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P R E F A C E

The modern world offers lots of readily available online resources for learning. Wikipedia,
Google, news sources, millions of Web sites and blogs, even YouTube, offer access to
information in nearly any subject that triggers your curiosity and interest. Nonetheless, I
continue to believe that for deep understanding of something, nothing beats the integrated
approach and focus of an old-fashioned printed-on-paper textbook.

When I open a new book, in any subject, the first thing I want to know is what the
book has to offer that makes it worth my while to read it. I would like to try to help you
answer that question for the book that you’re holding in your hand.

The information systems and technology fields are wonderfully exciting places to be! It
seems as though every day brings new developments that alter the ways we create and work
with information. Of course, with this excitement comes a challenge. To be a successful
player in IS or IT we have to be adaptable and flexible.

Much of the change occurs around computer system technology. The computer is,
after all, at the foundation of information systems. A deep understanding of computer
systems is, therefore, an essential element of success. We must be able to understand each
new development, assess its value, and place it in the context of our knowledge of computer
systems.

The subject of this book is the architecture of computer systems. Computer architecture
is about the structure and operation of digital computers. Computer architecture is
concerned with the operational methods of the hardware; with the services provided by
operating system software; with the acquisition, processing, storage, and output of data;
and with the interaction between computers.

There is a tendency for people in information systems and technology to neglect a study
of computer architecture. After all, the technology changes so rapidly—is it really worth
trying to understand something that may be out of date by the time I finish this book? There
is no question that computer technology has evolved rapidly. The computer in a personal
computer, or even in a cell phone or MP3 player is far more powerful than the mainframe
computer of twenty-five years ago, with memory, disk and flash storage capacity, display
and multimedia capability, and ease of use that would have been unthinkable just a few
years ago. Even more important, connecting systems to work together is now routine and
simple.

Interestingly enough, however, as profound as advances in the technology have been,
the concepts of computer architecture that really matter have changed only nominally
over the last sixty years. The new technologies are based on a foundation of architectural
concepts that were developed many years ago. The architecture of a modern computer
system was developed in the 1940s. The instruction set in a modern personal computer

xix
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is nearly identical to that of computers built in the 1950s and 1960s. Modern operating
system techniques were developed in the 1960s. The graphical user interface is based
on a 1960s project. The Internet is built from concepts developed more than forty
years ago.

So you see that an understanding of computer architecture makes it possible to ‘‘ride
the wave’’ of technological change, secure in the feeling that you are equipped to deal with
new developments as they occur, and to have fun doing so. When you are done reading
this book you will have substantial knowledge about how a computer works and a good
understanding of the operating concepts, the hardware, and system software that make up
a computer. You will see the interaction between computers and between data and the
computer. Plus, you will have learned lots of jargon that you can show off at parties and
job interviews.

This textbook is designed for a wide range of readers, both undergraduate and
graduate. The material is specifically directed toward IS and IT majors. There are no explicit
prerequisites, although the book assumes that the student is familiar with a personal
computer. It also assumes (but does not require) some basic programming skills: although
there is no programming in the book, program code is occasionally used as an example to
clarify an idea, and a knowledge of programming is helpful at understanding instruction
set design and program execution concepts. The material in this textbook conforms to
the criteria of the IT Infrastructure course as described in the December 2008 draft of
the joint IS 2008 standard curriculum. Although the material in this book may be useful
as background for system design and implementation project courses, the course can be
placed anywhere in the curriculum.

Most instructors will not cover the entire textbook in a single semester. The organization
of the book is designed to allow an instructor to cover the major topic areas in different
levels of depth, depending on the experience and needs of the students. On the other hand,
it is my intention that this book will serve a student as a useful reference long after the
formal course is completed. It is designed for use as a book where a professional can look
up the basic concepts that clarify new developments as they occur.

This text is the outgrowth of courses that I have taught to IS majors and minors at
Bentley University at both the undergraduate and graduate level for thirty years. Student
responses to the material and the approach have generally been very enthusiastic. Many
students have returned after graduation to tell me that their knowledge in this area has
directly contributed to their career development. Along the way, student comments have
also been extremely helpful to me in the book’s continuing evolution.

Those familiar with previous editions will notice that the organization of the fourth
edition has undergone substantial revision to reflect current technological practices and
trends. In particular, it is no longer reasonable to discuss computers as individual units
without also considering the networks that tie them together; computer networking is
now covered thoroughly in its own section, and there is an increased emphasis on the
integration and synergy of the various components of the computer system and on the
system as a whole. Still, the basic philosophy, organization, and approach remain essentially
similar to those of the first edition, reflecting the unchanging nature of the underlying
principles.
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ORGANIZATION OF THE FOURTH EDITION
OF THE BOOK

The biggest challenge for me as the author of this book has been to preserve the guiding
principles established in the first edition, while reflecting the major changes in the way
computers are used, in the rapid deployment of new technology, and in the resulting
evolution of IS/IT curriculum to reflect those changes. The fourth edition is the most
substantial revision of this book to date, with a new title, a new chapter on systems,
and significantly increased coverage of networking. The case study chapters have been
updated and moved to the Web, along with the chapter on programming tools and the
supplementary chapters on logic design and instruction addressing. Still, users of previous
editions will find much that is familiar; after all, the way in which computers are used
in IS/IT may have changed, but the basic guiding principles of computer architecture are
essentially the same as they have been for many years.

The book is now organized into five parts totaling eighteen chapters, plus four
additional supplementary chapters that are posted on the Web. The first part serves as an
introduction and overview of the role of the computer in information systems; it introduces
the concept of a system and provides a brief introduction to each of the components that
make up a modern computer system. Each of the remaining four parts deals with a single
architectural aspect of the computer system.

Part Two discusses the role and representation of data in the computer. Here we
consider numbers, text, sound, images, video, and other data forms. Part Three presents
the hardware architecture and operational concepts. It introduces the components of a
computer and shows how they collaborate to execute computer instructions, discusses
the nature of a computer instruction set, and explores the interaction between the CPU,
memory, and I/O peripheral devices. Part Four presents a thorough introduction to the
basics of computer networking. Part Five discusses the system software, the programs
that function to make the resources of the computer system, and other interconnected
computer systems and components, accessible to the user and to application programs.

The approach within each group of chapters is layered. Each new layer builds upon the
previous material to add depth and understanding to the reader’s knowledge. Each topic
section consists of a short introduction that places the topic to be discussed into the context
of the computer system as a whole and then lays out in detail the organization of the
chapters within the section. Each topic area is introduced as gently as possible, using ideas
and examples that are already familiar to the student. Successive material is progressive and
accumulative. In addition to the numerous examples that are used throughout the text,
the supplementary chapters offer substantial case studies that show application of the text
material to current examples of importance. Overall, the approach is gentle, progressive,
and accumulative. As much as possible, each section is self-contained.

An overview of the organization of each part follows. More details can be found in the
introductions to each section.

Part One consists of two chapters that present a short overview of computing, placing
architectural concepts into the context of information technology. Chapter 1 introduces
the components of a computer system and shows the relationships among the components.
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It also presents a simple model of computing and discusses the importance of standards
and protocols in the development of computer systems. The chapter concludes with a
short history of computers from the architectural point of view. Chapter 2 focuses on the
concepts of systems, models, and system architectures, using various types of computer
systems as examples.

Chapters 3 through 5 comprise Part Two. Chapter 3 introduces number systems and
basic number system operations; it then explores the relationships between numbers in
different number bases and the conversion techniques between the different represen-
tations. Chapter 4 investigates different types of data formats, including alphanumeric,
image, video, and audio formats. It considers the relationship between numerical and
character-based representations and briefly introduces various devices and data formats
used for data input and output. Chapter 5 studies the various formats that are used to
represent and to perform calculations on integer and floating point numbers.

Part Three discusses the hardware architecture and operational aspects of the computer.
Chapter 6 begins the study with the introduction of the Little Man Computer, a simple
model that provides a surprisingly accurate representation of the CPU and memory. The
model is used to develop the concept of an instruction set and to explain the basic principles
of the von Neumann architecture. Chapter 7 extends the discussion to a real computer.
It introduces the components of the CPU and shows their relationship to the Little Man
Computer model. It introduces the bus concept, explains the operation of memory, presents
the instruction fetch-execute cycle, and discusses the instruction set. It identifies important
classes of instructions and discusses the ways in which instructions can be categorized.

Chapter 8 expands the material in Chapter 7 to consider more advanced features of the
CPU and memory. It offers an overview of various CPU architectures. It continues with a
discussion of techniques for improving memory access, particularly cache memory, and an
introduction to current CPU organization, design, and implementation techniques, includ-
ing pipelining and superscalar processing. This chapter also introduces multiprocessing (or
multicore, in current terminology) concepts.

Chapter 9 presents the principles of I/O operation, and Chapter 10 illustrates how I/O
is performed in various I/O devices. Chapter 11 discusses the computer system as a whole. It
discusses interconnection techniques and integration of the various hardware components.
It also addresses the interconnection of computers to increase computer performance and
reliability, with a specific focus on clustering and on grid computing.

Three supplementary chapters on the Web provide additional resources to support the
chapters in Part Three. Supplementary Chapter 1 (SC1) offers an introduction to Boolean
algebra, combinatorial logic, and sequential logic for those readers that would like a deeper
understanding of the computer in its simplest and most elegant form. Supplementary
Chapter 2 (SC2) offers three detailed case studies of important architectures: the Intel
x86 family, including the Pentium IV architecture and Itanium extensions, the PowerPC,
and the IBM zSystem. Supplementary Chapter 3 (SC3) discusses alternative approaches to
instruction addressing.

Part Four presents a thorough introduction to networking. Chapter 12 introduces
the major features and characteristics of networking, including a careful introduction to
communication channels, a detailed discussion of layered network models, with particular
emphasis on TCP/IP and Ethernet models, an introduction to network topologies, and
finally, a discussion of the different types of networks in use, including LANs, MANs, WANs,
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and the backbones that form the foundation of the Internet. Chapter 13 expands on the
material in Chapter 12 to discuss specific details of various layers, including discussions of
DNS, TCP connections, IP and physical address resolution, the operation of Ethernet, alter-
native protocols, and more. Chapter 14 focuses primarily on communication channel tech-
nology, including analog and digital signaling, modulation and data conversion techniques
between analog and digital, the characteristics of transmission media, and wireless network-
ing. A portion of Chapter 14 appeared in previous editions as a supplementary chapter.

Part Five is dedicated to a discussion of system software. Chapter 15 provides an
overview of the operating system. It explains the different roles played by the operating
system and introduces the facilities and services provided. Chapter 16 presents the role of
the operating system from the viewpoint of the user of a system. Chapter 17 discusses the
all-important topic of file systems. Chapter 18 discusses the operating system as a resource
manager, with an in-depth discussion of memory management, scheduling, process control,
network services, and other basic operating system services. Chapter 18 includes a detailed
introduction to virtual memory technique, and also includes an introduction to virtual
machines. In addition to its hardware discussions, Supplementary Chapter 3 also provides
current Windows, UNIX/Linux, and z/OS case studies.

A fourth supplementary chapter provides an introduction to the system development
software that is used for the preparation and execution of programs.

A detailed list of the changes between the second and third editions of the book can be
found at the book Web site, www.wiley.com/college/englander.

This book has been a continuing labor of love. My primary goal has been to create
and maintain a textbook that explains computer architecture in a way that conveys to you,
the reader, the sense of excitement and fun that I believe makes a career in information
systems and technology so satisfying. I hope that I have succeeded to some extent.

ADDITIONAL RESOURCES
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PART ONE

A computer-based information system is made up of a number of different elements:

■ The data element. Data is the fundamental representation of facts and
observations. Data is processed by a computer system to provide the information
that is the very reason for the computer’s existence. As you will see, data can take
on a number of different forms.

■ The hardware element. Computer hardware processes the data by executing
instructions, storing data, and moving data and information between the various
input and output devices that make the system and the information accessible to
the users.

■ The software element. Software consists of the system and application
programs that define the instructions that are executed by the hardware. The
software determines the work to be performed and controls operation of the
system.

■ The communication element. Modern computer information systems depend on
the ability to share processing operations and data among different computers
and users, located both locally and remotely. Data communication provides this
capability.

The combination of hardware, software, communication, and data make up the
architecture of a computer system. The architecture of computer systems is remarkably
similar whether the system is a playstation, a personal computer that sits on your lap while
you work, an embedded computer that controls the functions in your cell phone or in your
car, or a large mainframe system that is never actually seen by the hundreds of users who
access it every day.

Even more remarkably, the basic architecture of computer systems has changed
surprisingly little over the last fifty-five years. The latest IBM mainframe computer
executes essentially the same instruction set as the mainframe computer of 1965. The
basic communication techniques used in today’s systems were developed in the 1970s. As
new as it might seem, the Internet will celebrate its fortieth anniversary in 2010. All of
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this is surprising considering the growth of computing, the rapid change of technology,
and the increased performance, functionality, and ease of use of today’s systems. This
makes the study of computer architecture extremely valuable as a foundation upon which
to understand new developments in computing as they occur.

Computer system architecture is the subject of this textbook. Each element of the
system is addressed in its own section of the text, always with an eye to the system as a
whole.

Part I is made up of two chapters that presents an overview of systems, and of the
computer system in particular.

Chapter 1 addresses a number of issues, including

■ The ways in which a knowledge of computer architecture enhances our abilities
as computer users and professionals

■ A simplified view of typical computer system architectures
■ The basic components that make up a computer system
■ The fundamental operations that are performed by computer systems

Chapter 1 concludes with a brief architectural history of the computer.
An encompassing theme throughout this text is that of systems and system archi-

tecture. The words ‘‘system’’ and ‘‘architecture’’ appear throughout this book: we talk
about information systems, computer systems, operating systems, file systems, software
architecture, I/O architecture, network architecture and more. You will probably take a
course in System Analysis and Design sometime in your college career.

Although most people have an instinctive understanding of what a system is, it is more
important for us as system professionals to understand the concepts of systems and system
architecture at a deeper level than the average person. Chapter 2 offers careful definitions
and examples of the concept of systems and system architecture, both generally and in the
specific context of the computer systems that are the focus of this book.
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1.0 INTRODUCTION
It is nearly impossible today to escape the immediate reach of computers and
computer-based systems. There is probably a cell phone in your pocket or on your
desk and, perhaps, an iPod as well. For many of you, your laptop or desktop computer
is sitting nearby as you read this paragraph. And that’s not all. Your car probably
has several embedded computers controlling various functions. Even your microwave
oven and the machine that launders your clothes depend on computers to function
properly. As you are probably aware, most of these machines can talk to each other,
using the Internet or some other networking technology.

Indeed, the jargon of computers has become a part of common daily language.
You can open a newspaper and find references to expressions such as ‘‘2 GB DDRAM’’
or ‘‘WXGA LCD display’’ or ‘‘2 MB level 2 cache’’ or ‘‘Wi-Fi’’ in articles and
advertisements. (In a way, it’s scary!) The ad in Figure 1.1, taken from a Sunday
newspaper flier, is typical of recent computer ads.

You’ll notice that this computer features a ‘‘Core 2 Duo Processor’’ CPU, 2 GB of
DDR2 SDRAM memory, a 16× DVD ±RW Drive, and a 160 GB SATA hard drive. It
also contains a 256 MB PCI Express graphics card among other things. But how good
a system is this? Are these features important to the user? Is this the right combination
of features that you need in your computer to have the computer perform the work
that you wish to get done? Are there features missing that we need? Is a Core 2 Duo
processor the best CPU for us? Perhaps we are paying too much for the performance
that we need. Or maybe we need more. And what does ‘‘Core 2 Duo’’ mean, anyway?
What I/O ports might you need to assure a satisfy long-term investment of computers
for your organization? Is a 16× DVD ±RW drive adequate for your work? What if you
have to burn a lot of disks? What other information about this system would allow
you to make a more informed decision? (For example: Hey—where’s the networking
capability?)

Some of the expressions used in these articles and ads are obvious from the
context. Other references may be more obscure. Presumably, everyone today knows
what a ‘‘display monitor’’ is. But how many people know the meaning and significance
of the terms ‘‘cache memory’’ or ‘‘multitasking’’ or ‘‘PCI Express bus’’? Yet all
these expressions have appeared recently in daily newspaper advertisements with the
assumption that people would understand the meaning of the ad.

Despite the jargon, there is obviously no need to understand the inner workings of
most modern computer-based systems to operate them adequately. Indeed, in many
cases the presence of the computer is hidden from us, or embedded, and its operation
invisible to us as users.

Even as experienced users, we can run standard software packages on a personal
computer without understanding exactly how they work; we can program a computer
in a high-level language without understanding the details of how the machine

5
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FIGURE 1.1

A Typical Computer Ad

TECHNOLOGY CHOICES
TO BUILD YOUR BUSINESS

New! Vostre 400 Mini Tower

ON SALE  
NOW!

Only Drex delivers this combination of  
performance and expandibility in a system  
designed exclusively for Small Businesses— 
the Vostre 400.
 .   Intex Core 2 Duo Processor
 .   Genuine Home Basic Operating System
 .   2GB DDR2 SDRAM
 .   160GB SATA Hard Drive
 .   16x DVD+/-RW Drive
 .   256MB PCI Express Graphics Card
 .   1-Yr Limited Warranty, Next Business Day On-Site  
        Service, and  Hardware Warranty Support
 .   20" Widescreen Flat Panel Display

NEW! Lower-priced upgrades: 
Upgrade to 4GB Memory, 250GB Hard Drive,
and 22" Widescreen Flat Panel Display for  
only $90!!

executes the individual instructions; we can design and implement Web pages without
understanding how the Web browser gets its pages from a Web server or how the Web
server creates those pages; we can purchase a computer system from a salesperson without
understanding the specifications of the system.

And yet, there is something missing. Perhaps the package doesn’t do exactly what
we want, and we don’t understand the machine well enough to risk fooling around with
the package’s options. Perhaps if we understood the system better we might have written
and configured the program to be faster and more efficient. Perhaps we could create Web
pages that load faster and work better. Perhaps the salesperson did not sell us the optimum
system for our job. Or perhaps it’s nothing more than a sense of excitement that’s missing.
But that’s important, too!

You are reading this book because you are a student studying to become a computer
professional, or maybe you are simply a user wanting a deeper understanding of what the
computer is all about. In either case, you will most likely be interacting with computer
systems for the rest of your life. It’s nice (as well as useful) to know something about the
tools of the trade. More important, understanding the computer system’s operations has
an immediate benefit: it will allow you to use the machine more effectively.
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As a user, you will be aware of the capabilities, strengths, and limitations of the
computer system. You will have a better understanding of the commands that you use.
You will understand what is taking place during the operation of the programs that you
use. You will be able to make informed decisions about your computer equipment and
application programs. You will understand more clearly what an operating system is, and
how to use it effectively and to your advantage. You will know when it is preferable to do
a job manually, and when the computer should be used. You will understand the most
efficient way to ‘‘go online,’’ and what benefits might be gained from a home network. You
will improve your ability to communicate with system analysts, programmers, and other
computer specialists.

As a programmer, it will allow you to write better programs. You will be able to use
the characteristics of the machine to make your programs operate more effectively. For
example, choosing the appropriate data type for a variable can result in significantly faster
performance. Soon you will know why this is so, and how to make the appropriate choices.

Computers can perform integer calculations incorrectly if the integers exceed a certain
size, but they do not necessarily warn the user of the error. You will learn how this can
occur, and what can be done to assure that your programs generate correct results.

You will discover that some computers will process nested loops much more quickly
if the index variables are reversed. A rather surprising idea, perhaps, and you’ll understand
why this is true.

You will understand why programs written in a compiled language like C++ usually
run much faster than those written in interpreted program languages like BASIC or
scripting languages like JavaScript.

As a systems architect or system analyst, you will be responsible for the design and
implementation of systems that meet an organization’s information technology (IT) needs,
recognizing that the differences in the cost and capabilities of the components that you
select may have significant impact on the organization. With the knowledge gained here you
will be in a better position to determine and justify the set of computer system components
and the system architecture that are appropriate for a particular job and to determine the
tradeoffs with other possible system architectures.

You’ll be able to assist management in making intelligent decisions about system
strategy: should the company adopt a large mainframe/virtual machine system approach
for its Web servers, or would a system consisting of a network of off-the-shelf blade servers
provide better performance at lower cost? You’ll be better prepared to analyze the best way
to provide appropriate facilities to meet the needs of your users. In an era of fast-changing
technology, you’ll be more able to differentiate between simple technological obsolescence
that does not affect the organization’s requirements significantly and major advances that
suggest a real need to replace older equipment.

When selecting computers, you would like to purchase the computer that best meets
the needs of the organization’s applications and the users. You must be able to read and
understand the technical specifications in order to compare different alternatives and to
match the system to the users’ needs. This book will teach you what you need to know to
specify and purchase a system intelligently. You’ll know the differences between various
CPU technologies and the advantages and disadvantages of each. You will learn what
peripheral hardware is appropriate for your organization’s files and the trade-offs between
different file system formats, what is required to build an intranet, and what the speed and
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size limitations of a particular system are. You’ll be able to compare the features of Windows
and Linux knowledgeably and decide which ones are important to you. You’ll be able to
apply your basic understanding of computers to new technologies such as virtual machines
as they appear. You’ll learn to understand the jargon used by computer salespeople and
judge the validity of their sales claims.

As a system administrator or manager, your job is to maximize the availability and
efficiency of your systems. You will need to understand the reports generated by your
systems and be able to use the information in those reports to make changes to the systems
that will optimize system performance. You will need to know when additional resources are
required, and be able to specify appropriate choices. You will need to specify and configure
operating system parameters, set up file systems, manage system and user PC upgrades in
a fast-changing environment, reconfigure networks, provide and ensure the robustness of
system security, and perform many other system management tasks. The configuration of
large systems can be very challenging. This text will give you an understanding of operating
system tools that is essential to the effective management of systems.

As a Web services designer, you will be able to make intelligent decisions to optimize
your Web system configurations, page designs, data formatting and scripting language
choices, and operating systems to optimize customer accessibility to your Web services.

In brief, when you complete this book, you will understand what computer hardware
and software are and how programs and data interact with the computer system. You
will understand the computer hardware, software, and communication components that
are required to make up a computer system and what the role of each component in the
system is.

You will have a better understanding of what is happening inside the computer when
you interact with the computer as a user. You will be able to write programs that are
more efficient. You will be able to understand the function of the different components of
the computer system and to specify the computer system you need in a meaningful way.
You will understand the options that you have as a system administrator or Web services
designer.

In an era in which technology changes extremely rapidly, the architecture of the com-
puter system rests on a solid foundation that has changed only slightly and gradually over
the last sixty years. Understanding the foundations of computer system architecture makes
it possible to flow comfortably with technological change and to understand changes in
the context of the improvements that they make and the needs that they meet. In fact,
interviews with former students and with IT executives and other IT professionals clearly
indicate that a deep understanding of the basic concepts presented here is fundamental to
long-term survival and growth in the field of information technology and IT management.

This type of understanding is at the very foundation of being a competent and
successful system analyst, system architect, system administrator, or programmer. It may
not be necessary to understand the workings of an automobile engine in order to drive a
car, but you can bet that a top-notch race car driver knows his or her engine thoroughly
and can use it to win races. Like the professional race car driver, it is our intention to
help you to use your computer engine effectively to succeed in using your computer in a
winning way. The typical end user might not care about how their computer system works,
but you do.

. . . These are the goals of this book. So let’s get started!
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1.1 THE STARTING POINT
Before we begin our detailed study of the architecture of computer systems, let us briefly
review some of the fundamental principles and requirements that guide computer system
design and operation.

In a simple scenario, you use your laptop or desktop personal computer to word process
a document. You probably use a mouse to move around the document and to control the
features of the word processor software application, and you use the keyboard to enter
and modify the document text data. The word processor application program, together
with your document, appears on a screen. Ultimately, you might print the document on a
printer. You store the document on a disk or some other storage device.

The fundamentals of a typical computer system are readily exposed in this simple
example. Your mouse movements and clicks and your keyboard entry represent input to
the system. The computer processes the input and provides output to the screen, and,
perhaps, to a printer. The computer system also provides a storage medium of some sort,
usually a hard disk, to store the text for future access. In simplest terms, your computer
receives input from you, processes it, and outputs results to the screen. Your input takes the
form of commands and data. The commands tell the computer how to process the data.

Now consider a second, slightly more complex example. Your task in this example is
to access a Web page on the Internet. Again, your input to the computer is via mouse and
keyboard. When you type the Web page URL, however, your computer sends a message
to another computer that contains Web server software. That computer, in turn, sends a
Web page file that is interpreted by the browser on your computer and presented on your
screen. You are probably already aware that HyperText Transfer Protocol (HTTP) is used
as a standard for Web message exchanges.

The elements of this example differ only slightly from the first example. Your command
inputs tell a Web browser software application on your computer what processing is to take
place; in this case, your desire to access a Web page. The output from your computer is a
message to a Web server on the remote computer requesting the data that represents the
Web page. Your computer receives the data as input from the network; the Web browser
processes the data and presents the Web page output on the screen. Figure 1.2 illustrates
the layout for this example.

The major differences between this and the first example are the source of the input
data and the fact that network connectivity is required between the two computers. Instead
of the keyboard, the input data to be processed by your Web browser comes from a
communication channel. (Note that the exact nature of the channel is not important for
this discussion.) In both cases, your computer receives data input to process, and control
input that determines how the data is to be processed, performs the processing, and
provides output.

These two examples contain all of the key elements found in any IT system, large or
small.

■ An IT system consists of one or more computer systems; multiple computer
systems are connected together using some type of network interconnectivity. As
a matter of necessity, network interfaces must conform to standard agreements,
known as protocols, for messages to be understood by both computers during a
message exchange between a pair of computers. The network itself can take on a



10 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 1.2

Typical Web Browser Application Use

Web Server
User

URL
HTML

file

Page request
message

Communication
Channel

HTML
file

Page request
message

Web Browser

variety of forms, provided that the interface requirements are met, and are
determined by such characteristics as performance, convenience, and cost.

■ The work performed by an individual computer system within the IT system can
be characterized by input, processing, and output. This characterization is often
represented by the Input-Process-Output (IPO) model shown in Figure 1.3.
Storage is also represented within this model. Alternatively, storage can be
interpreted as output to be saved for use as future input. Storage is also used to
hold the software programs that determine the processing operations to be
performed. The ability to store programs and data on a temporary, short-term,
or long-term basis is fundamental to the system. In Chapter 2, Section 2.2, we
will show that all IT systems can ultimately be characterized by the same basic
IPO model at all levels, from a single computer to a complex aggregation of
computers, although the complexity of large systems may obscure the model and
make it more difficult to determine the actual inputs, outputs, and processing

FIGURE 1.3

A Computer Process

Input Process Output

Storage
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operations. The IPO model provides an important basic tool for system analysis
and design practices.

