reviewers sit around a table or participate in a video
or audio conference:

1. Having limited time to review the document prior to the
review due to their own schedules.

2. Trying to avoid critiquing the specification developer’s
work —after all they spent a lot of time analyzing the
System or Entity, so they must be an expert. Avoid
this line of thinking and submit substantive review
comments in a professional and tactful manner.

3. Avoiding the wrath of someone else if they do comment
- a management issue.

There are several methods of conducting specification
reviews. As we explore these methods, think about how you
can turn your specification reviews into value-added efforts
that produce a specification that will have minimal changes
or problems.

20.6.2 Specification Review Approaches

Some individuals and Enterprises conduct specification re-
views on a line-by-line basis that consumes hours. If you
must use this approach, exploit word processor capabilities to
append line numbers in the margins of the document. Since
documents have sections that may restart numbering, use
continuous line numbering throughout the document; avoid
section line numbering restarts.

An alternative approach is to distribute the document
electronically and request that comments be inserted as
changes in a different color font and returned. Review
the comments and incorporate those that are valid and
applicable; follow up with the stakeholder for comments that
require clarification.

Conduct specification reviews with all Stakeholders. Peo-
ple who casually read specifications in a linear “front to
back” or sectional manner for proper grammar and text us-
age typically overlook or fail to assimilate and recognize the
conditions illustrated in Figure 20.3.

Based on the collection of review comments, identify
any major issues and conduct a follow-up review with the
stakeholders. The purpose of this review is to simply resolve
major issues. Based on the results of the review, update the
document for the next review or approval for baselining
and release. This approach avoids consuming hours of
Stakeholder time discussing grammar on a line-by-line basis
unless it is required to avoid ambiguities.

Whichever approach is best for the review, document the
list of stakeholder reviewers, attendees, approved changes,

decisions, and action items via conference minutes and dis-
tribute to participants and others that have been pre-defined
and approved by the project.

Principle 20.8

Specification Baseline Principle

Every specification should be formally re-
viewed, approved, baselined and placed
under formal Configuration Management

Change Management, released, and communicated for tech-
nical decision making.

You may ask: When should specifications be baselined?
Always consult your contract for specific requirements.
Specifications, in general, are baselined and released, as
listed in Table 20.1. Figure 17.2 provides a graphical view of
the example specification release sequences by specification
type.

As stated earlier in Principle 14.2, lower level spec-
ification and design decisions are dependent on stabil-
ity of higher level specifications. Therefore, it is impor-
tant to baseline as soon as the specifications require-
ments have a level of maturity. Conversely, if you base-
line a specification too soon, changes must be approved
through formal Configuration Control processes, which can
be costly and time consuming. The decision is ultimately
determined by the Project Engineer, Lead Systems Engi-
neer (LSE), Configuration Manager, and responsible SDT
or PDT.

Author’s Note 20.2

Specification Requirements
Updates

Once a specification is baselined and
released, requirements should not be

added to a specification without formal baseline change man-
agement approval, and budgetary resources are negotiated
and provided. Remember, each requirement costs money to
implement via hardware or software. At the SPS level, re-
quirements changes should be managed as contract modifi-
cations. Within the System Developer’s Enterprise, any ad-
ditional requirements should include commensurate cost and
schedule modification considerations.

20.6.3 Substantive Specification Reviews

What are success criteria for a substantive specification
review? In general, here are some examples of criteria for
assessing specification review success:

1. Does the specification specify and bound a solution
space that will satisfy all or a portion of the User’s
problem space? Is this a solution or a symptom of a
problem?
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2. Are the requirements essential in terms of being neces-
sary and sufficient without imposing unreasonable con-
straints on the solution set options?

3. Does the specification specify mission-based opera-
tional performance characteristics?

4. Are the requirements complete and consistent with
other project specifications?

5. Can each requirement be verified? If so, how?

6. Can the System/Entity be developed within project
constraints – cost, schedule, and technology – with
a level of risk that is acceptable to the System Ac-
quirer/User and System Developer?

These criteria require more than a one-time assessment at
the first DRAFT specification review. They should serve as a
focal point and be assessed at every specification review.

20.7 CHAPTER SUMMARY

Our discussion of specification development practices identi-
fied the key challenges, issues, and methods related to devel-
oping system specifications. As the final part of the concept,
we introduced a basic discussion for preparing specifications.
The methodology provides an operational approach to spec-
ification development based on how the User intends to use
the system.

20.8 CHAPTER EXERCISES

20.8.1 Level 1: Chapter Knowledge Exercises

1. What are some common approaches to developing spec-
ifications?

2. What is the “feature-based” specification development
approach?

3. What is the “performance-based” specification develop-
ment approach?

4. What is the “reuse” specification development approach?

5. What is the “capability architecture-based” specification
development approach?

6. Compare and contrast the four specification development
approaches.

7. How are specification reviews performed?

8. How do you know when a specification is ready for
release?

20.8.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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REQUIREMENTS DERIVATION, ALLOCATION,
FLOW DOWN, AND TRACEABILITY

Development of the System Performance Specification
(SPS) typically represents only a small portion of a large,
complex system’s hierarchy of requirements. The challenge
for SEs is: How do we establish the lower level specifications
that enable System Developers to create Part Level designs?

Chapter 21 introduces the requirements derivation, al-
location, flow down, and traceability practices that enable
us to create the specification-based hierarchy of system re-
quirements. Our discussions delineate the terms require-
ments derivation, allocation, and flow down. We explore how
requirements are derived and identify a methodology for
deriving requirements and how to apply the methodology.

21.1 DEFINITIONS OF KEY TERMS

• Child Requirement—A contextual term identifying a
requirement that has been derived from and contributes
to accomplishment of an abstract parent requirement at
the next higher level.

• Leaf Level Requirement—The lowest-level derived
requirement for a specified capability that can be
allocated and flowed down to the next lower level entity.

• Contributory Performance Effector—A key param-
eter characterized by a TPP and MOP that impacts
overall system, product, or service outcomes and
performance.

• Parent Requirement—A contextual term identifying
an abstract requirement that requires been elaboration

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

or refinement into two or more “child” requirements at
the next lower level.

• Requirements Allocation—The process of assigning
accountability for implementation of a requirement to
at least one or more lower level contributing Sys-
tem Elements such as Equipment, Personnel, and
Facilities or entities within those elements.

• Requirements Derivation—The process of decom-
posing or refining an abstract parent capability re-
quirement into lower level performance-based child re-
quirements. Conditional accomplishment of the set of
derived children – sibling - requirements constitutes
satisfactory accomplishment of the “parent” capability
requirement.

• Requirements Flow Down—The process of delegat-
ing accountability for implementation of a requirement
or portion thereof to a lower level of abstraction, such
as System to Product or Product to Subsystem and
so forth.

• Requirements Testing—The process of evaluating the
content and quality of a requirement statement rela-
tive to a predefined set of requirements development
criteria. The purpose is to determine if a requirement
is specific, measurable, actionable, realistic, testable,
verifiable, and traceable (Principle 22.3); complete,
consistent, and unambiguous.

• Requirements Traceability—The establishment of
bottom-up specification requirements linkages for a
System/Entity from its lowest to the highest levels of

http://www.wiley.com/go/systemengineeringanalysis2e
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abstraction to higher level User source or originating
requirements.

• Requirements Verification—An activity performed
by a System Developer or System Acquirer using verifi-
cation methods such as Inspection, Examination, Anal-
ysis, Demonstration, or Test to prove compliance to a
specification requirement based on a review of objec-
tive evidence such as work products, physical entities,
measurement data, and Quality Records (QRs).

• Requirements Validation—An activity performed by
Stakeholders – System Acquirer, User, End User, and
System Developers - to ensure that specification re-
quirements completely, accurately, and precisely spec-
ify and bound a solution space that will resolve
all or a portion of a User’s intended operational
needs – problem space (Figure 4.7).

• Traceability—“The ability to identify the relationship
between various artifacts of the development process,
i.e., the lineage of requirements, the relationship be-
tween a design decision and the affected requirements
and design features, the assignment of requirements
to design features, the relationship of test results to
the original source of requirements” (Naval SE Guide,
2004, p. 171).

21.2 APPROACH TO THIS CHAPTER

Chapter 21 begins with an introductory overview of require-
ments derivation, allocation, flow down, and traceability. Our
discussion introduces key terms and concepts required to for
understanding the practice.

Based on these concepts, we explore how requirements
are derived using UC Thread Analysis. Whereas people often
think that requirements derivation is an ad hoc brainstorm-
ing session of what potential derived requirements might be,
we illustrate how UCs and UC Thread Analysis provide an
analytical method that enables us to actually derive require-
ments. Then, advance to a more complex case illustrating
how a System Level capability requirement representing a
UC is used to derived lower level requirements that can be
allocated across Subsystem specification boundaries.

These discussions describe the analytical method and
mechanisms for deriving allocating, and flowing down
requirements. The reality is: the User Operational Require-
ments Documents (ORDs) and Capability Development
Documents (CDDs) or System Acquirer System Require-
ments Documents (SRDs) should be based on Measures
of Effectiveness (MOEs), Measures of Suitability (MOSs),
and their respective Measures of Performance (MOPs)
(Chapter 5). Therefore, our next step is to address how
SPS MOE, MOS, and MOP requirements are derived, allo-
cated, and flowed down to specifications ate lower levels of
abstraction.

We conclude the chapter with a discussion of Special
Topics in requirements derivation, allocation, flow down, and
traceability.

21.3 INTRODUCTION TO REQUIREMENTS
DERIVATION, ALLOCATION FLOWDOWN, &
TRACEABILITY

Requirements derivation is commonly used in the vocabular-
ies of Engineers. Yet, few seem to actually understand what
is required to derive the requirements. If you ask an Engineer
how they derived a requirement, they respond nonchalantly
“I just did it” as if there is some obscure, magical formula
that only they understand. Objective evidence of this point is
illustrated in specifications developed using the multi-level
Feature-Based Approach discussed in Chapter 20 and exem-
plified in the text for Figure 20.3. So, what is requirements
derivation?

Requirements derivation is the process of refining or elab-
orating an abstract “parent” capability requirement statement
into a set of lower level, “child” capability requirements.
The process is similar to an optical prism breaking down
the spectral bands of white light as shown in Figure 21.1.
Completion of the derivation process results in a multi-level
hierarchy of requirements for a System/Entity as shown in
Figure 21.2.

The requirements hierarchy simply illustrates a mesh of
requirements. Although not shown in the figure, the mesh is
partitioned into the SPS at the highest level and supported by
lower level EDSs at lower levels of abstraction. The hierarchy
of specifications represents the Specification Tree (Figure
19.2) for the System.

On inspection, the requirements hierarchy is more than
a derivation of requirements. Figure 21.2 provides an illus-
tration. Observe the contextual “parent-child” relationships
within the hierarchy. Contextually, a “child” requirement at
one level of the hierarchy serves as a “parent” requirement
for the next level of decomposition.

The process of deriving an abstract parent requirement
into two or more child requirements means that if you satisfy
the child(ren) requirements, then you also satisfy the higher
level parent requirement. Two key points:

• Bottom-up: Each child requirement and its siblings
conditionally contribute to accomplishment of a parent
requirement. That is, child(ren) requirements express
HOW a parent requirement is accomplished.

• Top-down: Each contextual parent requirement con-
ditionally expresses WHY its child(ren) requirements
exist.

Observe usage of the term conditional in the Bottom-Up
point above. Conditional accomplishment of “child”
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requirements may occur in several ways: separately, in
a sequence, or simultaneously.

This discussion leads to a key question: how do you know
when to stop deriving requirements?

Requirements at higher levels of the hierarchy are fine for
expressing what has to be accomplished. However, their ab-
stractness is insufficient for assigning it to an architectural
Entity at the next level of abstraction. For example, “The
automobile weight shall not exceed 2,000 pounds” repre-
sents abstract requirement. Of the 2,000 pounds, how much
weight should be allocated to the frame, body, engine, and
so forth? We have to partition the 2,000 pound weight re-
quirement – problem space – into solution spaces that can
be allocated – assigned - directly to the frame, body, engine,
and so forth. We refer to that lowest level requirement that
can be allocated to an architectural Entity as a “Leaf” level
requirement.

Summarizing Figure 21.2, User source or originating re-
quirements are decomposed or refined into various levels
based on contextual parent-child relationships. The refine-
ment of abstract requirements continues top-down until a
Leaf Level requirement can be allocated – assigned – directly
to a Logical Architecture capability or Physical Entity.

Then, each child requirement in the top-down hierarchy is
linked – traced - to its higher level parent requirement until
the User’s source or originating requirements are reached.

On inspection, this process may seem to be relatively sim-
ple. The reason is it represents the essence of Functional
Analysis, which we described as relevant but insufficient
for performing requirements derivation. The deficiency in
Functional Analysis is the focus on deriving children “func-
tions” – the easy part - instead of capabilities. As a result, the
really difficult part – establishing the MOP values for each
capability requirement – is postponed until the System De-
sign is underway. Informed decision-making requires exten-
sive analysis, trade studies, Modeling & Simulation (M&S),
and prototyping. So, how is this accomplished?

Observe the left hand side of Figure 21.3. Systems En-
gineering publicity refers to “flowing SPS requirements to
lower levels of specifications.” Unfortunately, that is the
misperception Enterprise executives, managers, and Engi-
neers often have. The untold story “behind the scenes”
occurs in the SE Process Model and Decision Support
Process.

SEs leverage the power - iterative and recursive character-
istics (Chapter 14) – of the Wasson SE Process Model to (1)

Highly Iterative

Highly
Iterative

Requirements
Traceability

Requirements
Traceability

Highly
Iterative

System
Performance
Specification

(SPS)

Product
Development
Specifications

HWCI/CSCI
Requirements
Specifications

(HRS/SRS)

Wasson
SE Process Model

Wasson
SE Process Model

Where
• HWCI = HW Configuration Item
• CSCI = Computer SW Configuration Item

Decision
Support
Process
• Analyses

• Trade Studies
• Prototypes

• Models
• Simulations

• Mockups

Figure 21.3 Application of the Wasson SE Process to Multi-level Requirements Analysis,
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understand the User’s problem and solution spaces and (2)
develop the Requirements Domain Solution. Development of
the Requirements Domain Solution is based on requirements
derivation, allocation, and flow down practices using the
System Architecture. Where in-depth analysis, trade stud-
ies, Modeling & Simulation (M&S), and prototyping are re-
quired, the System/Product Development Team (SDT/PDT)
assigns a task to the Decision Support Process.

Decision Support provides quantitative analyses, data,
and recommendations for deriving, allocating, and flow-
ing down requirements from the SPS to Product De-
velopment Specifications. Subsequently, those requirements
are allocated and flowed down to Hardware Configuration
Item (HWCI) Requirements Specifications (HRSs) and/or
Computer Software Configuration Item (CSCI) Require-
ments Specifications (SRSs). Requirements management
tools based on relational databases are used to facilitate the
requirements allocation, flow down process, requirements
traceability, assignment of verification methods, and support
requirements metrics tracking.

21.3.1 Overarching Constraints for Requirements
Derivation

Principle 21.1

User Wants, Needs, Can Afford, and
Willingness to Pay Principle

When deriving System/Entity require-
ments, understand:

• What the User wants.

• What the User needs.

• What the User can afford.

• What the User is willing to pay.

You can academically derive an infinite number of so-
lution space requirements to resolve all or a portion of a
problem space. However, before you naively proceed down
that path, there are two realities that constrain the process:
(1) the need to identify only essential requirements (Princi-
ple 19.7) that are necessary and sufficient balanced with (2)
what the User wants, needs, can afford, and is willing to pay.
Figure 21.4 illustrates this last point. As you read the sections
ahead, maintain awareness of these realities.

21.3.1.1 How Many Requirements are “Essential?” SEs
struggle with the rhetorical question: How many require-
ments do you need to specify a System/Entity? There are
no specific guidelines or rules—only disciplined and sea-
soned experience. Specification quality is not measured by
the quantity of requirements. Instead, the question should
be: What are the essential mission or system capabili-
ties that need to be specified without over-specifying or
under-specifying (Principle 19.7)?

Frightening? Yes! But think about it! Every layer of re-
quirements adds restrictions, complexity, costs, and schedule
risks that limit the System Developer’s flexibility and options
to innovate and achieve lower costs, schedule implementa-
tion, and risk.

How many requirements should an ideal specification
have? Hypothetically, the answer could be one requirement;
however, a one-requirement specification has limited utility.
We can state that a properly prepared specification is one
that has the minimal number of essential requirements. This
allows the System Developer the flexibility to select the
optimal solution that can be verified and validated to meet
the User’s operational capability and performance needs.

How do we emerge with this idyllic specification? The
answer may be found in performance specifications. Per-
formance specifications enable SEs to treat a system like a
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$$$

The User’s Dilemma …...
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Figure 21.4 Overarching Requirements Derivation Constraint—What the User Needs,
Wants, Can Afford, and Willingness to Pay
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“black box” with inputs and outputs (Figure 20.4). The in-
tent is to scope and bound the behavior of a system, prod-
uct, or service relative to scenarios, and conditions in its
prescribed operating environment. This is accomplished via
Measures of Effectiveness (MOEs) and Measures of Suitabil-
ity (MOSs), each with supporting Measures of Performance
(MOPs) (Figures 20.1 and 20.2) that form the basis for deriv-
ing System capabilities that populate specifications. By treat-
ing the System/Entity characteristics as a “performance
envelope,” we have avoided specifying how the system is to
be designed.

There is one problem, however, with bounding the
System/Entity at the “performance envelope” level.
If you develop the performance specification in a man-
ner that allows too much flexibility, the results may be
unacceptable, especially to the System Acquirer. This
leaves the System Developer with the challenge or inter-
pretation of determining what essential capabilities the
System/Entity is to provide and how well each capability
is to be performed. This has positive and negative impli-
cations, depending on your role as a System Acquirer or
System Developer/Subcontractor. Since all capabilities may
not be considered to be of equal value and priority by the
User, especially in terms of constrained budgets, the User’s
priority list may be different from the System Developer’s
priority list.

Author’s Note 21.1

Dichotomy of System Acquirer
and System Developer Competing
Views

Remember that the User is interested
in optimizing capabilities and performance while minimizing
technical, cost, and schedule development costs and risk.

The System Developer, depending on type of contract, is
also interested in minimizing technical, cost, and schedule
risk while optimizing profitability. Thus, unless both parties
are willing to work toward an optimal solution that represents
a “win–win” for both parties, conflicts can arise regarding
these priority viewpoints and Enterprise objectives may
conflict.

How do we solve this dilemma? The System Acquirer may
be confronted with having to specify additional requirements
that more explicitly identify the key capabilities, levels
of performance, as well as priorities. The challenge then
becomes: At what level does the System Acquirer stop
specifying requirements? Ultimately, the System Acquirer
could potentially over-specify or under-specify the system,
depending on budget factors.

So, what is the optimal number of requirements? There
are no easy answers. Conceptually, however, we may be able
to describe the answer in our next topic, the Optimal System
Requirements Concept.

21.3.2 Optimal System Requirements Concept

Anecdotal data suggest that a notional profile can be con-
structed to express the optimal quantity of specification re-
quirements. To illustrate this notional concept, consider the
graphic shown in Figure 21.5.

The figure consists of a graphical profile with three curved
line segments. For discussion purposes, we will identify the
area under each segment as a zone. Beginning at the intersec-
tion of the X-axis and Y-axis, every legitimate requirement
that is identified at the top hierarchical levels increases the
sufficiency of system definition toward a theoretical Optimal
Level. We refer to Zone 1 as the Zone of Increasing System
Definition Sufficiency. This theoretical point is the point of
inflection in the curve’s slope.

At the point of inflection, we should have an optimal
number of requirements. Hypothetically, the quantity of re-
quirements should be technically essential—necessary and
sufficient—to specify a System/Entity with the desired ca-
pabilities and levels of performance. At this level, the re-
quirements are minimally sufficient to specify and bound the
User’s intended operational needs.

Beyond the point of inflection lies the Zone 2—Increasing
Requirements Restrictions. As the slope of the curve in-
dicates, requirements can be added but at the expense of
over-specification. Each additional requirement restricts the
SE design options and may increase technical, cost, schedule,
technology, and support risk.

As the quantity of requirements continues to increase
to the right, you finally reach a breakpoint for Zone 3,
which represents the region where the requirements become
too restrictive. Thus, the requirements unduly restrict SE
design options and severely limit feasibility of the system.
Generally, when this occurs, two things can occur:

• Solution #1—The System Acquirer discovers this
problem during the draft proposal stage and decides to
remove some requirements due to prohibitive technical,
cost, schedule, technology, and support costs and risks
based on potential Offeror comments.

• Solution #2—If the System Acquirer offers no relief,
your option may be to no-bid, which has implications.

The challenge described here is not unique to the System
Acquirer. The same problem challenges the System Devel-
oper, not just at the System Level but for specifications at
lower levels. Every requirement at every level has: (1) a cost
to implement and (2) a cost to verify in addition to their
schedule and risk implications. This impacts the SE Design,
the Component Procurement and Development, and the SITE
Processes of the System Development Phase (Figure 12.2).

Does this concept answer the question: What is the
optimal number of specification requirements? No. How-
ever, it illustrates some hypothetical conditions—the points
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Figure 21.5 Optimal Essential Requirements Concept

of inflection and breakpoints—that should be your focal
points. The bottom line is that specification development re-
quires more insight than simply writing ad hoc requirements
into a specification outline. You need to think about what
you require and the potential ramifications on the System
Developer.

21.3.3 Understanding How Specification
Requirements Are Derived

User operational needs created by System/Entity capability
gaps, product obsolescence, external threats, Critical Oper-
ational and/or Technical Issues (COIs/CTIs), and so forth
represent abstract problem spaces, especially for moderate
to large complex systems, are too difficult to solve directly.
We can, however, solve it by partitioning – refining - it into
smaller, more manageable pieces with less risk (Principle
4.16 and Figure 4.7). The partitioning of the abstract problem
space into finer levels of detail enable us to bound and specify
solution space(s) requirements at various levels of abstrac-
tion. The end result is a hierarchy of derived requirements
(Figure 21.2) that are traceable back to the User’s source or
originating requirements.

21.3.4 Understanding the System Requirements
Hierarchy

SPS requirements generally begin with high-level, User
mission-oriented requirements statements. These high-level

statements are then elaborated into successively lower level
requirements that explicitly clarify, specify, and bound the
intent of the higher-level requirements. In effect, a hierar-
chical structure of requirements emerges similar to Figure
20.3. Observe that each of the requirements is labeled using
a convention—appended digits for lower levels—that depicts
its lineage and traceability to higher-level requirements. Con-
sider the following example:

Example 21.1

Entity Numbering Convention

Parent capability requirement, RI, has
three-sibling capability requirements, R11,
R12, and R13 (Figure 20.3). The labeling

convention simply adds a rightmost digit for each level and
begins the numerical sequence with “1.” Thus, you can
follow the lineage and descendants for each derived require-
ment by decoding the numerical sequence of digits. The
lineage of requirement, R31223, is based on the following
decompositional “chain”: R3 → R31 → R312 → R3122 →
R31223.

Author’s Note 21.2

MOE and MOS Traceability

The hierarchy shown in Figure 20.3
is best described as ideal, meaning,
all requirements are properly aligned

to higher-level requirements. For discussion purposes, we
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will restrict the simplicity of this diagram to generic require-
ments. Requirements are derived from and must be trace-
able to MOEs, MOSs, and Measures of Performance (MOPs)
(Chapter 5) at the System and mission objectives levels.

The System Mission represents the highest level require-
ment in Figures 11.1 and 20.3. The mission is scoped,
bounded, and described by three high-level capability re-
quirements, R1, R2, and R3. When a single requirement,
such as R12, R32, and R33, effectively ends the chain indi-
cating the requirement is directly assignable to a single entity
such as a Subsystem or Assembly and no further derivation
is required, the term Leaf level requirement is used.

21.4 REQUIREMENTS DERIVATION METHODS

We can illustrate requirements derivation with a simple
construct such as the one shown in Figure 21.6. For this illus-
tration, let’s assume that the Subsystem A’s Development
Specification includes UC-based Capability Requirement
A_11. The requirement bounds and specifies a capability to
display a sensor measurement in millivolts. Based on a UC
analysis, three sequential actions need to be accomplished:
(1) collect sensor data, (2) process the data, and (3) dis-
play the results. Based on these actions, we translate each
UC steps into Capability Requirements A_111, A_112, and
A_113.

Observe that the context of this illustration provides in-
sights for deriving capability requirements within a specifica-
tion. Now, suppose that we have a System Level requirement

that must be implemented across several Subsystems, each
with its own EDS.

Within a specification, the requirements derivation simply
elaborates each abstraction requirement to lower levels.
For example, consider abstract Requirement A_111 Collect
Input Data. What are the sources of “input data?” Therefore,
since Requirement A_111 represents a capability, its UC
Thread might consist of: (1) Collect Sensor #1 Data, (2),
Collect Sensor #2 Data, and so forth. Each of these tasks
becomes derived Requirements A_1111, A_1112, and so
on. Each of these requirements would then be allocated to
Subsystem X that monitors each of these sensors.

Let’s expand the complexity of the previous example to
the System Level SPS.

21.5 REQUIREMENTS DERIVATION AND
ALLOCATION ACROSS ENTITY BOUNDARIES

Assume that we have a System Level capability requirement,
SYS_11, as shown in Figure 21.7. The SDT analyzes the
requirement, performs a UC analysis, and derives child
requirements A_11 and B_11 within the SPS. At this point,
the SDT has not allocated Requirements A_11 and B_11
to Subsystems A and B. We designate each for now as
simply A_11 and B_11 to delineate the uniqueness of each
requirement.

UC analysis reveals that Requirements A_11 and B_11
require further Derivation. This brings up an interesting
question: How do you know that requirements within a
specification should be derived further? The answer is: when
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they are too abstract to implement. This brings us to a key
principle.

Principle 21.2

Requirements Allocation and Flow
Down Principle

SOI specification requirements should be
derived to a level that allows direct assign-
ment, allocation, and flow down of each

requirement to a specific Entity within the SOI’s architec-
ture for implementation.

Without becoming immersed into whether Requirement
A_11 should be allocated to Subsystems A or B, we
construct a UC thread at the bottom of the figure. Based on
UC thread analysis, SEs derive:

• Child Requirements A_111 and A_112 from Parent
Requirement A_11.

• Child Requirements B_111, B_112, and B_113 from
Parent Requirement B_11.

Since these requirements can be physically implemented,
we allocate them to Subsystems A and B in the Sys-
tem Architecture and flow them down to their respective
Subsystems A and B EDSs.

Given these allocations, what does this mean in terms
of what the System Requirement SYS_11 is expected to
accomplish? It means that if you want to accomplish the
performance-based outcome specified by System Level Re-
quirement, SYS_11, Subsystem A must satisfy Require-
ment A_11 and provide the result (outcome) to Subsystem
B, which must satisfy Requirement B_11 and produce the
final result (outcome).

How do Subsystems A and B physically accomplish
Requirements A_11 and B_11, respectively?

• Subsystem A complies with and satisfies Require-
ment A_11 by physically implementing Requirements
A_111 and A_112.

• Subsystem B complies with and satisfies Require-
ment B_11 by physically implementing Requirements
B_111, B_112, and B_113.

Consider the following example.

Example 21.2

UC Thread: Capability Requirements
Derivation

Suppose that we have a simple System that
has a remote sensor (Subsystem A). The
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sensor collects input data and transmits it to a central site
(Subsystem B) as illustrated in Figure 21.7.

• The Central Site (Subsystem B) receives and processes
the data to produce a report. Therefore, the Remote
Sensor Development Specification must state that it: (1)
Collects Data (Requirement A_111) and (2) Transmits
Data to the Central Site (Requirement A_112).

• The Central Site Development Specification includes
the remainder of the requirements UC Thread to: (1)
Receive Data (Requirement B_111), (2) Process Data
(Requirement B_112), and (3) Report Data (Require-
ment B_113).

21.5.1 Measures of Effectiveness (MOEs)

Chapter 20 provided an example specification outline. Brief
discussions of the outline noted that Section 3.2 Operating
Performance Characteristics (Table 20.1) specified MOES
that represented User measures of success. Observe the term
operational as in mission operations. To illustrate how MOEs
are documented consider the example shown in Figure 20.2.

The figure illustrates an airline mission of transporting
passengers from one city to another. Observe that we divide
the mission into phases with each phase characterized by
one or more MOEs. Each MOE should be supported by
two or more MOPs. For example, when an aircraft lands,
turnaround time is critical for “on-time” performance. So,
we establish a Turnaround MOE with a t = XX minutes
performance value.

To achieve the MOE, we need to establish MOPs that
contribute to achievement of the MOE. This requires an MOP
for cleaning the aircraft, loading catering supplies, refueling
the aircraft, performing maintenance inspections, loading
the passengers, and so forth. All of these factors contribute
to the overall System Architecture and design. Observe
what has occurred here. We have intermixed the Aircraft
System, which is specified by the SPS, with the Terminal
Gate Loading System including the jetway bridge, which
are Enabling Systems to the Aircraft System – Mission
System.

Based on our MOE analysis and derivation of MOPs, we
populate the SPS Section 3.2 Operating Performance Char-
acteristics using the Mission Phases of Operation Structure
shown in Figure 20.2. Figure 21.8 provides an example illus-
tration of how Section 3.2 might be populated.

21.5.2 Requirements Derivation Components

The preceding discussions approach the concept of deriva-
tion of requirements as “objects.” Requirements are
characterized by two attributes: (1) what outcome is to
be accomplished and (2) how well (Principle 19.6). Chapters

2 and 14 addressed the fallacies of Functional Analysis due
to its focus on what, which is the easy part. The difficult
part of requirements derivation is deciding how to allocate
performance to derived requirements.

Grady (2006, pp. 59–60) identifies three basic methods for
allocating performance: (1) equivalence, (2) apportionment,
and (3) synthesis. Since these topics are a key focus on
performance budgets and safety margins, we will defer our
discussion to Chapter 31 (Section 31.2.2).

This concludes our discussion of Requirements Deriva-
tion. Now, let’s shift our focus to Requirements Allocation
Methods that support Requirements Derivation.

21.6 REQUIREMENTS ALLOCATION

As the Requirements Derivation process progresses, the
SDT or PDTs apply the SE Process to begin investigating
preliminary architectures for the Operations, Behavioral, and
Physical Domain Solutions as shown in Figure 14.1. Un-
fortunately, many people believe requirements are estab-
lished. Then, the design is developed. That is false!! The
reality is the System Design Solution evolves simultaneously
as the requirements are allocated and flowed down to each
level.

21.6.1 Requirements Allocation Concept

Figure 21.9 provides a general overview of the Require-
ments Allocation process. The SPS specifies capability re-
quirements that we can use to create an Input/Output (I/O)
Model similar to Figure 20.4. The Wasson SE Process Model
(Figure 14.1) is used to analyze the requirements and formu-
late and select a logical capabilities architecture. The out-
come is the Architectural Representation shown in the up-
per right consisting of Entities A1–A4. A matrix is created
to map – allocate – the SPS capability requirements to the
Architectural Elements, A1–A4. At the completion of the
exercise, requirements in each A1–A4 column are flowed
down to Product A1–A4 Development Specifications.

21.6.2 Multi-Level Requirements Allocation

Now, let’s expand the concept to a broader view of the
System as shown in Figure 21.10. Here each set of
requirements are analyzed via the Wasson SE Process
Model, logical architectures are formulated and selected,
capability requirements are allocated to elements within
the architectures. The iterative and recursive characteristics
of repeated applications of the Wasson SE Process Model
should be self-evident in the figure. As the Requirements
Allocation process continues down the levels of abstraction,
if Critical Operational and Technical Issues (COIs/CTIs) are
identified, they may require elevation back to higher levels
for resolution.
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Figure 21.8 Example Illustrating How Figure 20.2 Mission Life Cycle MOEs Provide the
Basis for Specification Section 3.2 Operational Performance Characteristics (Table 20.1).

At each level of decomposition and specification develop-
ment, each requirement has:

1. A value-based priority to the User.

2. A cost to implement.

3. A level of implementation risk.

4. Schedule constraints for implementation.

Therefore, you need to develop draft multi-level speci-
fications internal to the program. These specifications en-
able technical decision-makers to understand the feasibility,
ramifications, and risks to lower level entities if we allo-
cate and flow down these capabilities. Whereas higher level
specifications tend to be abstract, lower level specifications
represent where items are physically developed or procured
from external vendors. You need this feedback to mature
higher-level specifications over time (Principle 14.2). This
illustrates why specification development is a multi-level
top-down, bottom-up, left-right, and right-left process. When
you complete specification development, requirements at
any level should be traceable to the next higher level and
subsequently to the User’s source or originating procurement
requirements—SOO or SRD.

Given an understanding of Requirements Allocation
Methods, let’s shift to Requirements Traceability.

21.7 REQUIREMENTS TRACEABILITY

Principle 21.3

Vertical and Horizontal Requirements
Traceability Principle

Specification requirements allocations and
flow down ensure vertical requirements

traceability to source or originating requirements. Use Case
threads integrate those allocations into horizontal capability
threads that produce SYSTEM Level performance-based
outcomes traceable to specification requirements.

As a result of the requirement derivation, allocation,
and flow down, we can say that the child requirements are
“traceable” to a higher level parent requirement (Principle
19.13). Observe the phrase “traceable” to a higher level
parent requirement.” We can only say that the vertical chain
of requirements are traceable back to the User’s source or
originating requirements.
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and Flow Down Method

One of the challenges in System Development is hav-
ing separate PDTs deliver their Entities for System In-
tegration, Test, & Evaluation (SITE) only to discover that
they are incompatible or inoperable (Principle 10.3). Us-
ing Figure 21.7 as an example, let’s assume Subsystem A’s
PDT and Subsystem B’s PDT failed to communicate with
each other to ensure that Subsystem A’s EDS stated that
Transmit Data (A_112) should be sent to Subsystem B. If it
did, does Subsystem B’s EDS have an interface to Receive
Data (B_111). In this context, this brings us to the need for
auditable vertical and horizontal traceability. Vertical trace-
ability is implicit in the specifications outline. However, hor-
izontal traceability requires manually auditing the respective
specifications to ensure continuity across the specification
and PDT interface boundaries.

21.7.1 System Level Architecture Perspective:
Integrated UC Thread Capabilities

Our discussion to this point has focused on discrete System
or Entity Level UC capability threads. However, a Sys-
tem Architecture is not a loosely coupled conglomeration
of independent sets of components to accommodate each
UC thread. Instead, it is an integrated framework of capa-
bilities that enables a User to Command and Control (C2)

System/Entity responses unique to a specific UC. For
example, a System/Entity’s Modes and States (Chapter 7)
enable the User to C2 sets of capabilities to accomplish spe-
cific UC thread performance-based outcomes. Figure 21.11
provides an example.

Observe that the System Architecture consists of
Subsystems A–E, each configured to provide performance
-based capability behaviors and outcomes for a given set of
input stimuli, excitations, or cues. For example, a System
Level UC is implemented via the chain of capabilities pro-
vided by Subsystems A, B, and D. For this UC, capabilities
provided by Subsystems C and E are not required. A differ-
ent System UC thread may require a different routing path
through the System Architecture via Subsystems A → C →
E → D.

21.7.2 Enterprise Requirements Traceability
Maturation Levels

Anecdotal evidence suggests that Engineers and Enterprises
tend to learn the concept of requirements traceability via a
three-stage process. The degree of evolution depends on the
size, complexity, and risk of systems being developed and
the Enterprise’s and individual’s desire and willingness to
improve performance. Here are descriptions of the evolution
of organizations from Stage 1 to Stage 3.
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Figure 21.11 Fully Integrated Architectural Framework Illustrating Command and Con-
trol (C2) of a Use Case Thread Weaving Through Specific Components.

SE
Capability
Stage 1

General recognition by Enterprise technical,
functional, and executive management of
the need to organize and structure
requirements using a standard specification
outline. Over a period of time, the
individual and Enterprise lessons learned,
such as missing, misplaced, conflicting,
contradictory, or duplicated requirements,
indicate that a new level of requirements
implementation capability is required.
Stage 1 maturity is indicated by continuous
process improvement and recognition of
the need for advancement to Stage 2.

SE
Capability
Stage 2

At Stage 2, the Enterprise understands and
appreciates that multi-level System
requirements involve vertical requirements
traceability via lineage with high-level
requirements. Again, over time and many
painful experiences in implementing
specification requirements, there is a
recognition and appreciation that vertical
requirements traceability is
one-dimensional. Stage 2 maturity is
indicated by continuous process
improvement and recognition of the need
for advancement to Stage 3.

SE
Capability
Stage 3

At Stage 3, the Enterprise understands and
appreciates the need for two-dimensional
requirements traceability: (1) vertically
through the requirements hierarchy to the
User’s source or originating requirements
and (2) horizontally via the UC thread
traceability.

21.8 TECHNICAL PERFORMANCE MEASURES
(TPMs)

Principle 21.4

Technical Performance Measures
(TPMs) Principle

Periodically report the status, progress,
and maturity of Technical Performance

Measures (TPMs) that trace and contribute to achievement
of higher level User KPPs and SPS MOEs, or MOSs.

Our discussions of TPPs, MOPs, KPPs, MOEs, and MOSs
identify performance effectors. The challenge question is:
how does a project manager, project engineer, or Leads
SE (LSE) know that the technical project is progressing
toward achieving compliance with its specifications and does
not pose any risk to the project delivering on schedule
and within cost without major risks? We do this with
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TPMs that represent graphical plots that are tracked and
updated weekly, biweekly, or monthly and presented at major
technical reviews to the System Acquirer.

In general, the TPM plots depict past performance, current
status, and predicted performance for selected MOPs at vari-
ous levels of abstraction that impact overall KPPs and MOEs.
TPMs are not restricted to KPPs and MOEs; however, if these
are of critical importance to the User and System Acquirer,
they demand attention. Initially, TPMs represent analytical
estimates. As models and simulations of system performance
are validated during the System Development Phase, the es-
timates attain a level of confidence inferring predicted per-
formance. As physical components are developed, tested,
and verified, the analytical predictions become actual per-
formance status. For example, you can estimate the weight
of the System, Subsystem, Assembly, or Subassembly.
Once it is produced and verified, actual performance replaces
estimates.

21.8.1 Plotting TPMs

Once the KPPs and MOEs for a system, product, or service
are established, the next step is to track and plot TPMs. This
is accomplished in a number of ways such as numerical value
reporting. The best practice is to plot the values graphically
as shown in Figure 21.12.

TPMs should be:

1. Tracked on a weekly basis by those accountable for
implementation—such as by development teams or
PDTs.

2. Reported at least monthly.

3. Reviewed at each major technical review.

Regarding the last point, note how a PDT at each major
technical review reported past performance, current progress,
and predicted performance in Figure 21.12:

• Here’s the level of performance we projected by anal-
ysis for TPM XYZ.

• Here’s the level of performance we have achieved to
date.

• Here’s the level of performance we expect to achieve
by the next review.

• Here’s the corrective action plan for how we expect
to align today’s level of performance with projected
performance and acceptable control limits – risk miti-
gation.

Note also how the TPM values consist of analytical
projections through CDR with a level of risk associated
with achievement. Between CDR and TRR, the physical
components become available for system integration and
test. As such, actual values are measured and become the
basis for final TPM tracking.

Recognize that system component performance varies
due to mass properties, manufacturing tolerances, and so
forth. This is why the nominal TPM value represents the
mean of a Normal Distribution. The challenge for SEs is, for
a given TPM value: What are the allowable upper and lower
control limits for a given entity—product or subsystem—that
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do not diminish overall system performance? Based on the
results of this decision, +3𝜎 and –3𝜎 or other applica-
ble thresholds are established for triggering multi-level risk
items and mitigation plans. Within each +3𝜎 and –3𝜎 thresh-
old, design safety margins may be established. To facilitate
viewing, the design margins zones should be Yellow; any-
thing outside the +3𝜎 and –3𝜎 thresholds should be Red.

TPMs along the development path pose potential risks,
especially if the SDT or PDT is unable to achieve the an-
alytical projections. When this occurs, each TPM should
be required to have risk thresholds that trigger risk items
for mitigation and tracking. If the risk becomes significant,
Risk Item Mitigation Plans may be required to provide a
risk profile for reducing the risk over time and bring it in
line with specification requirements. The project’s Risk Man-
agement Plan should definitize this process and threshold
criteria for triggering risk item for tracking and mitigation
plans.

21.8.2 Selecting TPMs

TPMs can easily become a very time-consuming activity, es-
pecially for reporting purposes. Obviously, every MOP in a
specification cannot and does not need to be formally tracked
other than through normal requirement ownership and pro-
fessional accountability. Select those of critical importance
such as KPPs and their MOEs and MOSs. How is this ac-
complished?

When confronted with a System Acquirer requirement to
track TPMs, the natural tendency of project technical man-
agement is to tell everyone accountable for a specification to
go select four (4) to six (6) TPMs, create some charts that plot
the history and future predictions for a TPM, and so forth.
Often, these TPMs are selected without any form of coor-
dination and integration in terms of meeting overall KPPs
or MOEs.

The best starting point begins with SPS KPPs and their
MOEs. Once these are selected, follow the requirements
allocation threads to lower level specification TPPs and their
MOPs that contribute to the achievement of KPPs and MOEs.
To illustrate this point, consider the example of a notional
vehicle Fuel Efficiency KPP shown in Figure 5.9.

If our SE mission is to design a vehicle that achieves the
Fuel Efficiency KPP, we establish an MOE with a perfor-
mance threshold of XX miles per gallon (MPG) as shown
earlier in Figure 5.9. Then, perform an analysis to iden-
tify all of the contributory performance effectors that impact
the MOE. Examples include: Vehicle Aerodynamics MOP,
Vehicle Engine Efficiency MOP, Fuel Quality MOP, Road
Conditions MOP, Weather Conditions MOP, etc. Obviously,
we cannot control variable performance effectors such as
Weather Conditions, Road Conditions, Driver Skills, Fuel
Quality, etc. even though the vehicle has to be capable of per-
forming in a range of operating conditions. We can, however,

identify TPMs for Vehicle Aerodynamics, Vehicle Engine
Efficiency, etc. in lower level vehicle body and engine spec-
ifications that can be tracked.

As a final point, SE requires “visualizing” the big picture.
When TPMs are presented, people in the audience have to
mentally process the connectivity between MOEs and MOPs,
which detracts from the presentation. Do yourself, your team,
and the audience a favor, create an overview graphic for
each TPM such as the one shown in Figure 5.8. Members
of the audience need to understand the TPM’s performance
contribution to a higher level MOE or KPP. for the system,
product, or service.

21.8.3 TPM Challenges

TPM tracking involves several challenges. Let’s explore
a few.

21.8.3.1 TPM Challenge 1: Bureaucratic Metrics
Tracking TPMs have two levels of criticality:

• First, TPMs serve as visual indicators to alert an SDT
or PDTs to potential technical trouble that requires cor-
rective action. PDT Leads need to clearly understand
this. Otherwise, the effort is perceived as nothing but
bureaucratic metrics tracking performed to impress the
System Acquirer.

• Second, as a Lead SE, Project Engineer, or Technical
Director, you need early indicators that provide a level
of confidence that the system is going to perform as
specified and designed. If not, you need to know in
advance to allow time to take corrective action.

21.8.3.2 TPM Challenge 2: Select TPMs Wisely SDTs
and PDTs often randomly select a few TPMs to satisfy
the metrics tracking task. Select the most difficult, potential
showstopper TPMs linkable to higher level KPPs. This
ensures that proper attention is focused on addressing the
most challenging TPPs to meet. The tendency of most SDTs
and PDTs is to select the easiest TPPs to track – looks
impressive to management and the customer - only to
discover major challenges later trying to meet the critical
TPPs linkable to System Level KPPs.

21.8.3.3 TPM Challenge 3: Withholding Actual TPM
Data If a TPM becomes a risk item, PDT Leads often
continue to plot analytical predictions to avoid the realities
of actual data that pose political and technical risks. Don’t
play games! Your professional obligation as an SE is to
report factual, existing data. If you have political problems,
deal with the matter in other ways. Remember that if you
are not meeting performance levels now and you choose to
ignore potentially major problems, wait until you attempt to
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explain those problems to technical, program, and executive
management when the cost to correct is very expensive.

Conversely, project management should recognize objec-
tive reporting as constructive to the project. Avoid “punishing
the messenger.” Focus on constructive technical solutions
that lead to success. Remember that individual and team suc-
cess leads to project management success.

21.8.3.4 TPM Challenge 4: TPM “Shelf Life” TPMs,
especially lower level ones, have a shelf life. During design
and early in the SITE phase, low-level TPMs are critical
indicators of performance that may affect overall system
performance and effectiveness. Once a TPM requirement has
been verified, the necessity to track a TPM may be pointless,
unless something fails within the system. Remember that
lower level MOPs were derived from higher level KPPs
and MOEs. Once a lower level MOP has been verified and
its Configuration Item (CI) or items have been integrated
into the next higher level, which has its own set of TPMs,
you should not continue to track the MOP. There may be
exceptions; use informed Engineering judgment.

21.8.3.5 TPM Challenge 5: TPM Reporting As an En-
gineering best practice, you should track TPMs whether
required by contract or not. Tracking TPMs takes work
and time, which translates into cost and schedule impacts.
Choose TPMs wisely for formal reporting; track others for
internal assessment. Some System Acquirer organizations
are more mature than others in treating the openness with
admiration.

A Word of
Caution 21.1

Make sure your candor and openness about
TPMs does not become a basis for those
with ulterior motives and agendas to trans-
form minor TPM excursions - that are a nor-
mal part of everyday System Development
- into major technical and project issues.

These issues sometimes require System Acquirer and Sys-
tem Developer executive management level intervention and
resolution.

21.9 CHAPTER SUMMARY

Our discussion of the requirements derivation, allocation,
flow down, and traceability practices described a methodol-
ogy for deriving multi-level specification requirements. We
considered the importance of vertical requirements traceabil-
ity based on requirements allocations and flow down. We also
discussed the importance of horizontal requirements trace-
ability based on UC continuity thread checks, especially re-
lated to Enterprise capabilities.

As an SE, you need to understand how Mission Effective-
ness is determined and decomposed into MOEs and MOSs,

each bounded by MOPs that are documented in various re-
quirements documents. We addressed how TPMs are used to
track planned versus actual MOP TPM values and the impor-
tance of thresholds for triggering risk items and associated
Risk Mitigation Plan (RMP).

In closing, people will often state that TPMs are too labo-
rious to perform and track. If this is the case, then how can
you and your organization deliver a system, product, or ser-
vice that meets the User’s operational needs and know that
you can deliver on schedule in compliance with the specifi-
cation requirements and within cost without performing the
practice?

21.10 CHAPTER EXERCISES

21.10.1 Level 1: Chapter Knowledge Exercises

1. What is requirements derivation?

2. How do you derive requirements?

3. What is requirements allocation?

4. How do you allocate requirements?

5. What is requirements flow down?

6. How do you flow down requirements?

7. What is requirements traceability?

8. How do you trace requirements? To where?

9. What is the relationship between MOEs, MOSs, MOPs,
and TPMs?

10. Who is responsible for MOEs, MOSs, MOPs, and
TPMs?

11. How do you track and control MOEs, MOSs, MOPs, and
TPMs?

12. What is the relationship between TPMs and risk items?

13. When do TPMs trigger risk items for proactive risk
mitigation?

21.10.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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Once a solution space is identified, the challenge for SEs is
being able to accurately and precisely bound and specify a
capability via the System Performance Specification (SPS)
or Entity Development Specification (EDS). Our dis-
cussion of specification development practices provided an
approach for identifying types of specification requirements.

Chapter 22 focuses on the formulation and development
of specification requirements statements. Our discussions
introduce and explore various methods for preparing require-
ments statements. We identify a syntactic structure to facili-
tate definition of a requirement. The discussions emphasize
the need to define the substantive content of a requirement
before focusing on the grammar. To facilitate preparation of
requirements, we include requirements development guide-
lines and discuss how to analytically “test” a requirement.

We conclude the chapter with a discussion of one of
the challenges of specification requirements development:
knowing when a set of essential requirements is neces-
sary and sufficient. We explore the need to minimize the
quantity of requirements and avoid over-specification and
under-specification.

22.1 DEFINITION OF KEY TERMS

• Analysis – Refer to definition in Chapter 13 Definition
of Key Terms.

• Demonstration – Refer to definition in Chapter 13
Definition of Key Terms.

• Essential Requirement—Refer to the definition in
Chapter 19 Definitions of Key Terms.

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

• Inspection—Refer to definition in Chapter 13 Defini-
tion of Key Terms.

• Legacy System—Refer to Chapter 16 Definition of
Key Terms.

• Primitive Requirement Statement—“A form of a
requirement statement that has no punctuation or for-
mal sentence structure and is not written in a formal
specification style” (FAA SE, 2006, Vol. 3,p. B-9).

• Sibling Requirement—Two or more requirements
at the same level traceable to a common “parent”
requirement at the next higher level.

• Specification Language—“(1) a language, often a
machine-processible combination of natural and for-
mal language, used to express the requirements, design,
behavior, or other characteristics of a system or com-
ponent” (SEVOCAB, 2014, p. 298) (Source: ISO/IEC/
IEEE 24765:2010. Copyright © 2012 ISO/IEC. Used
by permission).

• Test—Refer to definition in Chapter 13 Definition of
Key Terms.

22.2 APPROACH TO THIS CHAPTER

Our approach to Chapter 22 can best be described by the
Requirement Development Decision Process illustrated in
Figure 22.1. In general, the process consists of the following
sequence of decisions:

http://www.wiley.com/go/systemengineeringanalysis2e


INTRODUCTION TO REQUIREMENTS STATEMENT DEVELOPMENT 447

Outcome

Capabilities

Performance

Scenarios & 

Conditions

Verification 

Method(s)
Verification 

Results

R1
Compliance Verification1

3

5

7

9

12

Write the Derived 

Requirements 

Statements

(R11 – Rxx)14

Complete 

Requirement

?

13

Next UC

Requirement

• Specific
• Measurable
• Achievable
• Realistic
• Testable

Requirement Statement
SMART-VT Criteria

How well should 
each capability in 
the UC Thread be 

performed?

Under what 
operating conditions 
& scenarios should 

each capability 
survive before, during, 

and after exposure?

What System/Entity
Use Case (UC) outcome is 

to be accomplished?

How should each 
capability 

requirement 
statement be verified?

15

No

Yes

10

11

8

2

What UC Thread 
capabilities are 

required to 
accomplish the 

outcome?

4

6

Rewrite

• Verifiable
• Traceable

Notes

1. Continue to derive each requirement (13) to lower levels until directly allocatable
to physical architecture entities at each level of abstraction.

2. SMART Criteria (Doran, 1981) and VT Criteria (Wasson, 2014)

Figure 22.1 Requirement Development Decision Process

1. What System/Entity Use Case (UC) outcome is to be
accomplished?

2. What UC Thread (Figure 21.7) capabilities are required
to accomplish the outcome?

3. How well should each capability in the UC Thread be
performed?

4. Under what operating conditions & scenarios should
each capability survive before, during, and after expo-
sure?

5. How should each capability requirement statement be
verified?

The questions provide the infrastructure for our discus-
sions. Let’s begin with an Introduction to Requirements
Statement Development.

22.3 INTRODUCTION TO REQUIREMENTS
STATEMENT DEVELOPMENT

Engineers and Analysts often say that a specification has
a “good” set of requirements. The colloquial usage of the
term “good” makes SEs cringe. “Good” for whom rel-
ative to what “fitness-for-use” standard(s)? The System

Acquirer? The User? The System Developer? If good re-
quirements reside in the minds of each Stakeholder, what
makes a “bad” requirement bad? Does “bad” mean poorly
stated, open to interpretation, unachievable, immeasurable,
unverifiable, and untestable? So, what are well-defined
requirements?

Well-defined requirements statements specify only essen-
tial requirements that:

1. Are articulated in a brief, concise, and understandable
language with low risk of multiple interpretations by
two or more independent readers with comparable
disciplinary skills.

2. Represent one and only one Use Case (UC) and
Scenario capability-based (Chapters 5).

3. Are unique within the SPS or EDS without duplication
or conflicts within the System (Figure 20.3).

4. Specify performance to be achieved before, during,
and after exposure to a prescribed set of Operating
Environment conditions.

5. Adherence to the Doran (1981)-Wasson (2014)
SMART-VT Criteria (Principle 22.3).

6. Verification by one or more compliance methods.
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To illustrate the importance of the preceding points, let’s
briefly summarize each one.

22.3.1 Brief, Concisely Worded Statements

Specifications, as part of a legally binding contract, express
what the System Acquirer and System Developer understand
what they (think) they agreed and committed to perform.
Unfortunately, disagreements over what was understood to
be developed and delivered occasionally end in conflict. The
source of the conflict typically centers around the wording of
requirements. So, how do we avoid these situations?

The solution begins with writing brief, clear, and concise
statements that are easily understood and result in one and
only one interpretation.

22.3.2 Use Case and Scenario Based Capability
Requirements

Requirements statements should originate from higher level
UC-based operational capabilities and scenarios. Lower
level requirements should (1) elaborate specific action-based
outcomes that contribute to achievement of the higher
level UC as well as any most likely or probable scenar-
ios and (2) be traceable to User source or originating
requirements (Principle 19.13).

Author’s Note 22.1

Specification writers often have the
misperception that well-defined re-
quirements statements must specify
“capabilities.” As a result, they write
every requirement statement repeat-

ing the phrase “provide the capability …”:

• The System shall provide the capability to …
(Action A).

• The System shall provide the capability to …
(Action B).

The irony here is the requirement above is listed in SPS
or EDS Section 3.3 “Capabilities.” The reader should know
they are reading from the SPS or EDS “capabilities” section.

22.3.3 Uniqueness within the System

Principle 22.1

Requirement Uniqueness Principle

Each requirement statement shall be
unique to one and only one System
or Entity with no other instances of

overlaps, duplications, or confliction within the System.

Well-defined requirement statements should be unique
and occur once and only once within the entire set of

specifications within the System or Product’s Specification
Tree (Figure 19.2). Unfortunately, Engineers often create
similar requirements within the SPS or SDS that are stated
slightly differently and conflict with each other (Figure 20.3).

22.3.4 Bounded Operating Environment Conditions

Principle 22.2

Operating Environment Conditions
Principle

Every specification should contain a
global requirement specifying that a

System/Product comply with the requirements before,
during, and after exposure to the specification’s Operating
Environment conditions and constraints.

Each specification must include at least one requirement
statement that establishes, characterizes, and bounds the pre-
scribed Operating Environment conditions that constrain
the specified System capabilities. For example:

• The System shall comply with the requirements spec-
ified herein before, during, and after exposure to the
conditions specified in Table 20.1 SPS or EDS Section
3.5, “Operating Environment Conditions.”

22.3.5 Adherence to the SMART-VT Attributes

Principle 22.3

SMART-VT Criteria Principle

Every specification requirement shall com-
ply with the SMART-VT Criteria- Spe-
cific, Measurable, Actionable, Realistic,

Testable (Doran, 1981, pp. 35–36) and Verifiable, and Trace-
able (Wasson, 2014).

Requirements statements must be Specific, Measurable,
Actionable – Allocatable, Realistic, Testable, Verifiable and
Traceable. If a requirement statement fails any one of these
criterion, it should be reworked until it complies.

22.3.6 Requirement Compliance Verification

Principle 22.4

Requirement Verification Method(s)
Principle

Compliance to each requirement statement
shall be proven via one or more of the

following verification methods: Inspection, Examination,
Analysis, Demonstration, Test, or Similarity (if permissible)
that represents the least cost and effort.

Well-defined requirements statements must be supported
by one or more verification methods such as Inspection, Ex-
amination, Analysis, Demonstration, and Test (Chapter 13).
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22.4 PREPARING THE REQUIREMENT
STATEMENT

Specification developers often become preoccupied with at-
tempting to state multiple requirements in a single statement.
Packing numerous requirements into a single specification
requirements statement is viewed as the ultimate achieve-
ment. The reality is: that is the wrong approach! Specification
requirements development is about Systems Engineering;
language Composition 101 is simply an Enabling System.

To develop requirements, there is a three-step process that
should be followed:

• Step 1: Identify the key elements of the requirement—
who, what, when, where, and how well.

• Step 2: Develop a DRAFT requirement statement.

• Step 3: Refine the requirement statement grammar such
as choice and appropriateness of words, sequences, etc.

Let’s detail each of these steps.

22.4.1 Step 1: Identify the Key Elements of the
Requirement

Humans unwittingly overcomplicate the SPS and the EDS
requirements statements. The formulation and development
of a specification requirements statement involves three
aspects: (1) content, (2) syntax, and (3) grammar.

One of the most common problems in writing require-
ments statements development is that people attempt to per-
form all three of these aspects simultaneously. As a result, the
effort skews into syntax and grammar, neglecting the con-
tent. Grammar is simply a means to an end, not initial focal
point. How do we correct this human habit? One solution to
this problem is to develop primitive requirements statements,
our next topic.

22.4.1.1 Create Primitive Requirements Statements
Primitive requirements statements focus exclusively on the
substantive content of a requirement.

The best way to develop primitives is to use a tabular
approach such as the one illustrated in Table 22.1. Here, we
assign a unique Requirement ID SPS-136 for Capability 24
derived from a specific UC. The remainder of the columns
focus attention on substantive content such as types of
relational operators; boundary constraints, tolerances, or
conditions; and notes.

Observe how Table 22.1 focuses on the primary content
of the requirement and avoids becoming mired in grammar.
Once the elements of the requirements are established, the
next step is to translate the contents into a syntax statement.
To illustrate how the primitives method is applied to writing
an initial requirements statement, consider the example
shown in Table 22.2.

Once the primitive contents of a requirement statement is
established, the next step is to Develop the Draft Require-
ment Statement.

22.4.2 Step 2: Develop the Draft Requirements
Statement

Specification requirements statements are more than free
form “wish lists.” As with any type of written language, they
have a structure that represents best practices and lessons
learned that enable us to avoid mistakes of others.

Principle 22.5

Requirement Structure Principle

Every requirement statement requires (1) a
subject of the action, (2) “shall” to express
a mandatory action for compliance, (3) an

action-based verb, (4) a capability-based performance out-
come to be provided, and (5) conditions for accomplishment.

Every specification requirement statement should consist
of the following elements:

1. Source of the Action

2. “Shall” (Mandatory compliance)

TABLE 22.1 Table for Identifying Primitive Requirements

Reqmt. ID Capability to
be Provided

Relational Operators Boundary Constraints,
Tolerances, or Conditions

Notes

SPS-136 Capability 24 • Not to exceed
• Less than or equal to
• Greater than or equal to
• In accordance with (IAW)
• Optimal

• 50 pounds
• 68 ∘ Fahrenheit
• 25 ∘ Celsius
• 6 g’s
• 6 nautical miles (NM)
• 25 hertz (Hz)
• 10.000 volts DC +/− 0.010 volts DC
• Sea State 3
• 12 megabytes (Mb)
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TABLE 22.2 Examples of primitive requirements using the tabular approach

Reqmt.
ID

Subject
(Actor)

Action Outcome to be
Accomplished

Relational
Operators

Level of
Performance

Condition

SYS_1 System shall operate from an external
power source

rated at • 110 vac +/− 10% Based on a TBD load.

SYS_123 System shall not exceed • 50 pounds

SYS_341 System shall operate over a range of • −10 ∘F to +90 ∘F
• +20% to +100%

Humidity

SYS_426 System shall produce formatted
reports

in accordance with • Regulation 126
Section 3.2.1

On receipt of a command
from the operator

SYS_525 System shall sense overload
conditions that

exceed • 10 ± 0.1 amps DC

SYS_736 System shall respond within • 100 ± 10 milliseconds To any operator
command

3. Action-based Verb

4. Performance-based Outcome to be Accomplished
(What)

5. Level of Performance (How Well)

In some cases, the requirement statement structure may
require additional constraints such as:

6. Condition-Based Actions (Requirement Dependent)
(When)

7. Recipient(s) of the Action (Requirement Dependent)

22.4.2.1 Source of the Action

Principle 22.6

Requirement Action Source Principle

Each requirement statement shall identify
the source and stimulus, excitation, or cue
that initiates a system, product, or service
capability.

Well-defined requirement statements express the source
of the action. The source of an action is a noun-based object
such as a person, place, role, or thing that served as the
stimulus, excitation, or cues that triggered or initiated the UC
or scenario-based capability (Chapter 5).

UMLTM / SysMLTM1, for example, apply the term Actor
(SysMLTM ) to the source of the action. For example, a
requirement statement begins with:

• The System (Actor) …
• The Subsystem (Actor) …

1UMLTM and SysMLTM are trademarks of the Object Management Group
(OMG).

Since: (1) a requirement represents a capability derived
from a UC or Scenario and (2) a UC defines what outcome the
Actor expects from the System/Product (Principle 5.14),
therefore each requirement statement specifies the capability
required to achieve the User’s outcome. How the designers
design the System/Product to accomplish that requirement
is not within the scope of specification requirements.

Observe the phrase “what outcome the Actor expects
from the System/Product.” Remember, the Actor can
be a person, place, role, or thing, not just the human
User. If Subsystem A provides a stimulus or excitation
to Subsystem B and you are developing Subsystem B’s
requirements, then Subsystem A is the Actor that serves as
the source of the action and its stimulus as the trigger for
Subsystem B’s UC-based capability.

22.4.2.2 Shall-Based Requirements Statements

Principle 22.7

Shall-Based Requirements Principle

Specify every requirement statement with
the word “shall” to express mandatory ac-
tions -outcomes - required for accomplish-

ment to achieve compliance and User acceptance.

Each requirement statement uses “shall” to express the
mandatory action to be accomplished. When “shall”-based
requirements are incorporated into a specification that is
an element of an approved contract, the requirement is
considered to be legally binding.

Requirements, when issued as part of a contract, are
considered legally binding and sufficient for procurement
action when expressly stated with the word “shall.” Some
specification developers have a reputation for expressing
requirements with the words “will,” “should,” and “must.”
Those terms express an “intent to perform,” not a mandatory
or required action.
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A Word of
Caution 22.1

Shalls, Wills, and Goals

There is increasing evidence of less dis-
cipline in specification wording by using
words such as “will.” The general viewpoint
is that the “context” of the statement is what

is important. For example, “… the system will perform the
tasks specified below.” Based on SE best practices, this re-
quirement statement is unacceptable!

Exercise caution when writing specification require-
ments:

• “Shall” requirement statements express mandatory ac-
tions/outcomes required for accomplishment or to
achieve compliance and acceptance.

• “Will” statements express a non-committal of intent to
perform or statement of fact.

• “Goal” statements express non-mandatory or voluntary
desires to strive to achieve and therefore do not contain
“shall.”

Would you sign a contract with a contractor that is
“committed to perform” or one that has a “non-committal
intent to perform?” In any case, always seek the advice
of your Enterprise’s legal counsel before committing to a
specification that contains ambiguous wording that may be
subject to legal interpretation.

There are Enterprises that contend it is acceptable to use
the word will when conveying requirements … as long as
the definition of will is clearly established. Will expresses
“a non-committal intent to perform.” When you establish a
legally binding contract that commits and obligates the con-
tracting parties, a System Acquirer or User is not interested
in signing a contract with a System Developer or Services
Provider that has a non-committal “best of intentions” to per-
form. There are two exceptions:

• Exception #1—There may be instances in which both
parties agree that there is uncertainty that a technical
or technology requirement can be realistically achieved
due to cost, schedule, and other risks. In those cases, the
specification might include a will statement expressing
the intent to work toward achieving a specified outcome
and performance value. Where this is the case, explic-
itly label the statement as a “goal.”

• Exception #2—There may be declarations, not require-
ments statements, which state that a System/Product
will achieve a hard to reach technical performance level
of XXXX (units).

Finally, to facilitate specification readability, consider
boldfacing each instance of the word “shall” (e.g., shall).

To summarize, either the contractor fully complies with
a contract, its Terms and Conditions (Ts & Cs), and the

SPS or EDS, or they do not. Use the word shall to express
mandatory compliance that is required as a condition for
contract compliance and completion acceptance. Therefore,
declare these terms in SPS or EDS Section 2.0 Referenced
Documents, their meaning, and application.

22.4.2.3 Action-Based Verb

Principle 22.8

Requirement Action Verb Principle

Employ an action-based verb in each re-
quirement statement to express the action
to be accomplished.

Requirements statements employ action-based verbs to
express the value-added action to be performed such as sense
pressure, convert sunlight to energy, process sensor data, or
store information, energy, data, or materials. For example:

• “The Vehicle Management System (VMS) shall detect
faults …

• The computer shall store the XYZ data.

22.4.2.4 Performance-Based Outcome to be
Accomplished

Principle 22.9

Requirement Outcome Outcome
Principle

Each requirement statement shall spec-
ify one and only one capability with
one and only one performance-based
outcome to be accomplished.

Given the SMART-VT Criteria (Principle 22.3), how do
you develop a requirement statement that complies with the
criteria? From an Engineering perspective the answer resides
in work products as objective evidence – design drawings,
physical Entities, and verification results obtained via
Inspection, Analysis, Demonstration, or Test.

This leads to another question: to verify compliance,
what do you use as the basis to compare the objective
evidence of those work products? That answer resides in the
specification requirements that specify outcomes bounded
by a level of performance. Remember - although we have
stated that a requirement statement specified a capability,
it is the performance-based outcome result produced by the
capability that is verified for compliance.

To illustrate a performance-based outcome, consider the
following example:

• When enabled, the System shall broadcast Operational
Health & Status (OH&S) data messages at a 1 Hz rate.
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Now, consider how specifications are often written. SEs
“write” specifications as if they were writing a paper for
a Composition 101 class. As Engineers, we typically do
not receive formal education in specification requirements
development as part of our Engineering education. When
confronted with developing specifications in industry or gov-
ernment, we default to the education we did receive – Writing
Composition 101. As a result, requirements statements are
often written in paragraph style consisting of compound sen-
tences, each containing multiple, embedded requirements.

To illustrate how the lack of formal education in specifi-
cation development contributes to this problem, consider the
following example:

Example 22.1

Poor Requirement Statement Examples

• The vehicle shall have the capability
to safely transport a driver and three
passengers on demand to a destination

300 miles away during all weather conditions on a
single tank of fuel while maintaining the cabin
temperature at a dashboard setting between 68 ∘F
and 78 ∘F and storage for four luggage cases measuring
12′′ × 24′′ × 30′′ in the trunk.

• For safety reasons, the vehicle shall have tail lights,
backup lights, and flashers in the rear of the vehicle as
well as carry 200 pounds of luggage in all sizes that
are available today but does not restrict placement of a
high-quality sound system in the trunk to avoid damage
the passengers’ eardrums when the doors are closed on
a rainy day.

Have you encountered these types of requirements state-
ments? How many requirements do you suppose are in each
of the example statements? How would you ever verify the
paragraph? Always write simple, brief, and concise state-
ments that express one and only one requirement.

Additionally, specification writers often feel compelled
to tell the reader why they know what they know. Again,
write simple, brief, and concise statements that express one
and only one requirement. System Acquirers pay you to
smartly and cost-effectively develop systems, products, or
services that meet their needs, not express your knowledge
via requirements statements.

For a discussion of acceptable and unacceptable re-
quirements statements, you are encouraged to consult the
INCOSE-TP-2010-006-02 (2015) for guidance.

22.4.2.4.1 Level of Performance Accuracy and Precision

Principle 22.10

Requirement Accuracy and Precision
Principle

Each specification requirement statement
shall quantitatively bound the accuracy

and precision of the outcome level of performance and its
tolerance limit(s).

Once a capability-based outcome is identified, the next
step is to quantitatively bound its level of performance in
terms of accuracy and precision. For example,

• Does the nominal outcome level of performance accu-
rately and quantitatively represent the boundary condi-
tion(s) for User acceptance of a required system, prod-
uct, or service outcome.

• What quantitative tolerance levels- tightly controlled
variances - in the nominal outcome performance level
are required within limits of the technology, test equip-
ment, components and materials, and manufacturing
processes without driving up development costs?

22.4.2.4.2 Action Response Time-Based Requirements

Principle 22.11

Requirement Response Time Principle

Where appropriate, each requirement
statement shall specify the response
time that bounds accomplishment of an
outcome.

Where applicable, well-defined requirements statements
specify time constraints between a triggering event such
as a stimulus, excitation, or cue and the required outcome
response. For example:

• The System shall respond to each command within 250
± 10 milliseconds of receipt (Action Response Time).

• (Alternate Method) On receipt of each command, the
System shall respond within 250 ± 10 milliseconds
(Action Response Time).

22.4.2.4.3 Action Response Format Requirements

Principle 22.12

Requirement Outcome Format
Principle

Where appropriate, each requirement
statement shall specify the format of an
action-based outcome response.

When applicable, well-defined requirements statements
specify the format of the action response to cooperative,
benign, or hostile interactions based on rules of engagement.
For example:

• The System shall transmit data messages to the XYZ
System formatted in accordance with Table X.
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22.4.2.4.4 Action Completion Time Requirements

Principle 22.13

Requirement Action Completion
Principle

Where appropriate, each requirement
statement shall bound and specify the
time allowed for completion of an action.

Where applicable, well-defined requirements statements
may need to specify the maximum allowable time for re-
sponding to a stimulus, excitation, or cue. For example:

• The System shall complete processing of the XYZ
information within 100 ± 10 milliseconds (Completion
Time) after receipt of the command.

• (Alternate Method) On receipt of the XYZ command,
the System shall complete processing of the XYZ
information within 100 ± 10 milliseconds.

22.4.2.4.5 Outcome Media Requirements

Principle 22.14

Requirement Media Principle

Where appropriate, each requirement
statement outcome shall specify the
media to be used for delivering the
outcome.

When applicable, well-defined requirements statements
specify the format of the action response to cooperative,
benign, or hostile interactions based on rules of engagement.
For example:

• The website shall provide the option for ordering a
Compact Disk (CD) of the artist’s body of work.

22.4.2.4.6 Unacceptable Outcomes

Principle 22.15

Requirement Unacceptable Outcomes
Principle

Where appropriate, each requirement
statement shall specify one and only one
outcome to be avoided when performing
an action.

Well-defined requirements statements may need to spec-
ify outcomes to be avoided. For example:

• System exhaust emissions shall not exceed … (Nega-
tive connotation)

• (Alternate Method) System exhaust emissions shall be
less than … (Positive connotation)

22.4.2.5 Condition-Based Actions Requirements

Principle 22.16

Requirement Conditional Actions
Principle

Where appropriate, each requirement
statement shall specify the trigger-based
conditions that initiate the action.

Sometimes a requirement statement is dependent on
triggering conditions such as a stimulus, excitation, or cue.
As a result, the condition has to be embedded within the
statement. Consider the following example:

• The System shall … on receipt of the XYZ command.

• (Alternate Method) On receipt of the XYZ command,
the System shall…

22.4.2.6 Recipient(s) of the Action

Principle 22.17

Requirement Action Recipient
Principle

Where appropriate, each requirement
statement shall specify the recipient of an
action.

Where applicable, well-defined requirements statements
identify the intended recipient(s) of the outcome(s). For
example:

• The System shall transmit Operational Health and
Status (OH&S) data messages to the XYZ System
(Recipient of the Action) at a 1Hz rate.

22.4.3 Step 3: Refine the Requirements Statement
Grammar

The third step requires transformation of the syntactical
statements into clear and concise grammatical statements
that are easily read and understood.

22.5 SELECTION OF REQUIREMENT
VERIFICATION METHODS

One of the key elements of specification development is
establishing agreement between the System Acquirer and the
System Developer concerning to how to prove that a system,
product, or service complies with specification Section 3.0
Requirements (Table 20.1). One of the greatest potential
risks in System Development concerns System Developer
preparation and conduct of formal Acceptance Tests (ATs)
for the System Acquirer, and both parties disagree on the
method(s) of verification. Disagreements during AT result
in significant impacts to System Developer contract costs,
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schedules, and System Acquirer fielding and support costs
schedules.

To preclude this scenario, specifications include a Section
4.0 Qualification Provisions (Table 20.1) in the SPS or
an EDS. Section 4.0 explicitly documents the System Ac-
quirer and System Developer agreement concerning the
requirement’s verification methods that are recognized as
the acceptable verification methods for proving compli-
ance. Therefore, a Requirements Verification Matrix (RVM)
should be required to be part of the SPS or an EDS Section
4.0. We will address the RVM in a later section.

Author’s Note 22.2

System Acquirer and System
Developer Contextual Roles

Remember that the terms System
Acquirer and System Developer are

used in a “role-based” context as shown in the Supply
Chain illustrated in Figure 4.1. These terms, as used pre-
viously, identify the contract level roles and relationships.
They also apply in a similar context between System and
Product, Product and Subsystem Development teams;
System Developer and Subcontractors; and so on. Why? As
each team flows down requirements to lower level EDS,
the implementer of those requirements must demonstrate
to their System Acquirer (the higher level team) that the
requirements have been accomplished.

Let’s shift our focus to how verification methods are
selected.

22.5.1 Verification Method Selection Process

In general, four verification methods are available to demon-
strate that a system, product, or service complies with a spec-
ification requirement. These methods include Inspection or
Examination, Analysis, Demonstration, and Test (IADT). A
fifth method, Similarity, may be permitted by some Enter-
prises.

Author’s Note 22.3

Please note that the NASA Systems
Engineering Handbook (NASA,
2007) refers to Analysis, Inspection,
Demonstration, and Test as “valida-
tion” methods. In this context, NASA

defines validation as “Proof that the product accomplishes
the intended purpose. Validation may be determined by a
combination of test, analysis, and demonstration.” (NASA,
2007, p. 278)

So how do SEs select the appropriate verification
method(s)? The answer resides in two key points:

• First, verification methods cover a broad spectrum of
costs and schedule impacts. Inspection is the least

costly on one end of the spectrum, followed by Analy-
sis, Demonstration, and finally Test as the most costly.
Please note that Test may be necessary to obtain test
data but may be insufficient for proving compliance.
That may require Analysis of the Test data.

• Second, select the most efficient and effective methods
for the least cost and schedule impact (Principle 22.4).

So, how do we make these decisions? Figure 22.2 provides
the solution via a chain of decisions used to assess each
requirement statement. Let’s explore each of these decisions
in more detail. Please note that Inspection and examination
are combined in Figure 22.2 due to space restrictions.

22.5.1.1 Verification by Inspection or Examination
Decision Verification by Inspection requires a questioning
exercise that has two potential outcomes:

• Is Inspection/Examination necessary to prove compli-
ance to specification or design requirement? If the an-
swer is Yes, select Inspection/Examination as a verifi-
cation method.

• Is the Inspection/Examination sufficient to prove com-
pliance to a specification or design requirement? If the
answer is Yes, exit and proceed to identification of
verification methods for the next requirement. If the
answer is No, proceed to the Verification by Analysis
decision.

Example 22.2

Inspection versus Examination Subtlety

Recognize the subtlety between Inspection
and Examination.

• Inspection, as defined earlier, can be as simple as
performing visual, auditory, or vibratory verification
such as a power light illuminates when power is
applied.

• Examination ranges from simple measurements with a
ruler to electron microscopy, radiology, etc.

22.5.1.2 Verification by Analysis Decision Verification
by Analysis requires a questioning exercise that has two
potential outcomes:

• Is Analysis necessary to produce objective
evidence—physical data collected from its formal
testing—that the Entity complies with a specification
or design requirement? If the answer is Yes, select
Analysis as the verification method.

• Is Analysis sufficient to prove compliance to a specifi-
cation or design requirement? If the answer is Yes, exit
and proceed to Identification of verification methods
for the next requirement. If the answer is No, proceed
to the Verification by Demonstration decision.
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Figure 22.2 Requirements Verification Method(s) Selection Process.

Example 22.3

Analysis, as a verification method, re-
quires presentation of objective evidence
based on work products such as Finite
Element Analysis (FEA), thermal analysis,
review of Modeling and Simulation (M&S)

(Chapter 33) data, etc. to verify compliance to a specification
requirement.

The FAA Guide to Reusable Launch Vehicle Safety
Validation and Verification Planning (FAA. 2003, p. 8), for
example, states:

“This method involves technical or mathematical evaluation,
mathematical models, simulations, algorithms, and circuit
diagrams.”

22.5.1.3 Verification by Demonstration Decision Verifi-
cation by Demonstration requires a questioning exercise that
has two potential outcomes:

• Is Demonstration necessary to prove by formal obser-
vation that a physical entity produces repeatable and
predictable outcome(s) without having to record formal
measurements to prove that it complies with a speci-
fication or design requirement? If the answer is Yes,
select Demonstration as a verification method.

• Is Demonstration sufficient to prove compliance to a
specification or design requirement? If the answer is
Yes, exit and proceed to identification of verification
methods for the next requirement. If the answer is No,
proceed to the Verification by Test decision.

Example 22.4

Requirement Demonstration
(Verification Method) Example

Demonstration, as a verification method,
can be used to verify that a User can log

on to a computer system if they have: (1) registered and (2)
obtained account log-on authorization.

22.5.1.4 Verification by Test Decision If the answer to
any of the preceding questions is No, then Test must be
selected as a verification method for a specific requirement.
The verification method selection process exits at this point
and cycles to the next requirement.

Example 22.5

Test (Verification Method) Example

Test, as a verification method, for a jet en-
gine might include installation on a test
stand, equipping the engine with sensors
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and instruments to assess and collect its performance data
on engine performance as well as its operating environ-
ment; performing load tests; water, hail, and waterfowl in-
gestion, etc.

22.5.1.5 Verification by Similarity Decision (Where
Permissible) Verification by Similarity serves as an ac-
ceptable verification method in some business domains.
Development of a new System or Product design can
be: (1) very time consuming and expensive and (2) should
be pursued only as a last resort after all efforts have been
exhausted to locate external Commercial-Off-the-Shelf
(COTS) products (Chapter 16) that meet specification re-
quirements. When legacy products already exist in-house
based on previous System Development, it makes sense to
reuse the design, especially if:

• No behavioral or physical design modifications have
been made since the Entity’s formal verification.

• No safety Critical Operational or Technical Issue
(COI/CTI) problems or issues have been detected in
fielded units.

• Specification requirements of the “As-Verified” (Prin-
ciple 16.5) reusable design are equal to or exceed the
new System’s/Product’s capability requirements or
Operating Environment conditions.

Since the legacy design has been verified and proven over
time in fielded Systems/Products, the only remaining issue
is verification of each instance of the deliverable product.
Net result: cost avoidance instead of new development. As
an example, the FAA Guide to Reusable Launch Vehicle
Safety Validation and Verification Planning (FAA, 2003,
p. 8) states:

“A ‘qualification by similarity’ analysis is required when
using this verification method. … If there are items that
are not significantly similar, “delta qualification” tests are
performed to bring the item into full compliance with the
requirements of the new application.”

One of the reasons many Enterprises discourage verifi-
cation by Similarity is that it requires presentation of objec-
tive evidence such as Inspection or Examination of Records,
which may no longer be available.

22.5.1.6 Verification Methods Summary In summary,
verification method selection requires insightful forethought.
Observe:

• That one or more verification methods (Principle
13.10) may be required to prove compliance to a spec-
ification requirement.

• How the verification methods selection process exists
when the verification method satisfies the necessary
and sufficient criteria.

Verification method selection decisions range from simple
visual Inspections/Examination to complex Tests requiring
Analysis of results that can be costly and consume valuable
schedule time. Why would you want to go to the trouble and
expense of performing a Test when a simple visual Inspection
will provide objective evidence to meet the requirement for
being necessary and sufficient?

Given this understanding of how verification methods are
selected, let’s proceed with how the methods are documented
via the RVM.

22.6 REQUIREMENTS TRACEABILITY
AND VERIFICATION TOOLS

Requirements traceability and verification require Require-
ments Management Tools (RMTs) that enable Engineers to
efficiently and effectively enter, mine, and manage specifi-
cations, requirements, verification, and verification results
data. Highly complex systems, for example, often involve
several hundred thousand requirements plus all of the asso-
ciated data. Given the enormity of the data set, a relational
database RMT is the only local way to have a single repos-
itory of information. The power of a RMT enables Users to
mine, sort, and filter the data, which can be ported to spe-
cific types of reports for analysis and review, as well as create
special reports and track metrics.

Report examples include: the Requirements Verifica-
tion Matrix (RVM), the Requirements Traceability Matrix
(RTM), and the Requirements Verification Traceability Ma-
trix (RVTM). One of the challenges is people become enam-
ored with creating spreadsheet or database matrix tools and
forget that they are trying to manage requirements knowl-
edge. Tools are simply solution spaces to a broader prob-
lem space we need to manage concerning requirements. For
example, the problem spaces are represented by questions
such as:

1. Are all requirements in specifications at various levels
of abstraction traceable to the User’s source or orig-
inating requirements via the SPS? If not, why not?
(Principle 19.13).

2. Are first level SPS or EDS requirements statements
traceable to User Stories, UCs, and Scenarios?

3. How many requirements are in the SPS, specific
EDS, or the entire System or Product requirements
hierarchy?

4. How many To Be Determined (TBDs) remain
undefined?
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5. How many requirements lack assignment of an ac-
countable implementer?

6. How many requirements lack verification methods?

7. How many requirements: (1) have been verified, (2)
have verification results discrepancies, and (3) how
many requirements remain to be verified?

Rather than jumping into a discussion of RMTs, which are
solution spaces, let’s employ Systems Thinking (Chapter 1)
and focus on what knowledge – problem spaces - Engineers
need to mine and analyze from the database to answer the
questions above.

Let’s begin Question 1 above concerning requirements
traceability.

22.6.1 Requirements Verification Traceability Matrix
(RVTM)2

One of the most common ways to address requirements
traceability and verification begins with an RVTM. Since the
RVM and RTM are customizations of the RVTM, we will
focus our discussion on it.

The RVTM is simply a tabular listing of key requirement
attributes selected for presentation in a report. Table 22.3
provides an RVTM example.

Observe the construction of the RVTM.

• Column 1 – Assigns a unique Identifier to each re-
quirement statement. The ID is permanently assigned
when the requirement statement is created and pro-
vides the basis for formal Configuration Management
(Chapter 16) of the requirement.

• Column 2 – States the requirement.

• Column 3 – Identifies the System or Entity archi-
tecture element – Product, Subsystem, Assembly,
Subassembly, or Part Level component – that the re-
quirement is allocated to for implementation and ac-
countability.

• Column 4 – Identifies the Verification Level that repre-
sents where the requirement will be verified.

• Columns 5 – 8 – Provide cells (RMT “pick lists”) for
selecting one or more Verification Methods required to
prove compliance.

• Column 9 – Identifies the Next Higher Level require-
ment for vertical traceability.

Within the RVTM database, other attributes such as
Responsibility and Accountability, references to analyses,
and so forth can be appended as additional columns in
customized reports.

2Additional Reading—NASA Systems Engineering Handbook,
Appendix D, pp. 282–283.

22.6.1.1 Requirements Verification Matrix (RVM) A
Requirements Verification Matrix (RVM) is simply a cus-
tomized version of the RVTM shown in Table 22.3. The RTM
links each SPS (Table 20.1) or EDS Section 3.X Require-
ment to specific Section 4.X Verification Methods—namely,
Inspection, Examination, Analysis, Demonstration, and Test.
The row below the RVTM identifies the RVTM columns
that appear in most RVMs.

Principle 22.5 The selection of Verification Methods is
often considered one of the most mundane tasks Engineers
perform. As a result, they spend very little time seriously con-
templating how they will verify each requirement. Addition-
ally, selection of Verification Methods for each requirement
should be a collaborative exercise with the Testers (Chapter
28) for two reasons.

1. The Testers are the ones who will be confronted with
verifying each requirement. To avoid conflicts, they
should be the ones who pass judgment on whether a
requirement statement is well-defined – complies with
the SMART-VT Criteria (Principle 22.3) - or not.

2. Participation by the Testers ensures they are in the loop
concerning specific types of test equipment that will be
required to test each requirement.

Example 22.6

Verification Level Application Example

You are assigned a task to create
Subsystem A EDS. Ideally, you would
like to verify Subsystem A as a physical

work product. During assignment of verification methods,
you discover it is impractical to complete verification of
Assembly Requirement 3.1.1.2 until it is integrated into
the next higher-level Subsystem. For example, a critical
interface – Assembly A4 – provides inputs to Assembly 2.
Assembly A4 is lagging behind schedule and has not been
verified. How do we solve this problem? There are a couple
of options. We could:

• Emulate or stimulate (Figure 28.3) Assembly A4 and
complete Assembly A2 verification.

• Defer completion of Assembly A2 verification un-
til Assembly A4 has been verified. However, this
may idle laboratory testing and equipment, which is
unacceptable.

Another solution is to create an attribute for the Verifi-
cation Level that indicates the level of abstraction in which
Assembly A2 Requirement 3.1.1.2 verification can be com-
pleted. Then, when Assembly A4 verification is complete,
Assembly A2 and A4 are integrated to form Subsystem A.
Subsystem A Requirement 3.1.1 verification includes veri-
fication of Assembly A2 Requirement 3.1.1.2.



TA
B

L
E

22
.3

R
eq

ui
re

m
en

ts
V

er
ifi

ca
ti

on
T

ra
ce

ab
ili

ty
M

at
ri

x
(R

V
T

M
)

R
ep

or
t

R
eq

m
t.

ID
R

eq
ui

re
m

en
ts

St
at

em
en

t
A

llo
ca

te
d

to
V

er
ifi

ca
tio

n
L

ev
el

M
et

ho
d

of
V

er
ifi

ca
tio

n
T

ra
ce

sV
er

tic
al

ly
to

In
sp

ec
t

A
na

ly
si

s
D

em
o

Te
st

SY
S_

13
6

3.
1.

1
C

ap
ab

ili
ty

A
T

he
sy

st
em

sh
al

l
…

Su
bs

ys
te

m
12

3
Su

bs
ys

te
m

X
3.

1
C

ap
ab

ili
ty

X
X

X
X

SY
S_

13
7

3.
1.

1
C

ap
ab

ili
ty

A
1

T
he

sy
st

em
sh

al
l(

C
ap

ab
ili

ty
A

1)
.

A
ss

em
bl

y
A

1
A

ss
em

bl
y

X
X

3.
1.

1
C

ap
ab

ili
ty

A

SY
S_

13
8

3.
1.

1.
2

C
ap

ab
ili

ty
A

2
T

he
sy

st
em

sh
al

l(
C

ap
ab

ili
ty

A
2)

.
A

ss
em

bl
y

A
2

Su
bs

ys
te

m
X

3.
1.

1
C

ap
ab

ili
ty

A

SY
S_

13
9

3.
1.

1.
3

C
ap

ab
ili

ty
A

3
T

he
sy

st
em

sh
al

l(
C

ap
ab

ili
ty

A
3)

.
A

ss
em

bl
y

A
3

A
ss

em
bl

y
X

3.
1.

1
C

ap
ab

ili
ty

A

SY
S_

14
0

3.
1.

1.
4

C
ap

ab
ili

ty
A

4
T

he
sy

st
em

sh
al

l(
C

ap
ab

ili
ty

A
4)

.
A

ss
em

bl
y

X
3.

1.
1

C
ap

ab
ili

ty
A

R
V

T
M

co
lu

m
ns

A
pp

lic
ab

ili
ty

R
T

M
&

R
V

M
R

V
T

M
R

V
M

R
V

M
R

V
M

R
V

M
R

V
M

R
T

M

458



REQUIREMENTS STATEMENT DEVELOPMENT GUIDELINES 459

22.6.1.2 Requirements Traceability Matrix (RTM) A
Requirements Traceability Matrix (RTM), like the RVM,
is a simply customized version of the RVTM shown in
Table 22.3. The RTM links each SPS or EDS Section 3.X
child requirement to the next higher level parent require-
ment. The row below Table 22.3 identifies the RVTM
columns that appear in most RTMs.

22.6.2 Requirements Management Tools (RMTs)

Traditionally, hardcopy specifications required the RVM
to be presented in the document as part of the SPS or
EDS (Table 20.1) Section 4.0 Qualification Provisions. The
difficulty with this approach is that the specification de-
veloper and readers had to flip back and forth between
Section 3.0 Requirements and Section 4.0 (Qualification Pro-
visions). Flipping back and forth is simply inefficient and
time consuming.

With advancements in RMT technologies based on
an object-oriented, relational databases, we can create an
RVTM – Table 22.3, for example, as a report directly out
of the RMT. RMTs simplify this approach and enable the
specification developer to select one or more verification
methods, for example, from a set of “pick lists” options in a
single cell, not five columns as shown in Table 22.3.

Traditionally, Engineers prefer word processor-based
documents. Why? They are easier to create with skills and
software applications most stakeholders possess. The SE
problem is, however, how do you link requirements in a word
processor document to another specification, engineering
drawing, graphic, and so on?

With today’s Web-based technologies, you may say this
can be done easily with word processor document links.
However, these links do not allow you to exploit the power
of the database to display or print the “thread” of text
statements that are traceable across documents. This is
critically important, especially when performing impact
assessments as a result of higher level requirements changes.

You can rationalize performing System Development
without an RMT; however, the tool saves hours when
verifying requirements traceability, collecting requirements
metrics, and performing multi-level requirements impact as-
sessments. This is why RT tools provide an advantage and
leverage your own ability and time. You can further ratio-
nale that RMTs are unaffordable. However, an RMT will pay
dividends by eliminating manual document linking audits,
especially for large, complex system development efforts.

22.7 REQUIREMENTS STATEMENT
DEVELOPMENT GUIDELINES

Requirements can be characterized in a range of attributes.
These attributes include legal, technical, cost, priority, and
schedule considerations. Let’s examine each of these briefly.

22.7.1 Title Each Requirement Statement

Principle 22.18

Requirement Identifier and Title
Principle

Assign a unique identifier and title to
each requirement statement to facilitate
searches and readability.

Requirements tend to lose their identities as statements
within a larger document. This is particularly troublesome
when the need arises to rapidly search for an instance
of a requirement. Make it easy for reviewers and users
of specifications to easily locate requirements. Tag each
requirement with a unique identifier and label each with
a “bumper sticker” title. This provides a mechanism for
capture in the specification’s Table of Contents and makes
identification easier.

Example 22.7

Requirement Title Example

SPS_136 Perform Communications
(Bumper Sticker Title)

• The System shall communicate with…

SPS_243 Convert 28 vdc Power (Bumper Sticker Title)

• The System shall convert 28 vdc power to +5vdc.

22.7.2 References to Other Sections within
a Specification

Specification sections often reference other sections within
the document. Typically, the specification will state, “Refer
to Section 3.4.2.6.” Instead, reference the section paragraph
number and title. Why? Specification outline numbering
often changes as topics are added or deleted. When this
occurs, the sections may be automatically renumbered by the
RMT. Thus, a reference such as “Refer to Section 3.4.2.6”
may refer to an unrelated requirement topic. The same
applies to references to external standards and specifications.

22.7.3 References to External Specifications and
Standards

Principle 22.19

External References Principle

Specification references to external spec-
ifications and standards must include the
following: Document ID, Version, and

Date. References to internal sections should include Section
Number and Title.
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When you reference external specifications and stan-
dards, include the title, document number, version, and date.
References to external documents with complete titles, dates,
versions, etc. should be listed in the SPS or EDS Section 2.0
Referenced Documents. There are two key points here:

1. List complete information about the document such as
“XYZ System Performance Specification (SPS) Docu-
ment No. 123456, Revision A, June 20, XXXX.”

2. Identify the version as shown in the preceding point.
Specification developers in their haste will often scrib-
ble a brief title notation with the intent of coming back
later and updating the reference, which is risky. Then,
make a broad reference within the specification such
as “… in accordance with the latest version of (Stan-
dard) …” Standard XXXX may have 400 pages and
covers the universe of applications. You do not want to
prove compliance to 400 pages of requirements. Sim-
ply reference the specific Standard XXXX paragraph
number. Then, list the version in (Table 20.1) Section
2.0 References.

22.7.4 Specify Operational and Technical Capability
Requirements

Operational and technical capabilities and characteristics
requirements document capabilities required for a system,
product, or service success. These capabilities drive the
System Design Solution and must be an integral part of every
SPS or SDS outline (Table 20.1). The DAU (2005, p. B-15)
defines these terms as follows:

22.7.4.1 Required Operational Characteristics Required
operational characteristics consist of “System parameters
that are primary indicators of the system’s capability to be
employed to perform the required mission functions, and to
be supported” (DAU, 2005, p. B-15).

22.7.4.2 Required Technical Characteristics “System
parameters selected as primary indicators of achievement of
engineering goals. These need not be direct measures of, but
should always relate to the system’s capability to perform
the required mission functions, and to be supported” (DAU,
2005, p. B-15). Remember that operational and technical
characteristics should follow the SMART-VT Principle
(Principle 22.3)—specific, measurable, achievable, realistic,
verifiable and traceable.

22.7.5 Avoid Paragraph-Based Text Requirements

Principle 22.20

Compound Requirements Principle

Avoid usage of compound requirements
statements written in paragraph style.

Paragraph-based declarative statements of fact are ac-
ceptable in specifications for Specification Section 1.0 In-
troduction. The problem is System Developers must spend
valuable time separating or parsing compound requirements
into singular requirements when they appear in SPS or EDS
Specification Section 3.0 Requirements. Do yourself and the
System Developer (contractor, subcontractor, etc.) a favor
and develop the SPS and EDS with singular requirements
statements that cover one and only one capability. This saves
valuable time that can be better spent on higher priority tasks
and creates a consistent format that promotes readability, un-
derstandability, and verifiability.

Example 22.8

Compound Requirement Statements

The vehicle shall be capable of carrying
a family of four on ski trips to (location)
in all types of conditions up and down

mountains, over gravel roads, in the vicinity of the lake near
the river that is close to (city).

Remember that if you have a contract and are obligated
to demonstrate and verify compliance to technical require-
ments, every unnecessary word in a requirement statement
increases the risk of misinterpretation and conflict. Require-
ments statements should be brief, practical, clearly stated,
and concise. To illustrate this point, consider the follow-
ing example based on the popular children’s Dick and Jane
Series (Gray and Sharp, 1946) elementary reader. The in-
tent is not to be absurd but to illustrate the difference in
the two requirements writing styles – Example 22.9 versus
Example 22.10.

Example 22.9

Simple Writing Style

1. Watch spot run.

2. Dick ran up the hill.

3. Jane fell down.

Although these are extreme examples, it illustrates that
brief statements with few words explicitly communicate.
How do we put this into practice? Consider the following
examples:

Example 22.10

Requirements Statements

1. The System shall operate from an
external +28vdc power source.

2. The System shall respond to com-
mands from the XYZ within 250 ± 10 milliseconds
(MS).
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22.7.6 Eliminate Compound Requirements Statements

When requirements statements specify compound require-
ments, allocation of the requirement becomes difficult. Why?
Assume multiple requirements are specified in a single re-
quirement statement. Each is allocated to different Entities.
Here is the question - How do you link which portion of a
requirement statement to a specific Subsystem?

When the System must be verified, how can you check
off a requirement as complete when portions remain to be
verified due to missing equipment and the like? The only
alternative is to uniquely number each requirement within
the statement, which is impractical. Verification requires that
all elements embedded within the statement are required to
satisfy verification of the statement as a whole. Consider the
following example.

Example 22.11

SPS_178 Transmit Weather Data

The System shall transmit weather
data messages containing the following
information:

• Date

• Time of Day (TOD)

• Ambient Temperature

• Relative humidity

• Barometric pressure

SPS_179 Formatted Weather Messages
The System shall transmit weather data messages format-

ted in accordance with Table XX.X (Refer to Figure 27.5):

22.7.7 Eliminate Endless Requirements

Principle 22.21

Endless Requirements Principle

Eliminate usage of endless requirements
terms such as all, etc., et al., and and/or,
which are impractical to specify, bound,
and verify.

A note to specification writers: Eliminate every use
of the word “all” in every specification! Appreciate the
legal significance of this statement “… all instances of an
XYZ will be verified . . . .” Contemplate how large in scope
the “all” universe is! “All”, a limitless word for practical
purposes, is boundless and subject to interpretation. As
a specification developer, your mission is to specify and
bound the solution space as simple and practical; not for
verifying every conceivable scenario or instance of an entity.
Do yourself a favor and avoid usage of “all.”

22.7.8 Eliminate the Term and Abbreviation “Etc.”

Et cetera (etc.) is another word Specification writers use but
should not. Engineers discover early in their careers that there
will always be someone who questions miniscule instances
of physics, science, or a natural occurrence – rightfully or
wrongly - and chastise the Engineer for their oversight. To
avoid this situation, Engineers default to “etc.” to “cover all
bases”. As an SE, your mission is to specify and bound the
solution space. When you specify a requirement with “etc.”
such as “The system shall consist of a, b, c, etc.,” the System
Acquirer could say later, “Well, we also want a d, e, and f.”
You may reply we did not bid the cost of performing “d, e,
and f,” which may then bring a response from the System
Acquirer, “You agreed to the requirements and ‘etc.’ means
we can request anything we want to.” Do yourself a favor and
eliminate all instances of “etc.” in specifications.

22.7.9 Eliminate the Term “And/Or”

Specification writers often specify requirements via enumer-
ated lists that include the term “and/or.”

Example 22.12

Enumerated Lists of Requirements

For example, “The system shall consist of
capabilities A, B, C, and/or D.” The state-
ment, as written, sounds like a salesperson

selling an automobile …” You can purchase the car with op-
tions A, B, C, and/or D … whatever you choose.

Explicitly specify what is required. Either the System
consists of A, B, C, or D or it does not. If not, so state
and bound exactly what the system is to contain. Remember
that specifications must state exactly what capabilities are
required to be verified at system delivery and acceptance, not
wish lists made by the System Acquirer and the User.

22.7.10 Analytical “Testing” Derived Requirements
Statements

Many people are often surprised to learn that you can
analytically “test” requirements. Requirement testing takes
the form of technical compliance audits with Enterprise
standards and conventions, such as software coding standards
and graphical conventions. Modeling & Simulation (M&S)
provides another method for testing requirements. Execution
of those models and simulations provides insights into the
reasonableness of a requirement, performance allocation,
potential conflict, and difficulty in verification.

Requirement testing also includes inspection and evalua-
tion of each requirements statement in accordance with pre-
defined criteria. What are the criteria? This brings us to our
next topic, Requirement Validation Criteria.
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22.7.11 Requirement Validation Criteria

When testing the validity of a requirement by Inspection
or Examination, there are a number of criteria that can be
applied to determine the necessity and sufficiency of the
requirement. Table 22.4 provides an example listing of key
criteria.

The criteria stated in Table 22.4 are comprehensive. You
may be thinking: How could one conceivably evaluate a
specification with potentially hundreds of requirements using
these criteria? Seasoned SE professionals subconsciously
imprint most of these criteria into their mental processes.
With experience, you will learn to test specification re-
quirements rapidly by inspection. This further reinforces the
importance of training all SEs in the proper methods of
requirements writing and review to ensure a level of confi-
dence and continuity in specification results.

22.8 WHEN DOES A REQUIREMENT BECOME
“OFFICIAL”?

Principle 22.22

Official Requirement Principle

A requirement is not considered official
until the following criteria have been met:

• Is accepted by a consensus of its Stakeholders.
• Is traceable to source or originating requirements via

an RVM.
• Satisfies requirements validation criteria listed in

Table 22.4.
• Is assigned one or more verification methods.
• Is approved and released for implementation.

Our previous discussions focused on the content of
well-defined requirements. A key question commonly asked
is: when is a requirement considered to be official? There are
two stages of answers to the question: (1) unofficial and (2)
official.

Simply identifying and specifying a requirement state-
ment is only a prerequisite to official Stakeholder recogni-
tion and acceptance. This first stage merely establishes the
statement as relevant and worthy of consideration as a re-
quirement. That takes us to the next stage, official approval
and subsequent release.

Many SEs erroneously believe that simply preparing a
requirement statement makes the requirement complete and
acceptable. Preparing a requirement statement does not
mean that the statement will pass the SMART-VT (Principle
22.3) and Requirement Validation Criteria in Table 22.4. Why
is it necessary to test completeness? There are two key factors
to consider.

• First, identifying the verification method(s) forces
the requirement developer to think about how the

requirement will be verified. For example, write a one-
or two-sentence verification test plan that takes two
measurements, compares the two, and evaluates the dif-
ferences relative to the requirement statement.

• Conversely, if you have difficulty identifying a test
plan, maybe you should consider rewriting and
re-scoping the requirement statement.

Author’s Note 22.4

Engineers tend to defer identification
of the verification method(s) to the
start of the System Integration, Test,
and Evaluation (SITE) phase. This is
unacceptable! You need to recognize

the need to identify the verification methods early in the
requirements development process, not only for cost esti-
mates, but to validate the realism and reasonableness of the
requirement.

Regarding the second point, an approach may be to
identify a preliminary set of verification methods when
the requirements are derived. This will provide an initial
completeness check for the verification requirement. Then,
continue the analysis to lower levels. Prior to the need to
baseline the higher-level requirements, review and reconcile
the preliminary verification methods.

While the potential ramifications for premature baselining
are known (Chapter 16) such as increased costs due to
stability of decisions, human procrastination can pose an
even greater challenge and risk. Whether intentional or not,
project schedules often become a convenient excuse for SEs
to shift identification of verification methods to the back
of their priority list as discussed earlier in our discussion
of Verification Methods selection. As a result, Engineers
sometimes produce them just before they are needed in SITE,
which is the wrong. Establish verification methods prior to
specification approval.

22.9 CHAPTER SUMMARY

Our discussion of the requirements statement development
practices:

• Provided principles for developing well-defined re-
quirements.

• Discussed when a requirement should be officially
recognized as a requirement.

• Described the key attributes that characterize a
well-defined requirement.

• Introduced a basic methodology for preparing require-
ments statements via a three-step approach that avoids
common problems of developing requirement content
and grammar simultaneously.
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TABLE 22.4 Requirement Statement Validation Criteria

ID Criteria Criteria Question Reference

1. Unique Identifier Does the requirement have its own unique identifier such as specification
nemonic and indexed numeric within the specification?

Principle 22.18

2. Unique Title Does the requirement have an outcome-based title that: (1) is unique within
the System and (2) represents the outcome to be achieved?

Principle 22.18

3. Uniqueness Is the requirement statement unique within the System’s specification tree
(Figure 19.2) without duplication?

Principle 19.5

4. Essentialness Is the requirement essential to the development of a system, product, or
service?

Principle 19.7

5. Validity Is this a valid requirement that reflects a required capability traceable to the
User’s intended operational needs or simply a symptom of a problem or
need?

Principle 4.13

6. Traceability Is the requirement traceable to the User’s source or originating requirements? Principle 19.13
7. SOW language Does this requirement include language that logically belongs within the

contract or project charter Statement of Work (SOW)?
Principles 20.6

and 20.7
8. Specification Scope Does this requirement fall within the scope of this specification or does it

belong in another specification?
Principle 19.5

9. Hierarchical level If this requirement is within the scope of this specification, is the requirement
positioned at the right level within the requirements hierarchy?

Figure 20.3

10. User priority What is the User’s priority level for this requirement such as can live without
it, nice to have, desirable, mandatory?

Principle 19.15

11. Realism and Achievability Is the requirement realistic and actionable? Principle 22.3
12. Feasibility Can the requirement be implemented within reasonable and justifiable need

priorities and budgetary cost without limiting the minimum required set of
requirements?

Principle 19.4

13. Completeness Is the requirement complete in terms of satisfying the structural syntax
criteria?

Principle 22.5

14. Semantics and Terminology Does the requirement contain any terminology or semantics that may have
multiple interpretations and require scoping definitions for clarity?

Principle 19.12

15. Conciseness Is the requirement stated in a clear, concise, and unambiguous language that
results in one and only one interpretation by its stakeholders?

Principle 19.9

16. Understandability Is the requirement simply stated in language that is easily understood by the
document’s stakeholders?

Principle 19.12

17. Consistency Is the requirement consistent with System terminology and nemonics used:

• Throughout the specification?
• Among specifications within the Specification Tree (Figure 19.2)?
• By the System Acquirer, User, and System Developer(s)?

Principle 19.11

18. Assumptions Does the requirement make assumptions that should be communicated in the
Notes and Assumptions section of the specification?

Principle 24.20

19. Overlap Does the scope of this requirement overlap the scope of another requirement? Principle 22.1
20. Accuracy Is the requirement stated in language that accurately and precisely bounds the

required outcome and level of required performance?
Principle 22.10

21. Precision Is the precision of the required level of performance and tolerance levels
adequate or too restrictive?

Principle 22.10

22. Testability If required, can a test or series of tests be devised and instrumented
economically with available resources—for example, knowledge, skills,
equipment, etc.?

Principle 22.3

23. Measurability If testable, can the outcome and level of performance be measured directly or
derived indirectly by analysis of test results?

Principle 22.3

24. Verifiability Can the outcome and level of performance be verified by inspection, analysis,
demonstration, or test to prove full compliance with the requirement?

Principle 22.4

25. Level of Risk Does this requirement pose any significant technical, technology, cost,
schedule, or support risks?

Principle 19.16



464 REQUIREMENTS STATEMENT DEVELOPMENT

• Provided a list of suggestions for developing
well-defined requirements.

• Highlighted the need to focus on singular requirements
statements that are unique within the hierarchy of
requirements.

• Described the process for selecting requirement verifi-
cation methods.

• Described and illustrated differences between an
RVTM, RTM and an RVM.

22.10 CHAPTER EXERCISES

22.10.1 Level 1: Chapter Knowledge Exercises

Answer each of the What You Should Learn from This
Chapter questions identified in the Introduction.

1. What are the attributes of a well-defined requirement?

2. When is a “requirement” officially recognized as a
requirement?

3. What are some principles for preparing well-defined
requirements?

4. What are some of the common pitfall in preparing
requirements statements?

5. What is the syntactical structure of a requirement state-
ment? List its sequences.

6. What criteria do you use to validate – test – a require-
ment?

7. Describe the decision process used to identify a require-
ment’s verification method(s)?

8. What is an RVM?

9. How do you develop an RVM?

10. What is meant by requirements minimization? Why
would you want to reduce the quantity of requirements?

11. What is the optimal number of requirements in a speci-
fication?

22.10.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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23
SPECIFICATION ANALYSIS

When systems, products, and services are acquired, the
System Acquirer typically provides a System Requirements
Document (SRD) or Statement of Objectives (S00) with
the formal Request for Proposal (RFP) solicitation. The
SRD/S00 expresses the required set of capabilities and per-
formance Offerors use as the basis to submit solution-based
proposals. The challenge for System Acquirers and System
Developers is to formulate, derive, and negotiate an SPS that:

1. Clearly, concisely, and completely bounds the solution
space.

2. Is well understood by all Stakeholders—Users and End
Users.

3. Establishes the basis for deliverable system, product,
or service technical acceptance.

Our discussion in this section describes various Spec-
ification Analysis Practices. We explore various methods
and techniques used to analyze specification requirements
for completeness from several perspectives. We introduce
common specification practice deficiencies and investi-
gate methods for identifying, tracking, and resolving these
deficiencies. We also consider semantic ambiguities of terms
such as “comply” versus “conform” versus “meet” that Sys-
tem Acquirers and System Developers employ that do have
literal significance in interpretation.

As the concluding chapter in the System Specification
Practices series, this chapter has two application contexts:

• Context #1—Provides guidance for reviewing specifi-
cations developed externally by the SRD or procure-
ment specification.

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

• Context #2—Provides guidance for evaluating
internally developed specifications—SPS or Entity
Development Specification (EDS)—for proposal or
procurement purposes.

23.1 DEFINITION OF KEY TERMS

• Availability—“A measure of the degree to which
an item is in an operable state and can be commit-
ted at the start of a mission when the mission is
called for at an unknown (random) point in time. See
Inherent Availability (AI), Achieved Availability (AA),
and Operational Availability (AO).” (DAU, 2012,
p. B-18).

• Efficiency—“(1) The degree to which a system or
component performs its designated functions with
minimum consumption of resources” (SEVOCAB,
2014, p. 104) (Source: ISO/IEC/IEEE 24765:2010
(2010) – Copyright by ISO/IEC. Used by permission).

• Maintainability—“The ability of an item to be
retained in, or restored to, a specified condition when
maintenance is performed by personnel having spec-
ified skill levels, using prescribed procedures and
resources, at each prescribed level of maintenance and
repair.” (DAU, 2012, p. B-131).

• Portability—“(1) ease with which a system or
component can be transferred from one hardware
or software environment to another.” (SEVOCAB,
2014, p. 225) (Source: ISO/IEC/IEEE 24765:2010
(2010) – Copyright by ISO/IEC. Used by permission).

http://www.wiley.com/go/systemengineeringanalysis2e
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• Producibility—“The relative ease of manufacturing
an item or system. This relative ease is governed
by the characteristics and features of a design that
enables economical fabrication, assembly, inspection,
and testing using available manufacturing techniques”
(DAU, 2012, p. B-175).

• Reconfigurability—The ability of a system, product,
or service configuration to be modified manually or
automatically to support mission objectives.

• Reliability—“The ability of a system and its parts
to perform their mission without failure, degrada-
tion, or demand on the support system under a pre-
scribed set of conditions. See Mean Time Between
Failure (MTBF) and Mean Time Between Maintenance
(MTBM)” (DAU, 2012, p. B-189).

• Serviceability—“A measure of the degree to which
servicing of an item will be accomplished within a
given time under specified conditions” (DAU, 2012,
p. B-202).

• Supportability—“A key component of availability. It
includes design, technical support data, and mainte-
nance procedures to facilitate detection, isolation, and
timely repair and/or replacement of system anomalies.
This includes factors such as diagnostics, prognostics,
real time maintenance data collection, and Human Sys-
tem Integration (HSI) considerations (JCIDS Manual)”
(DAU, 2012, p. B-216).

• Survivability—The capability of a system and its User
to avoid or withstand a man-made hostile environment
without suffering an abortive impairment of its ability
to accomplish its designated mission (DAU, 2012,
p. B-217).

• Susceptibility—“The degree to which a device, equip-
ment, or weapon system is open to effective attack as
a result of one or more inherent weaknesses. Suscepti-
bility is a function of operational tactics, countermea-
sures, probability of an enemy threat, etc. Susceptibility
is considered a subset of survivability” (DAU, 2012,
p. B-217).

• Sustainability—“The ability to maintain the necessary
level and duration of operational activity to achieve” a
mission and its objectives. “Sustainability is a function
of providing for and maintaining those levels of” readi-
ness, personnel, expendables, and consumables neces-
sary to support a System of Interest (SOI) (Adapted
from DAU, 2011, p. B-258–259).

• System Safety—“The application of engineering and
management principles, criteria, and techniques to
optimize safety within the constraints of operational
effectiveness, time, and cost throughout all phases of
the system life cycle” (DAU, 2012, p. B-221).

• System Security—The level of protection that charac-
terizes a system, product, or service’s ability to reject or

deter intrusion and access by external threats or unau-
thorized systems.

• Testability—“(3) degree to which a system or compo-
nent facilitates the establishment of test criteria and the
performance of tests to determine whether those crite-
ria have been met. (SEVOCAB, 2014, p. 325) (Source:
ISO/IEC/IEEE 24765:2010 (2010) – Copyright by
ISO/IEC. Used by permission).

• Transportability—“The capability of material to be
moved by towing, self-propulsion, or carrier through
any means, such as railways, highways, waterways,
pipelines, oceans, and airways. Full consideration of
available and projected transportation assets, mobility
plans and schedules, and the impact of system equip-
ment and support items on the strategic mobility of
operating military forces is required to achieve this ca-
pability” (DAU, 2012, p. B-232).

• Usability—“(2) ease with which a user can learn to op-
erate, prepare inputs for, and interpret outputs of a sys-
tem or component (SEVOCAB, 2014, p. 339) (Source:
ISO/IEC/IEEE 24765:2010 (2010) – Copyright by
ISO/IEC. Used by permission).

• Vulnerability—“The characteristics of a system that
cause it to suffer a definite degradation (loss or
reduction of capability to perform the designated mis-
sion) as a result of having been subjected to a certain
(defined) level of effects in an unnatural (man-made)
hostile environment. Vulnerability is considered a sub-
set of survivability” (DAU, 2012, p. B-239).

23.2 ANALYZING EXISTING SPECIFICATIONS

Chapters 19–22 focus on how a System Acquirer might
develop an SRD, SPS, or EDS for procurement of a system,
product, or service or the System Developer might develop
lower-level EDSs. However, what if a specification already
exists? How does the System Acquirer or a System Developer
candidate analyze the specification for completeness, reason-
ableness, and feasibility?

There are two key contexts regarding analysis of specifi-
cations:

1. Acquirer verification prior to formal solicitation.

2. System Developer analysis during the proposal
process and following Contract Award (CA)

Let’s investigate these contexts further.

23.2.1 System Acquirer Role Perspective

System Acquirers start by reducing the project and tech-
nical risk of the procurement action. How can this be
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accomplished? By releasing a high-quality draft specifica-
tion that accurately, precisely, and completely specifies and
bounds the solution space system, product, or service. Key
review questions to ask might include:

1. Have all User System Deployment Phase; System Op-
erations, Maintenance, and Sustainment (OM&S)
Phase; and System Retirement/Disposal Phase
(Figure 12.2) Stakeholder requirements been ade-
quately identified, prioritized, scoped, and specified?

2. Have we bounded the correct solution space within the
problem space?

3. Have we identified the right system to fill the
prescribed solution space and cope with its Operating
Environment?

4. Does this specification accurately, precisely, and com-
pletely specify the selected solution space?

5. If we procure a system based on these requirements,
will the deliverable work product satisfy the User’s
intended operational needs documented in the Oper-
ational Requirements Document (ORD) or Capability
Development Document (CDD)?

6. Can the system specified be developed within
the Total Cost of Ownership (TCO)—such as
acquisition, deployment, Operations, Maintenance,
and Sustainment (OM&S), and retirement/disposal
costs—budgets that are available?

What happens if you inadequately address these and other
questions? Later, if it is determined that the requirements
have latent defects such as errors, deficiencies, or omissions,
the cost to modify the contract can be very expensive
assuming the other party agrees to the modifications. To
minimize specification risk, System Acquirers often release a
pre-solicitation draft specification to qualified candidate RFP
Offerors for comments.

23.2.2 System Developer Role Perspective

In contrast, the System Developer must reduce contract
cost, schedule, and technical and technology risk. To do
this, specification analysis must answer several key review
questions that include:

1. Do we fully understand the scope of the work effort we
are agreeing to perform?

2. Do the SRD requirements, as stated, specify a system
that satisfies the User’s operational needs? If not, what
approach must we use to inform them?

3. Have we thoroughly investigated and talked with a rep-
resentative cross-section of the Stakeholder commu-
nity to validate their requirements and needs?

4. Do we understand the problem space the User is
attempting to solve by procuring this system? Does
the specification specify and bound the problem or a
symptom of the problem?

5. Can the requirements, as stated, be verified within
reasonable expectations, cost, schedule, and risk?

6. Do these requirements mandate technologies that pose
unacceptable risks?

23.3 SPECIFICATION ASSESSMENT CHECKLIST

When we engineer systems, the general mind-set is to pro-
pose and develop solutions that solve User solution spaces
within problem spaces. The problem with this mind-set is
that it lacks a central focal point that captures what the User
needs or seeks. For example: Is the User concerned about
Growth, Reliability, Maneuverability, and so forth? If you
do not understand (1) what the User needs and (2) what
priorities they place on those needs, you are just going
through a “check-the-box” exercise. So, how do SEs avoid
this mind-set?

This section introduces SPS topics based on User ob-
jectives that are often key drivers in System Development.
These objectives form the basis for proposal and System De-
velopment activities responding to System Acquirer formal
solicitations and contracts. The broad, far-reaching ramifica-
tions of technical decisions made in support of these objec-
tives clearly focus on the need to integrate Subject Matter
Experts (SMEs), as key members of System/Product Teams
(SPTs/PDTs), to Enabling System development. The dis-
cussions that follow scope the context of each objective.

Author’s Note 23.1

Essential Requirements

• First, specifications presum-
ably document all of the System
Acquirer’s essential requirements
(Principle 19.7). You can reach a

point where you “can’t see the forest for the trees,”
as such immersion in the details tends to obscure what
is important to the User. Once you read a specification,
talk with the User via System Acquirer contracting
protocol to determine the key objectives that matter
most and impact System Developer decision-making.

• Second, collaborate with the Users to identify and
prioritize the essential capability requirements.

If you are part of the ad hoc, endless loop
Specify-Design-Build-Test-Fix (SDBTF)-Design Process
Model (DPM) Engineering Paradigm (Chapter 2), avoid
the notion that you can use the types of requirements that
follow and translate them into specification requirements.
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Remember that most of the discussions that follow address
System Attributes (Chapter 3), not capabilities per se.

23.3.1 Single Use, Reusable, and Multi-Purpose
System Requirements

Principle 23.1

System Applications Principle

Specification requirements should be writ-
ten to support any one of three types of
system applications: single use, reusable,
and multi-purpose.

User mission applications of a system ultimately drive
its specification requirements. Most systems are designed
for three primary types of mission applications: single use,
reusable, and multi-purpose. Let’s clarify these terms:

• Single Use Systems are designed for a one-time use.
Examples include: satellites, rockets, missiles, muni-
tions, medical syringes, and batteries.

• Reusable Systems are systems configured to per-
form numerous missions with periodic maintenance.
Examples include: automobiles, computers, aircraft,
flashlight, rechargeable batteries, and homes.

• Multi-Purpose Systems represent Reusable Systems
that are reconfigurable to accommodate several types
of mission applications. For example: aircraft can be
reconfigured to carry passengers or cargo, computers
can be reconfigured to execute various types of soft-
ware applications, and external hardware devices such
as printers or modems.

Users acquire most systems and products for reusable ap-
plications. Reusable Systems and Products must be de-
signed for usability; Reliability, Maintainability, and Avail-
ability (RMA); and sustainability over a specified number of
operational usage cycles. Therefore, reusable applications re-
quirements require particular attention in areas such as mod-
ularity and interchangeability. In contrast, single-use appli-
cations may require a focus on cost per unit, reliability, and
other factors results.

23.3.2 Efficiency Requirements

Some Systems and Products require focused consideration
on efficient utilization of resources. In these cases, efficiency
requirements must be established.

23.3.3 Effectiveness Requirements

One of the key contributors to User satisfaction is a system,
product, or service’s degree of effectiveness. Did the missile

locate, impact, and destroy the target? Does the flight sim-
ulator improve pilot effectiveness? Establish requirements
where system effectiveness is a key determinate for mission
success.

23.3.4 Usability Requirements

Durable Systems and Products require a high usability.
Usability, as viewed by the User and End User, is often vague
and ambiguous. Classic requirements include: user-friendly
interfaces… easy to use … easy to understand … easy to
control … easy to drive over rough terrain … easy to lift
… easy to carry … and so forth. From an SE perspective,
it is critical that the usability requirements be accurately and
precisely bounded in SPS and EDS requirements.

Rapid prototypes may need to be developed to present
to Users for usability evaluation and constructive feedback.
User decisions must then be captured as graphical displays
or text requirements. Application examples include:

• Special considerations for the physically challenged.

• Special equipment for ingress and egress to/from a
vehicle, building, etc.

23.3.5 Comfort Requirements

Vehicular systems developed for Users such as operators
and passengers for travel purposes over long periods of time
require a level of comfort related to fatigue, boredom, hy-
giene, and so on. As in the Usability objective, requirements
must be explicitly identified, scoped, and bounded. Comfort
requirements are key drivers in the development of systems
such as homes, vehicles, spacecraft, and offices.

23.3.6 Compatibility and Interoperability
Requirements

Systems and products that require mechanical interfaces
with external systems require compatibility requirements.
Where those or wireless interfaces require unilateral or
bi-directional communications that must be understood and
encoded/decoded by both systems, interoperability require-
ments must be established. If the Interoperability objective is
selected, strict interface design standards and protocols must
be established and controlled for consistency.

23.3.7 Growth and Expansion Requirements

Systems, products, and services often require the capability
to be expanded to accommodate future upgrades. This may
require additional processing or propulsion power, flexibility
to increase storage capacity of expendables or consumables,
increased data communications ports or bandwidth, or orga-
nizational or geographical expansion.
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A Word of
Caution 23.1

Reliability, Maintainability, and
Availability (RMA) Requirements

Please note that the purpose of the RMA
requirements discussion that follows is to
highlight and recognize the potential need

for requirements in these areas. Employ a qualified, com-
petent expert in RMA to assist you in making these deci-
sions. Remember that RMA requirements have major cost
and safety ramifications!

23.3.8 Reliability Requirements

Every system, product, and service has an intrinsic value to
its Stakeholders in being able to support Enterprise missions
and objectives. Depending on the operating condition of a
system or product, mission, and Operating Environment,
System Reliability (Chapter 34) relative to achieving mission
success may be a critical issue.

23.3.9 Maintainability Requirements

Single-use, multi-use, and multi-purpose systems require
some form of Maintainability objective (Chapter 34). This
may include preventive maintenance, corrective mainte-
nance, calibration, upgrades, and refurbishment. Key main-
tainability requirements considerations include maintenance
operator access and clearances for hands, arms, tools, and
Equipment.

Additional considerations include the availability of
electrical power, need for batteries, or electrical genera-
tors, external air sources for aircraft while on the ground,
and so on. These considerations emphasize the need for
a Concept of Operations (ConOps) Maintenance Con-
cept (Chapter 6) to provide a framework for deriving
Maintainability requirements.

23.3.10 Availability Requirements

The first criterion for systems, products, and services success
is system readiness to perform a mission when called upon.

Establish availability requirements commensurate with
the available budget and mission. This includes implemen-
tation of Daily Operational Readiness Tests (DORTs) or
User-Initiated Test (UIT), Built-In Tests (BITs), Built-In Test
Equipment (BITE), indicators, and display meters. These ac-
tivities and design considerations can provide early indica-
tions of potential problem areas and thus enable corrective
action to be taken in advance of mission needs.

23.3.11 Producibility Requirements

Systems and products planned for production must be
producible in a cost-effective manner that:

• Has acceptable risk.

• Has repeatable and predictable processes and methods.

• Can be produced within budgets and schedules at a
reasonable profit.

Engineering development of first articles are often
capability demonstrators that may include lesser quality ma-
terials, technologies, improvised components, and “add-on”
instrumentation to support performance verification. Produc-
tion items may not require these additional items or weight
that limit performance and increase cost. A producibility
objective often drives a search for alternative materials and
processes to reduce cost and risk and improve or maintain
system performance.

23.3.12 Storage Requirements

Most systems require some form of storage albeit for
energy, operator’s manuals, mission data storage, tools
and equipment, etc. Additionally, access to the storage ar-
eas or compartments by the System Operator is critical.
For example, the glove compartment of an automobile is
inside the front dash, not in the trunk. Establish storage
requirements commensurate with the mission, system, and
Personnel Element.

23.3.13 Integration, Test, and Evaluation
Requirements

Modular systems and products that undergo multiple lev-
els of integration and test require a Design for Integra-
tion, Test, and Evaluation objective. Ideally, you isolate
each Configuration Item (CI) and test it with actual, sim-
ulated, stimulated, or emulated interfaces. If the system
or product is to be integrated at various facilities, special
interface considerations should be given to physical con-
straints and Equipment, and the tools available should be
investigated.

Finally, systems and products must be designed to facili-
tate multi-level System Verification and Validation (V & V).
This requires the incorporation of temporary or permanent
test points and access ports or doors to support calibration
and alignments.

23.3.14 Verification Requirements

Once the system or product is integrated, tested, and ready
to be verified, designers must consider how the item will
be verified. Some requirements can be physically verified;
others may not. Establish a Verification objective to ensure
all data required for verification are accessible and can be
easily measured.
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23.3.15 Enabling System Requirements

Multi-use applications require continuing support throughout
their planned life cycle. Enabling System requirements
ensure that appropriate design considerations are given for
replenishment of expendables and consumables and for
corrective and preventive maintenance.

Thus, Enabling System requirements are critical for
establishing Mission Support requirements.

23.3.16 Deployment Requirements

Many systems, products, and services require Deployment
Requirements to support deployment or shipment to duty sta-
tion mission areas. Design considerations include tie-downs,
safety chains, anchors, accelerometer sensor instrumentation
packages, controlled environmental atmospheres, and shock
and vibration proofing. Additionally, en route deployment
constraints such as bridge heights and maximum weights,
road grades, and hazardous waste routes constraints must be
factored into SPS (Table 20.1) Section 3.6 Design & Con-
struction Constraints decisions.

23.3.17 Transportability Requirements

Vehicular systems, military troops, and others require design
considerations based on transportability objectives. This
requires understanding who/what is to be transported, what
volumetric space and carrying capacity is required, what
tie-downs, lift points, or safety lights, and markers are
required, how the cargo is to be secured, who requires
what access to the cargo and when, and what protection
mechanisms are required from environmental and Human
System threats.

23.3.18 Mobility Requirements

Vehicular systems and military troops are Users that require
design considerations based on a mobility objective. The
requirements considerations include how the system will be
physically moved, how often, and how the system is to be
secured when it reaches its destination.

23.3.19 Maneuverability Requirements

Systems often require the capability to maneuver through
their Operating Environment. This requires piloting/
steering mechanisms that enable the operators to physically
or remotely move the vehicle from one location, navigational
systems, change orientation relative to a frame of reference,
or make directional vector-headed changes.

23.3.20 Portability Requirements

Some systems and products must be developed with a
Portability objective. Portability requirements have two key
contexts: (1) physical properties and (2) software:

• Portability physical properties of a system or product
such as the acceptable size and weight that a human
can lift, move, or transport.

• Software portability refers to the ease of integrating and
executing CSCIs on various types of computer systems
with minimal adaption.

23.3.21 Training Requirements

Most systems and products require some form of Training
objective. Where this is the case, training is a Critical
Operational Issue (COI), not only for the students but
also for the instructors, general public, and environment.
Additionally, scoring and debriefs of training sessions are
important. Therefore, the ConOps Sustainment Concept
(Table 6.1) becomes a key input into system and product
requirements. In some cases, systems and products may
require re-modification to include instructor controls and
scoring results.

23.3.22 Reconfigurability Requirements

Some systems and products are designed to accommodate a
variety of missions as well as a quick turnaround between
missions. Therefore, some may have to be reconfigurable
within a specified timeframe.

23.3.23 Security-and-Protection Requirements

Various systems and products require a security-and-
protection objective that limits system or product access to
only authorized individuals or organizations with a “need
to know” justification. Requirements considerations could
include: layers of armor, Internet firewalls, authorized
accounts, passwords, and encryption.

23.3.24 Vulnerability Requirements

Systems that operate in hostile threat environments or that
could be misused or abused by the operator(s) should have
a Vulnerability objective. This applies to buildings, safes,
vehicles, computers, and electrical circuits.

When a system, product, or service is anticipated to be
vulnerable to Operating Environment threats, mission
analysis and UC analysis should identify the threats and
threat scenarios and prioritize design capabilities to resist or
minimize the effects of those threats. The generalized solu-
tion acknowledges the interaction; the specialized solution
incorporates key capabilities or features to protect the system
and its operators from external threats.
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23.3.25 Lethality Requirements

Some systems such as munitions and missiles are intended
to penetrate vulnerable areas and destroy mechanisms that
enable the targeted system to survive. The lethality objective
focuses on the system design and material characteristics that
enable a system such as a missile to achieve this objective
against an external system.

23.3.26 Survivability Requirements

Some systems and products are required to operate in harsh,
hostile Operating environments. They must be capable of
surviving to complete the mission and, as applicable, return
safely. Examples include thermal insulation, layers of armor,
elimination of Single Points of Failure (SPF), (Chapters
26 and 34). Systems such as these require a Survivability
objective.

23.3.27 Safety Requirements

The application of SE requires strict adherence to laws,
regulations, and engineering principles and practices that
promote the safety of system and product stakeholders—the
operators, maintainers, general public, personal property,
and environment. Safety requirements focus on ensuring
that systems, products, and services are: safe to deploy;
operate, maintain, and sustain; and dispose. This includes not
only the physical product but also establishing training and
instructional procedures, hazards, cautions, and warnings,
and potential consequences for failure to perform.

23.3.28 Disposal Requirements

Systems and products that employ Nuclear, Biological, or
Chemical (NBC) materials ultimately wear out, become ex-
hausted, damaged, or destroyed intentionally or by accident.
In any case, the system or product requires a Disposal objec-
tive. This includes mechanisms for monitoring and removal
of hazardous materials such as NBC substances or traces.
For items that can be reclaimed and recycled, special tools
and equipment—categorized as Peculiar Support Equipment
(PSE)—may be required.

23.4 SPECIFICATION ANALYSIS METHODS

Given the System Acquirer and System Developer perspec-
tives, how do they approach analysis of the specification?
The answer encompasses the methods and techniques identi-
fied in earlier chapters. Due to the broad scope of this answer,
we will briefly address some high-level approaches you can
apply to specification analysis.

Examine the outline structure for missing sections and
topics that are crucial to developing a System to fill the

solution space and solve all or a portion of the User’s/End
User’s problem, issue, or concern.

23.4.1 System Requirements Analysis (SRA)

Perform an SRA to understand what the system is expected
to do. Ask key questions such as:

1. Does the list of requirements appear to be generated
as a feature-based “wish list” or reflect structured
analysis such as Model-Based Systems Engineering
(MBSE)?

2. Do the requirements follow the Requirements State-
ment Validation Criteria (Table 22.4)?

3. Do the requirements appear to have been written by
a seasoned SME or by a semi-knowledgeable person
needing a task?

4. Do the requirements adequately capture User opera-
tional needs? Are they necessary and sufficient?

5. Do the requirements unnecessarily constrain the range
of viable solutions? (Figure 21.5)

6. Are all system interface requirements identified?

7. Are there any undefined annotations (TBD or TBS)
remaining in the specification?

8. Are there any Critical Operational/Technical Issues
(COIs/CTIs) that require resolution or clarification
with the System Acquirer, User, or End User?

23.4.2 Perform Engineering Graphical Analysis

1. Based on the SPS or EDS requirements, as stated,
can we draw a simple graphic such as a Context
Diagram (Figure 8.1) or Architecture/System Block
Diagram (ABD/SBD) (Figure 20.5) of the System and
its interactions with its Operating Environment?

2. Are there any obvious inconsistencies in the graphic
that are not specified as requirements in the specifica-
tion such as missing requirements (Figure 20.3)?

23.4.3 Hierarchical Analysis

1. Are there any misplaced, missing, duplicated, or
conflicting requirements (Figure 20.3)?

2. Are the requirements positioned and scoped at the
proper levels of abstraction? (Figure 8.4)

23.4.4 Technology Analysis

Do the specification requirements indicate a willingness or
unwillingness by the System Acquirer to consider and accept
new technologies or solutions?
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23.4.5 Competitive Analysis

Do the specification requirements inappropriately favor or
target a competitor’s products, services, or organizational
capabilities?

23.4.6 Modeling and Simulation (M & S) Analysis

If appropriate, is it worthwhile to develop models and
simulations (Chapters 10 and 33) as decision aids to analyze
system performance issues (COIs/CTIs)?

23.4.7 Requirements Verification Analysis

1. Are there any requirements that are unreasonable,
unverifiable, cost prohibitive, or too risky using the
verification methods specified?

2. Does verification require any special test facilities,
tools, equipment, or training?

23.4.8 Requirements Validation Analysis

When SEs analyze specifications, especially those prepared
by external Enterprises, most engineers presume the specifi-
cation has been prepared by someone who:

1. Understands the User’s problem space and solution
space(s).

2. Accurately analyzes, translates, and articulates the so-
lution space into requirements that can be imple-
mented economically with acceptable risk, and so
forth.

Exercise caution with this mind-set! Avoid assuming any-
thing until you have validated the specification requirements.

23.5 SPECIFICATION DEFICIENCIES
CHECKLIST

If you analyze specification requirements practices in many
Enterprises, there are a number of common deficiencies that
occur frequently. These include:

• Deficiency 1: Failure to budget reasonable time for
specification analysis.

• Deficiency 2: Requirements traceability.

• Deficiency 3: Failure to follow a standard specification
outline.

• Deficiency 4: Inadequate specification development
approach.

• Deficiency 5: Lack of specification and requirements
ownership.

• Deficiency 6: Referenced versus Applicable Docu-
ments.

• Deficiency 7: Specifying broad references.

• Deficiency 8: References to unapproved specifications.

• Deficiency 9: Use of ambiguous words and phrases.

• Deficiency 10: Missing fault detection, isolation, con-
tainment, & recovery requirements

• Deficiency 11: Over-/Under-specification of Require-
ments

• Deficiency 12: Specification change management.

• Deficiency 13: Requirements applicability—configura-
tion effectivity.

• Deficiency 14: Failure to identify verification methods

• Deficiency 15: Failure to define technical terms

• Deficiency 16: Failure to identify assumptions

Deficiency 1: Failure to Budget Reasonable Time for
Specification Analysis
One of the ironies of system development is failure
to allocate the proper amount of time to reasonably
analyze or develop specifications.

Principle 23.2

Wasson’s Task Significance Principle

The time allocated by management for
most program and technical decision-
making tasks is inversely proportional to

the significance of the tasks or decision to the deliverable
product, User, or Enterprise.

Three of the most crucial specification analysis tasks
during a proposal effort are understanding:

1. What problem the User is trying to solve.

2. What system, product, or service does the System
Acquirer’s formal solicitation’s SRD/S00 specify.

3. What you have committed your Enterprise to via the
draft SPS submitted as the proposal response.

Despite their significance, these three tasks often fall
back in the priority list behind multi-level managerial
briefings, which are important, and other “administra-
tive” tasks. Seriously spend the appropriate amount of
time getting specification requirements right!

Deficiency 2: Requirements Traceability
Enterprises and Engineers often review specifications
without ever asking the most fundamental question.
Where did these requirements originate and what
was the methodology for allocating and flowing them
down to this specification (Principle 19.13)? Before
you spend time reviewing a specification, you should
authenticate the answer to this question.
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Deficiency 3: Failure to Follow a Standard Specifica-
tion Outline
Many specification issues are traceable to a lack of
commitment to establish and employ standard specifi-
cation development outlines and guidelines (Principle
19.3). Standard outlines represent industry best prac-
tices and organized lessons learned that reflect prob-
lem areas or issues that someone else has encountered
and must be corrected in future efforts. Over time, they
incorporate a broad spectrum of topics that may or may
not be applicable to all programs. The natural tendency
of SEs is to delete non-applicable sections of a stan-
dard specification outline. Additionally, management
often dictates that specific topics be deleted because
“We don’t want to bring it to someone’s attention that
we are not going to perform (topic).”
The reality is standard outlines include topics that
are intended to keep you out of trouble! A cardinal
rule of system specification practices requires you
to provide rationale as to why a standard outline
topic is not applicable to your Project. The rationale
communicates to the reader that you:

1. Considered the subject matter.

2. Determined the topic is not relevant to your system
development effort for the stated rationale.

Therefore, if someone determines later that “Yes, it
is relevant,” you can correct the deficiency and appli-
cability statement. This applies to plans, specifica-
tions, and other types of technical decision-making
documents.
Problems arise when SEs purposefully delete sections
from a standard outline. Once deleted, the section is
“out of sight, out of mind.” Since contract success
is dependent on delivering a properly designed and
developed system on schedule and within budget,
you are better off identifying a topical section as
“Not Applicable.” Then, if others determine that it is
applicable, at least you have some lead time to take
corrective action before it is too late.
If you follow this guideline and go into a System
Requirements Review (SRR), (Chapter 18) any “Not
Applicable” (N/A) issues can be addressed at that time.
All parties emerge with a record of agreement via the
conference minutes concerning the applicability issue.

Author’s Note 23.2

Cost-to-Correct Specification
Requirements Errors and
Omissions

Remember that the cost-to-correct
specification requirements latent defects increases almost ex-
ponentially (Table 13.1) throughout the System Develop-
ment Process (Figure 12.2).

Deficiency 4: Inadequate Specification Development
Approach
Some Engineers pride themselves in being able to
quickly “assemble a specification” by duplicating
legacy system specifications (Specification Reuse
Approach—Chapter 20) without appropriate mis-
sion, operational, and system analysis. Guess what?
Management takes great pride in the practice as well.
Ahead of schedule, life is rosy! Later, SEs discover
that key requirements were overlooked or ignored,
(Figure 20.3) were not estimated, and have significant
cost to implement. Guess what? Management is very
unhappy!
Where legacy precedented systems exist and are used
as the basis to create new specifications with only
minor modifications, the practice of plagiarizing ex-
isting specifications may be acceptable. However, be
cautious of the practice! Learn when and how to apply
specification reuse effectively.

Deficiency 5: Lack of Specification and Requirements
Ownership
Specification requirements are often ignored due to a
lack of ownership. Two SEs argue that each thought the
other was responsible for implementing an SPS or EDS
requirement. Every requirement in every specification
should have an assigned owner accountable for its
analysis, implementation, verification, traceability, and
proposed updates (Principle 19.8). The challenge is:
if you review a specification and need to clarify a
requirement, no one seems to know who is accountable
for its origination.

Deficiency 6: Referenced Documents versus Applica-
ble Documents

Principle 23.3

Specification Referenced Documents
Principle

Specification Section 2.0 “Referenced
Documents” lists only documents ex-

plicitly referenced by Section 3.0 “Requirements” and 4.0
“Qualification Provisions”; remove all other non-referenced
documents.

Referenced documents refer to those documents—
namely, specifications and standards—explicitly
specified in the SPS and EDS Section 3.0
“Requirements” and listed in Section 2.0 “Refer-
enced Documents” or “Applicable Documents.” In
contrast, Applicable Documents are those containing
information germane to the topic but are not referenced
by the specification. Do not list these documents in a
specification’s Section 2.0 “Referenced Documents.”
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Deficiency 7: Specifying Broad References

Principle 23.4

Broad References Principle

Avoid broad, general references to external
documents. Always, specify document ti-
tle, version, release date, section number(s)
and section title(s).

Specification writers spend the bulk of their time
word-smithing, tweaking, and correcting documents
and very limited time, if any, performing systems
analysis—even less on specification references. Ref-
erences are often inserted at the last minute. Why?
Typically, those same SEs do not have the time
to thoroughly research the references. They make
broad, non-specific references such as “in accordance
with MIL-STD-1472” intended as a “placeholder”
because:

1. Management is demanding completion.

2. We’ll “clean it up” later.

3. We don’t understand what the reference means, but
it sounds good; “saw it in another spec one time so
let’s use it.”

Since this is a specification and the System Developer
is required by contract to implement the provisions of
the SPS, are you prepared to pay the bill to incorporate
all provisions of MIL-STD-1472? Absolutely not!
With luck, the problem may work itself out during the
proposal phase via the Offeror formal Question and
Answer (Q&A) process.
This problem is a challenge for the System Acquirer
and System Developers.

1. The referenced document may be outdated or
cancelled. Professionally speaking, this can be
embarrassing for the Enterprise and specification
developer.

2. Unskilled specification writers—despite 30 years
of experience in other non-topic areas—may inad-
vertently make technical decisions that may spec-
ify requirements that have legal, safety, and risk
ramifications.

3. System Developers often fail to properly re-
search RFP references, thereby costing significant
amounts of money to implement the reference as
stated in the SPS.

Heuristic 23.1 Undocumented Verbal Agreements

Undocumented verbal agreements and requirements vapor-
ize when either party gets into trouble or a dispute emerges.

A Word of
Caution 23.2

Thoroughly Analyze and Understand
RFP Reference Requirements

Thoroughly research RFP references,
formally request System Acquirer (role)
clarifications or confirmations, and then

document in brief form what the reference explicitly
requires. Remember that undocumented comments are
magically forgotten by the source when things go wrong!

Deficiency 8: References to Unapproved Specifications
When the System Developer’s project plans to develop
several multi-level EDSs, the efforts must be synchro-
nized. One of the ironies of specification development
is a perception that multi-level specifications can be
written simultaneously to cut development time. This
is an erroneous perception that ultimately leads to
technical chaos, conflicts, and inconsistencies! The se-
quencing and approval of specification development
at lower levels is dependent on maturation and ap-
proval of higher-level specifications. There are ways
of accomplishing this, assuming teams at multiple lev-
els communicate well and mature decisions quickly at
higher levels.

Deficiency 9: Use of Ambiguous Words and Phrases
Specification writers are notorious for “writing” re-
quirements statements that employ ambiguous words
that are open to interpretation (Principle 19.9). In
accordance with specification practices that promote
explicitness, ambiguous words and terms should be
avoided or defined. Consider the following example:

Example 23.1

Ambiguous Customer Specification
Phrases

Simulation community specifications often
include ambiguous requirements statement

wording such as “realistic representation of the real world”
and “effective training.”

The challenge for the System Acquirer and System
Developer is: How do you know when a “realistic rep-
resentation” or “effective training” has been success-
fully achieved? The answer is to explicitly define the
terms. The risk is: What subjective criteria will the
User, subconsciously in their minds and perceptions,
use to determine successful achievement of the re-
quirements? (NAVAIR TSD, 2014) provides examples
of ambiguous terms and phrases.

Deficiency 10: Missing Fault Detection, Isolation,
Containment, & Recovery Requirements
Most SEs write specifications for the “ideal” world.
The reality is that systems and interfaces fail, some-
times with catastrophic consequences. When spec-
ifications are written, make sure the requirements
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are specified to address Normal, Abnormal, Emer-
gency, and, if appropriate, Catastrophic Operations
(Figure 19.5). This requires robust architectural solu-
tions (Chapter 26) that enable the System to tolerate
and/or recover from the following types of faults:

1. External interface faults.

2. Internal faults resulting from component faults and
internal interface faults.

For mission critical systems that involve human life,
public safety, property loss, and the environment,
specifications often fail to specify requirements for
detecting, isolating, and containing faults (Figure
26.8). Where this is the case, fault detection, isolation,
and containment requirements need to be specified as
well as requirements for recovering from external and
internal faults (Figure 10.17).

Deficiency 11: Over-/Under-specification of Require-
ments
Specification developers are often confronted with un-
certainty regarding the adequacy of the requirements.
Specification requirements can be over-specified
or underspecified (Figure 21.5) The way to avoid
over-/under-specification involves four criteria:

1. Identify only essential requirements (Principle
19.7).

2. Focus on specifying the System or Entity’s
performance envelope such as boundaries for
performance-based capabilities.

3. Avoid specifying how the performance-based
capability envelope is to be implemented (Principle
19.6).

4. Avoid specifying capabilities more than one level
below the System or Entity’s level of abstraction.

Deficiency 12: Specification Change Management

Principle 23.5

Decision-Making Reference Principle

Under standard operating practices,
project personnel perform to current,
baselined work products that have

been: (1) approved for release and decision-making and
(2) communicated to all stakeholders.

Once a specification is approved, baselined, and
released, changes must be formally approved and
communicated to Stakeholders. Because of a lack of
communications, two problems can occur:
∘ First, program and technical management often lack

an appreciation of the need to communicate specifi-
cation changes to project personnel. Ironically, the
technical integrity of the project is at risk, which is
the very topic management seems to be averse to.

∘ Second, when management does communicate
changes, Project personnel often ignore an-
nouncements about specification changes such
as Specification Change Notices (SCNs) and
continue to work with a previous version.

System integrity demands formal change management
process discipline to track approved specification up-
dates, incorporate changes immediately, and notify all
stakeholders of the latest changes. This includes proper
versioning to enable stakeholders to determine cur-
rency.

Deficiency 13: Requirements Applicability—
Configuration Effectivity

Principle 23.6

Specification Effectivity Principle

When specifications apply to different
model numbers, versions, or blocks serial
numbers, explicitly designate each require-
ment with the appropriate effectivity.

Some specification requirements may only be appli-
cable to specific configurations and units—that is,
configuration effectivity. Where this is the case, label
the requirement as only applicable to the Configura-
tions A, B, C, etc., or Serial Numbers XXXX–YYYY.
If this occurs, include a statement to the reader on
the cover and in the Section 1.0 Introduction that this
specification applies to configurations A, B, and C and
Serial Number effectivity XXXX–YYYY.

A Word of
Caution 23.3

Multi-Purpose Product Model
Specifications

Realistically, this can become a very
complicated challenge over time as mod-
els change. Enterprises often have “core”

requirements for a product line with customized elabora-
tions for variations for a specific product model. Apply
Systems Thinking (Chapter 1) concerning the ramifications
of these decisions and avoid their unintended consequences
(Principle 24.20).

Deficiency 14: Failure to Identify Verification Methods
Every specification requirement must be verified. Yet,
the identification of verification methods is one of
the last activities to be performed. As a result, most
specifications are deficient in specifying how the sys-
tem or product will be verified, especially early in
the specification’s development. A showstopper rule
should be that no specification is baselined until every
requirement is assigned at least one or more verifica-
tion methods (Principles 13.11 and 22.4).
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Deficiency 15: Failure to Define Technical Terms
Specifications should be written for their Users us-
ing language and terminology familiar to them. Spec-
ifications are often deficient in terms of technical
terms that may be ambiguous and have multiple mean-
ings. Where this is the case, assumptions should be
documented as illustrated in Table 20.l Specification
Section 6.2.

Deficiency 16: Failure to Identify Assumptions
Underlying most specifications is a set of assumptions
that are never documented. Where this is the case,
assumptions should be documented as illustrated in
Table 20.l Specification Section 6.3

23.6 RESOLUTION OF SPECIFICATION COI/CTI
ISSUES

Specifications often contain abstract or ambiguous
requirements that require clarification to ensure the proper
interpretation and understanding of the requirement. Some
requirements, however, raise COIs/CTIs that present major
challenges to implementation. The issues may reflect tech-
nical, technology, cost, schedule, or support risks as well as
TBDs, and so on.

Requirements issues and the need for clarifications occur
before and after Contract Award (ACA). Let’s briefly explore
the handling of issues during these two timeframes.

23.6.1 Requirement Issues Resolution Prior to CA

System Acquirers often release the draft version of an SRD
as part of formal solicitation such as a RFP for review and
comment. The draft SRD may contain various specification
requirements issues and the need for clarifications.

The first step of any specification analysis should be to
identify and tag all requirements requiring clarification—
technical, cost, schedule, technology, and support risks, and
so on. Remember that publicly surfacing issues and clarifica-
tions during the RFP process may potentially tip competitors
regarding your proposal strategy and enable them to gain
competitive insights into your solution. Therefore, the pro-
posal team must make a decision regarding which issues to
submit for clarification and which issues to give additional
internal analysis and/or follow-up.

The key point is that Offerors—System Developers—
must thoroughly analyze, scrutinize, and resolve all
requirements issues and clarifications before they sub-
mit their specification as part of the proposal and sign a
contract.

If the SRR has not been conducted (Chapter 18), there
may be an opportunity to address the need for clarifications
or to correct deficiencies. Even then, some System Acquirers

may be reluctant to agree to specification changes via
contract modifications.

From the System Acquirer’s perspective, the need to
change always goes back to the proposal response prior to
CA “… why wasn’t the matter addressed at that time or
during contract negotiations?” The problem is exacerbated if
the Offeror (System Developer) voluntarily proposed speci-
fication requirements language without adequate analysis or
consideration. The situation potentially has degrees of Enter-
prise, technical, and professional embarrassment.

23.6.2 Requirement Issues Resolution ACA

Requirements issue resolution ACA varies by contract and
Acquirer. The willingness to modify specification require-
ments language may depend on how recently the CA has
occurred.

23.6.3 Requirement Issues Resolution Prior to the SRR

Human Systems, Enterprise and Engineered, even with
the best of intentions, are not perfect. Inevitably, every
contract SPS has blemishes, degrees of goodness, and strong
and weak points. Although the degree of goodness has an
academic connotation, “goodness” resides in the minds and
perceptions of the System Acquirer and System Developer.
Remember the cliché, one person’s work of art may be
viewed by another person as an unorganized set of thoughts.

Discussions by both parties reach a point whereby will-
ingness to entertain contract modification to eliminate speci-
fication blemishes or latent defects are rejected. The System
Acquirer may agree in principle to changes, but is reluc-
tant to request changes due to the System Developer taking
advantage of the situation via revised cost changes.

Conversely, the System Developer may want changes,
but the System Acquirer is unwilling to allow any changes
for fear of the unknown that may result from the changes.
Even when both parties agree, there may be SPS latent
defects (Principles 13.2 and 13.7) that lie dormant and go
undiscovered until late in the System Development Phase of
the contract. The best that can occur is for both parties to
accommodate each other’s wishes at no cost, assuming that
is the appropriate and reasonable solution.

Regardless of the scenario, you may have a situation
where the SPS contains defects, deficiencies, or errors and
the System Acquirer refuses to modify the contract. What do
you do?

One solution is to create an electronic System Design
Notebook (SDN); some people refer to this as a Design
Rationale Document (DRD). Why do you need an SDN or
DRD? You need a mechanism to record design assumptions
and rationale for requirements allocations and design criteria.

Under the Terms and Conditions (Ts&Cs) of the contract,
the System Developer must perform and comply with the
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SPS requirements that are subsequently flowed down to
lower-level EDSs. Therefore, lacking a definitive set of
SPS requirements, you may want to consider an at risk
solution that expresses your Enterprise’s interpretation of
the ambiguous SPS requirements. Based on contracting
protocol, an Engineering Change Proposal (ECP) should be
provided to the System Acquirer Contracting Officer (ACO)
for review and follow-up action.

Author’s Note 23.3

Importance of Clarifying
Requirements before Signing the
Contract

The preceding discussion highlights
the need to think smartly up front about requirements and
avoid this situation. You will find impatient people who insist
that you move on and not worry about interpretations. “Be-
sides, it’s perfectly clear to me!” Beware! Any time invest-
ment and effort spent up front clarifying SPS requirements
before they become contract obligations will be significantly
less risk and costlier than ACA. Remember that Figure 13.2
includes all types of latent defects—design errors, flaws, and
specification requirements deficiencies (Figure 20.3).

When you conduct the SRR (Chapter 18), any residual
SPS latent defects—deficiencies, errors, deficiencies, and
so forth—should be addressed with the System Acquirer.
The requirements defects discussion and decisions should
be recorded in the SRR meeting minutes. If the System Ac-
quirer refuses to allow corrections via contract modification,
they may acknowledge via the System Acquirer Contracting
Officer (ACO) your chosen approach. Therefore, consider
documenting your design assumptions in a Design Rational
Document (DRD) and include open distribution or accessi-
bility to the System Acquirer.

Author’s Note 23.4

Resolution of Specification
Requirements Issues “Up Front”

Every contract and situation is differ-
ent and requires decision-making on

its own merits. Professionally and technically speaking, the
System Acquirer and System Developer should emerge from
the SRR with no outstanding specification issues. The reality
is:

• The System Acquirer may have to settle for a negoti-
ated acceptance of the System as is with known defi-
ciencies at System delivery.

• The System Developer may be unable to perform to the
Ts&Cs of the contract.

All Stakeholders need to emerge from the contract as
winners! Therefore, avoid this problem and resolve it up
front during the proposal phase or not later than the SRR and
throughout the System Development Phase, as appropriate.

23.6.4 COI/CTI Post-SRR Requirements Issues

There are occasions when latent defects—flaws, errors,
deficiencies, etc.—in specification requirements go undis-
covered until after SRR, generally due to poor analysis. Sys-
tem Acquirers may reluctantly consider and may or may not
accept ECPs for requirements changes. Depending on the
situation, the only workable solution may be to submit a
Request for Deviation to the specification requirements.

23.6.5 Tracking Requirements Issues and
Clarifications

Principle 23.7

Requirements Issues Tracking
Principle

Track specification requirements issues to
closure.

When specification requirements issues and clarifications
are identified, it is critical to bring all of them to closure
quickly. The preferred approach for tracking closure status is
to establish a metric that represents the number of actionable
COIs, CTIs, TBDs, TBSs, and clarifications remain “open.”

23.6.6 Closing Thoughts

When specification requirements issues are discovered, sur-
facing the issue to the surprise of the System Acquirer
program manager in a major technical review typically has
consequences. Stakeholders—System Acquirers, Users, End
Users, Executives, and Project Managers —do not like sur-
prises, especially in public forums such as project reviews
and conferences. Although the handling of an issue depends
on the personnel and Enterprises involved, the best advice
may be for the System Developer’s program or technical
director to informally introduce the issue “off-line” in private
conversation with the System Acquirer program manager
prior to a review. Depending on the outcome and response,
the System Developer may choose to address the issue for-
mally through normal procurement channels.

