Pr-o“fie:s s iFon al="EXxXpertidse—Diisftil=l"ed

OCA Oracle Database 11g: SQL
Fundamentals |I: A Real-World

Certification Guide

Steve Ries

OCA Oracle Database 11g: SQL
Fundamentals |: A Real-World
Certification Guide

Ace the 120-051 SQL Fundamentals | exam, and
become a successful DBA by learning how SQL
concepts work in the real world

Steve Ries

enterprise &

PUBLISHING

BIRMINGHAM - MUMBAI

OCA Oracle Database 11g: SQL Fundamentals I:
A Real-World Certification Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2011
Production Reference: 1171111

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84968-364-7
www . packtpub.com

Cover Image by Sandeep Babu (sandyjbegmail . com)

Credits

Author
Steve Ries

Reviewers
Dmitri Levin

Claire Rajan

Acquisition Editor
Amey Kanse

Development Editors
Pallavi lyengar

Meeta Rajani

Technical Editors
Apoorva Bolar

Arun Nadar

Naheed Shaikh

Copy Editor
Brandt D'Mello

Project Coordinator
Leena Purkait

Proofreader
Jonathan Todd

Indexer
Monica Ajmera Mehta

Graphics
Valentina D'silva

Manu Joseph

Production Coordinator

Melwyn D'sa

Cover Work
Melwyn D'sa

About the Author

Steve Ries has been an Oracle DBA for 15 years, specializing in all aspects of
database administration, including security, performance tuning, and backup and
recovery. He is a specialist in Oracle Real Application Clusters (RAC) and has
administered Oracle clustered environments in every version of Oracle since the
creation of Oracle Parallel Server. He holds five Oracle certifications as well as the
Security+ certification. He currently consults for the Dept of Defense, U.S. Marine
Corps, and holds a high-level security clearance. Additionally, Steve has been an
adjunct instructor of Oracle technologies at Johnson County Community College for
eight years where he teaches classes that prepare students for the Oracle certification
exams. He was also a speaker at the 2011 Oracle Open World conference. Steve is an
award-winning technical paper writer and the creator of the alt.oracle blog.

I would like to thank Gary Hayes, Carol Ross, Matt Sams, Pete
Scalzi, Angela Morten, Joe Duvall, Sandee Vandenboom, Karen
Buck, Gary Deardorff, and Chad Fletcher for their support and
technical advice during the writing of this book. I would also like
to thank Debbie Rulo, Keith Krieger, and the staff at the Center for
Business at Johnson County Community College for their support.
Finally, I would like to thank my wife Dee and daughter Faith for
their love, personal support, and patience.

About the Reviewers

Dmitri Levin has been working as a database administrator for more than 15 years.
His areas of interest include database design, database replication, and database
performance tuning. Dmitri has spoken at several national and international
conferences. He is currently Sr. Database Architect and Administrator at Broder Bros
Co. Dmitri has an MS in Mathematics from St. Petersburg University, Russia, and is
an Oracle Database 11g Certified Associate.

Claire Raj an is an Oracle instructor, author, and database consultant. She currently
instructs at the American Career Institute, MD, where she teaches Oracle Database
administration. She has over 15 years of experience managing Oracle databases and
teaching Oracle-related topics. She has created and maintains the popular website
www.oraclecoach.com. The website provides a host of articles, videos, and technical
resources for both beginners and advanced learners. She has authored the book Oracle
10g Database Administrator II: Backup/Recovery and Network Administration,
published by Cengage Learning. She holds certifications in all major Oracle releases:
7.x, 8, 8i, 91, 10g, and 11g. She can be found on Linkedin (http://www.linkedin.com/
in/clairerajan). She can be reached at creoraclecoach.com.

http://www.oraclecoach.com
http://www.linkedin.com/in/clairerajan
http://www.linkedin.com/in/clairerajan
mailto:cr@oraclecoach.com

www.PacktPub.com

Support files, eBooks, discount offers
and more

You might want to visit www . PacktPub . com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www . Packt Pub . com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at servicee
packtpub . com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

@ PACKT i1°

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print and bookmark content

e On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books

Get notified! Find out when new books are published by following @PacktEnterprise
on Twitter, or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents

Preface 1
Chapter 1: SQL and Relational Databases 7
Relational Database Management Systems 8
Flat file databases 8
Limitations of the flat file paradigm 9
Normalization 10
The relational approach 13
Bringing it into the Oracle world 16
Tables and their structure 16
Structured Query Language 18
A language for relational databases 18
Commonly-used SQL tools 20
SQL*Plus 20
TOAD 21
DBArtisan 22

SQL Worksheet (Enterprise Manager) 23
PL/SQL Developer 24
Oracle SQL Developer 24
Working with SQL 25
Introducing the Companylink database 25

An introduction to Oracle SQL Developer 27
Setting up SQL Developer 27
Getting around in SQL Developer 31
Summary 34
Test your knowledge 34
Chapter 2: SQL SELECT Statements 37
The purpose and syntax of SQL 38
The syntax of SQL 38

Case sensitivity 39

Table of Contents

The use of whitespace 40
Statement terminators 41
Retrieving data with SELECT statements 42
Projecting columns in a SELECT statement 42
Selecting a single column from a table 43
Selecting multiple columns from a table 44
Selecting all columns from a table 46
Displaying the structure of a table using DESCRIBE 48
Using aliases to format output of SELECT statements 50
Using arithmetic operators with SELECT 53
The DUAL table and the use of string literals 54
Mathematical operators with SELECT 57
The meaning of nothing 60
Using DISTINCT to display unique values 62
Concatenating values in SELECT statements 65
Summary 69
Certification objectives covered 69
Test your knowledge 70
Chapter 3: Using Conditional Statements 75
Implementing selectivity using the WHERE clause 76
Understanding the concept of selectivity 76
Understanding the syntax of the WHERE clause 76
Using conditions in WHERE clauses 79
Using equality conditions 79
Implementing non-equality conditions 82
Examining conditions with multiple values 86
Constructing range conditions using the BETWEEN clause 86
Using the IN clause to create set conditions 89
Pattern-matching conditions using the LIKE clause 91
Understanding Boolean conditions in the WHERE clause 94
Examining the Boolean OR operator 95
Understanding the Boolean AND operator 97
The Boolean NOT operator 98
Using ampersand substitution with runtime conditions 101
Sorting data 102
Understanding the concepts of sorting data 102
Sorting data using the ORDER BY clause 103
Changing sort order using DESC and ASC 104
Secondary sorts 106
Summary 110
Certification objectives covered 110

Lii]

Table of Contents

Test Your Knowledge 111
Chapter 4: Data Manipulation with DML 115
Persistent storage and the CRUD model 115
Understanding the principles of persistent storage 116
Understanding the CRUD model and DML 117
Creating data with INSERT 118
Examining the syntax of the INSERT statement 118
Using single table inserts 119
Inserts using positional notation 119
Inserts using named column notation 121
Inserts using NULL values 122
Multi-row inserts 124
Conditional Inserts—INSERT...WHEN 125
Modifying data with UPDATE 128
Understanding the purpose and syntax of the UPDATE statement 128
Writing single-column UPDATE statements 128
Multi-column UPDATE statements 131
Removing data with DELETE 132
The purpose and syntax of the DELETE statement 133
Deleting rows by condition 133
Deleting rows without a limiting condition 135
Removing data unconditionally with TRUNCATE 136
Transaction control 138
Transactions and the ACID test 139
Completing transactions with COMMIT 140
Undoing transactions with ROLLBACK 142
DELETE and TRUNCATE revisited 146
Recognizing errors 146
Summary 149
Certification objectives covered 149
Test your knowledge 149
Chapter 5: Combining Data from Multiple Tables 155
Understanding the principles of joining tables 155
Accessing data from multiple tables 156
The ANSI standard versus Oracle proprietary syntax 158
Using ANSI standard joins 159
Understanding the structure and syntax of ANSI join statements 159
Examining ambiguous Cartesian joins 160
Using equi joins—joins based on equivalence 162
Implementing two table joins with a table-dot notation 162
Using two table joins with alias notation 165

[iii]

Table of Contents

Understanding the row inclusiveness of outer joins 166
Retrieving data from multiple tables using n-1 join conditions 171
Working with less commonly-used joins—non-equi joins and self-joins 176
Understanding Oracle join syntax 178
Using Cartesian joins with Cross join 178
Joining columns ambiguously using NATURAL JOIN 180
Joining on explicit columns with JOIN USING 184
Constructing fully-specified joins using JOIN ON 186
Writing n-1 join conditions using Oracle syntax 189
Creating multi-table natural joins 190
Building multi-table joins with JOIN USING 190
Summary 191
Certification objectives covered 192
Test your knowledge 192
Chapter 6: Row Level Data Transformation 197
Understanding functions and their use 197
Comprehending the principles of functions 198
Using single-row functions for data transformation 198
Understanding String functions 199
Using case conversion functions 199
UPPER() 200
LOWER() 202
INITCAP() 202
Writing SQL with String manipulation functions 203
LENGTH() 204
Padding characters with LPAD() and RPAD() 206
RTRIM() and LTRIM() 208
CONCAT() 208
SUBSTR() 209
INSTR() 212
Exploring nested functions 214
Handling DATE functions 217
Distinguishing SYSDATE and CURRENT_TIMESTAMP 217
Utilizing datatype conversion functions 219
Using date to character conversion with TO_CHAR 219
Converting characters to dates with TO_DATE() 223
Converting numbers using TO_NUMBER() 224
Using arithmetic functions 227
ROUND() 227
TRUNC() 229
Using ROUND() and TRUNC() with dates 229
MOD() 230
Understanding date arithmetic functions 231

[iv]

Table of Contents

MONTHS_BETWEEN() 232
ADD_MONTHS() 233
Examining functions that execute conditional retrieval 233
NVL() 234
NVL2() 235
DECODE() 236
Summary 237
Certification Objectives Covered 237
Test your knowledge 238
Chapter 7: Aggregate Data Transformation 243
Understanding multi-row functions 244
Examining the principles of grouping data 244
Using multi-row functions in SQL 244
COUNT() 245
MIN() and MAX() 248
SUM() 250
AVG() 251
Grouping data 252
Grouping data with GROUP BY 254
Avoiding pitfalls when using GROUP BY 256
Extending the GROUP BY function 260
Using statistical functions 262
STDDEV() 262
VARIANCE() 263
Performing row group exclusion with the HAVING clause 263
Putting it all together 266
Certification objectives covered 267
Summary 267
Test your knowledge 267
Chapter 8: Combining Queries 271
Understanding the principles of subqueries 271
Accessing data from multiple tables 272
Solving problems with subqueries 272
Examining different types of subqueries 274
Using scalar subqueries 274
Using scalar subqueries with WHERE clauses 275
Using scalar subqueries with HAVING clauses 277
Using scalar subqueries with SELECT clauses 278
Processing multiple rows with multi-row subqueries 280
Using IN with multi-row subqueries 280
Using ANY and ALL with multi-row subqueries 282
Using multi-row subqueries with HAVING clauses 286

Using correlated subqueries 287

[v]

Table of Contents

Using multi-column subqueries 289
Using multi-column subqueries with WHERE clauses 290
Multi-column subqueries with the FROM clause 291

Investigating further rules for subqueries 292
Nesting subqueries 292
Using subqueries with NULL values 294

Using set operators within SQL 296

Principles of set theory 296

Comparing set theory and relational theory 297

Understanding set operators in SQL 298
Using the INTERSECT set operator 298
Using the MINUS set operator 299
Using the UNION and UNION ALL set operators 300

Summary 302

Certification objectives covered 302

Test your knowledge 303

Chapter 9: Creating Tables 307

Introducing Data Definition Language 307

Understanding the purpose of DDL 308

Examining Oracle's schema-based approach 308

Understanding the structure of tables and datatypes 309
CHAR 310
VARCHAR?2 311
NUMBER 312
DATE 313
Other datatypes 313

Using the CREATE TABLE Statement 314
Understanding the rules of table and column naming 314

Creating tables 315

Avoiding datatype errors 318
Avoiding character datatype errors 318
Avoiding numeric datatype errors 322

Copying tables using CTAS 326

Modifying tables with ALTER TABLE 329
Adding columns to a table 329
Changing column characteristics using ALTER TABLE... MODIFY 332
Removing columns using ALTER TABLE... DROP COLUMN 335

Removing tables with DROP TABLE 337

Using database constraints 338

Understanding the principles of data integrity 338

Enforcing data integrity using database constraints 339
NOT NULL 339
PRIMARY KEY 341
Natural versus synthetic 345

[vi]

Table of Contents

FOREIGN KEY 345
Deleting values with referential integrity 347
UNIQUE 348
CHECK 348
Extending the Companylink Data Model 349
Adding constraints to Companylink tables 349
Adding referential integrity 350
Adding a NOT NULL constraint 352
Adding a CHECK constraint 352
Adding tables to the Companylink model 353
Summary 356
Certification objectives covered 356
Test your knowledge 356
Chapter 10: Creating Other Database Objects 361
Using indexes to increase performance 361
Scanning tables 362
Understanding the Oracle ROWID 362
Examining B-tree indexes 364
Creating B-tree indexes 366
Using composite B-tree indexes 368
Working with bitmap indexes 369
Understanding the concept of cardinality 369
Examining the structure of bitmap indexes 370
Creating a bitmap index 371
Working with function-based indexes 372
Modifying and dropping indexes 374
Working with views 375
Creating a view 375
Creating selective views 377
Distinguishing simple and complex views 378
Configuring other view options 381
Changing or removing a view 381
Using sequences 382
Using sequences to generate primary keys 382
Object naming using synonyms 386
Schema naming 387
Using synonyms for alternative naming 388
Creating private synonyms 388
Creating public synonyms 391
Summary 392
Certification objectives covered 392

Test your knowledge 392

[vii]

Table of Contents

Chapter 11: SQL in Application Development 397
Using SQL with other languages 398
Why SQL is paired with other languages 398
Using SQL with PL/SQL 398
Using SQL with Perl 401
Using SQL with Python 403
Using SQL with Java 404
Understanding the Oracle optimizer 405
Rule-based versus cost-based optimization 406
Gathering optimizer statistics 406
Viewing an execution plan with EXPLAIN PLAN 408
Advanced SQL statements 411
Exam preparation 415
Helpful exam hints 415

A recommended strategy for preparation 417
Summary 417
Appendix A: Companylink Table Reference 419
The Companylink data model 419
ADDRESS 419
AWARD 420
BLOG 420
BRANCH 420
DIVISION 420
EMAIL 421
EMPLOYEE 421
EMPLOYEE_AWARD 421
MESSAGE 422
PROJECT 422
WEBSITE 422
Appendix B: Getting Started with APEX 423
Oracle Application Express 423
What is APEX? 423
Signing up for APEX 424
Using APEX 428
Index 433

[viii]

Preface

There's never been a time in the Information Technology industry where
professional certifications have been more important. Because of the specialized
nature of technological careers today, certifications are considered by some to be
just as important as technological degrees. This focus on certifications has led to the
rise of an entire industry around books that assist readers in preparing for various
certification tests. In the author's opinion, many, if not most, of these books make

a lot of assumptions as to the prior knowledge of the reader and serve more as
reference material than a cohesive learning experience.

In my role as an instructor of Oracle technologies, I have noticed a shift in the types
of people seeking to learn Oracle. In the past several years, more and more students
are seeking to break into an Oracle career path with little or no experience. Whether
they come from backgrounds in business analysis, project management, or other
non-database technical areas, these students need to be able to learn Oracle from the
ground up. When instructing these types of students, I cannot make assumptions

as to the knowledge they bring with them. We must start at the beginning and

work our way to certification level knowledge. To accomplish this goal in class,

the accompanying textbook must be designed in the same way.

Similarly, many certification books today serve only as exam cram books that neglect
an application to real world scenarios. Readers of these types of books may find
themselves with a certification, yet possess no way to apply the knowledge in their
first job.

Preface

My goal in writing this book is to address both of these problems. This book attempts
to begin at the foundation and continue to the knowledge of the subject required

for the certification exam, using real world examples and tips along the way. This
book is heavily example-oriented and is intended to serve as step-by-step instruction
instead of reference material. In essence, I attempt to bring the classroom experience
to the reader, using examples, real world tips, and end-of-the-chapter review. This
book is written to be read cover to cover, with the reader completing the examples
and questions as they go. Using this process, it is my hope that readers can truly
begin at the beginning, regardless of previous experience, and learn SQL in a
relevant way that will serve them in their pursuit of an Oracle certification as

well as an Oracle career path.

The Oracle Database 11g: SQL Fundamentals I exam is the first stepping stone in
earning the Oracle Certified Associate Certification for Oracle Database 11g. The
SQL programming language is used in every major relational database today,
and understanding the real-world application of it is the key to becoming a
successful DBA.

This book gives you the essential real-world skills to master relational data
manipulation with Oracle SQL and prepares you to become an Oracle Certified
Associate. Beginners are introduced to concepts in a logical manner while
practitioners can use it as a reference to jump to relevant concepts directly.

We begin with the essentials of why databases are important in today's information
technology world and how they work. We continue by explaining the concepts of
querying and modifying data in Oracle using a range of techniques, including data
projection, selection, creation, joins, sub-queries, and functions. Finally, we learn to
create and manipulate database objects and to use them in the same way as today's
expert SQL programmers.

This book prepares you to master the fundamentals of the SQL programming
language using an example-driven approach that is easy to understand.

This definitive certification guide provides a disciplined approach to be adopted
for successfully clearing the 170-051 SQL Fundamentals I exam, which is the first
stepping stone towards attaining the OCA on Oracle Database 11g certification.

Each chapter contains ample practice questions at the end. A full-blown mock
test is included for practice so you can test your knowledge and get a feel for the
actual exam.

[2]

Preface

What this book covers

Chapter 1, SQL and Relational Database, examines the purpose and use of relational
database management systems, including the use of entity relationship diagrams and
the structure of tables. We then introduce Structured Query Language and the SQL
Developer tool.

Chapter 2, SQL SELECT Statements, explores the most foundational SQL clause; the
SELECT statement. We use SELECT statements for single and multi-column data
retrieval and take a look at using SQL to do basic mathematical operations.

Chapter 3, Using Conditional Statements, examines the concept of data selection using
the WHERE clause paired with conditions. In it, we construct selective statements
using conditions of both equality and non-equality. We also use range and set
conditions with the WHERE clause for further data selectivity. Finally, we examine
the concept of sorting data using the ORDER BY clause.

Chapter 4, Data Manipulation with DML, explores the use of Data Manipulation
Language to add, modify, and remove table data using INSERT, UPDATE, and
DELETE statements. Lastly, we look at transaction control in SQL.

Chapter 5, Combining Data from Multiple Tables, examines the concept of combining
data from multiple tables using various join statements. We accomplish this using
both ANSI standard and Oracle syntax.

Chapter 6, Row Level Data Transformation, explores the concept of row level data
transformation using single-row functions. We use these functions to transform date,
character and numeric data.

Chapter 7, Aggregate Data Transformation, explores data transformation using
functions, this time with multi-row functions. We combine these functions with the
GROUP BY and HAVING statements to perform aggregate data transformation.

Chapter 8, Combining Queries, focuses on using several types of subqueries to combine
data from multiple tables. We close the chapter by exploring set theory in Oracle and
implement it using SQL set operators.

Chapter 9, Creating Tables, introduces the concept of Data Definition Language and
how to use it to create database tables. We also use SQL to write database constraints
that enforce business data rules.

Chapter 10, Creating Other Database Objects, examines the use of DDL statements to
create some of the other common objects available to us in Oracle. We use these
statements to create indexes, views, sequences, and synonyms.

[31]

Preface

Chapter 11, Using SQL in Application Development, examines how SQL is used in
real-world programming languages such as PL/SQL, Perl, Python, and Java. We
close by offering hints and strategies for taking the SQL certification exam.

Appendix A, Companylink Table Reference, a reference section describing the various
tables used as examples in this book.

Appendix B, Getting Started with APEX, shows an alternative method for completing the
examples in this book that does not require installing the Oracle database software.

Appendix C, Test Your Knowledge; you can download this appendix that contains
answers to the Test your knowledge section in all the chapters at http: //www.packtpub.
com/sites/default/files/downloads/testyourknowledge answers.pdf.

Mock practice test paper can be downloaded from http://www.packtpub. com/
sites/default/files/downloads/mock test paper.pdf

What you need for this book

This book is heavily example-oriented. As such, it will be beneficial for the reader to
download and install the Oracle database software as outlined in Chapter 1, SQL and
Relational Database. The reader will also receive the greatest benefit by downloading
and running the example code available from the Packt support website. No prior
knowledge of programming or database concepts is required.

Who this book is for

This book is for anyone who needs the essential skills to pass the Oracle Database
SQL Fundamentals I exam and use those skills in daily life as an SQL developer or
database administrator.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text are shown as follows: "Simply unzip the companylink.zip file
into a directory and double-click the companylink db.cmd file."

[4]

Preface

A block of code is set as follows:

SELECT {column, column, ..}
FROM {table};

Any command-line input or output is written as follows:

INSTR(column expression, search character, starting position,
occurrence_ number)

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "In our
example, data such as Firstname, lastname, Address and Branch name are the
attributes of the Employee entity".

& Warnings or important notes appear in a box like this.
i

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggeste
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[51]

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.PacktPub.com. If you purchased this book
elsewhere, you can visit http: //www.PacktPub.com/support and register to
have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[6]

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

SQL and Relational
Databases

We live in a data-driven world. Think for a moment about all the data that exists
about you, in computers around the world.

Your name

Birth date and information
Your hobbies

Purchases you've made
The identity of your friends

Your place of employment

The examples are endless. Next, multiply that amount of data by the number
of people in the world. The result is a truly staggering amount of information.
How is it possible that all this data can be organized and retrieved? In today's
data-centric world, it is databases that make this possible. These Relational
Database Management Systems (RDBMS) are primarily controlled by a
programming language called Structured Query Language (SQL).

In this chapter, we will cover the following topics:

Discussing the purpose of relational database management systems
Understanding the use of the relational paradigm

Examining the use of Entity Relationship Diagrams (ERDs)
Looking at the structure of tables

Introducing Structured Query Language (SQL)

Reviewing commonly-used query tools

Introducing the SQL Developer tool

SQL and Relational Databases

Relational Database Management
Systems

Imagine, for a moment, that you have the telephone books for the 20 largest cities
in the U.S. I give you the following request: Please find all the phone numbers for
individuals named Rick Clark in the Greater Chicago area. In order to satisfy the request,
you simply do the following;:

e Open the Chicago phone book
e Scan to the "C" section of names
¢ Find all individuals that match "Clark, Rick"

e Report back their phone numbers

Now imagine that I take each phone book, tear out all of the pages, and throw them
into the air. I then proceed to shuffle the thousands of pages on the ground into

a completely disorganized mess. Now I repeat the same request: Please find all the
phone numbers for individuals named Rick Clark in the Greater Chicago area. How do you
think you would do that? It would be nearly impossible. The data is all there, but
it's completely disorganized. Finding the "Rick Clarks" of Chicago would involve
individually examining each page to see if it satisfied the request—a very frustrating
undertaking, to say the least.

This example underscores the importance of a database, or more accurately, a
Relational Database Management System(RDBMS) Today's RDBMSs are what
enable the storage, modification, and retrieval of massive amounts of data.

Flat file databases

When the devices that we know as computers first came into existence, they were
primarily used for one thing —computation. Computers became useful entities
because they were able to do numeric computation on an unprecedented scale. For
example, one of the first computers, ENIAC, was designed (although not used) for
the US Army to calculate artillery trajectories, a task made simpler through the use
of complex sequences of mathematical calculations. As such, originally, computers
were primarily a tool for mathematical and scientific research. Eventually, the use of
computers began to penetrate the business market, where the company's data itself
became just as important as computational speed. As the importance of this data
grew, so the need for data storage and management grew as well, and the concept
of a database was born.

[8]

Chapter 1

The earliest databases were simple to envision. Most were simply large files that
were similar in concept to a spreadsheet or comma-separated values (CSV) file.
Data was stored as fields. A portion of these databases might look something like
the following:

Susan, Bates, 123 State St, Somewhere, VA
Fred, Hartman, 234 Banner Rd, Anywhere, CA
Bill, Frankin, 345 Downtown Rd, Somewhere, MO
Emily, Thompson, 456 Uptown Rd, Somewhere, NY

In this example, the first field is determined by reading left to right until a delimiter,
in this case a comma, is reached. This first field refers to the first name of the
individual. Similarly, the next field is determined by reading from the first delimiter
to the next. That second field refers to the last name of the individual. It continues

in this manner until we have five fields — first name, last name, street address, city,
and state. Each individual line or record in the file refers to the information for a
distinct individual. Because this data is stored in a file, it is often referred to as a flat
file database. To retrieve a certain piece of information, programs could be written
that would scan through the records for the requested information. In this way, large
amounts of data could be stored and retrieved in an orderly, programmatic way.

Limitations of the flat file paradigm

The flat file database system served well for many years. However, as time passed
and the demands of businesses to retain more data increased, the flat file paradigm
began to show some flaws.

In our previous example, our flat file is quite limited. It contains only five fields,
representing five distinct pieces of information. If this flat file database contained the
data for a real company, five distinct pieces of information would not even begin to
suffice. A complete set of customer data might include addresses, phone numbers,
information about what was ordered, when the order was placed, when the order
was delivered, and so on. In short, as the need to retain more data increases, the
number of fields grows. As the number of fields grows, our flat file database gets
wider and wider. We should also consider the amount of data being stored. Our first
example had four distinct records; not a very realistic amount for storing customer
data. The number of records could actually number in thousands or even millions.
Eventually, it is completely plausible that we could have a single flat file that is
hundreds of fields wide and millions of records long. We could easily find that the
speed with which our original data retrieval programs can retrieve the required data
is decreasing at a rapid rate and is insufficient for our needs.

[o]

SQL and Relational Databases

As our data demands increase, we're presented with another problem. If we are
storing order information, for example, strictly under the flat file paradigm, we are
forced to store a new record each time an order is placed. Consider this example,
in which our customer purchases six different items. We store a six-digit invoice
number, customer name, and address for the customer's purchase, as follows:

487345, Susan, Bates, 123 State St, Somewhere, VA
584793, Susan, Bates, 123 State St, Somewhere, VA
998347, Susan, Bates, 123 State St, Somewhere, VA
126543, Susan, Bates, 123 State St, Somewhere, VA
487392, Susan, Bates, 123 State St, Somewhere, VA

Using this example, notice how much duplicate data we have stored. The fields

are invoice number, first name, last name, street address, city, and state, respectively.
The only different piece of information in each record is the invoice number, and
yet we have repeatedly stored the last five fields —information that is stored in
previous records. We refer to these anomalies as repeating values. Repeating values
present two problems from a processing standpoint. First, the duplicate data must
be re-read each time by our retrieval programs, creating a performance problem

for our retrieval operations. Second, those duplicate characters constitute bytes that
must be stored on disk, uselessly increasing our storage requirements. It is clear that
the flat file paradigm needs to be revised in order to meet the growing demands of
our database.

Normalization

The world of databases changed in the early 1970s due in large part to the work of
Dr. Edgar "Ted" Codd. In his paper, A Relational Model of Data for Large Shared Data
Banks, Dr. Codd presented a new paradigm — the relational paradigm. The relational
paradigm seeks to resolve the issues of repeating values and unconstrained size by
implementing a process called normalization. During normalization, we organize
our data in such a way that the data and its inter-relationships can be clearly
identified. When we design a database, we begin by asking two questions —what
data do I have? And, how do the pieces of data relate to each other? In the first step,
the data is identified and organized into entities. An entity is any person, place,

or thing. An entity also has attributes, or characteristics, that pertain to it. Some
example entities are listed in the following diagram:

Employee Address Email Branch Division

[10]

Chapter 1

These entities represent distinct pieces of information: the Employee entity represents
information about employees, the Email entity represents information about e-mail
addresses, and so on. These entities, and any others we choose to add, make up our
data model. We can also look a little closer at the attributes of a particular entity, as
shown in the following diagram:

Employee

First name
Middle Initial
Last name
Date of Birth
Address
Gender

Email address
Branch name
Division name

In our example, data (such as First name, Last name, Address, and Branch name)
are the attributes of the Employee entity —they describe information about the
employee. This is by no means exhaustive. There would most likely be many

more attributes for an employee entity. In fact, this is part of the problem that we
discussed earlier with the flat file database —data tends to accumulate, making our
file wider and wider, if you will. Additionally, if we were to actually collect this data
in a flat file, it might look something like the following screen:

First Name Mid Initial Last Name Address Email Address

James R Johnson 123 State St, Bell, WA li@hotmail com, jj@yahoo.com
Mary S Williams 234 First 5t _Bigtown, WA mw(@gmail.com

Linda L Anderson 345 Fifth Ave, Smalltown, MA la@yahoo.com, la@gmail.com

At first glance, this structure may appear to be adequate, but, if we examine

further, we can identify problems with it. To begin with, we note that there are
multiple values stored in the Address and Email Address fields, which can make
structuring queries difficult. This is where the process of normalization can assist

us. Normalization involves breaking data into different normal forms. These forms
are the steps we take to transform non-relational data into relational data. The first
normal form (INF) involves determining a primary key —a value in each occurrence
of the data that uniquely identifies it. In the previous example of data, what attribute
could be used to uniquely identify each occurrence of data? Perhaps we could use
First Name.

[11]

SQL and Relational Databases

However, it seems fairly clear that there could be more than one employee with the
name James or Mary, so that will not suffice. If we were to use First Name and Last
Name together as our primary key values, we would get closer to uniqueness, but it
would still be insufficient for common names such as John Smith. For now, let us
say that First Name, Mid Initial, and Last Name, together (as indicated earlier),
uniquely identify each occurrence of data and thus comprise our primary key for
the employee entity.

The next issue is the problem of repeating groups. Examine the Email Address
attribute. It may be required that one or more e-mail addresses be stored for each
employee. This presents problems when attempting to query for a particular
employee's e-mail address. As each employee can have more than one e-mail
address, the Email attribute would have to be scanned rather than simply
pattern-matched in order to retrieve a particular piece of data. One way to rectify
this would be to break each individual occurrence of the e-mail address into two
separate records that demonstrates the removal of repeating groups, as shown in
the next example. Thus, James R. Johnson, who has two Email Addresses, now has
two rows in the database — one for the first e-mail address and one for the second:

First Mame Mid Initial Last Name Address Email Address
James R Johnson 123 State St, Bell, WA J@hotmail.com
James R Johnson 123 State St, Bell, WA ji@yahoo.com
Mary S Williams 234 First St.Bigtown, VA mw(@gmail.com
Linda L Anderson 345 Fifth Ave, Smalltown, MA la@yahoo.com
Linda L Anderson 345 Fifth Ave, Smalltown, MA la@gmail.com

We have eliminated the repeating groups, but we have now introduced other
problems. First, we have violated our primary key, as first, middle, and last name
no longer uniquely identify each row. Second, we have begun to duplicate our data.
First name, middle initial, last name, and address are all repeated simply for the
sake of removing repeating groups. Lastly, we now realize that it is possible for our
employees to have more than one address, which further complicates the problem.
Clearly, the first normal form alone is insufficient. It is necessary to transform the
data again — this time into the second normal form (2NF).

[12]

Chapter 1

The relational approach

The second normal form involves breaking our employee entity into a number of
separate entities, each of which can have a unique primary key and no repeating
groups. This is displayed again in the following diagram:

Employee Address Email Branch Division

Here, we have separated our employee information into separate entities. We've
also added entities that represent the branch and division of which each employee
is a part. Now our employee entity contains information such as first name,

middle initial, and last name, while our Email entity contains the e-mail address
information. The other entities operate similarly —each contains information unique
to itself.

This may have solved our repeating data problem, but now we simply have five

files that have no relation to each other. How do we connect a particular employee

to a particular e-mail address? We do this by establishing relationships between the
entities; another requirement of the second normal form. A relationship between two
entities is formed when they share some common piece of information. How this
relationship functions is determined by the business rules that govern our data. Let's
say in our model that one, and only one, e-mail address is kept for each employee.
We would then say that there is a one-to-one relationship between our employee
entity and our Email entity. Generally, such a relationship is denoted visually with a
single bar between the two. We could diagram it as follows:

Employee Email

[13]

SQL and Relational Databases

A more realistic relationship, however, would be one where each employee

could have more than one e-mail address. This type of relationship is termed a
one-to-many relationship. These relationships form the majority of the relationships
used in the relational model and are shown in the following diagram. Note the
crow's foot connecting to the Email entity, indicating many:

Employee Email

As you might expect, there is another type of relationship, one which, under
relational rules, we try to avoid. A many-to-many relationship occurs when multiple
occurrences of the data in one entity relate to multiple occurrences in the other. For
instance, if we allowed employees to have multiple e-mail addresses, but also allowed
multiple employees to share a single e-mail address. In the relational paradigm, we
seek to avoid these types of relationships, usually by relating an entity between the
two that transforms a many-to-many relationship into two distinct one-to-many
relationships. The last step in normalization is generally the transformation into the
third normal form (3NF). In the 3NF, we remove any columns that are not dependent
on the primary key. These are known as transitive dependencies. To resolve these
dependencies, we move the non-dependent columns into another table. There are
higher normal forms, such as fourth normal form (4NF) and fifth normal form (5NF),
but these forms are less commonly used. Generally, once we have taken our data
structure up to the 3NF, our data is considered relational.

When we design the number and types of relationships between our entities, we
construct a data model. This data model is the guide for the DBA on how to construct
our database objects. The visual representation of a data model is commonly referred
to as an entity relationship diagram (ERD). Using the five example entities we listed
previously, we can construct a simple entity relationship diagram, as demonstrated
in the following example:

[14]

Chapter 1

Email Employee Address

Branch

Division

From this example model, we can determine that the employee entity is more or
less the center of this model. An employee can have one or more e-mail addresses.
An employee can also have one or more street addresses. An employee can belong
to one or more branches, and a branch can belong to one or more divisions. Even
though it is highly simplified, this diagram shows the basic concepts of visually
modeling data.

Through the use of relational principles and entity relationship diagrams, a database
administrator or data architect can take a list of customer data and organize it into
distinct sets of information that relate to one another. As a result, data duplication is
greatly reduced and retrieval performance is increased. It is because of this efficient
use of storage and processing power that the RDBMS is the predominant method
used in storing data today.

SQL in the real world
I Strictly speaking, the Oracle RDBMS is actually an Object Relational
Q Database Management System (ORDBMS) and has been since Oracle
version 8. An ORDBMS refers to the ability of Oracle databases to be
manipulated using object-oriented concepts.

[15]

SQL and Relational Databases

Bringing it into the Oracle world

To discuss the relational paradigm, we have used relational terminology, which is
designed to be generic and not associated with any particular database product.
The subject of this book, however, is using SQL with Oracle databases. It is time
to relate the terminology used in the relational paradigm to terms that are likely
more familiar:

Relational Flat file Oracle-specific
Entity File Table

Attribute Field Column

Tuple Record Row

The preceding diagram shows a comparison table of the different terms used to
describe basic database components. Up to this point, we have used the relational
term, entity, to describe our person, place, or thing. From this point, we will refer to
it by its more commonly known name — the table.

Tables and their structure

If you've ever used a spreadsheet before, then you are familiar with the concept of a
table. A table is the primary logical data structure in an Oracle database. We use the
term logical because a table has no physical structure in itself — you cannot simply
login to a database server, open up a file manager, and find the table within the
directories on the server. A table exists as a layer of abstraction from the physical
data that allows a user to interface with it in a more natural way. Examine the
following diagram; like a spreadsheet, a table consists of columns and rows:

Columns
Rows FIRST_NAME MIDDLE_INITIAL LAST NAME GENDER DOB
James R Johnsan M 01-01-60
Mary S Williams F 03-15-64
Linda L Anderson F 10-24-70
Daniel J Robinson M 11-23-59
Matthew K Garcia M 04-14-71
Helen H Harris F 07-13-75
Ken w White M 02-22-58
Danald A Perez M 03-14-79
Lisa C Lee F 06-15-63
Carol M Clark F 08-11-67
Gary R Moore M 11-01-65
Cynthia B Hall F 10-21-565
Sandra S Rodriguez F 05-10-74
Kewin L Lewis M 07-01-76
George H Taylor M 12-24-72
Laura | Thomas F 10-26-81

[16]

Chapter 1

A column identifies any single characteristic of a particular table, such as first

name. A column differs from a row in more than its vertical orientation. Each

value within a column contains a particular type of data, or data type. For instance,
in the preceding example, the column FIRST_NAME denotes that all data within that
column will be of the same type and that data type will be consistent with the label
FIRST NAME. Such a column would contain only character string data. For instance,
in the FIRST NAME column, we have data such as Mary and Matthew, but not the
number 42532.84. In the date of birth column, or DoB, only date data would be stored.
As we will see in the next chapter, in Oracle, string data or text data is not the same
thing as date data.

Along the horizontal, we have rows of data. A row of data is any single instance
of a particular piece of information. For example, in the first row of the table in our
example, we have the following pieces of information:

Downloading the example code

purchased from your account at http: //www.PacktPub. com. If you
purchased this book elsewhere, you can visit http: //www. PacktPub.
com/support and register to have the files e-mailed directly to you.

élQ You can download the example code files for all Packt books you have

First name = "James"
Middle initial = "R"
Last name = "Johnson"
Gender = "M"

DOB = "01-01-60"

This information comprises the sum total of all the information we have in this
table for a single individual, namely, James R. Johnson. The following row, for
Mary S. Williams, contains the same types of information, but different values.
This construct allows us to store and display data that is orderly in terms of data
types, but still flexible enough to store the data for many different individuals.
Together, the columns and rows of data form a relational table: the heart of the
Oracle database. However, in order to retrieve and manipulate this table data,
we need a programming language; for relational databases, that language is SQL.