■ The components of an individual computer system consist of processing
hardware, input devices, output devices, storage devices, application software,
and operating system software. The task of the operating system software is to
provide overall control of the individual system, including management of input,
output, and file storage functions. The medium of exchange, both with users and
between computers within a larger system, is data. (Note that the messages
between computers in the second example are a form of data.) Figure 1.4 is a
simple illustration of computer systems embedded in a larger IT system.

Figure 1.5 summarizes the basic operations that are performed during computer
processing. These operations, in turn, can be reduced to the primitive operations that
are also familiar to you from your understanding of programming languages. The prim-
itive processing operations common to high-level programming languages are shown in
Figure 1.6.

1.2 COMPONENTS OF THE COMPUTER SYSTEM
As noted in the previous section, there are three components required for the implemen-
tation of a computerized input-process-output model:

1. The computer hardware, which provides the physical mechanisms to input and
output data, to manipulate and process data, and to electronically control the
various input, output, and storage components.

2. The software, both application and system, which provides instructions that tell
the hardware exactly what tasks are to be performed and in what order.

3. The data that is being manipulated and processed. This data may be numeric, it
may be alphanumeric, it may be graphic, or it may take some other form, but in
all cases it must be representable in a form that the computer can manipulate.

In modern systems, input entry, output display, and storage of the data and software
used for processing often take place at a location different from the computer where the

FIGURE 1.5

Basic Computer Operations

Input/output
Basic arithmetic and logical calculations
Data transformation or translation (e.g., program compilation, foreign 
language translation, file updating)
Data sorting
Searching for data matches
Data storage and retrieval
Data movement (e.g., movement of text or file data to make room for 
insertion of additional data)

■

■

■

■

■

■

■
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FIGURE 1.6

Basic High-Level Language Constructs

Input/output (including file storage and retrieval)
Arithmetic and logical assignment statements
True/false decision branching (IF-THEN-ELSE or IF-GOTO)
Loops and/or unconditional branching (WHILE-DO, REPEAT-UNTIL, 
FOR, GOTO)

■

■

■

■

actual processing occurs. In many installations, actual processing is distributed among
computer systems, with particular results passed to the individual systems that require
them. Therefore, we must also consider a fourth component:

4. The communication component, which consists of hardware and software that
transport programs and data between interconnected computer systems.

The hardware and system software components make up the architecture of the
computer system. The communication component connects individual computer systems
together. The data component, and also the application software, while fundamental to
the operation of the computer system, are supplied to the computer system by the user,
rather than being a part of the architecture of the computer system itself. (It is useful to
note, however, that application software and data structure are often considered as part of
the overall system architecture when one considers the architecture from the perspective of
the organization. We explore this issue briefly in Chapter 2. Note, however, that the focus
of this book is primarily on computer system architecture, rather than on organizational
system architecture.)

The Hardware Component

The most visible part of the computer system is obviously the hardware that makes up the
system. Consider the computer system upon which you write and execute your programs.
You use a keyboard and mouse to provide input of your program text and data, as well as
for commands to the computer. A display screen is commonly used to observe output. A
printer is frequently available as an alternative output to the screen. These are all physical
components.

Calculations and other operations in your program are performed by a central
processing unit (CPU) inside the computer. Memory is provided to hold your programs
and data while processing is taking place. Other input and output devices, such as a disk
and SD plug-in cards, are used to provide long-term storage of your program and data files.
Data and programs are transferred between the various input/output devices and memory
for the CPU to use.

The CPU, memory, and all the input, output, and storage devices form the hardware
part of a computer system. The hardware forms the tangible part of the system. It is
physical—you can touch it, which is what the word ‘‘tangible’’ means. A typical hardware
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FIGURE 1.7

A Typical Personal Computer System
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block diagram for a computer is seen in Figure 1.7. In addition to the input and output
devices shown in this diagram, Figure 1.8 lists some other input and output devices that
are frequently seen as part of computer systems. The diagram in Figure 1.7 actually applies
equally well to large mainframe computers, small personal computers, and even devices
with computers embedded in them, such as PDAs, iPods, GPSs, and cell phones. Large and
small computers differ primarily in speed, capacity, and the selection of peripheral devices
provided. The basic hardware components and design are very similar.

Conceptually, the CPU itself is often viewed as a composition of three primary subunits:

1. The arithmetic/logic unit (ALU) where arithmetic and Boolean logical
calculations are performed.

2. The control unit (CU), which controls the processing of instructions and the
movement of internal CPU data from one part of the CPU to another.

3. The interface unit, which moves program instructions and data between the
CPU and other hardware components.

(In modern CPUs, the actual implementation is usually modified somewhat to achieve
higher performance, although the basic concepts are carefully preserved. More about that
later, in Chapter 8.)
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FIGURE 1.8
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The interface unit interconnects the CPU with memory
and also with the various I/O (input/output) modules. It
can also be used to connect multiple CPUs together. In
many computer systems, a bus interconnects the CPU,
memory, and all of the I/O components. A bus is simply
a bundle of wires that carry signals and power between
different components. In other systems, the I/O modules
are connected to the CPU through one or more separate
processors known as channels.

The main memory, often known as primary storage,
working storage, or RAM (for random access memory),
holds programs and data for access by the CPU. Primary
storage is made up of a large number of cells, each numbered
and individually addressable. Each cell holds a single binary
number representing part of a data value or part of an
instruction. The smallest addressable size of the cell in most
current computers is 8 bits, known as a byte of memory.
Eight bits of memory can only hold 256 different patterns,
so neighboring cells in memory are nearly always combined

to form groupings with a larger number of bits. In many systems, for example, 4 bytes
of memory combine to form a 32-bit word. Modern computers address memory at least
4 bytes (a ‘‘32-bit’’ computer) or 8 bytes (a ‘‘64-bit’’ computer) at a time to take advantage
of larger instruction and data groupings.

The amount of primary storage determines the maximum number of instructions
and data words that can be loaded into memory from a peripheral device at one time.
For example, a computer with 2 gigabytes (GB), actually 2,147,483,648 bytes1, of memory
would not be able to execute a program that requires 2.7 GB for its instructions and data
unless some means is provided within the computer to load the program in sections as
each section of the program is needed.

The amount of primary storage provided in a typical computer has increased rapidly
as computer technology improves. Whereas 64 kilobytes (KB) of memory was considered
a large amount in 1980, even the least expensive personal computers today usually have
2 gigabytes (GB) of memory or more. Large computers may provide many gigabytes of
primary storage. There are programs on the market that require hundreds of megabytes
(MB) of memory to execute. The inexpensive availability of increased amounts of memory
have allowed the design of very sophisticated programs that would not have been possible
just a few years ago.

The same is true for secondary storage. Even small personal computers provide hard
disks with storage measured in tens or hundreds of gigabytes. The storage of images and
video, in particular, requires tremendous amounts of storage capacity. It is not uncommon
to see arrays of hard disks, even on some personal computers, providing trillions of bytes
(specified as terabytes) of long-term storage.

11 Kilobyte actually equals 1024 bytes. Thus, 1 MB = 1024 × 1024 = 1,048,576 bytes × 2048 = 2,147,483,648
bytes.
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The instructions that form a particular program are stored within the primary storage,
then brought into the central processing unit and executed. Conceptually, instructions are
brought in and executed one at a time, although modern systems overlap the execution
of instructions to some extent. Instructions must be in primary storage in order to be
executed. The control unit interprets each instruction and determines the appropriate
course of action.

Each instruction is designed to perform a simple task. Instructions exist to perform
basic arithmetic, to move data from one place in the computer to another, to perform
I/O, and to accomplish many other tasks. The computer’s power comes from the ability
to execute these simple instructions at extremely high speeds, measured in millions or
billions or trillions of instructions executed per second. As you are already aware, it is
necessary to translate high-level language programs into the language of the machine for
execution of the program to take place. It may require tens or even hundreds of individual
machine instructions to form the machine language equivalent of a single high-level
language statement. Program instructions are normally executed sequentially, unless an
instruction itself tells the computer to change the order of processing. The instruction
set used with a particular CPU is part of the design of the CPU and cannot normally
be executed on a different type of CPU unless the different CPU was designed to be
instruction set compatible. However, as you shall see, most instruction sets perform similar
types of operations. As a result, it is possible to write programs that will emulate the
instruction set from one computer on a computer with a different instruction set, although
a program written for the original machine may execute slowly on the machine with the
emulator.

The data that is manipulated by these instructions is also stored in memory while
being processed. The idea that the program instructions and data are both stored in
memory while being processed is known as the stored program concept. This important
concept is attributed primarily to John von Neumann, a famous computer scientist. It
forms the basis for the computer architecture that is standard to nearly every existing
computer.

The Software Component

In addition to the hardware requirement, your computer system also requires software.
Software consists of the programs that tell the computer what to do. To do useful work,
your system must execute instructions from some program.

There are two major categories of software: system software and application software.
System software helps you to manage your files, to load and execute programs, and to
accept your commands from the mouse and keyboard. The system software programs
that manage the computer are collectively known as an operating system, and differ from
the application programs, such as Microsoft Word, or Firefox, or the programs that you
write, that you normally run to get your work done. Windows and Linux are the best
known examples of an operating system. Others include Unix, Mac OS X, Sun Solaris, and
IBM z/OS.

The operating system is an essential part of the computer system. Like the hardware,
it is made up of many components. A simplified representation of an operating system
is shown in Figure 1.9. The most obvious element is the user interface that allows
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FIGURE 1.9
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you to execute programs, enter commands, and manipulate files. The
user interface accepts input from a keyboard and, in most modern
systems, a mouse, touch screen, or other pointing device. The user
interface also does output presentation on the display. On some
systems, the output display might be simple text, but more likely the
display includes a graphical user interface with a windowing system,
and various gadgets for manipulating the windows.

The operating system’s application program interface (API), acts
as an interface for application programs and utilities to access the
internal services provided by the operating system. These include
file services, I/O services, data communication services, user interface
services, program execution services, and more.2

Many of the internal services are provided by the kernel mod-
ule, which contains the most important operating system processing
functions. The remaining services are provided by other modules
that are controlled by the kernel. The kernel manages memory by
locating and allocating space to programs that need it, schedules time
for each application to execute, provides communication between
programs that are being executed, manages and arranges services
and resources that are provided by other modules, and provides
security.

The file management system allocates and manages secondary
storage space and translates file requests from their name-based form
into specific I/O requests. The actual storage and retrieval of the files is
performed by the I/O drivers that comprise the I/O component. Each
I/O driver controls one or more hardware devices of similar type.

The network module controls interactions between the computer
system and the network(s) to which it is attached.

The operating system software has nearly always been stored on a hard disk, but
on some smaller systems, especially lightweight laptops and embedded systems such as
cell phones and iPods, a solid state disk or SD card may be used instead. On a few
systems the operating system is actually provided as a network service when the system
is turned on. In either case, the bootstrap or IPL (Initial Program Load) program in the
operating system is stored within the computer using a type of memory known as ROM,
or read-only memory. The bootstrap program provides the tools to test the system and to
load the remainder of the operating system from the disk or network. Although the physical
medium where the software is stored can be touched, the software itself is considered
intangible.

Together, the hardware and system software provide a working computer system
environment. Application software, communication support, and user data complete the
picture.

2The same term (API) is also sometimes used to describe the services provided by one application to another.
For example, Amazon and Google are among many companies whose application software provides API tools to
allow users to extend the functionality of the original software.
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The Communication Component

Very few modern computers or computer-based devices (which includes cell phones, iPods,
and automobile computers, to name just a few possibilities) operate independently. Instead,
they are tied to other computers directly, by modem, or through a network connection of
some sort. The computers may be located physically close to each other, or they may be
separated, even by thousands of miles. To work together, computers must have means to
communicate with each other. The communication component requires both hardware
and software to achieve this goal. Additional hardware components physically connect
computers together into multiprocessing systems, or clusters, or networks, or, via telephone,
satellite, or microwave, to computers at other remote locations. A communication channel
provides the connection between computers. The channel may be a wire cable, a fiber-optic
cable, a telephone line, or a wireless technology, such as infrared light, cellular phone, or
radio-based technology such as Wi-Fi or Bluetooth. Special I/O hardware, consisting of a
device such as a modem or network interface card (NIC) within the computer, serves as an
interface between the computer and the communication channel. There may be additional
hardware within the channel itself.

The communication component also requires additional software within the operating
system of each computer to make it possible for each computer to understand what the
other computers that they are connected with are saying. This software establishes the
connections, controls the flow of data, and directs the data to the proper applications
for use.

The Computer System

Our general description of the computer is valid for all general-purpose computer systems,
and also for most devices with computers embedded in them, regardless of brand name or
size. In more general terms, every computer system consists of a CPU, or central processing
unit, where all the processing takes place; memory to hold the programs and data while they
are being processed; and some form of input and output, usually one or more keyboards
and flat-screen display devices plus one or more forms of long-term storage, usually disks,
CDs or DVDs, and USB or SD plug-in memory. Most modern computer systems provide
more than one CPU (or ‘‘core’’) within the computer system. A single CPU can process
only one instruction at a time; the use of multiple CPUs can increase processing speed by
allowing instructions that do not affect each other to be executed in parallel.

The validity of our general description is true regardless of how complex or simple the
computer system may seem.

As a specific example, the large z10 EC IBM mainframe computer shown in Figure 1.10
can provide complex Web services to thousands of users at a time. IBM mainframes can
have dozens of CPUs working together, with up to 1.52 terabytes (TB) of primary storage.
They are capable of executing instructions at a rate of tens of billions of instructions per
second! The powerful z/OS operating system can keep track of hundreds or thousands of
simultaneous users and divides the time among them to satisfy their differing requirements.
Even in its smallest configuration, the z10 EC Model S64 system, which is the largest current
model at this writing, provides at least 16 GB of memory and processes instructions at
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FIGURE 1.10

IBM System z10 EC Mainframe Computer

Courtesy of International Business Machines Corporation.
Unauthorized use not permitted.

the rate of several billion instructions per second. In
addition to the CPU, there are many large I/O devices—
including tape drives and high speed printers—and disks
that store many billions or trillions of characters. The
computer alone weighs over 5000 pounds/2200 kilo-
grams!

In contrast, the laptop PC shown in Figure 1.11 is
designed for personal use. Everything is self-contained
in one package. This system only has 2 GB of primary
RAM storage and operates at a small fraction of the
speed of the z10 EC. A hard drive is one of many
storage options. The entire system, complete with display
screen, built-in webcam, multiple network connections,
and battery, weighs about three pounds (1.4 kilograms, if
you prefer).

Although these two systems seem very different, the
difference is actually one of magnitude, not of concept.
The large system operates much faster, can support much
more memory, and handles more input and output
much faster. It has operating system software that allows
many users to share this larger resource. Nonetheless, the
fundamental system architecture is remarkably similar in
both cases. Even the actual processing performed by the
CPU is similar.

FIGURE 1.11

A Laptop Computer

 2007 Hewlett-Packard Company.

In fact, today’s CPU operates in the same
fundamental way as its CPU counterpart of
fifty-five years ago, even though the con-
struction is very different. Since computers
all operate so similarly, regardless of size or
type, it is not difficult today to transfer data
between these different systems, allowing each
system to do part of the processing for higher
overall efficiency. This concept is known as
distributed computing. The fact that differ-
ent types of computers can work together,
share files, and communicate successfully is
known as open computing. Communication
technology fulfills the requirements that make
open and distributed computing possible.

Computers are sometimes divided into
categories: mainframe computers, minicom-
puters, workstations, and personal computers,
but these categories are less significant than
they once were. The capability of today’s per-
sonal computer far exceeds the capabilities of
a mainframe computer of just a few years ago.
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The Sun Ultra 40 computer is an example of a workstation that is frequently used as though
it were a minicomputer, or even a small mainframe. Rather than attempting to categorize a
particular computer, it is usually more productive to describe its capabilities in comparison
to other systems being discussed or considered.

1.3 THE CONCEPT OF VIRTUALIZATION
The word ‘‘virtual’’ appears frequently throughout the computer literature in many
different contexts. To name a few applications of the word that appear in this text, there
are virtual computers, a Java Virtual Machine, virtual memory, and virtual networks.
Sometimes, a synonymous word, logical, is used instead: in networking we have logical
connections. Virtual storage consists of a relationship between logical memory and physical
memory.

It is not important at this point that you understand any of the specific concepts
mentioned above. (In fact, we realize that you probably don’t.) Since the words virtual and
logical represent a number of important concepts, however, we introduce them here.

In optics, a virtual image is the reflection that you see when you stand in front of a
regular mirror. (See, for example, the cartoon at the beginning of Chapter 18.) You know
that the image isn’t real. For one thing, it’s behind the wall that the mirror is mounted on.
For another, you can’t touch it. In early, time-shared computing, a large central computer
commonly supplied computing services to users at terminals located remotely from the
computer. In a sense, it seemed as though the user had access to a computer that was all her
own. Starting in the early 1970s, IBM offered the VM (virtual machine) operating system
to support this concept.

The American Heritage Dictionary offers two applicable definitions of virtual that
together describe the usage of the word in modern computing:

■ Existing or resulting in essence or effect though not in actual fact, form, or name
■ Created, simulated, or carried on by means of a computer or computer network

Wikipedia defines virtualization as ‘‘a broad term that refers to the abstraction of
computer resources’’.

In essence, virtual and logical are used to refer to something that appears as though it
is something different. Thus, the Java Virtual Machine (JVM) uses software to simulate a
real computer that works well with the Java programming language, even though the actual
computer executes a different set of instructions than the JVM. A logical connection in
networking offers the appearance of a direct communication link for passing data between
two computers, even though the actual connection might involve a complex series of
interconnections involving many computers and other devices and a variety of software to
make it all look simple. The virtualization of a computer allows a single computer to appear
as a multiplicity of computers, each with its own operating system and hardware resources.

1.4 PROTOCOLS AND STANDARDS
Standards and protocols are of great importance in computer systems. Standards are
agreements among interested parties, often manufacturers, to assure that various system
components will work together interchangeably. Standards make it possible to build
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a computer with components from different suppliers, for example, knowing that a
graphics card will plug properly into a connector on a motherboard and that the image
representations will be consistent between the connector, the CPU, memory, and the
display monitor.

Standards apply to every aspect of computing: hardware, software, data, and commu-
nications, the voltage of a power supply, the physical spacing of pins on a connector, the
format of a file, the pulses generated by a mouse. Computer language standards, such as
Java and SQL, allow programs written on one type of computer to execute properly and
consistently on another, and also make it possible for programmers to work together to
create and maintain programs.

Similarly, data format and data presentation standards, such as the GIF and JPEG
image format standard, the Unicode text format standard, and the HTML and XML
Web presentation standards allow different systems to manipulate and display data in a
consistent manner.

Standards can arise in many different ways. Many standards occur naturally: a
proprietary data format (PDF) belonging to a single vendor becomes a de facto standard
due to the popularity of the product. The PDF print description language is an example
of such a standard. The format was designed by Adobe Corporation to provide a way
of communicating high-quality printed output between computers and printers. Other
standards are created because of a perceived need in an area where no standard exists.

Often a committee will form to investigate the requirements and create the standard.
The MPEG-2 and MPEG-4 standards, which establish the means for the transmission and
processing of digital video images, occurred in this way. The committee that designed the
standard, made up primarily of motion picture engineers and video researchers, continues
to develop the standard as improved techniques evolve. The JPEG photographic standard
and MP3 sound standard are other examples of standards that were developed formally.
Similarly, each version of HTTP has been formalized after many years of discussion by
parties interested in Web communication. A nonstandard protocol or data format is limited
in use to its supporters and may or may not become a standard, depending on its general
acceptance. For example, DVD videos encoded in the proprietary DivX format will play on
some DVD players, but not on others.

Protocols define the specific agreed-upon sets of ground rules that make it possible for
a communication to take place. Except for special applications, most computers perform
their operations such that each hardware or software computer unit will understand
what other computer units that they are connected with are saying. Protocols exist
for communications between computers, for the communications between various I/O
devices and a computer, and for communications between many software programs. A
protocol specification defines such communication features as data representation, signaling
characteristics, message format, meanings of messages, identification and authentication,
and error detection. Protocols in a client-server system assure that requests are understood
and fulfilled and that responses are interpreted correctly.

Since the use of a proprietary protocol would be limited to those with permission to
use it, protocols are almost always eventually standardized. Although not always the case,
protocols that are not standardized tend to die out from lack of use. In fact, international
standards are often created to ensure that the protocols are universally compatible. As
an example, HTTP, HyperText Transfer Protocol, guides communication between Web
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servers and Web browsers on the Internet. The movement of data through the Internet is
controlled by a suite of protocols called TCP/IP (Transmission Control Protocol/Internet
Protocol). Storage devices communicate with a computer using a protocol called SATA.
There are thousands of such protocols.

New protocols and other standards are proposed and created and standardized as
the need arises. XML, RSS, and SIP are all examples of protocols developed recently to
meet new demands. Satellite telecasting, near-universal telephone communication, wireless
communications, and the Internet all demonstrate powerful and useful technologies made
possible by protocols and standards. Indeed, the Internet is a measure of the success
to which protocols that govern intercommunication between computer hardware and
software have been standardized throughout the world. Discussions of various protocols
and standards will occur regularly throughout this book.

1.5 OVERVIEW OF THIS BOOK
The focus of this book is upon the architecture and organization of computers, computer
systems, and computer-based IT systems. Technically, there is a slight difference in
definition between the terms ‘‘computer architecture’’ and ‘‘computer organization.’’ In
this book we will usually not attempt to differentiate these terms and will use them
interchangeably.

In this book we will be concerned with all four components of computer systems:
hardware, software, data, and interconnectivity, and with the interactions between each
component. We will also look initially at the larger picture: the organization of computer
systems as components, themselves, to form enterprise IT systems. Chapter 2 of this first
part is concerned with the system as a whole. The remainder of this book is divided into
four additional parts, consisting of discussions of number systems and the representation
of data in the computer, the hardware that makes up the computer, the software that the
computer uses, and the networks that interconnect computers.

Our first step will be to examine the concept of systems in general. We will look
at the characteristics and qualities that define a system. We will then use that basic
understanding to look at the characteristics of computer-based IT systems and show how
the various elements and requirements of computer systems fit into the system concept.
Part 1 illustrates fundamental IT architecture concepts with several examples of IT system
architectures.

In Part 2, we will look at the different forms the input data may take, and we will
consider the translation processes required to convert data into forms that the computer
hardware and software can process. You will see how the various data types that are familiar
to you from programming languages are stored and manipulated inside the computer.
You’ll learn the many different ways in which math calculations can be performed, and the
advantages and disadvantages of each. You will see the difference between a number and
the alphanumeric representation of a number, and understand why that difference can be
critical in whether a program works or not. You will be able to relate the size of a word
processing text to the storage capability of the computer’s disk.

In Part 3, we will take a detailed look at the various components of the hardware and
how they fit together. You will learn how the CPU works, how different I/O devices work,
and even how text and graphics manage to appear, seemingly by magic, on the display
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screen. You will learn what makes some computers faster and more powerful than others,
and what that means. You will learn about different ways of connecting I/O devices to the
computer and see why you get a fast response from some devices, a slow response from
others. You’ll learn the difference between a serial port, a USB port, and a parallel port.
We’ll even explain the difference between PCI and PCI Express buses.

Most important, you will have the opportunity to see what a simple, program-obedient
machine the computer really is. You will learn about the limitations of a computer. We all
tend to think of the computer as a resource of infinite capacity, speed, and perhaps even
intelligence, but of course that’s not true. We will consider how these limitations affect
your work as a user, and as a means of specifying a system that will your meet your needs
and requirements.

Part 4 will provide a careful introduction to the foundational principles of com-
munication and networking. We will consider the basic communication technologies,
networking hardware, software, channels and channel media, protocols, and methodolo-
gies that are required to support communication between computer systems in an IT
system environment.

In the final part, we will consider the software that is used to control the computer’s basic
processing capabilities. Although computer software falls into two categories, operating
system software and application software, we will focus exclusively on the system software.
We will be concerned with control and efficient use of the computer hardware, fair
and effective allocation of computer resources to different programs, security, storage
management and file system structure, system administration, security, user interfaces,
and more.

There are also four supplementary chapters covering topics that are somewhat outside
the scope of the text, but important and interesting nonetheless. The first supplementary
chapter introduces the fundamental logic that makes up a computer. The second supple-
mentary chapter provides case studies that describe the hardware and system software of
important real-world computer systems. These examples include the ×86 family of PC
hardware, the Microsoft Windows family of operating systems, Linux operating systems,
and IBM mainframe hardware and software. The remaining two supplementary chapters,
on CPU instruction addressing modes and on programming tools, have been maintained
and updated from the 3rd edition. The supplementary chapters can be found on the book’s
website, www.wiley.com/college/englander.

Additional related topics of current interest may also be found on the book’s website.
The website also contains numerous links to reference materials, both general to computing
as well as specific to individual topics discussed within the book.

1.6 A BRIEF ARCHITECTURAL HISTORY
OF THE COMPUTER

Although a study of the history of computing is generally outside the scope of this book,
a brief introduction is useful in showing the wide-ranging and quirky path by which IT
has arrived to its present position. It is of particular interest to note that nearly all of the
revolutionary concepts that define computer systems today were developed between thirty
and sixty years ago; today’s advances are more evolutionary and incremental in nature.
This suggests that an understanding of the basic concepts that we are presenting in this
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book should serve you, the reader, well in your ability to understand the importance and
significance of future developments as they occur.

Early Work

It is not possible, nor particularly useful, to identify the date of the ‘‘invention’’ of the
computer. Indeed it has always been the aspiration of humankind to create devices that
would simplify people’s work. Thus, it is not surprising that people were envisioning
mechanical devices to simplify the jobs of routine data processing and calculation even in
ancient times. In fact, there is recent evidence of the existence of an ancient computing
device used for astronomical calculations. Instead, this discussion covers just a few of the
major developments related to computer architecture.

In this context, one could consider the abacus, already in use as early as 500 BC by the
ancient Greeks and Romans, to be an early predecessor of the computer. Certainly, the aba-
cus was capable of performing calculations and storing data. Actually, if one were to build a
binary numbered abacus, its calculations would very closely resemble those of the computer.

The abacus remained in common use until the 1500s and, in fact, is still considered
an effective calculating tool in some cultures today. In the late 1500s, though, European
inventors again began to put their minds to the problem of automatic calculation. Blaise
Pascal, a noted French mathematician of the 1600s, invented a calculating machine in 1642
at the age of nineteen, although he was never able to construct the machine. In 1801, Joseph
Marie Jacquard invented a loom that used punched cards to control the patterns woven
into cloth. The program provided by the punched cards controlled rods that raised and
lowered different threads in the correct sequence to print a particular pattern. This is the
first documented application of the use of some form of storage to hold a program for the
use of a semiautomated, programmable machine.

FIGURE 1.12

Babbage’s Analytical Engine

Courtesy of International Business Machines Corporation. Unauthorized
use not permitted.