Finally, the reluctance and unwillingness of the System
Acquirer to entertain the idea of specification requirements
changes may be driven by having to implement a contract
modification that requires numerous approvals and justifi-
cations, a laborious and career risk process. It also chal-
lenges the initiator(s) to explain to your management why you
failed to recognize this situation and rectify it during contract
negotiations.

23.7 REQUIREMENTS COMPLIANCE

As a System Developer, one of the most common questions
posed by management to SEs is: Can we meet the specifica-
tion’s requirements? The response typically involves words
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such as comply, conform, and meet. Since SEs often lack
training on the proper usage of the terms, you will find these
terms are typically used interchangeably. So, what do the
terms mean?

If you delve into the definitions of comply, conform,
or meet in most dictionaries, you may emerge in a state
of confusion. The reason is that most dictionary definitions
of these terms employ either of the other two terms as
part of the definition, resulting in circular references. So, to
bring some clarity to this confusion, consider the following
explanations.

23.7.1 Compliance

The term compliance is often used in reference to specifica-
tion or design requirements compliance, process compliance,
regulatory compliance, and so forth. In general, compliance
infers mandatory strict adherence or obedience to the “let-
ter” of a requirement with no exceptions. Despite the term’s
intent, you will often find degrees of compliance. Within the
Contract System Development domain contracting protocol
requires the performing Entity – System Developer – to: (1)
formally notify the Acquirer’s Contracting Officer (ACO)
immediately anytime they will be unable to achieve full com-
pliance with contract specification requirements and (2) pro-
pose risk mitigation corrective actions.

Example 23.2

Compliance Example

People are expected to fully comply with
the letter of contract law established by
international, federal, state, and local
governmental authority.

23.7.2 Conformance

We often hear the phrase “We will conform to your require-
ments.” What does the seemingly evasive term “conform”
really mean? In general, it says the Enterprise has Organi-
zational Standard practices (OSP) such as processes, meth-
ods, and behavioral patterns that we use on a regular basis.
However, to promote harmony among team members and
a positive relationship, we will adapt or adopt—that is, to
conform to—a set of processes, methods, and behavioral pat-
terns to be mutually acceptable to the other party. Here’s an
example.

Example 23.3

Conformance Example

You visit a country and discover their eat-
ing habits are different from yours. You
have a choice: (1) conform to their culinary

practices, (2) go without food, or (3) bring your own chef and
food.

23.7.3 “Meet” Requirements

You often hear someone say they or their Enterprise can
“meet” the requirements. What does this mean? In general,
the term “meet” is a very weak, non-committal response that
carries a minimum threshold connotation. In effect, they are
stating, “We will meet your minimum requirements.”

To summarize our Requirements Compliance section dis-
cussion, a subcontractor might tell a System Developer, “For
this subcontract, we will conform to your documentation sys-
tem’s review and approval process. When we submit our
documents for review and approval, we will comply with the
subcontract’s instructions for document format and submit
via the Contracting Officer.”

23.8 CHAPTER SUMMARY

In summary, our discussions in Chapter 23 addressed key
topics you can employ to analyze specifications. This applies
to specifications written both external and internal to your
project. One of the greatest challenges in Specification
Analysis is the failure to fully review a specification in terms
of its requirements, references, and verification methods.
Your analysis should reveal if the document was created by
an Enterprise that employs the SDBTF-DPM Engineering
Paradigm or one that employs MBSE methods.

We began our discussion of specification analysis by
addressing System Acquirer and System Developer perspec-
tives for a specification. We introduced various methods that
System Developers employ to provide a high-level assess-
ment of the “goodness” of the specification.

Next, we introduced common deficiencies such as miss-
ing, misplaced, overlapping, or duplicated requirements
that plague many specifications. We described how spec-
ification issues and concerns should be resolved between
the System Developer and Acquirer prior to and ACA.
Last, we delineated three terms—comply, conform, and
meet—that contractors express interchangeably but have dif-
ferent connotations.

23.9 CHAPTER EXERCISES

23.9.1 Level 1: Chapter Knowledge Exercises

1. How do you methodically analyze a specification?

2. What are some common types of specification require-
ments defects?

3. When requirements defects are identified, how should you
resolve them internally and externally with the System
Acquirer?

4. What does it mean to comply with a requirement?

5. What does it mean to conform to a requirement?

6. What does it mean to meet a requirement?
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23.9.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e.
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24
USER-CENTERED SYSTEM DESIGN (UCSD)

Enterprise and Engineered systems, products, or services
require some form of human leadership and direction via
interactions to initiate, operate (Monitor, Command, and
Control (MC2), maintain, sustain, and terminate their opera-
tion. As technologies advance and deployment, Operations,
Maintenance, and Sustainment (OM&S) costs increase, we
continually strive to automate systems to minimize the num-
ber of human interactions and decisions to improve produc-
tivity, efficiency, and effectiveness and reduce costs and risk.

In general, most people tend to view systems, products, or
services as stand-alone entities. The reality is that systems,
products, or services are simply tools as enablers that
provide humans the capability to accomplish missions and
outcome-based performance objectives. For example, early
man exploiting the capability of an integrated fulcrum and
lever system to move heavy objects that exceeded their own
physical capabilities and limitations.

Principle 24.1

User’s Mental Model Principle

To reduce or eliminate human error, thor-
oughly understand the User’s conceptual
mental models for task performance before

designing Equipment-Hardware and Software.

One of the common aspects of all Engineering disci-
plines is designing and selecting components to ensure
that progressive stages and levels of interfaces are (1)
compatible physically and interoperable with each other,
(2) durable and reliable, and (3) able to survive in their
prescribed Operating Environments for the dura-
tion of a mission. Engineering spends countless hours

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

performing this task with an exclusionary focus on de-
signing the Equipment Element; that’s what we have
been educated to perform. Then, after the Equipment
is developed, proceed with the undesirable task of writ-
ing the operator, maintenance, and training manuals that
are later deemed to be useless by the User. Hypothetically,
the operator is told to “place their right foot against their
left ear and take their left hand and reach under their right
leg to activate a switch on a floor level panel on the right
side of the operator.” Enterprises award project teams and
publicize accolades for “outstanding technical performance
and innovation” in designing systems, products, or ser-
vices that may have limited degrees of usability and User
satisfaction.

Humans, as “elements” of a system, are not contortion-
ists! Like physical components and materials, humans have
bounded physical capabilities that limit our abilities. Our in-
herent performance is disrupted by distractions—inefficient
and ineffective interfaces—that induce stress, which has
physiological and psychological implications on human
decision-making and performance. The irony here is that
Engineers are educated and trained to research the physical
characteristics and compatibilities of electrical, mechanical,
and software components; materials; and chemicals in man-
ufacturer’s data and spec sheets. Yet, they are not educated
or trained to view the human operators and maintainers as
“components” worthy of similar compatibility and interoper-
ability considerations. “Just tell the operator to reach down
to the floor and flip the switch on. It should be intuitively
obvious. They (Users) are smart enough to figure it out for
themselves and don’t need us telling them what to do!” is a
common Engineering mind-set.

http://www.wiley.com/go/systemengineeringanalysis2e
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Chapter 24 answers this challenge with a focus on
User-Centric System Design (USCD). This topic is often re-
ferred to under a variety of terms such as Human Systems In-
tegration (HSI), Human Factors (HF), Human Factors Engi-
neering (HFE), Human Engineering (HE), Human-Centered
Design (HCD), and User-Centered Design. As new Engi-
neering graduates enter industry, government, and academia,
they learn to adapt to the local Enterprise usage of these
terms over time. Our discussions in this chapter are about
the need to:

1. Design and engineer multi-level Equipment, Mission
Resources, Procedural Data, System Responses,
and Facilities System Elements to be compatible and
interoperable with human operator, maintainer, and
sustainer characteristics.

2. Educate and train Personnel System Element
components in how to safely, effectively, and effi-
ciently MC2 systems, products, or services to conduct
Enterprise missions and perform tasks to achieve
performance-based outcomes and objectives.

On completion of this chapter, one of the most important
points is recognition and appreciation that humans, as
Personnel Element “components” of a system, have
bounded capabilities and limitations. Those capabilities
and limitations become constraint requirements levied on
the design and implementation of the Equipment, Proce-
dural Data, Mission Resources, System Responses,
and Facilities Elements, not vice versa! The bottom
line is Enterprises need to recognize and shift their ad
hoc Plug and Chug … Specify–Design–Build–Test–Fix
(SDBTF)-Design Process Model (DPM) Equipment-based
Engineering paradigm to a USCD paradigm.

24.1 DEFINITIONS OF KEY TERMS

• Anthropometry—“The scientific measurement and
collection of data about human physical characteristics
and the application (engineering anthropometry) of
these data to the design and evaluation of systems,
equipment, and facilities” (MIL-HDBK-1908B, 1999,
p. 6).

• Biomechanics—“A subspecialty of human factors,
primarily concerned with human movements, muscle
strength, and muscle power” (Chapanis, 1996, p. 12).
“The study of the structure and function of biological
systems by means of the methods of mechanics”
(Hatze, 1974, 189–190).

• Concurrency—The degree to which the Proce-
dural Data Element information—operator and
maintenance manuals, training instruction, materials,

devices, and aids—accurately and consistently match
the Mission System and Enabling System Equip-
ment Element design and its implementation.

• Duty—“A set of operationally-related tasks within a
given job, e.g., driving, system or product servicing,
communicating, target detection, self-protection, oper-
ator maintenance” (Adapted from MIL-HDBK-1908B,
1999, p. 32).

• Egress—“the action of going out of or leaving a place”
(Oxford Online Dictionary, 2013a).

• Ergonomics (or HF)—“The scientific discipline con-
cerned with the understanding of interactions between
humans and other elements of a system, and the profes-
sion that applies theory, principles, and data and meth-
ods to design in order to optimize human well-being
and overall system performance” (IEA, 2013).

• Ergonomists—“Those who perform Ergonomics …
(and) … contribute to the design and evaluation
of tasks, jobs, products, environments, and systems”
(HFES, 2013).

• Fail-Safe Design—A design “… provided in those ar-
eas where failure can cause catastrophe through dam-
age to equipment, injury to personnel, or inadvertent
operation of critical equipment” (MIL-STD-1472G,
2012, p. 12).

• Failure—“The event, or inoperable state, in which any
item or part of an item does not, or would not, perform
as previously specified” (MIL-HDBK-470A, p. G-5).

• Fault—“Immediate cause of failure (e.g., maladjust-
ment, misalignment, defect)” (MIL-HDBK-470B,
G-5).

• Haptic—“Refers to all the physical sensors that pro-
vide a sense of touch at the skin level and force
feedback information from muscles and joints” (DoD
5000.59-M, 1998, p. 117).

• Haptics—“The design of clothing or exoskeletons that
not only sense motions of body parts (e.g., fingers)
but also provide tactile and force feedback for haptic
perception of a virtual world” (DoD 5000.59-M, 1998,
p. 117).

• Harm—“physical injury or damage to the health of
people, or damage to property or the environment”
(ISO/IEC Guide 51:1999, 2009, 3.3).

• Hazard—“Any real or potential condition that can
cause injury, illness, or death to people; damage to, or
loss of, a system (hardware or software), equipment,
or property; and/or damage to the environment” (FAA,
2006, p. B-6).
Hazard—“A real or potential condition that could lead
to an unplanned event or series of events (i.e. mishap)
resulting in death, injury, occupational illness, damage



482 USER-CENTERED SYSTEM DESIGN (UCSD)

to or loss of equipment or property, or damage to the
environment” (MIL-STD-882E, 2012, p. 5).

• Human System Integration (HSI) The interdisci-
plinary technical and management processes for in-
tegrating human considerations within and across all
system elements; an essential enabler to SE practice.
(INCOSE SEHv4, 2015, Appendix C).

• Human-Centered (HCD) (User-centered design)—A
“design approach that is characterized by the active in-
volvement of users, a clear understanding of user and
task requirements, an appropriate allocation of function
between users and technology, iterations of design so-
lutions, and multi-disciplinary design.” (Except from
ISO 1503:2008, Paragraph 3.7 on page 3, with the per-
mission of ANSI on behalf of ISO. (c) ISO 2014—All
rights reserved.)

• User-Centered System Design (UCSD)—A multi-
disciplinary activity that places human capabilities
and limitations at the forefront of System Design
Solution development to achieve (1) optimal System
performance across all System Elements (Personnel,
Equipment, Procedural Data, Mission Resources,
System Responses, and Facilities), (2) acceptable
risk, and (3) acceptable System/Product Life Cycle
OM&S Phase costs.

• Human Engineering (HE)—“gen. The application of
knowledge about human capabilities and limitations
to system or equipment design and development to
achieve efficient, effective, and safe system perfor-
mance at minimum cost and manpower, skill, and
training demands. Human engineering assures that the
system or equipment design, required human tasks, and
work environment are compatible with the sensory, per-
ceptual, mental, and physical attributes of the person-
nel who will operate, maintain, control and support it”
(MIL-STD-1908B, 1999, p. 17).

• HE Requirements—“… requirements … estab-
lished to develop effective human interfaces and
preclude system characteristics that require extensive
cognitive, physical, or sensory skills; complex man-
power or training-intensive tasks; or result in frequent
or critical errors” (MIL-STD-1472G, 2012, p. 11).

• Human Factors (HF)—“A body of scientific facts
about human characteristics. The term covers all
biomedical and psychosocial considerations; it in-
cludes, but is not limited to, principles and applications
in the areas of human engineering, personnel selection,
training, life support, job performance aids, and human
performance evaluation” (MIL-HDBK-1908B, 1999,
p. 17).
“The discipline of Human Factors (HF) is devoted
to the study, analysis, design, and evaluation of
human-system interfaces and human organizations,

with an emphasis on human capabilities and limitations
as they impact system operation” (NASA SP
2007-6105, 2007, p. 246).

• Human Factors Engineering (HFE) —“A
multi-disciplinary effort to generate and compile
information about human capabilities and limitations,
and apply that information to (the design and acquisi-
tion of complex systems) produce safe, comfortable,
and effective human performance” (FAA SEM, Vol. 3,
2006, p. B-6).
“Involves understanding and comprehensive integra-
tion of human capabilities (cognitive, physical, sensory,
and team dynamic) into system design, beginning with
conceptualization and continuing through system dis-
posal” (USAF AFD-090121-055, 2009, p. 58).
“… an interdisciplinary approach to evaluating and
improving the safety, efficiency, and robustness of work
systems, such as healthcare delivery” (National Center
for Human Factors Engineering in Healthcare, 2013).

• Human Factors Test and Evaluation (HFTE)—
“acq. Part of the system testing effort conducted in
accordance with approved test plans. HFTE includes
all testing directed toward validation and evaluation
of HF analyses, studies, criteria, decisions, and op-
erational and maintenance design characteristics, and
features. These may include engineering design tests,
model tests, mockup evaluations, demonstrations, and
subsystem tests conducted to verify system level re-
quirements. HF tests are a part of system developmental
test and evaluation and operational test and evaluation”
(MIL-HDBK-1908B, 1999, p. 18).

• Human Performance—“A measure of human func-
tions and action in a specified environment, reflecting
the ability of actual users and maintainers to meet the
system’s performance standards, including reliability
and maintainability, under the conditions in which the
system will be employed” (MIL-HDBK-1908B, 1999,
p. 18).
“The ability of actual users and maintainers to meet the
system’s performance standards, including Reliability
and Maintainability (R&M), under the conditions in
which the system will be employed” (DAU, 2012,
p. B-98).

• Human-System Integration (HSI)—“The integrated
and comprehensive analysis, design, assessment of re-
quirements, concepts, and resources for system man-
power, personnel, training, safety and occupational
health, habitability, personnel survivability, and human
factors engineering” (MIL-STD-882E, 2012, p. 6).
“the systems engineering process and program
management effort that provides integrated and
comprehensive analysis, design, and assessment of
requirements, concepts, and resources for human
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engineering, manpower, personnel, training, system
safety, health hazards, personnel survivability, and
habitability” (MIL-STD-46855, 2011, p. ii).

• Ingress—The act of entering a physical system through
an access portal designed to accommodate and facili-
tate human entry and needs.

• Job—“The combination of all human performance re-
quired for operation and maintenance of one personnel
position in a system, e.g., driver” (MIL-HDBK-1908B,
1999, p. 32).

• Job Hazard Analysis—“identifies problem jobs and
risk factors associated with them” (OSHA 3125, 2013,
p. 7).

• Man–Man Interface (MMI)—“The actions, reac-
tions, and interactions between humans and other sys-
tem components. This also applies to a multi-station,
multi-person configuration or system. Term also de-
fines the properties of the hardware, software or equip-
ment which constitute conditions for interactions”
(MIL-HDBK-1908B, 1999, p. 21).

• Person–Person Interface—“gen. The actions, reac-
tions, and interactions (i.e., transactions) among per-
sons as they perform jobs, duties, and tasks to operate
and maintain a manned system, including peer-peer and
subordinate-supervisor interactions” (Adapted from
MIL-HDBK-1908B, 1999, p. 21).

• Safety Critical—“A term applied to a condition,
event, operation, process, or item whose mishap sever-
ity consequence is either Catastrophic or Critical
(e.g., safety-critical function, safety-critical path, and
safety-critical component)” (MIL-STD-882E, 2012,
p. 7).

• Safety Design—The application of “… system and
personnel safety factors, including minimizing poten-
tial human error in the operation and maintenance of
the system, particularly under the conditions of alert,
battle stress, or other emergency or non-routine condi-
tions” (MIL-STD-1472G, 2012, p. 12).

• Simplicity of Design—“… the simplest design con-
sistent with functional requirements and expected
service conditions … and … capable of being op-
erated, maintained, and repaired in its operational en-
vironment by personnel with a minimum of training”
(MIL-STD-1472G, 2012, p. 12).

• Subtask—“An activity (perceptions, decisions and
responses) which fulfills a portion of the immedi-
ate purpose within the task, e.g., remove lug nuts”
(MIL-HDBK-1908B, 1999, p. 32).

• Task—“A composite of related activities (perceptions,
decisions, and responses) performed for an immediate
purpose, written in operator/maintainer language, e.g.,
change a tire” (MIL-HDBK-1908B, 1999, p. 32).

• Task Analysis—“A systematic method used to develop
a time-oriented description of personnel-equipment/
software interactions brought about by an operator,
controller or maintainer in accomplishing a unit of
work with a system or item of equipment. It shows
the sequential and simultaneous manual and intellec-
tual activities of personnel operating, maintaining or
controlling equipment, in addition to sequential opera-
tion of the equipment. It is a part of system engineering
analysis where system engineering is required” (MIL
HDBK-1908B, 1999, pp. 31–32).

• Task Element—“The smallest logically and reason-
ably definable unit of behavior required in completing a
task or subtask, e.g., apply counterclockwise torque to
the lug nuts with a lug wrench” (MIL-HDBK-1908B,
1999, p. 32).

• Use Error—“a repetitive pattern of failure that indi-
cates that a failure mode is likely to occur with use and
thus has a reasonable possibility of predictability of oc-
currence” (NAP, 2007, p. 256).

24.2 APPROACH TO THIS CHAPTER

UCSD is a multi-disciplined SE activity requiring insightful
collaboration with the User community and specialty engi-
neering through a strategy of HSI that applies HFE, HE,
Safety, and discipline design principles. Our objective is to:

1. Promote the importance of SEs integrating User HF
into the design of systems, product, and service at the
beginning of a project.

2. Delineate and clarify the context of various HF skills
and disciplines.

3. Develop insights and awareness to enable SEs to
plan for, recruit/employ, challenge, and review the
decisions and work products of HSI, HF, HFE, HE, and
Ergonomics professionals who design and engineer
Human–System interactions.

A Word of
Caution 24.1

Despite the fact that every Engineering dis-
cipline is a specialty discipline, HSI, HF,
HFE, HE, and Ergonomics are commonly
referred to as Specialty Engineering skills.
Each requires specialized knowledge, expe-
rience, and domain expertise not only in En-

gineering but also behavioral science disciplines. ALWAYS
employ the services of a competent, qualified professional
of your Enterprise’s own choosing. Remember you and your
Enterprise are solely accountable for your own decisions and
actions or the lack thereof concerning the performance of
system, products, and services you deliver to your customers
and their Users and End Users.
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Most textbooks focus on HSI as an abstract, ambiguous
term with discussions that encompass topics such as HF,
HFE, HE, and Ergonomics. Unfortunately, the state of the
practice is that Engineers and Enterprises amateurishly em-
ploy these terms interchangeably. Thrown into the quag-
mire are additional terms that include Anthropometrics and
Biomechanics. Instead of helping SEs understand what is to
be accomplished, detailed discussions focus on selecting dis-
play font sizes, colors, workstation chair heights and viewing
angles while ignoring the higher-level view of what is re-
quired to achieve mission success. Chapter 24 is intended to
bring clarity to these disciplines and their applications in the
Systems Engineering and Development (SE&D) of systems,
products, or services.

Given that most engineers are not educated or trained
to competently perform HF, Chapter 24 will begin with a
holistic view of how Systems or Products can fail due
to human interactions. The key construct for our discus-
sion will be the System Element Architecture (SEA) in-
troduced earlier in Figure 8.13. The construct depicts the
integrated set of System Elements—Personnel, Equip-
ment, Mission Resources, Procedural Data, and Sys-
tem Responses—comprising a Mission System and its
Enabling Systems plus an additional Facilities Element
unique to Enabling Systems.

Principle 24.2

Personnel Dual Accountability
Principle

The Personnel Element in each Mission
System or Enabling System has two lev-
els of accountability: (1) mission account-
ability and (2) system accountability.

Since the Personnel Element is an operational en-
tity within the SEA, our discussions up to this juncture
have treated it architecturally as a peer-level component
to the other System Elements. Observe the “architec-
tural” context here. The reality is that Higher-Order Sys-
tems— Enterprises—employ each SOI, Mission System,
and Enabling Systems to accomplish missions that have
outcomes and performance-based objectives. Who does a
Higher-Order System hold accountable for mission perfor-
mance - inanimate objects such as the Equipment Element
- Hardware and Software, Procedural Data, or Mission Re-
sources? No, the Mission System or Enabling System oper-
ators, maintainer, and trainers that comprise the Personnel
Element. As a result, the Personnel Element has two levels
of accountability:

• System accountability as a performing System Element
within the SEA (Figure 9.2) for safely and properly
controlling Mission System performance.

• Mission accountability to Higher-Order Systems for
accomplishment of mission task order outcomes and
performance.

Given these accountabilities, Chapter 24 focuses on an-
swering the following line of thought:

1. Optimal mission performance is determined by op-
timal Personnel Element decision-making and
actions coupled with optimal Equipment Element
performance within a prescribed set of Operating
Environment conditions.

2. Optimal Personnel Element performance is a func-
tion of various HF that address human capabilities
and limitations in terms of Equipment, Procedural
data, Mission Resources, System Responses, and
Facilities Element. Specifically Critical Operational
and Technical Issues (COIs/CTIs) concerning ease of
use—compatibility and interoperability—stress, and
environmental safety.

3. This line of thought leads us to a key question: if User
performance is a primary contributor to overall Mis-
sion and System performance and success, how do
we engineer the Equipment, Procedural data, Mis-
sion Resources, System Responses, and Facilities
to resolve these COIs/CTIs?

To address these points, we need to first understand
the Specialty Engineering disciplines that enable us to
“Engineer” systems, product, and services. Let’s begin from
a high-level (100,000 foot level) view and zoom in through
a series of levels that ultimately take us down to the
“switchology” of User–System interfaces.

24.3 INTRODUCTION TO UCSD

The success of Enterprise and Engineered Systems
and their missions is ultimately determined by human
performance—leadership, strategy, resources, education,
training, experience, and luck. Humans, however, have
finite mental and physical capabilities. As a result, we are
dependent on the Engineered systems, product, or services
as tools that enable us to leverage our own finite capabili-
ties to achieve higher-level Mission and System outcomes
with minimal Human error. Examples include space ex-
ploration, transportation, energy, medical, and technology
advancements.

Chapter 2 highlighted the shortcomings of the traditional,
ad hoc SDBTF Design Process Model (DPM) Engineering
Paradigm:

• SDBTF-DPM Shortcoming #1—Quantum leaps
(Figure 2.3) from specification requirements to a phys-
ical solution—hardware and software—without due
diligence in understanding: (1) the operational need
or Problem Space the User needs to solve, (2) how
the User wants to use the system, and (3) behavioral
responses of the system.
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• SDBTF-DPM Shortcoming #2—Erroneous percep-
tions and ingrained beliefs uncorrected by Engineering
education that application of Archer’s Design Process
(Chapters 2, 11, and 14) is Systems Engineering.

There is a third problem that is the result of Shortcoming
#1:

• SDBTF-DPM Shortcoming #3—Limited Considera-
tion of the User—operator, maintainer, and trainer—in
the design of the Equipment Element.

Shortcoming #3, in general, is referred to as HF. History
is filled with case studies in which the focus on Equipment
Design-“Engineering the Box”-while ignoring human capa-
bilities and limitations-“Engineering the System”-resulted
in Mission and System failure as well as injury, damage,
and loss of life. Some of these results occurred due to poor
Equipment Element design. Other failures occurred because
the Mission System or Enabling System:

• Failed the Operational Utility, Suitability, Availabil-
ity, Usability, Effectiveness, and Efficiency criteria
(Principle 3.11).

• The Personnel Element was not consulted or con-
sidered in the making of Equipment Element design
decisions.

• The owner failed to train the Personnel Element
in the proper handling and safety procedures—use,
misuse, abuse, and misapplication—of the Equipment
Element.

You may ask: if HF is obviously this important, why is it
neglected? In general, these include reasons such as:

• As Engineers, we naturally apply HF when we design
systems.

• Automating a system is erroneously perceived to elim-
inate the need for HF.

• Humans will adapt to whatever system we give them.

• The design HF wants to review is already committed
and fixed.

• This project is understaffed. We need Engineers, not
HF looking over our shoulders.

• When you think about it, HF is just common sense.

• HF is not required by our contract.

To better understand and appreciate the impact of HF
on system, product, or service performance, let’s employ
Systems Thinking (Chapter 1). This brings us to a key concept
in SE and Risk Management: Reason’s “Swiss Cheese”
Accident Trajectory Model.

24.3.1 Reason’s “Swiss Cheese” Accident Trajectory
Model

In analyzing root causes of various types of industrial and
medical incidents and accidents, Reason (1990b, p. 208)
developed what has become known as the “Swiss Cheese”
Accident Trajectory Model. The concept is based on a chain
of “slices” that represent defenses, barriers, or safeguards
intended to prevent potential hazards from slipping through
“holes” in each slice. Figure 24.1 provides an illustration
of Reason’s concept. Think of this model as a symbolic
representation of the SEA shown in Figure 8.13. As the
dynamically grow/shrink and align themselves, a hazard
penetrates the various layers via a trajectory resulting in an
incident or accident event.

The underlying premise of the model is based on
Higher-Order Enterprise Systems instituting various
forms of defenses, barriers, or safeguards such as poli-
cies, processes, procedures, training, and Equipment
design methods to prevent or minimize the occurrence of
safety-related incidents or accidents. For example, system
design safeguards might include:

• Training Personnel to properly operate Equipment
to help reduce the opportunity, frequency, and severity
of incidents or accidents.

• Establishing and training Organizational Standard Pro-
cesses (OSPs)—policies, processes, procedures, and
methods—to restrict what the Personnel Elements
(operators, maintainers, trainers) are permitted to do in
terms of authority, accountability, and safety.

• Designing Equipment with a safety-driven culture and
focus to help reduce accidents.

The series of defenses, barriers, or safeguards are in-
tended to detect and prevent a potential hazard trajectory
becoming an incident or accident.

This discussion has two levels of application: (1) Mission
System or Enabling System design and development and
(2) the User’s Higher-Order Level 0 System (Figure 8.4)
that integrates the Mission System and Enabling Systems
as assets as a System of Interest (SOI) to perform Enterprise
missions.

Conceptually, each System Element inherently has weak-
nesses or latent defects such as design flaws, errors, deficien-
cies, and omissions that represent potential hazards that may
go undetected through Enterprise design review processes.
From an Engineering perspective, Reason’s holes are con-
sidered faults. Symbolically, the level of significance of the
faults inherent in each of the System Elements—Personnel,
Equipment, and fault—is represented as time-dependent or
time-independent holes of varying sizes.

When faults are: (1) discovered by subsequent slices in
the chain, and (2) corrective actions—defenses, barriers,
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Figure 24.1 Application of Reason’s (1990) Accident Trajectory Model to a Mission
System or Enabling System’s Elements. Derivative Work—Used with Permission.

or safeguards—are performed through proactive, continuous
process improvement, the risk of system, product, or service
failures should be reduced. However, the challenge occurs
when faults in the chain of slices align in a way that allows
the hazard to slip through and manifest itself as an incident
or accident. The result may have negative consequences such
as injury to the User(s) and/or public, damage to the System
or environment, or catastrophic consequences such as loss
of life.

From an SE or System Analyst perspective, what are some
examples of the “faults” that should be considered in the
design of each System Element?

• Mission Resources Element Faults—Examples in-
clude inadequacies, contradictions, disruptions, ambi-
guities, tasking, resources, and quality that may be
static or dynamic and close over time.

• Procedural Data Element Faults—Examples in-
clude document errors, inaccuracies, inconsistencies,
and omissions that remain static until corrected.

• Personnel Element Faults—Examples include hu-
man dynamics such as memory lapses, sleep depri-
vation, fatigue, and stress; taking shortcuts; ignoring
cautions and warnings; unsafe acts—abuse, misuse, or
misapplication—of the Equipment; or mistakes such
as issuing the wrong command and flipping the wrong
switch.

• Equipment Element Faults—Examples include fail-
ures, intermittent cables or shorts, computational er-
rors, corrupted data, mechanical degradation, cracked
seals, poor lubrication, overheating, out-of-spec toler-
ances, and lack of maintenance.

• System Responses Element Faults—Examples
include inappropriate or unacceptable outputs or
by-products and latent defects—design errors, flaws,
and deficiencies.

• Facilities Element Faults—Examples include lack
of services, lack of the appropriate tools and parts,
inadequate space, or environmental conditions.

Faults may be static such as design defects or dynamic
due to wear and tear or subject to human decision-making.
Reason (2000, p. 769) observes that the dynamic
“holes”—faults—are in a continual state of change and
symbolized graphically by the size of the hole as a function
of time.

Principle 24.3

Engineering Accountability Principle

Engineering is a professional discipline
that demands performance and account-
ability for all aspects of our work, includ-

ing “Engineering the System”, not just the “Engineering of
Boxes”!
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When each System Element’s defenses, barriers, or safe-
guards are weak or fail across the series of slices allowing
holes to form and align, a hazard follows an open trajectory
through Reason’s Accident Trajectory Model as represented
by the arrow in Figure 24.1. As a result a potential hazard
materializes into a physical incident or accident.

Reason (1995, p. 82) classifies two types of failures in the
model: active failures and latent conditions or failures:

• Active failures represent “immediate adverse out-
comes” that penetrate the layers of safeguards and bar-
riers (Figure 24.1). For example, if you (Personnel
Element) are driving down the road at 60 MPH and shift
the transmission (Equipment Element) from FOR-
WARD to REVERSE, there will be an “immediate ad-
verse outcome!.”

• Latent conditions or failures, which Reason (2000,
p. 769) refers to as “resident pathogens,” repre-
sent outcomes resulting from a “delayed action.”
Latent conditions (Reason, 2000, p. 769) or fail-
ures (Reason, 1995, p. 82) originate from decisions
made by others—system designers, reviewers, and
management—that lie dormant until a specific set of
factors triggers an undesirable outcome. For example,
if you (Personnel Element) fail to maintain the level
and integrity of the coolant in an automobile to accept-
able performance conditions, the engine (Equipment
Element) will eventually fail mechanically that could
have potential catastrophic consequences for the
passengers.

These descriptions lead to an unanswered question: what
constitutes a failure? MIL-HDBK-470A, p. G-5 defines a
failure as follows:

• Failure—“The event, or inoperable state, in which
any item or part of an item does not, or would not,
perform as previously specified” (MIL-HDBK-470A,
p. G-5).

Observe that active and latent failures are not mutually
exclusive; latent failures could be triggered by external
factors or conditions to become active failures. Consider the
following example:

Example 24.1

Latent Failure Conditions Leading to
an Active Failure

Suppose you have neglected to prop-
erly maintain the coolant level in your

automobile (a potential latent failure condition) and then
drive the automobile at a high rate of speed, a triggering
factor that leads to an engine overheating and subsequent
mechanical failure (an active failure with an immediate
adverse outcome).

Given Reason’s (1995, 2000) types of failures—
active and latent—consider the following points:

• The Personnel and Mission Resources Elements
being human dependent are dynamic and in a continual
state of change as a function of the physiological,
emotional, and psychological states of the operators
and maintainers.

• Now, consider the symbolic nature of Equipment
Element holes. These holes represent latent
defects—design errors, flaws, deficiencies, and poor
workmanship or materials—that lie dormant until they
are exposed as a result of system usage, degradation
of components over time, lack of maintenance, abuse,
misuse, and so forth. In general, (1) a design latent
defect either exists or it doesn’t, and (2) a specific
instance—Serial Number (S/N)—of a product may be
free of latent defects at delivery but could acquire one
such as a nicked wire during routine maintenance.

• Procedural Data Element latent defects are analo-
gous to the Equipment Element. A document or man-
ual either (1) contains latent defects, or (2) it is not
represented symbolically by a fixed size hole. As these
latent defects are identified and corrected over time,
you could say that the hole is dynamic and closes up.

• System Responses Element outcomes are a func-
tion of the Personnel–Equipment Element
interactions—“active failures”—due to the timing
of Human decision-making and latencies represented
by the HF Interactions Model discussed later in
Figure 24.9.

Author’s Note 24.1

Defect Reporting and Corrective
Action

Engineers and Analysts view docu-
menting and reporting the quantity of

defects found during an In-Process Review (IPR) as a bureau-
cratic exercise in futility. If errors are found in a specification
or Operator’s Manual, it gets corrected after the meeting—no
need for non-value-added statistics is the response. Unfortu-
nately, it is bureaucratic paperwork, especially if managers
(1) never analyze and isolate the who, what, when, where and
how the latent defects entered in the work product develop-
ment process stream or (2) take corrective actions.

Hopefully, you recognize and appreciate why early re-
moval of latent defects is so critically important due to their
cost-to-correct (Table 13.1) downstream and potential impact
on mission performance. If you fail to remove latent defects,
the consequences can lead to injury; damage to Equipment,
property, or the environment; or catastrophic loss of life. En-
gineering is a professional discipline that demands perfor-
mance and accountability for all aspects of our work, not just
designing widgets!
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So, what is the purpose of highlighting these points? Ul-
timately, mission success is determined by SOI—Mission
System(s) and Enabling System(s)—success. You should
recall from our Chapter 1 definition that every system has a
probability of success. System probability of success trans-
lates into Mission probability of success. The question is:
how do SEs ensure that proper safeguards and barriers are
designed into the System Elements to ensure that probability
of success is achieved? The answer depends on the compe-
tence of the System Developer, User resources for System
Development, and the level of acceptable risk—cost versus
performance trade-offs—the User can tolerate.

24.3.2 Contributory or Root Causes: Human Slips,
Lapses, Errors, Mistakes, and Violations

Principle 24.4

Root Causes Principle

Accidents are typically the result of a chain
of weaknesses, not just one, in a system’s
barriers or safeguards that are intended to

prevent a hazard from escalating into an incident or event
with negative consequences.

Reason (1990a, b, c, ) has published extensive research
concerning contributory causes related to his Accident Tra-
jectory Model illustrated in Figure 24.1 as a derived work.
Based on his research, he identified four types of human
error classifications: (1) slips, (2) lapses, (3) mistakes, and
(4) violations (Reason, 1990b, p 9). Why are these seem-
ingly esoteric terms of critical importance to SE? The answer
is mission success. How do you lead the development of a
multi-discipline System Design Solution that eliminates or
minimizes the impact of slips, lapses, errors, mistakes, and vi-
olations? Specifically, Personnel (operator/maintainer ac-
tions), Equipment (hardware and software), Procedural
Data, Mission Resources, and System Responses Ele-
ment requirements and designs. Let’s define each of these
types of Human errors:

• Errors are “occasions in which a planned sequence
of mental or physical activities fails to achieve its
intended outcome” (Reason, 1990, p. 9), for example,
a miscalculation.

• Slips represent “A simple frequently performed physi-
cal action goes wrong” (HSE 2013a, p. 3).

• Lapses represent “A lapse of attention or memo-
ry” (HSE 2013a, p. 3), for example, sleeping on
the job or performing an action simultaneous with a
distraction.

• Mistakes are (1) misinterpretations of the facts or con-
ditions or (2) deviations from established practices or
procedures leading to actions that produce unexpected
outcomes with potentially negative consequences such

as failure or catastrophe, for example, “Not understand-
ing properly how something works or an error of diag-
nosis or planning” (HSE 2013a, p. 3).

• Violations represent “A deliberate breach of rules and
procedures … ” (HSE 2013a, p. 3).

Reason (1990b, p. 1–18), HSE (2013a, p. 2–3), and
Nelson, W. (2013a) provide descriptions of these topics in
greater detail.

The NAP (2007) highlights an important distinction con-
cerning human error, user error, and use error: “… in the
area of medical products, regulator and standards bodies
make a clear distinction between the common terms ‘human
error’ and ‘user error’ in comparison to ‘use error.’ The term
‘use error’ attempts to remove the blame from the user and
open up the analyst to consider other causes, including the
following:

• Poor user interface design (e.g., poor usability).

• Enterprise elements (e.g., inadequate training or sup-
port structure).

• Use environment not properly anticipated in the design.

• Not understanding the user’s tasks and task flow.

• Not understanding the user profile in terms of
individual differences in training, experience, task
performance, incentives, and motivation” (NAP, 2007,
pp. 256–257).

Once a System or Product is fielded, Reason (2000,
p. 768) stresses the importance of detailed analysis to un-
derstand how various incidents and events such as “near
misses” may provide indications of discovering potential
active or latent failures—sometimes referred to by SEs as
unknown-unknowns—or understanding the boundary condi-
tions that trigger them. A classic example is the Test Pilot
Chuck Yeager Mini-Case Study 24.1 below.

MINIMINIIN

Mini-Case
Study 24.1

F-86 Sabre Jet Accidents

Test Pilot Chuck Yeager had been flying an
F-86 Sabre jet chase plane in support of other
aircraft testing. A number of other pilots had
died while flying the F-86 due to mysterious

mechanical problems. The only physical evidence available
was the remains of the aircraft scattered across the landscape.

During a solo mission unrelated to the accidents, Yeager
attempted a slow roll when suddenly an aileron became
locked when the aircraft was 150 feet above the ground.
In reaction to the plane’s behavior, Yeager backed off on
the g’s causing the nose to tilt upward, which then caused
it to fly toward the ground. To his amazement, the aileron
unlocked; he recovered from the roll and took the plane to
an altitude of 15,000 feet. Being a typical test pilot driven to
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understand cause-and-effect relationships, he decided to try
the maneuver again and again recovering each time.

On a return to his base, he informed his superiors that
he believed the problem was due to the wings bending dur-
ing stress, thereby causing the aileron to lock. An investi-
gation was initiated to disassemble the wings part by part.
Their investigation revealed that a bolt had been installed
upside down. On further investigation, they learned that
a worker had purposely ignored assembly instructions—a
violation—on the premise that everyone knows that bolt
heads are installed with the head at the upper end, not at the
lower end.

Mini-Case Study 24.1 exemplifies several key points
related to Reason’s Model:

Manufacturing (Enabling System) Personnel Element

1. Violation—Worker ignored work instructions, Rea-
son’s safeguards and barriers

2. Error—Worker installed bolt incorrectly

3. Lapse—Lack of apparent verification of proper bolt
installation

Aircraft (Mission System)

1. Equipment Element—Latent failure initiated by an
active failure, triggering conditions

2. Personnel Element—Instinctive situational assess-
ment as a test pilot to recognize catastrophic conditions
and perform compensating actions (Chapter 34),
Reason’s safeguards and barriers, to recover.

Figure 24.2 illustrates how Reason’s Error
Classifications—human slips, lapses, mistakes, and
violations—can enter a System or Product and im-
pact the overall mission performance. The challenge
question is: how do multi-disciplined SEs—hardware and
software—incorporate HF to (1) design the Equipment and
Procedural Data Elements to reduce the likelihood and
risk for User errors and (2) train the Users to properly
and safely operate the Equipment?

As a System Developer or User SE, you have three key
objectives:

• Objective #1—Employ or acquire the services of
a qualified, competent HF Engineer to perform
HFE.

• Objective #2—Collaborate with the User, HFE, safety,
hardware, and software, to mitigate both technical
and Enterprise level risks. Prevent or minimize the
potential for User slips, lapses, errors, mistakes, and
violations from occurring subject to technology, cost,
and schedule limitations.

Unsafe
Acts

Unintended
Action

Intended
Action

Slips

Lapses

Mistakes

Violations

• Operators
• Maintainers
• Trainers, et al

Basic
Error
Types

Memory Failures

• Omitting Planned Items
• Place-Losing

• Forgetting Intentions

Rule-Based Mistakes
• Misapplication of Good Rule

• Application of Bad Rule

Knowledge-Based Mistakes
• Many variable forms

Routine Violations

• Exceptional violations
• Acts of sabotage

Attentional Failures

• Intrusion
• Omission
• Reversal

• Misordering
• Mistiming

EQUIPMENT

Design

User Error
Mitigation
Methods

• Hardware
• Software

• Procedural Data

Figure 24.2 Reason’s Error Classifications Applied to Equipment Element Design.
Derivative Work—Adapted from Reason, J.T. (1990). Human error. Cambridge, England:
Copyright © 1990 Cambridge University Press. Used with permission.
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• Objective #3—Validate that optimal HSI has been
achieved through User assessment of system, product,
or service operation, maintenance, and sustainment.

During an incident or accident investigation, executives,
project managers, or project engineers often publicize the
need to identify the single root cause. The reality is most
incidents or accidents are the result of a combination of
contributory causes, not just one. The UK Health and Safety
Executive (HSE, 2013a, p. 5) observes “People may debate
whether particular factors should be classed as root causes,
contributing causes, or neither. However, major accidents
generally involve more than one root cause.” HSE (2013a,
p. 5) continues with a quote “Virtually none of the accidents
investigated involved only a single cause. More commonly,
half a dozen root and contributing causes were identified.”
Belke (1998, p. 1) reinforces this point and notes that
“Virtually none of the accidents that EPA (US Environmental
Protection Agency) and OSHA (US Occupational safety and
Health Administration) investigated involved only a single
cause. More commonly, half a dozen root and contributing
causes were identified.”

This discussion leads to another question: what moti-
vates humans to commit slips, lapses, errors, mistakes, or
violations? This brings us to the identifications of human
Performance-Influencing Factors (PIFs).

How well suited is Reason’s Accident Trajectory Model
to systems, products, or services? The EEC (2006) provides
a discussion of the model’s suitability and limitations that
includes participation by Dr. Reason.

So, what are the contributory performance effectors that
allow leakage of a potential hazard through the defenses,
barriers, and safeguards that result in an incident or acci-
dent? This brings us to our next topic, PIFs.

24.3.3 Human Performance-Influencing Factors (PIFs)

The UK HSE recommends several PIFs in three types of
factors—job, person, and Enterprise—that influence human
performance. The HSE suggests that optimization of these
factors can “reduce the likelihood of all types of human
failure” (HSE, 2013b) (Table 24.1).

24.3.4 Shifting to a User-Centric Design Paradigm

Principle 24.5

Do No Harm Principle

Design Enterprise and Engineered Sys-
tems, products, or services to DO NO
HARM to their Users, End Users, the
public, or the environment.

To further emphasize the criticality of HF in System
Design, consider the implications of flight safety in to-
day’s world. Figure 24.3 provides a graphical illustration

from FAA-H-8083-30 (2008) concerning root causes of
aviation accidents.

In the early days of aviation beginning in 1903, the pri-
mary driver for Accidents in Aviation was Technical Causes.
As a result of a robust Engineering focus on SE and Spe-
cialty Engineering integration—Reliability, Maintainability,
and Availability (RMA); HF; and Flight Safety—over several
decades, Technical Causes diminished significantly. Today,
Human Causes are often the primary driver.

Although this is an FAA graphic, the concept applies
similarly to other business domains such as military, medical,
transportation, financial, and educational. Simply stated, if
these systems fail, they may inflict fear, loss of confidence,
mistrust, injury, damage, or loss of life to the public,
Equipment, and/or the environment. The bottom line is
System Design Solutions should incorporate HF through
robust HSI activities to ensure that a system, a product, or
service will DO NO HARM.

Based on the need to shift to a new User HF and
Ergonomics-Based System Design Paradigm, how do SEs
accomplish this? The answer resides in a concept referred
to as HSI.

24.3.5 Human System Integration (HSI)

Principle 24.6

HSI Application Principle

HSI is a continuous, multi-disciplined ac-
tivity that spans the entire System/Product
Life Cycle, not just System Integration,
Test, and Evaluation (SITE).

The concept of HSI has existed for several decades. How-
ever, one of the difficulties in understanding HSI begins with
its name. The fallacy of the HSI title, which can be taken liter-
ally and erroneously, is its ambiguity—ambiguity that infers
that a System Developer is going to develop a system, prod-
uct, or service; obtain User acceptance; and deliver it to the
User to integrate their operators, maintainers, and trainers for
System Operations, Maintenance, and Sustainment. In this
context, the application of the term appears to be an event.

HSI, however, is not an event. It represents the integration
of HE, HFE, and Ergonomics knowledge with Engineering
Design to produce systems, products, or services to that
are simply compatible and interoperable with and usable
by the User(s). To illustrate this point, consider a couple of
perspectives from the USAF and INCOSE.

• The USAF HSI Handbook (2009, p. 8) states “Human
Systems Integration (HSI) is a robust process by which
to design and develop systems that effectively and af-
fordably integrate human capabilities and limitations.”

• From an SE perspective, the INCOSE SE Handbook
(2012, p. 328) notes “Human Systems Integration
brings human-centered disciplines and concerns into
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TABLE 24.1 Performance-Influencing Factors (PIFs) That Influence Human Performance (HSE,
2013b)

Factor PIFs

Job factors 1. Clarity of signs, signals, instructions, and other information

2. System/equipment interface (labeling, alarms, error avoidance/ tolerance)

3. Difficulty/complexity of task

4. Routine or unusual

5. Divided attention

6. Procedures inadequate or inappropriate

7. Preparation for task (e.g., permits, risk assessments, checking)

8. Time available/required

9. Tools appropriate for task

∘ Communication, with colleagues, supervision, and contractor, and other working
environment conditions (noise, heat, space, lighting, ventilation)

Person factors Physical capability and condition

1. Fatigue (acute from temporary situation or chronic)

2. Stress/morale

3. Work overload/underload

4. Competence to deal with circumstances

5. Motivation versus other priorities

Organization factors Work pressures—for example, production versus safety

1. Level and nature of supervision / leadership

2. Communication

3. Manning levels

4. Peer pressure

5. Clarity of roles and responsibilities

6. Consequences of failure to follow rules/procedures

7. Effectiveness of organizational learning (learning from experiences)

8. Organizational or safety culture, for example, everyone breaks the rules

the SE process to improve the overall system design
and performance.”

The scope of HSI begins with the initial contact with the
System Acquirer, User, or End User and continues through-
out the System/Product Life Cycle. Figure 24.4 provides a
better perspective of the scope of HSI as an activity that sim-
ply text descriptions. The graphic, which uses a V-Model
(Figure 15.2) example, illustrates how HSI as an SE ac-
tivity is accomplished via HFE or how Ergonomics is per-
formed throughout the System Acquisition, System Devel-
opment, and System OM&S Phases of the System/Product
Life Cycle. Although not illustrated in this graphic, HSI is
equally important during the System Retirement/Disposal
Phase.

As an SE activity, HSI is performed across numer-
ous phases of the System/Product Life Cycle as shown in
Figure 24.4:

• System Acquisition Phase HSI requirements
considerations—who the Users and End Users
are—and acquisition specifications.

• System Development Phase HSI design and develop-
ment considerations.

• System Deployment and OM&S Phase HSI considera-
tions - ease of use, maintenance, and sustainment label-
ing - identifiers, cautions and warnings; access ports;
test points, and LRU removal.

• System Retirement/Disposal Phase HSI considerations
- easy identification and removal of sensitive, toxic, and
hazardous materials.

Chapter 8 stressed the importance of making a determina-
tion of whether the User is internal or external to the system,
product, or service you are acquiring or required to deliver.
Context diagrams such as Figure 8.1 provide valuable in-
sights in bounding and specifying “the System.” If you are
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Accident in Aviation
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Figure 24.3 Accidents in Aviation: Statistical Graph Showing That 80 Percent of All
Aviation Accidents Are Caused by HF (Source: FAA-H-8083-30, 2008, Figure 14–34,
p. 14–28).

a System Developer that is only accountable for delivering
the Equipment and the Procedural Data Elements, you
should create a Level 0 Customer System that architecturally
integrates the User’s operators, maintainers, and trainers with
your Equipment and Procedural Data. Although the hu-
man condition of the User is beyond the System Developer’s
control in terms of their decisions and actions, when missions
are performed, a measure of success is for Users to emerge
highly pleased in terms of customer satisfaction with mission
performance.

A Word of
Caution 24.2

System Architecting and Human
Factor Considerations

Avoid the notion that System Architecting is
simply developing an architecture based on
the Equipment Element. Many times, Sys-

tem Architects focus on developing the System or Product
hardware and software and treat HF as an afterthought af-
ter the design is complete when User’s manuals are being
finalized. UCSD represents a major paradigm shift from the
typical System-Level Architecting that focuses exclusively
on hardware and software design.

To illustrate this point, NASA (SP 2007-6105, 2007,
p. 247) notes “Most methods involve judgment and so
are highly dependent on the skill and expertise of the

analyst. In addition, both experienced and inexperienced
operators provide valuable information about the strengths
and weaknesses of old systems and how the new system
might be used.” Madni (2011, p. 5) refers to this condition
as a “Human Role–Architecture Mismatch.”

If you are a System Architect, UCSD should be an integral
part of your education, training, and daily work. If you doubt
this, purchase a product and evaluate how well the System
Architect considered User Stories (Chapter 15), Use Cases
(UCs) (Chapter 5), and scenarios.

24.3.6 HSI Domains

HSI is a very broad topic encompassing a lot of con-
siderations that impact human and other performance.
MIL-STD-46855A (2011) partitions HSI into nine domains
that include1:

1. HE

2. Manpower

3. Personnel

1Refer to USAF HSI Handbook (2009, pp. 11 and 16), Clark and Goulder
(2002, p. 90), and INCOSE (2011, pp. 332–336) for detailed discussions of
these domains.
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Figure 24.4 Human System Integration (HSI) Application to V-Model System
Development.

4. Training

5. System safety

6. Health hazards

7. Personnel

8. Survivability

9. Habitability

Is HSI a consideration for SE&D? Hopefully, our
discussion of Reason’s Accident Trajectory Model is
self-explanatory in answering this question. INCOSE (2011,
p. 328) notes that HSI “… is an essential enabler to SE
practice . . . .” Domains such as aviation and ground trans-
portation, marine, medical, and energy have statutory,
regulatory, and other types of requirements for HF concern-
ing aircraft, vehicles, trains, ships, and medical devices. As
an illustrative example:

• DoDI 5000.02 (2008), for example, states, “The
PM (Project Manager) shall take steps to ensure er-
gonomics, human factors engineering, and cognitive
engineering is employed during systems engineering
over the life of the program to provide for effec-
tive human-machine interfaces and to meet HSI
requirements. Where practicable and cost effective,
system designs shall minimize or eliminate system

characteristics that require excessive cognitive, phys-
ical, or sensory skills; entail extensive training or
workload-intensive tasks; result in mission-critical
errors; or produce safety or health hazards” (DODI
5000.02 (2008, p. 60)).

In summary, given this Introduction to UCSD, let’s shift
our focus to understanding HF.

24.4 UNDERSTANDING HUMAN FACTORS (HF)
AND ERGONOMICS

News coverage and other discussions often attribute acci-
dent causes to the “human element.” Nelson (2013b, p. 2)
observes that people “having little or no true knowledge of
‘human factors’ or ‘human factors engineering’ engage in
conversations that use the terms “human element” versus
“human factors.” He cautions usage of the term “human ele-
ment” as an abstract reference to individuals when things go
wrong. The appropriate term is “human factors.”

24.4.1 The Emergence of HF and Ergonomics

To address the needs and challenges addressing human con-
siderations into System Design, two fields of study, HF and
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Ergonomics, emerged in the same general timeframe. HF,
for example, has origins in the United States. In contrast,
Ergonomics has origins traceable to European roots. Chapa-
nis (1996, p. 13) describes HF as common throughout North
America and Ergonomics has a widespread use throughout
Europe and Asia. He adds “Those working in both domains
view HF and Ergonomics as equivalent” (Chapanis 1996,
p. 13).

Both terms have traceability back to ancient Greek civi-
lizations to the works of Hippocrates:

“Prior to World War I the focus of aviation psychology
was on the aviator himself, but the war shifted the focus
onto the aircraft, in particular, the design of controls and
displays, the effects of altitude and environmental factors
on the pilot” (Wikipedia, 2013a). Later, with automobiles
gaining in popularity, studies expanded into areas such as
driver behavior. Subsequently, World War II brought new
emphasis as systems became more complex and expensive
and mission success became more critical. As a result,
several professional organizations emerged:

• In 1946, the Institute of Ergonomics and Human Fac-
tors, formerly The Ergonomics Society, was formed for
HF specialists and ergonomists (Wikipedia, 2013a).

• In 1957, the Human Factors and Ergonomics Society
(HFES) was founded (HFES, 2013b).

• Finally, the International Ergonomics Association
(IEA) evolved representing a federation of ergonomics
and HF societies around the world (IEA, 2010a).2

Based on a review of HF and Ergonomics definitions, one
might ask: why two different terms if they both accomplish the
same objectives? That question drives the need to understand
the subtle differences.

Ergonomics is derived from two Greek words ergon,
meaning work, and nomos, meaning laws—“to denote the
science of work, ergonomics is a systems-oriented discipline,
which now applies to all aspects of human activity” (IEA,
2010b). Observe the operative term work in this description
inferring a focus on what people do and how well they per-
form. This is a critical point in understanding the difference
between two perspectives as illustrated in Figure 24.5:

• Ergonomics—Understanding how stressors such as
workload tasking, Equipment design, and Operating
Environment impact human productivity and perfor-
mance to “fit” the job to the worker

• HF—Applying human capabilities and limitations as
constraints to Equipment design, tasking, and Oper-
ating Environment conditions.

2For additional information about the history of HF and Ergonomics, refer
to FAA-H-8083-30 (2008 pp. 14-6 to 14-8) and Meister (1999, p. 146).
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Nelson (2010b, p. 2) observes “Ergonomics has tradition-
ally focused on how work affects people, while the emphasis
in human factors (engineering) is on the design of systems
that reduce the potential for system errors and prevent in-
jury.” Nelson (2013b, p. 2) notes that:

• “Ergonomics may involve studies of physiological re-
sponse to physically demanding work; environmental
stressors such as heat, noise, and illumination; the per-
formance of complex psychomotor tasks; and activity
involving visual monitoring.

• The emphasis in ergonomics has been on ways to
reduce fatigue by designing tasks within people work
capabilities.

• The goal of an ergonomics work program is to achieve
the optimal match between persons doing work and the
overall work environment” (Nelson 2013b, p. 2).

In a discussion about Ergonomics, Wikipedia (2013)
states, “The expression ‘human factors’ is a North American
term which has been adopted to emphasize the application of
the same methods to non-work-related situations.” Observe
the phrase non-work-related situations. The inference here
is on the development of systems such as aircraft and mis-
siles. However, aircraft, for example, still has work-related
environments via pilot operations in the cockpits, flight at-
tendants in the cabin, and maintenance crews refueling the
plane, during various phases of aircraft ground and flight
operations.

As a result of a stigma created by commercial prod-
uct advertising campaigns, people are often led to believe
that Ergonomics focuses on the ergonomic design of office
chairs and cubicles to improve worker comfort and produc-
tivity. Chapanis (1996, pp. 12–13) notes that the popular
press refers to “the more physiological, anthropometric, and
biomechanical aspects” of human factors but professionals
regard ergonomics as synonymous with human factors.”

The Psychology Wiki (2013) identifies, for example, Five
Aspects of Ergonomics:

1. Safety

2. Comfort

3. Ease of Use

4. Productivity/Performance

5. Aesthetics such as signage

Whether you work in HF or Ergonomics, both apply to
SE&D. In the remaining discussions, we will use HF; either
term is equally applicable.

A key question is: from a system, product, or service per-
spective, what are the objectives HF considerations intended
to accomplish?

TABLE 24.2 Chapanis’ (1996) Objectives of HF

Primary Objectives Supporting Objectives

Basic operational
objectives

• Reduce errors
• Increase safety
• Improve system performance

Objective bearing on:
• RMA
• Integrated Logistics

Support (ILS)

• Increase reliability
• Improve maintainability
• Reduce personnel requirements
• Reduce Training requirements

Objectives affecting:
• Users and operators

• Improve the working environment
• Reduce fatigue and physical stress
• Increase human comfort
• Reduce boredom and monotony
• Increase ease of use
• Increase user acceptance
• Increase aesthetic appearance

Other objectives • Reduce losses of time and
equipment

• Increase economy of production

24.4.1.1 HF Objectives Chapanis (1996, p. 16) suggests
the HF objectives provided in Table 24.2.

24.4.1.2 What Are Human Factors (HFs)? HF, as
the name infers, are comprised of several elements that
represent various categories of human performance. The
DoD Critical Process Assessment Tool (CPAT) (1998,
Table 1), for example, identifies five key factors or elements
concerning human characteristics that have an impact on
Personnel–Equipment Element interactions that drive to
system design considerations:

1. Anthropometric factors

2. Sensory factors

3. Cognitive factors

4. Psychological Factors

5. Physiological Factors

To better understand the scope each of these factors,
Table 24.3 lists general human characteristics related to each
of these factors.

Since the DoD is the source, does this list apply to any
business domain? In general, yes; specifically, no. One of
the things you discover about HF is that the subject is
typically domain dependent. For example, Table 24.3 reflects
a US military perspective at the time. In contrast, NASA
(SP 2007-6105, 2007, p. 67), for example, identifies four
similar but different categories of HF listed in Table 24.4 that
represent key considerations in aerospace research and space
exploration domains.
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TABLE 24.3 Common Human Characteristics Associ-
ated with HF

HF Human Characteristics

Anthropometric factors∗ • Human physical dimensions
• Body posture
• Repetitive motion
• Physical interface

Sensory factors • Hearing
• Vision
• Touch
• Balance

Cognitive factors • Mental ability
• Skills
• Decision-making
• Training requirements

Psychological factors • Human needs
• Attitudes
• Expectations
• Motivations

Physiological factors • Human reactions to environments
• Strength (lifts, grip, carrying)
• Endurance

∗Introduced here and discussed later in this chapter.
Source: DoD CPAT, 1998, Table 1, p. 7.

Other domains such as medical or transportation have
their own sets of HF. Employ those factors appropriate for
your business domain.

24.4.1.3 HF Disciplines A key question is: what types
of disciplines are required to implement HF as an HSI
strategy? The answer depends on the type, complexity,
technology, and risk of the product. The FAA-H-8083-30
(2008, pp. 14.2–14.6), for example, identifies ten disciplines
that comprise its HF considerations. These include3:

1. Clinical Psychology

2. Experimental Psychology

3. Organizational Psychology

4. Educational Psychology

5. Anthropometrics

6. Computer Science

7. Cognitive Science

8. Safety Engineering

9. Medical Science

10. Industrial Engineering

3Refer to the FAA-H-8083-30 (2008) for detailed descriptions of each of
these disciplines and their relevance to HF.

TABLE 24.4 NASA HF (NASA SP 2007-6105, 2007,
p. 67)

Human Factor
Category

Attributes

Anthropometry and
biomechanics

• Physical size, shape, and strength of
the humans

Sensation and
perception

• Primarily vision and hearing
• Senses such as touch are also

important

Environment • Ambient noise and lighting
• Vibration
• Temperature and humidity
• Atmospheric composition
• Contaminants

Psychological factors • Comprise memory
• Information processing components

such as pattern recognition,
decision-making, and signal
detection

• Affective factors, for example,
emotions, cultural patterns, and
habits

In another example, the National Center for Human Fac-
tors Engineering in Healthcare (NCHFEH) (2013) states
“Human Factors scientists and engineers study the intersec-
tion of people, technology, policy, and work across multi-
ple domains, using an interdisciplinary approach that draws
from:

1. Cognitive Psychology

2. Organizational Psychology

3. Human Performance

4. Industrial Engineering

5. Systems Engineering

6. Economic Theory”

For general HF applications that are not domain specific,
Chapanis (1996, p. 14) identifies eight “technical disciplines
contributing to human factors/ergonomics:

1. Anthropometry

2. Applied Physiology

3. Environmental Medicine

4. Engineering

5. Statistics

6. Operations Research

7. Industrial Design

8. Psychology”
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Chapanis (1996, pp. 13–15) describes how these disci-
plines contribute to HF development of systems, products,
and services.

Given HF composition of the specialty skills listed above,
what are they intended to accomplish? This brings us to
User–System Design Factors.

24.4.2 User–System Design Factors

MIL-STD-1472G (2012, p. 11) specifies that the following
Design Factors “reflect human engineering, life support, and
biomedical factors that affect human performance, including
when applicable:

1. “Satisfactory atmospheric conditions including com-
position, pressure, temperature, and humidity.

2. Range of acoustic noise, vibration, acceleration,
shock, blast, and impact forces and safeguards against
uncontrolled variability beyond safe limits.

3. Protection from thermal, biological, toxicolog-
ical/chemical, radiological/nuclear, mechanical,
electrical, electromagnetic, pyrotechnic, and other
hazards.

4. Adequate space for personnel, their equipment, and
free volume for the movements and activities they
are required to perform during operation and main-
tenance tasks under normal, adverse, and emergency
conditions.

5. Adequate physical, visual, auditory, and other com-
munication links between personnel, and between
personnel and their equipment, under normal, ad-
verse, and emergency conditions.

6. Efficient arrangement of operation and maintenance
workplaces, equipment, controls, and displays.

7. Provisions for ensuring safe, efficient task perfor-
mance under reduced and elevated gravitational
forces with safeguards against injury, equipment
damage, and disorientation.

8. Adequate natural or artificial illumination for the per-
formance of operation, control, training, and mainte-
nance.

9. Safe and adequate passageways, hatches, ladders,
stairways, platforms, inclines, and other provisions
for ingress, egress, and passage under normal, ad-
verse, and emergency conditions.

10. Provision for acceptable personnel accommodations
including body support and restraint, seating, rest,
and sustenance, that is, oxygen, food, water, and
waste management.

11. Provision for non-restrictive personal life support and
protective equipment.

12. Provisions for minimizing psycho-physiological
stress effects of mission duration and fatigue under
normal, adverse, and emergency conditions.

13. Design features to assure rapidity, safety, ease and
economy of operation, and maintenance in normal,
adverse, and emergency maintenance environments.

14. Satisfactory remote handling provisions and tools.

15. Adequate emergency systems for contingency man-
agement, escape, survival, and rescue.

16. Compatibility of the design, location, and layout
of controls, displays, workspaces, maintenance ac-
cesses, stowage provisions, passenger compartments,
allocated tasks, and control movements with the
clothing and personal equipment to be worn by per-
sonnel operating, riding in, or maintaining military
systems or equipment.

17. Design of work stations shall be considered in all
human-system interactions for mobile operations.”

Now, consider how this list has commonalities and differ-
ences for various types of systems such as:

• Medical devices such as infusion pumps, X-ray de-
vices, magnetic resonance imaging devices, and da
Vinci surgical device (Figure 25.9).

• Portable consumer products such as smartphones and
tablet computers.

• Office buildings.

To illustrate how User–System Design Factors might
be applied, consider the two contextual examples below
(Examples 24.2 and 24.3) in which humans are integrated
into a Mission System (contextual role) and serve as an
Enabling System to other Mission Systems.

Example 24.2

Fully Integrated, Self-Contained
Aircraft System UCSD

As an integrated, self-contained system,
a Mission System such as a commer-

cial aircraft system consisting of Personnel (pilots, stew-
ards/stewardesses, passengers), Equipment, Procedural
Data, Mission Resources, and System Responses is de-
signed to incorporate HF into the development of each of
these entities.

Example 24.3

Architecturally Distributed Unmanned
Aerial System (UAS)

A UAS consists of a pilotless aircraft con-
trolled from the ground perhaps thousands

of miles away by an operator—surrogate pilot—in a control
center. Since the pilot is not onboard the aircraft, there is no
need to provide an environment with physical cockpit space,
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flight controls, and max gravity (“g”) limitations other than
visual onboard cameras and sensors and instrumentation data
to downlink to the ground control workstation. There is, how-
ever, a need to create some form of cockpit that is realistically
similar to being onboard piloting the aircraft. In that case, the
ground station Equipment Element must incorporate human
capabilities and limitations.

In these two examples, observe how HF is an integral to
the Equipment Design but in different ways. In the case
of the UAS, Flight Control System (FCS) downlink data
and uplink C2 transmission lag time latencies present new
challenges to the pilot operator that are not present in the
commercial airline example.

As another example, pilots are used to feeling the bumps
in flight due to turbulence; hearing engine noise, deployment,
and retraction of landing gear; and feeling the effects of the
aircraft touch down on the runway. A UAS pilot, which is an
external, remote User of the System, lacks these sensations.
This is particularly problematic in landing in which the pilot
may inadvertently drive the aircraft onto the runway with a
hard landing expecting to feel the “bump” only to have the
aircraft bounce back into the air.

This last point emphasizes the need to determine whether
the User is or is not part of the System being developed as
discussed in Chapter 8 (Figure 8.1). Examples 24.2 and 24.3
illustrate how HFs change for the User based on whether they
are onboard an aircraft or remotely piloting it.

Engineered Systems are not sold with a User as part of
the System/Product. The Users are considered “external
systems” that interface to the system or product. Exceptions
include Enterprises that:

• Develop Systems internally for use in performing
Enterprise missions.

• Train their personnel to operate and maintain those
systems.

• Deploy them to perform analytical services for clients
such as energy oil and gas well exploration.

In general, most systems, products, and services are
developed under contract or for the marketplace for use by
Enterprises and consumers (Figure 5.1).

Since Chapter 24 focuses on the User, you need to (1)
understand who the System Users are; (2) determine if they
are Internal Users or External Users; (3) determine their
HF capabilities, limitations, and skillsets; and (4) develop
the System Elements with a User-Centric mind-set to meet
their needs. From an HF perspective, developing commercial
products for a global, diverse marketplace of External User
skill sets may be very different from developing a system,
product, or service for a known set of Internal Users.

In adapting to and targeting specific market segments with
different Users and skillsets, technical decisions and assump-
tions must be made to determine what level of capability and
automation we incorporate into system, product, or service
designs. In this context, we need to understand (1) what the
Users want to do in terms of User Stories and UCs, (2) what
their capabilities, skills, and limitations are, and (3) what
they are willing to pay (Figure 21.4) for a specific level of
performance. This brings us to a key question: how do we de-
termine the proper mix of User–System tasks to be performed
by each? Let’s begin with a discussion of User–System
Tasking.

24.4.2.1 Defining Task Attributes If you analyze most
Enterprise System operator, maintainer, or trainer tasks,
you will discover that they share a common set of at-
tributes. These attributes enable HF Engineers to under-
stand the mission and scenario conditions that bound the
User–System Interactions. For example, MIL-HDBK-1908B
(1999, p. 32) identifies the attributes of a task shown in
Table 24.5.

24.4.2.2 Personnel Element Tasking and Account-
ability As stated in earlier Principle 24.2, the Personnel
Element has two levels of accountability: (1) system
accountability and (2) mission accountability. Analytically,
the Personnel Element is accountable as a peer-level ar-
chitectural System Element contributor to ensure the safe
and proper operation of the Mission System - system ac-
countability. However, unlike its System Element peers -
Equipment- Hardware and Software, Procedural Data, Mis-
sion Resources, or Facilities Elements, which are inanimate
objects - the Personnel Element is accountable to Higher
Order Systems for exercising decision-making C2 authority
over its System Element peers to successfully complete each
mission - mission accountability.

Our discussion of the SEA shown in Figure 9.2 the
Personnel Element as “peer level” to the Equipment, Pro-
cedural Data, Mission Resources, System Responses,
and Facilities Elements. From a Modeling and Simulation
(M&S) and System Design perspective, this is true. However,
the Personnel Element has dual roles to not only perform
mission tasks but also to exercise authoritative C2 over the
respective Mission System or Enabling System and its
System Elements. Why so?

Principle 24.7

Stress Points (SPs) Principle

Optimal System performance is achieved
when the User–System Stress Points (SPs)
have been avoided, eliminated, or reduced.

Mission Systems and Enabling Systems have mission
outcome and performance accountability (Principle 24.2).
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TABLE 24.5 MIL-STD-1908B Definitions of Task Attributes

Item Task Attribute Definition

1. Mission What the system is supposed to accomplish, for example, mission.
2. Scenario/conditions Categories of factors or constraints under which the system will be expected to

operate and be maintained, for example, day/night, all weather, all terrain
operation.

3. Function A broad category of activity performed by a system, for example, transportation.
4. Job The combination of all human performance required for operation and

maintenance of one personnel position in a system, for example, driver.
5. Duty A set of operationally related tasks within a given job, for example, driving,

system servicing, communicating, target detection, self-protection, and
operator maintenance.

6. Task A composite of related activities (perceptions, decisions, and responses)
performed for an immediate purpose, written in operator/maintainer
language, for example, change a tire.

7. Subtask An activity (perceptions, decisions and responses), which fulfills a portion of
the immediate purpose within the task, for example, remove lug nuts.

8. Task element The smallest logically and reasonably definable unit of behavior required in
completing a task or subtask, for example, apply counterclockwise torque to
the lug nuts with a lug wrench.

Source: MIL-HDBK-1908B, Definitions, para. 3.0, p. 32.

Ultimate mission success accountability resides with the
Personnel Element. So, the physical, mental, and emo-
tional states—human capabilities and limitations—of the
Personnel Element (operators and maintainers) through-
out the mission ultimately determine mission success. These
states are reflected in Personnel Element performance via
factors such as:

• Training and experience to efficiently and effectively
operate and maintain the Equipment Element safely
and properly.

• Workload and related stress.

• Human safety.

• Mission Resources Element—Clear communications
and timely and accurate flow of mission information
and data.

• Equipment Element—Ease of use, integrity and trust,
cautions, and warnings.

• Procedural Data Element—Training manuals and
operator/maintenance manuals.

• Operating Environment—Noise levels, lighting, tem-
perature, and humidity.

Observe how each of the interfaces (Figure 24.6) be-
tween the Personnel Element and the Equipment, Pro-
cedural Data, Mission Resources, System Responses,
and Facilities (not shown) Elements represents potential
SPs that can impede, distract, or impact Personnel Element
performance.

24.4.3 Mission System and Enabling System Task
Environments

If you perform a domain analysis of various Human Task
Environments, the three most common types are illustrated
in Figure 24.7.

• Desk-based Task Environments such as offices, space
stations, and manufacturing plants.

• Standing Task Environments such as machinery,
copy machines and faxes, space stations, and manufac-
turing plants.

• Vehicle-based Seated Task Environments such as
automobiles, aircraft, spacecraft, construction, and
agricultural equipment.

The question is: how do you develop Systems and
Products for a diverse set of Users—operators and main-
tainers? The answer resides in Anthropometrics and
Biomechanics.

24.4.4 Anthropometry and Biomechanics
Relationships to HF

Principle 24.8

User-Centric Design Principle

Design the Equipment Element and adjust
the task workload to fit the User’s HF
capabilities and limitations, not vice versa.

Humans have diverse ranges of physical characteristics
that impact how they work and perform. In the case of HF
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and Ergonomics, it is important to match the person to the job
and task. This requires insightful study into how humans are
structured, their capabilities, sensitivities, and limitations. As
a result, two fields of study, Anthropometry and Biomechan-
ics, emerged to collect, analyze, and summarize published
databases to support HF and Ergonomic decision-making.

Figure 24.8 provides simple graphical examples to aid our
discussion.

In general, Anthropometry focuses on scientific mea-
surements of human physical characteristics—male and fe-
male, size, weight, and structure—in various positions such
as standing, sitting, and lifting. In contrast, Biomechanics

A B C

Office Computer-Based
Seated Task Environments

Industrial 
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Task 
Environments
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Command & Control (C2)
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Figure 24.7 Common Personnel–Equipment Task Environment Interactions
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focuses on human capabilities and limitations related to body
movements such as standing, sitting, and range of motion.
Example human characteristics sources include:

• DoD-HDBK-743A (1991), Military Handbook: An-
thropometry of U.S. Military Personnel.

• NASA SP-2010-3407 (2010), Human Integration De-
sign Handbook (HIDH).

• NASA-STD-3000 (1995), Manned Systems Integra-
tion Standards.

• NASA RP 1024 (1978), Anthropometric Source Book,
Vols. 1–3.

Roebuck et al. (1975, p. 7) note that Biomechanics
“concerns primarily the dimensions, composition, and mass
properties of body segments; the joints linking the body
segments together; the mobility in the joints; the mechanical
reactions of the body to force fields, vibrations, and impacts;
the voluntary actions of the body in bringing about controlled
movements, in applying forces, torques, energy, and power to
external objects like controls, tools, and other equipment.”
They add that it is “very difficult (and useless) to draw
demarcation lines between anthropometry, biomechanics,
and engineering anthropometry.”

Although Biomechanics may appear to be a relatively new
field of study, its origins are traceable back to Aristotle in his
book De Motu Animalium—translation On the Movement of
Animals. Later, Leonardo da Vinci may be the first person
to study the mechanics of anatomy (Wikipedia, 2013b).
Leonardo da Vinci (1452–1519) through his studies of
human anatomy and Giovanni Alfonso Borelli (1608–1679)
through his studies of biomechanics collaborated to integrate

existing knowledge in physics, anatomy, and physiology.
Borelli published his texts De Motu Animalium I and De
Motu Animalium II based on Aristotle’s original title. Borelli
also introduced the concept of a “stick person” as a human
model with articulated linkages and interconnecting muscles
(Kroemer, 2010, p. 97).

24.4.5 Understanding Personnel–Equipment
Interactions

User–System interactions manifest themselves via physi-
cal Personnel–Equipment interfaces (Figures 10.15 and
10.16) and communications. The question is: Who is the com-
municator and what is being communicated?

Conceptually, we can say that the Equipment Ele-
ment communicates only essential information to the User
on a need-to-know basis (Principle 24.9). Although the
Equipment Element serves as the physical communicator,
the real communicators are the virtual hardware and software
designers that collaborated with the User in the development
of the Equipment. So, the real challenge becomes one of
the virtual designers communicating with operators, main-
tainers, or trainers. Then, translating and transforming those
communications - requirements - into an Equipment Element
design that enables the User to conduct specific types of mis-
sions and be well-pleased with the interaction and results.
The question is: what needs to be communicated?

In general, a User needs to

• View current status—Situational Assessment

• Query the System or Product for information

• Store mission information for future reference
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• Command and Control (C2) C2 System outcomes and
performance.

• Perform Guidance and Navigation (G&N).

• Communicate Information

• Report System Operational Health and Status (OH&S)

We can summarize this information into three key System
capabilities: (1) obtain or have access to the Situational
Assessment of the Equipment OH&S, (2) be able to C2
a mission, and (3) engage and interact with other external
systems.

From an SE perspective, for clear, error-free communica-
tions to occur, two aspects of the Personnel–Equipment
interface must be considered:

1. The Equipment Element must be capable of sensing,
detecting, and communicating information via a selec-
tion of dashboard display colors, lights, dials, or bar
scales, based on an understanding of human physical,
physiological, and psychological characteristics. The
information must be valid, understandable, accurate,
and precise for the task.

2. The Personnel Element must be capable of read-
ing display information, hearing audible alerts and
alarms, or feeling vibrations, as applicable, being com-
municated. Operator perceptions, interpretations, and
understanding of this information are critical and must

match what the virtual designers intended to commu-
nicate. This is why Operator training, Procedural
Data, and experience are paramount to fill any gaps or
correct any perceptions when performed under stress.

If we model these interactions, what is actually occurring
from a scientific perspective? This brings us to Meister’s HF
Interactions Model.

24.4.6 Meister’s HF Interactions Model

Most Personnel–Equipment Element operational interac-
tions involve three HFs Cognitive Factors, Physical Factors,
and Physiological Factors. One of the best models for depict-
ing these interactions is based on the work of Meister (1971)
and illustrated as a derivative work in Figure 24.9. Both the
FAA (2014) and NASA (SP 2007-6105, 2007, p. 247) em-
ploy this model.

Three key points about this figure are

• The Personnel Element, as a performing Entity and
the controlling operator accountable for System per-
formance, is shown in reverse to the FAA and NASA
renditions. The intent is to depict a general left-to-right
Personnel C2 stimulus flow to the Equipment with a
return behavioral response back to the Personnel El-
ement.

• The graphic uses an older term “Machine” in lieu of
Equipment, a more preferable term.

Human Sensory
Component 

M
a
c
h

in
e
 C

P
U

C
o

m
p

o
n

e
n

t 

H
u

m
a
n

 C
o

g
n

it
iv

e
C

o
m

p
o

n
e
n

t 
 

Machine Input Device
Component 

Human
Musculoskeletal

Component 

Machine
Display Component

PERSONNEL Element EQUIPMENT Element 

• Operators
• Maintainers
• Trainers, et al 

H
um

an
-S

ys
te

m
 In

te
rf

ac
e 

Operating Environment 

Figure 24.9 “Engineering the System” Considerations - Adaptation of the FAA’s and
NASA’s Version of Meister’s (1971) Human Factors (HF) Interactions Model. Derivative
work — used with permission.



UNDERSTANDING HUMAN FACTORS (HF) AND ERGONOMICS 503

• The term Machine CPU Component is a physical im-
plementation, not a behavioral capability. Processing
would more appropriately represent key capabilities
such as Sensing, Situational Assessment, C2, and stor-
age.

• Some refer to the boundary between the Personnel
and the Equipment Elements as Man–Machine In-
terfaces (MMIs) or Human–Computer Interfaces
(HCIs).

Principle 24.9

Display Information Principle

Display only essential information based
on the User’s need-to-know and priorities;
avoid data overload.

Principle 24.10

Superfluous Information Principle

Eliminate superfluous, non-value-added
information unless the User has con-
sciously requested it and the information
would be available.

The FAA (2013) describes each of the components in
Figure 24.9 as follows:

• Human Sensory Component—“Vision, hearing,
taste, smell, and touch.”

• Human Cognitive Component—“Attention, mem-
ory (short and long term), information processing,
decision-making, and action initiation.”

• Human Musculoskeletal Component—“Motor
coordination, action performance, and object manipu-
lation.”

• Machine Input Device—“Receives data via sensors;
controls, switches, and levers; keyboard, mouse, and
trackball; touchscreen, and voice.”

• Machine CPU Component—“Performs programmed
procedures, stores data, retrieves data, transmits re-
sponse.”

• Machine Display Component—“Displays re-
sponse – visual, authority, and tactile – and initiates
queries.”

• Environment—“Illumination, noise level, air quality,
vibration, and climate.”
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MIL-HDBK-470A (Figure 8, p. 4-11) provides a more
detailed version of the model in Figure 24.10.

Given this basic construct of Personnel–Equipment
Interactions, let’s explore how these interactions occur using
the simple closed loop Car–Driver C2 system shown in
Figure 24.11. Observe that this graphic isolates each side
of a Vehicle-based Task Environment shown in Figure 24.7
Panel C.

Figure 24.11 illustrates that in order to drive the vehicle,
the Driver employs their training, Procedural Data (vehi-
cle’s owner manual), and personal experience to interact with
the car via its (1) dashboard displays for OH&S information
and (2) control devices such as the steering wheel, accel-
erator, and brake. These interactions occur via Situational
Assessments and decision-making by the driver based on the
vehicle’s Situational Assessment information and physical
dynamics.

Although our discussion here focuses on Situational
Assessment interactions, observe that all of the HF listed in
Table 24.3—Anthropometrics and Biomechanics, Sensory,
Cognitive, Physiological, and Psychological Factors—apply
to the design of this interface.

We can model these interactions using a SysMLTM Ac-
tivity Diagram shown in Figure 24.12. Observe that both
the Personnel and the Equipment Elements perform Sit-
uational Assessment and C2 tasks. Consider the following
Car–Driver System example.

Example 24.4

Car–Driver System: Situational
Assessment and C2

• The driver of a car performs a Situational
Assessment of the vehicle’s OH&S and

then performs C2 to the vehicle to crank the engine.

• The car’s C2 responds to the driver’s command, cranks
the engine, and provides Situational Assessment infor-
mation to the driver via the dashboard displays.

• The driver continuously performs a Situational Assess-
ment - scans vehicle and roadway status, interprets the
results, and responds accordingly based on the vehicle,
road, and driving conditions.

This discussion represents more than simply an introduc-
tion of Meister’s HF Interactions Model (Figure 24.9). More
importantly is the fact that both HF and Ergonomics rec-
ognize that Mission and System performance is ultimately
dependent primarily on human performance. Human perfor-
mance, in turn, is bounded by the capabilities—strengths and
limitations—of the set of Users.

If the Equipment, Procedural Data, Mission
Resources, System Responses, and Facilities inter-
faces, designs, and implementations are mismatched and
incompatible with User capabilities and limitations, overall
System performance will suffer. Such is the case with the
User–System HF Interactions Model interfaces shown in
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Figures 24.9 and 24.10 and listed below. Failure to properly
address these incompatibility issues up front could lead to
injury or even worse catastrophic failure resulting in loss
of life. Therefore, the following Human System Integra-
tion (HSI) between the following interfaces in Figure 24.9
become critical for reducing human errors and improving
proficiency.

• Machine Display Component-to-Human Sensory
Component Interface

• Human Musculoskeletal Component-to-Machine Input
Device Component Interface

This illustration highlights the fallacies of the traditional
System Design approach that focuses almost exclusively on
the Equipment Element—Hardware and Software. As
a result, the Personnel Element (Figure 24.9) is ignored
and assumptions are made that the Users will conform and
make up for shortcomings in the Equipment design. Humans
simply cannot perform beyond their own HF capabilities
and limitations or do so for extended periods of time. As
a result, there is a need to shift the Enterprise paradigm
from traditional Equipment Design to User-Centric Design.
This requires recognition that the boundaries of human
capabilities become performance requirement constraints

levied on Equipment and Procedural Data, not vice
versa. Figure 24.13 illustrates how User-Centered Design
levies and allocates those Personnel HF constraints as
requirements to the remaining System Elements.

Given these insights into HF, let’s address how we
integrate HF into HSI and SE. This brings us to our next
topic, HFE.

24.4.7 Human Factors Engineering (HFE)

Principle 24.11

Human Factors (HF) Application
Principle

“Anywhere you find technology and peo-
ple interacting, there is a need for human
factors engineering” (Nelson, G. (2013b,
p. 1), paraphrasing Kantowitz (1983)).

Principle 24.12

HF Qualified Professional Principle

Employ the services of competent, quali-
fied professionals to perform HFE.

When human interactions are a key element of “Engineer-
ing the System”, challenging technical decisions have to be
made regarding the Personnel and Equipment Elements.



506 USER-CENTERED SYSTEM DESIGN (UCSD)

HF  Constraint
Requirements*

• Capabilities 
• Strengths 
• Limitations 

HF Constraint
Requirements*

• Capabilities 
• Strengths 
• Limitations 

PERSONNEL
• Operators

• Maintainers
• Trainers 

• Et al

EQUIPMENT
Hardware 
• Software 

• Courseware 
 • User’s Manuals

PROCEDURAL DATA
Operator’s Manuals
• Training Manuals 

• Maintenance Manuals 
• Et al 

MISSION
RESOURCES

Tasking 
• Communications 

• Environmental Data 
• Navigational Data 

SYSTEM RESPONSES
Acceptable Outputs 

• Unacceptable Outputs 

FACILITIES
• Environment 

• Communications 
• Et al 

*Human Factors
• Anthropometric 

• Sensory 
• Cognitive 

• Psychological 
• Physiological 

HF Constraint 
Requirements*

• Capabilities 
• Strengths 
• Limitations 

HF Constraint
Requirements*

• Capabilities 
• Strengths 
• Limitations 

HF Constraint
Requirements*

• Capabilities 
• Strengths 
• Limitations 

Figure 24.13 Paradigm Shift from Traditional Equipment Design to User-Centered
Design

For a given set of operating conditions and constraints, key
questions to be answered include:

1. Compared to the Equipment Element, what tasks can
the Personnel Element perform best?

2. Compared to the Personnel Element, what tasks can
the Equipment Element perform best?

3. What controls—capabilities and overrides—should
be allocated for Personnel to perform versus
Equipment? For example, automated versus manual
controls.

4. What work task ergonomic factors should be consid-
ered in Human–System interface designs?

5. What are the performance effects of Human–System
interactions and outputs such as products, by-products,
and services on the environment, safety, and health of
Support Systems and the general public?

Answers to these questions require Specialty Engineering
skills that include HFE and System Safety.

How does HFE enable us to develop a system, product, or
service for compatibility and interoperability with its human
operators, maintainers, and sustainers? Simply stated, HSE

encompasses more than an Engineer “looking up” a few hu-
man physical characteristics and convincing the User during
technical reviews that they actually spent time considering
HF as part of the System Design Solution.

Observe the phrase “looking up a few human physical
characteristics.” Hopefully, you recognize and appreciate at
this point in our discussion that “human physical character-
istics” are one of five HFs listed earlier in Table 24.3 to be
considered. This mind-set may impress the System Acquirer
or User but fails in terms of satisfying the HF objectives
stated earlier.

As a final point, people sometimes think that HF En-
gineers Equipment Element Hardware or Software. In
some Enterprises, if they are competent, they may perform
both roles. However, what most people do not realize is that
the role of most Specialty Engineering Disciplines such as
HFE, Safety, Reliability, and Maintainability are to (1) sup-
port HF requirements development, (2) assess compliance to
specification requirements via design reviews and prototype
evaluations based on discipline-based design principles and
best practices, and (3) report issues and recommendations
for achieving compliance. Their discipline-based mission is
not to design the Equipment - Hardware or Software.
If this is the case, they may have a potential conflict of
interest.



UNDERSTANDING HUMAN FACTORS (HF) AND ERGONOMICS 507

Another term that is often used interchangeably with HFE
is HE.

24.4.7.1 Human Engineering (HE) HE evolved
as a discipline beginning with military organizations.
MIL-STD-1472 Human Engineering, for example, has been
a DoD Design Criteria Standard for many decades. For
those who have worked with this standard, its context is
well understood and has served the Aerospace and Defense
SE&D community well. However, over time, advancements
in knowledge and technology such as medicine bring new
dimensions to the meaning of the term. Taken literally, the
connotation is that we are going to “engineer humans”,
which gets into professional, ethical, and moral issues.
Although that is not the context or intent of the term, HE is
confusing for some people. Nelson (2013b, p. 2) cautions
that “The words and order of words used in this term can
imply to the uninformed that it is the human that is to be
‘engineered,’ or ‘changed,’ rather than the system.”

On inspection, one might assume that HF and HE are
the same. However, Licht (undated) references the following
delineation provided in AFSC (1977, p. 2-1):

• HF and HE—“… human engineering is not synony-
mous with human factors. The term ’human factors’
is more comprehensive, covering all biomedical and
psychosocial considerations applying to man in the sys-
tem. It includes not only human engineering, but also
life support, personnel selection and training, train-
ing equipment, job performance aids, and performance
measurement and evaluation.”

24.4.7.2 Evaluations of Prototypes and Demonstrations
One of the best approaches to support design
decision-making is to prototype design areas that may
have a moderate to high level of risk. Spiral Development
discussed in Chapter 15 provides a good strategy for refining
human–system interfaces with Users via rapid prototyping
to drive out risk-based requirements. Rapid prototyping
includes cardboard model mock-ups, sample displays, and
so forth.

What do HFE prototype evaluations accomplish? The
DoD HFE CPAT (1998, Section 1.1.3) suggests “Opera-
tor/maintainer interfaces should be prototyped to

1. Develop or improve display/software and hardware
interfaces.

2. Achieve a design that results in the required effective-
ness of human performance during system operation
and maintenance.

3. Develop a design that makes economical demands
upon personnel resources, skills, training and costs.”

This leads to the question: how do prototypes enable HFE
to evaluate design solutions? Prototypes are mechanisms
that enable the HF Engineer to (1) evaluate basic concepts
such as workflow, haptics of controls such as touch and feel,
Personnel–Equipment interaction sequences, and elimi-
nation of non-value-added steps and (2) assess performance
based on instrumented test results.

As the HF Engineer performs his/her work, what types of
analyses do they perform that enable them to evaluate the
design solutions? The answer resides in understanding our
next topic, HFE Analyses.

24.4.8 HFE Analysis

HFE performs various analyses such as manpower,
personnel, training, and safety/health hazards to ensure that
System Performance Specification (SPS) and lower-level
Entity Development Specification (EDS) requirements are
met. HF engineers employ various tools and methods to
perform operational sequence evaluations, timeline and task
analyses, and error analyses.

Since these decisions have an impact on the SPS and EDS
requirements, HFE should be an integral part of SPS and
EDS development activities beginning during the proposal
phase. Failure to do so may have a major impact on
contract technical, technology, cost, and schedule delivery
performance as well as severe consequences if catastrophic
failures that may have been avoidable occur after deployment
of the system, product, or service.

The DoD HFE CPAT (1998, Section 1.1.3, p. 6) identifies
four analytical HFE techniques for application to HSI design
decision-making:

• Operational Sequence Evaluations—“… Describe
the flow of information and processes from mission
initiation through mission completion. The results of
these evaluations are then used to determine how
decision–action sequences should be supported by the
human–system interfaces… ”

• Task Analysis—“… The study of task and activity
flows and human characteristics that may be anticipated
in a particular task. Task analysis is used to detect
design risks associated with human capabilities, such
as skill levels and skill types. Task analysis also
provides data for man–machine trade-off studies. The
results of a task analysis allow the system designer
to make informed decisions about the optimal mix of
automation and manual tasking… ”

• Error Analysis—“… is used to identify possible
system failure modes. Error analysis is often conducted
as part of human–machine trade-off studies to reveal
and reduce (or eliminate) human error during operation
and maintenance of the system. The error analysis
results eventually are integrated into reliability failure
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analyses to determine the system level effects of any
failures… ”

• Tests and Demonstrations—“… are often necessary
to identify mission critical operations and maintenance
tasks, validate the results of the HF related analy-
ses, and verify that HF design requirements have been
met. These tests and demonstrations are used to iden-
tify mission critical operations and maintenance tasks.
Therefore, they should be completed at the earliest time
possible in the design development process.”

24.4.9 Personnel–Equipment Elements Trade-Offs

Principle 24.13

Optimal UCSD Principle

Optimal System performance is achieved
when the Personnel and Equipment
Elements are compatible, interoperable,

and balanced based on what each does best.

The SPS and each EDS should specify and bound System
capabilities, interfaces, design, and construction constraints
related to Personnel capabilities—skill levels and limita-
tions. You should recall that:

• One of the fallacies of the ad hoc SDBTF-DPM
Enterprise environments is making a quantum leap
from SPS or Entity specification requirements to a
Physical Domain Solution (Figure 2.3).

• When specifications are written, they should spec-
ify what has to be accomplished and how well,
not dictate how to design the system, product, or
service—Physical Domain Solution.

If a system, product, or service must perform missions
that have specified results and performance-based outcomes,
how are the System’s requirements allocated architecturally
to the System Elements—Personnel and Equipment? In some
extreme environments characterized by conditions that are
too harsh for humans such as space, the Equipment Ele-
ment becomes the survival buffer between the Operating
Environment and its Personnel Element. Examples in-
clude space travel, aircraft in the atmosphere, nuclear plants,
and undersea exploration.

In contrast, Earth-based environments have habitable con-
ditions for humans such as driving an automobile or office
environments. In either case, the Personnel Element is ac-
countable for the C2 of the Mission System or Enabling
System. As a result, SEs must find an optimal balance across
the System Elements based on an acceptable mix of technol-
ogy, budget, schedule, and risk, more specifically System
requirements allocations to Personnel–Equipment inter-
actions. Specifically, making informed decisions concerning

what the Human—Personnel—does best versus what the
Equipment does best.

We know that both the Mission System and Enabling
System operationally perform tasks to accomplish an over-
all mission. Each System-Level operational task is ac-
complished by a sequence of interactions between the
Personnel and the Equipment Elements (Figure 10.16).
The capability to interact requires that the Personnel and
Equipment Elements perform their own sets and sequences
of tasks. So, how do we get from System-Level operational
tasks to Personnel and Equipment Element tasks? The
answer resides in performing Task Analysis via an Analysis
of Alternatives (AoA)—trade study— (Chapter 32) to deter-
mine the optimal balance between Personnel capabilities
and limitations versus Equipment capabilities and limita-
tions or a mixture of the two. Figure 24.14 provides an illus-
tration. Observe the top of the figure. Some types of tasks are
specifically suited without debate to either the Equipment
Element or the Personnel Element as noted by the rectan-
gular regions at either end. For example:

• Tasks requiring query search criteria or parameters
for mission data retrieval should be allocated to the
Personnel Element.

• Tasks requiring execution of the high-speed data
searches of vast amounts of mission data should be
allocated to the Equipment Element.

Between these two regions lie areas that may require a
mixture of tasks requiring both Personnel and Equipment
actions as noted by the complementary diagonal lines, for
example, tasks requiring Personnel and Equipment Ele-
ment monitoring of normal operating conditions, cautions,
and warnings, and making timely evasive or defensive deci-
sions or actions.

In general, avoid specifying operational tasks to be per-
formed explicitly by the Personnel Element unless there
are compelling reasons supported by an AoA. As the SE Pro-
cess Model (Figure 14.1) is applied through multiple levels
of System design (Figure 21.3), trade-offs are supported by
Chapters 30–34, “Decision Support Practices.” Organiza-
tionally, HFE should be tasked to determine the optimal mix
of Personnel versus Equipment tasks based on their re-
spective strengths and limitations. This may require analysis
supported by development of prototypes, models, and simu-
lations to ensure that overall System-Level performance is
optimal.

So, how do HFEs evaluate which tasks should be allo-
cated to the Personnel and the Equipment Elements? The
answer resides in establishing criteria that characterize the
capabilities–strengths and limitations—of Personnel and
Equipment Elements. Let’s explore the key strengths and
limitations of Human and Equipment performance.



SITUATIONAL ASSESSMENT: AREAS OF CONCERN 509

Equipment
Strengths & Limitations

Human
Strengths & Limitations

Task Analysis

System
Performance
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What Equipment

Does Best

• SYSTEM

• PRODUCT
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• ASSEMBLY

• SUBASSEMBLY

• PART

Figure 24.14 Personnel–Equipment Task Analysis of Alternatives (AoA) Trade-Offs

Humans, in general, excel in mental strength and a num-
ber of skills when contrasted with the Equipment Element.
In general, human performance exceeds Equipment Ele-
ment performance in the following areas:

1. Value-based judgments and decisions

2. Priority selections

3. Resource allocations—over time

4. Impromptu tasks

5. Creative, non-repetitive tasks

6. Sensitivity to painful conditions

7. Human communications

8. Smell and touch

9. Adaptive behavior

Author’s Note 24.2

Numbered items in the list above and
below are for reference purposes only
and should not be interpreted as a
rank ordering of abilities.

For a detailed listing of Personnel versus Equipment
capabilities and limitations, refer to McCormick and Sanders
(1964, 1982)

• Human strengths (McCormick and Sanders, 1982,
pp. 489–490)

• Human limitations (McCormick and Sanders, 1964,
pp. 573)

• Machine strengths McCormick and Sanders (1982,
p. 490)

• Machine limitations (McCormick, 1964, p. 574)

Author’s Note 24.3

Currency and Validity of
McCormick’s Criteria

Observe that McCormick’s criteria
were established in 1964. However,

they are equally valid today with only minor exceptions due
to new technologies and current terminology.

Now that we have an understanding of Human
(Personnel)–Equipment strengths and limitations, let’s
address how they are applied to SE&D.

24.5 SITUATIONAL ASSESSMENT: AREAS
OF CONCERN

Mission success of any system, product, or service re-
quires knowledge and insights concerning Situational As-
sessment. Key Situational Assessment areas of concern
include:

1. Mission Objectives Status

2. Mission Objectives Status

3. Task Status

4. Crew Status, as applicable

5. Vehicle Attitude
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6. Resources Status

7. Phases, Modes, and States of Operation

8. Operational health & Status (OH&S)

9. Guidance & Navigation (G&N)

10. C2

11. Communications

12. Environmental Conditions

Each of these elements requires Personnel–Equipment
Interactions as illustrated by Figures 24.9–24.12. The ques-
tion is: how do HFEs communicate Personnel–Equipment
information in a clear and concise manner that is well under-
stood by the operator, maintainer, and trainer, without the
need for explanation other than basic training? There are
several ways.

24.5.1 Situational Assessment Approaches

Principle 24.14

Situational Assessment Principle

Provide real-time Situational Assessment
information to the User to evaluate
Mission performance and System
Operational Health & Status (OH&S).

Once the initial Personnel-Equipment Task allocations
are made, the next question is: how will the Personnel and
Equipment Elements interact with each other to accomplish
interface objectives. We refer to these Personnel interac-
tions as Input/Output (I/O) operations that include:

• Audio-visual stimuli and cues.

• Tactile feedback—such as touch and counter-reaction
cues.

• Physical products and services—such as hard copies
and data files.

As this information is collected and processed, the
Equipment Element produces various preprogrammed cues
as well as cautionary or warning alerts such as those that, at
a minimum, include:

• Prompting the User to react to a query or make a
decision.

• General health status.

• Problem reporting.

• Progress reporting in performing a task.

Since visual, auditory, and vibratory cues are an integral
part of Human–System interfaces, let’s scope the context of
each term.

24.5.1.1 Visual Cues Visual cues consist of optical warn-
ings, cautions, or normal indications or messages to inform
operators and maintainers of the current system conditions,
status, or health. These include hand signals, console indica-
tors, video display messages, and flashing lights.

24.5.1.1.1 Visual Display Messages

Principle 24.15

Visual Information Principle

Present visual information to the User in
accordance with established Human En-
gineering (HE) and System Safety design
principles.

Visual display messages include various types of for-
matted dialogue boxes that request an operator response.
Examples include color-coded boxes, selection options, and
flashing lights. Depending on the level of emphasis required,
visual display messages may be paired with various types of
audio alerts or alarms.

24.5.1.1.2 Visual Notification, Alert, and Alarm Indicators

Principle 24.16

Visual Indicators Principle

Provide visual notifications, alerts, and
alarms to inform the User about con-
ditions that may impact System perfor-

mance, cause damage, or threaten the safety of its User(s).

Three types of cues are commonly used as indicators for
completions, cautions, and warnings for conditions to be dis-
cussed later in Figure 30.1. Examples include Power On,
Completion, Interrupt, Caution, Master Caution, and Warn-
ing notifications, alerts, and alarms. For example, an aircraft
has an Integrated Cautions and Warnings (ICAW) cockpit in-
strumentation alarm. Most of these are implemented as indi-
vidual control panel lamps or in combination with visual dis-
play status screen information, display dialogue boxes with
completion percentages, or bar graphs:

• Power Indicators—Provide visual feedback that
power has been applied, is active, or is available; that
overload conditions have occurred, or back-up power
has been applied.

• Status Indicators—Provide status of a process that has
been activated or in a state of completion.

• Completion Indicators—Provide visual indications
that an activity has completed processing.

• Caution Signals (Cues)—“alert the operator to
an impending dangerous condition requiring at-
tention, but not necessarily immediate action”
(MIL-HDBK-1908B, 1999, p. 8).
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• Warning Signal—“gen. A signal which alerts the
operator to a dangerous condition requiring immediate
action” (MIL-HDBK-1908B, 1999, p. 34).

• Master Caution (Warning) Signal (Cues)—“gen. A
signal which indicates that one or more caution (warn-
ing) lights have been actuated” (MIL-HDBK-1908B,
1999, p. 21).

Other types of visual notifications include signage that
alerts the User to various levels of dangers and perils.
Nelson, G. (1990) provides additional information in his
paper Essential Elements of Warnings and Instructions.

MINIMINIIN

Mini-Case
Study 24.2

Signal Technology Advancements

Traditionally, large, complex systems con-
sisted of control rooms, cockpits, hospi-
tal nurse stations, and security systems that
monitored numerous performance parame-

ters via indicator lights. State of the practice at the time
consisted of hardwiring signals to a central monitoring lo-
cation. When Caution or Warning conditions occurred such
as illustrated in Figure 30.1, electronic circuits set to detect
threshold conditions activated visual and auditory Caution or
Warning Signals. The cost of implementation, reliability, and
continual maintenance were continual issues.

Some of these still exist today requiring a single operator
to monitor each individual light. As a result, operators and pi-
lots were trained in visual scanning techniques to ensure that
all indicators were viewed periodically. In terms of Reason’s
Error Classifications—slips, lapses, and mistakes—Caution
Signals were sometimes electronically Boolean “ORed” into
a single Master Caution Signal to indicate when any one Cau-
tion Signal is activated.

Fortunately with today’s technology and automation,
these same parameters can be tracked via distributed or re-
motely located systems networked via Ethernet or wirelessly
into a central control station and then globally via the Inter-
net to smartphones and other devices. Despite the technology
advancements, there are still needs for indicator lamps, espe-
cially for locating problem devices such as transformers on
electrical power poles; massively large facilities with limited
lighting; and indicator panel lights on modems.

24.5.1.1.3 Auditory Cues

Principle 24.17

Auditory Cues Principle

Provide User auditory cues for notifica-
tions, alerts, and alarms commensurate
with the level of significance and their
spectral audio range.

Audio cues consist of warnings, cautions, and alerts that
notify the operator or maintainer of specific equipment health

and status conditions that require attention with varying
levels of urgency for action. Various tonal frequencies as well
as sequences and patterns of tones are employed to symbolize
system-operating conditions. For example, a smartphone can
be programmed to initiate specific types of ring tones with
various callers, alerts, and emails. Auditory cues are often
employed to alert system operators, especially when they
are not attentive or observing the visual cues that require
immediate attention such as conditions illustrated later in
Figure 30.1:

• Audio output devices consist of electromechani-
cal mechanisms such as speakers and headphones
that communicate tones or messages to the System
operator(s).

24.5.1.1.4 Vibratory Cues Where auditory or visual cues
are undesirable, inappropriate, and impermissible, vibratory
cues may be employed to alert system operators. Vibratory
cues consist of devices that employ electronic mechanisms
that vibrate on command for a pre-programmed period of
time. Examples include cell phones and pagers.
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Heading 24.1

Given an understanding of types of human–
system interaction cues, how are these cues
communicated? This brings us to our next
topic, System C2 devices.

24.5.2 Operator C2 Devices

Principle 24.18

C2 Devices Principle

Select C2 devices that are appropriate,
compatible, and interoperable with User
anthropometrics and biomechanics.

Principle 24.19

Escape Mechanisms Principle

Provide operational escape mech-
anisms—safety latches, stop switches or
alarms, abort processing, restarts, and fire

suppression systems—that allow the User to safely override
or exit conditions that require immediate corrective actions
without causing panic, injury, damage, or catastrophic
results.

Personnel require I/O mechanisms to MC2 System or
Product operations and performance. Let’s identify some
of the various types of I/O devices that serve as candidate
solutions for the C2 portion of MC2:

• Data entry devices consist of electromechanical–optical
mechanisms such as keyboards or touch panels that
enable system operators and maintainers to enter
alphanumeric information and data.
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• Pointing control devices, such as a trackball, eyeball
trackers, touchpad, or mouse, enable system operators
and maintainers to point, select, manipulate, or maneu-
ver data such as “drag and drop.”

• Steering devices consist of steering wheels and joy-
sticks on ground vehicles; yokes, sticks, and rudder
pedals on aircraft; and thrusters on spacecraft.

• Mechanical control I/O devices include mechanical
tools that enable operators to calibrate, align, control,
or adjust the system configuration, operation, and
performance.

• Electronic control I/O devices consist of elec-
tronic or electromechanical mechanisms, such as
remote controls, toggle or rotary switches, dials, and
touch screen displays, configured to communicate
operator-controlled pointing position or displacement
to specific data items.

• Translational displacement control devices such as
joysticks and track balls employ electronics that trans-
form or translate mechanical movements by angular
displacement, stress, or compression into electronic
signals that are used to control systems.

• Sensory I/O devices consist of mechanisms that sense
the presence, degree, proximity, and strength of human
interaction.

• Audio input devices consist of microphones that
translate sound waves into inputs that are compatible
with and recognized by the system’s voice recogni-
tion software commands to perform an action or per-
form speech-to-text actions—dictation—for notes and
records.
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Heading 24.2

At this juncture, we have explored HSI be-
ginning with a high-level perspective using
Reason’s Accident Trajectory Model and
driven down to the physical implementation
of the User–System interface. Using this in-

formation as a backdrop, let’s address how it applies to Com-
plex System Development.

24.6 COMPLEX SYSTEM DEVELOPMENT

Principle 24.20

Unwarranted Assumptions Principle

“Unwarranted assumptions in design
can produce unintended consequences”
(Madni, 2011, p. 5).

On inspection, HF, HE, HFE, and Ergonomics may appear
to be simple. However, the reality is that humans develop a
level of trust and confidence in a system, product, or service,
especially when their lives depend on it, to prevent injury or

death. Madni (2011, p. 4 - 5) identifies several challenges that
increase the complexity of these decisions. The challenges
include

1. Human Performance

2. Human Error

3. Human Adaptivity

4. Multitasking

5. Decision-making under Stress

6. User Acceptance

7. Risk Perception and Behavior

8. HSI

In general, a potential problem may be an increasing
Personnel dependence on technology and automation to
supplement human shortcomings such as Reason’s (1990b)
slips, lapses, mistakes, and violations. Madni (2011, p. 5)
observes that “Poor Automation Design Can Degrade
Human Performance.” Examples include:

• Cognitive Load in Supervising Automation

• Automation-Induced Complacency

• Partially Automated System with Incomplete
Knowledge

• Mistrust of Automation

• Erosion of Operator’s Expertise and Engagement

To illustrate these points, Pasztor (2013) reported in a
Wall Street Journal article that a study commissioned by
the US FAA indicates that pilots may rely too heavily on
automation—automation dependence. As such, there may
be a reluctance to intervene with the automation when
confronted with unusual circumstances. As a result of the
automation dependence, piloting skills required to fly the
plane manually, if required, may also be diminishing.

24.7 SE HF AND ERGONOMICS ACTIONS

In summary, what actions should be taken to ensure success-
ful HSI? The answer resides in five key objectives for SEs.

24.7.1 Objective #1: Employ Competent, Qualified HF
Engineers

A key theme of Chapter 24 is that Engineers, in general,
do not have the education, qualifications, or experience
to perform HFE. What is important is to recognize the
need to employ the services of HFEs who are competent
and qualified. Then, based on information provided here,
Engineers should (1) be able to converse and understand the
discipline and (2) oversee implementation of these actions,
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(3) be a User’s Advocate, and (4) collaborate with the HFEs
to make technical, technology, cost, schedule, and risk AoA
decisions.

24.7.2 Objective #2: User Advocacy and System
Usability

Principle 24.21

System Usability Principle

System, product, or service usability is
key to winning User hearts, minds, confi-
dence, and acceptance—key elements of
customer satisfaction.

SEs should always collaborate with the Users and factor
their reviews comments into decision-making processes.
When the User may not be available, be a User’s Advocate.
A central focus on User Advocacy is ensuring the usability
of a system, product, or services.

ISO 9241-11 (1998) defines usability in terms of its effec-
tiveness, efficiency, and satisfaction for a specific context of
use. The NAP (2007, p. 192) defines each of these attributes
as follows:

• Effectiveness—“a measure of how well users can
perform the job accurately and completely.”

• Efficiency—“a measure of how quickly a user can
perform work and is generally measured as task time,
which is critical for productivity.”

• Satisfaction—“the degree to which users like the prod-
uct - a subjective response that includes the perceived
ease of use and usefulness. Satisfaction is a success
factor for any products with discretionary use, and es-
sential to maintain workforce motivation.”

In other words,

Usability = f (effectiveness,efficiency, and satisfaction)

(24.1)

Nielsen (2013) defines usability in terms of Five Quality
Components, which include two of the items listed above by
ISO 92411-11 (1998):

1. “Learnability: How easy is it for users to accomplish
basic tasks the first time they encounter the design?

2. Efficiency: Once users have learned the design, how
quickly can they perform tasks?

3. Memorability: When users return to the design after a
period of not using it, how easily can they reestablish
proficiency?

4. Errors: How many errors do users make, how severe
are these errors, and how easily can they recover from
the errors?

5. Satisfaction: How pleasant is it to use the design?”

For additional information about HF and Usability, refer
to the following references:

• Nielsen (1995), 10 Usability Heuristics for User Inter-
face Design

• Zhang, (2003), Using Usability Heuristics to Evaluate
Patient Safety of Medical Devices

• Fennigkoh (2011), The Complexities of the
Human-Medical Device Interface

24.7.3 Objective #3: Do No Harm

Principle 24.22

Fail Safe Design Principle

Where necessary, every system, product,
or service should incorporate fail safe
design features that prevent or minimize

human error that could result in injury or loss of life or
damage to the environment.

When humans interact with Equipment, the poten-
tial for performing unsafe acts—slips, lapses, errors, mis-
takes, and violations—increases. Design and implement the
Equipment Element to DO NO HARM—prevent or mini-
mize the potential for human errors that may injure the User
or the public, damage or pollute the environment, or result
in loss of life. Consider fail-safe designs where any of the
unsafe acts are likely to occur.4

24.7.4 Objective #4: Reduce Personnel Element
Stress Points (SPs)

Optimal Personnel Element performance occurs where
focused knowledge, education, and training are applied
with minimal or no distractions. Human performance under
stressful conditions can transform potential hazards into
unsafe acts that can lead to incidents and accidents as
illustrated by Reason’s (1990b) Accident Trajectory Model.
How can you reduce Personnel Element stress? There are
several ways using Figure 24.6 as noted by the SP icons.
Examples include collaboration with the Users to design,
prototype, and develop the:

1. Equipment Element to be (1) compatible and interop-
erable with the capabilities and limitations of its op-
erators, maintainers and trainers and (2) free of latent
defects.

4Refer to Nelson (1990, 1993, and 2007) for additional information concern-
ing the basic elements and core principles of product safety engineering.
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2. Procedural Data Element information—processes,
methods, and procedures—that (1) is concurrent,
accurate, and consistent with the Equipment Ele-
ment design; (2) eliminates redundant or unnecessary
non-value-added steps; and (3) is easy to understand,
comprehend, and implement.

3. Mission Resources Element information to clearly
and concisely (1) communicate Mission System and
Enabling System tasking, objectives, outcomes,
and performance; (2) avoid, eliminate, or prevent
overlaps, misunderstandings, misinterpretation, or
Person-to-Person conflicts; and (3) reduce workload
to an acceptable level based on the skills of the
Users.

4. System Responses Element to produce acceptable
outputs and avoid unacceptable outputs that are in-
compatible with the User. For example, a human pilot
may not be able to survive the unacceptable g-forces
that new, high-performance aircraft technology might
provide. In turn, this may lead to the need for develop-
ment of a new pilotless aircraft that can achieve a level
mission performance that is unattainable with existing
piloted aircraft.

5. Facilities Element, if applicable, to accommodate the
(1) training of the Personnel Element to properly and
safely operate, maintain, and sustain the Equipment
Element and (2) maintenance and sustainment or the
Equipment Element.

24.7.5 Objective #5: Continuously Assess System
Usability and Performance

Despite best-made plans and HFE, User acceptance of
a system, product, or service ultimately comes down to
whether they emotionally “like it or not”—its Usabil-
ity. Recall from our earlier discussions in Chapter 3,
the attributes that impact a User’s acceptance of a sys-
tem, product, or service—Operational Utility, Suitability,
Availability, Usability, Efficiency, and Effectiveness. Im-
plicitly, these represent Psychological HF identified in
Table 24.3.

Therefore:

• System Developer SEs and HFEs should collaborate
with the User to assess these attributes throughout the
System Development Phase of the System/Product Life
Cycle.

• User SEs and HFEs should continuously assess
these attributes throughout the System OM&S Phase
(Chapter 29) to (1) institute corrective actions to im-
prove overall performance and eliminate latent defects,
(2) assess User performance to determine the need
for proficiency or remedial training, and (3) formulate

and develop next-generation HF requirements as new
technologies evolve.

24.8 CHAPTER SUMMARY

In summary, we have addressed the importance for User HF
and Ergonomics System Design. Key points include:

• Understanding how HF and Ergonomics impact sys-
tem, product, or service performance via Reason’s
(1990b) “Swiss Cheese” Accident Trajectory Model.

• How the System Elements—Personnel, Equipment,
Mission Resources, Procedural Data, System Re-
sponses, and Facilities—should be designed to serve
as defenses, barriers or safeguards addressed by Reason
(1990) to minimize hazards from evolving into acci-
dents.

• Why Reason’s (1990b) Human Error Classifications—
slips, lapses, mistakes, and violations—are important
and how Personnel Element training, Equipment El-
ement design, and Procedural Data should be designed
and implemented as safeguards to prevent hazards from
becoming accidents.

• Accidents are typically not the result of a single
root cause but several weaknesses in the defenses,
barriers and safeguards of Reason’s (1990b) Accident
Trajectory Model.

• The objective of HSI is to ensure that HF and
Ergonomics requirements, design, and implemen-
tation considerations occur throughout the System
Acquisition, Development, Deployment OM&S, and
Retirement/Disposal Phases of the System/Product
Life Cycle.

• Understand the contexts and differences between HSI,
HFE, HE, and Ergonomics.

• HF and Ergonomics are viewed as synonymous but
have different approaches that focus on the same
outcomes—human workloads, stress, safety, injury re-
duction, productivity, and performance:

• HF focus on levying human capabilities and limitations
as constraints on task workloads, Equipment design,
Procedural Data Element instruction, and Operat-
ing Environment conditions.

• Ergonomics focuses on how workload tasks,
Equipment design, and Operating Environment
conditions create stressful situations that impact
human performance and productivity.

• Anthropometrics focus on the physical characteristics
of humans.

• Biometrics is a subspecialty of Anthropometry that
focuses on the mechanical movements of humans, their
capabilities, and levels of performance.
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• Human–System interactions can be modeled using an
HF Interactions Model (Figures 24.9 and 24.10) based
on the work of Meiser (1971).

• The applications of HF and Ergonomics are vi-
tal for reducing stress in various types of Human–
System interactions—desk, standing, vehicle, and
environments—that require Situational Assessment
and C2 (Figures 24.11, 24.12).

HFE performs a vital role in:

• Identifying HF and Ergonomics requirements.

• Allocating HF requirements to the Personnel and
Equipment Elements using the strengths and limita-
tions of each (Figure 24.14) to determine the optimal
mix to achieve overall System performance.

• Evaluating Equipment, Procedural Data (operator and
training manuals), hardware and software designs and
prototypes in collaboration with the Users to assess
usability and compliance to HF and Ergonomics design
principles.

• Supporting SITE Verification and Validation (V&V)
activities.

• Analyzing User field experiences, problems, and issues
to identify any latent defects and the need for corrective
action.

• Evaluate User performance concerning the need for
basic, remedial, or proficiency training (Chapter 33).

• Participating in incident or accident investigations to
determine root causes and recommend corrective ac-
tions.

• Usability is a function of the Equipment Element’s ef-
ficiency, effectiveness, and level of satisfaction. Nielsen
(2013) adds learnability, errors, and memorability as
other quality components.

• For additional reading, refer to Norman (2013, Figure
1.11, p.32) concerning the importance of understanding
the User’s conceptual mental models and their relation-
ship to good system design practices.

24.9 CHAPTER EXERCISES

24.9.1 Level 1: Chapter Knowledge Exercises

1. What are HF?

2. What are the five types of HF?

3. What is Anthropometry?

4. What is Biomechanics?

5. What are haptics?

6. What is Ergonomics?

7. What is HSI and what are the HSI domains?

8. What types of I/O devices are available for
Human–System interfaces?

9. What are the key attributes of human tasks?

10. What is HFE and how is it applied to the System/Product
Life Cycle?

11. What is Reason’s (1990) “Swiss Cheese” Accident
Trajectory Model, and how does it apply to HF and
Ergonomics?

12. What is the Human Factors Interactions Model, and
how does it apply to Personnel–Equipment Element
design?

13. What are the criteria HF Engineers use to allocate speci-
fication requirements to the Personnel and Equipment
Elements?

14. Human Factors and Ergonomics share at least 7 System
outcome concerns. What are they?

15. Compare and contrast the DoD CPAT and NASA HF
perspectives listed in Tables 24.3 and 24.4.

24.9.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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25
ENGINEERING STANDARDS OF UNITS, COORDINATE
SYSTEMS, AND CONVENTIONS

As the System Architecture evolves, interactions between
the System/Product and its Operating Environment and
internal elements such as Subsystems must be compatible
and interoperable. This requires that both sides of the
interface comply with interface requirements. For some
systems, the interface may require:

• Collaboration between interfacing parties to establish
interface requirements

• Agreement to comply with industry, professional, or
scientific interface standards

• Use of previously established legacy interfaces

Whichever is the case, multi-disciplined SEs on both sides
of the interface must synchronize in thought, process, and
methods, and share a common system design perspective
for accomplishing the interface. One of the first steps for
ensuring a common perspective resides in the establishment
of Engineering standards of units, coordinate systems, and
conventions that form the basis of interface requirements.

Engineers often treat Engineering standards of units,
coordinate systems, and conventions as secondary topics
… “something every engineer knows from Engineering
statics, dynamics, and physics.” However, there is a major
difference between an Engineer’s knowledge at graduation
versus Systems Engineering leadership, orchestration, and
application of a shared vision and mindset among groups
of multi-disciplined engineers developing systems, products,
or services. Many systems have been developed that failed

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

System Integration, Test, and Evaluation (SITE) or their
missions due to simple Engineering errors in interpreting,
translating, and communicating a System’s: (1) standard of
units, (2) weights and measures, (3) coordinate reference
system, and (4) its location and dynamics as a free body in
geophysical space.

Chapter 25 emphasizes one of the critical leadership roles
of SEs, to establish Engineering standards, coordinate sys-
tems, and conventions “up front” as one of the cornerstones
of system design Decision making. Our discussion explores
each of these topical areas and provides examples to illus-
trate the importance of synchronizing design mindsets. It is
critically important that everyone have a common, shared
viewpoint of a project’s Standards of Units, Weights and
Measures, and Coordinate Systems at the beginning of a
project. Simply stated in Principle 26.12, if you want to
Monitor, Command, and Control (MC2) a system, product,
or service, you have to measure its performance.

25.1 DEFINITIONS OF KEY TERMS

• Altitude—The vertical distance measured outward
into free space from a point of interest located on the
surface of a standard body reference such as Mean Sea
Level (MSL).

• Azimuth—The clockwise angle formed by an arc
between a reference plane such as True North (0

∘
), and

a vertical plane passing through a point of interest.

http://www.wiley.com/go/systemengineeringanalysis2e
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• Compliance—The process of fully adhering to a
requirement without exception.

• Conformance—The process of adapting or customiz-
ing Enterprise work products, processes, and methods
to meet the spirit and intent of a required action or
objective.

• Convention—A method established by project, in-
dustry, national, or international standards organiza-
tions for conveying how engineers are to interpret and
apply System or Entity configurations, orientations,
directions, or actions.

• Coordinate System—A two- or three-dimensional
axis frame of reference used to establish a system con-
figuration and orientation conventions, support analy-
sis, and facilitate mathematical computations.

• Dimension—A physical property inherent to an object
that is independent of the system of measure used to
quantify its magnitude.

• Elevation—An angle formed by a plane tangential to
the Earth’s surface at an observer’s location and a point
of interest above or below that plane.

• Euler Angles—“A set of three angles used to describe
the orientation of an entity as a set of three successive
rotations about three different orthogonal axes (x, y,
and z). The order of rotation is first about z by angle
(psi), then about the new y by angle (theta), then
about the newest x by angle (phi). Angles psi and
phi range between +/− pi, while angle theta ranges
only between +/− pi/2 radians. These angles specify
the successive rotations needed to transform from
the world coordinate system to the entity coordinate
system. The positive direction of rotation about an axis
is defined by the right-hand rule” (DoD 5000.59-M
(1998), p. 113).

• Open Standards—“Widely accepted and supported
standards set by recognized standards organizations or
the market place. These standards support interoper-
ability, portability, and scalability and are equally avail-
able to the general public at no cost or with a moderate
license fee” (DAU, 2012, p. B-153).

• Performance Standard—A requirement that estab-
lishes an outcome-based level of proficiency or perfor-
mance to be achieved for an activity or competency.

• Rotational Movements – Positive or negative angular
rotations and rates of change of a free body relative to
the principal axes of its inertial frame of reference.

• Standard—“In work measurement, any established
or accepted rule, model, or criterion against which
comparisons are made” (DAU, 2012, p. B-211).

• Technical Standard—“A common and repeated use
of rules, conditions, guidelines or characteristics for
products or related processes and production methods.

It includes the definition of terms, classification of
components, delineation of procedures, specification
of dimensions, materials, performance, designs, or
operations. It includes measurement of quality and
quantity as well as a description of fit and mea-
surements” (NASA SOW NPG 5600.2BE (1997),
Appendix B, Definitions).

• Translational Movements – Directional travel of a
free body as a function of time - velocity –relative to
the principal axes of its inertial frame of reference.

25.2 APPROACH TO THIS CHAPTER

Principle 25.1

Engineering Standards Principle

Engineering standards of units, coordinate
systems, and conventions should be speci-
fied in one and only one official document

that has been reviewed, approved, baselined and placed under
formal Configuration Management (CM) control, released,
and communicated for decision making.

Chapter 25 is not intended to be a refresher from Engi-
neering and Physics concerning standards of units, coordi-
nate system frames of reference, or conventions. Our purpose
is to simply provide a general checklist that you, as a Systems
Engineer and technical leader, need to consider when plan-
ning and implementing a technical program that manifests
itself in specifications, architectures, designs, and interfaces.

Engineers cavalierly say, “We already know this!!”

• First, the collective “we” do not have a shared, common
knowledge unless … you, as the Lead Systems Engi-
neer (LSE) … establish, document, and communicate
a project standard based on collaboration and consen-
sus of the project’s Stakeholders.

• Secondly, history is filled with cases even with these
standards in place where by simple errors—Metric
versus English units—on opposite sides of an interface
resulted in failure. For example, National Aeronautics
and Space Administration’s (NASA) Mars Climate
Orbiter (MCO, 1999) and (MCO, 2000).

This topic should be one of the first tasks to consider.
Once this information is established, document it as Project
Engineering Standard. The tendency is a scatter of this
critical information across a series of project memoranda.
Avoid this and incorporate it into a single document that has:

1. A document number, title, data, and version.

2. Been reviewed, approved, under formal CM control,
and released for use on the project.
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As a final point, one of the best case studies that illustrate
coordinate systems NASA’s Space Transportation System
(STS) or Space Shuttle Program that ended in 2012. We use
some of the Shuttle graphics to illustrate our discussions.
As you read the chapter, these illustrations and coordinate
systems apply similarly.

25.3 ENGINEERING STANDARDS

Principle 25.2

Engineering Standards, Coordinate
Systems, and Conventions Principle

Engineering standards, coordinate sys-
tems, and conventions are the foundational

Achilles Heal of Engineered Systems and Enterprise System
development. Neglect them and the systems will fail.

Engineering standards provide a mechanism for Enter-
prises and industries to:

• Establish a consensus of performance requirements for
development of systems, products, and services.

• Audit compliance of those deliverable work products.

• Provide a framework for targeting improvements
related to performance and safety.

Standards evolve from lessons learned, best practices, and
methods within an Enterprise and across industry domains.
They:

• Ensure product compatibility and interoperability.

• Ensure consistency, uniformity, precision, and accu-
racy in materials, processes, weights, and measures.

• Promote modularity and interchangeability.

• Ensure the safety to the public and environment.

• Avoid the consequences of lessons learned.

• Promote ethical business relationships.

When a standard is employed as the basis for evaluating
work-related performance, the term performance standard is
employed.

25.3.1 Standard Normative and Informative Clauses

In general, standards express performance requirements via
clauses. Standards clauses generally fall into two types:
Normative clauses and informative clauses.

• Normative clauses or requirements express mandatory
criteria for compliance with the standard and include
the word “shall” to indicate required performance.

• Informative clauses express information for voluntary
compliance or to provide guidance/clarification for
implementing the normative requirements.

Local Enterprise Engineering standards should clearly
delineate and designate normative and informative require-
ments.

25.3.2 Engineering Standards Authorities

Engineering standards are established by corporate, aca-
demic, professional, and international Enterprises. To pos-
ture themselves for this position, they must be recognized
and respected within a given industry or business domain as
the authoritative proponent or issuer of standard practices.
Consult your contract, industry, and Engineering discipline
for specific standards that may be applicable to your business
and contract.

25.3.3 Dimensional Properties and Systems of Units

Standards express two types of information that serve as the
frame of reference for measurements: dimensional proper-
ties and systems of units.

• Dimensional properties represent inherent physical
properties of an object such as mass, length, width, and
weight.

• Systems of units are standards of measure that form
the basis for measuring the magnitudes of an object’s
dimensional properties.

25.4 STANDARDS FOR UNITS, WEIGHTS,
AND MEASURES

Engineering standards represent a consensus of indus-
try stakeholders that establish “Fitness for Use” Criteria
(Figure 4.1) for a variety of applications. This includes:
documentation, processes, methods, materials, interfaces,
frames of reference, weights and measures, domain transfor-
mations, demonstrations, and conventions. Of these items,
Engineering weights and measures, conventions and frames
of reference require specific emphasis, especially in creating
consistency across a contract program.

Perhaps the most fundamental concept of Engineering is
establishing a system of weights and measures. Technical
expressions that describe the form, fit, and function of a
System, Product, or Service are totally dependent on
usage of standard units for weights and measures. There are
two primary standard systems of units in use today:

• International System of Units (SI)
• British Engineering System (BES)

Let’s contrast each of these systems.
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25.4.1 International System of Units (SI)

The SI was approved by the11th General Conference on
Weights and Measures (CGPM) in 1960 (NIST, 2013).
The CGPM adopted the SI designation from the French
Le Système International d’Unitès. The SI, which is the
Brochure published by the International Bureau of Weights
and Measures (BIPM), is “… revised from time to time
in accordance with the decisions of the CGPM and the
International Committee for Weights and Measures (CIPM)”
(Taylor and Thompson, 2008, p. 70).

The SI, which is sometimes referred to as the Metricor
MKS for Meter–Kilogram–Second System, is based on
seven base units that are determined to be independent.
Table 25.1 provides a listing of the seven base units, which
are considered mutually independent.

Principle 25.3

SI Fonts Principle

Document quantity symbols using an
italic font and symbols for dimensions
in sans serif roman capitals” (Taylor and
Thompson, 2008, p. 4).

Taylor and Thompson (2008a, p. 33) note “Quantity
symbols, which are always printed in italic … are, with
few exceptions, single letters of the Latin or Greek alphabets
that may have subscripts or superscripts or other identifying
signs.” They also provide tables of conversion factors for
converting various types of units to the SI (Taylor and
Thompson (2008a, pp. 45–69).

25.4.2 British Engineering System (BES)

The BES consists of five base units listed in Table 25.2.

25.4.3 Scientific Notation

In addition to defining the system of units for measurement,
we need to express the magnitudes associated with those
units in a manner that is easy to read. We do this with
scientific notation as illustrated in Table 25.3.

TABLE 25.2 Base Units of the BES

Base Quantity Name Symbol

Length Foot ft
Force Pound lb
Time Second s
Temperature Fahrenheit ∘F
Luminous Intensity Candle

TABLE 25.3 Scientific Notation Symbol-
ogy (Taylor and Thompson, 2008b, p. 29)

Power Prefix Notation

10−9 nano n
10−6 micro 𝜇

10−3 milli m
10−2 centi c
10−1 deci d
101 deka da
102 hecto h
103 kilo k
106 mega M
109 giga G
1012 tera T
1015 peta P

25.4.4 Standard Atmosphere

Systems and products interact with other external systems in
their operating environment under a variety of Natural and
Induced Environment conditions. As part of the problem
space and solution space definitions, SEs and others have
to make assumptions (Principle 24.20) that characterize and
bound operating environment conditions.

Adding to the complexity of these assumptions is the fact
that Natural Environment conditions vary throughout the
day, month, year, and world. So, how do we standardize to
support informed operating environment decision-making?
The answer resides in creating the US Standard Atmosphere

TABLE 25.1 Seven Base Units of the International System of Units (SI) (NIST, 2008a, p. 4; 2008b, 11)

Base Quantity SI Base Unit∗ SI Base Symbol Symbol for Quantity∗∗ Symbol for Dimension∗∗

Length meter m l, x, r, L
Mass kilogram kg m M
Time, duration second s t T
Electric current ampere A I, i I
Thermodynamic Temperature kelvin K T Θ
Amount of Substance mole mol n N
Luminous Intensity candela cd Iv J

∗Taylor and Thompson (2008a), Para. 4.1 SI Base Units Table 1, p. 4.
∗∗Taylor and Thompson (2008b), Para. 1.3 Dimensions of Quantities, p. 11.
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developed by the US National Oceanic and Atmospheric
Agency (NOAA), NASA, and the USAF (NASA, 1976).
“Parameters listed include temperature, pressure, density,
acceleration caused by gravity, pressure scale height, number
density, mean particle speed, mean collision frequency, mean
free path, mean molecular weight, sound speed, dynamic
viscosity, kinematic viscosity, thermal conductivity, and
geo-potential altitude” (NASA, 1976).

Standard Atmosphere models and tables for geographical
locations are available from government organizations such
as the US NOAA and NASA.

25.4.5 Data Accuracy and Precision

When data are measured or computed, it is critical for
a program to establish a policy for data accuracy and
precision. In addition to establishing mathematical models,
transformations, and conversions, the integrity of the chain
of computations is totally dependent on the accuracy of the
data that feed each one.

To illustrate the importance of data precision, consider a
simple definition of the mathematical symbol, pi (𝜋). Are
two digits of precision—namely 3.14 for pi—necessary and
sufficient criteria for downstream computations? Four digits?
Eight digits? You have to decide and lead agreement for the
program standard.

Finally, a reminder that multiplication of two numbers,
each with two-digits of decimal accuracy, does not yield a
product that has four-digits of decimal accuracy (Principle
30.1).

25.4.6 Weights and Measures Summary

As the technical lead for a program, SEs should establish a
program consensus regarding a standard system of units for
expressing physical quantities. This requires three actions:

1. Establish a project standard for weights, measures, and
unit conversion tables via project memorandums or
references to an established professional standard.

2. Thoroughly scrutinize standards of units for interface
compatibilities and interoperability on both sides of an
interface throughout the System Development Phase,
especially at reviews.

3. Promote professional discipline and compliance from
project teams.

25.5 COORDINATE REFERENCE SYSTEMS

In addition to the establishment of standards for weights and
measures, one of the key roles and initial tasks for SE dur-
ing System Development is the establishment of coordinate

reference systems. System Engineering design decisions re-
quire more than discipline specific topics such as design-
ing power supplies, electronic circuits, or coding software.
Integration of the set of components requires insightful deci-
sion making that goes beyond traditional discipline “form, fit,
and function” considerations. Specifically, physical place-
ment of components and their interactions within the next
higher-level System, Subsystem, Assembly, or Subassembly
(Figure 8.4).

General placement of components within higher levels re-
quires consideration of Operating Environment conditions
(Figure 9.6) such as: Electromagnetic Interference (EMI),
radiation, thermal heat transfer, and mechanical shock and
vibration. Physical placement of those components within
the framework of an aircraft, spacecraft (Figures 25.6 and
25.7), satellite, ship, or missile; medical device (Figure 25.5)
or surgical device (Figure 25.9); or machining a part
(Figure 25.8) requires establishing an observer’s frame of
reference, designation of principal axes, and assignment of
axis rotational conventions.

If you listen to Engineers at the beginning of a project,
you will hear conversations such as, “We need to establish a
coordinate system for the project. Let’s use a Right-Handed
Cartesian Coordinate System as the standard.” As you will
see in the sections that follow, establishing a coordinate
reference system requires more insight than conversations
like this. SE in its technical leadership role is account-
able for ensuring that all ambiguities are eliminated and
the selected coordinate system is clearly communicated to
everyone.

Author’s Note 25.1

Discussions of Coordinate Reference
Systems are often mixed by ambi-
guities related to key terms such as
the Left-Hand (LH) Rule and the
Right-Hand (RH) Rule, each with

two different application configuration contexts. Rather than
perpetuate these ambiguities, let’s briefly address their ori-
gins as a way of differentiating the application contexts.

25.5.1 Coordinate Reference System Origins

Coordinate Reference Systems originate from mathemati-
cian René Descartes in the seventeenth century, electronic
pioneer Sir John Ambrose Fleming in the late nineteenth cen-
tury, and Hans Christian Ørsted in the late eighteenth and
early nineteenth centuries.

• Descartes devised the two-dimensional (2-D) and
three-dimensional (3-D) Cartesian coordinate systems
provided the first “systematic link between Euclidian
Geometry and algebra” (Wikipedia, 2013a).
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+Z

+X

+Y

(a) (b)

+Z

+X

+Y

Figure 25.1 (a) Fleming’s Left-Hand (LH) Rule for Motors and (b) Right-Hand (RH)
Rule for Generators Applied to SE Applications

• Fleming devised the following rules for explaining
the force, field, and current directions in motor and
generator applications as shown in Figure 25.1:

∘ LH Rule for explaining motion in electric motor.
The configuration consists of three orthogonal axes
formed by the fingers of the left hand in which the
thumb represents the motor’s thrust or force of mo-
tion, index finger represents the field direction, and
middle finger represents the current flow direction.
(Fleming, 1902, p. 149–150)

∘ The RH Rule originally defined as The Hand Rule
for the Direction of the Electromotive Force for
explaining electrical current flow in a generator.
The configuration consists of three orthogonal axes
formed by the fingers of the right hand in which the
thumb represents the conductor’s direction, the index
finger represents the magnetic flux (field) direction,
and the middle finger represents the direction of
the induced Electromotive Force (EMF) (Fleming,
1902, p. 173–174).

• The RH Grip or Maxwell’s Corkscrew Rule
(Wikipedia, 2013c) is based on Ørsted’s discovery
that a circular magnetic field is created by a current
flowing through a conductor (Wikipedia, 2013d). The
RH Grip Rule states that if the thumb of the right
hand represents the direction of current flow in a con-
ductor, fingers coiled around the conductor represent
the counterclockwise magnetic flux or positive (+)
rotation. (Fleming, 1902, p. 149). Figure 25.2 provides
an illustration.

Since Coordinate Reference Systems enable us to estab-
lish geophysical and spatial relationships, we will simply as-
sign +X, +Y, and +Z to the respective LH or RH convention
axes as shown in Figure 25.1.

Clockwise
Positive (+)

Rotation

Counter-Clockwise
Negative (–)

Rotation

X, Y, or Z
Principal Axis

Right-Hand Grip Rule
Convention

Figure 25.2 Right-Hand (RH) Grip rule Application to an
Axis to Illustrate the Clockwise (+) and Counter-Clockwise
(−) sign Conventions

As a level of abstraction, coordinate reference systems are
comprised of: (1) an Observer’s Frame of Reference, (2) con-
ventions, and (3) units of measure that enable engineers and
analysts to communicate spatial information about a current
location, its shape, or distance from other objects. The ques-
tion is: from what observer’s perspective? This brings us to
our first topic, the Observer’s Frame of Reference.
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25.5.2 Observer’s Frame of Reference

The Engineering of Systems and Products often require
that an Observer’s frame of reference be established for
characterizing the Engineering mechanics and dynamics of
the System as a free body in motion relative to other
systems in its Operating Environment. Basic concepts for
Observer frames of reference originate from physics. To get
started, let’s begin with a few refresher principles.

Principle 25.4

Observer’s Frame of Reference
Eyepoint Principle

Human coordinate systems consist of an
Observer’s Frame of Reference structured

with three principal axes labeled +X, +Y, and +Z that are
orthogonal to each other and intersect at an origin located at
the Observer’s eyepoint.

Figure 25.3 provides an example illustration.

Principle 25.5

Coordinate System Principle

The Observer’s eyepoint serves as an ori-
gin for an Observer’s of Frame Reference;
a coordinate system establishes the spatial

location of a point or object in space relative to that origin
using x-, y-, and z-axis coordinates.

Once the Observer’s Frame of Reference is selected, we
need to establish a convention to recognize travel along the
axes. This leads to a key question: what is a convention?

A convention establishes an orientation for describing ac-
tions observed relative to the Observer’s Frame of Reference
with the eyepoint located at the origin. Coordinate systems
serve as a static Observer’s Frame of Reference for locating
an object’s position at a specific instant in time relative to the
frame’s origin and axes.

People often equate an Observer’s Frame of Reference
as a Coordinate Reference System. In fact, the Observer’s
Frame of Reference provides the multi-axis framework for
assigning direction of travel and units of measure that
form the Coordinate Reference System. The right side of
Figure 25.3 provides an illustration.

25.5.2.1 LH and RH Conventions

Principle 25.6

Observer’s Frame of Reference
Convention Principle

An Observer’s Frame of Reference is
characterized by a Left-Hand (LH) or
Right-Hand (RH) orientation.

One of the first steps in establishing an Observer’s
Frame of Reference is deciding to use a LH or a RH Rule
convention. Figure 25.1 provides illustrative examples. In

both conventions, the thumb of the designated hand points
upward, the index finger points forward, and the middle
finger points orthogonally toward the other hand.

Johanningmeier (2013) notes that most Computer Numer-
ical Control (CNC) machinery employs an RH coordinate
system—+X Vertical. However, he cautions that some CNC
machines may employ LH coordinate systems with X Ver-
tical. Consider the implications of LH and RH Coordinate
Systems on the following example:

Example 25.1

A manufacturer employs a Computer-
Aided Design (CAD) to create a 3-D
model of a mechanical housing to be
machined from a block of aircraft grade
aluminum. Once the design is reviewed

and approved, model data will be sent to a Numeric Control
(NC) manufacturing cell for machining. When the 3-D
model dimensional data are transferred, the manufacturing
cell’s coordinate system becomes the frame of reference for
positioning the block of aluminum and machining it to the
dimensions specified by the 3-D model. Your mission as a
Mechanical SE lead is to collaborate with the machine shop
team and establish a seamless strategy for transferring the
data to ensure a successful part fabrication.

25.5.2.2 Frame of Reference Multi-Axis Configurations

Principle 25.7

Observer’s Multi-Axis Configuration
Principle

Pick one and only one multi-axis configu-
ration for a given Observer’s Frame of Ref-

erence eyepoint, preferably to serve the whole project.

Declaring a LH or RH Rule convention is a necessary but
insufficient criterion for characterizing the Observer’s Frame
of Reference. The reality is the +X, +Y, and +Z axes can be
rotated resulting in new structural reference configurations.
For example, a RH Cartesian Frame of Reference has three
possible orientations relative to an Observer’s eyepoint.
Figure 25.4 illustrates the fallacy of simply declaring the
RH Rule as the frame of reference without regard to the
orientation of the principal axes. Observe that the key is
establishing the Local vertical axis orientation such as +X
Axis Vertical, +Y Axis Vertical, or +Z Axis Vertical.

A Word of
Caution 25.1

Exercise caution in applying the term “Ver-
tical” as if it is fixed in place. Vertical in
this context refers to an outward projection
from an Observer’s Frame of Reference ori-
gin into free space opposite of gravitational
forces. As we shall see in our discussion of

the Human Anatomical Coordinate Reference System, “Ver-
tical” is a relative term depending on whether the human is
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Eyepoint
Origin 

Observer’s (Local) Frame of Reference
Right Hand (RH) Cartesian Coordinate System
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Object in
Space  
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Figure 25.3 Illustrative Example of an Observer’s Frame of Reference and Coordinate
System
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Vertical Orientation
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Observer’s
Coordinate System
Frame of Reference

Observer’s
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Origin 

+Y Axis
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Figure 25.4 Three Types of Principal Axes Orientations of an Observer’s Right-Hand
(RH) Coordinate System

standing or sitting, prone on their stomach, or lying on their
left or right side or back. The Observer’s Frame of Reference,
which is fixed relative to a body, rotates with body position,
which makes “Vertical” relative to the situation. Figure 25.5
illustrates the point.

To illustrate application of these three configurations to
the real world, consider the following example:

Example 25.2

Application Examples of the Three RH
Rule Configurations

Using Figure 25.4 as a reference, ground,
sea, air, and space-based vehicle applica-

tions commonly employ the +X-Axis (Panel C) to repre-
sent the direction of travel. However, free bodies in space
such as aircraft and satellites may employ either of two
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Human Body Planes

Medical Device Application
Magnetic Resonance Imaging (MRI)

+X +Y

+Z
Sagittal Plane

Coronal Plane

Transverse Plane

+Z

+Y

+X

RH Rule
+Y Vertical Orientation

(a) (b)

Figure 25.5 (a) Anatomical Coordinate Reference System Depicting the Intersecting
Coronal, Sagittal, and Transverse Planes (Source: Wikimedia Commons, 2013) and
(b) Magnetic Resonance Imaging (MRI) Application

Body Frame orientations: (1) +Z-Axis Up referred to as the
East-North-Up (ENU) or (2) +Z-Axis Down orientation re-
ferred to as North-East-Down (NED) discussed later in this
chapter (Figure 25.11).

25.5.3 Cartesian Coordinate Systems and Applications

One of the most basic coordinate reference systems used in
Engineering and Physics is expressed as a RH or LH 2-D
(X, Y) or 3-D (X, Y, Z) Cartesian Coordinate System. Both
consist of an origin located at an Observer’s eyepoint or a
designated point internal or external to a System.

To illustrate how Cartesian Coordinate Systems are ap-
plied to the real world, let’s use some real world examples.

25.5.3.1 Medical Device Example and Applications of
Coordinate Systems We often think of Cartesian Coordi-
nate Systems as applying to mechanical applications. How-
ever, humans are no exception, especially in medical device
technologies.

The medical industry, for example, employs an anatom-
ical coordinate reference system using Human Body Planes
as shown on the left side of Figure 25.5. Here, we see three
intersecting, anatomical planes an origin positioned in the
midpoint of a body.

Now, consider how the Human Anatomical Coordinate
Reference System might be applied to a real-world situation.
The right side of Figure 25.5 provides an example illustration
of a human undergoing a Magnetic Resonance Imaging
(MRI) procedure.

As a follow-up to the earlier cautionary note in the
preceding section concerning the three possible multi-axis
configurations, a word of caution!

A Word of
Caution 25.2

As noted previously, when we refer to any
one of the +X, +Y, +Z Axes as being ver-
tical, exercise caution. “Vertical” is situa-
tional dependent and relates to Systems /
Products that are stationary and fixed in
place. Free body systems may be different.

Although the coordinate frame of reference is identical, what
may be “vertical” in one situation may not be vertical in
other situations. Such is the case with human body planes
(Figure 25.5).

Consider the following example:

Example 25.3

The Situational Dependence of
“Vertical” in Fixed and Free Body
Systems

Note the left side of Figure 25.5 depicting
Human Body Planes—Coronal, Sagittal, and Transverse. In
this illustration, a human in a standing or sitting position, the
+Z-Axis is “vertical.”

Now, observe the right side of Figure 25.5 of a human in a
reclining position during a MRI procedure. Note that in this
view, the free body +Y-Axis has been rotated in the Sagittal
Plane toward the+Z-Axis. In this view,+Y is now “vertical.”
As a result, MRI devices, in general, view the human subject
as having the +Y-Axis vertical.
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Metaphorically, establishment of a coordinate system is
equivalent to laying the first cornerstone for a building. That
cornerstone serves as the frame of reference for developing
your System/Product. This requires a leadership role by
the LSE to establish not only the coordinate system but also
the conventions to the employed concerning the axes. To
illustrate this point, consider following Mini-Case Study 25.1
for an MRI device.

MINIMINIIN

Mini-Case
Study 25.1

MRI Medical Device Coordinate Systems
and Conventions

MRI devices such as the one illustrated in
Figure 25.5 are referred to as cylindrical
superconducting systems. The origin of the

MRI coordinate system is defined at imaging isocenter,
the point at which all three gradient fields—+X, +Y, and
+Z—are zero. The underlying assumption regardless of
manufacturer is that B0 is coincidental with the human
body’s +Z-axis shown on the left side of the figure. Any
exceptions (e.g., reverse ramped systems) will be made
clear. Beyond this point, commonality across MR System
Developers ends.

+Z-Axis Convention

Some System Developers choose a +Z-axis (B0) convention
to point:

• Into the “bore” from the patient entry end such as
shown in Figure 25.5.

• Out of the bore—toward the patient’s feet.

+Y-Axis Convention

Some System Developers choose a +Y-axis to point:

• Upward as in Figure 25.5. Following the RH Rule, this
means that the +X-axis points to the left as one looks
into the bore from the patient entry end.

• Downward resulting in the +X-axis pointing to the
right as one looks into the bore from the patient entry
end.

B0 Field Polarity

Note that alignment of the Z-axis with B0 does not mean the
B0 field always points toward+Z. Some MRI magnets can be
ramped either forward or reverse, which changes the polarity
of B0, relative to +Z. However, the direction of +Z remains
unchanged; it is always into the bore from the patient end.

Source: Eash (2013).

25.5.3.2 Mechanical Engineering Example: Space Shut-
tle Coordinate System One of the challenges in the Engi-
neering of systems is spatially establishing the relative po-
sition and orientation of physically integrated components
within the System/Product. The objective is to ensure
they:

• Are compatible and interoperate in terms of form, fit,
and function.

• Do not interfere with each other unintentionally.

• Do not have an adverse, negative impact on the perfor-
mance of the system, its operators, and its facilities or
mission objectives—Law of Unintended System Con-
sequences (Principle 3.5).

This challenge requires positioning integrated compo-
nents in a virtual frame of reference or structure and attaching
them at Integration Points (IPs) (Chapter 28) or nodes to
ensure interoperability. Then, identifying additional attach-
ment points such as lift points that enable external systems to
lift or move the integrated system. This requires establishing
a dimensional coordinate system.

The last NASA Space Shuttle mission was completed in
2011 after a very remarkable history despite two major acci-
dents. The architectural configuration of the Space Shuttle
required bringing four major systems together into a “s-
tacked” configuration. To ensure that the integration of the
“stack” would proceed according to plan, multi-discipline
SEs System Analysts established the dimensional coordinate
reference system1 shown in Figure 25.6.

The integrated “stack” consists of the Orbiter Vehicle
(OV), External Tank (ET), and two Solid Rocket Boosters
(SRBs), each with their own respective frame of reference
coordinate systems. These systems are then referenced rela-
tive to an integrated vehicle coordinate system with the ori-
gin designated as X_, Y_, Z_ in which the “_” represents
the subscripts – T, B, O, and S - listed on the left side of
Figure 25.6. This figure illustrates several key decision ar-
eas for SEs regarding Dimensional Coordinate Reference
Systems.

• Aircraft designers establish virtual origins along
the longitudinal X-Axis in front of the nose of air-
craft as shown in Figure 25.6. One rationale, for
example, includes accommodating free space for-
ward of the nose for additional components that may
be added later and still have positive “stations” in
dimensional space. Examples include aircraft with
bulbous nose modifications for radar, sensors, and
additions. The AerospaceWeb.org (2013) notes that

1For a detailed text description of the Space Shuttle Coordinate Sys-
tem, refer to: http://science.ksc.nasa.gov/shuttle/technology/sts-newsref
/sts_coord.html#sts_coord

http://science.ksc.nasa.gov/shuttle/technology/sts-newsref/sts_coord.html#sts_coord
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Figure 25.6 Space Shuttle Dimensional Coordinate Reference System. Source: Rogers
Commission (1986), Figure 1: Challenger Report http://history.nasa.gov/rogersrep/v1p69.htm

the nose of an aircraft tends to grow while the wings
and Aft section generally remain at the same station
locations.

• The X-axis, which is referred to as the Fuselage Line
(FS) in aircraft, extends through the nose and exits the
Aft of section of aircraft (AerospaceWeb.org, 2013).
Any point along this axis is considered positive by con-
vention. Systems such as aircraft establish dimensional
benchmarks or “stations” along the FS as a means of
referencing component locations. For example, FS 100
to indicate a specific position along the FS relative to
the origin. Using a longitudinal X-axis convention ex-
tending from the origin in front of the nose through the
Aft section ensures that all “stations” along the FS are
positive.

• The +Z-axis above the origin is referred to as the
Water Line (WL) in aircraft (AerospaceWeb.org,
2013).

• The Y-axis, which extends out the right wing, is
referred to as the Butt Line (BL) in aircraft. The name
has limited use. Since aircraft wings have pylons and
hard points for mounting sensors and weapons, the term
weapon stations is typically used (AerospaceWeb.org,
2013).

Author’s Note 25.2

Dimensional—Not
Navigational—Coordinate
Reference System

Please note that the Space Shuttle
Coordinate Reference System discussion focuses on the
physical design and integration of the “stack.” This is
different from a navigational coordinate reference system
discussed later in this section.

25.5.3.3 Other Examples of Real-World Conventions
Engineering conventions occur in a number of forms.
Consider the following examples:

Example 25.4

Integrated Circuit (IC) Pin Layout
Convention

When viewing some IC devices with the
notch at the top and pins on the left and

right sides, Pin 1 is located in the upper left corner (Figure
16.2); the remaining pins are numbered counterclockwise
around the perimeter of the device with the last ID assigned to
the pin in the upper right corner. If a notch is not present, Pin 1
is usually designated by a small dot or impression imprinted
on the device or impressed into the body of the chip next to
the Pin 1 location.

http://history.nasa.gov/rogersrep/v1p69.htm
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Example 25.5

Ingress (Entry)/Egress (Exit) Door
Convention

Office and residential doors are designated
as LH or RH as viewed by an observer.

When an observer approaches a door:

• RH Door Convention—When an Observer faces a
door, if the handle or knob is positioned on the RIGHT
side of the door and opens toward the Observer’s LEFT
side, it is by convention a RH Door.

• LH Door Convention—When an Observer faces a
door, if the handle or knob is positioned on the LEFT
side of the door and opens toward the Observer’s
RIGHT side, it is by convention a LH Door.

The RH and RH conventions are only part of the door
considerations. Another key consideration includes which
side of the wall constrains the door’s movement in terms of
“in-swing” into a room toward the observer or “out-swing”
into the adjacent room away from the Observer.

The bottom line is: SEs, System Analysts, building Ar-
chitects, and designers must analyze their systems to identify
areas that may require conventions for identification and in-
terfacing components to avoid confusion and safety issues.
Then, establish, document, and communicate the details of
those conventions to development teams.

25.5.4 Angular Displacement Reference Systems

Some systems also employ common components in LH and
RH Observer’s Frame of Reference conventions that require

the need for a convention. Referring to Figure 25.6, how did
NASA uniquely identify the orientation of the Left and Right
Solid Rocket Boosters (SRBs) relative to the ET? Figure 25.7
provides the Solution.

In this figure, the Observer’s eyepoint serves as the Frame
of Reference origin and is positioned behind the Aft section
of the Orbiter looking forward along the longitudinal X-axis
in the vehicle’s forward direction of travel. Relative to
the observer’s frame of reference, the SRB on the left is
designated as LEFT and the other as RIGHT.