[17]

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support

SQL and Relational Databases

Structured Query Language

SQL was developed by Donald Chamberlain and Raymond Boyce in the early 1970s
as a language to retrieve data from IBM's early relational database management
systems. It was accepted as a standard by the American National Standards
Institute (ANSI) in 1986. SQL is generally referred to as a fourth-generation
language (4GL), in contrast with third-generation languages (3GLs) such as C,
Java, and Python. As a 4GL, the syntax of SQL is designed to be even closer to
human language than 3GLs, making it relatively natural to learn. Some do not

refer to SQL as a programming language at all, but rather a data sub-language.

A language for relational databases

Before we look at what SQL (pronounced either 'S-Q-L' or 'sequel') is, it is important
to define what it is not. First, SQL is not a product of Oracle or any other software
company. While most relational database products use some implementation of
SQL, none of them own it. The structure and syntax of SQL are governed by the
American National Standards Institute and the International Organization for
Standardization (ISO). It is these organizations that decide, albeit with input from
other companies such as Oracle, what comprises the accepted standard for SQL.
The current revision is SQL:2008.

Second, while the ANSI standard forms the basis for the various implementations

of SQL used in different database management systems, this does not mean that

the SQL syntax and functionality in all database products is the same; in fact, it is
often quite different. For instance, the SQL language permits the concatenation of
two column values into one; for example, the values hello and there concatenated
would be hellothere. Oracle and Microsoft SQL Server both use symbols to denote
concatenation, but they are different symbols. Oracle uses the double-pipe symbol,

' |', and SQL Server uses a plus sign, '+'. MySQL, on the other hand, uses a keyword,
coNCAT. Additionally, RDBMS software manufacturers often add functionalities to
their own SQL implementations. In Oracle version 10g, a new type of syntax was
included to join data from two or more tables that differs significantly from the ANSI
standard. Oracle does, however, still support the ANSI standard as well.

SQL in the real world

K Although the SQL implementations of the major RDBMS products differ,
Q they all conform to the basic ANSI standard. That means if you learn
how SQL is used in one database product, such as Oracle, much of your
acquired knowledge should transfer easily to other database products.

[18]

Chapter 1

Last, SQL should not be confused with any particular database product, such as
Microsoft SQL Server or MySQL. Microsoft SQL Server is sometimes referred to by
some as SQL; a confusing distinction.

What SQL does provide for developers and database administrators is a simple but
rich set of commands that can be used to do the following:

e Retrieve data

e Insert, modify, and delete data

e Create, modify, and delete database objects
e Give or remove privileges to a user

e Control transactions

One of the interesting things about SQL is its dataset-oriented nature. When
programmers use third-generation languages such as C++, working with the
kinds of datasets we use in SQL is often a cumbersome task involving the explicit
construction of variable arrays for memory management. One of the benefits of
SQL is that it is already designed to work with arrays of data, so the memory
management portion occurs implicitly. It is worth noting, however, that third-
generation languages can do many things that SQL cannot. For instance, by itself,
SQL cannot be used to create standalone programs such as video games and cell
phone applications. However, SQL is an extremely effective tool when used for
the purpose for which it was designed —namely, the retrieval and manipulation of
relational data.

SQL in the real world

Standard programming constructs such as flow control, recursion,
M and conditional statements are absent from SQL. However, Oracle has
created PL/SQL, a third-generation overlay language that adds these
Q and other basic programmatic constructs to the SQL language. Because
of the strength of the SQL language in manipulating data, PL/SQL is
often the choice of developers when programming the portions of their
applications that interact with Oracle databases.

The goal of this book is to teach you the syntax and techniques to use the SQL
language to make data do whatever you want it to do. Chapter 2, SQL SELECT
Statements and beyond address these topics. However, before we can learn more
about the SQL language, we are going to need to choose a tool that can interact with
the database and process our SQL.

[19]

SQL and Relational Databases

Commonly-used SQL tools

Because SQL is the primary interface into relational databases, there are many SQL
manipulation tools from which to choose. There are benefits and drawbacks to each,
but the choice of tool to use is generally about your comfort level with the tool and
its feature set. Some tools are free, some are open source, and some require paid
licenses; however, each tool uses the same syntax for SQL when it connects to an
Oracle database. Following are some commonly-used SQL tools:

SQL in the real world

While your choice of SQL tool is an important one, in the industry
XY it is one that is sometimes dictated by the toolset standards of your
Q employer. It's important that you don't completely dedicate yourself to
one tool. If you become an expert at one and then transfer to a different
employer whose standards don't allow for the use of your tool, you
may find yourself with an initial learning curve.

SQL*Plus

SQL*Plus is the de facto standard of SQL tools to connect to an Oracle database.

Since Oracle's early versions, it has been included as a part of any Oracle RDBMS
installation. SQL*Plus is a command-line tool and is launched on all Oracle platforms
using the command, sglplus. This command-line tool has been a staple of Oracle
database administrators for many years. It has a powerful, interactive command
interface that can be used to issue SQL statements, create database objects, launch
scripts, and startup databases. However, compared with some of the newer tools, it
has a significant learning curve. Its use of line numbering and mandatory semicolons
for execution is often confusing to beginners. Oracle has also released a GUI version
of SQL*Plus for use on Windows systems. Its rules for use, however, are still generally
the same as the command-line interface, and its confinement to the Windows platform
limits its use. As of Oracle version 11g, the GUI version of SQL*Plus is no longer
included with a standard Oracle on Windows installation. Whatever your choice of
SQL tool, it is very difficult for a database administrator to completely avoid using
SQL*Plus. The following is a screenshot of the command-line SQL*Plus tool:

[20]

Chapter 1

Command Prompt - sqlplus companylink/companylink -0 ﬂ
B

SQL> select first_name, last_name, dobh from employvee;
LAST_MNAME

Johnzon B1-JAN-68
Williams 15%-MAR-64
Anderzon 24-0CT-78
Robinson 23-HOU-592
Garcia 14-AFR-71
Hapris 13-JUL-75
White 22-FEB-58
Perez 14-MAR-772
Lee 15-JUN-63
Clark 11-AUG-67
Moore B1-MOU-65
Hall 21-0CT-55
Rodriguez 18-MAY-74
Lewis 81 -JUL-76
Taylor 24-DEC-72
Thomas 26—0CT—-81

16 rows selected.

SaQL> _

TOAD

The Tool for Oracle Application Developers (TOAD) is a full-featured development
and administration tool for Oracle as well as other relational database systems,
including Microsoft SQL Server, Sybase, and IBM's DB2. Originally created by Jim
McDaniel for his own use, he later released it as freeware for the Oracle community
at large. Eventually, Quest Software acquired the rights for TOAD and began
distributing a licensed version, while greatly expanding on the original functionality.
TOAD is immensely popular among both DBAs and developers due to its large
feature set. For DBAs, it is a complete administration tool, allowing the user to
control every major aspect of the database, including storage manipulation, object
creation, and security control. For developers, TOAD offers a robust coding interface,
including advanced debugging facilities.

[21]

SQL and Relational Databases

TOAD is available for download in both freeware and trial licensed versions. A
screenshot is shown as follows:

Toad for Oracle expires on 20-March. 2011 - [COMPANYLINKRORCL - Editor]

L fle ot Search Cotor Session [stobese Debug Wew Lhiites Window belp =loix|.
BRTEEY eqY Yy B iR Sk A H b .| cdelauk> & - - V.
<0 COMPANYLINGPCRCL.
G e
Project Hanager il S-F- B0 & E s bt | @) .|| pesbton: st LR .
+-F-DEE Tp @ Z BROS 7 &0 eow o [EE 2 < S UL 5
b S - T — ISR : B L - =
A Tt Fa Navigaion o IO, s TP 3 L) g 7 L) L) . ESYER. TEOPTON. . SOrOR. IS
o 1080 propact P t b [select * fom erployos;
Ratenert__ |
B Select
ax
e | P DOMS cntans (dsabied) | I uery Viewsr | 0% Explan Plan | Scree Cumut
.o
1 EMPLOYEE _ID| FIRST_NAME MIDOLUE_INITIAL|LAST_NAME GENCER, SIGNP_DATE D08 BRANCH_ID| FROKCT_I0 &
v 1 James R Jobrson M Y1010 L1960 6 2
2Mary s Willams F VZBUI0 3/15/1964 2 1
ILnda L trdwsn F YLR010 10/24/1570 1 3
4 Caniel] Robrson M 223010 11/23/1959 z 1
SMaltew K Garcia M S4E010 4/14/1971 3 3
& Helen H Harris r 1/25/2010 [7/13/1975 10 —
7 ken W Whiti M 202010 27221958 4
1 Donald A Peraz M 10/A7/2010 3/14/1979 1 3
9 L (s Lo E SO0 6151963 s
10 Carnl M Clark F 4100 8111087 2 1
11 Gary " Maone " B0 11/1/1965 3 5
12 Cynthia 8 Hall F 132010 10/21/1955 3 5
13 Sandea 5 Rodriguer R 342000 SA01974 13 |
] il fma] 4 [~ [[o] > feu @1] 2 |
C{Documents and SettingslSR Aol |40 meacs Fow 1 of 16 totalrows COMPANTLINGGORCL | Modfied

@ sutoCommt i OFF MM

DBArtisan

DBArtisan (now called DBArtisan XE), by Embarcadero Technologies, is another
complete suite of database management tools that operates across multiple
platforms. DBArtisan is only available as a licensed product, but has extensive
administration capabilities, including the ability to do advanced capacity and
performance management, all packaged in an attractive and user-friendly GUI
frontend. A trial version is available for download from Embarcadero's website.

[22]

Chapter 1

SQL Worksheet (Enterprise Manager)

The SQL Worksheet is not a separate tool in itself; rather, it is a component of the
larger Enterprise Manager product. Enterprise Manager is Oracle's flagship, web-
based administration suite, comprised of two main components — Database Control
and Grid Control. Database Control operates from a single server as a Java process
and allows the DBA to manage every aspect of a single database, including storage,
object manipulation, security, and performance. Grid Control operates with the same
GUI interface, but requires the installation of the Enterprise Manager product on a
centralized server. From this central instance of Grid Control, a DBA can manage

all the databases to which Grid Control connects, providing the DBA with a web-
based interface to the entire environment. SQL Worksheet, a link within Database/
Grid Control, provides a basic SQL interface to a database.. The license for both Grid
Control and Database Control is included in the license for the Enterprise edition of
Oracle, although many of the performance tuning and configuration management
features must be separately purchased. A screenshot of SQL Worksheet is shown

as follows:

B0L Worksheet : orcl
Enter s SOL staternent 1o execine. H there sre multiple statements, the location of the cursar or & highlighted s1atement determines which will be executed Statemerts should be ssparsted with blank lines

S0OL Commands

[Use bund vanabivs for sxecution
Clauto commit
[Allow anly SELECT statements

Formal) Exocule

Last Executed SQL

JELECT * FROM jobs
Lazt Executlon Deralls

BGL Rapair Advsar | | BGL Datails | | Behbdult SGL Tuning Advsor

Resuls | Slalmls Elin
Execution Time (seconds) 0.01

JOB_in JOB_TITLE MIN_SALARY MAX_SALARY
AD_PRES Presidont AnE) A
AD WP Adminsetration Vice Pragident 15000 20000
AD_ASST Administration Assistant 2000 6000
FI_MGR Finance Manager 8200 16000
FI_ACCOUNT Accountand 40 «xn
AL MGR Accaunting Manager 200 16000
AL_ACCOUNT Pubic Accourtant 4200 2000
SA MAN Sales Manager 10000 20080
2A_REP Sales Reprosentaton HXO 1208
PL_MAN Purchasing Managsr 000 15000
PU_CLERK Purchasing Clark 2500 5500
ST_MAN Stock Manager 5500 8500
ST_CLERK Stock Clerk ans Sxn
SH_CLERK Shipping Clerk 2500 5500
IT_PROG Prograrnener 4000 10000
M_MAN Marketing Manager %000 15000
ME_REP Marketing Ropresentatve 4000 g
HR_REP Human Resawces Ragrosontative 4000 2000
PR_REP Pubkic Relations Representative 4500 10500

0L Repair Advisor | | S0L Détalls | | Stheduls SOL Tuning Advisar

 Details

SOLW

Conrigt § 1998, 3010, Deacle. A1 rights rezerves
Crncin, J0i Enwards, PeopieSan, and Rirsek sen regis 2 0 Cacie Corporation andicr £ affliates. Cther rames may bo racemarkcs of thek respectve oamers "

[23]

SQL and Relational Databases

PL/SQL Developer

PL/SQL Developer is a full-featured SQL development tool from Allround
Automations. Along with many of the other features common to SQL development
tools, such as saved connections, data exporting, and table comparisons, PL/SQL
Developer places a strong focus on the coding environment. It offers an extensive
code editor with an integrated debugger, syntax highlighting, and a code hierarchy
that is especially beneficial when working with the PL/SQL language. It also
includes a code beautifier that formats your code using user-defined rules. PL/SQL
Developer can be purchased from Allround Automations or downloaded from their
website as a fully-functional, 30-day trial version.

Oracle SQL Developer

Oracle SQL Developer, originally called Raptor, is a GUI database interface that
takes a somewhat different approach from its competitors. While many of the major
licensable GUI administration products have continued to expand their product
offering through more and more add-on components, SQL Developer is a much
more dedicated tool. It's a streamlined SQL interface to the Oracle database. You
can create and manipulate database objects in the GUI interface as well as write and
execute SQL statements from a command line. Administration-oriented activities
such as storage control are left to Enterprise Manager. SQL Developer aims to be a
strong SQL and PL/SQL editor with some GUI functionalities. SQL Developer has
gained in popularity in recent years, in large part to several benefits that are listed
as follows:

e It is completely free with no mandatory licensable components, although
third-party add-ons are available for purchase.

e Itis a true cross-platform client-side tool written primarily in Java. While a
majority of the commonly-used SQL tools are available only on the Windows
platform, SQL Developer runs on Windows, Linux, and even the Mac.

¢ Inmany Oracle shops, DBAs have been uncomfortable with the idea of
giving developers a tool that can be used to cause massive damage to the
database. Because Oracle has separated out most of the administration
functions from SQL Developer, it is more of a true development tool.

e SQL Developer supports read-only connections to many popular databases,
including SQL Server, Sybase, MySQL, Microsoft Access, DB2, and Teradata.

e Because it is written in Java, it allows for the creation and addition of
third-party extensions. If you want a capability that SQL Developer does
not have, you can write your own!

[24]

Chapter 1

e Itis provided by Oracle and is now included with any installation of Oracle
database. It has essentially replaced SQL*Plus as Oracle's default SQL
interface, although SQL*Plus is still available from the command line.

For these reasons, the tool we use in this book for the purposes of demonstration will
be SQL Developer. Instructions for downloading the tool are in the foreword. But,
before we look at SQL Developer, let's find out a little about the data we'll be using
and look at the companylink database.

Working with SQL

'Often, the best way to learn something is hands-on. To best facilitate this, we will
use a scaled-down set of data that mirrors the type of data used in the real world.

Introducing the Companylink database

This book focuses on two objectives:

1. To prepare you for the 11g SQL Fundamentals I exam (Oracle exam
#170-051).

2. To present the knowledge needed for the exam in such a way that you can
use it in a real-world setting.

To that end, rather than using the default tables included in Oracle, we will be
working with simulated real-world data. The database we will use throughout this
book is for the fictional company, Companylink. Although most people are aware

of the impact of social networking in our private lives, companies are realizing the
importance of using it in their industries as well. Companylink is a business that
focuses on social networking in the corporate setting. The data model that we will
use is a small but realistic set of working data that could support a social networking
website. The following tables are included in the Companylink database, which can
be downloaded from Packt support site as well as comments about the business rules
that constrain them:

¢ Employee: Information about employees that use the Companylink site.

e Address: The street address information.

e Branch: The corporate branch to which each employee belongs. Each
employee belongs to one branch.

¢ Division: It is the corporate division to which each branch belongs. Each
division is associated with multiple branches.

e E-mail: An employee can store multiple e-mail addresses.

[25]

SQL and Relational Databases

Message: Our fictional Companylink social networking site allows you to
send messages to fellow employees. That information is stored here.

Website: Companylink allows users to create their own personal web pages.
The URL of these pages is contained in this table.

Blog: In addition to a website, users can optionally create their own blogs.
This information is stored in the Blog table.

Project: Each employee is assigned to a single primary project, which is
contained here.

Award: Employees can win corporate awards. The list of possible awards is
stored here. Employees can win more than one award.

Employee_award: This table is used to relate employees with their awards.
Since multiple employees can win the same award and multiple awards
can be won by the same employee, this creates a many-to-many table
relationship, which, in the relational paradigm, must be avoided. The
employee_award table divides this many-to-many relationship into two
distinct one-to-many relationships.

To create our database, we need to run the downloaded Windows command file.
Simply unzip the companylink.zip file into a directory and double-click on the
companylink db.cmd file. The execution of the file will do the following:

Make a connection to the database

Create a user called companylink with the password companylink

Create the tables used for the examples in this book

Populate these tables with data

Output two log files: companylink_ ddl.txt and companylink data.txt

If you wish, the log files can be used to verify successful execution of the script. The
command file is completely reusable, which is to say that if you break any of the
tables or data, you only need to disconnect from the database and double-click the
command file again. It will drop the existing data and rebuild the tables from scratch.
When you do this, keep in mind that any data you add yourself will be deleted

as well. Throughout the book, we will continually be writing SQL statements that
access these tables and will even add new ones.

The creation of these tables requires a working installation of the Oracle database
software on a machine to which you have access. Fortunately, the Oracle software
can be downloaded from http://www.oracle.com/technology. There is no
purchased license required if you use the software for your own learning purposes.

[26]

http://www.oracle.com/technology
http://www.oracle.com/technology

Chapter 1

SQL in the real world

When you're starting out with SQL and Oracle, it's important to get
hands-on. Although Oracle makes its software available at no charge
for personal use, many aspiring DBAs are hesitant to install it on their
~ personal computers. By using free desktop virtualization software, such
Q as Virtualbox, you can create a virtual machine on your home computer
that can be used as your self-contained database server. Whenever you
want to work with Oracle, simply start your virtual machine. Whenever
you finish, shutdown the virtual machine, and all the resources it used
will be released. Virtualization can be a useful solution to isolate your
Oracle work from your home use without buying another computer.

An introduction to Oracle SQL Developer

Since SQL Developer is our SQL tool of choice, its important that we get a good
feel for it right from the beginning. In this section, we learn about configuring and
running SQL Developer.

Setting up SQL Developer

Let's get started with SQL Developer. If you have Oracle installed, you can launch
SQL Developer in Windows XP from the Start menu, as shown next:

Start | All Programs | Oracle<program group> | Application Development | SQL
Developer

SQL Developer runs as a Java application, so it may take a little while to load. The
first time you start the application, you may get a message box, such as the one
shown in the following screenshot:

- |

Oracle SQL Developer

Enter the full pathname for java. exe;

| Browse...
| Cancel |

If this happens, click on Browse and navigate to the java.exe file. You do not need
a separate installation of Java to run SQL Developer; one is included in the Oracle
installation. If you don't know where the java.exe is located, simply go to the
Oracle installation directory and do a search for java.exe. Then, navigate to that
path and select it.

[27]

SQL and Relational Databases

Once startup has completed, you will see a Tip of the Day screen. Close it and
you will be presented with the following screen. It's worth noting that this screen
will look the same, irrespective of whether you're running SQL Developer under
Windows, Linux, or the Mac OS, due to its cross-platform, Java-based nature.

F Oracle SQL Developer. El@lh_?l

File Edit View Havigate Run Source Versioning Migration Tools Help
Fo@a9e XEan 0-0- -

|Bcomections |2 10 @
EX R

- a Connections

o
yaiess; pepuapq" Faddius E

[Elmessages - Log

(&l 6L History

Editing

On the left side, you see a list of connections to databases. At this point, there will
be no connections, since we have not created any yet. SQL Developer allows you to
maintain multiple connections to various databases. Each one can use any variation
of different login names, servers, or database names.

SQL in the real world

M In the real world, DBAs and developers run SQL Developer from
Q their desktops and use it to connect to remote databases. Thus, their
working environments can run locally, but the databases they connect

to can be anywhere in the world!

[28]

Chapter 1

Before we can use SQL, we need to connect to a database. To do that, we need to

create a database connection. Any connection to an Oracle database consists of three
pieces of information:

1. The hostname or IP address of the machine to which we're connecting.
2. The port number on which Oracle operates.

3. The name of the database to which we connect.

To set up our connection, we need to click on the New Connection button at the top
of the left-hand connection frame. This action brings up the New / Select Database
Connection window. We fill in the information, as listed in the following screenshot.
This example connection assumes that you have set up an Oracle database using the
standard installation procedure with common defaults. If you're connecting to an
existing database, the information you enter will be different:

r A
¥ New / Select Database Connection @
Connection M... Connection D... | Copnection Mame |Companyf|ink@0rc| |

Username | companylink |
Password EREREERERS |
Save Password

Oracle Access

Rale [detaut | [] 05 Authentication

Connection Type |Ba3ic - | [Kerberos Authertication

|:| Prozy Connection
Hostname | myserver |
Part 11521 |
(OF=] |0rc:| |
() Service name | |
Status
Help Save | | Clear | | Test | | Connect | | Cancel

[29]

SQL and Relational Databases

The pieces of information that are relevant to us are as follows:

Connection name: This can be whatever we choose, but it is usually a good
idea to make it descriptive of the connection itself. In our example, we choose
companylink@orcl because it denotes that we are connecting to the orcl
database as the companylink user.

Username: The name of the user we connect as.

Password: The password for the user. The password for our user is
companylink (non-case sensitive)

Save Password: Select this checkbox to ensure that you don't have to re-enter
the password each time you initiate the connection.

Hostname: This will be either the hostname or the IP address of the

server that hosts our target database. The example used, myserver, will
most likely not be the name of your server. Change this to the name relevant
to your situation.

Port: This will be the port number that Oracle is running from. Most Oracle
databases run from port 1521, although some DBAs change this for security
reasons. If you installed Oracle using the default settings, your port number
will be 1521.

SID: The SID is the System Identifier for your database, which is the name of
the database. In a typical installation of Oracle, the default SID used is orc1l.

Once the relevant information has been entered, it is always a good idea to click on
the Test button at the bottom of the window to ensure a connection can be made. If
all the information is correct, you should see Status: Success on the lower left-hand
side of the window. Once we have verified that we can successfully connect, we click
on the Connect button. Our connection is saved in the Connections frame, on the left
side of the window, and our connection is established.

[30]

mailto:companylink@orcl
mailto:companylink@orcl

Chapter 1

Getting around in SQL Developer

Now that we're connected, let's take a look at what SQL Developer has to offer. Click
on the plus sign (+) next to your new connection:

¥ Oracle SQL Developer : companylink@orcl

Eile Edit Miew Havigate Run Source Versioning Migration Tools Help

FoEg 90 XERh -0 /8- L
B, connections R I3 (2] |[= companuytink @orer &3]
EXR PERR® WE I & 0089756 seconds companinke@arc! ¥

= a Connections ~

-8 companylinkgorcl
=] @ Tahles

[E3 awsrp

EeLos

[E3 BrRanCH

[orvision

3 eman

[evpLovee

[E3 HoeaY

[MessaGE

[E3 PrOJECT

[E3 wesiTe

£ (B9 views

- 18 Indexes

£ @ Packages

£ l:a Procedures

£ @ Functions

£ Ea QueLes

3} % Queues Tables

£ CB Triggers

£ ETypes ¢ 3

£ m Sequences -F

{5 Materialized Views [Resuts| (=] Script Cutput \@Exp\am \%Autmrace |@DBMS Output | 2 o, Qutput

£ @ Materialized Yiews Logs Resutts:

£ B SYnonyms -

£ B Public Synonyms

- [#3) Database Links

- [33) Public Dastabase Links

£ @ Directories i

| @ Application Express
H- (13 Java [EMessages - Log o

Fpadds, E

Youeas, papuap(;‘

0 [22 XML Schemas
£\ Recycle Bin
H- [Other Users

(&lsaL History

4., Editing

Al R Line 1 Column 1 Insert Mocified | Wyin

[31]

SQL and Relational Databases

On the left side, indented under our connection, is a list of database objects,
including Tables, Views, and Indexes. Discussion about some of the other sets of
objects is outside the scope of this book, but all are accessible by simply expanding
the object group using the plus sign next to it. Click on the + next to Tables and your
list of tables will be expanded. Your window should now look something similar to
what is shown here. These are the tables created, and therefore owned, by the user
with whose profile we logged in; in this case, companylink. They were created by
running companylink.bat, earlier in the chapter. The following screenshot shows

a list of our Companylink tables:

aCunnecﬁons l |

& @ 7)

Ela Connections

Ela companylinkiggorcl
El@ Tables
- ADDRESS
- avvarD
= BLoe
-8 BRAMCH
-3 DivISion
- Emal
-8 EmPLOYEE
- EMPLOYEE _swwaRD
- MESSAGE
-3 PROJECT
- wWEBSITE

These tables can be expanded to view their characteristics, such as column names
and datatypes, but most of this book will focus on how to view and modify tables
using only the SQL language instead of GUI tools.

The large portion of the window in the upper right is our SQL working area. This
frame will be the area in which we write SQL code. To write SQL in the working
area, simply click in the area and begin typing your SQL statements. When you
are finished, click on the green arrow in the working area toolbar to execute the
statement. Alternatively, you can press F9 on your keyboard.

[32]

Chapter 1

Directly below the working area is the Results frame. This is the area where we will
see the results of our SQL queries. The results will display in columnar format, and
the columns can be resized by clicking-and-dragging. The Results frame also has
several tabs across the top for various other functions, but, for now, we will

not concern ourselves with them. Let's try a query and view the output. In the
working area, type the SQL query you see in the following screenshot, select *
from employee, and click on the green execute arrow:

ID companylink @orcl |
FPERR® B8 ¢ 0024572
select * from ewployee :I
-
(> Resutis | [=]script utput | BExpin | 59 sutotrace | 0EMS outout |) ovis outut
Results:
empLoveE D [FrsT_name B mooLe_mmal [Last neve || cenoer [sionup_pate [f pos |8 erancrp @ ProskcT D
1 1 James R Johnsan M 01 -JEH-10 01-JAN-60 3 2
2 2 Mary s willams F 2B-JAN-10 15-MAR-54 2 1
3 3 Linda L Anderson F 0M-APR-10 24-0CT-70 1 3
4 4 Diariiel J Rohinson M 23 FER-10 23 NOV-59 2 1
5 5 Matthewy K Garcia M 24-JUN-10 14-APR-T1 3 3
& f Helen H Hartis F 25-JBN-10 13-JUL-75 10 il
7 7 Ken w White M 10-FEB-10 22-FEB-58 4 (ruly
a & Donald A Perez M 17-0CT-10 14-MAR-73 1 3
a 9 Lisa c Lee F 20-SEP-10 15.JUN-63 5 (il
10 10 Caral M Clark F 01-APR-10 11-AUG-57 2 1
11 11 Gary R Maare M 0B-AG-10 01-NOY-BS 3 5
12 12 Cyrthia B Hall F 03-JAHN-10 21-00T-55 3 5
13 13 Sandra s Radriguez F 04-MAR-10 10-MAY-74 13 (il
14 14 Kevin L Lewis M 09-MAR-10 01-JUL-76 a 4
15 15 Gearge H Taylor M 06-0CT-10 24-DEC-T2 12 4
16 16 Laura I Thomas F 07-HOY-10 26-OCT-81 12 5

As we will learn in the next chapter, the SQL query we've placed in the working area
uses a wildcard character, '+', to display all the columns and rows from the table
called employee. As you can see, this data displays in the Results frame, which is
listed in columnar format. You have just made your first use of the Structured

Query Language.

Below the Results frame is the Messages (Log) frame. It is used to display the output
of certain operations and is not relevant to our concerns. To maximize the areas

for the working area and Results frame, you can click-and-hold the bar above the
Messages frame and drag it downward to make it invisible. Similarly, you can click-
and-drag the bar between the working area and Results frames to change the ratio of
space between the two. Many users like to make as much of the Results frame visible
as possible so as to see more of the resultant data.

[33]

SQL and Relational Databases

The last area we need to point out is the SQL History tab just below the Messages
frame. This tab, when clicked, displays a pop-up of the most recent SQL statements.
This can be very useful when trying to remember previous statements. Simply click
on the tab, then double-click the statement you want to run, and it will be pasted in
the working area. You can then select it and click on Execute to run it.

SQL Developer offers a tremendous number of other features that are beyond the
scope of this book. If you're interested in more information on SQL Developer, visit
http://www.oracle.com/technology and view the documentation for it.

Summary

In this chapter, we've gone from the early days of databases to the relational
databases that are so prolific today. We've explored the concept of normalization and
how it's applied to the relational paradigm. We've looked at tables and how they are
structured and introduced the Structured Query Language for relational databases.
We've also examined some of the popular SQL tools and created the tables needed
for the Companylink database. Finally, we've worked our way around the SQL
Developer tool and learned the basics of how to execute queries.

Now that we've learned about relational databases and SQL, we're ready to begin
writing SQL statements — the topic of the next chapter.

Test your knowledge

1. What relational term is used to denote any person, place, or thing?
a. Attribute
b. Entity
c. Flatfile
d. Repeating group
2. What is the name of the process used to transform non-relational data into
relational data?
a. Normalization
b. Transformation
c. Repudiation
d. Object-oriented

[34]

http://www.oracle.com/technology
http://www.oracle.com/technology

Chapter 1

o o >

n

uniquely identifies any single row of data.

Foreign key
Attribute
Primary key

Column

Which of these is NOT a form of entity relationship?

a.
b.

C.

d.

One-to-many
One-to-one
Variant-to-one

Many-to-many

What is the visual representation of a data model called?

a.
b.

C.

d.

Which of these is NOT required to make a database connection?

a.
b.

a o

A table
An entity
Normalization

An entity relationship diagram

Port number

Table name

Database name
Hostname/IP Address

[35]

SQL SELECT Statements

In the previous chapter, we laid the groundwork for using SQL with Oracle
databases. Now, we are almost ready to begin writing our own SQL statements.

But, first, we'll need to examine the rules. Once that's complete, we will proceed to
learn several different basic SQL queries, all derived from the single, most important
SQL statement at our disposal —the SELECT statement. With this statement, we can
retrieve data from an Oracle database and, by the end of the chapter, will begin to do
transformations of the data as well. Beginning with this chapter, we also make note
of the Certification objectives covered. This is a guide for us to match our subject matter
with the objectives of the certification exam.

In this chapter, we shall:

Understand the purpose of SELECT statements

Explore the syntax and usage of SELECT statements

Use SELECT for single-column data retrieval

Use sELECT for multi-column data retrieval

Use SELECT to retrieve all the columns in a table

Display table structure using DESCRIBE

Examine aliases and their uses

Utilize SQL with arithmetic operators to execute mathematical computations
Understand the concept of NULL values

Retrieve unique values using DISTINCT

Display concatenated values

SQL SELECT Statements

The purpose and syntax of SQL

In the beginning of the previous chapter, we discussed the importance of data in our
everyday lives and gave examples of the kinds of data stored in databases. We then
created our own data for the companylink database and discussed a little about its
structure. However, sitting at rest within a database, that data is of little practical
use. It is not enough to simply store data; it must be retrieved and manipulated to be
useful. For instance, in order to use the data in the companylink database, we need
to be able to perform practical operations such as the following;:

e Retrieve a list of the employees on Companylink, along with their street
addresses, for a company mailing list

¢ Retrieve employee names and their date of birth for a Happy
Birthday application

¢ Add and store new messages that employees send to one another

e Change an employee's primary project when they are transferred to a
new one

e Remove the e-mail address of an employee when it is no longer valid

e Add structures that will hold entirely new functionalities for Companylink,
such as hobby lists or friend finders

¢ Remove the structures of functionalities that are no longer needed

e Control security to employee data

SQL can be used to do all these things, and more. With this relatively simple,
semantically-familiar language, we can retrieve and manipulate data and database
objects in ways that make it useful for our company. Using SQL, we can essentially
"make the data do what we want". But, first, we need to understand the rules.

The syntax of SQL

If you have ever written in a programming language before, then think back to the
first one you learned. If you're like most, then one of the most frustrating experiences
in learning programming languages is how incredibly precise they are. The
keywords, symbols, and structure must all be "just right" in order for the program
code to execute. This contrasts significantly with our own human languages, which
are comparatively imprecise. Our day-to-day language is filled with references,
slang, innuendo, and words that have more than one meaning. It serves us well

for interpersonal communication, but it would be incredibly inefficient to speak

to a computer in that way, since any commands we give to a computer must be
translated into machine code in order to be understood. If programming languages
were structured like human languages, then that process of translation would

[38]

Chapter 2

be significantly more complex, since human languages have a certain degree of
ambiguity. On the other hand, programming languages must still be comprehensible
to humans in order to be useful. These two considerations come together in the
syntax of any programming languages. The syntax of a programming language is the
set of rules that define its structures, symbols, and semantics. SQL entered into any
tool must be, first and foremost, syntactically correct; a failure to do so will result in
an error.

Case sensitivity

Many programming languages are case-sensitive, denoting that instructions are
interpreted differently, depending on whether individual characters are uppercase
or lowercase. In Oracle's implementation of SQL, this is not the case. SQL commands
have the same meaning whether used with uppercase or lowercase characters. Thus,
each of these statements in the following screenshot are equivalent:

3= companviinkgore!
= El @ f&s [] % % é 006307673 seconds
select * from employee;
SELECT * FROM EMPLOYEE;
Select * From Employee;
selEcT * fRoM emPLOVee;
-
(> Resuits | (=] scrint output | 1 Explain | 5 autotrace | B 0EMS outout | € o output
Results:
ewrLovee D [FrsT_mame B mooie mmal [Last vame [cencer [§ sisnue_pate [§ oos @ erancHo B rroscT o
1 1 James R Jahnsan ™M 01-JaN-AD M -JAN-60 5 2
2 2 Mary 3 Wiliams F 26-JANAD 15-MAR 64 2 1
3 3 Linda L Ardersan F 0 -APRAD 24.0CT 70 1 3
4 4 Daniel J Rabinsan M 23-FEB-10 23-HOY-59 2 1
5 5 Matthew K Garcia M 24-JUH-10 14-8PR-71 3 3
H & Helen H Harris F 25-J8N-10 13-JUL-T5 10 i
7 7Ken w \White M 10-FEB-10 22.FEB-58 4 i
] & Donald a Perex M 17.0CT-10 14-MAR-79 1 3
F] 9Lisa c Lee F 20-SEP-10 15- 063 5 i)
10 10 Caral M Clark F 0 -APRAD 11-AUG-E7 2 1
1 11 Gary R Moare M 0E-AUG-10 0-HOY-65 3 5
12 12 Cyrithia B Hal F 03-JAN-10 21-0CT-55 3 5
13 13 Sandra 3 Radriguez F 04-MAR-10 10-M8Y-T4 13 i)
14 14 Kevin L Lewis M 09-MAR-10 0M-JUL-TE 5 4
15 15 Gearge H Taylor ™ DE-OCT-10 24.DEC-72 12 4
16 16 Laura | Thomas F 07-HOY-10 26-0CT-A1 12 5

It is important to note that the case-insensitivity of SQL in Oracle is not dependent
on which operating system is used. This is true of both the client operating system
as well as the operating system of the server that hosts the database. The way in
which the operating system treats case has no effect on SQL statements, since they
are executed from within an SQL tool such as the ones that we listed in the previous
chapter, and not the operating system command line itself.

[39]

SQL SELECT Statements

There is one important exception to this case-insensitivity; namely, with the use of
quotes around certain elements of SQL statements. We will investigate this further,
later in the chapter.

The use of whitespace

The use of whitespace is often strictly governed in the syntax of programming
languages. In programming code, whitespace is the term used to describe various
non-printing characters in a line of code, such as tab characters, spaces, and
end-of-line characters. For example, the Python language uses indentation to
establish the structure of the command. SQL is much more forgiving in terms of
the use of whitespace. Although the various SQL elements, or "words", must be
separated by whitespace (usually a "space" character), the use of extra spaces,

tabs, and end-of-line characters has little effect on the syntactical correctness of the
statement. Thus, in the following screenshot, we see statements that use whitespace
differently, yet are all syntactically interpreted as the same:

D comparylink worcl |

FPESRAS BB & 00671777 seconds

select *
from employee;

select * from employee;

select
*

from
enployee;

..