Charles Babbage, an English mathemati-
cian who lived in the early 1800s, spent much
of his own personal fortune attempting to
build a mechanical calculating machine that
he called an ‘‘analytical engine.’’ The analyti-
cal engine resembles the modern computer in
many conceptual ways. A photo of an early
version of the analytical engine is shown in
Figure 1.12. Babbage’s machine envisioned the
use of Jacquard’s punched cards for input data
and for the program, provided memory for
internal storage, performed calculations as spec-
ified by the program using a central processing
unit known as a ‘‘mill,’’ and printed output.
Augusta Ada Byron, Countess of Lovelace and
the daughter of the poet Lord Byron, worked
closely with Babbage and developed many of the
fundamental ideas of programming and pro-
gram design, including the concepts of branches
and loops.



CHAPTER 1 COMPUTERS AND SYSTEMS 25

FIGURE 1.13

Block Diagram of Babbage’s Analytical Engine
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Source: From Computer Architecture and Organization, 2nd ed.,
J. Hayes, copyright  1988, by McGraw-Hill Companies, pg. 14
Reprinted by permission.

A block diagram of the Babbage analytical
engine is shown in Figure 1.13. The mill was
capable of selecting one of four arithmetic oper-
ations, and of testing the sign of a number with
a different program branch specified for each
result. The sequence of operation was speci-
fied by instructions on the operation cards. The
operation cards could be advanced or reversed
as a means of implementing a sort of ‘‘goto’’
instruction. The second set of cards, known as
variable cards, were to be used to specify par-
ticular memory locations for the data involved
in the calculations.

Babbage envisioned a memory of one thou-
sand 50-digit decimal numbers. Each digit was
to be stored using a ten-toothed gear known as

a counter wheel. Although the analytical engine was never completed, it should be apparent
to you that it contains all the essential elements of today’s computers. At approximately
the same time, another English mathematician, George Boole, developed the binary theory
of logic that bears his name, Boolean logic. He also recognized the relationship between
binary arithmetic and Boolean logic that makes possible the circuitry that implements the
modern electronic computer.

Computer Hardware

In the late 1930s and early 1940s, several different groups of researchers independently
developed versions of the modern electronic computer. The Mark I, built in 1937 by
Howard H. Aiken and associates at Harvard University with help and funding from IBM,
used thousands of relays; relays are mechanical binary switches controlled by electrical
currents, familiar to you perhaps as the clicking devices that control operations in tape
cassette players and telephone answering machines. Although binary relays were used
for computation, the fundamental design was decimal. Storage consisted of seventy-two
23-digit decimal numbers, stored on counter wheels. An additional counter wheel digit
held the sign, using the digit 0 for plus and 9 for minus. The design appears to be based
directly on Babbage’s original concepts and use of mechanical calculator parts from IBM
accounting machines. A similar electromechanical computer was designed and built by
Conrad Zuse in Germany at about the same time.

The first totally electronic digital computer was apparently devised by John V.
Atanasoff, a physicist at Iowa State College, in 1937. The machine was built in 1939 by
Atanasoff and a graduate student, Clifford Berry, using electronic vacuum tubes as the
switching components. The machine was known as ABC, for Atanasoff-Berry Computer.
It is claimed that Atanasoff worked out the original details as he drove restlessly late one
winter night from his house in Iowa to a bar in neighboring Illinois. The machine was
not intended as a general-purpose computer, but was built to solve physics equations that
Atanasoff was working on at the time. There is some doubt as to whether the machine ever
worked completely.
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ABC was a binary-based machine, just like today’s computers. It consisted of an
arithmetic/logic unit with thirty units that could do addition and subtraction, a rotating
drum memory that held thirty binary numbers of 50 digits each, and punched card input.
Each punched card held five 15-digit decimal numbers. These numbers were converted
to binary as they entered the machine. Despite its limitations, ABC was an important
pathmark that led to later significant advances in computer design. It is only recently that
Atanasoff has begun to receive recognition for his achievement.

Much of the effort that culminated in a successful general-purpose computer archi-
tecture resulted from a wartime need for the solution to difficult mathematical formulas
related to ballistic missile trajectories and other World War II research. The ENIAC (for
Electronic Numerical Integrator and Computer, believe it or not) is generally considered
to be the first all-electronic digital computer. It was designed and built between 1943 and
1946 by John W. Mauchly and J. Presper Eckert at the University of Pennsylvania, using
the concepts that Mauchly had seen in Atanasoff’s machine, although this was not publicly
known at the time.

ENIAC had very limited storage capability, with only twenty locations each capable of
holding a 10-digit decimal number. An additional one hundred numbers could be stored in
read-only memory. Calculations were performed using decimal arithmetic. Ten electronic
vacuum tube binary switches were used for each digit, with only one switch in the ‘‘ON’’
position to represent the value of the digit. Input and output used punched cards. The
system could also provide printed output.

Programs could not be stored internally, but were hard wired with external ‘‘patch
panels’’ and toggle switches. It took many hours to change programs, and, of course,
debugging was a nightmare. Nonetheless, ENIAC was an important machine, some say the
most important machine, especially since it led directly to the development of the UNIVAC
I, the first commercially available computer, in 1951.

ENIAC contained eighteen thousand vacuum tubes, occupied a floor space of more
than fifteen thousand square feet, and weighed more than thirty tons. A photograph of
ENIAC, taken from The New York Times of February 15, 1946, is shown in Figure 1.14.
Even in its day, ENIAC was recognized as an important achievement. ENIAC operated
successfully until 1955, when it was dismantled, but not destroyed. Parts of the computer
can be seen at the Smithsonian Institute, at the U.S. Military Academy at West Point, at the
Moore School of the University of Pennsylvania, and at the University of Michigan.

In 1945, John von Neumann, a consultant on the ENIAC project, proposed a computer
that included a number of significant improvements over the ENIAC design. The most
important of these were

1. A memory that would hold both programs and data, the so-called stored
program concept. This solved the difficult problem of rewiring the control panels
for changing programs on the ENIAC.

2. Binary processing of data. This simplified the design of the computer and
allowed the use of binary memory for both instructions and data. It also
recognized the natural relationship between the ON/OFF nature of switches and
calculation in the binary number system, using Boolean logic.

The CPU was to include ALU, memory, and CU components. The control unit read
instructions from memory and executed them. A method of handling input/output through
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FIGURE 1.14

The ENIAC

Courtesy Sperry Univac, Div. of Sperry Corporation.

the control unit was also established. The instruction set contained instructions representing
all the essential features of a modern computer. In other words, von Neumann’s machine
contained every major feature considered essential to modern computer architecture.
Modern computer architecture is still referred to as von Neumann architecture.

Due to political intrigue and controversy, two different versions of von Neumann’s
architecture were designed and built, EDVAC at the University of Pennsylvania and IAS
at the Princeton University Institute for Advanced Studies (hence the unusual name).
Both machines were completed in 1951–1952. The success of EDVAC and IAS led to
the development of many offspring, mostly with odd names, and to several commercial
computers, including the first IBM computers.

At this point, von Neumann’s architecture was firmly established. It remains the
prevalent standard to this day and provides the foundation for the remainder of the
material in this book. Although there have been significant advances in technology, and
improvements in design that have resulted, today’s designs still reflect the work done prior
to 1951 on ABC, ENIAC, EDVAC, and IAS.

All of these early electronic computers relied on the electronic vacuum tube for their
operation. Vacuum tubes were bulky, made of glass, fragile, short-lived, and required large
amounts of power to operate. Vacuum tubes require an internal electric heater to function,
and the heaters tend to fail quickly, resulting in what was known as a ‘‘burned out’’ tube.
Furthermore, the heat generated by the large number of tubes used in a computer required
a massive forced-air or water-cooling system. A report reprinted by computer historian
James Cortada [CORT87] states that the average error-free operating time for ENIAC
was only 5.6 hours. Such bulky, maintenance-requiring systems could not have attained
the prevalence that computers have in our society. The technological breakthrough that
made possible today’s small, sophisticated computers was the invention of the transistor
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and, subsequently, the integration of transistors and other electronic components with the
development of the integrated circuit.

The invention of the integrated circuit led to smaller, faster, more powerful computers
as well as a new, compact, inexpensive form of memory, RAM. Although many of these
computers played an important role in the evolution of today’s computers, two specific
developments stand out from the rest: (1) development of the first widely accepted
personal computer, by IBM in 1981, and (2) design of the Intel 8008 microprocessor,
predecessor to the x86 CPU family, in 1972. The impact of these two developments is felt to
this day.

Companies have developed better ways of moving data between different parts of
the computer, better ways of handling memory, and methods for increasing the speed of
instruction execution. There is a lot more processing power in today’s personal computer
than there was in the largest mainframe computer in the 1970s. Nonetheless, the basic
architecture of today’s machines is remarkably similar to that developed in the 1940s.

Operating Systems

Given how easy it is to communicate with computers today, it is hard to picture a time
when the user had to do everything by hand, one step at a time. We take it for granted
that we can type commands at a keyboard or move a mouse and launch programs, copy
files, send text to a printer, and perform myriad other computer tasks. We power up and
bootstrap our systems by pressing a switch.

It was not always this way. Early computers had no operating systems. The user,
who was also the programmer, entered a program by setting it, one word at a time, with
switches on the front panel, one switch per bit, or by plugging wires into a patch panel that
resembled a cribbage board. Not a pleasant operation! Needless to say, early computers
were single-user systems. Much of the computer’s time was tied up with this primitive
form of program and data entry. In fact, as late as the mid-1970s, there were still vendors
producing computer systems with no operating system and computer hardware that was
still bootstrapped by entering the bootstrap program one instruction at a time into switches
on the front panel of the computer.

The history of system software, particularly operating systems, is much less well defined
than that of hardware. According to Cortada [CORT87],

Without more sophisticated operating systems, scientists would not have been
able to take full advantage of the power of the transistor and later of the
[microprocessor] chip in building the computers known today. Yet their
contribution to the overall evolution of digital computers has been overlooked
by historians of data processing.

Part of the reason, undoubtedly, is that software evolved gradually, rather than as a series
of important individually identifiable steps. The first operating systems and high-level
programming languages appeared in the early 1950s, particularly associated with IBM and
MIT, but with only a few exceptions, these efforts have not been associated with individual
people or projects.

The need for operating system software came from the increasing computer power
that resulted from the rapid development of new computers in the 1950s. Although the
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hardware architecture has not changed substantially since that time, improved technology
has resulted in a continuum of ever-increasing computer capability that continues to this
day. It has been necessary to continually modify and improve operating system architecture
to take advantage of that power and make it available to the user. Computing has changed
from single-user batch processing (where only a single user, with a single program, could
access the machine at one time), to multiple-user batch job submission (where each
user’s ‘‘job’’ was submitted to the computer by an operator for sequential runs), to
multiuser batch job execution (where the computer executed several jobs simultaneously,
thereby keeping the CPU busy while I/O took place on another user’s job), to multiuser
online computing (where each user had direct access to the computer), to single-user
interactive personal computing, to today’s powerful interactive networked systems, with
multitasking, easy-to-use graphical interfaces, the ability to move data between applications,
and near-instant access to other computers all over the world.

Each of these developments, plus various hardware developments—minicomputers,
PCs, new I/O devices, multimedia—have required additional operating system sophistica-
tion; in each case, designers have responded to the need.

The early computers were used primarily by scientists and engineers to solve technical
problems. The next generation of computers, in the late 1950s, provided a punched card
reader for input and a printer for output. Soon after, magnetic tape systems became
available. The first ‘‘high-level’’ languages, primarily assembly language, then FORTRAN,
made it possible to write programs in a language other than binary, and offline card punch
machines allowed programmers to prepare their programs for entry without tying up the
machine. Algol, COBOL, and Lisp followed shortly after. New technology improved the
reliability of the computers. All these advances combined to make the computer system
practical for business commercial use, especially for large businesses.

Still, these computers were single-user batch systems. Initially, users submitted the
cards that they had prepared to the computer for execution. Later, separate, offline systems
were developed that allowed the cards to be grouped together onto a magnetic tape for
processing together. Programs were then submitted to the computer room in the form
of jobs. A job consisted of one or more program card decks, together with the required
data decks for each program. An output tape could also be used to support printing
offline. As an example, Figure 1.15 shows a job that compiles and executes a FORTRAN
program.

I/O routines were needed to operate the card readers, tape drives, and printers. The
earliest operating systems consisted of just these I/O routines, but gradually operating
systems evolved to perform other services. Computer time was very expensive, hundreds
of dollars per minute, and in growing demand. To increase availability, control of the
computer was placed in the hands of an operator, who fed the punched cards, mounted
tapes, and generally tried to keep the system busy and efficient. The operating system
provided a monitor that fed jobs to the system and supported the operator by notifying
him or her of necessary actions, such as loading a new tape, setting switches on the panel,
removing printout, and so on. As system demand increased, the monitor expanded to
include accounting and simple, priority-based scheduling of jobs.

It is generally accepted that the first operating system was built by General Motors
Research Laboratories in 1953–1954 for their IBM 701 computer. Other early systems
included the FORTRAN Monitor System (FMS), IBSYS, and Share Operating System
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FIGURE 1.15

Job Card Deck Used to Compile and Execute a FORTRAN Program

$JOB ENGLANDER
$FORTRAN

$LOAD
$RUN

$DATA

$END

Program to compile

Data for the run

(SOS).3 Many important breakthroughs in operating system design occurred in the early
1960s. These breakthroughs laid the groundwork for the operating system as we know it
today.

■ In 1963, Burroughs released its Master Control Program (MCP). MCP contained
many of the features of modern systems, including high-level language facilities
and support for multiprocessing (with two identical CPUs). Most important,
MCP supported virtual storage, as well as powerful multitasking capabilities.

■ IBM introduced OS/360 as the operating system for its new System/360 in 1964.
OS/360 provided a powerful language to expedite batch processing, JCL, or Job
Control Language, and a simple form of multiprogramming that made it possible
to load several jobs into memory, so that other jobs could use the CPU when one
job was busy with input/output. By this time, disks were also becoming available,
and the system was capable of reading cards onto disk while the CPU executed its
jobs; thus, when a job completed, the operating system could load another job
from disk into memory, ready to run. This improved the OS scheduling
capability. JCL is still used for batch processing! The enormous success of the
IBM OS/360 and its successors firmly established the basis of an operating system
as a fundamental part of the computer.

■ In 1962, a group at MIT known as Project MAC introduced the concept of
time-sharing with an experimental operating system called CTSS. Project
MAC was one of the seminal centers for the development of computer science.
Shortly thereafter, MIT, Bell Labs, and GE formed a partnership to develop a
major time-sharing system. The system was called MULTICS (Multiplexed

3Share was a consortium of system programmers who used IBM systems and who met to discuss problems
and develop solutions. SOS was produced by a team of consortium members.
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Information and Computing Service), and although MULTICS never fully
realized its dream of becoming a major computer utility, many of the most
important multitasking concepts and algorithms were developed by the
MULTICS team. It was supplied for many years as the operating system for
Honeywell computer systems.

■ When Bell Labs withdrew from the MULTICS project, Ken Thompson, a
MULTICS researcher, turned to the development of a small personal operating
system, which he called Unics, later UNIX, to contrast it from MULTICS. He was
later joined by Dennis Ritchie. The original UNIX development was performed
on a Digital PDP-7 minicomputer and later moved to a PDP-11 minicomputer,
the forerunner of the VAX computer. Originally, the system was written in
assembly language, but Ritchie developed a new high-level language, which he
called C, and the operating system was largely rewritten in C.

UNIX introduced many important OS concepts that are standard today,
including the hierarchical file system, the shell concept, redirection, piping, and
the use of simple commands that can be combined to perform powerful
operations. Thompson and Ritchie included facilities for document production
and formatting, including such novelties as a spell checker and a grammar
checker. They created many inventive algorithms to improve operating system
performance, developed techniques for interprocess communication, and even
provided tools for networked and distributed processing. Many facets of
operating systems that are taken for granted today were originated in UNIX
development.

UNIX earned a reputation for power and flexibility. Because it was written in
C, it was also easy to port it, that is, convert it for use, to other computers. As a
result of these factors, UNIX became an important operating system for
universities and was ultimately adopted, in many versions, by the commercial
marketplace as well. UNIX continues to be of great importance, particularly due
to its flexibility in the area of networks and distributed systems.

■ Another important innovation, some would say the most important
development in making the computer accessible to nontechnical users, was the
development of the concept of graphical user interfaces. Most historians
would credit the invention of the windows and mouse interface to Doug
Englebart. This work was done, amazingly enough, in the 1960s, at Stanford
Research Institute. A practical windowing system was built in the 1970s by Alan
Kay and others at Xerox PARC (Palo Alto Research Center), as part of a
visionary computer concept known as the Dynabook project. The original
intention of Dynabook was to develop a book-sized personal computer with a
high-resolution color display and wireless communication that would provide
computer capabilities (particularly secretarial), games, e-mail, and a reference
library. Although the technology of the time was not sufficient to bring the
Dynabook as an entirety to fruition, the engineers at Xerox in the late 1970s built
a personal computer workstation with a graphical user interface known as Star. It
is believed that a visit to Xerox PARC by Steve Jobs, the founder of Apple, in
1979, inspired the development of the Apple Lisa and, subsequently, the Apple
Macintosh.
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The next important breakthrough in computer use occurred in 1982, with the
introduction of the IBM personal computer. The IBM PC was designed as a stand-alone,
single-user computer for the mass market. The IBM PC was supplied with a reasonably
easy-to-use operating system, PC-DOS, which was developed and also later marketed by
Microsoft as MS-DOS. PC-DOS was actually derived from an earlier personal computer
operating system, CP/M (Control Program for Microcomputers), but is important because
of the tremendous success of the IBM PC and its derivatives. Gradually, PC-DOS and
MS-DOS became the prevalent operating system of the era. With later versions, Microsoft
made many improvements, including hierarchical directory file storage, file redirection,
better memory management, and an improved and expanded command set. Many of these
improvements were derived from UNIX innovations. With the addition of Englebart and
Kay’s user interface innovations, MS-DOS has gradually evolved into Windows XP and
Windows Vista, and most recently, Windows 7.

Even with all these earlier innovations, there continue to be tremendous advances in
operating system software. Today’s systems, such as Windows XP and Vista, Linux, and
Macintosh OS X, combine much more power on one hand with improved user friendliness
and ease of use on the other. There are several reasons for this:

■ There has been a great increase in computer speed and power. More powerful
integrated circuits have allowed the design of faster computers using faster clocks
and larger internal data paths, together with techniques for speeding up
instruction execution. Even small personal computers can support tens of
megabytes of memory and many gigabytes of disk storage. A modern PC may
contain as much as one thousand times the memory and execute instructions one
thousand times as fast as the 1965 IBM OS/360 mainframe computer. Thus, more
capability can be built into the operating system without sacrificing performance.

■ There have been fundamental improvements in computer hardware design.
Many modern computers are designed as an integrated unit, hardware and
operating system software together. Most computer hardware contains special
features intended to support a powerful operating system. Such features as
special graphics, cache memory, vector processing, and virtual storage memory
management hardware are intended primarily for use by the operating system.
These features used to be available only on large mainframes. A protected mode
of hardware instructions, accessible only to the operating system, provides
security and protection to the operating system and allows the operating system
to protect the system’s resources and users.

■ There have been fundamental improvements in operating system software
design. Operating system programs have grown in size and complexity. Increased
memory capacity has made a larger operating system feasible. Increased speed
has made it practical. Gradually, innovative operating system techniques from
large computers have drifted down to the PC level. In addition, program design
itself has helped the process. New languages, well designed for system
programming, and better programming methods such as object-oriented
programming have also contributed to the process.

■ There has been a shift in focus to creating operating systems that better serve the
end user. This has resulted in much current research on human-computer
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interfaces, and on the ways in which humans work and use the computer. New
work paradigms, based on object-oriented programming and communication
technologies, and new interfaces continue to extend the role of the operating
system. There is a new willingness to include features that were not a part of
earlier operating systems and to modularize the operating system in different
ways to improve the delivery of services to the user and to the user’s application
programs.

■ Networking has provided the opportunity for innovative research and
development in distributed computing, including client-server technology,
shared processing, and grid computing. There is a continuing progression of new
operating system techniques, developed in response to the changing
requirements of modern distributed systems.

■ The rapid growth of the Internet, and of e-mail use, the Web, and multimedia in
particular, has created opportunities and the need for better methods of
accessing, retrieving, and sharing information between different systems. The
results have impacted network design, user interface design, distributed
processing technology, and open system standardization with corresponding
effects in operating system design.

Although today’s operating systems are highly complex and sophisticated, with many
capabilities made possible by modern technology, particularly fast processors, large amounts
of memory, and improved graphical I/O design, it is interesting to note that the major
operating system features that we take for granted today are all evolutions based on
innovations of more than thirty years ago.

Communication, Networks, and the Internet

With the development of large, multiterminal computer systems in the 1960s and 1970s, it
was natural that users would want to use the computer to communicate with each other
and to work collaboratively. Data was centrally stored in storage that was available to all,
so it was easily shared among users on the same system. It soon occurred to software
developers that it would be desirable to allow direct discussion among the users, both in
real time and in the form of messages that could be stored on the system and made available
to users when they logged in. Since data was centrally stored, the addition of message
storage was a minor enhancement. ‘‘Talk’’ facilities that allowed users to communicate in
real time were added later. These were similar to today’s text messaging, although some had
split-screen capability that allowed two users to send messages simultaneously. By 1965,
some of these systems supported e-mail, and in 1971, Ray Tomlinson created the standard
username@hostname format that is still in use today. As modems became available for users
to log into their office systems from home and computers became more affordable, software
innovators developed bulletin board systems, newsgroups, and discussion boards, where
users could dial in and leave and retrieve messages. Gradually, it became possible to support
modems on multiple lines, and affordable real-time ‘‘chat rooms’’ became possible.

During the same period, various developments occurred that made it possible to
connect different computers together into simple networks. Some were based on direct
links between modems on each computer. Others were based on early protocols, notably
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X.25, a packet-switching protocol using phone lines. By 1980, these various innovations had
evolved into a number of international networks, as well as three companies, Compuserve,
AOL, and Prodigy, who offered e-mail, Usenet news, chat rooms, and other services to
personal computer users.

All of this activity was, of course, a precursor to the Internet. Much of the modern history
of networking and communication can be traced back to two specific developments: (1) a
research project, ARPANET, whose goal was to connect computers at various universities
and research centers, funded starting in 1969 by the U.S. Defense Department and later
by the National Science Foundation and other groups, and (2) the development of the
Ethernet by Robert Metcalfe, David Boggs, and others, which started at Xerox PARC in
1973. The ARPANET project was responsible for the design of TCP/IP, which was first
tested in 1974, and issued as an international standard in 1981.

Because ARPANET and its successors, CSNet and NSFNet, were funded by the U.S.
government, its use was initially limited to noncommercial activities. Gradually, other
networks, some of them commercial, joined the network in order to exchange e-mails and
other data, while the administrators of NSFNet chose to ‘‘look the other way’’. Ultimately,
the government turned over its Internet resources to private interests in 1995; at that point
the Internet became commercial and expanded rapidly into the form that we know today.

Although it is only marginally related to the major issues addressed in this book,
we would be remiss if we did not complete this discussion with a mention of Sir Tim
Berners-Lee, of CERN, the European organization for nuclear research, who in 1991
developed the concepts that became the World Wide Web and Max Andreessen of the
University of Illinois, who, in 1993, developed Mosaic, the first graphical Web browser.

SUMMARY AND REVIEW

This chapter has presented a brief review of the basics of computing. We began by recalling
the input-process-output model for computing. Next we demonstrated the connection
between that model and the components of the computer system. We noted that implemen-
tation of the model requires four components: hardware, software, communication, and
data. The architecture of the computer system is made up of the hardware and system soft-
ware. In addition, a communication component exists to enable interconnecting systems.
We discussed the general architecture of a computer and noted that the same description
applies to CPUs both modern and ancient, both large and small. We introduced the
important concepts of virtualization, standards and protocols, noting that these ideas will
appear throughout the book. The chapter concluded with a brief history of the computer
from an architectural perspective.

FOR FURTHER READING

There are many good general introductory computer texts available for review if you feel
you need one. New books appear so rapidly that we are reluctant to recommend any
particular one. For alternative coverage of material in this book, you may find recent
editions of various books by Stallings [e.g., STAL05] or Tanenbaum [e.g., TANE07] to be
useful. Various chapters offer additional suggestions that are specifically applicable to the
material in those chapters. The Web is also a rich source of knowledge. Two websites that
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we have found particularly useful are wikipedia.org and howstuffworks.org. In addition to
a wide range of material, these websites also offer numerous references to facilitate further
study. Other useful websites include arstechnica.com and realworldtech.com.

The book by Rochester and Gantz [ROCH83] is a fun way to explore the history of
computing. Historical facts are blended with other facts, anecdotes, humor, and miscellany
about computers. Although the book is (sadly) out of print, it is available in many libraries.
You can learn, in this book, about von Neumann’s party habits, about movies that became
video games, about computer scams and ripoffs, and lots of other interesting stuff. Perhaps
the most thorough discussion of computer history is found in the three-volume dictionary
by Cortada [CORT87]. Although Cortada is not really designed for casual reading, it
provides ready access and solid information on particular topics of interest. Much of the
historical discussion in this chapter was obtained from the Cortada volumes.

If you live or vacation in a city with a computer museum, you can enjoy another
approach to computer history. Computer museums even allow you to play with some of
the older computers. Well-known museums can be found in Washington, D.C., and within
the Science Museum in Boston.

KEY CONCEPTS AND TERMS

application programming
interface (API)

arithmetic/logic unit (ALU)
bus
byte
central processing unit

(CPU)
channel (I/O)
communication channel
control unit (CU)
data deck
deck (program)
distributed computing
embedded computer
graphical user interface

hardware
input
input-process-output

(IPO) model
interface unit
kernel
logical
memory
modem
network interface card

(NIC)
open computing
operating system
output

port (from one computer to
another)

primary storage
protocol
random access memory

(RAM)
read-only memory (ROM)
software
standards
stored program concept
submit (a job)
suite (protocol)
virtual
von Neumann architecture
word

READING REVIEW QUESTIONS
1.1 Any computer system, large or small, can be represented by the four elements of

an IPO model. Draw an IPO model; clearly label each of the four elements in your
drawing.

1.2 One way to view an information technology system is to consider an IT system
as consisting of four major components or building blocks. This book takes this
approach by dividing the remainder of the book into parts, with a part devoted to
each major type of component. What are the four components of an IT system that
you will study in this book?
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1.3 Explain the differences between primary storage and secondary storage. What is
each type used for?

1.4 The book divides the software component of a computer system into two major
categories. Identify each category and give an example of each that you are already
familiar with. Briefly explain the role of each category.

1.5 The book compares a large mainframe computer to a small laptop computer or
PDA, and states that the difference between them is one of magnitude, not of
concept. Explain the meaning of that statement.

1.6 Virtualization is a concept that has taken on major importance in the early
twenty-first century. Explain what is meant by virtualization.