Now observe that the Left and Right SRBs each employ
mirror image angular displacement systems. Note the lo-
cation of the respective 0∘/360∘ reference marks when the
SRBs are attached and integrated to opposite sides of the ET.
Configuration orientation diagrams such as this are devel-
oped by SEs in collaboration with Subject Matter Experts
(SMEs) and are critical to design decision-making, models
and simulations, and Engineering drawings.

25.5.5 Cylindrical and Polar Coordinate Systems

In addition to the RH Cartesian Coordinate System, manu-
facturing Computer Numerical Control (CNC), and medical
devices employ other coordinate systems such as the
Cylindrical and Polar Coordinate Systems. Groover (2013
p. 988) illustrates examples of various types of coordinate
systems in Figure 25.8 for robotics and CNC manufacturing
applications.

Robotics helped revolutionize manufacturing beginning
in the 1980’s with their ability to repeatedly produce pre-
dictable and consistent work. As the technology matured
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Figure 25.8 Polar, Cylindrical, and Cartesian Coordinate Systems; Jointed Arm and
Selectively Compliant Assembly Robot Arm (SCARA) - Robotic and CNC Applications
(Groover, 2013 p. 988). Used by permission

over the years, the medical industry began exploiting its ca-
pabilities. Although Figure 25.8 may appear overly simplis-
tic, they provide the foundation for more complex real-world
examples, especially in medical robotics. A key thrust of
robotic surgeries is minimally invasive intrusions to the body.
Figure 25.9 provides an example illustration of a surgical
robot used in cardiovascular, urological, gynecological, col-
orectal, head and neck, and thoracic surgery. A separate con-
sole enables the surgeon to remotely Monitor, Command, and
Control (MC2) the device.

25.5.6 Spherical Coordinate Systems

Systems such as satellites, aircraft, and ships, by virtue of
their respective Earth, planetary, and galaxy missions are
dependent on Spherical Coordinate Systems for pinpoint-
ing their spatial locations relative to a frame of reference.
The Earth, for example, is characterized by a World Coordi-
nate System (WCS) (World Geospatial-Intelligence Agency,
2005). The same is true for space exploration by organiza-
tions such as NASA in planning interplanetary travel. Con-
sider the following example:

Author’s Note 25.3

NASA Lunar Coordinate System

Although the US conducted manned
space missions to the Moon, plans to
return to the Moon prompted NASA

to formulate a Lunar Coordinate System for use by the Lunar
Reconnaissance Orbiter (LRO). Between April and July
2006, NASA conducted a series of meetings and biweekly
teleconferences to establish a community consensus for the
LCS. (NASA, 2008, p. 4)

Systems, such as land surveying, aircraft, and military
troops, track their geospatial positions based on displace-
ment of the origin of the Mission System relative to the
Earth’s surface. Two commonly used WCSs in Systems
Engineering are the Earth-Centered, Earth-Fixed (ECEF)
and Earth-Centered Inertial (ECI) coordinate systems. Let’s
explore a brief synopsis of each of these.

25.5.6.1 ECEF Orthogonal Coordinate System The
ECEF orthogonal coordinate system, which is sometimes
referred to as Earth Centered Rotating (ECR), is a Cartesian
Coordinate system that is permanently fixed to and rotates
with the Earth. The World Geodetic System 1984 (WGS84),
for example, is an ECEF “terrestrial reference system and
geodetic datum” (WGS84, p. 1). Figure 25.10 provides a
graphical example representing a tangential point on the
surface of the Earth.

The ECEF’s:

• Origin is located at the Earth’s Center of Mass
(CoM).
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Figure 25.9 Medical Robotics Employing Cylindrical and Polar Coordinate Reference
Systems. (a) Surgeon’s Console (Source: Intuitive Surgical, 2014) and (b) Patient-Side Cart
Robotic Surgical Device (Source: Intuitive Surgical, 2014 Used by permission)
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• X–Y axes plane coincide with the Earth’s Equatorial
Plane.

• X-axis extends from the Earth’s CoM (origin) through
the Equatorial Plane and exits at the Prime Meridian.

• Y-axis extends from the Earth’s CoM (origin) through
the Equatorial Plane and exits 90∘ East of the Prime
Meridian.

• Z-axis extends from the Earth’s CoM (origin) through
the North Pole to the North Star.

25.5.6.2 ECI Coordinate System The ECI is also a Carte-
sian Coordinate System. Whereas the ECEF Coordinate Sys-
tem is fixed to the Earth’s rotation, the ECI is fixed relative
to the Celestial Sphere with the Earth rotating about the ECI
frame of reference. The ECI’s:

• Origin is located at the Earth’s CoM (common with the
ECEF).

• X-Y axes plane coincides with the Earth’s Equatorial
Plane (common with the ECEF).

• X-Axis has a directional heading to a position on the
Celestial Sphere.

• Y-Axis in general, the Earth’s equatorial plane rotates
about the ECI X and Y Axes.

The ECI is often used for satellite applications to establish
the satellite’s position in space and is relative to the fixed ECI
frame of reference. Computation of a satellite’s Equations of
Motion (EOM) is generally easier when using a fixed frame
of reference such as the Earth’s ECI versus its ECEF, which
has a rotational frame of reference relative to the satellite.

The WCS enables us to reference a specific point on the
surface of the Earth. But, how do systems such as aircraft and
spacecraft, which are free bodies in space, establish their
geophysical location relative to the Earth, which is also in
motion? How do we express their heading and rotational
velocities and accelerations relative to the Earth’s frame of
reference? Let’s explore these questions further.

25.5.7 Free Body Frame of Reference Conventions

The orientation or perspective of the three-axis coordinate
reference system depends on the Observer’s perspective
and challenges in dealing with the physical, spatial, and
mathematical implications and consequences. This brings up
two key questions:

1. How do we express free body movements relative to the
Observer’s Frame of Reference?

2. How are integrated Equipment Element and physical
component displacements and relationships character-
ized in terms of a three-axis frame of reference?

The answer to the first question resides in establishing a
coordinate reference system. The second question requires
establishing a convention for application to the coordinate
system.

The Earth is characterized by the ECEF or ECI Coordinate
Systems that have a +Z-Axis that points upward toward True
North. What we refer to as Vertical or Upward varies by
the Observer’s geophysical position on the Earth’s surface.
Vertical or Upward is a local context and can be represented
by a local frame of reference with ZLocal as its vertical axis.
However, ZLocal does equate to True North.

Any location on Earth’s surface can be characterized
in terms of a local frame of reference as illustrated in
Figure 25.10. We create a Local RH (X, Y, Z) Cartesian
Coordinate System consisting of:

• A virtual plane that is tangential to the Earth’s surface
at a specific geophysical location.

• A “Local vertical” z-axis orthogonal to the virtual plane
that extends from the Earth’s CoM through the Earth’s
surface location into free space.

• A Local East pointing x-axis.

• A Local North pointing y-axis.

Theoretically, this works fine as long as the Observer is on
the surface of the Earth. However, from an Engineering per-
spective, air and space-based vehicles in flight are confronted
with gravitational effects on their motion that require consid-
eration of an alternative system with the Local vertical z-axis
pointing downward. To solve these challenges, we introduce
two coordinate system orientations. These are.

• Local East-North-Up (ENU) Orientation.

• Local North-East-Down (NED) Orientation.

Let’s address each one separately.

25.5.7.1 Local North-East-Down (NED) Body Frame
of Reference Orientation Sea-based applications such as
surface and underwater vehicles, air-based applications such
as aircraft and rotorcraft, and spacecraft applications such as
satellites typically employ a NED Body Frame of Reference
orientation as shown on the right side of Figure 25.11. The
NED convention is fixed to a vehicle’s frame as follows:

• The NED origin is located at the vehicle’s Center of
Gravity (CG) or Center of Mass (COM).

• The positive, longitudinal XLOCAL axis points from the
vehicle’s CG or COM in the direction of travel.

• The positive YLOCAL axis points from the vehicle’s CG
out the right side of the vehicle.

• The positive ZLOCAL axis points downward from the
vehicle’s CG toward the Earth’s CoM.
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Koks (2006, p. 4) observes that since the Earth is “mod-
eled as an oblate spheroid,” the only time the ZLOCAL axis
line intersects the Earth’s CoM occurs at the poles and the
Equator.

A Word of
Caution 25.3

CG versus CoM Location

Please note that CG or CoM are two sepa-
rate concepts. CoM, which is fixed for both
rigid and free bodes, does not change. CG,

however, is subject to change due to the variances in grav-
itational forces on a satellite, for example. For fixed, rigid
bodies on Earth, CG and COM are coincidental.

25.5.7.2 East-North-Up (ENU) Body Frame of Reference
Orientation Land navigation on the Earth’s surface typi-
cally employs an ENU Body Frame of Reference orientation
as shown on the left side of Figure 25.11. The ENU conven-
tion is characterized as follows:

• The origin can be at any location on the Earth’s surface.

• Positive XLOCAL axis points eastward toward the
Earth’s geodetic East.

• Positive YLOCAL axis points northward toward the
Earth’s geodetic North.

• The XLOCAL–YLOCAL plane is tangential to the Earth’s
surface at the ENU origin.

• Positive ZLOCAL axis referred to as the local vertical
points upward from the Earth’s CoM through the
location on the Earth’s surface.

25.5.8 Navigational Coordinate Reference Systems
and Conventions

The preceding discussions illustrate the basic concept of a
standard RH Cartesian Coordinate Reference Systems as il-
lustrated at the left side of Figure 25.11. For many System or
Product applications, this convention is acceptable. How-
ever, from an Engineering Mechanics perspective, the estab-
lishment of the positive, ENU orientation for a free body with
the ZLOCAL-axis Vertical—pointing upward—means that
gravitational loading effects result in negative ZLOCAL-axis
components.

Now consider the added complexity in which the Space
Shuttle maneuvers after entering orbit as illustrated in Figure
7.11 to fly upside down and backward during most of its
mission to:

• Minimize the thermal and radiation effects of the sun by
turning the vehicle’s underside toward the Sun thereby
allowing the thermal tiles to serve as a solar heat shield.

• Minimize the impact areas of orbital debris and mete-
orites that may cross its path that could damage thermal
tiles on the vehicle’s nose or leading edges of the wings
that are crucial for reentry into the Earth’s atmosphere
and landing.
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Coordinate System

• Shield Shuttle Cargo Bay equipment from impacts that
could damage dangerous or fragile instruments

• Minimize the energy required to deploy payloads,
where applicable.

• Slow the vehicle for reentry by firing small nozzles,
which are located on the rear of the vehicle, in the
direction of forward travel.

Compare and contrast the END reference system in
Figure 25.11 with the Dimensional Reference System in
Figure 25.6. This illustrates that a given system design may
employ similar frames of reference but different orientations
and conventions, each intended to support specific Stake-
holder needs. Figure 25.11 facilitates Engineering Mechan-
ics computations for system modeling; Figure 25.6 facilitates
dimensional coordinate reference systems for product and
manufacturing engineers and designers.

N

E

S

W

Heading 25.1

At this stage of our discussion, we have
introduced the fundamental Cartesian (X,
Y, Z), Polar, and Spherical Coordinate Ref-
erence Systems, illustrated applications to
the Earth via the ECEF and ECI models de-

scriptions; and described the ENU and NED Body Frame ori-
entations (Figure 25.11). These Observer frames of reference
enable us to establish the relationships among physical com-
ponents (Figure 25.6), geophysical locations (Figures 25.10),

and geospatial positions (Figure 25.12) relative to the Earth’s
surface.

Whereas dimensional reference systems are typically
stationary, free body systems such as ships, aircraft, and
spacecraft are dynamic. During their travel about the Earth
from location to another, their operations require dynamic
changes in their navigational headings and altitude. We need
a means to characterize the trajectory of a free body in space
in terms of its position and the dynamics concerning its rate
of change – heading, velocity and acceleration - components.

25.6 DEFINING A SYSTEM’S FREE BODY
DYNAMICS

Principle 25.8

State Vector Principle

Every free body moving through space at
a specific instant in time is represented by
a state vector that characterizes the body’s

geophysical or geospatial location – position vector - and rate
of change - velocity vector - components.

The preceding discussions established the need to define
a coordinate system as an Observer’s Frame of Reference to
facilitate Engineering collaboration, characterize free body
movements, orientation, calibration, and alignment. Systems
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such as land vehicles, ships and underwater craft, aircraft,
and spacecraft exhibit motion-based dynamics. This requires
understanding and modeling of their position relative to a
frame of reference origin such as the Earth, their rate of
positional change such as velocity, acceleration, and angular
rotation about their principal axes. SEs in collaboration with
SMEs must establish conventions for characterizing this
motion.

The dynamic characteristics of a free body in space
are characterized by its state vector. A state vector is a
physics-based, mathematical expression that describes the
trajectory of a free body in space in terms of its geophysical
or geospatial position and its Six Degrees of Freedom
(6-DoF).

To properly characterize an object such as a free body in
geophysical space, there are three key attributes that need to
be defined:

• An Inertial Frame of Reference relative to the Earth that
remains stable.

• Position vector - that extends from the frame of ref-
erence CoM to the geophysical location or geospatial
position of the free body’s CoM.

• Velocity vector – that represents the free body’s 6-DoF:
(1) translational movements – forward/backward,
upward/downward, and left/right directions and (2)
rotational – angular - movements about its principal
axes.

25.6.1 Position Vector

Geophysical or geospatial position characterizes the location
of a ground, sea, air, or space-based object relative to a frame
of reference such as the Earth. For example, land surveyors,
land vehicles, surface and underwater vehicles, aircraft and
spacecraft, employ a GPS to establish their geophysical and
geospatial location relative to the Earth’s surface or other
celestial body.

Complex systems often require dynamic characterizations
of a free body relative to another body such as the Earth
that are assumed to be fixed as illustrated in Figure 25.12.
For this illustration, we establish: (1) an ECEF Coordinate
System located at the Earth’s CoM to serve as a frame of
reference and (2) an NED Local Coordinate System for a
free body in space relative to the Earth. The Position Vector
would extend from the Earth’s ECEF origin to the CoM of
the free body on the Earth’s surface – geophysical location
for vehicles or ships and geospatial position for missiles,
aircraft, or spacecraft.

Now that we have established the location of the free
body relative to a frame of reference, to complete our
characterization of its state vector we need to characterize
its 6-DoF.

25.6.2 6-DoF Translational Movements

Given a geophysical or geospatial location, we need to
characterize the translational movements of an object in
terms of its heading relative to a frame of reference. For
example, a RH (X, Y, Z) Cartesian Coordinate System
located at the Observer’s eyepoint would be applied as
follows to depict translational movements:

• The X, Y, and Z-axes are orthogonal to each other.

• The X-axis represents an object’s forward or back-
ward movements relative to the Observer’s eyepoint
(origin).

• The Z-axis represents an object’s upward or down-
ward movements relative to the Observer’s eyepoint
(origin).

• The Y-axis represents an object’s left or right move-
ments relative to the Observer’s eyepoint (origin).

Translational movements enable us to characterize an
object’s directional heading and rate of travel in terms of
its velocity, acceleration, and deceleration. However, objects
deviate from directional headings. The question is: how does
the Observer express motion about those multiple axes?
This brings us to our next topic, Rotational Movement
Characteristics.

25.6.3 6-DoF Rotational Movements

Principle 25.9

Rotational Conventions Principle

Rotation conventions about the principal
+X, +Y, and +Z axes of an Observer’s
Frame of Reference are established by the
Right-Hand (RH) Grip Rule.

Rotational movements enable us to characterize an ob-
ject’s dynamic movements in terms of multi-axis rotation.
This requires that we establish a uniform rotation convention
that can be applied to all principal axes. The solution is the
Right-Hand (RH) Grip rule illustrated earlier in Figure 25.2.
When we apply the RH Grip rule to the three principal axes,
Figure 25.13 emerges. Table 25.4 provides descriptions of
Pitch, Yaw, and Roll conventions applied to a free body axis
system.

Observe that we can now characterize rotational move-
ments in terms of their angular rates of change. This allows
us to establish definitions, clockwise/counterclockwise rota-
tional conventions, and angular rates of change for the three
principal axes: ROLL along the Longitudinal Axis, PITCH
along the+Y Lateral Axis, and YAW along the Vertical Axis.
Figure 25.14 illustrates application to an aircraft or space-
craft such as the Space Shuttle.
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Figure 25.13 Illustration of a Free Body’s Six Degrees of Freedom (6-DoF) Translational
(Directional) Movements - Forward/Backward, Up/Down, Left/Right – and Rotational
(Angular) Movements – Roll, Pitch, and Yaw (RPY)

TABLE 25.4 PITCH, YAW, and ROLL Conventions for a RH, Local NED Body Frame Coordinate Reference System

Parameter Convention Action Observed (North-East-Down (NED) Orientation

+X-axis (NED) Definition Body Frame longitudinal axis or fuselage centerline through the CG and extending in the
direction of forward travel

+Y-axis (NED) Definition Body Frame lateral axis extending from the CG origin out the right-side wing
+Z-axis (NED) Definition Body Frame vertical axis extending from the CG origin downward toward the Earth’s CoM
PITCH (𝜃) PITCH (+) RH Grip clockwise angular rotation about the lateral Body Frame +Y-axis

PITCH (–) RH Grip counterclockwise angular rotation about the lateral Body Frame +Y-axis
YAW (Ψ) YAW (+) RH Grip clockwise angular rotation about the vertical Body Frame +Z-axis that points

downward to the Earth’s CoM
YAW (–) RH Grip counterclockwise angular rotation about the vertical Body Frame +Z-axis that

points downward to the Earth’s CoM
ROLL (Φ) ROLL (+) RH Grip clockwise angular rotation about the longitudinal Body Frame +X-Axis

ROLL (–) RH Grip clockwise angular rotation about the longitudinal Body Frame +X-Axis

25.6.4 Inertial Navigational Systems (INS)

The preceding sections defined various coordinate refer-
ence systems, their conventions, and spatial relationships as
shown in Figures 25.12–25.15. Systems such as land, sea, air,
and space-based vehicles need to be able to establish their lo-
cation, attitude, headings, and velocities relative to a primary
coordinate reference system such as the Earth or planetary
body. How do we accomplish this?

To solve this problem, free bodies such as ships, aircraft,
or spacecraft consist of an Inertial Navigation Unit (INU)
that is calibrated to establish an initial condition for true
North relative at a specific location. The objective is to
maintain that setting with minimal drift and error throughout
a mission to serve as a frame of reference for determining
the vehicle system’s attitude such as headings, velocity,
and Roll-Pitch-Yaw (RPY) angles. Figure 25.15 provides an
illustration.
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Figure 25.14 NED Application to the NASA STS Space Shuttle. Source: NASA (2010)
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As the vehicle performs its mission and navigates as a
free body, its Local NED Body Frame of Reference changes
relative to its onboard Inertial Frame of Reference to provide
information about its directional heading and attitude of
flight. This information in combination with the GPS en-
ables computation of its geophysical or geospatial location,
altitude, heading, velocity, acceleration, and distance. The
RPY angles are computed as Euler Angles. For a description
of Euler angles, refer to CH Robotics, LLC (2013) and
Wikipedia (2013b).

25.6.5 6-DoF Summary

In summary, an Observer’s Frame of Reference may be fixed,
stationary, or moving in terms of its 6DOF translational
and rotational movements relative to another body’s frame
of reference. Collectively, a free body’s translational and
rotational movement characteristics are referred to as an
object’s 6DoF. Based on the 6DoF, we can apply Engineering
statics, dynamics, and scientific principles to model the
object’s behavior, assess what-if questions and scenarios, and
optimize its performance within its prescribed Operating
Environment.

A System’s, 6-DoF characteristics consist of:

• Translational movements
∘ Forward or backward direction—distance and rates

of change

∘ Left or right direction—distance and rates of change

∘ Upward or downward direction—distance and rates
of change

• Rotational movements

∘ Roll (Φ)— angle and angular rates of change about
the Longitudinal Axis

∘ Pitch (Θ)—angle and angular rates of change about
the Lateral Axis

∘ Yaw (Ψ)— angle and angular rates of change about
the Vertical Axis

25.7 APPLYING ENGINEERING STANDARDS AND
CONVENTIONS

As leads on a contract development effort, SEs must ensure
that all standards and conventions used, applicable to a
project, are well documented and explicitly communicated
and well understood by all program personnel. So, how are
these documented?

Standards and conventions are documented in work prod-
ucts such as specifications, plans, design documents, In-
terface Requirements Specifications (IRS), Interface Con-
trol Documents (ICD), and Interface Design Descriptions
(IDDs). To understand some of the types of information to

be communicated across these interfaces to ensure compati-
bility and interoperability, consider the following examples:

Example 25.6

• Weights and measures

• Coordinate system frame of reference
and conventions

• Computational precision and accuracy

• Base number systems and conventions

• Units of conversion

• Calibration standards

• Engineering standards

• Data communication protocols

• Documentation guidelines, standards, and conventions

Finally, establish an official list of Project Acronyms and
Glossary of Key Terms. Some refer to this as “languaging”
the program. Although this simple task seems trivial, it will
save many hours of personnel thrashing in chaos, each with
different views of the terms. People need to share a common
mindset of terminology.

25.8 ENGINEERING STANDARDS AND
CONVENTIONS LESSONS LEARNED

Engineering standards and conventions involve a number
of application and implementation lessons learned. Let’s
explore some of the more common lessons learned.

#1: Tailoring Organizational Standards
Organizational Standard Processes (OSPs) establish
standards guidance to support a wide variety of system
applications. Since every system is different, the OSP
standards must include normative and informative tai-
loring instructions guidance for applying the standard
to a program.

#2: Organizational Standards As Contract Require-
ments
If an Acquirer or User has requirements for Engineer-
ing standards and conventions, the formal Request for
Proposal (RFP) solicitation or contract should explic-
itly specify these as requirements. Typically, the Ac-
quirer has an obligation to provide authorized access to
a copy for Offerors on-line or during normal business
hours at a designated facility.

#3: Engineering Standards and Conventions Docu-
ment
A common problem related to standards implemen-
tation is failure to define the standards to be used
in developing system or entity interfaces, coordinate
transformations, and software coding. Therefore, SEs
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should establish, document, baseline, and release an
Engineering Standards and Conventions document for
application on each program and formally control
changes to it.

#4: Assumptions about Conventions
One of the challenges confronting an SE is to define
and document assumptions about System / Product
performance boundary conditions and conventions
when specific aspects may be unknown. Inevitably,
people assume everyone understands how to use the
ABC convention (Principle 24.20).

A Word of
Caution 25.4

Engineering Standards and
Conventions

Always document the Standards of Units,
Weights, and Measures, Coordinate Ref-
erence System conventions and configura-

tions decision artifacts via project memorandums; leave
nothing to chance! Every technical review should include a
technical description of conventions such as a graphic, where
applicable to ensure continuity, consistency, and complete-
ness of SE design activities.

#5: Conflicts between Standards—Order of Prece-
dence
Occasionally, conflicts occur within and between Engi-
neering standards. Standards organizations work to en-
sure that conflicts are avoided. If, as a System Acquirer,
you mandate that a system, product, or service meet
specific standards, ensure specification requirements
do not conflict and specify the order of precedence in
the event of a conflict.

#6: Scope of Requirements
From an SE perspective, standards are often written for
broader application to a variety of business domains.
As an SE, your role is to collaborate with SMEs to en-
sure that the explicit provisions of the standard that are
applicable to a contract or system development effort
are referenced and identified by document number, ti-
tle, date, version, and paragraph number. This avoids
confusion and unnecessary verification expenses fer-
reting out what is and is not applicable.

#7: Application of Standards
When proposing or developing new systems, Ac-
quirer SEs should ensure that all standards refer-
enced in procurement packages or specifications are
the most current, approved, and released version of
the document. Likewise, System Developer SEs, via
contract protocols, should request the Acquirer to
clarify broad references such as “ANSI-STD-XXXX
shall apply.” Instead, specific requirements such as
“ANSI-STD-XXXX-(version) para. X.X.X (Paragraph
Title) shall apply.”

#8: Coordinate System Transformations
Our discussions included a focus on designating a
coordinate system for a free body such as an air
vehicle. Aircraft, especially military aircraft, serves as
a platform for other payload systems such as sensors
and missile systems. Application of a RH Cartesian
Coordinate System with a NED orientation convention
that has the Z-Axis pointing downward does not
necessarily mean interfacing components will also.
Consider the following example:

Example 25.7

Various types of payloads such as missile,
munitions, and sensors, are often used on a
variety of aircraft platforms. Each aircraft
platform that hosts these payloads may
be developed for different Users; payloads

may be developed by different System Developers If you
were an aircraft manufacturer, do not assume the payload
employs the same coordinate system as the aircraft. If not,
you will either have to perform a coordinate transformation
when exchanging data, which adds an element of complexity
and risk, or pay to have the vendor transform the data to
provide the required formatted outputs.

Where the coordinate systems of interfacing systems
are different, always create a simple diagram that
illustrates the coordinate systems and conventions
employed; review, approve, baseline, and release the
document; and communicate it across the project. Es-
tablish which interfacing system is required to perform
the coordinate transformation in the respective specifi-
cation.

#9: Standard Terminology
Successful system design and development requires
that everyone on the project have a shared vision and
mindset and communicate in a language that is con-
sistent and mutually understood by everyone. This re-
quires establishing terminology, acronyms, and defini-
tions of key terms for universal application throughout
all documentation.

Suggestions to establish standard terminologies are usu-
ally met with disparaging remarks from personnel about
how terms are intuitively obvious. Then, when the project
encounters major team-based work scope issues or interpre-
tations caused by failures in application of terminology, ev-
eryone suddenly has one of those “why didn’t we think of
this sooner” responses. How do you avoid this?

The System Development Team (SDT such as a System
Engineering and Integration Team (SEIT) must:

1. Establish ownership of the project’s standard terms,
definitions, and acronyms.
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2. Communicate the list via online network drives or Web
sites.

3. Communicate updates to everyone on the program.

4. Ensure compliance across all documentation including
technical reviews, and audits.

25.9 CHAPTER SUMMARY

Our discussions of Engineering standards, coordinate system
frames of reference, and conventions highlighted the need to
establish project, corporate, national, and international stan-
dards for guiding the system development effort. We intro-
duced the meanings of normative and informative clauses,
and how they were to be implemented.

We also highlighted the need to establish interface stan-
dards and conventions such as English (BES) versus Met-
rics (SI) MKS systems and guidelines to support develop-
ment work.

You may comment…we do not develop free body air
vehicles. Why should we bother with considerations with
coordinate systems? The examples discussed previously
are used to illustrate some of the complexities of getting
coordinate-based systems correct. Similar concepts are em-
ployed for designing and using numerical control machines,
aligning sensors and optical devices, land surveying, and so
forth.

• Each project must establish and communicate a set of
conventions for application to system configuration and
interface applications, Engineering design processes
and methods, and work products.

• Each project must conduct periodic assessments of En-
gineering standards compliance and review Engineer-
ing standards and conventions compliance as a key el-
ement of all technical reviews.

25.10 CHAPTER EXERCISES

25.10.1 Level 1: Chapter Knowledge Exercises

1. What is an Engineering standard?

2. What is an Engineering convention?

3. Why do we need Engineering standards?

4. What are the key subject matter categories of Engineer-
ing standards?

5. What are some types of Engineering standards?

6. What are some types of conventions?

7. Who establishes Engineering standards at the global,
national, professional, and Enterprise levels?

8. What are Enterprise standards and conventions?

9. What are some examples of Enterprise standards and
conventions?

10. How is the degree of compliance with Engineering
standards verified?

11. What is the difference between an Observer’s Frame of
Reference and a Coordinate Reference System?

12. What are two conventions that apply to an Observer’s
Frame of Reference?

13. Why is an Observer’s Frame of Reference convention
is necessary but insufficient for defining a Coordinate
Reference System.

14. What are the three possible multi-axis configurations for
a Cartesian Coordinate Reference System?

15. How are Coordinate Reference Systems applied to
A&D, medical, manufacturing, and business domains?
Illustrate graphically.

16. What is an INS and how does it apply to a Body Frame
of Reference Coordinate System?

17. What is the WCS and its two commonly used Earth
models.

18. What is the Earth-Centered, Earth-Fixed (ECEF) model
and how it is used?

19. What is the ECI model and how it is used?

20. What is the East-North-Up (ENU) and NED coordinate
systems are, graphically explain their differences, and
how they are used?

21. Why is application of the term “vertical” to some
Coordinate Reference System configurations relative
and how do you to deal with it?

22. What is a System’s 6-DoF?

23. What is the meaning, definition, and application of Euler
Angles?

24. What is the meaning of a Free Body’s Yaw, Pitch, and
Roll, their rotational conventions, and applications?

25. Why it is important to establish a project’s Standards
of Units, Weights, Measures, and Coordinate Systems
at the beginning of a project?

26. What is meant by a 6DOF’s translational and rotational
movements?

25.10.2 Level 2: Knowledge Application Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e

http://www.wiley.com/go/systemengineeringanalysis2e
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SYSTEM AND ENTITY ARCHITECTURE DEVELOPMENT

Living systems, by definition, are composed of interacting
elements that enable the whole to accomplish more than the
individual elements. Each element has its own unique iden-
tity, capabilities, and characteristics, integrated into a pur-
poseful framework specifically arranged to accomplish the
system’s mission. The integrated, multi-level framework of
elements represent the System’s architectural configuration
or simply architecture.

Our discussions in this chapter establish the foundation
for developing a System Architecture. Chapters 8 and 9
introduced fundamental concepts related to analyzing Sys-
tems and decomposing them into architectural structures.
Chapter 26 builds on those concepts to formulate, select, and
develop a System or Entity’s Architecture.

26.1 DEFINITIONS OF KEY TERMS

• Architect (System)—The person, team, or organiza-
tion responsible and accountable for innovating and
creating a system configuration that provides the best
solution to User expectations and a set of requirements
within technical, cost, schedule, technology, and sup-
port constraints.

• Architecting—The “process of conceiving, defining,
expressing, documenting, communicating, certifying
proper implementation of, maintaining and improv-
ing an architecture throughout a system’s life cy-
cle” (SEVOCAB, 2014, p. 17) (Source: ISO/IEC/IEEE
24765:2011. Copyright © 2012 ISO/IEC/IEEE. Used
by permission.).

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

• Architecture Description (AD)—“A collection of
products to document an architecture” (Copyright
2000, IEEE. Used with permission; IEEE Std.
1471-2000, 2000, p. 3).

• Architecture—A graphical model or representation
that: (1) expresses the structural framework of a Sys-
tem or Entity’s components, their relationships, and
operational, behavioral, and physical interactions in-
ternally and externally with its Operating Environ-
ment; (2) addresses the views and viewpoints of its
Stakeholders; and (3) alleviates their concerns.

• Architecture framework—“Conventions, principles,
and practices for the description of architectures
established within a specific domain of application
and/or community of stakeholders” (SEVOCAB, 2014,
p. 18) (Source: ISO/IEC/IEEE 24765:2011. Copyright
© 2012 ISO/IEC/IEEE. Used by permission.).

• Architecture View—A “work product expressing
the architecture of a system from the perspective
of specific system concerns” (SEVOCAB, 2014,
p. 18) (Source: ISO/IEC/IEEE 24765:2011. Copyright
© 2012 ISO/IEC/IEEE. Used by permission.).

• Architecture Viewpoint—A “work product establish-
ing the conventions for the construction, interpretation,
and use of architecture views to frame specific sys-
tem concerns” (SEVOCAB, 2014, p. 18) (Source:
ISO/IEC/IEEE 24765:2011. Copyright © 2012
ISO/IEC/IEEE. Used by permission.).

• Design—The process of: (1) analyzing System or En-
tity specification requirements; (2) conceptualizing,

http://www.wiley.com/go/systemengineeringanalysis2e
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formulating, and developing a physical solution;
(3) selecting components from a set of viable can-
didates; (4) applying scientific and engineering
principles to ensure compatibility and interoper-
ability of component interfaces; and (5) documenting
the design requirements—drawings, schematics, mod-
els, etc.—that are necessary and sufficient to Fabricate,
Assemble, Integrate, and Test (FAIT) components for
integration as a working system, product, or service
that complies with specification requirements.

• Centralized Architecture—An architecture that “uses
a central location for the execution of the transforma-
tion and control functions of a system” (Buede, 2009,
p. 476).

• Concerns—“Those interests, which pertain to the sys-
tem’s development, its operation, or any other aspects
that are critical or otherwise important to one or more
stakeholders. Concerns include system considerations
such as performance, reliability, security, distribution,
and evolvability” (Copyright 2000, IEEE. Used with
permission; IEEE Std. 1471-2000, 2000, p. 4).
“A concern pertains to any influence on a system
in its environment including developmental, tech-
nological, business, operational, organizational,
political, economic, legal, regulatory, ecological
and social influences” (SEVOCAB, 2014, p. 59)
(Source: ISO/IEC/IEEE 24765:2011. Copyright ©
2012 ISO/IEC/IEEE. Used by permission.).

• Decentralized Architecture—An architecture charac-
terized by “multiple, specific locations at which the
same or similar transformational or control functions
are performed” (Source: Buede, 2000 p. 476).

• Fault—A latent defect, condition – incompatibility,
degradation, or deterioration; or hazard that has the
potential to materialize into a failure under certain types
of operating scenarios and conditions if left undetected.

• Open Standards—Refer to the definition provided in
Chapter 25, “Definitions of Key Terms.”

• Open System Architecture—“A logical, physical
structure implemented via well-defined, widely used,
publicly-maintained, nonproprietary specifications for
interfaces, services, and supporting formats to accom-
plish system functionality, thereby enabling the use of
properly engineered components across a wide range
of systems with minimal changes” (MIL-STD-499B
DRAFT, 1994, p. 37).

• Open Systems Environment (OSE)—“A comprehen-
sive set of interfaces, services, and supporting formats,
plus aspects of interoperability of application, as spec-
ified by Information Technology (IT) standards and
profiles. An OSE enables information systems to be
developed, operated, and maintained independent of

application-specific technical solutions or vendor prod-
ucts” (DAU, 2012, p. B-154).

• Service-Oriented Architecture (SOA)—“A software
design and software architecture design pattern based
on discrete pieces of software providing applica-
tion functionality as services to other applications”
(Wikipedia, 2013).

• Viewpoint—“A specification of the conventions for
constructing and using a view. A pattern or template
from which to develop individual views by establishing
the purposes and audience for a view and the techniques
for its creation and analysis” (Copyright 2000, IEEE.
Used with permission; IEEE Std. 1471-2000, 2000,
p. 3).

26.2 APPROACH TO THIS CHAPTER

Chapter 26 begins with a Mini-Case Study that serves
as a backdrop for illustrating some of the architecting
challenges in Enterprises due to the lack of Systems engi-
neering courses. Our discussions begin with an introduc-
tory discussion of System Architecture Development. Topics
include:

• What is an architecture and what are its attributes.

• What is an Architecture Description (AD) and what
standards govern its application.

• What are the attributes of an architecture.

• What are User views, viewpoints, and concerns and
how do they relate to an architecture.

• Architecting versus Engineering versus Designing.

Given this foundation, we shift to Developing the Sys-
tem Architecture. Our discussion focuses on an overlooked
aspect of architecture concerning their capabilities to Mon-
itor, Command, and Control (MC2) Mission, Mission Sys-
tem, and Enabling System performance. We build on that
discussion with the introduction of a Conceptual Archi-
tectural Model that can be tailored to meet most System
applications.

The final section addresses Advanced System Architec-
ture topics. Discussions include:

• Centralized versus decentralized architectures.

• Operational, Cold or Standby, or “k-out-of-n” architec-
tural configuration redundancies.

• Like and unlike component configuration redundan-
cies.

• Architectural configuration redundancy versus compo-
nent placement design redundancy.



544 SYSTEM AND ENTITY ARCHITECTURE DEVELOPMENT

• Other considerations—open standards; security and
protection; fire detection and suppression; power
and loss of power; Environmental, Safety, & Occu-
pational Health (ES&OH), and System of Systems
(SoS).

Let’s begin with an Introduction to System Architecture
Development.

26.3 INTRODUCTION TO SYSTEM
ARCHITECTURE DEVELOPMENT

To facilitate our discussion and understanding of System
Architecture Development, let’s begin with a mini-case
study.

MINIMINIIN

Mini-Case
Study 26.1

System Architecting by Presentation
Charts

A project is planning to submit a proposal for
a large System Development contract. The
Project Engineer calls together a group of

team leads for the proposal kick-off meeting. During the
discussion, the team addressed the need to develop a System
Architecture. The Project’s SE boldly proclaims that they
will “go to their office and will return with the System
Architecture within the hour.”

Later, they return with a presentation graphic depicting
the System Architecture. During the review, one of the team
leads asks why this is a physical System Architecture por-
trayal. Additionally, why are there Integrated Circuits (ICs)
such as Analog-to-Digital Converter (ADC), communica-
tions chips, et al shown in a System Level Architecture Block
Diagram (ABD) for a large complex system. After some addi-
tional proclamations by the Project SE that IC functions are
always included in an ABD, the group reluctantly decides
in the interest of time to adapt and live with it rather than
continue.

The project wins the contract and several weeks pass. In
preparation for the event, the System Developer collaborates
with the System Acquirer to issue invitations and develop an
agenda for the SDR … The SDR arrives and the System
Acquirer and User guests are welcomed.

One of the first agenda topics is a presentation about
the System Architecture by the Project SE. Throughout the
presentation, the System Acquirer and User Engineers pose
challenging questions to the Project SE about the contents
of the System Architecture – what’s there, what’s not there
or apparent. Visibly perplexed by the Project SE’s “spin”,
the System Acquirer and Users proceed with asking more
pointed questions such as “We see no evidence in your
architecture that the operators will be able to do this, the
maintainers to be able do that, or the instructors to be able
to teach the operators and maintainers to do this and that.”

Additional requests for information focus on the need
for information such as a Concept of Operations (ConOps)
Document as well as the operational and behavioral aspects
of the architecture. After all, the System Developer collected
the Use Cases information from the User. Was that a
wasted exercise of our time and experiences? Lacking a
valid response, the Project SE responds that the System
Architecture should be “apparent and self-explanatory,” at
least from their perspective.

The Project SE equally perplexed responds with “this is
the first we have heard about that.” This draws a response
from the System Acquirer and User that these concerns
were implied by System Requirements Document (SRD).
The Project Engineer supporting the SE after verifying that
the SRD was devoid of such requirements, inquires as to
why those requirements were not in the SRD. The System
Acquirer responds “we thought they were so obvious they
didn’t need to be documented.”

Fictitious? Scenarios such as this happen every day, espe-
cially in Enterprises that employ the ad hoc, endless loop,
Specify–Design–Build–Test–Fix (SDBTF) Design Process
Model (DPM) Paradigm. Several points emerge from this
mini-case study. System Architecture Development:

1. Requires more than someone returning to their office,
quickly “dragging, dropping, and connecting” graphics
in a presentation chart, and declaring it an Architecture
Block Diagram (ABD).

2. Begins with an experienced System Architect who col-
laborates with the System Acquirer, Users, and Sys-
tem Developer—Engineers including Human Factors
(HF) Engineers, Designers, Manufacturing Engineers,
Testers, and others—well in advance of the release of
an RFP to understand their User Stories, Use Cases
(UCs), views, viewpoints, and concerns.

3. Should reflect, reconcile, and consolidate the views
and viewpoints of its Stakeholders and alleviate their
concerns about Critical Operational / Technical Issues
(COIs/CTIs).

4. Ensure that capabilities or components for a given
level of abstraction are appropriate for the architecture
rather than mixed levels of components that range from
Subsystems to Part Level “nuts and bolts” such as
ADCs.

It should be apparent from the Mini-Case Study 26.1
and the preceding points that a true System or Entity
Architecture is more than simply a 1-hour quantum leap
(Figure 2.3) from Requirements to Physical Implementation
in someone’s office creating a presentation chart. To clarify
the concept of System Architecting, let’s begin with “What
is an Architecture.”
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26.3.1 What is an Architecture?

Most people associate architecture with artistic renderings
and fine buildings with ornamented façades that are traceable
back to the Greek and Roman antiquity. Classically, you
will hear people refer to the form, fit, and function of an
architecture. In the case of building architectures, form,
fit, and function are fine as artistic descriptors. However,
Chapter 2 highlighted the shortcomings of the term function
versus the more appropriate term, capability.

What is missing from the educational paradigm is a uni-
versal definition that encompasses building architectures,
systems, products, and services. IEEE Std. 1471-2000 (2000,
p. 3) defined an architecture as “The fundamental organiza-
tion of a system embodied in its components, their relation-
ships to each other, and to the environment, and the principles
guiding its design and evolution” (Copyright 2000, IEEE.
Used with permission). The author proposes the following
definition:

• Architecture—A graphical model or representation
that: (1) expresses the structural framework of a Sys-
tem or Entity’s components, their relationships, and
operational, behavioral, and physical interactions in-
ternally and externally with its Operating Environ-
ment; (2) incorporates the views and viewpoints of its
Stakeholders; and (3) alleviates their concerns.

An architecture exposes key features of a system, product,
or service. It communicates those features via artistic render-
ings, drawings, or graphics that illustrate how those features
interrelate within integrated framework of the System and
its Operating Environment. Note the term “exposes.” Al-
though an architectural element or object is visually exposed
via a drawing or artist rendering, exposure does not infer fre-
quency of usage. Some entities may be an integral part of a
System’s phases of operation and in use 100% of the time;
other entities may be only used 1% of the time. Depending
on the mission or system application, the system, product, or
service architecture can be abstracted to expose only those
essential capabilities required by the mission.

This discussion raises several questions about a System
Architecture development:

1. Who is responsible for developing an architecture?

2. What is the difference between architecture, engineer-
ing, and design?

3. What is the relationship between an architecture and
the System’s Users?

4. Where is an architecture described?

Let’s address each of these questions.

26.3.2 System Architecting

In most professional domains, the classical building System
Architect is expected to possess licensed credentials, prefer-
ably by some form of examination and registration accorded
by a state of residency. Part of this process is to demonstrate
to regulatory decision authorities that the System Architect
has the experience, knowledge, and understanding of artis-
tic, mathematical, and scientific principles to competently
translate a User’s vision into a system, product, or service
within the constraints of performance standards, laws, and
regulations established by society.

Traditionally, before System Architecting became a for-
mal title, the architecture for most systems, products, or
services was created by senior level engineers based on
Systems Thinking (Chapter 1) and system design expe-
rience. Typically, these senior level Engineers originated
from electrical, mechanical, civil, or chemical engineering
disciplines.

Author’s Note 26.1

The role of System Architects

In the discussion following Mini-
Case Study 2.1, SDBTF-DPM En-
terprises often have the following
view of SE:

• Step 1 – Write the specifications.

• Step 2 – Analyze the specification requirements.

• Step 3 – Architect the system.

• Step 4 – Develop the design

• …

From a high-level project workflow perspective over time,
this is true. However, SE requires collaborative, analytical
development and decision-making of all of these steps as
illustrated in Figure 11.2. When we address the role of a
System Architect, avoid the notion that all project work
is placed on hold until the Architect emerges with an
architectural innovation.

As systems became more software intensive, the need for
more specialized expertise lead to the need for a new job
category for Software Architects, especially in the software
domain. Today, the concept of a System Architect continues
to evolve with recognition that professional certification
standards must be established to certify competency in
specific types of business domains. However, here is the
challenge: what does a System Architect “architect”?

The answer gets resides in an analog to our earlier discus-
sion in Chapter 1 concerning “Engineering the System” ver-
sus “Engineering the (Equipment Hardware/Software) Box.”
Based on our earlier discussion in Chapter 24 concerning
Reason’s Swiss Cheese Model (1990) (Figure 24.1), the
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answer should be “Architecting the System” includes Human
Factors (HF) considerations for the User. However, System
Architecting often focuses on “Architecting the (Equipment
Hardware/Software) Box.”

26.3.3 Architecture, Engineering, and Design: What
are the Differences

A question that people often have is: what are the differences
between architecting, engineering, and designing? The an-
swer is that they are highly collaborative and interdependent
processes performed by a System Architect, multidiscipline
SEs and Engineers, and Designers.

Author’s Note 26.2

The sections that follow respond to
the need to differentiate the interrela-
tionships between Architecting, En-
gineering, and Designing in the con-
text of creating a System Design So-

lution. This is just one aspect of what Architects, Engineer-
ing, and Designers are required to perform in their respective
roles, for example. The role of multi-discipline SEs is to col-
laborate with the User to capture User Stories and develop
Use Cases and scenarios. Then lead the multi-discipline de-
velopment of specification requirements used by the Sys-
tem Architect for performing their role. On various size
projects, an Engineer might perform any one, portions of,

or all three roles – Architect, Engineer, and Designer shown
in Figure 26.1 provides So, what is System Architecting? an
illustration to support our discussion.

Architecting is the process of (1) formulating and concep-
tualizing a viable set of candidate structures—architectures,
(2) collaborating with Engineering to select the optimal ar-
chitecture, and (3) developing the AD.

Engineering is the process of applying mathematical and
scientific methods to:

• Collaborate with the System Architect to (1) evaluate
the System Architect’s candidate architectures using
models and prototypes, (2) perform an Analysis of
Alternatives (AoAs – Chapter 32), and (3) select the
optimal System Architecture.

• Collaborate with designers to select compatible and in-
teroperable components to (1) create a System Design
Solution and (2) develop a System Design Description.

• Develop test cases and procedures for System Verifica-
tion and Validation (V&V) (Chapter 13).

A system design translates Engineering’s System Design
Solution into drawings and models of physical component
layouts, connections, tolerances, parts lists, and so on suit-
able for procurement or Fabrication, Assembly, Integration,
or Test (FAIT).
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Figure 26.1 Relationships between Architecting, Engineering, and Designing to the
System Design Solution
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Author’s Note 26.3

Based on the points earlier, it should
be apparent that Architecting, En-
gineering, and Designing have an
iterative, sequential workflow that is
highly collaborative and interdepen-

dent. Unfortunately, simplistic descriptions of these pro-
cesses would have you believe that a System Architecture is
created first and then the System or Product is designed in
a manner similar to the Waterfall Development (Figure 15.1).
This is a partial truth perpetuated as a myth!

When do Architecting, Engineering, and Designing begin
and end in relation to each other?

• First, for small projects, an Engineer might perform all
three roles. As project sizes become larger and more
complex, then you will see these roles emerge in the
form of roles assigned to various project personnel.

• Secondly, you would expect a System Architect to
begin their conceptualization and collaborate with
multi-discipline SE—hardware, software, testing, and
so on. Multidiscipline SE activities might include Mod-
eling and Simulation (M&S) (Chapter 33), scale-model
prototypes and so on to support an AoA—Chapter
32—to select a preferred architecture from a set of vi-
able candidates. Designers might be involved as part of
the evaluation. The intent here is to identify, investigate,
and mitigate any Critical Operational and Technical Is-
sues (COIs/CTIs).

One of the rhetorical questions that emerges concerning
Architecting, Engineering, and Designing is whether design
is part of the architecture or is the architecture part of the
design?

26.3.4 Formulating the AD

System Architectures originated hundreds of years ago via
the need to express a conceptualization such as a building or
ship worthy of resourcing a project and holding those devel-
oping the project accountable for the outcome. The expres-
sions took the form of sketches, paintings, and drawings.

When people began to recognize the need for more
detailed descriptions, System Architectures became a feature
of the design documents such as a System or Entity Design
Description delivered at the completion of the project.

In the 1980s, as Systems and Products became more
software intensive, complex, and costly, System Acquir-
ers, Users, and even System Developer personnel had a
“need-to-know” early in System Development how the soft-
ware was envisioned to operate, not at the end when the
System or Product was delivered. As SE and Software De-
velopment became more closely coupled, the concept of a

Software Architect evolved into the need for a System Ar-
chitect.

One of the architectural work products that emerged
from Software Architecture Development is a document
referred to as the Architectural Description (AD). Figure 26.2
illustrates the context and Entity Relationships (ERs) of
an AD to the System of Interest (SOI), its Architecture,
Stakeholders, their Concerns, Architecture Rationale, and so
on. So, what is an AD?

• IEEE Std. 1471-2000 (2000, p. 3) Architectural De-
scription for Software-Intensive Systems, which has
been replaced by ISO/IEC/IEEE 42010 (2011), generi-
cally defined an AD as simply “A collection of products
to document an architecture” (Copyright, 2000, IEEE.
Used with permission).

• ISO/IEC/IEEE 42010 (2011, p. 17), which is now ti-
tled Systems and Software Engineering—Architecture
Description, defines an AD as a “(1) a collection of
products to document an architecture” (SEVOCAB,
2014, p. 17) (Source: ISO/IEC/IEEE 24765:2011.
Copyright © 2012 ISO/IEC/IEEE. Used by permis-
sion.). ISO/IEC/IEEE 42010:2011 (pp. 11–16) pro-
vides a description of what an AD should contain
in terms of its outline and contents. In a separate
ISO document, Hilliard (2012) provides an anno-
tated AD Template based on ISO/IEC/IEEE 42010
:2011.

What should an AD contain? “A collection of products
to document an architecture” (SEVOCAB, 2014, p. 17) as
stated above? How do you determine when the “collection
of products” is necessary and sufficient to “Engineer” and
“Design” the product?

From an SE perspective, one would expect an AD
at a minimum to contain work products such as the
following:

1. Conceptual view of the proposed physical System or
Product at delivery. This might include various types
of Engineering views such as Plan/Front View, Side
Views, and Top Views.

2. Level 0 User’s System ABD (Figure 8.4) - depicting
the deliverable SOI - Mission System and Enabling
System(s) – and their interfaces to other components
within the User’s System (Figures 9.1 and 9.2)

3. Level 1 System/Entity ABD - depicting the major
components (Figure 8.13), their internal interfaces with
each other (N2 Diagram - Figure 8.11), and interfaces
to external systems (Figures 8.1, 9.3, and 10.1) in their
Operating Environment.

4. A text description that describes how the Sys-
tem/Product’s architecture is conceived to address
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Figure 26.2 ISO/IEC/IEEE 42010:2011 Conceptual Model of an AD (Source: This
excerpt is taken from ISO/IEC/IEEE 42010:2011, Figure 2 on page 5, with the permission
of ANSI on behalf of ISO. (c) ISO 2014—All rights reserved.)

and satisfy User Stories, Use Cases (UCs), and scenar-
ios including HFs (Chapter 24) for its Users operators,
maintainers, trainers, and others during each of the
System/Product’s Life Cycle Phases of Opera-
tion - Deployment; Operations, Maintenance, and
Sustainment (OM&S); Retirement; and Disposal.

From a Software perspective, an AD is often considered
a standalone document. From an SE perspective, an AD is
an integral part of the ConOps document. In that context, the
AD could either be presented in the ConOps or incorporated
by reference as referenced document.

26.3.5 Stakeholder Views, Viewpoints, and Concerns

Principle 26.1

System Stakeholder Concerns and
Views Principle

An architecture expresses System Stake-
holder concerns via views that comply with

viewpoint conventions for constructing the view.

Figure 26.2 introduces several ISO/IEC/IEEE
42010:2011 terms used in formulating a system, product, or

service architecture that require definition. Specifically, the
terms are views, viewpoints, and concerns. Why are these
important?

If you revisit Mini-Case Study 26.1, System Acquirer
and User participants in a technical program review include
a cadre of Stakeholder roles. These roles include opera-
tors, maintainers, trainers, and so on as well as technical
specialists such as Reliability, Maintainability, and Avail-
ability (RMA); Human Factors (HF); System Safety, Sys-
tem Security, and Technologists. The left side of Figure
15.11 provides an excellent example. Some specialists ad-
dress COIs/CTIs such as global System Level issues,
Subsystem Level issues, or technology. Each of these
roles and disciplines has views or perspectives of a Sys-
tem or Entity based on their education, knowledge, and
experience.

Given Stakeholder – User and End User - insights con-
cerning a System Architecture, let’s define views, viewpoints,
and concerns.

• View—“An architecture view expresses the archi-
tecture of the system-of-interest in accordance with
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an architecture viewpoint (or simply, viewpoint)”
(ISO/IEC/IEEE 42010:2011, Section 4.2.4, p. 6.)1

“A view is governed by its viewpoint: … ”
(ISO/IEC/IEEE 42010:2011, p. 6)2

• Viewpoint—“… the viewpoint establishes the con-
ventions for constructing, interpreting and analyzing
the view to address concerns framed by that viewpoint.
Viewpoint conventions can include languages, nota-
tions, model kinds, design rules, and/or modeling meth-
ods, analysis techniques and other operations on views”
(ISO/IEC/IEEE 42010:2011, p. 6)3

• Concern—An “interest in a system relevant to one or
more of its stakeholders …
Note: A concern pertains to any influence on a system
in its environment, including developmental, techno-
logical, business, operational, organizational, political,
economic, legal, regulatory, and ecological and social
influences” (SEVOCAB, p. 59, Copyright, 2012, IEEE.
Used with permission; Reference: ISO/IEC/IEEE
42010:2011 (2011 p. 6).

1This excerpt is taken from ISO/IEC/IEEE 42010:2011, Section 4.2.4 on
page 6, with the permission of ANSI on behalf of ISO. (c) ISO 2014—All
rights reserved.
2Ibid
3Ibid

ISO/IEC/IEEE 42010:2011 (2011 p. v) provides
examples of concerns such as “… the feasibility, utility and
maintainability of the system.”4

To better understand how views, viewpoints, and concerns
influence a System Architecture, Figure 26.3 provides an
illustration. Observe that the graphic consists of the User
Stakeholders—System Owner, System Administrator, and
various Users; and their End User on the left side and System
Developer Stakeholders on the right side. Each of these
Stakeholders has:

• A view or perspective of the system, product, or
service based on their mission roles and assigned
tasks. For example, Engineers such as EEs, MEs,
SwE’s, and others have their own unique perspectives
of the electrical/electronic, mechanical, and software
“system.”

• Viewpoints expressed as conceptual mental mod-
els (Normal, 2013 Figure 1.11, p. 32)—Viewpoint
Models—that represent how they believe the system,
product, or service should be operated, maintained,
etc. For example, an MRI medical device (Figure 25.5)
Engineer (Figure 25.5) has a viewpoint concerning

4This excerpt is taken from ISO/IEC/IEEE 42010:2011, Introduction on
page 5, with the permission of ANSI on behalf of ISO. (c) ISO 2014—All
rights reserved.
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how the electromagnets of an MRI device (Figure
25.4) are calibrated and aligned. Specifically, how to
achieve the imaging isocenter – the point at which
all three gradient fields—+X, +Y, and +Z—are zero.
(Eash, 2013)

• Concerns that represent COIs/CTIs that require resolu-
tion that is apparent in the Viewpoint Models.

As examples, here is a partial listing of Stakeholder
concerns:

1. Single Use, Reusable, & Multi-Purpose

2. Reconfigurability

3. Effectiveness

4. Efficiency

5. Usability

6. Human-System Integration (HSI)

7. Physical Layout

8. Access Ports

9. Electrical Grounding and Shielding

10. Electromagnetic Interference (EMI)

11. Electromagnetic Compatibility (EMC)

12. Life Support

13. Environmental

14. Comfort

15. Communications

16. Illumination

17. Ingress and Egress

18. Consumables and Expendables

19. Waste Disposal

20. Safety

21. Compatibility and Interoperability

22. Growth and Expansion

23. Reliability

24. Maintainability

25. Availability

26. Producibility

27. Storage

28. System Integration

29. System Verification

30. System Validation

31. System Deployment

32. System Operation

33. System Sustainment

34. System Retirement

35. System Disposal

36. Transportability

37. Mobility

38. Maneuverability

39. Portability

40. Training

41. Security and Protection

42. Vulnerability

43. Survivability

44. Lethality

26.3.6 Attributes of an Architecture

If someone asked you to characterize an architecture, what
would be its attributes? For many people, their mental picture
of an architecture is simply an SBD or ABD. The reality is
an architecture has a set of key attributes one should expect
to see evident in an architecture.

26.3.6.1 Attribute #1: Assigned Ownership

Principle 26.2

Architectural Ownership and
Accountability Principle

Assign ownership and accountability
for the development of each System or
Entity architecture.

Every System or Entity Architecture is assigned to an
Owner accountable for its development and maintenance.

26.3.6.2 Attribute #2: Unique Document ID

Principle 26.3

Architectural Uniqueness Principle

Assign a unique identifier (ID) to each
System or Entity architecture.

Every System or Entity Architecture document should
be assigned a unique document ID that differentiates it from
all others.

26.3.6.3 Attribute #3: Architectural Context

Principle 26.4

Architectural Context Principle

Every System or Entity architecture be-
gins with establishing its context within the
User’s Level 0 Higher-Order System.

The third attribute of an architecture is to establish its
context within the multi-level world of systems as viewed
by its Stakeholders, Users, and End Users. To illustrate
this point, consider a building architect commissioned to
develop the architecture for a new office building. Imagine
a white background with nothing but the building shown.
Obviously, the building is the most important aspect of the
artwork and is necessary. However, is it sufficient in terms
of satisfying Stakeholder visualizations (e.g., its features
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such as User access, parking, or environmental park-like
setting) if this information is suppressed in the artwork? The
answer is no! One of the important aspects of architecture
is understanding a System’s context relative to its User’s
Level 0 (Figure 8.4) Operating Environment. Consider
the following examples.

Example 26.1

Home Architectural Context

A home architect is commissioned to de-
velop plans for a home to be located on the
edge of a city, mountain lake, or arid desert.

So, they create an artistic rendering of the envisioned home
as the centerpiece surrounded by its environment. The intent
is to captivate the customer’s excitement and imagination and
to show that it blends unobtrusively into its environment.

Example 26.2

Military Aircraft: Battle Environment
Context

A System Developer of a new military air-
craft creates an artistic rendering or ABD

of the aircraft in an aerial battle to illustrate its agility
and air superiority. Within the artwork, operational assets
are depicted including graphically layered lines illustrating
communications with satellites, ships, other aircraft, ground
forces, and so on.

Example 26.3

Medical Device Context

A medical device manufacturer releasing
a new product might create an artistic or
a graphical view of the device in a pa-

tient’s or operating room setting that includes the Per-
sonnel —various medical personnel, Equipment, Mission
Resources, Procedural Data, System Responses, and
Facilities (Figures 9.1 and 9.2).

These examples illustrate just one aspect of an architec-
tural via an artistic rendering. From an SE perspective, we
can create contexts with ABDs based on Stakeholder views
and viewpoints.

26.3.6.4 Attribute #4: Architectural Framework

Principle 26.5

Architectural Framework Principle

Every System or Entity architecture re-
quires a Level 1 System architecture that
illustrates:

1. Its framework of System Elements—Personnel,
Equipment, Mission Resources, Procedural
Data, System Responses, and Facilities—their
relationships, and interactions.

2. External interfaces and interactions with Human Sys-
tems, the Natural Environment, and the Induced
Environment Systems (Figures 9.1 and 9.4) that
comprise its Operating Environment.

In summary, an architecture: (1) exposes a contextual view
of a System or Entity’s Level 1 framework of System
Elements—Personnel, Equipment, Mission Resources,
Procedural Data, System Responses, and Facilities—
(2) their interrelationships, and (3) interactions with external
systems in their respective Operating Environments.
Figure 9.1 provides an example.

26.3.6.5 Attribute #5: Architectural Domain Views

Principle 26.6

Architectural Domain Views Principle

Each System or Entity architecture con-
sists of one or more viewpoint models
that:

1. Represent views shared by one or more of its Stake-
holders.

2. Express a conceptualization to guide Solution Space
development.

3. Alleviate any concerns.

A System or Entity’s architecture consists of four types
architectural views, one for each Solution Domain illustrated
in the SE Process (Figure 14.1). From an SE perspective,
your role is to develop a shared consensus of these System
Level Solution Domains views across the System Acquirer,
User, and System Developer communities as shown in
Figure 26.4. This graphic illustrates the deficiencies of the ad
hoc “I will return in an hour with the System Architecture”
approaches depicted in Mini-Case Study 26.1.

One of the ambiguities of SE and deficiencies of En-
terprise training or the lack thereof occurs when System
Architectures are developed. Referring to Mini-Case Study
26.1, you may hear a System or Product Development Team
(SDT/PDT) member boldly proclaim they are going to “de-
velop a system architecture.” The problem is listeners are
thinking one type of architecture and the individual creating
the architecture has something different in mind—a single
Physical System Architecture viewgraph. As a result, the ar-
chitectural work product may or may not suit the develop-
ment team’s needs.

When someone boldly proclaims to develop a System
Architecture, you should ask: Which architectural views
and viewpoints do they intend to capture and express?
The answer should be the timely sequence of Operational,
Behavioral, and Physical Architecture artifacts from the SE
Process (Chapter 14) collaboratively developed over time
with the User and System Developer Stakeholders.
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Figure 26.4 Establishing a Consensus of Stakeholder Views of a System’s Four Domain
Solutions

26.3.6.6 Attribute #6: Architectural Validity

Principle 26.7

Architectural Validity Principle

The validity of an architecture is deter-
mined by its ability to:

1. Configure and control its capabilities in response to
UC-based User Command and Control (C2) during De-
ployment; Operations, Maintenance, and Sustainment
(OM&S); and Retirement/Disposal Phases of the Sys-
tem/Product Life Cycle.

2. Deliver the required outcomes and levels of perfor-
mance for each configuration.

Any type of architecture can provide a set of capabilities
to produce an outcome. The real challenge is: can it deliver
unique sets of capabilities required to support the System
UCs and Scenarios within each Mode and State (Chapter 7)
for each of its System/Product Life Cycle Phases of operation
(Figure 3.3)?

26.3.6.7 Attribute #7: Architectural Completeness

Principle 26.8

Architecture Completeness Principle

A System or Entity architecture is com-
plete when it:

1. Complies with Stakeholder specification requirements.

2. Clearly communicates a solution that alleviates Stake-
holder concerns and mitigates operational, technical,
technology, cost, and schedule risks.

3. Contains essential information that is necessary and
sufficient for design.

4. Has been verified, validated, and accepted by its Stake-
holders.

Since a System or Entity architecture is an integral
part of its design, completeness evolves to maturity through
design reviews; System Integration, Test, and Evaluation
(SITE); system V&V; and User experience in the field of
operation.

26.3.6.8 Attribute #8: Architectural Design Consistency

Principle 26.9

Architectural Consistency Principle

A System or Entity Architectures and
Engineering designs must be consistent in
nomenclature, mnemonics, and terminol-

ogy with all other architectures internal and external to the
System.

Multi-Level System Architectures, especially for large,
complex systems, are often developed by different people
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and contractors. One of the complexities of System Design
integration is ensuring that the architectures be developed as
if a single source created them. This means that Viewpoint
Models are based on established standards such as SysMLTM

to ensure consistency (1) between peer-level models and hi-
erarchically between levels of abstraction and (2) in nomen-
clature, mnemonics, and terminology. In this context, it is
critical for SE to create a Glossary of Terms and Acronyms
that is accessible, reviewed, approved, baselined, and main-
tained for everyone working on the project.

26.3.6.9 Attribute #9: Architectural Selection Rationale

Principle 26.10

Architecture Selection Rationale
Principle

Every System/Entity architecture
should include a listing of selection

criteria and supporting rationale for its final selection.

System Architectures are often selected for a variety
of reasons. Later, when issues surface, questions emerge
concerning what criteria were used as the basis for its
selection. Therefore, document the criteria and supporting
rationale used to substantiate the selection.

26.3.6.10 Attribute #10: Architectural Traceability

Principle 26.11

Architectural Traceability Principle

Every System or Entity Architecture
must be traceable to Higher-Order Sys-
tem architectures and to User require-

ments via the System Performance Specification (SPS).

System /Entity Architectures must be traceable to each
other and User source or originating requirements via the
SPS (Principle 19.13).

26.3.6.11 Attribute #11: Architectural Capabilities We
stated earlier in Principle 26.7 that the validity of a System
Architecture is determined by its ability to respond, config-
ure, and control its capabilities in response to User MC2
during all phases, modes, and states of its life cycle. A chal-
lenge question for System Architects is: how do you assess
the validity and completeness of an architecture to comply
with Principle 26.7? How good is “good enough”? Com-
pleteness from whose perspective? The architect, engineer,
designer, or User? Obviously, the answer becomes known
through field usage. Although that may be necessary, it is
insufficient in terms of developing the System or Product.

Actually, the answer to the question resides in three
supporting questions:

• Question #1: What are the capabilities the User(s)
expect the System or Entity to provide?

• Question #2: Based on seasoned System Architecting
experience, are there essential capabilities that have
not been addressed by the User?

• Question #3: Does the AD answer this question?

The answer to Question #1 is documented in the SPS.
Question #2 could be a variable dependent on the System
Architect’s experience and business domain. However, there
is an easier way of answering the question by simply
applying some Systems Thinking (Chapter 2).

If you analyze Systems or Products of various domains
such as transportation, medical, energy, or communications,
nine essential capabilities emerge, each with some specified
level of performance. Even though the implementations may
be: (1) fixed installations, mobile, or portable or (2) operate
from electrical, mechanical, solar, wind, or other power
sources, they share these essential capabilities. In general,
most Engineered Systems capabilities include:

1. Send and Receive Messages and Data.

2. Accept, Transform/Convert, Distribute, and/or Store
Energy.

3. Monitor Environmental Conditions—Internal and Ex-
ternal.

4. Maintain and Report Situational Assessment Status.

5. Respond to User C2 Inputs.

6. Maintain Mission Standard Time.

7. Stow and Retrieve Personnel, Tools, Procedural
Data, and Mission Resources—data and Ancillary
Equipment.

8. MC2 System Performance.

9. Record Mission and System Performance Data.

10. Store and Retrieve Mission and System Data.

11. Sense Operational Health and Status (OH&S).

12. Provide Security and Protection.

13. Produce Performance-Based Outcomes.

Using these capabilities as a general checklist, a reviewer
should be able to review an AD and be able to clearly
identify and trace from Input to Output how the capability
is accomplished operationally, behaviorally, and physically.

26.3.7 Architecture Representation Methods

For most applications, System Architectures are commu-
nicated via three mechanisms: (1) three-dimensional or
two-dimensional artistic renderings of buildings, (2) block
diagrams such as SBDs or ABDs, and (3) hierarchy trees.
Most SE applications employ block diagrams such as vari-
ous types of SySMLTM Structural Diagrams—Block Defini-
tion, Internal Block, and Package (Appendix C, Figure C.2)
(OMG SysMLTM, 2012); System Block Diagrams (SBDs) or
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more specifically ABDs as the primary mechanism for com-
municating a System or Entity’s architecture:

• Block diagrams such as SBDs and ABDs, in general,
depict horizontal, peer-level, and external relationships
within a given level of abstraction. Vertical linkages to
higher-level parent or lower-level child entity architec-
tures (Figure 21.2) are referenced by symbols such as
connectors between sheets of a drawing or a document.
For example, a tool may annotate a System or Entity
in a diagram with a symbol to denote that a lower level
of abstraction exists.

• Hierarchy diagrams enable us to depict vertical, hier-
archical relationships as levels of abstraction. They do
not communicate, however, direct relationships and in-
teractions among peers.

Figure 26.5 illustrates these two approaches.

26.4 DEVELOPMENT OF SYSTEM
ARCHITECTURES

Given an introductory understanding of System Architecture
Development, how do you develop a System Architecture?

Since a System Architecture serves as the central infrastruc-
ture of a System Design Solution, its success at least con-
ceptually is unknown until the System is placed into field
operation and has proven mission performance. That repre-
sents a challenge that we need to remedy early in the project.
How do we reduce architectural risk? As with any type of
system, the more you know and understand about a System
or Product’s operations, behavior, and physical implemen-
tation, your chances of success increase significantly. So,
models, simulations, prototypes, and analyses approaches
provide a way to derisk the architectural design.

One of the first things we learn about Systems or Products
is that we need to be able to control their outcomes and
performance. Performance control, in turn, requires feedback
concerning actual versus planned performance.

26.4.1 MC2 System Performance and Outcomes

Principle 26.12

Measurement and Control Principle

Unless you can measure the performance
of a system or process, you cannot control
it. (Adapted from Demarco, 2009, p. 96).
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If you contemplate a system, product, or service’s archi-
tecture, there are four core capabilities required for Users to
operate and maintain it:

1. Configure the System’s capabilities to accomplish
performance-based outcomes during all phases, modes,
and states of operation.

2. Command the System to perform specific actions.

3. Control the System’s performance.

4. Monitor the System’s performance.

Analytically, the first three items represent C2; the third
item requires Situational Awareness of the System or Prod-
uct’s performance—Situational Assessment.

Figure 26.6 provides a high-level illustration of the rela-
tionship between a System’s Situational Assessment and C2
capabilities. Each of the boxes highlights key aspects of its
scope.

In performing Situational Assessment and C2, a system,
product, or service must be able to respond to its authorized
Users—operator, maintainer, or instructors. Three questions
emerge:

1. What level of control does the User need to exercise to
safely achieve mission objectives?

2. How does the User know when the desired System
Level of performance is achieved, is optimal, or en-
croaches into a potential Caution or Warning (Princi-
ples 24.16 and 24.17) safety area (Figure 30.1) that may
impose unnecessary stress on the System, jeopardize
the mission, and potentially result in injury or loss of
life?

3. If System performance is not at an expected level
of performance due to an unknown component fail-
ure, how does the User know this and confirm its
Operational Health & Status (OH&S) especially
when conditions preclude inspection? For example, in
the case of the NASA Space Shuttle, the astronauts
were unaware of the Challenger (1986) addressed
later in Mini-Case Study 26.2 or Columbia (2003) in
Mini-Case Study 26.3.

The answer to these questions requires that the User make
timely, informed Situational Assessment and corrective ac-
tion decisions. Informed decisions require presentation of
current, essential information at the User’s interface based on
an assimilation of OH&S data. As a result, the User should
be able to apply training and experience to take preemptive,
corrective actions via the System’s C2 capabilities.

The point here is captured in the Demarco’s (2009) quote
(Principle 26.12) concerning the need to be able to mea-
sure performance if you expect to control it (Demarco, 2009,
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p. 96). The context of the quote was software development;
however, it is relevant to System Engineering and Devel-
opment especially in formulation of System Architectures.
How do we provide the User with the essential informa-
tion required to manually control the System or have it au-
tomatically control itself? The answer to that question re-
quires the Situational Assessment to provide only essential
information.

Principle 26.13

Measuring the Unmeasurable
Principle

Avoid demands to “measure the unmea-
surable” (Leveson and Turner, 1993,
p. 39).

Leveson and Turner (1993, p. 39) in their paper “An In-
vestigation of the Therac-25 Accidents” observe that man-
agement and others often pressure Engineers to quantity risk.
They note that Engineers should exercise caution and insist
that any risk assessment numbers are “meaningful.” Since
these numbers are based on conditional probabilities, they
should be treated with caution.

Although the context of the Leveson and Turner quote
relates to risk management, it applies to Situational As-
sessment data collection as well. From an HF perspective,
humans under stress need only specific information that
is essential to a decision, not information overloads.
If Situational Assessment information is nonessential,
why spend resources—time, cost, weight, and other
factors—instrumenting and measuring data that contributes
additional technical risk, reduces reliability, increases
weight, and is non-value added? This brings us to another
principle in System Architecture Development.

Principle 26.14

Situational Assessment Information
Principle

Essential, real-time Situational Assess-
ment information should always be cur-

rent and readily available for Users to make informed
decisions.

The importance of this principle is highlighted in
Mini-Case Study 26.2 of a current, real-time Situational
Assessment in an Enterprise System and an Engineered
System.

Author’s Note 26.4

The case studies in the following
text address the NASA Space Shuttle
Challenger and Columbia acci-
dents. As an Engineering case study,
the point here is not to highlight

problems. NASA has made tremendous contributions to
advancing our knowledge of space and its exploration and

development of new technologies that have improved our
lives. The best way we can honor the brave men and women
astronauts who flew these missions is to learn from the
accidents and mitigate the conditions that lead to their
occurrence.

MINIMINIIN

Mini-Case
Study 26.2

NASA Space Shuttle Challenger Accident

On January 28, 1986, a decision was made
to launch NASA Space Shuttle Challenger
on it STS-51-L mission. At 73 seconds after
liftoff, the External Tank ruptured from a

SRB interaction causing the liquid fuel to explode leading
to the Challenger breakup.

“The consensus of the Commission and participating
investigative agencies is that the loss of the Space Shuttle
Challenger was caused by a failure in the joint between
the two lower segments of the right Solid Rocket Motor.
The specific failure was the destruction of the seals that
are intended to prevent hot gases from leaking through the
joint during the propellant burn of the rocket motor. The
evidence assembled by the Commission indicates that no
other element of the Space Shuttle system contributed to this
failure” (Rogers Commission, 1986, p. 40).

“The decision to launch the Challenger was flawed.
Those who made that decision were unaware of the recent
history of problems concerning the O-rings and the joint
and were unaware of the initial written recommendation of
the contractor advising against the launch at temperatures
below 53∘ F and the continuing opposition of the engineers
at Thiokol after the management reversed its position. They
did not have a clear understanding of Rockwell’s concern
that it was not safe to launch because of ice on the pad.
If the decision-makers had known all of the facts, it is
highly unlikely that they would have decided to launch
51-L on January 28, 1986” (Rogers Commission, 1986,
Chapter 5, p. 82).

Mini-Case Study 26.2 illustrates the human decision
making flaws in an Enterprise System concerning the flow
of current, real-time Situational Assessment information
to key decision-makers. Forrest (2013) characterizes the
Challenger accident as “A failure in decision support system
and human factors management.” The mishap exemplifies
Reason’s (1990) Accident Trajectory Model (Figure 24.1).

Now, consider another context involving the Space
Shuttle Columbia accident.

MINIMINIIN

Mini-Case
Study 26.3

Space Shuttle Columbia Accident

In the morning hours of February 1, 2003,
the NASA Space Shuttle Columbia acci-
dent materialized as a result of wing leading
edge damage from ice breaking off at liftoff
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several days earlier. The Columbia Accident Investigation’s
Board’s Report (2003, pp. 11–12) stated:

“The de-orbit burn to slow Columbia down for re-entry
into Earth’s atmosphere was normal, and the flight profile
throughout re-entry was standard. Time during re-entry is
measured in seconds from “Entry Interface,” an arbitrarily
determined altitude of 400,000 feet where the Orbiter be-
gins to experience the effects of Earth’s atmosphere. Entry
Interface for STS-107 occurred at 8:44:09 a.m. on February
1. Unknown to the crew or ground personnel, because the
data is recorded and stored in the Orbiter instead of being
transmitted to Mission Control at Johnson Space Center, the
first abnormal indication occurred 270 seconds after Entry
Interface.”

Unfortunately, at that point in reentry, there was nothing
that could be done. As a result of the Columbia accident,
NASA (2005, p. 50) noted “In addition to improved cam-
eras on the ground and on the Space Shuttle, Discovery’s
astronauts will conduct close-up, in-flight inspections with
cameras, lasers, and human eyes.”

These examples illustrate the importance of Enterprise
and Engineered Systems providing adequate means for
the Users to MC2 the SOI. The objective is to provide
decision-makers with timely Situational Assessments to
enable corrective actions that mitigate a potential hazard
from becoming a problem. How do we create an architecture
to accomplish this objective?

The answer to the question is every System Architecture is
business domain and application dependent based on special-
ized expertise. It would be impractical to create every type
of architecture. For example, Systems and Products that
include broad ranges of consumer goods; offices and pub-
lic buildings; transportation—land, sea, air, and space based;
medical; and many others. There is, however, model-based
solution that could be used to identify key considerations
when developing an architecture.

If you analyze a broad spectrum of Systems or Products,
you can identify some high-level classifications of capabili-
ties that a typical architecture should exhibit. The classifica-
tions are starting point for architectural thinking that have to
be tailored based on domain expertise:

• In some cases, a User such as an airline pilot is an
integral part of an aircraft’s performance and success
that involve End User lives.

• In other cases, the User may be external to the System
or Product such as a tablet computer.

How the User is integrated into the operation of the
System or Product, mission duration, system safety, or
HF drives different architectural frameworks and decisions.
What an analysis does reveal is a set of capabilities that may

be common to most Systems or Products as well as some
domain-specific and application dependent capabilities. The
general list includes the following classifications at a mini-
mum for architectural considerations:

• User ingress and egress portals
• User displays
• User controls
• Ancillary equipment and storage
• Accommodations
• Life support
• Data
• Consumables
• Expendables
• Monitoring
• C2
• Communications
• Sensors
• Discrete Input and Output (I/O)
• Exterior lighting
• Electrical
• Stabilization
• Directional control
• Emissions
• Propulsion
• Energy conversion
• Mission deliverables
• Cargo storage
• Maintenance portals

Observe how this list evolves from Architectural Attribute
#1 (Section 26.3.6.11). Two key points about this list are as
follows:

• First, since highly complex systems are part of the
analysis, capabilities such as life support have visibility
as a unique capability for some systems such as medical
or space-based Systems. Obviously, a tablet computer
does not require Propulsion or Life Support. However,
it does require Life Support to replenish its battery
power.

• Secondly, it is much easier to consider a broad range
of Systems and Products that include complex sys-
tems and employ a process of elimination to rule out
those that are not applicable than to “rule in” missing
capabilities.

26.4.2 The Conceptual Architecture Model

To better understand the context of the list, we can create
a Conceptual Architectural Model as shown in Figure 26.7.
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Figure 26.7 Conceptual Capability Architecture Model for System and Application-
Dependent Tailoring

There are numerous ways of illustrating this information;
Figure 26.7 is just one example.

Several points concerning the model are as follows:

1. The System Boundary is depicted by the thick outer
rectangle.

2. Observe that the User and End Users are enclosed
by “cabin” bounded by the dashed line with Ingress
and Egress portals for entry and exit. For example,
a commercial airline flight or your automobile with
passengers. If your system or application does not
require a User cabin, tailor it out and move the Users
outside the System Boundary (Figure 8.1).

3. Prior to a mission, Mission Resources such as Data,
Consumables, and Expendables are loaded into the
System by Enabling Systems.

4. During the mission, the User operator employs the
Monitor capability that provides a current Situational
Assessment of System or Product operations and
performance. Based on that information in conjunction
with a mission plan, they can C2 System or Product
performance.

5. The right side includes a vertical set of blocks that
are used to control System performance. This is a

simplified list created for graphical convenience with
no specific order or relationship connections shown.
That is another layer of detail that you should be able to
create using an N x N (N2) chart such as Figure 8.11.

6. In an MC2 environment, Monitor continuously collects
information such as OH&S for presentation to the User
operator or maintainer. The vertical arrows extending
out of the bottom right side of Monitor are an example.
Likewise, C2 must control each of the capabilities on
the right side of the figure. We will discuss these later.

7. The connection from C2 to Ingress and Egress Portals
represents separate Monitor and C2 capabilities. For
example, an automobile’s C2 capability might lock the
doors—Ingress and Egress—when the vehicle is placed
in drive or reaches a specific velocity. Hypothetically,
Monitor might report the Open or Closed status of the
door to C2 as a precondition for locking the door.

In summary, use the Conceptual Architecture Model
shown in Figure 26.7 as a reference and initial starting point
for considerations in System Architecture Development. The
discussion earlier focuses on the System Level. The reality
is the model is analogous to the SE Process Model shown
earlier in Figure 14.1. The analogy resides in its recursive
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characteristic in which it can be applied to entities at
any level of abstraction—Product, Subsystem, Assembly,
Subassembly, and so on. For example, it can be applied
and tailored for large, complex systems or a Single Board
Computer (SBC) within the System.

A Word of
Caution 26.1

Remember that you and your Enterprise
are wholly responsible and accountable for
your decisions in tailoring this model to
meet the business domain and User needs of
your System or Product and its intended
application. Employ the services of a quali-

fied, competent System Architect that knows how to “Archi-
tect the System” rather than “Architect the Equipment Box”
to advise, review, or create a System Architecture that may
be appropriate for your application and situation.

26.4.3 Special Considerations: Conceptual
Architecture Model

Now that we have established the Conceptual Architecture
Model, there are some nuances that require special consider-
ation.

26.4.3.1 Monitor versus Command and Control (MC2)
Considerations

Principle 26.15

MC2 Capability Principle

MC2 is a capability, not a physical imple-
mentation.

Our discussions up to this point have highlighted the
importance of MC2 in Systems or Products. Remember
that MC2 is a capability, not a physical implementation.
Some Systems may use a single processor to provide
both capabilities within an application. In contrast, complex
systems may dedicate processors specifically to performing
one of the capabilities such as an automobile’s networks
addressed later by Bannatyne (2009) concerning Centralized
versus Decentralized Control Architectures.

26.4.3.2 Passengers versus Mission Deliverables versus
Cargo Considerations Regarding the Conceptual Architec-
ture Model’s Mission Deliverables capability, this title may
appear to conflict with Passengers in the User Cabin. Mis-
sion Deliverables is an abstracted label representing items
such as cargo, munitions, missiles, or countermeasures de-
vices for military aircraft or prescription drugs for medical
infusion devices. We elevate the importance of Passengers,
who help generate revenue, rather than equate them to inani-
mate objects such as Mission Deliverables or Cargo. If there
are terms that more appropriately describe the context in your
business domain, consider using them.

26.4.3.3 Monitor versus C2 Operator Interfaces
Considerations Depending on the task workload of a
processor, it may be debatable whether Monitor should: (1)
interface directly with the User via the User Displays and
User Controls capabilities or (2) pass this information to
C2 to perform. Conceptually, C2 performs C2 of key mis-
sion critical capabilities such as Propulsion, Stabilization,
Navigation, and so on. Multitasking and diverting C2 to
perform what some perceive as lower-priority tasks such as
displays instead of real-time, automatic, closed loop control
of critical capabilities is a misplaced priority. The decision
depends on a number of factors such as system optimization,
cost, performance, and risk.

26.4.3.4 Self-Test and Diagnostics Accountability
Considerations A key question arises as to whether
Monitor or C2 should be accountable for Self-Test and
Diagnostics; it depends on the System or Product. For
example, Propulsion may have its own internal Self-Test and
Diagnostics that run when initiated or continuously in the
background to provide periodic OH&S updates to a common
memory location for Situational Assessment Monitoring.
The periodic updates alleviate the C2 task workload of hav-
ing to interrogate a device by command for its status. Since
Self-Test and Diagnostics often require initiation and C2 is
accountable for commanding and controlling capabilities,
this would be the logical choice.

26.4.3.5 Directional Control Considerations Direction
Control, like Mission Deliverables, is an abstracted title. The
challenge is: Users steer ships and ground vehicles. Pilots
control aircraft via Roll, Pitch, and Yaw (RPY) C2. Tablet
computer Users navigate World Wide Web via links in lieu
of “steering” the web via forward and backward links. What
term fits? Ultimately, it comes down to Directional Control
being the System objective.

26.5 ADVANCED SYSTEM ARCHITECTURE
TOPICS

System Architecture Development requires more than sim-
ply selecting an optimal architecture (Figure 14.8) to provide
capabilities to support User phases, modes, and states of op-
eration. In highly advanced and complex systems such as
space travel, military equipment, commercial transportation,
medical devices, and others in which the realization of these
may injure or endanger people’s lives, System Reliability
becomes a major issue.

Principle 26.16

Fault Isolation & Containment
Principle

When appropriate, every System/Entity
architecture should provide the capability
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to detect, isolate, neutralize, and contain faults to prevent or
minimize propagation if their effects to internal components
or external systems.

How does System Reliability relate to System or En-
tity Architecture Development? Ultimately, a System or
Entity’s Architecture establishes the framework that will
determine its:

• System Reliability—System reliability to complete its
mission without disruption and successfully achieve its
performance-based objectives.

• Failure Detection and Containment—Ensure System
Safety through detection and containment or corrective
action and recovery from a failure during a mission to
prevent propagation. Prevent propagation of failure ef-
fects (Figure 34.17) into other parts of the System or
external systems such as the public and the environ-
ment. (Principle 26.16).

Several key points about System Reliability and Fault
Tolerance are as follows:

1. System Reliability
a. Observe that the term failure represents an outcome

condition. Remember that a failure, by definition
(Chapter 34), is a condition in which a component
is noncompliant with its specified requirements. It
does not mean that the component has failed in
terms of self-destructed or destroyed. A component
failure such as an engine may be repairable and
restorable to a fully compliant state in terms of
meeting its specification requirements.

b. A failure is a state in which a potential hazard or
fault such as a latent defect—design errors, flaws,
or deficiencies; component integrity; and workman-
ship issues - has materialized with consequences
such as degraded performance or destruction. Rea-
son’s (1990) Accident Trajectory Model (Figure
24.1) illustrates the materialization as an incident or
accident.

2. Fault Detection, Isolation, and Containment—
Although intended for a different context, as a “what
if” exercise, imagine if the bold arrows – C2 and
Responses - in Figure 9.6 penetrated each higher level
of abstraction represented a fault propagating and
proliferating into other areas of the System.

Chapter 34 will address System architectural redundan-
cies network configurations (Figures 34.13 – 34.15).

This discussion brings us to a key concept in System Ar-
chitecture Development concerning Fault-Tolerant Architec-
tures, our next topic

26.5.1 Fault-Tolerant Architectures

Principle 26.17

Fault-Tolerant Architectures Principle

Fault-tolerant architectures are intended
to improve the robustness of a System De-
sign Solution to cope with unanticipated

faults and scenarios, not as a substitute for a lack of System
Development discipline in eliminating latent defects.

The challenge in developing any type of system is creating
a System Architecture that is sufficiently robust to tolerate
and cope with various types of internal and external faults.
When confronted with these conditions, the design must be
able to continue without significant performance degradation
or catastrophic failure.

26.5.1.1 Understanding Faults and Fault Conditions
To illustrate the fault tolerance concept, Heimerdinger
and Weinstock (1992) provide the illustration shown in
Figure 26.8. The authors categorize faults in terms of:

• Observability—A fault is either known (discovered) or
unknown (undiscovered).

• Propagation—A fault is either propagating or not.

Within the context of their System Boundary, assume
fault, f1, is undiscovered and not propagating. In contrast,
faults f2 and f5 are undiscovered and propagating beyond the
boundary of their component. Observe that:

• Fault f6 is undiscovered and has propagated beyond the
System Boundary.

• Fault f8 has been discovered and propagated beyond
the System Boundary.

These scenarios represent the conditions and pathways
that Fault-Tolerant architectures and design must address to
preserve the integrity of the System or Entity’s mission,
assuming its success is critical in terms of safety and mission
completion.

Depending on System design objectives, there are nu-
merous methods of developing fault-tolerant architectures.
Regardless of the method, a Failure Modes and Effects Anal-
ysis (FMEA)—Chapter 34—is critical for evaluating the
System or Entity Architecture for potential failure modes
and effects including Single Failure Point (SFPs).

A more comprehensive expansion of the FMEA Concept
includes a Failure Modes and Effects Criticality Analysis
(FMECA) to identify and prioritize specific components for
close attention. FMEAs and FMECAs assess and recom-
mend compensating provisions such as design modifications
and operating procedures (Figure 34.16) to mitigate failure
conditions (Chapter 34).
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Figure 26.8 The Importance of Fault Containment: Observability and Propagation of
Faults within a System and Beyond Its Boundary. Source: Heimerdinger and Weinstock
(1992) Figure 3–2, p. 20 Fault Attributes. Used with Permission

Which architectural capabilities or components should
be considered for fault-tolerant design? The answer to
this question is dependent on answering four other critical
questions:

1. Which components are mission critical (Chapter 34)?

2. What is the reliability (Chapter 34) of each mission
critical component for a specified number of missions
between maintenance?

3. What is the marginal cost for redundant components?

4. What are the trade-offs concerning cost, volumetric
space, power, weight, and performance to create a
fault-tolerant design for those components?

A word about mission critical components. An auto-
mobile’s engine and tires are considered mission critical.
However, it would be cost, space, and weight prohibitive to
attempt to make those components fault tolerant.

Now, contrast these automobile components with a rocket
launching astronauts into space. Although it may not have a
fault-tolerant design, an automobile can pull over to the side
of the road and wait for service; a rocket with ignited solid
fuel has no such option. The result is a spacecraft launch
vehicle architecture consists of a fault-tolerant design that
includes multiple engines to improve its reliability.

There are several methods for accomplishing fault-
tolerant architectural frameworks. These include approaches
such as centralized versus decentralized control archi-
tectures and architectural redundancies. Let’s begin with

Centralized versus Decentralized Control Architectures.
Advanced topics such as these topics illustrate why the
“1 hour” System Architectures addressed in Mini-Case
Study 26.1, are often ill conceived and ineffective.

26.5.1.2 Fault Detection and Containment A key ques-
tion often arises: if a fault is detected, how does the System
contain it? The answer depends on the SOI and the type
of fault. First, let’s delineate Enterprise Systems from En-
gineered Systems.

• Faults in Enterprise Systems include vulnerabilities
in physical, operational, and communications security
systems and detection of unauthorized entry and intru-
sions.

• Ground-based Engineered Systems – the Personnel
Element should be capable of responding to faults
indicated by the Equipment Element via Situational
Assessments such visual display caution and warning
alerts or notifications and audible alarms. In those
cases, the operator powers down the Equipment or
safely pulls over to the side of the road.

• Airborne Engineered Systems, the User cannot exit the
aircraft except in specific types of aircraft and emer-
gency situations. In those cases, engine fire suppression
systems, for example, are employed.

At this juncture in our discussion, you should recognize
and appreciate the relationship between the Situational As-
sessment Monitor capability and mission success!
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• Step 1 is dependent on the Equipment Element detect-
ing a fault or the User observing faults such as smoke,
blaze, leaks, odors, vapors, fumes, or wires burning.

• Step 2 requires containing, neutralizing, and preferably
eliminating the fault to prevent it from propagating to
other parts of the system.

Whatever the condition may be, Enterprise Systems
need to ensure that all System Elements—Personnel,
Equipment, Mission Resources, Procedural Data, Sys-
tem Responses, and Facilities—have robust barriers or
safeguards in place to preclude the fault - hazard - from be-
coming an incident or accident using Reason’s (1990) Acci-
dent Trajectory Model shown in Figure 24.1.

In general, faults in the Equipment Element might
include overheating, broken wires or cabling, electrical
shorts, fuel leaks, propulsion fires, computing errors, and
so on. Faults might be induced by operator or maintainer
errors such as slips, lapses, and mistakes (Reason, 1990). A
later section on Other Architectural Considerations addresses
some of these issues.

Once a fault has been detected, containment mechanisms
include quarantine and elimination of computer viruses,
removal of power and fuel sources, fire suppression, and
other methods. For situations such as computing errors and
other malfunctions, System Architectures should include
provisions for User-initiated or automatic recovery actions
(Figure 10.17) such as reboots or restarts, software reloads,
hardware resets, and other methods.

26.5.2 Centralized Versus Decentralized Control
Architectural Configurations

One of the key decisions in formulating, evaluating, and se-
lecting an optimal architecture from a set of viable candi-
dates by an AoA (Chapter 32) is the need to consider how
processing workloads will be accomplished. Referring to
Mini-Case Study 26.1, the reality is these conceptual de-
cisions – presentation charts unsubstantiated by insightful
analysis - often evolve into a “hope for the best outcome”
when the System or Product is designed and implemented.
The AoA should be supported by Decision Support activities
(Chapters 30–34) such as analyses, M&S, prototypes, and
other methods that provide quantitative data to make objec-
tive, not subjective, decisions.

One of the key aspects of this Decision Support Process
(Chapters 30 – 34) concerns system optimization, future
growth and expansion, and other architecture objectives
and requirements. In general, how many computers are
required to achieve these objectives? From a workload
and system optimization perspective, the answer resides
in a concept concerning Centralized versus Decentralized
Control Systems. Consider Example 26.4.

Example 26.4

Centralized Control Example

Imagine for a moment that you go into
an airport ticketing area that has a dozen
ticketing stations, not kiosks, for accepting

passenger baggage and issuing boarding passes. There is a
very long line of passengers waiting to be processed to meet
their flights. Consider the following scenarios:

Scenario #1:

• Situational Assessment—Only one ticket agent is avail-
able to service 12 ticketing stations and determine who
was next for service.

• C2 Response—A lone ticket agent has to run frantically
back and forth from one ticketing station to another in
an effort to service passengers lined up at each station.

Scenario #2:

• Situational Assessment—Each of the 12 ticketing sta-
tions is staffed with a ticketing agent with oversight
performed by a supervisor.

• C2 Response—All 12 ticketing agents are simultane-
ously processing baggage and issuing boarding passes;
each line is moving fast. If one ticketing agent is un-
able to perform, the passenger line is impacted but only
by an 8.3% slowdown. Although each ticketing sta-
tion may represent an SFP, overall, there are no Sys-
tem-level SFPs per se with the exception of the com-
puter system network that should have a backup.

Several key points emerge from these two scenarios:

1. Scenario #1 represents a poorly planned business
model in which one ticket agent is attempting to keep
up with an overwhelming workload that is simply im-
practical. The passengers are not happy; the ticketing
agent is not happy. What happens if the ticketing agent
collapses due to exhaustion or the computer system
fails ? Centralized control is totally vested in the suc-
cess or failure of one ticketing agent, an SFP.

2. Scenario #2 represents a better business model that
unleashes the power of decentralized C2 processing.
Ticketing agents process baggage and issue boarding
passes at a reasonable rate. The passengers are satisfied
with the workflow performance; the ticketing agents are
happy as well.

The point is: where is the optimal trade-off (Figure 14.8)
between cost, performance, and other factors?

• Scenario #1 represents highly centralized control with
an SFP at reduced cost with unhappy customers and
personnel.
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• Scenario #2 represents decentralized control with no
SFP but at increased labor expense with happy cus-
tomers and personnel.

This discussion brings us to our next topic, Centralized
versus Decentralized Control Architectures.

26.5.2.1 Centralized Control Architectural
Configurations Centralized control architectures, as
illustrated on the left side of Figure 26.9, consist of a single
processor. For most applications, the mechanism directly
controls capabilities by repetitive cycling from one task to
another (Figure 31.3). Consider the following examples.

Example 26.5

Centralized Control Example

Video surveillance systems route multi-
channel, real-time camera video streams to
a central command center staffed with a

security guard to monitor the various channels of video.
On detection of an intruder, the security guard vacates the
post—system vulnerability—to investigate the event.

Example 26.5 illustrates an application of centralized
MC2 vested in a single security guard, an SFP, tasked with
“doing it all.” From a security perspective, centralization
can be efficient and effective if the Monitor capability
remains in place and dispatches security guards to investigate

incidents. Centralized control architectures are fine for many
applications such as the examples cited previously. However,
they do have limitations that represent SFPs.

As an SFP, some applications may require vast lengths of
wiring to remote sensors that increase weight. For applica-
tions such as aircraft where an SFP may be a critical risk,
additional weight, assuming it can be accommodated, trans-
lates into increased fuel consumption, increased fuel tank
capacity, and reduces payload weight.

There are several approaches to solving this problem
space. Example solution spaces include:

1. Avoid performance degradation and provide for expan-
sion and growth by decentralization of processing func-
tions.

2. Reduce weight by deploying decision-making mech-
anisms at key locations and interconnecting the
mechanisms via networks.

3. Avoid risk due to potential SFPs by implementing
appropriate types of redundancies.

26.5.2.2 Decentralized Control Architectural Configura-
tions Decentralized control architectures allocate key
control capabilities and deploy them via remote processing
mechanisms that service Input/Output (I/O) requests as
illustrated at the right side of Figure 26.9. The deployment
may require:

Centralized Architecture
Command and Control (C2) Processing 

Decentralized Architecture
Command and Control (C2) Processing  

System Service Responses

Capability A

Capability B

Capability C

RFS_A  #1

RFS_A  #x

RFS_B  #1

RFS_B  #y

RFS_C  #1

RFS_C  #z

RFS_A  #1

RFS_A  #2

RFS_B  #1

RFS_B  #2

RFS_C  #n

Where:
• C2 = Command & Control
• RFS_ = Request for Service A,B, C, etc.
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Centralized
Control

Capability

• Capability A 
• Capability B 
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• C2 Capability A 
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Figure 26.9 Comparative Examples of a Centralized versus Decentralized Architectures
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1. Remote, dedicated processing to support a specific
sensor or suite.

2. Retaining a central supervisory function to C2 each of
the decentralized computing capabilities.

Depending on the mission and system application, decen-
tralized capabilities might be: (1) physically located through-
out a building or vehicle or (2) geographically separated
across a country or globally.

The decentralized capabilities may be allocated to Equip-
ment – Hardware or Software - hardware or software
entities or dynamically assigned based on processing loads.
As a result, overall system performance is improved but at
the expense of adding more processors, which increases cost
and risk. Consider the following automobile example.

Example 26.6

Microcontrollers in Automobiles

Automobile developers are often chal-
lenged to deal with the need for specialized
capabilities to control various types of

components while reducing gross weight to meet fuel econ-
omy regulations. For example, Pretz (2013) notes that the
automobile cabling and wiring harnesses rank third in terms
of component cost and weight behind the chassis and engine.

To meet these challenges, the Electrical System of an au-
tomobile consists of a distributed architecture of Microcon-
troller Units (MCUs) to control vehicle components such as
Antilock Braking Systems (ABS), emission controls, actua-
tors, and so on, which are then interconnected via networks
to a central computer. Pretz (2013) notes that mid-priced cars
today contain about 50 MCUs; higher-end cars contain about
140 MCUs.

As an example of a decentralized control system architec-
ture, Bannatyne (2009) makes several observations concern-
ing key features for present and future automobile network
architectures:

• Multiple communications networks operate on a
vehicle.

• Each network may consist of “subbus” networks con-
necting to various types of I/O devices such as sensors
and actuators.

• Gateways are established to enable networks to com-
municate and share information.

• Critical capabilities such as “chassis control” are
performed via a redundant, fault-tolerant network
restricted to safety critical data.

• Passenger safety critical capabilities such as airbags
need their own independent, highly robust network.

• Autonomous communications interface to minimize
the need for the central computer to manage the
interactions.

26.5.3 Architectural Configuration Redundancy

Another approach to solving the System reliability issue is
through a concept referred to as architectural configuration
redundancy. Uninformed System Acquirers and Users will
often state the following specification requirement:

“Component X shall have a minimum of ‘n’ redundant
backup systems.”

In response to the requirement, System Developers will
respond with double or triple redundancies for Component
X. Their view is: “That’s what the customer requested; that’s
what they get … end of story.” The requirement illustrates
three key points:

• First, you should readily recognize and appreciate.
specifications specify what is to be accomplished, not
how to physically implement components of a System
(Principle 19.6).

• Secondly, although RMA is not addressed until
Chapter 34, component redundancy is a design action
to meet a specification requirement. From an academic
Engineering design perspective, unless it is shown by
analysis that the System or Entity Physical Design
Solution fails to comply with a specification reliability
requirement or is at best marginal, architectural con-
figuration redundancy is not required. For marginal
solutions, seasoned Engineering knowledge, wisdom,
and experience must prevail.

• Thirdly, “redundant backup systems” is a case of
naively connecting similar terms—redundant and
backup—that refer to two different concepts to form a
phrase. Redundant components are back-ups.

Redundancy is a critical part of space-based missions.
NASA JPL’s (2013) Basics of Spaceflight notes that most
spacecraft contain “redundant transmitters, receivers, tape
recorders, gyroscopes, and antennas.” Redundancy includes
software components as well. As an example, NASA’s JPL
(2009) described the Stardust Spacecraft as:

“Virtually all spacecraft subsystem components are redun-
dant with critical items cross-strapped. The battery includes
an extra pair of cells. A software fault protection system is
used to protect the spacecraft from reasonable, credible faults
but also has resiliency built into it so many faults not antic-
ipated can be accommodated without taking the spacecraft
down.”

Recognize that these descriptions represent implementa-
tions of redundant components. Redundant components exist
due to the need for architectural configuration redundancy to
achieve a level of performance for System Reliability.
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So, what is Architectural Configuration Redundancy and
how does it solve the specification reliability requirement
issue?

Architectural configuration redundancy consists of con-
figuring redundant components either as fully operational
“on-line” or “off-line” devices during all or portions of
mission phases or operation. There a three primary types
of architectural redundancy: 1) Operational, 2) Cold or
Standby, and 3) k-out-of-n systems.

26.5.3.1 Operational Redundancy Operational redun-
dancy configurations employ backup device capabilities that
are energized and/or enabled throughout the operating cycle
of the System or Product. For this type of redundancy,
primary and redundant elements operate simultaneously for
a total of “n” elements. Some people refer to this as hot or
active redundancy. Consider the following example.

Example 26.7

Aircraft Systems Redundancy

An aircraft may require a minimum
number of engines to be operating within
specified performance limits for take-

off, cruising, or landing; independent Inertial Navigation
Systems (INS) required to continue a mission; or multiple,
tandem train locomotives for specific geographic and loading
conditions.

During System operations, redundant capabilities or
physical items can also be configured to operate concur-
rently and even share the loads. If one of the redundant items
fails (fault detection), the other item(s) assumes the work-
load performed by the failed item and continues to perform
(Principle 26.17) the required capability(ies). In most cases,
the failed component is left in place and disabled, powered
down, or disabled, assuming it does not interfere or cre-
ate a safety hazard (Principles 26.16 and 26.17) until cor-
rective maintenance (Chapter 34) is available and can be
performed.

26.5.3.2 Cold or Standby Redundancy Backup Systems
Cold or standby redundancy consists of items that are
not energized, activated, or configured into the System
unless the primary item fails. If the primary item fails,
the standby item is connected automatically or manually
through direct operator intervention or by default within
a period of time. In reality, cold or standby redundan-
cies are effectively backup systems. NASA JPL (2011),
for example, described its Dawn Spacecraft launched in
2007 as having “Automated onboard fault protection soft-
ware (that) will sense any unusual conditions and attempt
to switch to backups.” Additional examples include the
following.

Example 26.8

Cold or Standby Redundancies

Cold or standby redundancies include an
emergency brake on an automobile, acti-
vating additional mass transportation ve-

hicles (trains, buses, etc.) to support surges in consumer
demand, emergency backup lighting switched on during a
power failure, and backup power generation equipment.

26.5.3.3 “k-out-of-n” Systems Redundancy
t“k-out-of-n” redundancy is a hybrid redundancy approach

whereby the System consists of a total of “n” elements but
only “k” elements (k out of n) are required to operate during
specific phases of a mission. For example, an automobile
requires a minimum of four tires to be operational and the
spare tire available as a contingency.

You may ask: What is the difference between operational
redundancy and k-out-of-n redundancy?

• Operational redundancy assumes that all physical
components are integrated into the System, may be
operational—standby—but require connection and en-
gagement. For example, a retail business may reassign
on-site staff to specific customer service roles during
peak business hours.

• “k-out-of-n” redundancy assumes that a minimum
quantity of criteria or components that must be fully op-
erational and performing for a specific phase of opera-
tion of a System’s mission as a prerequisite for launch,
take-off, or landing. For example, a governing body that
employs parliamentary procedures may require a quo-
rum of its members defined by its constitution or charter
to be present to conduct official business.

26.5.3.4 Redundancy Summary To illustrate the combi-
nations of these types of redundancies, Mini-Case Study 26.4
addresses fault tolerance on the former Space Shuttle (NASA
JPL’s Computers in Spaceflight, 2013).

MINIMINIIN

Mini-Case
Study 26.4

Space Shuttle Fault Tolerance

“Fault tolerance on the Shuttle is achieved
through a combination of redundancy and
backup. Its five general-purpose computers
have reliability through redundancy, rather

than the expensive quality control employed in the Apollo
program [61]. Four of the computers, each loaded with iden-
tical software, operate in what is termed the “redundant set”
during critical mission phases such as ascent and descent.
The fifth, since it only contains software to accomplish a “no
frills” ascent and descent, is a backup. The four actuators that
drive the hydraulics at each of the aerodynamic surfaces are
also redundant, as are the pairs of computers that control each
of the three main engines.”
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26.5.4 Component Redundancy Approaches

Once an architectural configuration redundancy concept is
selected, the next step is to determine how to physically im-
plement the concept. There are two approaches to component
configuration redundancy: (1) identical components or (2)
unlike components that are similar in function.

26.5.4.1 Like Redundancy Implementation Like redun-
dancy is implemented with identical components such as
vendor product models that are separately or both configured
in an operational or standby redundancy configuration.

26.5.4.2 Unlike Redundancy Implementation Unlike re-
dundancy consists of items acquired from and designed and
developed by different vendors that provide identical capa-
bilities, interfaces, and form factor constraints that comply
with the System Acquirer’s specification requirements.

Both implementation approaches offer advantages and
disadvantages. If the items used for like redundancy are sen-
sitive to certain Operating Environment characteristics,
having identical items may not be a solution. If you purposely
choose unlike redundancy and the same situation occurs, re-
dundancy may only exist over a limited operating range if one
item has higher reliability. If items identical only in function
and performance are qualified over the required operating
range, unlike redundancy, they may offer advantages.

26.5.5 Reducing Component Single Point of Failure
(SPF) Risk

One method of reducing the item SPF risk requires operat-
ing identical or redundant items in several types of config-
urations. Redundancy type examples for electronic systems
include:

• Processing redundancy

• Voted k-out-of-n redundancy

• Data link redundancy

• Service request redundancy

Let’s explore each of these topics further.

26.5.5.1 Processing Redundancy Detection of a hard-
ware processor failure or software fault may require dy-
namic reallocation of processing tasks to another processor
to achieve fault tolerance (Principle 26.17). For example,
Subsystems A and B in Figure 26.10 both include redun-
dant processing Components A and A’ and Components B
and B’. When a fault or failure occurs, processing switches
over the back-up A’ or B’-component.

26.5.5.2 Voted “1-out-of-n” Component Redundancy
Some systems have redundant, peer-level processors that em-
ploy an operational hot or active redundancy configuration.

Component
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SW

Component
B’

HW

SW

Subsystem A Subsystem B

Primary Data Communications Network

Redundant Network (Option)

Electrical Power 

Component
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SW

Component
A
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SW

UPS
(Back-Up)

External
Power

Where:

Firewall

• HW = Hardware
• SW = Software
• UPS = Universal Power Supply

Figure 26.10 Redundant Components and Networks Example
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Referring to Figure 26.10, Subsystems A and B process-
ing results are routed through a central decision-making
mechanism (Figure 26.9 right side) such as software that
determines if “k” out of “n” results agree. If “k” out of “n”
results agree, transmit the results to a specific destination.

26.5.5.3 Data Link Redundancy There is an old adage:
“Systems break at their interfaces.” From an interface reli-
ability perspective, this adage holds true. System develop-
ers often take great pride in creating elegant system designs
that employ redundant processing components. Then, they
connect the redundant components to a single external inter-
face that is an SPF.

One way to avoid this problem is to employ redundant
networks as shown in Figure 26.10. Obviously, if intercon-
necting items such as cables are placed in a stable/static po-
sition, not subjected to stressful Operating Environment
conditions, and interfaced properly, there is a good chance
that additional independent connections are unnecessary and
can be avoided.

For applications that employ satellite links or transmis-
sion lines that may be switched periodically, it may be nec-
essary to employ backup links, such as landlines or other
telecommunications media, as a contingency.

26.5.5.4 Service Request Redundancy Some systems
may be designed to transmit messages one or more times
when requested. Using Figure 26.10 as an example,
Subsystems A and B automatically retransmit messages to
each other. Others may issue service requests to repeat mes-
sages, acknowledgments, or data responses. As illustrated in

Figures 10.5 and 10.6, this example is equally applicable to
external systems.

26.5.5.5 Physical Connectivity Redundancy One of
the ironies of developing architectural configurations and
component redundancies is violation and invalidation of the
redundancy concept via poor physical design. Figure 26.11
provides an illustration.

The upper part of the graphic illustrates a System or
Entity having item #1 with a redundant item #1 Backup.
Observe the independent sets of I/O lines. Now, observe the
lower part of the figure. Here, we have a similar scenario.
Notice that we have a single connection into and out of the
System or Entity. The connection represents an SFP, which
invalidates claims of having a true redundancy.

26.5.5.6 Differentiating Architectural Redundancy from
Component Placement Redundancy Based on the pre-
ceding discussions, redundancy may appear to be an ideal
solution. However, there is a difference between (1) architec-
tural configuration redundancy and (2) component placement
redundancy. You can create redundant systems. However,
if you physically locate them next to each other and a ma-
jor problem or catastrophic event occurs that destroys the
backup system, redundancy is irrelevant. As an example,
Figure 26.12 illustrates how physical design placement of
components can invalidate architectural redundancy when
a major event occurs. (NTSB/AAR-SO/06, 1990, p. 34).
This point also illustrates the critical importance of collab-
orative integration across System Architecting, Engineering,
and Design addressed in Figure 26.1.
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Figure 26.11 Comparative Examples Illustrating the Fallacy of Redundant Components
with Single Point of Failure (SPF) Interface versus Redundant Interface Connections
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Figure 26.12 United Airline Flight 232 Accident—Architectural Redundancy versus
Design. Source: NTSB/AAR-SO/06 (1990), National Transportation Safety Board (NTSB)
Report, Figure 14 N1819U, planform of horizontal stabilizer hydraulic system damage

26.5.6 Network Architectures

Prior to the arrival of modern-day technologies, automobile,
aircraft, ship, office buildings, and other types of Systems
consisted of large bundles of copper wires that crisscrossed
throughout the vehicle or facility. Although this was consid-
ered state of the art, the weight, installation, and maintenance
expenses; performance of parallel versus serial communica-
tions; and other factors related to of copper wiring became
increasingly prohibitive. Fortunately, the advancement of
new technologies and standards related to serial, twisted-pair
wiring, subsequently fiber-optic cables, and wireless com-
munications overcame many of these issues, specifically
through the elimination of non-standard, dedicated, special-
ized interfaces that were widely used.

Principle 26.18

Network Architecture Principle

Network architectures represent potential
solutions to System problems, not neces-
sarily the only solution!

Today, networks are central to implementing System
Architectures. Enterprises that employ the SDBTF-DPM

Engineering Paradigm succumb to a cultural mind-set that
everything requires a network. For example, we need to:

• Measure outdoor temperature—let’s use a network!

• Know if the sun is shining—let’s use a network!

The point here is: taking the quantum leap from require-
ments to physical implementation illustrated in Figure 2.3
… before … they understand what the system is expected to
accomplish and whether a network is even appropriate. As an
illustration of this mind-set, consider Mini-Case Study 26.5.

MINIMINIIN

Mini-Case
Study 26.5

Networks as Solutions for Electronics
Problem

Corporation XYZ has won a System De-
velopment contract. During the first tech-
nical review with the System Acquirer and

Users, Engineers parade a large wall-sized chart such as
Figure 26.13 into the meeting conference room to impress
uninformed customers. Verbose presentations describe how
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Computer

A

Computer

B

Computer

C

Computer

“n”

Node Node Node Node

Ethernet Network

From / To Computer A Computer B Computer C Computer D

Computer A ?? ?? ??

Computer B ?? ?? ??

Computer C ?? ?? ??

Computer D ?? ?? ??

What are the relationships and interactions between Computers A – D?

Node

Figure 26.13 Fallacy of Pre-Mature Leaps (Figure 2.3) to Physical Network Architecture
Solutions Before Determination of the Optimal Solution

Computer C analyzes data collected from sensors by Com-
puter D, sends it to Computer A for processing and format-
ting. Then, Computer A sends its results to Computer “n” for
reporting the results to an operator.

In frustration, a User interrupts the presenter and asks:
Can anyone of you please explain:

• Why are there so many computers?
• What the relationship is between Computers, A, C, F,

and 10 others?
• Why do they exist?
• What capabilities does each provide?
• Where are they located?

Lacking a logical explanation, the System Developer’s
participants launch into a discussion that is often conflicting
and confusing. Then, comes the “cover all cases” comment
such as “If you understood networks, you would know the
answers to those questions.” Imagine making that statement
to your customer as a confidence builder for your System!

It’s up to you and your project to provide a logical so-
lution and explanation with supporting materials that makes
sense! It’s your responsibility to articulate and communicate
effectively so your customer understands!

The point here is this: Figure 26.13 is fine as an introduc-
tory overview graphic for illustrating component networks.
The problem is this graphic is the only architecture consid-
ered and presented without supporting rationale justifying its
selection. Therein lies the problem as indicated by the cus-
tomer’s frustration.

26.5.6.1 Client-Server Architectures For system applica-
tions that require desktop or Web-based access to a central
repository of information, client-server architectures are em-
ployed. In this case, a processor is dedicated to processing
client requests for entering or searching for data, retrieving
the data from a central repository, and disseminating the data
to the client. Applications such as this, which include inter-
nal Enterprise intranets and Web-based sites, are helpful for
contract projects that need to provide access to project and
contractor data to authorized Acquirer/Users, System Devel-
opers, subcontractors, and vendors.

26.5.6.2 Service-Oriented Architectures (SOAs) SOAs
represent a Software Engineering (SwE) architectural ap-
proach based on (1) platform independence, (2) reusable
components that may originate from different vendors, and
(3) implemented via Information Technology (IT) compo-
nents. Due to the specialization unique to SwE, please refer
to texts on the subject matter.

26.5.7 Other Architectural Considerations

Developing a System Architecture to provide capabilities
to support all phases of the mission is only part of what
is required. The architecture must also include other key
considerations. These include:

• Open standards

• Power source architectural considerations

• Data storage during power loss
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• Sustainment of operations and equipment resulting due
to power loss

• Power quality considerations

• ES&OH architectural considerations

• Fire detection and suppression architectural considera-
tions

• System security architectural considerations

• Remote visual inspections

26.5.7.1 Open Standards One of the key decisions in
System Architecture development is usage of open standards
versus dedicated or proprietary standards, especially con-
cerning development and life cycle cost considerations. Ev-
ery proprietary interface requires specialized expertise, tools,
and equipment that may not be readily available. Exploit
open standards such as file formats, hardware, protocols, and
programming languages.

26.5.7.2 Power System Architectural Considerations

Principle 26.19

Architectural Power and Backup
Principle

Factor energy and backup power source
considerations for normal, abnormal, and

emergency operations (Figure 19.5) and conditions into every
System Architecture.

The preceding discussions highlight methods to enhance
the fault tolerance of systems and products. If they are
electrically powered, no matter how elegant the redundancy
solution, it only works when power is applied. A loss of
power involves several issues:

• Issue #1—Safe evacuation and egress of Personnel
from facilities to designated gathering points some
distance away from the facility prevents injury or loss
of life.

• Issue #2—Safe storage of critical mission and system
data immediately following the event prevents data
loss.

• Issue #3—Sustain power to critical processes that must
process to completion and place the system in a safe
mode.

26.5.7.3 Sustaining Operations and Equipment Resulting
from Loss of Power When a power loss event occurs, sys-
tems require a finite amount of time to store mission and
system data. To ensure a continuation of power for a speci-
fied time, rechargeable batteries or an Uninterruptible Power
Supply (UPS) offers potential solutions. Depending on mis-
sion and system application, alternative power solutions in-
clude external fuel-based generators, solar panels, fuel cells,
and other technologies.

26.5.7.4 Data Storage During Power Loss When critical
operations are being performed and the System experiences
a power failure, it is important to be able to complete any
processing operations and Mission and System performance
data storage. Depending on space and weight margins,
Uninterruptable Power Systems (UPS) may need to be
considered.

26.5.7.5 Sustainment of Operations and Equipment
Resulting Due to Power Loss Some sensitive Equipment
may have moving parts or appendages that may be vul-
nerable to mechanical damage related to the power failure
or power-up when power is restored. Consideration should
be given to use of the UPS as a power source to place
this Equipment into a Safe Mode to prevent consequential
damage.

26.5.7.6 Power Quality Considerations Another factor
that requires architectural consideration is power quality.
Power surges, brownouts, overvoltage, noise, and stability
conditions wreak havoc with some systems that require
power conditioning. So, ensure these considerations are
fully addressed by the architecture within available resource
constraints.

26.5.7.7 ES&OH Architectural Considerations

Principle 26.20

Architectural ES&OH Principle

Factor considerations for Personnel
and the public’s Environmental Safety
and Occupational Health (ES&OH)
into every System Architecture.

System architecting, in general, tends to focus on
Equipment Element Architectures rather than the effects
of the Equipment Element on the Users, the public, and
the Natural Systems Environment. Therefore, when
evaluating a System Architecture, the System Architect and
others should factor in ES&OH considerations.

Example 26.9

ES&OH Consideration Examples

At a minimum, considerations of the effects
of Equipment Element by-products on the
User(s), public, and environment should

include the following considerations such as:

• Toxic and hazardous materials.

• Ingress and egress access.

• Thermal effects

• Atmospheric effects

• Environmental spills and remediation
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26.5.7.8 Fire Detection and Suppression Architectural
Considerations

Principle 26.21

Fire Detection and Suppression
Principle

Where appropriate, every system archi-
tecture should incorporate safety features
for fire detection and suppression.

Another key architectural consideration is fire detection
and suppression systems. Since Personnel, Equipment,
and Facility Elements safety are paramount, the System
Architecture should include features that enable a rapid
response when smoke or fires are detected including sup-
pression systems that eliminate the source of the fire follow-
ing Personnel Element evacuation. Consider the following
example.

Example 26.10

Aircraft Fire Suppression Methods

SKYbrary (2013) notes fire suppression
considerations for aircraft such as:

• Portable fire extinguishers in the cabin and flight deck

• Cargo hold fire extinguishing systems

• Fire bottles in engine compartments

• Automatic toilet waste bin fire extinguishers

Architectural considerations require more than simply
remembering to include these. Operational issues become a
factor in every mission phase of operation.

As expressed in Principle 26.21, System Architecture
considerations should include safety considerations such
as cautions and warning notifications, alerts, and alarms
(Principles 24.16 and 24.17).

26.5.7.9 System Security Architectural Considerations

Principle 26.22

Architectural Vulnerabilities Principle

Assess System vulnerabilities and factor
System security and protection consider-
ations into every system architecture.

For systems that involve sensitive or classified data,
system security should be a key architectural consideration.
This includes reasonable measures for physical security,
operational security, communications security, personnel
security, and data security.

26.5.7.10 Remote Visual Situational Assessments

Principle 26.23

Architectural Remote Inspection
Principle

Every system architecture should include
Situational Assessment considerations

not only for normal but also abnormal operations via remote
inspections.

System Architectures often focus on the ideal world of
conducting missions and the importance of redundant archi-
tectural configurations to ensure the mission is completed.
Typically, the system is instrumented with electronic sensors
and software to indicate if there are problems. However, what
is the value of an error code if you cannot correct the prob-
lem other than knowing that it occurred and logging the
event? Obviously in the case such as aircraft, or train “black
boxes,” they provide insights into key parameters leading up
an incident or accident. Unfortunately, that is an “after the
fact” analysis after injury or harm has been done to those in-
volved. What is often neglected is: what happens if the system
encounters a problem that cannot be resolved by on-site in-
spection and maintenance? For example, NASA JPL sends a
probe or rover to Mars.

Space-based systems often have cameras such as NASA’s
Space Shuttle and the International Space Station. In general,
cameras are used to facilitate astronaut spacewalks and
repairs. Unfortunately, this was a lesson learned addressed in
Mini-Case Study 26.3 following the Space Shuttle Columbia
accident. But suppose in the case of the Mars rover there is no
astronaut onboard to conduct maintenance inspections and
repair services?

One of the fascinating features of the Mars Curiosity
Rover is the recognition by JPL of the need for cameras to
perform a Situational Assessment. For example, a notional
architecture and design would use cameras to “look ahead”
to drive over terrain. However, suppose one of the Rover’s
wheels encounters an obstruction or has a mechanical wear
problem. You need to know “why” and certainly more than
“look ahead” in the distance views. Mini-Case Study 26.6
provides a brief description of how NASA’s JPL solve the
architectural and design problem.

MINIMINIIN

Mini-Case
Study 26.6

Mars Rover – Remote OH&S

Study Figure 26.14 - This view of the three
left wheels of NASA’s Mars rover Curiosity
combines two images that were taken by the
rover’s Mars Hand Lens Imager (MAHLI)
… The camera is located in the turret of tools
at the end of Curiosity’s robotic arm.

The main purpose of Curiosity’s MAHLI camera is to
acquire close-up, high-resolution views of rocks and soil at
the rover’s Gale Crater field site. The camera is capable of
focusing on any target at distances of about 0.8 inch (2.1
centimeters) to infinity, providing versatility for other uses,
such as views of the rover itself from different angles.

In summary, ensure that System Architectures include
provisions for remote inspection in harsh environmental
conditions where applicable.

26.5.7.11 SoS Architectures This text addresses the con-
ceptualization, formulation, and development of Enterprise
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Figure 26.14 Photo Illustrating How the Mars Hand Lens Imager (MAHLI) Camera is
Used to Assess the Condition of the NASA JPL Mars Science Laboratory Curiosity Rover
Wheels (NASA JPL, 2012)

and Engineered Systems deeply rooted in a multi-level,
analytical, System decomposition strategy. Today, SE in-
volves integration of autonomous systems into higher-level
Systems of Systems (SoS). Several key points are as
follows:

1. Observe the two different concepts—System develop-
ment through a process of (1) traditional top-down, it-
erative, analytical decomposition from the abstract to
the physical versus (2) System development through a
process of integrating existing and new systems into an
SoS.

2. Whereas Enterprise and Engineered Systems discussed
in this text have physical implementations and con-
figurations, an SoS can range from a loose federation
of business entities to social, political, economic, aca-
demic, and other types of complex organizations that
are in a state of continuous change and evolution.

3. An SoS, which is comprised of existing, autonomous
systems, exemplifies the concept of emergence
(Chapter 3) by leveraging the capabilities of lower-level
systems through integration to create a Higher-Order
System to accomplish missions that are beyond
individual system capabilities.

4. If the higher-level SoS or one of its autonomous sys-
tems ceases to exist, the federation continues operate
and perform their Enterprise missions.

SoS is a specialized topic and evolving field of study. To
learn more about SoS, refer to textbooks dedicated to the
topic.

26.6 CHAPTER SUMMARY

In summary, we introduced key practices in System and
Entity Architecture Development. Key points from our
discussions include:

1. Recognition that System Architecture Development
requires:
a. More insight than simply creating a 1-hour presen-

tation block diagram (Mini-Case Study 26.1)
b. Capture and reconciliation of Stakeholder views,

viewpoints, and concerns (Figure 26.4) that are
addressed in an Architectural Description (AD).

c. Formulation and development of a set of candidate
architectures to be evaluated with models, simula-
tions, prototypes, and final selection of an optimal
architecture by an AoA (Chapter 32).

d. Collaboration with Engineering and Design.
2. Understanding:

a. What a System or Entity Architecture is.
b. That a System or Entity Architecture expresses a

framework of interconnected capabilities or compo-
nents without regard to frequency of usage that can
be configured into combinational sets that may be
unique to and support specific phases, modes, and
states of operation.

3. Understanding the System Architect’s role and who
performs it in small, medium, and large projects.

4. Understanding and differentiating the interrelation-
ships between architecting versus engineering versus
designing a system, product, or service.
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5. An AD requires evolution of Four Domain Solution
architectures—Requirements, Operations, Behavioral,
and Physical (Figure 26.4).

6. An architecture is characterized by the following
attributes:

a. Assigned ownership

b. Unique document ID

c. Context

d. Framework

e. Domain Views—Requirements, Operations, Be-
havioral, and Physical

f. Validity

g. Completeness

h. Consistency

i. Traceability

j. Capabilities

7. Every System or Entity Architecture (Figure 26.6)
should express how it will:

a. Monitor Mission and System performance to
present a Situational Assessment for its Users for
operational decision-making

b. Enable Users to C2 Mission and System perfor-
mance

8. The Conceptual Architectural Model (Figure 26.7)
serves as a general template for developing and assess-
ing System or Entity Architectures.

9. System Architecting requires insightful consideration
of: 1) System Reliability and 2) fault detection, isola-
tion, neutralization, and containment (Figure 26.8) and
possible recovery (Figure 10.17).

10. The System or Entity Architecture establishes the
configuration framework for computing its reliability
(Chapter 34).

11. System reliability can be improved via Architectural
Configuration Redundancy Approaches such as:

a. Operational redundancy

b. Cold or standby redundancy

c. “k-out-of-n” redundancy

12. Two types of Component Redundancy Implementation
Approaches:

a. Like component redundancy

b. Unlike component redundancy

13. Key System or Entity Architecture considerations
that are often neglected include:

a. Open standards

b. Power source architectural considerations

c. Data storage during power loss

d. Sustainment of operations and Equipment result-
ing due to power loss

e. Power quality considerations

f. ES&OH architectural considerations

g. Fire detection and suppression architectural consid-
erations

h. System security architectural considerations

i. Remote visual Situational Assessment inspections
14. Analytical redundancy is different from physical im-

plementation redundancy, especially when redundant
components are physically located next to each other
leaving both vulnerable to propagation of the other’s
failures (Figure 26.8) effectively nullifying the concept
(Figure 26.12).

26.7 CHAPTER EXERCISES

26.7.1 Level 1: Chapter Knowledge Exercises

1. What is an architecture?

2. What is an AD?

3. What are the differences between User views, view-
points, and concerns and provide examples?

4. What roles do the System Architect and SE perform
regarding User views, viewpoints, and concerns?

5. What are the differences and interrelationships between
architecting versus engineering versus designing?

6. Is System Architecting a 1-hour block diagram exercise?
If not, explain why?

7. What is a fault-tolerant architecture and what is its
purpose?

8. Who performs a System Architect role on small,
medium, and large projects?

9. Pick one of the following Systems or Products listed
below. Describe: 1) what information the Monitor capa-
bility provides as a Situational Assessment to the User
and 2) what controls are available for the User to Com-
mand & Control (C2) it:
a. Aircraft

b. Automobile

c. Desktop, laptop, or tablet computer

d. Medical blood pressure device

e. Home heating and cooling system.

10. Identify three examples of each of the types of system
architectures listed below:
a. Centralized architecture

b. Decentralized architecture

11. Identify an example of each of the types of redundancies
listed below:
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a. Operational or Hot Standby redundancy
b. Cold or standby redundancy
c. “k-out-of-n” redundancy

12. Identify an example of each of the types of component
implementation redundancies listed below:
a. Like redundancy
b. Unlike redundancy
c. Data link redundancy
d. Physical connectivity redundancy (Figure 26.12)

26.7.2 Level 2: Knowledge Application Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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27
SYSTEM INTERFACE DEFINITION, ANALYSIS, DESIGN,
AND CONTROL

Principle 27.1

Interfaces as System Components
Principle

Interfaces, as components of every En-
gineered System or Product, enable
emergent behavior to reveal itself.

Principle 27.2

System-Interface Design Priority
Principle

In some cases, a System or Entity’s
design has priority and drives interface

design; in other cases, interface design has priority and drives
System or Entity design.

Interface definition, analysis, design, and control in some
Enterprises are often treated as secondary activities to
System or Entity design. Unfortunately, this is an Engi-
neering paradigm based on physical components being rep-
resented by boxes. In contrast, an interface is often viewed
as “nothing more than a thin line on a drawing”; they are
just … interfaces. In fact, interfaces such as cables, wiring,
and mechanical linkages, which interconnect Entities are
Engineered System components. If we model and simulate a
System or Product, each interface cable or wiring is mod-
eled as an Entity with a characteristic transfer function.

Since interfaces are an integral part of System Architect-
ing (Chapter 26), Chapter 27 complements and explores in-
terface definition, analysis, design, and control. Engineers
often think of interfaces as just lifeless wires and cables, me-
chanical connections or restraints, and thermal insulating or

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

conductive materials, which serve no function. Interface de-
sign is just another example of Figure 2.3 in action. From
a Systems Engineering (SE) perspective, Engineers ignore
the fact that interfaces are characterized by transfer functions
that have operational, behavioral, and physical attributes that
enable electrical and mechanical connectivity, data commu-
nications, and so forth. As a result of the mindset, Engineers
take a quantum leap from specification requirements to a
physical interface solution without due consideration of the
operational and behavioral of the connection.

To overcome these shortcomings, our discussions intro-
duce an interface methodology for defining, analyzing, and
designing interfaces. Systems Engineers (SEs) often think
of the SE Process (Figure 14.1) and the System Capability
Construct (Figure 10.17) as applying only to a System or
Entity; they apply to interfaces as well. Every System or
Entity has phases of operation, modes and states, as well as
behavioral and physical characteristics. Through inheritance
of derived requirements, interfaces support achievement of
those operational, behavioral, and physical characteristics.

Our discussions explore some of the project aspects
such as: Who owns and controls an interface? How do
you determine ownership and control? Where interface
ownership, control, and accountability are ill-defined, the
truth emerges on entry into System Integration, Test, and
Evaluation (SITE) in two ways as follows:

1. Assemblies, Subsystems, Products fail to integrate
due to the lack of compatibility and interoperability—
poor interface design and coordination.

http://www.wiley.com/go/systemengineeringanalysis2e
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2. Missing cables and wiring—Engineering focuses on
the design of the System, Product, Subsystem, As-
sembly, including interfaces. Yet, no performance ac-
countability for delivery of those interfacing cables.

The preceding paragraphs mimic the traditional SE theme
of “… everyone define your interfaces.” In other words,
make sure to “connect lines to all the architectural boxes.”

Chapter 27 sifts to a new paradigm concerning how we
view, think about, Engineer, and orchestrate the development
of system or product interfaces. Interfaces are more than
“lines connecting boxes.” The reality is: interfaces are
actually “components” of a system or product. As you
will discover, interfaces have transfer functions that model
the performance-based outcome of an event such as an
automobile crash.

Traditional Engineering mindsets think of interfaces in
terms of Normal Operations (Figure 19.5) such as Cock-
burn’s “Main Success Scenario” (Principle 5.21) in which
compatibility and interoperability are fully achieved. For
example, supporting structures under tension or compres-
sion, communicating data, providing security, electrical
shielding, and so forth. However, what happens when ex-
ternal forces cause the interface to fail resulting in injury or
death?

In the case of an automobile, traditional Engineering
mindsets tend to think of “reactive” measures such shock
absorbers and air bags to buffer passenger compartments
as a means of withstanding impacts. Observe that we said
“reactive” measures. “What if” Engineering:

1. Applied Systems Thinking (Chapter 1) to interface
problem-solving and solution development and took
a “proactive” approach to controlling how an inter-
face performed during: (1) Normal Operations and (2)
Emergency or Catastrophic Operations failure condi-
tions (Figure 19.5)?

2. Shifted the traditional Engineering “reactive” shock
absorber approach and purposely designed interfaces
to (1) fail and (2) fail in a specific manner un-
der specific Operating Environment conditions - fault
diversion.

These are exciting and challenging topics we will explore
later in the chapter.

In summary, Chapter 27 introduces interface defini-
tion, analysis, and control concepts and principles seldom
addressed in most text.

27.1 DEFINITIONS OF KEY TERMS

• Analysis Paralysis A condition exhibited by an analyst
that has become preoccupied or immersed in the details
of an analysis while failing to recognize the marginal

utility and diminishing returns of continual investiga-
tion.

• Compatibility The ability for the physical character-
istics of two or more interfacing Entities to fit within
specified dimensions, parameters, and tolerances.

• Coupling “The manner and degree of interdepen-
dence between software modules” (SEVOCAB, 2014,
p. 72–73) (Source: ISO/IEC/IEEE 24765:2011. Copy-
right © 2012 ISO/IEC/IEEE. Used by permission.).

• Interface control “The process of: (1) identifying
all functional and physical characteristics relevant to
the interfacing of two or more items provided by
one or more organizations; and (2) ensuring that pro-
posed changes to these characteristics are evaluated and
approved prior to implementation” (MIL-STD-480B,
1988, p. 10).

• Interface ownership The assignment of accountability
to an individual, team, or organization for the identifi-
cation, specification, development, control, operation,
and support of an interface.

• Interoperability “Degree to which two or more sys-
tems, products or components can exchange informa-
tion and use the information that has been exchanged”
(SEVOCAB, 2014, p. 162) (Source: ISO/IEC/IEEE
24765:2011. Copyright © 2012 ISO/IEC/IEEE. Used
by permission.).

• Line Replaceable Unit (LRU) Refer to the definition
provided in Chapter 16.

• Redundant design The selection of redundant compo-
nents and physical placement and spatial separation of
components to ensure survival.

27.2 APPROACH TO THIS CHAPTER

Most people believe that interface design consists of connect-
ing two points together—point-to-point interfaces. Analyti-
cally, this is true. Analysis, by definition, breaks an abstract
problem down into successively smaller pieces that can be
solved (Principle 4.17).

Our approach to Chapter 27 evolves from simple,
point-to-point interface concepts into more complex inter-
face discussions. Our discussion consists of the following
sequence of topics:

• Interface Ownership, Work Products, and Control
• Interface Definition Methodology
• Interface Design—Advanced Topics
• Interface Definition and Control Challenges and Solu-

tions

Let’s begin with Interface Ownership, Work Products,
and Control, which serve as the foundation for interface
definition success in system development.
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27.3 INTERFACE OWNERSHIP, WORK
PRODUCTS, AND CONTROL CONCEPTS

As the System or Product Context Diagram (Figure 8.1)
and System Architecture (Figure 20.5) evolve and mature,
interfaces emerge as Entity Relationships (ERs) between
the System Elements—Personnel, Equipment, Mission
Resources, Procedural Data, System Responses, and
Facilities (Figure 8.13)—and their respective operational,
behavioral, and physical entities. As each interface emerges,
accountability must be established to oversee and ensure
the integrity of its evolution. Accountability requires the
following:

• A charter that assigns interface ownership, objectives,
resources, and work products.

• Work product documentation—specification require-
ments, designs—that bounds and defines the interface
and agreements.

• Control of the work product to ensure its integrity
and compliance with technical, cost, and schedule
requirements.

On inspection, your initial response may be that this is
Project Management, not SE. However, SE in its leadership
role has to establish accountability for the technical work
to be performed. If this accountability is left unresolved by
weak project or technical leadership, chaos and conflicts will
distract the focus and energy that should be concentrated
on the definition of the interfaces. To better understand this
point, let’s elaborate on each one.

27.3.1 Interface Ownership

Principle 27.3

Interface Ownership and
Accountability Principle

Assign ownership and accountability
for every interface within the System

or Product based on the highest-level architecture that
identifies the interface.

As Principle 27.3 states, interface ownership and account-
ability within a system, product, or service must be assigned
to an individual or team. This includes the specification,
design, and control of the interface. Observe that we said as-
sign “ownership and accountability for every interface … to
an individual or team.”

Everyone assigned to an interface must be accountable for
specification, design, implementation, and its control. How-
ever, there is a major difference between ownership, account-
ability, and interface work task performance. Why? The ob-
jective is to preclude ad hoc changes to an interface that can
impact the capability and performance boundaries other in-
terfacing Entities. You simply cannot have an individual or

team deciding unilaterally to make changes to an interface
unless all Stakeholders in the interface specification are part
of the decision.

In general, there are two approaches to interface owner-
ship and control:

• The Ad hoc Engineering Approach (Mini-Case Study
26.1).

• The Architecture-Based Approach (Figure 20.5).

27.3.1.1 Ad Hoc Engineering Interface Ownership
Approach Technical directors and project engineers view
interface ownership as exercising their managerial role of
“delegation.” Their “task and forget” approach to interface
ownership expects two or more interfacing parties to “work
it out on their own.” Depending on the situation and person-
alities, this approach works in some cases; in other cases, it is
very ineffective. This approach is common to Enterprises that
employ the ad hoc, Specify-Build-Test-Fix (SBTF)-Design
Process Method (DPM) Engineering Paradigm (Chapter 2).

Several potential problems can arise from the ad hoc
SDBTF-DPM approach.

• Conflicts occur when the interfacing parties are unable
or unwilling to agree on how to implement the interface.

• One personality dominates the other, thereby creating
technical, cost, or schedule issues that favor the domi-
nating party.

If this chaos or dominance continues, the dominating
party may and probably will suboptimize the System (Figure
14.8). There is, however, a better approach to interface
ownership and control that resolves the problems created
by the ad hoc engineering ownership approach. That is
Architecture-Based Ownership and Control Approach.

27.3.1.2 Architecture-Based Ownership and Con-
trol Approach To avoid the problems of the ad hoc
SDBTF-DPM Engineering approach, assign interface own-
ership and control to the individual or team accountable
for the System Performance Specification (SPS) or Entity
Development Specification (EDS) and the associated archi-
tecture. The interfacing parties represent entities within the
architecture.

The discussion to this point focuses on interfaces within
the System. What about System external interfaces? Exter-
nal interfaces that require both programmatic and technical
solutions between Enterprises. This brings us to our next
topic, Interface Control Working Groups (ICWGs).

27.3.1.3 Interface Control Working Groups (ICWGs)
Definition and control of System or Product external
interfaces generally occurs in two forms as follows:
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• Scenario #1—Interface definition between a new
System or an upgrade to a legacy system that must
integrate to an existing external system.

• Scenario #2—Agreement between Enterprises to de-
fine a new interface.

In Scenario #1, the existing system may dictate the
interface requirements for the new System or upgrade. The
Enterprise that owns the external system may or may not be
willing to discuss changes due to costs and other factors.

In Scenario #2, both Enterprises may mutually agree to
charter an ICWG with representatives from both Enterprises.
The ICWG’s mission is to work constructively together to
define interface requirements and control changes that serve
the interests of both parties.

One of the key questions that arises is: who should chair
the ICWG? The answer is system and situational dependent.

• If System A is an existing system with an established
interface that a new System B under development must
connect, System A’s project probably has no interest
in participating in an ICWG. Simply live with the
established interface unless System A’s project agrees
to changes. When that situation occurs, System A
assigns the ICWG chair.

• If Systems A and B are both new and being developed
simultaneously, then Projects A and B need to make the
decision, each with a co-chair of the ICWG.

27.3.2 Interface Definition Work Products

From an SE perspective, interface definition require several
types of work products to guide the development of an
interface as follows:

1. Specification requirements—bound and specify what
an interface is to accomplish and how well.

2. Operational Concept Description (OCD)—Within
a Concept of Operations (ConOps) Document
(Chapter 6) conceptualizes the “who, what, when,
where, and how” for each interface based on the vision
for its employment, its Use Cases (UCs) and scenarios
(Chapter 5), and operational constraints.

3. Trade study Analysis of Alternatives (AoA)—Chapter
32—Selects the optimal interface approach interface
from a set of viable candidates.

4. Design solution requirements—Define the physical im-
plementation of an interface such as architecture, draw-
ings, schematics, wiring lists, cabling, and connector
pin-outs.

5. Design description—Describes how the interface is to
be installed, operated, maintained, and sustained.

The discussions that follow refer to Interface Require-
ments Documents (IRDs) as a general classification label. In
this context, IRDs consist of a number of different types of
interface documents such as:

• Interface Requirements Specifications (IRSs) docu-
ment interface requirements, in general. Some view an
IRS as documenting System external interface require-
ments.

• Interface Control Documents (ICDs) document internal
hardware interface details as design requirements.

• Interface Design Descriptions (IDDs) document inter-
nal software design details as design requirements.

Given this overview, let’s explore these topics further.

27.3.2.1 Specifying System/Entity Interface Require-
ments The specification of interface requirements employs
the same methods as discussed in Chapters 19–23. There are
three key aspects that should be addressed:

• Interface specification approaches.

• Interface specifications.

• The structure of the interface requirements within a
specification.

27.3.2.1.1 Interface Requirements Specification (IRS)
Approaches Interface Requirements Specification (IRS)
Approaches

Interface requirements are typically specified in Section
3.4 Interfaces section (Table 20.1.) of an SPS or EDS.
Beyond this statement, the format of an IRS varies by
industry, Enterprise, and Engineering discipline.

When we specify interface requirements, there are two
approaches in general use as follows:

1. Approach #1—Specify both external and internal
interface requirements for every System or Entity.

2. Approach #2—Specify only external interface re-
quirements for a System or Entity.

Observe that Approaches #1 and #2 focus on what has
to be accomplished, not how. The word specification is not
mentioned.

Approach #1, which is common in some Enterprise
specification outlines, has two major fallacies that result in
a duplication of requirements and effort.

• Fallacy #1—If we begin with a System Level
architecture and decompose it into lower levels of
abstraction, internal interfaces within each archi-
tecture become external interfaces for those same
Entities at the next lower level. Using Figure 20.5 as
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an example, why would you want to specify internal
interfaces at the System Level SPS—A2–B1, B1–D1,
C2–D1, A4–C2 – and:

∘ Use the Performance Specification Approach
(Figure 20.4), which assumes the System or
Product to be a “box” with a To Be Determined
(TBD) architecture?.

∘ Redefine them as external interfaces in Subsystem
A–D specifications?
Remember - duplication of specification require-
ments is a violation of Principle 22.1, which states
that there should be one and only one instance of a
requirement within a System.

• Fallacy #2—If we employ a Performance-based Spec-
ification Approach (Figure 20.5) that: (1) treats each
Entity as a “box” with inputs, outputs, and capabilities
and (2) specifies what has to be accomplished but not
how, then any interfaces internal to the “box,” by defi-
nition, are To Be Determined (TBD)—unknown. Iden-
tification and definition of those interfaces will evolve
and mature over time as part of the SE analysis, design,
and development of the System or Entity.

By a process of elimination, Approach #2 – specify
external interface requirements only - is the only logical
approach for specifying external interface requirements.

27.3.2.1.2 Specifying Interface Requirements

Principle 27.4

Single Information Source Principle

Everything a User “needs to know” about
a System or Entity such as its specifica-
tion requirements, UCs and scenarios, op-

erational concepts, design, interfaces, testing, verification, or
validation should be encapsulated within a single document
unique to that subject.

Exceptions include separation of the information into dif-
ferent documents due to: (1) the quantity of pages or (2)
Sensitive Information Protection (SIP) containment of pro-
prietary, IP, competition sensitive data, privacy, government
security, and data on a justified “need-to-know” basis Warn-
ing 17.2.

In compliance with the Single Information Source Princi-
ple (Principle 27.4), a System’s or an Entity’s requirements
reside in Section 3.0 of the SPS or EDS (Table 20.1). Princi-
ple 27.4 notes that exceptions are acceptable as long as there
are compelling reasons to do otherwise … that are docu-
mented and approved. Examples of exceptions include the
following scenarios:

• Scenario #1—A contract or task mandates develop-
ment and delivery of separate IRSs.

• Scenario #2—Two or more Enterprises develop and
specify requirements for an unknown interface that
will evolve over time after the specification has been
approved.

• Scenario #3—There is a need to isolate and breakout
requirements unique to a specific interface for a vendor
that does not have a “need to know” about the contents
of the SPS or EDS for Intellectual Property (IP),
proprietary, or security classification reasons.

• Scenario #4—The quantity of pages required to specify
System or Entity interfaces is overwhelming and
requires creation of a separate IRD.

27.3.2.1.3 Interface Requirements Specifications (IRSs)
In the case of Scenario #2 mentioned previously, interfaces
must be specified by a literal name and incorporate a sepa-
rate IRD such as an IRS by reference. Consider the following
example:

Example 27.1

Incorporation by Reference of an IRS
3.3.X (XYZ) Interface Requirements

Assume we have a requirement:

“The System/Entity shall provide a bi-directional
data communications interface with external System
XYZ.”

“The System/Entity XYZ Interface shall comply with
the data format specified in Table _ of Interface
Requirement Specification (IRS) Revision _”.

In the interest of keeping the requirement statement
brief and concise, you can debate the need for the
terms “bi-directional” and “data communications” in
this high-level requirement. However, it is often useful to
declare in a parent-level requirement (Figure 21.2) what is
to be accomplished—an abstract “communications inter-
face” versus a more explicit “bi-directional communications
interface.” You could make those child-level requirements.
In addition, the IRS “version” information is critical due to
the potential risk of the System/Entity capabilities being
developed to an IRS external to the project that is updated to
a new version before delivery. (Principle 23.4).

Observe that the context of an IRS here is simply generic.
Some Enterprises such as the US DoD have specific re-
quirements for an IRS. Consider the following US DoD IRS
example:

Example 27.2

IRS Description

DoD Data Item Description (DID)
DI-IPSC-81434A (1999, p. 1) describes
the IRS as follows: “The IRS specifies the
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requirements imposed on one or more systems, subsystems,
Hardware Configuration Items (HWCIs), Computer Soft-
ware Configuration Items (CSCIs), manual operations, or
other system components to achieve one or more interfaces
among these entities. An IRS can cover any number of
interfaces. . . . The IRS can be used to supplement the
System/Subsystem Specification (SSS) . . . and Software
Requirements Specification (SRS) . . . as the basis for design
and qualification testing of systems and CSCIs.”

irs topics When specifying interface requirements, there
are key topics that must be addressed. Contextually, Engi-
neers often think that the methodologies expressed by the
SE Process Model (Figure 14.1) and the System Capability
template (Figure 10.17) apply to the design of a System
or Entity as a “box.” The focus shifts to the Engi-
neering of interface compatibility—mechanical parts, elec-
trical power, and signal wires and cables; interface in-
teroperability is secondary. They fail to recognize that
the SE Process Model and System Capability method-
ologies apply to the interoperability exchanges of energy,
forces, and data that occur across the interface via the me-
chanical parts, wires, and cable. How do the SE Process
and the System Capability methodologies apply to inter-
faces?

• The SE Process methodology instills the need to define
the Requirements, Operational, Behavioral, and Physi-
cal Domain Solutions. This applies to the System- and
Entity-Level architectural components … and …
their interfaces.

• The System Capability methodology instills the need to
define how the phases of a capability—Pre-Capability,
Capability, and Post-Capability—will be implemented.

These two points provide the foundation for identi-
fying the key topics to be addressed in an IRS. The
following outline serves as an example within the frame-
work of an SPS or EDS Section 3.4 (Table 20.1) Interface
Requirements.

Author’s Note 27.1

Two key notes concerning the
follow-on discussion:

1. The topics listed below cover a
diverse set of common interfaces

such as mechanical, thermal, hydraulic, optical, elec-
trical, and data. Other examples include nuclear,
biological, and chemical. Tailor the topics to meet the
specific attributes of each interface. Renumber
accordingly.

2. AR = As Required.

Section 3.4: System External Interfaces
Section 3.4.1: Interface #1 Name
Section 3.4.1.1: (Directional Source–Destination

Interface Name)
Section 3.4.1.1.1: Operational Characteristics and

Constraints
Section 3.4.1.1.2: Behavioral Characteristics and

Constraints
Section 3.4.1.1.3: Physical Characteristics and

Constraints
Section 3.4.1.1.3.1: Mechanical Characteristics and

Constraints (AR)
Section 3.4.1.1.3.2: Thermal Characteristics and

Constraints (AR)
Section 3.4.1.1.3.3: Hydraulic Characteristics and

Constraints (AR)
Section 3.4.1.1.3.4: Electrical Characteristics and

Constraints (AR)
Section 3.4.1.1.3.5: Optical Characteristics and

Constraints (AR)
Section 3.4.1.1.3.6: Data Characteristics and

Constraints (AR)
Section 3.4.1.1.3.X: (Label) Characteristics and

Constraints (AR)

If the interface has bi-directional characteristics, specify
the reverse direction requirements.

standard irs templates To ensure consistency in Sys-
tem Development, create standard templates for document-
ing interface requirements and descriptions. For example, the
US DoD DID DI-IPSC-81434A provides a standard template
for documenting IRS interface requirements including HW-
CIs and CSCIs.

27.3.2.2 Interface Control Documents (ICDs)

Heuristic 27.1 ICDs

As a general rule, especially in Aerospace and Defense
(A&D) applications, ICDs are typically used to document
Hardware interface details such as drawings, wiring lists,
and cable diagrams. An ICD:

• Ranges in length from a single-page or multi-page doc-
ument, such as interface wiring diagrams, mechanical
drawings, mechanical hole-spacing layouts, and physi-
cal connector pin layouts.

• Serves as a detailed design solution response to SPS,
EDS, or IRS requirements.

When all interface Stakeholders agree with the contents
of the ICDs via reviews, each ICD is approved, baselined,
placed under configuration control, and released for formal
decision-making (Principle 20.8).
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In general, ICDs are controlled by the project’s Configu-
ration Control Board (CCB). An exception may be external
interfaces in which two or more Enterprises must agree on
the initial baseline but also any formal changes to it. In cases
such as this, a joint ICWG composed of representatives from
all Enterprises may be assigned as members.

ICDs are often developed in free form unless your con-
tract or Organizational Standard Process (OSP) mandates a
specific format.

There are numerous ways to structure an ICD, depending
on the application. Perhaps, the most important aspects of
the outline can be derived from the traditional specification
outline (Table 20.1) such as:

• Section 1.0 Introduction
• Section 2.0 Referenced Documents
• Section 3.0 Requirements—refer to outline provided

previously

Since ICDs contain detailed information regarding the
physical implementation of a system, product, or service,
their contents are typically referred to as design require-
ments. These design requirements are incorporated into En-
gineering drawings for physical components. Each physi-
cal component is verified by Quality Assurance (QA) for
compliance.

ICDs should be written with a focus on who the
Users—readers—are and how they want to use the doc-
ument. Most ICDs are used simply to document design
parameters such as wiring and cable lists, connector function
pin-outs, and polarity conventions.

Observe that we mentioned ICDs are often used to
“document design parameters.” If an ICD’s communicates
requirements, one would expect there to be a Section 3.0
Requirements that consists of at least one or more “shall”
statements making compliance mandatory. As a best prac-
tice, employ “shall”-based interface capability requirements
in the same manner as specifications (Principle 22.7).

27.3.2.3 IDDs
Heuristic 27.2 IDDs

As a general rule, especially in Aerospace and Defense
(A&D) applications, IDDs are used to document software
interface descriptions.

The subject of IDDs is one that has a number of contexts
and meanings.

• Context #1—By title, one expects the document to de-
scribe what you need to know about the Personnel
and Equipment - Hardware, and Software - im-
plementation of an interface—it’s operation, behavioral
responses, and physical implementation details.

• Context #2—The software community, especially on
US DoD projects, views an IDD as a document unique
to Software.

Software interfaces are typically documented in an IDD.
This approach is often used for CSCIs where there is a need
to isolate CSCI-specific IDDs as a separate document. IDDs,
however, are not limited to software. They are equally appli-
cable to Hardware applications as well. DI-IPSC-81436A
(2007) serves as the DID for developing an IDD.

27.3.2.4 How Many ICDs/IDDs? One of the early chal-
lenges in identifying interfaces is determining how many
ICDs/IDDs are required. Engineers take great pride in the
act of designing interfaces. Yet, one of their shortcomings
is the lack of confidence in defining how many interface
documents—ICDs or IDDs—will be required to develop the
System or Product. In many of these cases, there is of-
ten a lack of SE or weak SE presence to guide technical
decision-making. As stated earlier in Chapter 1 (McCumber
& Sloan, 2002), SE is responsible for “maintaining intellec-
tual control” of the System Design Solution. This entails un-
derstanding what types and specific instances of documents
must be developed.

Central to this issue are the two options as illustrated in
Figure 27.1:

• Option A—Do we create a single interface
document—ICD and/or IDD—that defines all of
Product A’s Hardware and Software interfaces?

• Option B—Do we create individual interface
documents—ICDs and/or IDDs—for each Product
A’s internal interface? For example: an A1–A2 ICD,
an A2–A3 ICD, or an A1–A3 ICD?

There are no rules that prevent a single interface docu-
ment from covering both the Hardware ICD and Software
IDD details. For simplicity, readers can rationalize the need
to have all details about an interface in a single document
(Principle 27.4) to avoid having to research multiple hard-
ware and software interface documents. Begin with a sin-
gle interface document for the System. If impractical, jus-
tify the need to (1) break it into separate interface docu-
ments for each Entity’s external interface at every level
of abstraction—Interface A–B, Interface C–D. Where ap-
propriate, create separate Hardware ICDs and/or Software
IDDs. So, what is the answer and how do you decide?
There are several points to consider in answering these
questions.

Principle 27.5

Interface Disclosure Principle

To prevent disclosure of Intellectual Prop-
erty (IP) or Competition Sensitive infor-
mation, isolate requirements for a specific

interface into a separate for coordination with external
Enterprises that have a justified “need to know.”

First, recognize that each additional document you create
increases the cost of maintenance. As a general rule, avoid
creating separate ICDs/IDDs unless:
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Figure 27.1 Interface Control document (ICD) Implementation Options—Single or
Multiple ICDs

1. The amount of information becomes unwieldy for the
reader due to the page count.

2. There is a need to isolate details due to IP, proprietary
data, and security reasons to limit authorized access
to a specific interface based on a “Need-to-Know”
justification.