[Resutts| [eript output) autotrace | FADEMS Output | (£ 0wa, Output

Results:

TExplain

EMPLOYEE_ID | FIRST_MAME | MIDDLE_IMITIAL | LAST_MAME | GENDER | SIGNUP_DATE | DOB | BRANCH_ID | PROJECT_ID

1 1 James R Johnson hd 01-JAN-10 01-JAN-B0 B 2
2 2 hdary = Williams F 28-JAN-10 15-MAR-E4 2 1
3 3 Linda L Anderson F 01-APR-10 24-0CT-70 1 3
4 4 Daniel J Robinzon 1 23-FEB-10 23-MOY-59 2 1
] 3 hatthew K Garcia 1 24-JUN-10 14-APR-T1 3 3
B B Helen H Harris F 25-JAN-10 13-JUL-75 10 (rually
T 7 Ken W White 1 10-FEB-10 22-FEB-58 4 (rually
g & Donald A Perez 1 17-0CT-10 14-MAR-7S 1 3
9 9 Liza C Lee F 20-SEP-10 15-JUN-E3) (rually
10 10 Caral 1 Clark F 01-APR-10 11-AUG-E7 2 1
11 11 Gary R Moare 1 06-AUG-10 01-MOY-E6S 3]
12 12 Cyrthia E Haill F 03-JAN-10 21-0CT-55 3]
13 13 Sandra = Rodriguez F 04-mMAR-10 10-maY-74 13 (rually
14 14 Kevin L Lewis 1 09-mMAR-10 01-JUL-76 g 4
15 15 George H Taylar 1 06-0CT-10 24-DEC-T2 12 4
16 16 Laura | Thomas F O7-MOY-10 26-0CT-81 12]

[40]

Chapter 2

Statement terminators

Statement terminators are used by programming languages to distinguish the end
of a particular statement. This allows the use of multiline statements, such as the one
shown in the previous example. In Oracle SQL, two statement terminators can be
used; the semicolon (;) and the forward slash (/). The two are similar in their use,
the main difference being that the forward slash can only be used on a separate line.
Examine the use of the semicolon and forward slash as statement terminators in the
following screenshot:

[companyiink @orci |
FPERRO BE ¢ 000626169 seconds
zelect * from employee;
select * from employee
select * from emplovee
£
.. 4
[Resutts | =] Script Output | FIExplsin | B Autatrace | FADEMS Output | £ Output
Results:
EMPLOYEE_ID | FIRST_NAME | MIDDLE _INITIAL | LAST_MAME | GENDER | SIGNUP_DATE | DOB | BRANCH_ID | PROJECT_ID
1 1 James R Johnson M 01-JAN-10 01-JAN-B0 & 2
2 2 Mary s Williams F 2B-JAN-10 15-MAR-64 2 1
3 3 Linda L Anderson F 01-8PR10 24.0CT-70 1 3
4 4 Dianiel J Robinsan M 23-FEE-10 23-NOY-53 2 1
5 & Matthewy K Garcia M 24-JUN-10 14-8PR-71 3 3
& & Helen H Harris F 25-JAN-10 13-JUL-75 10 (i)
7 7 Ken wy Wihite M 10-FEE-10 22-FEE-58 4 iy
a & Donald A Perez M 17-0CT-10 14-MAR-T3 1 3
a alisa c Lee F 20-SEP-10 15-JUIN-63 5 (i)
10 10 Caral M Clark F 01-4PR-10 11-AUG-67 2 1
11 11 Gary R Maare M 0B-40G-10 01-NOY-B5 3 5
12 12 Cynthia B Hall F 03-JAN-10 21-0CT-55 3 5
13 13 Sandra s Radriguez F 04-MAR-10 10-MAY-74 13 iy
14 14 Kevin L Lewis M 09-MAR-10 01-JUL-TB a 4
15 15 Gearge H Taylar M 06-0CT-10 24-DEC-72 12 4
16 16 Laura I Thomas F 07-NOY-10 26-0CT-81 12 5

It is important to note that the SQL Developer tool will allow you to execute
individual statements without any terminator at all. However, neglecting the use

of statement terminators is a very bad habit to develop, since they must be used in
any multi-command scripting that you do. In addition, command-line tools, such as
SQL*Plus, require the use of statement terminators, so it's best to establish a habit of
using them.

[41]

SQL SELECT Statements

SQL in the real world

In software development, if you're manipulating data, then it is much
~ more common to use a script, a text file that contains a set of SQL
Q commands, than it is to execute individual statements. If you're issuing
database manipulation commands as a DBA (Database Administrator),
then it's common to use both. You can think of an SQL script as a way to
L execute SQL commands in a "batch". o

Retrieving data with SELECT statements

One of the most important operations done while connected to a database is the
query. In database terms, a query is a request to retrieve data from a database table
or tables. Queries can range in complexity from simple queries, consisting of a few
lines, to extremely long and intricate reports composed of pages of code. Queries
form the backbone of business reporting and, as such, are a vital part of the SQL
language. We compose queries using the SELECT statement, as discussed in

this section.

Projecting columns in a SELECT statement

Now that we have laid out some of the syntactical rules for SQL statements, it is
time to learn about the structure of our first SQL statement. We see what is
commonly referred to as a "syntax tree" for a SELECT statement, shown as follows:

SELECT {column, ..} [*] FROM {table}l;

In this example, we denote keywords, or basic statement components, in uppercase.
Again, recall that SQL statements are case-insensitive and that the capitalization

is not mandatory but is done for visual clarity. The keywords we see in this basic
statement are SELECT and FROM. SELECT indicates that the statement will retrieve,

or "select" data, while FrROM specifies the table from which data will be retrieved.
Within the braces ({ }) are the lists of columns we select and the name of the table

in question. In relational terminology, this action is known as projection; the act

of projecting one or more columns from a table. The resulting projected data is
sometimes referred to as a dataset or rowset. In a SELECT statement, our selection
action can take one of the following forms:

e Selecting one column from a table
e Selecting multiple columns from a table

e Selecting all columns from a table

[42]

Chapter 2

Selecting a single column from a table

When we project a single column of data, our syntax tree takes the following form:

SELECT {column}
FROM {table};

In our example, column simply refers to the name of the column we wish to retrieve,
and table refers to the name of the table. It is important to note that there is no
row-based restriction in this statement —all rows in the table will be retrieved, but
only of one column. Row restriction is a topic for a future chapter. The following
screenshot contains an example select statement that you can type in and execute
in SQL Developer. If we were to translate our select statement into everyday
language, then it would be similar to give me a list of all the employees' last names.

D comparyiink@orcl |

FERZRO 88 ¢ 000446453 seconds

select last name from emplovee:

.. 4
[Resutts | [Soript Output | I Explain |.§.‘._j.t'-‘«ut01rac:e | ZLDEMS O
Results:
LAST NAME
1 Johnzon
2 Willizms

3 Ancersan
4 Rohinson
5 Garcia

E Harriz

T Wihite

S Perez

9 Lee

10 Clark

11 Moore
12 Hall

13 Rodriguez
14 Lewis

15 Tavylor

16 Thomas

We type the statement into the working-area frame in SQL Developer, click the
execute button (see the previous chapter if you need a review of this), and the results
are displayed in the results frame. In this example, the column name is last_name,
and the table name is employee. The data in the last_name column is displayed
exactly as it is stored in the table, without formatting, and in the same order that the
records were entered.

[43]

SQL SELECT Statements

SQL in the real world

M It's important to see SQL statements not just as code, but to understand
Q how they relate to the data they represent. Throughout this book, we
will often translate our example statements into realistic language that
we might better understand what our code is trying to accomplish.

Selecting multiple columns from a table

A multi-column projection of table data is very similar to a single-column projection.
Its syntax tree is displayed as follows:

SELECT {column, column, ..}
FROM {table};

We can use this statement format to project multiple columns of data from a single
table. In our column list, we can identify two columns to retrieve or even more
than two columns, as indicated by the ellipses (..). In fact, the maximum number of
columns we can select is limited only by the number of columns in the table itself.
The following screenshot shows an example from our Companylink database that
makes the request display the first and last names of all employees:

[companylink @orcs |
FERRO BB ¢ 000777473 seconds
select first name, last name from employee?
.. 4
[Resuts | [5] Script Output | B Explain |_§::|Am:ﬁrace | ZDEMS Output
Results:
FRsT_neve [LasT_nawe |

1 James John=zon

2 Mary Willishs

3 Linda Anderson

4 Daniel Rokinzon

3 hatthesy Garcia

& Helen Harriz

7 Ken White:

8 Danald Perez

9 Liza Lee

10 Carol Clark

11 Gary Moore

12 Cynithiz Hall

13 Sandra Rodrigusz

14 Kevin Lewvis

15 Gearge Taylar

16 Laura Thomas

[44]

Chapter 2

As with our single-column select statement, this multi-column statement does
nothing to restrict row data—all rows in the table are returned. Note also that the
columns are shown in the order that they were requested —first_name followed by
last_name. Even though the columns are stored in that order within the table, we
are not restricted from selecting the columns out of order; in fact, that may often be
desirable, as shown in the following screenshot. We might interpret it as, display the
last name of all employees, followed by their first name.

|> companylinkiborcs |
EEEO B8 ¢ 000506238 seconds
select last_name, first name from employee;
. 4
> Resuts | [5] Script Output | B)Expisin | 3 autotrace | @0BMS Outut
Resufts:
LasT_nave [FRST_MaME |
1 Johnsan James
2 'Wiliams Mary
3 Anderson Lincka
4 Rohinzon Dianiel
5 Garcia hlatthew,
& Harris Helen
7 Wyhite Hen
g Perez Danald
9 Lee Liza
10 Clark Caral
11 Moore Gary
12 Hall Cynthia
13 Rodriguez Sandra
14 Lewis Hevin
15 Taylor George
16 Thomas Laura

As we see, the order in which the data is displayed is controlled by the statement

we write, not by its order in the table. This applies to its position within the table as
well. Notice that the first column in the employee table is employee_id, and yet that
column was not selected or displayed at all. It is the writer of the SQL statement that
determines what data will be displayed and in what order.

[45]

SQL SELECT Statements

Another example is shown in the following screenshot. It uses the second, third,
fourth, fifth, and sixth columns of a different table, the address table, but the order
in which they are displayed is only controlled by the structure of the statement.

D comparylink @orcl |
FERZRO BWBE ¢ 005656156 seconds
select employee_id, street address, city, state, zip from address;
Fa. 4
[Resuts| =] script output | B Explain | 5 Autotrace | ZLDBMS Outpt | (A Cha, Output
Results:
emPLovEE D |[§ sTrReer eporess |8 oty [@ state |l ze)
1 1123 First 5t Lenexa KS 17589
2 2 234 Fifth 5t Cverland Park KS 1863
3 3 345 Cedar Ln Misgion 323 33935
4 4 456 Washington Lve Independence MO 35620
5 5 5675 Hill 5t Lees Summit WO 47333
[G 324 Elm St Lenexa K3 TH3E6E
T T 5234 Park Place Leswood 323 S01E7
g 8 253 Fourth St Wanzsss Chy MO E4629
a 9111 Maple Rd Eclvwardszvile MO 7745
10 10 234 Lake R Topeka K3 30701
i 11 G55 Eighth St Dez Moines |12 73309
12 12 857 Oak St Walto e} 28124
13 13 153 Main St Tulsa O 3860
14 14 7543 Pine Rd hdartin City e} 23347
13 15 5234 Seventh =t Grancviesy e} 18064
16 16 324 Third St Piper 323 53282

The real-life translation for this statement might be something like give me employee
ID and street address information.

Selecting all columns from a table

The process of projecting all the columns in a table is relatively simple —it only
requires the use of a special character. Recall, from our original syntax tree, that one
of the options shown was an asterisk (*). When we use the asterisk in place of our
column list, all columns in the table will be selected in the order that they appear in
the table. The asterisk in an SQL statement is sometimes referred to as "star". You
will sometimes hear the statement in the following example read as select star

from employee.

[46]

Chapter 2

D companyiinkgorci ‘
PERRO® BB & 00100144 seconds
select * from EmplnyEE:I
iy
(3> Resuits (=] Serigt output | £ Explain |§]Ammrace | ADBMS Output | €A ovwia, ot
Results:
H emriovee o [B Frs_wame [mooe mmal [B Last eme [cenoer [§ sisnop pate] poe (B erencio [l PRoGECT_D
1 1 James R Johnson M 01-J8H1D 01-Jan 60 5 2
2 2 wary s Williams F 2808110 15 MAR-54 2 1
3 3 Linda L Andrson F 0-APR-AD 2400170 1 3
4 4 Daniel J Robinson " 23.FEBAN 23.Now. 58 2 1
5 5 Matthesr K Garcia M 24-L0-10 14-8PR-71 3 3
5 8 Helen H Harris F 25-J8H-10 13075 10 nuly
7 7 ken i Wihite M 10FEE10 22 FEB 55 4 nuty
8 8 Donald 2 Perez M 17.00T10 14MAR.79 . 3
5 SLisa ¢ Lee F 20.5EFA0 AERTIES 5 uly
10 10 Carol m Clark F D1-APR-AD 1-ALIG-57 2 1
11 11 Gary R Moore M 0B-ALIG-10 D1-NOW-E5 3 5
12 12 Cyrhia B Hall F 03-J8H-10 21-0CT-55 3 5
13 13 Sandra s Rodrigusz F 04 MAR1D 10MAY T4 13 nuly
14 14 Kevin L Lewis M 03 MAR 1D 01076 8 4
15 15 George H Taylor " 05-0CT-D 24.0ECT2 12 4
16 16 L | Thomzs F 07O 2B.0CT-51 12 5

Thus, all columns and all rows in the table will be displayed, since we've not yet
seen a way to restrict the number of rows outputted. This statement, using *, would

retrieve the same columns and in the same order as if we selected each of the

columns individually, as shown in the following screenshot:

D companyiink orct |
FERERO 88 ¢ n047a14aseconds
select employee_id, first name, middle initial, last_name,
gender, signup_date, dob,
branch id, project_id
from employee;
-
[Resuts| =] script output | B Explsin | B9 autotrace | ADEMS output | € ovia outpue
Results:
ewrLovee D I FrsT newe [woote_mmar [LasT vewe [cenoer [0 sionue pate [l ooe [erencio |l prosecT o
1 1 James R Johngan W 01-J8M-10 01-J8M-E0 3 2
2 2 hary] willisms: F 28 UMD 15-MAR-54 2 1
3 3 Linda L Anderson F 01-8FRA10 24-0CT-70 1 3
4 4 Daniel Jd Robingon] 23-FEB-10 23-MOY-58 2 1
3 £ hatthew K Garcia [t 24-JUN-10 14-8PR-T1 3 3
3 & Helen H Harris F 25.18M-1T1 1375 0 Cnuy
7 7 Ken Wi iite [t 10-FEE-10 22 FEE-58 4 (ruly
& & Donald A Parez [t 17-0CT-10 14-MAR-7S 1 3
1 alisa I Lee F LEER-10 15 IUN-63 5 Cnuy
10 10 Carol M Chark: F O1-AFR-110 118557 2 1
11 1 Gary R hoors [t DB-AUG-10 01-MOY-B5 3 5
12 12 Cynthia 3] Hll F 03 J8N-10 21-0CT-55 3 5
13 13 Sandra 5 Rodriguez F Od-MAR-10 10-hAY -7 4 13 iy
14 14 Kevin L Lewis M DE-MAR-10 01-JUL-7E [4
15 15 Genrge H Taylor W DE-0CT-10 24-DECT2 12 4
15 1 Laura I Thomeas F O7-MOM-10 26-0CT-B1 12 5

[47]

SQL SELECT Statements

While either method achieves the same goal, remember that using * will only
retrieve columns in the order that they exist in, in the table. Should you need to
display all columns in a different order, it is necessary to select each column in the
table by name.

SQL in the real world

In some IT shops, the coding standards of a particular group may
M preclude the use of * in SQL statements, and that's not necessarily a bad
Q thing. While using the "star" notation requires less typing, it is also very
non-descriptive for someone trying to read the code that you've written.
Coding standards that mandate writing out each individual column
produce code that is easier to read and debug,.

Displaying the structure of a table using
DESCRIBE

If, by now, in doing the examples in this chapter, you've received an error when
incorrectly typing a column or table name (as is common), it should be obvious

that SQL requires that we be syntactically accurate when listing each element of the
statement. All clauses, keywords, column names, and table names must be spelled
correctly. This can be difficult to do if you don't know what the column names are.
Although our SQL Developer tool makes this easy to find, we also have the DESCRIBE
command to display the structure of a table, as shown in the following screenshot:

[48]

Chapter 2

|> Companyiinkorct |

PERGS BB ¢

1.6377207 seconds

describe employee

F% 4

[Results | [&] Scrist output. B Explain |§d].&.utotrace | FADEMS Output | (oA Cutput

12 rows selected

P = =N

describe enployees

Name Mull Type
EMPLOYEE_ID NUMEEE.(10}
FIRST MNAME VARCHARZ (25)
MIDDLE INITIAL VARCHARZ (1)
LAST NAME VARCHARZ (50)
GENDER CHAR (1]

DOE DATE

START DATE DATE

BEREANCH ID NUMEEE.(10}
FROJECT_ID NUMEER.(10)
SIGNUP_DATE DATE
LAST_LOGIN_DATE DATE
LOGIN_COUNT NUMEER.(10)

Executing the command produces three columns of information: the name of the
column, whether it allows NULL values, and the datatype of the column. At this
point, we will concern ourselves only with the first and third columns. The output
shown indicates that our employee_id column is of type NUMBER(10). We will
examine datatypes further in later chapters; but, for now, this information tells us
that the employee id column contains numeric values and that other columns,
such as first name and last name, contain character data, while columns such

as start_date and last_login_date contain date data. Whether you use the
DESCRIBE command or other tools to display column names, it is important to

do so in order to write error-free SQL.

[49]

SQL SELECT Statements

Using aliases to format output of SELECT
statements

While we have demonstrated that we can retrieve data from our Companylink
database, we have not, thus far, been able to alter the way the data is presented. As
we move through the book, we will discover more ways to customize our output,
but one way we can do this now is through the use of an alias. An alias is an
alternate name given to a column that alters the way it is displayed. To demonstrate
this, let's examine another one of our Companylink tables: the award table. The
following example shows a query from the award table that selects its two columns
but uses no alias:

ID companyiink morch |

FEERS BB & | 001271893 seconds

Select amard id, award desc from award:

F%.
B> Resuts [=] Script Output | B9 Explain |_§:] Autotrace | ADEMS Output | O, Output
Resuls:

AWARD_|D | SWARD DESC |

1 Salesperson of the year

2 Technological paper winner
3 Cleanest desk

4 Fastest typist

S Emplovee of the year

m oh B k=

£ Best new employes

For the first time, we turn our attention to a portion of the output other than the
data. Notice how the column headers, AWARD_ID and AWARD_DESC, are named
exactly as the column names themselves. Of course, this is to be expected, but what if
we wanted to change the column headers to something more descriptive? To do this,
we simply use an alias for the columns, as shown in the following screenshot:

[50]

Chapter 2

[}companyﬁnk@orc! |
ERRO B8 ¢ 002461207 seconds

select award_id award identifier, award desc award description
from award;l

. 4

[Resutts| [=] Script Output
Results:

BNARD_IDEMTIFIER | AWARD_DESCRIPTION|

1 Salesperzon of the year

EExplain |_§:]Amotrace | ADEMS Output | G4 Civia, Output

2 Technological paper winner
3 Cleanest desk

4 Fastest typist

5 Employee of the year

M h B W R =

E Best new employee

Notice how the column headings have changed to AWARD_IDENTIFIER and
AWARD_DESCRIPTION, respectively. To accomplish this, we simply list the
alias immediately following the column that it replaces. Thus, when we list
award_identifier directly after the award_id column, the display name is changed.
Note that this in no way means the actual name of the column award_id has
changed within the table. It simply means that it is aliased, or displayed with

a different name.

You may notice that, while we have managed to change the column heading to
something different than the column name, we haven't changed it significantly. The
alias still uses all uppercase characters and an underscore. We can, however, modify
the column's appearance further. Doing so will require that we use an exception

to two of the SQL rules we listed earlier in the chapter. Recall that in the earlier
sections of this chapter, Case sensitivity and The use of whitespace, we stated that our
SQL statements were case-insensitive and that whitespace, such as tabs and extra
spaces, is ignored. There is one important exception to these rules, and we see a
good example of it in the use of aliases. Case-sensitivity and whitespace in an SQL
statement can be maintained if we enclose the alias name in double quotes (").

[51]

SQL SELECT Statements

We see an example of this in the following example (which uses both case-sensitivity
and whitespace within an alias):

D- companylink orcl |
FPERR S BB ¢ | 001040887 seconds

select award_id "Award Identifier”™, award desc "Award Description”™
from award; I

. d

I Resuits| [5] Script output | BExplain |§;:} Autatrace | ADBMS Output | £ Ol Output
Results:

Awardlderrtifier| Awvard Description |

1 Salesperson of the year

2 Technolagical paper winner
3 Cleanest desk

4 Fastest typist

5 Employes of the year

mon B k=

E Best new employee

If we notice the column headings in the output after executing the previous
statement, we see that the column headings for award_id and award_desc are

now "Award Identifier" and "Award Description", respectively, both of which use
mixed case and a space character within the column heading. Note that this can
only be done using double quotes. If we were to attempt the use of mixed case and
a space between the two words used in the alias, without double quotes, the mixed
case would be ignored, and we would receive an error because Oracle would not
interpret the space character in the statement. For a neater overall appearance in our
code, we can use the optional As keyword to denote our alias, as indicated in the
following screenshot:

[52]

Chapter 2

“}- companylink gorcs |

FERRO B8 ¢ 001706893 ssconds

select amard id as "Award Identifier™, award_desc as "Award Description™
from award.:l

%
[Resutts| =] Script Output | BfExplain | B3 autctrace | ADEMS Output | (£ Clvis, Output
Resutts:
Ayvard [dertifier | Aueard Description |
1 1 Salesperson of the year
2 2 Technological paper winner
3 3 Cleanest desk
4 4 Fastest typist
5 5 Employee of the year
5] 5 Best new employes
SQL in the real world
Using aliases to format column headings was a more common practice
M in the past, when reports were run using SQL*Plus. This is less common

today. In modern software development, data is formatted by the
application and does not require the use of aliases. However, there are
other important reasons to use aliases. When you alias a column, you can
refer to the column using that aliased name throughout the entire SELECT
statement. We will see some important uses for this in later chapters.

Using arithmetic operators with SELECT

Although we've looked at several examples of using SELECT statements to
manipulate strings of text, we can just as easily use SQL to complete arithmetic
operations. As with many programming languages, we can make use of arithmetic
operators to accomplish this.

[53]

SQL SELECT Statements

The DUAL table and the use of string literals

Let's say, for a moment, you did not want to display data from a table, but rather a
fixed literal statement such as "I Love Companylink". We need to introduce another
set of syntactical operators, the single quotes ('), in order to do this. In SQL, when
any word or phrase is enclosed within single quotes, it becomes expressed as a
string literal. However, how would we display our literal statement using SQL? The
only statement at our disposal, so far, is the SELECT statement. We could attempt a
statement as follows:

Select 'I Love Companylink';

However, such a statement is syntactically incorrect, since every SELECT statement
requires a FROM clause; thus, we would need to select our literal from some table.
However, notice what happens when we attempt this using the e-mail table, as
shown in the following screenshot:

D companyviink@orcl |

FERRS BB ¢ 00095912 seconds

gelect 'T Lowve Companylink' from email:l

%
[Resutts = soript Output
Results:

ILOYECOMPARYLIMNK! |

EE=plain [) Autatrace | ADEMS Output | (% vy, Outit

| Love Companylink
| Love Companylink
| Love Companylink

| Love Companylink

1
2
3
4
5 | Love Companylink
E | Love Companylink
7 | Love Companylink
8 | Love Companylink
9 | Love Companylink
10 | Love Companylink
11 | Love Companylink
12 | Love Companylink
13 | Love Companylink
14 | Love Companylink
13 | Love Companylink
16 | Love Companylink
17 | Love Companylink
18 | Love Companylink
19 | Love Companylink
20 | Love Companylink
2
2

=

| Love Companylink

[N]

| Love Companylink

[54]

Chapter 2

In this select statement, we haven't selected any actual columns, only a literal
expression. The result is that one literal is returned for every row in the table, simply
repeating over and over. What we need is a table with only one row to select against.
This is why Oracle has provided the DUAL table.

DUAL is essentially a pseudo-table —it has no real data and is generally used for
string manipulation and mathematical computation. You do not insert, update, or
delete data from the DUAL table. The following example shows the result of selecting
from DUAL:

[}companyﬁnk@orc! [
FPERRSO B8 ¢ 002055534 seconds

select * from dual:l

.
B> Resutts | [Script Output | SExplain | B autotrace | B0EMS output | €% owia Output
Results:
DL
1%

The only column in dual is DUMMY, and the only row value is X. However, because
it only has one row, it becomes the perfect solution to our problem of how to select
string literals without repeating values, as shown in the next screenshot:

Drcompanyﬁnk@orc! [
FPERR O BB ¢ | 005952879 seconds

select 'T Love Companylink' from dual;

.
D2 Resuts (=] Script Output | 1 Explain | B A tctrace | ADEMS Output |) owe output
Results:

'ILOVECOMF‘ANYLINH'|
1 1 Love Companylink

[55]

SQL SELECT Statements

One common use of the DUAL table is to display the current date and time. To do
so, we make use of a pseudo-column in our select statement. For instance, we
can use the sYSDATE pseudo-column to display the current date, as shown in the
following screenshot:

[companyiink @orct I
FPERRA S @8 ¢ 000635459 seconds

select sy=sdate from dual:l

.

B Resutts | [Script Output | B Explain |?§]Amatrace |@DBMS Output | 9 Cs, Output
Results:

SYSDATE
1 30-JAN-11

The value that is returned is the current system date. Oracle also provides the
current_timestamp pseudo-column to retrieve date, time, and time zone
information from the server, as shown in the following screenshot:

D companylink @orcl I

FPERRO BE ¢ 014677592 seconds

select current timestamp from dual;

e, W

B> Resuts | [=] script Output | B Explain | 5 autotrace | [ADEMS Output | €4 Owia, Output
Results:

CURREMT_TIMESTAMP |
1 30-JAN-11 0819 27 3409000000 P AMERICACHICAGD

Note that the date and/or time presented by both of these pseudo-columns reflects
the system date/time of the server on which the database is hosted. It may be
different from the date/time of the actual client that executes the query.

[56]

Chapter 2

Mathematical operators with SELECT

Our Companylink database will almost certainly require the use of mathematical
computation in order to be effective. Let us suppose we want to calculate the
number of days until the birthday of each of our employees or how long a particular
employee has worked for the company. Basic mathematical operations are the

heart of any computing system. In Oracle, many mathematical operations are
accomplished using functions. We can, however, do basic mathematical operations
within our SELECT statements. The following example shows some simple examples
of this. In SQL Developer, in order to execute multiple statements, it is necessary

to use the Run Script button located just to the right of the green Run button or,
alternatively, to press the F5 key.

[companyiink @ores |
FERRS BB & | 05262772 seconds

select 30 + 20 from dual;

select 30 - 20 from dual;

select & * 4 from dual;

select & / 4 from dual:

select (20 + 30) * (8 / 4) from dual:l

%

[Resutts | [l Script outeut| 5] Explain |5;3 Sutotrace | ADEMS Output | € Ovia Output

¢dE&

1 rows selected

1 rows selected

1 rows selected

1 rows selected

[57]

SQL SELECT Statements

As you can see from the example, basic mathematical operations such as addition,
subtraction, multiplication, and division are symbolized by +, -, *, and /,
respectively. The order of precedence is the same as in basic math, with parentheses
taking precedence over multiplication and division, which take precedence over
addition and subtraction. In SQL, the mathematical operands can be either literals or
column data. In the previous example, the operands (the number 30 and the number
20) are literals. The SQL statement takes the literal operands as input and "selects"
their sum against the dual table, which returns one row: 30 + 20. However, although
mathematical operators work with literals, the real power in using mathematical
operators with SQL is the ability to execute an operation on every row in a table.

For instance, if you have a table containing one million rows, trying to multiply the
values of two columns using each literal value would be fruitlessly time consuming.
In SQL, you can write one statement that will recursively execute for every desired
data element in the table. The following example demonstrates the use of columns in
mathematical operations:

[companyiink @orci |
FERRO BB ¢ 001424259 seconds
select zignup date - start _date num days from employee;
%
[Resutts | =] script Output | TE=plain | 55 autotracs | ADEMS Outpnd | E3 O, Output
Results:
NUM_DAYS
1 5162
2 3932
3 237
4 42158
H] 1826
-] 2043
T 2339
g 09
] a2
10 3366
11 2367
12 387
13 212
14 2594
15 2774
16 997

[58]

Chapter 2

This SQL statement demonstrates date arithmetic. Two columns from the employee
table, start_date and signup date, are subtracted. The result of this operation is
that the number of days between the start_date and the signup_date is returned
for each row in the table and displayed in a column that is aliased as num_days. It is
important to understand that the previous SQL statement does not simply execute the
subtraction once; rather, it does it recursively for each row. Mathematical operations
can also contain columns mixed with literals, as shown in the following screenshot:

[companylink@otcl |
FERR® B8 ¢ | 0003025 seconds
select first name, last nawme, login_count, login count/Z from employee;
. 4
[Resuts | [=] soript Output | B Explain |_F;]Amutrace | ADEMS Output | E) WA Output
Results:
FRsT_Mame B LasT_nave B Loci_count [f Loom_counTsz
1 James John=on 2135 1067 .5
2 Maty Williaths 2143 107 .5
3 Linda Anderson 1245 6225
4 Daniel Robinson 1220 E10
I Matthew Garcia 1143 aTia
G Helen Harris 13 4375
7 Ken White: 366 433
& Donald Perez 1025 5125
9 Liza Lee 1945 9725
10 Caral Clark 1123 2615
11 Gary Moare 1495 4TS
12 Cyrthis Haill 1475 739
13 Sandra Rodriguez 1021 205
14 Kevin Lewis 995 495
15 George Tavylor a3 299
16 Laura Thatmas 1221 6105

In this example, the 1login_count column contains the number of times an employee
has logged in to Companylink. We divide this column value by two, for each row,
and return the result. For the sake of clarity, we also select the columns first_name,
last_name, and the unmodified login count column.

Numeric values are allowed for any mathematical operation, while character
values are not. Date values are allowed, but only when using subtraction, as our
example shows.

[59]

SQL SELECT Statements

The meaning of nothing

To complete our section on mathematical operators and SQL, we need to examine
one final reserved keyword —NULL. In SQL, the NULL keyword signifies the lack of
data. In short, NULL means nothing or "undefined". It should never be confused
with the "space" or "zero" values — these values actually do constitute data. A space
is a string character value. A zero is a true number. A NULL is neither. Although it
is often referred to as a "null value", it is not data; rather, it is the absence of data. As
such, it is treated differently than numeric, string, or date values. In later chapters,
we will examine the rules of how to put NULL values into a table; but, for now,

we need to learn how to recognize them when they are returned in queries. The
following screenshot provides us an example of NULLs returned from a query:

[companyiink@orcs |
FPESRSO B8 & 003317257 seconds
select firat_name, last_name, project_id from employes;

%

[Resut | (=] Script output | [Explain |_5;'_‘1Amotrace| ADEMS Output | £ 0y

Results:

FIRST_MAME | LAST_MAME | PROJECT_ID |

1 James Johnsan 2
2 Mary Williams 1
3 Linda Ancerzon 3
4 Daniel Robinzon 1
3 Matthew: Garcia 3
& Helen Harriz {rilly
7 Ken White {rilly
g Donald Perez 3
9 Lisa Lee {rully
10 Caral Clark 1
11 Gary Moore B
12 Cynthia Haill H]
13 Sandra Rodriguez {rilly
14 Kewin Lewis 4
15 George Taylor 4
16 Laura Thotmas]

In the values returned, we see that some employees have a PROJECT_ID and some
do not. James Johnson is associated with a PROJECT_ID of 2, and Mary Williams
has a PROJECT_ID of 1. However, Helen Harris, Ken White, Lisa Lee, and Sandra
Rodriguez all return a value of (null) for their PROJECT_ID. This is simply because
there is no data value in the PROJECT_ID column for those employees.

[60]

Chapter 2

SQL in the real world

M In SQL Developer, a NULL value is shown as (null).Other SQL tools
may display NULLs differently. For instance, SQL*Plus simply displays
Q NULL as whitespace, while Oracle's Application Express tool represents
them with a dash. It's important to know how the tool of your choice
renders NULLSs so that you can recognize them.

To illustrate the fact that NULLs truly have no value, examine the following error
box. In it, we attempt the statement select 100/0 from dual, which should produce
an error, since division by zero constitutes a mathematical error. When we execute
the statement, we receive the following error:

Error encountered f'5_<|

Anerror was encountered performing the requested
operation;

ORA-0147E: divizor iz equal to zero
01476, 00000 - “divisor is equal to zero"
*Cause:

*&ction:

“endaor code 1476Errar at Line: 1

This is the expected behavior, since 100 is a numeric value. However, in the next
example, we attempt a similar query using a null instead:

Dcompanyﬁnk@orcf I
FPERRAS BE & 001001049 seconds

select 100/null from dual;

%
[Resuts =] script Output | EExplain |§} Butotrace ||3,DE:MS Output | 8 Chnde, Ot
Resuts:

100MULL
1 (rull

As we can see from the result, no error is raised. Instead, dividing 100 by NULL
simply produces another NULL, indicating that NULL is not a value at all.

[61]

SQL SELECT Statements

Using DISTINCT to display unique values

Consider the address table, which lists all of our employees' addresses. Let us
suppose that we want a report on which states our employees are from, to satisfy
federal tax guidelines. We could do this using the following query:

D companylink morch |
FERRO 88 ¢ | 00269008 seconds

=elect state from address:l

e 4
B> Resutts | (] script Output | B Explain | 39 autotrace | E0EMS outout | € ovie Output
Results:

STATE
1 KS
2KS
3KS
4 MO
5 MO
B KS
7 KS
8 MO
9 MO
10 KS
118,
12 MO
13 Ok
14 MO
15 MO
16 KS

The results give us what we asked for, but they are littered with duplicate values.
If we want a concise list of states where our employees live, it would be preferable
to discard duplicate values and display only a unique list of states. We can do this
using the distinct keyword, as shown in the following example:

Dcompanyﬁnk@orc! |
FPERERO BB ¢ 001195653 seconds

select distinct state from address;l

. J
B> Resutts | [script output | 5 Explain |) autotracs | FoEMS output | €3 owia, output
Results:

STATE
10K
2K
N
4 MO

[62]

Chapter 2

While the original query returned 16 rows, the query using DISTINCT removed all
redundant values and returns only four rows. Another powerful use of the DISTINCT
keyword is the ability to return distinct values from multi-column datasets. For
example, the following SQL statement demonstrates how DISTINCT operates on
multiple columns of data:

Dcompanyﬁnk@orc.f |
FPERR® BB ¢ 00232786 s2conds

select distinct city, state from address;l

.
[Resuts [script output | BExplain | 59 Autotrace | FDEMS output | € 0w output
Results:
ary |@ stam|

1 Wialdo (]

2 Tulsa Ok

3 Lenexa KS

4 Mission WS

5 Topeka 485

6 Des Moines 1A

7 Grandview WO

g Lees Summit MO

9 Martin City a]
10 Leawweaod KS
11 Cwerland Park KS
12 Independence MO
13 Edwardsville MO
14 Wanzas Cty MO
15 Piper Hs

While a query that omits the DISTINCT keyword will return 16 rows, this query returns
only 15, since there are two occurrences of the city/state combination Lenexa Kansas,
and one of them is removed by the action performed by the DISTINCT keyword.

[63]

SQL SELECT Statements

It is interesting to note, however, that if we add the zIp column to the query,
the number of rows returned is 16. Observe this in the following screenshot:

D COMPIRYIRE Borcl |
=EREO 88 ¢ 004775093 seconds
gselect distinct city, state, zip from address;
W
B> Resuits | [5] Script output | EExplsin |§;;3Amutrace ||3DBMS Output | (4 S, Cutput
Resutts:
CITY | STATE | 7P |
1 Mlizsion KS 79529
2 Lenexa KS 18532
3 Waldo [Le 45739
4 Owerland Park KS 443582
3 Martin City [Le 32736
G Lenexa 3 arevd
T Edwardsville MO 35870
T Lees Summit O 207072
9 Des Maines 14 072
10 Leswvood 33 e =t
11 Grandview MO 51055
12 Tulza Ok 35940
13 Piper KS 2817
14 Independence MO 12335
15 Kansas City MO 12996
16 Topeka KS 37819

Why does this occur? Look closely at the data, and you will see that even though the
combination of Lenexa and Kansas is repeated, each occurrence of it has a different
value for the z1p column. This results in three values that, when taken together, are
fully distinct.

[64]

Chapter 2

Concatenating values in SELECT
statements

While SQL allows us to manipulate numeric values with mathematical operators,

we can also do some degree of character string manipulation with our statements.
Earlier in the chapter, we used the DUAL table to display string literals that were
enclosed in single quotes. We can use concatenation to append one or more string
literals with values from a table. There are actually two ways we can concatenate
values in Oracle, but, in this section, we examine the concatenation operator
"double-pipe" or (| |). The pipe symbol is invoked on most keyboards using Shift + \
(backslash). We use two of these pipe symbols or "double pipe" to concatenate values
in SQL. A basic example of concatenation using the dual table is shown in

the following example:

[}campanyﬁnk@orc.f |
ERR® BB ¢ 000604574 seconds
select 'I Lowe ' || 'Companylink' from dual:
W
[Resutts [=] Script utput | B3 Explain _ﬁ.jjAutntrace|EDEIMS Output | © O, Output
Results:
'ILOVE'||'COMPANYLINK'|
1 | Love Companylink

You can see that the first string, 'I Love ', is concatenated with the second,
'Companylink', and displayed together as 'I Love Companylink'. It is important

to notice two things in this statement, aside from the use of the double pipe. First,
remember that, in this example, we are using string literals, so they are surrounded
by single quote marks and not double quotes. Recall from earlier in the chapter that
double quotes are used for aliases. Because we use single quotes, everything inside
them is interpreted as a string literal, including the spaces. So, in the string 'l Love ',
the second space is very important. Were we to omit it, the resulting string from the
execution of the SQL statement would be 'I LoveCompanylink'.