1.7 What is a protocol? What is a standard? Do all protocols have to be standards?
Explain. Are all standards protocols? Explain.

EXERCISES
1.1 Look at the computer ads on the business pages of a large daily newspaper and

make a list of all the terms used that you don’t understand. Save this list and
check it from time to time during the semester. Cross out the items that you now
understand and look up the items that have been covered but which you still don’t
understand.

1.2 For the computer that you normally use, identify which pieces constitute the
hardware and which pieces constitute the system software. Now think about the
file system of your computer. What part of the file system is hardware, what part
software, and what part data?

1.3 Suppose you would like to buy a computer for your own needs. What are the
major considerations and factors that would be important in your decision? What
technical factors would influence your decision? Now try to lay out a specification
for your machine. Consider and justify the features and options that you would
like your machine to have.

1.4 Write a small program in your favorite high-level language. Compile your program.
What is the ratio of high-level language statements to machine language statements?
As a rough estimate, assume that each machine language statement requires
approximately four bytes of file storage. Add various statements one at a time to
your program and note the change in size of the corresponding machine language
program.

1.5 Locate a current reference that lists the important protocols that are members of
the TCP/IP protocol suite. Explain how each protocol contributes to the operation
and use of the Internet.

1.6 Protocols and standards are an important feature of networks. Why is this so?

1.7 Although there is substantial overlap between protocols and standards there are
protocols that are not standards and standards that are not protocols. With the
help of a dictionary, identify the differences between the definition of protocol and
the definition of standard; then, identify a specific example of a standard that is not
a protocol; identify a specific example of a protocol that is not a standard.
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CHAPTER 2

AN INTRODUCTION TO
SYSTEM CONCEPTS AND
SYSTEMS ARCHITECTURE

C. Covert Darbyshire/The Cartoon Bank



2.0 INTRODUCTION
In this book we discuss systems: computer systems, operating systems, file systems,
I/O (sub)systems, network systems, and more. Each of these same systems is also
an element with a major role in the information technology systems that form the
backbone of modern organizations. Indeed, these elements—computer hardware,
software, data, and communication—together represent the infrastructure of every IT
system. If we are to understand the various types of systems that are the focus of this
book, it is important that we first understand the concept of ‘‘system’’ itself, and, then,
equally important, the basic architectures of the IT systems that use these elements.
Only then is it possible to see clearly the role of the various system elements in the
larger IT picture as we visit each in turn.

Use of the word ‘‘system’’ is obviously not unique to IT. In our daily lives, too,
we often use the word ‘‘system’’ to describe things in everyday language. Our homes
have electrical systems, plumbing systems, heating and air conditioning systems, and
maybe for some, even, home theatre systems. There are ignition, braking, fuel, exhaust,
and electrical systems in our cars. Our cities have water systems, sewer systems,
and transportation systems, to name a few. Philosophers and social scientists talk
about social systems and linguistic systems. The economy deals with banking systems,
financial systems and trading systems, and, for that matter, economic systems. The
word ‘‘system’’ even appears in the names of thousands of companies.

So it seems as though everyone knows what a system is, but what is a system? We
use the word ‘‘system’’ intuitively, without thinking about the meaning of the word,
so we obviously have an intuitive understanding of what a system is. IT professionals,
however, spend their careers analyzing, designing, developing, implementing, upgrad-
ing, maintaining, administering, and using systems everyday. It is therefore important
that we have a deeper, more formal understanding of system concepts.

In this chapter, we consider the concept of a system from an IT perspective. We
investigate the characteristics and composition of systems, explain the meaning of
system architecture, and show the fundamental role of systems, particularly various
types of IT systems, in business. We offer examples of different types of IT systems,
and show how IT systems work together to accomplish tasks and solve problems. We
show how systems can themselves be composed of subsystems, where the subsystems
also fit the definition of systems.

After you have studied this chapter, you should have a clear understanding of
what a system is, what kinds of systems are used in IT, the purpose and goals for each
of these systems, and how these systems fit together and interact with each other and
with their environment. You’ll understand the concept of system architecture. This
discussion will set the stage for the remainder of the book, which considers individually
and collectively the specific computer-based systems and subsystems that constitute
the primary tools and components of business information technology.
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2.1 THE GENERAL CONCEPT OF SYSTEMS
The most important characteristic that is shared by all of the systems mentioned above,
and, indeed, by all systems, is that each is built up from a set of components that are
linked together to form what we think of as a single unit. The house plumbing system, for
example, consists of sinks, faucets, toilets, a hot water heater, bathtubs or showers, valves,
and more, all connected together by pipes. An IT system consists of groups of computer
hardware, various I/O devices, and application and system software, connected together by
networks.

Often, the system is intended to serve a purpose or to produce results. The purpose of
the house plumbing system is to allow the residents of the home access to water to wash,
bathe, and drink. The purpose of an IT system is to allow organizations to process, access,
and share information. The results of a successful IT system are documents, information,
improved business processes and productivity, profits, strategic plans, and the like. This is,
in fact, the ‘‘output’’ of the IPO model described in Chapter 1. In general, though, there
is no requirement that a system serve a specific, definable purpose. The fact that the set
of components may be considered as a single unit is sufficient to satisfy the concept of a
system. The solar system is an example of a system where the purpose is unspecified.

There is also no requirement that the components of a system be physical. The links
between components can also be physical or conceptual. In fact, the system itself may be
conceptual, rather than physical. The number system is an example of a conceptual system.
Computer operating systems are also conceptual, rather than physical. Business systems
are also conceptual, although some of the components that they contain may be physical.
The words tangible and intangible are sometimes used in place of physical and conceptual,
respectively. Intangible or conceptual components and systems include ideas, methods,
principles and policies, processes, software, and other abstractions. If, for example, the
components in a system represent steps (intangible) in a multistep process, the links may
represent the need to complete one step before the next is begun (also intangible).

Figure 2.1 illustrates a number of different systems to show you some of the possi-
bilities. Figure 2.1(a) is a model of a home plumbing system. This is a physical system.
The components are plumbing fixtures, linked by pipes. Figure 2.1(b) is a simplified
representation of the solar system. The sun and planets are physical; the links in this system
are conceptual, specifically, the distance of each planet from the sun, interplanetary and
solar gravity, orbital relationships, the distances between planets at a particular point in
time, and other attributes. Figure 2.1(c) is a diagram of a home networking system. The
links in this case are a mixture of physical wires and (intangible) wireless connections.
Sometimes the nature of the links is important only in terms of providing the proper
interface connections to the components. Figure 2.1(d) is a simplified diagram of part of
the inventory control portion of a sales system. The relationships between the components
in this case are temporal (i.e., related to time). For example, inventory from a previous sale
must be deducted from stock before we process the next order; otherwise we can’t promise
delivery of goods on the new order because we don’t know if we still have sufficient goods
in stock to fill the order.

With these pictures and ideas about systems in mind, we will define a system as follows:

A system is a collection of components linked together and organized in such
a way as to be recognizable as a single unit.
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FIGURE 2.1(b)
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FIGURE 2.1(c)
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FIGURE 2.1(d)

Flow Diagram for Part of an Inventory Control System
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A general representation of a system is shown in Figure 2.2.
The linked components that constitute a system also define a boundary for the system.

Anything outside the boundary repesents the environment that the system operates or
presents itself within. The environment may interact with and affect the system in various
ways. The reverse is also true. The interface between the system and its environment is an
important characteristic of the system. If the interface is well-defined, it is often possible
to replace the existing system with a different system, as long as the interface between the
system and the environment remains constant. This idea can have important implications
when designing IT systems. For example, in a particular IT installation, a single large
computer may be functionally the same as a network of small computers. When we define
inputs and outputs for a system, the environment is the source of the input and also the
receiver of the output.

As an example of the relationship between a system and its environment, consider the
rather simplistic view of an e-business system illustrated in Figure 2.3. The organization
represented by this illustration purchases goods from suppliers and makes them available
for sale. (The value-adding component in the figure consists of various operations that
make it worthwhile to buy from this organization, rather than directly from the supplier.
For example, Amazon.com makes it possible to buy a wide variety of books from one source,
rather than having to place separate orders from a number of different suppliers.) The
environment for this system consists of customers who purchase from the system, suppliers
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FIGURE 2.2

General Representation of a System
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Links
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to the system, governments who control the legal aspects of the business and collect taxes,
employees and prospective employees, external support personnel (such as repair people),
financial resources, and others. The primary interfaces for this system are system input
from suppliers and system output to purchasers; however, there are additional, more subtle
interfaces to be considered, including legal, cultural, and financial interactions with the
system. For example, sensitive cultural and language issues that offend potential customers
on a website migh have an important impact on an organization’s sales.

When analyzing a system, the components of the system may be treated as irreducible
or they may themselves be representable as systems. When considered in the context of
a particular system, these components would be viewed more accurately as subsystems.
A business IT system, for example, might have marketing, manufacturing, purchasing,
inventory, finance, and accounting subsystems, among others. Even these components
might be expanded. The marketing subsystem might be further broken down into sales,
development, and advertising components, as one possibility. The level of detail to be
considered depends on the context in which the system is being considered, discussed,
evaluated, or used. The division of a system or subsystem into its components and linkages is
called decomposition. Decomposition is inherently hierarchical. The ability to decompose
a system hierarchically into subsequent sets of components and subsytems is an important
property of systems.
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FIGURE 2.3

A Simple E-Business System
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The fundamental properties, and the patterns of relationships, connections, constraints,
and linkages among the components and between the system and its environment are
known collectively as the architecture of the system. Some people choose to differentiate
the architecture of a system from the organization of a system. The assumption is that
the architecture is fundamental to the meaning and value of the system whereas the
organization is one of possibly many combinations of components and linkages that meets
the requirements of the architecture. The difference is subtle and often unimportant.

It is common to represent systems and their components by models or drawings on
paper or objects within a computer program. These representations are abstractions. They
represent the real system but are not actually the real system. (For example, the solar system
does not fit conveniently inside a computer!) It should be obvious to you that all of the
illustrations of systems in Figures 2.1, 2.2, and 2.3 are abstractions.

The primary reason for humans to group components into systems and to represent
them as abstractions is to simplify understanding and analysis, particularly if the individual
components are numerous and complex. We can study the relationships between the
different components without the distraction created by the details of individual compo-
nents. We can decompose, isolate and study individual components when required. We
can study the interactions between the environment and the system as a whole. Effectively,
our analyses are simplified by eliminating factors that are not relevant in the context of our
interests. In a large network of computers, for example, we may be concerned primarily
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with the flow of data between computers. The details of the individual computers are
unimportant. In general, dealing with models at the system level allows us to isolate and
focus on the specific elements of interest more easily, by treating other elements collectively.

To escape our fixation on information technology systems for an instant, consider,
just for fun, the solar system that we’ve used previously as an example. If we are studying
the Milky Way galaxy, it is convenient and sufficient to treat the solar system as a single
irreducible component in the galaxy. We might be interested in the location and movement
of our Sun in the galaxy, for example, but the structure of the planets is irrelevant to our study
in this case. On the other hand, if we are interested in studying the effects of the tides on a
sea shore where we are planning to vacation, we will have to expand the ‘‘Earth’’ component
and look at the specific effects of the moon and other nearby objects as part of our analysis.

Consider, too, the role played by decomposition and the ability to isolate and study
individual components. A complex system may be divided into relatively independent
components and analyzed by different individuals, each a specialist in their own area. Thus
a plumber can create a home water system component without concern for the details
of the electrician’s efforts. They can work together on the linkages that concern both of
them, for example, the wiring for the boiler in a hot water heating system. The system
architect coordinates the different efforts. The role of an IT system architect is similar: to
work with finance experts on the finance component, marketing experts on the marketing
component, and so forth.

When the goal of a project is to implement a system of some type, it is sometimes
convenient to view the components of a system as modules that can be implemented
independently, then linked together to produce the final result. This technique can simplify
analysis, design, assembly, upgrading, and even repair. It also supports collaboration during
the design process, since individual components can be designed by different individuals
using specifications for the interfaces.

For example, a cell phone might consist of a computer control module, a memory
module, a display module, an audio input/output module, a radio transmitter/receiver
module, a keypad/text input module, and a wireless networking module. Each component
might have been developed by a different team. These modules, designed, constructed, and
manufactured as individual assemblies, properly interfaced, wired together, and mounted
into a case, constitute the design of a typical cell phone. They also represent the components
that might appear in the system diagram for a cell phone. The same approach might be
taken with a computer system, with a central processor module, a graphics display module,
an audio module, a network module, a hard drive controller module, and so on. Figure 2.4,
for example, shows the basic system hardware components that make up an iPhone.

It is also important to realize that there may be many different representations for a
system, to reflect the various uses of the system model. Returning to our IT roots for an
example, the representation of the business system shown in Figure 2.5(a) is a traditional
hierarchical oranization chart. The components are departments that perform various
functions within the business. In contrast, a partial model of the same business shown in
Figure 2.5(b) represents the application architecture of an IT system within this business.
Take another look at Figure 1.4 for still another representation of a business. As another
simple example, you could represent a house by the physical appearance of its exterior, by
the function and layout of its rooms, or by the various subsystems, electrical, plumbing,
heating, and so on that the house requires. Presumably, each of these representations would
be useful to a different participant. In fact, we would expect an architect to provide all of
these for use by the owner, the builder, and the various contractors.
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FIGURE 2.4
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FIGURE 2.5(a)
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FIGURE 2.5(b)

Partial View of a Business Application Architecture
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2.2 IT SYSTEM ARCHITECTURES
The use of system concepts is particularly applicable when discussing the various types of
IT systems. In general, the goal of IT systems is to assist organizations to meet the strategic
needs of the enterprise. Not surprisingly, IT systems are frequently complex, and the ability
to separate them naturally into subsystems or components of manageable size simplifies
understanding of the system as a whole. The analysis, design, and implementation of IT
systems must take place at different levels of detail and frequently require collaboration
among many analysts and designers. This corresponds well with the ability to decompose
systems into components, hierarchically, which allows us to concentrate at the appropriate



CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 49

levels of detail during each step along the way. This approach is known as a top-down
approach. The top-down approach allows us to focus on the specific areas of interest
without the distraction of details that are irrelevant for the level that we’re studying. In
this way, a system architect can analyze and study the IT system as a whole, encapsulating
the computer systems, software systems, network architecture, and Web architecture that
represent components, and focusing instead on the large picture: the purpose of each
component and the requirements for the interfaces and linkages that connect and integrate
them. With the IT system architecture firmly established, we can consider the individual
business functions, computer systems, and networks that will link them together. For IT
system analysis, this is often sufficient, at least superficially, assuming that the system
architects actually understand the conditions and constraints imposed by details at the
lower levels.

Although there are other, equally valid, approaches to IT system analysis and design,
and many other important considerations as well, this approach suits the purposes of this
book well because it allows us to establish general requirements for IT systems and then
to show how the specific capabilities and characteristics of computer hardware, operating
systems, networks, and data fulfill those requirements.

With these ideas in mind, let us return to the simple word processing example from
Chapter 1 and reconsider it from a system architecture perspective. Recall that in this
example you are sitting at your computer typing text into a word processor. We noted that
the computer accepted input from your mouse and keyboard, processed it according to
rules established by the application software, and produced output, which appeared on a
display. From the system perspective, we can, for now, treat the whole computer, keyboard,
display, printer, storage, software, and all as a single component. You’re the relevant part
of the environment for this discussion. Forgetting the issue of control for now, the system
has an input and an output. Both of these interface with you, the environment. The data
for this interface is alphanumeric text in human-readable form. Other input data to the
document might include graphics drawn with the mouse, photographic images from a
digital camera, bar codes, or music from an iPod or other audio source. We described this
scenario earlier, in Chapter 1, as input-process-output.

A system this simple is unlikely to meet all the needs of even the smallest enterprise
or, even, the least computer-literate individual. But it does serve as a starting point to
recognizing the value of a system approach to the understanding of information technology.

Distributed Processing Systems

Realistically, modern IT system architectures generally rely on multiple computers con-
nected by networks of communication channels to achieve their goals. In all but the smallest
organizations, input data is collected from locations scattered throughout the organization,
stored, processed, and distributed to other locations within the organization. Since modern
computer hardware and networking equipment is plentiful and inexpensive, it is practical
to distribute computing capability to everyone who needs it. Furthermore, the availability
of the Internet and alternative structures, such as satellite communications, make global
data communication practical. Web access, organization intranets, e-mail capability, anal-
ysis tools, such as Microsoft Excel, and document preparation tools are widely available
and are considered essential business tools throughout most organizations. Collaboration
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between different organizations, particularly in the area of automated business-to-business
purchasing and sales, is commonplace.

Therefore, when envisioning effective IT systems, designers typically must create
system architectures that are capable of supporting large numbers of user workstations
who will have ready access to the organizational information that they need. The system
must be able to reliably store and protect large amounts of organizational data. For many
organizations, customers outside of the organization may also need access to the system to
get information and to make purchases.

Consider a few typical simple scenarios:

■ A global fast food chain collects data each day from each of its restaurants
worldwide to establish sales figures and determine sales trends. This allows the
company to determine which locations are most productive and which locations
need assistance, which items sell best and which need to be modified or replaced,
and so on.

■ A large travel organization conducts much of its business online, using travel
agents located all over the world. It maintains Web servers that have immediate
access to large databases of client information and travel information, as well as
continual and instant access to airline and hotel reservation systems to determine
current airfares, seat availability, and hotel room availability. All of this
information must be immediately accessible to every agent and must be current
at every instant. Even brief system failures are very costly.

■ A large Web-based retail sales organization sells large quantities of a wide variety
of merchandise. (Think Amazon or Wal-Mart.) Orders initially come in to a
central facility, where they are billed. Inventory is stored in warehouses in
various countries and local regional areas to expedite delivery and reduce
delivery costs. The system must be able to distribute orders to the various
regional facilities efficiently; it must also maintain appropriate levels of goods
at each warehouse to match sales and must be able to locate goods and arrange
shipping in response to orders as they come in.

Inventory replenishment is handled by an automated purchasing IT system
component that is integrated with the IT systems of the suppliers. Purchase order
data is passed from the retailer to a supplier, which triggers order placement,
billing and shipment components in the supplier’s systems. Web technology is
commonly used to satisfy the need for data and communication compatability
between the systems.

■ Even conventional business order processing is inherently distributed within an
organization. A purchase order, for example, might be entered into the system by
a salesperson in the sales department; the order is checked by order fulfillment
for inventory, then distributed to the accounting department for a credit check
and billing, and sent to the warehousing area for packaging and shipping. Back
orders and inventory replenishment are sent to the purchasing department. For
planning and marketing purposes, data will be collected into a central location
and processed into sales figures, inventory planning and purchase requirements
data, and the like. In a large organization, these functions might be widely
scattered over a city, country, or even the world.
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The emphasis in each of these scenarios is the flow and processing of data within an
organization or between organizations or between an organization and its environment. The
system architecture representation of such operations is called application architecture.
Application architecture is primarily concerned with the activities and processing of
application programs and the communications between them. Since the application
architecture addresses the fundamental business needs of the organization, the application
architecture is typically the primary consideration in IT system design. Therefore, the
system requirements and constraints set by the application architecture have major impact
on the hardware architecture and network architecture requirements for the system.
Within the application architecture realm the selection and layout of computer systems
and communication networks is of concern primarily to the extent that it adequately
supports the application software and its functionality. However, additional factors such
as scalability, convenience, information availability, data security, system administration,
power and space requirements, and cost may also play important roles in computer and
network architectural designs.

CLIENT-SERVER COMPUTING There are a variety of possible application architectures
that can satisfy the requirements of modern organizations. Most, however, are based on
different applications of a simple technological concept, the client-server model.

In a client-server configuration, a program on a client computer accepts services
and resources from a complementary program on a server computer. The services and
resources can include application programs, processing services, database services, Web
services, file services, print services, directory services, e-mail, remote access services, even
computer system initial startup service. In most cases, the client-server relationship is
between complementary application programs. In certain cases, particularly for file services
and printer sharing, the services are provided by programs in the operating system. Basic
communication and network services are also provided by operating system programs.

Basic client-server architecture is illustrated in Figure 2.6. Notice that the link between
client and server is essentially irrelevant within the application architecture view of the
system. The ‘‘cloud’’ in the figure is intended to indicate only that there is a link of some
kind between the client and the server. The link can be a network connection, an intranet

FIGURE 2.6
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or Internet connection, or some sort of direct connection. In fact, a single computer can
act as both client and server, if desired. (A situation where this is the case is described in
Chapter 16.)

The client-server model describes the relationship and behavior of programs in one or
two computers under particular prescribed circumstances. It is important to understand
that the client-server model does not require any special computer hardware. Furthermore,
networking software within the operating system of each computer routinely provides basic
communication capabilities. The only ‘‘special’’ software required is the software within
the complementary application programs that provides the communications between the
programs. The requests and responses take the form of data messages between the client
and server that are understood by both application programs. As an example, slightly
simplified, the HTTP request message sent to a Web server by a Web browser requesting
a Web page consists of the word GET followed by a URL. If the request is successful, the
message returned by the server contains the HTML text for the page.

From the description and the figure you can see that the Web browser–Web server
application described as an example in Chapter 1 fits the description of a client-server
application. We will return to this example momentarily.

A typical use of the client-server concept within an organization is shown in Figure 2.7.
In this case, a number of clients are sharing a number of servers, showing both the
shared server nature of client-server computing, as well as to show that there may be
multiple servers offering different services on the same network. Notice, also, that the
server computer labeled S2 in the figure is running two different server applications. Since
computers are capable of running multiple tasks concurrently, this is a possible scenario.
The only limitations to running multiple applications on a single server are the potential
slowdowns that may result from the load on the server computer and the traffic on the
network to that server. Overall, there is a multiple-multiple relationship between clients
and servers: a server can serve multiple clients, and a client can request services from
multiple servers.

The use of client-server processing as a basis for IT system architecture has a number
of advantages:

■ Providing services on a single computer or on a small number of computers in a
central location makes the resources and services easy to locate and available to
everyone who needs them, but also allows the IT administrators to protect the
resources and control and manage their use. The consistency of files and data can
be managed and assured.

For example, client-server technology can ensure that every user requesting
a particular program from a server will receive the same version of the program.
As another example, suppose a program has a license that limits the number of
simultaneous users. The program server can easily limit distribution of the
program appropriately.

■ The amount of data to be stored, processed, and managed may be extremely
large. It is more efficient to equip a small number of computers with the power
needed than to require powerful computers at every station.

■ Typically, humans request information from knowledgeable sources as they need
it. Thus, the client-server approach is naturally consistent with the way humans
acquire and use information.
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FIGURE 2.7
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The most familiar example of the use of client-server technology is the Web
browser–Web server model used in intranets and on the Internet. In its simplest form, this
model is an example of two-tier architecture. Two-tier architecture simply means that
there are two computers involved in the service. The key features of this architecture are a
client computer running the Web browser application, a server computer running the Web
server application, a communication link between them, and a set of standard protocols,
in this case, HTTP, for the communication between the Web applications, HTML for the
data presentation requirements, and, usually, the TCP/IP protocol suite for the networking
communcations.

In the simplest case, a Web browser requests a Web page that is stored as a pre-created
HTML file on the server. More commonly, the user is seeking specific information, and a
custom Web page must be created ‘‘on the fly’’, using an application program that looks
up the required data in a database, processes the data as necessary, and formats it to build
the desired page dynamically.

Although it is possible to maintain the database and perform the additional database
processing and page creation on the same computer as the Web server, the Web server in a
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large Internet-based business may have to respond to thousands of requests simultaneously.
Because response time is considered an important measure by most Web users, it is often
more practical to separate the database and page processing into a third computer system.
The result, shown in Figure 2.8, is called a three-tier architecture. Note that, in this case, the
Web server machine is a client to the database application and database server on the third
computer. CGI, the Common Gateway Interface, is a protocol for making communication
between the Web server and the database application possible. (In the figure, we have
placed the page creation application software on the database machine, but it could be
located on the Web server instead if doing so would balance the loads on the two machines
better.) In some situations, it is even desirable to extend this idea further. Within reason,
separating different applications and processing can result in better overall control, can
simplify system upgrades, and can minimize scalability issues. The most general case is
known as an n-tier architecture.

Client-server architecture is a distributed processing methodology, in which some of
the processing is performed on the client system and some is performed on the server
system. To see this more clearly, consider the distribution of processing between the client
and server in a database application, in which the client requests specific information from
a database stored on a database server.

At one extreme, the client application provides little more than a request form and a
means to display the results. All of the processing is performed on the server. This might
be appropriate if there is little computing power in the client. Certain so-called ‘‘thin’’
clients or ‘‘end-user’’ terminals might meet this criterion, but this situation is increasingly
rare. Because this extreme case puts the entire processing load on the server, the system
designer will have to specify a more powerful computer for the server; additionally, the
requirements of the database server may limit the capability of the server computer system
to perform other tasks or to scale for increased usage.

At the other extreme, the database server application simply accesses data from the
database and passes all of the data to the client. The client application performs all of
the processing. This relieves the load on the server, and it is reasonable to assume that
modern client computers would be able to handle most database processing tasks relatively
easily. However, the potential transfer of large amounts of raw data from the server to

FIGURE 2.8

Three-Tier Database Architecture

CGI*
Request

HTTP
Request

HTTP
response

CGI
response
(HTML)

Web
server

database
server

database

*CGI: Common Gateway Interface



CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 55

the client for processing may put an extra burden on the network instead, requiring the
system designer to specify higher speed network components at potentially higher cost and
additional implementation difficulty.

A well-designed system analysis will consider the different factors, the complexity
of the applications, expected network traffic, usage patterns, and the like. The optimum
solution is likely to fall somewhere in the middle, with some pieces of applications on the
server, others on the client.

One of the strengths of client-server architecture is its ability to enable different
computer hardware and software to work together. This provides flexibility in the selection
of server and client equipment tailored to the needs of both the organization and the
individual users. One difficulty that sometimes arises when different computers have
to work together is potential incompatibilities between the application software that
resides on different equipment. This problem is commonly solved with software called
middleware. Middleware resides logically between the servers and the clients. Typically,
the middleware will reside physically on a server with other applications, but on a large
system it might be installed on its own server. Either way, both clients and servers send
all request and response messages to the middleware. The middleware resolves problems
between incompatible message and data formats before forwarding the messages. It also
manages system changes, such as the movement of a server application program from one
server to another. In this case, the middleware would forward the message to the new
server transparently. The middleware thus assures continued system access and stability. In
general, the use of middleware can improve system performance and administration.

WEB-BASED COMPUTING The widespread success of the World Wide Web has
resulted in a large base of computer users familiar with Web techniques, powerful
development tools for creating Web sites and Web pages and for linking them with
other applications, and protocols and standards that offer a wide and flexible variety
of techniques for the collection, manipulation, and display of data and information. In
addition, a powerful website is already a critical component in the system strategy of
most modern organizations. Much of the data provided for the website is provided by
architectural components of the organization’s systems that are already in place.