Secondly, based on the first point:

• A single System ICD may be appropriate for small
projects in which interface information is shared across
all team members. Observe that we said System—for
the whole project, not System Level ICD.

• For larger projects, isolate and create separate
ICDs/IDDs for interfaces to be developed by ex-
ternal vendors for the project. To reduce the need for
separate ICDs and IDDs, procure external components
that have standard connector or data interfaces such as
RS-232, Ethernet.

27.3.3 Interface Control

Interface definition, as a part of System/Entity design, re-
quires that SE “maintains intellectual control of the (evolving
and maturing interface) problem solution” (Principle 1.3 -
McCumber and Sloan (2002) (Principle 1.3). Interface de-
sign control consists of two stages of control based on a

trade-off of the maturity of the interface design solution and
the cost to perform formal change management. They are as
follows:

• Stage 1—Semi-formal Engineering control.
• Stage 2—Formal Configuration Management (CM)

control.

Using stages of semiformal and formal CM control
makes processing changes more efficient and effective. The
approach is not perfect; it is still dependent on the collective
experience, wisdom, and informed judgment of the Product
Development Team (PDT) such as an Integrated Product
Team (IPT) stakeholders.

27.3.3.1 Stage 1—Semi-formal Engineering Control
Early in the development of an interface, flexibility to
accommodate changes to either side of the interface is
important. As the interface definition evolves and ma-
tures, there is a point which discretionary changes become
disruptive. Although the interface is owned and man-
aged preferably by a team such as an SDT or PDT, the
team’s SE should initiate efforts to establish a consensus
that changes require team approval via team discussions,
not formal requests. This process continues until it is
time to approve, baseline, and release interface design
work products (Principal 20.8) under Stage 2 Formal CM
Control.
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27.3.3.2 Stage 2—Formal CM Control As interface
work products such ad specifications, OCDs, trade stud-
ies, and designs reach a point where formal control is
required, they are formally reviewed by their respective
Stakeholders—Users and End Users, approved, and sub-
mitted to CM. CM places each one under formal change
management by establishing a baseline and releasing the
work product for decision making.

N
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W

Heading 27.1

Given an understanding of interface owner-
ship, accountability, and control, our next
task is to define each interface. We need
a methodology-based strategy that enables
us to define each interface. This brings

us to our next topic, the need for an Interface Definition
Methodology.

27.4 INTERFACE DEFINITION METHODOLOGY

When we identify, specify, and design an interface, there are
key technical issues that must be considered. For example:

1. Who are the interface stakeholders—operators, main-
tainers, or instructors?

2. Where and under what conditions is the interface to be
employed?

3. What is to be exchanged or transferred across the
interface—data, forces, energy, and directional flow?

4. When and how frequently is the interface to be
employed—synchronous or asynchronous data trans-
missions, door handles and opening/closing, switch
usage?

5. How will the interface be controlled for security and
privacy reasons—encryption, decryption?

6. How will the interface be protected from natural threats
in its Operating Environment—weather, rodents?

7. How will interface compatibility and interoperability
be assured?

For Enterprises that employ the ad hoc Plug & Chug
… SBTF Paradigm (Chapter 2), answers to these questions
are often ambiguous, incomplete, and often addressed in
the incorrect order or not at all. Note in Figure 2.3 these
Enterprises leap from requirements to a physical solution
while ignoring the operational and behavioral aspects.

Answering these questions requires methodology that
allows us to logically derive interface information. The
following interface definition methodology allows us to
define interfaces.

• Step 1—Identify each System or Entity interface.

• Step 2—Define the interface’s purpose and objectives.

• Step 3—Define what is to the transferred, exchanged,
or communicated.

• Step 4—Identify each interface’s Users and End Users.

• Step 5—Define the interface’s UCs and scenarios.

• Step 6—Identify the interface’s modes of operation.

• Step 7—Derive and model operational requirements
and constraints.

• Step 8—Develop the OCD.

• Step 9—Specify and model behavioral interactions and
constraints.

• Step 10—Specify physical requirements and con-
straints.

• Step 11—Standardize across other interfaces.

• Step 12—Label and color-code interface cables and
connectors.

Let’s elaborate each of the steps in more detail.

27.4.1 Step 1—Identify System or Entity Interfaces

The first step in identifying System interfaces is to simply
recognize and acknowledge its existence externally as spec-
ified in the SPS. This begins with the System Context Di-
agram (Figure 8.1) and N2 Diagram (Figure 8.11). Apply
these methods at all levels of abstraction beginning with the
System of Interest (SOI) followed by the Mission System
and Enabling Mission. Within the multi-level System Ar-
chitecture, both types of diagrams are useful; however, N2
Diagrams provide a more explicit reference concerning inter-
face Input/Output (I/O) interaction directions of the System
or Entity.

Principle 27.6

Interface Identification Principle

Assign a unique Source-Destination
mnemonic and title to each System/
Entity interface.

Once an interface is identified, establish a naming con-
vention that assigns a unique identifier to distinguish the in-
terface from all others within the System. A typical naming
convention consists of a Source-to-Destination naming con-
vention with the interfacing System or Entity names repre-
sented by short names, acronyms, or abbreviations. Consider
the following example:

Example 27.3

Automatic Teller Machine (ATM)
Example

Interface ID: USER—ATM Interface

• User to ATM ID: USER—ATM (Source-to-Destination)

• ATM to User Interface ID: ATM—USER (Source-to-
Destination)
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Two key points concerning the aforementioned example:

1. Remember that interface IDs should be unique labels
and appear once and only once within the System.
To avoid duplication of names, create a tool such as a
database to track current names.

2. The Source–Destination naming convention—USER
—ATM—can be expanded to identify transactions that
represent unique interactions such as USER—ATM
____ #1 RESP (Response) or ATM—User ____ #6
REQ (Request).

To avoid quantum leaps from requirements to physical
solutions (Figure 2.3), our approach to interface definition
will be to apply the SE Process (Figure 14.1) to each physical
interface to identify the sequence of operational, behavioral,
and physical characteristics.

27.4.2 Step 2—Define the Interface’s Purpose and
Objectives

Once the Users and End User’s have been identified, define
the interface purpose and objective(s) of what it is expected
to accomplish. For example,

• Source electrical power available “on demand” to
remote devices such as motors or lights.

• Transmit and receive asynchronous/synchronous data
commands and messages to/from remote devices.

• Continuously monitor remote analog or digital sensors
at a 10-Hz rate.

• Change I/O Device XYZ’s current mode of
operation.

• Send and receive audio, video, or data messages signals
on command.

• Display or sound audio and/or video cautions or warn-
ings via alerts, alarms, when conditions warrant.

27.4.3 Step 3—Define What is to be Transferred,
Exchanged, or Communicated

Define:

• What is to be transferred, exchanged, or communi-
cated such as energy—electrical, mechanical, opti-
cal, thermal; mechanical—forces, pressure; and data—
commands and messages or data - commands or
messages.

• The directionality—unidirectional or bidirectional—
nature of the transfer, exchange, or communications.

27.4.4 Step 4—Identify Each Interface’s User(s) and
End User(s)

Define who the interface’s Users and End Users are, their
“need to know” access privileges, and projected frequency
of usage.

• Are there restrictions on use of the interface and when?
• Do Users require authorized accounts with User IDs

and passwords?
• Are there Users or End Users that require an interface

that may not have been specified in the SPS or EDS?

Each side of an interface consists of User (Actor) and
End User (Actor) roles (Figure 5.10). You should recall from
our definitions of the User and End User roles introduced in
Chapter 3.

• An interface’s User Monitors, Commands, and
Controls (MC2) the System/Entity and its capa-
bilities - energy, raw materials, forces, data commands,
and messages, for one direction of an interface.
For example, a User transmits data commands and
messages.

• An interface’s End User, as recipient, benefits from
source energy, raw materials, forces, and data, trans-
ferred across the interface. For example, an End User
receives data commands and messages.

Consider the following examples:

Example 27.4

Bi-Directional Phone Conversation

A phone conversation, as a bi-directional
interface, consists of Actors that alternate
roles - both User and End User - as per-

forming entities. A User Role communicates audio messages
to an End User Role that benefits from receiving and vice
versa the communication.

Example 27.5

Voice Mailbox Users and End Users

A caller, as an End User role, calls a phone
number and leaves a recorded voice mail
message in a voice mailbox.

Later, the owner of the voice mailbox performs a User
Role to MC2 the playback of recorded messages. As mes-
sages are played, the owner is an End User that benefits from
message(s) content.

27.4.5 Step 5—Define the interface’s UCs and
Scenarios

For each User or End User, identify and define their respec-
tive UCs and scenarios (Chapter 5).
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27.4.6 Step 6—Identify the Interface’s Modes of
Operation

On the basis of an interface’s UCs, identify its modes of
operation (Chapter 7). For example, a data communications
device might have the following modes of operation:

• Communications Mode—Send and receive unen-
crypted data commands or messages.

• Test Mode—Send and receive “loop back” test data
messages.

27.4.7 Step 7—Derive Operational Requirements and
Constraints

Using the interface’s purpose and UCs, specify and bound
its operational capabilities and constraints. Operational
constraints may include weather conditions, Time-of-Day
(TOD), geophysical location, and modes of operation. Then,
define the interface’s operational timeline, as required, within
time constraints. If a response to an interface data request is
required within 10 ms, so state.

27.4.8 Step 8—Develop the Operational Concept
Description (OCD)

Based on the interface’s operational requirements, develop
an OCD for each interface that describes how the interface in-
teractions between Actors are envisioned to occur—discrete
data driven, interrupt driven, and so forth.

Interface operational characteristics are derived by iden-
tifying and scoping: who interacts with whom, when, how
frequently, under what constraints and operating conditions,
and what are the expected outcomes. For example, mechan-
ical, electrical, optical, data, responses—and levels of per-
formance. Consider the following example of what might be
described by an interface OCD:

Example 27.6

ATM Bank Card System OCD

An ATM bank card system consists of
remote, multi-location, electronic teller
devices located at kiosks at bank and

business locations. The devices, which are available 24
hours per day, 7 days a week for card transactions such as
obtain cash, make deposits, or pay bills without having to go
to a bank or other business. Geographical access to remote
ATMs of other banks is greatly expanded when the User’s
bank and other banking institutions have agreed to process
credit or debit transactions with the bank’s ATM card.

To initiate a bank card transaction at an ATM device:

Step Actor Action Performed

1. ATM Device Displays a “Welcome” greeting for
the next User and requests the User
to insert their bank card.

2. User Reads display message and inserts
bankcard into ATM Device.

3. ATM Device Reads bank card data, verifies the
account, and requests the User to
enter a password to verify
authorization.

4 User Enters password.
5. ATM Device Verifies the password, requests

authorization from a central
computer, and receives an
authorization number to conduct
the transaction.

6. ATM Device Requests the User to select the type of
transaction desired.

7. User Selects the transaction type.
8. ATM Device Requests the User to enter the amount

based on the transaction type.
9. User Enters the transaction amount.
10. ATM Device Reads User transaction amount,

processes the transaction, and
dispenses cash.

11. User Removes cash from the ATM Device.
12. ATM Device Inquires if the User would like

another transaction.
13. User Selects Yes or No for another

transaction.
14. ATM Device Cycles for another transaction or User

according to the Yes/No answer.
15 ATM Device Thanks the User for their business and

returns to Step 1.

27.4.9 Step 9—Specify and Model Behavioral
Interactions and Constraints

Interface behavioral characteristics characterize how a
System or Entity responds to stimuli, excitations, or cues
in its Operating Environment. Figure 10.12 (Fishbone)
provides a general illustration. Chapter 10 provides graph-
ical illustrations (Figures 10.13 – 10.16) of key interface
decisions that drive behavioral interface characteristics.
Example decisions include the following:

1. When an external system in the Operating Environ-
ment directly or indirectly interacts with a System or
Entity performing its mission, is a response required?
Yes or No?
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2. If so, what type of system response is required? A
non-response? An acknowledgement? Final response
only?

3. What is the required format of the response?

4. On the basis of the interface’s operational requirements,
what time constraints are levied on the response back
to the source?

One of the best tools for defining these interac-
tions is a SysMLTM Sequence Diagram (Figure 5.11).
Sequence diagram interactions and events must be
synchronized with a Mission Event Timeline (MET)
(Figure 5.5) that provides analytical insights into the
temporal—time-dependent—aspects of how the interfacing
entities are expected to interact. It is important to note
that each interaction in Example 27.7 below represents an
interface capability that can be translated into an SPS or
EDS requirement.

Step 1 Identify System or Entity Interfaces - en-
ables us to assign a unique label to each interface such as
ATM-User, User-ATM. Since there are scripted behavioral
interchanges—messages and responses—between the ATM
Device and the User, you can expand the IDs to include what
is exchanged such as requests and responses. Consider the
following example in which REQ = Request and RESP =
Response:

Example 27.7

USER—ATM Transaction
Interactions

Step Request/Response
Mnemonic

Action
to be Performed

1. ATM—USER REQ_#1: “Enters User Card”
2. USER—ATM RESP_#1: User inserts card

correctly into ATM
3. ATM—USER REQ_#2: “Enter password”
4. USER—ATM RESP_#2: User enters Password

Behavioral characteristics involve more than simply
defining the step sequence of interactions. The question
is: how does the System or Entity process and develop
responses to external interactions?

System or Entity responses may require actions
such as:

• Evasive actions—non-responses, measured responses,
or changing location.

• Initiation of counter-measures or counter-countermea-
sures.

The type and scope of interactions—for example, cooper-
ative, benign, adversarial, harsh, hostile—determine the ap-
propriate responses. Chapter 10 describes how the System or
Entity Modeling and Simulation (M&S) is used to represent
these interactions. Definition of the behavioral aspects of an
interface interaction established what actions and sequences
have to be accomplished; however, we did not define how the
interface will be physically implemented. This brings us to
the need to define the physical characteristics of an interface.

27.4.10 Step 10—Specify Physical Interface
Characteristics and Constraints

On the basis of what is to be transferred, exchanged, or com-
municated, select the transfer medium that will be required.
For example, electrical copper cables, Radio Frequency
(RF)—wireless; Fiber Optics (FO)—channels; mechanical
mechanisms, connections; thermal conductors, insulation.
Conduct a trade study AoA to assess the best approach for
implementing and maintaining the interface.

When the transfer medium has been selected, specify the
physical characteristics of the interface such as:

• Mechanical characteristics—compression/tension,
thermal, pressure.

• Electrical characteristics—analog/digital signals;
voltages; current; digital discrete bits—On/Off,
Open/Close; protocol—Ethernet, IEEE-488; ana-
log, digital, and power grounding and shielding;
connector pin-outs.

• Optical characteristics—luminance, spectral fre-
quency, intensity, attenuation.

• Data characteristics—data command and data message
formatting, packing, encoding.

Analysis of interacting systems requires investigation
of a variety of classes of physical interactions that may
be required. For most systems, the classes of interfaces
include: electrical, mechanical, optical, acoustical, nuclear,
chemical, biological, environmental, and human. In general,
a System’s physical response characteristics are dependent
on a System or Entity’s mechanical design and mass
properties (Chapter 3), optical characteristics, or design
controlled behavioral response actions such as electrical,
mechanical, or optical. Examples include:

• Physical movements such as 6-Degrees of Freedom
(6-DoF) (Figure 25.13).

• Thermal expansion or contraction.

• Pressure increases or decreases.

• Electrical signals, response times.

• Energy conversion and storage.
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One of the challenges of physical interface analysis is
that SEs and System Analysts suffer from analysis paralysis
and become intrigued and immersed by a specific class of
interaction. They overlook or ignore other classes that may
become showstoppers. This point illustrates the need for
multi-discipline teams such as an SDT or PDTs to participate
in the identification, definition, and control of their respective
levels of interfaces.

If the interface has any physical constraints such as
weight, size, technology, color-coding, polarity or keying
conventions, Operating Environment conditions, specify
and bound those requirements.

Finally, understand how the interface will interact
with external systems in its Operating Environment.
Figure 27.2 provides an analytical matrix of potential types
of interactions for consideration between a Mission Sys-
tem and the Natural, Induced, and Human Systems
Environments.

27.4.11 Step 11—Standardize Across Other Interfaces

Interface design, as is the case with any form of System
Design, focuses on meeting the specified requirements
while minimizing cost, schedule, technical, technology,
and support risks. Every time you design a new interface
solution—dedicated interface, you must be prepared to mit-
igate the risks of an unproven interface. In addition, the cost
of development and maintenance of non-standard interfaces
by specialized expertise increases labor costs significantly.

One way of reducing the impacts of these risks is to
employ design solutions that are already proven. In addition,

any technology solution you choose may be subject to
becoming obsolete in a short period of time. In sharp contrast,
consumer products in the marketplace, especially computers,
demand that systems be designed to accept technology
upgrades to maintain system capabilities and performance
without requiring new systems as replacements.

One of the ways industry addresses this marketplace need
is with standard interfaces that promote development and
selection of LRUs that have industry standard interfaces such
as RS-232, IEEE-488, Ethernet protocols or USB, SCSI, DB,
RJ, BNC coax, connectors.

27.4.12 Step 12—Label and Color-Code Interface
Cables and Connectors Connections

Interface definition and design activities focus almost
exclusively on the System or Product’s physical
interactions—force, data, energy, energy exchanges—with
external systems. However, interfaces require not only
Installation and Checkout (I&CO), but also preventive and
corrective maintenance (Chapter 34). Therefore, investigate
ways of ensuring that maintenance can be performed easily,
properly, and correctly. This includes consideration of autho-
rized access—physical, security; color-coding and labeling
of cables and connectors; caution and warning labels.
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centric—mechanical, electrical, software, they are often
multi-faceted and have their own sets of complexities
and trade-offs. This brings us to our next topic, Interface
Design—Advanced Topics.

27.5 INTERFACE DESIGN—ADVANCED TOPICS

Educationally, to keep things simple, we focus on boundary
condition problems that are unique to an Engineering disci-
pline. In general, figure out how to connect Point A to Point.
In today’s world of technology, faster computational devices
and M&S methods such as Model-Based Systems Engineer-
ing (MBSE) enable us to study and design more complex
multi-discipline interfaces and issues.

Our discussion in this section introduces some advanced
interface definition and design topics that involve more than
simply connecting Point A to Point B. They require more
robust insights through Systems Thinking (Chapter 1). This
section introduces the concept of purposely designing and
exploiting interface characteristics to influence a specified
outcome such as an automobile collision. Since a signifi-
cant amount of interface design occurs in digital comput-
ing and data communications and mechanical design, let’s
explore the application of interface design to a couple of
examples.

27.5.1 Data Communications Case Study

High-speed audio, video, and data communications requires
investigating the following:

• Physical implementation and Medium—wire cables,
optical fiber or Fiber Optic (FO) cables, wireless,
infrared, RF—VHF, UHF, microwave.

• Data transmission and formatting methods—data
transfer protocols, message formatting, and syn-
chronous/asynchronous transmissions.

Fiber optic data communications are common today,
especially in office buildings, land line telecommunications,
and military applications. Advantages include features such
as high bandwidth, longer transmission distances, smaller
size and reduced weight, data security, Electromagnetic
Interference (EMI) immunity, elimination of ground loops,
and no sparks. Figure 27.3 provides an illustration of a fiber
application with FO Transceivers. In this illustration, each
transceiver:

• Consists of a semiconductor laser (transmitter) and a
photo detector (receiver).

• Interfaces with electronics in the respective side of the
interface and the FO cable

Mode 1 (f1) 

Mode 2 (f2) 

Mode 3 (f3) 

Mode 4 (f4) 

Mode n (fn) 
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Video

Multi-Mode

Data 1

Data n

Data 2
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Fiber Distance Attenuation
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• Video
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Where:
• Xcvr = Receiver
• Xmtr = Transmitter

Protocol
• Ethernet
• Et al

Protocol
• Ethernet
• Et al

Figure 27.3 Fiber Optic (FO) Interface Data Communications Example
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Optical fibers, in general, support two types of data
transmission: Single Mode or Multi-mode. A mode in fiber
terminology equates to a channel. A method referred to as
a Wavelength Division Multiplexing enables multiple modes
(channels) to be transmitted over a single fiber. As shown in
the example (Figure 27.3), the following modes have been
reserved for specific types of transmission: Mode 1—Audio
Channel, Mode 2—Video Channel, and Modes 3–5—Data
Channels #1–n.

Now, let’s assume that we have a requirement to monitor
and record measurements from several remotely located
analog sensors. The physical design of the remote Sensor
System consists of a Command and Control (C2) Processor
and a Telemetry Processor to transmit data messages back
to the Central Computer System as shown in Figure 27.3. A
decision is made to use an FO cable to telemeter the data.

For this application, a C2 processor reads the sensor data
from I/O devices that perform an Analog-to-Digital (A–D)
conversion and stores the data in a buffer—designated shared
memory location. The Telemetry Processor reads the data
and formats it into a data packet or frame structure as shown
in Figure 27.4. Data are read and formatted into a message
structure that consists of the following:

• Preamble—protocol-defined data.

• Start of Frame (SOF)—protocol-defined data.

• Message Header—Message_Start (unique set
of alpha-numeric and control characters), unique
Record_ID, Data_Time_Stamp, Message_Type such
as command or data, and Message_Length (words or
bytes).

• Message Body—Data Items #1, #2, and so forth—
signed or unsigned integers of different word lengths
with pre-defined unit values, Digital Discretes
#1–#n—single bits representing binary values such as
On/Off, Open/Closed.

• End of Message—Message_End (unique set of
alpha-numeric and control characters) and Check_Sum
for error checking and correction.

• End of Packet or Frame—protocol-defined data.

Each packet is formatted with data in accordance with the
Software IDD using the structure such as the one shown in
Figure 27.5.

Each data packet or frame is transmitted as a serial data
message stream at a 10-Hz rate via a Single Mode fiber cable
(Figure 27.3) back to a Central computer.

When designing a data communications interface, con-
sider the following:

• Magnitude of the data to be transferred or
exchanged—the number of bits, bytes, or words,
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Figure 27.4 Telemetry Data Stream and Data Command/Message Packing Example
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Byte 1 -Discrete Status
• LSB Bit 0 = Discrete 0
• LSB Bit 1 = Discrete 1
• LSB Bit 2 = Discrete 2
• LSB Bit 3 = Discrete 3
• LSB Bit 4 = Discrete 4
• LSB Bit 5 = Discrete 5
• LSB Bit 6 = Discrete 6
• LSB Bit 7 = Discrete 7

Byte 2 -Discrete Status 
• LSB Bit 0 = Discrete 8
• LSB Bit 1 = Discrete 9
• LSB Bit 2 = Discrete 10
• LSB Bit 3 = Discrete 11
• LSB Bit 4 = Discrete 12
• LSB Bit 5 = Discrete 13
• LSB Bit 6 = Discrete 14
• LSB Bit 7 = Discrete 15

Message Header

Message Ending

Checksum MSB Checksum LSBWord X + 1

Where:
• BOM = Beginning of Message
• EOM = End of Message
• MSByte =- Most Significant Byte
• LSByte = least Significant Byte
• Message Type = Command, Data, or Test

Table X: (Name) Data Message Structure

Not shown:
1. Data types – e.g., signed / unsigned integers, etc.
2. Data Formats – e.g., Hexadecimal, etc.
3. Data resolution – e.g., °F / °C per bit, Amps per Bit, etc.

Figure 27.5 Telemetry Data Command/Message Packet Format Structure

data precision and accuracy, and word sizes required
for formatted command or data messages.

• Bandwidth, messaging time constraints, and the flex-
ibility to accommodate growth and expansion. For
example, a design goal of 50% of transmission capacity
to meet current needs.

This example illustrates several key points as follows:

• Select a transfer medium—Single Mode FO cable
(Figure 27.3).

• Select a data communications protocol such as Ethernet
for transmitting packets of information.

• Format data within each protocol packet according to a
defined data table (Figures 27.4 and 27.5).

• Transmit the data packets at a synchronous rate such as
10 Hz or 1 KHz.

27.5.2 Automobile Case Study

Principle 27.7

Power of Engineering Principle

The power of Engineering resides in its
application of “… judgment to develop
ways to utilize economically the materials

and forces of nature for the benefit of mankind.”

We tend to think of interface design as the Engineering
between two entities such as the transceivers shown in
Figure 27.3. By definition, analysis enables us to break
down complex interfaces into successive levels of discrete
segments that facilitate piecewise (interface) physical and
mathematical analysis and models. Finite Element Analysis
(FEA) is a good example based on its wire mesh models.

Engineers tend to think of the Power of Engineering (Prin-
ciple 27.7) in terms of the “Engineering the Box” such
as Products, Subsystems, in a static configuration sense
rather then the “Engineering of Systems” (Chapter 1). Com-
ponents such as automobile’s radio, body, exist in their
present configuration throughout their accident-free useful
service lives. Traditional interface design between these
components—cables, wiring, mechanical linkages—occurs
after the components are identified and located. However,
there are reverse situations in which interface design drives
the design of components, especially in safety-related situ-
ations. Case in point: you can react to energy in a passive
sense—absorb energy via shock and vibration—or you can
proactively manage it via interface design. Such is the case
with automobiles during an accident.

An objective of automobile design is to reduce injury to
passengers by applying various types of interfaces to reduce
the impact on passengers. From a Power of Engineering
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(Principle 27.7) perspective: harness the forces of (human)
nature, absorb, dissipate, and divert them and reduce their
impact on passengers.

Beginning as early as in the 1950s, automobile developers
created specialized interfaces such as front and rear crumple
zones and a Passenger Compartment as a safety cell. The
purpose of this integrated chain of interfaces is: (1) to absorb
and dissipate as much Kinetic Energy (KE) on impact,
and (2) divert and distribute it away from the Passenger
Compartment (Grabianowski, 2013).

Figure 27.6 illustrates an example of automobile crumple
zones surrounding a Passenger Compartment. The crumple
zone absorbs the impact as a means for harnessing and
diverting KE forces away from the passenger area. Those
forces are directed and distributed into the structure around
the Passenger Compartment via the roof, floor, and engine
firewall bulkhead as shown in Figure 27.7.

On inspection, this may appear to be Engineering of
mechanical interfaces to get them to crumple under certain
operating conditions. This is true. However, there is another
dimension that requires consideration … time.

During a collision, Newton’s Second Law of Motion
mathematically expresses the magnitude of the force exerted
on a vehicle at impact as a function of its mass and
acceleration.

Force = mass ∗ acceleration (27.1)

Substituting acceleration with its velocity components:

Force = mass

[
Final Velocity − Initial Velocity

TFinal − TInitial

]
(27.2)

where: TFinal − TInitial represents the duration of the
event—impact until stopped.

Since Final Velocity = 0, the acceleration component
is negative, therefore reflecting deceleration. Differentiating
Eq. 27.2 to derive the rate of change of F, force, as a function
of the rate of change in velocity results in:

dF = mass ∗ dv
dt

(27.3)

On inspection of Eq. 27.3 if we can control or reduce the
rate of deceleration, the instantaneous force exerted on the
Passenger Compartment (safety cell) as a function of time is
reduced.

In general, a collision of a vehicle traveling at a velocity
of 55 mph striking a stationary object requires approximately
0.7 seconds to come to a complete stop. Mathematically,
slowing the rate of deceleration by a few tenths of a sec-
ond can significantly reduce the instantaneous force to be
distributed and countered by the Passenger Compartment
structure, air bags, seat-shoulder belts. The mechanism for
controlling the rate of deceleration of this force via defor-
mation is the automobile’s crumple zone. As a compensating
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Original Source: Honda Motor Company. Used by permission and adapted.

Advanced Compatibility Engineering (ACE)

Impact energy

Figure 27.7 Example of Dispersal of Collision Kinetic Energy (KE) Forces Around an
Automobile Passenger Compartment to Reduce Injury. Source: Honda Motor Company.
Used by permission and adapted.

action, automobile designers engineer a chain of components
and interfaces to collapse in a controlled manner for a given
set of conditions.

The key points of this discussion are:

1. Interfaces are more than “line connectors on a drawing”
connecting components via wire, cables, and mechani-
cal linkages. They represent “components” of a System
or Product that perform a function. From a System
Design perspective, interfaces should receive an equiv-
alent level of importance.

2. As “components” of a System or Product, Engineers
design interface structures and components to include
weak points that enable it to collapse in a controlled
deformation manner (AIP, 2004). Grabianowski (2013)
notes that automobile design creates special structures
“to be damaged, crumpled, crushed, or broken.”

3. On the basis of the Power of Engineering (Principle
27.7), if we apply “… judgment to develop ways
to utilize economically the materials and forces of
nature for the benefit of mankind,” we can engineer an
interface to control the rate of deceleration of a collision
to reduce injury and save lives.

N

E

S

W

Heading 27.3

The preceding sections provide a foun-
dation for identifying, analyzing, and
specifying an interface based on a method-
ology. Advanced topics addressed special
considerations for the implementing

interfaces. Our final topic, Interface Definition and Control
Challenges, introduces a series of challenges that SEs must
be prepared to address concerning the definition, design, and
development of interfaces.

27.6 INTERFACE DEFINITION AND CONTROL
CHALLENGES AND SOLUTIONS

Interface definition, design, development, operations, and
support activities often face challenges that are common
across many systems. Let’s identify and discuss some of
these key challenges.

• Challenge 1: Lack of external interface commitments.

• Challenge 2: Failure to assign interface ownership and
control.

• Challenge 3: Identification of and vulnerability to
threats.

• Challenge 4: Environment, Safety, and Occupational
Health (ES&OH) Risks.

• Challenge 5: Availability on DEmand.

• Challenge 6: Interface reliability.

• Challenge 7: Interface maintainability.

• Challenge 8: Lack of compatibility and interoperabil-
ity.

• Challenge 9: Mitigating interface integrity issues.
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• Challenge 10: External electrical power availability,
quality, and backup.

• Challenge 11: Power, analog, and digital signal ground-
ing and shielding.

• Challenge 12: RF and EMI Emissions.

• Challenge 13: Component Failure Modes and
Effects.

• Challenge 14: Fault Containment.

• Challenge 15: Reduction in Total Number of Interfaces.

27.6.1 Challenge 1: Lack of External Interface
Commitments

Contracts are awarded every day in which the Acquirer states
in the SPS … “The system shall report Sensor #1 status to
External System XYZ at a 10 Hz rate.”

On investigation, the Acquirer should have ensured that
a Memorandum of Agreement (MOA) between the User
and the owner(s) of external System XYZ for the interface
was in place. This should have occurred prior to the re-
lease of a formal solicitation such as a Request for Proposal
(RFP). What happens in these situations is that User ab-
dicates responsibility and transfers the risk to the System
Developer. In some cases, this approach may be acceptable,
especially if the System Developer has existing relation-
ships and rapport with the interfacing parties. However, in
an “open” procurement, the Acquirer and System Developer
should not assume this. Consider the following Mini-Case
study.

MINIMINIIN

Mini-Case
Study 27.1

The Uncooperative Interface Owner

Assume that a User’s System ABC is new
and is required to interface to System XYZ.
Coincidentally, the User and System XYZ’s
owner are both members of the same Enter-

prise. If relations between the User acquiring the System and
System XYZ’s owner are poor, in an effort to avoid deal-
ing directly with System XYZ’s owner, the User’s contract
requires System ABC to interface directly to System XYZ.
However, System XYZ’s owner has no interest in support-
ing the interface. What the System Developer believed to be
easy to accomplish during the proposal phase turned into an
uncomfortable and avoidable situation.

A System Developer should never be placed in a position
of negotiating agreement between two parties of a User’s En-
terprise; however, it happens every day. Many times even the
System Acquirer serving as the User technical representa-
tive is unaware – and should be - of these situations. If the
System Developer proactively attempts to deal with the is-
sue in a “positive, professional manner,” Systems ABC and

XYZ management could turn and accuse the System De-
veloper of “managing their Enterprise,” another uncomfort-
able situation. Thoroughly investigate what agreements and
commitments the Acquirer or User have made with external
system owners concerning interfaces before the contract is
signed.

27.6.2 Challenge 2: Failure to Assign Interface
Ownership and Control

Accountability for each System or Entity interface must
be assigned an owner(s) such as an individual, Enterprise,
or ICWG. Those accountable must control interface defini-
tion, design; development; SITE; System Operation, Main-
tenance, and Sustainment (OM&S); phase-out; or disposal.
As the accountable owner, the individual or Enterprise is
responsible for reviewing and approving changes to the in-
terface design baseline, but also the transference of interface
operations and maintenance knowledge to System Users via
User’s guides, manuals, and training.

Interface ownership and control issues are sometimes
manifested in who is accountable for developing and provid-
ing interface wiring and cabling. Specifically, if two or more
interfacing Enterprises are designing an interface, who pro-
vides the interconnecting cables and wiring? Many times,
each Enterprise assumes the other is developing and provid-
ing the wiring and cabling. Establish Enterprise MOAs that
clearly define who is accountable for building and providing
the wiring cables and when, where, and to whom they are to
be delivered.

27.6.3 Challenge 3: Identification of and Vulnerability
to Threats

System interface design is based on a pre-defined set of
interfaces that must interoperate. The reality is that some
operational interfaces, such as military, financial, medical,
educational, and transportation systems, are vulnerable to ex-
ternal threats and attacks. These systems must contend with
what are referred to as unknowns and unknown-unknowns.
Acquirers and System Developers must work with the Users
and their supporting Enterprises to thoroughly:

• Understand and anticipate a System or Entity’s po-
tential threats and threat conditions.

• Define how the System or Entity’s interfaces will
cope with those threats.

After a System or Entity is delivered, the Users must
continuously monitor the performance (Chapter 29) of the
System’s mechanisms and processes used to operate the
interface. In addition, the Users must assess the suscepti-
bility and vulnerability of the interface to evolving or po-
tential threats in its System’s Operating Environment.
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Where appropriate, reasonable measures should be required
and implemented such as specialized solutions that in-
clude: encryption/decryption, security, firewall, and antivirus
software.

27.6.4 Challenge 4: Environment, Safety, and
Occupational Health Risks

Some Systems or Entities pose potential threats to the
Environment, Safety, and Occupational Health (ES&OH)
to Mission system and Enabling System Personnel,
the public, property, or the environment. When designing
System interfaces, thoroughly analyze potential ES&H
scenarios, such as exhaust emissions, toxic chemicals,
hazardous materials, and leaking fluids, which may pose
ES&H and Environment, Safety, and Occupational Health
(ES&OH) risks and require mitigation to acceptable levels.

Author’s Note 27.2

For Challenges 5 – 8 that follow, rec-
ognize that their sequencing is based
on a series of questions.

1. Is an interface available “on
demand” when required?

2. If it is available, is it compatible and interoperable with
external systems?

3. If so, is it reliable?

4. If so, can it be easily maintained?

27.6.5 Challenge 5: Availability on Demand

Users performing missions expect the Mission System
or Enabling System to perform when required—System
Availability (Chapter 34). Interface availability, as a contrib-
utory enabler to System/Entity performance, is a critical
issue both internally and externally.

• Internally, each interface must be available “on de-
mand” and in a state of readiness when configured and
activated to support the mission.

• Externally, how will your System respond or adapt to
an external system interface failure (Principle 19.22).

An interface’s availability is a function of its reliability
and maintainability (Chapter 34).

27.6.6 Challenge 6: Interface Reliability

If an interface capability is available when required, the ques-
tion is: can the interface reliably perform its intended mission
in the prescribed Operating Environment conditions to
the level of performance required by the System or Entity
specification? Each interface must be designed to achieve a

level of reliability that will ensure accomplishment of mis-
sion capabilities and throughout the mission. Two options are
available as follows:

• Option #1—Select higher reliability components.

• Option #2—Consider interface design redundancy
(Chapter 34)

Either of these two options requires AoA trade-offs in
terms of System Development and System/Product Life
Cycle cost considerations such as additional electrical power
and weight for redundant components, maintenance, and
thermal build-up from redundant components.

27.6.7 Challenge 7: Interface Maintainability

To minimize System or Product downtime, you must
ensure that the interfaces are maintainable (Chapter 34)
with a specified level of skills and tools commensurate
with the Pre-Mission, Mission, and Post-Mission phases of
operation and operational tasks. Consider how interfaces will
be inspected or monitored and maintained such as use of
lockable access plates and ports; video monitoring; thermal
imaging and temperature sensors for overheating; need for
cautions, warnings, and alerts, sensing over/under voltage,
over current; methods.

27.6.8 Challenge 8: Interface Compatibility and
Interoperability

When two or more Systems or Products developed by dif-
ferent Enterprises require integration into a Level 0 User’s
System (Figure 8.4), interface compatibility and interoper-
ability become potential risk items. If poorly performed or
not at all, the risk could become a problem … a major prob-
lem resulting in a lot of finger-pointing between Enterprises.
How do we mitigate the risk? There are two aspects: interface
compatibility versus interoperability. In addition, if the in-
terface consists of mechanical, electrical, and data attributes,
the problem becomes multi-faceted. The challenge question
becomes:

• Assume that two very large systems being developed
in different countries or parts of a country share
common mechanical, electrical, and electrical/software
data interfaces that may be stand-alone or combined.
For example, a data communications interface has
mechanical, electrical, and data characteristics. To
reduce technical risk during System Integration, Test,
& Evaluation (SITE) how would you propose verifying
and validating interfaces before one or the other is
moved for SITE?

In lieu of providing a solution here, we will defer this
question for the Level 2 Chapter Exercises.
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27.6.9 Challenge 9: Interface Integrity Issues

The integrity of an interface is dependent on how well its
design performs under specified Operating Environment
conditions. Typically, a safety factor (Chapter 31) such as 2×
or 3× (Chapter 31) may be used to mitigate interface compo-
nent failures that may compromise the System or Product.
Examples include bulkhead pressure leaks, clogged filters,
contamination, lack of data packet, or frame error checking.

27.6.10 Challenge 10: External Electrical
Power—Availability, Quality, and Backup

Engineers often focus on the internal design of their
SOI—the System, Product, Subsystem Levels, and so
forth. They procrastinate on researching external interfaces
such as electrical power sources, their attributes, and quality.
In general, they assume that 110 vac or +28 vdc electrical
power will “always be available and all we have to do is plug
our device in.”

Given these examples of power types, Engineers often
overlook the subtleties such as 50 Hz versus 60 Hz versus
400 Hz, as well as tolerances placed on the magnitudes and
frequencies. Power quality factors are also a consideration.
Finally, a key question is: During peak hours of operation,
will the power source be reliably continuous, sporadic, or
experience periodic hours of operation or blackouts? This
requires risk assessment, planning, handling, and control.
You need a Contingency Plan.

Do not assume that the external system power source will
always be available when you need it until you have thor-
oughly investigated and analyzed the interface. In addition,
establish a documented agreement such as an MOA that rep-
resents a commitment by the power source’s owner to allo-
cate and budget power resources to allow your System to
operate when required. The same is true for power quality
and filtration.

Finally, assess the need for:

• Back-up power to mitigate data loss during a mission.

• Electrical power failures alerts and displays.

• Electrical power automatic or manual shutdown and
start-up procedures to minimize data loss or damage to
Equipment.

27.6.11 Challenge 11: Power, Analog, Digital Signal
Grounding and Shielding

Analog signal and digital grounding as well as interface
shielding are critical topics that must be addressed up front.
One of the most overlooked problems is failure to research
and understand the electrical power grounding system of
the User’s higher level—Level 0 System (Figure 8.4) —in
which your System or Product is being integrated. There

is often a complacent attitude by Engineers to defer decisions
about electrical power ground and assume that because 110
vac, 60 Hz, or+28 vdc with power ground is readily available
at a connector. Why so?

The reality is that you may not know what spurious
signals other systems are inserting into the electrical power
ground conductors either directly via ground loops, surges,
or transients or indirectly through coupling from adjacent
conductors—transients, noise conditions. Until you research
and verify how clean the power ground conductors are
electrically, these are unknown-unknowns.

Sources of these problems include high power switching
circuits, components switching On/Off, or EMI coupling
from mixing high and low power cables in the same bundle.
Unfortunately, the Level 0 System owner or their System
Integrator may be unaware of these problems. This is
particularly problematic when your System of Product
is required to collect sensor measurement data, especially
low-voltage data. Thoroughly investigate the following:

• What types of external analog, digital, and power
grounding systems are available such as Single Point
ground, Star-Point ground?

• How the external system implements power and signal
ground including limitations, constraints, and availabil-
ity?

• What other external Systems Developers experi-
enced and discovered when interfacing to this power
source?

27.6.12 Challenge 12: RF and EMI Emissions

Electronic power and signal interfaces often emit RF spec-
trum and EMI signals that: (1) may couple to or disrupt
data-sensitive devices or (2) are tracked by external secu-
rity surveillance systems. In today’s world, wireless Internet
and EMI emissions can pose major risks not only to secu-
rity, but also to privacy. Investigate robust encoding of data
messages that require special security consideration. Reduce
electronic emissions to comply with regulatory and security
requirements.

27.6.13 Challenge 13: Component Failure Modes and
Effects

Principle 27.8

Redundancy versus Redundant Design
Principle

Redundancy is a design method to elimi-
nate Single Failure Points (SFPs), thereby

increasing System or Entity’s reliability. Redundant de-
sign is the selection and physical placement and separation
of components to ensure survival.
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Depending on the criticality of the interface, Engineers of-
ten think of design redundancy as a solution. However, you
can design redundant systems to avoid SFP issues and still
result in a potentially catastrophic situation. There is a dif-
ference between mandated component redundancy in speci-
fications, architectural design redundancy as a reliability so-
lution (Chapter 34), and physical placement of redundant
components (Figure 26.12); recognize the difference. To bet-
ter understand this point, refer to the accident investigation
of United Airlines Flight 232 on July 19, 1989 (Wikipedia,
2013).

Principle 27.9

Failure Modes & and Effects Analysis
(FMEA) Principle

Failure Modes & Effects Analysis (FMEA)
requires more than simply analyzing fail-

ures and effects of components fixed in place or connected.
Analyze the direct or indirect collateral effects on adjacent
Entities.

You may ask: how does the UA Flight 232 event (Figure
26.12) relate to interfaces and fault containment? Obviously,
when a fault occurs, it must be contained (Figure 26.8). How-
ever, faults involve more than simply components overheat-
ing or failing. The traditional Engineering paradigm assumes
that an interface is a fixed based on physical connections.
Consider the following scenarios:

• Scenario #1—When component failures break away
from their physical connection and become projectiles
that impact and interface with redundant systems caus-
ing them to fail?

• Scenario #2—When component failures overheat or
catch on fire without breaking their physical connec-
tion. Their effects interface—ripple or spread—to re-
dundant or other components causing them to fail or
produce faulty data?

Recognize the implications of design decisions, in gen-
eral, and their consequential effects, especially on redundant
systems. When conducting a FMEA (Chapter 34), avoid re-
stricting the analysis to fixed component failures. Investi-
gate the impact of their failure modes and effects on nearby,
upstream, and downstream components (Figure 26.12). For
example, overheating causing other components to fail, elec-
trical shorts causing a System to catch fire and fail, failure
of a heater to maintain constant environmental conditions in
a cold or outer space environment, and so forth. Leverage
the results of a FMEA to mitigate failure effects with design
compensating actions.

27.6.14 Challenge 14: Fault Containment

Principle 27.10

Interface Fault Containment Principle

When faults lead to failures, isolate
and contain them to prevent or min-
imize their consequential effects on

nearby Entities—Equipment; Personnel—operators,
maintainers; the public, and the environment.

Systems inevitably experience failures due to faults or de-
fects. Failures originate from faults that manifest themselves
in the form of latent defects due to component composition
or degradation integrity issues, poor assembly workmanship
practices, design flaws, and errors, which can lead to over-
heating, electrical shorts.

Chapter 26 introduced the concept of fault detection,
isolation, and containment (Figure 26.8). In general, every
system should have some form of fault detection to sense
conditions as indicators that a fault is about to occur. If a
failure occurs, it can disrupt Mission and System operations.
Even worse, faults can create a chain of effects that could
lead to catastrophic results. For example, a cable breaks loose
or a high-voltage wire chaffs and shorts to chassis ground.
The potential ripple effects include a fire and destruction of a
power supply or a short to an external system power source.

Once a fault occurs, fault containment becomes the first
line of defense to prevent proliferation within the System
or to external systems via interfaces. In general, when
a component fails, they lack any means to contain their
consequential effects. So, how do we contain faults?

Fault containment requires some form of interface bound-
ary that limits and subsequently eliminates or quarantines the
problem source to prevent a reoccurrence or later prolifera-
tion of effects. SEs employ FMEA. Then, identify and im-
plement compensating actions (Chapter 34) to eliminate or
minimize the effects. Compensating actions include design
considerations that may involve one or more of the System
Elements—Equipment, Personnel, Mission Resources,
or Procedural Data. Consider the following example:

Example 27.8

Fault Containment Methods

Examples include power removal, fire sup-
pression and sprinkler systems, building
fire doors that close automatically, circuit

breakers and fuses, sandbag walls or dikes to prevent flood-
ing, antivirus software quarantine area.

What if there are failures with no destructive conse-
quences or results? Suppose that a communications compo-
nent simply fails or wiring connections break. Obviously, this
causes a disruption of data commands and messages within
the System or to external systems. If this occurs, you haven
SFP. How do we avoid this? The solution is to create redun-
dant communication interfaces.
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27.6.15 Challenge 15: Reduction in Total Number
of Interfaces

Principle 27.11

System Complexity Principle

The complexity and risk of a System or
Product is a function of the quantity of
its interfaces.

Principle 27.12

Interface Reduction Principle

Apply analytical and risk reduction meth-
ods to minimize the quantity of interfaces
in a System or Product.

Every interface added to a System or Product increases
its complexity and probability—risk—of a potential fault or
latent defect that can become a failure point. The left side of
Figure 27.8 provides an illustration. Let’s assume a System
performs a sequence of computational operations performed
by Subsystem A. Observe the absence of external interfaces
required to perform the computation.

Now, observe how another team of designers incorrectly
approached the implementation. They allocated capabilities
across Subsystems A and B with physical interfaces con-
necting back and forth with four interface crossings. Capabil-
ities A and C are allocated to Subsystem A; Capability B and
the Decision are allocated to Subsystem B. Each one of the
four interface crossings represents a potential failure point.
Analyze how to consolidate capabilities within the physical

boundaries of a Configuration Item (CI) to minimize con-
necting cables and wiring that may break or fail.

27.7 CHAPTER SUMMARY

During our discussion of system interface definition, design,
and control we:

• Introduced and demonstrated that interfaces are a criti-
cal component of any System or Product and should not
be treated as secondary “afterthought” design activities.

• As a component of a System or Product, the SE meth-
ods and concepts such as the SE Process (Figure 14.1);
Phases, Modes, and States of Operation (Chapter 7);
and System Capability Construct (Figure 10.17) apply
to interface design.

• Described how interfaces are identified and docu-
mented in an IRS, ICD, and IDD.

• Emphasized the importance of assigning interface own-
ership and control including the need to charter an
ICWG for external interfaces between Enterprises that
own different systems or products.

• Suggested a methodology for identifying and defining
system interfaces.

• Introduced electronic/data and mechanical design case
studies that illustrated how to design complex system
interfaces.
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Figure 27.8 Example Illustrating the Importance of Reducing and Containing Interfaces
within an Entity to Reduce the Risk of Interface Failures.
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• Identified common challenges and issues in interface
definition and control.

27.8 CHAPTER EXERCISES

27.8.1 Level 1: Chapter Knowledge Exercises

1. How are System interfaces identified?

2. How do SEs analyze interface interactions?

3. How does the SE Process (Figure 14.1) apply to interface
design?

4. How does the System Capability Construct (Figure
10.17) apply to interface design?

5. What is the methodology for defining interfaces?

6. Who owns and controls System or Entity interfaces at
various levels of abstraction?

7. What is an IRS and what is its relationship to interface
definition?

8. What is an ICD and what is its relationship to interface
design?

9. What is an IDD and what is its relationship to interface
design?

10. How to determine whether to develop an IRS, ICD,
and/or IDD?

11. What is an ICWG and what is its relationship to a System
Development project?

12. How is the membership composition of an ICWG
determined technically?

13. Who chairs an ICWG?

14. What are some of the challenges of analyzing, designing,
and controlling System or Entity interfaces?

27.8.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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28
SYSTEM INTEGRATION, TEST, AND EVALUATION (SITE)

As each system component or item completes the Compo-
nent Procurement and Development Process (Figure 12.2)
of the System Development Process, it is ready for System
Integration, Test, and Evaluation (SITE). Planning for SITE
begins during the SE Design Segment and continues through
system delivery and acceptance.

This chapter introduces SITE practices for implementing
the right side of the V-Model (Figure 15.2) illustrated in
Figure 12.6. Our discussions address what SITE is and how it
is conducted. We begin with a discussion of the fundamentals
of SITE. Next, we explore how SITE planning is performed
and describe the test organization.

Given a basic understanding of SITE, we introduce key
tasks that capture how developers incrementally test and
verify compliance of multi-level test articles in accordance
with their performance or development specifications. We
also explore some of the challenges of test data collection
and management. We conclude with a discussion of common
SITE issues.

28.1 DEFINITIONS OF KEY TERMS

• Acceptance Testing “(2) formal testing conducted to
enable a user, customer or other authorized entity to de-
termine whether to accept a system or component (SE-
VOCAB, 2014, p. 3)(Source: IEEE 829-2008. Copy-
right © 2012 IEEE. Used by permission.)”

• Acceptance Test Procedures (ATPs) Formal pro-
cedures that script the process and method(s) of
verification for applying a stimulation, excitation, or

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

cue as an input to a System or Entity to produce a
performance-based outcome response such as test mea-
surements, results, or observations.

• Anomaly An unexplainable event or observation that
cannot be easily replicated based on current knowledge
or facts of the original occurrence.

• Automatic Test Equipment (ATE) “Any automated
device used for the express purpose of testing prime
equipment; usually external to the prime device (e.g.,
support equipment).” DAU, 2012, p. B-18

• Compatibility Testing “The determination of a prod-
uct’s ability to substitute for another similar product
without a major difference in form, fit, or function (F3)
parameters.” (FAA, 2012, p. G-1)

• Compliance Testing “The determination of a system,
product, or service’s ability to comply with specified
performance characteristics.” (FAA, 2012, p. G-1)

• Destructive Tests Tests that result in stressing a test
article to failure beyond repair. Destructive tests usu-
ally destroy, damage, or impair a test article’s form,
structure, capabilities, or performance beyond refur-
bishment at a practical and economically feasible
level.

• First Article “First article includes pre-production
models, initial production samples, test samples, first
lots, pilot models, and pilot lots; and approval involves
testing and evaluating the first article for conformance
with specified contract requirements before or in the
initial stage of production under a contract.” (DAU,
2012, p. B-85)

http://www.wiley.com/go/systemengineeringanalysis2e
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• Formal Testing “(1) testing conducted in accordance
with test plans and procedures that have been re-
viewed and approved by a customer, user, or des-
ignated level of management (SEVOCAB, 2014, p.
128)(Source: ISO/IEC/IEEE 24765:2011. Copyright ©
2012 ISO/IEC/IEEE. Used by permission.)

• Functional Testing “ (1) testing that ignores the inter-
nal mechanism of a system or component and focuses
solely on the outputs generated in response to selected
inputs and execution conditions (SEVOCAB, 2014, p.
134)(Source: ISO/IEC/IEEE 24765:2011. Copyright ©
2012 ISO/IEC/IEEE. Used by permission.)

• Integration Point (IP) – A node at higher levels of
integration in which a component is integrated with
others that have already been verified as compliant with
their respective specification requirements..

• Non-Destructive Tests Tests that subject a test article
to a prescribed set of input conditions and operating en-
vironment to demonstrate compliance to requirements.
Non-destructive tests do not destroy, damage, or impair
a test article’s appearance, form, structure, capabilities,
or performance other than minor refurbishment.

Example 28.1

Non-Destructive Tests

Non-Destructive tests include Qualifica-
tion Tests (QTs) concerning temperature,
humidity, shock, vibration, and so forth that

do not destroy the test article.

• Qualification Test (QT) “Simulates defined opera-
tional environmental conditions with a pre-determined
safety factor, the results indicating whether a given de-
sign can perform its function within the simulated op-
erational environment of a system.” (DAU, 2012, p.
B-184)

Author’s Note 28.1

Simulated Operating
Environments

Please note that although a simulated
Operating Environment can sub-

ject a test article to discrete worst case conditions such as
shock and vibration, Electro-Magnetic Interference (EMI),
environmental, the ultimate QT requires fielding the system,
product, or serve and allowing its Users to perform exercises
under a range of realistic conditions.

• Regression Testing Tests repeated to validate previous
test results that may be suspected due to a test event
that required a corrective action such as rework, repair,
redesign, and so forth.

• Switchology A colloquial expression used by testers
to represent an understanding of a test article and its

human interface such as switches, buttons, and so on
required to command and control (C2) the test article.

• Test The process of subjecting, measuring, and eval-
uating a system or entity’s responses to a prescribed
and controlled set of Operating Environment condi-
tions, verification methods, and stimuli and comparing
the results to a set of specified capability and perfor-
mance requirements.

• Test and Evaluation (T&E) The informal or semifor-
mal process of evaluating the behavioral response and
reaction time performance of a system entity within a
prescribed operating environment to a controlled set of
stimuli for purposes of assessing entity functionality
and eliminate defects.
T&E establishes that an article is free of la-
tent defects or deficiencies subject to acceptable
discrepancies—blemishes, non-critical component
issues, and so on—and is ready for formal verification.
T&E should include a “dry run” of the formal verifica-
tion ATPs prior to formal verification. T&E activities
are generally informal contractor activities and may or
may not be observed by the Acquirer.

• Test and Evaluation Working Group (TEWG) A
team consisting of User, Acquirer, System Developer,
Subcontractor, and vendor or supplier personnel stake-
holders formed to plan, coordinate, implement, moni-
tor, analyze, and evaluate test results.

• Test Article An initial unit of a system or product or
one randomly extracted from a production lot to be used
for conducting non-destructive or destructive tests.

• Test Case (TC) One instance of a series of Use
Case (UC) scenario-based tests that employ combina-
tions of test inputs and conditions to verify an item’s
ability to accept or reject ranges of inputs, perform
value-added processing and to produce only acceptable
performance-based outcomes or results and minimize
or eliminate unacceptable outputs.

• Test Configuration An operator-controlled ar-
chitectural framework capable of representing
a System or entity’s Operating Environment
conditions—Natural, Induced, or Human Systems
via simulation, stimulation, or emulation to verify that
the test article satisfies a specific requirement or set of
requirements.

• Test Coverage “(1) the degree to which a given test
or set of tests addresses all specified requirements for
a given system or component (SEVOCAB, 2014, p.
323)(Source: ISO/IEC/IEEE 24765:2011. Copyright ©
2012 ISO/IEC/IEEE. Used by permission.)

• Test Criteria “Standards by which test results and
outcome are judged.” (DAU, 2012, p. B-229)
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• Test Data Documented operator observations or
instrument-produced readouts or printouts that serve
as objective evidence of test results.

• Test Discrepancy (TD) Actual test measurement
results—performance-based outcomes—that do not
comply with a specification capability requirement.

• Test Environment The set of System Elements—
Equipment, Personnel, Facilities, Procedural
Data, Mission Resources, simulated Natural and
Induced Environments, and so on—configured to
represent a test article’s Operating Environment
conditions.

• Test and Measurement Equipment “The peculiar or
unique testing and measurement equipment that allows
an operator or maintenance function to evaluate opera-
tional conditions of a system or equipment by perform-
ing specific diagnostics, screening, or quality assurance
effort at an Enterprise, intermediate, or depot level of
equipment support.” (MIL-HDBK-881C, 2011, p. 229)

Example 28.2

Examples include the following:
“Test measurement and diagnostic equip-
ment, precision measuring equipment,
automatic test equipment, manual test
equipment, automatic test systems, test
program sets, appropriate interconnect de-

vices, automated load modules, tapes, and related software,
firmware and support hardware (power supply equipment,
etc.)” (MIL-HDBK-881C, 2011, p. 229)

• Test Incident Report “(1) document reporting on
any event that occurs during the testing process
which requires investigation (SEVOCAB, 2014, p.
324)(Source: ISO/IEC/IEEE 24765:2011. Copyright
© 2012 ISO/IEC/IEEE. Used by permission.)”

• Test Instrumentation “Test instrumentation is scien-
tific, Automated Data Processing Equipment (ADPE),
or technical equipment used to measure, sense, record,
transmit, process, or display data during tests, evalu-
ations, or examination of material, training concepts,
or tactical doctrine. Audio-visual is included as instru-
mentation … ” in some domains. (Adapted from DAU,
2005, p. B-19)

• Test Range An indoor or outdoor facility that provides
a safe and secure area for evaluating a system or en-
tity’s capabilities and performance under near Natural
Environment or simulated conditions.

• Test Repeatability “ (1) an attribute of a test, in-
dicating that the same results are produced each
time the test is conducted (SEVOCAB, 2014, p.
325)(Source: ISO/IEC/IEEE 24765:2011. Copyright ©
2012 ISO/IEC/IEEE. Used by permission.)

• Test Resources “A collective term that encompasses
all elements necessary to plan, conduct, and col-
lect/analyze data from a test event or project.” (DAU,
2012, p. B-19)

• Test Results Objective evidence of the
performance-based outcomes from a test performed to
a formal test script such as an ATP that serve as qual-
ity records for assessing compliance to specification
requirements.

• Testing “(1) activity in which a system or component
is executed under specified conditions, the results are
observed or recorded, and an evaluation is made of
some aspect of the system or component (SEVOCAB,
2014, p. 326)(Source: IEEE 829-2008. Copyright ©
2012 IEEE. Used by permission.)

• Transient Error “(1) an error that occurs once,
or at unpredictable intervals (SEVOCAB, 2014, p.
333)(Source: ISO/IEC/IEEE 24765:2011. Copyright ©
2012 ISO/IEC/IEEE. Used by permission.)”

28.2 SITE FUNDAMENTALS

To better understand the SITE tasks discussed later in
this chapter, let’s introduce some of the fundamentals that
provide the foundation for SITE.

28.2.1 What Is System Integration, Test, & Evaluation
(SITE)?

SITE is the sequential, bottoms-up process of:

1. Incrementally interfacing previously verified System
Configuration Items (CIs) and items and integrating
them beginning with the Part level into higher levels of
abstraction - Part, Subassembly, Assembly, Subsys-
tem, and Product-Level – via a series of Integration
Points (IPs).

2. Conducting functional and QTs of the integrated test ar-
ticle to verify all capabilities comply with specification
and design requirements.

3. Evaluating the test results for compliance and optimiz-
ing test article performance.

Completion of SITE at each Integration Point (IP) should
occur as a formal verification test with formal Acceptance
Test Procedures (ATPs). On completion of each ATP, conduct
compliance assessments based on specification Section 4.0
(Table 20.1) verification requirements and methods for the
Entity being verified. Each test provides objective evidence
that proves the test article’s compliance with a requirement
to perform over the prescribed operating range of inputs
and environmental conditions (Principle 19.20). For some
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projects, lower level SITE verification tests are conducted
informally or semi-formally with and without witnesses. This
raises a key technical integrity and compliance issue: lacking
documented objective evidence, how does the project know
that the test article:

1. Is ready to be integrated into the next higher-level
system?

2. Will seamlessly integrate without compliance issues
from previous testing that waste valuable time?

In other cases, the tests:

• Are formal.

• Employ approved ATPs derived from specification
requirements and verification methods.

• Are witnessed by all stakeholders including the Ac-
quirer and User.

Depending on the contract, the Acquirer and User, at the
request of the Acquirer, are invited to “witness” the SITE and
verification activities. The System Developer is accountable
for notifying the Acquirer regarding SITE in accordance with
the Terms and Conditions (Ts&Cs) of the contract. Under
normal contracting protocol (Principal 18.7), the Acquirer
invites the User community to participate in multi-level
acceptance testing User unless the Acquirer has made special
arrangements with the System Developer to do so. Typically,
this only occurs at the System Level. Conversely, when the
Acquirer and User have open invitations to observe and
witness SITE activities, as a professional courtesy to the
System Developer, the Acquirer should inform the System
Developer’s Project Manager in advance concerning who,
how many people, and what Enterprises(s) will participate.

28.2.2 SITE Objective

The objective of SITE is to:

1. Subject a test article of a System, item, or Configu-
ration Item (CI) to a range of Test Cases (TCs), input
stimuli, excitation, and/or cues, and conditions repre-
sentative of a prescribed Operating Environment.

2. Collect objective evidence such as documented test
results and observations of the results of formal tests
performed in accordance with approved ATPs.

3. Provide the objective evidence to the Verification Pro-
cess to verify specification requirements for compli-
ance.

Observe the third point “Provide the objective evidence to
the Verification Process … ” There are several nuances as to
how this is accomplished.

1. In most Enterprises, SITE and the Verification Process
are conducted simultaneously by personnel attending
the ATP.

2. Recognize that SITE is sometimes conducted by testers
that who have been certified to execute the ATP scripts
and collect data but may lack the engineering expertise
required to assess compliance.

3. Near the end of project, a Functional Configuration
Audit (FCA) is conducted to formally audit and reverify
the specification compliance results.

Engineers often have misperceptions of what is to be ac-
complished by SITE. The erroneous view is that a System
or Entity is subjected to a set of conditions bounded by
minimum and maximum performance requirement thresh-
olds. The fallacy in this view is: how does the item perform
when subjected to conditions below or above these limits?
Obviously, you could test an item beyond its physical lim-
its such as environmental conditions, electrical overload, or
shorts, but what about improper data formats, magnitudes
that are under/over range? If the System/Entity is designed
properly, it should accommodate these Operating Envi-
ronment conditions without failure.

The objective of SITE should be to exercise and assess the
test article’s capability to cope with acceptable and unaccept-
able input conditions (Figure 3.2) and Operating Environ-
ment conditions. Likewise, for those input conditions, pro-
duce only acceptable System Responses (Chapter 8) such
as behavior, products, by-products, and services.

SITE, which is part of Developmental Test & Evaluation
(DT&E) (Chapters 12, 13, and 16), is conducted following
the Component Procurement and Development Process of
the System Development Phase as illustrated in Figure
18.1. Throughout the SITE Segment, the System Developer
conducts Test Readiness Reviews (TRRs) (Chapter 18) as
entry criteria prior to testing to ensure that the:

1. Test architecture is properly configured and docu-
mented.

2. Test environment is controllable.

3. Test logs are readily available to logging tests.

4. Approved ATP and emergency procedures are in place.

5. Tests can be performed safely without injury to per-
sonnel or damages the test article, test environment, or
facility.

6. System Design documentation is readily available for
reference.

SITE activities culminate in a formal System Verification
Review (SVR) prior to System acceptance.
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28.2.3 What Do SITE Activities Prove?

We can create marketing phrases about SITE such as verify
compliance with specification requirements, but what do
SITE activities really accomplish. In very simple terms, SITE
answers the following five key questions:

1. Can the System/Entity’s design and physical compo-
nents interoperate with external systems in its Oper-
ating Environment in compliance with specification
interface requirements?

2. Does the System/Entity predictably and responsively
function as planned?

3. Can the System/Entity’s design and components
survive the stresses of the prescribed Operating
Environment conditions for the duration of the mis-
sion/operating cycle limits and perform in accordance
with specification requirements and tolerances?

4. Is the quality of workmanship and construction suffi-
cient to ensure the integrity of component interfaces?

5. As applicable, can the System/Entity be easily de-
ployed, operated, maintained, and sustained (Figure
6.4)?

SITE activities involve testing systems, product, or ser-
vices that employ semantics need to be addressed. This
brings us to our next topic.

28.2.4 SITE Test Article Semantics

SITE terminology includes terms such as Engineering
model, first article, test article, and Unit-Under-Test (UUT).
Let’s explore each term briefly.

An Engineering Model, which may or may not be a con-
tract deliverable, is typically an initial prototype. The model
is used in collecting data to validate system models and simu-
lations or in demonstrating technologies or proofs of concept.
From a Spiral Development (Figure 15.4) perspective, En-
gineering Models of a System, Subsystem, Assembly, or
Subassembly may be developed in iterative sequences as
risk mitigation devices over a period of time to understand
and drive out technical risk as pre-cursors to the initial First
Article(s).

The term “first article” refers to the initial units of the ap-
proved Developmental Configuration (Chapters 12 and 16)
that are available for verification testing and subsequent de-
livery in accordance with the Terms & conditions (Ts&Cs) of
the contract. The term is sometimes a misnomer since several
first articles may be produced from the Developmental Con-
figuration. Collectively, a set or lot of devices is referred to
as first articles. Each initial set of first articles is subjected
to various non-destructive and destructive tests. On success-
ful completion of the first article(s) System Verification Test

(SVT), the resulting Developmental Configuration is estab-
lished as the Product Baseline (Chapter 18).

A first-article System progressing through SITE is re-
ferred to as a test article during SITE. When the test article is
integrated into the test configuration for verification testing,
the item is referred to as a UUT.

The Developmental Configuration represents first articles
that comply with System Performance Specification (SPS)
requirements. However, that does not mean that the Develop-
ment Configuration design can be cost effectively produced
in terms of large-scale production.

When a decision is made to issue a production contract,
the Developmental configuration may have to go through a
series of Pre-Planned Product Improvements (P3I) to achieve
cost-effective production solution. During this period, pro-
duction versions of first articles may be verified as test arti-
cles and UUTs. Once the production design is reverified and
baselined, mass produced items are submitted only for func-
tional testing to ensure each item will perform and is free of
workmanship and component issues.

28.2.5 Types of Testing

When Enterprises discuss Developmental Configura-
tion SITE activities, you will often hear terms such as
functional, environmental, qualification, destructive, and
non-destructive testing. Let’s define the context of each of
these terms.

In general, SITE activities include two categories of
testing: Functional Testing and Environmental/Qualification
Testing.

• Functional testing refers to component
tests—System, Subsystem, Assembly, or
Subassembly. Once a design has been verified
based on Environmental Qualification Testing (EQT),
there is no need to reverify the design with each
production article. As a result, each production ar-
ticle may be powered up to assess its fundamental
capabilities—functions and performance to produce
specified performance-based outcomes - and interoper-
ate as planned with no errors under ambient conditions
such as a laboratory. Some Enterprises refer to this as
“functional testing.”

• Environmental/Qualification Testing (E/QT) is the
next higher level and focuses on how well the item
performs in its prescribed Operating Environment
conditions. Qualification testing, in general, includes
tests performed as part of DT&E verification activities
and, if applicable, during Operational Test & Evalua-
tion (OT&E) validation activities. E/QT exposing the
test article to actual field operating conditions such as
temperature, humidity, shock, vibration, EMI, and so
forth.
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Although the operative term in SITE is test, SITE involves
more than test activities, especially from a System verifi-
cation perspective. It may require technical demonstrations
such Proof of Concept, Proof of Technology, and Proof of
Principle technical demonstrations.

Technical demonstrations are sometimes performed as
part of the DT&E procedures through the use of proto-
types, technology demonstrations, and proof of concept
demonstrations. These activities provide an excellent op-
portunity to assess and evaluate System performance and
obtain more insight into System requirements and their re-
finements. In addition, sometimes, the results of technol-
ogy demonstrations are not the actual test articles but the
set of requirements and data derived from the technical
demonstration.

28.2.5.1 Non-Destructive and Destructive Testing Dur-
ing Functional and Environmental/Qualification Testing
(E/QT), test articles may be subjected to a wide range of
tests that may destroy, blemish, or alter the test article’s
appearance, structural integrity, capability, or performance.
In general, these are non-destructive tests may not harm the
test article which may be refurbished for delivery, assuming
that it is permissible by contract and safety practices.

In contrast, destructive testing often results in partial or
complete destruction of the test article. Typically, the test ar-
ticle undergoes non-destructive testing to collect verification
data. On completion of the non-destructive testing, the test
article is subjected to destructive testing. In general, destruc-
tive testing includes drop tests from humans, test towers, or
aircraft; crushing; exploding, and so forth.

Example 28.3

Qualification Tests (QTs)

QTs subject system and component test
article(s) to harsh environmental test con-
ditions in a Natural Environment or

controlled laboratory or field test environments. Conditions
may include shock, vibration, EMI, temperature, humidity,
and salt spray to qualify the design for its intended applica-
tion (in space, air, sea, land, etc.).

E/QTs are typically followed by a Formal Qualification
Review (FQR) (Chapter 18), which assesses the verification
results of the E/QTs.

During the System Production Phase of a project, pro-
duction sample test articles may be randomly selected for
a test project to assess the quality of materials, workman-
ship quality, System capabilities and performance, shelf-life
degradation, and so forth.

Commercial System Developers also conduct formal Sys-
tem, Product, and Service verification testing via field
trials in the marketplace. Systems, products, and services
evolve through a series of design iterations based on feedback

from Users in field trials or test markets. Ultimately, market-
place supply and demand determine the public’s response in
terms of System acceptability.

When all verified components have been integrated into
the System Level, formal System Verification Tests are per-
formed on Systems and Products at a designated facility
and formally witnessed by the Acquirer and System Devel-
oper QA. A User representative(s) is typically invited by the
Acquirer in accordance with contract protocol to participate
(Principle 18.2). The purpose of the SVT is to prove that the
System or Product fully complies with and meets its SPS
requirements.

In preparation for the SVT, the System Developer pre-
pares formal ATPs for review and approval by the Ac-
quirer, depending on contract requirements. Prior to the SVT,
a TRR (Chapter 18) may be conducted to determine the
state of readiness of the test article(s) and supporting test
environment—including Equipment, Facilities, Person-
nel, Procedural Data and Mission Resources Elements
as well as processes, methods, and tools.

Acceptance Tests (ATs) are formal tests that fulfill the
technical and legal criteria for acceptance of the System or
Product by the Acquirer for the User based on compliance
with specification requirements. Compliance results provide
a pre-requisite for the Acquirer to formally accept the
System.

In general, ATs are conducted with a set of formally
approved and released ATPs that have been agreed to by
the Acquirer, and the User, and the System Developer as
applicable and by the System Developer. System Level
ATs:

1. Are derived from the SPS Section 3.0, Requirements.

2. Apply verification methods (Principle 22.4) identified
in the SPS Section 4.0, Qualification Provisions, to
verify accomplishment of each Section 3.0, Require-
ment(s).

For some projects, the term AT is synonymous with the
SVT. In other cases, an AT may utilize a subset of the
SVT ATPs after System installation at a User site as a final
verification prior to formal System acceptance. ATs, as a
generic term, are also used by Product Development Teams
(PDTs) to demonstrate entity compliance to a higher-level
team such as a System Development Team (SDT).

ATs are accomplished by procedure-based or
scenario-based ATPs that have been approved typically
by the System Acquirer.

28.3 KEY ELEMENTS OF SITE

Planning and implementation of SITE require an under-
standing of its key elements—Personnel, Equipment,
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Facilities, and other System Elements (Figure 8.13)—and
how to orchestrate these elements during the test. We repre-
sent these System Elements via the SITE Architecture Block
Diagram (ABD) shown in Figure 28.1.

A test article - UUT - serves as the System of Interest
(SOI) for SITE. Surrounding the Test Article is the En-
abling System Test Environment, which consists of the test
operator, test procedures, test log, test equipment and tools,
controlled test environment, and design documentation, all
contained within the test facility.

Author’s Note 28.2

Controlled Operating
Environment

Note how the Controlled Operating
Environment such as a thermal vac-

uum facility, shaker table, and EMI facility is abstracted as
an entity rather than shown as surrounding the test article.
Analytically, both methods are acceptable. Abstracting the
Controlled Operating Environment as a box with inter-
faces explicitly reminds you of the need to identify and spec-
ify the interfaces. If we encompassed the test article within
the Controlled Operating Environment (i.e., a box within
a box), the interface relationships would be less explicit and
may go undefined.

28.3.1 Guiding Philosophy of SITE

Principle 28.1

SITE Incremental Verification
Principle

Integrate and incrementally verify one and
only one test article and its capabilities at a

time into a previously verified configuration.

The guiding philosophy of SITE can be summarized in a
few words: keep it simple! Simplicity means verify each En-
tity – Product, Subsystem, Assembly, Subassembly, or
Part - to its specification requirements and then incremen-
tally integrate other verified items one at a time. To illustrate
this point, consider the following mini-case study.

MINIMINIIN

Mini-Case
Study 28.1

Failed SITE Test – How to Make a
Problem Even Worse

Engineers often have the misperception that
System Entities—Products, Subsystems,
Assemblies, and so forth can be lashed

together all at once into a massive test configuration and be-
gin testing! If you do this, you may and probably will be
confronted with a large number of simultaneous problems
with no clue as to where the sources of the problems origi-
nate. This is can be potentially dangerous and catastrophic.

Hardware
(As Applicable)

Software
(As Applicable)

Equipment
Test Article

Human
Systems

Environment

Test Environment

External Test
Environment

Induced
Environment

Natural
Environment

Test Facility

Test Log 

Test
Procedures
• Test Cases

Test
Operator

Design
Documentation

Test Test
Equipment &

Tools

Controlled
Operating

Environment

• Access
• Viewing

Figure 28.1 Example System Integration, Test, & Evaluation (SITE) Architecture and its
Elements
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If you attempt to introduce more than one unproven ca-
pability simultaneously, you can naively destroy the test ar-
ticle or even worse result in injury to the Test Operators or
damage to facilities – the Law of Unintended System Con-
sequences (Principle 3.5). This requires Systems Thinking
(Chapter 1) and Test Readiness Reviews (TRRs) to assess
risk how the test and its consequences will be conducted
(Principle 26.15).

If a test fails to perform properly, how will you ever sort
out and determine where the source(s) of the problem(s) orig-
inate? The first thing Engineers often do when something
does not work is to start disturbing the test configuration.
Specifically, they physically disturb the “scene of the in-
cident” by disconnecting cables, removing components, or
making adjustments. Then, the problem and challenge gets
even larger and more complex. Suppose the source of the
problem was a mistake made by the Test Operator in ex-
ecuting the test procedures. Now you have invalidated the
test configuration and results. The problems just keep getting
worse.

You will soon discover that you need to disassemble ev-
erything and start with a simple, proven, and verified item,
integrate another other verified items with it, and incremen-
tally integrate the System. Remember, SITE fault isolation
wisdom (Principle 28.1) says ‘integrate one and only one ver-
ified test article and capability at a time! At least you will
know where and when the problem entered the test article
configuration and thereby can simplify troubleshooting and
fault isolation. For that test article, inhibit, disable, or discon-
nect as many capabilities as you can and incrementally test
and enable one new capability at a time until all capabilities
have been verified.

28.3.2 Fault Isolation

Principle 28.2

Fault Isolation Principle

To isolate a fault in a serial configuration
chain, employ the Half Split Method and
iterate until the fault is located.

As stated numerous times beginning with Chapter 3,
Systems/Entities are stimulus-response mechanisms that
produce performance-based behaviors and outcomes as a
function of their inputs – stimuli, excitations, or cues (Prin-
ciple 3.3). Mathematically, we can express the relation-
ship between its outputs and inputs as a transfer function
(Chapter 10). Implementation of the transfer function re-
quires User Command & Control (C2) of Modes of operation
(Chapter 7) into chains of serial, parallel, and serial-parallel
strings (Figure 34.12) of Products, Subsystems, Assem-
blies, and so forth. During SITE when an expected out-
come fails to be produced, how do you isolate the fault and

its location within the serial, parallel, and serial-parallel
strings?

First, if the test article being integrated has already been
verified as a UUT, the logical starting point for trouble
shooting might be the interface that has been introduced,
assuming that there have been no internal component failures
on either side of the interface. If this checks out, the next
question is: which side of the interface is the source of
the problem? This point illustrates a key concept in SITE
- referred to as the Half Split Method (Principle 28.2) for
isolating a fault.

The Half Split Method is based on a Divide and Conquer
approach. Specifically in a chain of components, drop back
to a halfway point in the chain and verify that the outcome
at that test point is correct. This enables you to determine
if the fault is occurring “upstream” or “downstream” from
that test point. Once you know which side of the test point
is the region in question, repeat the exercise until the fault is
isolated.

28.3.3 Preparing Items for SITE

During the System Design Process (Figure 12.2) of the Sys-
tem Development Phase, we partitioned and decomposed the
System Architecture into successively lower levels of ab-
straction and Entities to the Part Level. During the Compo-
nent Procurement and Development Process (Figure 12.2),
each component is procured/fabricated, coded, assembled,
and tested. Incrementally, we verify each component to
ensure that it complies with its design requirements such
as drawings and schematics. Levels of integrated compo-
nents – Subassemblies → Assemblies → Subsystems →
Products – are verified for compliance to its respective
specification requirements (Figures 12.3 and 15.2).

System integration is actually a verification exercise
whereby components are verified for form, fit, and function
(Chapter 3) to evaluate their (1) compatibility - physically
integrated - “form and fit” checking and (2) interoperabil-
ity – “function” - is demonstrated or tested and verified based
on the integrated set of capabilities and interfaces. Consider
the following example:

Example 28.4

Compatibility and Interoperability
Testing

Assume we integrate two Level
2 Subsystems that have been verified

as compliant to their Entity Development Specifications
(EDSs). The integration forms a Level 1 System (Figure
28.2) that will be verified for compliance to its SPS. When we
physically integrate the Subsystems – compatibility – and
conduct interoperability tests for the System, we are veri-
fying the integrated set of capabilities and interfaces. This



KEY ELEMENTS OF SITE 607
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Figure 28.2 Test Discrepancy (TD) Fault Isolation Tree for Use in Analyzing Discrep-
ancy Reports (DRs)

occurs at all levels of integration and the System’s or
Product’s integration at the User’s Level 0 System.

In each of these cases, the objective is to create an
interface that is representative or realistic of the external
Operating Environment through simulation, emulation,
or stimulation (Chapter 33), the test article is unable to
discern the test from reality. This point brings us to our next
topic.

28.3.4 Creating the Test Article’s Operating
Environment

When we perform SITE, we subject the test article to Op-
erating Environment conditions and scenarios. This re-
quires creating the Higher Order Systems (Figure 9.3)
and Physical Environment Elements (Figure 9.4). These
include the Human Systems, Induced, and Natural En-
vironments. How do we do this?

There are several options for creating the Operating En-
vironment as illustrated in Figure 28.3. We can simulate,
stimulate, or emulate entities within the Operating Envi-
ronment or employ combinations of these options.

• Simulate To create a virtual model interface that
represents the performance-based behavioral responses
and characteristics of an external system.

• Stimulate To create an interface using actual equip-
ment or a test set that has identical physical perfor-
mance characteristics of the external system.

• Emulate To create an interface that identically mimics
the actual operations, processing sequences, and per-
formance characteristics of an external system.

Once we have created the Test Environment and ready for
testing, we need to establish some ground rules for ensuring
consistency and continuity of testing operations. This brings
us to our next topic, SITE conduct Operating Constraints.

28.3.5 SITE Conduct Operating Constraints

Two types of operating constraints govern SITE conduct:
(1) Standard Operating Practices and Procedures (SOPPs)
and (2) ATPs.

28.3.5.1 Standard Operating Practices and Proce-
dures (SOPPs) Testing SOPPs are Enterprise command
media—policies and procedures—that apply to test conduct
in test facilities and ranges. SOPPs focus on the protocols
and safe and proper handling of Equipment – test articles,
UUTs, and tools, human and environmental safety, labora-
tory equipment/test range procedures, security procedures,
emergency procedures, as well as the prevention of
hazards.
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28.3.5.2 Acceptance Test Procedures (ATPs)

Principle 28.3

Single Test-Multiple Requirements
Principle

Strive to verify as many specification re-
quirements as practical with a single test,
if appropriate.

ATPs are derived from each SPS or EDS Section 3.0 re-
quirements using their Section 4.0 Qualifications Provisions
verification methods. Since a key objective is to minimize
SITE costs and effort (Principle 22.4), some SPS or EDS
Section 3.0 Requirements should be verified simultaneously
with a single test. ATPs should reflect this approach and ref-
erence the requirements being verified.

28.3.6 Who Performs Formal Tests?

Questions often emerge regarding who should perform the
Part, Subassembly, Assembly, Subsystem, Product, and
System-Level tests. Two issues emerge from these questions
(1) Testing Personal Work Products and (2) Certifying Test
Personnel.

Issue 1: Testing Personal Work Products

Principle 28.4

Testing Conflict of Interest Principle

Testing and verification of personal work
products, especially contract deliverables,
is viewed as a conflict of interest and

should be objectively performed by an independent tester and
verifier.

Test activities range from informal to highly formal.
System designers should not test their own designs,
provided that someone else is capable. The underly-
ing philosophy of this principle is that it represents a
potential conflict of interest in objectively testing and
checking off your own work. In most Enterprises, SE
designers develop and may perform informal testing
of their work products, typically with peer level re-
view scrutiny. Some Enterprises assign Independent
Test Teams (ITTs) and assign them to perform testing
at all levels of integration. Some contracts also em-
ploy Independent Verification and Validation (IV&V)
(Chapter 13) contractor teams to perform testing and
verification, especially for software.

Issue 2: Certifying Test Personnel
Testing requires knowledge, discipline, observational
skills, adherence to safety practices, integrity, accu-
racy, and precision in reporting test results. In general,
due to the legal implications, formal ATP testing is
not for amateurs; it requires training and experience,
and often certification. Therefore, Enterprises should
establish in-house command media policies that only
testers, who have been trained and certified, are autho-
rized for a defined period of time to perform tests.

28.3.7 Simultaneous Testing Strategy for Multiple
Requirements

Testing can rapidly become very expensive and consume
valuable schedule resources. Remember, you only employ
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Verification by Test where Verification by Inspection,
Analysis, and Demonstration is insufficient (Figure 22.2) to
demonstrate full compliance with a requirement.

There are ways to efficiently and effectively perform tests
to reduce costs and schedule Principle 22.4. Some people
erroneously believe that you conduct one test for each
requirement. In general, analyze SPS or EDS requirements
to identify dependencies and sets of requirements that can be
verified simultaneously.

Author’s Note 28.3

Multiple Requirements
Verification Strategy

Figure 21.7 illustrates a key point
concerning the need to leverage one

test to verify several specification requirements. We can do
this by formulating a single test – Test Case - that will enable
us to verify a series of specification requirements (Principle
28.3). As a result, we employ a (1) single test to verify
Requirements A_111 → A_112 for Subsystem A’s EDS and
(2) single test to verify Requirements B_111 → B_112 →
B_113 for Subsystem B’s EDS. When Subsystems A & B
are integrated at the System Level, we can then employ a
single test to verify the Requirements A_11 → B_11 thread
as accomplishment of SPS Requirement SYS_11.

28.3.8 What Is Regression Testing?

Recognizing that you want to minimize the amount of rework
and retest, the challenge question is: if you discover a latent
defect—design flaw, deficiency, error, poor workmanship,
or component defects—that requires corrective action, what
test results may have been impacted by the failure must be
repeated before you can resume testing at the test sequence
where the failure occurred? The answer resides in Regression
Testing.

During Regression Testing, only those aspects of the
Entity’s design that were affected by a corrective action are
re-verified. Previously performed formal tests of the UUT
that were successfully completed and not affected by any
corrective actions typically are not re-verified.

28.3.9 Discrepancy Reports (DRs)

Principle 28.5

Discrepancy Reporting Principle

Discrepancy Reports (DRs) document a
discrepancy found during test article ver-
ification, not the source of the problem.

Principle 28.6

Corrective Actions Principle

Disposition Discrepancy Reports (DRs)
quickly for analysis to determine root
cause and corrective actions; allocate re-

sources based on the level of significance and priority. Where

appropriate, collaborate with the Acquirer Technical Repre-
sentative (ATR).

Inevitably, discrepancies occur between actual test data
and expected results specified in the SPS, EDS, or design
requirements such as drawings, schematics, and parts lists.
We refer to the occurrence of a discrepancy as a test event or
incident.

When test events such as anomalies or failures occur,
a Discrepancy Report (DR) is documented by the Test
Operator as a Test Event. The Test Director should es-
tablish ground rules for what qualifies as a test event in
the System Integration and Verification Plan (SIVP) and
event criteria for documenting a DR. At a minimum, DRs
document:

1. The test event, date, time.
2. Tester’s name and ID.
3. Test article name and identification by Model and

Serial Number.
4. ATP document title, number, revision, and date.
5. Conditions and prior sequence of steps preceding a

test event.
6. Test article identification.
7. Test architecture and environment configuration.
8. Reference documents and versions.
9. Specification requirement and expected results.

10. Results observed and recorded.
11. DR author and witnesses or observers.
12. Degree of significance requiring a level of urgency for

corrective action.

DRs have levels of significance that affect the test
schedule. They range from safety issues, data integrity
issues, isolated tests that may not affect other tests, and
cosmetic blemishes in the test article. As standard practice,
establish Classification Systems such as the one shown in
Table 28.1 to facilitate real-time decision-making concerning
DRs.

28.3.10 SITE Work Products

SITE work products that serve as ISO 9000 objective evi-
dence for a System or Entity, regardless of level of ab-
straction, include the following:

1. A set of dated and signed entries in the Test Log that
identify and describe:
a. Test Team—the name of the responsible Engineer-

ing team and lead.
b. Test Article—What level of test article was created

by integrating what version of lower level test
articles - identify by Model Number and Serial
Number.
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TABLE 28.1 Example Test Event DR Classification
System

Priority Test Event Event Description

1 Emergency
condition

All testing must be
TERMINATED
IMMEDIATELY due to
imminent DANGER to the
Test Operators, test articles, or
test facility.

2 Test component or
configuration
failure

Testing must be HALTED until a
corrective action is performed.
Corrective action may require
redesign or replacement of a
failed component.

3 Test failure Testing can continue if the failure
does not diminish the integrity
of remaining tests; however,
the test article requires
corrective action reverification
prior to integration at the next
higher level.

4 Cosmetic blemish Testing is permitted to continue,
but corrective action must be
performed prior to System
acceptance.

c. Test(s) cases and procedures performed.

d. Test environment configuration.

e. Test results—where recorded and stored.

f. Problems, conditions, or anomalies encountered and
identified.

2. Discrepancy Reports (DRs).

3. Hardware Trouble Reports (HTRs).

4. Software Change Requests (SCRs).

5. State of readiness of the test article for scheduling
formal verification.

In summary, when a Test Discrepancy (TD) occurs, the
Test Operator logs the test event and submits a Discrepancy
Report (DR) that does not assess the source of the prob-
lem. Later, analysis of the TD may reveal the source of the
problem to be Hardware, Software, or both, for example. As
a result, a Hardware Trouble Report (HTR) or a Software
Change Request (SCR) is submitted for approval and sub-
sequent corrective action. This completes our overview of
SITE fundamentals. Let’s shift our attention to Planning for
SITE.

28.4 PLANNING FOR SITE

SITE success begins with insightful planning to identify
the test objectives; roles, responsibilities, and authorities;

tasking, resources, and facilities; and schedule. Testing, in
general, involves two types of test plans for new system
development:

• The Test and Evaluation Master Plan (TEMP).

• The System Integration and Verification Plan (SIVP).

28.4.1 The Test and Evaluation Master Plan (TEMP)

In general, a TEMP is a User’s document that:

1. Identifies Critical Operational or Technical Issues
(COIs/CTIs) concerning integration of the System
being acquired into the User’s Level 0 System (Figure
8.4) to conduct missions.

2. Expresses how the User or an Independent Test Agency
(ITA) representing the User plans to validate a System,
Product, or Service.

From a User’s perspective, development of a new system
raises COIs/CTIs that could become showstoppers to validat-
ing satisfaction of an Enterprise’s operational need. There-
fore, the scope of the TEMP covers the OT&E period and
establishes objectives to verify resolution of COIs/CTIs.

The TEMP is structured to answer a basic question: does
the System, Product, or Service, as delivered, satisfy the
User’s validated operational needs in terms of resolving
the problem or issue space (Figure 4.3)? Answering this
question requires formulation of a set of scenario-driven test
objectives and TCs based on UCs and scenarios.

28.4.2 The System Integration and Verification Plan
(SIVP)

The SIVP is written by the System Developer and expresses
their approach for integrating, testing, and verifying the
System or Product. The scope of the SIVP, which is
contract dependent, covers the DT&E period from Contract
Award through the formal SVT (Figure 13.6), typically at the
System Developer’s facility.

The SIVP identifies objectives, Enterprise roles and
responsibilities, tasks, resource requirements, integration
strategy for sequencing testing activities, and schedules. De-
pending on contract requirements, the SIVP may include
delivery, Installation and Checkout (I&CO) at a User’s des-
ignated job site.

28.4.3 Developing the System Integration, Test,
and Evaluation (SITE) Strategy

The strength of SITE requires “up front” Systems Thinking
(Chapter 1) to ensure that the vertical integration occurs
Just-in-Time (JIT) in the proper sequences. Therefore, the
first step is to establish a SITE strategy.
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Figure 28.4 Integration Point (IP) Entity Relationships (ERs)

One method is to construct a System Integration and Test
Concept graphically via a series of IPs into an integration
decision tree as shown in Figure 28.4. The test concept
should reflect the following:

1. What component integration dependencies are critical?
2. Who is responsible and accountable for the integration?
3. When and in what sequence they will be integrated?
4. Where is the integration to be performed?
5. How verified components will be integrated into higher

level systems?

The SITE Process may require a single facility such as a
laboratory or multiple facilities within the same geographic
area, or integration across various geographical locations
via the Internet or some form of secure Intranet.While en-
gineers can design systems well and understand the basic
concept of system integration, a common shortcoming is
the ability to develop a strategy for planning the logical
and sequential steps integrating and testing multi-level en-
tities such as Figure 28.2. It is as if they are taking a test
and afraid of being wrong. Make a decision! Then, vali-
date it with your colleagues and take corrective action, as
necessary.

Beginning with a foundation of one verified item in
Figure 28.2, observe how lower level entities such as a

Subassembly is integrated into the existing level of integra-
tion at an IP. An AT is performed on the integrated set of
entities. On successful completion of this series of IPs and
ATs for Subassemblies, Assemblies, and Subsystems, a
System-Level ATP is performed.

Once the general SITE strategy of IPs and ATPs is
established, the next step is to detail how the sequential steps
will be orchestrated and documented. One approach is to
establish an Entity Relationship Diagram (ERD) such as the
one shown in Figure 28.4.

Each SIVP should define the approach for SITE IPs and
ATPs based on ERs such as:

• Each IP may consist of one or more Verification Events
such as Event XX1 and Event XX2, representing a spe-
cific specification requirement or sets of specification
requirements to be verified.

• Each Verification Event may require one or more Veri-
fication Methods such as Inspection, Analysis, Demon-
stration, and Test assigned as verification requirements
to be performed for each specification requirement or
sets of specification requirements.

• Each Verification Method may require one or more TCs
representing how a specification requirement should be
tested in terms of Acceptable and Unacceptable Input
and Output ranges illustrated in Figure 3.2.
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• Each Test Case may require one or more ATPs that
have been approved for verifying each specification
requirement.

28.4.4 Destructive Test Sequence Planning

During the final stages of SITE DT&E, several test articles
may be required. The challenge for SEs is: how and in what
sequence do we conduct non-destructive tests to collect data
to verify design compliance prior to conducting destructive
test that may destroy or damage the test article? Think
through these sequences carefully. Once the SITE plans
are in place, the next step requires establishing the test
organization.

28.5 ESTABLISHING THE TEST ORGANIZATION

One of the first steps following approval of the SIVP is estab-
lishing the test organization and assigning test roles, respon-
sibilities, and authorities. Key roles include Test Director,
Lab Manager, Tester, Test Safety Officer or Range Safety
Officer (RSO), Quality Assurance (QA), Security Represen-
tative, and Acquirer/User Test Representative.

28.5.1 Test Director Role

The Test Director is a member of the System Developer’s
project and serves as the key decision authority for planning
and orchestrating testing activities. SITE activities bear the
impact of (1) poor specification requirements that have
multiple interpretations (Principle 19.9) that may result in
potential conflicts with the Acquirer or User and (2) failure
to accommodate test ports and test points to collect test data,
especially after test articles are sealed following verification.
Therefore, the Test Director role should be assigned early
and be a key participant in developing the SE Design Process
strategy (Figure 12.3, 12.6, and 13.6).

At a minimum, primary responsibilities for the Test
Director include:

1. Develop and implement the SIVP.

2. Chair the TEWG, if applicable.

3. Plan, coordinate, and synchronize Test Team task
assignments, resources, and communications.

4. Exercise authoritative control over the test configura-
tion and environment.

5. Identify, assess, and mitigate test risks.

6. Review and approve test conduct rules, TCs, and test
procedures.

7. Account for SITE Occupational, Environmental,
Safety, and Health (OES&H).

8. Train and certify test personnel.

9. Collaborate with the User or their Acquirer Test
Representative (ATR), when applicable, to prioritize
and expeditiously disposition DRs and test issues.

10. Verify DR corrective actions.

11. Accomplish contract test requirements.

12. Archive and preserve test data and results.

13. Conduct test failure investigations.

28.5.2 Lab Manager Role

The Lab Manager is a member of the System Developer’s
project and supports the Test Director. At a minimum, the
primary Lab Manager responsibilities include:

1. Participate in the development of the SPS and EDSs to
identify SITE test equipment for acquisition, calibra-
tion, and alignment.

2. Implement the test configuration and environment.

3. Acquire test tools and equipment.

4. Establish laboratory SOPPs for the project.

5. Ensure test tools and equipment are properly calibrated
and aligned.

6. Create, review, and maintain the Test Log.

7. Plan and implement Test Operator training can certifi-
cation.

28.5.3 Test Safety Officer (TSO) or Range Safety
Officer (RSO) Role

Since testing often involves unproven designs and test con-
figurations, safety is a critical issue, not only for test person-
nel, but also for the test article and facilities. Therefore, every
project should designate a Test Safety Officer (TSO).

In general, there are two types of Test Safety Officers
(TSOs): SITE Test Officer and Range Safety Officer (RSO).

• The Test Safety Officer is a member of the System
Developer’s Enterprise and supports the Test Director
(TD) and Lab Manager.

• The RSO is a member of a test range, if applicable.

In some cases, RSOs have authority to destruct test
articles such as rockets and missile should they become
unstable and uncontrollable during a test flight or mission
and pose a threat to Personnel, Facilities, Equipment,
and/or the public.

28.5.4 Test Operator Role

As defined by Principle 28.4, System, Product, or Service
designers should not test their own designs due to the poten-
tial COI and objectivity. However, at lower levels of abstrac-
tion, projects often lack the resources to adequately train Test
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Operators. So, System Developer personnel often perform
their own informal testing. For some contracts, Independent
Verification & Validation (IV&V) Teams (Chapter 13) inter-
nal or external to the project or Enterprise may perform the
testing.

Regardless of who performs the Test Operator role, they
must be trained in how to safely perform the test, formally
record and document results, and deal with anomalies. Some
Enterprises formally train personnel and refer to them as
Certified Test Operators (CTOs).

28.5.5 QA Representative

At a minimum, the System Developer’s Quality Assurance
(QA) representative is responsible for assuring compliance
with contract and specification requirements, Enterprise
and project command media, the SIVP, and ATPs. For
software-intensive System development efforts, a Software
Quality Assurance (SQA) representative may also be as-
signed to the project.

28.5.6 Security Representative

At a minimum, the System Developer’s Security Represen-
tative, if applicable, is accountable for the assuring com-
pliance with contract security requirements, Enterprise and
project command media, the project’s security plan, and
ATPs.

28.5.7 Acquirer Test Representative (ATR)

Principle 28.7

Acquirer Technical Representative
ATR Principle

Every System Acquirer should appoint
one Test Representative who serves with

authority as the single Voice of the Customer (VOC)
representing the Acquirer-User community concerning SITE
decisions.

Throughout SITE, test issues emerge that require an
Acquirer decision. In addition, some Acquirers represent
several Enterprises, many with conflicting opinions and
agendas. This presents a challenge for a System Developer.

One solution is for the Acquirer Project Manager (PM) to
appoint one individual to serve (1) as their on-site Acquirer
Technical Representative (ATR) at the System Developer’s
facility and (2) single voice representing all Acquirer view-
points and decisions. Primary responsibilities of the ATR
are to:

1. Serve as the single, technical point of contact for all
Acquirer and User technical and contract interests and
communications.

2. Collaborate with the Test Director to resolve any
SITE-related COIs/CTIs that affect Acquirer-User in-
terests.

3. Where applicable by contract, collaborate with the Test
Director to assign priorities for DRs resolution and
corrective action.

4. Where required by contract, review and coordinate
approval of ATPs.

5. Where appropriate, provide a single set of ATP com-
ments that represent a consensus of the Acquirer-User
Enterprises.

6. Witness and formally approve ATP results.

28.6 DEVELOPING TEST CASES (TCs) AND
ACCEPTANCE TEST PROCEDURES (ATPs)

In general, ATPs provide the scripted strategy to verify
compliance with SPS or EDS requirements. In Chapter 21
(Figures 21.6 and 21.7), we discussed that an SPS or EDS
is derived from System or Entity UCs and scenarios task-
based capabilities. These are based on how the User envisions
deploying, operating, maintaining, sustaining, retiring, and
disposing of the System, Product, or Service. SPS and
EDS capability requirements address this range of usage.

ATPs should be written for a specific specification re-
quirement or more preferably sets of requirements (Principle
28.3) specification requirements. Although it is true ATPs
have linkages to specification requirements, the linkages are
indirect via TCs. Those who understand SE methods rec-
ognize that the UCs provide a foundation for developing
TCs that stress the System’s capabilities for a specified Op-
erating Environment. One UC, for example, might lead
to the identification of one to “n” TCs that represent test
scenarios that stress the System/Entity’s inputs and outputs
over acceptable and unacceptable ranges (Figure 3.2 and
20.4). When identified, TCs become the basis for develop-
ment of ATPs.

In general, the ATPs script the prescribed steps required to
demonstrate that the system, product, or service provides the
specified set of capabilities documented in the SPS or EDS.
To establish a test strategy, we begin with TCs that verify
these capabilities as shown in Table 28.2.

ATPs are generally of two types: (1) procedure based and
(2) scripted scenario based (ATs).

28.6.1 Procedure-Based ATPs

Procedure-based ATPs provide detailed, scripted instruc-
tions that describe test configurations, environmental con-
trols, expected results and behavior, and other details. Test
Operators are required to follow prescribed, multi-step
scripts to establish a specific test configuration, set switch
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TABLE 28.2 Derivation of TCs

Phase of Mission
Operation

Mode of
Operation

Use Cases
(UCs)

UC Scenarios Required Operational
Capability (ROC)

Test Cases
(TCs)

Pre-Mission Phase Mode 1 UC #1.0 ROC #1.0 TC #1.0
Scenario #1.1 ROC #1.1 TC # 1._

… TC # 1._
Scenario #1.n ROC #1.n TC # 1._

… TC # 1._
Mode 2 UC #2.0 ROC #2.0 TC # 2.0

Scenario #2.1 ROC #2.1 TC # 2._
… TC # 2._

Scenario #2.n ROC #2.n TC # 2._
… TC # 2._

UC #3.0 ROC #3.0 ROC #3.0
Scenario #3.1 ROC #3.1 TC # 3._

… TC # 3._
Scenario #3.n ROC #3.n TC # 3._

… TC # 3._
Mission Phase Etc.
Post-Mission Phase Etc.

Note: TCs shown in the table symbolically represent a range of TC variations. As previously discussed, employ a variety of TCs to test
the System/Entity’s inputs/outputs over acceptable and unacceptable ranges as illustrated in Figures 3.2 and 20.4.

positions, and control inputs to stimulate or enter into the
System and document the results. Each test procedure
step identifies the expected results for verification against
specification requirements. Consider the example shown in
Table 28.3 for a secure Web site log-on test by an autho-
rized user.

28.6.2 Scenario-Based ATPs

Scenario-based ATPs provide general guidance in the form
of operational scenarios for use during DT&E or OT&E
(Chapter 12) field exercises. Detail actions such as switch set-
tings – switchology - and configuring the software required
to operate the System are left to the System Test Operator.

Scenario-based ATPs employ objectives or missions
as key drivers for Test or Demonstration verification
methods. Thus, the ATP tends to involve very-high-level
statements that describe the operational mission scenario
to be accomplished, objective(s), expected outcome(s), and
performance. In general, scenario-based ATPs defer to the
Test Operator’s knowledge of an aircraft, for example, as a
surrogate User of the System to determine which sequences
of switches and buttons — switchology —to use based on
operational familiarity with the test article.

Scenario-based ATP data sheets generally include a field
for recording the actual measurements and observations.
Designated witnesses from the System Developer, Acquirer,
and User Enterprises as well as System Developer QA/SQA
representatives witness and authenticate the ATP results as
Quality Records (QRs).

28.7 PERFORMING SITE TASKS

SITE activities are more than conducting tests. As a “SITE
System,” they are mission-oriented, provide capabilities, and
consist of three phases of operation: Pre-Testing Phase,
Testing Phase, and a Post-Testing Phase (Figure 10.17).
Each phase consists of a series of tasks for integrating,
testing, evaluating, and verifying the design of a System or
Entity. What occurs during each of the phases? Remember,
every system is unique. The discussions that follow represent
generic test tasks that apply to every level of abstraction.
These tasks are highly interactive and may iterate numerous
times within a Mission Phase of Operation, especially in the
Testing Phase.

Task 1.0: Perform Pre-Test Activities

∘ Task 1.1: Develop TCs and ATPs

∘ Task 1.2: Configure the Test Environment
(Figure 28.1).

∘ Task 1.3: Prepare and instrument the test article(s)
for SITE.

∘ Task 1.4: Integrate the Test Article into the Test
Environment (Figure 28.1).

∘ Task 1.5: Perform a test readiness inspection and
assessment.

Task 2.0: Test and Evaluate Test Article Performance

∘ Task 2.1: Perform informal testing.

∘ Task 2.2: Evaluate informal test results.
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TABLE 28.3 Example Procedure-Based AT Results.

Test Step Test Operator
Action to
be Performed

Expected Results Measured,
Displayed, or
Observed Results

Pass/Fail
Results

Operator Initials
and Date

QA

Step 1 Using the left mouse
button, double click on
the web site icon

Web browser is launched
to selected web site

Step 2 Using the left mouse
button, click on the
“Logon” button.

Logon access dialog box
opens up.

Step 3 Position the cursor within
the User Name field of
the dialog box.

Fixed cursor blinks in field

Step 4 Enter user ID (max. of 10
alphanumeric
characters)

Field displayed

∘ Task 2.3: Optimize design and test article perfor-
mance.

∘ Task 2.4: Prepare test article for formal verification
testing.

∘ Task 2.5: Perform a “dry run” test to check out ATP.

∘ Task 2.6: Collaborate with the ATR to invite Acquire
and Users (Principle 18.2) to witness formal accep-
tance tests.

∘ Task 2.7: Coordinate with internal QA /SQA to
witness test.

Task 3.0: Verify Test Article Performance Compliance

∘ Task 3.1: Conduct a Test Readiness Review (TRR)
(Figure 18.1).

∘ Task 3.2: Formally verify the test article.

∘ Task 3.3: Authenticate and test results and data.

Task 4.0: Perform Post-test Follow-up Actions

∘ Task 4.1: Prepare item Verification Rest Reports
(VTRs).

∘ Task 4.2: Archive test results and data.

∘ Task 4.3: Disposition Discrepancy Report (DR)
analysis and corrective actions.

∘ Task 4.4: Refurbish/recondition test article(s), if
permissible, for delivery.

Formal tests are scripted using approved ATPs, which
identify test articles, define Test Environment configurations,
TCs, test procedures, and so forth. Tests often have problems
with cabling, test article failure, ATP issues, and so on.
Therefore, informal “dry runs” are encouraged to ensure
everything is working properly prior to conducting a formal
ATP, especially if the System Acquirer, their TR, or User will
be attending.

Despite careful planning, unplanned test events do occur
during formal ATPs as a result of Test Discrepancies (TDs).
When a TD occurs, a DR must be logged and submitted
indicating a non-compliance issue. A DR should not identify
the root cause of the discrepancy (Principle 28.5), only its
occurrence.

Principle 28.8

Root Cause(s) Principle

Identify the root, most likely, or probable
cause(s) of discrepancy, incident, or acci-
dent events via a process of elimination of
contributing factors.
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Figure 28.5 Test Discrepancy Source Isolation Tree

When a test anomaly or failure occurs and a DR is
recorded, a determination has to be made concerning the
significance of the problem on the test article and test
plan as well as isolation of the problem source. While the
general tendency is to focus on the test article due to its
unproven design, the source of the problem can originate
from any one of the Test Environment elements shown in
Figure 28.1 such as a Test Operator or Test Procedure error;
test configuration or Controlled Operating Environment
problem; or combinations of these. From these contributing
elements, we can construct a Test Discrepancy Fault Isolation
Tree such as the one shown in Figure 28.5 to rule out by
a process of elimination until the root or probable cause is
identified. Our purpose during an investigation such as this
is to assume everything is suspect and logically rule out
potential sources by a process of elimination.

A Word of
Caution 28.1

Discrepancy, Incident, or Accident
Root Causes

Regarding the “root cause(s)” theme of
Principle 28.8, recall our discussion in
Chapter 24 of Reason’s (1990) Swiss

Cheese Model that most incidents and accidents are often
the result of multiple contributory causes – accident waiting

to happen – due to latent defects, not one single cause
(Principle 24.4).

Once the DR and the conditions surrounding the failure
are understood, our first decision is to determine if the
problem originated external or internal to the Test Facility, as
applicable. For those problems originating within the facility
(Figures 28.1 and 28.5), decide if this is a Test Operator,
Test Article, Test Configuration, Test Environment, or Test
Equipment problem. Observe how this methodology exploits
the Half Split Method (Principle 28.2) to determine the root
cause(s).

Since the scripted ATP is the mechanism for orchestrating
the test, start with it and its test configuration. Example TD
investigation questions include:

1. Is the Test Configuration correct?

2. Was the test environment controlled at all times?

3. Did the operator perform the steps correctly

4. In the proper sequence without bypassing any?

5. Is the test procedure flawed? Does it contain errors?

6. Was a “dry run” conducted with the test procedure to
verify its logic and steps?

If so, the test article may be suspect.
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A Word of
Caution 28.2

Test Discrepancy (TD) Scene
Protection

One of the shortcomings of formal ATP TD
Events is that Engineers instinctively start
dismantling the Test Configuration to iso-

late the problem. DO NOT TOUCH THE TEST CONFIGU-
RATION! Formal TD Events are analogous to Crime Scene
Investigations (CSI) that must be cordoned off and remain
untouched until an investigative team has arrived on scene
to perform the investigation. Disturbing a formal ATP Test
Configuration is amateurish and unprofessional.

While people tend to rush to judgment and take correc-
tive action, validate the problem source by reconstructing
the “scene of the event.” This includes test configuration, op-
erating conditions, sequence of events, test procedures, and
observations as documented in the test log, DR, and test per-
sonnel interviews.

If the problem originated with the Test Article, retrace the
development of the test article in reverse order to the appro-
priate System Development Process (Figure 12.2). Was the
item built correctly per its design requirements? Was it prop-
erly inspected and verified? If so, was there a problem due
to component, material, process, or workmanship defect(s)
or in the verification of the Entity? If so, determine if the
test article will have to be repaired, scrapped, re-acquired,
or retested. If not, the design or specification may be
suspect.

Audit the design. Is it fully compliant with its specifica-
tion? Does the design have an inherent flaw? Were there er-
rors in translating specification requirements into the design
documentation? Was the specification requirement misinter-
preted?

• If so, redesign to correct the flaw or error will have to
be performed.

• If not, since the specification establishes the com-
pliance thresholds for verification testing, you may
have to consider (1) revising the specification and
(2) reallocating performance budgets and design
safety margins. On the basis of your findings, recom-
mend, obtain approval, and implement the corrective
actions.

A Word of
Caution 28.3

Ad hoc Revisions to Specification
Requirements

Regarding the revision of the specification
or design, these should be informed deci-
sions that are documented with supporting

rationale, not ad hoc decisions

Then, perform regression testing starting with the last test
that was unaffected by the discrepancy.

28.8 COMMON INTEGRATION AND TEST
CHALLENGES AND ISSUES

SITE practices often involve a number of SE challenges and
issues. Let’s explore some of the more common ones.

Challenge 1: SITE Data Integrity
Deficiencies in establishing the test environment, poor
test assumptions, improperly trained and skilled test
operators, and an uncontrollable test environment com-
promise the integrity of Engineering test results. En-
suring the integrity of test data and results is crucial
for downstream decision making involving formal ac-
ceptance, certification, and accreditation of the system,
product, or service.

WARNING

Warning 28.1

Distortion and Misrepresentations of
Test Data

Purposeful actions to distort or misrepre-
sent test data are a violation of professional and business
ethics as well as Federal law. Such acts are subject to seri-
ous criminal penalties that are punishable under federal or
other statutes or regulations.

Challenge 2: Biased or Aliased SITE Data Measure-
ments
When instrumentation such as measuring devices are
connected or “piggybacked” to “test points,” the re-
sulting impact can bias or alias test data and/or de-
grade system, product, or service performance. Test
data measurements should not load or degrade System
performance. Thoroughly analyze the impact of poten-
tial effects of test device alias or bias System perfor-
mance before instrumenting a test article. If there are
aliasing or biasing problems, investigate other analyt-
ical methods to derive the data implicitly from other
data. Decide:

1. How critical the data is needed.

2. If there are alternative data collection mechanism or
methods.

3. Whether the data “value” to be gained is worth the
technical, cost, and schedule risk.

Challenge 3: Preserving and Archiving Test Results
and Data
The purpose of SITE and system verification is to
prove that a system, product, or service fully com-
plies with its SPS or EDS. The validity and integrity
of the compliance decision reside in the formal ATP
QRs recorded as objective evidence of test and com-
pliance verification results. Therefore, test data re-
sults recorded during a formal ATP must be witnessed,
authenticated, and preserved by archiving it in a
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permanent, safe, secure, and limited access facility.
This data may be required to support:

∘ A Functional Configuration Audit (FCA) and a
Physical Configuration Audit (PCA) (Chapters 12
and 13), if required, prior to System delivery and
formal acceptance by the Acquirer for the User.

∘ Analyses of System failures or problems in the field.

∘ Legal claims.

Most contracts have requirements and Enterprises have
policies that govern the storage and retention of con-
tract data, typically several years after the completion
of a contract.

A Word of
Caution 28.4

Retention of Data Records

Always consult your contract concerning
requirements for the storage and retention
of data records.

Challenge 4: Test Data Authentication
When formal test results and data are recorded, the
validity of the verification data should be authenti-
cated, depending on end usage. Authentication oc-
curs in a number of ways. Generally, the authenti-
cation is performed by an ITA or individual within
the System Developer’s Enterprise’s QA organization.
This individual should be trained and authorized to
stamp formal test results and data (Table 28.3) in
accordance with prescribed policies and procedures.
Authentication may also be required by higher level
bonded, external Enterprises. At a minimum, authen-
tication criteria include witnessed affirmation of the
following:

∘ Test article and test environment configuration.

∘ Test operator qualifications and methods.

∘ Test assumptions and operating conditions.

∘ Test events and occurrences.

∘ Compliance verification of expected results.

∘ Pass/Fail decision for each test.

∘ TDs.

Challenge 5: One Test Article and Multiple Integra-
tors and Testers
Because of the expense of developing large com-
plex systems, multiple integrators may be required to
work in shifts such as 8 hours to meet development
schedules. This potentially presents problems when
integrators on the next shift waste time uninstalling
undocumented “patches” to a configuration “Build”
(Figures 15.5 and 15.6) such as software and ca-
ble/jumper wire changes from a previous shift. There-
fore, each SITE work shift should begin with a joint

coordination meeting of persons going “off-shift” and
coming “on-shift.” The purpose of the meeting is to
make sure everyone communicates and understands
the current configuration “build” that transpired during
the previous shift.

Challenge 6: Deviations and Waivers
When a System, Product, or Service fails to meet
its performance, development, and/or design require-
ments, the item is tagged as non-compliant. For hard-
ware, a Non-Conformance Report (NCR) documents
the discrepancy and dispositions it for corrective ac-
tion by a Material Review Board (MRB). For soft-
ware, a software developer submits a Software Change
Request (SCR) to a Software Configuration Control
Board (SCCB) for approval. Non-compliances are
sometimes resolved, depending on the circumstances,
by issuing a deviation or waiver (Chapter 18), rework,
or scrap without requiring a CCB action.

Challenge 7: Equipment and Tool Calibration and
Certification

Principle 28.9

Certified Tools & Equipment Principle

To avoid invalidating verification test re-
sults, ensure that all required test tools and
equipment are certified to be calibrated and

aligned to source standards prior to each test.

The credibility and integrity of a Verification and Vali-
dation (V&V) effort are often dependent on Enabling
System:

1. Test Facilities and Equipment to establish a
controlled Operating Environment for System
modeling, simulation, and testing.

2. Special tools used to make precision adjustments in
System/Entity capabilities and outputs.

3. Instrumentation used to measure and record the
System’s environment, inputs, and outputs.

4. Tools used to analyze the System responses.

All of these factors:

1. Require calibration, alignment, or certification to
national and international standards for weights,
measures, and conversion factors.

2. Must be traceable to national/international stan-
dards.

Therefore, avoid rework by ensuring that V&V activi-
ties have technical credibility and integrity. Begin with
a firm foundation by ensuring that test equipment and
tools are calibrated, certified, and traceable to source
standards within a prescribed time period as marked
on the item.
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Challenge 8: Failure to Provide Test Data Access
Points

Principle 28.10

Test Data Access Principle

Anticipate what types of access ports
Hardware test points, and Software
mnemonic data will be required from En-

tities at each level of integration to collect test data required
for specification requirements and design verification.

During specification development and System/Entity
Design, one of the characteristics exhibited by the ad
hoc, SDBTF-DPM Engineering Paradigm Enterprises
is a lack of Systems Thinking (Chapter 1) concerning
how SITE test data will be acquired. To maintain the
integrity of Design Verification (Chapter 13) for a
System at various levels of integration, verified test ar-
ticle UUTs are typically sealed by QA to prevent unau-
thorized opening, entry, tampering, or intrusion. This
presents a major problem, especially if a test at a higher
level of integration requires test data via Hardware
or Software test points within the sealed unit. Be-
ginning with specification development, this point il-
lustrates why it is so critically important to do more
than write “shall” statements into a specification out-
line. The Test Director (TD) is a key collaborating
decision-maker that should challenge System Devel-
opment Team (SDT) and Product Development Teams
(PDTs) preparing specifications. For every specifica-
tion requirement, document a one or two sentence ver-
ification plan for how the requirement will be verified,
what data, test ports and text points, and test instrumen-
tation and equipment will be required and at what IPs
(Figure 28.2).

Challenge 9: Insufficient Time Allocations for SITE
Perhaps, one of the most serious challenges is allocat-
ing the right amount of time for SITE activities due
to poor project planning and implementation. When
Enterprises bid on System Development contracts,
executives bid aggressive schedules based on some
perceived “clever strategy” to win the contract. This
occurs despite the fact that the Enterprise may have had
a long-standing history of poor contract performance
such as cost/schedule overruns.

Heuristic 28.1 SITE Time Allocation

As a rule of thumb, a project should dedicate at least 40% of
its schedule to SITE.

Theoretically, the more testing you perform, the more
latent defects you can discover due to design defects
such as deficiencies, flaws, or errors. While every

system is different, as a “starting point” allocate at
least 40% of the project schedule as a starting point
for perform SITE. Most contract projects fall behind
schedule and compress that 40% into 10%. As a result,
they rush SITE activities, inadequately test the system,
and deliver it with latent defects that could have been
discovered with more time for SITE. Figure 13.2 and
Table 13.1 illustrate how failure to properly perform
adequate testing to remove latent defects only results
in more costly problems later.
There are several reasons for this:

1. Bidding aggressive, unrealistic schedules to win the
contract.

2. Allowing the project performance to get off sched-
ule, beginning with Contract Award, due to a lack
of understanding of the problem and solution spaces
(Figures 4.3 and 4.7) or poor data delivery perfor-
mance by external Enterprises.

3. Rushing incomplete designs through the Compo-
nent Procurement and Development Process to and
into SITE (Figure 12.2) “check the box” and boldly
proclaim that SITE was entered “on time” and then
attempt to finish the designs during SITE.

4. Assigning project management that understands
meeting schedules and making profits but does
not understand or appreciate the magnitude of
the technical problem(s) to be solved nor how to
orchestrate successful contract implementation and
completion.

To better appreciate the significance of this challenge,
refer to the Epilog discussion. Specifically, Jet Propul-
sion Laboratory (JPL) Chief Engineer Brian Muir-
head’s observations concerning the importance and
criticality of System Validation through design miti-
gation testing and a robust test program of the working
system.

Challenge 10: Discrepancy Reporting Obstacles to
SITE
One of the challenges of SITE is staying on schedule
while dealing with TDs. Establish a DR Priority
System to delineate DRs that do not:

1. Affect Personnel or Equipment System Ele-
ments safety.

2. Jeopardize or invalidate higher-level test results.

Establish Go/No-Go DR criteria for proceeding to the
next level of SITE.

Challenge 11: DR Implementation Priorities
Humans, by nature, like to work on “fun” things and
the easy tasks. So, when DR corrective actions must be
implemented, developers tend to work on those DRs
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that give them “instant credit” for completion. As a
result, the challenging DRs get pushed to the bottom
of the stack. Then, progress report metrics proudly
proclaim the large quantity of DR corrective actions
completed.
In an Earned Value Management (EVM) context, you
have a condition in which 50% of the DRs recompleted
the first month. Sounds great! Lots of productivity!
Wrong! Here’s the problem. Only 50% of the quantity
of DRs that represent 10% of the total work effort to
be performed has been completed. Therefore, project
technical management, who also contribute to this
decision making, need to do the following:

∘ Prioritize and schedule DRs for implementation.

∘ Allocate resources based on those priorities.

∘ Measure EV progress based on relative importance
or value of DRs.

In this manner, you tackle the challenging problems
first. Executive management and the Acquirer need to
understand and commit their full support to the ap-
proach as “the right thing to do!” As Stakeholders, they
need to be participants in the prioritization process.

Challenge 12: Paragraph versus Singular Require-
ments
In addition to the SE Design Process challenges,
the consequences of paragraph-based specification re-
quirements arise during SITE. The realities of using
a test to demonstrate several dependent or related re-
quirements scattered in paragraphs throughout a spec-
ification can create many problems. Think smartly “up
front” when specifications are written and create singu-
lar requirements statements that specify one and only
one performance-based outcome (Principle 22.9) that
can be easily checked off as completed.

Challenge 13: Credit for Requirements Verified
The issue of paragraph versus singular requirements
also presents challenges during verification. The
challenge is paragraph-based requirements cannot be
checked off as verified until all of the requirements
in the paragraph have been verified. Otherwise, if the
paragraph has 10 embedded requirements and you
have completed nine, the requirement is considered to
be unverified until the tenth requirement is verified.
Create singular requirement statements!

Challenge 14: Refurbishing/Reconditioning Test
Articles
SVT articles, especially expensive ones, may be
acceptable for delivery under specified contract con-
ditions such as after refurbishment and touch-up.
Establish acceptance criteria before the contact is
signed concerning how SVT articles will be disposi-
tioned after the completion of System testing.

A Word of
Caution 28.5

Refurbishment of Test Articles as
Deliverables

Always consult your contract and your
Enterprise Project, Legal, or Contracts or-
ganizations for guidance concerning refur-

bishment of test articles as deliverables.

Challenge 15: Calibration and Alignment of Test
Equipment
Testing is very expensive and time consuming. When
the SVT is conducted, most projects are already behind
schedule. During SITE, if it is determined that a test
article is misaligned or your test equipment is deemed
out of calibration by the date stamp on the Equipment
item, you have test data integrity issues to resolve.
Do yourself a favor. Ensure that all test equipment and
tools are certified as calibrated and aligned before you
conduct formal tests. Since calibration certifications
have expiration dates, plan ahead and have a contin-
gency plan to replace test equipment items with cal-
ibration due to expire prior to and during the SITE.
Tag all Equipment and tools with EXPIRED calibra-
tion notices that are highly visible; secure the expired
equipment until calibrated.

Challenge 16: Test “Hooks”
Test hooks provide a means to capture data mea-
surements such as test points and software data
measurements. Plan for these “hooks” during the SE
Design Process (Figures 12.3 and 12.6) and ensure
they do not bias or alias the accuracy of hardware
measurements or degrade software performance.
Identify and visibly tag each one for test reporting and
easy removal later. Then, when test article verification
is completed, make sure all test hooks are removed,
unless they are required for higher-level integration
tests.

Challenge 17: Anomalies
Anomalies can and do occur during formal SITE.
Ensure that Test Operator Personnel and Equipment
properly log the occurrence and configuration and
event sequences when anomalies occur to serve as a
basis to initiate your investigation.
Anomalies are particularly troublesome on large com-
plex systems. Sometimes, you can isolate anomalies
by luck; other times they are elusive, so you find
them unexpectedly. In any case, when anomalies occur,
record the sequence of events and conditions preced-
ing the event. What may appear to be an anomaly as
a single event may have patterns of recurrences over
time. Tracking anomaly records over time may provide
clues that are traceable to a specific root or probable
cause.

Challenge 18: Technical Conflict and Issue Resolution
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Technical conflicts and issues can and do arise during
formal SITE between the Acquirer’s Test Representa-
tive (ATR) and the System Developer, particularly over
interpretations of instrument readings or data.

∘ Firstly, ensure that the ATPs are explicitly stated in
a consistent manner that avoids multiple interpre-
tations. Where test areas may be questionable, the
TEWG should establish prior to or during the Test
Readiness Review (TRR) (Chapter 18) how conflicts
will be managed.

∘ Secondly, establish a Conflict and Issue Resolution
Process between the Acquirer (role) and System
Developer (role) prior to formal testing. Document
the Conflict and Issue Resolution Process in the
SIVP.

Challenge 19: Creating the Real-World Scenarios
During SITE planning, there is a tendency to
“check-off” individual requirements via individ-
ual tests during verification. From a requirements
compliance perspective, this has to be accomplished.
However, verifying each requirement as a discrete test
may not be desirable. There are two reasons: (1) cost
and (2) real world.

∘ Firstly, just because a specification has separately
stated requirements does not mean that you cannot
conduct a single test that verifies a multiple num-
ber of requirements to minimize costs (Principles
22.4 and 28.4). This assumes that the test is rep-
resentative of System usage rather than a random
combination of unrelated capabilities.

∘ Secondly, when Users employ systems to conduct
missions, there are typically multiple capabilities
operating simultaneously. In some cases, interac-
tions between capabilities may conflict. This can
be a problem, especially if you discover later after
individual specification requirement tests that in-
dicated the System is compliant with the require-
ments. This point emphasizes the need for UC and
scenario-based tests and TCs to exercise and stress
combinations of System/Entity capabilities to ex-
pose potential interaction conflicts while verifying
one or more specification requirements.

∘ Conceptually, Engineers test one or sets of require-
ments in sequential order beginning with SPS or
EDS Section 3.0 - verify Requirement 3.1.1, then
3.1.2, and so forth. Test completed!! Then, when
the User operates the Equipment with odd combi-
nations of capabilities operating simultaneously,
problems occur. Examples include mechanical
clearance problems, Electromagnetic Interference
(EMI), radiant heat sources, and so forth inter-
act with “components” of the system while it is
operating.

∘ Remember, Users do not use an SPS or EDS to
operate a system or product; Users operations and
SDS/EDS requirements compliance are two differ-
ent concepts but interrelated! So, the challenge is
two fold: (1) verify SPS and EDS requirements for
compliance and (2) exercise and stress the system
or product with various combinations of capabilities
operating simultaneously to understand their inter-
actions. Referring to the quote by Dr. Michael Grif-
fin (Warwick & Norris, 2010) in Chapter 2: “What is
needed is a new view that the core systems engineer-
ing function ‘is not primarily concerned with char-
acterizing the interactions between elements and
verifying that they are as intended.’ What’s more
important, he says, is understanding the dynamic be-
havior of those interactions.” The challenge is: how
do we create a realistic Test Environment and condi-
tions during System Verification that are representa-
tive of both the (1) external Operating Environment
and (2) combinations of operating conditions within
the system or product being verified.

∘ System Verification requires more than robotically
testing one or a set of requirements to verify com-
pliance with an SPS or EDS. System Verification
should verify that all most likely or probable com-
binations of capabilities operate and interact flaw-
lessly and seamlessly without mechanical, thermal,
electrical, or other types of interference that degrade
performance.

28.9 CHAPTER SUMMARY

Our discussion of SITE as one of the V&V practices explored
the key activities of DT&E under controlled laboratory
conditions. Work products and formal QRs such as test
results and data provide objective evidence (Principles 13.8
and 19.1 and Heuristic 19.1) that demonstrates and proves
compliance with the SPS or an EDS. Data collected during
SITE enables SEs to:

1. Develop confidence in the integrity of the Developmen-
tal Configuration.

2. Support the FCA and PCA.

3. Answer the key verification question: did we build the
System or Product in compliance with the SPS or
IDS?

28.10 CHAPTER EXERCISES

28.10.1 Level 1: Chapter Knowledge Exercises

1. What is SITE?
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2. When is SITE conducted?

3. What is the objective of SITE?

4. The text refers to a System/Entity’s “prescribed Oper-
ating Environment.” Where would you find it docu-
mented?

5. What is the relationship of SITE to DT&E and OT&E?

6. What is SITE expected to accomplish?

7. What are the Quality Records (QRs) and work products
of SITE?

8. What are the roles and responsibilities for SITE account-
ability?

9. What are the types of test plans?

10. What is a TEMP?

11. Who owns and prepares the TEMP?

12. What is an SIVP?

13. Who owns and prepares the SIVP?

14. Differentiate the contexts of the TEMP versus the SIVP.

15. What is a TEWG?

16. Why do you need test logs?

17. What is regression testing?

18. What is a DR?

19. When is a DR prepared?

20. How do you prioritize SITE activities and record SITE
deficiencies and issues?

21. What are TRRs? Why do you need to conduct them?

22. What are the SITE phases and supporting tasks for an
item?

23. What are SITE observations, defects, discrepancies, and
anomalies?

24. How do you prepare TRs?

25. What is the importance of formally approving and
archiving test data?

26. How do you certify test data?

27. What are some common SITE challenges and issues?

28. Why is it important to document the events leading up
to a test failure and documenting them in a DR?

28.10.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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SYSTEM DEPLOYMENT, OM&S, RETIREMENT,
AND DISPOSAL

On completion of final acceptance by the System Acquirer/
User, the next step is deployment and delivery of a system,
product, or service to job site(s) designated by the User
or to commercial markets for distribution. The deployment
and delivery may be accomplished by the User or part of a
System Development agreement. To most System Developer
Engineers, the “Engineering” of the System or Product is
viewed as complete and usage begins—end of story. This is
not true!

The System Development Phase is complete and the
System or Product, for example, has been transitioned to
the User’s Enterprise or organization. However, Systems
Engineering and Development (SE&D) continues with the
User or their technical representative’s SEs. This includes
performance monitoring to ensure that the system, product,
or service:

• Delivers the User required capabilities to conduct
missions.

• Provides operational utility, suitability, availability, us-
ability, effectiveness, and efficiency (Principle 3.11).

• Remains current and with no capability “gaps.”

The System’s Development was based on the User, Sys-
tem Acquirer, and System Developers establishing assump-
tions, objectives, and constraints—technical, technology,
cost, schedule, and risk—about how the system, product, or
service would perform its missions in a prescribed Operat-
ing Environment. On delivery, several questions emerge:

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

1. Does the system, product, or service perform as ex-
pected in meeting its performance-based outcomes and
objectives?

2. Is the User satisfied with the System’s performance?

3. Does the System or Product contain residual latent
defects—design flaws, errors, and deficiencies; defec-
tive materials and components; or workmanship prob-
lems?

This chapter addresses System Deployment; Operations,
Maintenance, and Sustainment (OM&S); Retirement; and
Disposal from an SE perspective. The intent is to answer the
three above-mentioned questions, especially for User SEs or
their technical representative. You may ask: what is the value
in doing this? There are four reasons:

1. If a system, product, or service contains latent defects,
there could be significant risk implications if left uncor-
rected, especially in terms of mission accomplishment
contributors such as security, health, safety, and envi-
ronmental.

2. Systems and products have finite useful service lives
(Figure 34.6), require on-going preventive and correc-
tive maintenance actions, and experience performance
degradation over time (Figure 4.25) that require in-
formed awareness of trends as well as the need for re-
calibration and realignment.

3. Achievement of a system or product’s useful service
life requires Condition-Based Maintenance (CBM)

http://www.wiley.com/go/systemengineeringanalysis2e
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(Chapter 34) through timely and disciplined monitor-
ing and inspection.

4. The success of operator-based systems requires con-
tinual awareness and tracking of User—operator and
maintainer—training, skills, proficiency, discipline,
and performance.

Contrary to popular belief, SE and Analysis of a System
or a Product continues after System Development and
throughout the Deployment and OM&S Phases of the Sys-
tem/Product Life Cycle. This will be the basis for our dis-
cussion in Chapter 29, especially for User SEs.

Author’s Note 29.1

System Deployment Paradigms

The concept and term, System
Deployment, is sometimes viewed
as reserved for military organiza-

tions. The reality is Users deploy system, products, and
services through their homes, business, and communities.
For example:

• Fire trucks, Emergency Services (EMS) and utility
vehicles are dispatched—deployed—to locations to
provide emergency assistance.

• A business or corporation’s Information Technology
(IT) organization deploys desktop, laptop, and so forth
computers and software downloads to offices via a
Local Area or Wide Area Network (LAN/WAN).

• A hospital deploys medical devices to patient rooms
and surgical suites to perform missions.

The term deployment is not unique to military organiza-
tions and is equally applicable to all Enterprises.

29.1 DEFINITIONS OF KEY TERMS

• Analysis Paralysis—Refer to the Chapter 27 Defini-
tions of Key Terms.

• Deactivation—An authoritative decision made to
phase-out/retire a specific series, version, or instance
of a System or Product active duty service for stor-
age or disposition for removal from inventory. Some
Enterprises use the term decommission.

• Deployment—The assignment, tasking, and physical
relocation of a system, product, or service to a new
location or staging area for storage or conducting
Enterprise missions.

• Deployment Facility—A physical facility—building,
structure, compound—that provides shelter, security,
protection, or an environment for a system, product, or
service during or between missions.

• Deployment Site—A geophysical location that repre-
sents where a system, product, or service is deployed
and serves as its base of operations.

• Disposal—“… 2.) The act of getting rid of excess, sur-
plus, scrap, or salvage property under proper authority.
Disposal may be accomplished by, but not limited to,
transfer, donation, sale, reclamation, demilitarization,
abandonment, or destruction.” (DAU, 2012, p. B-71)

• Disposal—“The act of getting rid of excess, sur-
plus, scrap, or salvage property under proper authority.
Disposal may be accomplished by, but not limited to,
transfer, donation, sale, declaration, abandonment, or
destruction.” (DAU, 2012, p. B-80)

• Disposal (Lifecycle perspective)—“All activities
associated with disposal management, dismantle-
ment/demolition/removal, restoration, degaussing, or
destruction of storage media and salvage of decom-
missioned equipment, systems, or sites.” (FAA, 2006,
Vol. 3, p. B-3)

• Disposal (Waste)—“The discharge, deposit, injection,
dumping, spilling, leaking, or placing of any solid
waste or HW into or on any land or water. The act
is such that the solid waste or HW, or any constituent
thereof, may enter the environment or be emitted into
the air or discharged into any waters, including ground
water (40 CFR 260.10).” (AR 200–1, 2007, p. 102)

• Facility Interface Specification (FIS)—A specifica-
tion that specifies boundary envelope space, envi-
ronmental conditions, capabilities, and performance
requirements to ensure that all facility interfaces are
capable, compatible, and interoperable with the new
System.

• Failure Reporting and Corrective Action Sys-
tem (FRACAS)—“A closed-loop system of data
collection, analysis and dissemination to identify
and improve design and maintenance procedures.”
(MIL-HDBK-470A, 1997, p. 1–3)

• Maintenance—Depot Level—“… includes any ac-
tion performed on materiel or software in the conduct
of inspection, repair, overhaul, or the modification or
rebuild of end-items, assemblies, subassemblies, and
parts. Depot-level maintenance generally requires ex-
tensive industrial facilities, specialized tools and equip-
ment, or uniquely experienced and trained personnel
that are not available in lower echelon-level mainte-
nance activities.” (DAU, 2012, p. B-131)

• Maintenance—Intermediate Level—“… includes
assembly and disassembly beyond the capability of the
organizational level … ” (DAU, 2012, p. B-131)

• Maintenance—Field Level—“… is comprised of
both (1) organizational maintenance, which includes
inspections, servicing, handling, preventative and
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corrective maintenance, and (2) Intermediate Mainte-
nance, … ” (Adapted from DAU, 2012, p. B-131.

• On-Site Survey—A planned, authorized, and coordi-
nated tour of a potential deployment site to understand
the physical context and terrain; natural, historical, po-
litical, and cultural environments; and issues related to
developing it to accommodate a system.

• Operational Site Activation—“The real estate, con-
struction, conversion, utilities, and equipment to pro-
vide all facilities required to house, service, and launch
prime mission equipment at the organizational and in-
termediate level.” (MIL-HDBK-881C, 2011, p. 229)

• Packaging—“The process and procedures used to pro-
tect materiel. It includes cleaning, drying, preserving,
packing, and unitization.” (DAU, 2012, p. B-160)

• Packaging, Handling, Storage, and Transportation
(PHS&T)—The combination of resources, processes,
procedures, design, considerations, and methods to en-
sure that all system, equipment, and support items are
preserved, packaged, handled, and transported prop-
erly, including environmental considerations, equip-
ment preservation for the short and long storage,
and transportability. Some items require special envi-
ronmentally controlled, shock isolated containers for
transport to and from repair and storage facilities via
all modes of transportation (land, rail, air, and sea).
(Product Support Manager Guidebook) (DAU, 2012, p.
B-160)

• Problem Report (PR)—A formal document of a prob-
lem with or failure of Mission System or Enabling
System hardware such as the Equipment System Ele-
ment.

• Retrofitting—The process of (1) improving Sys-
tem/Product capabilities through performance or
technology enhancement upgrades or (2) correcting
latent defects that were discovered after delivery.

• Site Development—The process of preparing a
site—real estate—to host deployment of a System
or Product and/or its facility for conducting System
of Interest (SOI) Mission System(s) and Enabling
System(s) OM&S. Includes the planning; licenses and
permits; grading; installation of utilities, sewer, com-
munications, landscaping, lighting, security perimeter
boundaries; and inspections.

• Site Installation and Checkout (I&CO)—The pro-
cess of unpacking, erecting, assembling, aligning, and
calibrating, installing, checking out, and activating a
System or Product to a state of readiness for mission
service.

• Site Selection—The process of identifying candidate
sites to serve as the location for a System Deployment
and making the final selection that balances operational

needs with environmental, historical, cultural, political,
and religious constraints or customs.

• Staging Area—A rendezvous location, gathering
point, warehouse for preparing to deploy a System
or Product for a mission that may require assembly,
integration, test, and verification.

• Sustainment—Refer to the Chapter 3 Definitions of
Key Terms

• System Retirement—A decision made to decommis-
sion and phase-out: (1) all instances of a specific type of
system from the Enterprise’s inventory or (2) specific
instances of a System/Product due to aging, obsoles-
cence, maintenance costs, and so forth.

29.2 APPROACH TO THIS CHAPTER

Principle 29.1

Fielded System Performance Principle

Continuously monitor and Assess System
or Product performance throughout the
System Deployment, OM&S, Phase-Out,

and Disposal Stages of the System/Product Life Cycle.

Due to the lack of Systems Engineering (SE) “up front”
and throughout the System Development, there is a general
misperception that SE activities end when an Engineered
System or Product has been verified, validated, and ac-
cepted. However, SE activities continue into the System
Deployment, OM&S, Retirement, and Disposal Phases of
the System/Product Life Cycle. The difference is that SE,
in general, shifts from System Development of the System
or Product to assessing the achievement of the verified
performance by the User. The scope of our discussions in
Chapter 29 focuses on SE activities and considerations re-
quired to plan for System Deployment, OM&S, Retirement,
and Disposal.

Due to the challenges and complexities of physical de-
ployment of small to large systems such as Heating, Venti-
lation, and Air Conditioning (HVAC) systems, automobiles,
heavy construction equipment, and military systems, Chapter
29 addresses these challenges. Smaller systems such as con-
sumer products and software typically do not (1) require
the Engineering of a large Enabling System to transport
the items, (2) contain sensitive measurement equipment that
must survive the transport, (3) have an impact on the envi-
ronment or roadways, (4) require sites and facilities to locate
the System. However, items such as software have their own
set of challenges. For example, consider the deployment of
new software loads to:

• A spacecraft traveling to the Moon or another planet
and returning to Earth.
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• Desktop computers in homes, offices, or vehicles, or
portable devices in which the current configuration
must be interrogated and the download or upload
verified.

Our discussion begins with System Deployment followed
by System OM&S. We conclude with a brief discussion of
System Retirement and Disposal.

29.3 SYSTEM DEPLOYMENT OPERATIONS

Most systems, products, or services require deployment or
distribution by their System Developer or Series Provider
to a User’s designated field site or staging area. During
the deployment, the System or Product may be subjected
to numerous types of Operating Environment states and
conditions such those listed earlier in Table 7.4.

System Deployment involves more than physically
deploying the System or Product. The System being
deployed, at a minimum and as applicable, may also require
key activities shown in Figure 7.5:

• Storage in and/or interface with temporary, interim, or
permanent warehouse or support facilities.

• Set-up, I&CO, and integration into the User’s
Higher-Order Level 0 or Tier 0 System (Figure
8.4).

• Training for Enabling System operators and main-
tainers.

• Calibration and alignment.

• Transport.

• Teardown.

• Instrumentation to monitor Natural and Induced
environmental conditions during deployment—
temperature, humidity, shock, and vibration.

• Retrofitting upgrades since its deployment.

• Reverification.

To accommodate these challenges, System or Product
designs and components must be sufficiently robust to sur-
vive in these conditions, either in an operational or in a
non-operational state. For a System Design Solution to
accommodate these challenges, the System Performance
Specification (SPS) must define and bound the required
operational capabilities and performance to satisfy these
conditions.

Accomplishing this task requires informed awareness
of the Operating Environment through site visits and
collaboration with the Stakeholders. In this context, the
scope of Stakeholders goes beyond the System or Prod-
uct’s Users and End Users. It includes the Enabling
Systems—transporters—and Stakeholders along the route

of deployment that include the public; Human Systems
and Natural Environments; and local, state, and federal
governments.

29.3.1 Objectives of System Deployment

The objective of System Deployment is to safely and securely
relocate or reposition a System or Product from one field
site or staging area to another. This requires using the most
efficient and effective methods that offer an optimal balance
of technical and operational performance; acceptable risk;
and least cost and schedule impacts.

To accomplish a deployment for most mobile systems, we
decompose this objective into several supporting objectives:

• Prepare the System or Product for shipment, includ-
ing disassembly, inventory, packaging of components,
and crating.

• Coordinate the land, sea, air, or space-based mode of
transportation.

• Transport the System to the new location, job site, or
staging area.

• Store the System or Product in a safe and secure area
or Facility.

• Install, erect, assemble, align, calibrate, checkout, and
verify capabilities and performance at the deployment
site.

29.3.2 System Deployment Contexts

System Deployment has three contexts:

• First Article(s) Deployment The relocation of first ar-
ticle systems to a test location range during the System
Development Phase to support User Operational Test
and Evaluation (OT&E) (Chapters 12) activities.

• Production Distribution Deployment The relocation
of production systems via distribution systems to User
sites or consumer accessible sites.

• Physical System Redeployment The relocation of a
deployed System during the System OM&S Phase to
a new field site or staging area.

Let’s address each of these contexts.

29.3.2.1 First Article Deployment Context First article(s)
deployment such as Developmental Configuration Engineer-
ing Models (Chapter 12) of large, complex systems can be
very risky. This is especially true due to the cost and length
of time required to replace a System due to long lead-time
items—Parts. Time and/or resources may prohibit build-
ing another system, especially if it is inadvertently destroyed
or damaged beyond repair during deployment. Depending
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on the System, first article deployment may involve mov-
ing a first article system to test facilities or test ranges for
completion of Developmental Test and Evaluation (DT&E)
(Chapters 12 and 13) or initiation of OT&E.

First article deployment for commercial systems typically
includes significant promotional fanfare and publicity. Re-
ferred to as a “rollout,” this event represents a key milestone
toward the physical realization of the end deliverable system,
product, or service. Examples of commercial system, prod-
uct, or service deployment include a limited number of test
markets for the Developmental Configuration (Chapters 12
and 16) to assess customer satisfaction and elicit feedback.

29.3.2.2 Physical System Redeployment Context Some
first article Systems or Products may be deployed to the
marketplace after completion of Developmental Configura-
tion Verification Validation (V&V), refurbishment, and Sys-
tem Acceptance by the System Acquirer or User. Examples
of Use Cases (UCs) for redeployment activities to be consid-
ered may be found in Table 6.3.

For road-based deployments of large Systems such as
cranes, heavy construction equipment, it is important to
know where the system is at all times for coordination of
traffic slowdowns, rerouting of traffic. This may require con-
sideration of specification requirements for vehicle escorts,
Global Positioning System (GPS), hand-held radios, or other
devices. For commercial product distribution, Packaging,
Handling, Storage, and Transportation (PHS&T), Table 20.1
should be a key consideration.

29.3.2.3 Production Distribution System Deployment
Context Small quantity or mass-produced Commercial
Systems or Products, in general, are packaged partially
or fully assembled and deployed in boxes or containers
for shipment to distribution centers as staging areas for
shipment to retailers. A key issue is often tracking of
deliveries—a problem space. The solution space requires
informed knowledge of the shipment’s geographic location
via bar codes at key pick-up or transfer points, Radio Fre-
quency Identification (RFID) chips in packages. Examples
include parcel-shipping services such as UPS, FedEx, or
DHL. This translates into specification requirements for the
deployment system.

29.3.3 Types of System Deployment

System Deployment requires a diverse set of SE consider-
ations that are dependent on the System or Product. For
example:

• Consumer products require distribution from manufac-
turers to retail outlets for purchase by consumers and
self-delivery or delivery by the seller or third parties.

• Small to large commercial or military systems typ-
ically require transport via one or more modes of
transportation—land, sea, air, or space—from a Sys-
tem Developer’s facility to a User’s designated site or
staging area by either the Developer, User, or third par-
ties.

Let’s explore each of these types of considerations.

29.3.3.1 Consumer Products Deployment Table 29.1
provides examples of SE considerations for commercial
product deployment.

29.3.3.2 Small to Large Commercial, Military, and so
forth Systems Deployment System Deployment of moder-
ate to large Systems or Products typically requires various
modes of transportation and planning.

A Word of
Caution 29.1

Systems Thinking and Deployment
Constraints

System Deployment is a key example of
Systems Thinking (Chapter 1) in action. A
common paradigm among Engineers and

others is to develop a System or Product, then figure out
how to ship or transport it to the User after it is designed. The
reality is: modes of transportation and statutory/regulatory
requirements impose constraints on system, product, or
service requirements. Therefore, learn to employ Systems
Thinking before launching into Engineering actions that may
have adverse or negative consequences.

System Deployment of moderate to large physical sys-
tems requires SE consideration in two areas:

TABLE 29.1 System Deployment—Commercial Prod-
uct Engineering Considerations

System Deployment
Considerations

Example Engineering
Considerations

Consumer products • Product packaging—antitheft
• Product assembly, cautions, and warnings
• Shipping container restrictions—length,

width, and height
• Shipping container lift points, tie downs,

and weight restrictions
• Shipping container markings—This Side

Up, stacking, wetness
• Bar code tracking and Point of Sale (POS)
• Radio Frequency Identification (RFID)

tracking devices
• Fluid volatility
• Battery removal and installation
• And so forth



628 SYSTEM DEPLOYMENT, OM&S, RETIREMENT, AND DISPOSAL

• Design of the System or Product and its interfaces.

• Operational deployment to a User’s site.

Let’s investigate each of these areas.

29.3.3.2.1 System-Specific Design and Interface
Considerations In general, deployment of these systems
requires consideration in the following areas:

• System and interface constraints.

• Freight shipping container constraints.

• Transport vehicle constraints.

• Environmental constraints.

Table 29.2 provides a summary of examples of these areas
that require SE consideration.

Since roads vary from riverbeds and streams, unimproved
roads, to interstate highways, shock and vibration become
a major factor. The same is true for rough handling of
containers. Consider the following example:

Example 29.1

System Application versus Deployment
Environments

As an SE, suppose you are specifying a
commercial desktop computer for use in a

benign office environment. That does not mean that it may
not encounter shock and vibration due to rough handling
or rough roads in-transit to the consumer. Employ Systems
Thinking to anticipate the deployment environment, bound,
and specify the Operating Environment requirements
accordingly.

29.3.3.2.2 System Deployment Operational Considera-
tions Once loaded onto a transport vehicle, the second
aspect of moderate to large system deployment is operational
considerations. The scope of operational considerations in-
cludes how the System or Product and its freight shipping
containers will be transported to the User’s site. This may
require sequences of transfers to different modes of trans-
portation such as land → air → land → space → land.
Table 29.3 provides a summary of examples of these areas
that require SE consideration.

Some Systems or Products may require shipping in
specialized containers that are environmentally controlled for
temperature, humidity, and protection from salt spray.

N

E
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Heading 29.1

Now that we have selected a deployment
site and investigated what is required to de-
ploy or transport the System or Product,
the next stage is to begin Operational Site
Selection and Activation, our next topic.

29.3.4 Operational Site Selection and Activation

Completion of the System Development Phase of the Sys-
tem/Product Life cycle occurs when the system, product, or
service is operationally ready to conduct missions at a spe-
cific site or base of operations. From an SE perspective, this
is a key performance-based outcome for Systems Thinking;
specifically, the derivation of requirements for the System
Development Phase.

This thought process leads to a chain of questions.

1. What is required for the System to become oper-
ationally ready to conduct missions? It requires the
following:
a. An operational SOI.

b. A Facility (if applicable).

c. A deployment site.

d. A mission.

e. Mission Resources.

f. Personnel
Using reverse logic, this expands into three other SE
questions:

2. What is required achieve a System operational readi-
ness? It requires the following:
a. Transport to the deployment site.

b. I&CO.

c. V&V of System operation.

d. Certification or recertification and operator licens-
ing, as applicable.

3. What is required to develop a Facility to accommo-
date the System? You need the following:
a. A geographical site that is ready for the Facility.

b. Facility Development plan, Facility Interface
Specification (FIS), Environment Impact Statement
(EIS) designs, funding, and permits that have been
approved.

c. A site that has been developed and ready for
Facility construction.

4. What is required to develop a site for the Facility?
You need to:
a. Select the deployment site.

b. Prepare the site.

c. Inspect the site for Facility development.

This chain of questions provides the basis for our discus-
sion. How do we do this?

This requires development and approval of an Opera-
tional Site Activation Plan.

The Operation Site Activation Plan describes the or-
ganization, roles, responsibilities and authorities, tasks,
resources, and schedule required to develop or modify and
activate a new or existing facility. One of the key objectives
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TABLE 29.2 System Deployment Engineering Considerations

System Deployment Considerations Example Engineering Considerations

System and interface constraints • Bar code tracking
• Length, width, height, and weight restrictions
• Retraction or removal of appendages for transport
• Disassembly and reassembly
• Tie down eyelets and sizes
• Safety chains
• Lift and jack points
• CG markings
• Cautions and warnings, Points of Contact (POCs).
• Auxiliary power
• Auxiliary equipment stowage—CSE and PSE
• Heating/cooling
• Engine inlet coverings
• System security and protection
• Pressurization or depressurization
• Easy removal and replenishment of fuels and fluids
• Easy removal and installation of sensitive components
• And so forth

Freight shipping container constraints • Type of container
• Tie down eyelets
• Lift points
• Volumetric—cargo length, width, and height restrictions
• Weight restrictions
• Auxiliary power
• Heating/cooling
• System security and protection
• Container markings—cautions and warnings, content placards and codes, and POCs
• And so forth

Transport vehicle constraints • Land, sea, rail, and space requirements
• Vehicle certifications
• Vehicle markings
• Vehicle size constraints—height, width, length, and weight
• Cargo size constraints—height, width, length, and weight
• Tie down attachment points
• Cargo—fluid, fuel, and air-pressure removal
• Cargo manifests
• Fire extinguishers
• Emergency roadside markers and flashers
• And so forth

Environmental constraints • International (Road) Roughness Index (IRI)
• ASTM E1926–08 (2008)
• ASTM E1364–95 (2012)
• Shock and vibration
• Saltwater and spray
• Sand and dust
• Temperature and humidity control
• Electrical fields and discharges
• Lightning protection
• RF transmission towers
• Flying debris, hail, rain, sleet, and snow
• Altitude and atmospheric pressure changes
• Environmental Instrumentation
• HAZMAT
• And so forth
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TABLE 29.3 System Deployment Operational Considerations

System Deployment Consideration Example Operational Considerations

Transport vehicle operators • Driver certifications, licensing, experience, and skills
• Awareness of System Deployment objectives
• Cargo awareness and sensitivity training
• And so forth

Deployment routes • Land—highway, rail, sea, air, and space
• Inclines and down grades
• Emergency Stopping
• Narrow bridges and tunnels
• Mock Dry Runs with Simulated Equipment
• Bridge, highway, and street load width, height, length,

and weight restrictions
• Power line height restrictions
• Traffic flow rerouting and detours
• Law enforcement traffic directing
• HAZMAT routing restrictions
• And so forth

Government and regulatory • Plan and route approvals
• Licenses and permits
• Route coordination
• Emergency response teams—medical, fire, law

enforcement, and so on
• And so forth

of the plan is to describe how the System will be assembled
and installed, aligned, calibrated, and integrated, as appli-
cable, into the User’s Higher-Order Enterprise Level 0
System (Figure 8.4). If the System is being integrated into
an existing facility, a key objective is to perform the integra-
tion without disrupting normal operations. The plan evolves
through a series of updates as more information becomes
available.

Another key consideration for Operational Site Activa-
tion is how the System or Product will be maintained and
sustained. This is actually the implementation of the Main-
tenance and Sustainment Concepts (Table 6.1). Specifically,
how and where maintenance will be performed.

Maintenance of a System and Product occurs in a
number of different forms. For example, maintenance of
government military systems occurs at two levels: (1) Field
Level and (2) Depot—a highly specialized facility or the
Original Equipment Manufacturer (OEM). Decisions on the
levels of maintenance may impact the planning and design
of a deployment site and/or facility based on the specific
maintenance actions to be performed (Chapter 34).

Given this overview discussion, let’s explore some of the
topics further that serve as inputs to the Site Operational Site
Activation Plan.

29.3.4.1 Identify and Specify Facility Requirements
Selection of a deployment site may require (1) development
of new land and facility or staging area or (2) modification

of an existing facility. In either case, requirements for a new
or modified facility require SE consideration. This includes
considerations for physical size, compartmentalization such
as secure areas, laboratories; assembly areas with loading
dock(s), lifts, tool cribs, overhead doors, and cranes; security
systems; networks; and utilities.

Facilities as Enabling System Elements exist for a
purpose … to support the deployed System or Product via
physical interfaces. During the development of the System
or Product, especially for large, complex systems, the FIS
should be developed. The FIS specifies and bounds the
boundary envelope conditions, capabilities, and performance
requirements to ensure that all facility interfaces are capable,
compatible, and interoperable with the new System.

Author’s Note 29.2

Facility Interface Specification
(FIS) Current Usage

The FIS, which was once used by
government and military organiza-

tions, explicitly communicates by title what the document
contains. From an SE perspective, the document title is still
valid and beneficial.

As its title implies, the FIS specifies Facility in-
terface requirements for a System or Product during
non-operational storage or operational use. This includes:
Facility layouts—anchor bolts, space; utilities—electrical
power and grounding, water, sewer; environmental—HVAC;
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data, phone, and radio communications. Although these are
Facility-based interface descriptions, requirements from
land, sea, air, or space transport constraints information can
be obtained from the transport vehicle interface documenta-
tion without the need for a separate document.