Alternatively, you could place the space before the 'Companylink' string as '
Companylink' and achieve the same result.

[65]

SQL SELECT Statements

The opportunity provided by using concatenation is better seen when coupled with
actual values from a database table. Using the double pipe, we can combine table
results with string literals of our choice to produce formatted output, as shown in
the following screenshot:

D companyiink @orcl |
FPERRO B8 ¢ 00089612 seconds
select first name || ' loves Companylink!' from Emplcnyee,:l
F %
[Resutts| =] Script output | 5 Explain |ijutDtrace | ADEMS Output | (9 OWA Output
Resuts:

FIRST_NAME"'LOVESCOMPANYLINK!'|
James loves Companylink!

hary loves Companylink!
Linda loves Companylink!
Daniel loves Companylink!
Matthew loves Companylink!
Helen loves Companylink!

Ken loves Companylink!

L I = L I S R

Donald loves Companylink!
3 Liza loves Companylink!

10 Caral loves Companylink!

11 Gary loves Companylink!

12 Cynthia loves Companylink!

13 Sandra loves Companylink!

14 Kevin loves Companylink!

15 George loves Companylink!

16 Laura loves Companylink!

In this example, we select the first_name column from the employee table and
append the string literal ' loves Companylink!' to it. The statement executes this
append operation for every row and returns it as the rowset you see in the results.
A more involved, as well as practical, example is shown in the following screenshot:

[66]

Chapter 2

Dcompanyﬁnk@orc! |
FEERRO B8 ¢ 000361163 seconds
select first nawe || ' ' || last_nawme || ' was born on ' || dob ||
' and zigned up for Companylink on '|| signup_date

from employee:l

.. 4

[Resuts | 5] Script Cutput

Resufts:

[Explain | 5 Autatrace | E;DBMS Cutput | (4 S, Cutput

o o~ m th B L k=

o

10
ih
12
13
14
15
16

FIRST_MAKME["|ILAST_MAMERAASEORMONDOB]'ANDSIGHNEDUPFORCOMPANYLIMKON'|SIGNUP_DATE

James Johnson weas born on 01 -JAN-60 and signed up for Companylink on 01-JAK-10
Maty Williams was barn on 15-MAR-G4 and signed wp for Companylink on 25-JAN-10
Linda Anderzon wweas born on 24-0CT-70 and signed up for Companylink on 01-4PR-10
Dianiel Robinzon weas born on 23-KN0%-59 and signed up for Companylink on 23-FEB-10
Matthew Garcia was barn on 14-APR-71 and signed up for Companylink on 24-JUN-10
Helen Harris was born on 13-JUL-75 and signed wp for Companylink on 25-JA0-10
KenWhite was born on 22-FEB-38 and signed up for Companylink on 10-FEB-10
Donald Perez was born on 1 4-MAR-73 and signed up for Companylink on 4 7-0CT-10
Liza Lee wwas born on 15-JUN-63 and signed up for Companylink on 20-SEP-10

Carol Clark was born on 11-AUG-67 and signed up for Companylink on 01-APR-10
Gary Moaore was barn on 01 -MO%-65 and signed up for Companylink on 06-AUG-10
Cynthia Hall wwas born on 21-0CT-55 and signed up for Companylink on 03-JAMN-10
Sandra Rodriguez was born on 10-MAY-T4 and zigned up for Companylink on 04-MAR-10
Kewin Lewis wasz born on M -JUL-7E and =igned up for Companylink on 09-tAR-10
George Taylor wwas born on 24-0EC-72 and signed up for Companylink on 06-2CT-10
Laura Thomas wwas born on 26-0CT-51 and signed up for Companylink on 07-ROW-10

It is easy to be overwhelmed with the syntax in the previous statement, but
understanding it is simply a matter of breaking it down into pieces. Remember that
these statements only execute according to the rules of SQL. Let's break down the

steps of execution for the statement:

1.

NS U N

Select the first name column.

Append a space ' ' string literal to it.

Append the last_name column.

Append the string ' was born on .

Append the dob column.

Append the string ' and signed up for Companylink on '.

Append the column signup_date.

Specify which table the column data comes from, namely the employee table.

[67]

SQL SELECT Statements

If you encounter an error when you execute your statement, go through the syntax,
one step at a time. One common mistake is to have a beginning single quote without
an ending one. Make sure you identify which elements are string literals and which
are table columns. Once we understand the rules of concatenation, the possibilities
are endless. The following screenshot demonstrates an advanced example of how
DBAs use concatenation to construct SQL statements that can be executed separately:

[companylink @orci |
FERRO BB ¢ 001185059 seconds
select distinct 'select first name, last name from employee where branch id = ' ||

branch id || ';'

from employee :I

. 4
B> Resuts | =] Script output | BExplain | 5 Autotrace | FADEMS Output | € Giia Output
Resufts:

'SELECTFIRST _NAME LAST_NAMEFROMEMPLOYEEWHEREER ANCH_ID="|BRANMCH_ID;'
zelect first_name, last_name from employes where branch_id = 10;

select first_name, last_name from emplovee where branch_id = 13;
select first_name, last_name from employes where branch_id = 5;
zelect first_name, last_name from employes where branch_id = &
select first_name, last_name from employes where branch_id = 4;
zelect first_name, last_name from employees where branch_id = 3;
select first_name, last_name from emplovee where branch_id = 12;
select first_name, last_name from employes where branch_id = 1;

zelect first_name, last_name from employes where branch_id = 2;

(= R R N

=

select first_name, last_name from employes where branch_id = 5;

The results from this statement are completely different from those in previous
examples. In this case, our results are not data, per se, but are actually other SQL
statements. We have formed these statements using the values from the employee
table; therefore, they can differ each time we execute the statement, based on the
values for the employee table at that time. Once these statements are generated, we
can simply copy and paste them into SQL Developer and execute them one at a time,
as shown in the following screenshot:

Dbcompanyﬁuk@orcf |
FERSRS 88 & 00535739 seconds

select first name, last_name from employee where branch id = 10:

%
[Resutts | =] seript output | BExpin | I3 Autotrace | ADBKS Output | 0w Output
Results:
FRST_NamE [LasT_name |
1 Helen Harris

[68]

Chapter 2

You may also have noticed that we have introduced a new clause in our statement:
the WHERE clause. This is the subject of our next chapter.

SQL in the real world

The Oracle RDBMS has a special set of tables known as the data
~\l dictionary, which contains a massive amount of metadata about the
database itself, such as table and column names. It is common for
Q DBAs to use statements similar to the previous one to leverage the data
dictionary in generating their own dynamic SQL statements. This can
also be done in a different way in the PL/SQL programming language,
using a feature called NDS, or Native Dynamic SQL.

Summary

In this chapter, we've introduced our first SQL statement, the SELECT statement,
examined its syntax, and explored how it can be used in the process of column
projection. We've seen the use of the SELECT statement in projecting single columns
and multiple columns. We have looked at the DESCRIBE command and how it can
be used to display the column names for a table. We've covered the use of aliases in
changing column headings and used arithmetic operators to execute mathematical
calculations on table data. We've examined the concept of NULL and demonstrated
how to retrieve unique rowsets using DISTINCT. Finally, we've used the double pipe
symbol to concatenate string literals with table values.

Certification objectives covered

e Listed the capabilities of SQL SELECT statements

e Executed a basic SELECT statement

So far, we've focused on the topic of projection in the SQL language, which is the
process of restricting certain columns of data and displaying them in the manner we
wish. The next chapter focuses on the topic of selection, or restricting our retrieved
rowsets to certain rows of data, using the WHERE clause in SQL.

[69]

SQL SELECT Statements

Test your knowledge

1. What is the name given to the set of rules that define a programming
language's structures, symbols, and semantics?

a. Projection
b. Restriction
c. Syntax

d. If.then

2. In which of these statements is case preserved?
a. SElect * from employee;
b. select first_ name "My Name" from employee;
c. SELECT BLOG_ID FROM BLOG;
d. SelECt diSTINCT branch_ID, BRANCH_name from branch;

3. Which of these symbols is a valid statement terminator in Oracle SQL?

a. !
b. *
c.
d &

4. Which of these is not a valid SQL statement?
a. select first_ name from employee;
b. select * from message;
c. select from award_date award;

d. select website_url from website;

5. The process of displaying one or more columns from a table is known as:
a. Projection
b. DISTINCT
c. Restriction
d. Selection
6. Which of these is not a valid SELECT statement (refer to the Companylink
tables, if needed)?
a. select LAST_NAME from employee;

b. select project_description from project;

[70]

Chapter 2

10.

11.

c. select employee_id from email;

d. select address_ id from address;
Which of these is not a valid SELECT statement (refer to the Companylink
tables, if needed)?

a. select first_ name last_name from employee;

b. select employee_id, website_id from website;

c. Select DIVISION id, division_name from division;

d. select blog_id, blog_web_url from blog;
Which of these statements will satisfy the request "display the first name,
last name, and gender of all the employees in the EMPLOYEE table"?

a. select first name last_name, gender from employee;

b. select first_name, last_name, gender from employee;

c. select first_name, last_name, dob from employee;

d. select first_name, last_name gender from employee;

Which special character is used in SQL to display all columns in a table?

a. *
b [
c $
d. There is no special character to display all columns. You must list them
individually.
What command is used in SQL to display the column names of a table?
a. INSERT

b. SYSDATE
c. DISTINCT
d. DESCRIBE

Which of these statements does not make valid use of an alias?
a. select last_name "Last Name" from employee;
b. select email_address 'My Email' from email;
c. select distinct hit_count as "Hit Count" from website;

d. select dob "Date of Birth" from employee;

[71]

SQL SELECT Statements

12.

13.

14.

15.

16.

Which of these statements will produce a column header of "Blog
Description"?

a. select blog_desc "BLOG_DESCRIPTION" from blog;
b. select blog_desc 'Blog_Description' from blog;
c. select blog_description from blog;

d. select blog_desc as "Blog Description" from blog;

What is the output of the following statement?

Select 'Companylink is Very useful' from dual;

a. Companylink is very useful

b. Companylink Is Very Useful

c. Companylink is Very useful

d. companylink is very useful
Which of the following statements could be used to display the current date
on the database server (choose all that apply)?

a. select dual from dual;

b. select sysdate from dual;

c. select current_timestamp from dual;

d. select current_sysdate from dual;

e. select timestamp from dual;

Which of the following is not a valid use of mathematical operators in SQL?
a. select 20 * 2 from dual;
b. select start_date - signup_date from employee;
c. select employee_id * street_address from address;

d. select hit_count + 14 from website;

Which of the following statements will produce an error?
a. select null from employee;
b. select null from dual;
c. select 50/null from dual;

d. None of the above

[72]

Chapter 2

17. Which keyword is used in SQL to discard duplicate values?

a. DISCARD

b. DISTINCT

c. DUPLICATE
d. SYSDATE

18. Which of these statements will produce an error?

a. select''||'' || award_desc | | '' from award;
b. select first name | | '' | | last_name | | 'is a great employee" from
employee;

c. select My projectidis' | | project_id | | 'id' from project;
d. select'Award ID#' | | award_id | | ' was presented on' | | date_
awarded | | 'to employee' | | employee_id from employee_award;

19. What is the output of the following statement?

select 'All employee' || 's should rem ' || 'member to ' ||
'return their' || 'badges' from dual;?

a. All employees should remember to return their badges

b. All employees should rem member to return their badges
c. All employees should rem member to return theirbadges
d. None of the above. The statement returns an error.

20. Which of these statements will produce the following result: Always
remember your spaces when using concatenation?

a. select 'Always remember' | | 'your spaces wh' | | 'en using con' | | 'cat'
| | 'enation'

b. select 'Always remember ' | | 'your spaces' | | 'when using conc' | | 'at'
| | 'e¢' | | 'mation' from dual;

c. select 'Always remember' | | 'your spaces wh' | | 'en using con' | | 'cat'

| | 'enation' from dual;

d. select'Always remember' | | 'your spaces when' | | 'using conc' | | 'at
' | | 'enation' from dual;

[73]

Using Conditional Statements

In Chapter 2, Select Statements, we worked with various forms of projection, in which
SELECT statements allowed us to choose the columns we want to display. In this
chapter, we explore the concept of selection, which allows us to limit our datasets to
display only data that meets a certain set of conditions. Much of the chapter is spent
examining the different types of conditions we can set. We will also learn the ways

in which SQL can sort our data using the ORDER BY clause. By the end of this chapter,
we will use both projection and selection to retrieve very specific sets of data and sort
them in the order we wish.

In this chapter, we will cover the following topics:

Examining the concept of data selection

Understanding the structure and syntax of the WHERE clause
Writing selective SQL statements with equality conditions

Writing selective SQL statements with non-equality conditions
Examining range conditions with the BETWEEN clause

Examining set conditions using the IN clause

Developing statements to do pattern-matching with the LIKE clause
Understanding Boolean conditions in WHERE clauses

Examining the use of the ampersand special character in substitution
Exploring the sorting of data sets

Examining the structure and syntax of the ORDER BY clause

Understanding how to change the order of sorts using Asc and DESC

Using Conditional Statements

Implementing selectivity using the
WHERE clause

Much of our ability to manipulate the potentially large amount of data in a database
depends on restricting our data sets to exactly the data elements that we want to use.
A data set that is too small, prevents us from accomplishing our task, and one that

is too large can overwhelm our process from a performance standpoint. We now
examine how we can use a new clause to selectively return rows based on

a condition.

Understanding the concept of selectivity

In most of the examples we used in Chapter 2, every row was returned from each one
of our queries. Only when using the DISTINCT clause were we able to restrict output
to unique rows, and only if there were duplicates. If we projected the first_name
and last_name columns from the employee table, every employee's first name and
last name was returned. Until now, we had no way of displaying only the data that
met a certain condition. For instance, say that we are working with our employee
table from the Companylink database. We want to display first_name and last_
name from the employee table, but we're really only interested in those employees
who were born before 1979. Using the tools we learned in Chapter 2, we could use
this statement:

..select first name, last name, dob from employee;

However, even though the data we need is retrieved, we are faced with the prospect
of looking at each individual row and determining if the dob listed in the row meets
our criteria. For 16 rows in a table, this is inconvenient; for a table with a million
employee records, it is completely unworkable. Fortunately, the SQL language
provides us with a way to restrict data sets based on one or more conditions — the
WHERE clause.

Understanding the syntax of the WHERE
clause

The syntax tree for a basic SELECT statement using a WHERE clause is shown in the
following syntax tree:

SELECT {column, column, ...}
FROM {table}
WHERE {conditiom};

[76]

Chapter 3

Even though we haven't yet given a specific example, we can notice a few things
from the previous syntax tree. First, the basic forms of our SELECT and FROM clauses
have not changed. We still select a column or columns, and we still specify our table
name after the FROM clause. Second, we notice the position of our WHERE clause.

It always follows the FrROM clause, which follows the SELECT clause. Thus, our
conditional statements follow the form SELECT, FRoM, and WHERE. The condition itself
takes the form of 'column name-operator-value or expression'. The column name simply
refers to the name of the column that forms the condition. The operator is often a
mathematical operator, such as = or >. The value is a static value, such as the letter
F, or in some cases, a variable. If the value is a character or date value, it must be
enclosed in single quotes. An expression can also be used instead of a static value.
We will see many examples of this throughout future chapters to help us better
understand conditional statements. An example using data from the Companylink
database is shown in the following screenshot. If we were to read the preceding
statement as natural language, it might sound something like, 'Display the first name,
last name, and gender of every female employee'.

D companyiink @orci~7¥ |

FPERRAS BH ¢ 000507114 seconds

select first name, last name, gender
from enployee
where gender = 'F':

b W

[Resutts| =] Script Output

Results:

FIRST_NAME| LAST_NAME| GENDER|

[Explain | T Autotrace | FADEMS Output

1 Mary Willizms F
2 Linda Andersan F
3 Helen Harris F
4 Liza Lee F
5 Caral Clark F
B Cyrithiz Haill F
T Zandra Rodriguez F
g Laura Thomas F

[77]

Using Conditional Statements

Using the WHERE clause, we restrict the data returned to a certain condition; namely,
that the value in the gender column must be equivalent to the string literal value F.

How does this work? When the previously-listed statement is executed, the RDBMS
examines each row individually and evaluates the value for the gender column. If
the value equals F, the row is shown; if the value does not equal F, it is not shown.
Nothing about the row changes in the table itself; it simply is not displayed.

You are not required to project, or include, the column that is evaluated in the
condition with your selected column list. The following screenshot shows an
example of this:

[companytink @orci~1 |

FPERRO B8 ¢ 001248874 seconds

select first name, last hame, dob
from employes
where gehder = 'M';

%
[Rezuts| =] Script Output

Results:

EFlExplain | £5) Autatrace | ADEMS Outiut

FRsT_uane |[{ LasT nane [§ pos |

1 James Johnzon 01 -JAN-E0
2 Daniel Rohinzon Z3-MON-59
3 Matthew Garcia 14-APR-71
4 Ken White 22-FEB-55
5 Donald Ferez 14-MAR-T9
B Gary Moore 01 -MiCh 65
7 Kewvin Lewiz 01 -JUL-7E
5 George Taylor 24-DEC-T2

Notice in our example that although we're evaluating the values in the gender column,
that column is not included in our selected list. We do not need to include the gender
column in order for the statement to be syntactically correct. It is only required that the
column being evaluated be a legitimate column in the employee table.

The examples we've shown so far all have a similarity in their WHERE clause — they're
all examples of equality conditions. Each statement requires that a column value
must be equivalent to a given string literal in order for the row to be returned. An
equality condition is not the only type of condition that can be used to restrict rows
in a wHERE clause. In the next section, we examine the different types of conditions
that can be used.

[78]

Chapter 3

SQL in the real world
Remember that our goal in using the WHERE clause is row reduction;
K that is, reducing the number of rows that are returned to exactly the
Q ones that meet our specified conditions. Our success at this will be
determined by how well we utilize the various types of conditions at
our disposal. Failure to do so in real situations can cause us to return
more or fewer values than we intend.

Using conditions in WHERE clauses

As we've mentioned, the previous examples in the chapter make use of equality
conditions. That is, each column value must be equivalent to a given condition in
order for the row to be returned. However, in these examples, the equality conditions
given were only evaluated against string literals. Equality conditions can apply to
numeric and date values as well as character strings.

Using equality conditions

The following screenshot demonstrates an example of an equality condition:

[:} companylink gorci~t |
PERRO® VB ¢ 000791469 seconds

select website_desc, hit count

from website
where hit _count = YZ;

. 4
[Resutts | [=] Script Output | I plain |_§;‘jAmmrace | ADEMS Cutput
Results:
WEBSITE_DESC | HIT_COUNT |
1 Garyweorld! 72

[77]

Using Conditional Statements

The statement in the previous screenshot could be stated as, 'Show me the website

and number of hits for any sites with 72 hits'. It demonstrates the same syntax and use
of the WHERE clause as used with string literals. We can also incorporate arithmetic
expressions in our numeric conditions as well, as shown in the following screenshot:

[companyiink @orci~1 I
FPEERS B8 ¢ 00115998 seconds

select *
from blog
where hit_count = 9 * Z;

il W
[Resuts| (=] Script Output | B Explain |§.9]Amntrace |l3.[:uawls Cutput | A CiA Cutput
Resufts:
ELOG_|D | ELOG_LRL | ELOG_DESC | HIT_COUNT
1 4 hittp: Mhavewy companylink.comklewis Winter sales push blog 18

The SQL statement interprets the condition 9 times 2 as 18 and scans the blog table
for matching records. It finds the row for where hit_count is 18 and returns the
entire row, as we used the asterisk symbol (*). Any of the mathematical symbols
demonstrated in Chapter 2, will serve as a condition for the WHERE clause. Similarly,
the WHERE clause can be used to restrict rows that meet a date condition as well. See
the following screenshot that contains date conditions in a WHERE clause:

(= companylink @orci~1 [
FPERRS B8 ¢ 000347921 seconds

select first name, last name, start date, login count

from employee
where dob = 'l14-AFR-1971';

% J
B Resutts (=] script output | SExplsin | 5 autatrace | ADEMS output | €4 owwial
Results:

FRsT_NanE [§ Last nave |[§ sTart pate [Loan_counT
1 Matthew Garcia 24-JUN-05 1145

[80]

Chapter 3

In this statement, we query for the employee's first name, last name, start date, and
their login count, where the employee's date of birth is April 14, 1971. Oracle scans

the employee table for dates in the dob column that meet this condition and returns
one row.

SQL in the real world

~\l In real-life SQL statements, dates are often expressed differently, and
Oracle does not always interpret them the same way. For instance, to
Q Oracle, a date of April 14, 1971 is not evaluated the same way as 4-14-
71. We must often use date functions in order to direct Oracle to use our
dates in the manner we wish, a topic covered in a later chapter.

In situations where we wish to return values that are null, we cannot use an
equivalence operator. This is due to the fact that a NULL has no value; therefore,

it cannot be said to be equal to anything. In such situations, we instead use the
keyword 1s coupled with NULL. The following screenshot gives us an example of
this. We might interpret the statement as, 'Display name and project ID information for
employees who have not been assigned to a project'.

[companylink @orci |

FPERRO BB & 0132367 seconds

select first_name, last _name, project_id

from employee
where project_id IS HULL:

.. 4
[Resutts| [5] Script Output
Results:

TE)Explain | £ Autctrace | ADEMS Output | (£ Ovia Output

FIRST_MAME | LAST_MAME | PROJECT_ID|

1 Helen Harris {rll
2 Ken White: {rll
3 Lisa Lee [l
4 Sandra Rodriguez {rll

[77]

Using Conditional Statements

Implementing non-equality conditions

In SQL, it is just as legitimate to query based on conditions that are not equivalent as it
is to query based on equality. For such situations, we use conditions of non-equality.
The next several examples will use the same examples shown in the section on equality
conditions and substitute non-equality conditions instead. The following screenshot
displays the first of these:

D companyiink @orci~F |

FPERRO B8 ¢ 000734339 seconds

select first name, last_name, dob
from employee
where gender <= 'M';

.. 4
[Resutts | [=] Script Output
Results:

EHExplain |f;jAmotrace | ADEMS Output

FRsT_mave [LasT venve |8 pos |

1 Mary Wiillisms 15-MAR-G4
2 Lincla Anderson 24-0CT-70
3 Helen Harriz A3-JUL-75
4 Lisa Lee 15-JUN-63
5 Carol Clark 11-AUG-E7
B Cynithiz Haill 21-0CT-55
7 Sandra Rodriguez 10-MaY-74
8 Laura Thomas 26-0CT-31

This screenshot introduces the first of our non-equality conditions — not equal to'. In
Oracle's implementation of the SQL language, not equal to is expressed as <> (a 'less
than' sign paired with a 'greater than' sign). Alternatively, it can be written as !=. In
this example, we display all rows where the gender column does not hold a value
of M. As before, Oracle scans the table, evaluating the gender column; but, in this
statement, instead of displaying rows that have a gender column value equivalent
to M, it displays rows that are not equivalent to M:

3> companylink @orci~1 |
FERR O B8 & 001117404 seconds

select website_desc, hit_count
from website
where hit count > 72;

%
(= Resutts | [=] Soript Output

Results:

TEExplain _ﬁajAututrace| FDEMS Output

WEBSITE_DESC | HIT_COUNT |
1 Jims nesy site 234
2 Mstts cool wehsite g5

[82]

Chapter 3

The preceding example makes use of the 'greater than' symbol (>) to evaluate
values greater than a given numeric value. This statement could be read as Display
website and hit count information for all sites with more than 72 hits. Note that, as in
mathematics, the use of the 'greater than' sign is non-inclusive; it will not match
records equal to 72, only those of greater numeric value. For inclusion, we would
need to use the symbol shown in the following screenshot. This example introduces
the less than or equal to condition, expressed as <=:

[companytink @orci~1 |
FERRO B8 & 001266558 seconds

select website_desc, hit_count
from website
where hit count <= 72;

. 4
(> Results | (5] soript Output | SExplain | 5 autotrace |[FDEMS Cutput
Results:
WEBSITE_DESC | HIT_COUNT |

1 Desktop rollout project site G4

2 The Perez site 48

3 Garyworld! 72

4 Winter sales push project site 14

5 Cynthia Hallz wehsite 24

6 Operations Branch wwebsite g

As you can see by the results, this statement is inclusive, returning the rows where
hit_count is equal to 72, as well as those of lesser numeric value. While it may
seem odd, conditions of non-equality can be used with string literals as well. In the
following screenshot, we've requested the first and last name of all employees with
a last name that is greater than or equal to the string literal, Perez'":

Dcompanyﬁnk@orchf |
FPERRO BB ¢ 000710509 seconds

select first_name, last_name
from enployee
where last_name »= 'Perez';

av
B> Resuts [=] Seript output | B Explain |§]Autotrace | FADEMS Output
Results:

FIRST_NAME | LAST_NAME|

1 Mary Willisms
2 Daniel Rohinzon
3 Ken White:

4 Donald Perez

5 Sandra Rodriguez
E George Taylar

7 Laura Thomas

[77]

Using Conditional Statements

In this circumstance, the query first breaks down the literal Perez

into its ASCII values. American Standard Code for Information

Interchange (ASCII) values are the numeric values assigned to all
%‘ characters so they can be interpreted by computers. Once Oracle has

translated the character values into numeric ASCII values, it adds them

together. The resulting sum is used as a comparison value from which

to determine whether the condition is satisfied.

In the end, any values in the last_name column are returned if the last name is
greater than the string, 'Perez'. It is important to understand that comparisons such
as these are legitimate statements and can be used when the situation calls for it:

D companylink @orcl ‘

FEREO B8 ¢ 0031857 seconds

select employee_id, date_awarded
from employee_award
vhere date_awarded >= '06-APR-Z2003';

avw
[Resuts| [seript Output |) Explain |_F;jAutmrace | FDBMS Output
Results:

eMPLOVEE D [§ DATE_swiaRpeD |
7 25.0CT-06
13 06-4PR-03
14 07-JUL-07
16 25 FEB-04

R

This screenshot introduces the idea of using non-equality conditions with date data.
Remember that although dates are enclosed in single quotes just as string literals,
they are not interpreted as character strings. This example could be read, Display the
employee ID number and date of award for all employees who received an award on or after
April 6, 2003. When we direct Oracle to produce values that are greater than or equal
to a given date, the values retrieved will be either the same as the date stored or later
than the given date. Thus, when dealing with dates, greater than is interpreted as
later than, while less than is earlier than.

When dealing with conditions in a WHERE clause, it is often useful to compare the
values of two columns instead of comparing a column to a literal value, as we've
seen so far. The following screenshot demonstrates this idea:

[84]

Chapter 3

D companyhinkdorci~T

FPERAD BB & 000007314 seconds

from employee

where signup date < last login date:

select first_name, last_name, signup_date, last_login date

AW

Results:

[Resuts [] Seript Output | B Explain |_§.1jALAtotrace | ADEMS Output | 2 o, outpt

B FrsT_Mame | LAST_NAME| S\GNUP_DATE| L&ST_LOGIN_DATE

1 James

2 Mary

3 Linda

4 Daniel

5 Helen

& Ken

7 Donald

& Lisa

a Carol
10 Gary
11 Cyrithis
12 Sandra
13 Hewin
14 George

13 Laura

Johnzon
Williams
Anderson
Robinzon
Hartiz
White
Perez

Lee

Clark
Moore
Hall
Rodriguez
Lewis
Taylar

Thomaz

O1-Jar-10
28-J8N-10
01-APR-10
23-FEB-10
25-JAN-10
10-FEE-10
A7-0CT-10
20-ZEP-10
01-APR-10
0B-A11G-10
03-JA&N-10
04-MAR-10
03-MAR-10
05-0CT-10
O7-HOY-10

T4-JAN-11
19-JAN-11
31-DEC-10
O5-JUR-10
12-JAN-11
F1-JAN-11
T1-NOV-10
10-0CT-10
22-SEP-10
31-DEC-10
31-DEC-10
31-0CT-10
14-0CT-10
23-DEC-10
12-JAN-11

In this example, we've implicitly requested that our query scan through the
employee table and return values where the signup_ date is earlier than the

last login_ date. This, of course, returns all the rows in the table, since the fact
that an employee has a last_login_ date implies that they have already signed up

for Companylink.

SQL in the real world

Oracle stores information in date columns not only with date
information, but with time as well. It's important to note that, in quality

. conditions involving dates, two dates are only equivalent if every part

% of the date, including day, month, year, hour, minute, and second
A~ information, is equal. Many date columns are commonly populated

with the value for SYSDATE, so the time information can be important
as well. In situations involving equivalent date conditions that are not
returning the rows that you think they should, check to see if the time
information may be the reason.

[77]

Using Conditional Statements

Examining conditions with multiple
values

Often in SQL, retrieving the desired data depends more upon matching multiple
values than it does on matching a single value. SQL allows us to do this in several
different ways. In this section, we examine the use of range conditions,

set conditions, pattern-matching, and Boolean operators.

Constructing range conditions using the
BETWEEN clause

Say that we want a list of the employees who have logged in to the Companylink
site. However, we want to restrict this list to only those who have logged in at least
1,000 times, but no more than 2,000 times. Using what we know of WHERE clauses so
far, how would we do this? We actually have two conditions that must be met for
our result set to meet our requirements. There are multiple ways we could do this,
including Boolean conditions, but, for now, we examine the use of a new clause — the
BETWEEN clause:

D- companylink @orci~J¥ |
FERRO 88 ¢ 001269956 seconds
select first name, last name, login count
from enployee
where login count hetween 1000 and zZ000;
..
[Resutts | 5] Script Output | B Explain |f;,:j.&utatra::a | ADEMS Output
Resultts:
FIRST_M&ME | LAST_MNAME | LOGIN_COUNT |
1 Linda Andersan 1245
2 Daniel Robinzon 1220
3 Matthewr Garcia 1143
4 Danald Perez 1025
3 Liza Lee 1943
& Caral Clark 1123
7T Gary Moore 1495
& Cynthis Hall 1478
9 Sandra Rodriguez 1021
10 Laura Thamas 124

[86]

Chapter 3

While the syntax of the BETWEEN clause is fairly natural sounding, it's important

to understand several points about how it fits within the overall structure of a
conditional SQL statement. First, the BETWEEN clause follows the WHERE clause and
expects two, and only two, conditions. The first condition is the lower bound for

the result set, while the second is the upper bound. Second, the BETWEEN clause

is inclusive; that is, the values for the upper and lower bound are included in the
result set. Thus, the statement in the previous screenshot evaluates to greater than or
equal to 1,000 and less than or equal to 2,000. Third, the order of the bound values is
important. If you were to rewrite the statement as where login_count between 2000
and 1000;, no rows would be returned, as there are no values greater than 2000 that
are also less than 1000.

One common use for the BETWEEN clause is to specify a date range and to return
values that fall within that range. For instance, we want to display name information
for employees who last logged into the Companylink site during the calendar year
2010. We could write a SQL statement utilizing the BETWEEN clause, as shown in the
following screenshot:

D COMpIRyHnk porch |

ERRO B3 ¢ 019992933 seconds

select firat_name, last_name, last_login_date
from enployee
where last_login date BETWEEW 'O01-JAN-2010' and '31-DEC-2Z010';

. 4
B> Resuts| [=] Script Output | 55 Explain |__§.:'jAmotrace | FADEMS Cutput | @ oivias Output
Results:

FRsT_Mawe [LasT ame [LaST_LoGIN_DATE |

1 Linda Ancderson F1-DEC-10
2 Daniel Robinson 06-JUM-10
3 Matthesas Garcia 0E-APR-10
4 Donald Perez 11-RON-10
S Liza Lee 10-0CT-10
& Carol Clark 22-SEP-10
T Gary hoore 31-DEC-10
8 Cyrthia Haill H-DEC-10
9 Sandra Fodriguez 3-0CT10
10 Kewin Lewis 14-CCT-10
11 George Taylar 25-DEC-10

The query returns the requested information for 1ast_login_date values that fit
the given range. No results outside of that range are returned. It is important to note,
however, that this query introduces a common mistake when dealing with date
ranges. It could potentially exclude some values that should actually be included.

[77]

Using Conditional Statements

Remember that in Oracle, date columns store not only date information,
. but time as well. As we have specified no time information in our
range, the statement is interpreted as values between 01-JAN-2010 at
e time 00:00:00 and 31-DEC-2010 at time 00:00:00. Thus, any values after
31-DEC-2010 from time 00:00:00 onwards, such as those inputted at 4:00
PM, would be excluded.

Another possibility would be to write the where clause as follows:

..where last login date between '01-JAN-2010' and 'O1-JAN-2011"';

However, this introduces a different problem; namely, that more data might be
included than we desire. In this case, any employees that logged in on 01-JAN-2011,
at time 00:00:00, would be included. Always be conscious of this issue when dealing
with date values.

Although the between clause can be used for character values, there are few
real-world reasons to do so. As the BETWEEN clause only evaluates string literals
after breaking them down into their ASCII values, it computes them as essentially

a greater than or equal to, less than or equal to. To state that an 'A' is less than a 'G'
generally has limited usefulness. However, it can be done, as shown in the following
example. Remember, as always, that inside of single quotes, characters

are considered case-sensitive:

D companyiink borcy |

FPERCRS B8 ¢ | 002980518 seconds

select first name, middle initial, last name
from euployees
where middle_initial BETWEEH 'E' and 'P';

.
[Resutts [=] Script Output | T Explain |_F;jAmutrace | ADEMS Output

Results:

FRsT_name |§ MoOLE_mmiaL [{ LasT_nane |

1 Linda L Anderson
2 Daniel J Robinson
3 Matthew K Garcia

4 Helen H Harriz

5 Caral bl Clark

G Kewin L Lewviz

7 Gearge H Tavylar

g Laura | Thomaz

[88]

Chapter 3

Using the IN clause to create set conditions

Although range conditions are very useful, it is often just as advantageous to be able
to return data based on a more specific set of conditions. Say, for instance, that we
want to return data on those employees whose address is in one of four states: MO,
KS, IA, or SC. To do this, we could request data where state is equal to MO, KS, IA,
or SC, using Boolean values, which is explored later in the chapter. But, evaluating
simple lists of conditions in this way is often cumbersome and requires more coding
than is necessary. Similarly, we could use a BETWEEN with our WHERE clause, as in the
following code snippet:

. .BETWEEN 'IA' and 'SC'

Unfortunately, that could return more values than we actually require, such as
values for OK. A more straightforward way is to use the 1N clause, which is shown
as follows:

D companyiink oorch |
FERERO B8 ¢ 001373775 seconds
select atreet_address, city, state
from address
where state IM ('MO', 'ES', 'Ia', 'SC'j:
|
[Resutts| [=] Script output | 55 Explain | B Autotrace | ADEMS Cutput
Resuts:
sTreeT_sporess (@ orv (B sTate
1 123 First St Lenexa KS
2 234 Fifth St Owverland Park KS
3 345 Cedar Ln Mission KS
4 456'Washington Ave Independence MO
5 967S Hill 5t Lees Summit MO
G 324 Elm St Lenexa KS
¥ 9234 Park Place Leawood KS
g 253 Fourth St Kansas City MO
9 111 Maple Rd Edweardszville MO
10 234 Lake Rdd Topeka 18]
11 855 Eighth St Des Maoines |A
12 857 Oak St Waldo R
13 7543 Pine Rd Martin City R
14 5234 Seventh St Grandviesy MO
15 324 Third =t Piper K=

[77]

Using Conditional Statements

As with the BETWEEN clause, we see that the syntax for the 1N clause is fairly '
natural-sounding'. We request matching data where the row value for state is in

a given list of values. These values are listed within parentheses, separated by
commas. As always, if the values are string literals, they are enclosed in single
quotes. When querying with the 1IN clause, only those rows that match the given

list of values will be returned. That fact is borne out in our example, where, as there
is no match for the given value 'SC', no data for that value is returned. The 1IN clause
can be similarly used with numeric values, as shown in the next example. We could
read this as Show me the e-mail addresses of those employees with an employee ID number
of1,2, 0r9:

D- compIRyiink morcs |

FPEEARS BB ¢ 002133483 seconds

select email address, employee_id
from email
where employee_id IH (1, Z, 3);

b W

> Resutts | =] Script Output
Results:

[H)Explain | £ Autatrace | ADEMS Output

EM&IL_ADDRESS | EMPLOYEE_|D |

1 jiohnson@ocompanylink .com 1

2 jiohnzoniggmail.com

3 mewilliama@ocompanylink .com

1
2
4 lleei@companylink .com g
5 lleei@gmail.com 9

9

6 lleei@yahoo.com

As indicated in the figure caption, this query displays values where the Employee id
matches the numeric values 1, 2, or 9. One interesting point to note about this query
is that, although there are three matching conditions (1, 2, or 9), more than three
values are returned. When, in cases such as 1 and 9, the Employee 1D column has
more than one occurrence of a particular value, rows for each of these matching
values are returned. For example, there are three occurrences of the value 9 in

the Employee_ID column in the email table. Thus, in our output, three rows are
returned that match the value 9. The IN clause can be used with date values as well,
although we must take care to list date values that exactly match our requirements.
Time information must be taken into consideration as well.

[90]

Chapter 3

Pattern-matching conditions using the LIKE
clause

Sometimes, as with the IN clause, we want our row values to match a very specific
group of conditions. At other times, it is preferable to match values based on a
broader set of conditions. In such situations, we can make use of SQL's powerful
pattern-matching capabilities using the LIKE clause, as shown in the following
screenshot follows. We could interpret this statement as, Show me the employees whose
last names begin with the letter R.