Not surprisingly, these factors have led system designers to retrofit and integrate Web
technology into new and existing systems, creating modern systems which take advantage
of Web technology to collect, process, and present data more effectively to the users of the
system.

The user of a Web-based system interacts with the system using a standard Web
browser, enters data into the system by filling out Web-style forms, and accesses data
using Web pages created by the system in a manner essentially identical to those used
for the Internet. The organization’s internal network, commonly called an intranet, is
implemented using Web technology. To the user, integration between the intranet and the
Internet is relatively seamless, limited only by the security measures designed into the system.
This system architecture offers a consistent and familiar interface to users; Web-enabled
applications offer access to the organization’s traditional applications through the Web.
Web technology can even extend the reach of these applications to employees in other parts
of the world, using the Internet as the communication channel.
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Since Web technology is based on a client-server model, it requires only a simple
extension of the n-tier architecture to implement Web-based applications. As an example,
Figure 2.9 shows a possible system architecture to implement Web-based e-mail. Note the
similarity between this example and the three-tier database application shown in Figure 2.8.

Many organizations also now find it possible and advantageous to create system
architectures that integrate parts of their systems with other organizations using Web
technology and Web standards as the medium of communication. For example, an
organization can integrate and automate its purchasing system with the order system of its
suppliers to automate control of its inventory, leading to reduced inventory costs, as well as
to rapid replacement and establishment of reliable stocks of inventory when they are needed.
Internet standards such as XML allow the easy identification of relevant data within data
streams between interconnected systems, making these applications possible and practical.
This type of automation is a fundamental component of modern business-to-business
operations.

PEER-TO-PEER COMPUTING An alternative to client-server architecture is peer-to-
peer architecture. Peer-to-peer architecture treats the computers in a network as equals,
with the ability to share files and other resources and to move them between computers.
With appropriate permissions, any computer on the network can view the resources of
any other computer on the network, and can share those resources. Since every computer
is essentially independent, it is difficult or impossible to establish centralized control to
restrict inappropriate access and to ensure data integrity. Even where the integrity of the
system can be assured, it can be difficult to know where a particular file is located and
no assurance that the resource holding that file is actually accessible when the file is
needed. (The particular computer that holds the file may be turned off.) The system also
may have several versions of the file, each stored on a different computer. Synchronization
of different file versions is difficult to control and difficult to maintain. Finally, since
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data may pass openly through many different machines, the users of those machines may
be able to steal data or inject viruses as the data passes through. All of these reasons are
sufficient to eliminate peer-to-peer computing from consideration in any organizational
situation where the computers in the network are controlled by more than one individual
or group. In other words, nearly always.

There is one exception: peer-to-peer computing is adequate, appropriate, and useful
for the movement of files between personal computers or to share a printer in a small office
or home network.

Peer-to-peer technology has also proven viable as an Internet file sharing methodology
outside the organizational structure, particularly for the downloading of music and video.
The perceived advantage is that the heavy loads and network traffic associated with a server
are eliminated. (There are legal ramifications, also, for a server that is sharing copyrighted
material illegally.) This technique operates on the assumption that the computer searching
for a file is able to find another computer somewhere by broadcasting a request across
the Internet and establishing a connection with a nearby computer that can supply the
file. Presumably, that computer already has established connections with other systems. All
of these systems join together into a peer-to-peer network that can then share files. One
serious downside to this approach, noted above, is the fact that the computers in an open,
essentially random, peer-to-peer network can also be manipulated to spread viruses and
steal identities. There are several serious documented cases of both.

An alternative, hybrid model uses client-server technology to locate systems and files
that can then participate in peer-to-peer transactions. The hybrid model is used for instant
messaging, for Skype and other online phone systems, and for Napster and other legal file
download systems.

Although there have been research studies to determine if there is a place for
peer-to-peer technology in organizational computing, the security risks are high, the
amount of control low, and the overall usefulness limited. The results to date have been
disappointing.

The Role of the System Architect

In Section 2.1, we suggested that there are different ways of viewing systems. From the
discussion within this section, you can see that the IT system architect must consider
the system from the perspectives of application architecture, data architecture, network
architecture, and computer architecture. Each of these addresses different aspects of the
IT system as a whole. For example, our consideration of different general application
architectures—client-server, web-based architecture, peer-to-peer architecture—ignored
the networking that links the various computers together. Similarly, we attempted to
minimize the effects due to the specifics of individual computer systems when exploring
the various requirements of a system from the perspective of application architecture.

Ultimately, it is the responsibility of the system architect to assess the particular needs
of an organization and create a system that meets those needs while attempting to achieve
an optimum balance of computer power, network capability, user convenience, and budget.
To do so, the architect will consider each aspect of the system: application architecture,
network requirements, specification of computer systems, and data requirements, just as
the architect designing a house considers flow of people through the house, overall use of
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space and room layout, individual room layouts, mechanical systems, and aesthetic design
as different views of the overall architecture of the house.

Although the infrastructure design as defined by the computer hardware, system
software, and communication channels is subordinate to the fundamental business require-
ments that determine a basic IT system architecture, the system architect must understand
the features and constraints that establish the feasibility and desirability of a particular
infrastructure configuration.

Google: A System Architecture Example

So far, we have considered basic system concepts and simple system architectures as
examples. Most IT business systems operate primarily within an organization, with limited
collaboration with other, partnered organizations and carefully controlled public access. At
the opposite extreme are massive systems that are widely open to the public. Google offers
a primary example of such a system.

The primary mission of Google is to provide powerful, fast search capability of
material on the Internet for billions of users all over the world. Income to the organization
is provided from advertising that is targeted to each user based on the specific nature of the
user’s search. The design of Google’s IT system architecture is obviously fundamental to
Google’s ability to achieve its mission and to meet reasonable income goals. In keeping with
the focus of this book, our primary interest is in the computer and network architectures
that Google uses to meet its system requirements; however we will use this example to
explore the relationship between the basic system requirements, the IT system architecture
created to meet those requirements, and the specific computer and network architectures
that evolved from the system architecture.

Some of the basic requirements that the Google IT system must satisfy include the
following:

■ It must be capable of responding to millions of simultaneous requests from all
over the world with pertinent, ranked search results and appropriately targeted
advertising. Most desirably, the results and advertising would be matched in
language, geographic suitability, and culture as much as possible to the location
of the user.

■ The system must be able to troll the Internet systematically and thoroughly to
retrieve data and to organize the data in such a way as to make it readily available
for response to user requests. There must be a processing mechanism to establish
a ranking of the results to a request.

■ The system must respond to requests with a reliability as near to 100 percent as is
technically possible. Individual hardware and software component failures
within the system must not affect system performance adversely.

■ The system must be easily scalable to handle ever-increasing numbers of requests
and must be cost effective.

At the application level, the requirements identify three specific processing tasks that
the system must fulfill:

1. The system must accept search requests from users, identify and rank matches,
create a Web page, and serve it to the user.
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2. The system must collect data—lots of data! This task ‘‘crawls the Web’’,
identifies the search terms (every significant word) on every Web page it
encounters, and maintains an index database connecting each term to the
corresponding page. It likewise stores every Web page in a Web page database
and assigns a ranking value to each entry.

3. The system must manage advertisements, identify appropriate advertisements in
response to user search requests, and make the advertisements available to the
Web page creation application mentioned in 1.

For this discussion we will focus on the processing of search requests. When a user
types the Google URL www.google.com into her browser, the Web browser uses a service
called Domain Name Service (DNS) to identify the IP address of the Web server to which
the request is to be sent. Because Google must be able to handle several milllion requests
per hour, Google provides a number of alternative IP addresses representing different sites
to which the request may be redirected. Based on the approximate location from which the
request was sent, the request is routed by DNS to a Google data center near that location.
Google maintains more than forty separate data centers around the world to serve user
requests.

A simplified system diagram of the application architecture for a Google data center
is shown in Figure 2.10. All of the data centers are architecturally identical, differing
only in such details as the number of processors and the hardware specifications for each
processor. Each data center processes requests independently. Multiple copies of all of the
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index word data and Web page data are stored locally at every data center, and updated
from master data at regular intervals.

A request enters the system from the Internet and is distributed to a Google Web server
for processing. A request consists of words and phrases. There are many separate Web
servers available so that many requests can be processed in parallel. The words are passed
to a spell checker, to an ad server, and to a pool consisting of a large number of index
servers.

The spell checker checks each word and considers possible alternatives if it believes
that the user may have intended something different. When appropriate, the output of
the spell checker will become part of the response sent to the user. (‘‘Did you mean . . . ’’
is familiar to most Google users.) The ad checker searches for words in the advertising
database that match the user’s request and adds the corresponding advertisement(s) to the
material that will be used to create the response page.

The index servers look up each word from the request in the index database and
compile a list of matching pages for each word. The list is then adjusted for multiple words
and phrases and sorted in order of relevance, based on Google’s ranking algorithms. This
list is then passed back to the Web server.

Next, the Web server calls upon the document servers to look up each matching page
in the Web page database. The document servers return a URL, a title, and a short snippet
of text for each document to the Web server. Finally, the Web server creates an HTML
document from the spelling, ad, and matching page results and returns the page to the
user’s Web browser.

Although the application processing just described is relatively straightforward, the
implementation of this system presented a number of challenges to the system architects,
The index and document databases are both massive in size. Many searches will result in a
large number of ‘‘hits’’; each hit must be evaluated and ranked. Each hit requires retrieval
and processing of a separate page from the document database. All of this processing must
occur very quickly. And the numbers of searches occurring simultaneously may also be
extremely large.

Google’s system architects responded to these challenges by recognizing that each
search could be processed independently on a separate computer, except for certain
bottlenecks. For example, each search request arriving from the Internet could be steered
by a computer to a different Web browser. They also observed that the major bottleneck
was the time required to access the databases on disks, which had to be shared among all
the searches taking place. Since the data in the databases never changed as a result of a
search, however, they reasoned that the databases could also be replicated and accessed in
parallel.

A simplified hardware representation of their solution is shown in Figure 2.11. Groups
of up to eighty computers are connected together in a network, then these networks, up
to sixty-four of them, are, themselves, connected together to form a larger network, sort
of like a miniature Internet of up to 5,120 computers. (There are additional switches and
connections built in for reliability that are not shown in the diagram.) Each computer
acts as a server, with different computers assigned to different pieces of the application
architecture. Each data center is equipped similarly.

Although the computers are manufactured specifically for Google, they are essentially
inexpensive commodity PCs, similar to standard, medium power, non-state-of-the-art,
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FIGURE 2.11
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off-the-shelf PCs. Each computer has a fairly large, but still off-the-shelf, hard disk. The
index and document databases are divided up among the hard disks on many computers.
(Google calls these partial databases shards.) This design allows different searches to access
different parts of the databases simultaneously. There are multiple copies of each database,
so that the failure of a PC or hard disk does not affect the overall ability of the system to
conduct searches. Each computer runs standard Linux operating system software, but the
application software was specially written by Google programmers.

Overall, this design allows a large number of searches to progress in parallel. The use of
inexpensive PC hardware makes the solution cost-effective. The system can be scaled easily
by adding more computers. Finally, the failure of a PC does not result in failure and, in
fact, has minimal effect on the performance of the system overall. Thus, this solution meets
the original requirements admirably. It is worth noting that a fundamental understanding
of computer infrastructure was key to the system architects’ solution.

This discussion provides a simple overview of the Google system. Hopefully you found
even this brief look at the Google system interesting and informative. There are a number of
other considerations in the Google system architecture that we have glossed over for now.
However, to understand the Google architecture better, it is first necessary to continue our
exploration of the hardware, software, and network components that make up the Google
system, as well as every other IT system. We will return for a more in-depth discussion of
the Google system architecture in Supplementary Chapter 2.
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SUMMARY AND REVIEW
When working with large concepts with defined boundaries, it is often easiest to think of
them in terms of systems. A system can be defined as a collection of components, linked
together and organized in such a way as to be recognizable as a single unit. The components
themselves may also be recognized as subsystems, to be further reduced into components,
when appropriate. The area outside the boundaries of a system is its environment. The
system affects and is affected by various elements of the environment. In many situations,
the environment supplies inputs to the system and receives outputs from the system. The
patterns of relationships, connections, constraints, and linkages among the components
of a system and between a system and its environment are known collectively as the
architecture of the system.

Information technology systems are systems that support the strategy and operations of
organizations. The technological components of an IT system include computer hardware,
application software, operating system software, networks, and data. Other components
include personnel, policies, and more.

There are a number of different ways of viewing an IT system, including application
architecture, network architecture, software architecture, and hardware architecture. The
general architecture for an IT system includes all of these considerations.

Nearly all modern IT systems rely on distributed processing. Data comes from many
sources and information is required by users distributed throughout an organization
and beyond. The most common application architecture to support distributed pro-
cessing is client-server architecture, in which server computer systems provide various
services—Web, database, file, print, processing—to client computer systems. Client-server
systems are convenient for users and offer centralized control for the organization.
Client-server architecture is commonly organized in tiers, ranging from two-tier to n-tier.
The alternative architecture to client-server computing, peer-to-peer computing, is used
outside of organizations as a means for sharing files over the Internet, but is of limited
use in organizational settings due to difficulties in establishing stable data sources, security
risks, and lack of central control. It is also possible to create a hybrid architecture, with
features from both client-server and peer-to-peer computing.

A specific type of client-server architecture, Web-based computing, predominates the
IT scene, primarily because users are generally familiar with the use of Web browsers, the
technology is standardized and already in use in most organizations, and good development
tools for designing Web pages and accessing data are readily available. Both intranets and
the Internet provide user access.

Protocols are the means used to communicate between computers. IT system protocols
of interest to us include network protocols such as TCP/IP, I/O protocols such as USB
and PCI-Express, and application protocols such as HTTP. Standards make it possible for
different system components to work together. Most modern standards are global. There
are standards that are defined by interested groups and de facto standards that arise from
common usage.

The first step in IT system analysis and design is about finding an appropriate
architecture for a particular business situation. The task can be difficult and challenging.
It is easy to see why system architects need a deep understanding of the computer system
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and network components that comprise the modern IT system to make the appropriate
design, selections, and tradeoffs.

Hopefully this short but concentrated chapter has prepared you for the remainder of
the book, which considers in detail the data, computer system hardware, operating systems,
and networks that make up the technological infrastructure of an IT system.

FOR FURTHER READING
Surprisingly, there are few books that discuss system concepts and system architecture in
a truly general way. Most books that claim to be about system architecture are actually
specific to a particular field, usually the field of information systems. One general book
about systems is by Laszlo [LASZ96]. Some IS systems design and analysis textbooks
provide a brief introduction to general system concepts. (Unfortunately, many don’t!)
One example of a book that provides a good introduction to system concepts is Stampf
[STAM05]. Chapter 1 of Stampf covers the topics in this chapter well. Wikipedia offers
other references under the topic system.

KEY CONCEPTS AND TERMS
abstraction
application architecture
architecture
client-server (model)
decomposition
environment

interface
intranet
middleware
n-tier architecture
peer-to-peer architecture
shared server

subsystem
system
three-tier architecture
top-down approach
two-tier architecture

READING REVIEW QUESTIONS
2.1 What are the most important ideas, keywords, and phrases that are stated in the

definition of a system?

2.2 Explain the relationships among the following words: system, environment, bound-
ary, interface.

2.3 Explain the following statement about systems: ‘‘Decomposition is inherently
hierarchical.’’

2.4 Explain what is meant by the architecture of a system.

2.5 What does the top-down approach allow a system architect to do that might be
more difficult otherwise?

2.6 What is the primary concern of application architecture? Give an example of
application architecture, either your own, or one from the examples in the book.
Explain how this example fulfills the features and requirements of the concept of
application architecture.

2.7 Most modern computing in organizations is based on client-server models. Explain
why this tends to be the case. Give an example of client-server computing that you
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are familiar with and explain the characteristics of your example that fulfill the
concept of client-server computing.

2.8 Web-based system architecture is a popular approach to many organizational
systems because it offers a number of advantages to the users and to the organization
over other types of systems. Discuss the primary advantages to this approach.

2.9 What are the principal responsibilities of a system architect?

2.10 Many system architects base their IT system designs on an n-tier architecture, where
n is a number with value 2 or greater. Explain the difference between a single-tier
architecture and an n-tier architecture. What are the main advantages claimed for
an n-tier architecture?

EXERCISES
2.1 The human body is an example of an object that can be represented as a system.

Consider the various ways in which you could represent the human body as a
system. Select a representation and identify the components that constitute the
system. Select one component and decompose it to the next subsystem level. Now
consider a completely different system representation of the human body and
repeat this exercise.

2.2 Consider a representation of a work organization or school with which you are
familiar. Identify the major components that characterize the primary operations
within the organization and draw a diagram that represents the system’s organi-
zation. Show and identify the links that connect the various components. Identify
the major environmental factors that impact the organization.

2.3 Consider this textbook. Using the detailed table of contents as a reference, we can
represent this textbook as a hierarchical system. As a first pass, we can define this
book by the five component parts that make up the body of the text. Identify by
general name the objects that constitute the next level of decomposition below
the parts components. Continue to do this for at least three more levels of the
hierarchy.

2.4 Thinking in terms of systems allows us to analyze situations that are too complicated
for us to understand as a whole. What specific characteristics and features of system
thinking make this possible?

2.5 Figure 2.8 illustrates the basic architecture for a three-tier database system. This
system can be viewed as an IPO (input-processing-output) system. What is the
input for this system? What environmental element generates the input? (Hint:
the Web browser computer is within the system boundary.) What is the expected
output from this system? What environmental element receives the output? Briefly
describe the processing that takes place in this system.

2.6 Based on the illustration of an iPhone shown in Figure 2.4, draw a system model
for an iPhone.

2.7 It is common to represent network connections in IT systems as a cloud. (See, for
example, Figures 2.6, 2.7, 2.8, and 2.9). The cloud is obviously an abstraction as
we defined abstraction in this chapter. What does the cloud abstraction actually
represent?
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2.8 Suppose that you have been hired to develop a website-based sales system for a
large international retail sales firm. Discuss some environmental issues that are
specific to the Web design of your system that you must consider if your system is
to be successful at attracting and keeping purchasing customers.

2.9 Consider a home theatre system consisting of a television set, a receiver, a DVD
player, speakers, and any other components you wish to include. Draw a system
diagram for this system. Include both components and links. What are the inputs
to this system? What are the outputs? (Remember that the DVD player and receiver
are both components within the system.) Now draw a system diagram for the
receiver subsystem. Include both its primary components and the links between
them. What are the inputs and outputs for the receiver subsystem? Do these inputs
and outputs conform to the links connected to the receiver in your original system
diagram?
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You are probably aware that all data in a computer is stored in the form of binary
numbers, using only 1s and 0s. The situation is more complicated than this, however,
because those binary numbers represent both program instructions and data, and

they may represent the data in many different forms. Programming languages such as Java,
for example, allow a programmer to specify data in primitive form as integer numbers, real
numbers, characters, or Booleans. In addition, the files on your computer probably include
representations of graphical images, sounds, photo images and video, and who knows what
all else!

Each of the myriad different data types and objects uses its own format or formats for
storage in the computer. Manipulating data requires keeping track of which format is in use
for a particular set of data. Each numerical data format requires a different method for doing
arithmetic calculations, and there are a number of different formats for representations
of images and the like with different capabilities and manipulation requirements, which
complicates data handling even further. Naturally, the computer must be able to perform
format conversions between equivalent but different types. Most of this data-type record
keeping must be handled within programs; to the computer, the bits all look the same.
Only the programs know what the bits actually represent.

Each data type and format has its own uses, advantages, and disadvantages, determined
by the context in which it is being used. There is no single ‘‘ideal’’ data type. Knowing when
to use each type involves understanding what happens to the data within the computer.
When you understand the effect of your data-type choices upon the processing that will be
required you can write better, more efficient programs.

Each of the chapters in this section deals with a different aspect of data. We begin in
Chapter 3 by reviewing the basics of number systems, to offer you a better understanding
of how numbers work, the nature of counting, and how calculations are performed. You
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will learn how to convert from one number base to another. Although the binary number
system is used within computers, we must be able to convert between the system the
computer uses and the more familiar decimal system that we use. You will also have a
chance to work with the octal and hexadecimal number systems, which are closely related to
the binary system. These are frequently used for representing computer data and programs
in machine form because they are easy to read and easy to convert to and from binary form.

In Chapter 4 we will explore the ways in which data gets into the computer in the first
place and the different forms that it can take inside the computer. We will consider text,
sound, and images. You will study the difference between characters and other symbols
stored as text and the same symbols stored as images. You will see the different binary
codes that are used to represent symbols in text form. We will also consider the difference
between numbers stored as groups of numeric characters and those stored in actual
numerical form. The chapter also looks at the representations of graphics, photo images,
and sound. We present several different formats that are used for the manipulation and
storage of image and sound data.

In Chapter 5 we will look at various ways in which numbers are stored and manipulated
in computers. We consider various forms of integers and real, or ‘‘floating point,’’ number
representations and calculations. We discuss the conversion process between real and
integer number representations. We look at the strengths and shortcomings of each type
from the perspectives of data storage requirements and calculation considerations. The
discussion will conclude by considering when the use of each of the different numerical
types is appropriate.

67



CHAPTER 3

NUMBER SYSTEMS
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3.0 INTRODUCTION
As humans, we generally count and perform arithmetic using the decimal, or base 10,
number system. The base of a number system is simply the number of different digits,
including zero, that exist in the number system. In any particular set of circumstances,
a particular base might be chosen for convenience, efficiency, technological, or any
other reasons. Historically, it seems that the main reason that we use base 10 is that
humans have ten fingers, which is as good a reason as any.

Any number can be represented equivalently in any base, and it is always possible
to convert a number from one base to another without changing its meaning.

Computers perform all of their operations using the binary, or base 2, number
system. All program code and data are stored and manipulated in binary form.
Calculations are performed using binary arithmetic. Each digit in a binary number
is known as a bit (for binary digit) and can have only one of two values, 0 or 1. Bits
are commonly stored and manipulated in groups of 8 (known as a byte), 16 (usually
known as a halfword), 32 (a word), or 64 bits (a doubleword). Sometimes other
groupings are used.

The number of bits used in calculations affects the accuracy and size limitations of
numbers manipulated by the computer. And, in fact, in some programming languages,
the number of bits used can actually be specified by the programmer in declaration
statements. In the programming language Java, for example, the programmer can
declare a signed integer variable to be short (16 bits), int (32 bits), or long (64 bits)
depending on the anticipated size of the number being used and the required accuracy
in calculations.

The knowledge of the size limits for calculations in a particular language is
sometimes extremely important, since some calculations can cause a numerical result
that falls outside the range provided for the number of bits used. In some cases this
will produce erroneous results, without warning to the end user of the program.

It is useful to understand how the binary number system is used within the
computer. Often, it is necessary to read numbers in the computer in their binary or
equivalent hexadecimal form. For example, colors in Visual Basic can be specified as a
six-digit hexadecimal number, which represents a 24-bit binary number.

This chapter looks informally at number systems in general and explores the
relationship between our commonplace decimal number system and number systems
of other bases. Our emphasis, of course, is upon base 2, the binary number system.
The discussion is kept more general, however, since it is also possible, and in fact
common, to represent computer numbers in base 8 (octal) or base 16 (hexadecimal).
Occasionally we even consider numbers in other bases, just for fun, and also, perhaps,
to emphasize the idea that these techniques are completely general.
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3.1 NUMBERS AS A PHYSICAL REPRESENTATION
As we embark upon our investigation of number systems, it is important to note that
numbers usually represent some physical meaning, for example, the number of dollars in
our paycheck or the number of stars in the universe. The different number systems that we
use are equivalent. The physical objects can be represented equivalently in any of them. Of
course, it is possible to convert between them.

In Figure 3.1, for example, there are a number of oranges, a number that you recognize
as 5. In ancient cultures, the number might have been represented as

I I I I I

or, when in Rome,

V

Similarly, in base 2, the number of oranges in Figure 3.1 is represented as

1012

And in base 3, the representation looks like this:

123

The point we are making is that each of the foregoing examples is simply a different way
of representing the same number of oranges. You probably already have experience at
converting between the standard decimal number system and Roman numerals. (Maybe
you even wrote a program to do so!) Once you understand the methods, it is just about as
easy to convert between base 10 and the other number bases that we shall use.

FIGURE 3.1

A Number of Oranges 3.2 COUNTING
IN DIFFERENT BASES

Let’s consider how we count in base 10, and
what each digit means. We begin with single digits,

0
1
2
3
.
.
.

9
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When we reach 9, we have exhausted all possible single digits in the decimal number
system; to proceed further, we extend the numbers to the 10’s place:

10
11
12
.
.
.

It is productive to consider what ‘‘the 10’s place’’ really means.
The 10’s place simply represents a count of the number of times that we have cycled

through the entire group of 10 possible digits. Thus, continuing to count, we have

1 group of 10 + 0 more

1 group of 10 + 1 more

1 group of 10 + 2
.
.
.

1 group of 10 + 9

2 groups of 10 + 0
.
.

.

9 groups of 10 + 9

At this point, we have used all combinations of two digits, and we need to move
left another digit. Before we do so, however, we should note that each group shown here
represents a count of 10, since there are 10 digits in the group. Thus, the number

43

really refers to

4× 10+ 3

As we move leftward to the next digit, that is, the hundreds place, we are now counting
cycles of the rightmost two digits or, in other words, groups of 10 × 10, or 102, or hundreds.
Thus, the number

527

really represents

five groups of (10 × 10) +
two groups of 10 + 7
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FIGURE 3.2

Counting in Base 2

NUMBER EQUIVALENT
DECIMAL

EQUIVALENT

0

1

10

11

100

101

110

111

1000

1001

1010

0

1

2

3

4

5

6

7

8

9

10

0 � 20

1 � 20

1 � 21 
� 0 � 20

1 � 21 
� 1 � 20

1 � 22 
� 1 � 21

� 1 � 20

1 � 22 
� 1 � 21

� 1 � 20

1 � 22 
� 1 � 21

� 1 � 20

1 � 22 
� 1 � 21

� 1 � 20

1 � 23  1 � 22 
� 1 � 21

� 1 � 20

1 � 23  1 � 22 
� 1 � 21

� 1 � 20

1 � 23  1 � 22 
� 1 � 21

� 1 � 20

This is also represented as

5× 102 + 2× 101 + 7× 100

This method can, of course, be
extended indefinitely.

The same method, exactly,
applies to any number base. The only
change is the size of each grouping.
For example, in base 8, there are only
eight different digits available (0, 1,
2, 3, 4, 5, 6, 7). Thus, each move left
represents eight of the next rightmost
grouping. The number

6248

corresponds to

6× 82 + 2× 81 + 4× 80

Since 82 = 6410, 81 = 810, and 80 = 1,

6248=6×64+2×8+4=40410

Each digit in a number has a weight, or importance, relative to its neighbors left and
right. The weight of a particular digit in a number is the multiplication factor used to
determine the overall value of the particular digit. For example, the weights of the digits in
base 8, reading from right to left are 1, 8, 64, 256, . . . , or, if your prefer, 80, 81, 82, 83, . . . .
Just as you would expect, the weight of a digit in any base n is n times as large as the digit
to its right and (1/n)th as large as the digit to its left.