29.3.4.2 Select Deployment Site Preparations for System
or Product deployment to a field site or staging area require
that the location be selected, developed, and activated. On
delivery of the System, the site must be operationally ready
and available to accept the System or Product for System
I&CO and integration into a Higher-Order Level 0 System
(Chapter 9).

Development of the deployment site to support the
System depends on the mission. Some systems may re-
quire temporary storage in a staging area until they are
ready to be moved to a permanent location. Others re-
quire assembly, I&CO, and integration into a Higher-Order
Level 0 System without disruption to existing facility op-
erations. Some facilities provide high bays with cranes to
accommodate System assembly, I&CO, and integration into
Higher-Order Systems. Other facilities may require you to
provide your own rental or leased equipment such as cranes
and transport vehicles.

Whatever the plan is for the facility, SEs are tasked to
select, develop, and activate the field site. These activities
include site surveys, site selection, site requirements deriva-
tion, Facility Engineering or site planning, site preparation,
and System Deployment safety and security.

Observe that this discussion focuses on Earth-based site
selection. Now, consider an organization such as NASA
planning space missions. During the Apollo Space Program,
landing sites on the Moon had to be selected for a series of
unmanned and manned missions. The same is true today in
selecting landing sites on Mars as well as rover explorations
to sites away from its mother craft.

29.3.4.2.1 Land Considerations Selection of a site(s) for
deploying large or mobile systems may be designated by the
System Acquirer and User or may require “open” selection
within a region. For example, selection of a state and
city/town for locating a new manufacturing plant from
a set of viable candidate locations using an Analysis of
Alternatives (AoA) (Chapter 32).

System Deployment to a geographical location requires
two physical considerations: (1) real estate or land and
(2) facility. Scenarios for each consideration include the
following:

• Undeveloped or unimproved land-range from limited
or no access to improved land at an industrial park
with existing plots with utilities ready for facility
development.

• The need to develop a new facility or a facility ranges
from renovation and upgrades to a facility ready for
occupancy.

Remember—System Deployment does not necessarily
require development of facilities. Military systems, for
example, may only require stable, rough-graded, and level
plots for transportable or mobile shelters or trailers.

Site selection also requires more than land or Facility
development. There may be constraints that influence
those decisions. In our discussion of the Operating
Environment architecture (Figure 9.3), we noted that
external Human Systems include historical, ethnic, and
cultural systems that must be considered and preserved
when deploying the System. The same is true for Natural
Environment ecosystems such as drinking water aquifers,
wetlands, rivers, and habitat. Other examples include preser-
vation of historical and cultural sites, location of nuclear
power plants near rivers for cooling towers, hospital radi-
ological suites to limit radiation, radio and TV towers in
restricted areas.

For some systems, the act of deploying a system, prod-
uct, or service to a site with Enabling System Facility
capabilities such as utilities—power, phone, data, water, and
sewer—does not mean that it can perform missions. System
sustainment becomes a major consideration, especially for
those systems requiring Mission Resources such as raw
materials, parts, fuel, and natural resources—lumber, wood
pulp, and rocks. Location of the System near Mission Re-
sources is a major driver in the site selection process.

This leads to the question: how is a site selected for Sys-
tem Deployment? Site selection requires informed knowl-
edge from a number of sources. Examples include previous
usage, the Internet, satellite photos, and topographic maps.
Although this is beneficial information, the ultimate informa-
tion comes from on-site surveys of candidate locations. This
brings us to our next topic, Site Selection Decision Factors
and Criteria.

29.3.4.2.2 Site Selection Decision Factors and Criteria
Site selection often involves exploring various options that
require conducting a trade study (AoA), especially if the
User has not designated a site. This requires identify-
ing and weighting decision factors and criteria based on
the User values and priorities. Consider the following
example:

Example 29.2

Decision Factors and Criteria
(Chapter 32)

Site Selection:

• Decision factor examples might include
access to customers, airports, waterways, major high-
ways, level land, availability of labor force and skills,
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taxes, operating costs, educational resources, and
climate conditions.

• Decision factor criteria examples consist of further
refinements as contributory elements of the decision
factors.

Collaborate with the User via Acquirer contract pro-
tocol to establish site selection decision factors and
criteria. Each criterion requires identifying how and from
whom—Stakeholders—the data will be collected while on
site or as follow-up data requests via the System Acquirer.

Decision factors and criteria include two types of data:
quantitative and qualitative.

• Quantitative For example, the facility operates on 220
vac, 3-phase, 60-Hz power.

• Qualitative For example, what problems you encoun-
tered with the existing or legacy System that Users
want to avoid when installing, operating, and support-
ing the new System.

Obviously, we prefer all data to be quantitative. How-
ever, qualitative data may provide insights into how the
User truly feels about an existing or legacy system or the
agony of installing one. Therefore, structure open-ended
questions to encourage the User to openly express their
thoughts about previous System or Product deployments
and experiences. These might include what they believe
to be their key decision factors, criteria, and weights.
Then, aggregate all the responses into a draft list for
collaborative review by the set of Stakeholders, followed
by User weighting of the decision factors and criteria
(Figure 32.8).

Given an understanding of Stakeholder expectations for
selection of a deployment site, we shift our attention to Site
Surveys.

29.3.4.3 Perform Site Surveys On-site surveys provide
a key opportunity for a Site Survey Team to observe how
the User envisions operating, maintaining, storing, and sus-
taining a System or Product. Some sites may not be de-
veloped or postured to accommodate a new System or
Product.

On-site surveys are more than surveying the landscape.
Key factors include environmental, historical, and cul-
tural heritage artifacts considerations. Site survey activi-
ties include developing a list of Critical Operational or
Technical Issues (COls/CTIs) to be investigated and re-
solved prior to the site visit. For existing facilities, the
site surveys also provide insights concerning the physi-
cal state of the existing facility, as well as COIs/CTIs
related to modifying the building or integrating the new
System while minimizing interruptions to the Enterprise’s
workflow.

On-site surveys are also a valuable means of investigating
and assessing environmental and operational challenges.
The Site Survey Team should explore various options for
installation such as Day of the Week (DOW), Time of Day
(TOD), holiday, and plant shutdown periods. Generally, the
site surveys consist of a preparatory phase during which
Natural Environment information about geographical,
geologic, and regional life characteristics are collected and
analyzed to properly understand the potential environmental
issues.

If existing or legacy Systems exist that are compara-
ble, they may provide an invaluable opportunity to explore
physical challenges. These challenges may pertain to con-
strained spaces that limit hands-on access, height restrictions,
crawl spaces, lighting, environmental control—HVAC, data,
phone, and satellite telecommunications.

On-site surveys (Mini-Case Study 4.1) reveal significant
information and insights about entrance, passage, and door-
way sizes, blocked entrances, entrance corridors with hairpin
switchbacks, considerations of 60 Hz versus 50 Hz versus
400 Hz electrical power, 110 vac versus 230 vac, that drive
SPS requirements. Research or request facility documenta-
tion and carry it with you to review during each visit. Visually
observe the facility and conduct measurements, if required,
and validate the currency and accuracy of the documentation
including operating policies and procedures through discus-
sions with facility Personnel.

Author’s Note 29.3

Field Documentation Integrity
and Maintenance

Site surveys are crucial for validat-
ing User documentation for decision

making and identifying unexpected obstacles. Enterprise
source documentation of fielded Mission Systems and
Enabling Systems tends to be lax; drawings are often
out-of-date and may not reflect current configurations of
Equipment and Facilities.

Visit the deployment site, preferably after a thorough
review of site documentation and interviews. If impractical,
you may need to re-evaluate this business opportunity.
Otherwise, you need an innovative, Cost Plus Fixed Fee
(CPFF) contract that shifts financial, technical, and schedule
risk to the Acquirer or User.

The context here is Earth-based site surveys. Now con-
sider some System Deployment challenges of space-based
missions to the Moon, Mars, or other destinations.

In the earlier days of space travel, NASA site surveys, for
example, were dependent on:

• Remote, off-site observation-based knowledge gleaned
over several centuries through astronomy and
physics.
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• On-site visits beginning with unmanned Surveyor
moon-landers equipped with sensor and camera
systems and culminating with the Apollo manned
missions with experiments.

Site surveys are also applicable to harsh Operating
Environment conditions following an event. Examples
include the 1986 Chernobyl nuclear plant disaster or the
2011 Tōhoku earthquake and tsunami in Japan. In cases
such as these, site surveys require remote platforms such as
satellites and Unmanned Aerial Systems (UASs), robots with
special sensors, and other types of devices.

Given this backdrop, let’s address how site surveys are
planned and conducted.

29.3.4.3.1 Define Site Survey Data Collection
Requirements When identifying site data requirements,
prioritize questions to accommodate time restrictions for
site personnel interviews. There is a tendency to prepare
site survey forms, send them out for responses, await their
return, and then analyze the data. While this can be helpful
in some cases, potential respondents today do not have time
to fill out surveys. On-site collaboration based on specific
data to be obtained is often the best method for gaining true
insights.

One method for pre-site visit information may come from
alternative sources such as satellite or aerial photos, assum-
ing that they are current, and teleconferences with site per-
sonnel. When conducting teleconferences, ask open-ended
questions that encourage the participants to answer freely
rather than asking closed-ended questions that require yes or
no answers. Clarify your understanding about the site facility,
their capabilities and limitations.

Author’s Note 29.4

Suggestion—Develop Draft Site
Survey Report

Inevitably, site survey reports some-
times overlook or fail to address top-

ics that are important to the System Deployment. One
method for minimizing the risk of overlooked topics is to cre-
ate a draft of the report prior to the site survey using mock
data. Then, distribute to peers for review and comment. Typ-
ically, the review comments provide new insights for data to
be collected or issues to be addressed before going on a site
survey.

29.3.4.3.2 Coordinate the On-Site Survey(s) One of the
most fundamental rules of site surveys is advance coordina-
tion with the System Acquirer via contract protocol. In prepa-
ration for the site visit, verify the need for special or security
clearances and vehicle access and operating procedures sev-
eral days or weeks in advance. Obtain written approval for
use of cameras and recording devices—if permissible—for
documenting meeting notes.

Author’s Note 29.5

Site Visit Limitations

Always confer with site decision au-
thorities, not general personnel, prior
to the visit as to what media are per-

mitted on site for data collection and any data approvals
required before leaving. Some Enterprises require written
notes and data to be relinquished at the end of the visit for in-
ternal review, approval, and delivery following the visit. You
may be allowed only one visit—make sure you obtain the site
data you need in that single visit.

29.3.4.3.3 Conduct the On-Site Survey(s)

Heuristic 29.1 Site Survey Access

Collect all the information you require on the first trip; you
may be denied access for a second visit.

Heuristic 29.2 On-Site Survey Observations

Site survey visits are more than data collection activities.
Equally important is what you did not see that you expected
to see.

During the site visit, observe and ask about everything
related to the System or Product’s deployment, installation,
integration, operation, and sustainment including processes
and procedures. Leave nothing to chance!

Before you leave, request some time to assemble your
team in a conference area and reconcile notes. Think about
what you observed and did not see that you expected or would
have expected and why not! If necessary, follow up on these
questions before you leave the site.

Raw data results from each site survey should be sum-
marized and compiled in a formal report for reference and
development of an AoA, especially if site trade-offs are re-
quired. Since observations of the site visits may differ among
team members, if appropriate, ask the host to clarify or vali-
date those perspectives. Remember—the Site Survey Report
is more than just a perfunctory document. The report(s) es-
tablishes the foundation knowledgebase from which techni-
cal and design operational decisions will be made. For those
who were unable to participate, the accuracy and integrity of
this information in the Supply Chain shown earlier in Figure
4.1 are crucial!

29.3.4.4 Select Deployment Site (As Applicable) On the
basis of data collected and documented in the site survey data
reports, collaborate with the Users to jointly conduct an AoA
(Chapter 32) to select the deployment site. When the site has
been selected or designated and approved by the User, the
System Deployment process will require development and
approval of a Site Development Plan.
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29.3.4.5 Create and Approve Site Development Plan
(As Applicable) In general, the Site Development Plan
should describe actions required to provide road access, land
surveys and development, utilities—power, water, and sewer,
communications—security, fire, parking, lighting. Investi-
gate and document the types of permits, approvals, and in-
spections required by the local, state, and federal levels.

Approval of site development plans may require several
weeks, months, or years. At issue are things such as statutory
and regulatory compliance, environmental impact consider-
ations, site of historical artifacts. Thoroughly perform your
research and homework to achieve approval success; it may
require more than you anticipate.

A Word of
Caution 29.2

Leverage Qualified Consultant
Services

Avoid the notion that all you have to do is
simply write the plan and have it approved
in a few days. When you prepare the plan,

employ the services of a qualified, professional consultant,
or Subject Matter Expert (SME) to make sure that all key
tasks and activities are properly identified and comply with
federal, state, and local statutes, regulations, and ordinances.

Identify the following:

• The decision-making chain, decision makers by name,
and authorities.

• What types of documentation —plans, specifications,
design drawings, permits—are required to obtain ap-
proval.

• When documentation—forms, permits, licenses, devia-
tions, waivers —must be submitted for approval.

• When, where, and to whom documentation approval
requests should be submitted.

• How long the typical documentation approval cycle is.

29.3.4.6 Prepare and Develop the Deployment Site Once
the site has been selected and acquired, the next step is to
prepare and develop the site. Site preparation includes those
activities required to prepare land to accept the deployed
System or a Facility to house the deployed System.
This may include surveying and grading the land, building
temporary bridges; installing utilities—power, water, sewer;
lines; landscaping and drainage.

When the site preparation has been completed, the next
step is to conduct site inspections. Site inspections require
on-site compliance assessments:

• By the Stakeholders to ensure that the site and/or
Facility is ready to accept the new System.

• By local and Acquirer representative authorities to ver-
ify compliance to statutory and regulatory constraints.

Author’s Note 29.6

Site Inspections Versus Site
Capabilities

Remember—site inspections by lo-
cal, state, and federal authorities as-

sess compliance to statutory or regulatory requirements.
They do not assess whether the site has the requisite Mission
Resources required to install, integrate, operate, maintain,
and sustain the System or Product. That is the responsi-
bility of the System Acquirer that may be fully or partially
transferred to the System Developer SE.

29.3.4.7 Construct and/or Modify the Facility (As
Applicable) During or after completion of the site de-
velopment, if applicable, the next step is to construct a
new facility or modify an existing Facility, wherever is
applicable. The key here is to prepare the Facility for
Assembly and I&CO of the System. In preparation for the
System Deployment, Facility interfaces should be verified
in accordance with the FIS. Completion of the Facility will
require additional inspections and approvals.

29.3.4.8 Deploy the System to the Site Facility The
deployment of a System or Product should occur
Just-in-Time (JIT) with the completion of a Facility
or to an interim storage Facility on-site or nearby until the
permanent Facility is ready for System I&CO.

Author’s Note 29.7

As a reminder, transport of a System
to a deployment site may be per-
formed by the System Developer,
User, or a third party under contract
to the User. The System Develop-

ment contract should specify who is accountable for the
deployment.

29.3.4.9 Assemble or Set-up and/or Install and Checkout
the System Once the field site is prepared to accept the
System, the next step is to Assemble or set-up, I&CO,
and verify the System, assuming that its mission is at this
Facility or staging area. System I&CO covers a sequence
of activities, Enterprise roles and responsibilities, and tasks
before the newly deployed System can be located at a
specific job site. System requirements unique to on-site
System I&CO must be identified by site surveys and analysis
and incorporated into the SPS prior to the Contract Award.

29.3.4.9.1 Train User Operators and Maintainers When
a new System is ready to be deployed, a key task is to
train Personnel to deploy, install, and check out, operate,
and maintain the System, as applicable. Generally, a System
Development contract will require the System Developer to
train User Personnel prior to disassembly at the System
Developer’s Facility or system integration at a deployment
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Facility or staging area. The training sessions should
prepare Users to properly and safely operate and to support
OT&E (Chapters 12 and 13) during the final portions of the
System Development Phase.

29.3.4.9.2 Validate System Performance I&CO of
new systems often requires integration into User’s
Higher-Order—Level 0—System. The integration
may involve introduction of the new System as an addi-
tional element or as a replacement for an existing or legacy
System. Whichever is the case, Level 0 System integra-
tion often involves CTIs, especially from the standpoint of
compatibility, interoperability, and security. Thoroughly
investigate these issues and mitigate.

Depending on the level of urgency to place the System
into active service, some Acquirers and Users may require
a new System to operate in a “shadow” mode to validate
System Responses to external stimuli, excitations, or cues,
while the existing System remains in place as the primary
operating element. This is very important, especially for
financial or medical systems in which End User health,
resources, and life may be at risk due to an unproven System
in a new facility.

On completion of the evaluation, assessment, and certifi-
cation, the new System may be brought “on line” as an Initial
Operational Capability (IOC) (Figures 15.5 and 15.6) to re-
place the legacy System. Incremental capabilities may be
added via upgrades until Full Operational Capability (FOC)
is achieved. To illustrate the criticality of this type of deploy-
ment and integration, consider the following example:

Example 29.3

System Results Validation as a
Pre-Condition for System Integration

Financial Enterprises such as banks depend
on highly integrated, audited, certified sys-

tems that validate the integrity of the overall System. Con-
sider the magnitude and significance of decisions related to
integrating either new or replacement software systems to en-
sure interoperability without degrading System performance
or compromising User and End User confidence in its in-
tegrity or security such as transfer errors.

Lastly, as part of the System Deployment, User operators
and maintainers may require training and certification, our
next topic.

29.3.4.9.3 Certify/Recertify the Facility/System; License
Operators (As Applicable) Some types of systems, such
as industrial sites, aircraft, power plants, may require
certification and periodic recertification based on some
calendar or operational use-based metric. Observe that
the context here relates to certification/recertification of
a site, Facility, and Equipment. However, these require

Personnel—operators and maintainers, which is a separate
issue. The SOI’s Personnel Element may require both
certification/recertification and licensing to operate the
Equipment Element. Thoroughly investigate local, state,
and federal requirements for each of these areas.

N
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Heading 29.2

The preceding discussions provide a
high-level overview of what is to be
accomplished to deploy a system. On the
basis of this information, we can develop an
SE methodology for System Deployment
considerations.

29.3.5 Deployment SE Methodology

From an SE perspective, System Deployment requires
a strategic methodology that supports analysis of
Pre-Deployment, Deployment, and Post-Deployment Op-
erations (Figure 6.4). The following is one example of the
methodology:

• Step 1—Collaborate with Deployment Stakeholders—
Users and End Users

• Step 2—Identify Deployment Constraints

• Step 3—Evaluate and Select Deployment Mode(s) of
Transportation and Sequences

• Step 4—Model Deployment Operations and Interac-
tions

• Step 5—Bound and Specify System Deployment
Interactions and Interfaces

• Step 6—Define Deployment Route and Required
Modifications

• Step 7—Conduct a Mock Deployment (Optional)

• Step 8—Mitigate Deployment Risks

29.3.5.1 Step 1—Collaborate with Deployment
Stakeholders—Users and End Users System Deployment
often involves large numbers of geographically dispersed
Stakeholders. Therefore, Stakeholders should be actively
involved in the decision-making process from the early
planning stage, but subject to contract type limitations. So,
what happens if you fail to include these Stakeholders?

Depending on the situation, a Stakeholder—User or End
User—could become a showstopper and significantly im-
pact System Deployment schedules and costs. Do yourself
and your Enterprise a favor. Understand the deployment, site
selection and development, System I&CO, and acceptance
decision-making chain. This is key to ensuring success when
the time comes to deploy the system. Avoid a “downstream”
showstopper situation simply because you and your Enter-
prise chose to ignore some odd suggestions and views during
the System Development Phase.
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29.3.5.2 Step 2—Identify Deployment Constraints Envi-
ronmental constraints can have a major impact on all facets
of system analysis, design, and development as well as on all
phases of the System/Product Life Cycle—specifically, local,
state, and federal statutory and regulatory requirements.

29.3.5.2.1 Environment, Safety, & Occupational Health
(ES&OH) Constraints ES&OH is a critical issue during
System Development and Deployment. The objective is to
safely and securely relocate a System without impacting its
capabilities and performance or endangering the health of
the public, the Natural Environment, or the deployment
team. Always investigate the requirements to ensure that the
ES&OH concerns are properly addressed in the design of the
Mission System and Enabling System equipment as well
as the mode of transportation—land, sea, air, or space. ISO
14000, for example, serves as the international standard used
to assess and certify Enterprise environmental management
processes and procedures.

29.3.5.2.2 Statutory and Regulatory Constraints Statu-
tory and regulatory requirements concerning environmental
protection and transportation of Hazardous Materials (HAZ-
MAT) are mandated by local, state, federal, and international
organizations. These regulations are intended to protect the
cultural, historical, religious, and political environment and
the public. SEs have significant challenges in ensuring that
new systems and products are properly specified, developed,
deployed, operated, sustained, and fully comply with statu-
tory and regulatory requirements. Consider the following
example:

Example 29.4

Environmental Constraints

The US National Environmental Policy
Act (NEPA; U.S. Public Law 91–190,
1969) of 1969 and Environmental Pro-

tection Agency (EPA) establish requirements on System
deployment and OM&S, retirement, and disposal that
impact the Natural Environment. In many cases, System
Developers, Acquirers, and Users are required to submit
advance documentation such as Environmental Impact
Statements (EIS) and other types of documents for approval
prior to implementation.

The US Occupational Safety and Health Administration
OSHA 29 CFR 1910 (1971) establishes standards for occu-
pational safety and health.

Author’s Note 29.8

Research Contract and Enterprise

Always consult the provisions of your
contract as well as with your Con-
tracts; Legal; and ES&OH organi-

zations for guidance in complying with the appropriate
statutory and regulatory environmental requirements.

29.3.5.2.3 Deployment Environment Constraints Once
the deployment mode of transportation and sequences is
established, specify and bound the land, sea, air, or space
transport environment conditions such as the examples
provided in Table 29.2. Temperature, humidity, shock and
vibration, dust and sand, and altitude are key examples of pa-
rameters SEs should consider. Bound operating constraints
such as sea states, roadway conditions—International
Roughness Index (IRI). Refer to ASTM E1926–08 (2008)
and ASTM E1364–95 (2012).

29.3.5.2.4 Environmental Reclamation Constraints Envi-
ronmental resources are extremely fragile. Today, great effort
is being made to preserve the Natural Environment for
future generations to enjoy. Therefore, during the transport
of a System to a new site, the risk of spills onto the ground
and emissions into the atmosphere should be minimized and
mitigated to a level acceptable by law. When the System is
relocated, retired, or disposed, there may be requirements for
environmental reclamation to re-establish the Natural En-
vironment back to its natural or original state.

29.3.5.3 Step 3—Evaluate and Select Deployment
Mode(s) of Transportation and Sequences

Principle 29.2

System Delivery Method Compatibility
Principle

The design of every system, product, or
service must be physically compatible with
its method of delivery and constraints.

In general, most Systems or Products are deployed by
one of several approaches:

• Approach #1—Containerized shipping—commercial
products, parcel packages, fruits and vegetables, mod-
ular containers on ships.

• Approach #2—Combinations of land, rail, sea, air, or
space-based transport.

• Approach #3—Deployment/relocation of a System
under its own power such as aircraft, ships, spacecraft.

Transportation by land, sea, air, space or combinations of
these options is the way most systems, products, and services
get from Point A to Point B. Each mode of transportation
should be investigated and evaluated in a trade study AoA
that includes cost, schedule, efficiency, and timing consider-
ations.

Author’s Note 29.9

Avoid Specification of Modes
of Transportation

As a reminder, unless there are com-
pelling reasons to do otherwise, the

SPS does not need to specify how to deploy the System for



SYSTEM DEPLOYMENT OPERATIONS 637

delivery or during the System OM&S Phase. Instead, the
required operational interface capabilities and performance
should be bounded to allow the System Developer the flexi-
bility to select the optimal mix of deployment method(s) and
modes of transportation. Remember—the SPS or any speci-
fication specifies what has to be accomplished and how well,
not how. If the Acquirer or User is compelled to dictate the
mode(s) of transportation in the SPS, that is a Statement of
Work (SOW) topic, not a specification requirement.

Verify that a system, product, or service design is compati-
ble and interoperable, if necessary, with the transport vehicle
used to deploy the System to its designated field site. When
planning deployment of a System or Product, include
considerations by those Stakeholders such as municipali-
ties and states that permit System Deployment through their
jurisdictions. Key considerations include bridge clearance
heights above roads and maximum load weight limits; barge,
truck, aircraft payload restrictions; hazardous material pas-
sage through public areas, and aircraft landing constraints.

Modes of transportation require other considerations
that go beyond electromechanical interfaces. Aircraft, for
example, require depressurization of vehicle tires of vessels
and removal of fuel and fluids due to altitude changes that
may create unsafe operating conditions or a catastrophe.

Author’s Note 29.10

Investigate Local, State, and
Federal Transportation
Regulations

When investigating modes of
transportation, consult local, state, and federal regulations
concerning transport requirements. Examples include the
following:

• Government documents—land, sea, air, and space.

• Highway regulations such as the US Department of
Transportation (DOT) Federal Highway Administra-
tion FHWA-HOP-04-022 (2004).

Consult regulations appropriate to a country and mode of
transportation.

29.3.5.4 Step 4—Model Deployment Operations and
Interactions Part 1 System Engineering and Analysis
Concepts provides the foundation for the application of
SE to System Deployment. Key analytical methods in-
clude Model-Based Systems Engineering (MBSE) methods
(Chapters 10 and 33) using SySMLTM1 tools such as UCs
and scenarios; Interaction Diagrams such as Sequence and
Collaboration; Activity Diagrams; State Diagrams; and

1SysMLTM is a registered trademarks or trademarks of Object Management
Group, Inc. in the United States and/or other countries.

other diagrams. SEs employ these tools to analytically
model Pre-Deployment, Deployment, and Post-Deployment
Phases, modes, and states such as those as illustrated in
Table 6.2. Information provided in these diagrams provides
a framework the identification and derivation of specification
requirements for Mission System and Enabling System
capabilities, interfaces, operating constraints.

System Deployment modeling and analysis include ap-
proaches such as the System Operations Model discussed
earlier in Figures 6.1 and 6.2. Perform operational and task
analysis by sequencing the chain of events required to relo-
cate the System from Point A to Point B. This includes cost,
performance, and risk trade-offs for competing land, sea, air
and space modes of transportation and transport mechanisms
such as truck, aircraft, ship, train, rocket.

29.3.5.5 Step 5—Bound and Specify System Deployment
Interactions and Interfaces Models of the deployment op-
erations should aid in identifying interactions between the
Mission System being deployed and the Enabling Sys-
tem transporting it (Figure 7.4). This requires special SE
considerations related to electromechanical interfaces and
measurement devices between the transportation device and
container. This includes lift and tie downs points, Center of
Gravity (CG) and Center of Mass (COM) markings, and elec-
tronic temperature, humidity, shock, and vibration sensors to
assess the health and status of the deployed system and record
worst-case transients. Additional special considerations may
include environmentally controlled transport containers to
maintain or protect against cooling, heating, or humidity.
Each of these types of interfaces represents requirements for
the SPS.

29.3.5.6 Step 6—Select Deployment Route and Required
Modifications Some System Deployment efforts require
temporary modifications to roads, highways, and bridges;
utility poles and power lines; signal and traffic light reloca-
tion; rerouting of traffic. Consider the following example:

Example 29.5

Relocation of a House

An existing house is to be physically
relocated elsewhere within a town. In
preparation for the move, planning and

coordination are required to temporarily move utility lines
and reroute traffic. In addition to the necessary permits
and licenses, law enforcement officers will need to redirect
traffic, and utility crews will need to lift and reinstate utility
lines, including telephone, power, signal lights, and signage.

29.3.5.7 Step 7—Conduct a Mock Deployment (Optional)
For large, complex systems that require special handling con-
siderations, an optional mock deployment exercise may be
appropriate, if practical and affordable. A mock deployment
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requires some form of surrogate System such as a proto-
type or model that exhibits identical physical attributes and
properties—size, weight, CG, and COM—to the SOI be-
ing transported to a deployment site. The exercise debugs
the System Deployment Process and operations to facilitate
identification of unanticipated scenarios and events for the
processes, methods, and tasks of deployment. Table 29.2 pro-
vides a summary of example System Deployment Engineer-
ing considerations.

System Deployment transport not only includes deploy-
ment of the SOI but also includes its Enabling System
Equipment such as Common Support Equipment (CSE) and
Peculiar Support Equipment (PSE) (Chapter 8). This requires
consideration of how the System or Product will be stowed
and transported. A mock deployment can provide valuable
insights for how CSE and PSE will be transported. This in-
cludes items such as the following:

• CSE such as hammers, screwdrivers, and other hand
tools applicable to most systems.

• PSE such as specialty tools and devices unique to a
specific system.

29.3.5.8 Step 8—Mitigate Deployment Risk When sys-
tems, products, or services are deployed, the natural ten-
dency is to assume you have selected the best approach for
deployment. However, political conditions in various states
or countries can disrupt System Deployment and force you
to reconsider alternative methods. Develop risk mitigation
plans that accommodate all UCs and most likely or prob-
able scenarios (Chapter 5) anticipated for System Deploy-
ment such as COIs and CTIs. Key considerations include
safety and security risk, transportation environment risk, and
Natural Environment risk. Let’s explore each of these.

29.3.5.8.1 Investigate and Mitigate Route Safety and
Security Issues The deployment of a new system from
one location to another should be performed as expedi-
tiously, efficiently, and effectively as practical. The intent
is to safely and securely transport the system with minimal
impact to it, the public, and the environment. Safety and
security planning considerations include physical protection
of and access to the System to be deployed, the Personnel
who perform the deployment, and the Enabling System
Equipment.

When developing a system, product, or service, at a
minimum, factor in considerations to protect the System
during deployment operations and conditions to minimize the
effects of physical harm such as appearance, form, fit, or
stability. Examples include jet engine inlet covers or former
NASA Space Shuttle Afterbody Fairing.

System requirement considerations should include mod-
ularity of the Equipment for easy removal, separate trans-
port, and reinstallation of sensitive components during de-
ployment. This includes the removal of computer hard drives

containing sensitive data that require special handling and
protection. The same is true with HAZMAT items such
as flammable liquids, toxic chemicals, explosives, muni-
tions, and ordinances. In these cases, special equipment and
tools—CSE and PSE (Chapter 8)—may be required to en-
sure their safe and secure transport by courier or by security
teams. In addition, Material Safety Data Sheets (MSDS) con-
cerning ES&OH should accompany the deployment.

Some systems require a purposeful deployment using
low-profile or visibility methods to minimize publicity, de-
pending on the sensitivity and security of the situation. This
includes elimination of vehicle markings, time, day, or night
deployments.

29.3.5.8.2 Monitor and Mitigate Transportation Envi-
ronment Risk Professional systems and products such
as precision instruments can be very sensitive to shock
and vibration. Plan ahead for these critical design factors.
Make sure that the System while in a stand-alone mode
is adequately designed to buffer any in-transit shock or
vibration conditions that occur during deployment. This
includes establishing appropriate design safety margins.
Where appropriate, the SPS should specify transportation
shock and vibration requirements.

29.3.5.8.3 Mitigate Natural Environment Risk Des-
pite meticulous planning, environmental emergencies can
and do occur during the deployment of a System. Develop
risk mitigation plans and coordinate resources along the
transportation route to clean up and remediate any environ-
mental spills or catastrophes. Transportation vehicles, sys-
tems, and shipping containers should fully comply with all
applicable federal and state statutory regulatory laws for la-
beling and handling. Organizations such as the US Environ-
mental Protection Agency (EPA) may require submittal of
environmental documentation for certain types of projects.
Investigate how the US NEPA, if applicable, and other leg-
islation apply to your System’s development, deployment,
OM&S, retirement, and disposal.

When transporting Equipment systems and products
that contain various volatile, flammable, biological, or
toxic fluids, HAZMAT spillage or explosions are always
a major concern, particularly for wildlife estuaries, rivers,
streams, and underground water aquifers. Perform in-
sightful ES&OH planning and coordination to ensure that
Enabling Systems—Personnel, Procedural Data,
and Equipment—are readily available to provide a rapid
response to a hazardous event.

29.4 SYSTEM OPERATION, MAINTENANCE,
& SUSTAINMENT (OM&S)

People often believe that SE is complete when the Sys-
tem Acquirer formally accepts delivery of a new System
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or Product or its upgrade. In their minds the Engineering
is complete. In terms of comparing the SE Level of Effort
(LOE) during System Development, this is true; however, the
System performance assessment activities continue through-
out the System’s useful service life (Figure 34.6) but with a
smaller SE LOE, especially on large, complex systems. Thus,
when the System or Product is fielded, the System OM&S
Phase begins with the shift from System Developer SE to
User SEs. Depending on the type of system, product, or ser-
vice, SE technical and analytical expertise may be required
to monitor, track, and analyze System performance based on
actual field operations.

During the OM&S of a System or Product, ac-
countability for SE resides with the User Enterprise.
This can be accomplished via Enterprise SE personnel,
through another organization within the Enterprise, or via
a Systems Engineering and Technical Assistance (SETA)
contractor.

Assessment of the SOI’s performance begins with the
System Element Architecture template shown in Figure 9.2.
The architecture forms the basis for characterizing how a
system, product, or service is intended to operate internally
and respond to stimuli, excitation, or cues in its Operating
Environment.

Since the SOI may be composed of one or more Mission
Systems that are supported by one or more Enabling
Systems, we will approach the discussion from these two
perspectives. This includes the following:

• Assessment of System operational utility, suitabil-
ity, availability, usability, effectiveness, and efficiency
(Principle 3.11)

• Elimination of latent defects such as design flaws,
errors, deficiencies, as well as COIs/CTIs.

• Identification and removal of defective materials or
components.

• Corrective action for poor workmanship practices.

• Optimization of System performance.

These activities also represent the beginning of collecting
requirements for:

• Procurement of new follow-on systems, products, or
services.

• Upgrade or retrofit of capabilities to the existing or
legacy System.

• Refinement of current Mission System and Enabling
System performance.

29.4.1 OM&S Objectives for System Engineering (SE)

Once an SOI is fielded, SE continues to be an integral part of
the project. Specifically, System utility, suitability, usability,

availability, efficiency, and effectiveness be monitored and
tracked continuously. The actual project SE LOE when
compared to System Development will generally be small
and tend to be task driven. Depending on the size and
complexity of the System, this may require a full-time staff
of one or more SEs or requests for support on specific tasks
from external Enterprises with SE capabilities on an As
Requested(AR) basis. This requires SE expertise to address
the following objectives:

1. Monitor and analyze the operational utility, suitabil-
ity, availability, usability, effectiveness, and efficiency
(Principle 3.11) This includes system applications, ca-
pabilities, performance, and the useful service life of
the newly deployed system including products and
services—relative to its intended mission(s) within a
prescribed Operating Environment.

2. Identify and correct any residual latent defects such
as design flaws, errors, deficiencies, and faulty or
defective components and workmanship.

3. Maintain awareness of the “gap” (Figure 4.3) in the
problem space that evolves over time between this
existing or legacy system, product, or service and
comparable competitor and adversarial capabilities.

4. Accumulate and evolve requirements for a new Sys-
tem, Product, or upgrade to the existing system to fill
the solution space(s) and eliminate or alleviate the En-
terprise problem space.

5. Propose interim operational solutions such as plans and
tactics to fill the “gap” until a replacement capability is
established.

6. Maintain System Developmental or Production Con-
figuration baselines (Chapter 16).

7. Maintain Mission System and Enabling System
compatibility and interoperability (Principle 10.3).

Let’s explore each of these objectives.

29.4.2 Monitor and Analyze System/Element
Performance

Once a system, product, or service is delivered to its Users
for the OM&S Phase, their lingering question is: did we
acquire the right system to accomplish specific Enterprise
missions? The answer begins with customer satisfaction,
which is influenced by the System’s operational utility,
suitability, availability, usability, effectiveness, and efficiency
(Principle 3.11).

From a contract perspective, formal completion of System
V&V, in general, and Acquirer-User acceptance formally
closes arguments concerning System compliance to its Ex-
ceptions include System or Product warranties. At delivery,
Stakeholder Users and End Users will ultimately have to live
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with the System and answer the Six Stakeholder Decisions
presented earlier in Chapter 3 Section 3.9.

Accountability for answering these questions resides with
SE. This leads to the question: if SE is expected to answer
these questions, what aspects of System performance would
you monitor to gather data to support your analysis to arrive
at a result?

The answer begins with the System Element Architecture
template shown in Figure 9.2. Since the model represents the
integrated set of capabilities required to achieve Enterprise
mission objectives and, System UCs, we allocate SPS
requirements to each of the System Elements—Equipment,
Personnel, Facilities. Given this analytical framework,
SEs and EDS

1. How well is each element of the System Element Archi-
tecture Model and their respective physical components
performing relative to its current SPS or EDS require-
ments?

2. What is the operating condition of each System Ele-
ment and physical components in terms of its useful
service life (Figure 34.24)?

Let’s explore each of these points.

29.4.2.1 Monitoring System Level Operational Perfor-
mance Real-time system performance monitoring
should occur throughout the Pre-Mission, Mission, and
Post-Mission Phases of operation (Figure 6.4) based on the
Mission Event Timeline (MET) (Figure 5.5). Depending on
the Mission and System application, the achievement of
Enterprise mission and System objectives, in combination
with the MET, provides the basis for operational system
performance evaluation.

In general, answering how well the System is performing
depends on the following:

• Who you interview—Stakeholders such as Users and
End Users.

• Stakeholder roles, missions, and objectives.

Consider the following example from the perspectives of
the System Owner and the System Developer:

Example 29.6

System Level Performance—System
Owner—User Perspectives

From the System Owner’s perspective,
example questions might include the
following:

1. Are we achieving mission objectives and performance?

2. Are we meeting our projected financial Total Cost of
Ownership (TCO) targets?

3. Are the System maintenance costs in line with projec-
tions?

4. Are there key preventive or corrective maintenance ac-
tions that can be reduced through Pre-Planned Product
Improvements (P3I)?

From the System User’s perspective – operator, main-
tainer, or instructor, example questions might include the
following:

1. Is the System achieving its performance contribution
thresholds established by the SPS?

2. Are there capability and performance areas that need to
be improved?

3. Have System upgrades or corrective actions enhanced
system capabilities or degraded performance?

4. Is the System responsive to our mission needs?

5. Does the System exhibit any instabilities, latent de-
fects, or deficiencies that require corrective action?

Author’s Note 29.11

Observe the User’s first item, SPS
“performance contribution thresh-
olds.” Users often complain that a
System does not “live up to their ex-
pectations.” Several key questions
are as follows:

1. Were those “expectations” documented as explicit re-
quirements in the SPS that served as the basis for Sys-
tem Development?

2. Did the System Acquirer, as the User’s contract and
technical representative, verify and technically accept
the System as meeting those SPS requirements?

3. Using System Acceptance as a point of reference, have
User expectations changed?

Remember, aside from normal performance degradation
from use, misuse, misapplication, abuse, lack of proper
maintenance, and Operating Environment threats, the
System design, as an inanimate object, does not change:
Personnel—operators, maintainers, trainers—Mission Re-
sources, and Procedural Data evolve and change. So,
if the System is not meeting User expectations, what has
changed: (1) the System, (2) the operators, or (3) the En-
terprise?

These are a few examples of the types of System-level
questions SEs need to ask. Once you have a good understand-
ing of System COI / CTI performance areas, the next ques-
tion is: what System Elements are primary and secondary
performance effecters that drive these results? Figure 5.8 il-
lustrating an automobile’s mileage Measure of Effectiveness
(MOE) serves as an example.
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29.4.2.2 Monitoring System Elements’ Operational
Performance On the basis of system operational per-
formance results, the key question for SEs to answer is:
what are the System Element contributions? (Figure 10.12
and MOEs Figure 5.3) System Element performance areas
include the following:

1. Equipment Element

2. Personnel Element

3. Mission Resources Element

4. Procedural Data Element

5. System Responses Element—behavior, products,
by-products, and services

6. Enabling System elements such as the DoD’s Inte-
grated Logistics Product Support (ILPS) (DoD, 2011,
p. 12–13) comprised of:
a. Computer Resources.

b. Design Interface.

c. Facilities and Infrastructure.

d. Maintenance Planning and Management.

e. Manpower and Personnel.

f. Packaging, Handling, Storage, and Transportation
(PHS&T).

g. Product Support Management.

h. Supply Support.

i. Support Equipment—for example, CSE and PSE
(Chapter 8)

j. Sustaining Engineering.

k. Technical Data Management (Chapter 17).

l. Training and Training Support.

At this juncture, we have established SE OM&S objec-
tives. We now shift our focus to how System performance
monitoring is accomplished.

29.4.2.3 Why Analyze Mission and System Perfor-
mance Data? You may ask: why do SEs need to analyze
system performance data? If the System works as specified,
what do you expect to gain from the exercise? What is the
Return on Investment (ROI) for the exercise? These are valid
questions. Actually, there are several objectives that drive
the need to analyze Mission System and Enabling Sys-
tem performance data. We partition these into two contexts:
(1) current System performance and (2) next generation sys-
tems.

• Context #1: Current System performance.
a. Objective #1: Benchmark nominal System perfor-

mance.

b. Objective #2: Identify and track System perfor-
mance trends.

c. Objective #3: Improve/remediate operator training,
skills, and proficiency.

d. Objective #4: Correlate mission events with System
performance.

• Context #2: Next Generation Systems

a. Objective #5: Support Enterprise mission and
System capability gap analysis (Figures 4.2 and
4.3).

b. Objective #6: Validate Models and Simulations
(M&S) (Chapters 10 and 33).

c. Objective #7: Evaluate and improve human perfor-
mance.

Let’s explore each of these objectives.

29.4.2.3.1 Objective #1: Benchmark Nominal System
Performance Establish statistical performance benchmarks
via baselines, where applicable, for what constitutes actual
nominal system performance. For example, automobile
owners are often curious about how their vehicle’s mileage
compares with the manufacturer’s window sticker metric
of 30 miles per gallon average over specified driving, fuel,
and road conditions (Figure 5.8). So track and compare
vehicle fuel efficiency, then analyze what may be degrading
performance.

29.4.2.3.2 Objective #2: Identify and Track System Perfor-
mance Trends Use the nominal performance baselines as a
benchmark comparison for System performance degrada-
tion and trends (Figure 34.25) over its useful service life to
ensure preventive and corrective maintenance actions occur
at the proper time and are performed as prescribed.

Remember, the original SPS establishes a set of re-
quirements based on human analysis, observations, M&S,
prototyping, and informed estimates of achieving required
performance. Verification simply proved that the deliverable
System or Product performed within specified boundary
limits and conditions. Every Human System has its own
unique idiosyncrasies that require monitoring and under-
standing whether it is stable or drifting out of specification
over time, the rate of drift, and the level of urgency for cor-
rective action. Consider the following example:

Example 29.7

Benchmarking Nominal System
Performance

If a hypothetical performance requirement
is 100± 10 units, you need to know and

correlate System X’s nominal performance of 90 with Sys-
tem Y’s nominal performance of 100. Sometimes, this is
important; sometimes it is not. The borderline “90” sys-
tem could stay at that level due to variations in components
throughout its useful service life. In contrast, the perfect
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“100” system could drift to “115” beyond specification and
require continual maintenance.

Returning to automobile example in Objective #1, assume
that a commuter vehicle is only used to go back and forth
to work over the same roads every day. At 20,000 miles, it
averages 26 MPG. Now, at 30,000 miles, it only averages 24
MPG. If this is a trend, should actions be taken to investigate
the probable cause(s)? What has caused the trend? SEs,
System Analysts, and Engineers should be able to answer
these questions.

29.4.2.3.3 Objective #3: Improve Operator Training,
Skills, and Proficiency Investigate to determine if the
System is being unnecessarily stressed, misused, abused, or
misapplied by operators or maintainers. If so, characterize
the conditions and sequences for further corrective action
analysis. Likewise, determine if there are ways of improving
the System to reduce operator stress from unnecessary
actions (Figure 24.6).

29.4.2.3.4 Objective #4: Correlate Mission Events with
System Performance Correlate System events with Mis-
sion events and operator observations in terms of System
Responses and performance data. Ask yourself: are we ob-
serving a problem area or a symptom of a problem that has
a root case traceable to latent defects, human error, or effi-
ciency? (Figure 24.1)

29.4.2.3.5 Objective #5: Support Mission and System
Capability Analysis Collect objective evidence of existing
System capabilities and performance to support “gap” anal-
ysis (Figures 4.2 and 4.3) between the current System and
projected competitive or adversarial system performance. Is
the System or product becoming obsolete due to outdated
technology? Is it time for a technology upgrade?

29.4.2.3.6 Objective #6: Validate M&S Validate labora-
tory System M&S against actual System performance data
to support future mission planning or assess proposed capa-
bility or performance upgrades (Chapter 32).

29.4.2.3.7 Objective #7: Evaluate and Improve Human
Performance Personnel such as infantry, pilots, and NASA
astronauts are subjected to operating environments that
can overstress human performance (Figure 24.6). Thus,
operator performance within the context of the overall
Mission System performance must be well understood to
ensure that operator and maintainer training corrects or
enhances their performance for future missions. In addition,
investigate ways of improving User operator or maintainer
proficiency either through procedural changes or through
System upgrades.

29.4.2.4 Performance Monitoring Methods System Ele-
ment performance monitoring presents several challenges.

• Firstly, the User—operator or maintainer—SEs are
accountable for questions about system performance
and trends. If they do not have SEs on staff, support
contractors may be tasked to collect data and make
recommendations.

• Secondly, System Developer Enterprises proposing
next-generation systems or upgrades to existing or
legacy systems have to apply Systems Thinking in
System performance areas as well as COIs and CTIs in
a very short period of time. As a general rule, proposal
Offerors should track and demonstrate performance
in these areas over several years before they qualify
themselves as competent suppliers. The competitive
advantage resides with the incumbent contractor unless
the User decides to change. Often, your chances of
success are diminished if you wait to start answering
these questions when the Draft Request for Proposal
(RFP) solicitation is released; it is simply impractical.

So, for those Enterprises that prepare for and posture
themselves for success well in advance of system acquisition,
how do they obtain the data? Example data collection
methods include the following, if authorized and accessible:

1. Personal interviews with Stakeholders—User operator
and maintainer personnel and End Users.

2. Post-Mission data analysis of System PRs, mission
debriefings, and after-action reports.

3. Visual inspections such as on-site surveys and check-
lists.

4. Analysis of preventive and corrective maintenance
action records such as a FRACAS (Chapter 34), if
available.

5. Observation of System Equipment and Personnel in
action.

Although these methods may appear impressive on pa-
per, they are only as “good” as the “corporate memories”
of the User and maintainer Enterprises. Data retention fol-
lowing a mission drops significantly over several hours and
days. This is why After-Action Reports are due immediately
following a mission. Reality tends to become embellished
over time. So, every event during the Pre-Mission, Mission,
and Post-Mission Phases of Operation (Figure 6.4) becomes
a critical staging point for after action and follow-up report-
ing. This requires three actions as follows:

1. Establishing record-keeping systems such as mission
logs, FRACAS.
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2. Ingrain professional discipline in Personnel to record
mission or maintenance event data.

3. Thoroughly document the sequence of actions leading
up, during, and after a Mission or System maintenance
event.

Depending on the consequences of the event, failure
investigation boards may be convened that investigate the
who, what, when, where, why, and why not of emergency and
catastrophic events (Figure 24.1).

System Users often lack proper training in reporting mal-
functions or events. People, in general, dislike document-
ing events. So-called event reporting tools may not be user
friendly and perform poorly. For these reasons, Enterprises
should train personnel and assess their performance from
Day #1 of employment concerning:

1. What Quality Records (QRs)—data—are to be main-
tained and in what form or media.

2. Why the QRs are required.

3. When QRs are to be collected.

4. Who the Users—SySMLTM Actors.

5. How the User(s) employ the data for improving Mis-
sion System or Enabling System performance.

29.4.2.5 Reality Check The preceding discussions illus-
trate Systems Thinking (Chapter 1) related to System per-
formance monitoring. As a reality check, SEs need to ask
themselves the question: if we simply asked Users to identify
and prioritize three to five System areas for improvement,
would we glean as much knowledge and intelligence as ana-
lyzing warehouses full of data? The answer depends. If you
have to have objective evidence to rationalize a decision, the
answer is yes. Alternatively, establishing database reporting
systems that can be queried provide an alternative. If you
choose to take the shortcut and only identify the three to five
areas for improvement, you may filter out what appears to
be a miniscule topic that may become tomorrow’s headlines.
Choose the method wisely!

29.4.3 SE Focus Areas During OM&S

Every system, product, or service has a useful service
life. (Chapter 34) From both an Enterprise and a project
perspective, there are two contexts:

• Context #1—Sustaining and improving current system
performance.

• Context #2—Planning for next generation systems or
upgrades.

These contexts drive the need for SEs to assess System
performance in several focus areas:

• Focus Area 1: Correct latent defects such as design
flaws, errors, and deficiencies; poor workmanship prac-
tices; and materials.

• Focus Area 2: Improve Human–System Integration
(HSI) (Chapter 24) performance.

• Focus Area 3: Maintain Mission System training
device concurrency such as Figure 33.5.

• Focus Area 4: Maintain the Developmental Configu-
ration or Production baselines (Chapter 16).

• Focus Area 5: Perform and maintain a System capa-
bilities “gap” analysis (Figures 4.2 and 4.3).

• Focus Area 6: Bound and partition the Mission-Level
and System-Level problem and solution spaces
(Figures 4.7).

• Focus Area 7: Formulate and develop new capability
requirements. (Figure 4.5)

29.4.3.1 SE Focus Area 1: Correct Latent Defects Sys-
tems, products, and services have degrees of satisfaction as
viewed by the User and System Developer. System Devel-
opers employ design V&V practices to discover any latent
defects, such as design errors, flaws, or deficiencies early in
the System Development Phase when corrective actions are
less costly (Figure 13.1). Despite the best of human attempts
to perfect systems, latent defects inevitably go undiscovered
until someone identifies the problem (Figure 13.2) during the
System OM&S Phase—hopefully without adverse effects or
catastrophic consequences.

New systems, especially large complex systems, in-
evitably have residual latent defects. Sometimes, these are
minor; other times they are major. Any latent defect that has
the potential to impact mission completion, life, or health of
the Users—operators, maintainers, or trainer; the public; or
the environment can become a major risk item.

From a System Acquirer, User, and System Developer
perspective, the COI to be resolved is to ensure that the de-
livered Equipment and the User’s operators and maintainers
are able to achieve their mission objectives. This must be
accomplished without subjecting themselves to injury, dam-
age, or threats that might jeopardize the mission, public,
or environment. Software-intensive systems are especially
prone to latent defects that escape detection during formal
System V&V and acceptance.

Latent defects that escape the System V&V process may
go undiscovered after a System is fielded until it encounters a
unique set of Operating Environment conditions (Figure
24.1). Sometimes, they are highly obvious, and sometimes
they are only detected over a period of time (Figure 13.2).
The discovery may occur directly or indirectly during analy-
sis of large amounts of data. Therefore, monitor and analyze
System Hardware PRs closely to determine if there are la-
tent defects that need to be corrected and, if so, the degree of
urgency in correcting them.
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29.4.3.2 SE Focus Area 2: Improve HSI Performance
Our discussions up to this point focused on improving
Equipment Element performance. However, Equipment is
just one of several System Element performance effecters
that contribute to overall System performance such as the
Ishikawa or Fishbone Diagram shown in Figure 10.12.
Measurable System performance may also be achieved by
improving the Personnel Element performance aspects
(Figure 24.1) without having to procure new Equipment
Element solutions. How do we do this?

Equipment Element performance is often limited by
System operator and maintainer skills, proficiency, and per-
formance. System operators and maintainers such as aircraft
pilots may require on-going training and assessment to im-
prove their knowledge, skills, and proficiency in understand-
ing the limitations of the equipment and how to properly
apply it.

Human performance improvement requires education and
training in several skills areas. These include areas such
as basic training, remedial/refresher training, and advanced
training.

• Basic Training Fundamental instruction comple-
mented with hands-on experience to achieve a level of
competence in basic system capabilities and levels of
performance.

• Remedial/Refresher Training Retraining opera-
tor skills, proficiencies, and disciplines that may be
deficient.

• Advance Training Specialized training in mission
scenario environments that challenge the limitations
of the human and machine and ensure a level of
proficiency in achieving mission objectives.

The mechanisms for improving human performance in-
clude operator and maintainer selection, classroom training,
field experience operating the system, and sometimes luck.
Experienced System operators and maintainers serving as
Instructors are often responsible for training new students.
The training, however, is dependent on the availability of
training aids and devices that provide the students the look,
feel, and decision-making environment that enables them to
become proficient.

The question for SEs is: how do we specify system
capabilities that enable instructors to train and evaluate
student performance on the equipment? Training sessions
need to employ devices that immerse the student in the types
of operational and decision-making environments they will
actually confront in the Operating Environment.

29.4.3.3 SE Focus Area 3: Maintain Mission System-
Training Device Concurrency Training devices such as
models, simulations, and simulators must remain in syn-
chronized lock step with the Mission System they simu-
late such as ground vehicles, aircraft, ships, nuclear reactors,

robotics, surgical trainers, and so forth. For example, to avoid
negative training, an aircraft and its simulator must perform
identically. Otherwise, you may produce a negative training
result.

By virtue of expertise and capabilities, the Mission
System Developer is often different from the training de-
vice(s) Developer. Where concurrency of a simulator and the
System it represents is a COI/CTI, Users and the Acquir-
ers must ensure that contracts are synchronized to support
simulator device concurrency requirements to promote com-
munications among the Enterprises.

29.4.3.4 SE Focus Area 4: Maintain System or Prod-
uct Baselines

Principle 29.3

Fielded Systems Baseline Principle

The As-Maintained Developmental Con-
figuration baseline should always be main-
tained to identically match the physical

configuration of the fielded System or Product.

One of the challenges of fielded systems is failure to keep
the “As-Maintained” Developmental Configuration baseline
(Table 16.2) current. This commonly occurs when budgets
are reduced or priorities are focused on other activities.
Unfortunately, some Enterprises have a view that if an
activity such as maintaining documentation does not help the
Enterprise financial bottom line or to accomplish a mission,
it is not worthy of investing resources. So, Mission System
Users and System Developers ask: do we invest money in the
actual system to get more capability or in maintaining system
baselines in lock step? Generally, the capability argument
prevails over System documentation. As a result, there
may be a discrepancy “gap” between the physical Mission
System and its latest configuration baseline.

Once a System or Product is developed, delivered, and
accepted, a key question is: who maintains the product base-
line for fielded systems? Systems often go through a series
of major upgrades or Service Life Extensions (Figure 34.10)
over their useful service life. Each improvement or upgrade
may be performed internally or externally by a new Sys-
tem Developer contract. The challenge for the User and the
Acquirer to ultimately answer is: how do we assure the de-
veloper that the baseline configuration documentation iden-
tically matches the improved or upgraded, As-Maintained
system? Current, approved documentation, in general, is ab-
solutely necessary if you expect to upgrade and retrofit an
existing System. As a User SE, you will be expected to
answer this question and authenticate the integrity of the
As-Maintained Product Baseline.

Maintaining the currency of the Developmental configu-
ration Product Baseline (Chapter 16) is important not only
for the existing fielded systems but also for future produc-
tion runs. Some systems are fielded in small quantities for
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test markets to assess consumer feedback in the marketplace.
After the initial trials, production contracts may be released
for large quantities. Some markets may saturate quickly or,
if your Enterprise is fortunate to be first and have a lot of
Rogers’ (2003, p. 281) Adoption Curve Early Adopters and
Early Majority, enjoy the success of System production over
several years. These production runs may involve a single
production contractor or multiple “build-to-print” contrac-
tors; the baseline maintenance and integrity challenges, how-
ever, remain the same.

29.4.3.5 SE Focus Area 5: Perform and Maintain a
System Capabilities “Gap” Analysis As Mission System
and Enabling System performance data are collected and
analyzed, a repository of knowledge is established. So, what
is the value of this data and its analysis? Despite its title,
the analytical results could be a single page for management
with a brief rationale depicting the current gap and the rate
of expansion over time. Figure 4.3 provides an illustration of
the “capability gap” to be resolved.

The Operating Environment domain of most En-
terprises and Systems is often highly competitive; con-
ditions may range from benign to adversarial to hostile.
Depending on the overall Enterprise mission, competitors
and adversaries will continually improve and upgrade their
system capabilities. Regardless of your Enterprise’s op-
erating domain, the marketplace, military threat environ-
ment, and consumer marketplace environments are dynamic
and continually change in response to Mission System
changes.

For some systems, survival means changing, either by
necessity due to product obsolescence, cost of maintenance,
or in response to marketplace trends and demands. Thus,
operational capability and performance gaps emerge (Figure
4.3). This, in turn, forces investment to improve existing or
legacy System performance via upgrades or develop new
systems, products, and services.

29.4.3.6 SE Focus Area 6: Bound and Partition
the “Gap” Problem Space into Solution Spaces En-
terprise “gap analysis” provides an assessment of current
System capabilities and performance relative to projected
organizational needs as well as competitor and adversarial
capability projections. Analysis of the “gaps” may reveal one
or more potential problem spaces (Figure 4.3), each with its
own degree of urgency for fulfillment. Each problem space,
in turn, must be dynamically partitioned into one or more
solution spaces. When a commitment is made to develop
a new system, product, or service, the respective Solution
Space becomes the basis for bounding and specifying the
acquisition of the next-generation system.

29.4.3.7 SE Focus Area 7: Formulate and Develop New
Capability Requirements Over time, the capability “gap”

between the existing or legacy System and projected needs
widens as illustrated by Figure 4.3. At some point in time,
a determination will be made to initiate actions to improve
or upgrade existing system performance or to develop a new
system or upgrade (Figure 4.5). Thus, the evolving problem
and solution space boundaries specified by the Requirements
Domain—SPS—will have to be captured in terms of required
operational capabilities and costs. As an SE, you may be
assigned responsibility to collect, derive, and quantify these
requirements.

29.5 SYSTEM RETIREMENT (PHASE-OUT)
OPERATIONS

Systems, products, or services inevitably reach a point in
their useful service life in which they lack: (1) missions to
perform or (2) the capabilities required to support projected
organizational missions. The cost differential to (1) upgrade
capabilities or (2) to operate, maintain, and sustain it as an
Enterprise asset becomes cost prohibitive.

When systems fail to support Enterprise missions, their
utility to the User is diminished and become an unnecessary
maintenance cost. As a result, new system(s) may have to
be acquired (Figure 4.5) to fulfill the planned missions. This
requires (1) insightful planning, orchestration, and phase-out
of existing systems and (2) introduction of new systems
(Figures 4.3 and 4.5).

A decision is made to initiate these activities marks
the beginning of the System Retirement Phase of the Sys-
tem/Product Life Cycle for existing systems, product, or ser-
vices that are currently in active duty service. Figure 4.5
illustrates the transition.

29.5.1 System Storage Requirements and Design
Considerations

Although System storage (Figure 7.5) may appear to be
an operational issue, the activity requires SE considera-
tion, especially from a requirements and design perspective.
Equipment Element Systems and Products experience
deterioration, rust, corrosion, residual fuel has a shelf life,
lubricants and surfaces dry out, seals crack and leak, sponta-
neous combustion, hoses burst, tires flatten and crack, if left
unmaintained in various types of environmental conditions.
Therefore, SPS requirements must specify requirements for
ensuring the System or Product in a serviceable condition
prior to reintroduction to active duty service. Consider the
following example:

Example 29.8

Ancillary Specification Requirements
and Design Considerations

Example ancillary specification require-
ments and design considerations such as:
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• Easy removal of flammable liquids and fuels.

• Jacks to lift vehicle to relieve weight off tires.

• Engine block freeze plugs and heater connections for
coolant and oil.

• Shelter and storage facilities, environmental control.

• Rodent damage prevention and inspection of coolant
and hydraulic lines.

• Protective covers to prevent leaks.

• Coverings/attachment points for engine inlet/outlet
coverings, propeller movement constraints, notifica-
tions such as “Remove Before Flight” flags and wheel
chocks.

Author’s Note 29.12

Specification Requirements
versus Design Options

In today’s world, composite materi-
als provide a high-strength alterna-

tive to metal structures and parts that are prone to corrode
over time. Remember—specifications specify what has to be
accomplished and how well, not how to design the system.
Corrosion, as a problem space, should be addressed as an
SPS or EDS requirement. In contrast, usage of composite
materials is a design Analysis of Alternatives Trade Study
option (Chapter 32), not a specification requirement.

The above-mentioned example represents the technical
aspects of System storage. Equally important is the need
to accommodate these features and capabilities at the least
operating maintenance cost.

29.6 SYSTEM DISPOSAL OPERATIONS

System Disposal has a number of different contexts as
discussed in Chapter 3. Disposal of a System or Product
could mean sale, disassembly, total destruction, parts salvage
and partial destruction, burning, burial, and other approved
methods. From an SE perspective, specification requirements
and design considerations examples include the following:

• Easy removal of high value, sensitive, or toxic com-
ponents and technologies such as heavy metals, fluids
hazmat, and materials.

• Storage containers for salvaged devices and hazardous
and toxic materials.

29.7 CHAPTER SUMMARY

Chapter 29 addressed key deployment, OM&S, retirement,
and disposal of a system, product, or service. Key points of
discussion included the following:

• System Deployment of a system, product, or service
interface requirements for transport via an Enabling
System mode of transportation such as land, sea, air,
or space in accordance with local, state, deferral, and
international statutes and regulations.

• Recognition of the potential need to develop sites—real
estate—and facilities for basing or staging the new
system, product, or service, site selection, site planning,
operational site activation planning, System Assembly,
I&CO, integration into High-Order Level 0 User
systems (Figure 8.4).

• SE consideration for transport of a system, product,
or upgrade to the deployment site including route
modifications, coordination, environmental, licenses
and permits.

• SE objectives during System OM&S include the need
to baseline nominal System performance, monitor, and
track trends as performance indicators of maintenance
needs or issues. This includes both tracking and as-
sessment of Mission System and Enabling System
Elements such as Personnel, Equipment, Mission
Resources, Procedural Data, System Responses,
and Facilities performance.

• Information from the performance monitoring may
reveal COIs and CTIs that represent the need for
changes in Mission Resources or Procedural Data,
upgrades for corrective action of latent defects, or new
system development.

• Best practice examples for deploying a system, prod-
uct, or service to a new site.

• Completeness of requirements and designs to accom-
modate System Disposal through ease of removal of
components, hazardous or toxic materials (HAZMAT),
and the need for containers for those until they can be
properly dispositioned and disposed.

29.8 CHAPTER EXERCISES

29.8.1 Level 1: Chapter Knowledge Exercises

1. What is the objective of System Deployment?

2. What are some common System Deployment issues that
require consideration?

3. What is site development? When does it start and end?

4. What is a site survey?

5. Who conducts site surveys?

6. How should you approach conducting a site survey?

7. How should a site survey be conducted?

8. What types of considerations go into selecting and
developing a deployment site?
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9. What is operational site activation and what is its
scope?

10. Compare and contrast System Deployment and commer-
cial System or Product distribution.

11. What are some considerations that need to go into
specifying Systems Deployment capabilities?

12. What is System I&CO?

13. What are some of the considerations for integrating a
System or Product that has completed I&CO being
integrated into a Higher Order Level 0 User’s System?
Use a specific example System or Product as the basis
for your answer.

14. What are some methods to mitigate risk during System
Deployment?

15. Why is ES&OH a critical issue during System Deploy-
ment?

16. What are the primary objectives for System Operation,
Support, and Sustainment (OM&S)?

17. What are key areas for monitoring and analyzing
System-Level performance?

18. What are the four key questions for assessing System
performance?

19. What are common methods for assessing System-Level
and Element performance?

20. What are the key SE focus areas for current System
performance?

21. What are the key SE focus areas for planning next
generation systems?

29.8.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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ANALYTICAL DECISION SUPPORT PRACTICES





30
INTRODUCTION TO ANALYTICAL DECISION SUPPORT

Chapter 1 introduced the Accreditation Board of Engineer-
ing and Technology (ABET) definition of “Engineering” as
the “… application of mathematical and scientific principles
… ” We then expanded the scope of this definition for SE to
include the application of analytical principles. You can de-
bate the implicit relationship of analytical principles to Tra-
ditional Engineering mathematical and scientific principles.
The reality is: you need to establish an analytical framework
based on System or Product Life Cycle concepts - Deploy-
ment; Operations, Maintenance, and Sustainment (OM&S);
Retirement; and Disposal - … before … you start applying
the mathematical and scientific principles, which are all in-
terdependent. SEs must be capable of analytically bounding
and specifying:

• The User’s Operating Environment, its con-
stituent opportunity, problem, and solution spaces,
and relevance to specific system missions and
applications.

• A System of Interest (SOI), its Use Cases (UCs),
scenarios, capabilities, and performance.

• Interactions between the SOI and its prescribed Oper-
ating Environment to ensure (1) mission and system
compatibility and interoperability with authorized ex-
ternal Users and systems and (2) security and protection
from threat sources.

Chapter 30 introduces analytical decision support prac-
tices. Our discussions provide insights into the analyt-
ical decision-making environment, factors affecting the

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

decision-making process, technical reporting of analytical
results, and its challenges and issues.

30.1 DEFINITIONS OF KEY TERMS

• Analysis “A logical examination or study of a system
to determine the nature, relationships, and interaction
of its parts and environment.” (FAA SEM, 2006, p. 4.1)

• Analysis Paralysis Refer to Chapter 27 Definitions of
Key Terms.

• Conclusion A reasoned opinion derived from a pre-
ponderance of fact-based findings and other objective
evidence.

• Circular Error Probability (CEP) The Gaussian
(Normal) Distribution Probability Density Function
(PDF) referenced to a central point with concentric
rings representing the standard deviations of data dis-
persion.

• Cumulative Error A measure of the total cumulative
errors that may be time-dependent and inherent within
and created by a System or Product when processing
statistically variant inputs to produce a standard output
or outcome.

• Finding A commonsense observation supported by
in-depth analysis and distillation of facts and other
objective data. One or more findings culminate in a
conclusion.

• Gaussian (Normal) Distribution A graphical plot
depicting the symmetrical dispersion and frequency

http://www.wiley.com/go/systemengineeringanalysis2e
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of independent data occurrences about a central mean
(Figure 34.2).

• Hazard “Refer to Chapter 24’s Definitions of Key
Terms.”

• Integrity of Analyses “A disciplined process applied
throughout a program to ensure that analyses provide
the required levels of fidelity, accuracy, and confirmed
results in a timely manner.” (FAA SEM, 2006, Vol. 3,
p. 4.1-13)

• Recommendation A logically reasoned plan or course
of action to achieve a specific outcome or results based
on a set of conclusions.

• Standard Deviation “The square root of the variance.
It is a measure of spread of data points about the mean.”
(FAA SEM, 2006, Vol. 3, p. 4.1-13)

• Suboptimization The preferential emphasis on the
performance of a lower level entity at the expense of
overall system performance (Principle 14.3).

• System Optimization The act of balancing the con-
tributory performance of individual System Elements
to achieve a maximum level of integrated System per-
formance for a given set of boundary conditions and
constraints. Optimization decision factors may include
combinations of factors such as technical performance,
cost, or technology.

• System Performance Analysis and Evaluation The
investigation, study, and operational analysis of actual
or predicted system performance relative to planned or
required performance as documented in System Per-
formance Specification (SPS) or Entity Development
Specifications (EDS).

• Variance (Statistical) “A measure of the degree of
spread among a set of values; a measure of the tendency
of individual values to vary from the mean value. It
is computed by subtracting the mean value from each
value, squaring each of these differences, summing
these results, and dividing this sum by the number of
values in order to obtain the arithmetic mean of these
squares.” (DAU, 2012, p. B-238)

30.2 WHAT IS ANALYTICAL DECISION
SUPPORT?

Decision support is a technical services response to a contract
or task commitment to gather, analyze, clarify, investigate,
recommend, and present objective evidence of fact-based
evaluations and work products, findings, conclusions, and
recommendations. This enables decision makers to select a
proper (best) course of action from a set of viable alterna-
tives bounded by specific constraints such as cost, sched-
ule, technical, technology, support, and acceptable level
of risk.

30.2.1 Analytical Decision Support Objective

The primary objective of analytical decision support is to
respond to tasking or the need for technical analysis, demon-
stration, and data collection recommendations to support in-
formed SE Process Model (Figure 14.1) decision-making.

30.2.2 Expected Outcome of Analytical Decision
Support

Decision support results should be documented as work
products identified in task objectives. Work products and
Quality Records (QRs) include analyses, Trade Study Re-
ports (TSRs), and performance data. In support of these
work products, decision support develops operational proto-
types and Proof of Concept, Proof of Technology, and Proof
of Principle demonstrations, models and simulations, and
mock-ups to provide data for supporting the analysis.

From a technical decision-making perspective, decisions
are substantiated by the facts of the formal work products
such as analyses and TSRs provided to the decision maker.
The reality is that the decision may have subconsciously been
made by the decision maker long before the delivery of the
formal work products for approval. This brings us to our next
topic, Attributes of a Technical Decisions.

30.3 ATTRIBUTES OF TECHNICAL DECISIONS

Every decision has several attributes you need to understand
to be able to properly respond to the task. The attributes you
should understand are the following:

• What is the central issue or problem to be addressed?

• What is the scope of the task to be performed?

• What are the boundary constraints for the solution set
and degree of flexibility?

• Is the timing of the decision crucial?
• What decision factors and criteria are to be used in

making the decision?

• What level of accuracy and precision is required for the
decision?

• How is the decision to be documented and delivered?

30.3.1 Problem or Issue to be Resolved

Decisions represent approval of solutions intended to lead to
actionable tasks that will resolve a Critical Operational or
Technical Issue (COI/CTI). The System Analyst begins with
understanding what problem, issue, or question the User is
trying to solve. Therefore, begin with a clear, concise, and
succinct Problem/Opportunity Statement (Chapter 4) from
the decision maker or one they approve as characterizing the
problem/opportunity.
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If you are tasked to solve a technical problem and are
not provided a documented tasking statement, discuss it with
the decision authority. Active listening—verbal feedback to
the source—enables analysts to verify their understanding
of the tasking and validate the problem to be solved. Add
corrections based on the discussion and return a courtesy
copy to the decision maker. Then, when briefing the status
of the task, always include a restatement of the task, so all
reviewers have a clear understanding of the analysis you were
tasked to perform.

30.3.2 Scope of the Task to be Performed and Success
Criteria

Problem solving requires having a reasonable amount of
time and resources such as expertise, technology, cost, and
schedule available to successfully complete the task. There-
fore, properly scope the task to be performed including
outcome-based objectives and performance. Document the
task and these attributes including decision maker signature
of agreement before starting the task. Recognize and appreci-
ate the difference between problem solving versus symptom
solving (Principle 4.13).

30.3.3 Document the Decision-Making Completion
and Success Criteria

Once the Problem Statement is documented and boundary
constraints for the decision are established, identify the
Decision Factors (Chapter 32) that will be used to assess
the success of the decision results. Obtain Stakeholder
concurrence with the Decision Factors.

Make corrections as necessary to provide scoping defini-
tions of Decision Factors to avoid misinterpretation when the
decision is presented for approval. If the Decision Factors are
undocumented by the decision maker “up front,” you may be
subjected to the changing whims of the decision maker to
determine “when” or “if” the task is complete.

Some analytical results may be impractical to achieve
or less than optimal. Therefore, establish what constitutes
success to avoid being labeled as having failed to achieve
results.

30.3.4 Decision Boundary Condition Constraints,
Assumptions, and Flexibility

Technical decisions are bounded by cost, schedule, technical,
technology, and support constraints. Often, certain assump-
tions are required that should be documented as constraints.
In turn, the constraints must be reconciled with an acceptable
level of risk. Constraints sometimes are also flexible. Talk
with the decision maker and assess the amount of flexibility
in the constraint. Document the constraints and acceptable
level of risk as part of the task statement.

30.3.5 Criticality of Decision Timing

Author’s Note 30.1

Reminder of Principle 17.1 Task
Expectation Principle

On a professional level, a 1-hour
analysis represents high-level find-

ings with limited detail. An 8-hour analysis should produce
similar results with more supporting detail.

Just-in-Time (JIT) delivery of analytical decisions is cru-
cial, especially from the perspective of the decision maker,
as well as their time to read or listen to a Trade Study Report
(TSR) presentation. Be sensitive to the decision authority’s
schedule when the recommendations are presented.

30.3.6 Understand How the Decision Will Be Used and
by Whom

Decisions often require approvals by multiple levels of
Enterprise and customer stakeholder decision makers. Avoid
wasted effort trying to solve a symptom space rather than the
actual problem space (Principle 4.13). Tactfully validate the
decision problem statement.

30.3.7 Identify the Accuracy and Precision of the
Analysis

Principle 30.1

Data Precision Principle

Data with two-digit precision that require
multiplication do not yield four-digits of
precision; the best you can achieve is the
source’s two-digits of precision.

Every technical decision involves data that have a level of
accuracy and precision. Determine “up front” what accuracy
and precision will be required to support analytical results
and make sure that these are clearly communicated and
understood by everyone participating. One of the worst
things analysts can do is discover “after the fact” that
they need four-digit decimal data precision when they only
measured and recorded two-digit data. Some data collection
exercises may not be repeatable or practical. Apply System
Thinking (Chapter 1) and Plan Ahead. Similar rules should
be established for rounding data digits.

30.3.8 Identify How the Decision Is to Be Delivered

Decisions need a point of closure or delivery. Identify in
what format and media the decision is to be delivered—as
a document, presentation, hardcopy or electronics, color or
Black & White (B&W). In any case, make sure that your
response is documented for the record via a cover letter or
e-mail.
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30.4 TYPES OF ENGINEERING ANALYSES

Engineering analyses cover a spectrum of disciplinary and
specialty skills. The challenge for SEs is to understand the
following:

• What types of analyses may be required?
• At what level of detail?
• What tools are best suited for various analytical appli-

cations?
• What level of formality is required for documenting the

results?

To illustrate a few of the many analyses that might
be conducted, here’s an example list. Analyses marked
with an “*” are described in the INCOSE (2011) Systems
Engineering Handbook pp. 314–331.

• Mission Operations and Task Analysis
• Interoperability Analysis
• Usability Analysis*
• Human Systems Integration Analysis*
• Environmental Impact Analysis (EIA)*
• Fault Tree Analysis (FTA)
• Finite Element Analysis (FEA)
• Mass Properties Engineering (MPE) Analysis*
• Stress Analysis
• Electromagnetic Interference (EMI) Analysis
• Electromagnetic Compatibility (EMC) Analysis*
• Optical Analysis
• Thermal Analysis
• Timing Analysis
• System Latency Analysis
• Failure Modes and Effects Analysis (FMEA)
• Failure Modes and Effects Criticality Analysis

(FMECA)*
• Level of Repair (LoR) Analysis*
• Logistic Support Analysis (LSA)*
• Reliability, Availability, and Maintainability (RAM)

Analysis
• Reliability-Centered Maintenance (RCM) Analysis *
• System Safety Analysis*
• System Hazard Analysis*
• Vulnerability Analysis
• System Security Analysis*
• Survivability Analysis*
• Sustainment Engineering Analysis*
• Training Needs Analysis*
• Life Cycle Cost Analysis*
• Cost Effectiveness Analysis
• Manufacturing and Producibility Analysis*

N
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Heading 30.1

The application of various types of Engi-
neering analyses should focus on provid-
ing objective, fact-based data that support
informed technical decision-making. These
results at all levels aggregate into overall

system performance that forms the basis of our next topic,
System Performance Analysis and Evaluation.

30.5 SYSTEM PERFORMANCE ANALYSIS
AND EVALUATION

System performance analysis and evaluation is the inves-
tigation, study, and operational analysis of actual or pre-
dicted system performance relative to planned or required
performance as documented in SPS or EDS. The analysis
process requires the planning, methodology, data collection,
and post-data analysis to thoroughly understand a System’s
performance.

30.5.1 System Performance Analysis Tools
and Methods

System performance analysis and evaluation employs a
number of decision tools and methods to collect data to
support the analysis. These include models, simulations,
prototypes, interviews, surveys, and test markets.

30.5.2 Optimizing System Performance

System components at every level of abstraction inherently
have statistical variations such as physical characteristics,
reliability, performance, manufacturing processes, or work-
manship. Systems that involve humans involve statistical
variability in knowledge and skill levels and thus involve an
element of uncertainty. The challenge question for SEs to
consider is: what combination of system configurations, con-
ditions, Personnel-Equipment tasks (Figure 24.14), and
associated levels of performance optimizes overall system
performance?

System optimization is subject to the Stakeholder Ob-
server’s Frame of Reference. Optimization decision factors
and criteria (Figure 14.8) should reflect a consensus of the
Stakeholder community based on a balance of cost, schedule,
technical, technology, and support performance, or combina-
tions thereof.

30.5.3 Suboptimization

Suboptimization is a condition that exists when one ele-
ment of a System at the Product, Subsystem, Assembly,
Subassembly, or Part Levels is optimized at the expense
of overall system performance. During System Integration,
Test, and Evaluation (SITE), System entities at each level
of abstraction may be optimized. Theoretically, if the en-
tity is designed correctly, optimal performance occurs at the
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planned nominal or midpoint of any adjustment ranges sub-
ject to variations in material properties or performance.

The underlying design philosophy here is that if the
System is properly designed and component statistical
variations are accounted for in the analysis, only minor
adjustments may be required for an output to be cen-
tered about some hypothetical nominal or mean value
(Figure 30.1). If the variations have not been taken into ac-
count or design modifications have been made, the output
may be “off-set” from the mean value at its midrange setting
but within its operating range when “optimized.” Thus, at
higher levels of integration, this off-nominal condition may
impact overall system performance, especially if further con-
trol beyond the component’s adjustment range is required.
Bottom line: select components with the required perfor-
mance and tolerances. Then, screen the devices during the
Enterprise’s Receiving Inspection Process.

30.5.4 The Danger of Analysis Paralysis

Analyses serve as a powerful tool for understanding, pre-
dicting, and communicating system performance estimates.
Analyses, however, cost money and consume valuable
resources. The challenge question for SEs to consider is:
How “good is good enough”? At what level or point in
time does an analysis meet minimal sufficiency criteria to
be considered valid for decision-making? Since Engineers,
by nature, tend to become enamored with the elegance of

analysis, we sometimes suffer from a condition referred to
as “analysis paralysis.” So, what is analysis paralysis?

Analysis paralysis is a condition in which an analyst
becomes preoccupied or immersed in the details of an
analysis while failing to recognize the marginal utility and
diminishing returns of continual investigation. So, how do
SEs deal with this condition?

• Firstly, you must learn to recognize the signs of this
condition in yourself as well as others. Although the
condition varies from one person to another, some are
more prone than others.

• Secondly, aside from personality characteristics, the
condition may be a response mechanism to the work
environment, especially from paranoid, overbearing
managers who micro-manage tasks and who suffer
from the condition themselves.

30.5.5 Engineering Analysis Reports

As a discipline requiring integrity in analytical, mathe-
matical, and scientific data and computations to support
downstream or lower level decision making, Engineering
documentation is sometimes poor at best or simply nonex-
istent, due to either a lack of discipline or impractical work
environments. One of the hallmarks of a professional disci-
pline is an expectation to document recommendations and
decisions supported by factual, objective evidence derived
empirically by observation, lessons learned, or best practices.
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Figure 30.1 Application Dependent Gaussian (Normal) Distribution Illustrating the
Concept of Acceptable Operating Control Limits
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Data that contribute to informed SE decisions are of-
ten dependent on the assumptions, boundary conditions,
and constraints surrounding the data collection. While most
Engineers competently consider relevant factors affecting a
decision, the tendency is to avoid documenting the results;
they view paperwork as unnecessary, bureaucratic documen-
tation that does not add value directly to the deliverable prod-
uct. As a result, a professional, high-value analysis ends in
mediocrity due to the analyst lacking personal initiative and
discipline to perform the task correctly.

To better appreciate the professional discipline required
to document analyses properly, consider a hypothetical visit
to a physician:

Example 30.1

You visit a physician for a condition that
requires several treatment appointments at
3-month intervals over a year. The physi-
cian performs a high-value diagnosis and
prescribes treatments and/or prescription

medication but fails to record the medication and actions per-
formed at each treatment event. At each subsequent visit, you
and the physician have to reconstruct to the best of every-
one’s knowledge the assumptions, prescriptions and dosages,
and actions performed. Aside from the medical and legal im-
plications, can you imagine the frustration, foggy memories,
and “guesstimates” associated with these interactions. Engi-
neering, as a professional discipline, is no different. Subse-
quent decision-making is highly dependent and builds on the
documented facts, conditions, assumptions, and constraints
of previous decisions.

The difference between mediocrity and high-quality
professional results may be only a few minutes to simply
document critical considerations that yielded the analytical
result and recommendations presented. For SEs, decision
QRs should be recorded in a personal Engineering notebook
preferably on-line in a network-based journal which is
preferable.

30.5.5.1 Engineering Report Format Where practical
and appropriate, Engineering analyses should be docu-
mented in formal technical reports. Contract or Enterprise
command media -policies and procedures - sometimes spec-
ify the format of these reports. If you are expected to formally
report the results of an analysis and do not have specific
format requirements, consider the example outline shown in
Table 30.1. Here is a brief overview of key sections:

Section 1.0. INTRODUCTION
The introduction establishes the context and basis for
the analysis. Opening statements identify the docu-
ment; its context, relevance, and usage in the project;
and references to decision-maker tasking that autho-
rized the analysis.

TABLE 30.1 Example Engineering Report Outline

Section 1.0 INTRODUCTION
1.1 Scope
1.2 Charter including Problem Statement
1.3 Objectives
1.4 Analyst/Team Members
1.5 Acronyms and Abbreviations (Optional)
1.6 Definitions of Key Terms (Optional)

Section 2.0 REFERENCED DOCUMENTS
2.1 System Acquirer/User Documents
2.2 Project Documents
2.3 Vendor Documents
2.4 Standards and Specifications

Section 3.0 EXECUTIVE SUMMARY
3.1 Summary of Findings
3.2 Summary of Observations
3.3 Summary of Conclusions
3.4 Summary of Recommendations

Section 4.0 METHODOLOGY
4.1 Background
4.2 Assumptions and Constraints
4.3 Methodology
4.4 Data Collection
4.5 Analytical Tools and Methods—Versions

and Configurations
4.6 Statistical Analysis (if applicable)
4.7 Analysis Results

Section 5.0 FINDINGS, OBSERVATIONS, AND
CONCLUSIONS

5.1 Findings
5.2 Observations
5.3 Conclusions
5.4 Dissenting Opinions

Section 6.0 RECOMMENDATIONS
6.1 Priority #1
6.2 Priority #2
…
6.n Priority #n

APPENDICES
A Vendor Sources
B Supporting Analytics and Data

Author’s Note 30.2

Some Enterprises and individuals
prefer to place the Acronyms, Ab-
breviations, and Definitions in an
appendix. Some prefer placement
of Definitions “up front” to intro-

duce the reader to terms that have significant or contextual
meanings in the sections that follow. Either approach is fine.

Section 2.0. REFERENCED DOCUMENTS
This section lists only the documents cited in other
sections of the document (Principle 23.3). Note the
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operative title “Referenced Documents” as opposed to
“Applicable Documents.” We will address this topic
later.

Section 3.0. EXECUTIVE SUMMARY
Summarize the results of the analysis such as findings,
observations, conclusions, and recommendations: tell
them the bottom line “up front.” Then, if the reader
chooses to read about the details of how you arrived at
those results, they can do so in subsequent sections.

Section 4.0. METHODOLOGY
Informed decision-making is heavily dependent on a
valid methodology for conducting the research and
analysis. As such, the methodology used to perform the
analysis must be established as a means of providing
credibility for the results.

Section 5.0. FINDINGS, OBSERVATIONS, AND
CONCLUSIONS
As with any scientific study, it is important for the
analyst to communicate: (1) what they found, (2) what
they observed, and (3) what conclusions they derived
from the findings and observations.

Section 6.0. RECOMMENDATIONS
On the basis of the analyst’s findings, observations,
and conclusions, Section 6.0 provides a set of priori-
tized recommendations to decision makers concerning
Table 30.1 Section 1.3 objectives. You may ask: why
document recommendations … the results are what
they are? Decision makers require inputs to make in-
formed decisions. They do not have time to interpret
results. After all, the System Analyst is supposed to be
the expert. That is why they were tasked to perform the
analysis. The decision maker expects you to summa-
rize insightful nuggets of technical wisdom and pro-
pose a prioritized list of recommendations from which
the decision maker can make an informed decision that
may involve other considerations such as cost, risk.

APPENDICES
Appendices provide areas to exhibit supporting docu-
mentation collected during the analysis or support the
author(s) findings, conclusions, and recommendations.
The credibility and integrity of an analysis often de-
pend on who collected and analyzed the data. Anal-
ysis report appendices provide a means of organizing
and preserving any supporting vendor, test, simulation,
or other data used by the analyst(s) to support the
results. This is particularly important if, at a later
date, conditions that served as the basis for the ini-
tial analysis task change, thereby creating a need to
revisit the original analysis. Because of the changing
conditions, some data may have to be regenerated;
some may not. For those data that have not changed,

the appendices minimize work on the new task anal-
ysis by avoiding the need to recollect or regenerate
the data.

30.5.5.2 Decision Documentation Formality There are
numerous ways to address the need to balance document de-
cision making with time, resource, and formality constraints.
Approaches to documenting critical decisions formalities
range from a single page of informal, handwritten notes to
highly formal documents. Establish disciplinary standards
for yourself and your Enterprise related to documenting de-
cisions. Then, scale the documentation formality according
to task constraints. Regardless of the approach used, the doc-
umentation should capture the key attributes of a decision in
sufficient detail to enable “downstream” understanding of the
factors and criteria that resulted in the decision.

Author’s Note 30.3

The reality is that we do not always
have the time to formally document
a decision or results even if we ex-
hibit personal initiative and profes-
sional discipline. When time does not

permit, document the results on the “back of napkin” with a
date and key factors and file in a folder until you have time to
properly document the results. At least the decision is docu-
mented, even informally.

30.5.6 Analysis Lessons Learned

Once the performance analysis tasking and boundary condi-
tions are established, the next step is to conduct the analysis.
Let’s explore some lessons learned that you should consider
in preparing to conduct the analysis.

30.5.6.1 Establish a Decision Development Methodology
Decision paths tend to veer off-course midway through
the decision development process. Establish a valid
decision-making methodology “up front” to serve as a
roadmap for keeping the effort on track. When you establish
the methodology “up front,” you have the visibility of clear,
unbiased thinking unencumbered by the adventures along
the decision path. If you and your team are convinced you
have a sound, proven methodology, that plan will serve as a
compass heading. This is not to say that some conditions may
warrant a change in methodology. Avoid changes unless there
is a compelling reason with justifiable rationale to change.

Technical and scientific methodologies should always be
professionally and ethically driven by an objective evalua-
tion unmodified to fit political decisions. Remember, when
the decision is later proven faulty or results in system failures,
those same politicians who influenced the original method-
ology and outcome will distance themselves and not hesitate
to chastise you for (1) “not following proven, best practices”
and (2) taking appropriate professional and disciplinary ac-
tion.
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30.5.6.2 Acquire Analysis Resources As with any task,
success is partially driven by simply having the right re-
sources and LOE available when they are required. This in-
cludes:

• Subject Matter Experts (SMEs).

• Analytical tools.

• Access to personnel who may have relevant informa-
tion concerning the analysis area.

30.5.6.3 Document Assumptions and Caveats Every de-
cision involves some level of assumptions and/or caveats.
Document the assumptions in a clear, concise manner. Ver-
ify that the caveats are properly documented on the same
page as the decision including assumptions, data sources, and
footnotes. If the decision recommendations are copied, the
caveats will always be on the page. Otherwise, people may
intentionally or unintentionally apply the decision or recom-
mendations out of context.

30.5.6.4 Date the Decision Documentation Every deci-
sion document page header should be marked indicating the
document title, revision level, date, page number, and classi-
fication level, if applicable. Using this approach, the reader
can always determine if the version they possess is current.
In addition, if a single page is copied, the source document is
readily identifiable. Most people fail to perform this simple
task. When multiple versions of a report or draft are dis-
tributed without dates, the de facto version, which may or
may not be correct, is determined by the document closest to
the top of a stack on someone’s desk.

30.5.6.5 State the Facts as Objective Evidence Technical
reports must be based on the most current, factual informa-
tion from credible and reliable sources. Conjecture, hearsay,
and personal opinions should be avoided.

30.5.6.6 Cite Only Credible and Reliable Sources Tech-
nical decisions often leverage and expand on existing knowl-
edge and research, published or verbal. If you use this
information to support findings and conclusions, explicitly
cite the source(s) with attribution. Avoid vague references
such as “read the [author’s] report” documented in an obscure
publication published 10 years ago that may be inaccessible
or only available to the author(s). If these sources are un-
available, contact the owner or publisher for permission to
quote.

30.5.6.7 Reference Documents versus Applicable
Documents Due to a lack of proper education and training,
experiential Engineering education builds on mimicking
what others have done in the past. Unfortunately, Engineers
create documents with a Section 2.0 titled “Applicable Doc-
uments” rather than what they actually are—“Referenced

Documents.” Applicable documents are simply one person’s
perspective of the universe of material on the topic that may
or may not be relevant. Recognize the difference (Principle
23.3)!.

30.5.6.8 Cite Referenced Documents When citing refer-
enced documents, include the document ID, title, source,
date, and version containing data that serve as inputs to the
decision. People often believe that if they reference a docu-
ment by title they have satisfied analysis criteria. Technical
decision-making is only as good as the credibility and in-
tegrity of its sources of objective, fact-based information.
Source documents may be revised over time. Do yourself and
your team a favor: make sure that you clearly and concisely
document the critical attributes of source documentation.

Today, the tendency is to cite Internet documents that
are often uncontrolled and may or may not be valid sources
prepared by qualified experts. If you feel compelled to quote
an Internet website, corroborate the information from several
reliable sources and include the following information:

• Website URL—for example, www.XXXX.com

• Author
• “Date Retrieved.”

30.5.6.9 Conduct SME Peer Reviews Technical deci-
sions are sometimes Dead-on-Arrival (DOA) due to poor
assumptions, flawed decision criteria, methodology, and in-
complete research. Plan for success by conducting an infor-
mal peer review with trusted and qualified colleagues—the
SMEs—of the evolving decision document. Listen to their
challenges and concerns. Are they highlighting Critical Op-
erational and Technical Issues (COIs/CTIs) that remain to
be resolved or overlooked variables and solutions that are
obscured by the analysis or research?

30.5.6.10 Prepare Findings, Conclusions, and
Recommendations

Principle 30.2

Analysis Validity Principle

Analysis results are only as valid as their
underlying assumptions, models, and
methodology. Validate and preserve their
integrity.

There are a number of reasons why an analysis is con-
ducted. The technical decision maker may not possess cur-
rent technical expertise or the ability to internalize and as-
similate data for a complex problem. So, they seek out those
who do posses this capability such as competent, qualified
consultants, or Enterprises. In general, the decision maker
wants to know what the recognized SMEs who are closest to
the problems, issues, and technology propose as recommen-
dations regarding the decision. Therefore, analyses should
include findings, conclusions, and recommendations.
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On the basis of the results of the analysis, the decision
maker can choose to:

• Ponder, place “on hold,” return for more analysis, or
reject the findings and conclusions from their own
perspective.

• Accept the recommendations as a means of arriving at
an informed decision.

In any case, they need to know what the SMEs have to
offer regarding the decision.

30.6 STATISTICAL INFLUENCES ON SYSTEM
DESIGN

For many Engineers, System Design evolves around abstract
phrases such as “bound environmental data” and “receive
data.” The challenge is: how do you quantify and bound
the conditions for a specific parameter? How does an SE
determine performance measures such as:

• Acceptable signal and noise (S/N) ratios?

• Computational errors in processing the data?

• Time variations required to process system data?

The reality is that the hypothetical boundary condition
problems Engineers studied in college aren’t so ideal (Figure
2.4). In addition, when a System or Product is developed,
multiple copies may produce varying degrees of responses
to a set of controlled inputs. So, how do SEs deal with the
challenges of these uncertainties?

Systems and Products have varying degrees of stability,
performance, and uncertainty that are influenced by their
unique form, fit, and function performance characteristics.
Depending on the price the User wants, needs, can afford,
and is willing to pay (Figure 21.4), we can improve and
match material characteristics and processes used to produce
Systems and Products. If we analyze a System’s or
Product’s performance characteristics over a controlled
range of inputs and conditions, we can statistically state the
variance in terms of its standard deviation.

This section provides an introductory overview of how
statistical methods can be applied to system design to
improve capability performance. As a prerequisite to this
discussion, you should have basic familiarity with statistical
methods and their applications.

30.6.1 Understanding the Variability of Engineering
Data

In an ideal, theoretical world, Engineering data identically
match predicted values with zero error margins. In the real

world, however, variations in mass properties and character-
istics; attenuation, propagation, and transmission delays; and
human responses are among the uncertainties that must be
accounted for in engineering analysis calculations. In gen-
eral, the data are dispersed about the mean of the frequency
distribution.

30.6.1.1 Normal and Logarithmic PDFs Statistically, we
characterize the range dispersions about a central mean
in terms of Normal (Gaussian) and Logarithmic (Poisson)
frequency distributions as shown in Figure 34.3.

Normal and logarithmic frequency distributions can be
used to mathematically characterize and bound Engineer-
ing performance data related to Statistical Process Control
(SPC); queuing or waiting line theory for customer service
and message traffic; production lines; reliability and main-
tainability data, pressure containment; temperature/humidity
ranges.

30.6.1.2 Applying Statistical Distributions to Systems
Chapter 3 characterized a system as having acceptable
and unacceptable inputs and producing acceptable outputs
(Figure 3.2). A System or Product can also produce unac-
ceptable outputs such as electromagnetic, optical, chemical,
thermal, or mechanical outputs that make the system vul-
nerable to adversaries or create self-induced feedback that
diminishes or degrades system performance. The challenge
for SEs is bounding:

• The range of acceptable inputs and conditions from
undesirable or unacceptable inputs.

• The range of acceptable outputs and conditions from
unacceptable outputs.

30.6.1.2.1 Design Input/Output (I/O) Range Acceptability
Statistically, we can bound and characterize the range of ac-
ceptable inputs and outputs using the frequency distributions.
Figure 30.1 illustrates an example of a Gaussian (Normal)
Distribution that we can employ to characterize I/O variabil-
ity.

In this illustration, we employ a Gaussian (Normal) Dis-
tribution with a central mean. Depending on the boundary
conditions imposed by the System application, SEs deter-
mine the acceptable design range that includes upper and
lower control (UCL/LCL) limits relative to the mean.

30.6.1.2.2 Range of Acceptable System Performance Dur-
ing normal system operations, System or Product capabil-
ities perform within an acceptable (Normal) Design Range.
The challenge for SEs is determining what the thresholds
are for alerting User operators and maintainers when Sys-
tem performance is off-nominal and begins to pose a risk or
threat. To better understand this point, refer to Figure 30.1.
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Observe that we have a Normal Distribution about a
central mean and characterized by four types of operating
ranges:

• Design Range The acceptable range of Engineering
parameter values for a specific capability and con-
ditions that bound the acceptable and unacceptable
Upper/Lower Control Limits (UCL/LCL) introduced in
Figure 30.1.

• Normal Operating Range The range of acceptable
Engineering parameter values for a specific capability
that clearly indicates nominal performance for a given
set of conditions that does not necessarily pose a risk or
threat to the Personnel, Equipment, general public,
or the environment.

• Cautionary Range The range of Engineering parame-
ter values for a specific capability that clearly indicates
reasonable performance measures beyond or outside
the Normal Operating Range that have the potential to
injure or harm Mission System or Enabling System
Personnel, Equipment, the general public, or envi-
ronment.

• Warning Range The range of Engineering parame-
ter values for a specific capability and conditions that
clearly poses a clear and present danger to the Person-
nel, Equipment, the general public, or environment
with catastrophic consequences.

This presents several decision-making challenges for SEs
as illustrated in Figure 30.1:

• What is the acceptable Design Range that includes
Upper and Lower Caution Ranges?

• What are the Upper and Lower Control Limits and
conditions of the acceptable Normal Operating Range?

• What are the threshold conditions for the Warning
Range?

• What Upper and Lower Design Safety Margins and
conditions must be established for the System relative
to the Caution Range and Warning Range?

These questions, which are application dependent, are
typically difficult to answer. Also, recognize that this graphic
reflects a single Measure of Performance (MOP) for one
System or Entity at a specific level of abstraction. The
significance of this decision is exacerbated by the need to
allocate the Design Range to lower level entities, which
also have comparable performance distributions, ranges, and
safety margins. Obviously, this poses a number of risks. For
large, complex systems, how do we deal with this challenge?

There are several approaches for supporting the design
thresholds and conditions.

• First, you can Model and Simulate (M&S) the System
and employ Monte Carlo techniques to assess the most
likely or probable outcomes for a given set of Use Cases
(UCs) and scenarios.

• Second, you can leverage validated M&S results and
develop a prototype of the System for further analysis
and evaluation.

• Third, you can employ Spiral Development (Figure
15.4) to evolve a set of requirements over a set of
sequential prototypes.

Given this overview, let’s shift our focus to understanding
how statistical methods apply to System Engineering Devel-
opment (SE&D).

30.6.2 Statistical Method Applications to System
Development

Statistical methods are employed throughout the System
Development Phase (Figure 12.2) by various disciplines. For
SEs, statistical challenges occur in two key areas:

• Bounding and specifying specification requirements
performance limits.

• Verifying specification requirements compliance.

30.6.2.1 Statistical Challenges in Writing Specification
Requirements During specification requirements develop-
ment, Acquirer SEs are challenged to specify the acceptable
and unacceptable ranges of inputs and outputs (Figure 3.2)
for performance-based specifications (Figure 20.4). Consider
the following example:

Example 30.2

When exposed to (specified environmen-
tal operating conditions), the Sensor Sys-
tem shall have a probability of detection
of 0.XX over a range of (minimum per-
formance limit) to (maximum performance
limit).

When the contract is awarded, System Developer SEs are
challenged to determine, allocate, and flow down system per-
formance budgets and safety margins requirements (Chapter
31) derived from higher-level requirements. The challenge is
analyzing Example 30.2 to derive requirements for Product,
Subsystem, Assembly, and other levels. Consider Example
30.3 below.

Example 30.3

The XYZ output shall have a ±3𝜎
worst-case error of 0.XX vdc for In-
put Parameter A distributions that vary
between 0.000 vdc to 10.000 vdc.
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Figure 30.2 Engineering Data Dispersion Concept

30.6.2.2 Statistical Challenges in Verifying Specification
Requirements Suppose that an SE’s mission is to verify
the requirement stated in Example 30.3. For simplicity, let’s
assume that the sampled end points for Input Parameter A
data are 0.000 vdc and +10.000 vdc with a couple of points
in between. We collect data measurements as a function of
Input Data and plot them. Panel A of Figure 30.2 might be
representative of this data.

Applying statistical methods, we determine the central
mean trend line and ±3𝜎 boundary conditions based on the
requirement. Next, we superimpose the central mean trend
line and ±3𝜎 boundary limits to verify that the dispersion of
system performance data is within the specified requirement
control limits indicating the System passed (Panel C).

Let’s explore how SEs and System Analysts apply sta-
tistical test data to SE design decision making or verify-
ing requirements specified in an SPS or EDS have been
achieved.

30.6.3 Understanding Test Data Dispersion

Suppose that we conduct a test to measure System or Entity
performance over a range of input data as shown in Panel A of
Figure 30.2. As illustrated, we have a number of data points
that have a positive slope. This graphic has two important
aspects:

• Upward sloping central mean trend line of data

• A dispersion of data along the trend line.

In this example, if we performed a Least Squares math-
ematical fit of the data, we could establish the slope and
intercepts of the trend line using a simple y = mx + b con-
struct.

Using the central mean trend line for the data set as a func-
tion of Input Data (X-axis), we find that the corresponding
Y data points are dispersed about the mean as illustrated in
Panel C. On the basis of the standard deviation of the data
set, we could say that there is 0.9973 probability that a given
data point lies within the ±3𝜎 boundaries about the mean.
Thus, Panel D depicts the results of projecting the ±3𝜎 lines
along the trend line.

30.6.4 Cumulative System Performance Effects

Our discussions to this point focus on statistical distributions
relative to a specific capability parameter. The question is:
how do these errors propagate throughout the system? There
are several factors that contribute to the error propagation:

1. Operating Environment influences on Part-Level
properties.

2. Timing variations.

3. Computational precision and accuracy.

4. Drift or aliasing errors as a function of time.

From a total System perspective, we refer to this concept
as Cumulative System Performance Error. Figure 30.3 pro-
vides an example.
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Figure 30.3 Understanding Cumulative Error Statistics in System or Product
Performance

Assume that we have a simple system that computes the
difference between two Parameters A and B. If we examine
the characteristics of Parameters A and B, we find that each
parameter has different data dispersions about a predicted
performance mean and tolerance limits.

Ultimately, if we intend to compute the difference be-
tween Parameter A and Parameter B, both parameters have
to be scaled relative to some normalized value. Otherwise,
we get an “apples and oranges” comparison. So, we scale
each input and make any correctional offset adjustments.
This simply solves the functional aspect of the computation.
Now, what about errors originating from the source values
about a nominal mean plus all intervening scaling opera-
tions? The answer is: SEs have to account for the cumulative
error distributions related to errors and dispersions. Once the
System is developed, integrated, and tested, System-Level
optimization (Figure 14.8) may require adjustment in Sub-
system, Assembly, and Subassembly performance to cor-
rect for cumulative errors and dispersions.

30.6.5 Circular Error Probability (CEP)

The preceding discussion focused on analyzing and allocat-
ing system performance within the system. The ultimate test

for SE decision-making comes from the actual field results.
The question is: how do cumulative error probabilities im-
pact overall operational and system effectiveness? Perhaps,
the best way to answer this question is a “bull’s-eye target”
analogy.

Our discussions up to this point have focused on the dis-
persion of data along slope of the central mean. There are
system applications whereby data are dispersed about a cen-
tral point such as the “bull’s eye” illustrated in Figure 30.4.
In these cases, the ±1𝜎, ±2𝜎, and ±3𝜎 points lie on con-
centric circles aligned about a central mean located at the
bull’s eye. Applications of this type are generally target based
such as munitions, firearms, and financial plans. Consider
Example 30.4:

Example 30.4

Let’s assume you are tasked to conduct an
evaluation of two competing rifle systems,
Rifle System A and Rifle System B. We
will assume that sampling methods are
employed to determine a statistically valid

sample size. Specification requirements state that 95% of the
shots must be contained within a circle with a diameter of X
inches centered at the bull’s eye.



STATISTICAL INFLUENCES ON SYSTEM DESIGN 663

A
B

C D

System A 
Results

System B 
Results

System A
Dispersion

System B
Dispersion

1σσ 2σ

3σ

–3σ –2σ –σ +3σ +2σ +σ

Drawing Not to Scale

Figure 30.4 Circular Error Probability (CEP) Example

Each Rifle System is mounted in a test fixture and bore
sighted for distance. When environmental conditions are
acceptable, expert marksmen “live fire” the required number
of rounds from each rifle. Marksmen are unaware of the
manufacturer of each rifle. Miss distance firing results are
shown in Panels A and B.

Using the theoretical bullseye as the origin, you superim-
pose the concentric lines about the bull’s eye representing the
±1𝜎, ±2𝜎, and ±3𝜎 limits as illustrated in the center of the
graphic. Panels C and D depict the results with miss distance
as the deciding factor; System B is superior.

In this simple, ideal example, we focused exclusively on
System effectiveness, not on cost effectiveness, which in-
cludes system effectiveness. The challenge is: things are not
always ideal. Rifles, ammunition, reliability, and mainte-
nance are not identical in cost. What do you do? A solution
lies in the Cost as an Independent Variable (CAIV) (Figure
32.4) and Utility Functions introduced later (Figure 32.9).
Given the test results, what are the Users’ pre-defined Utility
Function Figures of Merit (FOMs) concerning the accuracy
relative to cost and other factors?

If Rifle System A costs one-half as much as Rifle System
B, does the increased performance of Rifle System B sub-
stantiate the cost differential? You may decide that the ±3𝜎
point is the minimum threshold requirement for System ac-
ceptability. Thus, from a CAIV perspective, System A meets

the specification threshold requirement and costs one-half as
much, yielding the best value.

You can continue this analysis further by evaluating the
utility of hitting the target on the first shot for a given set of
time constraints, .

30.6.6 Data Correlation

Engineering often requires developing mathematical algo-
rithms that model best-fit approximations to real-world data
set characterizations. Data are collected to validate that a
System produces high-quality data within predictable val-
ues. We refer to the degree of “fit” of the actual data to the
standard or approximation as data correlation.

Data correlation is a measure of the degree to which actual
data dispersion regress toward a central mean of predicted
values. When actual values match predicted values, data
correlation is 1.0. Thus, as data set variances diverge away
from the central mean, the degree of correlation represented
by r, the correlation coefficient, progresses toward zero. To
illustrate the concept of data correlation and convergence,
Figure 30.5 provides examples.

30.6.6.1 Positive and Negative Correlation Data correla-
tion is characterized as positive or negative depending on the
slope of the line representing the central mean of the data
set over a range of input values. Panel A of Figure 30.5 rep-
resents a positive (slope) correlation; Panel B represents a
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Figure 30.5 Data Correlation Concept

negative (slope) correlation. This brings us to our next point,
convergence or regression toward the mean.

30.6.6.2 Regression Toward the Central Mean Since En-
gineering data reflect variations in physical characteristics,
actual data do not always perfectly match the predicted
values. In an ideal situation, we could state that the data cor-
relate over a bounded range if all of the values of the data set
are perfectly aligned along the central mean line as illustrated
in Panels A and B of Figure 30.5.

In reality, data are typically dispersed along the central
mean trend line. Thus, we refer to the convergence or data
variance toward the mean as the degree of correlation. As
data sets regress toward a central mean, the data variance or
correlation increases toward r=+1 or −1 as illustrated in
Figure 30.5, Panels D and E. Data variances that decrease
toward r= 0 indicate decreasing convergence or low corre-
lation. Therefore, we characterize the relationship between
data parameters as positive or negative data variance conver-
gence or correlation.

30.6.7 Statistical Influences Summary

Our discussions of statistical influences on System Design
practices were predicated on a basic understanding of sta-
tistical methods and provided a high-level overview of key
statistical concepts that influence SE design decisions.

We highlighted the importance of using statistical meth-
ods to define acceptable or desirable design ranges for input

and output data. We addressed the importance of estab-
lishing boundary conditions for Normal operating ranges,
cautionary ranges, warning ranges, as well as establishing
safety margins. Using the basic concepts as a foundation, we
addressed the concept of cumulative errors, Circular Error
Probabilities (CEP), and data correlation. We also addressed
the need to bound acceptable and unacceptable system
inputs and outputs that include products, by-products, and
services.

Statistical data variances have significant influence on SE
technical decisions such as system performance, budgets,
and safety margins and operational and system effectiveness.
What is important is that SEs:

• Learn to recognize and appreciate Engineering I/O data
variances.

• Know when and how to apply statistical methods to
understand System interactions with its Operating
Environment.

30.7 CHAPTER SUMMARY

Our discussion of analytical decision support provided data
and recommendations that support the Wasson SE Process
Model (Figure 14.1) decision-making at all levels of abstrac-
tion. As an introductory discussion, analytical decision sup-
port employs various tools addressed in these chapters:
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• Chapter 31 System Performance Analysis, Bud-
gets, and Safety Margins

• Chapter 32 Trade Study: Analysis of Alterna-
tives (AoA)

• Chapter 33 System Modeling and Simulation
(M&S)

• Chapter 34 System Reliability, Maintainability,
and Availability (RMA)

Remember—As a professional, you have an obligation to
yourself, Enterprise, and Users to:

• Employ best practices to ensure the integrity of the
results that reflect on your reputation.

• Produce decisions based on an unbiased preponderance
of the objective, fact-based evidence that will withstand
professional scrutiny and challenges.

30.8 GENERAL EXERCISES

30.8.1 Level 1: Chapter Knowledge Exercises

1. What is analytical decision support?

2. What are the attributes of a technical decision?

3. What is the SEs role in technical decision-making?

4. What is system performance analysis and evaluation?

5. What types of Engineering analyses are performed?
Provide 10 primary types.

6. How are Engineering analyses documented?

7. What format should be used for documenting Engineer-
ing analyses?

8. What are SE design and development rules for analytical
decision making?

9. How do you characterize random variations in system
inputs sufficiently to bound the range of acceptable
values in terms of Normal Distribution with standard
deviations?

10. How do SEs establish criteria for acceptable and unac-
ceptable system inputs and outputs?

11. What is a design range?

12. How are upper and lower tolerance limits established for
a design range?

13. How do SEs establish criteria for caution and warning
indicators?

14. What development methods can be employed to improve
our understanding of the variability of Engineering input
data?

15. What is CEP? How is it used?

16. What is meant by the degree of correlation?

17. What are two types of correlation?

18. Explain the differences between Technical Report Rec-
ommendations, Findings, Conclusions, and their se-
quences of presentation in the document.

19. Explain why it is important to have a documented
Problem Statement (Chapter 4) from the decision-maker
authorizing and tasking an analysis.

20. Explain why it is important to state the decision-maker’s
Problem Statement in an Analysis Technical Report.

21. Why is it important to establish a methodology for an
analysis before its start?

30.8.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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31
SYSTEM PERFORMANCE ANALYSIS, BUDGETS,
AND SAFETY MARGINS

System performance manifests itself via the cumulative
performance results of the integrated set of System Elements
(Figures 5.3 and 10.12) at a specific instance in time.
That performance ultimately determines success in achieving
Mission System and Enabling System objectives—in
some cases, survival.

When SEs allocate and flow down System performance
requirements, there is a tendency to think of those require-
ments as static parameters. For example, “shall be +12.3
± 0.10 vdc.” Aside from User switch settings or configura-
tion parameters, seldom are parameters static or steady state.
For example, from a weight perspective, fuel in an aircraft is
measurable only at a specific instant in time. Fuel weight is
dynamic and diminishes over time as a function of its con-
sumption.

From an SE perspective, we allocate and flow down
System Performance Specification (SPS) requirements via
the System Architecture’s hierarchical framework. As an
example, consider static weight. SEs have a budget of 100
pounds to allocate equally to three components. Invariant
static parameters such as weight make the SE requirements
allocation task a lot easier. However, this is not the case for
many System Performance Specification (SPS) and Entity
Development Specifications (EDS) requirements. How do
we establish values for acceptable System inputs (Figure
3.2) that are subject to variations such as environmental
conditions, Time of Day (TOD), Time of Year (TOY), signal
properties, human error, and other variables?

System requirement parameters are often characterized
by statistical value distributions such as Gaussian (Nor-
mal), Binomial, and LogNormal (Poisson) (Figure 34.3)

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

with frequency distributions that vary independently about a
central mean. Using our aforementioned static requirements
example, we can state that the input voltage must be con-
strained to a range of +12.20 vdc (−3𝜎) to +12.40 vdc (+3𝜎)
with a mean of +12.30 vdc for a prescribed set of operating
conditions.

On inspection, this sounds very simple and straightfor-
ward. The challenge is: how did SEs decide that the:

1. Central mean value needed to be +12.30 vdc?

2. Variations could not exceed ± 0.10 vdc?

This simple example illustrates one of the most chal-
lenging and perplexing aspects of System Engineering—
allocating performance requirement tolerances. It also illus-
trates the fallacy of focusing on Functional Analysis, which
is the easy part; derivation and allocation of performance
values such as those above is the difficult part. This is why
Functional Analysis is relevant but outdated and Capability
Analysis is the appropriate action to perform.

Many times, SEs simply do not have any precedent data.
For example, consider human attempts to build bridges,
develop and fly an aircraft, launch rockets and missiles, and
land on the Moon and Mars. Analysis supported by a lot of
trial and error data collection and observation may be all you
have to establish initial estimates of these parameters.

There are a number of ways one can determine these
values. Examples include the following:

• Unscientific educated guesses or guesstimates based on
seasoned experience.

http://www.wiley.com/go/systemengineeringanalysis2e
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• Theoretical and empirical trial and error analysis.

• Validated data modeling and simulation with increas-
ing fidelity.

• Prototyping demonstrations such as “live fire” tests.

The challenge is being able to identify a reliable, low-risk,
level of confidence method of determining values for statis-
tically variant parameters.

Chapter 31 describes how we allocate SPS or EDS
requirement performance values to lower levels. We
explore how capability—functional and non-functional
—performance is analyzed and allocated. This requires
building on previous practices such as statistical influences
concerning System Design introduced in Chapter 30. We
introduce the concepts of partitioning - decomposing -
cycle-time-based performances into queue, process, and
transport times. Finally, we conclude with a discussion of
System Performance Optimization and System Analysis
Reporting.

31.1 DEFINITIONS OF KEY TERMS

• “Design-to” Measure of Performance (MOP) A tar-
geted mean value bounded by minimum and/or max-
imum threshold values levied on a System capability
performance parameter to constrain decision making.

• Design Safety Margin An additive or multiplicative
factor that is applied to a Measure of Performance
(MOP) for a capability or physical characteristic to
accommodate variations and uncertainty in component
materials, performance, and environmental conditions.

• Performance Budget Allocation A minimum, maxi-
mum, or min–max constraint that represents the abso-
lute thresholds that bound a capability or performance
characteristic.

• Processing Time The statistical mean time and toler-
ance that characterizes the time interval between an
input stimulus or cue event and the completion of pro-
cessing of the input(s).

• Queue Time The statistical mean time and tolerance
that characterizes the time interval between the arrival
of an input for processing and the point when process-
ing begins.

• System Latency The time interval between a stim-
ulus, excitation, or cue event and a system response
event. Some refer to latency as the Input/Output (I/O)
throughput or response time of the system.

• Transport Time The statistical mean time and toler-
ance that characterizes the time interval between trans-
mission from an Entity and its receipt at the next Entity
for processing.

31.2 PERFORMANCE “DESIGN-TO” BUDGETS
AND SAFETY MARGINS

Principle 31.1

Performance Budgets and Margins
Principle

Every System/Entity design re-
quires performance budgets that bound

capabilities and provide a margin of safety to accom-
modate variability and uncertainty in component and
operational performance for a prescribed set of Operating
Environment conditions.

Every capability or physical characteristic of a System or
Entity must be bounded by performance constraints. This
is very important in top-down/bottom-up/horizontal design,
whereby System capabilities’ performance is partitioned, al-
located, and flowed down into multiple levels of design de-
tail. Therefore, every specification should have supporting
performance allocations budgets and margins that are man-
aged by the System/Product Development Team (SDT/PDT)
accountable for implementing the specification.

31.2.1 Achieving MOPs

Principle 31.2

MOP Risk Principle

Every MOP has an element of develop-
ment risk. Mitigate the risk by establishing
one or more boundary condition thresholds

to trigger risk mitigation actions to reduce the risk to accept-
able levels (Figure 21.12).

The mechanism of partitioning and allocating System
performance into subsequent levels of detail is referred to as
performance budgets and design safety margins. In general,
performance budgets and design safety margins allow SEs to
impose performance constraints on capabilities that include
a margin of safety. Philosophically, if overall System perfor-
mance must be controlled, so should the contributing entities
at lower levels of abstraction.

Performance constraints are further partitioned into:
(1) “Design-to” MOPs and (2) performance safety margins.

Author’s Note 31.1

Derivation of MOPs Context

Our discussion here as has two
contexts concerning derivation of
MOPs:

• Context #1—Proposal Phase – Derivation of System
Level MOPs for developing an SPS to submit as part
of a proposal response.

• Context #2—System Development Phase – SPS re-
quirements derivation, allocation, and flow down to
lower level EDS’ as Design-to MOPs.
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31.2.2 Design-to MOPs

Design-to-MOPs serve as the key mechanism for allocat-
ing, flowing down, and communicating performance con-
straints to lower-levels Entities (Figure 14.3). The actual
allocation process is accomplished by a number of meth-
ods. Grady (2006, pp. 59–60) as an example identifies three
types of requirements allocation and flow down methods:
(1) equivalence, (2) apportionment, and (3) synthesis. Let’s
explore each of these further.

31.2.2.1 Requirement Allocations by Equivalence

Principle 31.3

Equivalence Allocation Principle

Apply the equivalence allocation method
to allocate and flow down non-functional
requirement constraints to Products,
Subsystems, and Assemblies.

Non-functional specification requirements such as color,
safety, or security are allocated and flowed down directly
to lower level Entities with the same units. Observe
that non-functional requirements represent constraints docu-
mented in specification Section 3.6 Design and Construction
Constraints (Table 20.1). To illustrate allocation by equiva-
lence, consider the following example:

Example 31.1

SPS Requirement Statement

3.2.1 The System shall be painted XYZ
color in accordance with ABC Standard,
para. XXX (title).

Allocation of this requirement via equivalence to
Subsystems results in the following:

• Subsystem #1 shall be painted XYZ color in accor-
dance with ABC Standard, para. XXX (title).

• …
• Subsystem #n shall be painted XYZ color in accor-

dance with ABC Standard, para. XXX (title).

Observe how the Subsystem (child) requirements (Figure
21.2) are flowed down directly from the System (parent)
requirement with no change in wording other than the subject
of the requirement—System versus Subsystem.

You may observe that other non-functional constraints
such as size and weight are not included as candidates for
allocation by equivalence. The reason is that multi-level
System Architecture components vary in size and weight
unless they are replicated at the same level of abstraction.
As such, their allocations must be apportioned due to a
number of factors that drive overall System performance.
This brings us to our next topic, Requirements Allocations
by Apportionment.

31.2.2.2 Requirement Allocations by Apportionment

Principle 31.4

Apportionment Allocation Principle

Apply the apportionment method to allo-
cate and flow down quantifiable, MOPs
such as electrical power, timing, weight,

or size based on informed decisions, component or design
history, boundary conditions, technology constraints, feasi-
bility, and professional experience.

Since higher-level System capability requirements must
produce performance-based behavioral outputs that result
in the achievement of a mission outcome, multi-discipline
PDTS must allocate the performance to lower level Prod-
ucts, Subsystems, Assemblies, and Subassemblies
(Figure 8.4). On inspection, it may appear that we can
simply employ an arbitrary or discretionary approach to
allocating the performance values based on seasoned experi-
ence. In some cases, this may be true. However, other factors
such as complexity may lead to the need to apportion the
values among Subsystem, Assemblies, or Subassemblies.
Some performance allocations may require Modeling and
Simulation (M&S) validated by test data.

Observe that quantifiable MOPs is an operative phrase in
Principle 31.4. We know that:

1. Performance is the result of the integrated chain
of performance contributions—Subassemblies
→ Assemblies → Subsystems → Products →
System-Level outputs and outcomes.

2. The System’s Input/Output (I/O) transfer function of
that integrated chain can be represented mathemati-
cally.

Therefore, we can state that apportionment allocations
must be based on valid mathematical derivations and contri-
butions to achieving the overall System-Level performance
requirement. To illustrate allocation by apportionment, con-
sider the following example:

Example 31.2

SPS Requirement Statement

3.6.8.X The System’s average power con-
sumption shall not exceed 20.0 W.

Allocation of this requirement via apportionment to
Subsystems results in the following:

1. Subsystem #1’s average power consumption shall not
exceed 5.0 W(watts).

2. Subsystem #2’s average power consumption shall not
exceed 12.0 W.

3. Subsystem #3’s average power consumption shall not
exceed 3.0 W.
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31.2.2.3 Requirement Allocations by Synthesis

Principle 31.5

Synthesis Allocation Principle

Apply the synthesis allocation method
to flow down complex, quantifiable
System-Level performance require-

ments values such as Measures of Effectiveness (MOEs) or
Measures of Suitability (MOSs) to Products, Subsystems,
Assemblies using analytical models.

Some SPS or EDS capability requirements require ana-
lytical or simulation models to derive quantifiable nominal
performance and tolerance values. Examples include param-
eters related to outcomes such as range and accuracy due
to the complexities of System usage, Operating Environ-
ment conditions. The analytical models should be based on
validated mathematical models of the physical System. As
an example, consider the complexities of allocating an MOE
such as a vehicle’s fuel economy as shown in Figure 5.8 to
engine efficiency, vehicle aerodynamic drag, fuel octane and
quality, electronic timing, road roughness and friction, and
Environmental Conditions—temperature, humidity.

31.2.3 Performance Safety Margins

Simply allocating performance values to Products, Subsys-
tems, and Assemblies does not mean that the System or
Product will achieve the expected result. Although compo-
nents can be performance tested, inevitably there are latent
defects such as design errors, flaws, and so on, as well as vari-
ances in their compositional properties. As a result, we need
to incorporate performance safety margins into their analysis
to accommodate these factors.

Performance safety margins enable us to accomplish two
objectives. They provide a:

1. Means to accommodate variations in tolerances, accu-
racies, and latencies in System Responses plus human
judgment – slips, lapses, and errors (Chapter 24) – as
well as effectiveness and efficiency.

2. Safety margin “reserve” for decision makers to trade
off previously allocated performance values to specific
entities to optimize overall System or Product perfor-
mance.

Performance safety margins serve as contingency reserves
to compensate for component variations or to accommodate
worst-case scenarios that:

1. May have been underestimated.

2. Potentially create safety risks and hazards.

3. Result from human errors (Chapter 24) in computa-
tional precision and accuracy.

4. Are due to physical variations in component and mate-
rial mass properties.

5. Are due to poor workmanship.

6. Result from the “Unknown-Unknowns.”

Every Engineering discipline employs rules of thumb
and guidelines for incorporating safety margins. Typically,
performance safety margins might vary from 2X (200%) to
3X (300%) the nominal SPS or EDS value, depending on the
application. Examples include (1) Mechanical Engineering
designs for structural, tension, and compression loads and
(2) Electrical Engineering power loads.

There are limitations to the practicality of safety margins
in terms of (1) cost—benefits, (2) probability or likelihood
of occurrence, (3) alternative actions, and (4) reasonable
measures, among other things. In some cases, the implicit
cost of increasing safety margin MOPs above a practical
level can be offset by taking appropriate System or Product
safety precautions, safeguards, markings, and procedures
that reduce the probability of occurrence.

WARNING

Warning 31.1

Safety Margins

Always seek guidance from your project
and technical management, disciplinary

standards and practices, or local Enterprise Engineering
command media to establish a consensus about safety mar-
gins for your project. When these are established prior to the
Contract Award, document the authoritative basis for the se-
lection, or incorporate into project command media, project
memoranda, or plans, and disseminate to all personnel.

Safety margins, as the name implies, involve technical de-
cision making to prevent potential safety hazards from occur-
ring (Figure 24.1). Any potential safety hazards carry safety,
financial, and legal liabilities. Establish safety margins that
safeguard the system and its operators, general public, prop-
erty, and the environment.

31.2.4 Applying Design-To MOPs and Performance
Safety Margins

Figure 31.1 illustrates how Design-To MOPs and perfor-
mance safety margins are established. In this figure, the
MOPs for System capabilities and physical characteristics
are given in generic terms or units. Note that the units can
represent MOPs such as time, electrical power, or mass
properties.

Author’s Note 31.2

The example in Figure 31.1 shows
the basic method of allocating
performance budgets and safety
margins. In reality, this highly iter-
ative, time-consuming process often
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Capability A_1 Capability A_2 Capability A_3

“Design To”
36 Units

Margin
4 Units

“Design To”
27 Units

Margin
3 Units

“Design To”
17 Units

Margin
3 Units

Allocate 40 Units Allocate 30 Units Allocate  20 Units

Allocate 90 Units

Capability A_21 Capability A_22

“Design To”
13 Units

Margin
2 Units

“Design To”
11 Units

Margin
1 Unit

27 Units

Allocate 15 Units Allocate 12 Units

Capability A_221 Capability A_222 Capability A_223

“Design To”
5 Units

Margin
0.5 Units

“Design To”
3 Units

Margin
0.5 Units

“Design To”
1.5 Units

Margin
0.5 Units

Allocate 5.5 Units Allocate 3.5 Units Allocate 2.0 Units

Allocate 11 Units

Capability A

“Design To”
90 Units

Margin
10 Units

“Design To” Allocation

100 Units Solutions?
Problems?

Figure 31.1 Performance Budget and Design Margin Allocations - Solutions or
Problems?

requires analyses, trade studies, modeling, simulation, pro-
totyping, and negotiations to balance and optimize overall
System performance.

Let’s assume the SPS or EDS specifies that Capability
A have a performance constraint of not-to-exceed 100 units
(Figure 31.1). System designers decide to establish a 10%
safety margin at all levels of the design. Therefore, they begin
with a Design-To MOP of 90 units and a safety margin of 10
units. The Design-To MOP of 90 units is allocated as follows:
Capability A1 is allocated an MOP of 40 units, Capability
A2 is allocated an MOP of 30 units, and Capability A3 is
allocated an MOP of 20 units.

Focusing on Capability A2, the MOP of 30 units is
partitioned into a Design-To MOP of 27 units (90%) and
a safety margin MOP of 3 units (10%). The resultant
Design-To MOP of 27 units is then allocated to Capability
A21 and Capability A22 in a similar manner.

Some SEs will rightfully argue that once you establish the
initial 10 (10%) unit safety margin MOP at the Capability
A level, there is no need to establish design safety margins
at lower levels of the capability—(Capability A3 safety
margin, etc.). Observe how the second level has reserved an
additional 10 units of margin to the Capability A-1, A-2, and
A-3 budgets above and beyond the 10 units at the Capability
A level. They emphasize that as long as all subordinate

level capabilities meet their Design-To MOP performance
budgets, the 10-unit MOP safety margin adequately covers
situations where lower level performance exceeds allocated
budgets.

A key question arises concerning the approach shown
in Figure 31.1. Some SEs make the case that imposing
performance safety margins at lower levels unnecessarily
constrains critical resources and increases System cost due
to the need for higher performance Equipment. For some
non-safety critical, non–real-time performance applications,
this may be true; every System and application is unique.

One approach to this situation is to establish performance
safety margins at all levels of abstraction except for the
lowest level. Consider the following example:

Example 31.3

Performance Safety Margins

Using Figure 31.1 as a reference, perfor-
mance safety margins would be restricted
to Capability A22 and 1 Unit would be held

in reserve in case Capabilities A221, A222, or A223 required
more flexibility in their allocated performance of 5.5 units,
3.5 units and 2.0 units, respectively.

If you pursue the approach in Example 31.3, you may
have unnecessarily reserved valuable Safety Margin at lower
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Capability A_1
Performance Constraint

Capability A_21
Perf. Constraint

Capability A_22
Performance
Constraint  

Mission Event Timeline (MET)

Event
1 Event 2

Capability A Performance Constraint

DT MOP

Event
1.1

Event
1.2

Event
1.3

Event
1.4

CAP A

CAP_A1

CAP_A2

CAP_A21

CAP_A22

Capability A_2
Performance Constraint

Where:
• CAP = Capability
• DT = Design-To
• MET = Mission Event Timeline
• MOP = Measure of Performance

Margin

Design To MOP Margin

DT MOP Margin

Design To MOP Margin

DT MOP Margin

Figure 31.2 Time-based Performance Budgets and Safety Margins Application.

levels and driven up cost as a consequence - just to reserve a
10% Safety Margin at all levels of abstraction. Consider the
implications:

• At System delivery, Capability A is required to
have an MOP of 90 Units with a Safety Margin of
10 Units.

• Instead, those 90 units have been reduced by an addi-
tional 14.5 Units at lower levels due to the need for all
capabilities to have a 10% Safety Margin.

In summary, think smartly about these decisions and
avoid unnecessary performance constraints that may increase
technical, cost, and schedule risk. Keep it simple! Maintain
a reserve at the higher levels for those occasions when the
reserve may be required to resolve performance due to issues
at lower levels.

If you encounter unreasonable difficulties meeting lower
level performance allocation constraints, you should weigh
options, benefits, costs, and risks. Since System/Entity per-
formance inevitably requires fine-tuning for System opti-
mization, always establish design performance margins at
higher levels to ensure flexibility in the integrated perfor-
mance in achieving SPS requirements. Once all levels of
design are defined, rebalance the hierarchical structure of
performance budgets and design safety margins as needed.

To illustrate how we might implement time-based perfor-
mance budgets and safety margins allocations, let’s explore
another example.

Example 31.4

Mission Event Timeline (MET)
Allocations

To illustrate this concept, refer to
Figure 31.2. The left side of the graphic

portrays a hierarchical partitioning - decomposition - of a
Capability A. The SPS or EDS requires that Capability A
completes processing within a specified period of time such
as 200 ms (milliseconds). System designers designate the
initiation of Capability A as Event 1 and its completion as
Event 2. System Designers partition the Capability A time
interval constraint into (1) a Design-To MOP and (2) a safety
margin MOP. The Design-To MOP constraint is designated
as Event 1.4.

Author’s Note 31.3

Event Identification Labeling

Initially, Mission Event Timeline
(MET) Event 1.4 may not have this
label. We have simply applied the

Event 1.4 label to provide a degree of sequential consistency
across the MET (Events 1.1, 1.2, 1.3, etc.). Events 1.2 and
1.3 are established based on lower level allocations for
Capabilities A1 and A2.
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Referring to Figure 31.2, Capabilities CAP_A1 and
CAP_A2 are derived from Capability A. Let’s assume that
CAP_A1 and CAP_A2 are sequential processes. Given that
Capability A has a Design-To MOP constraint, the challenge
is: how do we allocate the performance constraint across
CAP_A1 and CAP_A2? We employ analyses, models and
simulations, prototypes, and so forth to make a decision as
to how to appropriately allocate the performance. Then, for
CAP_A1 and CAP_A2 spilt their respective MOP perfor-
mance constraints into a Design-To MOP and a Safety Mar-
gin. We continue the process to successively lower levels of
abstraction.

31.2.4.1 Reconciling Performance Budget Alloca-
tions and Safety Margins As the SDT and PDTs apply
Design-To MOP allocations, what happens if there are crit-
ical performance issues with the initial allocations? Let’s
assume that Capability A22 in Figure 31.2 was initially
allocated 12 units. An initial analysis of Capability A22
indicates that 13 units minimum are required. What should
an SE do?

Capability A22 owner confers with the higher level
Capability A2 and peer level Capability A21 owners. During
the discussions, the Capability A21 owner indicates that
Capability A21 was allocated 15 units but only requires 14
units, which includes a safety margin. The group reaches a
consensus to reallocate an MOP of 14 units to Capability
A21 and an MOP of 13 units to Capability A22.

31.2.4.2 Final Thoughts about Performance Bud-
gets and Margins As part of the Wasson SE Process
Model (Figure 14.1), the process of allocating perfor-
mance budgets and safety margins is highly iterative and
recursive—top-down/bottom-up/left-right/right-left nego-
tiation process. The intent is to reconcile the inequities
as a means of achieving and optimizing overall System
performance. Without negotiation and reconciliation, you
get a condition referred to as suboptimization of a single
item, thereby degrading overall System performance.

31.2.5 Performance Budget and Safety Margin
Ownership and Control

A key question is who owns performance budgets and safety
margins? In general, the multi-discipline SDT or PDT
accountable for implementing the specification controls
derivation and allocation of the performance budget MOPs
and safety margins within that Entity (Figure 21.9). Re-
member – MOPs originate from specifications owned and
controlled by the SDT/PDT that controls the architecture
that includes the specified Entity (Figure 27.1). A PDT
cannot change the allocated and flowed down MOPs unless
they request a change from the specification owner. There-
fore, within the boundaries of their Entity, they are free to

allocate MOPs into Design-To and Safety Margin budgets
assuming that they do not impact their interface performance
requirements.

31.2.6 How are Performance Budgets and Margins
Documented?

Performance budgets and safety margins are documented in a
number of ways, depending on the size, resources, and tools.

• First, requirements allocations should be documented
in a decision database or spreadsheet controlled by
the Lead SE or SDT. Requirements management tools
based on relational databases provide a convenient
mechanism to record the allocations.

• Second, as performance allocations, they should be for-
mally documented and controlled as specific require-
ments flowed down to lower level specifications.

A relational database Requirements Management Tool
(TOOL) allows you to:

• Document the allocation in a Performance Allocations
Document that can be linked to an SPS or EDS via the
RMT.

• Flow the allocation down to lower level Product,
Subsystem, and other EDSs with traceability linkages
back to the higher-level parent performance constraint
(Figure 21.2).

• Trace the allocated performance up to higher levels.

31.3 ANALYZING SYSTEM PERFORMANCE

The preceding discussion introduced the basic concepts
of performance budgets and design safety margins. Im-
plementations of these Design-To MOPs are discussed in
Engineering textbooks such as electronics engineering and
mechanical engineering. However, from an SE perspective,
integrated electrical, mechanical, optical, or chemical sys-
tems have performance variations interfacing with similar
Equipment and Personnel within larger structural sys-
tems. The interactions among these Systems and levels of
abstractions require in-depth, multi-discipline, SE analysis
to determine acceptable limits for performance variability
(Figure 30.1).

31.3.1 Understanding System Performance
and Tasking

Overall System performance represents the integrated
performance of the System Elements (Chapter 8) such as
Equipment, Personnel, and Mission Resources that
provide System capabilities, operations, and processes.
As integrated elements, if the performance of any of these
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mission critical items such as Products or Subsystems
is degraded, so is the overall System performance (Figure
10.12), depending on the robustness of the System De-
sign Solution. Robust designs often employ redundant
Equipment - Hardware and/or Software - design imple-
mentations to minimize the effects of System performance
degradation on achieving the mission and its objectives
(Chapters 26 and 34).

From an SE perspective, System capabilities, operations,
and executable processes are response mechanisms to “task-
ing” assigned and initiated by Higher Order Systems with
authority. Thus, System “tasking” requires the integrated set
of sequential and concurrent capabilities to accomplish a de-
sired performance-based outcome or result.

To illustrate the tasking of capabilities, consider the
simple graphic shown in Figure 31.3. Note the chain of

sequential tasks, Tasks A through “n.” Each task has a finite
duration bounded by a set of MET performance parameters.
The time period marked by the Start of one task until the
Start of another is referred to as the throughput or cycle
time. The cycle time parameter brings up an interesting point,
especially in establishing a convention for decision-making.

31.3.2 Establishing Cycle Time Conventions

When you establish cycle times, you need to define a
convention that will be used consistently throughout your
analyses. There are a couple of conventions as shown in
Figure 31.4. Convention A defines cycle time as beginning
with the Start of Task A and ending with the Start of Task B.
In contrast, Convention B defines cycle time as starting at the
End of Task A and completing at the start of Task B. Either
method is acceptable.

Task A Task B

Task A Throughput Task B Throughput
Task “n”

Throughput 

1 2 3 4 5

+3σ–3σ

System Throughput, Turnaround, or Cycle Time

+3σ–3σ +3σ–3σ +3σ–3σ

+3σ–3σ

Task “n”

Figure 31.3 Mission Event Timeline (MET) Analysis

Task B

Task Cycle Time

1 2

Task A Task C

Task B

Task Cycle Time

1 2

Task A Task C

Convention
A

Convention
B

Figure 31.4 Task Cycle Time Conventions
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31.3.3 Operational Tasking of a System Capability

Principle 31.6

Processing Segments Principle

When planning processing tasks, at a min-
imum, include considerations for queue
time, processing time, and transport time
in all computations.

Most tasks, whether performed by Personnel or Equip-
ment (Figure 24.14), involve three phases as follows:

• Pre-Mission Phase preparation, configuration, or re-
configuration.

• Mission Phase performance of the task.

• Post-Mission Phase delivery of the required results and
any residual Post-Capability Housekeeping Operations
(Figure 10.17) in preparation for the next tasks.

Communications intensive systems such as humans and
computers have a similar pattern that typically includes
queues or waiting line theory. We illustrate this pattern in
Figure 31.5.

In the illustration, a typical task provides three capabili-
ties: (1) queue new arrivals, (2) perform processing, and (3)
output results. Since new arrivals may overwhelm the pro-
cessing function, new arrivals reside in a buffer or holding
area based on a First In–First Out (FIFO) processing protocol
or some other priority processing algorithm.

Each of these capabilities is marked by its own cycle time
where:

• TQueue = Queue Time.

• tProcesing = Processing Time.

• tTransport = Transport Time.

Figure 31.6 illustrates how we might partition
-decompose- each of these capabilities into lower level
time constraints for establishing budgets and performance
safety margins.
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Heading 31.1

At this juncture we have identified and par-
titioned task performance into three phases:
Queue Time, Processing Time, and Trans-
port Time. Philosophically, this partitioning
enables us to partition allocated task perfor-

mance times into smaller, more manageable entities. Beyond
this point, however, tasks analysis becomes more compli-
cated due to timing uncertainties. This brings us to our next
topic, Understanding Statistical Characteristics of Tasking.

31.3.3.1 Understanding Statistical Characteristics
of Tasking All System tasks involve some level of perfor-
mance variability and uncertainty. The level of uncertainty
is created by the inherent reliability (Chapter 34) of the
System Elements—Personnel, Mission Resources, and
Equipment. In general, task performance and its uncertainty
can be characterized with statistics using Normal, Binomial,
and LogNormal (Poisson) frequency distributions (Figure
34.2). On the basis of measured performance over a large
number of samples, we can assign a probability that task or
capability performance will complete processing within a
most probable minimum amount of time and not-to-exceed
a specified amount of time. To see how this relates to
System performance and allocated performance budgets
and margins, refer to Figure 31.7.

Let’s suppose that a task is initiated at Event 1 and must be
completed no later than by Event 2. We refer to this time as
tAllocation. To ensure a safety margin for contingency and for
growth purposes, we establish a performance safety margin,
tMargin. This leaves a remaining time, tExec, as the maximum
budgeted performance time or Late Finish Time—that is,
Queue Time + Processing Time + Transport Time.

Using the lower portion of the graphic, suppose that we
perform an analysis and determine that the Task Execution
Performance, represented by the gray rectangular box, is
expected to have a mean finish time, tMean. We also determine
with a level of probability that task completion may vary
about the mean by ±3𝜎 points designated as early finish
and late finish. Therefore, we equate the latest finish to the
maximum budgeted performance, tBudget. This means that
once initiated at Event 1, the task must complete and deliver
the output or results to the next task no later than tBudget.

tProcessing tTransporttQueue

Arrival
Queue

Processing
Output

Results 

Typical Task

Queue Time Processing Time Transport Time

Inputs

System,
Product,

or
Service

t0 t1 t2 t3

Figure 31.5 Anatomy of Typical Task Structure Performance
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tTT1 tEnroute

tProcesstQ1

tTransporttExec1 tExec2 tDeliverytInit

tQueue

tAdmin.

tCYCLETIME

tExec

Wait
Time

Enroute
Delay

Processing Time

Initialization
Time 

Report 
Delay

Execution Time

Queue Time

Transport Time

Xport 1
Delay

Xport 2
Delay

Earliest
Start

Latest
Start

Earliest
Finish

Latest
Finish

Arrival/Execute
Command 

Administration
Time 

tExec3

Task Cycle Time

Figure 31.6 Task Throughput / Cycle Time Analysis

On the basis of the projected distribution, we also expect the
task to be completed no sooner than the −3𝜎 point, the Early
Finish time.

If we translate this analysis into the Wasson SE Process
Model (Figure 14.1) Requirements Domain Solution, we
prepare a requirements statement that captures the capability
and its associated performance allocation. Let’s suppose that
Capability B requires that Capability A complete processing
and transmit data within 250 ms when Event 1 occurs.
Consider the following example.

Example 31.5

“On receipt of a command (Event 1), Ca-
pability A shall process the incoming data
within 250 + 0 ms.”

Now let’s suppose that Capability B requires receipt of the
data within a window of time between 240 and 260 ms. The
requirement might read as follows:

Example 31.6

“On receipt of a command (Event 1),
Capability A shall transmit the re-
sults to Capability B within 250 ±
10 ms.”
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Heading 31.2

Our discussion emphasizes how overall
System task performance can vary. To un-
derstand how this variation occurs, let’s
take it one step further and discuss it relative
to the key task phases.

31.3.3.2 Applying Statistics to Multi-task System
Performance Our previous discussion focused on the
performance of a single capability. If the statistical varia-
tions for a single capability are aggregated for a multi-level
system, we can easily see how this impacts overall System
performance. We can illustrate this by the example shown in
Figure 31.8.

Let’s assume that we have an overall capability labeled
Perform Task A. The purpose of Task A is to perform a
computation using independent variable inputs, I1 and I2, and
produce a computed result as an output. The key point of our
discussion here is to illustrate time-based statistical variances
to complete processing.

Let’s assume that Perform Task A is composed of two
subtasks, Subtask A1 and Subtask A2. Subtask A1 enters
inputs II and I2. Each input, I1, and I2, has values that
vary over a Gaussian (Normal) Distribution range with a
central mean.
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Task Execution
Performance

Task A Time Allocation

Mean (μA)
Finish

tMean

tBudget

Event 1

tMin.

Maximum Budgeted Performance
Performance

Margin

Event 2

tMargin

Early
Finish 

Late
Finish 

Queue
Time 

Processing Time
Transport

Time

tExec

tAllocation

tMargin

–3σ +3σ

Figure 31.7 Task Timeline Elements and Their Statistical Variability

tCompute

tA1Transport
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.
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Perform
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Task A1 Cycle Time Task A2 Cycle Time
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–3σ
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Variable Input I1
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Perform Task A

Time

Time
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tA2Transport

Perform
SubTask A2

Figure 31.8 Statistical Analysis of Input and Series Task Performance Variability
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When Subtask A1 is initiated, it produces a response
within tA1MEAN that varies from tA1MIN to tA1MAX .The output
of Subtask A1 serves as an input to Subtask A2. Subtask A2
produces a response within tA2MEAN that may occur as early
as tA2MIN or as late as tA2MAX.

If we investigate the overall performance of Task A, we
find that Task A is computed within tCompute, as indicated
by the central mean. The overall Task A performance is
dependent on the statistical variance of the sequential series
summation of Subtask A1 and Subtask A2 processing times
as shown in Figure 31.8.
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Heading 31.3

We have seen how statistical variations in
inputs and processing impact System per-
formance from a timing perspective. Sim-
ilar methods are applied to the statistical
variations of Inputs I1 and I2 as independent

variables over a range of values. The point of our discus-
sion is to heighten your awareness of these variances. Think
about and consider statistical variability when allocating per-
formance budgets and design safety margins as well as ana-
lyzing data produced by the System to determine compliance
with requirements.

Given this understanding, let’s return to a previous dis-
cussion about applying statistical variations to task phases of
operation.

31.3.3.3 Applying Statistical Variations to Intra-Task
Phases In our earlier discussion of task phases consist-
ing of Queue time, Processing Time, and Transport Time
(Figure 31.6), statistical variations in each of those phases
impact the overall task performance outcome. Figure 31.9
serves as a guide for our discussion.

The central part of the figure represents an overall task
and its respective Queue Time, Processing Time, and Trans-
port Time phases. Below each phase is a statistical rep-
resentation of the execution time. The top portion of the
chart illustrates the aggregate performance of the overall task
execution.

How does this relate to SE? If a given capability or task
is required to be completed within the allocated cycle time
and you are designing the System with queues, computa-
tional devices, and transmission lines, you need to factor in
these times as performance budgets and safety margin re-
quirements to flow down to lower levels.

31.3.4 Applying Statistics to Overall System
Performance

Our discussions to this point focused on the task and
multi-tasking level. The ultimate challenge for SEs is: how
will the overall system perform? Figure 31.10 illustrates
the effects of statistical variability of the System Element
Architecture (Chapter 8) and its Operating Environment.

Task Execution

Allocated Task Cycle Time

Queue Time Capability Performance Time

Allocated Capability Performance
Time

Mean (μCapability)

tCapMean

tCapBudget

Allocated
Queue Time

Transport Time

tTaskMargin

Minimum Task Cycle Time
Nominal Task Cycle Time

Budgeted (Maximum) Task Cycle Time
Allocated Task Cycle Time

Frequency

Time

Mean (μQueue)

tTMean

tTBudget

Allocated
Transport Time

Time

tQMean

tQBudget

tTMin.
tTMin.

tQMin.
tTrMargin.

tCapMargin.
tQMargin.

Mean (μTransport)

Mean (μTask)

–3σ

–3σ –3σ–3σ+3σ +3σ+3σ

+3σ

Figure 31.9 Statistical Analysis Illustrating the Variability of Queue time, Capability
Performance Time, and Transport time.
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Equipment
Element
• Hardware
• Software

Procedural Data
Element

Mission 
Resources

Element

Human
Systems
Element
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OPERATING 
ENVIRONMENT

Natural 
Environment

Element

Induced 
Environment

Element

System of Interest (SOI)

Mission System

–3σ +3σ

–3σ +3σ

Figure 31.10 Statistical Analysis of Variations in System Element Performance.

From a contributory performance perspective, Figure
10.12 represents the results using an Ishikawa or Fishbone
Diagram.

31.3.4.1 Mathematical Approximation Alternative Our
conceptual discussions of statistical performance analysis
were intended to highlight key considerations for establish-
ing and allocating performance budgets and design safety
margins and analyzing data for balancing overall system per-
formance tuning. Most people do not have the time or skills
to perform the statistical analyses. For some applications, this
may be acceptable and you should use the method appropri-
ate for your application. There is an alternative method you
might want to consider using, however.

Scheduling techniques such as the Program Evaluation
and Review Technique (PERT) employ approximations that
serve as analogs to a Gaussian (Normal) Distribution (Figure
34.3). The formula stated as follows is used:

Expected or mean time =
tA + 4tB + tC

6
(31.1)

where:
tA = Optimistic Time
tB = Most Likely Time
tC = Pessimistic Time

A Word of
Caution 31.1

Recognize that Eq. 31.1 simply represents a
“quick look” estimate as a reasonableness
or sanity check and is not intended as a
design practice.

31.3.4.2 Do SEs Actually Perform This Type of Analysis?
Our discussion here highlights the theoretical viewpoint
of task analysis. A key question is: do Engineers and
Analysts actually go to this level of detail? In general, the
answer is yes, especially in manufacturing and scheduling
environments. In those environments, Statistical Process
Control (SPC) is used to minimize process and material
variations in the production of parts, and this translates into
cost reduction. Figure 30.1 is an illustrative example.

31.3.5 Modeling and Simulation

If you develop a model of a System or Product whereby
each of the capabilities, operations, processes, and tasks is
represented by a series of sequential and concurrent ele-
ments and dependencies or feedback loops, you can apply
statistics to the processing time associated with each of those
elements. By analyzing how each of the input varies over
value ranges bounded by the ±3𝜎 points, you can deter-
mine the overall System performance relative to a central
mean.
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Our discussions highlighted some basic
task-oriented methods that support a variety
of Systems Engineering activities. These
methods can be applied to METs, system
capabilities, and performance as a means

of determining overall System performance (Figure 10.12).
Through derivation, allocation, and flow down of SPS or
EDS requirements, developers can establish the appropriate
performance budgets and design safety margins for lower
level Entities.

31.4 REAL-TIME CONTROL AND FRAME-BASED
SYSTEMS

Some systems operate as real-time, closed loop, feedback
systems. Others are multi-tasking whereby they have to serve
multiple processing tasks on a priority basis. Let’s explore
each of these types.

31.4.1 Real-Time, Closed Loop Feedback Systems

Electronic, mechanical, and electro mechanical systems in-
clude real-time, closed loop, feedback control systems that
condition or process input data and produce an output,
which is sampled and summed with the input as nega-
tive feedback. Figure 10.1 is a generalized example. Oth-
erwise, the System might overcompensate and go unsta-
ble while attempting to regain control. The challenge for
SEs is to determine and allocate performance for the opti-
mal feedback responses to ensure overall System stability
Principle 3.9.

31.4.2 Frame-Based System Performance

Electronic systems often employ software to accomplish
cyclical data processing tasks using combinations of open
and closed loop cycles. Systems of these types are referred
to as frame-based systems.

Frame-based systems perform multitask processing via
time-based blocks of time such as 30 or 60 Hz. Within each
block, processing of multiple concurrent tasks is accom-
plished by allocating a portion of each frame to a specific
task, depending on priorities. For these cases, apply perfor-
mance analysis to determine the appropriate mix of concur-
rent task processing times.

Author’s Note 31.4

One approach to frame-based system
task scheduling is Rate Monotonic
Analysis (RMA). Research this topic
further if frame-based systems apply
to your business domain.

31.5 SYSTEM PERFORMANCE OPTIMIZATION

System performance analysis serves as a valuable tool for
modeling and predicting the intended interactions of the

System with its Operating Environment. The validity
of underlying assumptions concerning System optimization
becomes reality when the System or Product is powered
up and operated. The challenge for SEs is to optimize over-
all System performance (Figure 14.8) to compensate for the
variability of the embedded Products, Subsystems, Assem-
blies, Subassemblies, and Parts and their workmanship,
material composition and integrity.

31.5.1 Minimum Conditions for System Optimization

Principle 31.7

System Optimization Principle

Theoretically, a System can only be opti-
mized within its specified performance re-
quirements and boundary conditions when

most, if not all, latent defects such as capability deficiencies,
design errors, design flaws, and weak components have been
eliminated.

When the System enters the System Integration, Test,
and Evaluation (SITE) Phase, latent defects such as system
deficiencies, design flaws, and design errors often consume a
significant amount of the SE’s time. The challenge is getting
the System to a state of equilibrium and stability that can
best be described as compliant with the SPS.

Once the System is in a state of Normal Operation with
no outstanding latent defects or deficiencies, there may be a
need to tweak performance to achieve optimum performance.
Let’s reiterate the last point: you must correct all major
deficiencies before you can attempt to optimize System
performance in a specific area. Exceptions include minor
items that are not System performance drivers. Consider the
following example:

Example 31.7

You have been assigned a task to develop a
fuel-efficient automobile and are attempt-
ing to optimize road performance using a
test track. If the fuel flow has a deficiency,
can you optimize overall system perfor-

mance? Absolutely not! Does having a taillight out impact
fuel efficiency performance? No, it’s not a contributory per-
formance driver to System performance. It may, however,
impact driver and passenger safety, especially in inclement
weather or low-light driving conditions such as dawn, dusk,
or night.

31.5.2 Pareto-Driven Performance Improvements

Principle 31.8

Pareto 80–20 Principle

On average, 80% of System/Entity per-
formance issues are attributable to 20% of
the System tasks.
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There are a number of ways to optimize system perfor-
mance, some of which can be very time-consuming. For
many systems, however, there is very little time to optimize
system performance prior to delivery, simply because the
System Development schedule has been consumed with cor-
recting system deficiencies and latent defects.

When you investigate options for where to focus System
performance optimization efforts, one approach employs the
Pareto 80/20 rule originally conceived by Vilfredo Pareto
(1896), economist and scientific sociology theorist, based
on observations of humans, nature, and so forth. Later,
Dr. Joseph Juran’s research in 1941 lead to a rediscov-
ery of Pareto’s work. Juran conducted independent research
and in recognition of Pareto’s work, the concept later be-
come known as Pareto Principle (Wikipedia, 2015). For SE,
example variants include the following:

• 20% of a System’s defects cause 80% of the problems.

• 20% of System tasks consume 80% of the processing
time.

• 20% of Project Management tasks consume 80% of the
available resources, and so forth.

If you accept this premise, the key is to identify which
processing tasks represent the 20% and focus performance
analysis efforts on maximizing or minimizing their impact.
So, employ diagnostic tools to understand how each item is
performing as well as interface latencies between Subsys-
tems, Assemblies, HWCIs, and CSCIs (Chapter 16).

Today, electronic instrumentation devices and diagnostic
software are available to identify and track processing tasks
that consume System resources and performance. Plan from
the beginning of System Development how these devices and
software can be employed to identify and prioritize System
processing task performance and optimize it.

System performance optimization begins on Day #1 After
Contract Award (ACA) via:

• System performance requirements allocations.

• Plans for “test points” to monitor performance after the
System has been fully integrated.

• Focused attention on reducing System latent defects
such as capability deficiencies, design flaws, and design
errors.