3= companylink @orcl |

ERRO BB ¢ 001407944 seconds

select employee_id, first name, last _name

from employee
where last _name LTEE 'B%';

.
B Resutts| (5] script Output | BRIExplain
Results:

) autotrace | ZADEMS Output

EMPLOYEE_ID | FIRST_MAME | L.&ST_N.&ME|
1 4 Daniel Rokinson

2 13 Sandra Rodriguez

In Oracle's implementation of SQL, pattern-matching is done with two characters:
the percent sign (%) and the underscore (_), often referred to as wildcard characters.
The percent sign (%) is used to match any number of characters. Thus, our query that
requests LIKE 'R% ' returns any values for last_name that begin with an uppercase
R and have any number of characters following the R (or no values at all). Thus, the
percent sign matches values such as Robinson and Rodriguez, but would also match
string literals such as Raines, Richards, or even just R, if such data existed in our
table. The only requirement for matching is that the value begins with an uppercase
R. We can also use multiple occurrences of the percent sign for pattern-matching, as
shown in the next example.

[77]

Using Conditional Statements

Here, we pattern-match using multiple percent signs and the LIKE keyword:

Dcompanyﬁnk@orcl’ |
FFERERS BB ¢ | 002443523 seconds

select first name, last name, dob
from employee
where firat_name LTEE '%i%a’;

. 4
B> Resuts| [script output | EExplsin |§}Aututrace |I3DBMS Output
Resufts:

FIRST_NAMEl LAST MAME | DOB |

1 Linda Anderson 24-0CT-70
2 Lisa Lee 15-JUN-63
3 Cyrthia Haill 21-00CT-55

This statement is evaluated as follows. Oracle searches through each value in the
First_Name column and matches all values that contain any number of characters,
then a lowercase i, then any other number of characters, and ends with the letter a.
Because the percent sign matches any number of characters, the first occurrence of the
letter i doesn't need to be the second character in the name. It could be second —as in
the case with Linda and Lisa, but it also matches cynthia, where the occurrence of
the letter i is the sixth character in the name. It is only required that one occurrence of
the letter i appears in the name and that the name ends with the letter a.

While pattern-matching of any number of values can be done with the percent sign,
when we want to use a single character as a wildcard, we use the underscore symbol
(L), as shown in the following screenshot:

Dcompﬂwyﬁnk@orc! I
FPERRO® B8 ¢ 001805146 seconds

select first name, last_name, start_date
from enploves
where first name LIEE '_ary':

rS. 4
(> Resutts (=] Script output | EExpisin |§]Autmra-:e ||3DBMS Output
Results:

FRsT_Name |§ LasT_neme (B sTarT_Date |
1 Maty Willizms 24-APR-89
2 Gary Moore 12-FEB-04

[92]

Chapter 3

This example matches row values according to this rule: the value must begin with
any single character and end with 'ary'. Thus, the names Mary and Gary are a match,
while a name like 'Shary' would not, as there are two characters, 'Sh', before the 'ary’
in the name. Both the percent sign and the underscore can be used together in the
same condition, if desired.

Although it is much more common to use pattern-matching and LIKE with string
literals, it can be done with numeric and date values as well, as the following two
examples show. The first could be interpreted as, Display all employees whose birthday
is in November. It uses pattern-matching with a date value. The second could be read
as, Show all addresses whose zip code begins with a number 3.

[}companyﬁﬂk@orc! I
FPERRO B8 ¢ 000483415 seconds

select first name, last_nhame, dob
from eumployee
where dob LIEE 'ZNOVS';

% 4
[Resuts | =] script Output | B Explsin |E}Autotrace |IEDE:MS Cutput
Results:
FIRST_MAME | LAST MAME | DOE |
1 Daniel Rakinzan 23-MiC-529
2 Gary Moore 01 -MiCh-Ga

D- companylink @orct [
FERRO B8 ¢ 001340953 seconds

select atreet_address, city, state, zip

from addressz

where zip LIEE '3 g
.
B Resutts | [=] script Output | B Expisin |-‘§-..a} Aitotrace |I3DE:M5 Cutput
Results:

sTReeT_aporess @ cmv | sta|@ ze|

1111 Maple Rd Edvwardzville MO 35870
2 153 Main St Tulzs QI 36540
3 7543 Pine Rd Martin City WO 32736

[77]

Using Conditional Statements

The second of the two examples demonstrates the use of multiple underscore
characters in pattern-matching. The LIKE clause indicates the number 3 followed
by four underscores. As all of our zip code values have five digits, we know that a
3 followed by any four numbers will match. The condition shown in the previous
example is analogous to the query shown in the following screenshot, which uses
a percent sign instead:

[} COMPIRYIRE Dorck |

ERRO B8 ¢ 000746855 seconds

select street_address, city, state, zip

from address
where zip LIKE '3%':

%, 4

[:} Results J Soript Cutput
Reszuts:

E5)Explain | 1) Autctrace | ADEMS Output

street_sporess § oty [B state |l ze|

1 111 Maple Rd Edweardzville WO 35570
2 153 Main St Tulza 8134 35940
3 7543 Pine Rd Martin City WO 32736

For the certification exam, you should be prepared to evaluate complex conditions
using both the percent sign and underscore characters.

Understanding Boolean conditions in the
WHERE clause

The last of the condition types that we will examine are Boolean conditions. In

SQL, the Boolean conditions at our disposal are similar to those used in logical
mathematics. We use them to attach multiple conditions to a particular query. To
accomplish this, we make use of Boolean operators, sometimes referred to as logical
operators. There are three primary Boolean operators available to us in SQL — the OR,
AND, and NOT operators.

[94]

Chapter 3

Examining the Boolean OR operator

For situations in which we want to return rows that meet any given condition, we
make use of the Boolean ORr operator. As an example, if we attempt to list objects that
are either red in color or a fruit, objects such as apples, stop signs, pears, bananas,
roses, and fire extinguishers would all suffice, as each of these is either red in color
or is a fruit. In a Boolean OR statement, at least one of the conditions must be met in
order for it to be evaluated as true.

If we apply this idea to the Companylink database, we might attempt to write a
query that returns all employees whose first name is either 'Kevin' or 'Carol'.
The following example lists such a query. It is structured in such a way as to
emphasize syntax.

D- companylink porcl |

FERRO B8 ¢ 000704507 seconds

select first_name, middle_initial, last name, last _login date
from employes

where
first_name = 'Fewin'
115
first name = 'Carol':;
il W
[Resutts| =] Script output | B Expiain |_F;]Amotrace | ZLDBMS Output | € civvca, outpu
Rezults:

FIRST_MAME | MIDDLE_IMITIAL | LAST_MAME | LAST LOGIN_DATE
1 Caral M Clark 22-SEP-10
2 Kevin L Lewis 14-0ZT-10

In this example, we return two rows: one where First_Name is Kevin and another
where First Name is Carol, as these two rows meet at least one of the conditions.

[77]

Using Conditional Statements

The real advantage of Boolean operators becomes apparent when we use
them to concurrently evaluate conditions on different columns, as shown in
the next screenshot:

Dcompanyﬁnk@arc! |
FPERRDO B8 ¢ 001956202sconds

select first name, middle_initial, last name, lazt login_ date
from employee
where

gender = 'M!

OR

niddle_initial = 'L';

F %
B> Resuits| (=] script Output | B Explain | 59 autctrace | F0EMS outout | @) owe outout

Results:

FIRST_MAME | MIDDLE_[MITIAL | LAST_MAME | L&ST_LOGIN_DATE

1 James R Johnzon 14-JAMN-11
2 Lind=s L Anderzon F1-DEC-10
3 Daniel J Rokingon 0&-JUr-10
4 Matthew K Garcia 0&-APR-10
5 Hen W Wit 3 -JAN-11
& Donald) Perez 11-MO-10
T Gary F oore 31-DEC-10
g Kewin L Lesivis 14-0CT-10
9 Gearge H Taylor 25-DEC-10

Here, we evaluate conditions that apply to two different columns —gender and
middle_initial. In order for the row to be returned, it requires that the gender
column has a value of M or that the middle initial column has a value of L. If
either of these conditions is satisfied, the row will be returned.

[96]

Chapter 3

Understanding the Boolean AND operator

The Boolean AND operator is used in situations where we wish to return rows in
which multiple conditions return a value of true. For example, if we wanted to list
objects that are both red in color and are also a fruit, an apple would meet both
conditions, as an apple is both red and is a fruit. A pear, on the other hand, would
not. While a pear would meet one of the conditions, as it is a fruit, it does not meet
the condition that the object be red in color. When using the Boolean AND, both
conditions must be met in order for the statement to evaluate as true.

In our companylink database, we might wish to query for female employees that
started work after January 1, 2004. A query that satisfies these requirements is shown
in the following screenshot:

[companyiink @orcy |

FERRS 8B ¢ 001852281 seconds

select first name, last name, Jgender, start date
from employes
where

gender = 'F!

and

start_date > '01-JaN-=2004';

|l W
[Resuts | =] soript Output | EAExplain |_§:]Autcdrace | TLDBMS Output | 0 e, Cutput
Results:

FRsT_Nane |B LasT mave [§ cencer [B sTaRT DaTE|

1 Linda Anderson F 25-MaN-04
2 Helen Harris F 22-JUk-04
3 Cynthia Haill F 12-DEC-03
4 Sandra Rodriguez F 04-A1LG-09
S Laura Thomas F 14-FEB-0G

The previous query allows us to use a Boolean AND along with conditions for
multiple columns. This allows us to form query conditions on two different types

of data—Gender and start_Date. Only rows that meet both conditions will evaluate
as true.

[77]

Using Conditional Statements

The Boolean NOT operator

Our last Boolean operator is the logical NOT. A NOT operator negates the condition
that follows it. Thus, the condition itself must evaluate as false in order for the
statement to evaluate as true. It's not as confusing as it might sound. An example is
shown in the following screenshot:

D conpanylink @orcl |
FPERBO B8 ¢ 00075137 seconds

select first_name, last name, branch id
from employee
where first_name HOT like 'B%':

.. 4
B Resutts| & scriot cutout | BExplain |_§¢'j Autetrace | FADEMS Output | (€3 Ovia Output
Results:

FRsT_name B LasT nave [Branc |

1 James Jobnson g
2 Mary Willizms 2
3 Linda Anderson 1
4 Daniel Rohinzon 2
5 Matthesw Garcia 3
& Helen Harris 10
7 Ken White 4
& Donald Perez 1
9 Lisa Lee]
10 Carol Clark 2
11 Gary Moare 3
12 Cynthia Hall 3
13 Sandra Rodrigusz 13
14 Kevin Lewviz 8
15 George Taylor 12
16 Laura Thomas 12

The easiest way to interpret this query is to first evaluate the statement without the
NOT operator. As we saw earlier in the chapter, the clause 1ike 'R%' will pattern-
match all the values in the First Name column that begin with the letter R. When

we add the logical NOT operator, the opposite is true. The clause Not 1ike 'R%' will
match all the values that do not begin with the letter R. Thus, the statement is the
logical opposite of its predecessor. A NOT operator can be used with conditions of
equality and the LIKE, BETWEEN, and IN clauses. An example of NOT with the BETWEEN
clause is shown in the following screenshot:

[98]

Chapter 3

D Companyiink @orcl |

FERRO 88 ¢ 000580773 seconds

from ewployee

select first name, last name, login count

where login count HOT hetween 1000 and =000;

-

Results:

B> Resuts| [serint output | T Esplain |f;].&.utotrace | ZADEMS Output

FIRST_NAME | LAST MAME | LOGIN_COUNT|

1 James Johnzon
2 Mary Williams
3 Helen Hatriz
4 Ken White
3 Kevin Lewvis
B George Taylor

2135
2143

95
66
295
795

This example is similar to one we used earlier in the chapter, as an example of the
BETWEEN clause. However, this example utilizes the logical NOT operator. As the
clause between 1,000 and 2,000 would match values greater than or equal to 1,000, or
less than or equal to 2,000, the NOT between 1,000 and 2,000 matches values less than
1,000 or greater than 2,000 —all the values not encompassed by the first example.

Boolean operators can be used together or in conjunction with parentheses for
grouping, in order to form complex statements with many conditions. In these
cases, we must be mindful of the order of precedence in SQL. A short list of this

order is as follows:

e Parentheses

e Mathematical operators

e Equality, inequality, and not equal conditions (in that order)

¢ Boolean operators

[77]

Using Conditional Statements

Be aware of this order of precedence when examining the next example. It is an
advanced statement that makes use of many of the types of conditional operators
used in this chapter. It displays employee information for employees that meet

several complex conditions, including;:

Female employees with a start date earlier than or including Jun

as shown as follows:

e 11, 2003

Or male employees who started prior to that date and employees with a date
of birth between March 1, 1965 and January 1, 1975, provided that their login
count is higher than 900, unless they have a first name listed in the conditions

[} COMPIRYIRE @orcs |

PERRAO BBE ¢ 000421285 seconds

select first name, last name, dob, start_date, login_count
from employee
where
(HOT (gender = 'F') amd start date »= '11-JUN-2003')
or
[gender = 'F' and start date <= '11-JUN-2003')
and
dob hetween '01-MAR-1965' and '01-JAH-1975°
or
first name in ('Moore','Clark', 'White','Ferez')
and
laogin_count > 900
and
last_name not like

12,

Fel;

s

B> Resuts | [script Outiut | BExpiain | 59 autotrace | FDeMS output |) owia output
Resutts:

FIRST_NAME| LAST_MAME | DOE | START DATE | LOGIN_COUNT

1 Matthew: Garcia 14-4PR-71 24-JUN-05
2 Ken Wihite 22-FEB-58 16-SEP-03
3 Donald Perez 14-MAR-79 30-JUL-05
4 Carol Clark 11-8UG-67 12-J8N-01
5 Gary Moore 01-MOW-B5 12-FEB-04

1145

366
1023
1123
1495

[100]

Chapter 3

Using ampersand substitution with runtime
conditions

In the examples we have used so far, each of the statements had their conditions set
before the statement was executed. At the moment of execution, the condition was
read and the output determined —no other input was required or allowed from the
user. We say that statements such as these have their conditions hardcoded — there is
no variation in the condition at runtime unless we specifically rewrite it and execute
it again. However, in Oracle, we are allowed to vary conditions at runtime using a
substitution variable. Runtime substitution variables are denoted in Oracle using the
ampersand (&) character.

The following screenshot uses an ampersand variable that prompts us for a value
at runtime:

[companylink @orct |
FPERERS® B8 ¢

select wehsite_desc, hit count
from website
where hit_count <= &num hits;

% 4
B> Resutts| [=] script Output | S Explain | 39 autotrace | EDEMS output
Results:
WEESITE_DESC | HIT_COUNT |

1 Desktop rollout project site B4

2 The Perez site 45

3 Winter sales push project site 14

4 Cynthia Hallz wehsite 24

5 Operations Branch website 9

When we run the previous statement, we're prompted with a window that looks like
the one shown next:

Enter Substitution Variable E|
UM _HITS:
70 |
| Ok J | Cancel |

[77]

Using Conditional Statements

We can put any numeric value into this prompt that we wish. We are being asked
at runtime what numeric condition we want to use, instead of hardcoding it into
the statement itself. If, as shown, we enter the number 70 into the prompt, we see
the data restricted to the condition less than or equal to 70. If we run the statement
again, we are prompted again and can enter a different value, such as 35, to yield
different results, giving us freedom to enter conditional values at runtime as we
wish. Note that the prompt we see, NUM_HITS, is reflected in the name of the
substitution variable, snum_hits. Always name your substitution variables in a
way that indicates the value for which you are prompting. You can also put more
than one ampersand variable into a single query if you need to prompt for multiple
conditions. You will be prompted for the first, then any subsequent conditions. If
the values are listed in multiple places in the statement and the values you enter are
the same, you can use the double ampersand (&&) substitution symbol. Additionally,
substitution variables can be used for elements other than where clause conditions,
including the column names for a select statement and table names.

SQL in the real world

While substitution variables might seem convenient, they are not
M commonly used for the simple reason that they require the user to
actually input values, instead of running in batch mode. Substitution
Q variables are more commonly used during development, usually for
prototyping, when the ability to test different input values is desired.
However, although it is not often used, it is covered on the exam, so it
is important that you understand the concept.

Sorting data

One of the most common uses of datasets that have been extracted in the manner
we have seen in this chapter is for reporting. Reporting is one of the cornerstones
for data usage in today's world, and the ability to sort data in ways that display it
for a certain purpose is often crucial. Data that has been extracted by using one or
more of our selection methods is useful, but the ability to sort the data adds another
dimension to the usefulness of that data.

Understanding the concepts of sorting data

In Oracle, standard tables are referred to as heap-organized tables, which means that
the data within them is stored in the order that it was written in. For instance, if 1
insert data rows into a simple table in the following order —orange, apple, plum —then
that is the default order in which our SQL statement will return the data. If we wish

to influence this default ordering, we must sort the data. Sorting is the ability to take

[102]

Chapter 3

unordered datasets and display them in a manner consistent with a specified order,
such as by date or numeric value. The Oracle architecture is designed to make sorting
operations perform at a high level, even utilizing special memory structures to do so.
Oracle is capable of doing both numeric and lexicographic (or alphabetic) sorts.

Sorting data using the ORDER BY clause

Take a simple example from our Companylink database. We wish to display the

list of employees from our employee table, but we want to see them displayed in
alphabetic order by last name. To do this, we use the ORDER BY clause. Its syntax tree
is shown as follows:

SELECT {column, column, ...}
FROM {table}

WHERE {condition}

ORDER BY {column, column, ...};

In Oracle, when an ORDER BY clause is used, the data is fetched from the database,
and then sorted in the requested order, using its internal architecture. Note that the
ORDER BY clause does not restrict the data returned in any way; it merely displays it
in the order requested. The ORDER BY clause must also always follow the FrROM and / or
WHERE clauses and is always the last clause in a SELECT statement. It is also important
to understand that our sort conditions are not limited by the columns specified in the
SELECT clause:

[companyiink@orcs |
FPERRO B8 & cosmosseconds

select last name, first_name, dob
from ewmployee
OBRDER. BY last name;

av
D> Resuts| =] Scrint outiut | FRExplain |_E:.'jAl,ltDtracE | ADEMS Output
ResUlts:
Last nave [§ Fret nave [§ oos |
1 Anderson Linda 24-0CT-70

2 Clark Caral 11-AUG-67
3 Garcia Matthew 14-APR-71
4 Hall Cyrithia 21-0CT-55
5 Harris Helen 13-JUL-75
B Johnsan James 01-JAM-B0
7 Lee Lisa 15-JUM-63
& Lewis Kewvin 01-JUL-78
9 hloore Gary 01-MOY-B5
10 Perez Donald 14-MAR-TS
11 Robinzon Danizl 23-MOY-58
12 Rodriguer Sandra 10-MAY-T4
13 Taylor Gearge 24-DEC-72
14 Thomas Laura 26-0CT-81
15 White Ken 22-FEB-58
16 Wiliams Mary 15-MAR-64

[77]

Using Conditional Statements

In the previous example, we selected the Last_Name, First_Name, and DOB columns.
However, if desired, we could have selected only the First_Name and DOB columns
and still ordered the returned dataset by Last_Name. It is not required that we
display the column by which we sort, although it is common to do so. As you can
see, the requested data is returned and sorted in alphabetical order by the employee's
last name. Remember that sorting is not limited to numeric data —it can be used with
dates and string literals as well.

Changing sort order using DESC and ASC

When using the ORDER BY clause, the default behavior is to sort the data in ascending
fashion. However, by adding the DESC clause to our ORDER BY, we can reverse the
sort, as shown in the following screenshot:

|>- companylinkiporcl |
FERRO B8 ¢ 00472281 seconds

select blog desc, blog url, hit count
from blog
OBDER. BY hit count DESC:

. 4

[Resuts | [5] script Output | BExplain | 5 autotrace | ZLDBMS Output | % e, Output

Results:

ELOG_DESC @ eLoc_ R |8 Hr_counr

1 Jims blag hittp: My companylink .comidblogfiohnson 123
2 Mattz cool blog http: ffnenewy companylink.comimgarcia 56
3 Desktop rollout progress blog Hitp: haewewe companylink .comblogimwilisms 32
4 Garyhlog! http: iy companylink.comdlogigmoore 24
5 Winter sales push kblog http: fneeewy companylink .comikleswis 18

[104]

Chapter 3

This example demonstrates a descending sort. As we can see, the data is sorted with
the largest numeric values at the top and continuing with subsequently lower values.
Although ascending sort order is the default behavior, we can still specify it using
the Asc clause. When we do, the sort behaves just as if we had specified neither Asc
nor DESC. In the next example, we demonstrate this, but we also add a WHERE clause
to restrict output:

Dcompaﬂyﬁﬂk@orcf |
PERRO BB ¢ 00055625 seconds

select blog_desc, blog_url, hit_count
from blog

where hit_count > 30

OBRDER. BY hirt_count ASC;

W
B> Resutts| [Script Output | FExplain | B autatrace | ADEMS outout |) ovwa, output
Results:
ELOG_DESC | ELOG_LRL | HIT_COUNT
1 Desktop rollout progress hlog kittp: ey companylink camblogiviliams 32
2 Matts coal blog http: Sy companylink comitmgarcia 56
3 Jims blog http: itnewewy companylink .comblogfjohnson 123

The result returns only three rows, as we have restricted the number of rows to only
those matching the condition, greater than 30. We also display the rows ordered by
an ascending value for Hit_Count, where lower values are listed first.

[77]

Using Conditional Statements

Secondary sorts

It is often advantageous to do a 'sort within a sort' when displaying large amounts

of data. When we do this, we sort by one value, and then sort any remaining
duplicate values by another value. For instance, say that we want to display
employee information sorted by the company branch ID to which employees
are assigned. To do this, we might use a query like the one listed in the
following screenshot:

D- companylinkimorct |

FPERSRS B3 ¢ 007033464 seconds

from employee
OFDER. BY branch id;

select branch id, first name, middle_initial, last name, gender, doh

rS. 4

Resultts:

[Resutts =] Script Cutput

EExplain

15 autotrace | @DEMS Output

CAowa, Output

L = L

1
12
13
14
15
16

BRANCH_ID| FIRST_MAME | MIDDLE_INITIAL| LAST_NAME| GENDERl DOE

1 Dianahd

1 Lincks

2 Mlary

2 Caral

2 Daniel

3 Gary

3 Mattheswr

3 Cynthiz

4 Hen

2 Liza

G James

g Hevin
10 Helen
12 George
12 Laura
13 Sandra

&

III_IU(')gUJIIU"—gLnl_

Perez
Anderson
Willams
Clark
Fokinsan
Woore
Garcia
Hall
White
Les
Johnson
Lewviz
Harris
Taylor
Thomas

Rodriguez

I

14-MAR-72
24-0CT-70
15-MAR-B4
11-85-67
23-MOM-59
01-MOY-B5
14-MPR-T1
21-0CT-55
22.FEB-58
1 5-JUN-63
01 -J&N-50
01-JUL-76
13-JUL-75
24 DEC-72
26-0CT-81
10-MaY-74

[106]

Chapter 3

The results are sorted as we requested, but we see that a number of duplicate values
exist for the Branch_1D column. Thus, Mary Williams, Carol Clark, and Daniel
Robinson have a Branch_ID of 2, but, within that subset of data, their information
isn't sorted in any particular order. We may want to sort them again, so that each
group of Branch_1ID has its employees sorted also by their last name. To do so, we
need to utilize a secondary sort, as shown in the next example:

[)- companylink @orcl |
FEERO 8B ¢ 003031195 seconds
select branch id, first name, middle initial, last name, gender, dob
from euployes
OBDER. BY hranch_id, last_name;
%
B> Resutts =] Seript Output | B Expiain | 59 sutetrace | ADEMS Output | € Ovs, Output
Results:
BrancH_D [{ FrsT_nane (| moote_mmal [§ Last name (@ cenoer [§ pos
1 1 Linda L Andersan F 24-0CT-70
2 1 Danald A, Perez I 14-mAR-73
3 2 Carol Tl Clark F 11 -AUG-67
4 2 Daniel J Robinson b 23-MCN-59
3 2 Mary = Williams F 13-MAR-64
G 3 Matthew k. Garcia M 14-APR-T1
7 3 Cynthia B Haill F 21-0CT-35
=] 3 Gary R Moore I 01 -MON-BS
9 4 Ken Wy Wyhite b 22-FEB-55
10 4 Lisa [Lee F 15-JUM-E3
11 G James i Jahnzan M 01-J8M-50
12 G Hevin L Lewvis M 01-JUL-76
13 10 Helen H Harriz F 13-JUL-T5
14 12 George H Taylor I 24-DEC-72
15 12 Laura | Thomas F 26-0CT-81
16 13 Zandra = Rodriguez F 10-mANY-74

[77]

Using Conditional Statements

In this example, the data is essentially sorted twice —once by Branch_1D, and then,
within each Branch_ID sort, by Last_Name. This time, those employees with a
Branch_ ID of 2 are shown in the order Clark, Robinson, Williams, which is the
alphabetical order for Last_Name. When doing secondary sorts, this statement can
be read as, Sort by Branch_ID, then sort within Branch_ID by Last_Name. The number
of secondary (or tertiary) sorts we can do in this manner is only limited by the
number of columns that exist in the table. In the following example, we sort by three
columns. It could be expressed as, Display employee information sorted by the employee's
branch ID, then by their gender, then by their last name.

Dcompanymrk@orcf |
ERES 88 ¢ 00400576 seconds

select branch_id, first neame, middle_initial, last_name, gender, dok

from employee
DEDER EY branch id, gender, last_name;

. 4
Resultz | Script Output Explain | 5] Autotrace DEMS Cutput A Cinia, Cutpt
> = - &
Results:
BrancHJD (@ FRsT_name |[{ mooLe_wmas | ast_neve B cenoer @ pos

1 1 Linda L Anderzon F 24-0CT-70
2 1 Donald 2 Perez hd 14-MAR-73
3 2 Caral M Clark F 11-8UG-67
4 2 Mary 5 Williams F 15-MAR-G4
-] 2 Daniel J Robinzon hd 23-MOV-59
B 3 Cyrthis =] Haill F 21-0CT-55
7 3 Matthera K Garcia il 14-APR-T1
g 3 Gary R loare hd 01 -MO-BS
9 4 Ken W White il 22-FEB-58
10 5 Lisa C Lee F 15-JUN-E3
1 g James R Johnzon hd 01-JAM-E0
12 3 Kewvin L Lewvis il 01-JUL-7E
13 10 Helen H Harrig F 13-JUL-75
14 12 Laura | Thomas F 26-0CT-81
15 12 George H Taylor hd 24-DEC-72
16 13 Sandra = Rodriguez F 10-MAY-T4

[108]

Chapter 3

There is one additional type of sort that we can do in Oracle — the positional sort.
The positional sort allows you to sort by the positional number of the column, not

the column name itself. This type of sort is shown in the following screenshot:

[} companylink orcl |

FPERRO® B8 ¢ 000729199 seconds

from wehsite

select website url, blog id, hit_count, employees id

order by 3:
F .
[Resutts [=] Script Output | T3] Explain f;].ﬂ.l,rtn:ltrace| ADENS Output | £ Ol Output
Results:

WEBSITE_URL

| EILOG_ID| HIT_COLINT| EMPLOYEE_ID

1 Hitp: Sheewesy companylink .comtthomas
2 kttp: ey companylink .comiklewis
3 hitpe ey companylink comichall

4 Hitp: My companylink .comidperez
5 kit ey companylink comdrvillizm
B Hitp: dheeweny companylink comfgmacore

T Htp Sy companylink . comimgarcia

8 hhtp Meewesy companylink .comfiohnzon

=

[nully
4
[nully
[nuily
2

3
3
1

9
14
24
45
64
72
g3

234

16
14
12
g
2
11
3
1

The data is displayed, sorted by #Hit_Count (the third column listed in the select
statement). Notice that Hit_Count is not the third column in the table (it is the fifth),
but it is the third column listed in the SELECT statement. So, to say, Sort data by the
third column in the dataset is an accurate representation of what is occurring, whereas,
Sort data by the third column in the table is not.

[77]

Using Conditional Statements

Also, notice that we can sort using not only a column name, but a column alias as
well. In these situations, we simply define the alias in the SELECT clause and then
reference it in the ORDER BY clause. The following example shows the preceding
query rewritten to sort by the alias 'Blog Hits"

Drcompaﬂymfk@om! |
PEZRO B8 ¢ 000867932 seconds

SELECT blog url, blog_desc, hit count "Blog Hits™ from blog
OREDER BY "Blog Hits":

%

B> Resutts| || script output | EExplain | B Autatrace | ADBMS Output | % s, Output

Results:

ELOG_LRL @ BLoG DESC @ BlogHis

1 kit ey companylink . comilogklewis Winter sales push blog 18
2 kg fbeaewy companylink .comblogigmoore Garyhblagl 24
3 kg tbeeeewy companylink comblogimwiliams Desktop rollout progress blog 32
4 kit Sy companylink .comblog/maarcia Matts cool blog a6
5 kg Sy companylink .comblogfiohnson Jims blog 123

Summary

In this chapter, we've added two major skills to our growing list of SQL capabilities:
selectivity and the ability to sort data. We've examined the structure of both the
WHERE clause and the ORDER BY clause. We've looked at a large number of condition
types that can be used with the WHERE clause, including equality, non-equality,

and Boolean conditions. We've explored conditions that require additional clauses,
such as range, set, and list conditions. We've examined how Oracle utilizes
pattern-matching and substitution variables to create open-ended conditions.
Finally, we've worked with different ways to sort our resulting sets of data.

Certification objectives covered

In this section, we have seen the following certification objectives covered:

¢ Limiting the rows that are retrieved by a query
e Sorting the rows that are retrieved by a query

e Using ampersand substitution to restrict and sort output at runtime

[110]

Chapter 3

Up to this point, we've focused almost exclusively on ways to retrieve data from
database tables. In the next chapter, we'll add a completely new dimension to our
SQL abilities — the ability to manipulate the data in existing tables. We'll learn how
to add rows to a table, to change data in tables, and to delete data from tables.

Test Your Knowledge

1.

Which of these is a term used to describe the ability to limit data sets to rows
that meet certain conditions?

a.
b.
C.
d.

Projection
Restriction
Selection

Registration

Which of these statements represents the proper use of the SQL WHERE
clause syntax?

a.
b.

C.

d.

select first_name, last_name where last_name = 'Johnson/;
select first_name, last_name from employee;

select first_name, last_name where last_name = 'Johnson' from
employee;

select first_name, last_name from employee where last_name =
'Tohnson';

Which of these is NOT a type of condition that can be used in SQL?

a.
b.

C.

d.

Boolean
Equality
Non-equality
Ascending

Which of these is NOT a symbol that can be used in non-equality conditions?

a.
b.

C.

d.

>
<=

<>

[77]

Using Conditional Statements

5. Which of these statements would correctly satisfy the request, Display the
message text where the message ID is greater than or equal to 4 and less than
or equal to 8?

a.

Select message_text from message

where message_id between 4 and 8;

select message_text from message

where message_id >=4 and <= §;

select message_text from message

where message_id > 4 and message_text <§;
select message_text from message

where message_id between 8 and 4;

6. Which of the following statements is a correct use of set conditions using the
IN clause?

a.

Select first_name, last_name from employee
where employee_id in 1, 5, 12;
select first_name, last_name from employee

where employee_id in (1, 5, 12);

select first_name, last_name from employee

where employee_id = (1, 5, 12);

select first_name, last_name from employee

where employee_id in (1 5 12);

7. Which of the following statements would satisfy the requirement, Display
employee data for all employees whose first name begins with the letter R?

a.
b.

C.

select first_name, last_name from employee where last_name like 'R%/;
select first_name, last_name from employee where first_name like '%R';
select first_name, last_name from employee where first_name like 'R%';

select first_name, last_name from employee where last_name like
| % _R_l;

[112]

Chapter 3

10.

From your Companylink database, which of the following statements would
return the values 'Johnson', 'Anderson', and 'Robinson' when executed?

a.
b.
C.
d.

select last_name from employee where last_name like '__son';

select last_name from employee where last_name like 'R%son/;

select last_name from employee where last_name like '%son_";

select last_name from employee where last_name like '_%son%;

Which of the following is NOT a legal Boolean logical operator?

a.
b.
C.
d.

AND
IN
OR
NOT

Which of the following correctly uses a Boolean operator as a condition?

a.

select first_name from employee

where last_name = '"White' or last_name = 'Lee';

select first_name from employee

where first_name = 'Mary' or 'Ken';

select first_name, gender from employee

where gender = 'F;

select first_name, dob from employee

where first_ name is not 'Carol’;

11. Which of the following statements is equivalent to the statement?

select * from blog where hit_count between 40 and 80;'?

a.
b.
C.
d.

select * from blog where hit_count in (40, 80);
select * from blog where hit_count >= 40 or hit_count <= 80;
select * from blog where hit_count like '40%80';

select * from blog where hit_count >= 40 and hit_count <= 80;

[77]

Using Conditional Statements

12. Which of these is a proper substitution variable in SQL?

a.
b.
C.
d.

*new_employees
%num_rows
| | highest_hit_count

&choose_your_table

13. Which of these statements about sorting is NOT true?

a.

Oracle is capable of doing both numeric and lexicographic sorts

b. Sorting is achieved through use of the ORDER BY clause

C.

Data is automatically sorted when it is inserted into Oracle tables

d. The ORDER BY clause always follows the FROM clause in SQL

14. Which of these statements will correctly sort data from high to low?

a.
b.
C.
d.

select * from blog order by hit_count;
select * from website order by hit_count DESC;
select * from blog order by hit_count ASC;

select * order by hit_count from website;

15. Which of the following statements will correctly sort data, first by the
employee's gender, then by their last name?

a.

select first_name, last_name, gender from employee
order by last_name, gender;

select first_name, last_name, gender from employee
order by gender, first_name;

select first_name, last_name, gender from employee
order by 2,1, 3;

select first_name, last_name, gender from employee

order by gender, 2;

[114]

Data Manipulation with DML

Thus far, our efforts to utilize database data have been limited to pulling data from
the database. We've looked at how to select data, how to limit it based on conditions,
and how to sort it. However, we've only worked with data that already existed in
our Companylink database, which was created back in Chapter 1, SQL and Relational
Databases when you ran the companylink_db.cmd batch file. In this chapter, we
examine some of the types of statements that were actually used in that script.

These commands allow us to create and modify data in our Companylink database.

In this chapter, we shall:

e Examine the concept of DML —Data Manipulation Language
e Create data using the INSERT statement

e Copy data using INSERT/SELECT

e Modify data using the UPDATE statement

e Remove data using the DELETE statement

¢ Examine transaction control

e Learn to recognize and debug errors

Persistent storage and the CRUD model

The ability to manipulate data within an RDBMS requires an understanding of two
primary aspects — the concept of persistent storage and the syntactical rules for
manipulation. In this section, we examine these concepts.

Data Manipulation with DML

Understanding the principles of persistent
storage

The basic principles of computing dictate that, under normal conditions, data is
operated on within RAM, or Random Access Memory. RAM has two important
characteristics: it is fast, and it is volatile. Compared to the access speeds of hard
disk, RAM can access data an order of magnitude faster. This makes it ideal for the
computation and manipulation of data. Processes can operate quickly and efficiently
to read and change data within RAM. However, the integrated circuits that make
up RAM also make it volatile, in the sense that data stored within it cannot survive
the loss of power to the computer system. If we turn off the power, the data in RAM
is lost. The volatility of RAM is what necessitates the need for hard disk storage.

A hard disk, or hard drive, is capable of persistent storage — data storage that can
outlive a system power loss.

An RDBMS such as Oracle makes use of this architecture to its fullest. In Oracle,

the vast majority of data manipulation takes place in memory structures in RAM
called caches. Data is cached in shared memory in order to make it available to many
processes simultaneously. At various intervals, the data in cache is written out to
disk, and the data is stored persistently. This makes the RDBMS resistant to data loss
from power outages and contributes to a more stable system.

This is the underlying architecture at work. For our purposes, we are concerned with
how we can utilize the SQL language to add, modify, and remove data from this
persistent storage layer. To do so, we use DML — Data Manipulation Language.

SQL in the real world

Although the methods of persistent storage listed previously are still
~\l the standard way a computer operates, as of this writing, there are
many advances underway that may make them a thing of the past.
Q Research into topics such as non-volatile RAM, RAM that can store
data beyond a power loss, and Solid State Disks (SSD), hard disks that
can retrieve data at speeds approaching that of RAM, may soon change
how computers operate at a very fundamental level.

[116]

Chapter 4

Understanding the CRUD model and DML

Historically, persistent storage in databases has been managed according to a
generic standard known as the CRUD model: Create, Read, Update, Delete. These
four operations form the fundamental ways that data is utilized in a database. Data
can be created, or placed into the database; it can be read from the database; it can
be changed, or updated; and it can be deleted from the database. Some define the
CRUD model as Create, Retrieve, Update, Destroy, but the individual functions
themselves are the same. These four operations denote the way that users interface
with database data.

In SQL, the CRUD model is implemented as DML, or Data Manipulation Language.
DML is generally considered a sublanguage or subset of the SQL language as a
whole. As we will see throughout this book, there are many types of SQL statements.
The commands that make up DML are a part, or subset, of the entire language.

DML defines persistent storage operations through the use of four commands:
SELECT, INSERT, UPDATE, and DELETE, sometimes referred to with the acronym
SIUD. Although the terms are different than those used in the CRUD model, the four
functions are the same. A side-by-side comparison is shown in the following chart:

CRUD operation DML command Function

Create Insert Creating or adding new data into the database
Read/Retrieve Select Retrieval of data from the database

Update Update Modifying existing data within the database
Delete/Destroy Delete Removing existing data from the database

These operations enable the use of data manipulation in an RDBMS. Through DML
commands, we can change the state of data that is in persistent storage.