Figure 3.2 shows the corresponding method of counting in base 2. Note that each
digit has twice the weight of its next rightmost neighbor, just as in base 10 each digit
had ten times the weight of its right neighbor. This is what you would expect if
you consider that there are only two different values for digits in the binary cycle.
You should spend enough time studying this table until you understand every detail
thoroughly.

Note, too, that the steps that we have followed do not really depend on the number
base that we are using. We simply go through a complete cycle, exhausting all possible
different digits in the base set, and then move to the left one place and count the cycles. We
repeat this process as necessary to represent the entire number.

In general, for any number base B, each digit position represents B to a power, where
the power is numbered from the rightmost digit, starting with B0. B0, of course, is one
(known as the units place) for any number base.

Thus, a simple way to determine the decimal equivalent for a number in any number
base is to multiply each digit by the weight in the given base that corresponds to the position
of the digit for that number.
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EXAMPLES
As an example,

1423056 =
1× 65 + 4× 64 + 2× 63 + 3× 62 + 0× 6+ 5 =
7776+ 5184+ 432+ 108+ 0+ 5 = 1350510

� � �
Similarly,

1100101002 =
1× 28 + 1× 27 + 0× 26 + 0× 25 + 1× 24 + 0× 23 + 1× 22+

0× 2+ 0 =
256+ 128+ 16+ 4 = 40410

You should probably work out these two examples and check your results against ours.

Often it is useful to be able to estimate quickly the value of a binary number. Since the
weight of each place in a binary number doubles as we move to the left, we can generate
a rough order-of-magnitude by considering only the weight for the leftmost bit or two.
Starting from 1, and doubling for each bit in the number to get the weight, you can see that
the most significant bit in the previous example has a value of 256. We can improve the
estimate by adding half that again for the next most significant bit, which gives the value
of the number in the neighborhood of 384, plus a little more for the additional bits. With
a little practice, it is easy to estimate the magnitudes of binary numbers almost instantly.
This technique is often sufficient for checking the results of calculations when debugging
programs. (You might also want to consider it as a way of doing quick checks on your
solutions to exam problems!)

We will discuss number conversion between different bases more carefully later in the
chapter.

From the preceding discussion, it is fairly easy to determine the total range of possible
numbers—or, equivalently, the smallest and largest integer—for a given number of digits
in a particular number base. Since the weight of each digit is one larger than the largest
value that can be represented by all the digits to its right, then the range of possible values
for n digits is simply the weight of the nth digit, which is represented by the value

range = basen

Thus, if we want to know how many different numbers can be represented by two decimal
digits, the answer is 102. We can represent one hundred different numbers (0 . . . 99) with
two decimal digits.

It’s obviously easier to simply memorize the formula; if you are told that you are
working with four digit numbers in base 8, you know from the formula that you can
represent 84, or 4096 different numbers, ranging from 0 . . . 77778, or the decimal equiva-
lent (0 . . . 4095).

Just as a pocket calculator stores, manipulates, and displays numbers as a group of
digits, so computers store and manipulate numbers as groups of bits. Most computers
work with numbers 16 bits, 32 bits, or 64 bits at a time. Applying the preceding formula
to a ‘‘16-bit’’ PC, you can represent 216 = 65,536 different number values in each 16-bit
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FIGURE 3.3

Decimal Range for Selected Bit Widths

BITS DIGITS RANGE

1

4

8

10

16

20

32

64

128

0

1

2

3

4

6

9

19

38

�

�

�

�

�

�

�

2 (0 and 1)

16  (0 to 15)

256 (0 and 1)

1,024 (0 and 1)

65,536 (64K)nd 

1,048,576 (1M)       

4,294,967,296 (4G)       

approx. 1.6 � 1019     

approx. 2.6 � 1038     

location. If you wish to extend this range, it is necessary
to use some technique for increasing the number of bits
used to hold your numbers, such as using two 16-bit
storage locations together to hold 32 bits. There are
other methods used, which are discussed in Chapter 5,
but note that, regardless of the technique used, there
is no way to store more than 65,536 different number
values using 16 bits.

A table of base 10 equivalent ranges for several com-
mon computer ‘‘word lengths’’ is shown in Figure 3.3.
There is a simple way to calculate the approximate range
for a given number of bits, since 210 is approximately
1000. To do so, we break up the total number of bits into
a sum that consists of values where the range is easily
figured out. The overall range is equal to the product of
the subranges for each value. This method is best seen
with examples.

For example, if you need to know the range for 18 bits, you would break up the
number 18 into the sum of 10 and 8, then multiply the range for 10 bits to that for 8
bits. Since the range for 10 bits is approximately 1 K (1024, actually) and 8 bits is 256,
the range for 18 bits is approximately 256 K. Similarly, the range for 32 bits would be
(10-bit range) × (10-bit range) × (10-bit range) × (2-bit range) = 1 K × 1 K × 1 K × 4 = 4
gigabytes. This technique becomes easy with a bit of practice.

Notice that it takes 18 bits to represent a little more than five decimal digits. In general,
approximately 3.3 bits are required for each equivalent decimal digit. This is true because
23.3 is approximately equal to 10.

3.3 PERFORMING ARITHMETIC IN DIFFERENT
NUMBER BASES

Next, we consider simple arithmetic operations in various number bases. Let us begin by
looking at the simple base 10 addition table shown in Figure 3.4.

FIGURE 3.4

The Base 10 Addition Table

�

0

1

2

3

4

0

0

1

2

3

4

1

1

2

3

4

5

2

2

3

4

5

6

3

3

4

5

6

7

4

4

5

6

7

8

5

5

6

7

8

9

6

6

7

8

9

10

7

7

8

9

10

11

8

8

9

10

11

12

9

9

10

11

12

13

etc.

We add two numbers by finding
one in the row and the other in the
column. The table entry at the inter-
section is the result. For example, we
have used the table to demonstrate that
the sum of 3 and 6 is 9. Note that the
extra digit sometimes required becomes
a carry that gets added into the next left
column during the addition process.

More fundamentally, we are inter-
ested in how the addition table is actu-
ally created. Each column (or row)
represents an increase of 1 from the
previous column (or row), which is
equivalent to counting. Thus, starting
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FIGURE 3.5

The Base 8 Addition Table

�

0

1

2

3

4

5

6

7

0

0

1

2

3

4

5

6

7

1

1

2

3

4

5

6

7

10

2

2

3

4

5

6

7

10

11

3

3

4

5

6

7

10

11

12

4

4

5

6

7

10

11

12

13

5

5

6

7

10

11

12

13

14

6

6

7

10

11

12

13

14

15

7

7

10

11

12

13

14

15

16

(no 8 or 9,
of course)

from the leftmost column in the table, it is only necessary to count up 1 to find the next
value. Since 3 + 6 = 9, the next column will have to carry to the next place, or 10, just as
occurred when we demonstrated counting in base 10, earlier. This knowledge should make
it easy for you to create a base 8 addition table. Try to create your own table before looking
at the one in Figure 3.5.

Of special interest is the base 2 addition table:
+

0

1

0

0

1

1

1

10

Clearly, addition in base 2 is going to be easy!
Addition in base 2 (or any other base, for that matter) then follows the usual methods

of addition that you are familiar with, including the handling of carries that you already
know. The only difference is the particular addition table being used. There are practice
problems representing multidigit binary arithmetic and column arithmetic (Exercise 3.8)
at the end of the chapter.

EXAMPLE
Add 111000012 and 1010112 (superscripts are carried amounts).

11 1 0 0 01 01 1
110101

001100001

11
�

Let’s use the estimation technique to see if our result is approximately correct.
11100001 is approximately 128 + 64 + 32, or 224. 101011 is approximately 32. Thus,
the sum should be about 256; 100001100 is indeed approximately 256, so at least we
know that our calculation is in the ballpark.

As an aside, it may be of interest to some readers to consider how this addition table
can be implemented in the computer using only Boolean logic, without performing any
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FIGURE 3.6

The Base 10 Multiplication Table

�

0

1

2

3

4

5

6

7

8

9

0

0

0

1

1

2

3

4

5

6

7

8

9

2

2

4

6

8

10

12

14

16

18

3

3

6

9

12

15

18

21

24

27

4

4

8

12

16

20

24

28

32

36

5

5

10

15

20

25

30

35

40

45

6

6

12

18

24

30

36

42

48

54

7

7

14

21

28

35

42

49

56

63

8

8

16

24

32

40

48

56

64

72

9

9

18

27

36

45

54

63

72

81

actual arithmetic: the result bit (the bit in the column that corresponds to the inputs) can
be represented by the EXCLUSIVE-OR function of the two input bits. The EXCLUSIVE-OR function
has a ‘‘1’’ as output only if either input, but not both inputs, is a ‘‘1.’’ Similarly, the carry bit
is represented as an AND function on the two input bits. (‘‘1’’ as output if and only if both
inputs are a ‘‘1.’’) This approach is discussed in more detail in Supplementary Chapter 1.

The process of multiplication can be reduced conceptually to multiple addition, so
it should not surprise you that multiplication tables in different number bases are also
reasonably straightforward. The major difference in appearance results from the fact that
the carry occurs at different places.

The easiest way to create a multiplication table is to treat multiplication as multiple
addition: each column (or row) represents the addition of the value in the row (or column)

FIGURE 3.7

The Base 8 Multiplication Table

�

0

1

2

3

4

5

6

7

0 1

1

2

3

4

5

6

7

2

2

4

6

10

12

14

16

3

3

6

11

14

17

22

25

4

4

10

14

20

24

30

34

5

5

12

17

24

31

36

43

6

6

14

22

30

36

44

52

7

7

16

25

34

43

52

61

0

0

being created. Thus, in the following table, you can see
that 5 × 8 is equivalent to 5 × 7 + 5 = 40. The familiar
decimal multiplication table appears in Figure 3.6,
with the example just given indicated.

The same technique can be applied to the base 8
multiplication table (Figure 3.7).

Note in the foregoing table that 3 × 3 = 3 ×
2 + 3. Note, though, that counting up 3 from 6 (or
adding 3 to 6) results in a carry after 7 is reached:
6 → 7 → 10 → 11.

The base 2 multiplication table is almost trivial,
since 0 times anything is 0 and 1 times 1 is itself:

�

0

1

0

0

0

1

0

1
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Because the binary multiplication table is so simple, it turns out that multiplication
can be implemented in a computer fairly easily. There are only two possible results: if the
multiplier is 0, the answer is 0, even if the multiplicand is a nonzero multidigit number. If
the multiplier is 1, the multiplicand is brought down as the result. You might recognize the
multiplication table as a Boolean AND function.

If you recall that decimal multidigit multiplication is performed by multiplying the
multiplicand by each digit of the multiplier, shifting the result of each multiplication to
line up with the multiplier, and adding up the results, then you realize that multidigit
binary multiplication can be performed by simply shifting the multiplicand into whatever
positions in the multiplier are ‘‘1’’ bits and adding to the result. This is easily illustrated
with an example:

EXAMPLE
Multiply

1101101
× 100110

1101101 
1101101  

1101101     

1000000101110

bits shifted to line up with 2’s place of multiplier
4’s place
32’s place

result (note the 0 at the end, since the 1’s place is 
not brought down)

We note in passing that shifting a binary number one position to the left has the
effect of doubling its value. This is a result you would expect, since the shift is equivalent
to multiplying the value by a 1 in the 2’s place of the multiplier. This result is consistent
with the fact that shifting a decimal number to the left by one position will multiply
its value by 10. In general, shifting a number in any base left one digit multiplies its
value by the base, and, conversely, shifting a number right one digit divides its value
by the base.

Although we have not mentioned subtraction or division, the methods are similar to
those that we have already discussed. In fact, the addition and multiplication tables can be
directly used for subtraction and division, respectively.

3.4 NUMERIC CONVERSION BETWEEN
NUMBER BASES

Conversions between whole numbers in decimal (base 10) and any other number base are
relatively straightforward. With the exception of one special case discussed in Section 3.6,
it is impractical to convert directly between two nondecimal number bases. Instead, base
10 would be used as an intermediary conversion base.

The easiest intuitive way to convert between base 10 and another number base is to
recognize the weight of each digit in the alternative number base and to multiply that
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weight by the value of the digit in that position. The sum taken over all digits represents
the base 10 value of the number. This is easily seen in an example:

EXAMPLE
Convert the number

137548

to base 10.
From the following diagram we can see the result easily:

(84)
4096

(83)
512

(82)
64

(81)
8

(80)
1

1

4096 + 1536 + 448 + 40 + 4 = 612410

� 3 7 5 4 values

weights

We can use the same method in reverse to convert from base 10 to another base,
although the technique is not quite as simple. In this case, it is just a question of finding the
value corresponding to the weight of each digit such that the total will add up to the base
10 number that we are trying to convert.

Note that the value for each digit must be the largest value that will not exceed the
number being converted. If this were not true, then there would be more than a full
grouping of the next less significant digit. This idea is best clarified by example:

EXAMPLE
Suppose that we are reverse converting the preceding example, and we assume that there
are six groups of 64 instead of seven. In this case, the 8’s place and 1’s place combined
must add up to more than 64, and we’ve already seen that is impossible.

This provides a simple methodology for the conversion. Start with the digit whose
weight is the largest possible without exceeding the number to be converted. Determine
the largest value for that weight that does not exceed the number to be converted. Then, do
the same for each successive digit, working from left to right.

EXAMPLE
As an example, let us convert 612410 to base 5. The weights of each digit in base 5 are as
follows:

15625 3125 625 125 25 5 1

Clearly the 15625 digit is too large, so the result will be a six-digit base 5 number.
The number 3125 fits into 6124 only once; thus, the first digit is a 1, and the remainder
to be converted is 2999. Proceeding to the next digit, 625 goes into 2999 four times with
a remainder of 499, 125 into 499 three times with a remainder of 124, 25 into 124 four
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times, and so on. We get a final result of

1434445

It would be useful for you to confirm the answer by converting the result back to base 10.

This method is particularly simple if you are converting from decimal to binary, since
the value that corresponds to a particular bit either fits (1) or it doesn’t (0). Consider the
following example:

EXAMPLE
Convert 319310 to binary. The weights in binary are 4096, 2048, 1024, 512, 256, 128,
64, 32, 16, 8, 4, 2, and 1.

Proceeding as before, the largest bit value in this conversion is the 2048 weight.
Subtracting 2048 from 3193 leaves 1145 yet to be converted; thus, there is also a 1 in the
1024 place. Now the remainder is 1145 − 1024 = 121. This means that there are 0’s in
the 512, 256, and 128 places. Continuing, you should confirm that the final result is

1100011110012

Note that, in general, as the base gets smaller, the representation of a value requires
more digits, and looks bigger.

An Alternative Conversion Method

Although the preceding methods are easy to understand, they are computationally difficult
and prone to mistakes. In this section we will consider methods that are usually simpler to
compute but are less intuitive. It is helpful to understand the reasons that these methods
work, since the reasoning adds insight to the entire concept of number manipulation.

BASE 10 TO ANOTHER BASE Suppose we divide the number to be converted successively
by the base, B, that we are converting to, and look at the remainders of each division. We
will do this until there is nothing left to divide. Each successive remainder represents the
value of a digit in the new base, reading the new value from right to left. Again, let us
convert 612410 to base 5:

EXAMPLE
5 ) 6124  ( 4 least significant digit
5 ) 1224  ( 4
5 ) 244  ( 4
5 ) 48  ( 3
5 )     9  ( 4
5 )     1  ( 1 most significant digit

0

The answer is 1434445, which agrees with our earlier result.
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The first time that we perform the division, we are, in effect, determining how many
groups of 5 (or, in the general case, B) fit into the original number. The remainder is the
number of single units left over, which is, in other words, the units place of the converted
number.

The original number has now been divided by 5, so the second division by 5 determines
how many groups of 52, or 25, fit into the number. The remainder in this case is the number
of 5-groups that are left over, which is the second digit from the right.

Each time we divide by the base, we are increasing the power of the group being tested
by one, and we do this until there is no group left. Since the remainders correspond to the
part of the number that does not exactly fit the group, we can read the converted number
easily by reading the remainders from the bottom up.

Here’s another example:

EXAMPLE
Convert 815110 to base 16, also known as hexadecimal:

16 ) 8151  ( 7
16 ) 509  (13 in base 16, this is represented by the letter “D”

in base 16, this is represented by the letter “F”16 ) 31  (15
1

The answer is 1FD716. We suggest that you verify this answer by using the technique of
digit weight multiplication to convert this answer back to decimal form.

ANOTHER NUMBER BASE TO BASE 10 An alternative method can be used to convert
from other number bases to base 10. The technique is also computationally simple: starting
from the most significant digit, we multiply by the base, B, and add the next digit to the
right. We repeat this process until the least significant digit has been added.

EXAMPLE
Convert 137548 to base 10:

1

× 8

8 + 3 = 11

× 8

88 + 7 = 95

× 8

760 + 5 = 765

× 8

6120 + 4 = 612410
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If you count the number of times that each digit in the example is multiplied by the
base number, in this case 8, you discover that the leftmost digit is multiplied by 8 four
times, or 84, and that each successive digit is multiplied by 8 one less time, until you arrive
at the rightmost digit, which is not multiplied by the base number at all. Thus, each digit
is multiplied by its proper weight, and the result is what we would expect. In the next
chapter, you will see that this method is also useful for converting a sequence of digits in
alphanumeric form to an actual number.

You have now been introduced to two different methods for performing conversions
in each direction. You should practice all four methods; then you can use whichever two
methods are easiest for you to remember.

3.5 HEXADECIMAL NUMBERS AND ARITHMETIC
The hexadecimal, or base 16, number representation system is important because it is
commonly used as a shorthand notation for binary numbers. The conversion technique
between hexadecimal and binary notations is particularly simple because there is a direct
relationship between the two. Each hexadecimal number represents exactly 4 binary bits.
Most computers store and manipulate instructions and data using word sizes that are
multiples of 4 bits. Therefore, the hexadecimal notation is a convenient way to represent
computer words. Of course, it is also much easier to read and write than binary notation.
The technique for converting between binary and hexadecimal is shown later in this
chapter.

Although hexadecimal numbers are represented and manipulated in the same way
as those of other bases, we must first provide symbols to represent the additional digits
beyond 9 that we require to represent sixteen different quantities with a single integer.

By convention, we use the digits 0–9, followed by the first six alphabetical characters
A–F. Thus, the digits 0–9 have their familiar meaning; the letters A–F correspond to what
in a decimal base would be quantities of 10–15, respectively. To count in hexadecimal we
count from 0 to 9, then A to F, and then move left to the next digit. Since there are sixteen
digits, each place represents a power of 16. Thus, the number

2A4F16

is equivalent to

2× 163 + 10× 162 + 4× 16+ 15, or
1083110

Addition and multiplication tables can be created for the hexadecimal number system.
These tables each have sixteen rows and sixteen columns, as you would expect. The addition
table is shown in Figure 3.8. Before you look at the figure, you should try to work the
hexadecimal addition and multiplication tables out for yourself (see Exercise 3.7).

3.6 A SPECIAL CONVERSION CASE—NUMBER
BASES THAT ARE RELATED

A special possibility for conversion exists when one number base is an integer power of
another. In this case, a direct conversion can easily be made. In fact, with a bit of practice, the
conversion can be done mentally and the answer written down directly. These conversions
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FIGURE 3.8

Hexadecimal Addition Table

�

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

1

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

2

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

3

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

4

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

13

5

5

6

7

8

9

A

B

C

D

E

F

10

11

12

13

14

6

6

7

8

9

A

B

C

D

E

F

10

11

12

13

14

15

7

7

8

9

A

B

C

D

E

F

10

11

12

13

14

15

16

8

8

9

A

B

C

D

E

F

10

11

12

13

14

15

16

17

9

9

A

B

C

D

E

F

10

11

12

13

14

15

16

17

18

A

A

B

C

D

E

F

10

11

12

13

14

15

16

17

18

19

B

B

C

D

E

F

10

11

12

13

14

15
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work because a grouping of several digits in the smaller number base corresponds, or maps,
exactly to a single digit in the larger number base.

Two particularly useful examples for computer work are the cases of conversion
between base 2 and base 8 and conversion between base 2 and base 16. Since 8 = 23, we
can represent binary numbers directly in base 8 using one octal digit to correspond to each
three binary digits. Similarly, it takes one hexadecimal digit to exactly represent 4 bits.

The advantage of representing binary numbers in hexadecimal or octal is obvious: it
is clearly much easier to read and manipulate four-digit hexadecimal numbers than 16-bit
binary numbers. Since the conversion between binary and octal and hexadecimal is so
simple, it is common to use hexadecimal or octal representation as a shorthand notation
for binary. (Note that base 8 and base 16 are not directly related to each other by power,
but conversion could be performed easily by using base 2 as an intermediary.)

Since the correspondence of binary and octal or hexadecimal is exact, the conversion
process simply consists of breaking the binary number into groups of three or four, starting
from the least significant bit (the unit bit), and converting each group independently. It
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may be necessary to mentally add 0s to the left end of the number to convert the most
significant digit. This is most easily illustrated with an example:

EXAMPLE
Let us convert

11010111011000

to hexadecimal.
Grouping the binary number by fours, we have

0011 0101 1101 1000

or

35D816

Note that we added two zeros at the left end of the binary number to create groups of four.
The conversion in the other direction works identically. Thus,

2753318

becomes

010 111 101 011 011 0012

For practice, now convert this value to hexadecimal.

Most computer manufacturers today prefer to use hexadecimal, since a 16-bit or 32-bit
number can be represented exactly by a four- or eight-digit hexadecimal number. (How
many octal digits would be required?) A few manufacturers still use octal representation
for some applications.

You might ask why it is necessary to represent data in binary form at all. After all, the
binary form is used within the computer, where it is usually invisible to the user. There are
many occasions, however, where the ability to read the binary data is very useful. Remember
that the computer stores both instructions and data in binary form. When debugging a
program, it may be desirable to be able to read the program’s instructions and to determine
intermediate data steps that the computer is using. Older computers used to provide binary
dumps for this purpose. Binary dumps were complete octal listings of everything stored in
memory at the time the dump was requested. Even today it is sometimes important, for
example, to be able to read the binary data from a floppy disk to recover a lost or damaged
file. Modern computer operating systems and networks present a variety of troubleshooting
data in hexadecimal form.

Conversions between binary and hexadecimal notation are used frequently. We strongly
recommend that you practice to become proficient at working with hexadecimal notation.

3.7 FRACTIONS
Up to this point we have limited our discussion to whole numbers, or, if you prefer,
integers. The representation and conversion of fractional numbers are somewhat more
difficult because there is not necessarily an exact relationship between fractional numbers
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in different number bases. More specifically, fractional numbers that can be represented
exactly in one number base may be impossible to represent exactly in another. Thus, exact
conversion may be impossible. A couple of simple examples will suffice:

EXAMPLE
The decimal fraction

0.110 or 1/10

cannot be represented exactly in binary form. There is no combination of bits that will add
up exactly to this fraction. The binary equivalent begins

0.00011001100112 . . .

This binary fraction repeats endlessly with a repeat cycle of four. Similarly, the fraction

1/3

is not representable as a decimal value in base 10. In fact, we represent this fraction
decimally as

0.3333333 . . .

As you will realize shortly, this fraction can be represented exactly in base 3 as

0.13

Recall that the value of each digit to the left of a decimal point in base 10 has a
weight ten times that of its next right neighbor. This is obvious to you, since you already
know that each digit represents a group of ten objects in the next right neighbor. As
you have already seen, the same basic relationship holds for any number base: the weight
of each digit is B times the weight of its right neighbor. This fact has two important
implications:

1. If we move the number point one place to the right in a number, the value of the
number will be multiplied by the base. A specific example will make this obvious:

139 0.�

139010 is ten times as large as 139.010

Moving the point right one space, therefore, multiplies the number by ten. Only
a bit less obvious (pun intended),

1002 is twice as big as 102

(Note: We have used the phrase ‘‘number point’’ because the word ‘‘decimal’’
specifically implies base 10. More generally, the number point is known by the
name of its base, for example, binary point or hexadecimal point. It is sometimes
also called a radix point.)
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2. The opposite is also true: if we move the number point to the left one place, the
value is divided by the base. Thus, each digit has strength 1/B of its left neighbor.
This is true on both sides of the number point.

246.8�

Moving the point to the left one space divides the value by ten.

Thus, for numbers to the right of the number point, successive digits have values 1/B,
1/B2, 1/B3, and so on. In base 10, the digits then have value

.D1 D2 D3 D4

10�1 10�2 10�3 10�4

which is equivalent to

1/10 1/100 1/1000 1/10,000

This should come as no surprise to you, since 1/10 = 0.1, 1/100 = 0.01, and so forth.
(Remember from algebra that B−k = 1/Bk.)

Then, a decimal number such as

0.2589

has value

2× (1/10) + 5× (1/100) + 8× (1/1000) + 9× (1/10,000)

Similarly in base 2, each place to the right of the binary point is 1/2 the weight of its
left-hand neighbor. Thus, we have

.B1 B2 B3 B4

1/2 1/4 1/8 1/16 etc.

As an example,

0.101011

is equivalent to

1/2+ 1/8+ 1/32+ 1/64

which has decimal value

0.5+ 0.125+ 0.03125+ 0.015625 = 0.67187510

Since there is no general relationship between fractions of types 1/10k and 1/2k, there is
no reason to assume that a number that is representable in base 10 will also be representable
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in base 2. Commonly, it isn’t so. (The converse is not the case; since all fractions of the
form 1/2k can be represented in base 10, and since each bit represents a fraction of this
form, fractions in base 2 can always be converted exactly to fractions in base 10.) As we
have already shown with the value 0.110, many base 10 fractions result in endless base 2
fractions.

Incidentally, as review, consider the hexadecimal representation of the binary fraction
representing 0.110. Starting from the numeric point, which is the common element of all
number bases (B0 = 1 in all bases), you group the bits into groups of four:

0.0001 1001 1001 1001 = 0.1999916

In this particular case, the repeat cycle of four happens to be the same as the hexadecimal
grouping of four, so the digit ‘‘9’’ repeats forever.

When fractional conversions from one base to another are performed, they are simply
stopped when the desired accuracy is attained (unless, of course, a rational solution exists).

Fractional Conversion Methods

The intuitive conversion methods previously discussed can be used with fractional numbers.
The computational methods have to be modified somewhat to work with fractional
numbers.

Consider the intuitive methods first. The easiest way to convert a fractional number
from some base B to base 10 is to determine the appropriate weights for each digit, multiply
each digit by its weight, and add the values. You will note that this is identical to the method
that we introduced previously for integer conversion.