Author’s Note 31.5

Increasing Cost-to-Correct
Defects by Development Phase

As a reminder, the cost-to-correct de-
fects increases almost exponentially

(Table 13.1) as you progress from Contract Award through
System Development.

31.6 SYSTEM ANALYSIS REPORTING

As a disciplined professional, document the results of each
an analysis. For Engineering tasks that involve simple assess-
ments, always document the results, even informally, in an
electronic Engineering Notebook on-line or portable device.
For tasks that require a more formal, structured approach,
you may be expected to deliver a formal report. A common
question many SEs have is: how do you structure an ana-
lytical report? You should consult your contract or task for
specific requirements for analytical or technical reports.

• If the contract does not require a specific a structure,
consult your Enterprise command media.

• If your Enterprise command media does not provide
guidance, consider using the Engineering Report out-
line or tailoring a version of the example provided in
Table 30.1.

31.7 CHAPTER SUMMARY

Our discussions of system performance analysis, budgets,
and margins practices provided an overview of key SE design
considerations. We described the basic process and methods
for:

• Allocating MOPs to lower levels.

• Understanding the impact of statistical variability on
task-based processing.

• Publishing analysis results in a report using a recom-
mended outline.

We also offered an approach for estimating task process-
ing time durations and introduced the concept of RMA for
frame-based processing.

Finally, from an SE perspective, we discussed the perfor-
mance variability of System Elements (Chapter 8) that must
be factored into performance allocations.

• Each SPS or EDS MOP should be partitioned into a
“Design-To” MOP and a performance safety margin
MOP.

• Each project must provide guidance for establishing
safety margins for all System Elements.

31.8 CHAPTER EXERCISES

31.8.1 Level 1: Chapter Knowledge Exercises

1. What is a cycle time?

2. What is a queue time?

3. What is a transport time?
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4. What is a processing time?

5. What is a performance budget?

6. If you are confronted with analyzing System throughput
performance across a chain of Processing Tasks, what
are the key performance attributes associated with each
task and between tasks that you should consider?

7. How do you establish and track performance budgets at
the SPS and EDS levels?

8. What is a design safety margin?

9. What are the challenges of establishing performance
budgets and margins and how should you document and
control them?

10. Assume you have established System performance bud-
gets and margins. Describe how would you allocate
them to Products, Subsystems, Assemblies, and so
on, verify traceability, and maintain intellectual control
(Principle 1.3) and integrity of the technical program to
manage their status?

31.8.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e.
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32
TRADE STUDY ANALYSIS OF ALTERNATIVES (AoA)

The Engineering and development of systems require SEs to
identify and work through a broad range of Critical Opera-
tional and Technical Issue (COI/CTI) decisions. These issues
range from the miniscule to the complex, requiring in-depth
analyses supported by models, simulations, and prototypes.
Adding to the complexity, many of these decisions are in-
terdependent. How can SEs effectively work through these
issues and keep the program on schedule?

The following section answers this question with a dis-
cussion of Trade Study Analysis of Alternatives (AoA)
(Chapter 32). We:

• Explore what a trade study is and how it relates to a
constrained trade space. Define how to charter a trade
study or Trade Study Team.

• Provide a methodology for conducting a trade study.

• Define a reference format for a Trade Study Report
(TSR).

• Suggest recommendations for presenting trade study
results.

• Investigate technical challenges, issues, and risks
related to performing trade studies.

We conclude with a discussion of Enterprise trade study
issues that SEs should be prepared to address.

32.1 DEFINITIONS OF KEY TERMS

• Conclusion Refer to Chapter 30 Definition of Key
Terms.

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

• Decision Authority An internal or external individ-
ual or team from project, functional, or executive
management that has the authority to initiate an ac-
tivity, provide the required resources, and implement
decisions.

• Decision Criteria Attributes of a decision factor. For
example, if a key decision factor is maintainability,
decision criteria might include component modularity,
interchangeability, accessibility, test points, and so
forth.

• Decision Factor A key attribute of a system, as viewed
by Stakeholders—Users and End Users—that has a
major influence on or contribution to a requirement,
capability, COI or CTI being evaluated. Decision factor
examples include elements of technical performance,
cost, schedule, technology, and support.

• Finding Refer to Chapter 30 Definition of Key Terms.

• Figure of Merit (FOM) A unitless quantity that rep-
resents the results of a multi-variant evaluation based
on a comparison scoring of the subject’s characteristics
relative to predefined set weighted decision factors.

• Recommendation Refer to Chapter 30 Definition of
Key Terms.

• Sensitivity Analysis A numerical validation approach
that reduces the weighted value of discrete Decision
Factor by an arbitrary amount such as 10% to test
the robustness of a trade study decision to remain
unchanged

• Trade Off “Selection among alternatives with the
intent of obtaining the optimal, achievable system

http://www.wiley.com/go/systemengineeringanalysis2e
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configuration. Often a decision is made to opt for less
of one parameter in order to achieve a more favorable
overall system result.” (DAU, 2012, p. B-232)

• Trade Space An area of evaluation or interest bounded
by a prescribed set of boundary constraints that serve
to scope the set of acceptable candidate alternatives,
options, or choices for further trade study investigation
and analysis.

• Trade Study Analysis conducted to methodically eval-
uate a series of design alternatives and recommend the
preferred feasible solution(s) that enhance the value
and performance of the overall system and/or functions.
Each assessment is taken to an appropriate level of
detail that allows differentiation between alternatives.
(FAA, 2006, Vol. 3, p. B-13)

• Trade Study Charter A document issued by a decision
authority to conduct of a trade study. A well-defined
charter should include COI/CTI Problem Statement;
trade study objectives, deliverable(s), and schedule;
Stakeholders, as appropriate; the trade study individual
or team; and resources.

• Trade Study Report (TSR) A document prepared by
an individual or team that captures and presents key
considerations such as objectives, candidate options,
and methodology used to recommend a prioritized set
of options or course of action to resolve a critical
operational or technical issue.

• Utility Function A linear or nonlinear characteristic
profile or value scale that represents the level of
importance different stakeholders place on a System
or Entity attribute or capability relative to constraints
established by a specification.

• Utility Space An area of interest bounded by minimum
and/or maximum performance criteria established by a
specification or analysis and a degree of utility within
the performance range.

• Viable Alternative A candidate approach that is qual-
ified for consideration based on its technical, cost,
schedule, support, and risk level merits relative to a set
of specification and boundary condition requirements.

32.2 INTRODUCTION TO MULTIVARIATE
ANALYSIS OF ALTERNATIVES (AoA)

Principle 32.1

Analyses Versus Trade Studies
Principle

Analyses investigate, analyze, and docu-
ment a specific condition, state, circum-

stances, or “cause-and effect” relationships; Trade studies
formulate, analyze and evaluate viable candidate alternatives
and propose prioritized recommendations for selection.

Marketers in an attempt to acquire business often express
a variety of terms to Acquirers and Users that communicate
lofty goals to achieve. Terms include best solution, optimal
solution, preferred solution, solution of choice, ideal solu-
tion. This leads to two key questions:

• How do we structure a course of action to know when
we have achieved a “best solution”?

• What is a “preferred” solution? Preferred by whom?

These questions emphasize the importance of structuring
a course of action that enables us to establish at a consensus
of what these terms mean to a Stakeholder - Users and End
Users - community. Recognize that stakeholders have differ-
ing priorities, motivations, and opinions concerning what a
“best” or “preferred” solution is; at most a consensus can
only be optimal. With budgetary, schedule, and technology
constraints, you can only arrive at one solution. Even that
solution may not be optimal.

Author’s Note 32.1

Understanding What a Consensus
Represents

Remember—a consensus represents
a decision everyone agrees is one they

can support. It does not mean that they like it; however,
as a collective decision, they can “live with it” and will
proactively support its implementation. The most important
aspect is the opportunity to have “due process” to openly
and objectively explore, debate, and investigate the merits of
viable candidate solutions. The intent is to filter out, prioritize
the top two or three candidates, and recommend a solution
that has the highest Figure of Merit (FOM) scoring.

A low-cost mechanism that provides objective evidence
for selecting an optimal solution is an AoA or multi-variate
analysis resulting in a TSR. The trade study may require
development or use of tools such as User surveys, test
markets, models and simulations, rapid prototypes, brass
boards, demonstrations, tests, and so on. Where budgets
permit, risk is a driver, and schedule is a constraint; an
Enterprise may decide to: (1) pursue development of the top
candidate solution as their primary strategy and (2) conduct
concurrent development of the next highest candidate up
to a point where risks of the top candidate have been
resolved.

To better understand how trade studies establish a course
of action to achieve lofty goals, let’s begin by establishing
the objectives of a trade study.

32.2.1 Trade Study Objectives

The objectives of a trade study are to:

• Investigate a COI or CTI.
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• Formulate viable candidate solutions for evaluation,
scoring, and selection.

• Explore the fact-based merits of candidate solutions
relative to Decision Factors and Criteria derived from
Stakeholder requirements via the contract, Statement
of Objectives (SOO), specification requirements,
Stakeholder—User and End User—interviews, cost,
or schedules.

• Prioritize solution recommendations for decision au-
thorities.

32.2.2 Typical Trade Study Decision Areas

The hierarchical decomposition of a system into entities
at multiple levels of abstraction, bounding of performance
requirements, and selection of physical components requires
a multitude of technical and programmatic decisions. Many
of these decisions are driven by the Specification Assessment
Checklist (Chapter 23 Section 23.3) and resource constraints.

If we analyze the sequences of many technical decisions,
categories of trade study areas emerge across numerous
system, product, or service domains. Although every system,

product, or service is unique and has to be evaluated on
its own merits, most system decisions can be characterized
using Figure 32.1. Specifically, the Typical Trade Decision
vertical box in the center of the graphic depicts the top-down
chain of decisions common to most entities regardless of
system level of abstraction.

Beginning at the top of the center box, the decision
sequences include the following:

• Architecture trades.

• Interface trades including human–machine interfaces.

• Equipment - Hardware/Software (HW/SW) trades.

• Commercial Off-the-Shelf (COTS) versus Non-
Developmental Item (NDI) versus new development
trades.

• HW/SW component composition trades.

• HW/SW process and methods trades.

• HW/SW integration and verification trades.

This chain of decisions applies to entities at higher levels
of abstraction from System to Product to Subsystem and

Architecture
Trades 

Interface Trades

User versus 
Equipment Trades

COTS/NDI/New 
Development 

Trades

Hardware-Software 
Trades

Development 
Model Trades

System
Level

Segment
Level

Product
Level

Subsystem
Level

Assembly
Level

Subassembly
Level 

Part Level

System
Levels of Abstraction

Typical Trade Decisions at
Every System Level of

Abstraction  

HW/SW Integration 
& Verification 

Trades

Decision Aids
• Analyses

• Prototypes
• Mockups
• Models

• Simulations
• Demonstrations

• Vendor Data
• Legacy Programs

Data

Requirements

Recommendations

Requirements

Figure 32.1 Typical Trade Study Decision Sequences Applicable to Every System Level
of Abstraction
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so forth, as illustrated Figure 32.1. SEs employ decision
aids to support these decisions, such as analyses, prototypes,
mock-ups, models, simulations, technology demonstrations,
vendor data, and their own experience, as illustrated by the
box shown at the right-hand side. The question is: how are
the sequences of decisions accomplished?

32.2.3 Trade Studies Address COIs/CTIs

The sequence of trade study decisions represents a basic “line
of questioning” intended to facilitate the SE design solution
of each entity. What System Acquirers want to know and
see articulated in technical proposals is: does the System
Developer have a valid, least cost strategy concerning how
they propose developing a System Development solution?
Let’s explore an example of such a technical decision
strategy.

Figure 32.2 is an example of a decision sequence. Tailor
it to best fit the needs of your Enterprise or organization.

• What type of System or Entity architecture enables
the User to best leverage the required System, Product,
or Service capabilities and levels of performance?

• Given an architecture decision, what is the best ap-
proach to establish low-risk, interoperable interfaces,
or interfaces to minimize susceptibility or vulnerability
to external system threats?

• How should we implement the architecture, interfaces,
capabilities, and levels of performance? As Equipment
tasks? Personnel tasks? Or a combination of these
(Figures 10.15, 10.16, and 24.14)?

• What development approach represents a solution
that minimizes cost, schedule, and technical risk?
Commercial-Off-the-Shelf (COTS)? NDI? Acquirer
Furnished Equipment (AFE)? New development? A
combination of COTS, NDI, Acquirer Furnished Prop-
erty (AFE), and new development?

• Given the development approach, what is the appropri-
ate mixture of Hardware and Software, as applica-
ble?

• For Hardware and Software, what Development
Model(s) (Chapter 15) should be employed to design
and develop the entity?

• Once the Hardware and Software components are
developed, how should they be integrated and verified
to demonstrate full compliance?

We answer these questions through a series of technical
decisions. A trade study, as an AoA, provides the basis for
comparative evaluation of viable candidate options based
on a predefined set of decision factors and criteria to make
an informed decision. Observe that if the trade-offs at any
level reach a point in which requirements - technical, cost,
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Figure 32.2 Example Trade Study Decision Tree - Key Technical Decisions and Se-
quences.
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schedule, technology, or risk - conflict, the decision requires
elevation to higher levels for resolution as illustrated in
Figure 15.3.

32.2.4 Trade Study Decision Dependencies and
Sequences

Principle 32.2

Key Decisions Tree Principle

Always establish, communicate, and im-
plement the decision tree that expresses the
sequences and options for key technical

decisions and synchronize it with the project schedule mile-
stones.

Technical programs usually have a number of COIs/CTIs
that must be resolved to enable progression to the next deci-
sion in the chain of decisions. If we analyze the sequences of
these issues, we discover that the process of decision-making
resembles a tree structure over time. Thus, the branches of
the structure represent decision dependencies as illustrated
in Figure 32.2.

During the proposal phase of a program, the Proposal
Team conducts preliminary trade studies to rough out key
design decisions and issues that require more detailed atten-
tion After Contract Award (ACA). These studies enable us to
understand the COI or CTI to be resolved ACA. In addition,
in-depth studies of viable candidates provide a level of con-
fidence in the cost estimate, schedule, and risk leading to an
understanding of the problem and solution spaces.

Author’s Note 32.2

Trade Study Decision Tree

Depending on the type of project/
contract, a trade study tree such as
the one shown in Figure 32.2 is often

helpful to demonstrate to a customer that you have a logical
decision path toward a timely System Design Solution.

32.2.5 System Architectural Element Trade Studies

As noted earlier, System Acquirers expect offerors to identify
the COI/CTI decisions that need to be made, their sequences,
and dependencies. This requires insightful knowledge about
the system, product, or service they plan to develop. One
method is to establish a framework of decision areas for trade
studies. Figure 32.3 provides an example of trade study areas
for consideration concerning a generic Vehicle System.

We establish a simple hierarchy diagram consisting of the
vehicle’s subsystems. This enables us to identify CTI/COI
areas of concern. As the proposed System Architecture
development expands, lower levels can be evaluated for
more refinement in areas of concern. Each of these elements
involves a series of technical decisions that form the basis
for subsequent, lower level decisions. In addition, decisions
made in one element as part of the SE process may have
an impact on one or more other elements. Consider the
following example:

Example 32.1

Constraint Drivers for Decision Factors
and Criteria

Vehicle cargo/payload constraints influ-
ence decision factors and criteria used
in the

• Propulsion System trades involving technology and
power.

• Energy Transfer System involving torque, heat, relia-
bility, and so on.

Vehicle System

Vehicle
Frame

Propulsion

Crew/Passenger
Compartment
Environment  

Cargo/
Payload

Security

Guidance,
Navigation, &

Control (GN&C)

Comms

LightingWheel

Ingress/ 
Egress

Energy
Storage

Visual
Systems

Data
Storage 

Figure 32.3 Trade Study Areas Example - Mobile Vehicle
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• Vehicle Frame trades involving size, strength, materi-
als, and durability.

• Wheel System trades involving type and braking.

32.2.6 Understanding the Prescribed Trade Space

Despite the appearance that trade study efforts have the
freedom to explore and evaluate options, there are often
limiting constraints. These constraints bound the area of
study, investigation, or interest. In effect, the bounded area
scopes what is referred to as the trade space.

32.2.6.1 The Trade Space We illustrate the basic trade
space shown in Figure 32.4. Let’s assume that the Sys-
tem Performance Specification (SPS) identifies specific
Measures of Performance (MOPs) that can be aggre-
gated into a minimum acceptable level of performance
represented by a FOM as noted by the Minimal Accept-
able Performance—vertical line. Marketing analyses or
the Acquirer’s proposal requirements indicate there is a
Cost-Per-Unit Ceiling as illustrated by the horizontal line.
A Trade Space requiring further study is bounded by the
intersection of the Minimum Acceptable Performance,
Cost-Per-Unit Ceiling, and Cost–Performance Curve.

Now, suppose that we identify viable Candidate Solu-
tions 1, 2, 3, and 4 for our trade study. We construct the
Cost–Performance Curve. To ensure a level of objectivity,
we normalize the Cost-Per-Unit Ceiling to the Acquirer max-
imum requirement. We plot cost and relative performance
of each of the Candidate Solutions 1, 2, 3, and 4 on the
Cost–Performance Curve.

By inspection and comparison of plotted cost and techni-
cal performance relative to required performance, we make
the following decisions:

• Solution 1 is cost compliant—below the Cost-Per-Unit
Ceiling—but technically non-compliant—below the
minimum technical performance threshold.

• Solution 4 is technically compliant—above the min-
imum technical performance threshold—but cost
non-compliant—exceeds the Cost-Per-Unit Ceiling.

When this occurs, the TSR documents that Solutions
1 and 4 were evaluated, determined by analysis to be
noncompliant with the trade space decision criteria, and were
subsequently eliminated from consideration.

Following elimination of Solutions 1 and 4, Solutions 2
and 3 undergo further analysis to thoroughly evaluate and
score other considerations such as organizational risk.

32.2.6.2 Optimal Solution Selection The previous dis-
cussion illustrates the basic concept of a two-dimensional
trade space. A trade space, however, is multi-variant—that is,
multi-dimensional. For this reason, it is more aptly described
as a multi-variate trade volume that encompasses technical,
technology, life cycle cost, schedule, support, and risk deci-
sion factors.

We can illustrate the trade volume using the graphic
shown in Figure 32.5. To keep the diagram simple, we
constrain our discussion to a three-dimensional model repre-
senting the convolution of technical, cost, and schedule fac-
tors. Let’s explore each dimension represented by the trade
volume.

Normalized Technical Performance

Normalized
Cost Per

Unit

Minimum
Acceptable

Performance

Cost Per Unit Ceiling

X = Candidate SolutionsWhere:

1

0.8 1.4 1.8 2.01.0

1.0

0.3

0.5

0.8

1.3

2

3

4

Solution 1 is Technically
Non-Compliant
Below Minimum

Performance Criteria

Solution 4 is
Non-Compliant

Exceeds Maximum
Design-to-Cost Criteria

Design-to-Cost
(DTC) LevelTrade Space

Figure 32.4 Example Illustrating a Trade Space with Viable Candidates and Constraint
Boundaries
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Figure 32.5 Example - 3-D Trade Space Illustration

• Performance–Schedule Trade Space The graphic in
the upper left-hand corner of the diagram represents the
Performance versus Schedule trade space. Identifier (1)
marks the location of the selected Performance versus
Schedule solution.

• Performance–Cost Trade Space The graphic in the
upper right-hand corner represents the Performance
versus Cost Trade Space. Identifier (2) marks the loca-
tion of the selected Performance versus Cost solution.

• Cost–Schedule Trade Space The graphic in the
lower right-hand corner of the diagram represents
the Cost–Schedule trade space. Identifier (3) marks
the location of the selected Cost Versus Schedule
solution.

If we convolve these trade spaces and their boundary
constraints into a three-dimensional model, the cube in the
center of the diagram results.

The optimal solution (4) is represented by the intersec-
tion of orthogonal lines in their respective planes. Con-
ceptually, the optimal solution would lie on a curve that
represents the convolution of the Performance–Schedule,
Performance–Cost, and Cost–Schedule curves. Since each

plane includes a restricted trade space, the integration of
these planes into a three-dimensional model results in a trade
space volume.
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Heading 32.1

Given this introduction, we are now ready
to proceed to how trade studies are con-
ducted.

32.3 CHARTERING A TRADE STUDY

Trade Studies can be conducted informally by Key Stake-
holders such as Engineers and Analysts as part of their nor-
mal jobs or formally chartered by a decision authority such
as project, functional, or executive management. Since: (1)
trade studies have an impact on the project and (2) all Stake-
holders want to ensure that trade study results will be benefi-
cial and not a waste of time, let’s pursue the formal chartering
approach to reduce technical cost and schedule risk.

Trade studies consist of highly iterative steps to analyze a
COI/CTI area of concern and respond with a set of prioritized
recommendations for selection by the decision authority.
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Define Trade
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Trade Study Team
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Final
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?
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Figure 32.6 Example - Process Workflow for Chartering a Trade Study Team

Note that the decision authority may be an individual or a
team that has the authority and the resources to implement
the trade study recommendations. Figure 32.6 provides an
example process for chartering a team or initiating a trade
study by an individual.

Please note that a well-defined charter should document
the COI/CTI Problem Statement (Chapter 4), trade study ob-
jectives, deliverable, and schedule, stakeholders as appropri-
ate, trade study individual or team; and resources.
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Heading 32.2

Our preceding discussion defined the trade
study chartering or initiation process. Now
let’s focus our attention on understanding
how an individual or team establishes the
methodology used to guide and conduct the
trade study.

32.4 ESTABLISHING THE TRADE STUDY
METHODOLOGY

Principle 32.3

Trade Study Teams Principle

A trade study team without an approved
charter and methodology is prone to wan-
der aimlessly.

Objective technical and scientific investigations require
a methodology for making decisions. The methodology fa-
cilitates the development of strategy, course of action, or
“roadmap” of the planned technical approach to investi-
gate, analyze, and evaluate the viable candidate solution ap-
proaches or options. Methodologies, especially proven ones
that have been verified and validated, keep the study effort
on track and prevent unnecessary excursions that consume
resources and yield no productive results.

There are numerous ways of establishing the trade study
methodology. Figure 32.7 provides an illustrative example
based on the process that follows. The process includes terms
such as weighted Decision Factors and Criteria and utility
functions that are introduced next.

• Step 1: Understand Problem Statement, its objec-
tives and constraints concerning the COI/CTI to be re-
solved.

• Step 2: Identify Users - Identify the key Stakeholder
decision makers – Users and End Users (Chapter 3).

• Step 3: Identify & Weight Decision Factors - Col-
laborate with Stakeholder Users to identify the primary
Decision Factors and allocate relative weights that total
of 100 points, for example. If six Decision Factors are
identified and the top four drive 90% of the selection,
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Figure 32.7 Example - Trade Study Methodology Workflow.

place the lower two scores in reserve for Sensitivity
Analysis (Step 9), if required.

• Step 4: Identify & Weight Decision Criteria - Col-
laborate with Stakeholder Users to identify Decision
Criteria for each Decision Factor; allocate each Deci-
sion Factor’s weight - points - to its Decision Criteria.

• Step 5: Characterize Utility Functions - Collaborate
with the Stakeholder Users to develop and characterize
Utility Function profiles for Decision Criteria, if appro-
priate. (Figure 32.9)

• Step 6: Identify Viable Candidate Solutions - Iden-
tify 2 - 6 viable candidate solutions or alternatives for
evaluation. To conserve valuable resources, eliminate
non-compliant candidates (Figure 32.4). Select 2 - 4
candidates for in-depth evaluation.

• Step 7: Evaluate & Score Candidate Solution Deci-
sion Criteria - Analyze, evaluate, and assign Figure of
Merit (FOM) scores for each candidate’s Decision Cri-
teria; total Decision Criteria FOMs into a final score for
each candidate.

• Step 8: Perform Sensitivity Analysis to assess the
degree of influence each Decision Factor has on the
candidate solution FOMs. For example, individually
reduce each Decision Factor’s weight to assess how it

impacts each candidate’s final score, especially if the
scores are clustered together.

• Step 9: Eliminate Sensitivities, if necessary, by factor-
ing in additional Decision Factors (Step 3); reevaluate
score for each new Decision Factor.

• Step 10: Rank Order Candidate Scores and identify
the highest scoring candidate solution.

• Step 11: Prepare Trade Study Report using Table
32.1; identify dissenting views and rationale, is neces-
sary.

• Step 12: Conduct TSR Peer Review with peers/
Subject Matter Experts (SMEs); correct deficiencies as
necessary.

In general, the above-mentioned steps are straightforward.
However, the selection of the Decision Factors, Criteria, and
Weighting requires some additional explanation.

32.5 TRADE STUDY QUANTITATIVE
APPROACHES

32.5.1 Case Study Example - Normalized Trade Study
Method

Since the intent of conducting a trade study is to objectively
evaluate viable candidate solutions based on the User’s
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TABLE 32.1 Example Trade Study Outline

Section Section Title Sub-Para. Subsection Title

1.0 Introduction
1.1 Scope
1.2 Authority (Team Charter)
1.3 Trade Study Team Members
1.4 Acronyms and Abbreviations
1.5 Definitions of Key Terms

2.0 Referenced Documents
2.1 System Acquirer Documents
2.2 User Documents
2.3 System Developer (role) Documents
2.4 Vendor Documents
2.5 Specifications and Standards
2.6 Other Documents

3.0 Executive Summary
3.1 Trade Study Objective(s)
3.2 Trade Space Boundaries
3.3 Findings
3.4 Conclusions
3.5 Recommendations
3.6 Other Viewpoints
3.7 Selection Risks and Impacts

4.0 Trace Study Methodology
4.1 Step 1
4.2 Step 2
4._
4.Z Step z

5.0 Decision Factors, Criteria, and Weights
5.1 Selection of Decision Factors and Criteria
5.2 Selection of Weights for Decision Factors or Criteria
5.3 Selection of Criteria Utility Functions

6.0 Evaluation and AoA
6.1 Option A
6.2 Option B
6.3 Option x

7.0 Recommendations
Appendix

Appendix A Data Item 1
Appendix B Appendix B Data Item 2
Et al

operational needs and priorities, we need to establish a
scoring approach and method that will enable us to:

1. Evaluate the set of candidates using a common set of
decision factors and criteria.

2. Evaluate each candidate independently.

3. Compare the final results.

To solve this challenge, SEs establish decision factors,
decision factor criteria, and weights for each. Let’s explore
each of these. Figure 32.8 provides an oversimplified graph-
ical approach to support our discussion. The example pre-
sented has pros and cons. As such, it will provide a backdrop
for a better understanding of a better approach.

For this case study, let’s assume the objective is to
evaluate and select from a set of viable alternatives a
ground-based vehicle for carrying cargo. The trade study will
serve as a basis to perform an AoA. Let’s apply the 10-step
methodology.

32.5.2 Identify Key Decision Factors

Any type of technical, managerial, or other decision is driven
by a set of Stakeholder—User and End User—priorities
that may be externally driven, internally derived, or both.
On inspection, these priorities can best be categorized as
Decision Factors that have a relative importance to the
Stakeholders.
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Figure 32.8 Trade Study Example—Normalized Decision Factors and Criteria Approach

Referring to Figure 32.8, identify the key Decision
Factors that drive the decision. Objectively, the Decision
Factors – OM&S cost, Technology, and Performance -
should be derived from collaborative interviews with the
Stakeholders—Users and End Users—and their weighted
priorities for each Decision Factor.

For the Normalized Approach, we establish a maximum
weighting of 100 points and allocate the total number
of points across each of the Decision factors based on
User weight priorities. In the example, a consensus of
Stakeholders reveals that the key Decision Factors and
priorities are as follows:

• Priority #1—Operations, Maintenance, and Sustain-
ment (OM&S) Cost – 40 points

• Priority #2—Technology – 25 points

• Priority #3—Performance – 35 points

32.5.2.1 Pairwise Testing Comparison Method Often,
SEs will ask Stakeholders to sort Decision Factors top-down
in terms of priority or level of importance. Stakeholders
sometimes have difficulty sorting a large list of four to six
factors, especially if they have comparable importance. If this

occurs, one solution may be to break the problem down into
smaller pieces using a Pairwise Comparison Method.

The Pairwise Comparison Method simply asks the evalu-
ator to compare two options with each other—A to B, A to
C, B to C, and so forth. For each comparison, pick one. Then,
rank order the results.

32.5.2.2 Brainstorming Method Another approach,
Brainstorming, convenes Stakeholders in a meeting to
identify Decision Factors using a two-pass approach.

• First Pass—Stakeholders brainstorm a list of factors in
an open forum without critique.

• Second Pass—A facilitator helps the Stakeholders rec-
oncile the list in terms of Primary Factors versus Sub-
ordinate Factors and achieve a consensus.

Then, using a Nominal Grouping Technique (NGT), each
Stakeholder is asked to rank order the Decision factors or
Criteria via a balloting process. The results are then sum-
marized and presented for final discussion and a consensus
decision.
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32.5.3 Allocate Weights to Decision Factors

Once the key Decision Factors are identified, we allocate
weights to each one based on their relative importance to
the Stakeholders. For the Normalized Method, we collab-
orate with the Stakeholders and allocate 100 points across
each of the Decision factors based on relative importance
(Figure 32.8).

32.5.4 Checksum Decision Factor Relative Weights

We follow-up with a check-sum of the weight allocations as
verification.

32.5.5 Identify Decision Criteria for Each Decision
Factor

Once the Decision Factors are established, collaborate with
the Stakeholders to identify Decision Criteria that are key
contributors to each Decision Factor. For example, assume
collaboration with the Stakeholders identifies the following
Decision Factor and Criteria:

• OM&S Cost Decision Factor Criteria (40 points)
∘ Operations

∘ Maintenance

∘ Sustainment
• Technology Decision Factor Criteria (25 points)
∘ Maturity

∘ Risk
• Performance Decision Factor Criteria (35 points)
∘ Range

∘ Capacity

32.5.6 Allocate Decision Factor Points Across Decision
Criteria

Decision Factors often have an abstract context that requires
further refinement into lower level criteria. On the basis of
identification of the Decision Criteria, collaborate with the
Stakeholders to establish relative weights for each criterion.
Using the Decision Factor weight allocations, we develop
separate tables for each of the Decision Factors.

32.5.7 Evaluate and Score Candidates

Evaluate and score each of the candidates based on their
respective Decision Factors and Criteria.

Author’s Note 32.3

Establishing Performance Value
Scales

As we address the evaluation and
scoring of each candidate, observe

the reduced scoring results. For example, one would natu-
rally expect a vehicle with a higher level of performance to
be allocated more points than candidates with lesser perfor-
mance. However, what about Cost or Risk? Does increased
Cost or Risk equate to more points? Absolutely not! Instead,
they score fewer points.

32.5.7.1 Candidate Scoring for OM&S Cost Each vehi-
cle candidate is evaluated and scored based on its OM&S
Cost merits as shown in Figure 32.8. Several key points:

• The scores determined for each candidate are some-
times referred to as raw scores, particularly if they have
not been scaled or normalized, or FOMs.

• Observe that Candidate B receives only 4 points for
Operations Costs. Candidate B has higher costs than
its peers. Therefore, it receives a lower score.

• Also observe that Candidate C has a score of 1 point
for Sustainment Costs. What if the score were actually
2 points? This represents a shortcoming of this method
that will be addressed in the Auto-Normalized Trade
Study Approach introduced later.

Author’s Note 32.4

Candidate Evaluation Approach

Figure 32.8 represents scoring of
Candidates A–C at one time. Some
choose instead to evaluate Candidate

A for all Decision factors and Criteria, and then proceed to
Candidate B, and finally to Candidate C. There are pros and
cons to both approaches.

Pro—The advantage of evaluating each Candidate’s De-
cision Factors and Criteria all at once is that it provides
an objective assessment without being influenced by
features of the other candidates.

Con—The disadvantage of this approach is that Candidate
scores may and probably will not sum to the points
allocation for the Criteria without adjusting the eval-
uation scores. At this point the evaluation has shifted
from objective to subjective.

32.5.7.2 Candidate Scoring for Technology On comple-
tion of the OM&S Cost scoring, we proceed to the Technol-
ogy scoring as shown in Figure 32.8. As a reminder, observe
that increased Risk, which is not desirable, results in lower
scores; increased Maturity results in higher scores.

32.5.7.3 Candidate Scoring for Performance Finally, we
evaluate and score each candidate for the Performance
Decision factor. Scores are shown in Figure 32.8.
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32.5.8 Summarize All Scoring Results

Summarize all of the scoring results for each of the candidate.
For a given Decision Factor (row), verify that the checksum
of Decision Factor scores equals those allocated. Figure 32.8
provides a summary of FOMs for each candidate in this case
study.

32.5.9 Sum Each Candidate’s Scores

Sum each candidate’s scores for all Decision Factors as
verification.

Author’s Note 32.5

Verification and Validation (V&V)
of Trade Study Scoring Results

Summarizing and verifying the
scores may appear to be a case of

stating the obvious and fundamental. However, it is not
uncommon for teams to go through intensive trade study
exercises and make scoring errors. As an example, a report
by the Inspector General revealed errors in NASA’s scoring
decision matrix for placement of the NASA’s Space Shuttle
Orbiters after retirement (NASA, 2011, pp. 2, 9, 13, and
18). After all, a simple math error could potentially result
in selection of the wrong solution as further evidence of the
need for V&V.

32.5.10 Assess and Select Optimal Solution Results

Despite the best of intentions to objectively differentiate
the Candidate Options A, B, and C via scoring methods
and arrive at a clear winner, the results may cluster closely
together. Such is the case shown in Figure 32.8 in which
Candidates A, B, and C scored 33 points, 39 points, and 28
points, respectively.

32.5.11 Summary—100 Points Trade Study Scoring
Approach

The preceding Normalized Trade Study Method example
establishes the basic concept for a trade study methodology.
The problem with this approach is that it forces the trade
study individual or team and Stakeholders to spend valuable
time allocating and “adjusting” point spreads. For example:

• Should OM&S Cost receive 40 points, 35 points, 45
points, and so forth?

• Within the OM&S Cost Decision Factor, should the
Maintenance Decision Criterion receive 20 of those 40
points or should it be 15 or 25?

• Should a Candidate score be 6 points of the 20 points?
5 points? 7 points?

The point here is that the Normalized Trade Study Method
becomes a distraction that shifts an SE’s focus on the
evaluation to “pushing points around” within a boundary to
ensure they sum to the allocated total.

Another point … most trade study approaches normalize
scoring to 100 points as a comparative benchmark. Why 100
points? Whether it traces back to our educational systems
or numbering systems, humans instinctively normalized
scoring to 1.0 or 100 points and percentages within each. So,
if OM&S Costs are allocated 40 points versus 25 points for
Technology versus 35 points for Performance, the fact that all
are benchmarked relative to 100 points provides insights into
the levels of importance at least to that System application
and its Stakeholders.

There is a better approach to avoid “playing points games”
that refocuses SEs on the objectivity of the evaluation … an
Auto-Normalized Trade Study Approach, our next topic.

32.5.12 Auto-Normalized Trade Study Method

To avoid the challenges of the Normalized Trade Study
Method, we exploit the powers of a spreadsheet application.
Instead, of “playing points games,” we simply reorient the
trade study by simply asking the Stakeholders to focus on a
specific Decision Factor or Decision Criteria.

• Ask each Stakeholder … “On a scale from 1 (lowest)
to 10 (highest), what level of importance do you as a
Stakeholder place on this Factor or Criteria?”

• In each instance, determine what that value’s fractional
proportion is relative to the sum of values for each
Decision Factor or Criterion.

• Multiply the fractional portion times the Decision
Factor’s point allocation.

We will defer elaboration of the solution to the exercises
at the end of the chapter.

The advantage of this approach is that Stakeholders:

1. Focus on one Decision Factor or Criterion at a time.

2. Apply a consistent method (1–10) that simply asks
“What is the relative importance to you” rather than
allocating X points for this and Y points for something
else.
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Heading 32.3

At this point, we have established a ba-
sic trade study methodology. On inspection,
the methodology is straightforward. How-
ever, how do we evaluate alternatives that
have linear and nonlinear degrees of utility

to the stakeholder? This brings us to a special topic, Trade
Study Utility Functions.
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32.6 TRADE STUDY UTILITY OR SCORING
FUNCTIONS

When scoring some Decision Factors and Criteria, the
natural tendency is to do so on a linear scale such as 1–5 or
1–10. This method assumes that the User has a linear value
scale; in many cases, it is nonlinear. In fact, some candidate
options data have levels of utility. One way of addressing this
issue is to employ Utility or Scoring Functions which may
also be referred to as Utility Curves. The reality is that the
curves represent mathematical models of Stakeholder value
scales. Although one can employ math models to compute
value scores, perhaps a better representation are the Utility
or Scoring Function Curves as shown in Figure 32.9. The
curves illustrated here are simply examples.

Observe that Utility Value scales are normalized to 1.0
and range from 0 to 1.0 in 0.1 increments. An alternative
would be to assess the values a scale from 0 to 10 in 1.0
increments.

You may ask: how do these curves facilitate evaluating
candidates? Consider the following example:

Example 32.2

Utility Functions and Value Scales

We noted in the previous case study that
some scores are the inverse of their magni-
tudes. Consider the Cost versus Risk trade
space. Increased Costs and Risk equate to

lower scores. As a result, SEs intuitively and subjectively
assign scores. However, on a scientific basis, we want to re-
move subjectivity as much as possible.

One way of removing subjectivity is to establish a Utility
Function Curve that enables us to determine the Utility
of a Criterion within specified limits. We determine the
appropriate Utility Function profile (Figure 32.9 Panels
1 – 6). Then, establish decision boundary constraints such as
Total Cost of Ownership (TCO), cost per unit, technology, or
risk for Utility = 0.0 and 1.0 (Figure 32.4).

Let’s assume that Candidate C in Figure 32.8 Table 6A
has the lowest OM&S Operations Criterion cost of the three
candidates (11 points); Candidate B has the highest cost
(16 points). Based on the selected Utility Curve (Panel 1),
we score the three candidates as follows:

• Candidate A – Utility Score = 0.8

• Candidate B – Utility Score = 0.4

• Candidate C – Utility Score = 0.9

We would then apply the Utility Scores to the computation
in Figure 32.8 Table 6A.
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Heading 32.4

The preceding discussions addressed
various methods for conducting and devel-
oping trade studies. Ideally, the numerical
results will yield a very distinct winner
that stands above all the other candidates.
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However, this is not always the case, and clustering among
the candidate scores occurs. So, how do SEs deal with
these situations. This brings us to our next topic, Sensitivity
analysis.

32.7 SENSITIVITY ANALYSIS

Principle 32.4

Informed Engineering Judgment
Principle

Trade studies provide reasoned evaluation
substantiated by seasoned experience and

facts. As such, they serve as inputs to support informed deci-
sion making and should be evaluated with sound Engineering
judgment.

If we return to the Normalized Trade Study Method
(Figure 32.8), observe that the final scores of Candidates
A, B, and C were 33, 39, and 28 respectively with Can-
didate B as the optimal selection with the highest over-
all score of 39 points. Observe the 6-point spread between
Candidates A and B, an 11-point spread between Candi-
dates B and C, and a 5-point spread between Candidates A
and C.

Do we declare a winner based on the numerical scores?
How do SEs deal with these situations? In this case, Candi-
date B’s 6-point spread from its nearest competitor makes it
a clear selection. However, this is not always the case. So, in
answer to the question, a technique called Sensitivity Anal-
ysis provides a solution.

In general, Sensitivity Analysis allows us to perform
“what if” games scenarios by changing the point allocations
of each Decision Factor by an arbitrary number such as
10% to test the robustness of the apparent winner to stand
as verification that the end result will remain unchanged.
As a brief example, suppose that we reduce the Cost point
allocation from 40 points to 36 points. We then reallocate and
normalize the Technology and Performance Decision Factor
point allocations. Then, investigate to assess the “cause
and effect” relationship on the final selection Candidate B
(Figure 32.8).

What happens if the end result changes? In general,
nothing assuming an objective trade study was conducted.
It simply gives pause to validate the original selection and
reflect on the result. Remember—trade studies, similarly to
any type of human tool such as calculators, provide inputs
for informed decision making. In the end, sound Engineering
judgment should always prevail!.

32.7.1 Alternative Sensitivity Analysis Approach

A better approach to differentiating clustered trade study
data resides in selection of the Decision Factors and Criteria.
When we initially identified Decision Factors or Criteria

with the Stakeholders, chances are that there was a board
range of factors. To keep things simple, assume we arbitrarily
selected six criteria from a set of 10 provided by Stakeholders
and weighted each criterion. As a result, the competing
solution FOMs became clustered eliminating the possibility
of a clear-cut winner.

The next logical step is to factor in the n + 1 De-
cision Factor and renormalize the weights based on ear-
lier ranking. Then, continue to factor in additional De-
cision Factor until the data decluster. However, recog-
nize that if the n + 1 has a relative weight of 1%, it
may not significantly influence the results. This leaves two
options:

• Option A: Make a judgmental decision and pick a
solution—not preferable.

• Option B: Establish a ground rule that the initial
selection of Decision Factors should not constitute
more than 90 or 95 of the total points and scale the list
based on 100 points. This effectively leaves 5–10 points
for the remaining Decision Factors or Criteria that are
not included in the primary list that could have a level
of significance on the outcome. If clustering continues,
based on a Pareto rank ordering of Decision Factors,
include the next Decision Factor or Criterion in steps
and rescale the weights relative to their initial weights
within the total set.

Rhetorically, one can argue that this approach, by virtue
of the smaller point values, will have diminishing utility. So,
apply common sense. If clustering continues, it may mean
that the candidates solutions have similar FOMs, and you
may have to make a decision based on subjective factors that
were not part of the decision. Before you do this, make sure
that factors such as life cycle Total Cost of Ownership (TCO)
and so forth that are of major concern to the Stakeholders
were properly considered, not just weight, cost, power, and
so on.
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Heading 32.5

When the trade study is complete, the next
step is to document the results in a meaning-
ful way that will explicitly provide defini-
tive evidence that the study has been con-
ducted objectively and has integrity. The

mechanism for documenting the trade study results is the
TSR, our next topic.

32.8 TRADE STUDY REPORTS (TSRs)

On completion of the trade study analysis, the next challenge
is being able to articulate the salient points and results in
the TSR. The TSR serves as an ISO 9000 Quality Record
(QR) that documents accomplishment of the chartered or
assigned task.
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32.8.1 Why Document the Trade Study?

Principle 32.5

Undocumented Trade Studies Principle

An undocumented trade study is nothing
more than personal opinion.

A common question is: why document a trade study?
There are several reasons:

• First, the Acquirer’s Contract Data Requirements
List (CDRL) (Chapter 17) or your Enterprise’s com-
mand media may require that you document trade
studies.

• Second, trade studies formally document key decision
criteria, assumptions, and constraints of the trade study
environment for posterity. Since SE, as a highly iter-
ative process, requires decision making based on pre-
scribed conditions and constraints, those same condi-
tions and constraints can change quickly or over time.
Therefore, you or others may have to revisit previous
trade study decisions to investigate how the changing
conditions or constraints have impacted the decision or
selected course of action such that corrective actions
should be initiated.

• Third, as a professional, document key decisions and
rationale as a matter of disciplinary practice to preserve
the integrity of the decision.

32.8.2 Trade Study Documentation Formality

Trade studies are documented with various levels of
formality. The level of formality ranges from simply
recording the considerations and deliberations in an
Engineering Notebook—preferably electronic—to for-
mally approved and published reports intended for wide
distribution.

A Word of
Caution 32.1

Always check your contract, local Enter-
prise command media, and/or program’s
Technical Management Plan (TMP) for ex-
plicit direction concerning the level of for-
mality required. At a minimum, document
the key facts of the trade study in an
electronic Engineering Notebook.

32.8.3 Preparing the TSR

There are numerous ways of preparing the TSR. First
and foremost, always consult your contract or Enterprise
command media for guidance. If there are no specific outline
requirements, consider using or tailoring the outline provided
in Table 32.1:

WARNING

Warning 32.1

Proprietary and Copyrighted
Information

Most vendor literature is copyrighted or
deemed proprietary. Avoid reproducing and/or posting any
copyrighted information unless you have the expressed,
written permission from the owner/vendor to reproduce
and distribute the material. Always establish proprietary
data exchange agreements before accepting any proprietary
vendor data.

WARNING

Warning 32.2

Export Controlled Information

As stated previously, some vendor data
may be subject to Export Control restric-

tions and the U.S. International Traffic and Arms Regulations
(ITAR). Always consult with your Enterprise’s Project, Con-
tracts, legal, and Export Control organizations before dis-
seminating technical information that may be subject to this
constraint.

32.8.4 Proof Check the TSR Prior to Delivery

Some Trade Study Teams develop powerful and compelling
trade studies only to have the effort falter due to poor writing
and communications skills. When the TSR is prepared,
thoroughly edit it to ensure completeness and consistency.
Perform a spell check on the document. Then, peer review
the document to see that it is self-explanatory, consistent,
and does not contain errors. Make sure the deliverable TSR
reflects the professionalism, research, and quality of effort
contributed to the trade study. Finally, valid TSR results stand
the test of time and professional scrutiny.

32.9 TRADE STUDY DECISION

Delivery of a trade study initiates a series of steps toward a
decision by the decision authority that chartered the study.
These steps range from a simple delivery and discussion of
the results to a formal meeting with the decision authority and
their invitees that may include a presentation and discussion.

32.9.1 Reporting TSR Results

Principle 32.6

TSR Recommendations Principle

If you charter a trade study, be prepared
to implement its recommendations un-
less there is a compelling reason to avoid
doing so.

Principle 32.7

Trade Study Distribution Protocol
Principle

Decision authorities disseminate or dele-
gate dissemination of TSR copies. To avoid
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“rumor mill” damage control, obtain advance approval prior
to discussion, dissemination, or presentation to anyone.
Remember—the decision authority chartered your work, not
third parties.

The Trade Study decision authority such as the Technical
Director, Project Engineer, or SDT may request an advance
review of the TSR by Stakeholders prior to the TSR presenta-
tion and discussion. If a decision is expected at the meeting,
advance review of the TSR enables the Stakeholders to come
prepared to:

• Address any open questions or concerns.

• Make a decision concerning the recommendations.

Author’s Note 32.6

Advanced Reviews of Preliminary
TSR Findings

Please note that the intent here is to
brief progress and status as well as

clarify any issues or concerns such as missing expertise,
schedule, and resources. Any attempt by the decision au-
thority to purposely steer the directional heading of the trade
study to a specific solution is inappropriate and a violation of
professional ethics. Conversely, if new requirements or con-
straints have arisen that change the problem or constraints to
be addressed, assuming they are valid, the decision author-
ity needs to issue new direction and an update to the team’s
charter.

Decision-makers, in general do not like surprises. Once
the TSR is completed, it may be appropriate to pre-brief
the decision authority concerning the results and recommen-
dations. This will avoid their being blind-sided in an open
meeting by those who have other objectives.

32.9.2 TSR Submittal

Principle 32.8

Cover Letter Principle

Every work product should be delivered
to a decision authority via a cover letter
that outlines what has been accomplished;

any outstanding issues, risks, or concerns; and task charter
compliance statement.

For review, approval, and implementation, deliver the
TSR directly to the chartering decision authority that com-
missioned the study. The TSR should always include a cover
letter prepared by the Trade Study Team lead and reviewed
for concurrence by the team. Additionally, a cover letter es-
tablishes an official delivery date for the record.

TSRs can be delivered via mail or by personal contact.
It is advisable, however, that the Trade Study Team lead
or team, if applicable, personally deliver the TSR to the
decision authority. This provides an opportunity to discuss
the contents and recommendations.

During the meeting, the decision authority may solicit
team recommendations for disseminating the TSR to other
Stakeholders such as the Acquirer, Users, or End Users. If a
meeting forum is selected to present a TSR briefing, the date,
time, and location should be coordinated through notification
to the stakeholders and Trade Study Team members.

32.9.3 Presenting the Trade Study Results

Principle 32.9

TSR Principle

Trade Study Reports (TSRs) present
fact-based results and prioritized rec-
ommendations, not decisions; decision

authorities make decisions based on the recommenda-
tions, their validity, and confidence in the objectivity of
the TSR.

Occasionally, a Trade Study Team is unable to reach a
consensus; it may be appropriate to include professionally
constructive dissenting opinions and their supporting ratio-
nale. Once team members approve the TSR, they present
the trade study results. There are a number of approaches
for presenting TSR results. The approaches generally in-
clude delivery of the TSR as a document, briefings, or
combination.

32.9.4 TSR Briefings

TSR briefings to Stakeholders can be helpful or a hindrance.
They are helpful if additional clarification is required. Con-
versely, if the presenter does a poor job with presentation,
the level of confidence in the TSR may be questioned. There-
fore, go prepared and deliver a high-quality presentation that
establishes confidence in the trade study and its recommen-
dations.

Figure 32.6 Process Step 9 “Make Decision” provides the
basis for approval of the trade study. The chartering decision
authority has several options as follows:

• Option 1—Accept and adopt TSR recommendations.

• Option 2—Place TSR recommendations on-hold.

• Option 3—Reject TSR recommendations.

• Option 4—Return TSR recommendations for addi-
tional action(s).

• Option 5—Do nothing.
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Option 5 is unacceptable and reflects poorly on the
decision authority’s professional reputation. If a decision
authority makes a decision to charter to a trade study
and selected a competent individual or team, they should
be committed to act on the trade study recommendations
(Principle 32.6). If not, why did they waste valuable time and
resources on the effort!
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Heading 32.6

The preceding discussions provided in-
sights concerning the process of chartering,
conducting, and implementing trade study
results. We now shift our attention to under-
standing risk areas that can occur during a
trade study.

32.10 TRADE STUDY RISK AREAS

Trade studies, similarly to most decisions, have a number of
risk areas: let’s explore a few examples.

32.10.1 Risk Area 1: Dependencies and Timing of
Trade Studies

Sometimes, a trade study effort is dependent on the results
of other on-going trade studies. Even worse, one of those
trade studies may be dependent on this trade study result-
ing in a “circular reference.” In addition, there may be a new
technology emerging that has not been announced that may
impact the results of a trade study. As a decision authority,
you should apply Systems Thinking to these interdependen-
cies and timing before you charter a trade study (Principle
32.6).

32.10.2 Risk Area 2: Unproven or Invalid Methodology

Principle 32.10

Trade Study Methodology Principle

Trade studies are only as valid as their
task constraints, underlying assumptions,
methodology, and data collection. Docu-
ment and preserve the integrity of each.

Trade study success begins with a strong, robust strategy
and methodology that will withstand professional scrutiny
(Principle 32.3). Flaws in the methodology influence and
reduce the integrity and effectiveness of the trade study.
Solicit peer reviews by trusted colleagues and SMEs to
ensure that the trade study begins on the right track and
yields results that will withstand professional scrutiny by the

Enterprise, Acquirer, User, and professional community, as
applicable.

32.10.3 Risk Area 3: Decision Factor and Criteria
Relevancy

Occasionally, selection criteria that have little or no contri-
bution to Decision Factors or Criteria are selected. Scrutinize
the validity of Decision Factors and Criteria. Document the
supporting rationale.

32.10.4 Risk Area 4: Overlooked Decision Factor and
Criteria

Sometimes there are COI or CTI attributes that do not make
the Selection Criteria List. Selection criteria checks and bal-
ances should include verification of traceability of selection
criteria to the COIs/CTIs to be resolved for including or ex-
cluding Decision Factors and Criteria.

32.10.5 Risk Area 5: Invalid or Incorrect Assumptions

Formulation of candidate solutions often requires a set
of dependencies and assumptions such as availability of
funding or technology. Stakeholders often challenge trade
study results, especially when the Trade Study Team makes
invalid or incorrect assumptions. Where appropriate and
necessary, discuss and validate assumptions with the decision
authority and Stakeholders to preclude consuming resources
developing a decision that may be flawed due to invalid or
incorrect assumptions.

32.10.6 Risk Area 6: Data Validity

WARNING

Warning 32.3

Today’s world is dependent on Internet-
based research. Beware—materials posted
on the Internet may not be current or trust-
worthy for communications or decision-

making. Always authenticate, corroborate, and validate
sources.

Technical decision-making must be accomplished with
the latest most complete, accurate, and precise data available.
Authenticate the currency, accuracy, and precision of all data
as well as vendor commitment to stand behind the integrity
of the data.

32.10.7 Risk Area 7: Scaling the Trade Study Task
Activities to Resource Constraints

As typical with most SE tasks, you may not always have an
adequate amount of time to perform trade studies). Yet, the
results are expected to be professionally and competently
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accomplished (Principle 23.2) Wasson’s Task Significance
Principle.

Whatever time frame you have available, assuming it is
reasonable, the key results and findings, in general, need to
be comparable whether you have 1 day or 1 week. If you
have 1 day, the decision authority gets a 1-day trade study
and data; 1 month gets a month’s level of analysis and data.
So, how do you deal with the time constraints? The depth of
the research, analysis, and reporting may have to be scaled
to the available time.

32.10.8 Risk Area 8: Test Article Data Collection
Failures

When test articles are “on loan” for technical evaluation,
failures may occur and preclude completion of data collec-
tion within the allowable time frame. Because of the lim-
ited time for the trade study, replacement of the test arti-
cle(s) may not be practical or feasible. Plan for contingencies
and mitigate their risks! Agreements should explicitly define
who is accountable for paying for repairs and timing of the
repairs.

32.10.9 Risk Area 9: Failure to Obtain User “Buy In”

Contrary to popular opinion, User acceptance does not be-
gin with delivery of System, Product, or Service. The pro-
cess begins at CA. Keep the User informed and involved
as much as practical in the technical decision-making pro-
cess to provide the foundation for positive delivery accep-
tance satisfaction. When high-level trade studies are per-
formed that have an impact on System capabilities, inter-
faces, and performance, solicit Stakeholder—User and End
User—validation of Decision Factors and Criteria and their
respective weights. Give the Stakeholders some level of own-
ership of the System/Product, beginning with CA or initi-
ation of the project.

32.10.10 Risk Area 10: Failure to Achieve an Optimal
Solution

The perception of clear-cut options available for selection
is sometimes deceiving. The reality is that the Candidates
may be unacceptable. There may even be instances where
the trade study may lead to yet another option that is
based on combinations of the options considered or options
not considered. Remember, the trade study process is not
intended to answer: is it A, B, or C? The objective is to
evaluate a range of viable candidate alternatives to evaluate
and determine the optimal solution for a given a set of
prescribed decision criteria. That includes other options that
may not have been identified prior to the start of the trade
study.

32.10.11 Risk Area 11: AoA Decisions are
Commitments

Principle 32.11

Resource Commitments Principle

System Design Solution decisions repre-
sent commitments of resources long be-
fore the resources are actually expended.

Beware of those who whimsically believe those decisions are
volatile up until the expenditure of funds.

There is a subtlety in Figures 32.1 and 32.2 that may
not be readily apparent and represents a shortcoming in
higher-level decision maker mindsets. When technical de-
cisions are made such as acceptance of trade study recom-
mendations, the decision represents a commitment to a design
solution that has “downstream” resource, cost, and schedule
consequences.

Technical decisions including TSR decisions such as
Figure 32.3 are not trivial, perfunctory exercises. They have
a significant impact of Life Cycle Cost (LCC).

• For military systems, the DAU (2015) based on earlier
work by Fabrycky (1994, Figure 3, p. 2) and more
recently Blanchard and Fabrycky (2011, Figure 2.12,
p. 49) estimates that approximately 90% of LCC
are committed by the completion of Engineering &
Manufacturing Development – System Development
Phase (Figure 12.2). Yet, only approximately 10% of
LCC have actually been expended.

• Fabrycky (1994) also observes that when those
Cost-Commitment decisions are made, the level of
“System-Specific Knowledge” maturity required
to make those decisions does not occur until later
in time.

As a result, technical decision risk becomes a key fac-
tor for the System being developed. Exacerbating the risk
is a misperception sometimes by Executives and Project
Managers (PMs) … “if the funds have not been expended,
the System Design Solution is always changeable to ac-
commodate ad hoc User requirements changes without
commensurate contract – technical, cost, and schedule –
modifications.” This is factually incorrect! Engineering de-
cisions commit project resources long before project re-
sources are actually expended! Recognize and appreciate the
difference!

There may be a significant period of time such as weeks,
months, or years between trade study acceptance as a
technical design solution commitment, incorporation of the
decision into a design solution, and the actual commitment
of financial resources to procure components. During these
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intervening months, the project may get into cost or schedule
overruns due to other decisions or conditions.

From a technical perspective, PMs and executives often
have the misperception that they can arbitrarily upstage the
original trade study decision simply because they failed
to properly allocate and reserve resources to procure the
resulting components when planned. Depending on how far
downstream the project may be could result in significant
redesign efforts. Recognize that acceptance of trade study
recommendations represents an immediate commitment of
project resources long before the actual expenditures occur.
Project Managers (PMs) sometimes fail to understand this
commitment when the decision is made.

32.11 TRADE STUDY LESSONS LEARNED

Although trade studies are intended to resolve COIs/CTIs,
one of their ironies is they sometimes create their own set
of issues related to scope, context, conduct, and reporting.
Here are a few lessons learned to consider based on issues
common to many trade studies:

• Suggestion 1: Select the right methodology.

• Suggestion 2: Adhere to the methodology without
deviation unless it is flawed.

• Suggestion 3: Select the right Decision Factors and
Criteria, and their respective weights.

• Suggestion 4: Avoid pre-determined trade study deci-
sions.

• Suggestion 5: Establish acceptable data collection
methods.

• Suggestion 6: Ensure data source integrity and credi-
bility, especially Internet sources.

• Suggestion 7: Reconcile COI/CTI interdependencies.
• Suggestion 8: Accept/reject TSR recommendations.

• Suggestion 9: Document the trade study decision.

• Suggestion 10: Create TSR credibility and integrity.

• Suggestion 11: Respect trade study dissenting
opinions.

• Suggestion 12: Maintain TSRs as conditions
evolve.

Bohlman and Bahill (2010) provide additional insights
concerning an analysis of 110 TSRs submitted over two
decades by students and practicing engineers at the Univer-
sity of Arizona.

32.12 CHAPTER SUMMARY

During our discussion of trade study practices, we defined
what a trade study is, discussed why trade studies are

important and should be documented, and outlined the basic
trade study process, methodology, and alternative methods.
We also addressed methods for documenting and presenting
the TSR results as a means of building confidence in the
Trade Study results.

32.13 CHAPTER EXERCISES

32.13.1 Level 1: Chapter Knowledge Exercises

1. What is a trade study?

2. What is the work product of a trade study?

3. What are the attributes of a trade study?

4. How are trade studies conducted?

5. Who is responsible for conducting trade studies?

6. When are trade studies conducted?

7. Why do you need to perform trade studies?

8. What is a trade space?

9. What methodology is used to perform a trade study?

10. How do you select trade study decision factors, criteria,
and weights?

11. What is a utility function?

12. What is a sensitivity analysis?

13. How do you document, report, and present trade study
results?

14. What are some of the Enterprise issues, technical issues,
and risks in conducting a trade study?

32.13.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e.
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33
SYSTEM MODELING AND SIMULATION (M&S)

Analytically, System Engineering requires several types of
technical decision-making activities:

• Problem-Solution Space Analysis—Understanding
the User and End User’s problem space to identify
and bound one or more Solution Spaces that provides
operational utility, availability, suitability, usability,
effectiveness, and efficiency (Principle 3.11) in accom-
plishing Enterprise missions and objectives.

• Mission Analysis—Understanding the types of mis-
sions the User expects to perform, their objectives, and
performance-based outcomes.

• Use Case and Scenario Analysis—Understanding
how the User intends to deploy, operate, maintain,
sustain, retire, and dispose of the system.

• Architecture Development—Hierarchical organiza-
tion, decomposition, and bounding of operational prob-
lem space complexity into manageable levels of lower
risk solutions spaces, (Principle 4.17) each with a
bounded set of requirements.

• System Performance Analysis—Model the Physical
System to understand “what if” cause and effect rela-
tionships, predict System performance for a given set
of conditions, in support of specification analysis and
development.

• Analysis of Alternatives (AoA)—Formulation, eval-
uation, and selection of an optimal solution from a
range of viable alternatives to solve one or more Critical
Operational or Technical Issues (COI/CTI).

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

• Requirements Allocation—Informed appropria-
tion and assignment of capabilities and quantifiable
performance to each lower risk solution spaces.

• System Optimization—Refer to Chapter 30 Defini-
tions of Key Terms.

• System Failure Replication—For a given set of condi-
tions, replicate a system failure to understand the root
cause and formulate a mitigating operational or design
action (Figure 24.1).

• Failure Modes and Effects Analysis (FMEA)—
Model the Physical System to evaluate and assess po-
tential FMEA (Figure 34.17).

• Test Data Analysis—Analyze System performance
test data to assess compliance to specification require-
ments, observe trends, and predict failures.

Depending on the size and complexity of the System
of Interest (SOI), most of the points above require tools
and decision aids to facilitate the decision-making. Because
of the complex interacting parameters of the System of
Interest (SOI) and its Operating Environment, humans
are often unable to internalize solutions on a personal level
and require assistance. For this reason, Engineers as a group
tend to employ and exploit decision aids such as Modeling
and Simulation (M&S) to gain insights into the System
interactions for a prescribed set of operating scenarios and
conditions. Assimilation and synthesis of this knowledge and
interdependencies via models and simulations enable SEs to
collectively make these decisions.

http://www.wiley.com/go/systemengineeringanalysis2e


704 SYSTEM MODELING AND SIMULATION (M&S)

This chapter provides an introductory overview of how
SEs employ models and simulations to support SE Process
Model decision-making (Figure 14.1). Our discussions are
not intended to instruct you in how to develop models
or simulations; numerous textbooks are available on this
topic. Instead, we focus on the application of Modeling
and Simulation (M&S) as a decision aid to facilitate SE
decision-making.

We begin our discussion with an introduction to the fun-
damentals of M&S. We identify various types of models,
define model fidelity, address the need to certify models, and
describe the integration of models into a simulation. Then,
we explore how SEs employ models and simulations to sup-
port technical decisions involving architecture evaluations,
performance requirement allocations, “what if” exercises,
conflict resolution, to drive out COIs/CTIs.

33.1 DEFINITIONS OF KEY TERMS

• Accreditation “The formal certification that a model or
simulation is acceptable for use for a specific purpose.
Accreditation is conferred by the organization best
positioned to make the judgment that the model or
simulation in question is acceptable. That organization
may be an operational user, the program office, or
a contractor, depending upon the purposes intended.”
(DAU, 2001, p. 120)

• Accreditation “The official certification that a model
or simulation is acceptable for use for a specific purpose
… ” (DoD 5000.59-M, 1998, p. 187)

• Certified Model A formal designation by an officially
recognized decision authority for validating the prod-
ucts and performance of a model.

• Deterministic “Pertaining to a process, model, simu-
lation or variable whose outcome, result, or value does
not depend upon chance. Contrast with: stochastic.”
(DoD 5000.59-M, 1998, p. 108)

• Deterministic Model “A model in which the results
are determined through known relationships among
the states and events, and in which a given input will
always produce the same output; for example, a model
depicting a known chemical reaction. Contrast with:
stochastic model.” (DoD 5000.59-M, 1998, p. 108)

• Discrete Model. “A mathematical or computational
model whose output variables take on only discrete val-
ues; that is, in changing from one value to another, they
do not take on the intermediate values; for example,
a model that predicts an organization’s inventory lev-
els based on varying shipments and receipts.” (DoD
5000.59-M, 1998, p. 108)

• Emulate “To represent a system by a model that
accepts the same inputs and produces the same outputs

as the system represented. For example, to emulate
an 8-bit computer with a 32-bit computer.” (DoD
5000.59-M, 1998, p. 108)

• Event “A change of object attribute value, an interac-
tion between objects, an instantiation of a new object,
or a deletion of an existing object that is associated
with a particular point on the federation time axis. Each
event contains a time stamp indicating when it is said
to occur.” (DoD 5000.59-M, 1998, pp. 113–114)

• Fidelity “The accuracy of the representation when
compared to the real world.” (DoD 5000.59-M, 1998,
p. 119) For example, in aircraft simulation, are actual
working switches, knobs, or display required or can
a touch-screen display overlaying a photograph or
graphic of an actual cockpit be used?

• Capability (Functional Model) A model composed of
functions configured to transform one or more sets of
inputs into one or more outputs as a behavioral stimulus
response for a given set of operating conditions and
constraints without regard to physical implementation.

• Initial Condition “The values assumed by the
variables in a system, model, or simulation at the
beginning of some specified duration of time. Contrast
with: boundary condition; final condition.” (DoD
5000.59-M, 1998, p. 128)

• Initial State “The values assumed by the state variables
of a system, component, or simulation at the beginning
of some specified duration of time. Contrast with: final
state.” (DoD 5000.59-M, 1998, p. 128)

• Model “A physical, mathematical, or otherwise logical
representation of a system, entity, phenomenon, or
process.” (DoD 5000.59-M, 1998, p. 138)

• Model-Test-Model (MTM) “An integrated approach
to using models and simulations in support of pre-test
analysis and planning; conducting the actual test and
collecting data; and post-test analysis of test results
along with further validation of the models using the
test data.” (DoD 5000.59-M, 1998, p. 139)

• Modeling “Application of a standard, rigorous, struc-
tured methodology to create and validate a physi-
cal, mathematical, or otherwise logical representation
of a system, entity, phenomenon, or process.” (DoD
5000.59-M, 1998, p. 138)

• Modeling and Simulation (M&S) “The use of mod-
els, including emulators, prototypes, simulators, and
stimulators, either statically or over time, to develop
data as a basis for making managerial or technical
decisions. The terms ‘modeling’ and ‘simulation’ are
often used interchangeably.” (DoD 5000.59-M, 1998,
p. 138)
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• Monte Carlo Algorithm “A statistical procedure that
determines the occurrence of probabilistic events or
values of probabilistic variables for deterministic mod-
els; e.g., making a random draw.” (DoD 5000.59-M,
1998, p. 140)

• Monte Carlo Method “In modeling and simulation,
any method that employs Monte Carlo simulation to
determine estimates for unknown values in a determin-
istic problem.” (DoD 5000.59-M, 1998, p. 140)

• Simulation Time “A simulation’s internal representa-
tion of time. Simulation time may accumulate faster,
slower, or at the same pace as sidereal time.” (DoD
5000.59-M, 1998, p. 159)

• Stimulate “To provide input to a system in order
to observe or evaluate the system’s response.” (DoD
5000.59-M, 1998, p. 161)

• Simulation—A method for implementing a model.
It is the process of conducting experiments with a
model for understanding the behavior of the system
modeled under selected conditions or of evaluating
various strategies for the operation of the system within
the limits imposed by developmental or operational
criteria. Simulation may include the use of analog or
digital devices, laboratory models, or “testbed” sites.
(DAU, 2012, p. B-203)

• Stimulation “The use of simulations to provide an
external stimulus to a system or sub system.” (DoD
5000.59-M, 1998, p. 161)

• Stochastic “Pertaining to a process, model, or variable
whose outcome, result, or value depends on chance.
Contrast with: deterministic.” (DoD 5000.59-M, 1998,
p. 162)

• Stochastic Process “Any process dealing with events
that develop in time or cannot be described pre-
cisely, except in terms of probability theory.” (DoD
5000.59-M, 1998, p. 162)

• Stochastic Model “A model in which the results are de-
termined by using one or more random variables to rep-
resent uncertainty about a process or in which a given
input will produce an output according to some statisti-
cal distribution; for example, a model that estimates the
total dollars spent at each of the checkout stations in a
supermarket, based on probable number of customers
and probable purchase amount of each customer. Syn:
probabilistic model. See also: Markov-chain model.
Contrast with: deterministic model.” (DoD 5000.59-M,
1998, p. 162)

• Validated Model An analytical model whose outputs
and performance characteristics identically or closely
match the products and performance of the physical
system or component.

• Validation (M&S) “The process of determining the
degree to which a model or simulation is an accurate
representation of the real-world from the perspective
of the intended uses of the model or simulation.” (DoD
5000.59-M, 1998, p. 170)

• Virtual Reality “The effect created by generating an
environment that does not exist in the real world. Usu-
ally, a stereoscopic display and computer-generated
three-dimensional environment giving the immersion
effect. The environment is interactive, allowing the par-
ticipant to look and navigate about the environment, en-
hancing the immersion effect. Virtual environment and
virtual world are synonyms for virtual reality.” (DoD
5000.59-M, 1998, p. 171)

33.2 TECHNICAL DECISION-MAKING AIDS

SE decision making related to System performance alloca-
tions, performance budgets, and design safety margins re-
quires Decision Support to ensure that informed, fact-based
recommendations are made. Ideally, we would prefer to have
an exact representation of a system, product, or service we
are analyzing. In reality, exact representations do not exist
until the System or Product is designed, developed, verified,
and validated.

There are, however, some decision aids that SE can
employ to provide degrees of representations of a system
or product to facilitate technical decision-making. These
include models, prototypes, and mock-ups. The purpose of
the decision aids is to create a representation of a System
on a small, low-cost scale that can provide empirical data to
support design decision-making on a much larger scale.

33.3 SIMULATION-BASED MODELS

Models generally are of two varieties: deterministic and
stochastic.

33.3.1 Deterministic Models

Deterministic models are based on precise relationships
such as mathematical models of transfer functions that pro-
duce predictable, repeatable results. Consider the following
example:

Example 33.1

Deterministic Model Example

Each work period an employee receives
a paycheck based on a formula that com-
putes his/her gross salary—hours worked

times hourly rate less any distributions such as insurance,
taxes, and charitable contributions. The computation is
deterministic due to the precise mathematical relationships
established by accounting standards and federal/state/city
tax regulations.
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33.3.2 Stochastic Models

Although deterministic models are based on precise relation-
ships, stochastic models are structured using probability the-
ory to process a set of random event occurrences or variances
in physical components or workmanship processes or prac-
tices. In general, stochastic models are constructed using data
from statistically valid samples of a population that enable us
to infer or estimate results about the population as a whole.
Examples include environmental conditions and events, hu-
man reactions to publicity, and pharmaceutical drug medica-
tions. Consider the following Mini-Case Study:

MINIMINIIN

Mini-Case
Study 33.1

Retail Store Work Shift Scheduling
Stochastic Model

A retail store chain decides to construct
an analytical business model of customer
activity for use in predicting work force

needs for any date or range of dates during the calendar
year based on historical performance, business projections,
and other factors. The intent is to predict or estimate
the quantity and mix of personnel such as shelf stock-
ers, security, checkout associates, custodial services, cus-
tomer services, required to support retail operations as a
function of Time-of-Day (TOD), Day-of-the-Week (DOW),
Day-of-the-Month (DOM), Day-of-the-Year (DOY), adver-
tising, holidays, and weather predictions.

Random, independent inputs include variables such as
(1) number of TOD customers, average shopping duration
in store, number of TOD purchases, and checkout wait
times; (2) weather; (3) stocked goods, inventory, and planned
deliveries; (4) sales; (5) geographic region; and (6) customer
satisfaction. Historical performance data reflect wide ranges
of uncertainty across identical attributes for different years
due to weather, economic conditions, and geography.

Due to the random variability of inputs and uncertainty
from other factors, the Enterprise decides to construct a
stochastic model of business operations. Performance mod-
els are constructed for seasonal weather, inventory, customer
flow, and queuing lines and integrated into an overall simu-
lation that can be employed at the store, region, national, and
international levels. Monte Carlo methods are employed to
simulate the variance and uncertainties of inputs and condi-
tions that drive each of the underlying models to study the
effects on overall business operations and projections.

Mini-Case Study 33.1 illustrates theoretically how
stochastic models can be employed. Engineers often use a
worst-case analysis in lieu of developing a model. For some
applications, this may be acceptable. However, suppose
a worst-case analysis results in too much overstaffing or
excess inventories resulting in increased labor and inven-
tory costs that ultimately drive down profitability? From a
System optimization perspective, what is the optimal mix

of the System Elements – Personnel, Equipment, Mission
Resources, Procedural Data, System Responses, and
Facilities – to achieve customer satisfaction goals and
profitability? In addition, as consumer buying habits and the
marketplace evolve over time, decisions must be made con-
cerning the relevance and validity of historical performance
data to future projections. One-year old data? Two-year old
data? Five-year old data?

In summary, stochastic models enable us to estimate
or draw inferences about System performance for highly
complex situations and conditions. These situations involve
random, independent, uncontrollable events or inputs that
have a frequency of occurrence under prescribed conditions.
On the basis of the frequency distributions of sampled data
(Figure 34.3), we can apply statistical methods that infer a
most probable outcome for a specific set of conditions.

33.3.3 Model Development

Analytical models require a frame of reference to represent
the characteristics of a System or Entity. For most systems,
a model is created using an Observer’s Frame of Reference,
such as the Right-Handed Cartesian Coordinate System
(Figure 25.1).

Analytically, Model Development is similar to System
Development. SE model developers should fully understand
the problem space and the solution space(s) the model is
intended to satisfy. On the basis of this understanding, a
design methodology requires that we first survey or research
the marketplace to see if the model(s) we require has already
been developed and is available. If available, we need to
determine if the model has the necessary and sufficient
capabilities and technical detail to support our System or
Entity application. Conventional design wisdom (Principle
16.7) says that new models should only be developed as a
last resort after you have exhausted all other alternatives to
locate an existing model that meets their needs.

33.3.4 Model Validation

Principle 33.1

Model Fidelity Principle

Explicitly define and delineate levels of fi-
delity using established industry standards.
Model fidelity resides in the User’s mind.

High fidelity to one person may be medium fidelity to a sec-
ond person and low fidelity to a third person.

Models are only as valid as the quality of its behavioral
and physical performance characteristics used to represent
the real-world System or Entity. We refer to the quality
of a model in terms of its fidelity—meaning its degree
of realism. So, the challenge for SEs is: if we develop
a model of our System or Product, how do we gain a
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level of confidence that the model is valid and accurately
and precisely represents the physical instance of an item
and its interactions with a simulated real-world operating
environment?

In general, when developing models, we attempt to rep-
resent physical reality with simulated or scaled reality. Our
goal is to try to achieve convergence between the per-
formance results of physical reality and simulated reality
within the practicality or resource constraints. So, how do we
achieve convergence? We do this by collecting empirical data
from actual physical systems, prototypes, field tests, or man-
ufacturer’s data, preferably certified. Then, we validate the
model by comparing the actual field data with the simulated
behavioral and physical performance characteristics. Finally,
we continue to refine and validate the model until its results
identically or closely match those of the actual system. This
leads to the question: how do we acquire field data to validate
a model for a system or product we are developing?

There are a number of ways to obtain field data. We can:

• Collect data using controlled laboratory experiments
subjected to controlled Operating Environment
conditions and scenarios that represent what this fielded
system may experience.

• Install a similar component on an existing system and
collect measurement data for Operating Environ-
ment conditions and scenarios.

• Instrument a field platform such as an aircraft with
transducers and sensors to collect operating environ-
ment data.

Regardless of the method used, a model is calibrated, ad-
justed, and refined until it is validated as an accurate and
precise representation of the physical system or device. The
model is then placed under formal Configuration Manage-
ment (CM) control (Chapter 16). We may also decide to have
an independent decision authority or Subject Matter Expert
(SME) certify the model, which brings us to our next topic,
Model Certification.

33.3.5 Model Certification

Creating a model is the first step; creating a validated
ED model and getting it certified requires additional steps.
Remember, SE technical decision-making must be founded
in objective, fact-based data that accurately and precisely
represent real-world Operating Environment situations
and conditions. The same applies with models. So, what is
model certification?

SEVOCAB (2014, p. 41) defines certification as:

• “(1) a written guarantee that a system or compo-
nent complies with its specified requirements and
is acceptable for operational use (SEVOCAB, 2014,

p. 41)(Source: ISO/IEC/IEEE 24765:2011. Copyright
© 2012 ISO/IEC/IEEE. Used by permission.)

For many applications, an independent decision authority
validates a model by authenticating that model results iden-
tically match those obtained from measurements of an actual
system operating under a prescribed set of Operating En-
vironment conditions.

In general, one SE can demonstrate to a colleague,
their manager, or a Quality Assurance (QA) representative
that the data match. Certification comes later when an
independent decision authority recognized within industry or
governmental organization reviews the data validation results
and officially issues a Letter of Certification declaring the
model to be certified for use in specific applications and
conditions.

Do you need certified models? This depends on your
project’s needs. Certification:

• Is expensive to establish and maintain.

• Has an intrinsic value to the creator and marketplace.

Some models are used one time; others are used repeat-
edly and refined over several years. Since Engineering de-
cisions must be based on the integrity of data, models are
generally validated internally but not necessarily certified.

33.3.6 Understanding Model Characteristics

Models are generally developed to satisfy specific needs
of the SE, Engineer, or System Analyst. Although models
may appear to satisfy two different analysis needs, they may
not satisfy the requirements of both. Consider the following
example:

Example 33.2

Functional Versus Physical Models

Analyst A requires a sensor model to
investigate a CTI. To meet this need, the an-
alyst develops a functional model of Sensor

XYZ to facilitate their understanding the behavioral re-
sponses to external stimuli.

Later, Analyst B in another Enterprise researches the
marketplace for a physical model for a comparable sensor.
During their research, they discover that Analyst A has
already developed a sensor model that may be available.
However, Analyst B soon learns that the model describes the
functional behavior of Sensor XYZ, not the Physical Model
for Sensor XYZ. As a result, Analyst B has to make a choice:
either develop their own Physical Model of Sensor XYZ
or translate Analyst A’s Functional Model representation
into a Physical Model representation, assuming that it is
available.
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33.3.7 Understanding Model Fidelity

One of the challenges of M&S is determining the type of
model you need. Examples include functional and physical
model representations. Ideally, a model should accurately
and precisely exhibit stimulus–response behavioral charac-
teristics that enable its User to (1) model System perfor-
mance and (2) conduct “what if” exercises with statistically
random inputs and operating conditions.

Due to the complexities and practicalities of modeling,
which include cost and schedule constraints, models as rep-
resentations, estimates, or approximations of reality are char-
acterized in terms of their levels of fidelity. For example,
is a first-order approximation sufficient? Second-order?
Third-order? The question we have to answer is: what mini-
mum level of fidelity do we need for a specific area of inves-
tigation? Consider the following examples:

Example 33.3

Math Models of Physical Components

Hypothetically, a mechanical gear train has
Input–Output (I/O) transfer function that
can be described mathematically as:

y = 0.1x, where x = input and y = output.

You may decide that a simple analytical math model may
be sufficient for some applications. In other applications,
the area of analytical investigation might require a Physical
Model of each gear within the gear train, including the
thermal expansion characteristics due to the frictional and
loading effects on axle bearings with a specific type, quality,
and level of lubrication.

Example 33.4

Aircraft Simulator Fidelity Example

Let’s assume you are developing an air-
craft simulator. The key questions are as
follows:

1. Are computer-generated graphic displays of cockpit
instruments with simulated moving needle instruments
and touch screen switches sufficient, or do you need
the actual working hardware used in the real cockpit
to conduct training?

2. What level of fidelity in the instruments do you need to
provide pilot trainees with the look and feel of flying
the actual aircraft?

3. Is a static cockpit platform sufficient for training, or do
you need a three-axis motion simulator to provide the
level of fidelity in realistic training?

The point of these examples is: SEs, in collaboration with
System Analysts, the Acquirer, and Users, must be able to
determine what levels of fidelity are required and then be able

to specify it. In the case of simulator training systems, various
levels of fidelity may be acceptable depending on the training
task. Where this is the case, create a matrix to specify the
level of fidelity required for each physical item and include
scoping definitions of each level of fidelity. To illustrate this
point, consider the following example:

Example 33.5

The level of fidelity required for some
switches may indicate computer-generated
graphical images or a photographic.jpg im-
age may be sufficient as a background.
Touch screen displays that enable switch

activation by touch may be acceptable to graphically sim-
ulate flipping the switch position from Up to Down and vice
versa by simply changing the switch position image.

An aircraft simulator cockpit may require real-world
fidelity with actual working switches, which are expensive.
A lesser expense and fidelity approach might be to employ
touch screen panels that display separate but registered
two-dimensional photographs of switch positions such as On
or Off with three-dimensional (3-D) lighting effects.

Example 33.6

In other instances, hand controls, brake
pedals, and other mechanisms may require
actual working devices that provide the
tactile “look and feel” of devices of the
actual system.

33.3.8 Specifying Model Fidelity

Understanding model fidelity is often a challenge in being
able to realistically model the real world. In the case of train-
ing simulators that require visual representations of the envi-
ronment inside and outside the simulated vehicle, what level
of fidelity in the Out-the-Window (OTW) displays the land-
mass – terrain and trees – and cultural features such as roads,
bridges, and buildings is necessary and sufficient for training
purposes?

• Are computer-generated images with a synthetic tex-
ture sufficient for landscapes?

• Do you require photographic images with computer-
generated texture?

The answer to these questions depends on trade-offs
between resources available and the positive or negative
impacts to training. Increasing the level of fidelity typically
requires significantly more resources such as data storage or
computer processing performance. Concepts such as Cost as
an Independent Variable (CAIV) enable Acquirer decision
makers to assess what level of capability can be achieved at
what cost Figure 32.4.
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33.3.9 System Operations and Performance
Simulations

Models serve as “building block” representations or approx-
imations of physical reality. When we integrate these models
into an executable framework that enables us to stimulate
interactions and behavioral responses under controlled con-
ditions, we create a simulation of an SOI.

As analytical models, simulations enable us to conduct
what if exercises with each model or system. In this context,
the intent is for SEs to understand the functional or physical
behavior

N

E
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W

Heading 33.1

The preceding discussions provide the
foundation for understanding models and
simulations. We now shift our focus to
understanding how SEs employ M&S to
support analytical decision making as well
as create deliverable products for Users.

33.4 APPLICATION EXAMPLES OF M&S

M&S are applied in a variety of ways by SEs to support
technical decision-making. SEs employ M&S for several
types of applications:

• Application 1: Simulation-based architecture selection

• Application 2: Simulation-based architectural perfor-
mance allocations

• Application 3: Simulation-Based Acquisition (SBA)

• Application 4: Test environment stimuli

• Application 5: Simulation-based failure investigations

• Application 6: Simulation-based training

• Application 7: Test bed environments for technical
decision support

• Application 8: Understanding System Performance
Characteristics.

To better understand how SEs employ models and simu-
lations, let’s describe each type of application.

33.4.1 Application 1: Simulation-Based Architecture
Selection

When you Engineer systems, you should have a range of
viable alternatives available to support informed selection of
the best candidate to meet a set of prescribed Operating
Environment scenarios and conditions. In practical terms,
you cannot afford to develop and model every candidate
architecture just to study it for purposes of selecting the best
one. We can, however, construct models and simulations that
represent capability or physical architectural configurations.
To illustrate, consider the following example.

Example 33.7

Let’s suppose that we have identified sev-
eral promising Candidate Architectures 1
through “n” as illustrated on the left side
of Figure 33.1. We conduct a trade study
(Chapter 32) and determine that the com-

plexities of selecting the right architecture for a given system
application requires employment of M&S. Thus, we create
Simulation 1 through Simulation “n” to provide the analyti-
cal basis for evaluating and selecting the preferred architec-
tural configuration.

We exercise the simulations over a variety of Operating
Environment scenarios and conditions. Results are ana-
lyzed, compiled, and documented in an Architecture Trade
Study, which rank orders the results as part of its recommen-
dations. On the basis of a review of the Architecture Trade
Study, SEs select an optimal architecture. When the architec-
ture is selected, the simulation serves as the framework for
evaluation and refining each simulated architectural entity at
lower levels of abstraction.

33.4.2 Application 2: Simulation-Based Architectural
Performance Allocations

M&S are also employed to perform simulation-based per-
formance allocations for specification requirements as illus-
trated in Figure 33.2. Consider the following example:

Example 33.8

Using M&S to Support Specification
Performance Requirements Allocations

Assume specification Requirement A spec-
ifies “parent” Capability A. Our initial

analysis derives three lower level “child” capabilities (Figure
21.2). A1 through A3 that are translated into System Per-
formance Specification (SPS) Requirements A1 through A3.
The challenge is: how can models and simulations support
SE requirements allocations of Capability A’s performance
to Capabilities A1 through A3?

Let’s assume that basic analysis provides us with an initial
set of performance allocations that is “in the ballpark.” How-
ever, the interactions among entities are complex and require
M&S to support performance allocation decision-making.
We construct a model of the Capability A’s architecture to
investigate the performance relationships and interactions of
Entities A1 through A3.

Next, we construct the Capability A simulation con-
sisting of Models, A1 through A3, representing subordi-
nate Capabilities A1 through A3 as Input-Output (I/O)
stimulus-response models. Each supporting capability, A1
through A3, is modeled using the System/Entity Capability
Construct shown in Figure 10.17. The simulation is exer-
cised for a variety of stimuli, cues, or excitations using Monte
Carlo methods to understand the behavior of the interactions
over a range of Operating Environment scenarios and
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conditions. The results of the interactions are captured in the
system behavioral response characteristics.

After several iterations to optimize the interactions, SEs
arrive at a final set of performance allocations that become
the basis for specifying the SPS Capability A requirement. Is
this perfect? No! Remember, this is a human approximation
or estimate that may require independent corroboration. Due
to variations in physical components and the Operating
Environment, the final simulations may still have to be
calibrated, aligned, and tweaked for field operations based
on actual field data. However, we initiated this process to
reduce the complexity of the solution space into manage-
able, lower risk solutions. Thus, we arrived at a very close
approximation to support requirements allocations without
having to go to the expense of developing the actual working
hardware and software.

33.4.3 Application 3: Simulation-Based Acquisition
(SBA)

Traditionally, when an Acquirer acquired a System or
Product, they had to wait until the Developer deliv-
ered the final system for Operational Test and Evalua-
tion (OT&E) (Chapters 12 and 13) or final acceptance.
During OT&E, the User or an Independent Test Agency
(ITA) conducted field exercises to evaluate System or
Product performance under actual Operating Environ-
ment conditions. Theoretically, there should be no surprises.
Why?

• The SPS described, bounded, and specified the
well-defined solution space.

• The System Developer created the ideal physical solu-
tion that perfectly complies with the SPS.

In reality, every System Design Solution has compromises
due to the constraints imposed. Acquirers and User(s) of
a system need a level of confidence “up front” that it will
perform as intended. Why? The cost of developing large
complex systems, for example, and ensuring that they meet
User validated operational needs is challenging.

One method for improving the chances of delivery success
is SBA. What is SBA? In general, when the Acquirer releases
a formal Request for Proposal (RFP) solicitation for a
System or Product, a requirement is included for each
Offeror to deliver a working simulation-based model along
with their technical proposal. The RFP stipulates criteria
for meeting a prescribed set of functionality, interface, and
performance requirements. To illustrate how SBA is applied,
refer to Figure 33.3.

Example 33.9

SBA Example

Let’s suppose a System Developer has
an existing aircraft system and decides
there is a need to upgrade the Propulsion

Subsystem. In addition, the User has an existing Aircraft
System Simulation that is presently used to investigate Sys-
tem performance issues.
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Figure 33.3 Simulation-Based Acquisition (SBA)
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The User selects an Acquirer to procure the Propulsion
Subsystem replacement. The Acquirer releases an RFP to
a qualified set of Offerors, Competitors A through n. In
response to RFP requirements, each Offeror delivers a plug
and play simulation of their proposed Propulsion Subsystem
to support the evaluation of their technical proposal.

On delivery, the Acquirer’s Source Selection Evaluation
Team (SSET) evaluates each technical proposal using prede-
fined proposal evaluation criteria. The SSET also integrates
each Propulsion Subsystem Simulation into the Existing
System Simulation for further technical evaluation.

During source selection, the SSET evaluates Offeror tech-
nical proposals and simulations. Results of the evaluations
are documented in a Product Acquisition Trade Study report.
The TSR provides a set of Acquisition Recommendations to
the SST, which in turn makes Acquisition Recommendations
to a Source Selection Decision Authority (SSDA).

33.4.4 Application 4: Test Environment Stimuli

System Integration, Test, and Evaluation (SITE) can be a
very expensive activity in System Development, not only
from its labor intensiveness, but also from the creation of
the Controlled Test Environment interfaces (Figure 28.1) to
a Unit-Under-Test (UUT). There are several approaches SEs
can employ to test a UUT. The usual SITE options include:
(1) stimulation, (2) emulation, and (3) simulation (Figure
28.3). The test environment simulations in this context are

designed to reproduce external system interfaces to the
(UUT).

33.4.5 Application 5: Simulation-Based Failure
Investigations

Large, complex systems often require simulations that enable
decision makers to investigate different aspects of perfor-
mance in employing the System or Product in a prescribed
Operating Environment. Occasionally, these systems en-
counter an unanticipated failure mode or anomaly that re-
quires in-depth investigation. The question for SEs is: what
set of System User – operator or maintainer actions or con-
ditions and use case scenarios contributed to the failure?
Was the root cause due to (1) latent defects, design flaws, or
errors, (2) workmanship and reliability of components, (3)
operational fatigue, (4) lack of proper maintenance, (5) mis-
use, abuse, or misapplication of the System from its intended
or unintended application, or (6) an anomaly?

Due to safety and other concerns, it may be advantageous
to investigate the root and contributory causes (Figures 10.12
and 24.1) of the failure using the existing simulation. The
challenge for SEs is being able to:

• Reconstruct the chain of events leading to the failure.

• Reliably replicate the problem on a predictable basis as
validation of the root, contributory, or probable cause
(Chapter 24).
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A decision could be made to use the simulation to explore
the most probable or likely root cause of the failure mode.
Figure 33.4 illustrates how you might investigate the cause
of failure.

Let’s assume that a System Failure Report (SFR) doc-
uments the Operating Environment scenarios and con-
ditions that lead to a failure event. The SFR should in-
clude a maintenance history record among the supporting
documents. Members of the Failure Analysis Team extract
the Operating Environment Conditions and Data from
the report and incorporate actual data into the Existing
System Simulation. SEs perform analyses using Validated
Field Data from recorded instrument data such as teleme-
try and a metallurgical analysis of components/residues.
Then, derive additional inputs and make valid assumptions as
necessary.

Principle 33.2

Root or Probable Cause Methodology
Principle

Root, contributory, or probable cause
investigations employ a process of elim-

ination methodology to rule out failure causes based on
objective assessment of the facts.

The Failure Analysis Team explores all possible actions
and rules out probable causes using Monte Carlo simulations
and other methods. As with any failure mode investigation,
the approach is based on the premise that all scenarios
and conditions are “suspect” until they are ruled out by a
process of fact-based elimination. Simulation Results serve
as inputs to an FMEA that compares the results the scenarios
and conditions identified in the SFR. If the results are not
predictable, the SEs continue to Refine the Model/Operations
until they are successful in replicating the root cause on a
predictable basis.

33.4.6 Application 6: Simulation-Based Training

Although simulations are used as analytical tools for tech-
nical decision-making, they are also used to train System
operators. Simulators are commonly used for air and ground
vehicle training. Figure 33.5 provides an illustrative example
of an aircraft simulator.

For these applications, simulators are developed as de-
liverable instructional training devices to provide the “look
and feel” of actual systems such as aircraft. As instructional
training devices, these systems support all phases of mis-
sion training including (1) briefing, (2) mission training, and
(3) post-mission debriefing. From an SE perspective, these
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systems provide a Human-in-the Loop (HITL) training envi-
ronment that includes the following:

• Brief/Debrief Stations support trainee briefs concern-
ing the planned missions and mission scenarios and
debriefing the results of the simulated training flight
exercises.

• An Instructor/Operator Station (IOS) controls the train-
ing scenario and environment.

• SOI Simulation simulates the physical system the
trainee is being trained to operate.

• Image Generation Systems (IGS) generate and display
simulated operating environments.

• Simulation Databases such as landmass and cultural
features support Visual System environments.

• Debrief Stations provide an instructional replay of the
training mission and results.

Principle 33.3

Negative Training Principle

In Simulation and Training (S&T), sim-
ulated capabilities presented to the User
must identically match the operating con-

dition – normal, degraded, or failed – of the actual System
and its physical components it represents with no discrepan-
cies. Otherwise, negative training occurs.

One of the challenges of personnel training is to avoid a
condition referred to as negative training. Remember—the
objective of simulated training is to equip the trainee with
the essential skills to be able to operate a System or
Product that results in a positive experience. Simulations
that physically deviate or detract from the real world are
considered negative training. Consider this example.

Example 33.10

Aircraft simulators should identically
mimic the capabilities, displays, and pro-
cedures of a specific tail number aircraft
dimensionally, functionally, visually, and
audibly. If the actual aircraft has a capa-

bility that is inoperable such as a light, display, and switch,
so should the simulator capability. Otherwise, continuation
is considered negative training.

In general, there are several types of training simulators:

• Fixed Platform Simulators Provide static implemen-
tation and use only visual system motion and cues to
represent dynamic motion of the trainee.

• Motion System Simulators Employ one-, two-, or
three-axis Six-Degree-of-Freedom (6DOF) motion
platforms (Chapter 25) to provide an enhanced realism
to a simulated training session.

One of the challenges of training simulation develop-
ment is the cost related to Equipment - Hardware and
Software. Technology advancements sometimes outpace
the time required to develop and deliver new systems. For
example, complex M&S may require 2 – 4 years to de-
velop. During the System Development, the initial com-
puters used to develop the System will probably become
outdated – Moore’s Law - by the time it is ready for verifica-
tion, acceptance, and delivery. This is especially challenging
if the System is to be delivered with current state of the prac-
tice technology.

Human attempts to create an immersive training envi-
ronment that transcends the synthetic and physical worlds
are both challenging and expensive. The challenge comes
in being able to transform the trainees’ perception of reality
into believing they are in a realistic environment filled with
physical sensations such as sight, sound, and motion. One
approach to these challenges is to develop a virtual reality
simulation.

• Virtual Reality Simulation The employment of phys-
ical elements such as helmet visors and sensory gloves
to psychologically immerse a subject in an audio, vi-
sual, and haptic feedback environment that creates the
perception and sensation of physical reality.

You may ask: why do we need to go to this level training
and simulations? The reality is that humans exhibit erratic
and unpredictable behavior when confronted with stressful
and potentially life-threatening situations. However, we also
know that when we subject them to repetitive training in var-
ious types of simulated scenarios, humans will instinctively
default to the procedural imprints of their training when sub-
jected to such situations. Pilot and astronaut training, for
example, employ a dictum that says “Train like you fly and
fly like you train.” NASA procedures, for example, required
that a Shuttle Commander complete 1000 Shuttle Training
Aircraft (STA) landings or “dives” in a Gulfstream II busi-
ness jet modified to simulate Shuttle landings (NASA, 2005).

33.4.7 Application 7: Test Bed Environments
for Technical Decision Support

When we develop systems, we need early feedback concern-
ing the potential downstream impacts of technical decisions
such as technology updates and configuration changes.
While methods such as breadboards, brass boards, rapid pro-
totyping, and technical demonstrations enable us to reduce
technical and design risk; the reality is that the effects of
these decisions may be unknown until the SITE Phase. Even
worse, the cost to build actual Hardware and Software
plus cost-to-correct any latent defects (Table 13.1 and Figure
13.2) – design flaws, errors, or deficiencies–in these deci-
sions or physical implementations increases significantly as
a function of time After Contract Award (ACA).
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From an Engineering perspective, it would be desirable
to evolve and mature models, or prototypes of a laboratory
“working system” directly into the deliverable System. An
approach such as this provides continuity of:

• The evolving and maturing System Design Solution
and its internal and external interfaces.

• Verification of those elements.

The question is: how can we implement this approach?
One method is to create a test bed. So, what is a test bed

and why do you need one?

33.4.7.1 Test Bed Development Environments A test bed
is a laboratory-based architectural framework and environ-
ment that allows simulated, emulated, or stimulated physical
components to be integrated as “working” representations of
a Physical System or Entity and be replaced by actual com-
ponents (Figure 28.3) as they become available. SEVOCAB
(2014, p. 323) defines a test bed as “(1) an environment
containing the hardware, instrumentation, simulators, soft-
ware tools, and other support elements needed to conduct
a test (SEVOCAB, 2014, p. 323) (Source: ISO/IEC/IEEE
24765:2011. Copyright © 2012 ISO/IEC/IEEE. Used by
permission.).

Test beds may reside in environmentally controlled labo-
ratories and facilities or they may be implemented on mobile
platforms such as aircraft, ships, and ground vehicles. In
general, a test bed serves as a framework-based model that
enables the virtual world of M&S to transition to the physical
world over time.

A test bed is implemented with a central framework that
integrates the System Elements (Figure 9.2) and controls the
interactions as illustrated in Figure 33.6. Here, we have a
Test Bed Executive Backbone framework that consists of
Interface Adapters A–C that serve as interfaces to simulated
or actual physical elements - Products A through C.

During the early stages of System Development,
Products A, B, and C are modeled and integrated as
Simulation A; Simulations B1, B2, B3; and Simulation C
into the test bed. The objective is to investigate COIs/CTIs
and facilitate technical decision-making. These initial sim-
ulations may be of low to medium fidelity. As the System
Developmental Configuration (Chapters 12 and 16) evolves,
higher fidelity models may be developed to replace the lower
fidelity models, depending on specific requirements.

When Products A, B, and C or their Subsystems be-
come available as prototypes, breadboards, or brass boards,
the Simulations A through C are replaced with the actual
“plug and play” physical entities. Consider the following
example:
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Example 33.11

Plug and Play Simulations

During the development of Product B,
Subsystems B1 through B3 may be im-
plemented as Simulations B1, B2, and B3.

At some point in time, Subsystem B2 is physically proto-
typed in the laboratory. Once the Subsystem B2 physical
prototype reaches an acceptable level of maturity, Simulation
B2 is removed and replaced by the Subsystem B2 prototype.
Later, when the Subsystem B2 developer delivers the veri-
fied physical item, the Subsystem B2 prototype is replaced
with the actual Subsystem B.

In summary, a test bed provides a Controlled Operating
Environment framework (Figure 28.1) with interface “stubs”
that enable developers to integrate plug-and-play functional
models, simulations, or emulations. As Hardware Configura-
tion Items (HWCIs) and Computer Software Configuration
Items (CSCIs) (Chapter 16) are verified, they replace the
models, simulations, or emulations. Thus, over time, the test
bed evolves from an initial set of Functional and Physical
Models and simulation representations to a fully integrated
and verified System.

33.4.7.2 Reasons That Drive the Need for a Test Bed

Principle 33.4

Simulation Validity

Models and simulations are only as good
as the human attempts to algorithmically
represent and validate the System and its

interactions with its Operating Environment based on
actual field data.

Throughout the System Development and the Opera-
tion, Maintenance, and Sustainment (OM&S) Phases of the
System/Product Life Cycle, SEs are confronted with several
challenges that drive the need for using a test bed. Through-
out this decision-making process, a mechanism is required
that enables SEs to incrementally build a level of confidence
in the evolving and maturing System Architecture and Sys-
tem Design Solution as well as to support field upgrades after
deployment.

The Human translation process from requirements to de-
sign is often prone to latent defects; however, integrated tool
environments minimize the translation errors but often suf-
fer from format compatibility and interoperability problems.
Due to discontinuities in the design and component devel-
opment workflow, the success of these decisions and imple-
mentation may not be realized until the SITE Phase when the
actual entities are physically integrated.

Under conventional System Development, breadboards,
brass boards, rapid prototypes, and technology demonstra-
tions are used to investigate COIs/CTIs. Data collected from
these decision aids are translated by humans into design re-
quirements such as mechanical drawings, electrical assembly

drawings and schematics, and software designs and inher-
ently contain defects. So, how can a test bed overcome these
problems? There are several reasons why test beds can facil-
itate System Development.

• Reason 1: Performance-allocation-based decision-
making. When we Engineer and develop systems,
iterative and recursive application of the SE Pro-
cess Model (Figure 14.1) requires informed, fact-based
decision making at each level of abstraction using
the most current data available. Models and sim-
ulations provide a means to investigate and ana-
lyze performance and system responses to Operating
Environment scenarios for a given set of “what if”
assumptions. The challenge is that M&S are only as
“good” as the algorithmic representations used and val-
idated based on actual field data measurements.

• Reason 2: Prototype development expense. Working
prototypes Proof of Principle, Proof of Concept, and
Proof of Technology demonstrations provide mecha-
nisms to investigate a System’s behavior and perfor-
mance. However, full prototypes for some Systems
may be too risky due to the maturity of the technology
involved and expense, schedule, and security issues.
The question is: should you incur the expense of cre-
ating a prototype of an entire System just to study a
part of it? For example, to study an aerodynamic prob-
lem, you do not need to physically build an entire air-
craft. Model a “piece” of the problem for a given set of
boundary conditions. In the case of a sensor, this might
include installation on the wing of a comparable air-
craft and performing in-flight performance and test data
collection.

• Reason 3: System component delivery problems.
Despite insightful planning, projects often encounter
late vendor deliveries. When this occurs, SITE activ-
ities may severely impact contract schedules unless
you have a good risk mitigation plan in place. SITE
activities may become “bottlenecked” until a critical
component is delivered. As a workaround, M&S risk
mitigation activities might employ some form of rep-
resentation such as simulation, emulation, or stimu-
lation of the missing component to enable SITE to
continue to avoid interrupting the overall program
schedule.

• Reason 4: New technologies. Technology drives many
decisions. The challenge SEs must answer is as fol-
lows:

∘ Is a technology as mature as its vendor literature
claims?

∘ Is this the right technology for this User’s application
and longer term needs?
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∘ Can the technology be seamlessly integrated with the
other System components with minimal schedule
impact?

So a test bed enables the integration, analysis, and eval-
uation of new technologies without exposing an existing
system to unnecessary risk - for example, new engines for
aircraft.

• Reason 5: Post-deployment field support. Some con-
tracts require field support for a specific time frame
following system, product, or service delivery dur-
ing the System OM&S Phase. If the Users are plan-
ning a series of upgrades via builds, they have a
choice:
∘ Incur the cost of operating and maintaining a phys-

ical laboratory test article(s) of a fielded system for
evaluating incremental upgrades to a fielded config-
uration.

∘ Maintain a test bed that allows the evaluation of
configuration upgrades. Depending on the type of
system and its complexity, test beds can provide a
lower cost solution.

33.4.7.3 Synthesizing the Challenges In general, a test
bed provides for “plug-and-play” simulations of CIs or
implementation of the actual physical component. Test beds
are also useful for workarounds because they help minimize
SITE schedule problems. They can be used to:

1. Integrate early versions of an architectural configura-
tion that is populated with simulated model representa-
tions (functional, physical) of CIs.

2. Establish a “plug-and-play” working test environment
with prototype System components before an entire
system is developed.

3. Evaluate Systems or Entities to be represented by
simulated or emulated models that can be replaced by
higher fidelity models and ultimately by the actual CI.

4. Apply various technologies and alternative architec-
tural and design solutions for CIs.

5. Assess incremental capability and performance up-
grades to system field configurations.

33.4.7.4 Evolution of the Test Bed Test beds evolve in a
number of different ways. Test beds may be operated and
maintained until the final deliverable System or Product
completes SITE. At that point, actual systems serve as the
basis for incremental or evolutionary development. Every
system is different. So, assess the cost benefits of maintaining
the test bed. All or portions of the test bed may be dismantled,
depending on the development needs as well as the utility and
expense of maintenance.

For some large complex systems, it may be impractical
to conduct “what if” experiments on the actual systems in
enclosed facilities due to:

1. Physical space requirements.

2. Environmental considerations.

3. Geographically dispersed development organizations.

4. Safety Factors

In these cases, it may be practical to keep a test bed in-
tact. This, in combination with the capabilities of high-speed
Internet access, may allow geographically dispersed devel-
opment Enterprises to conduct work with a test bed without
having to be physically co-located with the actual system.
For example, an aircraft manufacturer might integrate an ex-
ternal developer’s simulation of an engine into a simulation
of the aircraft via an Internet or other high-speed interface.

33.4.8 Application 8: Modeling System Performance
Characteristics

Engineers often think of System Integration, Test, and Eval-
uation (SITE) as an activity performed after components of
the System or Products have been designed, fabricated, as-
sembled, and coded. The shortcoming here is the lack of
recognition that SITE occurs throughout the System Design
Phase.

Fortunately, with today’s high performance computers
and models, we can model and simulate the integrated
System in an Operating Environment. This enables us
to understand not only its performance characteristics but
also its cause and effect reactions to dynamic conditions.
Figure 33.7 provides an example.

• The left image “This image illustrates the OVERFLOW
solution of the Space Shuttle Launch Vehicle flow-field
at a Mach number of 1.25. The vehicle surface is
colored by the pressure coefficient, and the color
contours in the flow-field and plumes represent the
local Mach number.” (NASAFacts, 2014, p. 2)

• The right image illustrates a Computational Fluid
Dynamics (CFD) simulation of high-velocity airflow
around the Space Shuttle during re-entry. Advance-
ments in computers and CFD are enabling Engineers to
replace the end for wind tunnel testing in some cases.
(NASA, 2014)

33.5 M&S CHALLENGES AND ISSUES

Although M&S offer great opportunities for SEs to exploit
technology to understand the problem and solution spaces,
there are also a number of challenges and issues. Let’s
explore some of these.
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Figure 33.7 Examples - Space Shuttle Modeling and Simulation (M&S) (Sources: (Left
image): NASAFacts (2014); (Right image): NASA (2014)).

33.5.1 Challenge 1: Failure to Record Assumptions
and Scenarios

M&S require establishing a base set of M&S configurations,
assumptions, scenarios, and operating conditions. Reporting
M&S results without recording and noting this information
in technical reports and briefings diminishes the integrity
and credibility of the results. In addition, the version, date,
and individual that performed the simulation should be
documented.

33.5.2 Challenge 2: Improper Application of the Model

Before applying a model to a specific type of decision sup-
port task, the intended application of the model should be
verified. There may be instances where models do not ex-
ist for the application. You may even be confronted with
a model that has only a degree of relevance to the appli-
cation. If this happens, you should take the relevancy into
account and apply the results cautiously. The best approach
may be to adapt the current model to your application, if
feasible.

33.5.3 Challenge 3: Poor Understanding of Model
Deficiencies and Flaws

Principle 33.5

Model Validity Principle

“All models are wrong but some are use-
ful.” (Box, 1979, p. 202)

Models and simulations generally evolve because an En-
terprise has an operational need to satisfy or issue to resolve.

When the need to resolve COIs/CTIs is immediate, the in-
vestigator may only model a segment of an application or
“piece of the problem.” Other Users with different needs may
want to modify the model to satisfy their own needs. Before
long, the model will evolve through a series of undocumented
patches by various recipients and then documentation accu-
racy and configuration control become critical issues.

To a potential user, such a model may have risks due to
potential deficiencies or shortcomings relative to the User’s
application. In addition, undiscovered latent defects such as
design flaws, errors, and deficiencies may exist because parts
of the model have not been exercised. Beware of this prob-
lem. Thoroughly investigate the model before selecting it for
usage. Locate the originator of the model, assuming that they
can be located or are available. Ask the developers what you
should know about the model’s performance, deficiencies,
flaws, and documentation. Also inquire about how well the
model has been tested, User community, specifications.

33.5.4 Challenge 4: Model Portability

Models tend to get passed around, patched, and adapted.
As a result, configuration and version control becomes a
critical issue. Maintenance and configuration management
of models and simulations and their associated documen-
tation is very expensive. Unless an Enterprise has a need
to use a model for the long term, it may go onto a shelf.
While the physics and logic of the model may remain con-
stant over time, the execution of the model on newer com-
puter platforms may be questionable. This often necessi-
tates migration of the model to new computer platforms at
additional cost. Therefore, model portability may be a key
consideration.
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33.5.5 Challenge 5: Poor Model and Simulation
Documentation

Models tend to be developed for specific rather than general
applications. Since M&S are often non-deliverable items,
documentation tends to get low priority and is often inade-
quate. Management decision-making often follows a “do we
put $1.00 into improving the M&S or do we place $1.00 into
documenting the model. Unless the simulation is a deliver-
able, the view is that it is only for internal use and so minimal
documentation is the strategy. What is acceptable documen-
tation to the model’s developer based on prior knowledge
may be unacceptable to other Users.

33.5.6 Challenge 6: Failure to Understand Model
Fidelity

Every model and simulation has a level of fidelity that
characterizes its performance and quality. Understand what
level of fidelity you need, investigate the level of fidelity of
each candidate model, and determine the utility of the model
to meet your needs.

33.5.7 Challenge 7: Undocumented Features

Models or simulations developed as laboratory tools typi-
cally are not documented with the level of discipline and
scrutiny of formal deliverables. For this reason, a model or
simulation may include undocumented “features” that the
developer forgot to record because of the available time, bud-
gets cuts, and the like. Therefore, you may think that you can
easily reuse the model but discover that it contains problem
areas. A worst-case scenario is planning to reuse a model
only to discover deficiencies when you are “too far down the
stream” to pursue an alternative course of action.

33.6 CHAPTER SUMMARY

Our discussion of M&S practices identified, defined, and
addressed various types of models and simulations. We also
addressed the implementation of test beds as evolutionary
“bridges” that enable the virtual world of M&S to evolve
to the physical world. Key points to remember include the
following:

• Models and Simulations (M&S) are only as good as de-
veloper attempts to construct validated representations.

• Models have levels of fidelity with increasing cost for
each level. Determine the least cost level of fidelity
required for specific components for simulating your
System.

• Test beds provide a mechanism to evolve the Develop-
mental Configuration (Chapters 12 and 16) from ana-
lytical simulations for replacement with actual working
Products, Subsystems, Assemblies, or Subassem-
blies.

• Deterministic models are represented by a precise
mathematical relationship; stochastic models employ
random variables as inputs that are independent and
may exhibit various levels of uncertainty and proba-
bility.

• When searching for existing models, thoroughly inves-
tigate the type of model, origin, history, current de-
ficiencies, and currency-based on the requirements of
your System.

• When acquiring new components for an existing sys-
tem, Simulation-Based Acquisition (SBA) may pro-
vide a mechanism for analyzing and evaluating the
performance of the offeror proposed components that
have been integrated into a validated simulation of that
System.

• To avoid a negative training result, simulators used
for training should identically mimic the System
they represent including capabilities that may be
inoperable.

• Validated simulations provide a mechanism to replicate
failures as a means of improving multi-level System
designs.

33.7 CHAPTER EXERCISES

33.7.1 Level 1: Chapter Knowledge Exercises

1. What is an analytical model?

2. What are the various types of analytical models?

3. How are models employed in SE decision-making?

4. How are models validated?

5. Box (1979, p. 202) states that “All models are wrong but
some are useful.”
a. Provide an explanation of the quote.
b. How can the “usefulness” of models be improved?

6. What is a simulation?

7. What are 3 approaches for representing an OPERATING
ENVIRONMENT to a model or simulation?

8. What is a mock-up?

9. How do SEs employ mock-ups? Provide examples and
explain what types of knowledge SEs would expect to
gain from them?

10. What is a test bed? Provide 3 example systems that might
be candidates for a testbed?
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11. How is a test bed employed in SE decision making?

12. What is meant by the “plug and play” capability of a
testbed?

13. Testbeds can be used to minimize the effects of SITE
schedule problems. Identify 5 reasons addressed in the
chapter concerning how they can help alleviate the
problems.

14. M&S has a number of challenges and issues SEs must be
prepared to address. Identify the 7 challenges addressed
in the chapter.

33.7.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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34
SYSTEM RELIABILITY, MAINTAINABILITY,
AND AVAILABILITY (RMA)

Chapters 1 – 33 introduced SE concepts, principles, and
practices for define; bound and specify; architect; monitor,
command, and control (MC2); design for Users; model and
simulate; test, Verify & Validate (V&V) systems, products,
and services. You and your team can create the most elegant
System Design Solution that satisfies Principle 3.11’s six
User benefits:

1. Operational Utility.

2. Operational Suitability.

3. Operational Availability.

4. Operational Usability.

5. Operational Effectiveness.

6. Operational Efficiency.

However, mission and system success are ultimately
dependent on:

• Operational Availability “on-demand” to conduct
missions.

• Operational Effectiveness, which is a function of Sys-
tem Effectiveness. In turn, System Effectiveness is a
function of the system, product, or service’s Reliability
and Maintainability (R&M).

These three topical areas - System Reliability, Maintain-
ability, and Availability (RMA) - are designated as Specialty
Engineering and serve as the focal point of our discussions
in Chapter 34.

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

This leads to a key question: What is SE’s role and rela-
tionship in identifying, developing, and achieving Reliabil-
ity, Maintainability, and Availability (RMA) requirements?

As an SE, you are expected to:

• Lead and orchestrate efforts to specify (Acquirer role),
analyze, and allocate (System Developer) RMA req-
uirements for the System Performance Specification
(SPS) and Entity Development Specifications (EDSs).

• Integrate Specialty Engineering disciplines
(Chapter 1) into the SPS/EDS RMA requirements
specification and analysis decision-making process
beginning with Contract Award.

• Ensure those Engineering specialties are fully in-
tegrated and engaged into the multi-level System
and Entity SE Design Solution and development
activities.

RMA is one of the most vital SE Decision Support ac-
tivities. However, it is often relegated to a mere “number
crunching exercise.” Barnard (2008) argues, “many compa-
nies think they are performing reliability engineering, while
they are actually performing reliability accounting. They are
not even close to complying with one of the fundamental
aspects of reliability engineering, which is ‘paying atten-
tion to detail’ (MIL-HDBK-338B, 1998, p. 7–1)” Barnard
(2008, p. 4).

Barnard (2008, p. 9) referencing Billinton and Allan
(1996) also notes “The single most important factor that
differentiates between effective and ineffective implemen-

http://www.wiley.com/go/systemengineeringanalysis2e
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tation of a reliability program is timing of the reliability
effort. The reliability activity must proceed as an integral
part of the development project. If not, it becomes either a
purely academic function or historical documentation pro-
cess. Reliability engineering often becomes a numbers game
after the real game is over. Reliability cannot be economi-
cally added after the system or product has been conceived,
designed, manufactured and placed in operation” (Billinton
and Allan, 1996).

Textbooks often treat RMA as separate topics using
catchy titles such as Design for Reliability, Design for Main-
tainability, and Design for Availability. Such treatment infers
these are independent “stovepipe” concepts. The reality is
you must Design for RMA. A common paradigm is: “Once
the design and R&M (Reliability and Maintainability) En-
gineers are finished, it’s up to the maintainers to do the
rest.” The reality is RMA are not discrete stand-alone top-
ics. Instead, they are integrally linked and form what is
referred to as a Reliability-Centered Maintenance (RCM)
and Condition-Based Maintenance (CBM) strategy.

If you ask most engineers, managers, and executives what
the purpose of Reliability and Maintainability (R&M) is,
a typical response is to “prevent the equipment from fail-
ing.” This is not the purpose of R&M and is a misinformed
paradigm. The reality is: R&M should ensure continuity of
capabilities to ensure that a system, product, or service’s mis-
sion is accomplished without failure (Principle 34.2). That
does not mean that R&M is about designing Entities or
Parts that will not fail. As a result, R&M should be an
integral part of System Architecting (Chapter 26) configu-
rations based on R&M principles coupled with knowledge
of Entity or Part physical characteristics to ensure that a
System or Product will accomplish its mission.

Unfortunately, Reliability is treated as an afterthought in
many Enterprises. Barnard (2008, p. 5) articulates Enterprise
logic and its erroneous reasoning as follows:

• Reliability is a discipline ‘about failures,’ and since …
• Operations are responsible for handling failures, there-

fore …
• Reliability is delegated to the maintenance or logistics

departments!”

Chapter 34 provides a foundation in understanding of
RMA and how it is applied to overcome these paradigms.

34.1 DEFINITIONS OF KEY TERMS

Chapters 1-33 each included Definitions of Key Terms in
a central location at the beginning of each chapter. RMA
consists of numerous terms that have contextual usage
meanings requiring explanation. As a result, many of the
terms normally provided here are located in the appropriate
sections of Chapter 34’s text.

• Condition-Based Maintenance (CBM) Refer to the
definition provided in Section 34.7.2.

• Corrective Maintenance Refer to the definition pro-
vided in Section 34.4.6.2.

• End Effect “The consequence(s) a failure mode has
on the operation, function, or status of the highest
indenture level” (MIL-STD-1629A, p. 4).

• Fail-Safe System A device or feature, which, in the
event of failure, responds in a way that will cause no
harm or at least a minimum of harm to machinery or
personnel. (MIL-STD-3034, 2011, p. 3).

• Failure Refer to Chapter 24 Definition of Key Terms.

• Failure Cause “The physical or chemical processes,
design defects, quality defects, part misapplication,
or other processes which are the basic reason for
failure or which initiate the physical process by which
deterioration proceeds to failure” (MIL-STD-1629A,
1980, p. 4).

• Fatigue “A physical weakening of material because of
age, stress, or vibration” (DAU, 2012, p. B-83).

• Fault Refer to Chapter 26 Definition of Key Terms.

• Gaussian (Normal) Distribution Refer to Chapter
30’s Definitions of Key Terms.

• Latent Defects Refer to Chapter 3 Definition of Key
Terms.

• Life Units “A measure of use duration applicable to
the item (such as operating hours, cycles, distance,
rounds fired, and attempts to operate)” (DAU, 2012,
p. B-126).

• Line Replaceable Unit (LRU) Refer to Chapter 16
Definition of Key Terms.

• Logarithmic (LogNormal) Distribution An asym-
metrical, graphical plot of the Poisson PDF depict-
ing the dispersion and frequency of independent data
occurrences about a mean of the data distribution
(Figure 34.2).

• Maintainability Refer to definition provided in
Section 34.4.1.

• Mean Time to Repair (MTTR) Refer to definition
provided in Section 4.4.6.2.2.

• Mission Maintainability “The measure of the
ability of an item to be retained in or restored
to specified condition when maintenance is per-
formed during the course of a specified mission
profile”(MIL-HDBK-470A, p. G-12).

• Mission Critical System Refer to Chapter 5 Defini-
tions of Key Terms.

• Preventive Maintenance (PM) Refer to Chapter 6
Definitions of Key Terms.

• Reliability Refer to definition provided in Section
34.3.1.
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• Service Life Refer to definition provided in Section
34.3.3.

• Single Failure Point (SFP) “The failure of an item that
will result in failure of the entire system. Single failure
points are normally compensated for by redundancy
or an alternative operational procedure” (DAU, 2012,
p. B-203). Some people use the term Single Point of
Failure (SPF).

• Storage Life “Length of time an item can be stored
under specified conditions and still meet specified
operating requirements” (MIL-HDBK-470A, p. G-15).

• Unscheduled Maintenance “Corrective mainte-
nance performed in response to a suspected failure”
(MIL-HDBK-470A, p. G-17).

• Useful Service Life Refer to definition provided in
Section 34.3.3.

34.2 APPROACH TO THIS CHAPTER

Our approach to Chapter 34 is based on what SEs
need-to-know and understand about RMA, not to make
you a Subject Matter Expert (SME). Based on that under-
standing, you should have the requisite knowledge of what
to expect and ask of those who are SMEs to enable you to
lead a System / Product Development Team (SDT/PDT) to
make informed technical decisions.

The purpose of Chapter 34 is to establish the fundamentals
and nuances of RMA to enable you as an SE to:

1. Collaborate with RMA Engineers and understand their
semantics.

2. Identify System RMA capabilities required by the
Users and End Users.

3. Trade-off RMA capability priorities in terms of neces-
sity, sufficiency, and affordability.

4. Translate RMA capability requirements into the SPS
and EDS requirements.

5. Learn to recognize improper shorts-cuts and profes-
sionally validate their application and validity.

For military systems, approximately 70% of the Total
Cost of Ownership (TCO) of a System is consumed during
the OM&S Phase (DAU, 1997, p. 13–6). The cost impli-
cations here range from thousands to billions of dollars or
equivalent in other currencies. Avoid the naïve notion that
RMA is simply a lengthy academic exercise. System or
Product success depends on working knowledge of RMA
concepts, principles, and practices.

RMA requires having a basic understanding of Life Data
Analysis methods, probability theory, network structures,
and selection of math models to represent curve-fitting

characteristics of the System or Entity being analyzed. The
application of this knowledge occurs in four forms:

1. Analytical decision support for proposal and System
Design activities.

2. Analytical assessment of physical System or Entity
Lifetime Data via RMA.

3. Validation of RMA models based on actual System or
Entity performance data.

4. Analytical assessment of field data and failure report-
ing to support preventive and corrective maintenance
decision-making and potential System or Entity
design updates and field retrofits.

Specialty Engineering disciplines include RMA based on
the significance and seriousness of safety, legal, financial,
and political consequences resulting from the application or
misapplication of RMA by amateurs. Instead employ quali-
fied, competent, professional Reliability and Maintainability
(R&M) Engineers to perform RMA. With proper, qualified
credentials, these Subject Matter Experts (SMEs) should be
able to competently:

1. Know when and where to apply RMA methodologies.

2. Interpret the results and their subtleties for informed
decision-making.

3. Articulate the results and underlying assumptions to
enable technical decision makers to make informed
decisions.

Your job, as an SE is to develop a working knowledge of
the basic RMA concepts, principles, and practices to enable
you to:

• Know when to employ RMA services.

• Gain a level of confidence in the individual(s) perform-
ing RMA.

• Understand how to interpret and oversee the applica-
tion of the results provided by the SMEs.

A Word of
Caution 34.1

Employ Qualified, Competent RMA
Professionals

Since RMA competencies and experience
are required to understand which formulas
to apply to various architectural configura-

tions as well as the risk of misapplication, you are advised to
employ the services of a certified professional RMA SME
of your own choice with a proven track record, either on
your staff or as a consultant. Do not attempt to apply RMA
practices unless you are properly trained, certified, and un-
derstand what you are doing.
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Therefore, unless you are a trained and qualified R&M
SME, as an SE on a project, you should not be spending
your time computing equations; it could be an indication of
misplaced priorities. Leave the work to a qualified R&M
Engineer. Your role as an SE is to review the work of others
and understand the challenging questions that need to be
asked, discussed, and resolved!

Our discussions include terms such as System or Entity
Level components. Recall that an Entity is a generic refer-
ence to a Product, Subsystem, Assembly, Subassembly,
or Part. Examples of Part Level components include:
electrical—resistors, capacitors; mechanical—pistons,
valves, shafts, software; chemical—fluids, lubricants, within
an Entity.

Chapter 34 is structured on two levels of RMA knowl-
edge: (1) its overarching theme and (2) Lifetime Data Func-
tions required to understand the theme. The overarching
theme focuses on RCM and CBM. Both of these interde-
pendent topics: (1) represent a convolution of System R&M
concepts, (2) are inextricably linked, and (3) ultimately be-
come the major drivers for determining System Availability
to perform missions on demand.

Whereas most Enterprise and Engineering paradigms are
misguided in the belief that the objective of System Reli-
ability is to preserve Equipment, the goal of RCM is to
preserve a System or Product’s capability (function) to
successfully complete its mission via insightful System Ar-
chitecture configurations, component selection or develop-
ment, removal of latent defects, and preventive and corrective
maintenance actions. Total elimination of Equipment fail-
ures is cost-prohibitive and not the objective. Since RCM and
CBM require foundations in R&M concepts, our discussion
on sequence begins with System Reliability followed by Sys-
tem Maintainability, System Availability, and culminates in
a discussion of RCM-CBM.

34.2.1 System Reliability Section Overview

We begin with Development of Reliable Systems and
Products—System Reliability. As an introduction, we de-
fine reliability, mission reliability, and equipment reliability.
Since a System or Entity’s Reliability is determined by its
failure characteristics, we define what a failure is and address
it in terms of its mission critical and safety critical context.

The foundation for System Reliability resides in under-
standing statistical Lifetime Data Distributions. For some,
this may be a refresher from statistics courses. Since the
Reliability of systems, products, and services is: (1) con-
ditional and (2) can be characterized by statistical failure
distributions, we can model them mathematically. Lifetime
Data Distributions such as the Exponential, Gaussian Nor-
mal, Log-Normal, and Weibull curve fitting enable us to
model a System or Product’s lifetime characteristics.

On the basis of an understanding of Lifetime Data Distri-
butions, we shift into understanding Lifetime Data Analysis
based on Lifetime Data Functions to characterize the Relia-
bility of a System or Product. The key functions include:
Probability Distribution Function (PDF), Cumulative Distri-
bution Function (CDF), the Reliability Function, the Fail-
ure Rate Function, the Mean Life Function, the Median Life
Function, and the Mode Life Function.

We next introduce the Bathtub Concept, a controversial
instructional explanation for the application of Lifetime
Data profiles. The discussion first addresses its Decreasing,
Stabilized, and Increasing Failure Periods, their validity and
relevance to Reliability Engineering (RE) and then addresses
challenges to the validity of the Bathtub Concept.

Assessment of System or Entity Reliability requires
insightful knowledge of the System’s architecture, which
forms the basis for three types of Reliability configurations
used to assess System Reliability: the Series, Parallel, and
Series–Parallel network constructs.

The scope of System Reliability requires more than
simply knowledge and application of RMA Lifetime Data
Analysis and equations. The question is: do you understand:

1. The ramifications of a System or Product’s failure
modes and effects?

2. How to mitigate the failure modes and effects to achieve
the SPS reliability requirements?

We conclude the System Reliability section with an
introduction and discussion of Failure Modes & Effects
Analysis (FMEA) and Failure Modes & Effects Criticality
Analysis (FMECA).

34.2.2 System Maintainability Section Overview

You can develop reliable Systems and Products; however,
if you do not maintain them, the reliability is rendered
useless. Our discussion of System Maintainability begins
with the ConOps Maintainability Concept formulated in
Table 6.1.

Analytically, we introduce and define the high-level con-
cepts of System or Product Uptime and Downtime. Then,
we address Preventive Maintenance (PM) and its three types
followed by a discussion of Corrective Maintenance. Since
Preventive and corrective maintenance actions require vari-
ous levels of expertise and resources, we introduce the two
primary levels of maintenance: Field Level Maintenance -
Organizational and Intermediate and (2) Depot or Original
Equipment (OEM) Manufacturer Level Maintenance and the
need for a Failure Reporting, Analysis, and Corrective Action
System (FRACAS).

Given an understanding of System Maintainability in the
Enterprise context, we introduce a discussion of the metrics
or Measures of Maintainability for measuring maintenance
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action performance. Then, conclude with sources of main-
tainability data followed by a brief discussion of Logistic
Support Analysis (LSA) and provisioning of spares for Sys-
tem Sustainability.

34.2.3 Reliability-Centered-Maintenance (RCM)/
Condition-Based-Maintenance (CBM) Section Overview

Given basic understanding of System R&M, those discus-
sions serve as the foundation for the overarching theme
of Chapter 34, Reliability-Centered-Maintenance (RCM)
and CBM. We define and explore the RCM and CBM
concepts.

34.2.4 System Availability Section Overview

Systems, products, and services can be designed to be
reliable and maintainable; however, the ultimate question
is: will they perform on demand when required by the User?
This brings us to a discussion of System Availability. Since
System Developers and Users respectively have account-
ability for design and field maintenance of a System or
Product, which impacts its Availability to perform, we
introduce and define the three types of availability: In-
herent Availability, Operational Availability, and Achieved
Availability.

Let’s begin with System Reliability.

34.3 SYSTEM RELIABILITY

Principle 34.1

Conditional Reliability Principle

Reliability is the conditional probability
that a system, product, or service with
a given physical operating condition will

successfully complete a mission of a specified duration in a
prescribed Operating Environment without disruption.

A System’s Architecture provides the foundational
framework for achieving System success. Achievement
of success is ultimately determined by: (1) the selection
of an optimal System Architecture framework, (2) proper
selection of components to implement the framework,
and (3) component reliabilities to provide the durability
required to accomplish missions in a prescribed Operating
Environments. Individual contributions of each multi-level
Entity’s reliability impact System Maintainability—ease of
maintenance—and System Availability—ability to perform
missions on demand. Equipment Element performance and
reliability contributions integrate with Personnel, Pro-
cedural Data, and Mission Resources, at the Mission
System and Enabling System Levels and subsequently im-
pact Enterprise System of Interest (SOI) Mission Reliability
and success.

To better understand what Reliability is, let’s begin with
an Engineering definition.

34.3.1 What is Reliability?

Bazovsky (1961) defines reliability as:

• Reliability “The conditional probability, at a given
confidence level, that the equipment will perform its
intended functions satisfactorily or without failure, i.e.,
within specified performance limits, at a given age, for
a specified length of time, function period, or mission
time, when used in the manner and for the purpose in-
tended while operating under the specified application
and operation environments with their associated stress
levels” Bazovsky (1961, p. 19).

In general, people read the words in definitions of reli-
ability. However, in the transition from reading to compre-
hending, internal paradigms filter and distort the meaning to
a different interpretation. Referring to Bazovsky’s reliabil-
ity definition, where formal Reliability education is lacking,
several paradigms illustrate this point.

• Paradigm #1—Reliability is a Probability of Fail-
ure (False) Observe Bazovsky’s Reliability definition
phrase “… probability, at a given confidence level, that
the equipment will perform … ” Engineers often erro-
neously believe that Reliability represents the probabil-
ity that a system, product, or service will fail. Embed-
ding “fail” or “failure” into a Reliability definition au-
tomatically biases one’s mental processes and ingrains
a paradigm that is very difficult to shift, especially at
the project and Enterprise levels.

• Paradigm #2—Failure Means Total (False) Observe
Bazovsky’s Reliability definition phrase “…without
failure, i.e., within specified performance limits … ”
As a result of Paradigm #1, people often mistakenly be-
lieve that a failure represents a System or Entity that has
experienced a total failure – self-destructed - or is inop-
erable. A failure simply means that the performance of
a System or Entity is outside its specified SPS or EDS
requirements limits. As we shall see in the next section,
a failure encompasses any performance degradation as
a result of wear and tear due to stress, friction, fatigue,
misalignment or out of calibration, overheating, dete-
rioration, age, and so forth even though it may still be
“operable.”

• Paradigm #3—Reliability is a “Prediction” (False)
Reliability at best is an estimate based on a specified
set of System, mission, and Operating Environment
conditions. Here’s the irony: Enterprises and projects
“estimate” costs due to uncertainty – risk – of external
organizations and events beyond their level of control.
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Yet, Reliability Engineers “predict” the Reliability of
a system, product, or service as if, for example, they
can control external Enterprise and Engineered Sys-
tems interacting with the system and the Operating
Environment such as weather phenomena.

• Paradigm #4—Reliability is a Probability (Par-
tial Truth) Observe Bazovsky’s Reliability definition
phrase “… at a given age, for a specified length of
time, function period, or mission time, when used in the
manner and for the purpose intended while operating
under the specified application and operation environ-
ments with their associated stress levels.” Reliability is
more than an abstract probability percentage for two
reasons:

1. Reliability is a conditional probability based on
constraints specified by the SPS or EDS such as
initial conditions - operating condition the beginning
of a mission, mission duration, and a prescribed
Operating Environment.

2. As a conditional probability, failure to communi-
cate the Reliability estimate without qualifying op-
erating condition, mission duration, and Operating
Environment is incomplete information and effec-
tively invalidates the estimate.

• Paradigm #5—Reliability, Maintainability, and
Availability are All About Equations (False) As a
conditional probability, mathematical equations are
an integral part of Reliability but only as a supporting
tool to provide data to make and validate informed
decisions. RMA requires knowledge and implemen-
tation of all the concepts, principles, and practices in
Chapters 3 – 33. Examples include System or Product:
Use Cases (UCs), concept formulation & development;
phases, modes, and states of operation; architecting
and interfaces; User-Centric System Design (UCSD),
and others. As those concepts and decisions are being
developed, then and only then do equations have
relevance … as a dependent analytical tool to support
RMA estimates and Modeling & Simulation (M&S).
Equations are useless unless you have data to select
the right equations, component characteristics, and so
forth. Those data originate from Chapters 3 - 33, not
vice versa.

• Paradigm #6—Reliability is Components that Will
Not Fail (False) Most people, especially Engineers and
managers, erroneously perceive Reliability to be de-
signing components that will not fail. Every Enterprise
or Engineered System or Product inevitably will fail
due to degradation, wear, deterioration, weak materi-
als, or lack of use and maintenance depending on its
frequency of usage, misuse, abuse, and Operating En-
vironment conditions. Reliability is not about preser-
vation of components; this reflects an “Engineering the

Box” (Chapter 1) mindset. Instead, Reliability is about
ensuring the continuity of mission operations without
disruption - “Engineering the System.” This requires
insightful collaboration between multi-discipline SE,
System Architecting, and Specialty Engineering such
as RMA, Human Factors (HF), and Safety. The objec-
tive is to select an optimal System or Product Architec-
ture from a viable set of candidate alternatives, select
components, and prescribe User operations and train-
ing. Collectively, when performed properly and safely,
a System or Product has a higher probability of achiev-
ing the User’s mission objectives within technical, tech-
nology, cost, and schedule constraints with acceptable
risk while minimizing the Total Cost of Ownership
(TCO) over the System / Product Life Cycle.

Although not explicitly stated in the definition, the im-
plication is that at delivery, the Reliability of a System or
Entity at t = 0 should be “X” for a given SPS or EDS
performance, useful service life, and Operating Environ-
ment conditions requirements. Once the System or Entity
leaves the System Developer’s or manufacturer’s facility and
has been: (1) accepted by the System Acquirer or User and
(2) placed into field service operation, its Reliability dimin-
ishes over its useful service life due to usage and deterioration
of component physical properties.

34.3.1.1 Reliability is a Conditional Probability The ini-
tial phrase in Bazovsky’s (1961, p. 19) definition clearly es-
tablishes the context of reliability in terms of its conditional
probability. What does this mean? Reliability is “condition-
al” based on the assumption that the System or Entity is
(1) fully operational, (2) compliant with its SPS or EDS, and
(3) being operated properly and safely in a prescribed Oper-
ating Environment.

34.3.1.2 Mission Reliability versus Equipment Reliability
Bazovsky’s (1961, p. 19) Reliability definition focuses on
“equipment.” However, Reliability is contextual relative to
how the System is bounded (Figure 8.1) and specified. In
general, Enterprise Systems are accountable for performing
and successfully accomplishing missions—Mission Assur-
ance. This requires Enterprise assets - SOI Mission Systems
and Enabling Systems - each with a required mission reli-
ability defined as:

• Mission Reliability—The conditional probability that
a Mission System or Enabling System—each com-
posed of the integrated set of Personnel, Equipment,
Procedural Data, Mission Resources, System Re-
sponses, and Facilities (Figure 9.2)—will accomplish
its assigned mission of a specified duration and Oper-
ating Environment without disruption.
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Since Equipment is often acquired externally from Sys-
tem Developers, System Acquirers specify its reliability in
the SPS as a contributory measure (Figure 5.3) for achiev-
ing the Enterprise level Mission Reliability. So what is
Equipment Reliability?

• Equipment Reliability—The conditional probabil-
ity that the Equipment Element—Hardware and
Software—will deliver its capabilities without fail-
ure or disruption in support of a Mission System or
Enabling System’s mission of a specified duration
without disruption when subjected to a set of prescribed
Operating Environment conditions.

To illustrate Systems Thinking (Chapter 1) in terms of
Equipment Reliability versus Mission Reliability, consider
the following example:

Example 34.1

Automobile Trip Equipment versus
Mission Reliability

An automobile operates on ideal roads
without failure—Equipment Reliability—

versus the random probability of unavoidably running over
a board with a nail pointing upward on the road and caus-
ing a tire to blow out. That gets into Mission Reliability
applicable to the Mission System under the Command and
Control (C2) by the driver—Personnel Element—of the
Equipment Element. Can a car recognize a road hazard? In
general, no, unless it has special capabilities to detect objects
such as approaching another vehicle from behind or an object
when moving in reverse. Can its driver recognize a road haz-
ard? That depends on a number of factors such as time of day,
size of object, reaction time, and so forth. In that context, the
Mission Reliability of the Automobile System - Equipment
and Personnel (Driver) Elements - is a conditional prob-
ability dependent on the Driver’s ability to see, detect, and
avoid road hazards and the Equipment Element’s design –
Center of Gravity (CG), handling, traction control, and object
detection subsystems, if installed.

Some Systems or Products employ resources such as
fuel that have a Useful Service Life – xx miles or shelf
life of “n” months on specific Operating Environment
conditions. However, this entails resource planning and
depletion versus failure. Consider the following example:

Example 34.2

Resource Depletion—Mission Failures
versus Equipment Failures

Automobile fuel tanks are designed to store
X gallons or liters of fuel. On average, the

fuel stored in the tank has a Useful Service Life of XXX miles
or kilometers and time—weeks or months determined by
rate of consumption or shelf life. If the fuel supply becomes

depleted during a mission, you have a Mission failure –
disruption - due to the Personnel Element - Driver - risk
in properly planning and recognizing the need to replenish
the fuel. This is not an Equipment Element failure unless
the tank or line develops a leak, becomes obstructed, or
fault sensor measurements. As an Equipment Element design
compensating provision, most automobiles are designed with
dashboard displays to indicate fuel reserves, potential driving
range to ensure continuity of mission, and caution indicators
when fuel reserves diminish below a specific threshold.

Although the concepts of Equipment Reliability versus
Mission Reliability have different contexts, they have one
thing in common, What Constitutes a Failure?

34.3.1.3 Reliability & Maintainability (R&M)
Engineering1

Principle 34.2

R&M Engineering Principle

The objective of R&M Engineering is to
ensure continuity of Mission System op-
erations and capabilities to successfully

complete a mission without disruption and accomplish its
performance-based objectives, not keep the Equipment El-
ement components from failing.

R&M Engineering is considered a Specialty Engineering
discipline. Depending on the size of an Enterprise and
complexity of the system, product, and service it produces,
R&M may be performed by an individual specialist, a Team,
or by external consulting Enterprises.

The purpose of R&M Engineering is not to preserve
Equipment or to keep it from failing. It is to avoid the effects
and consequences of failure to ensure continuity of capability
to accomplish its mission. This is a critical cornerstone for
R&M Engineering including the RCM and CBM concepts
introduced later in the chapter.

Enterprises and Engineers are often characterized by a
paradigm that erroneously views the purpose of R&M is to
“evaluate and assess” a System Design Solution “after the
fact.” Then, suggest design changes – but not too many - to
prevent or minimize Equipment failures. Objective evidence
of this paradigm requires simple observation of project
tasking of R&M Engineers’ activities and work products.
This paradigm is narrow-scoped and has been flawed for
decades by Project Management, Engineering, Functional
Management, and Executive Management.

The reality is, R&M Engineering should be an integral
part of informed technical decision-making during the pro-
posal phase for a System or Product and throughout the Sys-
tem Development Phase (Figure 12.2). Example activities
include:

1For information concerning the early history and evolution of Reliability
Engineering, refer to Kececioglu (2002, pp. 43–52).
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1. Participate in the development and analysis of R&M
specification requirements.

2. Collaborate with the System Architect to formulate,
select, and develop a System Architecture that will
meet those requirements.

3. Collaborate with designers to select components.

4. Analyze and evaluate the R&M of the evolving and
maturing physical System Design Solution for compli-
ance to SPS RMA requirements.

5. Optimize RMA to achieve the lowest TCO solution
Figure 34.24 that has a risk level that is acceptable to
the User.

By virtue of this paradigm, Engineers tend to view
Principle 34.2 in terms of “Engineering the (Equipment)
Box.” Reread Principle 34.2. The context and scope of
Principle 34.2 is “Engineering the System,” which includes
“Engineering the Box.” Here’s why.

• First, Principle 34.2 addresses the User’s Mission
Reliability that includes all of the System of Interest
(SOI) Mission System and Enabling System
Elements—Equipment, Personnel, Mission Re-
sources, Procedural Data, System Responses,
and Facilities in Figure 5.3. Based on that assess-
ment, a question emerges: is this Mission Reliability
realistically affordable? If not, then what level of
mission reliability is affordable (Figure 5.3)?

• Second, the User’s Mission Reliability decision serves
as the baseline for deriving the SOI’s—Mission Sys-
tem or Enabling System—RMA—and subsequently
the Equipment RMA requirements specified in the
SPS. Remember the System Developer’s perspective,
the SPS RMA requirements become the baseline for
system optimization and SPS compliance.

On the basis of these points, your job as an SE is
to ensure that R&M Engineering is an integral part of
every project throughout the System Development phase
(Figure 12.2) beginning with the proposal. R&M Engineers
should be core members of the project’s System Develop-
ment Team (SDT) of Systems Engineering & Integration
Team (SEIT), the highest-level technical team.

Based on this discussion of Mission and Equipment
Reliability, let’s shift our focus to a topic common to
both – Failure.

34.3.1.4 What Constitutes a Failure? Definitions of a
failure are often contextual:

• Failure (Condition)—A condition in which the perfor-
mance of a System or Entity has degraded or deteri-
orated to the point where it is no longer compliant with
its specification requirements.

• Failure (Event)—The event or inoperable state in
which any System or Entity does not or would not
perform as specified in the SPS or EDS. Failure events
occur in two forms:

a. Dependent Failure: A premature System or
Entity failure induced by a fault (Figure 26.8) or
failure of an external system. For example, an en-
gine component fails prematurely due to a failure by
the User to follow proper lubrication maintenance
procedures.

b. Independent Failure: A failure that occurs as a
result of an internal fault such as fatigue, corrosion,
or fractures (Figure 26.8).

Observe the term condition in the first definition. A failure
condition is time-dependent and a consequence of a fault
that has materialized. On the basis of Reason’s Accident
Trajectory Model shown in Figure 24.1, a fault represents a
hazard that if allowed to materialize under various scenarios
becomes a failure that may contribute to an incident or
accident.

The materialization of the fault into a failure can be caused
by:

• Design Defects—Specification misinterpretation; la-
tent defects such as design flaws, errors or deficiency;
incompatibility, drift.

• Component Defects—Material property flaws, degra-
dation, or deterioration.

• Manufacturing Defects—Poor workmanship, impro-
per assembly, inadequate Quality Control (QC) and
Assurance (QA).

• Operational Defects—Misuse, abuse, or misapplica-
tion of the System or Entity; stressful conditions such
as overheating, electrical overloads, shock, vibration.

• Maintenance Defects—Misalignment, creep, out of
calibration, end-of-life failures.

• Anomaly—Problem that may not be observable, ex-
plicitly identified, or replicated.

As a final note, a failure may be temporary, intermit-
tent (anomaly), or permanent depending on the System
or Entity; Operating Environment; application; or
scenario-based conditions. Consider the following example:

Example 34.3

Intermittent Wiring Failure

Assume that a vehicle such as an automo-
bile or aircraft has a wiring problem due
to a wire’s insulation rubbing against metal

under specific conditions. If allowed to continue unchecked
and mitigated, the insulation could become chaffed possibly
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causing a short circuit and/or fire. Under shock and vibra-
tion conditions, the wire may only have intermittent contact
with the metal. As a result, you have an intermittent condi-
tion that exhibits the appearance of an anomaly due to the
maintainer’s being unable to replicate the problem while the
vehicle is moving. This is why periodic visual inspections are
critical.

The key point here is: failures present themselves in
a number of different forms to different people that have
their own perspectives. Having an understanding, opinion,
or personal knowledge of what constitutes a failure does not
mean that everyone on a project shares or agrees with your
definition. As an SE, your job is to establish a consensus
(Principle 1.3) within the project and preferably within your
Enterprise as to what constitutes a failure. This brings us to
The Importance of Documenting the Failure Definition.

34.3.1.5 The Importance of Documenting the Failure
Definition

Principle 34.3

Failure Definition Principle

Explicitly define, scope, establish a con-
sensus, and document what constitutes a
failure among Stakeholders—Enterprise,

project, System Acquirer, and User. Then, communicate and
ensure everyone understands.

Why is it important to document the definition of failure?
Weibull.com (2004) very explicitly articulates why you, your
project, and Enterprise need to establish a consensus and
document the failure definition.

“Another benefit of having universally agreed-upon failure
definitions is that it will minimize the tendency to rationalize
away failures on certain tests.”

As an SE, how do you ensure everyone has a shared vision
as to what constitutes a failure (Principle 1.3)? You need to:

1. Establish an Enterprise Organizational Standard Pro-
cess (OSP) consensus definition of a failure for use on
projects.

2. Establish and formalize agreement with the System
Acquirer and User about the definition of a failure.

3. Disseminate the definition across all project teams.

34.3.1.6 Failure Indications Academically, we can de-
fine a failure as a non-compliance with SPS or EDS specifica-
tion requirements. However, before, during, and following a
mission, most systems do not have a magical display of spec-
ification compliance of every Entity within the System. The
result would simply be impractical and cost-prohibitive. Our
best attempts are to:

1. Instrument the System or Entity to moni-
tor – Monitor, Command, & Control (MC2) (Figure
26.6) - performance conditions of a few essential,
mission critical, and safety critical capabilities relative
to some specification requirements limits.

2. Perform preventive maintenance at pre-defined service
intervals.

3. Train the operator and maintainer to perform
Pre-Mission, Mission, and Post-Mission real-time
and independent inspections such as unusual noises,
odors, excessive heat, leaks, chafed wires, fatigue
cracks, which may indicate potential pre-failure
indications that require corrective maintenance.

34.3.1.7 Mission Critical and Safety Critical Items

Principle 34.4

Mission Reliability Principle

Mission reliability is like a chain; it is only
as reliable as the weakest link in its System
Architecture configuration.

Principle 34.5

Mission-Safety Critical Components
Principle

Identify, analyze, and label mission critical
and safety critical Entity or Part Level

components and ensure ease of access for their replacement.

By definition, a component’s non-compliance with
its specification requirements is a failure. The reality is,
some components are essential to achieving and sustaining
Equipment Element, Mission System, and Enabling
System reliability and performance, some are not. Consider
the following example:

Example 34.4

Automobile Mission Critical-Safety
Critical Example

Prior to leaving on a trip, an automobile
should have four tires and a spare in an

acceptable condition to travel within the prescribed mission
distance and Operating Environment. During travel, if a
flat occurs, the mission can continue, though with some level
of elevated risk due to use of the spare until the failed tire
is repaired. Tires installed on a car are irrefutably mission
critical items to ensure achieving travel mission objectives.
The question is: when does the set of tires become mission
critical? Prior to leaving on a long trip? When a flat occurs
and the spare is used to replace it? The assumption here is
that tires are not readily available along the route.

What if the automobile’s headlamp is inoperable? Is it
a mission critical component? It depends on the situation.
If the vehicle’s headlamp fails during daylight hours, it
may not be mission critical unless lighting conditions or
compliance with the law necessitate it being activated. What
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about nighttime hours or in dense fog at night or in the
daytime? Under these conditions, is it both a mission critical
and a safety critical item?

What if the automobile’s tail light is inoperable? Is it a
mission critical item? It depends on the situation. Indirectly,
it is mission critical if you stop and a rear-end collision
occurs. Then, the mission may be in jeopardy. If the vehicle’s
tail light goes out during daylight hours, it may not be mission
critical; however, it is safety critical as required by the law.
What about nighttime hours or in dense fog at night or in the
daytime? Under these conditions, is it both a mission critical
and a safety critical item?

Given these fundamentals, let’s advance our discussion
with an introduction to System Reliability—Strategic Imple-
mentation Precepts (Mettler-Wasson, 2006).

34.3.1.8 System Reliability—Strategic Implementation
Precepts Although not explicitly addressed in most lit-
erature, System Reliability is founded on a multi-faceted
philosophy that includes several precepts:

• Precept #1—Every System or Entity has a Proba-
bility of Success, PSUCCESS, that is determined by its
Pre-Mission Operational Health and Status (OH&S);
mission duration, Uses Case (UCs) and scenarios, and
prescribed set of mission Operating Environment
conditions.

• Precept #2—System, Entities, or Parts have an
inherent failure rate at delivery due to latent defects
such as design errors and flaws, component/material
properties, and workmanship processes and methods.

• Precept #3—A System or Entity level component’s
RMA can be approximated and characterized with
various mathematical distributions and models.

• Precept #4—With proper attention, latent defects
within a specific System or Entity are eliminated over
time via Condition-Based Monitoring (CBM) and cor-
rective maintenance actions when identified.

• Precept #5—By eliminating potential fail points such
as weak or failed components, the System or Entity
failure rate decreases, thereby improving the relia-
bility, assuming the System is deployed, operated,
maintained and sustained according to the System
Developer’s instructions.

• Precept #6—At some point during a mission or useful
service life of a System or Entity, failure rates begin
to increase due to the combinational and cumulative ef-
fects of component failure rates resulting from physical
interactions, fatigue and wear-out, and component de-
terioration due to Operating Environment stresses
and conditions.

• Precept #7—These effects are minimized and the
System, Entity, Part’s useful service life extended
via a proactive program of system training, proper
use, handling, and timely preventive and corrective
maintenance actions at specified operating intervals.

34.3.1.9 The Strategic and Tactical Importance of Fault
Elimination

Principle 34.6

Fault Elimination Principle

Every fault—latent defect—left undiscov-
ered in a System Design Solution or its
implementation is a potential risk that may

jeopardize accomplishment of the mission, injury or loss of
life to the User and public, result in damage to the System
or Product, or damage to the environment.

When Systems or Products fail, they serve no useful
purpose and provide no value to the User. In the case of
larger, more complex systems, if they are not operating,
they are not producing revenue. Instead, they are consuming
revenue for repairs and are reducing profitability.

Chapter 13, Table 13.1 illustrates what is often referred
to as the 100X Rule illustrating the exponentially increas-
ing cost-to-correct errors—faults (Figure 13.1). When a
fault materializes, the revenue-profitability stream dimin-
ishes. Therefore, the strategy for eliminating faults (hazards)
(Figure 24.1) that can become failures must begin early in
the System Development Phase of the System/Product Life
Cycle. Figure 13.2 introduced earlier illustrates the impor-
tance of reducing latent defects—faults—early in the System
Development Phase (Figure 12.2). This last point will be
addressed later in our discussion of the Bathtub Concept De-
creasing Failures Rates (DFR). Elimination of faults early in
the System Development Phase (Figure 12.2) provides both
tactical and strategic benefits (Figure 13.2).

• Tactical—Elimination of faults reduces rework,
scrapped Entities and Parts, reduces technical risk
allowing more time for testing and achievement of
delivery schedules and systems, products, or services
that are compliant with specifications.

• Strategic—Delivery of systems, products, or services
free of latent defects that meet specification require-
ments is highly valued and remembered by customers
in acquiring new systems.

34.3.1.10 How Complexity Affects System Reliability
Enterprises and individuals can debate the importance of
topics such as Design for Reliability; yet fail to comprehend
the magnitude and significance of System Reliability esti-
mates until an incident, accident, or catastrophe occurs. At
that point it is too late to debate. In general, one of the key
characteristics of professionals with real-world experience
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TABLE 34.1 How Complexity Affects System
Reliability∗

Number of
Critical
Components

Individual Component Reliability (%)

99.999 99.99 99.9 99.0
System Reliability (%)

10 99.99 99.90 99.00 90.44

100 99.90 99.01 90.48 36.60

250 99.75 97.53 77.87 8.11

500 99.50 95.12 60.64 0.66

1,000 99.01 90.48 36.77 <0.1

1,000 90.48 36.79 <0.1 <0.1

10,0000 36.79 <0.1 <0.1 <0.1

∗It is assumed that all critical components are reliability wise in series.
Source: Kececioglu, 2002, Table 1.4, p. 12 Used with Permission.

such as Engineers, physicists, doctors, is comprehension
and appreciation of the magnitude and ramifications of their
decisions. In the case of System Reliability, Kececioglu
(2002) addressed this issue very effectively as shown in
Table 34.1. Observe the impact on overall System Reli-
ability due to Individual Component marginal reliability
changes as a function of System complexity—Number of
Critical Components.
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Heading 34.1

Engineers emerging from SE courses often
erroneously perceive RMA as plugging and
chugging equations. Equations for RMA
are simply tools to compute estimates. The
reality is R&M is part of a larger domain

referred to as Life or Lifetime Data Analysis. Therefore, to
shift this narrow-focused paradigm, let’s establish a proper
foundation in Lifetime Data Analysis Concepts.

34.3.2 Lifetime Data Analysis Concepts and
Distributions

One of the challenges in understanding System Reliability
is an exclusive focus on the topic without understanding
its context within a higher-level realm, Life Data Analysis.
Reliability is one of the key Lifetime Data functions. To
better understand Lifetime Data Concepts, let’s use a simple
example as an illustration. Figure 34.1 provides a graphical
view.