SQL in the real world

Considering that they don't actually change data in persistent storage,
you might be wondering why SELECT statements belong as a part

M of DML. In fact, many believe they don't. The entire subject of SQL
sublanguages is fairly broadly defined. Some consider SQL itself to be

Q a sublanguage. Others believe SELECT statements are a part of their

own sublanguage. Still others claim that SELECT statements are a part
of DCL, or Data Control Language. It's not that important to get caught
up in the terminology debate. General concensus puts the INSERT,
UPDATE, and DELETE statements squarely in the category of DML.

[117]

Data Manipulation with DML

Creating data with INSERT

Our first look at manipulating data involves one of the most fundamental operations
in an RDBMS — the ability to add data. This section looks at ways to create data
within an Oracle database.

Examining the syntax of the INSERT
statement

The primary command in SQL that allows users to create the data that resides
in tables is the INSERT statement. With it, we can add rows to an existing table,
provided that the format we use for the statement fits with the existing column
structure. The syntax tree for the basic INSERT statement is as follows:

INSERT INTO {table name}
VALUES (valuel, value2, ...);

Considering the lengths to which we've taken our SELECT statements thus far, it may
seem that the syntax for the INSERT statement is considerably more straightforward.
Generally, this is the case, although the degree of simplicity in an INSERT is
dependent on the simplicity of the table itself. If we examine our basic INSERT
statement, the first keyword we encounter is INSERT, followed by INTO. INSERT INTO
is followed by a table name that we specify. This will be the table to which we want
to add data. The last clause in our syntax tree is the VALUES clause, which specifies
the actual row data we intend to add. This list of values is enclosed in parentheses.
We will examine different ways that values can be specified, but it is important to
remember that the data we indicate must match the table structure itself, in terms of
both column structure and datatype.

When we specify the list of values in the VALUES clause as shown in the next
screenshot, it is implied that we are listing them in the order that they appear in the table.
Say, for example, that we have a table with two columns: object and color. If we
insert two values into our table, apple and red, it is implied that we are inserting the
value apple into the first column, object, and the value red into the second column,
color. We refer to this method as positional — the order that the data is inserted is
the same as the position of the columns in the table. The first value goes into the first
column; the second value into the second. The list of values must also match in terms
of datatype. If we attempt to insert numeric data into a column that holds character
string data, we will receive an error. Thus, in our example, if we assume that our
columns object and color are character data, our list of values cannot contain
numbers or dates.

[118]

Chapter 4

Using single table inserts

The most fundamental INSERT statements add rows to a single table one row
at a time. To accomplish such operations, we can use either of the two primary
syntactical notations — positional or named column.

Inserts using positional notation

Let's take what we've learned so far and add data to our Companylink database;
specifically, the award table. The following query shows the table before our insert
as a point of reference:

Dcompanyﬁnk@orcl’ |
FPERRSO B8 ¢ 006496003 seconds

select * from award:

.
B> Resutts | (=] Script Output | B Expiain | 5 Autatrace | [DEMS Output
Resufts:

SWARD_ID | SWARD_DESC |
1 Salesperzon of the year

2 Technalogical paper winner
3 Cleanest desk

4 Fastest typist

5 Employes of the year

o h = W k=

B Best new employes

As we can see, the award table contains two columns, award_id and award_desc, and
six rows. Following our INSERT statement, we should see one additional row with the
data that we specify. The example of the INSERT statement is shown as follows:

D companylink @orcs |
FERRO B8 ¢ 004730126 seconds

IHSERT IHTOD award
VALUES (7, 'Fastest 30L Coder'):

. J
[Resutts [=] Seript output | B Explin |f;} Autotrace |IEDBMS Output
Results:

[119]

Data Manipulation with DML

Here, we invoke our INSERT statement and specify the award table as our target

for data insertion. Taking the columns in order, we specify the numeric value 7

and the character string value 'Fastest SQL Coder' to insert into the award_id and
award_desc columns, respectively. Again, the values are enclosed in parentheses.
We see the results in the following screenshot. Notice that even though our row was
added after the existing six rows, the row we've inserted displays as the top row in
the table. This behavior is unique to SQL Developer and has to do with how the tool
processes matrices of data. You may not see this behavior in other tools.

Even though it looks unusual, there is nothing actually wrong with the
+ data being displayed in this way. Oracle tables are classified as heap-
organized, which means they are organized in no particular order with
g respect to row. Always remember to use an ORDER BY clause if the
order of the data is important.

[companytink @orcs |
FERRO B8 ¢ 00763023 seconds
select * from award:
% 4
[Resuts | [=]script output | B Explain | B Autotrace | ADEMS Output
Resulfts:
BNSRD_D | SWARD_DESC |
1 7 Fastest SGL Coder
2 1 Salezperson of the year
3 2 Technological paper winner
4 3 Cleanest desk
5 4 Fasztest typist
-] 4 Employee of the year
7 6 Best new employes

Our results now show seven rows where there were six before. We specified our
values in the same order as that of the columns, and we see them displayed as such.

[120]

Chapter 4

Inserts using named column notation

It is not necessary to let the column order dictate the order of our values. Often it
is desirable to specify values in an order that we choose. For this, we use named
column notation. We specify a list of columns in the same order as that of our
values. An example using named column notation and its results are shown in
the following two screenshots. First, we run the INSERT statement itself.

[}companyﬁnk@orc! [
FPERRO B8 ¢ 00052501 seconds

INSERT IHTO award (award desc, amard id)
VALUES
['Highest Certification Score', 8):

W
B> Resuts [script Output | BExpiain | B autatrace | FlDEMS Output
Reszutts:

Next, we view our results using a simple SELECT statement.

D companylinkorct I
FERBO B8 ¢ 001611900 seconds
select * from award;
S
> Resuts (=] Seript Output |) Explsin | B autotrace | ADEMS Output |
Resutts:
mrgarp D |[@ awerD_DESC |
1 ¥ Fastest SGL Coder
2 & Highest Certification Scare
3 1 Salesperszon of the vear
4 2 Technological paper winner
] 3 Cleanest desk
E 4 Fastest typist
7 5 Employee of the year
g G Best new employes

[121]

Data Manipulation with DML

In the first of these two statements, we notice two differences from our previous
INSERT statement. First, following the table name we've specified, award, we see

a list of column names enclosed in parentheses. These are the two columns in the
award table, but we've specified them in a different order than they occur in the
award table. Because we do this, we can also specify our values in an order different
from that of the table. The first value in the list, Highest Certification Score, is
inserted into the first column specified, award_desc, and the second value, 8, is
inserted into the second column specified, award_id. We can do this with any
number of columns and values, provided that all the columns exist in the table and
that their datatypes match. If we wish to designate our columns this way, we can
order them any way we wish, even if that order is the same order of the columns in
the table.

SQL in the real world
In the development world, you will often find that the coding standards
* of a particular company prohibit the use of positional notation, instead
favoring named column notation. This is a responsible practice, since
using named column notation is much more readable. With named
column notion, it is much simpler to determine the values that belong
with certain columns.

Inserts using NULL values

As we've discussed before, it is possible to have rows where a particular column has
no value. We refer to this lack of value as a NULL value. We can enter null values
into a table in several ways. The first of these is to use named column notation to
specify values for a number of columns that is fewer than actually exist in the table.
When we do this, the remaining columns will be populated with nulls. We see this in
the following example:

[companyiink@orcs |
FERERO B8 ¢ 00441709 seconds

IHSERT IHTO website

(rehaite_id, wehaite_url, wehsite_desc, employes_id)
YALUES

(9, 'http: /Asww, conpanylink. con/kvhite', 'Kens Site', 7)1;

%
[Resuts | =] Script output | B Explain |__§;'jAmmrace | ADEMS Output | 9 Oz, Output
Results:

[122]

Chapter 4

There are six columns in the website table. But, we see from this example that we
are only specifying four columns and four values in our insert. In this statement,

the values will be inserted according to the order determined by our named column

list. The remaining two columns, blog_id and hit_count, will be populated with
nulls. We see the results in the next query. Notice the row where website_id equals

9—init; blog id and hit count are null.

[companyiink @orct |

FPERRO B8 ¢ | 00851957408 seoonds

select * from website:

% J

P> Resutts | (=] Script output | TExpisin | 5 Autatrace | ADEMS Output | EhOWs, Output

Results:

WEBSITE_ID || WEBSITE_URL |8 wessite_pEsc |8 socm |l HT_count [§ EmpLovEE D

1 9 http: My companylink . comiwhite Kens Site (rully [ril) 7
2 1 http: ey companylink.comifjohnzon Jims new ste 1 234 1
3 2 http: iy companylink . comimiliams Deskiop rallout project site 2 54 2
4 3 hitp: fhvewene companylink comidperez . The Perez site (rlly 48 a8
5 4 kit ey companylink comigmoore Garywarld! 3 72 11
E 5 kit i companylink . comiklenwis Wirter sales push project site 4 14 14
7 B hittp: thoesaeee companylink . comimgarcia Matts cool wehsite 5 g5 a
g 7 ittt companylink.com/fchall Cyrithia Halls wehsite (rually 24 12
9 3 http: Mo companylink.comfMthomas Operstions Branch website (rually 9 16

Not all columns can contain nulls. In later chapters, we will see how to construct
rules that forbid certain actions from being taken on our tables, including the

insertion of null values. These rules are called constraints.

[123]

Data Manipulation with DML

Multi-row inserts

Our previous INSERT statements have resulted in the addition of one row per
statement. As we stated, these were single row inserts. With these types of statements,
if we want to insert multiple rows, we must run multiple insert statements. However,
we can also insert multiple rows into a table using multi-row inserts as shown in the
following screenshot:

[}companyﬁnk@orcl |
FPERRO B8 ¢ 004352205 seconds

INSERT into email_ copy
SELECT * FROM email:

%

[Resutts | |=] Script Output
Results:

B Explain | 55 Autatrace | ADEMS Output

In this statement, we use a SELECT statement to copy the values from the email
table, row by row, and insert them into the table called email_copy. In order for

this statement to succeed, it is vital that the email and email copy tables have the
same order and number of columns and that their datatypes match. Failure to do so
will result in either an error or data insertion into the wrong columns. This type of
multi-row insert is also referred to as an INSERT. . SELECT statement, because of its
use of the SELECT statement to retrieve the rows to be inserted. If we had selected all
the rows from the email copy table before the previous INSERT. . SELECT statement,
we would have retrieved zero rows. The email copy table (by design) was empty.
Now if we select the rows, we see rows that are identical to those in the email table,
as shown in the following screenshot. This is essentially a method to copy rows from
one table to another.

[124]

Chapter 4

l}- companyiinkdorcl |

FPEERO 88 ¢ 00200288 seconds

select * from email_copy:

|,

Resutts:

[Resuts | [=] Soript Output

B Explain

9 autatrace | ADEMS Output |

oo~ M th s L ka

LN
12
13
14
15
16
17
18
18
20
eyl
22

emalL_o | Emai_sDDRESS

@ empLovee D |

1 jiohnzon@companylink com
2 jiohnzond@amail com

3 mwvilliamsg@oompanylink com

4 landersonE@companylink .com

4 drobinzon@companylink.com

& mgarcia@companylink .com
T mgarcia@hotmail.com
& hharrisi@companylink.com
9 kwhite@companylink.com
10 kwhite@yahoo.com
11 dperezi@companylink .com
12 llee@companylink .com
13 llee@gmail.com
14 llee@yahoo.com
15 colark@companylink com
16 gmoore@companylink .com

17 chal@companylink .com

18 srodriguezE@companylink .com

19 klevvis@@companylink .com
20 klevvizi@@ogmail .corm
21 gtaylord@companylink cotm

22 kthomas@@companylink .com

oW W - - m h h B Rk = =

11
12
15
14
14
15
16

Conditional Inserts—INSERT...WHEN

Broadly speaking, we can say that single-row inserts use the simple INSERT INTO
clause. As we saw in the previous section, multi-row inserts use the INSERT. . .
SELECT format. We conclude our examination of INSERT statements with a look at a
final type that uses a new clause —the INSERT WHEN. An INSERT WHEN clause invokes
a conditional insert statement. It inserts certain rows based on a given condition.

[125]

Data Manipulation with DML

We can think of a conditional insert as an INSERT statement paired with a
conditional IF...THEN statement. A conditional INSERT statement is shown
in the following example:

Dcompanyﬁnk@om! |
PERRO B8 ¢ 005257836 seconds

THSERT
THEH (employee_id = 9) THEH

INTO email copy

VALUES (23, 'lleeBnowhere.com', 9)
THEH (employee_id = 10) THEH

INTO email copy

VALUES (24, 'cclarkfnowhere.cow', 10)
SELECT * FROM employes:;

%
B> Resuts | [Script output | ERExpisin |E_‘:].&utmrace | A DEMS Output

Results:

To understand this statement, we look first at the last line —the SELECT statement.
This portion of the statement drives the conditions that are used. The statement will
first select all rows from the employee table. Whenever it encounters a row where
the employee_id is 9, it will insert a row into the email_copy table with the values
specified in the first condition; namely, 23, 'llee@nowhere.com', and 9. Likewise,
when it encounters a row where employee_id = 10, it will insert a row with the
values specified in the second condition. Since there is one occurrence of the value

9 in the employee table and one occurrence of the value 10, this statement will
insert two values into the email_copy table. The results are shown in the following
screenshot. Compare this to the rows in the email table to see the difference.

[126]

mailto:llee@nowhere.com

Chapter 4

[} COmMpIRyiink @orct |

PERRS B8 & 004113937 seconds

select * from email copy;

. 4

Resufts:

[Resutts | | =] Script Qutput

ES)Explain

9 autctrace | ADEMS Output

eval o |8 EmaL_soDRESS

@ emrLoveE D

-

L I =t I 1 IR U s B o |

10
11
12
13
14
13
16
17
13
19
20
|
22
23
24

1 jiohnson@companylink .com
2 jiohn=oni@gmail.com
3 mevilliame@E@companylink .com
4 landersonig@ocompanylink .com
5 drobinson@ocompanylink.com
B mgarcia@companylink .com
7 mgarcia@hatmail.com
& hharris@@companylink.com
9 kwwhite@companylink .com
10 kwwhite@yahoo .com
11 dperezi@companylink.com
12 llee@companylink.com
13 llee@gmail com
14 llee@yahon.com
15 colarkd@companylink .com
16 gmoare@companylink .com
17 challi@companylink com
18 srodriguez@companylink.com
13 klewis@campanylink com
20 klevwis@@gmail .com
21 gtaylor@companylink.com
22 thomasi@companylink .com
23 llee@novwhere . .com

24 cclarki@nowhere.com

1

O oW W om0~ - m h s Wk

10

The INSERT WHEN is a less common, more advanced INSERT statement. It is not

covered on the certification exam, but is included here for completeness as an

example of a conditional insert.

[127]

Data Manipulation with DML

Modifying data with UPDATE

Next in our examination of the subject of data manipulation is the ability to change
existing database data. This section looks at a number of the common methods to
update data within our database.

Understanding the purpose and syntax of the
UPDATE statement

The first of our DML statements allowed us to insert new data into a table. However,
often the data we're interested in already exists in the table and simply needs to be
altered in some way. In these circumstances, we need to modify the data, not insert
it. In such situations, we use an UPDATE statement. Its syntax tree is shown as follows:

UPDATE {table name}
SET {column name} = {value2}
[WHERE {column name} = {valuel}];

Using the UPDATE statement, we modify the data in a particular column based on a
condition —where a column name equals some value that we provide.

Writing single-column UPDATE statements

A situation has occurred at Companylink. A number of employees participating in
the Companylink social networking site have changed their addresses, but these
changes were never recorded in our database. Additionally, some of the addresses
were recorded incorrectly when they joined Companylink. Because of this, a number
of employees on the mailing list are not getting their written privacy notifications. It's
up to us as the SQL programmers to fix this situation. To do it in the most efficient
manner possible, we'll use the UPDATE statement.

The first of our corrections will be to fix the incorrectly recorded address for Ken
White, whose employee ID number is 7. The address shown for Ken is 5234 Park
Place, Leawood KS, 78659. His correct address is 523 Park Rd, Leawood KS, 78659.
Our next example shows us Ken's incorrect address, for reference. The following
screenshots demonstrate the way to use an UPDATE statement to correct the problem:

[128]

Chapter 4

Dcampanyﬁnk@orcr I
FPERRO B8 ¢ 00255052 o

select street_address, city, state, zip
from address
where employee id = 7;

.

B> Resutts [script output | EREpiain |§.a]Amntrace |13.DBM5 Output
Fazults:

STREET_ADDRESS | CITY | STATE | z|P|
1 5234 Park Place Leawood KS 7aE59

Next, we issue an UPDATE statement to change Ken's address to the correct value.

Dcompﬂnyﬁnk@orc! I
PERRO BB ¢ 001150765 seconds

UPDATE address
SET sztreet _address = '523 Park Rd'
where employee id = 7;

W

[Resutts | [=] script Output | BEsplain | B autotrace | ADEMS Outpout
Results:

To write this statement, we first identify the condition we will use to determine
which rows are updated. In our example, we're targeting the row or rows where
employee_id equals 7. In our case, this is only one row. Once that row has been
identified, we construct our statement to alter the value for street_address, which is
specified by our SET clause, and change it to the string value '523 Park Rd'. Once the
statement is executed, SQL Developer reports back to us that one row was updated,
in the lower-left corner of the screen.

[129]

Data Manipulation with DML

We can see the change in Ken's address using the following query:

Dcompanyﬁnk@orc.f |
FERR O BB ¢ 000888523 seconds

SELECT street_address, city, state, zip
from address
YWHERE employee_id = 7;

% 4
> Resutts |] Script Output | 8 Explain | B Autetrace | ADEMS Output |
Results:

STREET _ADDRESS | CITY | STATE| ZIP|
1 523 Park Rd Leswood KS 7EE59

It is important to notice several facts about our UPDATE statement. First, the WHERE
clause specifies a condition —any condition we choose. In our case, we defined
this condition as where employee_id = 7. We could, however, choose to assign a
condition based on another column. One very straightforward condition we could
have used would be the clause where street_address = '5234 Park Place'.
This would locate the row where this address condition was true and update the
data accordingly. However, we would have to be certain that no other employee
had a street address of '5234 Park Place', perhaps in another city. If there were two
occurrences of that street address, both would be changed. Oracle updates the
data based on a strict interpretation of the condition, so you must be careful when
assigning it.

The second, and probably most important, fact to remember when using UPDATE
statements is that it is crucial to specify a condition. Assume that we re-wrote our
UPDATE statement incorrectly, as shown in the next screenshot. Do not run this
statement — it will modify all of the column data.

[= companytink @orct |
FPERRS B8 ¢ 002692242 seconds

UPDATE address
SET street_addreaz = '523 Park Rd':

i W

[Resutts | [script output | BExpisin |§] Autotrace |I3.DE:MS Ottt
Results:

[130]

Chapter 4

In this statement, we've instructed Oracle to update the address table as before,
setting street_address to the indicated value. However, we have neglected to
specify the WHERE clause that forms our condition. As a result, Oracle will update the
street_address column in the table, changing each street_address in the table to the
specified value. In short, if we run this statement without a limiting condition, every
employee will have a street address of '523 Park Rd'. Unless this is what we want, we
must include the condition that limits the rows to be updated.

B SQL in the real world

Omitting the limiting condition when running DML statements is one
of the most common mistakes that is made by new SQL coders. The
results of such a mistake can be disastrous if done on a production
%%‘ table. However, in some circumstances, running an update on every
row value for a column may be completely legitimate, such as the goal
of updating a particular date column with the current date. Omitting
the limiting condition isn't always wrong. Just remember to use the
WHERE clause when it is needed. -

Multi-column UPDATE statements

For our second task in correcting our Companylink addresses, an employee, James
Johnson, has moved to an entirely new address in a different city. However, his

row values for employee idand address_id do not need to change. This leaves

us with four column values to update: street _address, city, state, and zip. We
could accomplish this by running four separate UPDATE statements, each specifying
a different SET clause. However, the best approach is to use our UPDATE statement to
change multiple column values at once, as shown in the next screenshot:

[:} companylinkimorct |
FPERRO® W8 ¢ 000780544 seconds

UFDATE addrezsz
SET street_addresz = '35340937 Bannerman Rd',

city = 'Beaumont',
state = 'MH',
zip = 23483

VHEFE employee_id = 1;:

W
[Resutts | [5] Script Output | [Explain |.§.1:j.&.m0’[race | FADBMS Output

Results:

[131]

Data Manipulation with DML

In this example, we identify James Johnson as having an employee ID number of 1.
This forms our limiting condition. Next, we need to instruct Oracle to update four
columns: street_address, city, state, and zip, and change them to the values
we've provided. To do this, we specify each column and its new value, separated by
commas. Our example places them on different lines for greater readability, although
this isn't syntactically required. Using this multi-column UPDATE, we can update any
column, provided that it exists in the table.

Although it is common to use conditions of equality when forming limiting
conditions, it is not required. Any of the conditions we saw in Chapter 3, Using
Conditional Statements can be used as a condition in an UPDATE statement, including
conditions of non-equality, range, list, set conditions, and even Boolean conditions.
The statement in the following screenshot combines a number of these types of
conditions — list conditions, Boolean conditions, and pattern-matching.

(= companylink@orcl |
FPERRO B8 ¢ 0000811 seconds

UFDATE address

SET zip = 53243

YHERE zip im (44392, 20772, 35870)
AHD city like 'Le%!

AHD employee_id > &;

.

[Resutts _J Script Cutput
Fesufts:

ElExplain | T3 Autatrace | ADEMS Output

Removing data with DELETE

Lastly in this section, we examine the use of DML statements to remove data from
the database.

[132]

Chapter 4

The purpose and syntax of the DELETE
statement

As important as it is to be able to add and change data, sometimes data needs to

be removed from a database. For example, say that a company keeps an opt-in
mailing list. When a customer opts-in to receive mailings from the company, their
information is placed into a table called mailing list. If the customer decides that
they no longer want to receive information from the company, they can opt-out of
the mailings. In such a situation, the information should be removed from the
mailing list table. In SQL, we remove data from a table using the DELETE
statement. Its syntax tree is shown as follows:

DELETE FROM {table name}
[WHERE {column} = {value}];

Deleting rows by condition

In SQL, the DELETE statement is the logical opposite of an INSERT statement. We use
it to remove rows from a table. However, unlike the INSERT statement and similar
to the UPDATE, we specify a condition when using a DELETE. This condition, denoted
with a WHERE clause, will determine which rows are deleted from the table. Our first
example of a DELETE statement is shown in the following screenshot, which is the
logical opposite of the INSERT shown in the previous INSERT statement:

[} COMPIRyink Porcs |
FPESRO B8 ¢ 000545097 seconds

DELETE FROM award
YHERE award id = 7;

.

[Resuts | [=] Script Output
Results:

E)Explain |) Autotrace | ADEMS Output

[133]

Data Manipulation with DML

In this example, we designate the award table as the target for our deletion. We
next specify a WHERE clause that indicates rows with an award_id value of 7 will be
deleted. Since our Companylink award table has only one row with an award_id
value of 7 (the one we inserted), only one row will be deleted. We see the result of
the DELETE in the following query. For clarity, you can compare this to the previous
query to see the table rows before the DELETE occurred.

(= companylink @orci |
FERRS B8 ¢ 000575309 ssconds

SELECT * from award;

% 4
[Resutts| =] Script output | T Explsin | 3 autotrace | B DEMS output
Results:
AWARD_|D | AWARD_DESC |
& Highest Certification Score

1 Zalezperson of the year

2 Technological paper winner
3 Cleanest desk

4 Fastest typist

5 Employee of the year

- M W 4 L R =

G Best new employes

Because the DELETE statement removes an entire row, we do not make use of a
named column list, as with the INSERT statement. We simply identify a value or
values that indicate which rows should be removed. Like the UPDATE statement,
however, we can make use of the numerous types of conditions found in WHERE
clauses. The next several examples demonstrate some of the different types of
conditions we can couple with our DELETE statements. First, we demonstrate
DELETE operations using pattern matching with LIKE.

[= companyiink @orci |
FERRAS BB ¢ | 10044542 seconds

DELETE FROM atrard
VHERE award desc like 'Highesty';

.

B> Results (=] script Output | BExplain | B autotrace | E0EMS Output
Results:

[134]

Chapter 4

Next, we look at the use of Boolean conditions, specifically the AND.

D companylink @orcl |
FPERRAD VE & 000630778 ssconds
DELETE FROM wehsite

YHERE website_id = 3
AHD employee_id = 7:

% 4
D Resutts [script output | BEplain | B autotrace | FIDEMS Output
Results:

Lastly, we examine the use of set operations as conditions for a DELETE statement.

Dcompanyﬁnk@ord |
FPERRO B8 ¢ 005779838 seconds

DELETE FROM email_copy
WHERE email id in (4, &, 9):

F .
B Resuts| (=] Seript Output | 3 Expiain | 59 autotrace | FLDEMS output
Results:

Deleting rows without a limiting condition

As with the UPDATE statement, it is crucial to remember that any DELETE statement
executed without a WHERE clause will delete all the rows in the table. It is extremely
important to be able to accurately identify the rows you wish to delete. Failing to
do so can have unforeseen consequences. The following example demonstrates the
results of issuing a DELETE without a limiting condition. If you select the rows from
the email_copy table after running the DELETE statement below, you will see that
they have all been removed.

[135]

Data Manipulation with DML

Again, sometimes this is what you're trying to achieve. Just remember — use the
DELETE statement with the utmost care.

[= companylink @orcl |
FPESRO BB ¢ 001795346 seconds

DELETE FROM email copy:

.

[Resuts | [=] script output
Results:

E)Explain | £ Autatrace | ADEMS Output

Removing data unconditionally with
TRUNCATE

For our final look at data manipulation, we examine a statement that is slightly
different than the three DML statements we have seen in this chapter. Although like
the DELETE statement it removes row data, TRUNCATE is not a part of the DML
family at all. It is, in fact, a member of the DDL sublanguage, which stands for data
definition language. DDL is generally used to structurally alter a database object,
such as a table, in a fundamental way. We will see many examples of DDL in later
chapters, but for now, we look at the way TRUNCATE operates on data.

The TRUNCATE command is used to unconditionally remove all the rows in a table.
Structurally, the TRUNCATE statement deletes data from a table in a way that is
fundamentally different than the DELETE. For reasons we will revisit in the next
section, a TRUNCATE command can remove all the rows in a table almost instantly,
while the DELETE may take a significant amount of time, depending on the number
of rows being deleted. Thus, when you need to unconditionally remove all the rows
in a table, it is generally better to utilize a TRUNCATE statement.

In order to demonstrate TRUNCATE, we will walk through a number of steps to
repopulate our email_copy table, then remove the data using TRUNCATE. These steps
are shown in the following four screenshots. The first step populates the email_ copy
table using data from the email table.

[136]

Chapter 4

[} companyiink @orcl I

FPERRO® BB ¢ 000459698 seconds

IHSERT INTO email copy
EELECT * from email;

% 4

> Resutts (=] Script Output | B Explain | 5 Autotrace | DEMS outout
Results:

Next, we verify that the data is actually present using a SELECT from the

email copy table.

D companylinkmworct I

PERRe BB ¢

0.01157689 seconds

SELECT * from email copy:

-

B Resuts (=] seript output | S Explain | 3 Autotrace | EDEMS Output

Results:

oo o4 m th B W R

11
12
13
14
15
16
17
18
19
20
2
22

EMAIL_ID| EM&IL_ADDRESS

| EMPLOYEE_ID

1 jiohnsong@companylink.com
2 jiohnzon@gmail.com

3 mwilliamsEcompanylink.com

4 landersong@companylink .com

5 drobinson@companylink .com

B mgarciagioompanylink com
7 mgarcia@hotmail com
& hharris@companylink.com
9 kwhite@ocompanylink cotm
10 kwhite@yahoo.com
11 dperez@companylink.com
12 llee@companylink.com
13 lleed@gmail com
14 llee@yvahon com
15 cclarki@companylink .caom
16 gmoored@companylink.com

17 chall@companylink com

18 srodriguez@@companylink .com

19 klewis@companylink.com
20 klewviz@amail com
21 gtavlor@ocompanylink .cam

22 thomasz@companylink .com

W - e m th th L R = =

10
11
12
13
14
14
15
18

[137]

Data Manipulation with DML

We then execute the TRUNCATE statement that unconditionally removes all data from
the table. The TRUNCATE operation is nearly instantaneous, in contrast to DELETES
from large tables that can take considerable time.

D-compﬂnyﬁnk@am! [
PERERSO B8 & 076405352 seconds

TRUHCATE table email copy:

% 4
> Resutts | [5] script Output | EExplain |§-.a} Stotrace |lEDEmr|s Cutput
Reszults:

Finally, we query the table again to see that all the data is, in fact, removed.

[companylink @orci I
FPERRO B8 ¢ 003555229 seconds

select * from email copy:

.
[Resuits | 5] script Output | B Explain | 5 autotrace | R DEMS Output
Rezufts:

EMaiL_ID [EMAIL_ADDRESS B emPLovEED

Transaction control

What would you say if I told you that none of the DML statements that you've
executed in this chapter, INSERTs, UPDATES, and DELETES, actually did anything to
change data in the database? As much of a surprise as it is, it is actually true. The
use of DML statements comes with a caveat: they must be used in conjunction with
transaction control statements.

[138]

Chapter 4

Transactions and the ACID test

Transaction control is the act of manipulating the timing of events called
transactions. In relational database theory, a transaction is a discrete unit of work
within a database. Transactions allow groups of statements to be executed together,
to allow for correct recovery in the event of failure. Transactions also represent
data concurrency, a process by which multiple users can manipulate data without
the fear their data will be modified with unintended consequences. In essence,
concurrency plays the role of traffic cop for multiple users, allowing them to modify
data according to a set of rules. These rules are represented by the acronym ACID:
Atomicity, Consistency, Isolation, Durability.

1. Atomicity ensures the completeness of a transaction by enforcing the all or
nothing rule. With an atomic transaction, all statements must either succeed
or all must fail.

2. Consistency states that the data returned from a query will be consistent with
the state of the data when the transaction began. If the data being selected is
also being changed by other users, the data results will appear as they were
when the transaction was executed.

3. Isolation enforces the rule that the results of any query against data in
the process of being changed must display the unchanged data until
a transaction completes. In short, data changes must be hidden until a
transaction finishes.

4. Durability refers to the guarantee that, once committed, transactions cannot
be lost. Once a durable transaction is committed, its results are seen as real
and cannot be reversed.

The ACID test deals with the ability of an RDBMS to handle data in a state of flux,
or change, in a reliable way. It prevents hazards such as partially changed data, false
results, and data being changed in an unintended way. The ACID test is crucial to
any RDBMS that claims to have the ability to handle large amounts of data and large
numbers of concurrent users. Like most of the database systems available today,
Oracle's rules of transaction control pass the ACID test.

In an Oracle database, transaction control is achieved using statements that belong
to the sublanguage called TCL, or Transaction Control Language. TCL statements
allow users to begin a transaction and either end it successfully or revert back to
the state of the data prior to the time the transaction began. There are three primary
commands in the TCL sublanguage — COMMIT, ROLLBACK, and SAVEPOINT.

[139]

Data Manipulation with DML

Completing transactions with COMMIT

In Oracle SQL, the coMMIT statement is used to signify the end of a transaction. The
transaction begins with the first DML statement and does not end until a coMMIT is
executed. In the time between the beginning of the transaction and the commIT, the
data being changed is not visible to any other user sessions, in accordance with the
ACID rule of Isolation. A transaction can consist of one or many INSERT, UPDATE, and
DELETE statements. We will demonstrate the isolating nature of transaction control in
the next several screenshots. You can type in these examples from your Companylink
database, but to actually see the effect at work, you will need to have two separate
connections into your database. The first step is to begin a transaction, as shown with
the UPDATE statement in the following example:

[} companyiinkimorcs |
FPERRS BE ¢ | 0100793117 seconds
UFDATE address

SET street address = '5234 Park Place!
WHERE employee_id = 7;

. 4
> Resuts | [5] Script output | BExplain |) Autotrace | FDEMS Output
Results:

Here, the transaction has begun, but no coMMIT has been executed, indicating that
the transaction is not yet complete. Because of this, the session that changed the data
can view the changes, as shown in the next screenshot:

= companytink @orcs |
FPEERS BB ¢ | 000574189 seconds

SELECT * from address
THEEE employee_id = 7;

.. 4
[Resutts =] script output | B Explain |§}Au¢mrace | FADEMS Output | 1 omee. output
Results:

ADDRESS_ID| STREET_ADDRESS| ary | STATE| ZIP| EMPLOYEE_ID
1 7 5234 Park Place Leawood KS 786539 7

[140]

Chapter 4

However, if we open a second connection in SQL Developer, our next example
(notice the two tabs at the top) shows us that the new session cannot see the data
changes made by session #1, due to the isolating nature of transaction control. Notice
how the street address column in the next example differs from the previous one.

[::-“- cokpanyiinkgbore! [D compaRylink 2i@okcl I
FPEZRO® BB ¢ 000472323 seconds

SELECT * from address
THEEE employee_id = 7:

% 4

[Resuts | (5] soript Output | BExplain | B autotrace | EDEMS output |) owis, Outpout
Resutts:

2ooress_o |{ streer_sooress |f arv |f state|§ ze|@ eweLoveep
1 7 523 Park R Leavwood KS 78659 7

As you can see, the street_address shown in the second session is '523 park Rd',

the "before image" of the data prior to a commit. Next, we execute a COMMIT statement
in the original session, the one that actually executed the UPDATE statement, as shown

in the following example. This indicates that the transaction is complete.

D- COmpInyiing @orcl “} corpamding@arel

EERERO 88 ¢ 000450445 seconds
COMMIT ;

.

= Resutts [=] Seript output | EExplsin |5';]Amntrace |@DBMS Output

Results:

[141]

Data Manipulation with DML

Finally, we run the query from the second session again, as shown in the next
screenshot. It shows the state of the data from the address table from the perspective
of the second session following a COMMIT in the first session.

[:P companylinkmorey [E} comparyiink 2iworcs |
FEZRO BB ¢ 000663604 seconds

SELECT * from address
VWHERE enployee_id = 7;

% 4
[Resutts| | =] Script Output | T Explain _F;]Amotrace| FADBMS Output | £ 0w, Output
Results:
ADDRESS_ID | STREET_ADDRESS | Ty | STATE | 7P | EMPLOYEE_ID
1 7 5234 Park Place Leaweood K 78659 T

Now we see that since the transaction is complete, both sessions now see the
same data.

SQL in the real world

In real-world coding situations, special care should be taken when
deciding how often to issue the COMMIT statement. If you commit
%%‘ too often, your performance will suffer. If you execute millions of
statements without a commit, you can cause locking problems that
affect the performance of other users. A good SQL programmer needs
to strike a balance between the two. o

Undoing transactions with ROLLBACK

We've stated thus far that transactions begin with a DML statement and end with a
coMMIT, which completes the transaction successfully. You may ask why that should
even be necessary. Why shouldn't a transaction be considered complete whenever
the DML statement is finished? There are several reasons for this level of control,
but one of the most beneficial ones is the ability to undo a transaction. If you make a
mistake, such as running a DELETE statement without a limiting condition, you can
undo it with another TCL statement —ROLLBACK.

The ROLLBACK statement does exactly what it implies — it rolls back a transaction to
its original state — provided that you have not already issued a coMMIT. In Oracle,
the data involved in a DML statement, such as the values in an INSERT, are not

[142]

Chapter 4

directly applied to the table until the transaction is complete. This is the reason that,
while you can see your DML changes, other sessions cannot. Prior to the coMMIT, the
values are placed in a kind of holding area known as the Undo tablespace. This area
holds the pre-committed version of the data until the transaction is complete. Since
the undo space has our data in its original state, it can be moved back and re-applied
to the table if necessary using a ROLLBACK statement. The next several screenshots
demonstrate the use of the ROLLBACK command. First, we verify that

the data from the blog table is present.

[}compaﬂyﬁﬂk@orci I
PERRASG BE ¢ 006337753 ssconds

select * from bhlog:

W

[Resuts [script output | EREsxptain |?£}Amntrace |I3,DE:MS cutout | €% e output
Results:

ELOG_ID | ELOG_LRL | BLOG_DESC | HIT_COUNT
1 1 hittp: ey companylink . comblogifohnson Jims blog 123
2 2 hitpe itveweny companylink comblogimeiliams Deskop rollout progress blog 32
3 3 httpe iy companylink . camblogfgmaore Garyblag! 24
4 4 Htp: ey companylink .combklewiz ‘Winter sales push blog 18
o 4 http: ihvewey companylink .caomtngarcis Iatt= cool blag a6

Next, we execute a DELETE without any limiting condition.

Dcampanyﬁnk@orc! I
PESRO BB ¢ 007002036 seconds

DELETE FROM EBLOG:

s W

> Resutts | 5] Script Output | 1 Explain | 8 autotrace | FDEMS Output
Results:

[143]

Data Manipulation with DML

As a result of the unrestricted DELETE, all data has been removed from the blog table.
However, take note that no coMMIT statement was issued.

Dcompanyﬁnk@ord l
ERRO BB ¢ 00571485 seconds

select * from blog:

..

B Resuts| &) script output | EEpiain |) autotrace | (FACBMS Output | @ owia output
Results:

BLoc o B BLoc_URL |8 mLoc pEsc B Ar_counr

To correct our mistake, we issue the ROLLBACK command.