EXAMPLE
Convert 0.122013 to base 10.

The weights for base 3 fractions (we remind you that the rules work the same for any
number base!) are:

1
3

1
9

1
27

1
81

1
243

Then, the result is

1× 1/3+ 2× 1/9+ 2× 1/27+ 1× 1/243

Two different approaches could be taken at this point. Either we can convert each value
to decimal base, multiply, and add,

value = 0.33333+ 0.22222+ 0.07407+ 0.00412 = 0.6337410

or, more easily, we can find a common denominator, convert each fraction to the common
denominator, add, and then divide by the common denominator. Most easily, we can pick
the denominator of the least significant digit, in this case 243:

value = 81+ 2× 27+ 2× 9+ 1
243

= 154
243

= 0.63374

If you look at the numerator of the last equation carefully, you might notice that the
numerator consists of weighted digits, where the digits correspond to the weights of the
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fraction as if the ternary point had been shifted five places right to make the fraction into
a whole number. (The base 3 number point is called a ternary point.) A shift five places to
the right multiplies the number by 3 → 9 → 27 → 81 → 243; therefore, we have to divide
by 243 to restore the original fraction.

Repeating this exercise with another, perhaps more practical, example should help to
solidify this method for you:

EXAMPLE
Convert 0.1100112 to base 10.

Shifting the binary point six places to the right and converting, we have

numerator value = 32+ 16+ 2+ 1 = 51

Shifting the binary back is equivalent to dividing by 26, or 64. Dividing the numerator
51 by 64 yields

value = 0.796875

The intuitive method for converting numbers from base 10 to another base can also
be used. This is the method shown earlier where you fit the largest product of weights
for each digit without exceeding the original number. In the case of fractions, however,
you are working with fractional decimal numbers, and the actual calculation may be time
consuming and difficult except in simple cases.

EXAMPLE
Convert the number 0.110 to binary representation. The weights for binary fractions are

1
2

1
32

1
16

1
8

1
4

etc.

These are easier to use when converted into decimal form: 0.5, 0.25, 0.125, 0.0625,
and 0.03125, respectively. The largest value that fits into 0.110 is 0.0625, which corre-
sponds to a value of 0.00012. The remainder to be converted is 0.1 − 0.0625 = 0.0375.
Since 0.03125 fits into this remainder, the next bit is also a 1: 0.000112, and so on. As an
exercise, you may want to carry this conversion out a few more places.

To convert fractional numbers from base 10 to another base, it is usually easier to use
a variation on the division method shown earlier. Recall that for an integer, this involved
dividing the number repeatedly by the base value and retaining the remainders. Effectively,
this method works by shifting the radix point to the left one place each time we divide by
the base value and noticing what drops over the radix point, which is the remainder. The
number point is initially assumed to be to the right of the number.

When the value being converted is to the right of the number point, the procedure
must work exactly the opposite. We multiply the fraction by the base value repeatedly,
and record, then drop, the values that move to the left of the radix point. We repeat this
procedure until the desired number of digits of accuracy is attained or until the value being
multiplied is zero. Each time we multiply, we effectively expose the next digit.
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For example, if the value in base 10 is 0.5, multiplying that by 2 would yield 1.0, which
says that in base 2 there would have been a 1 in the 1/2-bit location. Similarly, 0.25 would
be multiplied by 2, twice, to reach a value of 1.0, indicating a 1 in the 1/4-bit location. An
example of the procedure should clarify this explanation:

EXAMPLE
Convert 0.82812510 to base 2. Multiplying by 2, we get

.828125
×      2
1.656250
×      2
1.312500
×      2
0.625000
×      2
1.250000
×      2
0.500000
×      2
1.000000

The 1 is saved as result, 
then dropped, and the 
process repeated

The final result, reading the overflow values downward, is 0.1101012. This is an
example of a conversion that reaches closure. You will recall that we stated earlier that
0.110 is an example of a number that does not convert exactly into base 2. The procedure
for that case follows.

.100000
×      2
0.200000
×      2
0.400000
×      2
0.800000
×      2
1.600000
×      2
1.200000
×      2
0.400000

The repeating nature of this conversion is clear at this point.

Finally, we note that conversion between bases where one base is an integer power
of the other can be performed for fractions by grouping the digits in the smaller base as
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before. For fractions, the grouping must be done from left to right; the method is otherwise
identical.

EXAMPLE
To convert 0.10112 to base 8, group the digits by threes (since 23 = 8) and convert each
group as usual. Note that it is necessary to supplement the second group with 0’s. As you
would expect, fractional zeros are appended to the right of the fraction.

Therefore,

0.101 1002 = 0.548

3.8 MIXED NUMBER CONVERSIONS
The usual arithmetic rules apply to fractional and mixed numbers. When adding and
subtracting these numbers, the radix points must line up. During multiplication and
division, the radix point is determined in exactly the same way as it would be in base 10.
For multiplication in base 8, for example, you would add the number of digits to the right
of the radix in the multiplier and the multiplicand; the total would be the number of digits
to the right of the radix point in the result.

Extra caution is required when performing base conversions on numbers that contain
both integer and fractional parts. The two parts must be converted separately.

The radix point is the fixed reference in a conversion. It does not move, since the digit
to its left is a unit digit in every base; that is, B0 is always 1, regardless of B.

It is possible to shift a mixed number in order to make it an integer. Unfortunately,
there is a tendency to forget that the shift takes place in a particular base. A number shifted
in base 2, say, cannot be converted and then shifted back in base 10 because the factor used
in the shift is 2k, which obviously has a different value than 10k. Of course, it is possible to
perform the shift and then divide the converted number by the original shift value, but this
is usually more trouble than it’s worth.

Instead, it’s usually easier to remember that each part is converted separately, with the
radix point remaining fixed at its original location.

SUMMARY AND REVIEW
Counting in bases other than 10 is essentially similar to the familiar way of counting. Each
digit place represents a count of a group of digits from the next less significant digit place.
The group is of size B, where B is the base of the number system being used. The least
significant digit, of course, represents single units. Addition, subtraction, multiplication,
and division for any number base work similarly to base 10, although the arithmetic tables
look different.

There are several different methods that can be used to convert whole numbers from
base B to base 10. The informal method is to recognize the base 10 values for each digit
place and simply to add the weighted values for each digit together. A more formal method
converts from base B to base 10 using successive multiplication by the present base and
addition of the next digit. The final total represents the base 10 solution to the conversion.
Similar methods exist for converting from base 10 to a different number base.
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The conversion of number bases in which one base is an integer power of the other
may be performed by recognizing that multiple digit places in the smaller base represent a
single-digit place in the larger. Conversion is then done by grouping and converting each
multiple set of digits individually.

Fractional and mixed numbers must be handled more carefully. The integer and
fractional parts must be treated independently of each other. Although the conversion
method is the same, the choice of the multiplication or division operation is reversed for
the fractional part. Again, directly related bases can be converted by grouping digits in one
base and converting each group independently.

FOR FURTHER READING

Working in different number bases was part of a trend in the teaching of mathematics
in the 1960s and 1970s known as ‘‘the new math’’. The material is still taught in many
elementary schools.

Many libraries carry texts with such titles as ‘‘Elementary Math’’. A good, brief review
of arithmetic as it applies to the computer can be found in the Schaum outline series
book Essential Computer Mathematics [LIPS82]. A funny introduction to ‘‘new math’’ can
be found on the recording ‘‘That Was the Year That Was’’ by Tom Lehrer [LEHR65].
In addition, most books on computer arithmetic contain substantial discussions of the
topics covered in this chapter. Typical computer arithmetic books include those by Spaniol
[SPAN81] and Kulisch and Maranker [KULI81]. A clear and thorough discussion of this
material can be found in the computer architecture book by Hennessy and Patterson
[HENN06].

KEY CONCEPTS AND TERMS

base
binary arithmetic
binary number
binary point
binary-decimal conversion
binary-hexadecimal

conversion

binary-octal conversion
bit
decimal point
decimal-binary conversion
fractional conversion
hexadecimal-binary

conversion

hexadecimal number
left shift
mixed number conversion
octal number
radix point
right shift

READING REVIEW QUESTIONS
3.1 In the book we show that 52710 represents 5 × 102 + 2 × 101 + 7 × 100. What is

the representation for 5278? What would its equivalent base 10 value be?

3.2 How many different digits would you expect to find in base 6? What is the largest
digit in base 6? Let z represent that largest digit. What is the next value after 21z
if you’re counting up by 1’s? What is the next value after 4zz if you’re counting
up by 1’s?

3.3 Use the table in Figure 3.5 to add 218 and 338. Use the table in Figure 3.5 to add
468 and 438.
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3.4 Use the base 2 addition table to add 101012 and 11102. Use the base 2
multiplication table to multiply 101012 and 11102.

3.5 What are the first six weights in base 2? Using these weights, convert 1001012 to
base 10.

3.6 What are the first three weights in base 16? Using these weights, convert 35916 to
base 10. (Notice that the same technique works for any base, even if the base is
larger than 10.)

3.7 Using the weights in base 8, convert 21210 into base 8. Convert 321210 into base 8.

3.8 Using the weights in base 16, convert 11710 into base 16. Convert 117010 into
base 16.

3.9 Use the division conversion method to convert 321210 into base 8. Confirm that
your answer is the same as that in question 7, above.

3.10 Use the division method to convert 117010 to base 16. Confirm that your answer
is the same as that in question 8, above.

3.11 Use the division method to convert 1234510 to base 16. Verify your answer by
using the weights method to convert your answer back to base 10.

3.12 Use the division method to convert 1234510 to base 2. Verify your answer by
using the weights method to convert your answer back to base 10.

3.13 Use the multiplication method to convert 10112 to base 10. Verify your answer
by using the wieghts method to convert the number back to base 2.

3.14 Use the multiplication method to convert 135716 to base 10. Verify your answer
by using the division method to convert your answer back to base 16.

3.15 What number in base 10 is equivalent to D in base 16? What number in base 16
is equivalent to the number 10 in base 10? Use the weights method to convert
the number 5D16 to base 10. Use the division method to convert your answer
back to base 16.

3.16 Convert the number 1010001011002 directly from binary to hexadecimal. With-
out looking at the original number, convert your answer directly back to binary
and compare your final answer with the original number.

3.17 Convert the number 11110011011002 directly from binary to hexadecimal.
Without looking at the original number, convert your answer directly back to
binary and compare your final answer with the original number.

EXERCISES
3.1 a. Determine the power of each digit for five-digit numbers in base 6.

b. Use your results from part (a) to convert the base 6 number 245316 to
decimal.

3.2 Determine the power of each digit for four-digit numbers in base 16. Which
place digits in base 2 have the same power?

3.3 Convert the following hexadecimal numbers to decimal:

a. 4E

b. 3D7

c. 3D70
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3.4 Some older computers used an 18-bit word to store numbers. What is the
decimal range for this word size?

3.5 How many bits will it take to represent the decimal number 3,175,000? How
many bytes will it take to store this number?

3.6 a. Create addition and multiplication tables for base 12 arithmetic. Use
alphabetic characters to represent digits 10 and larger.

b. Using your tables from part (a), perform the following addition:

25A8412
+ 7039612

c. Multiply the following numbers together:

2A612
× B112

3.7 a. Create the hexadecimal multiplication table.

b. Use the hexadecimal table in Figure 3.8 to perform the following addition:

2AB3
+ 35DC

c. Add the following numbers:

1 FF9
+ F7

d. Multiply the following numbers:

2E26
× 4A

3.8 Add the following binary numbers:

a.

101101101
+ 10011011

b.

110111111
+ 110111111

c.

11010011
+ 10001010

d.

1101
1010
111

+ 101

e. Repeat the previous additions by converting each number to hexadecimal,
adding, and converting the result back to binary.
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3.9 Multiply the following binary numbers together:

a.

1101
× 101

b.

11011
× 1011

3.10 Perform the following binary divisions:
a.

110 1010001001

b.

1011 11000000000

3.11 Using the powers of each digit in base 8, convert the decimal number 6026 to
octal.

3.12 Using the powers of each digit in hexadecimal, convert the decimal number 6026
to hexadecimal.

3.13 Using the division method, convert the following decimal numbers:

a. 13750 to base 12

b. 6026 to hexadecimal

c. 3175 to base 5

3.14 Using the division method, convert the following decimal numbers to binary:

a. 4098

b. 71269

c. 37
In each case, check your work by using the power of each digit to convert back
to decimal.

3.15 Using the multiplication method, convert the following numbers to decimal:

a. 11000101001000012

b. C52116

c. 3ADF16

d. 245567

3.16 Convert the following binary numbers directly to hexadecimal:

a. 101101110111010

b. 1111111111110001

c. 1111111101111

d. 110001100011001

3.17 Convert the following hexadecimal numbers to binary:

a. 4F6A

b. 9902
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c. A3AB

d. 1000

3.18 Select a number base that would be suitable for direct conversion from base 3,
and convert the number 220112103 to that base.

3.19 a. Convert the base 4 number 130230314 directly to hexadecimal. Check your
result by converting both the original number and your answer to decimal.

b. Convert the hexadecimal number 9B6216 directly to base 4; then convert
both the original number and your answer to binary to check your result.

3.20 Convert the base 3 number 2101023 to octal. What process did you use to do
this conversion?

3.21 Convert the octal number 277458 to hexadecimal. Do not use decimal as an inter-
mediary for your conversion. Why does a direct conversion not work in this case?

3.22 Using whatever programming language is appropriate for you, write a program
that converts a whole number input by the user from base 8 to base 10. Your
program should flag as an error any input that contains the digits 8 or 9.

3.23 Using whatever programming language is appropriate for you, write a program
that converts a whole number input from decimal to hexadecimal.

3.24 Using whatever programming language is appropriate for you, write a program
that converts whole numbers in either direction between binary and hexadecimal.

3.25 Convert the following numbers from decimal to hexadecimal. If the answer is
irrational, stop at four hexadecimal digits:

a. 0.6640625

b. 0.3333

c. 69/256

3.26 Convert the following numbers from their given base to decimal:

a. 0.10010012

b. 0.3A216

c. 0.2A112

3.27 Convert the following numbers from decimal to binary and then to hexadecimal:

a. 27.625

b. 4192.37761

3.28 What is the decimal value of the following binary numbers?

a. 1100101.1

b. 1110010.11

c. 11100101.1

3.29 Draw a flow diagram that shows step by step the process for converting a mixed
number in a base other than 10 to decimal.

3.30 Write a computer program in a language appropriate for you that converts
mixed numbers between decimal and binary in both directions.
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CHAPTER 4

DATA FORMATS

Thomas Sperling, adapted by Benjamin Reece



4.0 INTRODUCTION
In Chapter 3 you had a chance to explore some of the properties of the binary number
system. You are already aware that within the computer the binary number system is
the system of choice, both for all forms of data storage and for all internal processing
of operations. As human beings, we normally don’t choose to do our work in binary
form. Our communications are made up of language, images, and sounds. For written
communications, and for our own data storage, we most frequently use alphanumeric
characters and symbols, representing English or some other language. Sometimes we
communicate with a photograph, or a chart or diagram, or some other image. Images
may be black and white or color; they may be still frames or moving. Sounds often
represent a different, spoken, form of written language, but they may also represent
other possibilities, such as music, the roar of an engine, or a purr of satisfaction. We
perform calculations using numbers made up of a set of numeric characters.

In the past, most business data processing took the form of text and numbers.
Today, multimedia, consisting of images and sounds in the form of video conferencing,
PowerPoint presentations, VoIP telephony, Web advertising, and more is of at least
equal importance. Since data within the computer is limited to binary numbers, it is
almost always necessary to convert our words, numbers, images, and sounds into a
different form in order to store and process them in the computer.

In this chapter, we consider what it takes to get different types of data into
computer-usable form and the different ways in which the data may be represented,
stored, and processed.

4.1 GENERAL CONSIDERATIONS
At some point, original data, whether character, image, sound, or some other form,
must be brought initially into the computer and converted into an appropriate
computer representation so that it can be processed, stored, and used within the
computer system. The fundamental process is shown in Figure 4.1.

Different input devices are used for this purpose. The particular choice of input
device reflects the original form of the data, and also the desired data representation
within the computer. Some devices perform the conversion from external form to
internal representation within the input device. At other times, the input device merely
serves to transform the data into a raw binary form that the computer can manipulate.
Further conversion is then performed by software within the computer.

There are varying degrees of difficulty associated with the input task. Normal
keyboard input, for example, is relatively straightforward. Since there are a discrete
number of keys on the keyboard, it is only necessary for the keyboard to generate
a binary number code for each key, which can then be identified as a simple
representation of the desired character. On the other hand, input from a device that
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FIGURE 4.1

Data Conversion and Representation

Human
form

Data
Input
device

Computer
Computer

representation

1101000101010101....
“abcdefgh345”

presents a continuous range of data (i.e.,
analog data) presents a more formidable
task, particularly if the data is continuously
changing with time, which is the case with a
video camera or microphone.

Adequate representation of the sound
input from a microphone, for example, will
require hardware designed to convert the
sound into binary numbers and may require
hundreds or even thousands of separate

pieces of data, each representing a sample of the sound at a single instant in time. If
the sound is to be processed within the computer into the form of words in a document the
task becomes even more challenging, since the translation of sounds into character form is
very complex and difficult, requiring sophisticated, specialized software.

The internal representation of data within the computer reflects the complexity of the
input source, and also the type of processing that is to take place. There is no need to
preserve all the individual points that make up a photographic image, for example, if the
goal is only to extract and process the characters that are present on the page; it is only
necessary to input and represent the entire set of data long enough to extract the actual
data that is to be used or kept. On the other hand, if the image is to be used as a figure
in an art book, it will be necessary to represent the image, with all its details, as accurately
as possible. For input forms that represent a continuum of values, such as photographic
images, video, and sound, the quantity of binary numbers and the number of bits in
each that are required to represent the input data accurately will grow quite rapidly with
increasing accuracy and resolution. In fact, some form of algorithmic data compression
will often be necessary to reduce the amount of data to a manageable level, particularly if
the data is to be downloaded or streamed over a low-speed transmission device, such as a
telephone modem or a network with limited bandwidth.

Of course, once the input data is in computer form it can be stored for future use,
or it can be moved between computers through networks or by using portable computer
media such as CD-ROM, flash drives, or, perhaps, even iPods. Images and sounds can be
downloaded from a website or attached to e-mail, for example. Provided that the receiving
computer has the appropriate software, it can store, display, and process a downloaded
image just as though the picture had been produced by an image scanner connected directly
to its own input.

For storage and transmission of data, a representation different from that used for
internal processing is often necessary. In addition to the actual data representing points in
an image or characters being displayed, the system must store and pass along information
that describes or interprets the meaning of the data. Such information is known as metadata.
In some cases, the description is simple: to read a pure text file may require only a single
piece of information that indicates the number of characters in the text or marks the end of
the text. A graphic image or sound requires a much more detailed description of the data.
To reproduce the image, a system must know the type of graphical image, the number of
colors represented by each data point, the method used to represent each color, the number
of horizontal and vertical data points, the order in which data points are stored, the relative
scaling of each axis, the location of the image on the screen, and much more. For a sound, the
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system must know how long a time period each sample represents, the number of bits in each
sample, and even, perhaps, how the sound is to be used and coordinated with other sounds.

Individual programs can store and process data in any format that they want. The
format used to process and store text in WordPerfect is different from that used by
Microsoft Word, for example. The formats used by individual programs are known as
proprietary formats. Proprietary formats are often suitable for an individual user or a
group of users working on similar computer systems. As noted in Chapter 1, proprietary
standards sometimes become de facto standards due to general user acceptance.

Note that it is important to distinguish between the data representation used within an
individual piece of software and the data representation used for the input, output, storage,
and exchange of data, however. Modern computer systems and networks interconnect
many different types of computers, input and output devices, and computer programs.
A Web page viewed on a Macintosh computer might contain an image scanned on a
Hewlett-Packard image scanner, with HTML created on a Dell PC, and be served by an
IBM mainframe, for example.

Thus, it is critical throughout this discussion that standard data representations exist
to be used as interfaces between different programs, between a program and the I/O devices
used by the program, between interconnected hardware, and between systems that share
data, using network interconnections or transportable media such as CD-ROMs. These
data representations must be recognized by a wide variety of hardware and software so that
they can be used by users working within different computer environments.

A well-designed data representation will reflect and simplify the ways in which the data
is to be processed and will encompass the widest possible user community. For example,
the order of the letters in the alphabet is commonly used for the sorting and selection of
alphanumeric business data. It makes sense, then, to choose a computer representation of
alphabetic characters that will simplify these operations within the computer. Furthermore,
the representation of alphanumeric characters will encompass as many of the world’s
languages as possible to aid in international communication.

FIGURE 4.2

Some Common Data Representations

Alphanumeric
Image (bitmap)

Image (object)

Outline graphics and fonts
Sound
Page description

Video

Unicode, ASCII, EBCDIC
GIF (graphical image format), TIFF 
(tagged image file format), PNG 
(portable network graphics), JPEG,
PostScript, SWF (Macromedia Flash), 
SVG
PostScript, TrueType
WAV, AVI, MP3, MIDI, WMA
pdf (Adobe Portable Document Format), 
HTML, XML
Quicktime, MPEG-2 or -4, RealVideo, 
WMV, DivX

Type of data Standard(s)
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There are many different standards in use for different types of data. A few of the
common ones are shown in Figure 4.2. We have not included the standard representations
for numerical data; those are discussed in the next chapter.

This section described the general principles that govern the input and representation
of data. Next, we consider some of the most important data forms individually.

4.2 ALPHANUMERIC CHARACTER DATA
Much of the data that will be used in a computer are originally provided in human-readable
form, specifically in the form of letters of the alphabet, numbers, and punctuation, whether
English or some other language. The text of a word processing document, the numbers
that we use as input to a calculation, the names and addresses in a database, the transaction
data that constitutes a credit card purchase, the keywords, variable names, and formulas
that make up a computer program, all are examples of data input that is made up of letters,
numbers, and punctuation.

Most of this data is initially input to the computer through a keyboard, although
alternative means, such as magnetic card stripes, document image scanning, voice-to-text
translation, and bar code scanning are also used. The keyboard may be connected directly
to a computer, or it may be part of a separate device, such as a video terminal, an online
cash register, or even a bank ATM. The data entered as characters, number digits, and
punctuation are known as alphanumeric data.

It is tempting to think of numeric characters as somehow different from other
characters, since numbers are often processed differently from text. Also, a number may
consist of more than a single digit, and you know from your programming courses that
you can store and process a number in numerical form within the computer. There is no
processing capability in the keyboard itself, however. Therefore, numbers must be entered
into the computer just like other characters, one digit at a time. At the time of entry, the
number 1234.5 consists of the alphanumeric characters ‘‘1’’, ‘‘2’’, ‘‘3’’, ‘‘4’’, ‘‘.’’, and ‘‘5’’.
Any conversion to numeric form will take place within the computer itself, using software
written for this purpose. For display, the number will be converted back to character form.

The conversion between character and number is also not ‘‘automatic’’ within the
computer. There are times when we would prefer to keep the data in character form,
for example, when the numbers represent a phone number or an address to be stored
and processed according to text criteria. Since this choice is dependent on usage within a
program, the decision is made by the programmer using rules specified within the program
language being used or by a database designer specifying the data type of a particular
entity. In simple languages like BASIC, for example, the programmer makes the choice
by placing a $ character at the end of a variable name that is to be used to keep data
in alphanumeric form. In C++ or Java, the type of variable must be declared before the
variable is used. When the data variable being read is numerical, the compiler will build
into the program a conversion routine that accepts numerical characters and converts them
into the appropriate numerical variable value. In general, numerical characters must be
converted into number form when calculations are to be performed.

Since alphanumeric data must be stored and processed within the computer in binary
form, each character must be translated to a corresponding binary code representation as
it enters the computer. The choice of code used is arbitrary. Since the computer does not
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‘‘recognize’’ letters, but only binary numbers, it does not matter to the computer what code
is selected.

What does matter is consistency. Most data output, including numbers, also exits the
computer in alphanumeric form, either through printed output or as output on a video
screen. Therefore, the output device must perform the same conversion in reverse. It is
obviously important that the input device and the output device recognize the same code.
Although it would be theoretically possible to write a program to change the input code so
that a different output code would result in the desired alphanumeric output, this is rarely
done in practice. Since data is frequently shared between different computers in networks,
the use of a code that is standardized among many different types of computers is highly
desirable.

The data is also stored using the same alphanumeric code form. Consistent use of the
same code is required to allow later retrieval of the data, as well as for operations using data
entered into the computer at different times, such as during merge operations.

It also matters that the programs within the computer know something about the
particular data code that was used as input so that conversion of the characters that make
up numbers into the numbers themselves can be done correctly, and also so that such
operations as sorting can be done. It would not make a lot of sense to pick a code in which
the letters of the alphabet are scrambled, for example. By choosing a code in which the value
of the binary number representing a character corresponds to the placement of the character
within the alphabet, we can provide programs that sort data without even knowing what
the data is, just by numerically sorting the codes that correspond to each character.

Three alphanumeric codes are in common use. The three codes are known as
Unicode, ASCII (which stands for American Standard Code for Information Interchange,
pronounced ‘‘as-key’’ with a soft ‘‘s’’), and EBCDIC (Extended Binary Coded Decimal
Interchange Code, pronounced ‘‘ebb-see-dick’’). EBCDIC was developed by IBM. Its use is
restricted mostly to older IBM and IBM-compatible maniframe computers and terminals.
The Web makes EBCDIC particularly unsuitable for current work. Nearly everyone today
uses Unicode or ASCII. Still, it will be many years before EBCDIC totally disappears from
the landscape.

The translation table for ASCII code is shown in Figure 4.3. The EBCDIC code is
somewhat less standardized; the punctuation symbols have changed over the years. A
recent EBCDIC code table is shown in Figure 4.4. The codes for each symbol are given in
hexadecimal, with the most significant digit across the top and the least significant digit
down the side. Both ASCII and EBCDIC codes can be stored in a byte. For example, the
ASCII value for ‘‘G’’ is 4716. The EBCDIC value for ‘‘G’’ is C716. When comparing the two
tables, note that the standard ASCII code was originally defined as a 7-bit code, so there
are only 128 entries in the ASCII table. EBCDIC is defined as an 8-bit code. The additional
special characters in both tables are used as process and communication control characters.

The ASCII code was originally developed as a standard by the American National
Standards Institute (ANSI). ANSI also has defined 8-bit extensions to the original ASCII
codes that provide various symbols, line shapes, and accented foreign letters for the
additional 128 entries not shown in the figure. Together, the 8-bit code is known as Latin-1.
Latin-1 is an ISO (International Standards Organization) standard.