Example 34.5

Fundamental Lifetime Data Concepts

Let’s assume that we conduct a test with
a statistically valid sample quantity of a
System or Entity and allow the test to

Run-to-Failure (RTF) (Figure 34.1 Panel A) until all the
Units-Under-Test (UUTs) fail. We take of sample of 31 units,
place them in test fixtures and controlled Operating Envi-
ronment, activate all units simultaneously, await each one to

fail, and record their RTF Elapsed Time as shown in Panel B.
Then, plot the discrete test results as shown in Panel C. Ob-
serve that the Panel C plot represents the failure frequency
or density of discrete test values. As a profile, the Failure
Density plot represents the distribution of discrete, instanta-
neous, Failure Rates, 𝜆(t), as a function of time.

Analyzing Panel C, we observe that the first failure oc-
curred at t = 80.0 hours and the last failure at t = 98.0
hours. Observe that at t = 89.0 hours, 7 units failed. Addi-
tionally, we see that the failure distribution approximates a
bell-shaped Gaussian (Normal) Distribution with a central
mean at t = 89.0 hours. Collectively, we can state that the
MTTF of the 20 units is 89.0 hours. Since the instantaneous
Failure Rates, 𝜆(t), distribution is conditional based on each
UUT’s operating condition, statistically we refer to it as a
Probability Density Function (PDF). The PDF provides in-
formation from which the likelihood or probability of failure
at a specific instant of time, t, can be computed.

As discrete Failure Rates, 𝜆(t), suppose we are asked:
from t = 80.0 hours until t < 98.0 hours, how many units can
we expect to fail at a specific instant in time? In the range
from t = 80.0 hours up to t = 98.0 hours, we can say that at
any instant in time a portion of the 31 units have failed—
UnitsFailed; others continue to survive—UnitsSurviving.
Net result: UnitsFailed + UnitsSurviving = 31. Panel C
illustrates that we can also manually compute the cumulative
quantity of failures as a function of time – the Cumulative
Distribution Function (CDF), F(t) - over the interval from
80.0 hours < t < 98.0 hours.

Manual computations may be acceptable in some applica-
tions; however, they are insufficient where Mission Reliabil-
ity, System Reliability, and cost are Critical Operational and
Technical Issues (COIs/CTIs). For example, the cost of main-
tenance for large populations of production units can be very
expensive if performed prematurely. Conversely, if main-
tenance is not performed in advance of failure conditions
(Figure 34.25), Mission Reliability and System Reliability
become High Risk, which could jeopardize the mission and
potentially have catastrophic results to the User, the Equip-
ment, the public, or the environment.

So, what is the optimal solution? We know that Failure
Rate, 𝜆(t), profiles exhibit characteristics similar to mathe-
matical curves. Therefore, the answer is to exploit mathe-
matical tools. These tools enable us to scientifically refine
the Just-in-Time (JIT) optimal Reliability and Maintenance
(R&M) solution (Figure 34.24).

How do we accomplish this? The answer resides in Life-
time Data Functions and their distributions. The distributions
enable us to mathematically characterize Failure Rate 𝜆(t),
profiles via a “curve fitting” transfer function validated by
actual test sample results. Mathematical transfer functions
provide a continuum of Failure Rates, 𝜆(t), and avoid costly
approximations via extrapolations. Therefore, Lifetime Data
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Functions and Distributions will be the subject of our discus-
sions in this section.

First, a word about Failure Rate, 𝜆(t).

34.3.2.1 Understanding the Failure Rate, 𝜆(t) Analyti-
cally, our discussion of failures requires more than casual
references to events. We need to be able to quantify—bound
and specify—a failure in terms of its probability of occur-
rence, Px(t). However, since manufactured Part Level com-
ponents exhibit inherent variations in their material proper-
ties and characteristics that are later stressed (Figure 34.11)
by Operating Environment conditions, loading effects,
operational cycles, we can expect random failures to occur
over some time period as illustrated in Figure 34.1 Panel
C. Therefore, a sample of one Part is insufficient for deriv-
ing inferences about a larger population of identical Parts.
As a result, we subject a statistically valid sample of identi-
cal components to identical operating conditions to observe
and characterize their failure rate profiles and enable us to
mathematically model their failure characteristics. We math-
ematically represent the Failure Rate of a distribution as:

Failure Rate = 𝜆(t) for t ≥ 0 (34.1)

where:

• 𝜆(t) represents the frequency of failure or failure density
as a function of: (1) a specified set of Operating En-
vironment conditions and (2) the continuous random
variable time, t.

Author’s Note 34.1

Failure Rates

In a later discussion of the Probabil-
ity Density Function (PDF) we will
address the need to refine failure rate

into two key types: Instantaneous Failure Rate, 𝜆(t)Inst, and
the Average Failure Rate, 𝜆(t)Avg.

34.3.2.2 Lifetime Data Analysis and Distributions

Principle 34.7

Lifetime Data Functions Principle

Every system, product, or service is char-
acterized by seven Lifetime Data Func-
tions:

1. The Probability Density Function (PDF)

2. The Cumulative Distribution Function (CDF), F(t)

3. The Reliability Function, R(t)

4. The Failure Rate Function, 𝜆(t)

5. The Mean Time Function

6. The Median Life Function

7. The Mode Life Function

Principle 34.8

Lifetime Data Profile Principle

Every System or Entity has a unique
Lifetime Data Distribution profile that
characterizes its failure frequency or

density as a function of the continuous variable, time.

If you analyze the life profiles exhibited by individual
mechanical, electrical, fluid components and materials, you
will find a variety of characteristic curves such as those
shown in Figure 34.3. Since each curve characterizes the
life profile of specific types of a System or Entity, we
refer to them as Lifetime Data Distributions. When you
integrate these—Parts → Subassemblies → Assemblies
→ Subsystems → Products—into a higher level System
Reliability, what emerges is an overall System Level In-
put/Output (I/O) transfer function. Each transfer function has
its own unique characteristic profile that is often modeled us-
ing a Weibull Distribution discussed later.

Across the spectrum of Figure 34.3 characteristic pro-
files, Life Data Analysis applies and customizes mathe-
matical models to achieve a “best fit” approximation to
the physical failure distribution characteristics of a System
or Entity. The most commonly used Lifetime Data dis-
tributions include: (1) the Gaussian (Normal) Distribution
(Figure 34.3 Panel A), (2) the Log-Normal Distribution
(Figure 34.3 Panel B), (3) the CDF (Figure 34.3 Panel C),
(4) the Exponential Distribution (Figure 34.3 Panel D), and
(5) the Weibull Distribution (Figure 34.4). A sixth distri-
bution, Bayesian-Weibull, is also used. The reality is: most
Run-to-Failure (RTF) reliability tests do not neatly conform
to these distributions. The distributions are intended to rea-
sonably approximate the statistical characteristics of the set
of UUTs failure data.

A Word of
Caution 34.2

Proper Selection of a System or
Entity’s Failure Distribution Profile

One of the challenges in Lifetime Data
Analysis is selecting a data distribution
profile that accurately represents a “best fit”

to a component’s characteristic profile.
Sometimes for expediency, R&M Engineers and others

will employ a distribution such as the Exponential Distribu-
tion to get an interim “Quick look” estimate. Unfortunately,
this becomes the analytical result that is rationalized as “good
enough.” Besides, who is going to challenge it!

From an Engineering best practices perspective, exercise
caution about life data distribution estimates and ensure they
are rationalized and documented for future reference!! If the
R&M Engineer is unwilling to do this, it should immediately
raise a flag of concern.

Given this introduction to Lifetime Data Functions, let’s
begin with the PDF.
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34.3.2.3 The Probability Density Function (PDF)

Principle 34.9

Probability Density Function (PDF)
Principle

The Probability Density Function (PDF)
serves as the foundation for deriving all

other Lifetime Data Distributions—the Cumulative Distri-
bution Function (CDF), the Reliability Function (R(t)), the
Failure Rate Function (𝜆(t)), the Mean Time Function, the
Median Life Function, and the Mode Life Function.

Principle 34.10

PDF Profiles Principle

The Probability Density Function (PDF)
is characterized by five primary Lifetime
Data Distributions:

1. The Exponential Distribution
2. The Gaussian (Normal) Distribution
3. The Log-Normal Distribution
4. The Weibull Distribution
5. The Bayesian-Weibull Distribution

Lifetime Data Distributions are expressed in terms of the
Failure PDF, f(t). In fact, the PDF serves as the cornerstone
for deriving the Cumulative Distribution Function (CDF), the

Reliability Function, the Function, the Mean Time Function,
the Median Life Function, and the Mode Life function as
illustrated in Figure 34.2. Observe how the PDF can be char-
acterized by a variety of commonly used distributions such as
Gaussian (Normal), LogNormal, Exponential, Weibull, and
Weibull-Bayesian. To better understand Lifetime Distribu-
tions, let’s begin with the PDF.

As its name infers, the PDF is used to express the
probability of a failure at time, t. Think of a PDF profile as
a histogram with a series of Δt vertical time increments as
shown in Figure 34.1 Panel C. The magnitude of each Δt
time increment represents the quantity of failures expected
to occur at a specific instance of time. From a probability
perspective, the area underneath the PDF represents the
probability of failure for a System or Entity as a function
of the continuous variable time, t (Figure 34.1 Panel B).

The PDF expresses an estimate of the probability of an
event based on observations, objective evidence—measured
data, and validation of actual System or Entity sample or
field data. In general, the PDF enables R&M Engineers to
answer the question: At a specific instance of time, t = tx,
what is the probability that a System or Entity X will fail?
For example, in Figure 34.2 Panel C if: (1) laboratory or field
data indicate a specific component has a Failure Rate, 𝜆(t),
of 7 units at t = 89.0 hours and (2) the elapsed time of t =
89.0 hours will occur during a System’s mission, you should
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Parameter Effects (Source: Weibull.com, 2014 – Used with Permission)

consider performing a preventive or corrective maintenance
action prior to the mission.

34.3.2.3.1 The Exponential Distribution PDF One of the
simplest and most commonly used distributions is the
Exponential Distribution shown in Figure 34.3 Panel D.
Unfortunately, as a result of its simplicity, the Exponential
Distribution is one of the most misapplied distributions and
is often applied to Systems or Entities that exhibit a dif-
ferent characteristic profile such as a Normal or LogNormal
Distribution.

The Exponential Distribution occurs in two forms: (1) a
one-parameter distribution and (2) a two-parameter distribu-
tion. The two-parameter distribution, which is a refinement
of the one-parameter distribution, accommodates distribu-
tions that are offset along the time axis away from the origin.

the two-parameter exponential pdf distribution
Mathematically, we can express the Exponential Distribution
PDF as a Two-Parameter function:

f (t) = 𝜆e−(t− 𝛾) for f (t) ≥ 0, t ≥ 0, 𝜆 > 0 (34.2)

where:

• f(t) characterizes the Exponential PDF over a specific
time interval.

• 𝜆(Lambda) represents the Failure Density at time, t.

• 𝜆(Lambda) represents the Location offset parameter
representing the curve start point to the right of the
origin.

• t represents the Elapsed Time in operational hours,
cycles, and so forth.

one-parameter exponential pdf distribution If
the Location Offset parameter, 𝛾 , = 0 in Eq. 34.2, the result
is a One-Parameter Exponential PDF:

f (t) = 𝜆e−𝜆t for f (t) ≥ 0, t ≥ 0, 𝜆 > 0 (34.3)

repairable, non-repairable, and replacement
systems

Principle 34.11

MTBF-MTTF Principle

MTBF represents the Mean Life (𝜃) of a
statistically valid sample of a population
of repairable items, MTTF represents the

Mean Life (𝜇) of a statistically valid sample of a population
of non-repairable items.

The Failure Rate, 𝜆(t), represents the quantity of failures
per unit of measurement such as failures/hour, failures/cycle,
and so forth. We know that MTTF (𝜇) represents the mean
time of all failures within a System or Entity’s Exponential
PDF profile. However, the value of the Failure Density, 𝜆(t)
is contextual depending on whether the System or Entity is

http://www.weibull.com/basics/parameters.htm
http://www.weibull.com/basics/weibull_eta.gif
http://www.weibull.com/basics/weibull_gamma.gif
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repairable or non-repairable. Let’s define what is meant by
a repairable System or Entity:

• Repairable Item “An item of a durable nature which
has been determined by the application of engineering,
economic, and other factors to be the type of item fea-
sible for restoration to a serviceable condition through
regular repair procedures” (DAU, 2012, p. B-190).

Observe the operative term restoration in the Repairable
Item definition. Due to levels of abstraction and integration,
these terms are contextual. For example, a higher level
System or Entity may fail due to a lower level Part failure.
Hypothetically, one could say that the higher level System or
Entity is a repairable item via restoration.

In contrast, the failed Part, which may not be restorable
may be corrected with (1) an identical Part Number from
the same manufacturer or (2) with a replacement item,
which may not be identical to the Entity that has failed
but conforms to its electro-mechanical interface and space
boundary conditions. For example, replacement parts in the
commercial marketplace may only be available from “After
Market” vendors. Let’s define the term:

• Replacement Item “An item which is replaceable
with another item, but which may differ physically
from the original item in which the installation of the
replacement item requires operations such as drilling,
reaming, cutting, filing, shimming, etc., in addition to
the normal application and methods of attachment”
(MIL-STD-480B, p. 11).

Given an understanding of repairable and replacement
Systems or Entities, let’s differentiate the MTBF for re-
pairable systems versus MTTF for non-repairable systems.

Figure 34.1 Panel C illustrates the Time-to-Failure
(TTF) or Run-to-Failure (RTF) concept, which applies
to both repairable and non-repairable systems but ends
there. Non-Repairable systems are single use, Removed and
Replaced (R&R), and disposed. So, MTTF appropriately
describes their TTF.

Repairable systems, which are reusable, have a different
context of usage. In those cases, we are interested in: (1) the
mean time period a System or Entity will operate before
it is expected to fail – MTTF - and (2) the mean time
period we can expect for repairs – MTTR – to restore it to
an operable condition enabling a Return to Service (RTS).
Mathematically, we can express MTBF as:

MTBF = MTTF + MTTR (34.4)

Therefore, MTBF>MTTF for repairable Systems or
Entities. Despite that reality and the approximate similar-
ity of the magnitudes some Engineers erroneously equate
MTBF of repairable items as being equivalent to the MTTF

for non-repairable items. So, how does this impact the
Exponential PDF?

We know that RTF or TTF and Failure Rate, 𝜆(t), are in-
versely proportional. Therefore, for repairable systems, 𝜆(t)
is the reciprocal of Mean Time Between Failure (MTBF),
which is represented by the Greek letter Theta (𝜃). We ex-
press it mathematically as:

𝜆(t)repairable =
1

MTBF
= 1

𝜃

(34.5)

For non-repairable systems, 𝜆(t) is the reciprocal of the
MTTF represented by the Greek letter Mu (𝜇). We express it
mathematically as:

𝜆(t)nonrepairable =
1

MTTF
= 1

𝜇

(34.6)

For repairable systems, substituting Eq. 34.5 in Eq. 34.3
yields the following result:

f (t)Repairable =
1
𝜃

e−
t∕𝜃 for f (t) ≥ 0, t ≥ 0, 𝜃 ≥ 0 (34.7)

For non-repairable systems, substituting Eq. 34.6 in Eq. 34.3
yields the following result:

f (t)nonrepairable=
1
𝜇

e−
t∕𝜇 for f (t) ≥ 0, t ≥ 0, 𝜇 ≥ 0 (34.8)

Since MTBF > MTTF (Eq. 34.4), therefore f(t)Repairable ≠
f(t)Unrepairable.

the exponential pdf scaling parameter, gamma (𝛾)
Our discussion of the Failure Rate, 𝜆(t), as a magnitude also
has noteworthy graphical implications. Specifically, at t = 0,
f(t) has a y-intercept value of 1/𝜃 in Eq. 34.7 or 1/𝜇 in Eq.
34.8. Therefore, 𝜆(t) = 0 serves as a Scaling Parameter for
the Exponential PDF Distribution.

exponential pdf application The Exponential Distri-
bution PDF is typically used with Systems or Entities that
can be characterized by a Negative Exponential Distribution.
Nelson (1990) observes that based on his experience the Ex-
ponential Distribution:

• “… described the life of insulating oils and fluids
(dielectrics) and certain materials and products” Nelson
(1990, p. 53).

• “… characterizes only 10–15% of products in the
lower tail of the distribution” Nelson (1990, p. 54).

Nelson (1990) advises that the Weibull Distribution,
which is addressed in Figure 34.4, or another distribution
may be more appropriate.
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the gaussian (normal) lifetime distribution
Some System, Entities, or Parts exhibit failure char-
acteristic profiles that resemble the Gaussian (Normal)
Distribution such as the one illustrated in Figure 34.3 Panel
A. Graphically, the bell-shaped, symmetrical curve consists
of a central mean with diminishing values that taper down
and extend toward −∞ and +∞.

The Gaussian (Normal) Distribution is used to plot the
failure frequency distribution of Systems or Entities that
exhibit characteristics that match the profile such as light
bulbs. From a Life Data perspective, the frequency of
failures, which vary as a function of the continuous random
variable time t and specific type of component characterizes
its PDF profile.

Mathematically, the Gaussian (Normal) Distribution PDF
can be expressed as:

f (t) ≡ 1

𝜎

√
2𝜋

e
1∕2

(
t− 𝜇

𝜎

)2

for t ≥ 0 (34.9)

where:

• f(t) = Exponential PDF

• 𝜎 = Standard deviation

• 𝜇 = Central mean of the distribution

• t = Continuous variable representing lapsed time

Since the Gaussian (Normal) Lifetime Distribution is
symmetrical, its median and mode are all coincidental with
its mean, 𝜇, shown in Figure 34.3 Panel A.

34.3.2.3.2 The Log-Normal Lifetime Distribution Fail-
ures do not always occur as symmetrical PDFs. Although
a Failure PDF exhibits a mean, a mode, and a median, one
side may be skewed leaving an unsymmetrical appearance as
shown in Figure 34.3 Panel B. Since the failure frequency
occurrences resemble a Gaussian (Normal) Distribution but
are dispersed as a logarithmic function of the continuous ran-
dom variable time t, the profile is referred to as a Log-Normal
Distribution.

Log-Normal distributions are often used in applications
such as fatigue-based cycles to failure, material strengths,
variable loading effects, and corrective maintenance actions.
Mathematically, the PDF of the Log-Normal Distribution is
defined as:

f (t) = 1

𝜎t
√

2𝜋
exp

[
−1

2

(
Int − 𝜇

𝜎

)2
]

For −∞ < 𝜇 < ∞, t > 0, 𝜎 > 0 (34.10)

where:

• t′ = natural log of t representing the values for Time to
Failure (TTF)

• 𝜇
′ = Central Mean of the natural logarithms of the TTF

• 𝜎
′ = Standard deviation of the natural logarithms of the

TTF

34.3.2.3.3 The Weibull Lifetime Distribution Observe the
locations of the Log-Normal Distribution’s mean, median,
and mode. Lifetime data do not always conveniently fit dis-
tributions such as the Exponential, Gaussian (Normal), or
Log-Normal. Curve fitting or shaping becomes the prescrip-
tive method for ensuring a “best fit” distribution based on
sampled data.

One method for shaping the distribution to achieve a
best-fit match for the sampled data is the Weibull Distribution
created by Dr. E. H. Waloddi Weibull, a Swedish engineer,
scientist, and mathematician (Wikipedia, 2013a). Whereas
most distributions have a unique profile appearance, the three
control parameters—scale, shape, and location—provide a
powerful combination and flexibility to recreate most Life
Data distributions, shown in Figure 34.4.

the three-parameter weibull distribution As a
Three-Parameter Weibull Distribution, we can express PDF
mathematically as (ReliaWiki.org, 2013a):

f (t) = 𝛽

𝜂

(
t − 𝛾

𝜂

)
𝛽−1

e
−
(

t− 𝛾

𝜂

)β
for t ≥ 0 (34.11)

where:

• 𝛽 (Beta) = Shape parameter

• 𝜂 (Eta) = Scale parameter

• 𝛾(Gamma) = Location offset parameter

To better understand each of these parameters, let’s
describe it graphically using Figure 34.4:

• Shape Parameter (Beta, 𝜷)—A unitless quantity that
controls the shape of the distribution. For applications
such as the Gaussian (Normal) Distribution, the shape
would be symmetrical resembling a bell-shaped curve.
Figure 34.4 Panel A illustrates some of the effects as the
Shape Parameter (Beta, 𝛽) is assigned different values.
The Shape Parameter can be very useful, especially in
characterizing the Failure Rate, 𝜆(t), and Reliability
Function, R(t), introduced later. Speaks (2013, p. 5)
makes several points concerning the Weibull Shape
Parameter:
∘ For 𝛽 < 1, the shape of Weibull Distribution mod-

els approximate the early failure profiles—Bathtub
Concept Decreasing Failure Region (DFR) intro-
duced later.
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∘ For 𝛽 = 1, the shape of Weibull Distribution models
approximate the Exponential PDF—Bathtub Con-
cept Stabilized Failure Region (SFR) introduced
later.

∘ For 𝛽 = 3, the shape of Weibull Distribution models
approximate the Gaussian (Normal) PDF.

∘ For 𝛽 = 10, the shape of Weibull Distribution mod-
els approximate the End-of-Life Wear-out—Bathtub
Concept Increasing Failure Region (IFR) introduced
later.

• Scale Parameter (Eta, 𝜼)—A unitless quantity that
controls the scale of the Weibull Distribution in terms
of its width—standard deviation. If we had constructed
a Gaussian (Normal) Distribution using Eq. 34.9, the
Scale Parameter (Eta, 𝜂) would be determined by the
distribution’s standard deviation. Figure 34.4 Panel
B illustrates some of the effects as Eta is assigned
different values such as 50, 100, and 200. Observe the
pattern 1/𝜂. You should recognize the pattern as the
Failure Rate, 𝜆(t) expressed in Eqs. 34.7 and 34.8 for
repairable and non-repairable systems.

• Location Parameter (Gamma, 𝜸)—A unitless quan-
tity that controls the location of the distribution relative
to the origin (t = 0) along the abscissa of the graph. If
we had constructed a Gaussian (Normal) Distribution
the Location Parameter, Gamma (𝛾), represents the off-
set location of the start of the curve along the horizontal
time axis. Figure 34.4 Panel C illustrates one of the off-
set effects as Gamma is assigned a different value.

How are the Scale (Beta), Shape (Eta), and Location
(Gamma) parameters determined? In general, the answer de-
pends on the data and the distribution profile selected. A Sys-
tem Analyst could approach the task on a trial-and-error ba-
sis. Reliawiki.org (2013c) suggests consideration of methods
such as: probability plotting, Rank Regression on X (RRX),
Rank Regression on Y (RRY), and Maximum Likelihood Es-
timation (MLE).

the two-parameter weibull distribution For ap-
plications in which there is no time-based location offset
(𝛾 = 0), the PDF becomes a Two-Parameter Weibull Distri-
bution. We can express the PDF as a function of the Shape
Parameter, Beta (𝛽), the Scale Parameter, Gamma (𝛾), and
the continuous variable time, t, as (ReliaWiki.org, 2013a):

f (t) = 𝛽

𝜂

(
t
𝜂

)
𝛽−1

e
−
(

t
𝜂

)β
for t ≥ 0 (34.12)

the one-parameter weibull distribution For
System or Entity PDFs that are consistent, 𝛽 can be a
known constant based on sampled data unique to your
System or Entity. Mathematically, Eq. 34.11 can be ex-
pressed as a One-Parameter Weibull PDF as a function of the

Scale Parameter, Gamma (𝛾), and the continuous variable
time, t, as (ReliaWiki.org, 2013a):

f (t) = k
𝜂

(
t
𝜂

)k−1

e
−
(

t
𝜂

)k

for t ≥ 0 (34.13)

where:

• k = known constant.

34.3.2.3.4 The Bayesian-Weibull Lifetime Distribution
One other type of PDF distribution used is the
Bayesian-Weibull Distribution. The context of this dis-
tribution is based on prior knowledge of the shape of the
PDF for a specific Entity by the System Analyst. Specif-
ically, the Shape Parameter, Beta, (𝛽). Construction of the
distribution includes consideration of the “variation and
uncertainty” that may exist in the Shape Parameter, Beta (𝛽)
(Reliawiki.org, 2013b).

34.3.2.3.5 Lifetime Data Distributions Summary In sum-
mary, Lifetime Data analysis and mathematical statistics
provide powerful tools to model various types of fail-
ure distributions. These include: the Exponential, Gaussian
(Normal), Log-Normal, Weibull, and Bayesian-Weibull Dis-
tributions. For additional information about various Life
Data Distributions, refer to NIST (2013, Section 1.3.6.6).

34.3.2.3.6 The Cumulative Distribution Function (CDF)
Let’s assume an Enterprise has X units of a System or
Product in field operation. A question might be: how many
units do we expect to fail by time, t = tx? The context of this
question is not about a specific instant of time; it is about
the cumulative failures over the time interval from t = 0 until
t = tx. This brings us to our discussion of the CDF, F(t).

Author’s Note 34.2

F(t) versus f(t) Capitalization, Q(t)
versus F(t)

Observe that the PDF is characterized
by a lower case f(t) and the CDF by

a capital F(t). Some textbooks use the parameter Q(t) in lieu
of F(t).

To better understand the CDF concept, let’s use the
Gaussian (Normal) Distribution illustration shown in
Figure 34.3 Panel A as a precursor to our mathematical dis-
cussion. Since we are dealing with probability, we know that
the area underneath the Lifetime Data Distribution profile is
equal 1. To understand the probability of failure expected
to occur over the time interval 0 ≥ t ≥ tx, we integrate the
Exponential Failure PDF, f(t).

The cumulative quantity of failures over the time interval
from t = 0 to t = tx are shown in Figure 34.1 Panel D. This
enables us to establish the relationship between the Gaussian
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Where:

•  F(t) = Cumulative Distribution Function
•  f(t) = Probability Density Function
•  h(t) = Hazard Rate
•  λ(t)= Failure Rate

“Memoryless” region
No sensitivity to previous Δt condition

Unreliability

Figure 34.5 Differences Between the Failure Density Profile, f(t), and the Hazard Rate,
h(t), Profile

(Normal) LogNormal, and Exponential Distributions, F(t)
over a specified time interval. To characterize the relationship
mathematically:

F(ta ≤ t ≤ tb) = ∫
tb

ta

f (t)dt

for 0 ≤ ta ≤ t ≤ tb over the range 0 to +∞
(34.14)

where:

• f(t) = Failure PDF as a function of time, t.

• t = Continuous random variable.

Observe the number of failures to the left of a line
represented by time, t1, in the PDF distribution shown in
Figure 34.5 Panel A. The areas under this portion of the PDF
represents what is referred to as the System or Entity’s
unreliability. We will address this point in detail later in our
next topic, the Reliability Function.

For an Exponential PDF substituting Eq. 34.3 in
Eq. 34.14, we can express the CDF as:

F(t) = ∫
t

0
𝜆e−λt dt for t ≥ 0 (34.15)

In summary, we have:

• Introduced the CDF, F(t), in terms of its relationship to
the PDF - Gaussian (Normal), LogNormal, Exponen-
tial, Weibull, and Weibull-Bayesian Distributions.

• Defined the CDF, F(t), as a measure of the System or
Entity’s Probability of Failure, PFailure or unreliability
– as a function of the continuous variable time, t.

This last point is very important as we go forward to our
next topic, The Reliability Function.

34.3.2.4 The Reliability Function Whereas engineers,
managers, and executives, prematurely launch into comput-
ing the Reliability for a System or Entity, you should rec-
ognize and appreciate that Reliability is just one of the Seven
Life Data functions (Principle 34.7) required to understand
and perform R&M.

To better understand the concept and computation of the
Reliability Function, let’s build on the System or Entity’s
unreliability introduced in the preceding discussion. To
understand reliability, we need to define its complement
unreliability.

Using probability theory, we can state that the Probability
of Success, PSuccess, and the Probability of Failure, PFailure, as
a function of elapsed time are complementary. Since the area
underneath the PDF distribution is normalized to 1.0, we can
mathematically express this relationship as a function of the
continuous variable time, t, as:

PSuccess (t) ≡ 1.0 − PFailure (t) for t ≥ 0 (34.16)
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If the degree of success represents the reliability of a System
or Entity at a specific instant in time for a prescribed set of
Operating Environment conditions, we equate:

PSuccess (t) ≡ Reliability, R(t) for t ≥ 0 (34.17)

Failures, as random time and condition-based functions,
can occur throughout a mission. A System or component’s
Probability of Failure, PFailure or Mission Unreliability, is
represented by its CDF, F(t), at a specific instant in time.
Therefore, by substituting Eq. 34.17 into Eq. 34.16 we can
express Reliability R(t) as:

R(t) ≡ 1 − PFailure(t) for t ≥ 0 (34.18)

We can state that R(t) represents the probability that a
System or Entity will survive a planned mission of a
specific duration under a prescribed set of Operating
Environment conditions without failure. We refer to this
bounded condition as the System Reliability, which is also
referred to as the Survival Function.

Substituting Eq. 34.14 in Eq. 34.18, we can express
reliability, R(t), over the interval from t0, the installation time,
to t1, the current time, in terms of the CDF, F(t), as:

R(t) = 1 − F(t) = 1 − ∫
∞

t0
f (t)dt (34.19)

where:

f(t) = Exponential Failure PDF.

Since the total area under the PDF curve is unity (1.0),
we can substitute Eq. 34.3 into Eq. 34.19 for the interval
t0 → t∞:

R(t) = 1 − ∫
∞

t0
𝜆e−𝜆tdt (34.20)

Engineers often assume that the Mean Life (𝜃) of a
repairable System or Entity represents an instant in time
when 50% of the units have failed and 50% have survived.
This is erroneous! In fact, it reflects a convolution of two
different concepts—Mean Life (𝜃) versus the Lifetime Data
Median Life Function introduced in a later section. The
Exponential Distribution Function exemplifies this point.
The question that should be asked is: For a System or
Entity characterized by the Exponential Distribution, what
is its Reliability—probability of units “surviving”—beyond
its Mean Life (𝜃)?

Let’s assume a System or Entity exhibits a constant
failure rate, 𝜆(t), as illustrated in Figure 34.3 Panel D. If we

substitute 1/𝜃 (Eq. 34.5) for 𝜆 in Eq. 34.20, set t = 𝜃 (Mean
Life), and integrate over the time interval from t0 → t

R(t) = 1 − ∫
t

0

1
𝜃

e−
t
𝜃 dt

R(t) = 1 − [1 − e−1]

R(t) = 1 − 0.632 = 0.368 (34.21)

Therefore, the Reliability, R(t), for a System or Entity
characterized by an Exponential Distribution PDF when 50%
of the units have failed (Median) and 50% survive is only
36.8%. This means that:

• 63.2% of the area under the PDF curve lies to the left
of the Median Life representing units failed;

• 36.8% of the area under the PDF curve lies to the right
of the Median Life representing units surviving.

The preceding example clearly illustrates that the Relia-
bility, R(t), for an Exponential PDF Distribution beyond the
Mean Life (𝜃)− 0.368—is not the same as the Median Life
Function in which 50% of the units survive either side of the
Mean Life (𝜃).

34.3.2.4.1 Reliability Predictions or Estimates?

Principle 34.12

RMA Estimates Principle

Reliability, Maintainability, and Avail-
ability (RMA) are time-variant ass-
essments that produce estimates, not

predictions, due to the uncertainty in a System or En-
tity’s physical operating condition and mission Operating
Environment conditions.

Reliability employs statistical methods and techniques
based on approximations and assumptions about a popula-
tion of physical entities at all levels of abstraction—System,
Products, Subsystems, Assemblies, Subassemblies, and
Parts. As a result, you will hear people comment about pre-
dicting the reliability of a System or Entity.

On inspection, the notion of predictions is indicative of
soothsayers and wizards. The context here is one of in-
formed decision-making caveated by assumptions based on
observed and measured factual evidence employed in and
provided by mathematical Modeling and Simulation (M&S).
Therefore, if Reliability theory is based on assumptions, ob-
servations, approximations, uncertainities, and probabilities,
do you predict or estimate the reliability of a System or
Entity? We estimate System Development costs; yet, make
Reliability predictions? Weibull.com (2013) articulates the
point well.
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“Because life data analysis results are estimates based on the
observed lifetimes of a sampling of units, there is uncertainty
in the results due to the limited sample sizes.”

This text refers to computations of a System or Entity’s
RMA as estimates. Computations, however, in the absence of
seasoned knowledge, experience, and wisdom are subject to
the old cliché: A fool with a tool is still a fool (anonymous).
When applied correctly by a competent, qualified, R&M En-
gineer, estimates can be as cost-effective and accurate as
in-depth analyses that require assumptions and consume ex-
tensive resources without necessarily improving the reliabil-
ity of the product. Reliability estimates coupled with “worst
case” analyses can be very effective.

reliability function summary The preceding discus-
sion brings us to a key closing point:

Always bound and express Reliability Estimates in terms
of five key criteria:

• Criteria #1 – A prescribed set of Operating Environ-
ment conditions.

• Criteria #2 – A bounded mission time duration or
remaining mission time.

• Criteria #3 – The operating condition of the Mis-
sion System Elements – Personnel, Equipment, Mis-
sion Resources, Procedural Data, and System Re-
sponses. (Plus Facilities for Enabling Systems)

• Criteria #4 – The elapsed operating time since the start
of the mission.

• Criteria #5 – A probability of success in completing a
defined mission without disruption.

Avoid using MTTF or MTBF as the reliability require-
ment without bounding these conditions.

Author’s Note 34.3

How to Invalidate a Reliability
Estimate and Violate
Principle 34.6

As a follow-up to Principle 30.2,
when stating Reliability in any technical document, ensure
that the Reliability Estimate Criteria listed above are stated
on the same page as the Reliability estimate. Separating the
information across multiple pages effectively invalidates the
estimate and violates Principle 30.2.

In summary, we have illustrated how the Reliability
Function is derived based on a System or Entity’s PDF.
This leads to the next of the Five Life Data Functions, the
Instantaneous Failure Rate Function.

34.3.2.5 The Failure Rate Function, 𝜆(t) A general dis-
cussion of Failure Rate, 𝜆(t), soon leads to the need to refine
the term for more explicit contexts. The need for refinement
is driven by two key questions:

1. How many units can we expect to fail at a specific
instant in time during a mission?

2. How many units can we expect to fail over a period of
time?

These questions require that we further refine Failure
Rate, 𝜆(t), in general terms into more specific terms. The
terms are Instantaneous Failure Rate, 𝜆(t)Inst, and the Aver-
age Failure Rate, 𝜆(t)Avg.

Most textbooks refer to the Failure Rate, 𝜆(t), generically
without regard to context. For example, there is a significant
difference between Instantaneous Failure Rate, 𝜆(t)Inst, ver-
sus Average Failure Rate, 𝜆(t)Avg. Let’s define each of these
terms:

• Instantaneous Failure Rate A metric that represents
the frequency of failure or failure density as a function
of the continuous random variable time, t at a specific
instant in time.

• Average Failure Rate “The total number of failures
within an item population, divided by the total number
of life units expended by that population, during a
particular measurement period under stated conditions”
(MIL-HDBK-338B, p. 3–7).

NIST (2013, Section 8.1.2.3) notes, “The failure rate is
the rate at which the population survivors at any given in-
stant are ‘falling off the cliff.’” For example, the continu-
ous variations on an automobile’s velocity indicated by its
speedometer—miles per hour (mph) or kilometers per hour
(km/h)—are analogous to the Instantaneous Failure Rate,
𝜆(t)Inst, at a specific instant of time.

Most people think in terms of average failure rates,
𝜆(t)Avg, per unit of time such as hours, weeks, months, or
cycles. For example, how many failures have occurred based
on the total operational hours of all units of a System or
Entity—average quantity of failures per operational hour.
Consider the following example:

Example 34.6

Average Failure Rate, 𝝀(t)Avg

Assume a trucking company has a fleet of
100 trucks (units) operating 8 hours per
day. During a 30-day period, three trucks

experience failures that require removal from service and
corrective action. Therefore, for that specific month, the
Average Failure Rate is:

• 3/100 or 0.03 failures per truck per month.
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Figure 34.6 Bathtub Curve Concept Illustrating the Decreasing, Stabilized, and Increas-
ing Failure Regions (DFR, SFR, and IFR)

• 0.001 failures per truck per day.

• 0.000125 failures per truck per hour.

Observe the importance of qualifying and bounding the
context such as average failure rate per truck, per month, per
day, or per hour.

As another example, suppose Figure 34.1 Panel C repre-
senting the RTF of a System or Product. The Average Failure
Rate, 𝜆(t)Avg, is:

𝜆(t)Avg = 31 failures (100% of units)
98.0 − 80.0 hours

= 0.316 failures per hour

Now, contrast 𝜆(t)Avg, with The Instantaneous Failure Rate,
𝜆(t)Inst, of 7.0 units that occurred at t = 89.0 hours. Addi-
tionally, recognize that the failures are “clustered” between
70.0 hours ≤ 𝜆(t)Avg ≤ 98.0 hours leaving a void between 0.0
≤ 𝜆(t)Avg < 80.0 hours. As a result, 𝜆(t)Avg serves no useful
purpose. In contrast, the Average Failure Rate, 𝜆(t)Avg, has
some relative value over the range 80.0 hours ≤ 𝜆(t)Avg 98.0
hours when its value is 1.722 failures per hour.

One of the objectives of Lifetime Data Distributions is
to define the characteristic PDF Distribution of a System or
Entity’s failures. Then, being able to detect those failures in
sufficient time to take preventive or corrective action. Despite
their apparent simplicity, the concepts of failure density as

a function of time—PDF, average failure rate (𝜆(t)Avg), and
instantaneous failure or hazard rate—are often one of the
most confusing aspects for many Engineers concerning Life
Data Analysis. Understanding the context of these terms
and their application is a key foundation for Lifetime Data
Analysis.

In summary, if a System or Product has a demanding
mission requirement to operate continuously for 6 hours, and
has a likely probability that it will fail during that period, then
you should consider replacing any suspect Entities or Parts
before the mission, especially if the component is mission or
safety critical. Examples of mission or safety critical items
include medical devices, bakery ovens, and aircraft.

Our discussion up to this point consisted of a review
of statistical distributions applied to R&M. Our next topic,
the Hazard Function focuses on the Useful Service Life
or Stabilized Failure Region (SFR) of the Bathtub Curve
(Figure 34.6) characterized by Exponential PDFs.

34.3.2.6 The Hazard Function h(t)

Principle 34.13

Hazard Rate Principle

Systems or components that are char-
acterized by Negative Exponential PDF
Distributions mathematically exhibit a

constant Hazard Rate, h(t), during its Useful Service Life
based on random, chance failures.
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One of the challenging aspects of Reliability is whether
a System or Entity will successfully complete the next
mission without failure. If the Reliability, R(t), of a System
or Entity is 0.9 based on its current condition, what is its
current reliability - probability of successfully completing a
mission with a duration of Δt without failure for a given set
of Operating Environment conditions?

This question places a condition on the Reliability Func-
tion. As a result, it is sometimes referred to as the Conditional
Reliability Function; others refer to it as the Hazard Func-
tion. To add to the confusion, some people refer to the Hazard
Function as the Failure Rate Function. Figure 34.5 Panels A
and B illustrate differences in the two terms.

The Hazard Function, h(t), is defined as the ratio between
a System or Entity’s Failure Rate, 𝜆(t), to its Reliability,
R(t), as a function of the continuous variable time, t. The
general equation for the Hazard Function is:

h(t) =
f (t)
R(t)

=
f (t)

1 − F(t)
for t ≥ 0 (34.22)

where:

• h(t) = Hazard Rate.

NIST (2013, Section 8.1.2.3) notes that: “The failure rate
is sometimes called a ‘conditional failure rate’ since the
denominator 1 − F(t) (i.e., the population survivors) converts
the expression into a conditional rate, given survival past
time, t.”

A Word of
Caution 34.3

NIST (2013, Section 8.1.2.3) refers to the
“Failure (or Hazard) Rate” and states, “The
failure rate is defined for non-repairable
populations as the (instantaneous) rate of
failure for the survivors to time t during the
next instant of time.” Despite the convolu-

tion of terms “Failure (or Hazard) Rate” in the title, the
descriptions address the Hazard Rate for Systems or Prod-
ucts characterized by Exponential Distributions. The Haz-
ard Rate, h(t), is a ratio-based metric, which is different
from the Failure Rate, 𝜆(t), that characterizes other types of
non-Exponential Distribution Systems or Products.

For Exponential Distributions, we substitute Eq. 34.3 into
Eq. 34.22:

h(t) =
f (t)

1 − F(t)
= 𝜆e−𝜆t

1 − (1 − 𝜆e−𝜆t)
(34.23)

h(t) = 𝜆e−𝜆t

e−𝜆t
for t ≥ 0

Resulting in:
h(t) = 𝜆 for t ≥ 0 (34.24)

Eq. 34.24 indicates that for Exponential Distributions, the
Hazard Rate is constant thoughout the Stabilized Failure
Region (SFR) (Figure 34.7). Because of the constant failure
rate, statisticians describe the condition as “memory-less”
and not influenced by failures until the current time period.
This is in contrast to the past human condition, for example,
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in which our bodies are dependent on and influenced by the
condition in the preceding time period—“memory.”

What is the value in knowing the Hazard Rate? Reli-
awiki.org (2012) states that the metric “… is useful in char-
acterizing the failure behavior of a component, determining
maintenance crew allocation, planning for spares provision-
ing, etc.”

If we express the relationship of 𝜆(t) as a function of
Reliability, R(t, t + Δt) over the interval from t to t + Δt:

𝜆(t) =
R(t1) − R(t2)

(t2 − t1) ⋅ R(t1)
for t ≥ 0 (34.25)

or

𝜆(t) = R(t) − R(t + Δt)
(Δt)R(t)

for t ≥ 0 (34.26)

Author’s Note 34.4

Operational Age Notation

Since the key question concerns
Hazard Rate, the Reliability from the
current time, t1, until the completion

of a mission, t2, some authors refer to: (1) the current time,
t1, as T representing the operational age in hours and (2) t2
as the next Δt increment.

Remember—As an example, Failure Rate units consist
of measurements such as: (1) failures per million hours,
(2) failures per month, or (3) failures per cycle. Failure Rate,
𝜆(t), that characterizes a PDF represents the failure density
as a function of the continuous variable time, t; the CDF
represents the cumulative probability of a failure of a System
or Entity over time.

34.3.2.7 The Mean Time Functions—MTTF and MTBF
For any Lifetime Data distribution characterizing a popula-
tion of units, we need to know the expected mean life rep-
resented by Time to Failure (TTF). Lifetime Data Analysis
accommodates this need via the Mean Life Function, which
enables us to model and estimate a System or Entity’s
MTTF, (𝜇). However, MTTF does not enable us to differen-
tiate if the item is repairable or non-repairable. This means
pre-defined decisions must be made during component se-
lection (Chapter 16) designating Entities that are considered
repairable versus unrepairable.

34.3.2.7.1 MTBF Repairable Items Since repairable
Systems or Entities, by definition, can be repaired, the
metric for expressing their average is MTBF (𝜃), which is
the inverse of the Failure Rate, 𝜆(t). Observe the operative
phrase “between failures” in MTBF. Recognize that failures
for repairable Entities have two contexts: (1) the MTBF

of a System or Entity, in general, and (2) the MTBF of a
specific Part Level failure within the System or Entity.
MIL-HDBK-470A defines MTBF as:

• Mean time Between Failure (MTBF) “A basic mea-
sure of reliability for repairable items. The mean num-
ber of life units during which all parts of the item
perform within their specified limits, during a par-
ticular measurement interval under stated conditions”
(MIL-HDBK-470A, p. G-11).

34.3.2.7.2 MTTF for Repairable and Replaceable Items
Non-repairable items, by definition, are unrepairable. They
are Removed and Replaced (R&R) and disposed of in
accordance with federal, state, and local regulations. Since
a non-repairable System or Entity fails only once, the
operative metric is MTTF.

34.3.2.7.3 Computation of MTBF and MTTF

Principle 34.14

Expected Life Principle

The expected life of a System or En-
tity is the arithmetic average of the
actual lifetimes of a population of units
currently in field use.

Mathematically, we can express the Expected Life, E(T),
or MTTF, as a metric based on the Failure PDF, f(t), and the
continuous random variable time, t, as:

E(T) = ∫
∞

0
t ⋅ f (t)dt for t ≥ 0 (34.27)

where:

E(T) = MTTF Common to repairable and
non-repairable items.

Observe that the integral runs over the range from t = 0 to
+∞. In this context, E(T) represents the arithmetic average
of the population of fielded units in operation.

For the Exponential Distribution:

E(T) = MTTF(λ) = ∫
∞

0
t ⋅ 𝜆e−𝜆t dt for t ≥ 0 (34.28)

E(T) = 1
𝜆

for t ≥ 0 (34.29)

Similarly, for repairable Systems or Entities the MTBF, (𝜃)
(Eq. 34.5), is expressed as:

E(T) = 1
𝜃

for t ≥ 0 (34.30)
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A Word of
Caution 34.4

Observe that MTTF, as a magnitude, pro-
vides no information concerning a System
or Entity’s Lifetime Data Distribution.
Two cautionary points:

• Reliawiki.org (2012) notes “Because
vastly different distributions can have identical means,
it is unwise to use the MTTF as the sole measure of the
reliability of a component.”

• Nelson (1990, p. 56) emphasizes that “expected life”
(Principle 34.16) statistically is not the same as “antic-
ipated life.”

On inspection, MTBF and MTTF appear to be the same.
However, there are differences. You should recall our earlier
discussion following Eq. 34.4 that MTBF > MTTF.

We can express MTBF, 𝜃, mathematically for repairable
items as:

MTBF (𝜃) = T
Qty. of Failures

T ≥ 0 (34.31)

where:

T = Total operational hours of the fielded population of
units.

Recognize that the assumption here is that all UUTs
have failed. This is not always the case. Speaks (2005), for
example, refers to suspensions. A suspension represents a
test condition in which “a destructive test or observation has
been completed without observing a failure” Speaks (2005,
p. 7).

The computation for MTTF (𝜇) for non-repairable
Systems or Entities is expressed mathematically as:

MTTF(𝜇) = T
Qty. of UUTs

for T ≥ 0 (34.32)

where:

T=Total hours of operation of the UUT population before
failure and replacement.

The mean, (𝜇) of a statistical PDF distribution is com-
puted by summing the multiplicative products of each dis-
crete value of x by its probability of occurrence, P(x).

𝜇 =
∑

x ⋅ P(x) (34.33)

To illustrate how the mean is calculated, consider the
following example:

Example 34.7

Let’s assume we need to determine the
mean of a set of test data we have collected.
The resulting data values are: 8, 11, 12, 15,
18, 39, 54. To calculate the mean of the data
set, we do so as follows:

Mean = 8 + 11 + 12 + 15 + 18 + 39 + 54
7

= 22.4

34.3.2.8 The Median Life Function

Principle 34.15

Median Life Principle

The median of a System or Entity’s
PDF represents a specific instant of time
when 50% of identical units are estimated

to have failed and 50% continue to survive and operate.

For a System or Entity that exhibits symmetry in their
failure profiles such as the Gaussian (Normal) Distribu-
tion, the mean and the median are coincidental (Figure 34.3
Panel A). The real world, however, does not always ex-
hibit symmetry resulting in failure profiles such as the
Log-Normal Distribution (Figure 34.3 Panel B). Since the
area under any PDF to the left of the current time, t, repre-
sents the probability that X units have failed—unreliability,
F(t) or Q(t) (Figure 34.5 Panel A), a key question is: when
will F(t) and R(t) be simultaneously at 50% ?

The dividing line when the area under the curve is evenly
divided is referred to as the median or centroid. The median
is designated as the Median Life. For Lifetime Distributions,
the continuous random variable, t, reaches a point in which
there is a 50% probability that half of the units have failed
and half continue to survive. As a contrast to the Mean Life
Function in Example 34.7, consider Example 34.8 for the
computing the median of a data set.

Example 34.8

Median of a Data Set

In Example 34.7, the data set values were:
8, 11, 12, 15, 18, 39, 54. Since there
were seven values, Value 15 represents the

Median with identical quantities of data items on above and
below it.

Mathematically, the Median Life Function is computed by
equating the integral of the PDF, f(t), equal to 0.5 for a time
interval between t = 0 and the mean Age, T , in hours, cycles,
or actuations of a System or Entity:

∫
T

−∞
f (t)dt = 0.5 for −∞ ≤ t (34.34)

34.3.2.9 The Mode Life Function

Principle 34.16

Mode Life Principle

The mode of a System or Entity’s PDF
occurs at the peak failure density (point of
inflection) where the maximum number of

failures is expected to occur at a specific instant in time.

For a given PDF, another question is: at what point in
time is the Lifetime Data Distribution expected to peak as
a function of the continuous random variable time, t? We
refer to this as the mode of a Lifetime Data Distribution
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(Figure 34.3 Panel B). The mode of a statistical distribution
based on a continuous random variable time, t, is defined as
the time in which the PDF is at a peak.

Since the mode represents the peak of a PDF distribution,
we locate the point of inflection in which the Failure PDF,
f(t), reaches a maximum, assuming the distribution has only
one peak. Therefore, we express the mode as the differential
of the Failure PDF, f(t), for the continuous random variable
time, t, as:

d[f (t)]
dt

= 0 for −∞ ≤ t (34.35)

Then, solve for time, t, for a specific Lifetime Data Distribu-
tion’s f(t).

34.3.2.10 Summary—Lifetime Data Functions In sum-
mary, we have introduced the basic Lifetime Data Functions.
For an additional graphical summary of the various types of
Lifetime Data functions—Exponential, LogNormal, Gaus-
sian (Normal), and Weibull, refer to MIL-HDBK-338B
Figure 5.3-1, p. 5–9.

This brings us to our next topic, Service Life Concepts.

34.3.3 Service Life Concepts

Human Systems—Enterprise and Engineered—exhibit
service life profiles characterized by a level of infant mortal-
ity early followed by growth and stability and finally aging.
This leads to a key question: What is the service life of a
System or Entity? The Defense Acquisition University
(DAU) (2012, p. B-201) defines service life as follows:

• Service Life “Quantifies the average or mean life of the
item. There is no general formula for the computation.
Often refers to the mean life between overhauls, the
mandatory replacement time, or the total usefulness
of the item in respect to the (system or product) it
supports; that is, from first inception of the (system
or product) until final phaseout” (Adapted from DAU,
2012, p. B-201).

In comparison, MIL-HDBK-470A employs the term Use-
ful Life:

• Useful Life “The number of life units from manu-
facture to when the item has an unrepairable fail-
ure or unacceptable failure rate. Also, the period of
time before the failure rate increases due to wear-out”
(MIL-HDBK-470A, p. G-17).

To better understand the application of Lifetime Data
Distributions to Service Life or Useful Life, textbooks often
employ a concept referred to as the Bathtub Concept, our next
topic.

34.3.4 The Debatable Bathtub Curve Concept

Generally, people tend to think of Service Life or Useful
Life of a System or Entity as having an “out-of-the-box”
reliability of 100%. In general, this statement is true, at
least for most of the Entities or Parts. However, Systems
or Products often experience early failures in their lives
based on the factors discussed in What Constitutes a Failure.
Building on Reliability Precepts #1 – #7, the assumption
is that if we eliminate failures, System Reliability should
improve. Conceptually, this is true; however, even that is
dependent on the condition of the other Parts and that
continuous variable, time. The reality is Systems, Entities,
and Parts, especially mechanical Entities or Parts, are
always in a state of wear-out and eventually fail due to
use, stress, deterioration, fatigue, unless they are maintained
through preventive and corrective maintenance action.

As a way of explaining these dependencies, textbook
discussions of reliability often introduce the concept of
service life profiles via a model referred to as the Bathtub
Curve. The name is derived from the characteristic Bathtub
Curve profile as illustrated in Figure 34.6. Conceptually, the
Bathtub Curve represents a plot of failure rates over the
active service life of Mission System or Enabling System
Equipment.

34.3.4.1 Introduction to the Bathtub Curve Observe that
the heading of this section is titled “The Debatable Bathtub
Curve Concept”. There are those who challenge the validity
of the Bathtub Curve based on a wide dispersal of factual ev-
idence, especially among electronic and mechanical Parts.
Proof in the form of factual evidence resides in industry pro-
prietary data, which are not publically available, assuming
Enterprises invest in tracking it. As a result, controversy sur-
rounds the Bathtub Curve.

Where does truth reside? Probably in various aspects of all
the arguments. The reality is: the Bathtub Curve has elements
of truth and instructional value. If it is controversial, why are
we presenting it here? There are two reasons:

• First, from an educational perspective, you need to un-
derstand key concepts and challenges to their validity.

• Second, from an instructional perspective, the Bathtub
Curve has a merit—its pros outweigh cons—as a
foundational concept for Reliability.

What is important for you is to understand the Bathtub
Concept, its relevance, and issues. Then, draw your own con-
clusions for validation within your own Enterprise regarding
the systems, products, or services it produces.

Given this understanding, let’s proceed with a description
of the Bathtub Curve.
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34.3.4.2 Bathtub Curve Overview Description In gen-
eral, if you analyze a sampling of any type of new,
mass-produced System or Product, you will find that most
operate right “out of the box,” or “off the parking lot.” For
those that fail, the retailers, dealers, take corrective action
to eliminate the faults or failures. Typically, when corrected,
the owner enjoys a relatively event-free Useful Service Life
from the System or Product, assuming they perform pre-
ventive and corrective maintenance prescribed by the System
Developer or manufacturer. Over a long service life of several
years, Parts begin to wear out and fail unless they are main-
tained. Over a large population of Systems or Products,
analysts drew inferences and began to create a model of the
typical System or Product’s Lifetime Data Distribution.
The model became known as the Bathtub Curve.

The Bathtub Curve shown in Figure 34.6 represents a
notional paradigm, a model for thinking. Unfortunately, like
most paradigms, the Bathtub Curve has become erroneously
ingrained as a “one-size-fits-all” mindset believed to be
universally applicable to all Systems and Products. This
is false! Most experts agree that field data, though limited,
suggest that the failure rate profiles vary significantly from
one type of System or Product to another across the
marketplace.

Our treatment of the Bathtub Curve will simply be as an
instructional model for discussion purposes only. As a final
note, the Bathtub Curve applies to any System or Entity
composed of levels of integrated Parts; it is not intended
as a Part Level explanation. Wilkins (2002) cautions “does
not depict the failure rate of a single item. Instead, the curve
describes the relative failure rate of an entire population of
products over time.”

34.3.4.3 Bathtub Curve Profile Structure

Principle 34.17

Bathtub Curve Principle

The Bathtub Concept is a notional con-
cept based on a piecewise composite,
end-to-end structure comprised of a

sequence of three different Lifetime Data Distributions:
(1) Decreasing Failures Region (DFR), (2) Stabilized Fail-
ures Region (SFR)—Useful Service Life, and (3) Increasing
Failures Region (IFR).

The Bathtub Curve is actually a piece-wise composition
of three different Lifetime Data Distributions as shown
in Figure 34.7 Panel A. The net result is a composite
characteristic profile such as the one shown in Figure 34.7
Panel B.

Remember—Figure 34.6 represents a generalization ap-
plicable to a System or Product in terms of its: (1) profile
appearance and (2) duration as a function of time. In sum-
mary, observe several key points about Figure 34.6:

1. Period of Decreasing Failure Region (DFR)—
Represents a period of conditional decreasing failure
rates, 𝜆(t)DFR, due to inherent latent defects such as
design errors, flaws, and deficiencies; workmanship
issues, component and material integrity that can often
be characterized by a negative Exponential Failure
PDF as a function of the continuous variable time, t

2. Period of Stabilized Failure Region (SFR)—
Represents a period of random chance Failure Rate,
𝜆(t), that is relatively constant or Hazard Rate, h(t), for
Systems or Products that exhibit a negative Exponen-
tial PDF as a function of the continuous variable time,
t.

3. Period of Increasing Failure Region (IFR)—
Represents a period of conditional increasing fail-
ure rates, 𝜆(t)IFR, due to component wear-out that can
often be characterized by an increasing Exponential
Failure PDF as a function of the continuous variable
time, t.

Given this overview description of the Bathtub Curve, let’s
address a brief history of the Bathtub Curve’s Origin.

34.3.4.4 A Brief History of the Bathtub Curve’s Origins
The origins of the Bathtub Curve are deeply rooted over
several centuries in Life Data Analysis, not in Engineering.
Klutke et al. (2003, p. 125) cite: (1) work by E. Halley in 1693
concerning actuarial life-table analysis that uses a similar
profile and (2) modern day textbooks from the 1970s. Machol
et al. (1965, pp. 33–3) address the concept.

As military systems became more complex in the 20th
century, especially around World War II, Reliability En-
gineers dealing with failures related to electronic vacuum
tubes, and the need to predict failures became interested in
the Bathtub Curve application to systems. Smith (1992) notes
that the origin of the Bathtub Curve dates back to the 1940s
and 1950s with the embryonic stages of Reliability Engineer-
ing. Early attempts to characterize failure rates of electronic
components led to the formulation of the Bathtub Curve.
Examples of these components included vacuum tube and
early semiconductor technologies that exhibited high failure
rates.

Although the Bathtub Curve provides a conceptual frame-
work for discussion, Reliability SMEs question the validity
of the Bathtub Curve in today’s world. Due to the higher
component reliabilities available today, most systems and
products become obsolete and are Removed and Replaced
(R&R) or retired/disposed long before their useful service
life profile reaches the Increasing Failure Region (IFR).
Most computer hardware will last years or decades. Yet, as
Moore’s Law (Moore, 1965) postulated, computer technol-
ogy advancements drive the need to upgrade or replace com-
puters every 2–3 years. Kaplan, (2011) indicates that Intel
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encountered yield problems that blemished its remarkable
performance of Moore’s Law after 45 years.

Klutke (2003, pp. 125–129) and others challenge the
Bathtub Curve’s validity and provide objective critiques.
Notionally and conceptually, it may have some relevance in
mechanical systems, anecdotal electronic system field data
refute the right-hand side of the Bathtub Curve because
Equipment such as computers become technologically ob-
solete long before the electronic components fail. Refer to
Klutke et al. (2003, pp. 125–129) for details of their critique.

Smith (1992) notes that the Bathtub Curve may
provide an appropriate profile for a few components.
However, the Bathtub Curve has been assumed to be ap-
plicable to more components than is supported by actual
field data measurements. Large, statistically valid sample
sizes are required to establish age-reliability characteristics
of components. Often, large populations of data are difficult
to obtain due to being proprietary to System Developers,
assuming they exist—tracked and analyzed. Corporate war-
ranties for current fielded products tend to motivate Lifetime
Data records tracking not only for current designs but future
designs as well. Leitch (1988, p. 24) notes that the Bathtub
Curve is representative of the lifetime Data Distribution of
automobiles.

Nelson (1990, p. 70) challenges the validity of the Bathtub
Curve. He notes that in his experience, the Bathtub Curve
describes only 10–15% of applications. Typically, these

applications consist of “products with competing failure
modes.”

Anecdotal evidence suggests that most reliability work
is based on the Stabilized Failure Region (SFR), primarily
due to the simplicity of dealing with the constant hazard
rate for negative Exponential Distributions. Although any
decreasing or increasing Exponential Distribution can be
used to model the three failure rate regions, the Weibull
distribution (Figure 34.4) typically provides more flexibility
in accurately shaping the characteristic profile.

One of the challenges to the Bathtub Curve is its shape.
Most SMEs generally agree that electronic Systems or
Products such as consumer products become obsolete long
before the device wears out or fails and are simply discarded
and sent to a landfill or salvaged for exotic metals. Other than
latent workmanship defects, they generally have no moving
parts. Figure 34.8 Panel A illustrates this point.

Mechanical systems are a different matter. They incur
wear from the moment they are activated. Their wear contin-
ues at varying rates depending on Operating Environment
conditions and maintenance such as lubrication, filter re-
placement, corrosion removal, inspection for fatigue, and
cracks. Their failure characteristic profiles may be simi-
lar to Figure 34.8 Panel B. Now, contrast the Useful Ser-
vice Life of electronic systems (Figure 34.8 Panel A) with
mechanical systems (Figure 34.8 Panel B). For additional
tabular information concerning the Environmental Effects
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on Mechanical Design for various environments, princi-
pal effects, corrective actions, and descriptions, refer to the
SRC (2001).

Based on these observations, the validity of the Bathtub
Curve may better serve as an instructional tool for describing
a generalized system with three different Lifetime Data Dis-
tribution regions rather than a “one-size-fits-all” paradigm
for every type System or Product.

Given the history of the Bathtub Curve, let’s explore each
of its three failure regions.

34.3.4.5 Bathtub Curve—Decreasing Failures Region
(DFR)

Principle 34.18

Early Failures Principle

Every system, product, or service when
placed in active service exhibits a failure
rate following manufacture that is a func-

tion of its residual latent design defects, weak components
and material properties, quality of workmanship, User learn-
ing curve, and Operating Environment.

Principle 34.19

Early Failures Elimination Principle

Proactive detection and elimination of
latent defects results in a diminishing fail-
ure rate up to a point of chance failures

due to usage, stress (Figure 34.11), and Operating Envi-
ronment conditions.

The DFR is often referred to as the Early Life Region
and begins at System or Product release, deployments,
installation, and checkout. When power is applied, failures
may occur due to latent defects such as design errors, flaws,
deficiencies, poor workmanship, and weak components or
materials. Radle and Bradicich (2013) note that sources
of failure also originate from damage incurred “during
shipping, storage, and installation.” On the basis of this
point, is there any question why an SPS and other outlines
include a section for Packaging, Handling, Storage, and
Transportation (PHS&T) requirements?

During this time, the System Developer may be debug-
ging System Design and maintenance issues to identify la-
tent defects and take corrective action. One of the key ob-
jectives of System Integration, Test, and Evaluation (SITE)
(Chapter 28) is to discover and eliminate latent defects, weak
components, and types of failures. Some Enterprises sub-
ject each deliverable item to accelerated test cycles to drive
out early failures summarily characterized as or conveniently
blamed on “infant mortality.”

Observe the context mentioned above. During Develop-
mental Design Verification (Chapter 13), testers deal with
several technical issues simultaneously. For example:

1. Does the System or Entity Design comply with
its SPS or Entity Development Specification (EDS)?
Challenges include: latent defects such as interpretation
of specification requirements, design errors, flaws, and
deficiencies.

2. Manufacturing latent defects such as poor workman-
ship, weak components.

When the Developmental Design Verification is complete
and proven, the only remaining issue focuses on Product
Verification concerning manufacturing latent defects of a
single unit – Serial Number (S/N) – of a System or Entity.
As noted above, accelerated testing during manufacturing is
one method for driving out marginally weak components.

One of the ironies of the Bathtub Concept is the shock
and surprise exhibited by the ad hoc SDBTF-DPM Paradigm
Enterprises (Chapter 2). When confronted by the User on
discovery of an unusually large quantity of initial failures of
their system, product, or service at delivery (Figure 13.2):

“How could this happen? You stated in your proposal that if
we selected your Enterprise, we could rest assured that we
were hiring the best SE capable Enterprise?”

Most textbooks and authorities launch into academic de-
scriptions of the Bathtub Curve and focus exclusively on
“Engineering’s role in analyzing field data and correcting de-
sign problems.” Here’s the issue. Observe where the PDF
intersects the vertical Failure Rate, 𝜆(t) axis in Figure 34.9.
Where do you suppose the RMA decisions were made that
impact the 𝜆(t = 0) magnitude of the Failure Rate? Answer:
From the three processes to the left: System Design; Compo-
nent Procurement and Development; and SITE (Figure 12.2)!
… and there is shock and surprise? Fortunately, most Users
see through the rhetoric.

Assuming Engineering has performed its role, designing
the System or Product effectively leaves residual compo-
nent selection, quality, and manufacturing defects. Strategies
such as Environmental Stress Screening (ESS) of Entities
and Parts are used to “burn in” and eliminate weak compo-
nents.

Another strategy to eliminate latent defects is Low-Rate
Initial Production (LRIP). LRIP produces a limited quantity
of test articles for field usage by the User. This provides an
opportunity to not only validate the System or Entity but
also identify any residual latent Developmental Design de-
fects (Figure 13.2) for corrective action before commitment
to Production. The intent is to shift the Exponential Distri-
bution Failure Rate, 𝜆(t), downward before delivery to the
User as noted by the dashed curve. Figure 34.9 illustrates the
point.

Let’s assume that during System Design Verification, a
System or Product has an early Failure Rate of 𝜆0(t0).
Corrective actions are taken to complete an initial phase of
Design Verification concerning specification compliance. At
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Figure 34.9 Decreasing Failure Rate (DFR) Strategy for Latent Defects Removal During
System Integration, Test, and Evaluation (SITE) Prior to Delivery

the end of the System Design Verification, the Failure Rate
has been reduced to 𝜆1(t1) as preparations are made for Sys-
tem Design Validation. As a result, LRIP is used to produce
a small quantity of XX units for System Validation. Dur-
ing System Validation, failures are recorded and corrective
actions are taken. On completion of System Design Vali-
dation, the Failure Rate has been reduced to 𝜆2(t2). Since
the Failure Rate has been reduced from 𝜆0(t0) to 𝜆2(t2), a
decision is made to release the System or Product. In con-
trast, employing strategies such as proactive latent defects
removal earlier in the System Design and Component Pro-
curement & Development Processes, Environmental Stress
Screening (ESS), and adequate SITE time coupled with a
competent workforce can make significant reductions in the
Failure Rate from 𝜆0(t0) to 𝜆2(t1) – dashed line – as well as
the cost-to-correct the latent defects (Table 13.1).

In summary, the strategy is to plan for a LRIP, collect and
analyze field data, understand the failure profile, take correc-
tive actions such as replace or rework faulty components or
poor design, and then proceed with Full-Scale Development
(FSD) and System or Product release.

34.3.4.6 Bathtub Curve—Stabilized Failures Region
(SFR) The SFR, which is sometimes referred to as the
Constant Failure Region, begins when the Instantaneous
Failure Rate, 𝜆(t)Inst, remains relatively stable but not nec-
essarily constant. NIST (2013, Section 8.1.2.4) refers to this

region as the “Intrinsic Failure Period.” From a Lifetime
Data perspective, this period is referred to as the Useful
Service Life for the System or Product.

A Word of
Caution 34.5

Constant Failure Region Misnomer

Exercise caution when referring to this pe-
riod as the Constant Failure Region. Tech-
nically, it is the Stabilized Failure Region
(SFR) Region, h(t), not Constant Failure

Rate Region, 𝜆(t). A stable Hazard Rate applies only to
Systems or Entities that exhibit an Exponential Distribu-
tion PDF, f (t), shown in Figure 34.3 Panel D.

For those Systems or Entities that exhibit an Exponen-
tial Failure PDF, the SFR is characterized by:

1. The Instantaneous Failure Rate, 𝜆(t)Inst, which is:

a. Random as a function of the continuous variable,
time.

b. Low and continues to diminish slightly over time as
illustrated in Figure 34.5 Panel A.

2. The Hazard Rate, h(t), which is constant as shown by
Eq. 34.24.

Therefore, general characterizations for the Bathtub
Curve’s HRR midsection as being a “Constant Failure
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Figure 34.10 Equipment Service Life Extension Program (SLEP) Strategy

Region” is only true mathematically for Systems or
Entities that exhibit an Exponential Distribution PDF.

A Word of
Caution 34.6

Wilkins (2002) cautions “Do not assume
that a product will exhibit a constant fail-
ure rate. Use life testing and/or field data
and life distribution analysis to determine
how your product behaves over its expected
lifetime.”

Failures in the Stabilized Failure Region (SFR) occur
randomly by chance and tend to remain relatively stable
over a finite period of time up to several years. As a result,
most System or Entity Reliability estimates are based
on this period and easy math. In contrast, the math for
the Decreasing Failure Region (DFR) and later Increasing
Failures Region (IFR) tend to be more complex. Adding to
Wilkins’ (2002) (A Word of Caution 34.4):

A Word of
Caution 34.7

Inappropriate Application of the PDF

“The exponential distribution and the re-
lated Mean Time Between Failures (MTBF)
metric are appropriate for analyzing data
for a product in the ‘normal life’ period,

which is characterized by a constant failure rate. But be
careful—many people have “imposed” a constant failure rate
model on products that should be characterized by increas-
ing or decreasing failure rates, just because the exponential
distribution is an easy model to use.” Wilkins (2002)

During the SFP, periodic preventive and corrective main-
tenance actions are performed to:

1. Eliminate any random time-based failures.
2. Prolong the Useful Service Life of the System or

Entity. (Figure 34.10)

Despite disciplined maintenance, over time the System or
Product failures begin to increase signaling the beginning
of the Increasing Failure Region (IFR).

34.3.4.7 Bathtub Curve—Increasing Failure Region
(IFR)

Principle 34.20

Wear-out Principle

Every system, product, or service in
active service exhibits a failure rate that
increases with age due to wear-out;

degradation of components and their mass properties; and
User use, misuse and abuse, and misapplication in its
Operating Environment.

The Increasing Failures Region (IFR), which is some-
times referred to as the Wear-out or End-of-Life Region,
begins when the Failure Rate, 𝜆(t), begins to increase. The
increase is due to Part wear-out by deterioration, fatigue, de-
pletion of materials, resulting from environmental, frictional,
and stress loading conditions over time.

Remember—The Bathtub Curve reflects System or
Product Level failures, not individual Parts per se (Cau-
tion 34.4). However, a single Part Level component may
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fail leading to a chain of reaction of failure effects that
result in an overall accident or incident (Figure 24.1).
As a result, a System or Product is only as reliable as
its weakest mission critical System Element and compo-
nent (Principal 34.4). Wilkins (2002) makes the following
observation:

“The shortest-lived component will determine the location of
the wear-out time in a given product. In designing a product,
the engineer must assure that the shortest-lived component
lasts long enough to provide a useful service life. If the
component is easily replaced, such as tires, replacement
may be expected and will not degrade the perception of
the product’s reliability. If the component is not easily
replaced and not expected to fail, failure will cause customer
dissatisfaction.” (Figure 5.2)

The essence of wear-out failures is their impact of
“wear and tear” stress on a Part’s remaining strength to
perform and withstand the stress. Table 34.2 provides a
listing of Operating Environment conditions and stress
effects2.

Example 34.9

Wear-out Failures

Examples of wear-out failures include: me-
chanical bearings that fail due to loading
and frictional effects, mechanical bushings

that wear through due to loading and friction; solder joints
that crack; highway bridge beams that crack due to loading,
thermal expansion and contraction, and corrosion; electronic
cable conductors that break due to constant back and forth
movement; electrical switches and relays that fail due to con-
stant use.

The Reliability Information Analysis Center (RIAC)
(2004) provides an illustration of the effects of Stress versus
Strength relationships in (Figure 34.11). O’Connor (1991,
p.5) refers to these as Load versus Strength relationships.

Since Chapter 34 focuses on Lifetime Data Distributions,
the general appearance of Figure 34.11 may appear to be
just another failure profile of two intersecting distributions.
The point being communicated may not be apparent. Take
another look and think of it in this manner.

Principle 34.21

Strength-Stress Principle

Every System or Entity should be se-
lected with a strength design margin
that exceeds its prescribed Operating
Environment conditions and stresses.

2Refer to NASA PD-EC-1101 (1995) for a more detailed listing of
Environmental Factors.

Humans, Enterprises, and Engineered Sys-
tems possess an inherent level of capability to
perform—strength. When external forces—stresses—
exceed strength, the capability degrades and inevitably
fails. That is the central theme of Figure 34.11. Systems
or Entities are Engineered and designed to withstand
exposure to forces and conditions in their Operating Envi-
ronment prior to, during, and after a mission. When those
forces and conditions—stresses—exceed their inherent
capabilities—strength, either instantaneously or over time,
System or Entity deteriorates, wears out, collapses, or
simply fails.

Figure 34.11 Panel A illustrates how the range of stressful
forces or conditions distribution overlaps the strength dis-
tribution. Observe the size of the overlapping shaded area
between the stress-strength distributions. The shaded area
clearly indicates a region that exhibits a higher probability
of the item’s stresses exceeding strength.

Now, consider what happens when a System or Entity
is Engineered with a safety factor (Chapter 31) to ensure that
its strength tolerance exceeds the worst-case stress condi-
tions of its Operating Environment. Figure 34.11 Panel
B provides an illustration. Observe how much the shaded
area has shrunk indicating a lesser probability that Oper-
ating Environment stresses will exceed the component’s
strength.

Besides the obvious, what is the point here? Systems or
Entities that: (1) consist of a robust architectural network
configurations – Series, Parallel, Series-Parallel (Figure
34.13) - discussed later, (2) have been Engineered with a
safety factor (Chapter 31) that drives Part selection, and
(3) have undergone strong Verification and Validation (V&V)
activities and Parts “burn-in” methods, the results should be
analogous to Figure 34.11 Panel B.

Returning to the Increasing Failure Region (Figure 34.6),
corrective maintenance costs begin to escalate significantly
driven by the Entity’s R&R. Eventually, the System Owner
is confronted with a decision that involves two trade-offs:
(1) refurbish or upgrade the existing System or Product
or (2) purchase a new one and retire/dispose of the existing
System or Product.

34.3.4.7.1 A Word about MTBF and the Bathtub Curve
Most people tend to think of MTBF as universally applicable
to all regions of the Bathtub Curve. However, a word of
caution:

A Word of
Caution 34.8

Radle and Bradicich (2013) point out that
the scope of MTBF applies only to ran-
dom chance failures that occur within the
Useful Service Life—SFR Region—before
wear-out. MTBF does not account for Early
Life or Wear-Out failures.
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TABLE 34.2 Examples of Operating Environment Conditions and Stress
Effects

Environmental Conditions Environmental Stress Effects

• Acceleration
• Altitude
• Dust/Sand
• EMI
• Fungus microbes
• Humidity
• Improper Assembly
• Hail/Sleet
• Ice/Snow
• Noise—Acoustical
• Overload
• Radiation—Solar
• Rain/Mist
• Shock—Loads
• Shock—Pyrotechnic
• Salt/Fog
• Temperature—Extremes
• Temperature—Shock cycling
• Temperature—Altitude
• Vibration—Random
• Vibration—Sine
• Wind

• Abrasion
• Absorption
• Aging (oxidation)
• Arching
• Buckling
• Chafing
• Clogging
• Compression
• Contamination
• Corona
• Corrosion
• Cracks/Fractures
• Deformation
• Degradation
• Deterioration
• Dissimilar metal interactions
• Etching
• Evaporation
• Expansion/Contraction—Thermal
• Fatigue
• Erosion
• Interference
• Jamming
• Leakage
• Misalignment/Creep
• Outgassing
• Puncture
• Resonance
• Rupture
• Tension
• Wear

A B

Large Region of Stress/
Strength Interference where
Failures Can Occur

Small Region of Stress/
Strength Interference where
Failures Can Occur

Stress Strength Stress Strength

Mean

Standard
Deviation

Stress/Strength Stress/Strength

F
re

qu
en

cy

F
re

qu
en

cy

(a) (b)

Figure 34.11 Part Stress versus Strength Relationship (Source: The Reliability Informa-
tion Analysis Center (RIAC), 2004, Used with Permission)
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They also caution that MTBF should not be used to
calculate the duration of the Useful Service Life of a System
or one of its Entities.

34.3.4.8 Service Life Extension Program (SLEP)

Principle 34.22

Useful Service Life Extension
Principle

The Useful Service Life of a system,
product, or service can be extended by
proactive, Just-in-Time (JIT) sequences

of preventive and corrective maintenance actions and up-
grades.

If the System Owner decides to pursue a refurbishment or
upgrade, the Useful Service Life typically can be extended
via a Service Life Extension Program (SLEP) as shown in
Figure 34.10. Otherwise, the System or Product progresses
into the Increasing Failure Region (IFR) indicated by the
dashed line and failures begin to increase. Key Point: de-
termine when the IFR is expected to occur and perform the
refurbishment or upgrade before that point in time.

The DAU, for example, defines a Service Life Extension
Program (SLEP) as follows:

• SLEP “Modification(s) to fielded systems undertaken
to extend the life of the system beyond what was
previously planned” (DAU, 2012, p. B-202).

Referring to Figure 34.10, let’s assume the SFR has a
random Failure Rate, 𝜆(t1 − t2) = 𝜆2, over the time interval.
At t2, a new technology upgrade is installed resulting in
an increased Failure Rate, 𝜆2(t2), initially due to the newly
installed components. Corrective actions are performed to
remove any residual latent defects bringing the interval
Failure Rate, 𝜆(t2–tn) down to 𝜆4. At tn+, another upgrade
is installed and the process repeats itself.

Recognizing that is an ideal scenario, how do we know
that the overall System Reliability Instantaneous Failure
Rate will taper down to 𝜆4 and 𝜆6? We do not know. The
presumption here is that if you have an existing System
or Product that has significant Stabilized Failure Region
(SFR) remaining, new technology upgrades should result
in increased reliability resulting in less maintenance. The
reverse could happen as well, especially if the System
Developer is not familiar with the technology, the technology
is immature, or misapplied.

34.3.4.9 System or Product Shelf Life

Principle 34.23

Shelf-Life Principle

Every System or Entity inherently has
a “use or lose” shelf-life that diminishes
due to the deterioration of material mass

properties over time and exposure to environmental condition
extremes—temperature, humidity, and other factors.

Our description of the Bathtub Curve assumes that a
System or Product is: (1) fully operational and (2) em-
ployed by the User from the time it is released. However,
some Systems or Products may be placed in storage that
may or may not be environmentally controlled. In some
cases, Part Level components such as lubricant seals, gas-
kets, and materials have a “shelf life” and naturally deteri-
orate over time. When taken out of storage, the “new and
unused” System or Product may experience failures—stress
versus strength (Figure 34.11)—based on a condition that
could be incorrectly categorized as wear-out.

34.3.4.10 Bathtub Curve Cautionary Note The key
theme from our discussion of the Bathtub Curve is as
follows:

• Each region of the Bathtub Curve is characterized
by different Lifetime Data Distributions (Figure 34.6)
that vary by System or Entity electronic versus
mechanical devices.

• Most reliability estimates are based on the SFR con-
sisting of a constant Hazard Rate, h(t), which is only
applicable to Systems or Entities with Exponential
Distributions.

To illustrate how the Hazard Rate, h(t) is misapplied
(Caution 34.5) in calculating System Reliability estimates,
consider the following example:

Example 34.10

Misapplication of the Constant
Hazard Rate, h(t)

To illustrate how the Constant Hazard
Rate is misapplied by the assumption that

the Bathtub Curve’s three failure regions are represented
by a Constant Hazard Rate, h(t), consider Figure 34.12
concerning human mortality rates.

Using the Weibull Model as a reference for characterizing
the true profile of human mortality, observe how the improper
application of a Constant Hazard Rate, h(t), would:

• Overestimate the true mortality rate for T(Age) ≤ 60
years old.

• Underestimate the true mortality rate for 60 <

T( Age) < 100+ years old.

In summary, make sure you understand the Lifetime Data
characteristics of the System or Entity before making as-
sumptions about the Lifetime Data Distribution to use (Cau-
tion 34.6). Then, validate that the Lifetime Data Distribution
accurately reflects the data.
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Figure 34.12 Illustration of Misapplication of the Constant Hazard Rate, h(t), to Human
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Heading 34.2

At this juncture, we have established a
foundation in understanding Lifetime
Data Distributions in terms of selecting
Systems or Entities to integrate into
Higher-Level Systems (Chapter 9). As

Entities we can arrange them in different configurations—
System Architecting—to achieve System or Product
outcomes and performance. How those configurations are
structured in combination with Entity or Part failures
characteristics determines a System or Product’s Relia-
bility. This brings us to our next topic, System Architecting
(Chapter 26) Reliability Network Configurations.

34.3.5 Architecting Reliable Systems and Products

A paradigm that pervades most Engineering Enterprises is
the notion that we architect a System or Product and
then initiate the System Design. When parts lists become
available, we initiate a Parts Count Estimate introduced later
to determine the System or Entity design will comply with
the System RMA requirements specified in the SPS. Observe
two key points here:

1. Someone accorded the title of System Architect creates
a vision of an elegant architecture without spending due

diligence time (Mini-Case Study 26.1) to determine if
the System or Entity will meet the SPS or EDS RMA
requirements.

2. Designers spend hours creating a multi-level design.
Then, emerge with Parts Lists to see if by chance the
result will be reliable.

What is wrong with this picture?
System Architectures are not created in vacuum. They

require insightful knowledge not only of the capabilities to
be provided but also how to maintain continuity and avoid
disruption to system capabilities to ensure completion of the
mission. That does not mean that Subsystems, Assemblies,
Subassemblies, or Parts will not fail. It means that if
they fail, the System or Product will continue to deliver
those capabilities without disruption. To illustrate this point,
consider the following example:

Example 34.11

Delivery of Reliable Mission
Performance With Minimal
Disruption

Laptop computers are designed to operate
from a primary power source such as 110 vac, 60 Hz.
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Figure 34.13 Examples of Series and Parallel Network Configuration Constructs

An internal, rechargeable battery is included to serve as
a back-up power source for remote operation when the
110 vac power is not available. The same is true for a
desktop computer with a Universal Power Supply (UPS) as
an external back-up power source.

From a System Reliability perspective, if a laptop or
desktop computer loses primary power, the System shuts
down, resulting in a potential loss of data and frustration by
its User. That is, the User’s mission has been disrupted and
obviously not completed.

As a result, laptop and desktop computers are designed to
switch over to back-up power sources, if available. Although
the User’s mission may be disrupted and inconvenienced by
the power failure, the performance-based mission outcome
is to preserve their data by having sufficient time to store
the data and close any open files. Since non-emergency
power failures typically last from a few minutes to a few
hours, it is conceivable that if the back-up power source has
sufficient energy, power may be restored before the battery
has lost its energy thereby avoiding disruption to the User’s
mission.

Architecting reliable Systems or Products requires
insightful knowledge into how various architectural
configurations—networks—affect System Reliability. From
a System Development perspective, we normally begin with
allocation of System RMA requirements from the SPS to the
System Element Architecture (Figure 8.13)—Personnel,
Equipment, and so on. Then, within the Equipment Ele-
ment, allocate its SPS RMA requirements to Products →

Subsystems, and so on. However, that approach is depen-
dent on understanding how System Reliability is calculated
based on the architectural network configurations. Given
that dependency, let’s reverse the normal approach and begin
with some elemental building blocks.

Architecturally, System Reliability estimates are calcu-
lated based on the three types of architectural network con-
figurations: (1) Series, (2) Parallel, and (3) Series–Parallel.
If the titles sound familiar, the computations are similar to
Electrical Engineering network configurations.

34.3.5.1 Series Network Configuration Reliability

Principle 34.24

Series Network Reliability Estimates

The reliability of a Series Network Con-
figuration, RSeries, composed of “n” com-
ponents is computed as the product of the

reliabilities in the general form of RSeries(t) = [R1(t) R2(t)
R3(t) … Rn(t)].

A Series Network Configuration consists of two or more
Entities connected in series as shown in Figure 34.13
Panel A.

Mathematically, we express this relationship as follows:

RSeries(t) = [R1(t) ⋅ R2(t) ⋅ R3(t) … Rn(t)] (34.36)

where:

• RSeries(t) = Overall reliability of the Series Network
Configuration
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• Rn(t) = Reliability of Component #n

Substituting Eq. 34.3 in Eq. 34.36:

RSeries(t) = e−(𝜆1+ 𝜆2 𝜆3 … 𝜆n)(t) (34.37)

where:

• 𝜆n = Instantaneous Failure Rate, 𝜆(t), of the nth
component as a function of time, t.

• t = Continuous variable.

Consider the following example:

Example 34.12

Series Network Configuration
Example

Assume a simple System with three
Subsystems connected in a Series Net-

work Configuration as shown in Figure 34.13 Panel A.
Subsystem #1 R(t) = 0.985, Subsystem #1 R(t) = 0.995,
Subsystem #1 R(t) = 0.99. What is the Reliability for the
Series System?

Applying Eq. 34.36:

Series System R(t) = [R1(t) ⋅ R2(t) ⋅ R3(t)]

Series System R(t) = (0.985) ⋅ (0.995) ⋅ (0.99)

Therefore, Series System R(t) = 0.97 subject to Equipment
and Operating Environment conditions.

34.3.5.2 Parallel Network Configuration Reliability

Principle 34.25

Parallel Network Reliability Principle

The reliability of a Parallel Network Con-
figuration, RParallel is computed as a math-
ematical series of component reliabilities,

R(t) in the general form 1 − [(1 − R1(t))( 1 − R2(t)) …
(1 − Rn(t))].

The second type of reliability network configuration
consists of two or more entities connected in parallel as
illustrated in Figure 34.13 Panel B. We refer to this construct
as a Parallel Reliability Network and express this relationship
as follows:

RParallel = (R1(t) + R2(t)) − R1(t)R2(t)

For one-out-of-two redundancies (34.38)

where:

• RParallel = Overall reliability of a bounded Parallel
Network Configuration

• R1 = Reliability of Component #1

• R2 = Reliability of Component #2

Eq. 34.38 can become unwieldy, especially for large
quantities of components. However, we can simplify the
equation by restructuring it in the following form:

RParallel = 1 − [(1 − R1(t))(1 − R2(t)) … (1 − Rn(t))]
(34.39)

where:

• Each (1 – R(t)) term represents the respective Parallel
Component’s unreliability.

• Eq. 34.39 assumes that 1-out-of-n components are fully
operational.

Observe the phrase “1-out-of-n Components are fully
operational.” For mission and safety critical systems such as
aircraft, the Space Shuttle, medical devices or back-up gen-
erators, deliverable System procedures may specify that a
minimum of k-out-of-n units are fully operational within SPS
RMA requirements to properly continue with a mission. The
total quantity of redundant components and quantity working
simultaneously are system-dependent. Eq. 34.39 represents
1-out-of-n. Examples include 2-out-of-4 and 2-out-of-5 com-
binations. Each set of equations is different.3

While each additional Entity in Eq. 34.39 interjects an
additional component subject to failure and maintenance,
the Parallel Network Configuration increases the overall
System Reliability. To illustrate this point further, consider
the illustrations shown in of Figure 34.14 Panels A–C.
Note how the addition of redundant entities with identical
reliabilities increases the overall reliability.

Example 34.13

Parallel Network Configuration
Example

Assume a simple System with three re-
dundant subsystems connected in a Paral-

lel Network Configuration as shown in Figure 34.14 Panel
C. Subsystem #1 R(t) = 0.985, Subsystem #2 R(t) = 0.995,
Subsystem #3 R(t) = 0.99. What is the Reliability for the
Parallel Network Configuration?

Applying Eq. 34.39:

Parallel System R(t)=1−[(1 − R1)(1−R2) (1−R3)]

Parallel System R(t)=1−[(1−0.985)(1 − 0.995)(1−0.99)]

Parallel System R(t)=1 − [(0.015)(0.005)(0.010)]

Parallel System R(t) = 0.99999… Subject to Equipment
and Operating Environment conditions.
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Figure 34.14 Illustration Depicting How Parallel Network Configuration Redundancy
Improves System Reliability

We purposely used the same Subsystems in the Paral-
lel Network configuration example as we did in the previous
Series Network Configuration Example 34.12. Observe how
the multiplicative effects Series Network Configuration re-
duce Reliability, R(t)Series, compared to the Parallel Network
Configuration reliability, R(t)Parallel. Since network configu-
rations are often complex, R&M Engineers often use a Parts
Count Estimate that assumes all Part Level components are
connected in Series, which results in a lesser Reliability as
a “Quick Look” estimate. If the “Quick Look” Reliability
magnitude is greater than the SPS or EDS Reliability re-
quirement, they assume that the actual System or Product
Reliability will be better.4

34.3.5.3 Series–Parallel Network Configuration
Reliability The third reliability network construct consists
of combinations of Series–Parallel branches as shown in
Figure 34.15. We refer to this construct as a Series–Parallel
Network Configuration. Computation of the Reliability is
a multi-step process. To illustrate, consider the following
example:

3Refer to RAC (2001) for a listing of k-out-of-n equations that can be applied
to various combinations of requirements.
4For additional information, RAC (2001) provides a summary of “Re-
dundancy Equations for Calculating Reliability” for 1-out-of-n, 2-out-of-n,
3-out-of-n, that must be working at any given instant of time.

Example 34.14

Series–Parallel Network
Configuration Problem

Assume a simple System with three re-
dundant Subsystems connected in a Par-

allel Network Configuration as shown in Figure 34.15.
Subsystem #A1 R(t) = 0.99, Subsystem #A2 R(t) = 0.975,
Subsystem #A3 R(t) = 0.995, Subsystem #A4 R(t) = 0.965,
Subsystem #B R(t) = 0.98, Subsystem #C1 R(t) = 0.985,
Subsystem #C2 R(t) = 0.995, Subsystem #C3 R(t) = 0.99.
What is the Reliability for the Series-Parallel System?

Step 1—Compute Product A Series Network Reliability
(Eq. 34.36) consisting of Subsystems A1 and A3:

Product A Series Network (A1 − A3) Reliability,

R(t) = [RA1(t) ⋅ RA3(t)]

Product A Series Network (A1 − A3) Reliability,

= [0.99 ⋅ 0.995] = 0.985

Step 2—Compute Product A Series Network Reliability
(Eq. 34.36) consisting of Subsystems A2 and A4:

Product A Series Network (A2 − A4) Reliability,

R(t) = [RA2(t) ⋅ RA4(t)]
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Figure 34.15 Example of a Series–Parallel Reliability Network Configuration

Product A Series Network (A2 − A4) Reliability,

R(t) = [0.975 ⋅ 0.965] = 0.941

Step 3—Compute Product A Parallel Network Re-
liability (Eq. 34.39) consisting of Subsystems
(A1–A3)||(A2–A4):

Product A Reliability,

R(t) = 1 − [(1 − RA1||A3)(1 − RA2||A4) ]

Product A Reliability,

R(t) = 1 − [(1 − 0.985)(1 − 0.941)]

Product A Reliability,

R(t) = 0.999

Step 4—Compute Product C Parallel Network Reliabil-
ity (Eq. 34.39) consisting of Subsystems C1 – C3:

Product C Reliability,

R(t) = 1 − [(1 − RC1)(1 − RC2)(1 − RC3)]

Product C Reliability,

R(t) = 1 − [(1 − 0.985)(1 − 0.995)(1 − 0.99)]

Product C Reliability,

R(t) = 0.99999

Step 5 – Compute System Reliability (Eq. 34.36) – Series
Network Product A → Product B → Product C:

System Reliability, R(t) = [RA(t) ⋅ RB(t) ⋅ RC(t)]

System Reliability,R(t) = [(0.999)(0.98)(0.99999)]

System Reliability,R(t) = 0.979

Author’s Note 34.5

As a reminder … On the basis of the
Series Network Configuration math
(Example 34.12), observe that every
component added to a System or
Product increases the probability

of it experiencing a failure (proportional to the failure
rate). Adding redundant—parallel—components increases
both maintenance corrective actions and costs; however, it
also increases the likelihood or probability of a successful
mission. Although System Reliability has increased, System
Maintainability cost increases as well due to the additional
hardware and/or software.

34.3.5.4 Application of Reliability Network Modeling

Principle 34.26

Design Modifications Principle

The System Design Solution is not open
to random, ad hoc modifications up until
the day the System or Product is ac-

cepted for delivery without major cost, schedule, and risk
consequences.
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Textbooks typically address System Reliability modeling
as an introduction to Series, Parallel, and Series–Parallel net-
work structures and leave the impression that network mod-
eling should occur at all levels of abstraction. Theoretically
and ideally, this is true. However, it may be impractical. Why?
Several reasons:

• Reason #1—Reliability Engineers are being subjected
to “quick turn-around” cycles to provide immediate
System Design decision support feedback. This is due
to the evolving and maturing designs provided by the
designers that may be in a constant state of change, es-
pecially in ad hoc SDBTF-DPM Paradigm Enterprises.
That condition is a separate matter that needs to be
dealt with by management that recognizes the fallacies
of the paradigm. Your role as an SE is to “maintain
intellectual control of the problem solution” (Princi-
ple 1.3) and bring stability to ad hoc decision making
(Principle 14.2). Contrary to management views exer-
cising their power and authority, the System Design
Solution is not open to random, ad hoc modifications
up until the day the System or Product is accepted
for delivery without major cost, schedule, and risk
consequences.

• Reason #2—A System is simply a large collec-
tion of Part Level components physically integrated
into levels of abstraction to achieve a higher level
purpose—e.g., emergence (Chapter 3)—bottom-up. In
general, the System Design Process (Figure 14.9) pro-
gresses top-down in maturity as a function time. The
intent is to bring stability to higher-level decisions to
enable lower levels to make informed decisions and
stabilize. As discussed in Chapter 8, a System or
Product is simply parts aggregated into Entities at
various levels of integration. The Part Level compo-
nents are the ones that provide the physical data that
enable computation of reliability. Therefore, the the-
oretical foundation for network modeling begins with
(1) the Part Level, which is the last level in many cases
to be defined and (2) the integrated characteristics of
higher-level Entities. This gives little time to estab-
lish large, complex, multi-level, network models. The
best we can hope for is an estimation or approximation
of reliability.5

Given an understanding of the Series–Parallel Network
Configuration Models, we are better postured to address
the top-down allocation of SPS Reliability requirements
to the System or Product’s Architectural framework that
employs these models.

5For additional information concerning reliability modeling, refer to
Nicholls (2007).

34.3.6 System Reliability Requirements and
Performance Allocation

Principle 34.27

Reliability & Maintainability (R&M)
Allocations Principle

Allocation and flow down of System
Performance Specification (SPS) R&M

requirements to lower levels of Entity Development Speci-
fications (EDSs) should be based on:

1. A Reliability Allocations Block Diagram.

2. Supported by a documented R&M network configura-
tion analysis including assumptions.

The discussions in the earlier part of the System Relia-
bility focused on how System Reliability is used to assess
the reliability of a proposed or existing System Design for
compliance to SPS or EDS requirements. Effectively, this
is an “after-the-fact” assessment as a design evolves and
matures. The challenge is: How do SEs allocate and flow
down the SPS Reliability requirements “up front” to lower
Products, Subsystems, Assemblies, Subassemblies, and
Parts? The answer is: a highly iterative process attempting
to balance the allocations based on cost, performance, and
risk. R&M tools as well as M&S of architectural network
configurations can aid the process. The mechanism for allo-
cating the System Reliability requirements is the Reliability
Allocation Block Diagram shown in Figure 34.16.

For an easy starting point, we assume Subsystems #1–#3
operate in a Serial Network Configuration. This may or may
not be true. However, for a worst-case starting point we as-
sume they are in series. Remember, the System Reliability
of a Series Network Configuration diminishes rapidly as a
multiplicative product using Eq. 34.36. If the worst-case Se-
ries estimate represents achievable reliability targets for the
Entities, then establish those as initial System Architectural
configuration starting points. Otherwise, you will have to ei-
ther: (1) reallocate reliability performance or (2) innovate
an architecture for the Entity to meet the initial reliability
performance target.

34.3.7 Parts Count Reliability Estimates

Principle 34.28

Parts Count Reliability Estimate
Principle

Employ Parts Count Reliability Estimates
as a “quick look” assessment of a System

or Entity’s reliability based on generalized assumptions
about component type categories, failure rates, quanti-
ties, and quality factors operating in a Series Network
Configuration.

During proposal efforts, a System Developer as an Offeror
needs to be able to estimate a System’s Reliability for
compliance to the SPS Reliability requirements. The same
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Figure 34.16 Example Illustration of a Reliability Allocation Block Diagram and
Implementation

is true for lower levels of System Design in complying with
the respective EDS Reliability requirements allocated to its
specification. Obviously in these two cases, the System or
Product has not been designed; however, preliminary parts
lists may exist. How can we estimate the System or Entity’s
Reliability? The answer resides in a method referred to
as a Parts Count Reliability Estimate. MIL-HDBK-0217F
defines the term as follows:

• MIL-HDBK-0217F, in general, provides detailed in-
formation about the failure rates of specific types of
electronic components such as capacitors, resistors,
and semiconductors. Parts Count Reliability Esti-
mate “This prediction method is applicable during bid
proposal and early design phases when insufficient in-
formation is available to use the part stress analysis
models shown in the main body of this Handbook… ”
MIL-HDBK-0217F (1991) (p. A-1).

Parts Count Reliability Estimates are based on general-
ized:

1. Categories of Parts—resistors, capacitors, Integrated
Circuits (ICs), relays, motors, etc.

2. Failure Rates of Part Types.

3. Quantity of a given Part Type in each category.

4. Quality factors of each Part Type.

Referral Refer to MIL-HDBK-0217F Appendix A
p. A1 “Parts Count Reliability Prediction” for details
concerning the computation and instructions for dis-
tributed Entities—Products, Subsystems—within the
System that may have different Operating Environ-
ment conditions. The appendix includes tabular summaries
of: (1) generic failure rates for various categories such
as microcircuits, discrete semiconductors, inductive and
electromechanical devices and (2) quality factors.

For additional information about Electronic Reliability
Design estimates, refer to MIL-HDBK-338B.

34.3.8 Failure Modes & Effects Analysis (FMEA)

Principle 34.29

System Reliability and FMEA-Based
Architecting Principle

The robustness of a System or Entity’s
Architecture (Principle 26.17) is deter-

mined by its ability to detect, tolerate, and contain faults
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(Principle 26.16) as a result of rigorous Failure Modes &
Effects Analysis (FMEA) and corrective actions via its com-
pensating and mitigating actions.

Simply constructing reliability network configuration
models of the System Architecture and System Elements
elements provides some insights for System Reliability.
However, component failure effects range from benign and
non-threatening to catastrophic. As a result, SEs need to un-
derstand: (1) how and in what ways a System or Product
fails and (2) what the potential ramifications of failure prop-
agations (Figure 26.8) are in terms of mission completion.

Engineered Systems should also undergo Safety Analysis
to assess the risks and potential adverse impacts to the
system, general public, and the environment. The Safety
Analysis involves conducting a FMEA. What is an FMEA?
The FAA SEM (2006) and MIL-HDBK-470A define an
FMEA as:

• FMEA (FAA) “An evaluation process for analyzing
and assessing the potential failures in a system, i.e.
a systematic method of identifying the failure modes
of a system, a constituent piece, or function and
determining the effects on the next higher level of the
design” (FAA SEM, 2006, Vol. 3, p. B-4).

FMEA (DoD) “A procedure by which each poten-
tial failure mode in a product (system) is analyzed to
determine the results or effects thereof on the prod-
uct and to classify each potential failure mode ac-
cording to its severity or risk probability number”
(MIL-HDBK-470A, p. G-5).

These definitions lead to the question: what is a failure
mode? MIL-HDBK-470A (p. G-5) defines a failure mode as
follows:

• “Failure Mode The consequence of the mechanism
through which the failure occurs, that is, short, open,
fracture, excessive wear.”

Failure Modes produce failure effects that can cause
consequential injury or damage. MIL-HDBK-470A defines
a failure effect as:

• Failure Effect “The consequence(s) a failure mode has
on the operation, function, or status of an item. Failure
effects are typically classified as Local, Next Higher
Level, and End Effect” (MIL-HDBK-470A, p. G-5).

Based on these definitions, what is the purpose of an
FMEA?

34.3.8.1 FMEA Purpose The purpose of the FMEA is to:

1. Understand how a System or Product and its com-
ponents might fail due to misapplication, misuse,
or abuse by Users—operators, maintainers, poor de-
sign, or have one or more Single Failure Points
(SFPs).

2. Identify, assess, and prioritize failure mode and effects
risks.

3. Develop compensating or mitigating actions to mini-
mize failure mode effects.

Author’s Note 34.6

Compensating or Mitigating
Actions

Failure effects can be mitigated and
compensated in the Equipment Ele-
ment design or through any of the

other System Elements – Personnel (Training), Mission Re-
sources – threat avoidance, or Procedural Data – Instructional
or Operator’s Manuals. As an example, refer to Mini-Case
Study 24.1.

MIL-HDBK-470A (p. 4–34) also notes that:

“The results of the FMEA are used to determine place-
ment and nature of test points, to develop troubleshooting
schemes, to establish design characteristics relative to the
ease of maintenance, and to develop fault detection and iso-
lation strategies.” Refer to (Principle 26.16).

System Reliability encompasses more than simply eval-
uating the Physical System Design Solution to compute
Lifetime Data Distribution metrics to verify compliance.
Although this is a necessary condition for System Reliabil-
ity, it is insufficient in terms of a sound SE practice to en-
sure System or Product capabilities survive the duration of
the mission. The true value in System Reliability estimates
depends on how the estimates are incorporated as correc-
tive actions into the evolving and maturing System Design
Solution.

An FMEA assesses the total System Design Solution,
not just Subsystems, Assemblies, Subassemblies, or
Parts. This includes: Physical Domain Solution architec-
ture (Figure 14.1); external and internal interfaces—Human,
external system; component reliabilities and performance
de-rating assumptions; SFPs; and Part proximity to po-
tential failure sources or conditions (Figure 26.12). Each
of these conditions or failure modes may be self-contained
within an Entity or even worse propagate beyond the
Entity’s boundaries (Figure 26.8) causing a chain re-
action of failure effects as addressed earlier in Reasons
(1990) Accident Trajectory Model application shown in
Figure 24.1.
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Another key point: Performing an FMEA illustrates why
System Architecting requires more than lashing Entities to-
gether into a framework and declaring it an architecture. The
FMEA should include a focus on eliminating and containing
faults within the System Architecture as discussed earlier in
Principle 26.16 and Figure 26.8 illustrates.

To better understand what an FMEA is, let’s explore its
methodology.

34.3.8.2 FMEA Methodology The FMEA methodology
is based on an analytical process that identifies a System or
Product’s potential failure modes, their effects on perfor-
mance, and determines compensating or mitigating design
actions for correcting or reducing the effects.

Using Figure 34.16 as a reference, Mission performance
of a System or Product is driven by its: (1) Operating En-
vironment—Threats—Human Systems, Natural, and
Induced and (2) Operational Scenarios that impact all Lev-
els of Abstraction. Analysis of: (1) the inherent, multi-level,
System Design Solution and (2) the impact of the Operating
Environment stresses on the residual strength of compo-
nents (Figure 34.11) may produce various types of failure
modes. Each failure mode may produce Failure Effects that
jeopardize completion of the mission or its success.

When failure modes are identified, each is assigned a
Unique Identifier for tracking purposes and subjected to a

Risk Assessment. As part of a typical Risk assessment, each
failure mode’s Probability or Likelihood of Occurrence is
assessed in combination with its Consequences of Failure
to determine its Level of Risk. On the basis of the Level
of Risk and Severity Classification, Mitigating Actions are
formulated and submitted as corrective actions for updating:
(1) Standard Operating Practices and Procedures (SOPPs)
and (2) Design Modifications into the appropriate Entities
of the System or Product. On the basis of the FMEA
results:

1. SEs can orchestrate design-mitigating actions such as
redesign and procedural changes (Figure 24.1) that
enable cost-effective ways to mitigate the risks of
failure mode effects.

2. System operators and maintainers can perform com-
pensating provisions (Mini-Case Study 24.1) to re-
cover from potential failure modes by applying Systems
Thinking and corrective actions.

Note the compensating provisions by System operators
and maintainers. Perhaps one of the best illustrations of
compensating provisions is captured in Mini-Case Study
24.1. Chuck Yeager applied compensating provisions to
an F-86 Sabre test pilot aircraft to recover from a poten-
tially fatal crash condition. His quick Systems Thinking
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Figure 34.18 Fault Tree Example – Remote Controlled Television Power Activation

(Chapter 1) ultimately lead to solving a mysterious aircraft
latent defect - fault - that migrated undetected in the aircraft’s
manufacturing process and cost several test pilot lives that
lead to design mitigation actions.

This brings up a question: How do we identify failure
modes? M&S of the Physical System offers one method via
Cause and Effect Analysis. Another method is Fault Tree
Analysis (FTA), our next topic.

34.3.8.3 Fault Tree Analysis (FTA) One method for un-
derstanding how a System or Entity may fail is to create
fault trees. Figure 34.18 provides an example of a simple tele-
vision hand-held remote. Boolean circuit symbology, such as
AND and OR gates, is used to represent the sequence of de-
pendencies and how each impacts the outcome, TV turns On.

Sometimes even FTA and M&S methods do not provide
adequate identification of potential failure modes due to po-
tential timing conflicts and Operating Environment con-
ditions. As a result, testing becomes the last line of defense
for detecting and isolating latent defects—faults—that can
later manifest themselves as failure modes during the System
Operations, Maintenance, and Sustainment (OM&S) Phase.

A Word of
Caution 34.9

Remember—FTA can provide very valu-
able insights into the chain of logical and
physical dependencies such as electrical,
mechanical, and software interactions. As
noted in Figure 34.18, the FTA does not pro-
vide insights concerning the impact of phys-

ical layouts and proximity to component failures that may
cause other components to fail unless you make the effort to
address such.

This point illustrates the critical importance of allocating
as much time for SITE—up to 40% or more (Heuristic
28.1). Instead, Enterprises and projects, especially those
that exhibit the ad hoc SDBTF-DPM Paradigm. These
Enterprises allow design teams to wander around delivering
the designs late leaving only 10–20% or less of the project
schedule for SITE.

Practically, it is impossible to find every conceivable fail-
ure mode “on the ground in a controlled test environment.”
You have to subject the System or Entity to actual use in
its Operating Environment to discover unknown failure
modes.



SYSTEM RELIABILITY 765

34.3.8.4 FEMA Risk Assessment Matrix FMEA also
requires an insightful risk assessment of a Failure Mode’s
probability of occurrence and the severity—consequences
of failure. MIL-STD-882E, for example, uses the Risk
Assessment Matrix illustrated in Figure 34.19 to assess
a potential failure mode’s probability of occurrence and
severity.

• Probability of Occurrence Categories—Represent a
qualitative measure of the Probability of Occurrence—
Frequent, Probable, Occasional, Remote, Improbable,
and Eliminated.

• Severity Categories—Represent a qualitative measure
of the potential Failure Mode effects—Catastrophic,
Critical, Marginal, and Negligible.

Former MIL-STD-1629A defined severity as:

• Severity “The consequences of a failure mode. Sever-
ity considers the worst potential consequence of a
failure, determined by the degree of injury, property
damage, or system damage that could ultimately oc-
cur.” (MIL-STD-1629A, p. 3).

One of the unique features of an FMECA is the assign-
ment of Risk Priority Numbers (RPNs) that can be parti-
tioned into Levels of Risk—Low, Medium, or High Risk.
MIL-STD-882E RPNs are calculated as follows:

Risk Priority Number (RPN) = Severity(S) ⋅ Occurrence(O)
(34.40)

Observe that Risk Levels are identified in intersecting cells
of the Probability of Occurrence (rows) versus Severity
(columns) of Figure 34.19 based on the RPNs.6

Dhillon (1999, p. 54) expands Eq. 34.40 to include an
additional multiplicative factor, Detection Rate (DR), as
shown below and rating criteria (Dhillon, Table 4.3, p. 54).

Risk Priority Number (RPN)

= Severity (SR) ⋅ Occurrence (OR) ⋅ Detection (DR)
(34.41)

Remember—The FMEA Risk Assessment Matrix simply
enables us to identify: (1) the existence of a risk and (2) its
level of significance. That does not necessarily infer that
proactive corrective actions have been initiated to mitigate
the risk in the System Design Solution. To address this
point, Enterprises and projects create FMEA worksheets that
provide details for tracking Failure Modes. Although the
inference here is a paper worksheet, FMEA data should be
tracked via an online database accessible to project personnel
on a need-to-know basis.

The preceding FMEA overview discussion brings us to
our next topic, the FMEA Worksheet and its Data Collection.

34.3.8.5 FMEA Worksheet and Data Collection There
are numerous ways of creating an FMEA Form for recording
results of the analysis. Although MIL-STD-1629A was

6For additional information on these topics, refer to MIL-STD-882E
(pp. 10–13) and US Department of the Army TM 5-698-2 (2006).
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cancelled many years ago and has not been replaced, it is
still searchable via the internet.

Figure 34.20 refers presents the FMEA output as a
worksheet—traditional paper. However, FMEA information
should be tracked as Failure Mode-based records in an on-
line database. The database should be accessible to all project
personnel that have Need-to-Know access with specific cre-
ate, read, modify, or delete access privileges. The worksheet
is simply an online form that can be used to collect FMEA
data and enter it into the database.

34.3.8.6 FMEA Focus Areas As evidenced by the FMEA
Risk Assessment Matrix (Figure 34.19), some Failure Modes
are significant, have a frequent Probability of Occurrence,
and pose various levels of Severity. One of the challenges due
to limited FMEA resources is over-identification of failure
modes and effects. How do you determine what is to be
included in an FMEA? DoD 4151.22-M (2011, p. 8) provides
the following guidance:

“… if a failure mode meets one or more of the criteria
(listed below), then the failure mode should be included in
the analysis:

(a) Those that have happened before.

(b) Those that have not happened but are real possibilities.

(c) Those that have not happened and are unlikely to occur
but have severe consequences.

(d) Those currently managed by a failure management
strategy.”

Observe the reference in the last item above to “a fail-
ure management strategy.” The FMEA process is ongoing
throughout the System Development Process. As Failure
Modes are identified, they are assessed and tracked via
the FMEA database for risk mitigation and preferably
elimination.

34.3.8.7 FMEA Outputs The results of an FMEA consist
of recommendations in the form of compensating or mitigat-
ing actions for a System or Product. From a System Main-
tainability perspective, MIL-HDBK-470A suggests that the
primary outputs of an FMEA include:

• “Identification of single point failures.
• Fail-safe design deficiencies.
• False alarm occurrences.
• Operator/maintenance person safety considerations.
• Potential failure detection methodology, including:

a. Protective and warning devices.
b. Failure over-ride features.
c. Built-In Test (BIT) provisions” (MIL-HBDK-470A,

p. 4–34).
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Avoid the notion that an FMEA is just a casual “Go Do”
task (Figure 2.12). MIL-HDBK-470A explicitly states:

“The FMEA should describe the means by which the occur-
rence of a specific functional failure (failure mode) is de-
tected and localized by the operator or maintenance person”
(MIL-HBDK-470A, p. 4–34).

Now, reread the MIL-HBDK-470A quote above. Observe
that it didn’t say “identify failures”; it said “… describe …
how each failure occurrence “is detected and localized by the
operator or maintenance person.” This is a major paradigm
shift from traditional Engineering; recognize and appreciate
the difference!

34.3.9 Failure Modes & Effects Criticality Analysis
(FMECA)

For Systems or Products that require high levels of relia-
bility such as spacecraft, medical, military, or financial, the
FMEA can be expanded to include a Criticality Analysis of
specific component reliability and their effects. We refer to
this as a FMECA. The US FAA defines an FMECA as:

• FMECA (FAA) “An analysis method used to identify
potential design weaknesses through a systematic anal-
ysis approach that considers all possible ways in which
a component may fail (the modes of failure); possible
causes for each failure; likely frequency of occurrence;
criticality of failure; effects of each failure on sys-
tems operation (and on various system components);
and any corrective action that may be initiated to pre-
vent (or reduce the probability of) the potential problem
from occurring in the future” (FAA SEM, 2006, Vol. 3,
pp. B-4, 5).

The FMECA should analytically identify Reliability Crit-
ical Items (RCIs) that require specification, selection, and
oversight. Consider the following example:

Example 34.15

Electrostatic Discharge (ESD) and
Shelf-Life Considerations

Failures in aircraft Flight Control System
(FCS) sensors such as gyroscopes and

accelerometers can result in major accuracy and safety
issues. Therefore, these components should be designated
as RCIs.

RCI solutions include: isolating RCI components,
specifying higher reliability components, or implementing
redundancy with less-reliability components. Redundancy,
however, compounds the System’s Reliability, and increases
the Equipment - Hardware and Software - maintenance
costs due to the increased parts counts.

Some Systems or Products also require special con-
siderations such as Electro-Static Discharge (ESD) methods
during manufacture and testing to preclude premature fail-
ures due to poor manufacturing handling procedures. Addi-
tionally, systems that are stored for extended periods of time
before usage may have components with a limited shelf life.
Therefore, factor ESD and shelf-life considerations into Sys-
tem Reliability estimates and design requirements.

FMECAs assess the criticality of Entities and Parts
using a Criticality Matrix based on a number of factors
that include Failure Mode Criticality Number and an Item
Criticality Number.

Referral For additional information about FMECAs,
please refer to:

• MIL-STD-1629A, pp. 102–1 to 102–7 for a more
detailed description of FMECA development.

• US Army TM 5-698-4 (2006) for detailed descriptions
of FMEAs and FMECAs.

34.3.10 System Reliability Summary

As a final point, one of the ironies of System Developer
Enterprises is the compelling need-to-know the Reliability
of the System. Pressures become relentless by executives
to refine Reliability estimates to ensure compliance with
the SPS—makes perfect Engineering sense. Then, as the
physical Subassemblies, Assemblies, Subsystems, and
Products are being developed and actual data become
available, everyone looses interest in validating the original
System Reliability estimates until the next project begins. At
that point, it comes down to:

1. The professional discipline and initiative of an indi-
vidual to periodically document even rudimentary re-
liability data for current and future project reference
or …

2. Develop reliability models as legacy designs for use in
the next System or Product application.

However, even these tasks are subject to being funded. If
they are not funded, they are not performed.

When the next project starts, the chaos repeats itself.
Objectively, if you work in an Enterprise that has a product
line that is periodically updated or leverages and validates
legacy designs and models with actual field data, there is no
practical reason why you should not have reasonably accurate
reliability models of these designs. Otherwise, you may not
be in business very long!
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34.4 UNDERSTANDING SYSTEM
MAINTAINABILITY

From a business perspective, if a System or Product ex-
periences a failure, it produces an internal chain reaction.
When a System or Entity requires maintenance, (1) rev-
enue ceases, and (2) money is expended to restore it opera-
tionally, which impacts profitability. The same analogy ap-
plies to Users and End Users such as: (1) consumers—who
derive pleasure from commercial products such as TVs,
smartphones, and devices; (2) medical patients requiring
surgery, MRIs, kidney dialysis, and services; (3) transporta-
tion vehicle services—aircraft, trains, and (4) telecommuni-
cations cable networks.

The efficiency and effectiveness of maintenance actions to
keep a System or Entity operational and producing revenue
is exemplified by its maintainability. More specifically, a
System or Entity’s maintainability is a measure of its
capability to be restored from a degraded or failed state
to a specified level of performance within a designated
time standard. Therefore, Maintainability Engineering, like
many other disciplines, must be an integral part of the
SE decision-making process during the proposal phase and
beginning with Contract Award. The starting point begins

with formulation of a Maintenance Concept introduced in
Table 6.1.

Most textbooks approach Maintainability - like Reliabil-
ity - with equationitis. Equations are mechanistic and neces-
sary but insufficient for addressing the underlying concepts
SEs need to understand to be able to apply them. To address
this point, let’s begin with a few of the underlying concepts
of Maintainability. Figure 34.21 serves as a guide.

• Graph A—Illustrates a concept referred to as
the Equipment Failure Condition Trajectory
(Potential-Function Interval) (P-F) Curve addressed
later in Figure 34.25. If we allow a System or En-
tity to Run to Failure (RTF), for example, lubricants
degrade or breakdown to a point where they need
to be replaced. When maintenance is lacking, the
lubricants become a fault (Figure 26.8) or hazard
(Figure 24.1) in the form of friction resulting in heat
in mechanical systems. Due to the unnecessary wear
and tear, the fault propagates (Figure 26.8) into sur-
rounding components that may be mission or safety
critical.

• Graph B—Illustrates the MTTF for repairable or
non-repairable Systems or Entities. Let’s assume
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that (1) when the P-F Curve (Graph A) hypothetically
crosses the horizontal axis indicating failure and (2) the
P-F Curve represents a statistically valid sample of
Systems or Entities. Therefore, the MTTF (Graph B)
represents those failures. Non-repairable Systems or
Entities are: (1) removed and discarded via disposal
processes and (2) replaced by components that may or
may not be identical to the Original Equipment Manu-
facturer (OEM) components but provide the same form,
fit, and function as the OEM System or Entity.

• Graph C—Illustrates the Mean Time To Restore
(MTTR) the System or Entity to a specified ser-
viceable condition. When the System or Entity is
unavailable to perform missions, we refer to it as
Down Time (DT). Where DT represents the mean for
a diverse set of Systems or Entities, Mean Down
Time (MDT) is used as the metric. During MDT,
corrective maintenance actions are performed to repair
and restore the System or Entity to a serviceable
condition. This brings us to a key point for repairable
Systems or Entities: MTBF represents the MTTF
plus MTTR.
Obviously, in the hypothetical discussion above, we
do not allow Systems or Entities to Run-to-Failure
(RTF) such as the light bulb example in Figure 34.1.
This is where Maintainability becomes a key corner-
stone of RMA. From a Risk and Opportunity Manage-
ment (R&OM) perspective, how does Maintainability
reduce the: (1) risk of failure – risk avoidance – and
(2) MDT? The answer is: scheduled maintenance ac-
tions (Graph D).

• Graph D—Illustrates how scheduled or periodic main-
tenance actions are established based on a safety mar-
gin prior to the commencement of wear and tear
(Graph A). We refer to this activity as preventive main-
tenance. When properly performed in a timely manner,
the Useful Service Life of the System or Entity is
prolonged.

Author’s Note 34.7

MTTF – Repairable versus
Non-Repairable Systems

Traditionally, R&M relegates MTTF
to non-repairable items and MTBF

to repairable items. The reality is: both repairable and
non-repairable items have an RTF PDF with a central mean
represented by the MTTF. Beyond that point, each is treated
differently. Non-repairable items are disposed; repairable
items are restored to a serviceable condition.

Given this background, let’s begin with a discussion of
Maintainability versus Maintenance – What is the Differ-
ence?

34.4.1 Maintainability versus Maintenance—What Is
the Difference?

Principle 34.30

Maintainability versus Maintenance
Principle

Maintainability is a system, product, or
service quality factor attribute. Mainte-

nance is a preventive or corrective action activity.

Engineers often loosely interchange maintainability and
maintenance without realizing it. Observe that Maintainabil-
ity is an SPS Section 3.2 Operational Performance Charac-
teristic (Table 20.1) whereas maintenance is an activity. Let’s
examine definitions of the term from two perspectives of the
US FAA and DoD:

• Maintainability (FAA) “The measure of the ability
of an item to be retained in or restored to specified
condition through maintenance performed, at each pre-
scribed level of maintenance and repair, by appropri-
ately skilled personnel using prescribed procedures and
resources” (FAA-HDBK-006A, p. 12).

• Maintainability (MIL-HDBK-470A) “The relative
ease and economy of time and resources with which
an item can be retained in, or restored to, a specified
condition when maintenance is performed by per-
sonnel having specified skill levels, using prescribed
procedures and resources, at each prescribed level of
maintenance and repair. In this context, it is a function
of design” (MIL-HDBK-470A, p. 2–1).

Both definitions are virtually identical. However, notice
the subtlety of the FAA’s perspective versus the DoD’s.

In contrast, Maintenance is a User Enterprise work ac-
tivity that focuses on repairing or servicing the Equipment
Element. MIL-HDBK-1908B defines Maintenance as:

• Maintenance “All actions necessary for retaining ma-
terial in (or restoring it to) a serviceable condition.
Maintenance includes servicing, repair, modification,
modernization, overhaul, inspection, condition deter-
mination, corrosion control, and initial provisioning of
support items” (MIL-HDBK-1908B, p. 21).

You can develop highly reliable Systems or Products.
However, if they are not maintained properly, System Re-
liability diminishes rapidly. How do we establish a System
Maintenance approach that will ensure maintenance is per-
formed properly? The answer begins with the Maintainability
Concept.
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34.4.2 The Importance of the Maintenance Concept

The cornerstone for planning System Maintainability resides
in the System’s Maintenance Concept (Table 6.1) expressed
in the System’s Concept of Operations (ConOps) document.
The ConOps provides an initial starting point for document-
ing the Maintenance Concept unless there is a compelling
need for a stand-alone document such as a required deliver-
able. Remember, the ConOps documents the key strategy that
defines the who, what, when, where, and how a system, prod-
uct, or service will be maintained. For example, maintenance
of complex systems may be performed by: (1) the User, (2) an
internal support organization, (3) external contractors, or (4)
a combination of these.

Subsequently, a System Operations, Maintenance, and
Support (OM&S) Plan or Integrated Support Plan (ISP) may
be required or prepared to document the implementation of
the ConOps Maintenance Concept. The details are deter-
mined by our next topic, Organizational Maintenance Per-
spectives.

34.4.3 Organizational Maintenance Perspectives

Organizationally, System Maintainability often receives to-
ken ‘lip service’ and usually falls second in priority to Sys-
tem Reliability. Naively and erroneously, the managerial
paradigm is that if a System’s reliability is ‘good enough’
to meet SPS requirements, Maintainability Engineering is
minimized. This is a comparable analogy to Bernard’s (2008,
p. 5) erroneous reasoning presented in the Introduction to the
chapter.

In general, System OM&S costs for military systems
account for approximately 60% - 70% (DAU, 1997, p. 13–6)
of a System or Entity’s TCO, especially for complex
systems. Since Software is an integral item in systems
and products today, Post Deployment Software Support
(PDSS) Costs and their contributory factors should be a
major concern early beginning at contract award or task
initiation. The primary System Quality Factors (Table 20.1)
that contribute to operational support costs include:

• System Reliability—Development costs aimed at
achieving mission objectives and reducing the fre-
quency of maintenance.

• System Maintainability—Costs associated with the
amount of time required to perform preventive and cor-
rective maintenance.

• System Availability—An outcome determined by the
System or Entity’s R&M.

• System Sustainability—Costs required to sustain sys-
tem, product, or service operations without disruption.

Once a System is accepted by the System Acquirer and
fielded, the User lives with the consequences of System De-
velopment decision-making and its accountability or the lack

thereof for the R&M factors. Additionally, these considera-
tions drive another factor, System Availability.

System Availability represents the level of operational
readiness of a system, product, or service to perform its
mission on demand for a given set of operating conditions.
When a System or Entity is unavailable in commercial
Enterprise environments, it: (1) is not generating revenue and
(2) even worse, is costing the Enterprise for repairs thereby
impacting bottom-line profitability.

Engineering textbooks often approach R&M with equa-
tionitis. Equationitis, like Analysis Paralysis, is a human
condition created by a preoccupation with equations with-
out fully understanding the operational challenges—problem
space—Users have to address the base set assumptions to be
established that lead to the need for equations.

Maintainability is a classic topical example. To illustrate
why we need to understand User challenges, let’s briefly
explore an Enabling System scenario.

A system, product, or service is either:
(1) operating—performing a mission or supporting training,
(2) in storage, (3) awaiting maintenance, (4) being main-
tained, or (5) awaiting return to active service. Every hour
spent in maintenance equates to lost revenue as in the case of
commercial systems such as production machinery, airlines,
and so forth. To ensure that the Enterprise System can sus-
tain schedules, extra systems—spares—may be procured,
leased, or rented to maintain continuity of operations while
a System or Entity is being maintained.

When a System or Entity failure occurs, you need:

• A supply of spare parts on-site along with skilled
maintenance technicians who can perform the repair
with the least amount of downtime for maintenance.

• A Sustainment Supply Chain (Figure 4.1) to ensure
spare Parts in inventory is adequate.

Therefore, you need some insight concerning: (1) the
quantity of spare parts required for a given type of failure,
(2) the number of maintenance technicians required “full
time” and “part time,” (3) the number of maintenance
workstations, if applicable, (4) the types and quantities of test
equipment, (5) System, Product, and Parts storage space
allocations, (6) procurement ordering systems, (7) logistical
support systems. This challenge is compounded by seasonal
usage factors for some systems. All of this translates into the
TCO. To minimize the cost of maintaining an inventory of
spare parts, many Enterprises establish strategic partnership
agreements or subcontract with tier-level suppliers to provide
parts Just-in-Time (JIT), when required. The automotive
industry is a classic example and model.

Given this challenge, how do we minimize the cost of
maintenance of the evolving and maturing System Design
Solution? We can:



UNDERSTANDING SYSTEM MAINTAINABILITY 771

1. Incorporate a Self-Test or Built-in-Test (BIT) or BIT
Equipment (BITE) capability into major items to de-
tect, isolate, and contain Line Replaceable Unit (LRU)
failures (Principle 26.16).

2. Perform corrective maintenance on mission critical
and safety critical items during preventive mainte-
nance and corrective maintenance cycles before they
fail.

3. Designate LRUs and design the System Design
Solution to facilitate LRU Removal and Replacement
(R&R).

4. Provide easy access to, quick removal of, and installa-
tion of LRUs, and so forth.

5. Incorporate Reliability-Centered Maintenance (RCM)
and Condition-Based Maintenance (CBM) capabilities
introduced later that continuously monitor and assess
the System’s Operational Health & Status (OH&S):

a. Inform the User operator or maintainer of a System
or Entity ’s current condition maintenance actions
between missions.

b. Communicate the need for corrective maintenance
actions and spare parts prior to and on return from
a mission.

Enterprises sometimes view maintenance tasks as nothing
more than robotic, reactionary corrective actions. Consider
the following example:

Example 34.16

Impact of Maintenance Culture
of Some Enterprises on System
Performance

Maintenance paradigm: Just follow the
maintenance manual. You don’t even have to think about it.
Remove two bolts, remove and replace (R&R) the defective
component, reinstall the two bolts, and you are finished. If it
still doesn’t work, we’ll replace the installed component with
another one as many times as we need to until it works.

Example 34.16 ignores the fact that maybe taking a
few extra minutes to ensure the newly installed item had
ancillary parts such as washers, assembled and aligned in the
right sequence, bolts torqued, or simply was verified under
operating conditions (Figure 24.2). All of these factors affect
System or Entity performance and early failure sometimes
with chain reaction failure modes and effects as characterized
by Figure 24.1.

Maintenance tasks, however, are more than reactionary
corrective actions. DoD 4151.22-M (2011) makes two key
points about defining maintenance tasks:

• “A maintenance task is considered effective when it
reduces the risk of failure to an acceptable level.

• The consequences of failure must be used to determine
task effectiveness” (DoD 4151.22-M, 2011, p. 9).

Given this overview, let’s begin our discussion of System
Maintainability beginning with the Levels of Maintenance.

34.4.3.1 Levels of Maintenance

Principle 34.31

Levels of Maintenance Principle

Establish levels of maintenance at geo-
graphical locations commensurate with
the size of the User community, complex-

ity of the repair, response times, and cost effectiveness.

Enterprises stage where preventive and corrective ac-
tions are performed. For example, the US DoD employs a
two-level maintenance model (DAU, 2012, p. B-131):

• Depot Level Maintenance (Highest Level)

• Field Level Maintenance

∘ Organizational Level Maintenance

∘ Intermediate Level Maintenance (Lowest Level)

Let’s explore the scope of each of these levels of mainte-
nance.

34.4.3.1.1 Field- or Organizational-Level Maintenance
Field- or Organizational-Level Maintenance consists of pre-
ventive and corrective maintenance actions performed in the
field by a User or their support organization. At a minimum,
these actions entail Removal and Replacement (R&R) of a
failed component at the end of its Useful Service Life with a
new, repaired, remanufactured, or refurbished item. In some
instances, the component may be repaired at this level with
Common Support Equipment (CSE) tools (Chapter 8). The
Enterprise performing the Field or Organizational Mainte-
nance may be internal to the User’s Enterprise or contractor
support referred to as Contract Logistics Support (CLS).

34.4.3.1.2 Intermediate Maintenance Intermediate Main-
tenance consists of corrective maintenance actions that re-
quire removal and repair or replacement of a failed System
or Entity by the User or CLS personnel and return to a
central or regional repair facility. The facility may have spe-
cialized Peculiar Support Equipment (PSE) (Chapter 8) to
accomplish the maintenance action. When the repaired item
is returned to the field for active service, the User or CLS per-
sonnel perform Field or Organizational Maintenance to rein-
stall, check out, and verify the appropriate level of operation.
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34.4.3.1.3 Depot or Factory Maintenance Factory main-
tenance actions are those performed by a depot, Origi-
nal Equipment Manufacturer (OEM) or System Developer.
Failed items may be escalated by the User or CLS: (1) via
Field Level Maintenance - Organizational or Intermediate or
(2) directly to a depot or OEM that has the specialized PSE
(Chapter 8) and expertise required to determine the cause of
failure. This may include site visits back to the User to in-
terview personnel, review records, and inspect other items
that may provide insights into the circumstances and operat-
ing conditions leading to the contributory, probable, or root
cause (Figure 24.1) for the required maintenance action.

34.4.3.1.4 Failure Reporting and Corrective Action System
(FRACAS)

Principle 34.32

FRACAS Principle

Institute a Failure Reporting and Correc-
tive Action System (FRACAS) to track
corrective maintenance actions, and data

for analysis, defect elimination, and performance improve-
ments.

When a System or Entity is developed, R&M Engineers
employ multi-discipline SE designs, Engineering Bills of
Materials (EBOMs), or vendor/manufacturer data sheets to
construct R&M mathematical models to estimate a System’s
or Entity’s reliability. These models, which are based
on the SE Process Physical Domain (Design) Solution
(Figure 14.1), provide insights related to the premature
wear, thermal stress, adequacy of periodic inspections, and
performance metrics tracking.

FRACAS data records provide early indications of poten-
tial wear-out (Figure 34.7 Panel B) that may lead to pre-
mature failure. In turn, mitigating or compensating actions
are made to improve the System Design or select alternative
components to achieve SPS or EDS requirements compli-
ance.

Once the System is fielded, actual field data should be
used to further refine and validate the M&S physical models.
Therefore, how can these data be obtained and tracked? The
solution is a FRACAS. MIL-HDBK-470A and the FAA SEM
(2006, pp. 4.8-30/31) define a FRACAS as:

• FRACAS (MIL-HDBK-470A) “A closed-loop data
reporting system for the purpose of systematically
recording, analyzing, and resolving equipment reli-
ability AND maintainability problems and failures”
MIL-HDBK-470A (pp. 4–58).

• FRACAS (FAA SEM, 2006) “Tracking, analyzing, and
correcting problems are key activities of an RMA pro-
gram. The scope of this activity should be based on

system complexity and maturity, environmental con-
straints, testing regimen, definition of reportable fail-
ures, and organizational roles within the FRACAS… ”
(FAA SEM, 2006, pp. 4.8-30-31).

Depending on Enterprise plans for a System or Entity,
the FRACAS provides an archival history of maintenance
actions for each component and replacements with new com-
ponents. Field data can enable the Enterprise to confidently
and cost effectively extend the useful service life and employ-
ment of the asset (Figure 34.10).

Author’s Note 34.8

Understand the Context of
FRACAS Data

When you review FRACAS data, rec-
ognize that you need to understand

the context of any failure. Depending on the discipline and
rigor instilled in maintenance personnel, errors such as or-
dering and installing the incorrect part may sometimes be
recorded as a failure, which initiates yet another mainte-
nance action. Refer to Example 34.16 Maintenance Culture
in Some Enterprises.

Additionally, a FRACAS may not include maintenance
time tracking.

34.4.4 Maintainability Anthropometrics and
Biomechanics

Textbooks often approach Maintainability in terms of
equation-based computations. However, Human anthro-
pometrics, biomechanics addressed in Chapter 24 are a
major contributor to successful maintainability outcomes
and performance metrics.

Systems and Subsystems must be designed not only
for the Mission System Users User but also for the En-
abling Systems Maintenance Personnel that also have
to operate and perform maintenance. The ability of
Personnel – maintainers -to easily reach, twist, turn,
open/close, calibrate/align, adjust, components via access
doors, portals, and spaces to R&R Entities—Subsystems,
Assemblies, Subassemblies, and Parts - is critical for
success. The effectiveness in performing maintenance tasks
impacts maintenance time and subsequently labor costs, etc.

Principle 34.33

Maintainability Estimates Principle

Maintainability estimates should be doc-
umented and supported by assumptions
and/or actual performance measurement

data to substantiate the results; otherwise the estimate is
nothing more than personal opinion.

Recognize that the computation of System Maintainabil-
ity equations assume that a baseline set of human anthropo-
metrics and biomechanics (Figure 24.8) of the Maintenance
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Personnel have been established as a precondition. In
fact, most Maintainability metrics are simply generic num-
bers; the knowledge, skill sets, tools, or Equipment that
may be available are assumed based on experiential field
data derived from actual task performance. This is in sharp
contrast to Boehm’s algorithmic Constructive Cost Model
(COCOMO) Model (Boehm, 1981) for estimating Software
Development effort, which factors in these considerations.
Therefore, Maintainability estimates should explicitly docu-
ment all assumptions and/or performance data measurements
of these items with the estimate.

Recognizing that all maintenance Personnel do not
perform at the same level of proficiency, training programs
are established to provide consistency and uniformity in
knowledge and performance.

Author’s Note 34.9

Commonly Used System
Maintainability Terms and
Equations

System Maintainability is character-
ized by as many terms as there are Enterprises. Every
business domain has its own versions and nuances. Our dis-
cussions will introduce a few of the most commonly used
terms. You are encouraged to pursue additional personal
study concerning terms unique to your industry.

34.4.5 System Uptime (UT) and Downtime (DT)

From a failure perspective, a system, product, or service is
either in a state of (1) performing missions, (2) operational
readiness to conduct its missions (Chapter 7), (3) degraded
performance, or (4) inoperable. In this context, Users have a
need-to-know if the System is “Up,” meaning operational, or
“Down” for maintenance.” UpTime and and DownTime are
terms frequently used, especially for Enterprises deploying
Systems to perform missions such as computer centers, web
sites, and transportation vehicles.

To better understand the meaning of Uptime versus
Downtime, let’s define the terms:

34.4.5.1 Mean Up Time (MUT) or UT If a system,
product, or service is fully operational with no maintenance
issues, it is considered “Up.” The elapsed time since its
last maintenance action is referred to as Uptime, which is
defined as:

• Uptime (UT) “That element of Active Time during
which an item is in condition to perform its required
functions… ” (MIL-HDBK-470A, p. G-17).

Figure 34.22 serves as an illustration of Uptime and
Downtime. Uptime, as an abstract label, does not infer

Uptime (UT) Uptime - A Uptime - B

Downtime (DT)
Preventive

Maintenance

Scheduled
Maintenance Interval

Scheduled
Maintenance Interval
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Downtime (DT)
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Maintenance
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Downtime (DT)
Corrective
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Figure 34.22 Composite Overview Representing System Maintenance Cycles
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mathematically or statistically the age a System or Entity.
A more appropriate metric is Mean Uptime (MUT) or Mean
Down Time (MDT), our next topics.

34.4.5.2 MDT or DT When a System or Entity fails or
requires maintenance, Users want to know: how long the
System will be out of service—Downtime? In the commer-
cial world, System Downtime means an interruption to the
revenue stream. In the military and medical fields, Down-
Time can mean the difference in life or death situations.
MIL-HDBK-470A, for example, offers several definitions
concerning DT, System Downtime, and MDT as follows:

• Downtime (DT) “That element of time during
which an item is in an operational inventory but is
not in condition to perform its required function”
(MIL-HDBK-470A, p. G-4).

• System Downtime “The time interval between the
commencement of work on a system (product) mal-
function and the time when the system has been
repaired and/or checked by the maintenance per-
son, and no further maintenance activity is executed”
(MIL-HDBK-470A, p. G-16).

• Mean Downtime (MDT) “The average time a system
is unavailable for use due to a failure. Time includes the
actual repair time plus all delay time associated with a
repair person arriving with the appropriate replacement
parts” (MIL-HDBK-470A, p. G-10).

The concept of MDT is appropriate for overview
purposes; however, MDT is too abstract and needs fur-
ther clarification to help us account for the activities to
be performed. Any time a System or Entity requires
maintenance, they often refer to its condition as “down for
maintenance” irrespective of whether maintenance is ac-
tively being performed or not. As a result, we need to clarify
what occurs during maintenance to enable us to project
when a System or Entity will be returned to active service
in a state of operational readiness to conduct missions.

MDT is comprised of three time-based activities:
(1) Mean Active Maintenance Time (MAMT), (2) Mean Ad-
ministrative Delay Time, (MADT or ADT), and (3) Mean
Logistic Delay Time (MLDT or LDT). Mathematically,
we express MDT (DT) as follows:

MDT (DT) = MAMT + LDT + ADT (34.42)

where:

• MDT = Mean Down Time

• MAMT = Mean Active Maintenance Time (Eq. 34.43)

• MADT = Mean Administrative Delay Time

• MLDT = Mean Logistics Delay Time

A Word of
Caution 34.10

Mean values for ADT and LDT are fine
for answering general questions concern-
ing how much time will be required to or-
der and receive parts for a repair. Some
commonly used parts may be in stock lo-
cally or at a distributor; others may only

be available from the Original Equipment Manufacturer
(OEM), which could take considerably longer.

Such is the case if the delivery of various parts were repre-
sented by the Log-Normal Distribution shown in Figure 34.3
Panel B. Recognize the differences and employ the mean or
discrete values for LDT or LDT as well as ADT or ADT,
whichever is appropriate for your project. Hypothetically, if
ADT = 1.6 hours for ordering Parts as a mean and ADT =
2.1 hours for ordering a specific Part, does it make a dif-
ference? It depends on the application and order frequency;
time is money!

Observe that in Eq. 34.42, the User or System Acquirer:
(1) controls the M via the SPS and (2) has Enterprise
accountability for ADT and LDT. The System Developer
has no control—zero—over the User’s own Maintenance and
Sustainment Systems. We will address this topic further in
System Availability concerning the formation of a Logistics
Support Working Group (LSWG).

Now, let’s shift our focus to defining and scoping each of
MDT’s three elements—MAMT, LDT, and ADT.

34.4.5.3 MAMT (M) As the multi-level System Design
Solution evolves and matures, SEs need to know: what is
the mean time to accomplish a preventive or a corrective
maintenance action? The solution resides in an metric
referred to as the MAMT (M).

Mathematically, MAMT is computed as follows:

MAMT =
fPMT(MPMT) + 𝜆(MCMT)

fPM + 𝜆

(34.43)

where:

• fPM = Frequency of PM

• 𝜆 = Failure density or frequency of corrective
maintenance (Eq. 34.47)

• MPMT =Mean Preventive Maintenance Time
(Eq. 34.46)

• MCMT = Mean Corrective Maintenance Time
(Eq. 34.48)

MIL-HDBK-470A, for example, defines another term,
Active Corrective Maintenance Time (ACMT) as:

• ACMT “That part of active maintenance time during
which actions of corrective maintenance are performed
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on an item. Excluded are logistics and administra-
tive delays (e.g., awaiting parts, shift change, etc.)”
(MIL-HDBK-470A, p. G-1).

34.4.5.3.1 Logistics Delay Time (LDT) LDT is the ac-
tual time required to perform actions that primarily sup-
port corrective maintenance but is applicable to PM if spare
parts inventory becomes depleted. LDT examples include:
(1) research for replacement or equivalent parts, (2) procure-
ment and tracking of parts orders, (3) delivery of parts from
the supplier, (4) receiving inspection of parts, (5) routing to a
maintenance technician, and (6) reordering of incorrect parts.

The DAU (2012) refers to Mean Logistics Delay Time,
MLDT (LDT) and defines it as:

• MLDT “Indicator of the average time a system is
awaiting maintenance and generally includes time for
locating parts and tools; locating, setting up, or calibrat-
ing test equipment; dispatching personnel; reviewing
technical manuals; complying with supply procedures;
and awaiting transportation. The MLDT is largely de-
pendent upon the (User’s) Logistics Support (LS) struc-
ture and environment.” (DAU, 2012, p. B-139).

34.4.5.3.2 Administrative Delay Time (ADT) ADT is the
actual time spent on activities such as staffing the Main-
tenance organization; training personnel; vacation, holiday,
and sick leave; and so forth. ADT is sometimes expressed
in terms of Mean Administrative Delay Time, MADT
(ADT). For example, MIL-HDBK-470A defines Administra-
tive Time as:

• Administrative Time “That element of delay
time, not included in the supply delay time.”
(MIL-HDBK-470A, p. G-1).

34.4.5.3.3 UT Ratio Since systems are used to perform
missions that are impacted if the System is Down, Users are
very interested in what is referred to as the Uptime Ratio.
MIL-HDBK-470A, p. G-17 defines Uptime Ratio as:

• UT Ratio “A composite measure of operational avail-
ability and dependability that includes the combined ef-
fects of item design, installation, quality, environment,
operation, maintenance, repair, and logistics support:
The quotient of uptime divided by the sum of uptime
and downtime.)”

This definition enables us to mathematically establish the
UT Ratio as:

UT Ratio = UT
DT + UT

(34.44)

Again, UT and DT are simply labels for discrete data. A more
appropriate representation of Uptime Ratio is to express

Eq. 34.44 in terms of their mean values. Here, the two terms
are more indicative of their mathematical and statistical
distributions.

UT Ratio = Mean UT(UT)
Mean DT (DT) + Mean UT (UT)

(34.45)

Now that we have established the definitions and computa-
tions for MDT, let’s expand our discussion to Types of Main-
tenance Actions.

34.4.6 Types of Maintenance Actions

Principle 34.34

Types of Maintenance Principle

Maintenance consists of two types of ac-
tions: preventive and corrective mainte-
nance.

Let’s explore each of these topics in more detail.

34.4.6.1 Preventive Maintenance (PM)

Principle 34.35

Preventive Maintenance (PM)
Principle

Preventive Maintenance (PM) consists of
scheduled maintenance actions at regu-
lar intervals to Inspect, replenish, and re-

place (all italics) expendables and consumables such as lubri-
cants, filters, and components to restore a System or Entity
to perform as specified and return to active service.

PM represents to periodic or scheduled maintenance
actions performed on a System, Product, Subsystem,
etc., in accordance with the System Developer’s or vendors
instructions. Note the operative term “scheduled.” The intent
is to initiate proactive maintenance actions in risk areas
before they start to have an impact and result in degraded
System or Entity performance (Figure 34.25) or failure.

What is PM or scheduled maintenance? MIL-HDBK-
470A defines it as:

• Preventive Maintenance (PM) All actions performed
in an attempt to retain an item in specified condi-
tion by providing systematic inspection, detection, and
prevention of incipient failures”(MIL-HDBK-470A,
p. G-14).

• Scheduled Maintenance “Periodic prescribed inspec-
tion and/or servicing of products or items accom-
plished on a calendar, mileage or hours of operation
basis… ”(MIL-HDBK-470A, p. G-15).
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Please note that PM is the standard term used. Periodic
or scheduled maintenance are an alternative terms used by
some Enterprises; however, it is not unique to PM. Sched-
uled maintenance applies to both Preventive and Corrective
Maintenance, especially in cases where failures have not oc-
curred and upgrades are scheduled in advance.

Example 34.17

Automobile Preventive (Scheduled)
Maintenance

Automobile manufacturers recommend
that owners change oil at operating inter-

vals that do not exceed 3000 miles, 5000 miles, or Y months
of use under specific Operating Environment conditions.
Check the vehicle’s owner’s manual for specifics.

34.4.6.1.1 Types of PM Actions PM encompasses three
types of actions: Periodic, Predictive, and Planned.

• Periodic Maintenance:
a. Is performed on a predefined, short-term schedule

based on elapsed operating time—hours, calendar
time—weeks or months; or operating cycles such as
landings and takeoffs.

b. Generally consists of inspecting and performing
short operating interval servicing of Equipment;
replacing expendable products such as filters and
tires; replacing/replenishing expendable fluids such
as coolants and lubricants; calibrating and aligning;
and performing any prescribed OH&S checks and
follow-on diagnostic tests as necessary.

• Predictive Maintenance Employs concepts such as
Prognostics and Health Management (PHM) addressed
later to continuously:

a. Measure the current operational condition of
Equipment such as fluids, lubricants, metal condi-
tions, mileage, elapsed hours.

b. Predict capability performance based on the current
condition of the System or Entity in sufficient time
to schedule preventive or corrective maintenance
actions.

• Planned Maintenance consists of:

a. Scheduled maintenance performed at longer oper-
ating intervals coincidental with the next Periodic
Maintenance interval.

b. Major inspections and corrective maintenance such
as upgrades, retrofits, overhauls, refurbishment, or
replacement of major items or LRUs, assuming they
have not failed prematurely.

34.4.6.1.2 Preventive Maintenance Time (PMT) SEs of-
ten have to answer: How much time is required to perform
PM actions for a System or Entity? The solution resides

in a Maintenance metric referred to a PMT. PMT represents
the actual time required to perform routine maintenance such
as inspections and replacement of fluids, filters, belts, and so
forth.

The PMT for a specific type of maintenance action is
represented by MPMT, which represents the mean time for all
PM actions for the item— System or Entity, is expressed
as:

MPMT =
∑n

i=1(fPMT(i))(MPMT(i))∑
fPMT(i)

(34.46)

where:

• MPMT(i) =Time required to perform the ith PM action.

• i = Sequential identifier for a specific type of PM
action.

• fPMT(i) = Frequency of the ith PM action.

34.4.6.2 Corrective Maintenance

Principle 34.36

Corrective Maintenance Principle

Corrective maintenance consists of
scheduled or unscheduled maintenance
actions required to restore or retrofit a

system, product, or service to a specified condition and
return it to active service.

Corrective maintenance is referred to as unscheduled
maintenance. It consists of those maintenance actions re-
quired to restore the System or Entity performance back to
the manufacturer’s performance specifications after failure.
In general, corrective maintenance includes maintenance ac-
tions such as Removal and Replacement (R&R) of LRUs, re-
plenishment of fluids, recalibration, realignment, and refur-
bishment. What is corrective maintenance? MIL-STD-470A
and MIL-STD-3034 state the following definitions:

• Corrective Maintenance “All actions performed as a
result of failure, to restore an item to a specified condi-
tion. Corrective maintenance can include any or all of
the following steps: Localization, Isolation, Disassem-
bly, Interchange, Reassembly, Alignment, and Check-
out” (MIL-HDBK-470A, p. G-3).

• Corrective Maintenance “Maintenance task per-
formed to identify, isolate, and rectify a fault so that
the failed equipment, machine, or system can be
restored to an operational condition within the toler-
ances or limits established for in-service operations”
(MIL-STD-3034, 2011, p. 4).

Corrective maintenance actions consist of both scheduled
and unscheduled maintenance actions after a failure event
or condition to make corrective action. For repairable items,
corrective actions includes making repairs to an Entity to
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restore it to satisfactory compliance with its specification
or in the case of an Emergency (Figure 19.5) to a failsafe
condition. Therefore, what constitutes a repair? The DAU
(2012) defines a repair as follows:

• Repair “The restoration or replacement of parts or
components of real property or equipment as necessi-
tated by wear and tear, damage, failure of parts, or the
like in order to maintain it in efficient operating condi-
tion” (DAU, 2012, p. B-190).

Former MIL-STD-480B makes a very important point
concerning perceptions of repairs. “The purpose of repair is
to reduce the effect of the nonconformance. Repair is dis-
tinguished from rework in that the characteristic after repair
still does not completely conform to the applicable specifica-
tions, drawings, or contract requirements” (MIL-STD-480B,
p. 13).

Since time is a critical factor in restoring a system to active
service, a new term, Repair Time, emerges. What is Repair
Time? MIL-HDBK-470A defines Repair Time as follows:

• Repair Time “The time spent replacing, repairing, or
adjusting all items suspected to have been the cause of
the malfunction, except those subsequently shown by
interim test of the system not to have been the cause”
MIL-HDBK-470A (p. G-15).

Repair Time is dependent on having the competency -
knowledge, experience, and expertise; tools; and System
resources to be able to isolate and determine the root,
contributory, or probable cause of a failure (Chapter 24). A
failure is a condition that materialized from a fault such as a
latent defect, weak component, workmanship, or component
problem. The challenge for SEs and R&M Engineers is being
able to innovate and develop cost-effective and robust System
Design Solutions that can:

1. Detect potential fault conditions.
2. Quickly diagnose and isolate faults before they become

problems.
3. Contain those faults when they occur to prevent impacts

to other components (Principle 26.16).
4. Tolerate faults—robust, fault tolerant System Architec-

ture design (Principle 26.17)—to complete the mission
and achieve success.

Each of the four preceding points has implications in
developing the System Design Solution via the System
Maintainability metrics discussed above.

Given an understanding of PM, let’s shift our focus
to understanding its counterpart, corrective maintenance,
which is initiated by failures. This brings us to a common
linkage parameter between System Reliability and System
Maintainability, the Failure Rate, 𝜆(t).

34.4.6.2.1 Failure Rate, 𝜆(t), or Corrective Maintenance
Frequency The Corrective Maintenance Frequency is a
function of the System or Entity’s Failure Rate, 𝜆(t), which
is expressed as:

𝜆(t) = 1
MTTF

(34.47)

where:

• MTTF = Mean Time to Failure for repairable and
non-repairable items.

34.4.6.2.2 Mean Time to Repair (MTTR) Users often
need to know more details than provided by MMT. This
leads to a new metric, Mean Time to Repair (MTTR).
MIL-HDBK-470A defines MTTR as follows:

• MTTR “A basic measure of maintainability. The sum
of corrective maintenance times at any specific level of
repair, divided by the total number of failures within an
item repaired at that level, during a particular interval
under stated conditions” MIL-HDBK-470A (p. G-11).

One of the fallacies of the MTTR metric is that it
focuses on the Time to Repair, not Return to Service (RTS)
(Figure 34.22 – lower right). The FAA-HDBK-006A (2008)
fills this void with a Mean Time to Restore Service (MTTRS)
metric.

• Mean Time to Restore Service (MTTRS) “represents
the time needed to manually restore service following
an unscheduled service failure requiring manual inter-
vention” (FAA-HDBK-006A, 2008, p. 13).

FAA-HDBK-006A (2008) also notes that the MTTRS:

• “… includes only unscheduled downtime and assumes
an ideal support environment.

• “… includes not only the time for hardware replace-
ments, but also times for software reloading and system
restart times.

• Does not include the times for the successful op-
eration of automatic fault detection and recovery
mechanisms that may be part of the system design.”
(FAA-HDBK-006A, 2008, p. 13).

34.4.6.2.3 Mean Corrective Maintenance Time (MCMT) or
MCMT The Mean Corrective Maintenance Time (MCMT)
or (MCMT), which is equivalent to MTTR, represents the
actual time required to perform a repair action on a
System or Entity to replace a failed or damaged LRU.
MIL-HDBK-470A, for example, uses the term Mean Active
Corrective Maintenance Time (MACMT) and defines it as
follows:
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• MACMT “The average time associated with active cor-
rective maintenance actions. Time includes only actual
repair time associated with a repair person performing
corrective maintenance steps (i.e., Localization, Iso-
lation, Disassembly, Interchange, Reassembly, Align-
ment, and Checkout)” (MIL-HDBK-470A, p. G-10).

MCMT represents a weighted arithmetic mean of repair
times for all corrective maintenance actions within the
System or Entity. Mathematically, we express MCMT as
follows:

MCMT =
∑n

i=1(λ(i))(MCMT(i))∑
λ(i)

(34.48)

where:

• MCMT(i) = Time required to perform the ith corrective
maintenance action.

• i = Sequential identifier for a specific type of corrective
maintenance action.

• 𝜆(i) = Frequency of the ith corrective maintenance
action.

Depending on the Lifetime Data of the System or
Entity, MCMT might be characterized by an Exponential,
Gaussian (Normal), or Log-Normal distribution. Examples
of MCMT distributions include:

• Exponential MCMT Distribution—Maintenance tasks
performed on a System or Entity that exhibits a
constant failure (Hazard) Rate Figure 34.5).

• Gaussian (Normal) MCMT Distribution—Mainte-
nance tasks that exhibit a standard repair time, such as
changing lubricants, filters, or lights in a vehicle.

• Log-Normal MCMT Distribution—Maintenance tasks
performed for a diverse range of System or Entity
corrective actions that require fewer minutes to several
hours to complete.