Dcompanyﬁnk@orc! l
PEREBS BB & 00048747 seconds

ROLLBACK

-

B> Resuts| =] Soript Output | ¥ Explain | 59 Autctrace | FDEMS Output
Results:

We then see that the data is restored.

Dcompanyﬁnk@om! I
FPERR® BB ¢ 000763198 seconds

gelect ¥ from blog:

Fa. 4

B> Resuts | (=] script Output | E9Exptain |) Autotrace | [ADEMS Output | € o Ot

Results:

sLocp | BLoc URL |8 eLoc pesc [@ wr_counr

1 1 hittpc e companylink comblogfiohnson Jims blog 123
2 2 http Sy companylink comblogimyiliams Desktop rollout progress blog 32
3 3 hitpe ity companylink comblogigmoare Garyblog! 24
4 4 http Svewewy companylink comlesvis ‘Winter sales push blog 15
5 5 httpe Sty Companylink comimoarcia Matts cool blog 6

[144]

Chapter 4

In Oracle, we can even partially rollback a statement using the SAVEPOINT command.
A SAVEPOINT is a named breakpoint or marker that indicates a place to which a
ROLLBACK can occur. While a SAVEPOINT is used in transaction control, the statement
itself does not end the transaction in the way that coMMIT and ROLLBACK do. Consider
the set of statements in the following screenshot. Because this example uses multiple
statements, you must execute it by clicking the Run Script button just to the right of
the green arrow Execute Statement button in SQL Developer. You can also invoke
Run Script using the F5 key.

Dcompanyﬁnk@ord |
FERRO B8 ¢ 012900914 seconds

IHSERT INTO award VALUES (5, 'DML Giant');

SAVEPOINT savel:

DELETE FROM award where award id = 9;

ROLLBACK to sawel:

UPDATE award SET award_desc = 'DML Guru' WHERE award id = 9;
COMMIT ;

.. 4
[Resuttz | [&] Scriet outout. ¥5Explain |B]Aumtrace | ADEMS Output | € Civia, Output
¢Bd &

1 rows inserted

SAVEPOINT sawvel succeeded.
1l rowz deleted

ROLLEBACK to succeeded.

1 rowz updated

COMMIT succeeded.

Let's step through this statement one line at a time. Our first statement inserts values
into the award table. Next, we place a SAVEPOINT called savel into our transaction.
We then execute a DELETE statement that removes the row we inserted. However,
our next statement, ROLLBACK to savel, will rollback the DELETE so that it never
occurred. Finally, we update the award table, changing the value for award_desc,
and then issue a coMMIT. We see the final state of the data in the following query:

[companyiink @orcy |
FERRS BB ¢ 001548577 seconds

SELECT * from award WHERE award id = 2;

. 4
(> Resuts | [l serint output | BlExplain | £ autotrace | EDems output
Resutts:

wiaro_D [awarD_pesc |
1 9 DL Guru

[145]

Data Manipulation with DML

SQL in the real world

Be aware that a number of SQL tools available today use an
AUTOCOMMIT feature. When AUTOCOMMIT is turned on, every

%%‘ DML statement will commit automatically. With some tools, such as
SQL Developer, you must enable the feature. Others utilize it by default.
Be mindful of this fact when issuing DML statements. If you want to
stick to the SQL standard, leave AUTOCOMMIT off.

DELETE and TRUNCATE revisited

As a final word on transaction control, we want to quickly revisit the difference
between the DELETE and TRUNCATE statements. We mentioned earlier in the chapter
that a TRUNCATE command will remove all the rows in a table and can do it much
faster than a DELETE. Now that we've seen how transaction control works, we can
see why. Since DELETE is a DML statement, we know that any deleted rows are first
put into the undo space in case of a ROLLBACK. If we are deleting a large number of
rows, it can take time to do this operation. The TRUNCATE, on the other hand, is a
DDL statement — it requires no COMMIT in order to remove the rows, and thus puts
no data into undo space. This leads us to two conclusions. First, the TRUNCATE can
remove data quickly since it writes no undo data. Second, since the TRUNCATE is a
DDL statement, we cannot issue a ROLLBACK after a TRUNCATE to retrieve the original
data. The TRUNCATE command is fast, but it is also irreversible.

Recognizing errors

To wrap up this chapter, it's time to address what happens when you receive an
error in SQL Developer. By this time, it's likely that you may have made a mistake in
typing a statement and received an error. Errors can be frustrating, but debugging
your code is an essential part of learning to write SQL. To generate an example error,
we incorrectly write the following SELECT statement:

SELCT * FROM award;

We receive this error in SQL Developer.

[146]

Chapter 4

@

Error encountered

X}

An error wwas encourtered performing the requested
operation:

ORA-00900; invalid SGL statement
0000, 00000 - “invalid SO0 statemeant"
*oause:

*action:

“endor code 900Error st Line:1

Examine the error generated previously. The window that pops up indicates an error
was encountered. It lists an error number, ORA-00900, and an error message, "invalid
SQL statement". The rest of the information is not relevant to this discussion. Every
SQL error in Oracle has a designated error number and error message. Many different
kinds of statements generate different errors. The following screenshot displays the
type of error message received when you attempt to change a numeric value into a
character one with the following statement. The award_id is a numeric column, so
attempting to set it to the string value, 'Hello"', results in an error.

UPDATE award SET award id = 'Hello' WHERE award id > 3;

r =)

Error encountered gl

An error was encountered performing the requested
o operation:

ORA-01722 invalid number

01722, 00000 - "irvvalid number”

*oalse:

*Action:

“Wendor code 1722Error at Line:1

Ok

[147]

Data Manipulation with DML

The previous screenshot shows an example of the error returned from referencing
an incorrect column name. The actual column name is award_id, but our WHERE
statement refers to it as award_ident.

UPDATE award SET award id = 3 WHERE award ident = 1;

r =)

Error encountered El

An error wwas encourtered performing the reguested
0 operation:
ORA-00304: "AWARD_DEMT": invalid identifier
00504, 00000 - "%s: invalid identifier”
Cause:
=& ction:
“endor code 904Error &t Line:1 Column:42

Like most implementations of the language, Oracle's SQL is very strict. Any
deviation from correct syntax and semantics will produce an error. Some common
conditions that generate errors include:

e Misspellings of SQL clauses, such as SELECT or INSERT

e Improperly constructed SQL statements

e Mismatched data types

e Violation of primary or foreign keys

e Insufficient object privileges

e Violation of NOT NULL constraints

e Improperly referenced table or column names
When you encounter an error, simply step through your statement slowly, checking
for any misspellings, missed punctuation such as commas, or incorrect table names.

Be patient and refer to documentation when necessary. Debugging is a skill that is
acquired over time.

[148]

Chapter 4

Summary

In this chapter, we've added the power of DML to our SQL abilities. We learned

to add, modify, and remove data from relational tables using INSERT, UPDATE, and
DELETE. We've learned the importance of adding limiting conditions to our UPDATE
and DELETE statements. We've learned about the concept of transactions and used
COMMIT, ROLLBACK, and SAVEPOINT to achieve transaction control. Lastly, we've
looked at the types of error messages generated by Oracle.

Certification objectives covered

e Describe each data manipulation language (DML) statement

e Insert rows into a table

e Update rows in a table

e Delete rows from a table

e Control transactions
At this point in the book, we've learned the basics of retrieving and manipulating
data with SQL statements. However, up to now, everything we've seen has focused
on statements that work with a single table. In examples where we used SELECT, we
did so only with a single table. In the next chapter, we begin to broaden our abilities.

We'll learn how to take data from multiple tables and combine it in useful ways by
joining tables.

Test your knowledge

1. Which of the following terms does not apply to the CRUD model of
persistent storage?

a. Create
b. Undo

C. Destroy
d. Read

2. Which of the following is not a DML statement?

a. INSERT
b. UPDATE
C. COMMIT
d. DELETE

[149]

Data Manipulation with DML

3. Which of these terms is a DML statement that allows you to add rows to

a table?
a. CREATE
b. INVOKE
C. DELETE
d. INSERT

4. Given the structure of the branch table shown below, which of these INSERT
statements uses correct positional notation?

BRANCH_ ID NUMBER (10)
BRANCH NAME VARCHAR2
DIVISION_ ID NUMBER(10)

a.

INSERT INTO branch (branch name, division id, branch id)
VALUES ('Executive', 7, 14);

INSERT INTO branch

VALUES ('Executive', 7, 14);

INSERT INTO branch (branch name, division id, branch id)
VALUES (14, 'Executive', 7);

INSERT INTO branch

VALUES (14, 'Executive',k 7);

5. Which of these INSERT statements uses correct named column notation?

a.

INSERT INTO branch (branch_name, division id, branch_id)

VALUES ('Executive', 7, 14);

INSERT INTO branch
VALUES ('Executive', 7, 14) ;
INSERT INTO branch (branch name, division id, branch id)

VALUES (14, 'Executive', 7);

INSERT INTO branch

VALUES (14, 'Executive', 7);

[150]

Chapter 4

6.

If the following statement was executed against the branch table in
the Companylink database, what value would be inserted into
the division id column?

INSERT INTO branch (branch name, branch id)
VALUES ('Supervisory', 10);

a.
b.
C.
d.

Supervisory
10

Null

0

If the following statement was executed against the Companylink
database, which of the following columns would not be present in
the address copy table?

INSERT into address_copy
SELECT * FROM address;

a.
b.

C.

d.

city
street address
zip

division_ id

Which of the following UPDATE statements is syntactically correct?

a.

UPDATE email SET email address = 'donperez@companylink.com!'

WHERE email id = 11;

UPDATE email WHERE email id =11
SET email address = 'donperez@companylink.com';
UPDATE email WHERE email id=11;

UPDATE email

SET email address TO 'donperez@companylink.com';

Consider the following row in the blog table containing the values in the
column order of the table.

6,
20

'http://www.companylink.com/testpage', 'Test Description',

[151]

mailto:'donperez@companylink.com
mailto:'donperez@companylink.com
mailto:'donperez@companylink.com
http://www.companylink.com/testpage

Data Manipulation with DML

Which of these columns is unchanged if the following UPDATE statement
is executed?

UPDATE blog
SET blog_id
blog desc

7 I

'Test Description2',
hit count 30

WHERE blog id = 6;

a. blog id
b. blog url
C. blog desc
d. hit count
10. Refer to the branch table in your Companylink database. If the following
statement was executed, how many rows would be deleted?

DELETE FROM branch
WHERE division id = 3;

a. 1
b. 2
c. 3
d. 12

11. Refer to the branch table in your Companylink database. If the following
statement was executed, how many rows would be deleted?

DELETE FROM division;

a. 1
b. 4
c. 6
d 0

12. Which of the following DELETE statements is syntactically correct?
a. DELETE * FROM branch WHERE branch id=5;
b. DELETE FROM branch WHERE branch id=75;
C. DELETE WHERE branch id = 5 FROM branch;

d. DELETE * WHERE branch id =5 FROM branch;

[152]

Chapter 4

13.

14.

15.

Which of the following represents the proper syntax for a TRUNCATE
statement?

a. TRUNCATE branch;
b. TRUNCATE table branch;
C. TRUNCATE table branch where branch id isnull;

d. TRUNCATE FROM table branch;

Which of these terms is not a part of the transaction control acronym ACID?
a. Atomicity
b. Isolation
c. Commit

d. Durability

Consider the following set of statements. What are the values for the row
having branch_id equal to 14 for branch_id, branch name, and division_
id respectively, at the end of the statement?

INSERT INTO branch VALUES (14, 'Research', 7);

COMMIT;

UPDATE branch SET division id = 8 WHERE branch id = 14;
SAVEPOINT saveit;

DELETE FROM branch WHERE branch id = 14;

ROLLBACK to saveit;

UPDATE branch SET branch name = 'R and D' WHERE branch id = 14;
COMMIT;

a. 14, 'Research', 7
b. 14, Rand D', 8

null, null, null

a o

An error is returned

[153]

Combining Data from Multiple
Tables

The ability to retrieve data from a table is an absolutely essential element of learning
SQL. However, real-world requirements often demand the ability to select data from
multiple tables concurrently and present it in a meaningful way. Herein lies the
ability to join tables. This chapter will cover two distinct syntaxes for joins as well

as multiple techniques for combining data from multiple tables.

In this chapter, we shall:

e Examine the concept of joining multiple tables together
¢ Join tables using ANSI-compliant join syntax
e Look at n-1 join conditions

e Join tables using the new Oracle join syntax

Understanding the principles of joining
tables

So far, we have seen several ways to select data from tables. In Chapter 2, SQL
SELECT Statements, and Chapter 3, Using Conditional Statements, we covered
numerous ways to retrieve data and then limit its retrieval by condition. In Chapter
1, SQL and Relational Databases, we extensively discussed the concept of relational
databases. In that chapter, we stated that what makes a relational database different
from a flat file database are the relationships between entities, or in our case, tables.
Up to now, we haven't seen the effect of these inter-table relationships. Each of

our queries is applied only to one table. So, while each of these queries have been
effective for our needs, those needs have never gone beyond the search for data from
a single table. In short, if called on to do so, how would we pull data from multiple
tables with a single query?

Combining Data from Multiple Tables

Accessing data from multiple tables

Consider the columns from two tables, shown in the following two screenshots.
Here, we revisit the DESCRIBE command from Chapter 2, SQL SELECT Statements,
which lists the columns that make up the employee table. In the second screenshot,
we used the shortened version of the command, DESc, to do the same for the
address table.

D companylink @orcl |

>ERZRG BB ¢ 15475315 seconds
DESCEIBE euployee

v

[Resutts | [& Scrint Output | B)Explain |§3Ammrace | ADEMS Cutput |) S Cutput

¢BE

DESCRIBE euplovee

Name Hull Type

ENPLOYEE_ID WUMEER. {10

FIRST NAME VARCHARZ (25)

MIDDLE_INITIAL VARCHARZ (1)

LLST_MAME VARCHARE {50

GENDER CHAR (L)

DOE DATE

START _DATE DATE

ERANCH_ID WUMEEE. {10}

PROJECT_ID WUMEER. {10

SIGNUP_DATE LATE

LLST LOGIN_DATE LATE

LOGTH_COMIT WIMEER {101}

12 rows selected

[companylink @orcr |
FPERSRS® OB ¢ oo seconds

DESC address

.. 4

[Resuts | 5] Soript output. BExpizin | 5 autotrace | R0EMs outout |) oves, output
¢BE

DESC address

Name Mull Type
ADDRESS_ID HUMEER. { 10
STREET ADDRESS VARCHARZ { 50
CITY VARCHARZ {25}
STATE VARCHARZ (2]
ZIP HUMEER { &)
EMPLOYEE_ID HUMEER { 10

6 rows selected

[156]

Chapter 5

As we've said before, the columns in each table characterize different aspects of
that table. The employee table contains information relevant to defining employees
and the address table does the same for addresses. But, if that is the case, why

do the employee and address tables both contain a column called employee id?
Obviously, the employee id column is relevant to employee information, but why
is it applicable to the address table? The sharing of columns such as employee_id
between the employee and address tables is the key to understanding why an
RDBMS is "relational". The relationships shared between tables are defined by the
columns that they have in common.

To see this in action, consider this requirement for our Companylink database: show
me the full name, date of birth, and address for all employees named Gary. One possible
way to do this is with two queries. First, as shown in the following example, we use
a query that selects name information from the employee table where the employee's
first name is Gary.

[}- companyiinkmorcs |
FPERRO B8 ¢ 00650002 seconds
SELECT employee_id, first name, middle_initial, last_name, dob

FROM enplovee
THERE first_name = 'Gary':

%
B> Resuts (=] script output | BExplain | B autotrace | DEMS output | €Y owa output
Reszults:

empLovEED | FRST Mame | mooLe_wmar [B Last_name (8 pos
1 11 Gary R Moore 01 -MO 65

[157]

Combining Data from Multiple Tables

From the results of this query, we see that the only employee named Gary is Gary
R. Moore, who has an employee_id of 11. This provides us with the name and date
of birth, but not the address information. In fact, we cannot query the address table
using the name Gary, since first_name is not a column in the address table. The
only way for us to retrieve the correct address is to identify that Gary Moore has an
employee_id of 11 and use that in a separate query of the address table, as shown
in the following example:

[} companyiink @orcl |
FEERO B8 ¢ 0058948 seconds
SELECT sztreet_address, city, state, zip

FROM address
YHEFE employee _id = 11:

v
[Resuts [=] Script Cutput | [Exeplain |f;:j.£\.m::drace | ADBMS Output

Results:

STREET_ADDRESS | CITY | STATE | ZIP|
1 523 Park R Des Moines & 90272

The results show the address information for employee id with value 11, Gary
Moore. We've found the information that was requested, but it has taken a long road
to get there. What if the requirement was to display this information for all of the
Companylink employees? Acquiring the information is possible, but doing so would
require many queries. Fortunately for us, our Companylink database is a relational
database. The employee and address tables have a relationship between each other.
That relationship is formed by a common column —the employee_id column. Using
that relationship, we can join the two tables.

The ANSI standard versus Oracle proprietary
syntax

In Oracle, we actually have a choice between two distinct join syntaxes; the ANSI-
compliant syntax and the newer Oracle proprietary syntax. The ANSI syntax is the
standard supported by most relational database management systems, including
Oracle. As we mentioned in Chapter 1, SQL and Relational Databases, the standards
used in the SQL language are governed by the American National Standards
Institute (ANSI) and the International Organization for Standardization (ISO). The
ANSI syntax is the standard approved by ANSI and ISO. Its use is widespread. It is
far more common to find ANSI joins in today's SQL than Oracle proprietary joins,

[156]

Chapter 5

even in systems that use Oracle. Nevertheless, it is argued by some that Oracle's
proprietary syntax is more intuitive and easier to understand. Both will be covered in
this chapter. We'll revisit the Oracle standard later in the chapter.

SQL in the real world

Through the course of this chapter, you may find that you like one

a1 standard more than another. Just remember that in the real world,
~

your choice of syntax may be limited by the coding standards of

your organization. The Oracle syntax has yet to reach widespread

acceptance. However, for the sake of the certification exam, it is

crucial that you understand both. The Oracle join syntax is fairly

heavily tested on the exam.

Using ANSI standard joins

In order to join two tables, we will utilize the basic structure of a SELECT statement;
but, we must add a few qualifiers.

Understanding the structure and syntax of
ANSI join statements

When we join two tables, we add a WHERE clause that qualifies that the common
columns between the tables are equivalent. The following is the syntax tree for an
ANSI-compliant join:

SELECT columnl, column2,
FROM tablel, table2
WHERE tablel.common column = table2.common column;

While the join syntax is similar in many ways to a typical select statement, we
notice some differences.

e Asyou might expect, since we are selecting data from two tables, both table
names are specified in the FROM clause, separated by commas

e The syntax of the WHERE clause is different from what we've previously seen

e In our WHERE clause, we specify the condition that the common column from

the first table must be equal to the common column in the second

In constructing this part of the statement, it is important to have first identified the
common column between the tables that forms the inter-table relationship. This
equivalence forms the bond between the two tables.

[159]

Combining Data from Multiple Tables

Examining ambiguous Cartesian joins

Before we look at some examples of typical join statements, it is important to discuss
one type of join that is considered undesirable in most circumstances. A Cartesian
join is a join between two tables that omits the WHERE clause. The result is known as
a Cartesian product. A Cartesian product is formed when every row of one table is
joined to every row of another table. An example of this is shown as follows:

D companyfink @orcl |

FPERRO B8 ¢ 003721004 seconds

SELECT project name, award deac
FROM project, award:

F%
[Resuts | =] script Output | 5 Explain | B autotrace | FADEMS Output | % owvia, Outaut
Results:
PROJECT _MAME | AMARD_DESC |
1 Desktop rollout Salesperzon of the year
2 Desktop rollout Technological paper winner
3 Desktop rollout Cleanest desk
4 Desktop rollout Fastest typist
5 Desktop rollout Employee of the yvear
G Desktop rollout Best new employes
7 Desktop rollout DL Guru
5 Security swareness training Salespersan of the year
9 Security swareness training Technological paper winner
10 Security awareness training Cleanest desk

11 Security awareness training Fastest typist

12 Security awareness training Employee of the yvear
13 Security awareness training Best new employee
14 Security awareness training DL Guru

15 Corpotate website release 011 a Salesperson of the year

16 Corpotate website release 011 .a Technological paper winner

The resulting number of rows shown has been truncated for the sake of brevity. It is
fairly easy to see what is happening without displaying all 40 rows that are returned.
In a Cartesian join, the query returns the first row selected from the project table,
in this case Desktop Rollout, and joins it to every row selected from the award table;
first, Salesperson of the year, then Technological paper winner, and so on. It then
moves to the second row returned from the project table, Security awareness
training, and again joins each row from the award table. It continues in this manner
until every row in the project table has been joined to every row in the award table.

[156]

Chapter 5

The Cartesian product returned from a Cartesian join is generally considered
undesirable because it has little meaning. Since no relationship has been established
between the two tables based on a common column, the data from the project
table does not relate in any logical way to the award table. Such joins are said to be
ambiguous, since no row has any particular relationship to any other row.

It is important to remember that even if the two tables share a common
column, that relationship must be specified in the WHERE clause. Failure
’ to do so will result in a Cartesian product.

A Cartesian join is generally said to produce an a times b product, where a and b
are the number of rows in the two tables. In the next screenshot, the project table
has five rows, while the award table has eight rows. We can therefore say that the
number of rows returned by the Cartesian product of the two tables will be 5 x 8,
or 40, rows. In this way, we can predict the number of rows returned by any
Cartesian join as being the number of rows in the first table times the number

of rows in the second.

The eighth row in the award table was inserted in Chapter 4, Data
Manipulation with DML. If you did not run the examples in that chapter,
% or if you have rebuilt your Companylink database since Chapter 4,
"~ Data Manipulation with DML, you will see seven rows instead. The
resulting Cartesian product will thus be 5 x 7, or 35, rows.

SQL in the real world

Another practical reason that Cartesian joins are considered undesirable

is the immense strain they can put on a system from a performance

perspective. While the 40-row Cartesian product from our example may

~ not seem significant, consider two tables with one million rows each.

Q The resulting number of rows from such a Cartesian product would be

1,000,000 x 1,000,000, or 1x10"%, rows — one trillion rows. Such a mistake
can cause excessive resource usage on your database system to the
point of affecting other users. In fact, when tuning SQL statements, one
of the most common examples of improper code to watch out for is
Cartesian joins.

[161]

Combining Data from Multiple Tables

Using equi joins—joins based on equivalence

The core of the RDBMS is the relationships that are formed between tables. The most
common relationships are based on equivalence. In this section, we examine the
concept of an equi join.

Implementing two table joins with a table-dot
notation

To see an example of the kind of join that would be advantageous to an SQL
programmer, let's return to the earlier request to display name, date of birth, and
address information for all of the Companylink employees. In the earlier examples
in the chapter, we used two different queries to find the required information and
noted the inefficiency of the process. To get this information using a join, we issue
the query shown in the following screenshot:

D companylink @orcl |
FPESRS OB ¢ 01727348 seconds
SELECT first_name, middle_initial, last_name, dob, street address, city, state, zip
FROM employee, address
VHEFE enployee.employee_id = address.employee_id;
.. 4
[Resuts | [5] seript output | EExplain |_F,1'jAmotrace | FADEMS Output | 0 e, Output
Results:
FIRST_MAME | MIDDLE_IMITIAL | LAST_MAME | DOB | STREET_ADDRESS | Ty | STATE | 7P
1 James R Johnzon 01-JAN-60 34097 Bannerman Rd Beaumaont 0§ 23453
2 Mary S Williams 15-MAR-64 523 Park Rd Overland Park KS 44392
3 Linda L Anderson 24-0CT-70 523 Park Rd Mizzion K= T9a29
4 Daniel J Rokinzon 23-MO-59 523 Park Rd Independence MO 12335
3 Matthew K Garcia 14-APR-71 523 Park Rd Lees Summit O 20772
& Helen H Harriz 13-dUL-T5 523 Park Rl Lenexa kS 18332
7 Ken W White 22-FEB-58 5234 Park Place Leawvaod K= o659
5 Donald A Perez 14-MAR-73 523 Park Rd Wanzas City MO 12996
9 Lisa C Lee 15-JUR-63 523 Park Rd Edhwardsvile MO 35870
10 Carol 1 Clark 11-8UG-67 523 Park Rd Topeka KS S7E19
11 Gary R hoare 01-MOY-65 523 Park Rd Des Moines 1A 90272
12 Cynthia B Hall 21-0CT-55 523 Park Rd Waldo B 45758
13 Sandra S Rodriguez. 10-M&Y-74 523 Park Rd Tulza (o] 4 38940
14 Kevin L Lewis 01-JUL-76 523 Park Rd tartin City B 52736
15 George H Taylar 24-DEC-72 523 Park Rd Grandviewy MO E1036
16 Laura | Thomaz 2E-OCT-81 523 Park Rd Piper KS 2817

Let's deconstruct the statement one line at a time. The first line is simply a list of all
the columns that we want to display. The first four are columns from the employee
table and the last four come from the address table. The second line specifies the
tables that are involved in the query. We are requesting columns from the employee
and address tables, so those tables are listed. The third line contains the clause

[156]

Chapter 5

that actually performs the join. We have stated that a join requires the linking of a
common column between the tables. The only column that is common between the
employee and address tables is the employee id column; this column forms the
relationship between the two tables. It is this column that we use to execute the join.
The join clause performs this joining by creating a condition that sets the values for
the employee_id column in the employee table equal to the employee id column in
the address table. Thus, each row in the address table is joined to each row in the
employee table, but only where the values in the common columns are equivalent.
The clause, however, requires that we specify which columns are being referred

to, since they have the same name. To clearly delineate them, we prefix each of the
columns in the WHERE clause with the name of the originating table, followed by a
dot (.). We refer to this as the table-dot notation. As a result, the previous statement
could be read as: Display name and address information from the employee and address
tables, where the employee_id column in the employee table is equivalent to the employee_id
column in the address table.

To see the relationship more clearly, we could rewrite the preceding statement to
include the columns that form the relationship. In the following example, we have
reduced the number of columns returned (for clarity) and included both columns
that form the relationship. The result shows how the employee_id values for each
table match.

D companylink @orcl |

FERRO BB ¢ 0047908 seconds

SELECT first name, last name, employee.employee_id, address.employee_id, street _address, city
FROM employee, address
THERE employee.employee_id = address.employee_id;

.
[B= Resutts| =] seript Output |) Explain |_5.1]Amotrace | ADEMS Cutput | A o Output
Results:

FIRST_NAME |LAST_NAME |EMPLOYEE_ID [EMPLOYEE_ID_1 |STREET_ADDRESS |CTY

1 James Johnson 1 1340397 Bannerman Rd Beaumont
2 Mary Williarms 2 2523 Park Rd Crverland Park
3 Linda Anderson 3 3523 Park Rd Miz=ion
4 Daniel Robinzon 4 4 523 Park Rd Independence
5 Matthesw Garcia 5 5523 Park R Lees Summit
B Helen Hartiz 5] B 523 Park Rd Lenexa
7 Ken Wihite: 7 T 5234 Park Place Leawood
& Donald Perez g 8 523 Park Rd KWanzas City
9 Liza Lee 9 9523 Park Rd Edhwardzville
10 Caral Clark 10 10523 Park Rd Topeka
11 Gary hoare 1 11 5923 Park Rd Des Maines
12 Cynthis Hall 12 12 523 Park Rd Waldo
13 Sandra Rodriguez 13 13 523 Park Rd Tulza
14 Kewin Lewvis 14 14 523 Park Rd Martin City
15 Gearge Taylar 13 145 5923 Park Rd Grandview
16 Laura Thomas 16 16 523 Park Rd Fiper

[163]

Combining Data from Multiple Tables

As you can see, the rows displayed essentially show two tables joined together.
The first_name, last_name, and employee.employee_id columns all belong to
the employee table. The address.employee id, street address, and city
columns belong to the address table. Yet information from both tables can be
displayed together, provided that we join them with a common column. These
joins are categorized as equi joins; joins based on the equivalence of values
between common columns.

» Itis crucial that we explicitly define the two columns that form the join
in the WHERE clause. A failure to do so will generate an ORA-00918 error
e . .
or a column ambiguously defined error.

The following example shows the previous statements rewritten to exclude the table-
dot notation with the originating tables, and the resulting error. Again, this results
because the columns have the same name in each table, yet we have not defined the
originating tables.

[companyiink@orch |
FERROG B8 ¢ 001504297 seconds

SELECT first name, middle initial, last name, dob, street address, city, state, zip
FROM euplovee, address
WHEBE employee_id = employee_id:

..
B Resuts | =] Script Output | BExplain | 1 Autotrace | ADEMS output | € cvws output
Results:

Error encountered §|

An error was encountered performing the requested
9 operation;
ORA-O091 8 column ambiguously defined
005918, 00000 - "column ambiguously defined"
*Cause:
*& ction:
“endor code 915Errar at Line: 3 Column: 20

CK

[156]

Chapter 5

Using two table joins with alias notation

Thus far, our join examples have used two tables. However, a join can be done with
any number of tables, provided they have common columns between them. We
will discuss multi-table joins later in the chapter, but using the table-dot notation
with multi-table joins is considered by some to be cumbersome, since each table and
several columns must be prefixed with the associated table name. As an alternative
to table-dot notation, many SQL coders use alias notation.

We examined one form of alias in Chapter 2, SQL SELECT Statements. With that type,
we used double quotation marks to present column headings that are different

than the actual column name. It allowed us not only to display a different column
name, but also to utilize case sensitivity and whitespace. This type of alias is called a
column alias. We now look at a table alias, a type of alias that allows us to reference
a table using a different name. In the following screenshot, we have rewritten the join
shown previously, this time using table aliases, or alias notation:

[companytink @orci |
FPERRO® 88 ¢ 0016050855 seconds
SELECT first_name, last name, e.employee_id, a.employes_id, atreet_addresz, city
FROM employee e, address a
VHERE e.employee_id = a.employee_id;
%
[Resutts | [5] Script output | EExplain | 5 sutotrace | ADEMS Output | €9 0w Output
Resufts:
FIRST_MAME |LAST_NAME |EMPLOYEE_ID EMPLCYEE_ID_1 |STREET_ADDRESS CITY
1 James Johnson 1 1 34087 Bannerman Rd Geaumant
2 Mary Williziriz 2 2523 Park Rdd Owerland Park
3 Lincka Andersan 3 3523 Park Rl tizsion
4 Daniel Rohinzan 4 4 523 Park Rd Independence
3 Matthewy Garcia -] 3 923 Park Rd Lees Summit
& Helen Harris -] 6 523 Park Rd Lenexa
7 Ken Wuhite 7 7 5234 Park Place Leawaod
8 Donald Perez 5] 5 523 Park Rdd Wansas City
9 Liza Lee 9 9523 Park Rdl Echwearclsville
10 Caral Clark 10 10 523 Park Rd Topeka
11 Gary hoare 1 11 523 Park Rd Des Moines
12 Cynthia Hall 12 12 523 Park R Wyaldo
13 Sandra Rodriguez 13 13 523 Park Rd Tulza
14 Kewin Lewis 14 14 523 Park Rd artin City
15 George Taylor 13 15 523 Park Rd Grandviensw
16 Laura Thomas 16 16 523 Park Rd Piper

[165]

Combining Data from Multiple Tables

This example is very similar to the original statement, but there is one significant
difference. In the FrROM clause, we have added aliases for our two tables. These aliases
are designated by the letters that follow each of the table names. For the employee
table, the alias is e, and for the address table, it is a. Thus, in the WHERE clause,
instead of prefixing the table names employee and address to our columns, we
simply use e and a in place of them. These same aliases are also used in the SELECT
clause, where employee.employee_id and address.employee_id are simply
written as e.employee_idand a.employee_id, respectively. Note that there is
nothing particularly significant about using the letters a and e as aliases. We could
just as easily have used emp and addr as our aliases. The purpose is simply to reduce
the amount of coding that has to be written. Many SQL developers feel that using
aliases is an efficient and readable way to write joins, especially those that involve
numerous tables.

SQL in the real world

Although both table-dot notation and alias notation are supported in
ANSI-compliant joins, the organization you work for may decide that
M one is preferable to the other. As with many of the choices offered to a
SQL programmer, an organization's coding standards may determine
Q how code will be written. This isn't to say that one way is necessarily
better than the other, but rather to support the idea of having
standards for the code written in an organization. Code standards
provide rules for writing and reading code that generally lead to better
interoperability between programmers. -

Understanding the row inclusiveness of outer
joins

The joins we've seen thus far obey one simple rule —they only produce a
corresponding row if there is a match between the values of a column that is
common to both tables. Joins that meet this one-for-one matching criteria are

categorized as inner joins. There are, however, certain circumstances in which we
may wish to include values that do not match. Examine the following screenshot:

[156]

Chapter 5

[} COMPIRyIREmorc |
FEZRO BE ¢ 014439501 seconds
SELECT first name, last name, project hame
FROM emplovee e, project p
THEBE e.project_id = p.project_id;
b W
[Resuttz [=] script Output | T Explain | 5 Autotrace | ADEMS Output | €8 WA Output
Resutts:
FIRST_MAME | LAST_M&ME | PROJECT _MA&ME |
1 James Johnson Security avwareness training
2 Mary Willizms Desktop rollout
3 Linda Anderson Corporate website release 011 .3
4 Daniel Robinzan Desktap rallout
S Matthew Garcia Carporate website release 011 .4
& Donald Perez Corporate website release M1 a
7 Carol Clark Desktop rollout
g Gary hoore Oracle 119 upgrade
9 Cyrthia Haill Oracle 11g upgrade
10 Kewin Lewiz Winter sales push
11 Gearge Taylor Winter sales push
12 Laura Thomas Cracle 119 upgrade

Look carefully at the results of this query. In real-world terms, we have requested
the names of each employee and the project to which they are assigned. However,
our query has returned rows for 12 employees, while our Companylink database
contains rows for 16 employees. This means that the project name information for
four employees was not included in the record set. Why would this be? This lack
of inclusiveness occurs because not all employees have a value for the project_id
column in the employee table. Instead, four of the employees have a null value

in the project_id column. If you wish to see this, simply enter a select * from
employee; query in SQL Developer. In essence, not all employees have been
assigned to a project, thus their rows are not returned because there is no match
of values.

[167]

Combining Data from Multiple Tables

However, if we wished to include these, for example, for a report that was inclusive
of all employees, we could use an outer join. An outer join is a join that purposely
includes null values along with matching values in the result set. To accomplish an
outer join using ANSI-compliant syntax, we use a plus symbol within parentheses,
or (+), as shown in the following example:

= companyiink @orcs |
FPEEAS B8 & 001851958 seconds
SELECT first name, last name, project hname
FROM euployee e, project p
WHERE e.project_id = p.project_id(+):
.. 4
B> Resutts. [=] seript output | T Esplain |_§:] Zutotrace | ADEMS Output | £ 0 Output
Results:
FIRST_MAME | LAST NAME | PROJECT_MAME |
1 Carol Clark Desktop rollout
2 Daniel Rohinson Desktop rollout
3 Mary Willizirms Desktop rollout
4 James Johnzan Security avareness training
5 Donald Perez Corporate website release 011 .a
E Matthew Garcia Corporate website release 011.a
7 Linds Ancerson Corporate website release 011 .a
8 George Taylor Winter sales push
9 Kewin Lewis Winter zales push
10 Laura Thomas Cracle 119 upgrace
11 Cyrithia Haill Oracle 11g upgrace
12 Gary Moore Cracle 11g upgrade
13 Sandra Rodriguez (il
14 Li=a Lee (il
15 Ken White (rully
16 Helen Harriz [null)

As we can see, the four employees who were excluded from the original join are now
included, along with null values for their project_name. Outer joins can be signified
by the terms right, left, or full. In the ANSI syntax for outer joins, which term we use
is determined by the placement of the (+) symbol. This example is known as a left
outer join, since the (+) symbol for inclusiveness is placed on the right side of the
query condition.

[156]

Chapter 5

The inclusiveness of outer joins is often required in data reporting. It prevents values
from "falling through the cracks". A report using the query shown in the example
could be used to point out that some employees have not yet been assigned to a
project; the query shown in the example previous to it lacks this information.

. Notice that the query that we just saw is identical to the original query,
% except for the addition of the (+) symbol next to the p.project_id
/o= column. This symbol simply instructs Oracle to include any rows
associated with null values found in the project id column.

When potential SQL programmers are learning to do outer joins, a common
syntactical question raised is, "which side do I put the (+) on?". This refers to

the question of where the (+) symbol is placed in the statement. Do we put the

(+) with the e.project_id column or with the p.project_id column? This is

an important question, since the placement of the (+) symbol in an outer join is
critical. Fortunately, there is an easy rule of thumb to use in order to remember

this. Always place the (+) symbol with the table that does not contain null values. In this
case, that would be the project table. For instance, the project_id column in the
employee table, or e.project id, includes null values. The project id column in
the project table, p.project_id, contains no nulls. In order to properly execute an
outer join of the two tables, we place the (+) symbol with the table that has no nulls,
the project table and the p.project_id column. Since the project table contains
all the values for project id and the employee table lacks some of these values, we
place the (+) with the column from the project table, p.project_id. In the following
example, we show an example of improper placement of the (+) symbol. Here,

we execute the same query as the original, correct outer join, but we place the (+)
with the e.project_id column from the employee table. The (+) is paired with the
wrong table. The resulting record set is only 12 rows instead of the inclusive 16 we
were attempting to retrieve, since we have not properly instructed Oracle to retrieve
rows with a null value. Always be aware of the placement of the (+) symbol in
outer joins.

[169]

Combining Data from Multiple Tables

The following example demonstrates a right outer join, since the (+) symbol is on the
left side of the condition.

[} companyiink @orcl |
FEERO B8 ¢ 001359167 seconds
SELECT first name, last name, project name
FROM emplovee e, project p
YHERE e.project_id({+) = p.project_id:
.
B> Resuts| || Script Output | B Explain f;jmntrac:e| ADBMS Output | € 0IAR Output
Results:
FRST_Mame | LasT_name { PROJECT name |
1 James Joknson Security avvareness training
2 Mary Williams Dezktop rollout
3 Linda Anderson Corporate website release 011.a
4 Daniel Rohinzon Dezktop rollout
5 Matthew Garcia Corporate website release 011.a
E Donald Perez Corporate website release 011.a
T Carol Clark Desktop rollout
g Gary doare Cracle 119 upgrade
9 Cyrthia Haill Oracle 119 upgrade
10 Kewin Lewwiz Winter zales push
11 Gearge Taylar Wirter sales push
12 Laura Thatmas Cracle 119 upgrade

Outer joins have three configurations —right, left, and full. We have seen examples of
both right and left outer joins. In a full outer join, the (+) symbol is placed with both
columns, allowing the join to include null values from either column in the resulting

set of rows.

In the Oracle proprietary join syntax, outer joins are much easier to interpret. Right,
left, and full outer joins are constructed using the RIGHT OUTER JOIN, LEFT OUTER
JOIN, and FULL OUTER JOIN keywords, respectively. The (+) symbol is not used.

[156]

Chapter 5

Retrieving data from multiple tables using n-1
join conditions

As we have seen, joins can be a very effective way to retrieve information from two
different tables. However, situations can arise that require data to be retrieved from
more than two tables. In these circumstances, we can use our previously-discussed
join techniques to retrieve data from as many tables as we wish, provided that we
can establish the proper relationships between them. For instance, say that we've
been tasked with writing the SQL for a report that will retrieve the information for
employees have created websites and blogs in Companylink. When we are asked to
create joins over multiple tables, it is often advantageous to have an ERD, or Entity
Relationship Diagram, to which to refer. We introduced ERDs in Chapter 1, SQL
and Relational Databases. They are used to graphically represent the relationships
between tables. Let's look at an ERD for our Companylink database. It is shown in
the following diagram:

Employee_

Award award

Project

Email

Employee

Branch

Address

Website
Division

Blog

[171]

Combining Data from Multiple Tables

Study this diagram closely. The tables are each represented by their names inside of
boxes. The lines between the tables indicate the type of relationship between them.
Tables can have different kinds of relationships, although the most common are
one-to-one and one-to-many. In a one-to-one relationship, there is a "one and only one"
relation between each of the rows in the tables. An example of this is the relationship
between the website table and the blog table, shown by a single solid line between
the two. This indicates that for each row in the blog table, there is one and only one
corresponding row in the website table. Thus, we can locate the common column in
the two tables— blog_id—and join the two tables on that column.

The more prevalent type of relationship between tables in a relational model is the
one-to-many relationship. We can see an example of this between the employee

and email tables, denoted by the line and "crow's foot" (three diverging lines)
terminating at the table. When we see this diagram we can interpret it as: for every
row in the employee table, there can exist one or more corresponding rows in the
email table. In simpler terms, we can say that based on this diagram, each employee
can have one or more e-mail addresses. Using an ERD can be a powerful, efficient
way to form our joins.

Let us return to the requirement given to us at the beginning of this section, that is,
to write an SQL query for a report that will retrieve the information for employees
who have created websites and blogs in Companylink. We can surmise that we will
need to select data from the employee, website, and blog tables: a situation that will
require a join. From our ERD, we can see that although relationships exist between
employee and website, and website and blog, no direct relationship exists between
the employee and blog tables. How, then, can we retrieve the requested data? Even
though no direct relationship exists between the employee and blog tables, an
indirect relationship does. This indirect relationship exists because employee relates
to website and website relates to blog. In essence, we can get from employee to blog
through the website table. Doing so will require a multi-table join, as shown in the
following screenshot:

[156]

Chapter 5

[} COMPINYIiRk @orcr |

FERRAO B8 ¢ 004602327 seconds

SELECT first _name, last name, website_desc, blog_desc
FROM employee e, wehsite w, blog b

THERE e.employee_id = w.employee_id

AHD w.blog id = b.blog id:

% 4
[Resuts | =] Scrint Outaut | S Explsin | 5 autatrace | E0EMS outout |) 0w output
Results:
FIRST_Nave [{ LasT_name B weBsTE_DESC (@ eLos_pesc
1 James Johnzon Jimz new site Jim= blog
2 Mary Williams Desktop rollout project site Desktop rollout progress blog
3 Matthew Garcia Matts cool website Mstts cool blog
4 Gary haore Garywarid! Garyblog!
5 Kevin Lewviz Winter zales push project site 'Winter sales push blog

As we can see, this multi-table join is similar to our two-table joins, with two
exceptions. First, our FROM clause contains three tables (the three targets of our
query) instead of two. These three table names are separated by commas and
denoted with aliases. Second, there is an additional join condition specified. Our first
condition, the joining of employee and website, based on the employee_id column,
is specified after the WwHERE clause. Our second condition, the joining of website and
blog, is specified following a Boolean AND operator. In short, we only retrieve rows if
both join conditions are true.

% Notice that the number of conditions, or joins, that must be specified is
= one less than the number of tables involved. This is always the case.

Thus, we can say that for any number of tables, n, that must be joined, there must exist n-1
join conditions. We can refer to this as the n-1 join rule. It is true no matter how many
tables are involved. Thus, if we need to join 20 tables, 19 join conditions will

be required.

[173]

Combining Data from Multiple Tables

In our example, even though we used the website table to get from the employee
table to the blog table, it is not required that we include any columns from

the intermediary table in our query. For instance, let's say that we receive the
requirement, display all employees who have received awards and the name of the award
they received. To begin, we refer back to our ERD. We recognize that we will need
data from the employee table and the award table, so we locate them on the diagram.
We see, however, that they have no direct relationship. Even though no direct
relationship exists, we notice that the employee award table exists between the two.
Thus, we can use n-1 join conditions (in this case, two conditions) to join three tables,
as shown in the following screenshot. We could interpret this query as, display all
employees who have received awards and the name of the award they received.

[} CcOMpIRyink Dorcl |

FPERRO B8 ¢ 00623962 sconds

SELECT first name, last name, award desc
FROM employee e, employee_award ea, award a
THERE e.employee_id = ea.employee_id

AHD ea.award id = a.award id:

F%.
[Resuts |5 Script output
Results:

HExplain |) Autatrace | ADEMS Output

FIRST _MAME | LAST_MAME | AWARD DESC

1 James Johnzon Employes of the yvear

2 Ken White Cleanest desk

3 Gary Moore Technological paper winner
4 Sandra Rodriguez Fastest typist

5 Kewin Lewviz Salezperzon of the vear

B Laura Thomas Best nesw employves

Here, even though we utilize the employee_award table as a bridge between the
tables that contain the data we want, we do not retrieve any columns from it. We are
only required to make use of it in order to form a relationship between the employee
and award tables. In fact, the employee award table is interesting because it holds
very little actual companylink data, as we can see from the following screenshot:

[156]

Chapter 5

[:I- companyiinkworcs |

PEESRO B8 ¢ 002459139 seconds

SELECT * from employee award:

W

[Resutts | |5 Script output

Results:

EFExplain

) Autctracs | FADEMS Output

swiaro_D B paTE_sweroe | EMPLOVEE D |

3 12-Mon-02
3 25-0CT-06
2 05-hAY -0
4 06-APR-03
1 07-JUL-07
G 23-FEE-04

M h = L k=

1

7
11
15
14
16

As we can see, beside the ID values from the employee and award tables, the

employee_award table only contains one valuable column—date_awarded. If we were
to attempt to form a relationship between only the employee and award tables, we
would refer to this as a many-to-many relationship; meaning more than one employee
can have more than one award. In the relational paradigm, this is generally considered
unacceptable due to the problems of forming direct relationships. For our model to be
fully relational, we must resolve this many-to-many relationship with a bridging entity.
In our case, this bridging entity is the employee_award table, which has the primary

function of completing the relationship between employee and award.

SQL in the real world

and draw your own relationships.

In real-world development situations, you may not always have an
M Entity Relationship Diagram at your disposal. Even though an ERD is
tremendously useful, the lack of one should not prevent you from being
Q able to construct complex joins. Instead, simply look at the tables with
your target data and follow the trail of common values between them. It
is often helpful to sketch the tables and columns out on a piece of paper

[175]

Combining Data from Multiple Tables

Working with less commonly-used
joins—non-equi joins and self-joins

Our final look at ANSI-compliant joins will conclude with a brief discussion of two
uncommon types of joins: non-equi joins and self-joins. These types of joins are
less frequently used in actual development and are, sometimes, only considered
necessary in an improperly constructed data model. Nevertheless, we review them
here for the sake of completeness.

Although joins are typically constructed using equivalent values in common
columns, which we have referred to as equi joins, we can join tables based on
conditions of non-equality. A non-equi join is formed between tables where
the join condition is based on any condition other than an equal sign, which can
include <, >, =, <>, and BETWEEN. An example of a non-equi join is shown in the
following screenshot:

[} companyiink @orcl |

FPERASO BE ¢ 001247568 seconds

SELECT eZ.first name, e.last_name, e2.3ignup_date
FROM enployee el, employee el

THERE el.employee_id = 10

AHD el.sigonup date < el.signup date;

. J

[Resuttz| | Scrigt Output

Results:

B Explain _ﬁ:,:j.&utntrace| ADEMS Output

FRST_hame (8 LasT name [sichup_Date |

1 Matthews Garcia 24-JUr-10
2 Donald Perez 17-0CT-10
5 Li=a Lee 20-5EP-10
4 Gary Moore OB-ALG-10
5 Gearge Taylor 06-0CT-10
& Laura Thomas 07 -Mo%-10

[156]

Chapter 5

In this example, we have used a new technique —joining two instances of the same
table. We can do this because we have separately aliased the employee table as

el and e2. The two instances of the employee table are joined together based on

two conditions. The first condition specifies an employee id of 10, limiting the

el instance of the table to only that row. The second condition, the non-equi join,
returns all values with a signup_date in the e2 instance that is greater than the
signup_date in instance e1. Since the el instance is reduced to only rows where
employee_id equals 10, the query returns rows greater than that value. In real-world
language, this query could be described as, Return employee information where the
employee signed up for Companylink after employee #10. A non-equi join does not always
have to use two instances of the same table to complete the join, as in our example.
Some non-equi joins create a join between two tables without a common column
utilizing the BETWEEN clause. However, the table data must be structured in a way
that makes this possible.

A table can also be joined back on itself using a self-join. We've seen joins between
different tables where a common column is used as the join condition. However, a
self-join is constructed when one column of a table is joined to a column in the same
table. Self-joins are sometimes used where a developer needs to iterate over a single
table. An example of a self-join is shown in the following screenshot. Again, it uses a
single table, aliased as two instances.

[:} companylink orcl |

FPERSRO B8 ¢ 001058375 seconds

SELECT eZ.first_name, eZ.last name, eZ.project_id

FROM enployee el, employee el
VHERE el.employee_jid = 2
AHD el.project_id = eZ.project_id:

W

(= Resuts | | Seript Output
Fesults:

E)Explain | B Autctrace | ADEMS Output

FRST_NamE |§ LasT_name 8 ProsecT D |

1 Mary Willizns 1
2 Daniel Fohinson 1
3 Carol Clark 1

[177]

Combining Data from Multiple Tables

In this statement, the first instance of the employee table, e1, is limited by rows
having an employee_id equal to 2. This is then joined to the e2 instance, where

the project_id values are equivalent. In real language, this query could be stated
as, Display the employee and project ID information for all employees who have the same
project ID number as employee #2. A self-join can also be accomplished without
aliasing the same table, provided that the table has a column that relates back to a
different column in the same table. An example might be an employee table with a
supervisor_id column that contains the employee_id of the supervisor. Since the
supervisor is also an employee, the supervisor_id column could be related back to
the employee id column.

Understanding Oracle join syntax

Thus far, we've looked at the ANSI standard for the syntax used in joining tables.
As noted previously, that standard is used throughout the information technology
industry in many database management systems. However, when we are using
Oracle, we have another choice —Oracle's new join syntax.

Beginning with database version 10g, Oracle has provided a new syntax for
retrieving data from multiple tables. While Oracle's syntax has not yet gained
widespread acceptance, we will see that it offers some advantages, not least of which
is its simpler syntax. Many consider Oracle's join syntax to be more intuitive and
readable than the ANSI standard.

Using Cartesian joins with Cross join

As we mentioned, the Cartesian product resulting from a Cartesian, or Cross join,
is not always desirable. However, we can utilize it if necessary, using the Oracle
join syntax as well. To do so, we use the CROSS JOIN clause, as shown in the
following screenshot:

[156]

Chapter 5

[companylink @orct |
FERRO BB ¢ 006352 seconds

SELECT branch name, blog url
FROM branch CROSS JOIH blog:

F% 4
[Resutts| [5] script cutput
Resuft=s:
BRancH_NaME | BLOG_URL |
1 Developer hittp: Sy companylink . comblogfiohnson

) Explain | £ Autatrace | ADEMS Output | oA Output

2 System Admin hittp: Shaesewy companylink.comblogfiohnson
3 Database Admin hittp: Shaesewy companylink.comblogfjohnzon

4 Accourts Receivable hitp e companylink . comdilogifiohnson

5 Recruitment httpzdifaeeeay companylink.comblogifjolbnsan
E Training it S companylink. comblogifiohnson
T Telemarketing hittp: Sy companylink . comblogiiohnson
5 Retail hittp: Shaesewy companylink.comblogfjohnzon
9 Trial Laswyer it Sy companylink . comblogifjiohnsan
10 Solicitar hittp: Sty companylink . comblogifjohnsan
11 Consignment hittp: Sy companylink.comblogfiohnson
12 Managemert hittp: Sy companylink . comblogfiohnson
13 Secretarial hittp: Shaesewy companylink.comblogfiohnson
14 Developer it Shaesewy companylink.comblogimwiliams
15 System &dmin it Sy companylink . comblogimwilisms

In this example, we select one column from each of the branch and blog
tables— branch_name and blog_url, respectively. As we have noted with
Cartesian joins, these tables have no relationship with each other; that is to say,
they have no common columns.

The Oracle CROSS JOIN syntax is very similar to that of the ANSI-
% compliant join. The only real difference is the inclusion of the CROSS
T JOIN clause in place of a comma.

In the ANSI syntax, we make no distinction at all as to any relationship existing
between the two tables. Thus, the ANSI syntax simply looks like a coding mistake,
as if the coder simply forgot to add a wHERE clause. The Oracle syntax makes a
purposeful inclusion of the CROSS JOIN clause to force the issue. With this clause
included, we are explicitly stating that we are, in fact, attempting a Cartesian join
between the two tables. Notice also that just as in the ANSI syntax, the resulting
number of rows from the cross join is a times b rows, where a and b are the number of
rows in the branch and blog tables, respectively. The branch table contains 13 rows
and the blog table contains five rows, resulting in a 65 row result set.

[179]

Combining Data from Multiple Tables

Joining columns ambiguously using
NATURAL JOIN

Since, as we've noted, cross joins rarely produce useful output, let's proceed by
looking at one of the more useful clauses in the Oracle join syntax, the NATURAL
JOIN clause. Let's say that we want to display employee name, starting date, and
e-mail address information for a company e-mailer. To retrieve this information,
we need to draw from two different tables. We can do this with a natural join, as
shown in the following screenshot:

D comparylink orcs |
FERRO 88 ¢ 005642672 seconds
SELECT first_name, last name, start date, email_ address
FROM employee HATURAL JOTH email;

%

B> Resuts| (=] seript output |) Explsin | 5 utotrace | Roems output | @) owa output

Resuts:

FRsT_NamE |§ LasT_name [§ sTarT_pate [EMai_sporess

1 James Johnzon 14-MOV-95 liohnson@companylink .cam
2 James Johnzon 14-MOV-35 jichnzond@gmail.com
3 Mary Williams 24-APR-99 mwvillams@companylink .com
4 Linda Ancerson 25-haN -04 landersoni@companylink .com
5 Daniel Robinson 07-AUG-93 drobinsonEcompanylink .com
B Matthesw, Garcia 24-JUM-03 mgarcia@companylink.com
T Watthew Garcia 24-JUM-05 mgarcia@hotmail.com
5 Helen Harriz 22-JUM-04 hharris@companylink .com
9 Ken White 16-SEP-03 kwhited@oompanylink .corm
10 Ken White 16-SEP-03 kwwhited@yahoo.com
11 Donald Perez S0-JUL-05 dperez@companylink .com
12 Lisa Lee 22-FEB-02 llee@companylink.com
15 Lisa Lee 22-FEB-02 leei@agmail.com
14 Lisa Lee 22-FEB-02 llee@yahoo coth
15 Caral Clark 12-J4M-01 colarkE@oompanylink.cotm
16 Gary Moore 12-FEB-04 gmooreEdcampanylink com
17 Cynthiz Hall 12-DEC-03 challi@companylink .com
15 Sandra Rodriguez 04-41G-09 srodriguez@companylink .com
19 Kewin Lewwiz 06-APR-02 kleswvizg@oompanylink .com
20 Kevin Levvis OE-APR-02 klensvisi@omail.cotm
21 George Taylar 03-MAR-0Z gtaylor@oompanylink .com
22 Laura Thomas 14-FEEB-03 thomas@@companylink .com

[156]

Chapter 5

The output from this statement gives us the desired information. We can also see
that unlike in a cross join, the rows from each table are properly joined together.
No extraneous rows are produced. The striking fact about this statement is that it
contains no WHERE clause. In ANSI-compliant joins, we used a WHERE clause to set
common column values equal. This would instruct Oracle as to how to complete
the join. In the previous example, no common columns are specified. How, then,
does Oracle know how to complete the join? Let's add to the complexity of the
situation by adding the employee_id column to our statement, as shown in the
following screenshot:

[} companylink @orcl |
PERRO BB & 10168351 ssoonds
SELECT employee_id, first name, last name, start_date, email address
FROM enployee HATUBRARL JOIH email;
% 4
[Results| [=] Script output | B Esplain | 55 Autotrace | ADEMS Output | A civa, Cutput
Rezults:
EMPLOYEE D | FIRST_MAME | LAST NAME | START DATE | EMAIL_ADDRESS
1 1 James Johnson T4-MOW-35 jiohnson@@oompanylink .com
2 1 James Johnzon 14-MOV-35 jichnzon@amail com
3 2 Mary Willizms 24-APR-99 myviliams@companylink.cotm
4 3 Linds Anderson 25-MAN-04 landersonigcompanylink com
5 4 Daniel Rabin=son 07-AUG-98 drobinsoni@companylink com
B 5 Mattheray Garcia 24-JUM-05 mgarcisEcompanylink .com
7 S Matthew Garcia 24-JUM-05 mgarcis@hotmail.com
g E Helen Harriz 22-JUM-04 hharris@@oompanylink com
9 7 Ken White 16-SEP-03 kvvhited@@companylink .com
10 T Ken White 1B-3EP-03 kwhited@yahoo . com
11 8 Donaldd Perez 30-JUL-03 dperezi@companylink com
12 S Lisa Lee 22-FEB-02 lleeg@companylink com
13 S Lisa Lee 22-FEB-02 lleeig@amail.com
14 9 Lisa Lee 22-FEB-02 lleeiryahoo. com
15 10 Carol Clark 12-JAaM-01 clark@@ocompanylink .com
16 11 Gary Moore 12-FEB-04 gmoore@campanylink com
17 12 Cyrthia Haill 12-DEC-08 challi@companylink.com
18 13 Sandra Rodriguez 04-A10G-09 srodriguez@companylink.com
19 14 Kevin Lewwiz 0E-4PR-02 Kleswizi@oompanylink.com
20 14 Kevin Lewvis 0B-APR-02 klewis@amail com
21 15 George Tavylar 03-MAR-03 gtaylor@companylink com
22 16 Laura Thomas 14-FEB-05 thomasigcompanylink.coth

[181]

Combining Data from Multiple Tables

If we examine the two tables, we can see that the common column between the
employee and email tables is the employee id column. We can see this, but how
does Oracle know it? It knows because the NATURAL JOIN clause allows for ambiguity
in column names. A natural join with Oracle's syntax is smart enough to be able to
locate the common column between two tables, provided that one exists. When the
statement is executed, Oracle recognizes the request for a natural join, examines the
two tables and sees that there is a column, employee id, with the same name in both
tables. It then makes the assumption that the employee id column is the target for
your join and joins the tables appropriately. In a sense, we could say that a NATURAL
JOIN is less strict, syntactically, than a similar join done with ANSI syntax.

Also notice that the first column we retrieve, employee id, has no table definition.
We have not explicitly noted whether we wish to display the employee_id column
from the employee table or the email table. Were we to attempt a statement like this
with an ANSI join, we would receive a column ambiguously defined error. But, again,
since the NATURAL JOIN clause allows for column ambiguity, the statement retrieves
the column as requested. In truth, with this syntax, Oracle makes the assumption
that it actually does not matter which table the column comes from, since when the
tables are joined, the values produced for the common column are actually the same.
In that example, the values match up side by side. This is the essence of how a join
works — by equivalently joining the values from common columns. Oracle uses this
concept to allow for column ambiguity in natural joins.

What would happen if we attempted to use the NATURAL JOIN clause in a statement
with two tables that did not have a common column? We see the results of such an
attempt in the following example:

[156]

Chapter 5

|} compaRyiinkmorct |

FPERRO B8 ¢ 002083977 seconds

SELECT award_desc, project_hame
FROM award HATURAL JOIN project:

%
[Resutts | | =] Script Output | B3] Explain f;jmmra-:e| AADEMS Output
Results;

SMARD_DESC B PROJECT NamE |

1 Salesperzon of the year Desktop rollout

2 Technological papet winner Desktop rollout

3 Cleanest desk Desktop rollout
4 Fastest typist Deszktap rollout
5 Employes of the year Deszktap rollout
E Best new employes Desktop rollout
7 DML Guru Desktop rollout

§ Salesperson of the year Security aveareness training

9 Technological papet winner Security avwareness training

10 Cleanest desk Security avwareness training
11 Fastest typist Security avwareness training
12 Employee of the year Security avwarenass training
13 Best new employes Security avwarenass training
14 DML Guru Security avwareness training

15 Salesperzon of the year Corporate wehsite release 011 .5

16 Technological paper winner Corporate website release 011 4

From the results, we see that a Cartesian product is formed. Oracle searches for a
common column and, finding none, proceeds to join the two tables the only way it
can—using a Cartesian, or Cross join. While it is true that Oracle's natural join
syntax is less strict, this can lead to unforeseen problems unless proper care is
taken to ensure that the natural join is constructed in such a way as to utilize a
common column.

[183]

Combining Data from Multiple Tables

One of the benefits of using the Oracle join syntax is that it frees up the use of a WHERE
clause. Since the syntax does not require the WHERE clause to establish equivalence
between common columns, as in the case of the ANSI syntax, our statements can use
the WHERE clause to its more common use —restricting row output. An example of this,
that also includes a sort, is shown in the following screenshot. It retrieves the name of
each division and its associated branch, but limits the output to only rows that have a
division_id less than 5. The output is then sorted alphabetically based on
division_name.

D- comparylink @orct |

FERAS 88 ¢ | 004391536 seconds

SELECT diwvision_name, branch_name
FROM division HATUEAL JOIH branch
THERE division_id < &

ORDER. BY division name;

.
[Resutts | | =] Script Output | B Explain |_§;‘jAmotrace | ADEMS Output
Resuts:

DIVISION_AME | BRANCH_NAME|

1 Finance Accounts Receivable
2 Human Rezources Recrutment
3 Human Resources Training

4 Infarmation Technology System Admin
5 Information Technology Database Admin
E Information Technology Developer

7 Sales Retail

5 Sales Telemarketing

Joining on explicit columns with JOIN USING

One of the criticisms of Oracle's NATURAL JOIN syntax stems from its ambiguity:

a NATURAL JOIN allows columns to be joined without any specification as to what
column will be used. While this allows for a more "natural" syntax, the ambiguity
leads to the production of SQL code that lacks the specificity required in some coding
standards. In short, if the column being joined is not explicitly stated, the code can

be more difficult to interpret, often leading to a greater number of human errors. To
combat this problem, the Oracle join syntax also includes the ability to perform a
table join using a column that is explicitly defined. An example of this is shown

as follows:

[156]

Chapter 5

[} CoOMpaRyiink orcs |

FERRO 88 ¢ 001935179 ssconds

SELECT first_name, last name, mesfage_text
FROM employee JOIH message
USIHG (employee_id):

.
[Resutts| [=] Script Outpt
Results:

i Explain | B Actatrace | ADBMS Output | 4 CiwA Output

FRsT_name B LasT e [MESSAGE_TENKT

1 James John=zan Haowey bout lunch?

2 James John=san Call me.

3 Linda Ancerson | lett the project files on vour desk,

4 Daniel Robinson The bozz needs you to call her.

4 Helen Harriz aur appoirtment seith Gary is tamarras.
B Gary hloore Wheres my coffes cup’y

T Cynithia Haill Companylink iz o000 coall

8 Kewin Lenvis I meed you to come in early Friday.

9 Laura Thomasz The office picnic iz Yed.

Although it differs somewhat from the NATURAL JOIN syntax, JOIN USING is similarly
straightforward. The FrROM clause specifies the tables to be joined, in our example
employee and message, separated by a JOIN clause. It is then followed by the
USING clause that specifies, in parentheses, the common column to use for the

join. Thus, in this statement, we join the employee and message tables using the
employee_id column.

Consider this example of a real-world requirement from our Companylink database:
Display all the URLs for websites and blogs in the Companylink system, along with the
website description; however, do not display Gary Moore's site (gmoore), and sort the results
by their website URL. To begin, we examine the website and blog tables and find
that they share a common column—blog_id. This ties the blog table to the website
table, since any of the blogs on Companylink must first have a website associated with
them. Next, we can exclude Gary Moore's site by adding a WHERE clause to restrict
output. Finally, we use an ORDER BY to sort the output.

[185]

Combining Data from Multiple Tables

Our resulting statement is shown in the following example:

Dcompanyﬁnk@orc.f |
FERRO 8|8 ¢ 00132057 seconds

SELECT website_url, blog url, wehzite_desc
FROM website JOIH blog

USTHG (blog id)

THERE webszite_url not like 'Zomoored!
OHDER. BY website url:

.
[Resutts | [= Script Outpt
Resuts:
WEBSITE_URL @ eLoc_uRL @ wessmE_DESC
1 http: ey companylink .comfjiochnzon Ritpc e companylink comblogiobnzson Jims new site

B Explain | B Autctrace | ADEmMs output | E 0 Output

2 http: ey companylink .comklewis kit ity companylink .comiklewis Wirter sales push project site

3 http: ey companylink .comimgarcia bitpoeese companylink comimgarcia Matts cool wehsite

4 http: deenewy companylink .cominviliams bitpc it companylink comblogimyiliams Desktop rollout project site

Recall from earlier chapters that we are using the not 1ike operator to reject any
rows that contain the string 'gmoore', or Gary Moore. Again, using the Oracle
join syntax allows us to use the WHERE clause for row restriction, instead of setting
common columns equal. Although both syntaxes will work, Oracle's syntax could
be considered cleaner since it separates the functionalities of the join and the row
restriction into different clauses.

Constructing fully-specified joins using
JOIN ON

Our final type of join, using the Oracle syntax, removes all of the ambiguity that
characterizes the two previous types. Statements that utilize the JO0IN ON clause are
very close syntactically to ANSI joins. The main difference, again, is that the JoIN
ON clause, like the previous joins that use the Oracle syntax, do not require a WHERE
clause in order to perform the join. An example of using JOIN ON is shown in the
following screenshot:

[156]

Chapter 5

[:I- COMpIRyInE Dorcl |
EERO B8 ¢ 003031279 seconds
SELECT first name, last_name, sStart date, branch name
FROM employee JOIH branch
O0H [employee.branch id = branch.branch id):
o,
> Resutts| [script Output | #Explsin |) sutatrace | ADEMS outout | € ovia, output
Resuts:
FIRST_MAME | LAST MAME | START DATE | ERANCH_MAME
1 Jatmes Jokhnzon 14-MOW-95 Training
2 Mary illiztnz 24-APR-99 System Admin
3 Linda Andersan 25-MA&Y-04 Developer
4 Daniel Rabinsaon O7-AU-98 System Admin
3 Matthesw Garcia 24-JUn-05 Databaze Sdmin
& Helen Hartiz 22-JUM-04 Salictar
7 Ken White 16-SEP-03 Accourts Receivable
8 Donald Ferez 20-JUL-0s Denveloper
9 Liza Les 22-FEB-02 Recrutment
10 Carol Clark 1 2-JAN-01 System Admin
11 Gary Moore 12-FEB-04 Databaze Admin
12 Cynthia Hall 12-DEC-05 Databaze Admin
13 Sandra Rodriguez 04-AL-09 Secretarisl
14 Kewin Lewis 06-APR-02 Retail
15 Gearge Taylar 03-MAR-03 hanagement
16 Laura Thomasz 14-FEEB-05 hanagement

Notice the similarities to an ANSI-compliant join. In the FrROM clause, both tables to
be joined are specified. However, in the Oracle syntax we're using, we utilize the
JOIN clause instead of simply separating the tables with a comma (,). Likewise,

we specify the column to use for the join, branch_id, and denote this with table
notation. However, instead of using a WHERE clause to do this, we can use the on
clause in conjunction with the Jo1IN clause, and surround the common columns with
optional parentheses. The result is a join that still permits the WHERE clause to be used
exclusively for row restriction.

[187]

Combining Data from Multiple Tables

Although the previous example uses table notation to specify our columns, the
JOIN ON syntax fully supports the use of alias notation as well. An example of this
is shown as follows. Here, we simply rewrite the previous example to use aliases.

[} companyhinkimorcs |
FERRO B8 ¢ 001396602 seconds
SELECT first name, last name, start date, branch name
FROM employee e JOIM branch b
OH (e.branch id = b.branch id):
e, W
B> Resuits | =] script Output | 8 Explain | 8 autotrace | @DEms output | € owa outout
Resufts:
FRsT_name (B LasT vave (B start pate | BRANCH NaME
1 James John=on 14-MNOY-95 Training
2 Mary Williams 24-APR-99 System Admin
3 Linda Anderzon 25-mAN-04 Developer
4 Daniel Raobinzon 07-AUG-95 System Admin
5 hiattheswy Garcia 24-JUM-05 Databaze Admin
& Helen Harriz 22-JUM-04 Solicitor
7 Ken White 16-5EP-03 Accounts Receivable
& Donald Perez 30-JUL-03 Developer
9 Liza Lee 22-FEB-02 Recruitment
10 Caral Clark 12-JARM-01 System Admin
11 Gary hoore 12-FEB-04 Databasze Admin
12 Cynthia Hall 12-DEC-08 Databasze Admin
13 Sandra Rodriguez 04-411%-09 Secretarial
14 Kevin Lewviz 06-4PR-02 Retail
15 George Taylar 03-MAR-03 Management
16 Laura Thomas 14-FEB-08 Management

[156]

Chapter 5

If we wished to do so for clarity, we could prefix each of the columns in the SELECT
statement with its appropriate alias to further clarify our code. Again, the JoIn

ON syntax removes the ability to refer to columns ambiguously. If we modify our
SELECT to include an unqualified column, branch_id, as shown in the next example,
we receive the ambiguous column error that we've seen previously.

D companylinkmorel |
FPERRO BB ¢ 002557523 seconds
SELECT first name, last_name, start_date, branch name, branch_id

FROM euwployee e JOIN branch b
OH (e.branch_id = b.branch id};

-~
B> Resutts| [=] seript output | TExplain | 5 autatrace | Eoems outaut | € ovwe output
Results:

Error encountered P§|

AR error wwas encountered performing the regquested
operation:

ORA-00918: column ambiguously defined
00945, 00000 - "column smbiguously defined"
*Calse:

=action:

Wendor code 918Error at Line:1 Column: 55

Ok

Writing n-1 join conditions using Oracle
syntax

As with the ANSI syntax, multi-table joins using n-1 join conditions can be done with
the Oracle syntax. We conclude the chapter by looking at two examples.

[189]

Combining Data from Multiple Tables

Creating multi-table natural joins

The syntax for using a natural join with multiple tables is similar to that of the two-
table natural join we've seen previously. Again, it makes use of the NATURAL JOIN
clause to ambiguously join tables based on common columns with the same name.
An example is shown in the following screenshot:

[companylink @orct |

PERRO B8 ¢ 002260293 seconds

SELECT first name, last name, award desc
FROM enployee

HATURAL JOIH employee award

HATURAL JOTH award:

F %
(= Resutts |5 Seript Output
Reszuls:

FIRST _MAME | L.&ST_NAME| AWARD DESC

) Explain | 5 autatrace | ADEMS Output

1 James Johnson Employee of the vear

2 Ken White Cleanest desk

3 Gary hloore Technological paper winner
4 Sandra Fadriguez Fastest typist

5 Kewin Lewvis Salesperson of the vear

E Laura Thomas Eest new employes

In order to construct this join, we simply use the NATURAL JOIN syntax

twice — once to join the employee table with employee award, then a second time

to join employee award and award. Oracle locates the common columns between
the tables and correctly performs the join. Again, this frees up the WHERE clause for
additional restrictions on the rows displayed. Also note that the order of the NATURAL
JOIN clauses is not important. Even if we attempt to natural join employee to award
and then award to employee_award, the result is the same. Oracle is smart enough to
parse the statement correctly.

Building multi-table joins with JOIN USING

For less ambiguity, we can also utilize the JOIN USING clause to specify the columns
being used for the join. The syntax is similar to a two-table 301N oN. We simply add
additional clauses, as shown in the next example. Here, we join the three tables
employee, website, and blog using two JOIN USING clauses.

[156]

Chapter 5

D COMPIRVIRE Dorch |

FPERRO 88 ¢ 001938559 seconds

SELECT first name, last name, webzite_url, blog url
FROM enployee

JOIH website USIHG (employee_id)

JOIH blog USIHG (blog id):

aw
[Resutts | (=] Script output | 5 Explain | B Autatrace | ADEMS Output | o Output
Results:
FIRST_MAME | LAST MAME | WEBSITE_LRL | ELOG_LRL
1 James Johnzon hittpe Sy companylink comfjohnson kit Aasess companylink . combloglfiohnzson
2 Mary Willizms hittpx My companylink comtrwiliams bttp: Aaseesy companylink comBlogimwiliams
3 Matthew, Garcia hitp: ey companylink comingarcia Hitp dwwweay companylink . comblog/maarcia
4 Gary Moare hittpe Moy companylink comfgmoare Rttphaseesy companylink comblogigmaoore
5 Kewin Lesiz hittpx S companylink comklewis Fittgo: Aoy Companylink comblogklesis
— -
SQL in the real world
As it stands in today's development world, your organization's coding
XY standards may preclude the use of Oracle's relatively new join syntax.

That does not mean it should be ignored. A good case can be made for
the simplicity and readability of the Oracle syntax. Regardless, Oracle
certification candidates must be extremely comfortable with the Oracle
join syntax. It is covered extensively on the examination.

Summary

In this chapter, we've added the powerful capabilities of joins to our SQL repertoire.
We've examined join techniques from two separate syntax families. We learned to
write Cartesian joins, equi joins, non-equi joins, and self-joins in the ANSI syntax for
both two-table and multi-table joins. With the Oracle syntax, we've looked at various
join techniques using the NATURAL JOIN, JOIN USING, and JOIN ON clauses. We've also
spent some time expanding our understanding of how table relationships work and
graphically examined them for our Companylink database, in the form of an Entity
Relationship Diagram, or ERD.

[191]

Combining Data from Multiple Tables

Certification objectives covered

e Write SELECT statements to access data from more than one table using
equi joins and non-equi joins

e Join a table to itself by using a self-join

e View data that generally does not meet a join condition by using outer joins

e Generate a Cartesian product of all rows from two or more tables

In this chapter, we've learned various techniques in joining tables together. In our
next chapter, we'll continue this idea of combining data together using a different
technique — the subquery. Using subqueries, we can combine data from tables in new
ways. We'll follow that subject up by looking at set operations and set theory

in Oracle.

Test your knowledge

1. The relationships between tables are defined by what?

a.
b.
C.

d.

Their query results
The columns they have in common
The number of rows they contain

The number of columns they contain

2. Inan ANSI-compliant join, which clause creates the equivalence relationship
needed to form a join?

a.

b.

C.

d.

The SELECT clause
The FROM clause
The WHERE clause
The HAVING clause

3. Which of these is formed when every row of one table is joined to every row
of another table?

a.

b.

C.

An intersecting product
A union product
A Cartesian product

A truncated product

[156]

Chapter 5

Which of these joins is generally considered the least useful in real-world
situations?

a. A Cartesian join
b. Anequi join

c. A natural join

d. A multi-table join

Given that two tables have 50 rows and 20 rows, respectively, how many
rows would a Cartesian product of the two tables yield?

a. 50

b. 20

c. 100
d. 1000

Given two tables named employee and project, which of these WHERE
clauses is a correct example of a join using the table-dot notation?

a. WHERE e.project_id = p.project_id

b. WHERE project_id = project_id

c. WHERE employee_project_id = project_project_id

d. W