A plot of the frequency distribution of corrective main-
tenance actions is often assumed to follow a Log-Normal
Distribution as illustrated in Figure 34.3 Panel B. That is, a
few of the failures can be isolated and repaired rather quickly.
Most of the corrective actions will require longer time peri-
ods and approach the mean. The remainder of the corrective
actions may be fewer in number but require a considerable
number of hours to correct.

34.4.6.2.4 Repair Rate, 𝜇(t) Some Enterprises track the
Repair Rate, 𝜇(t), which is computed as the reciprocal of the
MCMT (MCMT).

𝜇(t) = 1

MCMT

(34.49)

34.4.6.2.5 Mean Time Between Maintenance (MTBM)
MTBM is the mean operating interval since the last
maintenance—preventive or corrective—action. MIL-
HDBK-470A defines MTBM as follows:

• Mean Time Between Maintenance (MTBM) “A
measure of reliability that represents the average time
between all maintenance actions, both corrective and
preventive” (DAU, 2012, p. B-139.).

MTBM is expressed in terms of elapsed operating hours
for a specific set of operating conditions for the System or
Entity based on the mean of all preventive (MPMT) and
corrective (MCMT) maintenance actions. Mathematically,
MTBM is expressed as:

MTBM = 1
1

MPMT

+ 1

MCMT

= 1

fPMT + 1
𝜆(t)

(34.50)

where:

• MPMT = Mean PM Time (Eq. 34.46)

• MCMT= Mean Corrective Maintenance Time
(Eq. 34.48)

• 𝜆(t) = Frequency of failure or Failure Rate (Eq. 34.47)

34.4.7 Sources of Maintainability Data

The validity of maintenance computations is dependent on
having valid data sets derived from actual designs and
field data records. Potential sources of maintainability data
include:

• Historical data from similar components.

• Component design and/or manufacturing data.

• Data recorded during System or Entity demonstra-
tions.

• Field maintenance repair reports or FRACAS data.

34.4.8 Provisioning

Our discussion to this point focused on System R&M.
Despite all of the theory and equations, sustainment of
System or Entity missions ultimately is determined by
the User’s ability to keep it maintained. That includes
development of sustainment strategies to ensure that parts
are readily available to support preventive and corrective
maintenance activities in a reasonable amount of time. The
ultimate question to be answered is:
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• On the basis of: (1) the estimated failure rate of
a System or Entity; (2) the maximum acceptable
MTTR; (3) the shelf life of Entities or Parts, and
(4) the cost of stocking commonly required Entities
or Parts; what are the optimal levels of Entities
or Parts, especially RCIs to maintain in a local
inventory?

This brings us to Provisioning. The DAU (2012, p. B-215)
defines Provisioning as:

• Provisioning “The process of determining and acquir-
ing the range and quantity (depth) of spares and repair
parts, and support and test equipment required to oper-
ate and maintain an end item of material for an initial
period of service. Usually refers to first outfitting of a
ship, unit, or system.”

For many contracts, System Developers are often asked to
deliver a Level of Repair Analysis (LORA). The DAU (2012,
p. B-125) defines LORA as:

• LORA “An analytical methodology used to assist
in developing maintenance concepts and establish-
ing the maintenance level at which components will
be replaced, repaired, or discarded based on eco-
nomic/noneconomic constraints and operational readi-
ness requirements. Also known as an Optimum Repair
Level Analysis (ORLA).”
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Heading 34.3

At this juncture, we have addressed the fun-
damentals of R&M. The critical question
is: Will the system be operationally avail-
able to conduct its missions on-demand by
the User? Although a system, product, or

service may be reliable and well maintained, will it be un-
available on demand when required to conduct missions.
This leads us to our next topic, System Availability.

34.5 SYSTEM AVAILABILITY

Principle 34.37

Availability Principle

Availability is the probability that a sys-
tem, product, or service will be available
on-demand to perform a mission.

Availability focuses on a System’s state of operational
readiness (Chapter 7) to perform missions “on-demand”
when tasked or conduct an additional missions. We define
operational readiness as consisting of:

1. Completion of preventive and corrective maintenance
actions within a specified time frame.

2. The ability to reliably start and operate “on-demand”.

The DoD RAM Guide (2006) and the FAA-HDBK-006A
(2008) define availability as follows:

• Availability “A measure of the degree to which an item
is in an operable state and can be committed at the
start of a mission when the mission is called for at an
unknown (random) point in time” (DoD RAM Guide,
2006 p. 1–1).

• Availability “The probability that a system or con-
stituent piece may be operational during any randomly
selected instant of time or, alternatively, the fraction
of the total available operating time that the system or
constituent piece is operational” (FAA- HDBK-006A,
p. 11).

A System or Entity’s Availability is a function of its
R&M established by its System Architecture and System De-
sign Solution. Since Availability is a mathematical estimate
based on the R&M of the System or Entity, It can drive
the System Developer in a decision-making circle as they at-
tempt to achieve a specific outcome while balancing R&M
objectives. Consider the following two cases at opposite ex-
tremes:

• Case #1—System A is a highly reliable system. Dur-
ing development, the System Acquirer had a choice
between improving Reliability or improving Maintain-
ability. The Acquirer chooses to focus design resources
on Reliability. The rationale is: “If the system is highly
reliable, we don’t need a lot of repairs, and therefore
won’t need a large maintenance organization.” End re-
sult: When the System does need maintenance, it re-
quires weeks for corrective maintenance actions due to
the delay time awaiting maintenance repair. Clearly, the
highly reliable system is unavailable for missions for
long periods of time when maintenance is required.

• Case #2—System B has less reliability because
the Acquirer had to make a choice similar to that
for System A. The Acquirer lessens the Relia-
bility requirement and focuses on improving the
Maintainability. The rationale is: “We have an out-
standing maintenance organization that can repair
anything.” As a result, System B fails continuously
and is prone to numerous corrective maintenance
actions, thereby making it unavailable to perform most
missions.

The point of this discussion is: SE&D must include a prac-
tical Availability requirement that enables the achievement of
an optimal balance between a System’s R&M and still meet
mission and Enterprise objectives. Close collaboration be-
tween the System Acquirer and User is important during the
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System Procurement Phase and with the System Developer
after Contract Award throughout the System Development
Phase (Figure 12.2).

34.5.1 Types of Availability

Principle 34.38

Availability Metrics Principle

Availability is characterized by three
types of metrics:

1. Operational Availability (Ao)
2. Achieved Availability (Aa)
3. Inherent Availability (Ai)

Let’s explore each of these concepts briefly.

34.5.2 Operational Availability (Ao)

Operational availability, which is symbolized by Ao,
represents the probability that the an item—System or
Entity—will operate in accordance with its specified
performance requirements and prescribed Operating En-
vironment conditions when tasked to perform its mission.
Ao includes maintenance delays such as ADT and LDT and
other factors independent of its design.

Mathematically, a System or Entity’s Operational
Availability, Ao, is expressed:

AO = MTBM
MTBM + MDT

(34.51)

where:

• MDT = Mean Downtime (Eq. 34.42).
• MTBM = Mean Time Between Maintenance

(repairable items) (Eq. 34.50)

Observe that the MDT parameter (1) includes both pre-
ventive (scheduled) and corrective (unscheduled) mainte-
nance time and (2) comprises MAMT, MADT, and MLDT.

34.5.3 Achieved Availability (Aa)

System Developers typically have no control over the User’s
Enabling Systems factors such as LDT and ADT. There-
fore, Achieved Availability (Aa) represents the level of
availability under the control of the System Developer as
constrained by the SPS.

Mathematically, an item’s Achieved Availability, Aa, is
the ratio of the Mean Time Between Maintenance (MTBM)
to the summation of MTBM and MAMT, (M):

Aa = MTBM
MTBM + MAMT

(34.52)

where:

• MAMT=Mean Active Maintenance Time (Eq. 34.43).

• MTBM = Mean Time Between Maintenance
(repairable items) (Eq. 34.50).

Whereas Operational Availability, Ao includes MAMT (M),
MADT (ADT), and MLDT (LDT), Achieved Availability, Aa
excludes ADT and LDT.

34.5.4 Inherent Availability (Ai)

Finally, the third type of availability is Inherent Availability,
Ai. MIL-HDBK-470A defines inherent availability as fol-
lows:

• Inherent Availability (MIL-HDBK-470A) “A mea-
sure of availability that includes only the effects of an
item design and its application, and does not account
for effects of the operational and support environment”
(MIL-HDBK-470A, 1997, p. G-7).

• Inherent Availability (Ai) (FAA) “The maximum
availability theoretically within the capabilities of
the system or constituent piece” (FAA-HDBK-006A,
p. 11).

Regarding the FAA-HDBK-006A definition, the FAA notes:

1. “Computations of this construct consider only hard-
ware elements and they assume perfect failure
coverage, an ideal support environment, and no
software or power failures.

2. Scheduled downtime is not included in the Inherent
Availability measure.

3. Ai is an inherent design characteristic of a system
that is independent of how the system is actually
operated and maintained in a real-world environment”
(FAA-HDBK-006A, p. 11).

The FAA SEM (2006) makes two key points about
Inherent Availability.

• First, “This (inherent) availability is based solely on
the MTBF and MTTR characteristics of the system or
constituent piece and the level of redundancy, if any,
provided. For systems or constituent pieces employ-
ing redundant elements, perfect recovery is assumed.
Downtime occurs only if multiple failures within a com-
mon time frame result in outages of the system or one
or more of its pieces to the extent that the need for
redundant resources exceeds the level of redundancy
provided. Inherent availability represents the maximum
availability that the system or constituent piece is theo-
retically capable of achieving … if automatic recovery
(Figure 10.17) is 100 percent effective.”
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• Secondly, inherent availability “does not include the
effects of scheduled downtime, shortages of spares,
unavailability of service personnel, or poorly trained
service personnel” (FAA SEM, 2006, p. 4.8–28).

Inherent Availability, Ai, is expressed mathematically as
the ratio of the MTBF to the summation of MTBF and
MCMT (MCMT). Mathematically, Ai is defined as follows:

Ai =
MTBF

MTBF + MCMT

(34.53)

where:

• MCMT = MCMT or MTTR (Eq. 34.48).

• MTBF = Mean Time Between Failure (Repairable
Items).

Observe that PM actions, LDT, and ADT are excluded.
Note the switch from MTBM used to compute Ao and Aa
to MTBF for Ai. Figure 34.23 provides a graphical view of
Inherent Availability (Ai) values as a function of MTBF and
MCMT or MTTR. For example:

• If a System or Entity is required to achieve an Ai
of 0.90 and the design is estimated to have an MTBF

of 700 hours, the derived MTTR requirement is 77.8
hours.

Finally, performance of various System Operational, In-
herent, and Achieved Availability trade-offs between MTBF,
MTBM, MDT, and MCMT can be facilitated by creating
asymptotic System Availability curves. MIL-HDBK-470A
(Figure 1, p. 2–3) provides an illustrative example.

34.6 OPTIMIZING RMA TRADE-OFFS

At this juncture, you should recognize the interdependencies
between System R&M and their contributions to System
Availability. The challenge is selecting the optimal values for
RMA based on constraints imposed as SPS requirements by
the User or System Acquirer. Let’s investigate how SEs might
approach the optimal selection process.

34.6.1 Create the Initial Reliability and Availability
Starting Points

As an initial starting point, you must identify a realis-
tic System Reliability number: (1) that is achievable and
(2) expresses the probability of mission success required of
the item. You also need to select a System Availability num-
ber based on the criticality of the System to support Enter-
prise missions. Finally, you need: (1) a Maintenance Concept
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Figure 34.23 Inherent Availability (Ai) values as a Function of Mean Time Between
Failure (MTBF) and Mean Time to Repair (MTTR)
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that describes the philosophy of maintenance and (2) a Sys-
tem Maintainability metric.

34.6.2 Establish Development Objectives and
Constraints

Principle 34.39

RMA Optimization Principle

Optimize RMA to achieve a System De-
sign Solution that:

1. Complies with SPS requirements.

2. Minimizes the TCO.

3. Reduces risk to a level acceptable to the User.

One of the key User objectives is to minimize a System
or Entity’s TCO. Inevitably, there are trade-offs at high
levels between System Development costs and OM&S costs.
Depending on the type of system, 60–70% (DAU, 1997,
p. 13–6) of the recurring life cycle costs of many systems
occur during the System OM&S Phase. Most of these
costs are incurred by corrective and PM actions. Therefore,
you may have to make trade-off decisions for every dollar
you spend on System Design Reliability. What is the cost
avoidance in maintenance and support costs? Let’s explore
this point further.

Using the illustrative example in Figure 34.24, let’s
increase the System Design Solution Reliability, which

increases its System Development cost. We should then
expect a responsive decrease in the System Maintenance
costs. If we sum the non-recurring System Development cost
and System Maintenance cost over the range of reliability,
we emerge with a bowl-shaped curve representing total
life cycle cost, or more appropriately the Total Cost of
Ownership (TCO). Conceptually, there is a Target Reliability
Objective, RA, and a Target LC Cost Objective, TCOA that
represent the minimum TCOA for the User. These objectives,
in combination with the core RMA criterion of identifying
the Reliability level, should form the basis for specifying
RMA requirements.

Philosophically, the TCO minimization approach assumes
that the User, by virtue of resources, has the flexibility to se-
lect the optimal level of Reliability. However, as is typically
the case, the User has limited resources for how much Relia-
bility they can afford “up front” within System Development
costs. Hypothetically, depending on the operational need(s)
and level of urgency to procure the System, they may be
confronted with selecting a more affordable reliability, RB,
based on System Development cost limitations that result in
a higher-than-planned System Maintenance Cost (MAINTB)
and a higher TCOB.

For innovative Enterprises, this presents both an opportu-
nity and a challenge. For Enterprises that do not perform SE
from the standpoint of an Analysis of Alternatives (AoA) so-
lution and jump to a point design solution, (Figure 2.3) this
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Figure 34.24 Achieving the Optimal, Cost-Effective Balance Between System Reliabil-
ity and Maintainability for the Least Cost
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may be a missed business opportunity. During the AoA activ-
ity, new approaches may be discovered that enable the User
to minimize TCO within the constraints of System Develop-
ment costs.

Author’s Note 34.10

Selecting an Availability Number
Target

For this first step, most Engineers
and Users are reluctant to pick a

reasonable number for fear of inferring they may not be
able to achieve the performance requirements. From an
Engineering perspective, you need a System Availability
performance target as an initial starting point and that is all
it is. Unfortunately, there are those who criticize these efforts
without recognizing that it may not be realistic to achieve the
“endgame” reliability number; it is only a starting point …
nothing more, and nothing less.

Author’s Note 34.11

Specifying Only an Availability
Requirement

We began our discussion with Reli-
ability followed by Maintainability

and subsequently Availability, as a product or R&M. The ob-
jective of the sequencing of these topics was not to simply
compute Availability. The point is that some System Ac-
quirer RFP System Requirements Documents (SRDs) for a
reusable system may only specify a performance require-
ment for availability and no performance requirements for
R&M. The expectation is that the System Developer con-
ducts an AoA to select an optimal mix of R&M values and
costs with an aim of reducing the optimal TCO. This can be
a difficult challenge, especially if you do not understand the
User, their preferences, and priorities.

Now, contrast the preceding example of a reusable system
with a single-use system such as a missile. System Availabil-
ity is a critical issue; System Reliability is equally or more
critical. Launching a missile is one aspect; however, in the
end, it has to find, track, and destroy its target.

34.6.3 System Availability—Final Thoughts

In summary, we have briefly defined each of the three types of
System Availability. From a contractual SPS perspective, Op-
erational Availability, Ao obviously has a major significance
to the User versus Achieved Availability, Aa and Inherent
Availability, Ai. So, how does a System Developer deal with
the User’s Enabling System LDT and ADT factors for
which they have no control?

• First, the System Acquirer should specify in the con-
tract that the User by virtue of ownership has full ac-
countability for supplying LDT and ADT data and/or
assumptions.

• Second, the System Acquirer and System Developer
should consider creating a Logistical Support Work-
ing Group (LSWG) that includes the User LDT and
ADT Stakeholders with actions to supply the data and
participate in making recommendations via the formal
contract protocol.

Assuming the Logistics Support WG performs as ex-
pected, the User Stakeholders must assume accountability
for their contributions to achieving the overall success of
the System and verification of the appropriate SPS require-
ments. If they: (1) specify an Operational Availability re-
quirement that includes LDT and ADT (Eq. 34.42) for which
they control and (2) require the System Developer to comply
with the requirement, they should be accountable for pro-
viding that information or assumptions “up front” as part
of the Request for Proposal (RFP) and contract data. Blan-
chard (1998, p. 121) observes that there is limited value in
constraining the design of equipment to achieve a 30-minute
MCT if the Enabling System requires 3 months on aver-
age, consisting of LDT + ADT, to respond with parts. Ao is
certainly not achieved in this manner.
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Heading 34.4

The preceding discussions addressed the
fundamentals of RMA. Given this foun-
dation, we integrate these concepts into a
discussion of the overarching theme of the
chapter, RCM and CBM.

34.7 RELIABILITY-CENTERED MAINTENANCE
(RCM)

Principle 34.40

Reliability-Centered Maintenance
(RCM) Principle

Then objective of Reliability Centered
Maintenance (RCM) is not to preserve

the Equipment Element or to keep it from failing; it is to
avoid or reduce the effects of failure consequences to ensure
continuity of capabilities required to complete the mission
without disruption.

Due to the expense of repairs and unnecessary PM,
some complex systems embed Condition-Based Mainte-
nance (CBM) capabilities into their systems. These systems
continuously monitor and analyze the OH&S of engine lu-
bricants, such as motor oil, to determine the level of metal
particles and other conditions that may indicate premature
wear or potential failure condition.

CBM systems are critical for systems such as aircraft en-
gines applications and are part of an overall RCM activity by
the User’s Enterprise. What is RCM? MIL-HDBK-470A, the
DoD RMA Guide (2006), NavAir (2013), and Weibull.com
(2013) provide a diverse range of RCM definitions:
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• RCM (MIL-STD-3034, 2011, p. 4) “A method for
determining maintenance requirements based on
the analysis of the likely functional failures of sys-
tems/equipment having a significant impact on safety,
operations, and life cycle cost. RCM supports the
failure-management strategy for any system based on
its inherent reliability and operating context.”

• RCM (MIL-HDBK-470A, p. G-15) “A disciplined
logic or methodology used to identify preventive and
corrective maintenance tasks to realize the inherent
reliability of equipment at a minimum expenditure of
resources”

• RCM (DoD RMA Guide, 2006, p. 4–49) “A logi-
cal, structured framework for determining the optimum
mix of applicable and effective maintenance activi-
ties needed to sustain the desired level of operational
reliability of systems and equipment while ensuring
their safe and economical operation and support. RCM
is focused on optimizing readiness, availability, and
sustainment through effective and economical mainte-
nance.”

• RCM (NavAir, 2013, Slide 5) “An analytical process
used to determine appropriate failure management
strategies to ensure safe and cost-effective operations
of a physical asset in a specific operating environment.”

• RCM (Weibull.com, 2007) “… a structured frame-
work for analyzing the functions and potential failures
for a physical asset (such as an airplane, a manufac-
turing production line, etc.) with a focus on preserving
system functions, rather than preserving equipment.”

If you ask most people why we perform maintenance on
Equipment, the typical response is “to ensure that the equip-
ment does not breakdown.” The reality is: Equipment does
not exist for its own sake. It exists to provide a capability
to enable a User to reliably perform missions and accom-
plish performance-based mission objectives. Bottom line: the
objective of Maintenance is to ensure that Equipment capa-
bilities support User objectives, not preserve the Equipment.
How is this accomplished? Through a process referred to as
RCM Analysis. What is the purpose of RCM Analysis?

NavAir (2013) makes two key points concerning the Goal
of RCM:

1. “Avoid or reduce failure CONSEQUENCES.

2. Not necessarily to avoid failures.” NavAir (2013, p. 5).

34.7.1 RCM Origins

JA1012 (2002, p. 1) notes that the origin of RCM traces to
a report first documented by F. Stanley Nowlan and Howard
F. Heap for United Airlines. The report was later published
by the US DoD in 1978. Weibull.com (2007) adds that the

report addressed the transformation of “aircraft maintenance
as the Boeing 747 was being introduced.”

Nowlan and Heap (DoD, 1978) state up front that:

• “A central problem addressed in this book is how to
determine which types of scheduled maintenance tasks,
if any, should be applied to an item and how frequently
assigned tasks should be accomplished” Nowlan and
Heap (DoD, 1978, p. ii).

• The net result is a structured, systematic blend of expe-
rience, judgment, and operational data/information to
identify and analyze which type of maintenance is both
applicable and effective for each significant item as it
relates to a particular type of equipment” Nowlan and
Heap (DoD, 1978, p. ii).

Over the years, various RCM processes and documents
have been published and merged. SAE JA1012 (2002, p. 1)
makes two key points concerning other RCM documents:

• “… key elements of the RCM process have been
omitted or misinterpreted” essentially deviating from
basic principles of Nowlan and Heap.

• “While most of these processes may achieve some of
the goals of RCM, a few are actively counterproductive,
and some are even dangerous.”

So, for reference, what were Nowlan and Heap’s (1978)
original precepts?

“RCM is based on the following precepts (Author’s
emphasis):

• A failure is an unsatisfactory condition. There are two
types of failures: functional failures, usually reported
by operating crews and potential failures, usually
discovered by maintenance crews.

• The consequences of a functional failure determine the
priority of maintenance effort. These consequences fall
into four categories:
a. Safety consequences, which involve possible loss of

the equipment and its occupants.

b. Operational consequences, which involve an indi-
rect economic loss as well as the direct cost of repair.

c. Nonoperational consequences, which involve only
the direct cost of repair.

d. Hidden-failure consequences, which involve expo-
sure to a possible multiple failure as a result of the
undetected failure of a hidden function.

• Scheduled maintenance is required for any item whose
loss of function or mode of failure could have safety
consequences. If preventive tasks cannot reduce the risk
of such failures to an acceptable level, the item must be
redesigned to alter its failure consequences.
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• Scheduled maintenance is required for any item whose
functional failure will not be evident to the operating
crew, and therefore reported for corrective action.

• In all other cases, the consequences of failure are eco-
nomic, and maintenance tasks directed at preventing
such failures must be justified on economic grounds.

• All failure consequences, including economic conse-
quences, are established by the design characteristics of
the equipment and can be altered only by basic changes
in the design:

a. Safety consequences can, in nearly all cases, be
reduced to economic consequences by the use of
redundancy.

b. Hidden functions can usually be made evident by
instrumentation or other design features.

c. The feasibility and cost-effectiveness of scheduled
maintenance depend on the inspectability of the
item, and the cost of corrective maintenance de-
pends on its failure modes and inherent reliability.

• The inherent reliability of the equipment is the level
of reliability achieved with an effective maintenance
program. This level is established by the design of each
item and the manufacturing processes that produced
it. Scheduled maintenance can ensure that the inherent
reliability of each item is achieved, but no form of
maintenance can yield a level of reliability beyond that
inherent in the design.” Nowlan and Heap (DoD, 1978,
p. xvi–xviii).

RCM literature typically refers to functional failures.
What is a functional failure? MIL-STD-3034 (2011) defines
functional failures as follows:

• Functional Failures “A functional failure exists when
a system or subsystem ceases to provide a required
function; whether the function is active, passive, evi-
dent, or hidden.” (MIL-STD-3034, 2011, p. 14).

34.7.2 Condition-Based Maintenance (CBM)

Central to RCM and FMEAs as well as Nowlan and Heap’s
RCM (1978) principles is the need to:

1. Sense the physical condition of Entities and Parts
within a System or Entity.

2. Detect when maintenance is required.

As a result, CBM evolved. What is CBM?
NavAir (2013), for example, defines CBM as follows:

• CBM (NavAir) —“An equipment maintenance strat-
egy based on measuring the condition of equipment in
order to assess whether it will fail during some future

period, and then taking appropriate action to avoid the
consequences of that failure” (NavAir, 2013, Unit 1,
Module 3, Slide 26).

• Condition Monitoring (NavAir)—“The use of spe-
cialized equipment to measure the condition of equip-
ment” (NavAir, 2013, Unit 1, Module 3, Slide 25).

One of the challenges of traditional maintenance is to per-
form a prescribed set of maintenance actions on Equipment
at prescribed intervals such as mileage, cycles, or actuations.
The actions are performed mechanistically based on Lifetime
Data Distribution models whether they are needed or not.
The presumption is that all Equipment is subjected to the
same Operating Environment conditions on a daily ba-
sis. Due to the expense of maintenance, especially in aircraft,
heavy construction equipment, and plant machinery, some
view those actions as poorly timed, unnecessary, and should
be performed only when needed. This, in turn, leads to:

1. How do you sense the current condition of a System or
Entity?

2. Given knowledge of that condition, how do you estimate
when Just-in-Time (JIT) maintenance will be required
for scheduling purposes including the ordering of
Parts?

Answers to these questions require two complementary
approaches: (1) traditional inspection and (2) advanced tech-
nology monitoring and test equipment. Why two approaches?
Recall from our discussion in Chapter 24 some tasks are best
performed by Personnel; in other cases Equipment per-
forms best (Figure 24.14).

Sensing the Equipment’s current condition can be ac-
complished with Built-In-Test (BIT) or BIT Equipment
(BITE). BIT/BITE continuously monitors current conditions
such as aircraft in flight. When the aircraft is on the ground,
maintainers can perform visual inspections, take samples,
and employ various types of sensing equipment to assess cur-
rent conditions. On the basis of those conditions, the next step
is to be able to estimate when maintenance will be required to
be scheduled. Therefore, what is the System Design strategy
(Chapter 12) for developing a reliable System or Entity
that can be easily maintained and failures mitigated at the
right time?

One method is to incorporate a Prognostics and Health
Management (PHM) System that includes an embedded
CBM System within the System or Entity in combination
with a proactive Enabling System maintenance inspection
and corrective action process. Assessment of that informa-
tion requires a more advanced technology, Predictive Main-
tenance (PdM), or to a higher level Prognosis and Health
Management (PHM) System. What are prognostics?

• Prognostics The science of analyzing past usage and
trends, assessing the current state and condition of a
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System or Entity, and projecting its future condition
to determine the optimal time for performing preven-
tive and corrective maintenance actions.

Given this definition, the key question is: where are
prognostics implemented? Core PHM knowledge originates
from the Mission System. However, in terms of Enterprise
effectiveness and efficiency in rapidly performing preventive
or corrective maintenance requires:

1. Continuous Mission System Situational Awareness of
its current condition and trending.

2. Enabling System Situational Awareness of the Mis-
sion System’s current or projected condition to enable
deployment of the right resources – Personnel, Equip-
ment CSE and PSE (Chapter 8), Mission Resources
- parts, Procedural Data – maintenance manuals, and
Facilities – Just-in-Time (JIT) to perform maintenance
actions when the System such as an aircraft arrives.

During missions, the Mission System via its Personnel
and Equipment Elements Monitor, Command, & Control
(MC2) their respective capabilities (Figures 24.12 and 26.6)
to perform PHM and telemeter data directly with Enabling
Systems, typically ground-based, in or near real-time. His-
torically, “black boxes” on aircraft, trains, medical pacemak-
ers, and other types of systems may record the mission data.
However, the raw data may not be reduced – summarized -
or reviewable until the System arrives at its destination and is
downloaded by the Enabling System User(s), which impacts
Mission System turnaround performance.

Where revenue generation is paramount, the Enabling
System must be able to perform preventive and corrective
maintenance when the Mission System: (1) arrives at a main-
tenance facility or location or (2) make a service call to
the Mission System at a remote location – heavy construc-
tion or farm equipment, especially if the Mission System
is mobile. So, the Mission System PHM must communi-
cate maintenance needs “ahead” to the Enabling System
Just-in-Time (JIT). As a result, the PHM System requires
the integration of both Mission System and Enabling Sys-
tem(s) (Figure 9.2).

New concept? Actually not. For example, military aircraft
refueling systems, which consist of a Mission System air-
craft requiring fuel and an Enabling System tanker aircraft
illustrate the basic via preplanning and “radio ahead” com-
munications. Another example includes medical pacemaker
device patient event logs forwarded to a central hospital unit
for analysis by a cardiologist and potential follow-up.

Please note that both of these examples have a poten-
tial disruption in time due to the need for the Mission Sys-
tem – aircraft or patient – to initiate communications with the
Enabling System – tanker aircraft or cardiologist. The pri-
mary thrust of this section is direct real-time communications

between the Mission System and the Enabling System.
In the case of the aircraft refueling and patient pacemaker
monitoring, in general, there is no need to communicate in
real-time time, only when necessary.

Earlier in our Maintainability discussion, Eq. 34.42 illus-
trated how MDT is impacted by MAMT, LDT, and ADT.
Time is money. Since MDT impacts the revenue stream,
the Enabling System has to be geophysically positioned
(Principle 34.31) with the “right” spare parts provisions to
eliminate LDT and ADT and perform the JIT preventive or
corrective maintenance actions immediately.

In the mix of various maintenance terms, NavAir (2013,
Module 3, p. 25) notes that “Predictive Maintenance (PdM)
and Prognosis and Health Management (PHM) are usu-
ally interchangeable with Condition Monitoring.” DoD
4151.22-M (2011) employs the term On-Condition Task and
defines it as follows:

• On-Condition Task “The purpose of an on-condition
task is to identify when action is required based on the
evidence of need. How often an on-condition task is
performed depends on the potential to functional failure
(P-F) interval.” (DoD 4151.22-M, 2011, p. 9).

The context of this definition is not unique to Equipment
capabilities; it applies to the Enabling System maintenance
inspection and corrective action process as well. Observe
the reference to the “… potential to functional failure (P-F)
interval.” So, what is a P-F Interval?

The P-F Interval refers to the condition-based trajectory
referred to as the P-F Curve. Let’s explore the topic to attain
a better understanding of its relationship to CBM.

A Word of
Caution 34.11

Despite being commonly used, the “po-
tential to functional failure (P-F)” label is
title mismatch for what is actually accom-
plished. As defined in Chapter 3, a function
is a unitless action to be performed, not
performance. More appropriately, a capa-

bility represents an action to be performed at a specific level
of performance, the threshold definition of a failure. So, a
System or Entity has to do more than “perform a function.”
Therefore, the caution concerning the correctness of the P-F
phrase!

An automobile brake pad with little remaining material
performs a function, a necessary but insufficient condition
for stopping a moving vehicle. The ability to safely stop the
vehicle requires a capability, which is considered necessary
and provides sufficient braking action with reserve to spare.

34.7.3 The P-F Curve Concept

The DoD 4151.22-M definition of On-Condition referenced
the “potential to functional failure (P-F) interval,” which is
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often referred to as the P-F Curve. The P-F Curve, like the
Bathtub Curve, is a concept applicable to Equipment.

The P-F Curve represents the deterioration of Equipment
over time as a function of its Operating Environment
stresses and maintenance or lack thereof. The reality is
Equipment operational conditions are conditional and di-
minish over time unless it is maintained. Characterizing
Equipment’s operational condition as a potential failure,
which is true, neglects the fact that the condition may be a
symptom of a latent defect - hazard or fault - that may and
will materialize over time versus stress-related degradation
from normal “wear and tear.”

From an SE perspective, what is important is to determine
the appropriate maintenance schedule to avoid a System or
Entity catastrophic failure such as Reason’s Accident Tra-
jectory Model illustrated in Figure 24.1. Figure 34.25 pro-
vides an example profile of an Equipment Failure Condition
Trajectory (Potential-Function) Curve.

When an Entity or Part is installed, it has an inherent
operating condition, Cond1, that is: (1) dependent on removal
of latent defects via Design Verification and (2) workman-
ship, and component issues via Product Verification. Over
time, the condition of mechanical Part Level components
deteriorate. The onset of this condition, Cond2, initiates
what is referred to as the physics of failure and a chain of
Equipment operational conditions begin to materialize. For
example, here is a hypothetical Run-to-Failure (RTF) sce-
nario of the chain of events illustrated in Figure 34.25 as-
suming no maintenance is performed.

• Event 3—Failure condition, Cond3, becomes de-
tectable via human inspections or supporting
technologies. For example, Entities and Parts
may begin to exhibit visible or audible evidence such
as: cracks from fatigue; slight vibrations; lubricant
viscosity, color, or odor changes; particulates such as
metal fragments appear in lubricants; tires or brake
pads become worn down; and leaks appear.

• Event 4—Operators report continuous or intermittent
vibrations, Cond4.

• Event 5—Metal fragments begin to appear as particu-
lates in lubricants, Cond5.

• Event 6—Non-specific audible noises become appar-
ent, Cond6.

• Event 7—Parts exhibit excessive heat, Cond7, de-
tectable to the touch and via thermal imagery.

• Event 8—Parts begin to loosen due to vibrations and
lack of maintenance, Cond8.

• Event 9—The System or Entity experiences a catas-
trophic or “hard” failure, Cond9

Events 1 – 9 illustrate a sampling of Systems or Entities
that are allowed to RTF as shown in Figure 34.1. Using that
information, an appropriate PM program can be developed
to ensure failures are detected to ensure that System capabil-
ities will be preserved throughout the mission. To aid human
inspections, technologies such as acoustical sensors and vi-
bration analytics, lubricant analysis, infrared thermography,
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X-ray radiography, and vibration analysis have been
developed.

On the basis of today’s technologies, what analytical
tools and devices can we employ to support PHM and
CBM? Examples include: Vibration Analysis, Acoustical
Analysis—Ultrasonic Monitoring and Sonic Monitoring,
Infrared Monitoring and Analysis, and Oil Analysis.7

34.8 SYSTEM RMA CHALLENGES

Implementation of System RMA practices poses a number
of challenges. Let’s explore some of the key challenges.

34.8.1 Challenge 1: Defining and Classifying Failures

Despite all the complexities of curve fitting and creating
mathematical equations to model RMA, one of the most sen-
sitive issues is what constitutes a failure. Does it mean loss
of a critical mission function? Your task, as an SE, is to
“maintain intellectual control of the problem-solution” (Prin-
ciple 1.3). This requires developing a consensus definition of
a failure that is shared by Acquirer and System Developer
teams.

34.8.2 Challenge 2: Failure to Document Assumptions
and Data Sources

The validity of Engineering data typically requires:

• Identifying credible data sources.

• Making assumptions about the Mission System or
Enabling System User Stories, Use Cases (UCs),
scenarios (Chapter 5), and Operating Environment
conditions.

• Documenting those assumptions and observations.

Yet, few Enterprises instill professional discipline in their
Engineers to document these decisions. Then, when the
time comes to make critical informed decisions, the decision
process is in a conundrum as to whether the R&M Engineer
did or did not consider all relevant factors. Time exacerbates
the problem. Therefore, educate and train Engineers in your
Enterprise to document assumptions and data sources as part
of an RMA analysis.

34.8.3 Challenge 3: Validating RMA Models

RMA analyses, assuming they are performed properly, are
only as good as the models employed to generate data for the
analyses. Referring to Principle 33.5, you should recall Box’s
(1979, p. 202) quote concerning the validity of models. From

7Refer to Wikipedia (2013b) for additional information concerning these
tools.

the beginning of a program, strive to validate the models
used to generate decision-making data with actual vendor or
field data.

34.8.4 Challenge 4: The Criticality of Scoping System
Availability

Today, the government and private sectors employ contract-
ing for services approach in which a contractor develops
and provides systems and services on a fee-per-service basis.
For example, contracts will often state that the Equipment
and services must be operationally available from 8 a.m.
to 5 p.m., Monday through Friday and at other times under
specified conditions. The System Acquirer pays a fee for mis-
sion time for System use within those time frames.

Author’s Note 34.12

Understand the Contract

The challenge in developing the
contract is to thoroughly understand
all of the use cases and scenarios

that may become major showstoppers for progress payments
in performance of the contract and clarifying how all par-
ties will accommodate them. Think about the implications
of System Availability requirements before you write them
into System Acquisition requirements of a proposal and
contract.

34.8.5 Challenge 5: Quantifying Software RMAs

We live in the Information Age where seemingly all sys-
tems, especially complex systems, are software intensive.
Despite Hardware RMA curve fitting and the mathemat-
ical equations discussed, how do you measure and model
the RMA of software? Unlike Hardware components that
can be tested in controlled laboratory conditions and main-
tained via repairs, how do you model and estimate the RMA
of Software?

This is perhaps one of the most perplexing areas of
Engineering. What about the RMA of software used in
consumer products versus mission critical software for the
International Space Station (ISS), NASA Space Shuttle,
passenger aircraft, and medical equipment? There are no
easy or simple answers.

One solution may be to employ the services of Inde-
pendent Verification and Validation (IV&V) (Chapter 13)
contractors. IV&V contractors perform services to review
and test software designs for identifying and eliminating
design flaws, coding errors, and product defects and their
services can be very costly, especially from a system de-
velopment perspective. Depending on the legal and financial
ramifications of System or Entity abuse, misuse, or mis-
application, the Return on Investment (ROI) for IV&V ac-
tivities may be cost-effective. Consult with software SMEs
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in your industry to gain insights into how to specify soft-
ware RMA.

34.9 CHAPTER SUMMARY

Our discussion of RMA practices is intended to provide a
basic understanding that will enable you to communicate
with Reliability Engineers, logisticians, and others. Chapter
34’s discussions are intended to introduce you the System
RMA concepts, principles, and practices to enable you to
interact with or employ RMA professionals, understand their
computations and assumptions, and understand the types of
questions to ask. Overall, there are several key points you
should remember:

• RMA practices apply model-based mathematical
and scientific principles to estimate reliability, avail-
ability, and maintainability to support SE design
decision-making.

• RMA estimates are only as valid as the assumptions,
inputs, and level of validation of models.

• RMA models require best-fit selection to provide an
estimate of the probability related to System or Entity
success.

• RMA practices involve art, science, and sound judg-
ment:
a. Art from the standpoint of empirical knowledge,

wisdom, and experience gleaned over an entire
career.

b. Science from the application of mathematical and
scientific principles.

c. Sound judgment to recognize and reconcile the
differences between art and science.

• Always employ the services of a qualified, competent,
R&M Engineer recognized as a SME, either as a staff
member or as a credible consultant with integrity.
Remember, RMA involves critical areas that involve
ethical, legal, and safety issues and their associated
ramifications.

34.10 CHAPTER EXERCISES

34.10.1 Level 1: Chapter Knowledge Exercises

1. What does the acronym RMA represent?

2. When should RMA be addressed on a project?

3. Why are RMA addressed as a set?

4. Who is accountable for RMA?

5. Differentiate System Reliability and Mission Reliability.
What is the scope of each?

6. Do you predict or estimate a System or Entity’s
Reliability?

7. When expressing a System or Entity’s Reliability, what
criteria should be included? Where should those criteria
be documented? Why?

8. Which Level of Abstraction—System, Product, Sub-
system, Assembly, Subassembly, or Part—does Sys-
tem Reliability apply to?

9. If a System or Entity’s Failure Rate, 𝜆(t), and instant
in time, t(t), are known, how do you compute its
Reliability?

10. What is the difference between a System or Entity’s
Average Failure Rate, 𝜆(t)Avg, and Instantaneous Failure
Rate, 𝜆(t)Inst?

11. If MTTF represents the Mean Time to Failure, what
Greek letter is used to represent the frequency of
MTTF ?

12. MTTF applies to what types of Systems or Entities?

13. If MTBF represents the Mean Time Between Failure,
what Greek letter is used to represent the frequency of
MTBF?

14. MTBF applies to what types of Systems or Entities?

15. What are Lifetime Data Distributions and how are they
applied to RMA?

16. What are the seven Lifetime Data Functions?

17. What is a Normal (Gaussian) Distribution, what is its
shape, and what are its characteristics?

18. What is a Log-Normal Distribution, what is its shape,
and what are its characteristics?

19. What is an Exponential Data Distribution, what is its
shape, and what are its characteristics?

20. What is a the Cumulative Distribution Function (CDF),
what is its source of derivation, and what information
does it communicate?

21. What is a Weibull Distribution, what is its shape, what
are its key parameters, and what do the parameters
control?

22. What Lifetime Data Distribution provides the most
flexibility in modeling the failure characteristics of a
System or Entity?

23. What is the Failure Rate Function?

24. What is the Bathtub Curve? What are its origins? What
is its shape? Define each of its regions and discuss their
characteristics. Illustrate how the Bathtub Curve was
composed?
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25. What is the characteristic of the Failure Rate that is
unique to the Exponential Distribution in the Bathtub
Curve Stabilized Failure Regions (SFR)?

26. What is a Parts Count Estimate? What is its purpose and
relevance?

27. Is the Bathtub Curve valid and does it apply to all
Systems or Products? If not, why?

28. What is the relevance and importance of RMA to System
Architecting?

29. How are specification reliability requirements allocated
from the SPS?

30. What types of network configurations are used to com-
pute the reliability of a System or Entity Architecture?

31. What is a FMEA, its purpose, and what outcomes does
it expect to achieve?

32. What is System Maintainability?

33. What is the difference between Maintainability and
Maintenance?

34. MTBF is composed and computed by the summation of
two other metrics. What are they?

35. Within an SPS or EDS outline, where are the RMA
requirements specified?

36. A specific System or Product is characterized by an
Exponential Distribution PDF, f(t). When it reaches its
mean life point, what percentage of its population remain
as survivors?

37. What parameters are used to characterize the Maintain-
ability of a System or Entity?

38. What is System Availability?

39. What are the three types of Availability, define what each
includes/excludes, and develop a statement for each that
expresses its computation?

40. How do you improve System Reliability?

41. How do you improve System Maintainability?

42. How do you improve System Availability?

43. Is the Bathtub Curve valid? Why? State the pros and cons
of its validity.

44. As an SE, why should you be expected to understand the
contents of this chapter?

34.10.2 Level 2: Chapter Knowledge Application
Exercises

Refer to www.wiley.com/go/systemengineeringanalysis2e
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EPILOG

Chapters 1–34 presented the key concepts, principles, and
practices of System Engineering Analysis, Design, and
Development. Our purpose has been to help bridge the
gap between a User’s abstract vision for a system, prod-
uct, or service and its physical realization that will satisfy
their Enterprise mission or personal needs and objectives.
Equipped with this new knowledge of systems, you should
be prepared to embark on applying what you have learned
without having to take a quantum leap to bridge the gap
(Figure 2.3).

Chapter 1 introduced the definition of a System repeated
below.

System An integrated set of interoperable elements or
entities, each with specified and bounded capabilities,
configured in various combinations that enable specific
behaviors to emerge for Command & Control (C2) by
Users to achieve performance-based mission outcomes
in a prescribed operating environment with a probabil-
ity of success.

Reread it frequently. When you read other generic def-
initions such as … a system is a collection of things …
hopefully Chapters 1–34 provide a better understanding of
why the definition requires the robustness of its wording.

The same is true with the definition of Systems Engineer-
ing:

System Engineering (SE) The multi-disciplined
application of analytical, mathematical, and scientific
principles for formulating, selecting, and developing

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

an optimal solution from a set of viable candidates that
has acceptable risk, satisfies User operational need(s),
and minimizes development and life-cycle costs while
balancing Stakeholder interests.

Recognize that 21st Century System Engineering & De-
velopment (SE&D) encompasses more than the traditional,
“Engineering the Box” mindset (Chapter 1). As an SE, if
your perception of SE is plugging and chugging equations,
you need to reexamine the traditional Engineering view of
your role as an SE as well as your values and priorities in
achieving mission success! Learn to recognize and exercise
caution when Engineers and Enterprises claim to be per-
forming SE when, in fact, it is nothing more than the ad
hoc, endless loop Specify-Design-Build-Test-Fix (SDBTF)
Engineering Paradigm with Archer’s (1965) Design Process
Model (DPM) embedded.

Chapter 2 addressed The Evolving State of SE
Practice – Challenges and Opportunities from the
author’s Organizational Development (OD) perspective.
During that discussion, we highlighted some of the per-
ceptions, misperceptions, paradigms, and issues that limit
achievement of Enterprise and project level application of
Systems Engineering (SE). Based on Chapters 1–34, you
should have acquired new levels of awareness about these
issues and gained new insights that enable you to shift to
a new paradigm for thinking about, analyzing, organizing,
and orchestrating the development of systems, products, and
services. Periodically reread Chapter 2 and use it as a frame
of reference for improving Enterprise SE capabilities and
project performance.

http://www.wiley.com/go/systemengineeringanalysis2e
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Chapters 3–34 highlighted key multi-discipline topics and
methodologies required for the “Engineering Systems.” As a
structured problem solving/solution development methodol-
ogy, these concepts, principles, and practices enable us to
develop systems, products, and services ranging from sim-
ple to highly complex. The scalability and flexibility of the
methodology facilitates application to any type of system,
product, or service regardless of business domain. These sys-
tems may range from institutional/Enterprise systems such
as a transportation, energy, Aerospace and Defense (A&D),
financial, education, medical, healthcare, and military to the
Engineering of Enterprise Systems and their Engineered sys-
tems, products, or services.”

During the writing of the First Edition, the author
searched to find a highly successful project that exemplified
all of the challenges of multi-discipline Systems Engineer-
ing. At that time, NASA’s Jet Propulsion Laboratory (JPL)
had successfully completed the Mars Pathfinder Project sev-
eral years earlier in 1997. JPL’s business model was con-
fronted with the following challenges:

1. Limited windows of opportunity to launch every 26
months; you don’t just decide to go to Mars when
design teams finish the job.

2. Innovating and creating new technologies in a very
short development window of time.

3. Innovating, designing, and developing systems in a
short development cycle followed by Command and
Control (C2) of the missions. Whereas Enterprises
typically develop and deliver systems when completed,
JPL has to C2 their own missions and live with
the consequences of their SE system development
decisions.

4. Bottom Line: Funding driven by accomplishments and
successes.

Bottom line: JPL is a success-driven decision-making
Enterprise with missions that involve major technical and
technological challenges.

In 2001, I met with Brian Muirhead, Mars Pathfinder
Project Manager, and members of his team to learn more
about the factors that contributed to the project’s success.
Three key points emerged from our discussions:

• The team consisted of multi-discipline Engineers from
around the JPL facility who were “motivated by the
excitement of working on a mission that required major
technological challenges”.

• Members of the team were Systems Thinkers that un-
derstood the importance of proactive, interdisciplinary
collaboration and communications.

• The team understood the importance and critical-
ity of System Verification and Validation (V&V)

through design risk mitigation testing and a robust
validation test program the “working system” such
as the flight vehicle, ground mission control, and
communications.

During these intervening years, Brian and his team mem-
ber comments have resonated and been validated by the au-
thor’s own independent observations and experiences across
business domains.

Brian is now the Chief Engineer at JPL and still actively
engaged in the Engineering of their missions. The concepts
and ideas that Brian and his team pioneered on the Mars
Pathfinder Project in 1997 serve as a frame of reference for
today’s JPL successes.

In preparing this Second Edition, it seemed worthwhile to
revisit the Pathfinder Team’s comments and follow-up with
Brian to discuss how his views of SE may have evolved over
these years. During our conversation, he responded with the
following points:

1. Start thinking about the test program “up front” at
the beginning of a project, especially in developing
specifications and how you will demonstrate and prove
the “functionality and interfaces.” Every requirement
should be challenged leaving only valid, essential
requirements and a plan for System Verification and
Validation (V&V).

2. “Government and industry have become bogged down
with processes almost excessively. We’ve replaced
(System) thinking with process”—Paint-By-Number
Engineering (Chapter 2).

3. The Mars Pathfinder Project Team made a decision “up
front” to reserve 50% of the development schedule for
designing the System and the other 50% for testing and
validating the working system. Design risk mitigation
testing, especially for new technologies, was an integral
part of the design portion. The Team met the 50%
design/50% test schedule goals.

4. (Unlike the SDBTF-DPM Engineering Paradigm
that lacks a focused strategy) The Pathfinder Team
conducted a significant amount of well-planned
“build-test-break-learn” exercises and outcome-based
corrective action activities that included validation of
the analytical models with actual test data. At that time
(1990’s) some analytical Engineering tools such as a
Cray computer system could not provide the answers
they needed; validation testing was the only logical
alternative.

5. System Verification has its place in terms of prov-
ing compliance to specification requirements. How-
ever, System Validation is where you get to find out
if the system provides the behaviors and interactions
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required by the “functionality and interface” require-
ments. You should recall from Chapter 2 that Warwick
and Norris (2010) noted Dr. Michael Griffin’s observa-
tions about “… understanding the dynamic behavior
of those interactions.”

In summary, Chapters 1–34 provided the SE concepts,
principles, and practices required to perform SE&D. The
next steps are up to you, your project, and Enterprise. The
question you and your Enterprise need to answer is:

How do we preserve the integrity of the SE concepts,
principles, and practices addressed in Chapter 1–34 while
confronted with aggressive schedules, limited budgets, and
challenging technologies?

That requires experience, sound engineering judgment
and a proactive willingness to perform – tailor and scale
SE practices - to achieve the required performance-based
outcomes.

With these points in mind, I extend to you best wishes for
success as an SE, System Analyst, Engineer, Project Man-
ager (PM), functional manager, or executive applying System
Engineering Analysis, Design, and Development: Concepts,
Principles, and Practices to achieve System Engineering and
Development (SE&D) excellence!

Charles S. Wasson

Wasson Strategics, LLC
www.wassonstrategics.com

August 2015

http://www.wassonstrategics.com


Appendix A
ACRONYMS AND ABBREVIATIONS

A

Ao Operational Availability

Ai Inherent Availability

Aa Achieved Availability

A&D Aerospace & Defense

ABD Architecture Block Diagram

ABET Accreditation Board of Engineering &
Technology

ABS Anti-lock Braking System

ACA After Contract Award

ACO Acquirer Contracting Officer

AD Architecture Description

ADT Administrative Delay Time

ADT Mean Administrative Delay Time
(MADT)

AFE Acquirer Furnished Equipment

AFSCM (US) Air Force Systems Command

AFP Acquirer Furnished Property

AMSL Above Mean Sea Level (See MSL)

ANSI American National Standards Institute

AoA Analysis of Alternatives

AR As Required

ASEP (INCOSE) Acquisition Systems Engineering
Professional

ATC Air Traffic Control

ATE Automated Test Equipment
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Companion Website: www.wiley.com/go/systemengineeringanalysis2e

ATP Acceptance Test Procedure

ATR Acquirer’s Test Representative

B

BCD Baseline Concept Description

BES British Engineering System

BioMed BioMedical Engineering

BIT Built-In Test

BITE Built-In Test Equipment

BOM Bill of Materials (See EBOM)

C

CA Contract Award

CAD Computer-Aided Design

CAIV Cost as an Independent Variable

C2 Command and Control

C4I Command, Control, Communications, &
Computers Integration

CBM Condition-Based Maintenance

CCB Configuration Control Board

CCM Counter-Counter Measures

CDD Capabilities Development Document

CDF Cumulative Distribution Function

CDR Critical Design Review

CDRL Contract Data Requirements List

CEP Circular Error Probability

http://www.wiley.com/go/systemengineeringanalysis2e
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CFD Computational Fluid Dynamics

CG Center of Gravity

CofC Certificate of Compliance

CoM Center of Mass

ChemE Chemical Engineering

CHI Computer-Human Interface

CI Configuration Item

CLIN Contract Line Item

CLS Contract Logistics Support

CM Configuration Management

CM (US Apollo) Command Module

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

CMMI-ACQ CMMI for Acquisition

CMMI-DEV CMMI for Development

CMMI-SVC CMMI for Services

CMP Configuration Management Plan

CMT Corrective Maintenance Time

COI Critical Operational Issue

COMSEC Communications Security

ConOps Concept of Operations (Document)

COS Conditions of Satisfaction

COTS Commercial-Off-the-Shelf

CPAT (DoD) Critical Process Assessment Tool

CPFF Cost Plus Fixed Fee (Contract)

CPIF Cost Plus Incentive Fee (Contract)

CR Change Request

CSA Configuration Status Accounting

CSC Computer Software Component

CSU Component Software Unit

CSCI Computer Software Configuration Item

CSE Common Support Equipment

CSEP (INCOSE) Certified Systems Engineering
Professional

CSOW Contract Statement of Work

CTI Critical Technical Issue

CTO Certified Test Operator

CW Courseware

CWCI Courseware Configuration Item

CWBS Contract Work Breakdown Structure

C&UT Code and Unit Test

D

DAL Data Accession List

DAU Defense Acquisition University

DBDD Database Design Description

DCL Design Criteria List

DFR Decreasing Failure Region

DFSS Design for Six Sigma

DI Data Item

DID Data Item Description

DOA Dead on Arrival

DoD (US) Department of Defense

DOE (US) Department of Energy

DOF Degrees of Freedom

DORT Daily Operational & Readiness Test

DPM (Archer’s) Design Process Model

DR Discrepancy Report

DRD Design Rationale Document

DSM Design Structure Matrix

DT Down Time

DT&E Developmental Test & Evaluation

DTC Design-to-Cost

DTV Design-to-Value

E

E3 Electromagnetic Environment Effects

EBOM Engineering Bill of Materials

ECEF Earth-Centered-Earth-Fixed

ECI Earth-Centered Inertial

ECP Engineering Change Proposal

ECR Engineering Change Request / Earth-Centered
Rotating

EDS Entity Development Specification

EE Electrical/Electronic Engineering

EF Exploration Factor (Highsmith)

EFL Exponential Failure Law

EIA Electronic industries Association

EIS Environmental Impact Study

EMC Electromagnetic Compatibility

EMF Electromotive Force

EMI Electro-Magnetic Interference

EMP Engineering Management Plan

ENU East-North-Up (Local Reference)

E/QT Environmental/Qualification Test

ERs Entity Relationships

ERD Entity Relationship Diagram

ERR Engineering Release Record

ESD Electro-Static Discharge

ESEP (INCOSE) Expert Systems Engineering
Professional

ES&OH Environmental, Safety, and Occupational
Health

ET (US NASA Space Shuttle) External Tank
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E(T) Expected Life

EVMS Earned Value Management System

F

FAA (US) Federal Aviation Administration

FAIT Fabrication, Assembly, Integration, and Test

FAR (US) Federal Acquisition Regulation

FCA Functional Configuration Audit

FFP Firm Fixed Price (Contract)

FMEA Failure Modes & Effects Analysis

FMECA Failure Modes & Effects Criticality Analysis

FFBD Functional Flow Block Diagram

FIS Facility Interface Specification

FOC Full Operational Capability

FOM Figure of Merit

FRACAS Failure Reporting and Corrective Action System

FSP Full Scale Production

FTA Fault Tree Analysis

G

GN&C Guidance, Navigation, and Control

GPS Global Positioning System

GSE Ground Support Equipment

H

HAZMAT Hazardous Material

HDBK Handbook

HDD Hardware Design Description

HDP Hardware Development Plan

HE Human Engineering

HF Human Factors

HFE Human Factors Engineering

HFES Human Factors and Ergonomics Society

HITL Hardware-in-the-Loop

HoQ (QFD) House of Quality

HRR Hazard Rate Region

HRS Hardware Requirements Specification

HSI Human-System Integration

HSR Hardware Specification Review

HTR Hardware Trouble Report

HW Hardware

HWCI Hardware Configuration Item

I

I/F Interface

I/O Input/Output

IBR Integrated Baseline Review

I&CO Installation & Checkout

IC Integrated Circuit

ICAO International Civil Aviation Organization

ICD Interface Control Document

ICWG Interface Control Working Group

IDD Interface Design Description

IDE Integrated Development Environment

IDEF Integration DEFinition (Modeling languages)

IE Industrial Engineering

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronic Engineers

IFR Increasing Failure Region

IID Iterative and Incremental Development

IMP Integrated Master Plan

IMS Integrated Master Schedule

INCOSE International Council on Systems Engineering

INFOSEC Information Security

INS Inertial Navigation System

INU Inertial Navigation Unit

IOC Initial Operational Capability

IP Integration Point

IP Intellectual Property

IPPD Integrated Product and Process Development

IPR In-Process Review

IPT Integrated Product Team

IRI International Roughness Index

IRS Interface Requirements Specification

ISD Instruction System Development

ISO International Organization of Standards

ISS International Space Station

ITA Independent Test Agency

ITAR (US) International Traffic and Arms
Regulations

ITT Independent Test Teams

IV&V Independent Verification & Validation

J

JIT Just-In-Time

JPL Jet Propulsion Laboratory

K

KE Kinetic Energy

KPP Key Performance Parameters

KPI Key Performance Indicator
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KSA Knowledge, Skills, and Abilities

KSC (US NASA) Kennedy Space Center

L

LAN Local Area Network

LCC Life Cycle Cost

LCL Lower Control Limit

LDT Logistics Delay Time

LDT Mean Logistics Delay Time (MLDT)

LH Left-Hand

LM (US Apollo) Lunar Module

LOB Line of Business

LOE Level of Effort

LORA Level of Repair Analysis

LRIP Low Rate Initial Production

LRU Line Replaceable Unit

LSA Logistics Support Analysis

LSB Least Significant Bit

LSE Lead Systems Engineer

LSWG Logistics Support Working Group

M

M Mean Active Maintenance Time (MAMT)

Mct Corrective Maintenance Time

Mct Mean Corrective Maintenance Time

Mpt Preventive Maintenance Time

Mpt Mean Preventive Maintenance Time

M & S Modeling and Simulation

MAMT Mean Active Maintenance Time

MBSE Model-Based Systems Engineering

MC2 Monitor, Command, and Control

MDD Model-Driven Design

MDT Maintenance Down Time

ME Mechanical Engineering

MET Mission Event Timeline

MIL Military

MKS Meter-Kilogram-Second (System)

MLE Maximum Likelihood Estimation

MMI Man-Machine Interface

MNS Mission Needs Statement

MOE Measure of Effectiveness

MOP Measure of Performance

MOS Measure of Suitability

MPS Master Program Schedule

MRB Material Review Board

MRI Magnetic Resonance Imaging

MSB Most Significant Bit
MSDS Material Safety Data Sheet
MSL Mean Sea Level (See AMSL)
MTBF Mean-Time-Between-Failure
MTBM Mean-Time-Between-Maintenance
MTTF Mean-Time-to-Failure
MTTR Mean-Time-to-Repair
MTTRS Mean-Time-to-Restore-Service

N

NASA (US) National Aeronautics & Space
Administration

NDA Non-Disclosure Agreement
NCR Non-Conformance Report
NDI Non-Developmental Item
NDIA National Defense Industrial Association
NED North-East-Down (Local Reference)
NEPA (US) National Environmental Policy Act
NGT Nominal Grouping Technique
NIH (US) National Institute of Health
NIST (US) National Institute of Standards and

Technology
NOAA (US) National Oceanic and Atmospheric

Agency

O

OM&S Operations, Maintenance, & Sustainment
OCD Operational Concept Description
OE Operating Environment
OEM Original Equipment Manufacturer
OH&S Operational Health & Status
OJT On-the-Job (Training)
OM&S Operations, Maintenance, and Sustainability
OMG Object Management Group
Ops Operations
OPSEC Operations Security
ORD Operational Requirements Document
OSE Open Systems Environment
OSHA (US) Occupational Safety & Health

Administration
OSP Organizational Standard Process
OS&H (US) Occupational Safety and Health
OT&E Operational Test and Evaluation
OTW Out-the-Window (Display)
OV (US Space Shuttle) Orbiter Vehicle

P

PBS Product Breakdown Structure



ACRONYMS AND ABBREVIATIONS 799

PCA Physical Configuration Audit

PDF Probability Density Function

PDT Product Development Team

PE Professional Engineer (Registration)

PERT Program Evaluation and Review Technique

PdM Predictive Maintenance

PDR Preliminary Design Review

PGE Powered Ground Equipment

PHM Prognosis and Health Management (PHM)

PHS&T Packaging, Handling, Storage, &
Transportation

PHYSEC Physical Security

PIA Proprietary Information Agreement

PM Project Management/Project Manager

PMB Performance Measurement Baseline

PMP Project Management Plan

PMT Preventive Maintenance Time

POC Point of Contact

PR Problem Report

PRR Production Readiness Review

PSE Peculiar Support Equipment

PWBS Project Work Breakdown Structure

PWO Project Work Order

Q

QA Quality Assurance

QAP Quality Assurance Plan

QAR Quality Assurance Representative

QFD Quality function Deployment

QMS Quality Management System

QT Qualification Test

QR (ISO) Quality Record

R

R&M Reliability and Maintainability

R&D Research & Development

RCM Reliability-Centered Maintenance

RE Requirements Engineering

REQ Requirement

Reqmt. Requirement

RFI Request for Information

RFS Request for Service

RFQ Request for Quotation

RH Right Hand

RFP Request for Proposal

RMA Reliability, Maintainability, & Availability

RMA Rate Monotonic Analysis (Software)

ROMP Risk and Opportunity Management Plan

RMP Risk Management Plan

RMT Requirements Management Tool

ROBP Requirements, Operations, Behavior, and
Physical (SE Process)

ROC Required Operational Capability

ROI Return on Investment

ROIC Return on Invested Capital

ROM Rough Order of Magnitude

RPY Roll, Pitch, and Yaw

RRX Rank Regression on X

RRY Rank Regression on Y

RSO Range Safety Officer

RTA Requirements Traceability Audit

RTF Run-to-Failure (See TTF)

RTM Requirements Traceability Matrix

RTSR Ready-to-Ship Review

RVM Requirements Verification Matrix

RVTM Requirements Verification Traceability Matrix

S

6-DOF Six Degrees of Freedom

S&T Simulation and Training

S/N Signal-to-Noise/Serial Number (Context)

SA&M System Acquisition and Management

SBA Simulation-Based Acquisition

SBD System Block Diagram

SCCB Software Configuration Control Board

SCR Software Change Request

SDBTF Specify-Design-Build-Test-Fix (Paradigm)

SDD Software Design Description

SDN System Design Notebook

SDP Software Development Plan

SDR System Design Review

SDRL Subcontract Data Requirements List

SDT System Development Team

SE System Engineering/Systems Engineer

SE&D Systems Engineering and Development

SEA System Element Architecture

SEI Software Engineering Institute

SEIT System Engineering & Integration Team

SEMP Systems Engineering Management Plan

SETA Systems Engineering and Technical
Assistance

SFP Single Failure Point

SFR Stabilized Failure Region

SI International System of Units
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SI&T System Integration and Test

SITE System Integration, Test, & Evaluation

SIVP System Integration & Verification Plan

SM (US Apollo) Service Module

SMART-V Specific, Measurable, Achievable, Realistic,
Testable (Doran); Verifiable and Traceable
(Wasson) (Requirements)

SME Subject Matter Expert

SOI System of Interest

SOA Service-Oriented Architecture

SOO Statement of Objectives

SOPP Standard Operating Practices & Procedures

SOS System of Systems

SOW Statement of Work

SPC Statistical Process Control

SPR Software Problem Report

SPS System Performance Specification

SQA Software Quality Assurance

SRB (US NASA Space Shuttle) Solid Rocket
Booster

SRD System Requirements Document

SSET Source Selection Evaluation Team

SRR System Requirements Review

SRS Software Requirements Specification

SSDD System/Segment Design Review

SSR Software Specification Review

SysMLTM (OMG) Systems Modeling LanguageTM

SVD Software Version Description (Document)

SVR System Verification Review

SVT System Verification Test

SW Software

SwE Software Engineering

SWOT Strengths, Weaknesses, Opportunities, and
Threats

T

T&E Test & Evaluation

Ts&Cs (Contract) Terms and Conditions

TBD To be Determined

TBS To Be Supplied

TC Test Case

TCO Total Cost of Ownership

TD Test Discrepancy

TDD Test Driven Development

TEMP Test and Evaluation Master Plan

TEWG Test & Evaluation Working Group

TMDE Test, Measurement, and Diagnostics Equipment

TMP Technical Management Plan

TOO Target of Opportunity

TPM Technical Performance Measure

TPP Technical Performance Parameter

TRR Test Readiness Review

TSO Test Safety Officer

TSR Trade Study Report

TTF Time-to-Failure (See RTF)

U

UC Use Case

UCI User-Computer Interface

UCL Upper Control Limit

UCSD User-Centric System Design

UMLTM Unified Modeling LanguageTM

UT Up Time

UUT Unit-Under-Test

UAS Unmanned Aerial System

V

V&V Verification & Validation

VAL Validation

VDD Version Description Document

VOC Voice of the Customer

VTR Verification Test Report

W

WAN Wide Area Network

WBS (Project) Work Breakdown Structure

WCS World Coordinate System
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Appendix C
SYSTEM MODELING LANGUAGE (SYSMLTM) CONSTRUCTS

C.1 INTRODUCTION

Systems Engineering (SE), as a multi-discipline
problem-solving and solution development methodology
is supported by methods such as Model-Based Systems
Engineering (MBSE), Model-Driven Design (MDD) and
tools to conceptualize, express, and elaborate systems in
terms of their operational, behavioral, and physical relation-
ships, properties, and characteristics. Modeling a system,
product, or service requires establishing an analytical
framework that enables us to represent the time-dependent,
sequential and concurrent process flows and tasks with
embedded transfer functions that enable us to transform a
set of acceptable/unacceptable inputs into a set of accept-
able/unacceptable behavioral outputs (Figure 3.2). How
do we create and characterize these process flows? The
solution begins with a graphical description language such
the Systems Modeling Language (SysMLTM). SysMLTM

established by the Object Management Group (OMGTM).
SysMLTM constructs provide the basis for some of the
figures used in System Engineering Analysis, Design, and
Development: Concepts, Principles, and Practices.

A Word of
Caution C.1

SE Analysis, Design, and Development
focuses on establishing a foundation in
SE concepts, principles, and practices, not
SysMLTM. Since SysMLTM is an integral
part of what many SEs and System Analysts
do, this text employs a few the SysMLTM

diagrams-constructs-to communicate … concepts, princi-
ples, and practices. Therefore, Appendix C should not be

System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, Second Edition. Charles S. Wasson.
© 2016 Wasson Strategics, LLC. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/systemengineeringanalysis2e

interpreted as a tutorial on SysMLTM or its application. Only
specific SysMLTM diagrams related to discussions in the text
are used. For more detailed descriptions of SysMLTM refer
to Delgatti (2013), Friedenthal, et al (2014), and OMG
(2012).

Due to space restrictions and the need to maintain mini-
mum font sizes, figures in this text do not graphically por-
tray all of the attributes of a SysMLTM construct such as
model elements, diagram frames, guillemets—≪≫, names-
paces, compartments, ports and flows, and semantics. For the
current, official specification and description of SysMLTM,
its diagrams, and their applications, always refer to the Ob-
ject Management Group (OMGTM) web site for SysMLTM at
www.omgsysml.org.

C.2 ENTITY RELATIONSHIPS (ERs)

Systems, by definition, are composed of multiple levels of
abstraction and entities (Figure 8.4) within each level that
may or may not have direct relationships. Similarly, a system
may have direct or associative Entity Relationships (ERs)
to external systems that are time dependent. Analytically,
we refer to the systems and their internal and external
interactions as ERs. ERs are depicted graphically in an Entity
Relationship Diagram (ERD) such as Figure 26.2.

ERs graphically express compositional and associative re-
lationships and linkages typically between vertical levels of
abstraction or external systems. Compositional ERs are char-
acterized by two concepts, Generalization and Aggregation,
as shown in Figure C.1.

http://www.omgsysml.org
http://www.wiley.com/go/systemengineeringanalysis2e
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Entity B

Aggregation

Consists of composite sets of entities with
tightly coupled associations or interdependencies that

comprise a higher level abstraction.

Entity B

Aggregation

Symbol
Filled = Tight Coupling

Unfilled = Loose Coupling

SysMLTM

Symbology
Entity A

Entity A

Generalization
Symbol

(Open Triangle)

Generalization

Consists of sets of entities –A1 –A4 - with loose
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a higher level abstraction.

SysMLTM

Symbology
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Entity 
A2
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Entity 
B4

Figure C.1 SysMLTM Generalization versus Aggregation Concepts

Let’s explore each of these concepts.

C.2.1 Composition by Generalization

Reference: OMG (2012, p. 35)
The concept of Generalization simply means that a

System or one or more of its multi-level Entities are
characterized by an associative ER with lower level entities
(Figure 21.2). Referring to the upper left side of Figure C.1,
a System is composed of a loose association of four entities,
A1–A4. For example, a Mounting Kit is a generalization of
a bag or box of parts that may or may not have physical
associations (Figure 8.9) other than being in the bag together.

From an ER perspective, the relationships are hierarchi-
cal – bag/box (parent) consists of parts (children) as shown
in Figures 21.2 and C.1. Generalizations are symbolized by
an open triangle attached to the higher level class or parent.
Consider the following example.

Example C.1

Division of Motor Vehicles (DMV)
Database

A government’s Division of Motor Vehicles
(DMV) issues licenses and vehicle tags

authorizing the vehicle to be used on roadways. A database
is used to track vehicle attributes—trucks/cars, models, and
so forth—and vehicle tag numbers.

Within the database, classes of vehicles—trucks and
cars by manufacturer—are hierarchically structured into
multiple levels of subclasses representing unique models.
As a result, we can state that classes of vehicles such
as trucks are generalizations of Manufacturer X’s truck
models, Manufacturer Y’s truck models, and so on. Since the
vehicles have no physical ERs other than being created by
a given manufacturer or set of designs, we refer to these as
associative relationships as generalizations.

Graphically, however, the open triangle symbol in a
generalization ER diagram expresses the “existence” of
lower level ERs but nothing about quantity; it is unitless.
Analytically, we need a mathematical relationship to express
quantity information for each ER. This is accomplished by
annotating each ER link as being One-to-One, One-to-Many,
or Many-to-One ER. Therefore, the end of the ER opposite
to the Generalization open triangle—and later Aggregation
diamond—is annotated with:



SysMLTM DIAGRAMS 813

• 0..*—Represents a Zero to Many ER. Where the
existence of lower level entities may or may not be
present; a dashed line is sometimes used in ER link on
the end where the condition occurs.

• 1..*—Represents a One-to-Many ER.

Figure 26.2 provides an illustration that expresses these
relationships.

The preceding discussion illustrates ERs (Figure 8.9)
based on logical associations, not physical ERs. This brings
us to our next topic, Composition by Aggregation.

C.2.1.1 Composition by Aggregation Some systems or
products are composed of components that are physi-
cally connected—mechanically, electrically, wirelessly, op-
tically, and so forth. For example, an automobile engine,
as an abstract entity, represents the physical integration—
composition—of the engine block, pistons, cam shaft, and
other components. Where direct, compositional relationships
exist, we refer to it as aggregation as shown on the right side
of Figure C.1.

Aggregation represents the manifestation of the System
definition provided in Chapter 1. It is symbolized by a dia-
mond attached to the higher-level class or parent of an ER.
The Aggregation diamond occurs in two forms as (1) a filled
diamond and (2) an unfilled diamond. Let’s define these:

• Filled Diamond—Represents a “Part Association”
(OMG, 2012, p. 35) consisting of a tightly bound
coupling—physical connections—between the parent
and its children—“Aggregation = Composite” (OMG,
2012, p. 47). Where there are two or more Part Asso-
ciations, the linkages are referred to as a Multi-branch
Parts Association (OMG, 2012, p. 35).

• Open (Unfilled) Diamond—Represents a “Shared Ag-
gregation” (OMG, 2012, p. 35) or loose coupling.
Again, where there are two or more Part Associations,
the lines are referred to as a Multi-branch Shared As-
sociation (OMG, 2012, p. 35).

As in the case of Generalization, Aggregation is annotated
to express ER quantity attributes such as One-to-One (1),
One-to-Many (1..*), or Many-to-One.

C.3 SysMLTM DIAGRAMS

As a system description language, SysMLTM provides a
toolkit of diagrammatic structures—constructs—that enable
SEs, System Analysts, and Engineers to model various
aspects of a system, product, or service. SysMLTM diagrams
consist of three types as shown in Figure C.2: Behavior,
Requirements, and Structure.

• Behavior Diagrams—Enable us to model the ex-
ternal and internal, stimulus–response, behavioral

performance interactions between a system, product,
or service and its Users, external systems, and its
Operating Environment.

• Requirements Diagrams—Enable us to characterize
the hierarchical structure of system, product, or service
requirements.

• Structure Diagrams—Enable us to establish the ar-
chitectural framework and compositional ERs of the
systems, products, or services we choose to model.

Let’s briefly describe each of these types of diagrams.

C.3.1 Behavior Diagrams

Behavior Diagrams enable us to model the behavioral inter-
actions between two or more entities including their ERs.
SysMLTM Behavioral Diagrams used in this text include Use
Case Diagrams (UCDs), Sequence Diagrams, Activity Dia-
grams, and State Diagrams.

C.3.1.1 Use Case Diagrams (UCDs) References: OMG
(2012, p. 123–125)

One of the first steps in SE is understanding (1) who a
system, product, or service’s Stakeholders are—Users and
End Users, (2) what they expect the system, product, or
service or accomplish— performance-based outcomes, and
(3) how well the outcome is to be achieved in terms of
performance. This is a critical step that forms the basis for
deriving system, product, or services capabilities from which
specification requirements can be derived.

SysMLTM Use Case Diagrams (UCDs) such as the one
shown in Figure C.3 enable us to analytically represent
Users and their UCs—stimulus–response interactions—with
a system, product, or service.

A few of the key attributes of a UCD include the
following:

• Actors—Users are represented as stick figures. Actors
can be any entity that interacts with a system, product,
or service such as (1) humans and human roles—pilot,
navigator, and so forth, (2) places—environmental con-
ditions and so forth, and (3) things—external systems
and so forth. Different Actors may share the same UCs.
For example, UCs #1 and #2 are common to Actors #1
and #2.

• System Boundary—Is depicted by a rectangular box.

• Use Cases (UCs)—Are represented by ovals and as-
signed titles with a specific syntax: (1) an active verb
followed by (2) an outcome-based result expected from
the system. For example, UC #X—Print Document.
The outcome represents what the Users (Actors) expect
the system, product, or service to accomplish (Principle
5.14); not the capability-based action the system per-
forms to produce the outcome—Printing.
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SySMLTM

Diagram

Behavior
Diagram

Requirement
Diagram

Structure
Diagram

Activity
Diagram

Sequence
Diagram

State
Machine
Diagram

Use Case
Diagram

Block
Definition
Diagram

Internal
Block

Diagram

Parametric
Diagram

Package
Diagram

Same as UML 2

Modified from UML 2

New diagram type

Legend Note:
Highlighted boxes indicate constructs
employed in text to some extent.

Figure C.2 SysMLTM Taxonomy of Diagram Types (OMG, 2012, p. 167)

Use Case
#2

Use Case
#3User #1

(Actor)

Use Case
#1

User #2
(Actor)

Your System

User #3
(Actor)

Figure C.3 SysMLTM Use Case Diagram (UCD) Construct

• Extension UC—A refinement of a base UC. For

example, automobile UC #X Drive Vehicle as a base

UC can be elaborated into extension UCs such as Start

Vehicle, Accelerate Vehicle, Decelerate Vehicle, and

Stop Vehicle (OMG, 2012, p. 186).

A Word of
Caution C.2

Pay close attention to the above-mentioned
UCs point. Most SEs and Systems Analysts
default to assigning UC titles based their
perspective of what action (function) the
System or Product is performing internally.
Remember—you have to understand what
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performance-based outcomes the User expects the System
or Product to accomplish operationally before you can
define how to accomplish it—implementation. Recognize the
difference!

C.3.1.2 Sequence Diagrams References: OMG (2012,
p. 113–118)

Once we have established: (1) who the Users (Actors) are
and (2) what they expect the system to accomplish, the next
step is to expand the UCs into a level of detail that represents
the stimulus–response behaviors of the system, product, or
service. This enables us to collaborate with Users (Actors) to
characterize how they expect the system, product, or service
to respond behaviorally to their stimulation, excitations,
or cues.

SysMLTM Sequence Diagrams such as the one shown in
Figure C.4 enable us to depict two types of interactions:
(1) external interactions with the User and (2) internal
interactions that depict how it processes the User’s inputs to
produce behavioral responses.

A few of the key attributes of a Sequence Diagram include
the following:

• Convention—Begin with the generalized Engineering
practice of a left-to-right flow.

• Actors—Represent Users—humans and roles, places,
and things—relevant to a Level of Abstraction and
system boundary.

• Lifeline—A vertical line extending below each Actor
representing time (top-down).

• Activation Box—A vertical rectangular box along
each Lifeline representing the Input/Output (I/O)
stimulus–response processing performed by the Actor.

• Events—Represent triggers-stimuli, excitations, or
cues—that initiate processing by another Actor.

Author’s Note C.1

Observe:

1. That the Activation Boxes do not
extend the full length of the Life-
lines.

2. The operative term “Activation.”

When a system, product, or service is not actively
performing stimulus–response processing, it is in a Wait
State—idle—awaiting the next input or in a Standby Mode
(Chapter 7) of operation. In most cases, when an Actor is
activated and is designed to conserve energy, it may enter
a Standby Mode—dormant or sleep—requiring the opera-
tor to “Activate” it for normal operation. An office copier,

Actor A
(Class)

Actor B1
(Class)

Actor B2
(Class)

Event 2: XXXXXX

Event 3: XXXXXX

Entity B

Lifelines
(Time-Based)

Events
(Sequenced)

Activation
Boxes

(Processing)

User #1
(Actor)

Event 1: XXXXXX

Event 4: XXXXXX

Figure C.4 SysMLTM Sequence Diagram Construct
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(Table 5.1) for example, might enter the Standby Mode af-
ter X minutes of inactivity by a User and remain there until
reactivated for normal operation.

C.3.1.3 Activity Diagrams References: OMG (2012, p.
92–111)

Once we establish the Sequence Diagrams for a system,
product, or service, we need to expand the Activation Boxes
into actionable activities – operational tasks. We do this via
Activity Diagrams such as the construct shown in Figure C.5.
Activity Diagrams elaborate in more detail how Sequence
Diagram Activation Boxes process information acquired via
the interactions between Actors to produce the expected UC
outcomes. Depiction of these interactions are represented by
Control Flow (vertically) and Data Flow (horizontally) in the
Activity diagrams as shown in Figure 10.9.

Within the top-down sequential Control Flow of an
Activity Diagram, Decision Blocks may direct processing
along specific paths depending on conditions. Figure C.6
introduces two additional symbols, a Fork Node and a
Join Node.

Using Figure C.5 as a reference, a few of the key attributes
of an Activity Diagram include the following:

• SwimLanes—Expansions of Actor Lifelines into ver-
tical zones for depicting the sequence of Control Flow
and Data Flow activities (Figure 10.9) with internal
peer Actors or external System Actors.

• Initial Node—Each Actor’s processing activities begin
with an Initial Node (OMG, 2012, p. 94).

• Inputs—Generally represent external stimuli, excita-
tions, cues, or resources each with its own unique
identifier such as Input 10.

• Activities—Symbolized by rectangular boxes with
rounded corners to represent Input–Output (I/O) pro-
cessing that transforms inputs via mathematical trans-
fer functions to produce a specific performance-based
outcome—Output XX.

• Fork Node (Figure C.6)—Represent concurrent pro-
cessing paths (OMG, 2012, p. 94).

• Join Node (Figure C.6)—Represents synchronization
- reunification-of one or more Fork Control Flows into
a single Control Flow (OMG, 2012, p. 94).

• Decision Node—Symbolized by diamonds that repre-
sent decisions to be made within a sequential flow of
activities. While traditional decision blocks included a
question to be answered, SysMLTM decisions typically
do not contain text. Instead, the decision paths are an-
notated (OMG, 2012, p. 93). Whereas a traditional pro-
cess flow decision box (diamond) states a question with
conditional “Yes” or “No” branches, SysMLTM simply
places a “?” inside the decision box and annotates the
decision branches with a title.

System Operator (SwimLane) Subsystem #1 (SwimLane) Subsystem #2 (SwimLane)

Output 10

System of Interest (SOI)

Condition
20

Condition
21Condition

10

Condition
11 Condition

30

Condition
31

Output 21

Output 20

Output 31

Final Node Final Node Final Node

Activity

10

Activity

11

Activity

20

Activity

21

Activity

31

Activity

31

Cond
n

?

ition

? C
?

Initial
Node

Initial
Node

Initial
Node

Output
11

Figure C.5 SysMLTM Activity Diagram Construct
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Join Node

Condition 2

Final

Node

Initial

Node

Condition 1

Activity 

10

Activity 

20
Activity 

40

Activity 

50

Activity 

30

Fork Node

Figure C.6 Activity Diagram Illustrating Fork and Join
Nodes

• Outcomes—Represent response results produced as
an output, each with its own unique identifier such as
Output 21.

• Final Node—Each Actor’s processing activities termi-
nate with a Final Node (OMG, 2012, p. 93).

Author’s Note C.2

Inputs and Outputs can have any type
of designation you choose. Brevity,
however, should be the rule. The
generic Output 21 used previously
was simply only for reference. Rec-

ognize, however, that the output parameter names should be
explicit such as XYZ Trigger; Location XYZ Coordinates;
and so forth.

C.3.1.4 State Machine Diagrams References: OMG
(2012, p. 119–122)

State machine concepts enable us to characterize process-
ing to achieve a specific set of objective-based outcomes until
a change of state occurs based on conditions or receipt of an
external trigger. Examples include (1) Modes of Operation
(Figure 7.7) and (2) States of Operation (Figure 7.5).

A few of the key attributes of a State Machine Diagram
include the following:

• Initial Pseudo State—The condition on entry into a
state or operation.

• Transition Trigger—A condition or event that causes
a transition from one state to another. Triggers are
annotated with the name of the trigger or condition.

• Final State—The condition on completion of a state of
operation.

Since Modes and States remain in the current state until
triggered to exit to the next state, traditionally this condition
has been symbolized by a 270∘ loop with an arrow attached
externally to one of the corners of the Mode or State box
(Figure 7.5).

C.3.2 Requirement Diagrams

References: OMG (2012, p. 139–153)
SysMLTM Requirement Diagrams provide a construct for

defining, allocating, and flowing down system, product, or
service requirements. In general, Requirements Diagrams are
presented in this text using hierarchal structures such as the
one shown in Figure 14.3. The collection of Requirements
Diagrams form the basis for the Requirements Architecture
of a system, product, or service’s Requirements Domain
Solution addressed in:

• Figure 11.2—Four Domain Solutions.

• Figures 14.1 and 14.2—Develop the Requirements
Domain Solution.

C.3.3 Structure Diagrams

The architectural framework of a system, product, or ser-
vice’s and its internal and external interactions drives the
need for a construct to depict the Composition by Aggrega-
tion (Figure C.1) ERs. This includes interactions among vari-
ous components at (1) various levels of abstraction – System,
Subsystem, Assembly, Subassembly, and Part - and (2)
within each level. SysMLTM Structure Diagrams provide the
construct.

System Engineering problem-solving and solution-
development requires analytical partitioning - decompo-
sition or refinement - of abstract entities into lower level
components that are manageable in terms of risk (Principle
4.17). Similarly, we need to represent the hierarchical par-
titioning and integration—Product Structure—of a System
or Product. So, how do we depict analytical decomposition
and physical integration? Figure 8.7 is an SE application
example.

SysMLTM Structure Diagrams include two types used in
this text: Block Definition Diagrams (BDDs) and Internal
Block Diagrams (IBDs).
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C.3.3.1 Block Definition Diagrams (BDDs) References:
OMG (2012, pp. 32–36, 38–40, 59–61, et al.)

The composition concepts of generalization and aggre-
gation enable us to derive and refine - decompose - a sys-
tem, product, or service into some meaningful entities that
have manageable risk. SysMLTM Block Definition Diagrams
(BDDs) serve this purpose. Figure C.7 serves as an example
of a BDD.

Systems, products, or services represent a System of In-
terest (SOI) that is composed of at least (1) one or more
Mission Systems and (2) one or more Enabling Systems
(Figure 9.1). Each Mission System and Enabling Sys-
tem is composed of Systems Elements that include Person-
nel, Equipment, Mission Resources, Procedural Data,
System Responses, and Facilities (Figure 9.2). We illus-
trate these ERs using the BDD shown in Figure C.7.

Observe the dashed line underneath the Mission System
in Figure C.7. The dashed—interrupted—line symbolizes
that fact that Personnel may or may not be part of the Mis-
sion System. For example, an intravenous medical device
for dispensing prescription drugs as a Mission System ob-
viously does not include Personnel “out of the box” from

the manufacturer. However, the device is integrated with the
medical staff to form a higher level Intravenous Drug Deliv-
ery System that does include Personnel—doctors, nurses,
and so forth—and Equipment—medical device and so
forth.

If we elaborate a BDD entity into a lower level of
detail, we can create another instance such as the one
shown in Figure C.8. Observe the block’s attributes in-
clude the ≪block≫ notation and a title—Power Supply;
performance values; operations performed; and inputs and
outputs.

C.3.3.2 Internal Block Diagrams References: OMG
(2012, pp. 37–38, 40–42, 61–62, et al.)

Now that we have established an understanding of the
BDD construct, we need to characterize the interactions
between its entities. SysMLTM provides Internal Block Di-
agrams (IBDs) for this purpose.

Every system, product, or service as a Mission System
interacts with external systems in its Operating Environ-
ment. The Operating Environment is composed of the

<<system of interest>>
XXXXX System

<<block>>
Personnel Element

<<block>>
Equipment Element

<<block>>
Mission System

<<block>>
Enabling System

<<block>>
Mission Resources

Element

<<block>>
Procedural Data

Element

<<block>>
System Responses

Element

<<block>>
Personnel Element

<<block>>
Equipment Element

<<block>>
Mission Resources

Element

<<block>>
Procedural Data

Element

<<block>>
System Responses

Element

<<block>>
Facilities Element

Figure C.7 Block Definition Diagram (BDD) Construct
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• output voltage: + 5 vdc +/-0.25 vdc
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• max weight: 2.0 pounds
• max size: 4” H x 5” W x 6” L
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Figure C.8 Detailed Block Definition Diagram (BDD) Construct
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Figure C.9 Internal Block Diagram (IBD) Construct

Physical Environment, which consists of Natural, In-
duced, and Human-Systems Environments. Figure C.9
provides an example of an IBD depicting these interactions.

A few of the key attributes of an Internal Block Diagram
include the following:

• ibd—Positioned in the upper left corner identifies the
type of diagram.

• Syntax—Block titles within the ibd (lower case) con-
sist of a colon followed by the name of the block re-
ferred to as a :(Namespace).

• Range—Observe that depending on the circumstances,
the Natural, Induced, and Human-Systems Envi-
ronments may consist of Zero or One-to-Many—0..*
or 1..*—entities.



820 SYSTEM MODELING LANGUAGE (SYSMLTM) CONSTRUCTS

• Ports—Include arrows indicating the direction flow of
a force, data, or energy.

• Port Names—Listed adjacent to the port on the
dependency—interaction—line.

• Arrows—Along the interactions indicate directional
flow and include annotations for parameters being
passed.

C.3.4 Diagram Usage

OMG (2012) also introduces a concept for diagram usage.
This includes usage of a specific type of diagram such as a
Context Diagram (Figure 8.1) as a form of usage of BDDs,
IBDs, and UCDs (OMG, 2012, p. 170).
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Allocation(s)
Matrix Representation, 440f
Performing Entity-Based Requirements, 108, 194f
Requirements, 191
R&M, 760

Altitude, 518
Analysis, 160

Affinity, 148
of Alternatives (AoA), 703
Capability Gap, 87–88
Competitive, 472
Conclusions, 651, 656t, 657
Cycle Time, 674–675, 675f , 676f , 677f
Decision Criteria, 631, 633, 636, 646
Defined, 651
Definition Methodology, 99, 102, 107–115
Error, 507
Failure Modes & Effects Analysis (FMEA), 114–115, 218, 560,

703, 724, 761–763, 762, 763f , 765
Failure Modes & Effects Criticality (FMECA), 767, 767
Failure Reporting Analysis Corrective Action System

(FRACAS), 724, 772, 778
Fault Tree, 764, 765f
Findings, 651, 656t, 657
Five Whys, 104–105, 273
FMEA Criticality (FMECA), 114–115
Functional, 295
Functional Allocation, 29
Human Factors (HF) Task, 507
Integrity of, 651, 657, 658
Job Hazard Analysis, 483
Lessons Learned, 657–659
Level of Repair Analysis (LORA), 779
Lifetime Data, 723, 731
Mission, 107–115, 703
Multi-Variate, 683, 687
Paralysis, 576, 655
Performance & Evaluation, 652, 654–659
Problem-Solution Space, 703
Recommendations, 652, 656t, 657
Requirements, 29, 295
Sensitivity, 682, 696
System Analysis and Control, 29
System Performance, 672, 703
System Performance and Evaluation, 652
System Requirements, 471
Test Data, 703
Timeline, 101
Tools, 654
Types of, 653–654
Use Case and Scenario, 703
Use Cases (UC), 125–126
Validity, 658–659
Vibration, 753t
Yeager F-86, 763–764

Analysis Methods
Existing Specification, 466–467
Graphical Analysis, 471
Hierarchical Analysis, 471

Modeling & Simulation (M&S), 472
Requirements Validation, 472
Requirements Verification, 472
Technology, 471

Analysis of Alternatives (AoA) (See Trade Study)
Decision Criteria, 631, 633, 636, 646
Decision Factors, 631–632, 682, 691–692

Analysis Rules, System Operational Capability, 238–239,
240t

Analytical Decision Support, 652
Assumptions, 653, 656, 656t, 658
Boundary Condition Constraints, 653, 656, 657, 659, 661,

664
Expected Outcome, 652
Objective, 652
Problem or Issue, 652–653
Success Criteria, 653

Analytical Representation, 204
System of Interest (SOI), 200

Anomaly, 599
Anthropometrics

Defined, 100
Maintainability, 772

Anthropometry
Defined, 481
Discussion, 499–501, 501f

Archer’s Design Process Model (DPM)
Comparison with the Scientific Method, 296t
Discussion, 20, 28, 33f , 34–37, 36f , 250, 251, 251f , 295–296,

296t
Architect (System)

Defined, 542
Discussion, 545–546

Architecting, 493
Defined, 542
Description, 546
Human Factors Considerations, 546
Reliable Systems, 755–756
versus Design, 546–547
versus Engineering, 547–547

Architectural Description (AD), 547
Contents, 547
Defined, 542
Formulating, 547

Architectural Model, Conceptual, 557–559
Architecture

Advanced Topics, 559–572
Analytical Decomposition vs Physical Integration, 181–182,

182f , 193t
Architectural Frameworks, 209–211
Attributes, 550–553
Behavioral, 301–302, 302f , 303f
Capabilities, 553
Centralized Architecture, 543, 562–563, 563f
Client-Server, 569
Command & Control (C2), 555f
Completeness, 552
Concerns, 543, 549, 549f , 550
Considerations, 557, 570–572
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Context, 550
Decentralized Architecture, 543, 562–563, 563f
Defined, 542
Design Consistency, 552
Development, 554–559, 703
Domain Views, 551
Enabling System, 200f
Engineered Systems, 3, 4, 5, 6, 195, 201
Enterprise Systems, 3, 4, 5, 6, 195
Entity Relationships (ERs), 548f
Environmental, Safety, & Health, 570
Fault Containment, 559–562, 561f , 596
Fault Detection, 560–562, 561f
Fault Isolation, 559, 560, 561f
Fault Propagation, 561–562, 561f
Faults and Fault Conditions, 560–562
Fault Tolerance, 560–562
Fire Detection & Suppression, 570
Framework, 542, 551
Higher Order Systems, 202–203
Integrating System Element Concepts with Levels of

Abstraction, 193–195, 194f
Introduction, 186
Linking Behavioral Capability to Physical Architecture, 303,

304f
Mission System, 200f
Network, 568–572, 569f
Open Standards, 570
Open Systems, 543
Operating Environment (OE), 199f , 201–209, 202f , 204f
Operational, 299–301, 301f
Other Considerations, 569–572
Ownership, 550
Performing Entities, 108, 178, 193–195, 194f , 195f
Physical, 302–305, 713f
Physical Environment, 203
Power System Considerations, 570
Reconfigurability (see System)
Remote Visual Assessments, 570, 572f
Representation Methods, 553–554
Requirements, 298, 300, 300f
Requirements Allocations, 191, 440f , 441f
Selection Rationale, 553
Service-Oriented Architecture (SOA), 543, 569
Situational Assessment, 555, 555f , 556
Stakeholder Concerns, 550
System Element Architecture (SEA), 191, 192f , 193
System Element Concepts, 188–195
System of Interest (SOI), 199–201, 199f , 200f
System of Systems (SOS), 571–572
System Security, 470, 570
Test Environment, 605f
Tolerance, 560–562, 561f
Traceability, 553
Unique ID, 550
Validity, 552
View, 542, 548–549
Viewpoints, 543, 549
Vulnerabilities, 561, 571

Architecture Description (AD)
Defined, 543
Discussion, 547–548

Atmosphere, Standard, 521–522
Audit

Functional Configuration (FCA), 258, 286, 287, 290
Physical Configuration (PCA), 258, 286, 287, 290

Availability, 465
Achieved (Aa), 780
Defined (DAU), 465
Defined (DoD, FAA), 779
Discussion, 779–781
Inherent (Ai), 780, 780, 780–781, 781f
Operational (Ao), 779, 779–781, 780
Operational Readiness, 770
Success Factor, 71, 72, 73
Types of, 780

Azimuth, 518

Baseline Management, 345
Bathtub Curve

Concept, 746
Discussion, 746–754
Introduction, 746
MTBF Relationship, 752, 754
Origins, 747–749
Overview Description, 747
Decreasing Failure Region (DFR), 742f , 747, 749–750, 750f
Increasing Failure Region (IFR), 742f , 747, 751–752
Stabilized Failure Region (SFR), 739f , 742f , 743f , 747, 748f ,

750–751
Behavior, Emergent, 5, 56, 60
Behavioral Domain Solution

Activities, 302
Concept, 248f , 248t, 249, 249f , 250, 251f , 252, 253f
SE Process Description, 301–302
Work Products, 302

Biomechanics
Defined, 481
Discussion, 493f , 499–501, 501f
Maintainability, 772

Budgets, Performance, 667, 669, 670, 671, 672

Capability
Activation State, 236
Availability State, 236
Defined, 2, 5
Emerging Capability Gap, 78, 85f , 87, 89f , 91, 93
Energy State, 236
Exception handling and Recovery Operations, 237–238
Full Operational (FOC), 86, 93, 315
Initialization State, 236
Initial Operational (IOC), 86, 93, 315
Capability Operations, 235f , 236
Operational, 131
Post-Capability Operations, 235f , 236–237
Pre-Capability Operations, 235f , 236
Requirements, 129, 131, 135, 137, 142, 143, 144
Stabilization State, 236
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Capability versus Function, 4–5
Case Studies

Automobile Interfaces, 590–592, 591f , 592f
Case of the Failed Test, 605–606
Interface Data Communications, 588–590, 588f , 589f
Mini-Case Study: Case of the Project Engineer and Engineering

Education, 23
SW Engineering-Promotion Beyond Level of Expertise, 176
United Airlines Flight 232, 568f , 596
Yeager-F-86, 488–489

Cause
Contributory, 488–490
Root, 485, 488–490, 514

Caution(s), 486, 499, 510, 511
Center of

Gravity (CG), 532, 629t, 637, 638
Mass (COM), 532, 637

Certificate of Compliance (C of C), 287, 367
Certification

Data, 617
Defined, 271
Test Operators, 608, 612
Tools & Equipment, 618, 620

Change Request, 345
Checklists, Value of, 189
CMMI, 29–31, 36f

Acquisition Model (CMMI-ACQ), 31
Development Model (CMMI-DEV), 31
Services Model (CMMI-SVC), 31

Command & Control (C2)
Allowable Action, 148, 150, 150f , 169–172, 170f , 171f
Audio Input Devices, 512
Data Entry Devices, 511
Defined, 51
Deployment, 142–143
Discussion, 500f , 501, 505f
Electronic Control I/O Devices, 511
Hierarchical Interactions, 198
Maintenance, 143
Mechanical Control I/O Devices, 511
Operations, 143
Pointing Control Devices, 511
Prohibited Action, 148, 150f , 169–172, 170f , 171f
Retirement/Disposal, 143–144
Sensory I/O Devices, 511
Steering Devices, 511
Storage, 143
Sustainment, 143
System, 157
System Definition, 6
Translational Displacement Control Devices, 511

Commercial-Off-the-Shelf (COTS) (See COTS and COTS/NDI
Issues)

Defined, 345
Product, 346

Compatibility
Defined, 576
vs Interoperability, 229

Compensating/Mitigating Provision/Action, 100

Personnel-Equipment Interactions, 489
Reliability, Maintainability, and Availability (RMA), 762–763,

763f , 766, 766f , 772
Compliance, 519
Component

Deactivation, 624
Development Methodology, 360–361
Driving Issues, 361–363
Generic Entity, 179
Human Cognitive, 502f , 503
Human Musculoskeletal, 502f , 503
Human Sensory, 502f , 503
Implementation Options, 359–359
Machine CPU, 502f , 503
Machine Display, 502f , 503
Machine Input Device, 502f , 503
Maintain Intellectual Control, 363
Mission Critical, 722, 724, 729, 730, 752, 771, 788
Removal, 639, 646
Safety Critical, 724, 729, 730, 742, 757, 768, 771
Selection & Development, 358–359

Composition Concepts
Aggregation, 812f , 813
Generalization, 812, 812f

Concept of Operations (ConOps)
Accountability, 139
Defined, 129
Discussion, 139–140
Document, 139
Formulation & Development, 138–145
Outline, 140

Concurrency, 481
Condition, Initial, 704
Condition-Based Maintenance (CBM), 771, 785, 785–786

Condition Monitoring, 785
On-Condition Task, 786
Potential-to-Functional Failure (P-F) Interval, 786–788, 787f
Prognostics, 785–786
Prognostics & Health Management (PHM), 785–786

Conference
Invitations, 379, 381, 384
Minutes, 377, 381

Configuration, 345
Baseline, 345
Change Management, 346
Control, 345
Developmental, 344, 345, 348, 351, 355
Effectivity, 351–352
Identification, 346
Item(s), 346, 347–348
Labeling, 352
Management, 346
Production, 356, 357, 362
Semantics Rules, 351
Status Accounting, 346

Configuration Baseline, Authentication, 286
Configuration Change Management, 345
Configuration Identification, 346

Identification Responsibility, 351
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Configuration Items (CIs)
Accountability, 344, 353, 354f
Alignment with Spec Tree, 352–354
Computer Software (CSCIs), 285, 345, 348–349, 393–394
Cross-Cutting, 355
Defined, 346
Entity Relationships (ERs), 348, 350f
Hardware (HWCIs), 346, 348–349, 393–394
Ownership, 353
Physical Boundary, 354
Selection of, 349–351
Semantics Rules, 351, 351t

Configuration Management
Configuration Control Function, 346
Configuration Identification Function, 346
Configuration Status Accounting Function, 346
Defined, 346
Functional Configuration Audit (FCA), 258, 286, 287, 290
Physical Configuration Audit (PCA), 258, 286, 287, 290

Constructs
Defined, 219
Generalized System Element Architecture (SEA), 232–233,

232f
Generalized SOI Interactions, 231, 231f
Hostile Encounter Interactions, 224, 225f
Issue Arbitration/Resolution, 224, 224f
Multi-User, 228f
Peer-to-Peer, 222–223, 223f
Personnel-Equipment Interactions, 220, 222, 232f , 233, 233f ,

238
Personnel-Equipment Task Sequence, 234, 234f
System Capability, 235–240

Contract
Direction, 379–384, 395
Issues, 374
Protocol, 379, 381–382, 384
Review Requirements, 381
Terms & Conditions (Ts & Cs), 426
Type of, 381

Contract Data Requirements List (CDRL)
Defined, 366
Discussion, 367–368, 374

Contributory Performance Effector, 429
Control, Real-Time, 679
Control Flow, Graphical Convention, 225, 226f
Control or Staging Point

Critical, 64, 67, 271, 308, 323
Decision Event, 52, 64, 99, 111, 112f
Decision Gate, 130, 132, 242, 260
Developmental Configuration, 356t
Milestone, 271, 277
Technical Reviews, 376, 377, 378, 379, 384

Convention(s)
Cycle Time, 673, 673f
Defined, 519
IDEF0, 192
Left Hand/Right Hand Grip Rule, 522, 524, 525–526, 529, 535
N x N (N2), 191, 191f
Observer’s Frame of Reference, 177–178

Pitch, Yaw, and Roll Conventions, 535, 536f , 536t, 537f , 538
Positive/Negative Orientation, 520, 523, 523f
System Nomenclature/Semantic, 178–180

Coordinate System
Angular Displacement, 529
Cartesian, 522, 524, 526–529, 525f
Cylindrical, 529–530, 530f
Defined, 519
Dimensional, 528, 528f , 534
Discussion, 522–534
East-North-Down (END) Orientation, 531f , 532–533, 533f ,

536t, 537f
East-North-Up (ENU) Orientation, 531f , 533, 533f
Earth-Centered, Earth Fixed (ECEF), 530, 531f , 532, 534f
Earth-Centered Inertial (ECI), 532
Human Body Planes, 526, 526f
Navigational, 533–534
Polar, 529–530, 531f
Spherical, 530

Corrective Action
Defined, 258
Discussion, 261, 267

Cost as an Independent Variable (CAIV), 100
Commercial-Off-the-Shelf (COTS), 345
COTS/NDI Issues

Customer Satisfaction Questions, 361
Discussion, 361–364
Procurement Questions, 362
Product Data, 367
Product Design Questions, 362
Production Questions, 362
Product Line Questions, 361
Products, 359–360
Product Support Questions, 362
Product Warranty Questions, 362
Stability of the Product Questions, 361

Counter Measures
Counter-Countermeasure (CCM), 76, 84–85t, 97
Reactions, 76

Criteria, IMP/IMS Accomplishment, 377
Critical Operational/Technical Issues (COIs/CTIs), 544, 547,

548, 550, 685, 686
Cost, 731
Defined, 100
Post-SRR Requirements, 477
System V&V, 272, 285–286, 289

Cues/Indicators
Audio, 511
Caution Signal, 510
Completion, 510
Master Caution (Warning), 510
Power, 510
Status, 510
Vibratory, 511
Visual, 510–511
Warning Signal, 510

Customer, Voice of (VOC), 613
versus Users, 326
Voice of (VOC), 284, 613
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Cyclical Processing
First-In/First Out (FIFO), 674
Nested Operations, 69

Data, 369
Accuracy, 522
Contract Deliverable, 367
Defined, 346
Design, 345, 351, 358, 360
Electronic Signatures, 374
Enterprise Command Media, 368
Export Control, 371, 373
Internet Posting, 373, 374
Non-Disclosure Agreements (NDAs), 373, 374
Operations, Maintenance, & Sustainment (OM&S), 373
Precision, 522
Proprietary Information (PI), 373, 374
Released Data, 366
Subcontractor, 367
Supplier, 367
System Design and Development, 367–368
Validation and Authentication, 373
Vendor Owned, 367, 373
Working, 367

Data Accession List (DAL)
Defined, 366
Discussion, 368–369

Data Flow, 225, 226f
Data Item Descriptions (DIDs), 367
Decision, Gate, 65, 66f , 377
Decision Artifacts (Documentation)

Defined, 19
Design Release Strategy, 369, 372f
Integrity, 176
Levels of Formality, 370–371
Planning Release Strategy, 369, 370f
Principle, 44
Quality Records (QRs) –See Quality Records
Sequencing, 369
Specification Release Strategy, 369, 371f
Test Release Strategy, 369–370, 372f

Decision Artifacts (Documents)
Capability Development (CDD), 103, 276, 410, 420
Configuration Management Plan (CMP), 345
Essential, 336, 336t, 340–341
Integrity, 632, 633, 644, 645
Minimal, 340–341
Operational Requirements (ORD), 103, 276, 279, 410
Request for Proposal (RFP), 465
Software Design (SDD), 369
Statement of Objectives, 103, 259, 276, 465
System Engineering Management Plan (SEMP), 345
System Requirements (SRD), 259, 289, 409, 410, 412, 416,

418f , 419, 420, 465, 544
System Segment Design (SSDD), 369
T & E Master Plan (TEMP), 276, 410

Decision Support, 432, 432f , 433
Decomposition. see Partitioning
Deficiency

Defined, 271
Operational Test & Evaluation (OT&E), 289

Demonstrations
Automation, 512
Fail Safe, 513
Test and, 507

Design
CIs, 351
Complex System, 512
Conditions and Stress Effects, 753f , 753t, 763f
Defined, 542
Discussion, 345, 351, 358, 360
Fail Safe, 481
Issues, 359
Model-Driven (MDD), 32
Point, 424
Reliability-Maintainability Trade-off Decisions, 781–783,

782f
Simplicity, 483
Validation, 750, 750f
Verification, 749, 750, 787

Design Criteria List (DCL)
Defined, 366
Discussion, 369

Design Ranges & Limits
Cautionary Range, 655f , 660
Design Range, 655f , 660
Lower Control Limit (LCL), 655f , 659
Normal Operating Range, 655f , 660
Upper Control Limit (LCL), 655f , 659
Warning Range, 660

Design-to MOP
Budgets & Safety Margins, 667–672
Defined, 667
MOPs, 667–671
Risk, 667

Development
Consumer Product, 7, 8, 10, 101, 102–103, 102f
Contract-Based System, 101, 102f , 103–103

Developmental
Design Verification, 271
Test and Evaluation (DT&E), 265–268

Developmental Configuration, 258, 348f , 351, 352
Allocated Baseline, 345
“As Allocated” Baseline, 356
“As Built” Baseline, 357
“As Designed” Baseline, 356
“As Maintained” Baseline, 357
“As Produced” Baseline, 357
“As Specified” Baseline, 356
“As Validated” Baseline, 357
“As Verified” Baseline, 357
Baselines, 355–358
Configuration Identification Elements, 348f
Configuration Identification ERs, 350f
Product Baseline, 355, 357
Production Baseline, 355, 357
Staging or Control Points, 357
System Requirements or Functional Baseline, 356, 357



INDEX 827

Developmental Test & Evaluation (DT&E), 258
V&V Context, 279

Development Approaches (Models)
Agile, 314, 326–341
Approaches versus Models, 316
Evolutionary Development Strategy, 315, 325–326
Grand Development Strategy, 315
HW and SW Work Products, 321, 321t
Iterative Approach, 315
Iterative & Incremental (IID), 324–325
Multi-Level, 262–268
Multi-Level SITE, 264–265
Multiple Models on a Project, 342
Spiral, 315, 322–323
V-Model, 315, 318–322
Waterfall, 315, 316–318

Development Strategy, 262–268
Deviation, 397
Deviations & Waivers, Challenges, 618
Diagram

Architecture Block Diagram (ABD), 190, 192f , 424, 552,
553

Context, 175–176, 175f
IDEF0, 191, 192f
Ishikawa or Fishbone, 229, 230f
N x N (N2), 191, 191f , 424
Reliability Allocation Block Diagram, 760, 761f
SysML™) Diagrams (see SysML™) Diagrams)
System Block (SBD), 553
Use Case (UCD), 101

Dictionary, System Operations, 135
Dimension, 519
Discrepancy

Defined, 271
Discrepancy Report (DR), 258

Do No Harm, Objective, 513
Duty, 481

Effectiveness, 512
Cost, 100, 117–118, 654
Fuel Efficiency MOE Example, 116, 116f
Measure of Effectiveness (MOE), 100
Measure of Efficiency (MOE), 115–116
Measure of Performance (MOP), 100
Mission Operational, 115–118
Mission versus System MOEs, 116
Operational, 100, 115–118
Success Factor, 71, 72, 73
System, 115, 115, 117, 662, 663, 664
Usability, 512

Effectivity
Defined, 346
Discussion, 351–352
Specification, 475

Efficiency
Defined, 465
Success Factor, 71, 72, 73
Usability (context), 513

Egress

Defined, 481
Safety Override, 512

Elevation, 519
Emergence, 51
Emulate

Defined, 704
Emulation (Method), 712, 716

Enabling System, 78, 79, 80, 80f
Common Support Equipment (CSE), 188
Hardware System Element, 188
System Elements, 187t

End Effect(s)
Defined, 722
Failure Effect, 762
Failure Mode, 762
FMEA Assessment, 766f

End User Roles & Missions, 78–82
Engagement, 100
Engineering

Accountability, 486
Analysis Reports, 655–657, 656t
Data Dispersion, 661, 661f
Data Variability, 659–660
Defined (ABET), 2, 8
Human (HE), 482, 506–507
Human Factors (HFE), 482, 505–507
Reality Truth (Reality), 270

Engineering Deficiency Solutions
Capability Assessments, 30–31, 36
Industry, Government, & Academic Solutions, 27–32
Learning by “Go Do” Tasking, 38, 39f
MBSE Tools, 31–32
Mini-Case Study: Case of the Eloquent, Egotistical Proposal, 21
Organizational Standard Processes (OSPs), 30
Problem Statement, 32–41

Engineering Education
ABET EC2000, 42, 43
Boundary Condition Problems, 23f
Challenges and Opportunities, 42–43
Dr. Michael Griffin, 30
Mini-Case Study: The “Engineered” Mousetrap, 18
“Quantum Leap” to a Solution, 22, 22f , 296
Ramification of the Educational Void, 39–40, 198
Root Cause Analysis, 24–27
Traditional Education Model, 18, 18t, 23f
Void, 38f

Engineering Paradigms, 484–485
Archer’s Design Process Model (DPM), 34–37, 34f , 36f , 250
Comparison-Archer’s DPM to MIL-STD-499B (Draft), 37
Current SE Process, 28–29
Design-Build-Test-Fix (DBTF), 19, 20, 35
Design Process Model (DPM), 34, 250
Discipline-Based versus Multi-Discipline-Based, 176
Engineering Modeling, 425–426
Engineering RMA, 722
“Engineering the System” vs “Engineering the Box,” 2, 9, 15,

485, 486, 502f , 545–546
Four Domain Solutions-SDBTF-DPM Relationship, 250, 251f
Networks as Default Solutions, 568–569, 568–569
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Engineering Paradigms (Continued)
Plug & Chug, 19, 23, 23f , 24, 27, 32, 33, 33f , 35, 36, 36f , 37,

43, 45
Plug & Chug-SDBTF-DPM Engineering, 129, 135, 136,

138
Plug & Chug-Specify-Design-Build-Test-Fix (SDBTF), 246,

250, 252
Problem Solving versus Symptom Solving, 90
Reliability, 725–726
SDBTF-DPM Engineering, 19, 20, 23, 32, 33, 33f , 35, 37, 41,

44, 149, 245, 246, 263, 266–268, 272, 273, 276, 280,
293, 295–296, 311, 344, 421, 467, 481, 484–485, 508,
544, 545, 568, 577, 583, 596, 749, 760, 764

SDBTF-DPM Enterprises, 41
SE Organizational Learning Model, 37–39, 39f
SE versus Traditional Engineering, 9–10, 13f
Shift, 19
System Element Constraint Requirements, 481

Entity, 2
Defined, 51
Performing (See Performing Entity)

Entity Relationships (ERs)
Concepts, 183–186
Defined, 174
Entry Criteria, 130
Logical, 183–184, 184f
Logical-Physical Example, 185f
MOE, MOS, MOP, and TPM, 418–419, 418f
Physical, 184–185
System Element Matrix, 190, 190f

Entry/Exit Criteria
Modal, 159
Operational Phase Entry Criteria, 130, 132 See Fitness for Use

Criteria
Environment

Defined, 2
Human Systems, 746, 763
Induced, 763, 763f
Natural, 763, 763f
Open Systems, 543
Stress Effects, 752, 753f , 753t
Urban Systems, 207

Equationitis, 768, 770
Equipment

Common Support (CSE), 188, 629t
Defined, 481
Hardware, 187–188
Limitations, 509
Peculiar Support (PSE), 188, 629t
Powered Ground (PGE), 175
Strengths, 509
Support and Handling, 188
Support Equipment, 175
Test and Measurement (TME), 188
Test and Measurement Diagnostic (TMDE), 188

Ergonomics
Defined, 481
and HF Actions, 512–515

Ergonomists, 481

Error(s)
Cost-to-Correct, 473
Cumulative Error, 651
Reason’s Classifications, 489f
User, 483

Euler Angles, 519, 538
Evaluate and Optimize the Total Design Solution

SE Process Description, 299f , 304–305
Event

Review, 378
Technical, 704

Event Timeline, Mission (MET), 298, 301, 303
Exception, Handling, 235, 236, 237, 240t
Exploration Factor (EF)

Defined, 314
Discussion, 334

Export Control
Discussion, 359, 363, 366, 371, 373, 382
of Technology, 382

Fabrication, Assembly, Inspection, & Test (FAIT), 275, 282, 287
Facility

Deployment Facility, 624
Development Plan, 628
Facility Interface Specification (FIS), 624, 628, 630, 634
Modifications, 634
Requirements, 630–631

Fail-Safe System
Defined, 722
Fail-Safe Design Deficiencies, 766

Failure
Active, 487
Cause, 722
Consequences of, 727, 763, 763f , 765, 770, 771, 784, 785
Constant Failure Region, 734f , 739f , 740, 742, 742f , 743, 743f ,

747, 748, 750–752
Constant Failure Region Misnomer, 750–751
Defined, 728, 729
Density (Rates), 731, 733, 734, 734f , 735, 739f , 741, 742, 742f ,

743f , 744, 745, 748f , 774
Dependent, 728
Detectable, 787, 787f
Effect, 762
Event, 728, 776
Failure Mode, 762
FRACAS Reporting, 772
Functional, 785
Independent, 728
Indications, 729
Latent, 487
Latent Conditions Leading to Active, 487
Mission vs Equipment, 727
Run-to (RTF)/Time-to (TTF), 731, 732f , 733, 736, 768f , 769,

787, 787f
Severity Classification, 763, 763f , 765, 765f

Failure Point, Single Point of Failure (SPF) Risk Reduction,
566–568, 567f , 595–596, 723

Failure Rate
Average, 733, 741, 741, 742
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Failure Rate, 733
Instantaneous, 731, 733, 741, 741, 742, 750, 754, 757

Failure Reporting and Corrective Action System (FRACAS)
Defined, 624
Discussion, 724, 772, 778

Fatigue, 486, 722
Fault(s), 762, 777

Conditions, 560–561
Containment, 560, 596
Defined, 481
Defined (MIL-HDBK-470B), 543
Detection, 560
Elimination, 730
Elimination-Strategic Benefits, 730
Elimination-Tactical Benefits, 730
Equipment Element Examples, 486
Facilities Element Examples, 486
Failure Cause Context, 481
Fault Isolation, 560, 606, 762
Mission Resources Element Examples, 486
Observability, 560
Personnel Element Examples, 486
Procedural Data Element Examples, 486
Propagation, 560
System Responses Element Examples, 486
Trajectory, 561f
Undiscovered Latent Defect, 543

Fault Tolerance
Architectural, 560–562
Attribute, 59t
Discussion, 560, 565
Mini-Case Study 26.4, 564

Feature
Agile Development, 314
System Specification, 415

Firmware, 346, 349
First Article, 258, 599
Fit, 51
Failure Modes & Effects Analysis (FMEA)

Fault Tree Analysis (FTA), 764, 764f
Focus Areas, 766
Form, 761–767
Methodology, 763–764, 763f
Outputs, 766
Purpose, 762
Risk Assessment Matrix, 765, 765f

Form, 51
Form, Fit, and Function,

Defined, 51
Discussion, 4–5, 545

Four Domain Solutions
Implementation, 248t, 248f , 249f , 250–251
Methodology, 248, 250
Outcome-Based Accountability, 250

Frame of Reference
Eyepoint, 524–526, 525f
Inertial, 536–538, 537f
Observer’s, 177–178, 524–526, 525f

Free Body Dynamics

Defined, 519
Frame of Reference Conventions, 532–533, 533f , 534–538,

534f , 536f , 537f
6DOF Rotational Movements, 519, 538
6DOF Translational Movements, 519

Function, 51
Full Operational Capability (FOC) –See Operational Capability
Functionality, Out-of the-Box, 346

Gate, Review, 377

Haptic, 481
Haptics, 481
Harm, 481

Do No, 490
Hazard, 481
Hazard Rate

Constant, 734f , 739f , 742, 748, 754
Misapplication, 754, 755f

Hazardous Materials (HAZMAT)
Discussion, 629t, 630t, 636, 638, 646
Removal, 646
Transport, 638

Heuristics
Defined, xxvi
4.1–On-Site Visits to the User, 97
8.1–Document Integrity, 176
15.1–System Development Improvements, 315–316
20.1–Specification Writing Versus Development, 416
23.1–Undocumented Verbal Agreements, 474
27.1–Interface Control Documents (ICDs), 580
27.2–Interface Design Descriptions (IDDs), 581
28.1–SITE Time Allocation, 619, 764
29.1–Site Survey Access, 633
29.2–On-Site Survey Observations, 633

Higher Order Systems, 4, 8, 54, 82, 199, 199f , 201, 202–203
Higher Order Systems Domain

Architecture, 202f
Defined, 198
Human Systems Context, 203
Operating Constraints Element, 203
Organizational Element, 203
Physical or Natural Laws and Forces Context, 203
Resources Element, 203
Roles & Missions Element, 203
System Accountability, 485, 486f

Human
Centered Design (HCD), 482
Cognitive Component, 502f , 503
HSI Domains, 493
Musculoskeletal Component, 502f , 503
Performance Influencing Factors (PIFs), 490, 491t
Sensory Component, 502f , 503
System Integration (HSI), 482, 490, 493

Human Errors, 480, 484, 488, 505, 512, 513, 642, 669
Lapses, 486f , 488, 488–490, 489f , 511, 512, 513, 562, 697
Mistakes, 486f , 488, 488–490, 489f , 511, 512, 513, 562, 697
Slips, 486f , 488, 488–490, 489f , 511, 512, 513, 562, 697
Violations, 486f , 488, 488–490, 489f , 511, 512, 513, 562, 697
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Human Factors (HF)
Anthropometric Factors, 495
Architectural Significance, 546
Cognitive Factors, 495
Defined, 482
Design Factors, 495
Disciplines, 495–496
and Ergonomics, 493–495, 494f
and Ergonomics Actions, 512–515
Human Factors and Human Engineering, 506
Human Factors Test and Evaluation (HFTE), 482
Objectives, 495
Physiological Factors, 495
Psychological Factors, 495
Sensory Factors, 495

Human Factors Engineering (HFE)
Error Analysis, 507
Operational Sequence Evaluations, 507
Task Analysis, 507
Test and Demonstration, 507

Human Interaction Models
DoD, 503, 503f
Meister’s, 502, 502f
Situational Assessment, 504f

Human Performance, 482
Limitations, 509
Strengths, 509
User-System Design Factors, 496–497

Human Tasks, Attribute Definitions, 498
Hypothesis, 293, 296

Ilities Engineering Specialties, 2
Independent Test Agency (ITA), 258
Inertial Navigation System (INS), 536–538
Ingress

Defined, 483
Discussion, 529

Initial Operational Capability (IOC) See Operational
Capability

Integrated Process and Product Development (IPPD), 379
Integration Point, 600, 601, 607f , 611f
Interactions

Hierarchical, 198
Mission System–Enabling System, 153f , 156, 231f , 232f ,

233f
Model Behavioral, 247

Interface
Access, 216
Active/Passive, 212–213
Advanced Topics, 588–592
Analytical Interactions Matrix, 587f
Architecture-Based, 577
Behavioral Interactions & Constraints, 585–586
Classes, 212
Command & Data Message Formatting, 586, 588–590, 589f ,

590f
Compatibility, 214
Complexity Reduction, 216
Control, 576, 577, 582–583

Control Document (ICD), 538, 580–581
Control Working Groups (ICWGs), 577–578, 581, 593, 597
Coupling, 576
Definition Methodology, 215
Definition Work Products, 578–582
Design, 576, 582, 587, 588–592
Design Description (IDD), 538, 581
Electronic Data, 214
Failure, 216
Failure Detection, Containment, and Mitigation, 217
Failure Events & Consequences, 217
Failure Types, 216–217
Human-Computer Interface (HCI), 502
Identification, 583
Inactive/Dormant, 213
Interoperability, 212
Labeling and Coding, 587–588
Latency, 216
Logical/Physical, 215
Man-Machine Interface (MMI), 483, 502
Methodology, 583–588
Modes of Operation, 585
Objectives, 211–212, 584
Operational Concept Description (OCD), 585
Operational Requirements & Constraints, 585
Passive, 213–212
Performance and Integrity, 216
Person-Person Interface, 482
Physical Interface Characteristics, 586–587
Physical Types, 213–214
Purpose, 211, 584
Requirements Specification (IRS), 538, 578–580
Safety Constraints, 211
Scenarios, 217
Standard Modular, 214
Standard vs Dedicated, 214
System of Interest (SOI), 211–218
Unique, Dedicated, 214
Use Cases and Scenarios, 584
Users and End Users, 584
What is Transferred or Exchanged, 584

Interface Challenges and Solutions
Availability on Demand, 594
Challenges and Solutions, 592–597
Commitments, 593
Compatibility and Interoperability, 594
Component Failures Modes & Effects, 595–596
ES & OH Risks, 594
External Electrical Power, 595
Fault Containment, 596
Grounding and Shielding, 595
Integrity Issues, 595
Interface Complexity Reduction, 597, 597f
Maintainability, 594
Ownership and Control, 576, 577, 593
Redundant Design, 576, 595–596
Reliability, 594
RF and EMI Emissions, 595
Threat Vulnerability, 593–594



INDEX 831

Interface Security
Communications, 216
Data Encryption/Decryption, 216
Operations, 216

Interference, Electromagnetic (EMI), 588
International Council on Systems Engineering (INCOSE)

Certification, 31, 32, 37, 40, 41
SECAM, 31

Interoperability, 550
versus Compatibility, 229
Defined, 576

Issues
Critical Operational (COI), 299–301, 303–304, 306–308, 311,

413, 435, 438
Critical Technical (CTI), 300–301, 303–304, 306–308, 311,

413, 435
Post SRR Requirements, 477
Requirements, 477
Tracking, 477

Item
Defined, 346
Repairable, 735, 736, 736, 738, 740, 744, 745, 768, 768f , 769,

776, 777, 780, 781
Replacement, 736

Iterative Characteristic
Application, 293, 294, 297, 298f , 299f , 305, 306f
SE Process Description, 306–307, 307f , 308f , 309f

Job
Defined, 483
Job Hazard Analysis, 483

Key Performance Parameter (KPP), 99, 100, 103, 107, 276, 298,
442–445

Latent Defects, 399, 421
Anomaly Examples, 728, 729
Classification of, 271
Component Examples, 728, 762, 764
Cost-to-Correct, 274–275, 680, 730, 750
Cumulative Effects, 274
Defined, 52
Design Examples, 728
Effects, 669, 679, 680
Elimination, 277
Error Avalanche, 273
Examples, 728
Identification and Removal, 639, 640, 642, 643
Maintenance Examples, 728
Manufacturing Examples, 728
Operational Examples, 728
Proliferation of, 267, 273–274, 274f
Reporting & Corrective Action, 487–488

Lean
Enablers, 41
SE, 40, 40–41
Thinking, 41

Legacy System, 59t, 65, 68, 94f , 282, 295, 296t, 320, 321, 348,
346, 351t, 358, 359, 422, 456, 473, 518, 578, 632, 635, 642,
648, 684f , 767

Levels of Abstraction
Analytical Decomposition, 181, 182f
As Performing Entities, 108, 178, 194–195, 194f , 195f
Defined, 175
Decomposition and Integration Guidelines, 193t
Discussion, 174–196
Logical-Physical Entity Relationships (ERs), 183–186, 184f ,

185f
Physical Integration, 181, 182f
Semantics, 178–180, 179f
System Elements Integration, 193–195
Tailoring, 180, 181f

Life
Expected, 744–745, 751
Life Units, 722
Shelf, 727, 754, 767, 779
Storage Life, 723

Life Cycle Phases, 64–71
System Acquisition, 66
System Definition, 65, 66
System Deployment/Distribution, 67
System Development, 66, 67
System Operations, Maintenance, & Sustainment (OM&S),

68
System Production, 67, 68
System Retirement/Disposal, 68

Lifetime Data Functions
Concepts, 731–746
Cumulative Distribution Function (CDF), 732f , 733, 734f
Failure Rate Function (PDF), 732f , 733, 741–742
Functions, 731, 732f , 733, 739, 741, 746
Mean Life Function, 724, 732f , 733, 744, 745
Mean Time Function, 732f , 733, 734, 744–745
Median Life Function, 724, 732f , 733, 734, 740, 745
Mode Life Function, 724, 732f , 733, 734, 745–746
Probability Density Function (PDF), 732f , 733, 734
Profile, 724, 731, 732f , 733–735, 737–739, 743, 745–748,

748f , 750, 752, 754, 787, 787f
Reliability Function, 732f , 733, 739–741, 739f

Line Replaceable Unit (LRU)
Defined, 346
Discussion, 491, 587, 771, 776, 777

Maintainability
Data Sources, 778
DAU, 465
Discussion, 768–779
FAA, DoD, 769
versus Maintenance, 769
Mission, 722
System Quality Factor Attribute, 418t, 769, 770

Maintenance
as an Action-Based Activity, 769
Concept, 130, 770
Condition-Based Maintenance (CBM), 771, 785, 785–786
Corrective Maintenance, 130, 776, 776–778
Defined, 769
Depot Level, 624, 625
Depot or Factory, 772
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Maintenance (Continued)
Field Level, 625, 771
Intermediate Level, 625, 771
Level of Repair Analysis (LORA), 779
Levels of, 771–772
versus Maintainability, 769
Organizational Perspective, 770–772
Periodic, 776
Planned, 776
Predictive, 776
Preventative (PM), 130, 775, 775–776
Reliability-Centered (RCM), 783–784, 783–788
Repair, 777
Repair Time, 777
Scheduled Maintenance, 775
Types of, 775
Unscheduled Maintenance, 723

Maintenance Parameters
Active Corrective Maintenance Time (ACMT), 775–775
Administrative Time, 775
DownTime (DT), 774
DownTime (DT)-System, 774
Logistics Delay Time (LDT), 775
Mean Active Corrective Maintenance Time (MACMT), 778
Mean Active Maintenance Time (MAMT), 773f , 774
Mean Administrative Delay Time (MADT), 774, 775, 780
Mean Corrective Maintenance Time (MCMT), 777–778
Mean Down Time (MDT), 769, 773f , 774, 774
Mean Logistics Delay Time (MLDT), 775
Mean Time Between Failure (MTBF), 735, 736, 741, 744,

744–745, 751, 754, 768f , 769, 773f , 780, 781
Mean Time Between Maintenance (MTBM), 778
Mean Time to Failure (MTTF), 731, 735, 736, 741, 744–745,

768, 769, 777
Mean Time to Repair (MTTR), 736, 768, 768f , 769, 777
Mean Time to Restore Service (MTTRS), 777
Mean Up Time (MUT), 773, 774
MTBF, MTTF, MTTR Relationships, 736
MTBF-Repairable Items, 744
MTTF-Repairable and Replacement Items, 744
Preventive Maintenance Time (PMT), 776
Repair Rate, 778
System DownTime (DT), 768f , 769, 773f , 774
Uptime (UT), 773, 773f
Uptime (UT) Ratio, 775

Make-Buy-Modify Decisions, 346, 359
Man-Machine Interface (MMI), 483 See Human-Computer

Interface (HCI)
Master Program Schedule (MPS), 377
Matrix

Mission-Enabling System Operations Synthesis, 252, 253,
253f

Requirement Traceability (RTM), 459
Requirement Verification (RVM), 457
Requirement Verification Traceability (RVTM), 457, 458t
System Operations to Phases of Operation, 138t

Measure(s) of
Effectiveness (MOE), 276, 409, 416, 417–418t, 418f , 419f ,

434–436, 438, 439f

Performance (MOP), 416, 418f , 419f , 432, 434, 436, 438, 439f
Suitability (MOS), 276, 409, 416, 418f , 430, 434–436, 442, 444

Mental Models, User, 480
Mini-Case Studies

1.1–Systems Thinking: The Apollo 13 Accident, 14, 217
1.2–Systems Thinking: Critical Software System Test, 14–15
2.1–Case of the Eloquent, Egotistical Proposal, 21, 38, 267, 545
2.2–Case of the Project Engineer and Engineering Education,

23, 34
4.1–Understanding the Problem and Solution Spaces, 96–97,

632
5.1–Heavy Construction Company, 108
5.2–Package Delivery Service Example, 113
11.1–Apollo 12 Launch Lightning Strikes, 167, 247
13.1–Internal Validation with a Project, 284–285
20.1–Operational Performance Characteristics Specifications,

419–420
24.1–F-86 Sabre Jet Accidents, 125, 488–489, 762, 763
24.2–Signal Technology Advancements, 511
25.1–MRI Medical Device Coordinate Systems and

Conventions, 527
26.1–System Architecting by Presentation Charts, 544, 548,

551, 561, 562, 577, 755
26.2–Space Shuttle Challenger Accident, 167, 555, 556
26.3–Space Shuttle Columbia Accident, 167, 168, 555,

556–557, 571
26.4–Space Shuttle Fault Tolerance, 565
26.5–Networks as Solutions for Every Electronics Problem,

568–569
26.6–Mars Rover – Remote OH&S, 571, 572
27.1–The Uncooperative Interfacing Organizations, 593
28.1–Failed SITE Test – How to Make a Problem Even Worse,

605–606
33.1–Retail Store Work Shift Scheduling Stochastic Model, 706

Mission
Enterprise/Organizational Context, 76
Examples, 5
Mission-Critical System, 100, 114
Needs Statement (MNS), 77
Objectives, 77, 105, 108, 109, 114, 115, 127
Operating Constraints, 109, 110f , 120, 121
Operations Coverage, 137–138, 138f
Organizational, 81
Outcomes, 78, 81, 84–85t, 87
Phases of Operation, 108, 110, 110f , 111
Profile, 77, 108, 110
Profile-Aircraft Example, 110–111, 110f
Profile-Mars Exploration Rover, 112f , 113f
Reliability, 99, 114, 116, 117
Statement, 108
Success, 107, 109
System Context, 100
System Operations, 138
User, 83–88

Mission Event Timeline (MET), 100, 111–112, 112f , 671–672
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Synthesis

Defined, 245
DoD SE Process, 29, 295–296
System Engineering & Analysis Concepts, 251–252, 252f

SysML™ Diagrams
Activation Box, 125
Activity (SysML™), 815–816, 816f , 817f
Activity Diagram, 126, 126f
Actor, 125
Behavior (SysML™), 814
Block Definition (BDD) (SysML™), 553, 817, 818f , 819f
Diagram Taxonomy (SysML™), 814f
Entity Relationship (ER), 811–813
Internal Block (IBD) (SysML™), 556, 818–819, 819f
Package (SysML™), 553, 813, 814f
Requirement (SysML™), 814, 817
Sequence (SysML™), 815, 815f
Sequence Diagram, 101, 119, 124, 124f , 125, 127
State Machine (SysML™), 817
Structure (SysML™), 553, 814, 817
Use Cases (UCs) Diagram, (SysML™), 119f , 814, 814f

SysML™ Diagram Components
Actors, 814, 815
Boundary, 814
Decision Node, 816
Filled Diamond, 813
Final Node, 816
Flow Convention (Sequence Diagram), 815
Fork Node, 816
Initial Node, 816
Inputs, 816
Join Node, 816
Lifeline, 125, 815
Outcomes, 816
Swimlane (Sequence Diagram), 125, 816
Unfilled Diamond, 813
Use Cases (UCs), 814
Use Case (UC) Extensions, 814

System
Acceptability, 71–74
Adaption, 77
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Analytical Representation, 53, 53f , 54, 54f
Attributes, 56–60t
Availability, 57t, 72, 73, 87, 114, 272, 289, 290, 377, 465, 469,

485, 514, 770, 779–781, 783, 788
Balance of Power, 63
Behavior, 190
By-Products, 190
Capability, 2, 5, 53, 58t, 235–240
Capacity, 57t
Characteristics, 60, 61
Comfort, 58t, 468
Command & Control (C2), 6, 147–172, 552, 553, 554–557,

555f , 558f , 559
Compatibility and Interoperability, 468, 576
Concealment, 58t
Defined, 2, 3, 3–6, 792
Deployment (See System Deployment)
Design Solution, 52
Disposal (See System Disposal)
Dynamic Conditions, 62
Dynamics, 524, 534
Effectiveness, 58t, 72, 73–74, 87, 114, 272, 289, 290, 377, 465,

485, 514
Efficiency, 58t, 72, 74, 87, 114, 272, 290, 377, 465, 485, 514
Emergent Properties, 5–6, 56, 60
Energy, 58t
Engineered, 4, 561
Engineering (SE), 2, 8–12, 792
Enterprise, 3, 4
Equilibrium, 61, 62
Examples, 7
Failure Replication, 703
Frame-Based, 679
Frame of Reference, 57t
General Characteristics, 61
Growth and Expansion, 468–469
Integration, Test, and Evaluation, 469, 599–621
Interactions, 53, 54, 63
Latency, 667
Lethality, 471
Levels of Abstraction, 174–196
Life Cycle Concepts, 57t, 64–68
Maneuverability, 114, 470
Maintainability, 465, 469 (DAU), 769
Missions, 57t, 107–114
Mobility, 470
Modes of Operation (see Modes of Operation)
Operational Utility, 57t, 72–73, 87
Operating Constraints and Conditions, 57t
Operating Domain, 57t
Optimization, 703
Performance Benchmarking, 641
Performance Monitoring, 623, 640–643
Phase-Out, 132f , 645–646
Phases (see Phases of Operation)
Physical Characteristics, 61
Portability, 465, 470
Precedented, 2, 7
Producibility, 466, 469

Products, 7–8, 190
Properties, 56–60, 56t
Purpose, 468
Quality Factors, 113–114
Reactive and Adaptive Behavior, 54
Reconfigurability, 466, 470
Redeployment, 626
Reliability, 57t, 466, 469, 725
Responses, 54, 190
Retirement (See System Retirement)
Roles & Missions, 76, 78, 79t, 83
Safety, 466, 471
Security and Protection, 58t, 114, 466, 470
Service, 8
Serviceability, 466
Stabilization, 62
Stakeholders, 57t
State (see States of Operation)
Static Conditions, 62
Storage, 469, 558
Success Factors, 57t, 71–74
Suitability, 57t, 72, 73, 87, 114, 272, 289, 377, 485
Supportability, 466
Survivability, 466, 471
Susceptibility, 466
Sustainability, 466
System Design Solution, 52
System Element, 52
System of Interest (SOI), 52
Testability, 466
Training, 470, 644
Threats, 58t
Transfer Function, 52
Transportability, 466, 470
Types of, 6–7
Unprecedented, 2, 7, 423
Usability, 57t, 72, 73, 87, 114, 272, 289, 377, 466, 468, 485
Utility, 57t, 72–73, 87, 121, 272, 289, 377, 485
Verification, 469
Vulnerability, 466, 470
What is?, 3–6

System Acquisition
& Development, 19
& Management, 19, 20, 43

System Analysis & Control, 28, 29, 37t, 295
System Characteristics

Discussion, 60–61
Required Operational Capability, 93, 111, 132, 145, 253f , 344,

460, 614t, 626, 637, 645
Required Technical, 460

System Concepts
Deployment Concept, 130, 140t, 142–143
Discussion, 138–145
Disposal Concept, 130, 140t, 143–144
Maintenance Concept, 130, 140t, 143
Operations Concept, 130, 140t
Retirement Concept, 130, 140t, 143–144
Storage Concept, 143
Sustainment Concept, 130, 140t, 143
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System Decomposition (Partitioning)
Guidelines, 182f , 193t

System Deployment
Contexts, 626
Defined, 624
Discussion, 626–638
Engineering Considerations, 627, 627t, 628, 629t
Environmental Constraints, 628, 629t, 636
First Article, 626, 627
Introductory Overview, 67–68
Licenses, 630t, 634, 637, 646
Methodology, 635–638
Mock, 637–638
Modes of Transportation, 636–637
Objectives, 626
Operational Site Selection and Activation, 624, 628–635
Operations, 626–638
Permits, 628, 630t, 634, 637, 646
Physical System, 626, 627
Production Distribution, 626, 627
Regulatory, 627, 630t, 634, 636, 638
Risk Mitigation, 638
SE Focus Areas, 643–645
Staging Point or Area, 625
System States, 154–155
Systems Thinking, 627–628
Transportation Regulations, 637
Types of, 627–628
Unanticipated Scenarios ID, 638
Use Case Examples, 142, 142t

System Design
HF Objectives, 489–490
Human Engineering (HE), 482, 499
Solution Framework, 309
User-Centered (UCSD), 481–515
Commercial/Consumer Product, 102–103
Consumer Product, 10
Contract-Based, 10, 102–103, 102f
Introductory Overview, 66–67
Lifecycle Perspective, 624

System Disposal, 69, 132f , 471, 645–646
System Element(s)

Architecture, 192
Concepts, 186–195
Conceptualizing Interactions, 190–191
Descriptions, 187–190
Discussion, 186–195
Equipment, 186, 187
Entity Relationships (ERs) Matrix, 190, 190f
Facilities, 186
Hardware, 187–188
Importance of, 191, 193
Introduction, 186
Mission and Enabling Systems, 186–196, 187t, 191f , 192f
Mission Resources, 186, 190
Personnel, 186, 187
Procedural Data, 186, 189
Software, 188–189
System Responses, 186, 190

System Engineering
Analytical Problem-Solving and (or &) Solution Development,

11, 13f
Definition, 2, 9, 792
Functional SE, 13
Historical Notes, 13
Intellectual Control of the Problem Solution, 10, 11, 296, 344,

356, 363
Multi-Discipline Engineering, 11, 13f
Project versus Functional SE, 12–13
System versus Systems Engineering, 12–13
Technical Project Management, 11, 13f
User Advocacy Role, 1, 11t, 409, 513
What is?, 8–12

System Engineering & Development (SE&D)
Discussion, 1, 13f , 245, 246, 248, 250, 251, 253
vs System Acquisition & Management, 38–39

System Integration, Test, & Evaluation (SITE)
Biased or Aliased Measurements, 617
Challenges & Issues, 617–621
Conduct Constraints, 607
Data Integrity, 617
Data Preservation & Archiving, 617
Data Records Retention, 618
DR Classification System, 610
Fundamentals, 601–604
Guiding Philosophy, 605–606
Key Elements, 604–605
Objectives, 602–603
Operating Constraints, 607–608
Planning, 610–613
Preparation, 606–607
Semantics, 603
Standard Operating Practices & Procedures (SOPPs), 607
Strategy, 610
Tasks, 614–615
Time Allocation, 619
What is?, 601–602
Work Products, 609–610

System Interactions
With External Operating Environment, 199f , 202f , 209f ,

230–233f
Hierarchical Interactions, 198
Between Mission-Enabling Systems, 199f , 200f
Between System Elements, 190f , 191f

System Maintenance (OM&S), 638–645
Considerations, 638–646
Introductory Overview, 68
As Maintained Documentation, 644
Objectives, 639
Operational Availability, 72, 73
Operational Effectiveness, 72, 73, 623, 639
Operational Efficiency, 72, 74, 623, 639
Operational Suitability, 72, 73, 623, 639
Operational Usability, 72, 73, 623, 639
Operational Utility, 72, 623, 639
Operator Observations, 642
SE Focus Areas, 643–645
SE Objectives, 641–642
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Sustainment, 52, 630, 631, 633
System Performance Monitoring and Analysis, 639–640
Use Case Examples, 144, 144t

System Operations
Defined, 130
Deployment Phase, 68, 626–638
Dictionary, 130, 135
Model, 131–138
OM&S Phase, 69, 638–645
Operations UC Examples, 143, 143t
Production Phase, 68
Retirement/Disposal Phase, 69, 645–646
Value-Added, 135–136

System Performance
Analysis Reporting, 680
Analysis Tools, 654
Cumulative Effects, 661–662
Evaluation, 654–657
Methods, 656t, 659–664
Optimal, 653–654
Optimization, 654
Pareto-Driven Priorities, 679–680
Regression, 664
Suboptimization, 652, 654
System Optimization, 652

System Production Phase, Introductory Overview, 67–68
System Readiness

Daily (DORT), Hourly (Hourly), Continuous Operational
Readiness Test (CORT), 236

Operational, 784
System Requirements, 626, 632, 634, 636, 637, 638, 640
System Requirements Document (SRD) (See Decision Artifacts

–Documents)
System Responses

Ancillary Requirements, 645
Behavior, 190
By-Products, 190
Design Considerations, 645–646
Products, 190
Services, 190
Storage Requirements, 645

System Retirement, 625, 645–646
System Retirement/Disposal

Defined, 130
Use Case Examples, 143, 145t

System Retirement/Disposal Phase, Introductory Overview,
65–66

Systems Engineering
Defined, 2, 9
& Development (SE&D), 19
Effectiveness, 20, 25, 27
History, 28
HF and Ergonomics Actions, 512–514
Resource Commitment Challenges, 25–27, 26–27f
ROI, 44
State of, 20–23
System versus Systems, 12–13
Value of, 25–27

System Services, 190

Systems of Interest (SOI), 199–201
Systems Thinking

Discussion, 13–15, 280
Mini-Case Study: Apollo 13 Accident, 14
Mini-Case Study: Critical Software Test, 14–15

System Storage, Use Case Examples, 144, 144t
System Threat

Countermeasures, 210
Discussion, 209–211
Disruption of Services, 217
Encounters, 210
Intrusion, 217
Monitoring, 217
Physical Destruction, 217
Risk Mitigation, 217
Stress Loading, 217
Tactics, 210
Types of, 210
Vulnerabilities, 217

Tactical Planning, 85f , 86
Tailoring

Defined, 398
Task

Analysis, 483
Defined, 483
Element, 483
Environments, 499, 500f
Order, 101
Processing Time, 667, 674–677f
Queue Time, 667, 674–677f
Significance Principle, 472
Subtask, 483
Transport Time, 667, 674–677f

Team
Product Development (PDT), 259, 261, 284, 433, 438, 440, 443
System Development (SDT), 139, 158, 352, 399, 404, 433, 436,

438, 444
System Engineering and Integration Team (SEIT), 135, 139,

355, 359, 378, 404, 424, 427, 539, 551, 582, 587, 604,
619, 667, 672, 698, 723, 728

Technical Data
Defined, 366
Package (TDP), 347

Technical Decision-Making
Aids, 705
Attributes, 652–653
Authority, 132, 133, 289, 392t, 612, 653, 682, 688, 689,

697–700, 707, 712
Brainstorming, 692
Consensus, 683–684
Nominal Grouping Technique (NGT), 692
Pairwise Comparison Method, 692

Technical Project Management, 11f , 261f
Test

Case (TC), 600
Configuration, 600
Coverage, 600
Criteria, 600
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Test (Continued)
Defined, 600
Discrepancy (TD), 601
Environment, 601
Half-Split Troubleshooting Method, 606, 616
Incident Report, 601
Instrumentation, 601
Points, 606, 612, 617
Range, 601
Repeatability, 601
Resources, 601
Verification Method, 459, 462

Test and Evaluation (T&E), 600
Test and Evaluation Working Group (TEWG), 600, 612, 621

Test Article
Defined, 600
Engineering Model, 603
First Article, 603
Refurbishment/Recondition, 615, 620
Test Article, 600
Unit Under Test (UUT), 603

Test Bed
Defined, 272
Environments, 714–717, 715f
Evolution, 717
Supporting Rationale, 716–717

Test Cases (TCs), 602, 605f , 611f
Defined, 600
Development, 613
Discussion, 602, 605f , 609. 611f , 612, 613–614, 614t

Test Data/Results
Authentication, 618
Defined, 601
Distortion and Misrepresentations of, 617
Preservation, 617–618
Retention of Records, 618
Test Data, 617
Test Results, 601

Test Discrepancy (TD)
Failure, 606, 609, 616f
Implementation Priorities, 619–620
Reporting Obstacles, 619
Reports (DRs), 609
Root Cause Investigation, 616, 616f
Scene Protection, 617
Source Isolation Tree, 616, 616f

Test Equipment & Tools
Automatic (ATE), 599
Calibration & Alignment, 620
Test and Measurement Equipment (TME), 601

Testing
Anomalies, 620
Built-in-Test (BIT), 767, 771, 785
Built-in-Test Equipment (BITE), 771, 786
Compatibility, 599, 606–607
Compliance, 612, 613, 615
Conflict of Interest (COI), 608
Defined, 601
Destructive, 599, 603, 604

Environmental, 603
Environmental Qualification (EQT), 603
Equipment & Tools Certification, 618
First Article, 607
Formal, 600
Functional, 600, 603
“Hooks,” 620
Interoperability, 606–607
Multiple Requirements Strategy, 608–609
Non-Destructive, 600, 604
One Test Article-Multiple Integrators, 618
Personal Work Products, 608
Qualification (QT), 600, 604
Real World Scenarios, 621
Regression, 600, 609, 617
Report, 620
Test & Evaluation Master Plan (TEMP), 610
Test Point Accessibility, 619
Transient Error, 601
Types of, 603–604

Testing (Formal)
Critical Operational (COI), 610, 613
Critical Technical (CTI), 610, 613
Defined, 600
Test Personnel Certification, 608
Technical Conflict & Issue Resolution, 620–621
Who Performs?, 608

Test Organization
Acquirer Test Representative (ATR), 613
Establishment of, 612–613
Lab Manager, 612
Personnel Roles, 612–613
QA/SQA Representative, 613
Security Representative, 613
Test Director, 612
Test Operators, 612
Test Safety Officer, 612

Test Planning
Critical Operational/Technical Issues (COIs/CTIs),

610
Destructive Test Sequence, 612
Entity Relationships (ERs), 611, 611f
System Integration & Verification Plan (SIVP), 610
Test & Evaluation Master Plan (TEMP), 610

Threat
Defined, 77
Strategic, 77
System, 77
Tactical, 77

Tools, Defined, 8
Total-Ownership Cost (TCO), 467, 723, 726, 728, 770, 782,

782f
OM&S Costs, 770

Toxic Materials (See Hazardous Materials)
Defined, 430
Measure of Effectiveness (MOE) and Suitability (MOS),

435–436
Requirements, 430–436, 431f , 432f , 435, 436f , 437f ,

439–442, 441f
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Requirements Tools, 456–459
to Source or Originating Requirements, 277, 286

Trade Off
Defined, 682, 682–683
Operating Constraints, 109
Technical Decisions, 685–688
Technical decision Tree, 685f

Trade Space
Cost-Schedule, 688
Defined, 683
Performance-Cost, 688
Performance-Schedule, 688
Understanding, 687–688

Trade Study
Auto-Normalized Method, 694
Charter, 683
Chartering, 688–689
Conclusion, 691t
Critical Operational Issues (COI), 685–686
Critical Technical Issues (CTI), 686–686
Decision Criteria, 631–632, 682
Decision Dependencies, 686
Decision Factors, 631–632, 682, 691–692
Decision Tree, 685f
Defined, 683
Figure of Merit (FOM), 682
Finding, 691t, 698, 699
Lessons Learned, 700–701
Methodology, 689–690
Normalized Method, 690–694
Objectives, 683–684
Outline, 691t
Quantitative Approaches, 690–692
Recommendation, 691t, 697–701
Report (TSR), 683, 696–697
Results, 689f , 694
Risk Areas, 699–700
Scoring, 693–694
Sensitivity Analysis, 682
Trade Study Report (TSR), 682
Typical Decision Areas, 684, 684f , 685f
Weigh Allocations, 693

Training
Advanced, 644
Aircraft Simulator-Based, 713–714, 713f
Basic, 644
Negative, 644, 714
Remedial/Refresher, 644

Transfer Function, 53, 58t, 118, 221, 234, 301, 316, 422, 575,
576, 606, 668, 705, 708, 731, 733, 811, 816

Mathematical, 52
System, 219, 221

Transportation, Modes of, 627, 628, 636–637

Understand the Problem-Solution Space (SE Process)
Description, 297–298, 298f
Work Products, 298

United Airlines, Flight 232, 217, 568f , 596, 784

Unit-Under-Test (UUT), 282, 335, 603, 605, 606, 607, 608f , 609,
619, 712, 731, 733, 745

Usability
Defined (see System)
Effectiveness, 512
Errors, 513
Learnability, 513
Memorability, 513
Requirements, 465
Satisfaction, 513
Success Factor, 71, 72, 73

Use Cases (UCs), 338f , 339f
Actors, 120–121
Agile Development Application, 338f , 339f
Completion, 123
Consequences, 123–125
Defined, 101
Descriptions, 120
Diagram (UCD), 101
Documentation, 119, 120
Event Timeline, 121
Flow of Events, 122, 123t, 127
Frequency, 121–122
How Many, 127
Identifier, 120
Main Success Scenario, 120–122
Mission and System UCs & Scenarios, 118–127
Outcome, 120
Philosophy, 118
Post-Conditions, 123
Pre-Conditions, 122
Relation to Operational Tasks, 127
Scenarios, 101, 123–125
Thread, 430, 436, 436f , 437f
Title, 120
Trigger, 122

Useful Service Life, 645 (See Service Life)
User

Employment of the System, 247
Mental Models, 73, 131, 178, 480 515, 549
Operational Needs, 246
Problem and Solution Spaces, 246–247
versus Customers, 326
Wants, Needs, Can Afford, Willing to Pay, 10, 105, 433, 433f ,

498, 659
User Advocacy, SE Responsibility, 12, 513
User/Customer Decision Factor

Customer Decision Factor, 74
Operational Availability, 71, 72, 73
Operational Effectiveness, 71, 72, 73, 74
Operational Efficiency, 71, 72, 74
Operational Suitability, 71, 72, 73
Operational Usability, 71, 72, 73
Operational Utility, 71, 72, 73
Performance, 52

User Roles & Missions, 78–82
User Stories

Authoring, 329
Composition, 329
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User Stories (Continued)
Defined, 600
Conditions of Satisfaction (COS), 329, 331
Defined, 315
Epic, 336t
Incomplete, 334
Priority, 329
Repository, 333
Syntactical Format, 330

Utility
Success Factor, 71, 72, 73

Utility Function, 695–696
Defined, 683
Value Scale Profile Examples, 695f

Utility Space
Application to V-Model, 491, 493f
Defined, 683

Validation
Defined, 19
Methods, 284
Modeling & Simulation (M&S), 705
Overview, 279, 284–286
of Records, 272 (see also Verification by Similarity)
System Developer Context, 284
System User Context, 284
Table, 272

Variance
Compliance, 347
Statistical, 652, 659, 663, 664f , 669, 675, 677, 706

Vector
Position, 535
State, 534

Verification
Compliance Strategies, 283
Component, 286–287
Data Collection Strategy, 283
Design, 280
ISO 15288, 277, 278
ISO 9001:2008, 277, 278
Level, 457, 458t
Methods, 280–283
Method Selection, 283
Objectives, 279–280
Overview, 279
Product, 271, 280

Types of, 280–283
Verification, 19
Verification and Validation (V&V)

Acquirer Perspective, 278
Activities, 277
Concept Overview, 275–278
Debunking Myths, 276
Defined, 272
Developmental Configuration, 279–280, 288–289
Independent (IV&V), 290–291
Negative (Misinformation), 276
Programmatic Perspective, 279
System Developer Perspective, 278

Verification Methods
by Analysis, 270, 282, 454–455
by Demonstration, 271, 281, 455
by Examination, 281, 454
by Inspection, 271, 281, 454
Inspection vs Examination, 454
Selection, 453–456
Selection Process, 454
by Similarity, 271, 456
by Test, 271, 282, 455–456
by Validation of Records, 272, 282–283

Viable Alternative, 9, 11, 12, 19, 22, 44, 96, 100, 183, 184, 250,
263, 299, 301, 302, 304, 310, 311, 338, 376, 383, 393, 401,
471, 543, 546, 547, 562, 578, 631, 652, 683, 684–701

Verification & Validation (V&V) Strategy, 493f
Authenticate System Baselines Process, 288, 290
Component Procurement & Development, 287
Independent (IV&V), 271
Operational Test & Evaluation (OT&E), 289–290
SE Design Process, 286–287
System Integration, Test, & Evaluation (SITE) Process,

287–288
System Specification Process, 285–286

Waiver, 398
Waypoint, 101, 112f
Wearout, 743f , 751f , 768f
Working Data

Defined, 306
SE Role-Based Accountability, 512–513

Work Product (See Decision Artifacts), 19, 28, 31, 39f , 174, 239,
262, 275, 277, 278, 279, 283, 284, 298
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