Both ASCII and EBCDIC have limitations that reflect their origins. The 256 code
values that are available in an 8-bit word limit the number of possible characters severely.
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FIGURE 4.3

ASCII Code Table
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Both codes provide only the Latin alphabet, Arabic numerals, and standard punctuation
characters that are used in English; Latin-1 ASCII also includes a small set of accents and
other special characters that extend the set to major western European cultures. Older
forms of EBCDIC omit certain characters, in particular, the ‘‘[’’ and ‘‘]’’ characters that are
used to represent subscripts in the C and Java programming languages, the ‘‘∧’’ character,
used as a mathematical operator in a number of languages, ‘‘{’’ and ‘‘}’’, used to enclose
code blocks in many languages, and the ‘‘∼’’ character, used for UNIX system commands
and Internet and Internet URLs. These shortcomings led to the development of a new,
mostly 16-bit, international standard, Unicode, which is quickly supplanting ASCII and
EBCDIC for alphanumeric representation in most modern systems. Unicode supports
approximately a million characters, using a combination of 8-bit, 16-bit and 32-bit words.
The ASCII Latin-1 code set is a subset of Unicode, occupying the values 0–255 in the
Unicode table, and therefore conversion from ASCII to Unicode is particularly simple: it is
only necessary to extend the 8-bit code to 16 bits by setting the eight most significant bits
to zero. Unicode to ASCII conversion is also simple, provided that the characters used are
limited to the ASCII subset.

The most common form of Unicode, called UTF-16 can represent 65,536 characters
directly, of which approximately forty-nine thousand are defined to represent the world’s
most used characters. An additional 6,400 16-bit codes are reserved permanently for
private use. A more recent standard, Unicode 5.0, allows for multiple code pages; presently
about one hundred thousand different characters have actually been defined. Unicode
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An EBCDIC Code Table
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FIGURE 4.5

Two-byte Unicode Assignment Table
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is multilingual in the most global sense. It defines codes for the characters of nearly
every character-based alphabet of the world in modern use, as well as codes for a large
set of ideographs for the Chinese, Japanese, and Korean languages, codes for a wide
range of punctuation and symbols, codes for many obsolete and ancient languages,
and various control characters. It supports composite characters and syllabic clusters.
Composite characters are those made up of two or more different components, only one
of which causes spacing to occur. For example, some vowels in Hebrew appear beneath
a corresponding consonant. Syllabic clusters in certain languages are single characters,
sometimes made up of composite components, that make up an entire syllable. The private
space is intended for user-defined and software-specific characters, control characters, and
symbols. Figure 4.5 shows the general code table layout for the common, 2-byte, form of
Unicode.

Reflecting the pervasiveness of international communications, Unicode is gradually
replacing ASCII as the alphanumeric code of choice for most systems and applications.
Even IBM uses ASCII or Unicode on its smaller computers, and provides two-way
Unicode-EBCDIC conversion tables for its mainframes. Unicode is the standard for use in
current Windows and Linux operating systems. However, the vast amount of archival data in
storage and use assures that ASCII and EBCDIC will continue to exist for some time to come.
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Returning to the ASCII and EBCDIC tables, there are several interesting ideas to be
gathered by looking at the tables together. First, note, not surprisingly, that the codes for
particular alphanumeric characters are different in the two tables. This simply reemphasizes
that, if we use an ASCII terminal for the input, the output will also be in ASCII form
unless some translation took place within the computer. In other words, printing ASCII
characters on an EBCDIC terminal would produce garbage.

More important, note that both ASCII and EBCDIC are designed so that the order
of the letters is such that a simple numerical sort on the codes can be used within the
computer to perform alphabetization, provided that the software converts mixed upper-
and lowercase codes to one form or the other. The order of the codes in the representation
table is known as its collating sequence. The collating sequence is of great importance in
routine character processing, since much character processing centers on the sorting and
selection of data.

Uppercase and lowercase letters, and letters and numbers, have different collating
sequences in ASCII and EBCDIC. Therefore, a computer program designed to sort
ASCII-generated characters will produce a different, and perhaps not desired, result when
run with EBCDIC input. Particularly note that small letters precede capitals in EBCDIC,
but the reverse is true in ASCII. The same situation arises for strings that are a mix of
alphabetical characters and numbers. In ASCII the numbers collate first, in EBCDIC, last.

Both tables are divided into two classes of codes, specifically printing characters and
control characters. Printing characters actually produce output on the screen or on a printer.
Control characters are used to control the position of the output on the screen or paper, to
cause some action to occur, such as ringing a bell or deleting a character, or to communicate
status between the computer and an I/O device, such as the Control–‘‘C’’ key combination,
which is used on many computers to interrupt execution of a program. Except for position
control characters, the control characters in the ASCII table are struck by holding down the
Control key and striking a character. The code executed corresponds in table position to
the position of the same alphabetic character. Thus, the code for SOH is generated by the
Control-‘‘A’’ key combination and SUB by the Control-‘‘Z’’ key combination. Looking at
the ASCII and EBCDIC tables can you determine what control codes are generated by the
tab key? An explanation of each control character in the ASCII table is shown in Figure 4.6.
Many of the names and descriptions of codes in this table reflect the use of these codes for
data communications. There are also additional control codes in EBCDIC that are specific
to IBM mainframes, but we won’t define them here.

Unless the application program that is processing the text reformats or modifies the
data in some way, textual data is normally stored as a string of characters, including
alphanumeric characters, spaces, tabs, carriage returns, plus other control characters and
escape sequences that are relevant to the text. Some application programs, particularly
word processors, add their own special character sequences for formatting the text.

In Unicode, each UTF-16 alphanumeric character can be stored in two bytes, thus,
half the number of bytes in a pure text file (one with no images) is a good approximation
of the number of characters in the text. Similarly, the number of available bytes also
defines the capacity of a device to store textual and numerical data. Only a small percentage
of the storage space is needed to keep track of information about the various files; almost
all the space is thus available for the text itself. Thus, a 1 GB flash drive will hold about sixty
million characters (including spaces—note that spaces are also characters, of course!). If
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FIGURE 4.6

Control Code Definitions [STAL96]
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EOT
ENQ
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HT
LF
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FF

CR
SO
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DLE

DC1,DC2, 
DC3, DC4
NAK
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CAN
EM

SUB

ESC

FS, GS, 
RS, US

DEL

(Null) No character; used to fill space
(Start of Heading) Indicates start of a 
header used during transmission
(Start of Text) Indicates start of text 
during transmission
(End of Text) Similar to above
(End of Transmission)
(Enquiry) A request for response from a 
remote station; the response is usually an 
identification
(Acknowledge) A character sent by a 
receiving device as an affirmative 
response to a query by a sender
(Bell) Rings a bell
(Backspace)
(Horizontal Tab)
(Line Feed)
(Vertical Tab)
(Form Feed) Moves cursor to the starting 
position of the next page, form, or screen
(Carriage return)
(Shift Out) Shift to an alternative 
character set until SI is encountered
(Shift In) see above

(Data Link Escape) Similar to escape, but 
used to change meaning of data control 
characters; used to permit sending of data 
characters with any bit combination
(Device Controls) Used for the control of 
devices or special terminal features
(Negative Acknowledgment) Opposite of 
ACK
(Synchronous) Used to synchronize a 
synchronous transmission system
(End of Transmission Block) Indicates end 
of a block of transmitted data
(Cancel) Cancel previous data
(End of Medium) Indicates the physical 
end of a medium such as tape
(Substitute) Substitute a character for one 
sent in error
(Escape) Provides extensions to the code 
by changing the meaning of a specified 
number of contiguous following characters
(File, group, record, and united separators) 
Used in optional way by systems to provide 
separations within a data set
(Delete) Delete current character

you assume that a page has about fifty rows of sixty characters, then the flash drive can hold
almost twenty thousand pages of text or numbers.

In reality, the flash drive will probably hold less because most modern word processors
can combine text with graphics, page layout, font selection, and other features. And it
probably has a YouTube video or two on there, as well. Graphics and video, in particular,
consume a lot of disk space. Nonetheless, this book, graphics and all, fits comfortably on a
single 1 GB flash drive.

Keyboard Input

Most alphanumeric data in the computer results from keyboard input, although alternative
forms of data input can be used. Operation of a keyboard is quite simple and straightforward:
when a key is struck on the keyboard, the circuitry in the keyboard generates a binary code,
called a scan code. When the key is released, a different scan code is generated. There are
two different scan codes for every key on the keyboard. The scan codes are converted to the
appropriate Unicode, ASCII, or EBCDIC codes by software within the terminal or personal
computer to which the keyboard is connected. The advantage of software conversion is
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FIGURE 4.7

Keyboard Operation

ASCII data

DIR
1000100

1101001
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0001101

Translation of
scan codes

that the use of the keyboard can be
easily changed to correspond to dif-
ferent languages or keyboard layouts.
The use of separate scan codes for key
press and release functions allows the
system to detect and process multiple
key combinations, such as those used
by the shift and control keys.

The keyboard operation is shown
in Figure 4.7. In the figure, the user

has typed the three letters ‘‘D,’’ ‘‘I,’’ ‘‘R,’’ followed by the carriage return character. The
computer translates the four scan codes to ASCII binary codes 1000100, 1001001, 1010010,
0001101, or their Unicode equivalents. Nonprinting characters, such as Control characters,
are treated identically to Printing characters. To the computer, keyboard input is treated
simply as a stream of text and other characters, one character after another, in the sequence
typed. Note that the carriage return character is part of the stream.

The software in most computer systems echoes printable keyboard input characters
directly back to the display screen, to allow the user to verify that the input has been typed
correctly. Since the display circuitry and software recognizes the same character code set as
the input, the characters are correctly echoed on the screen. In theory, a system could accept
Unicode input from a keyboard and produce EBCDIC output to a display screen, using
software to convert from one code set to the other. In practice, this is almost never done.

Alternative Sources of Alphanumeric Input

OPTICAL CHARACTER RECOGNITION Alphanumeric data may also be entered into
a computer using other forms of input. One popular alternative is to scan a page of text
with an image scanner and to convert the image into alphanumeric data form using optical
character recognition (OCR) software. Early OCR software required the use of special
typefaces for the scanned image and produced a lot of errors. The amount of proofreading
required often nullified any advantage to using the scanner. As OCR software continues
to improve, the use of scanners to read typed text directly from the page will undoubtedly
increase as a source of alphanumeric data input.

A variation on OCR is also used to read specially encoded characters, such as those
printed magnetically on checks. Another variation, handwriting recognition, is used to
identify characters entered as input to a graphics tablet pad or the touch screen of a tablet
PC, personal digital assistant, or cell phone. This technology continues to improve, but
is still limited to small quantities of data, carefully printed. Attempts to extend character
recognition to scanned documents and to characters written in cursory script have been
largely unsuccessful to date.

BAR CODE READERS Another alternative form of data input is the bar code reader.
Bar code input is practical and efficient for many business applications that require fast,
accurate, and repetitive input with minimum employee training. You are probably most
familiar with its use at grocery checkout counters, but many organizations use bar codes,
particularly for inventory control and order filling.
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FIGURE 4.8

UPC Bar Code

Bar codes represent alphanumeric data. The UPC bar code
in Figure 4.8, for example, translates to the alphanumeric value
780471 108801 90000. Bar codes are read optically using a device
called a wand that converts a visual scan of the code into electrical
binary signals that a bar code translation module can read. The
module translates the binary input into a sequence of number
codes, one code per digit, that can then be input into the computer.
The process is essentially similar to those already discussed. The
code is usually then translated to Unicode or ASCII.

MAGNETIC STRIPE READERS Magnetic stripe readers are used to read alphanumeric
data from credit cards and other similar devices. The technology used is very similar to that
used for magnetic tape.

RFID INPUT RFID (Radio Frequency IDentification) is an inexpensive technology that
can be used to store and transmit data to computers. RFID technology can be embedded
in RFID tags or ‘‘smart cards’’ or even implanted in humans or animals. One familiar type
of RFID tag is shown in Figure 4.9. An RFID tag can store anywhere from a few kilobytes
to many megabytes of data. Using radio waves, RFID tags can communicate with a nearby
transmitter/receiver that captures and passes the data as input to a computer for processing.
Most RFID data is alphanumeric, although it is also possible with some RFID systems to
provide graphical images, photographs, and even video. RFID technology is used for a
wide variety of applications, including store inventory, theft prevention, library book and
grocery checkout, car key verification, passport identification, cargo tracking, automobile
toll and public transportation fare collection, golf ball tracking (!), animal identification,
implanted human medical record storage, and much more.

VOICE INPUT It is currently possible and practical to digitize audio for use as input
data. As we discuss in Section 4.4, most digitized audio data is simply stored for later
output or is processed in ways that modify the sound of the data. The technology necessary

FIGURE 4.9

An RFID tag used at WalMart

Chip

Antenna

to interpret audio data as voice input and to translate the
data into alphanumeric form is still relatively primitive. The
translation process requires the conversion of voice data into
sound patterns known as phonemes. Each phoneme in a
particular language represents one or more possible groupings
of letters in that language. The groupings must then be matched
and manipulated and combined to form words and sentences.
Pronunciation rules, grammar rules, and a dictionary aid in
the process. The understanding of sentence context is also
necessary to correctly identify words such as to, too, or two.
As you can see, the task is a daunting one! Progress is being
made, however, and it is expected that voice input will be a
major source of alphanumeric input in the foreseeable future.
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4.3 IMAGE DATA
Although alphanumeric data was long the traditional medium of business, improved
computer technology and the growth of the Web have elevated the importance of images in
the business computing environment. Photographs can be stored within the computer to
provide rapid identification of employees. Drawings can be generated rapidly and accurately
using tools that range from simple drawing packages to sophisticated CAD/CAM systems.
Charts and graphs provide easily understood representations of business data and trends.
Presentations and reports contain images and video for impact. Multimedia of all kinds is
central to the success of the Web.

Images come in many different shapes, sizes, textures, colors, and shadings. Different
processing requirements require different forms for image data. All these differences
make it difficult to define a single universal format that can be used for images in the
way that the standard alphanumeric codes are used for text. Instead, the image will be
formatted according to processing, display, application, storage, communication, and user
requirements.

Images used within the computer fall into two distinct categories. Different computer
representations, processing techniques, and tools are used for each category:

■ Images such as photographs and paintings that are characterized by continuous
variations in shading, color, shape, and texture. Images within this category may
be entered into the computer using an image scanner, digital camera, or video
camera frame grabber. They may also be produced within the computer using
a paint program. To maintain and reproduce the detail of these images, it is
necessary to represent and store each individual point within the image. We will
refer to such images as bitmap images. Sometimes, they are called raster images
because of the way the image is displayed. (See Figure 10.16, page 324). The GIF
and JPEG formats commonly used on the Web are both examples of bitmap
image formats.

■ Images that are made up of graphical shapes such as lines and curves that can
be defined geometrically. The shapes themselves may be quite complex. Many
computer experts refer to these shapes as graphical objects. For these images, it
is sufficient to store geometrical information about each object and the relative
position of each object in the image. We will refer to these images as object
images. They are also known, somewhat incorrectly, as vector images, because
the image is often (but not always) made up of straight-line segments called
vectors. Object images are normally produced within the computer using some
sort of drawing or design package. They may also result from other types of
processing, for example, as data plots or graphs representing the data in a
spreadsheet. More rarely, they may occur as the result of the translation by
special software of scanned bitmap images that are simple enough to reduce to
object form.

Most object image formats are proprietary. However, W3C, the
international consortium that oversees the Web, has defined a standard, SVG
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(scalable vector graphics), based on XML Web description language tags.
Macromedia Flash is also in popular use.

With only rare exceptions1, the nature of display technology make it much more
convenient and cost effective to display and print all images as bitmaps. Object images
are converted to bitmap for display. Looking at an image, it can sometimes be difficult to
determine whether the original form is bitmap or object. It is possible, for example, to
describe subtle gradations of color within an image geometrically. The processing required
to create movement in computer-animated images may dictate the use of object images,
even if the objects themselves are very complex. The type of image representation is
often chosen on the basis of the computer processing to be performed on the image. The
movies Shrek and Toy Story are amazing examples of the possibilities of object images.
(See Figure 4.14, for example.)

Sometimes, both types of image data occur within the same image. It is always possible
to store graphical objects in a bitmap format, but it is often desirable in such cases to
maintain each type of image separately. Most object image representations provide for the
inclusion of bitmap images within the representation.

Bitmap Images

Most images—photographs, graphical images and the like—are described most easily
using a bitmap image format. The basic principle for representing an image as a digital
bitmap is simple. A rectangular image is divided into rows and columns, as shown in
Figure 4.10. The junction of each row and column is a point (actually a small area) in the
image known as a pixel, for pi[x]cture element. Corresponding to each pixel is a set of
one or more binary numerical values that define the visual characteristics of that point.

FIGURE 4.10

A 16 × 8 Bitmap Image Format

pixels stored in order p(0,0), p(0,1),... p(0,15), p(1,0),... p(1,15),... p(7,15)

pixel(0,0)

row

pixel(7,15)

pixel(0,1)

pixel(1,0)
pixels. . . .

1The exceptions are the circular scan screens used for radar display and ink plotters used for architectural
and engineering drawings.
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FIGURE 4.11

Image Pixel Data

Most commonly, color and color intensity are the primary characteristics of interest, but
secondary characteristics such as transparency may also be present. The meaning and scales
for these values are defined within the image metadata that is included with the image,
along with the number of rows and columns, identification of the bitmap format in use,
and other relevant information about the image.

A pixel aspect ratio may also be included so that display of the image may be adjusted
if the pixel is rectangular rather than square. The specific metadata included with an image
is part of the definition for a particular bitmap format.

Pixel data is normally stored from top to bottom, one row at a time, starting from
pixel(0, 0), the top, leftmost pixel, to pixel(nrow−1, ncol−1), representing the pixel at the
bottom right corner of the image. (For quirky reasons, this image would be known as a ncol

× nrow image, instead of the other way around.) Because the representation is so similar
to the way in which television images are created, this layout is called a raster, and the
presentation of pixels as input or output, one pixel at a time, in order, is called a raster scan.
The actual pixel coordinates, pixel(row,column), do not need to be stored with their values,
because the pixels are stored in order, and the number of rows and columns is known.

The actual data value representing a pixel could be as simple as one bit, for an image
that is black and white (0 for black, 1 for white, for example) or quite complex. Each pixel
in a high-quality color image, for example, might consist of many bytes of data: a byte for
red, a byte for green, and a byte for blue, with additional bytes for other characteristics such
as transparency and color correction.

As a simple example, look at the image shown in Figure 4.11. Each point in the
photograph on the left is represented by a 4-bit code corresponding to one of sixteen gray
levels. For this image, hexadecimal F represents black, and hexadecimal 0 represents white.
The representation of the image shown on the right indicates the corresponding values for
each pixel.

The storage and processing of bitmap images frequently requires a large amount of
memory, and the processing of large arrays of data. A single color picture containing 768
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rows of 1024 pixels each, (i.e., a 1024 × 768 image) with a separate byte to store each of
three colors for each pixel, would require nearly 2.4 megabytes of storage. An alternative
representation method that is useful for display purposes when the number of different
colors is small reduces memory requirements by storing a code for each pixel, rather than
the actual color values. The code for each pixel is translated into actual color values using a
color translation table known as a palette that is stored as part of the image metadata. This
method is discussed in Chapter 10. Data compression may also be used to reduce storage
and data transmission requirements.

The image represented within the computer is really only an approximation to the
original image, since the original image presents a continual range of intensity, and perhaps
also of color. The faithfulness of the computer representation depends on the size of the
pixels and the number of levels representing each pixel. Reducing the size of each pixel
improves the resolution, or detail level, of the representation by increasing the number of
pixels per inch used to represent a given area of the image. It also reduces the ‘‘stepping’’
effects seen on diagonal lines. Increasing the range of values available to describe each pixel
increases the number of different gray levels or colors available, which improves the overall
accuracy of the colors or gray tones in the image. The trade-off, of course, is in storage
requirements and processing and transmission time.

Bitmap representations are particularly useful when there is a great amount of detail
within an image, and for which the processing requirements are fairly simple. Typical
processing on bitmap images includes storage and display, cutting and pasting of pieces of
the image, and simple transformations of the image such as brightness and contrast changes,
changing a dimension, or color alterations. Most bitmap image processing involves little
or no direct processing of the objects illustrated within the image.

EXAMPLE
As an example of a bitmap image storage format, consider the popular Graphics Interchange
Format (GIF), method of storing images. GIF was first developed by CompuServe in 1987 as a
proprietary format that would allow users of the online service to store and exchange bitmap
images on a variety of different computing platforms. A second, more flexible, form of GIF
was released in 1989. The later version, GIF89a, also allows a series of GIF images to be
displayed sequentially at fixed time intervals to created ‘‘animated GIF images.’’ The GIF
format is used extensively on the Web.

GIF assumes the existence of a rectangular ‘‘screen’’ upon which is located one or more
rectangular images of possibly different sizes. Areas not covered with images are painted
with a background color. Figure 4.12 illustrates the layout of the screen and its images.
The format divides the picture information and data into a number of blocks, each of which
describes different aspects of the image. The first block, called the header block, identifies
the file as a GIF file and specifies the version of GIF that is being used.

Following the header block is a logical screen-descriptor block, which identifies the
width and height of the screen, describes an optional color table for the images on the screen
(the palette), indicates the number of bits per color available, identifies the background
screen color, and specifies the pixel aspect ratio.

Each image within the screen is then stored in its own block, headed by an
image-descriptor block. The image-descriptor block identifies the size and position of
the image on the screen, and also allows for a palette specific to the particular image, if
desired. The block also contains information that makes it possible to display individual
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FIGURE 4.12

GIF Screen Layout
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FIGURE 4.13

GIF File Format Layout
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images at different resolutions. The actual pixel data for the image follows. The pixel data
is compressed, using an algorithm called LZW. The basic GIF file format layout is shown in
Figure 4.13.

Even though we have simplified the description, you can see that a graphical data
format can be quite complex. The complexity is required to provide all the information
that will allow the use of the image on a variety of different equipment.

There are a number of alternatives to the GIF format. In particular, the GIF format is
limited to 256 colors, which is sometimes insufficient to display the details of a painting or
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photograph, for example. A popular alternative, JPEG format (Joint Photographers Expert
Group), addresses this concern by allowing more than sixteen million colors to be repre-
sented and displayed. JPEG employs a lossy compression algorithm to reduce the amount of
data stored and transmitted, but the algorithm used reduces image resolution under certain
circumstances, particularly for sharp edges and lines. This makes JPEG more suitable for
the representation of highly detailed photographs and paintings, but GIF is preferable
for line drawings and simple images. Other formats include TIFF, which is popular on
Macintosh platforms, BMP, a Windows format, and PCX, a format originally designed for
use with PC Paintbrush software. PNG is a recent format that eliminates many GIF and
JPEG shortcomings. It is intended to replace GIF and JPEG for many Internet applications.

Object Images

When an image is made up of geometrically definable shapes, it can be manipulated
efficiently, with great flexibility, and stored in a compact form. Although it might seem that
such images are rare, this turns out not to be the case.

Object images are made up of simple elements like straight lines, curved lines (known
as Bezier curves), circles and arcs of circles, ovals, and the like. Each of these elements can
be defined mathematically by a small number of parameters. For example, a circle requires
only three parameters, specifically, the X and Y coordinates locating the circle in the image,
plus the radius of the circle. A straight line needs the X and Y coordinates of its end points,
or alternatively, by its starting point, length, and direction. And so on.

Because objects are defined mathematically, they can be easily moved around, scaled,
and rotated without losing their shape and identity. For example, an oval can be built

FIGURE 4.14

An Object Image

Dreamworks LLC/Photofest.

from a circle simply by scaling the
horizontal and vertical dimensions dif-
ferently. Closed objects can be shaded
and filled with patterns of color, also
described mathematically. Object ele-
ments can be combined or connected
together to form more complex ele-
ments, and then those elements can
also be manipulated and combined. You
might be surprised to learn that Shrek,
the image in Figure 4.14, is an example
of an object image.

Object images have many advan-
tages over bitmap images. They require
far less storage space. They can be
manipulated easily, without losing their
identity. Note, in contrast, that if a
bitmap image is reduced in size and
reenlarged, the detail of the image is
permanently lost. When such a process
is applied to a bitmapped straight line,
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the result is ‘‘jaggies.’’ Conversely, images such as photographs and paintings cannot be
represented as object images at all and must be represented as bitmaps.

Because regular printers and display screens produce their images line by line, from the
top to the bottom of the screen or paper, object images also cannot be displayed or printed
directly, except on plotters. Instead, they must be converted to bitmap images for display
and printing. This conversion can be performed within the computer, or may be passed on
to an output device that has the capability to perform the conversion. A PostScript printer
is an example of such a device. To display a line on a screen, for example, the program
would calculate each of the pixels on the screen that the line passes through, and mark them
for display. This is a simple calculation for a computer to perform. If the line is moved or
resized, it is only necessary to perform the calculation again to display the new image.

EXAMPLE
The PostScript page description language is an example of a format that can be used to
store, transmit, display, and print object images. A page description is a list of procedures
and statements that describe each of the objects on a page. PostScript embeds page
descriptions within a programming language. Thus, an image consists of a program written
in the PostScript language.

The programming language is stored in ASCII or Unicode text form. Thus, PostScript
files can be stored and transmitted as any other text file. An interpreter program in the
computer or output device reads the PostScript language statements and uses them to
create pages that can then be printed or displayed. The interpreter produces an image that is
the same, regardless of the device it is displayed or printed on. Compensation for differences
in device resolution and pixel shape is built into the interpreter.

PostScript provides a large library of functions that facilitate every aspect of an
object-based image. There are functions that draw straight lines, Bezier curves, and arcs of
a circle, functions that join simple objects into more complex ones, translate an object to
a different location on the page, scale or distort an object, rotate an object, and create the
mirror image of an object, and functions that fill an object with a pattern, or adjust the width
and color of a line. There are methods for building and calling procedures, and IF-THEN-ELSE

and loop programming structures. The list goes on and on.
A simple program that draws a pair of shaded and concentric circles within a rectangle

in the middle of an 8 1/2 × 11-inch page is shown in Figure 4.15. This example shows a
number of features of the language. The page is laid out as an X, Y grid, with the origin at
the lower left corner. Each unit in the grid is 1/72 of an inch, which corresponds to 1 point
in publishing. Each line contains a function, with a number of parameters that provide the
specific details for the function. The parameters precede the function call. Text following
the % symbols are comments.

The first line contains a translate function that moves the X, Y origin to the center of
the page. The parameters for this function, 288 and 396, represent the X and Y distances
moved in points. (Note that 288/72 = 4 inches in X and 396/72 = 5 inches in Y .) Each
circle is created with an arc function. The parameters for the arc function are X origin and
Y origin for the arc, radius, and starting and finishing angle in degrees. (0 to 360 produces
a full circle.) You should be able to follow the remainder of the program on your own. Note
that the statements are interpreted in sequence: the second, gray circle is layered on top of
the first.
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FIGURE 4.15

A PostScript Program

288 396 translate
0 0 144 0 360 arc
fill

0.5 setgray
0 0 72 0 360 arc
fill

0 setgray
-216 -180 moveto
0 360 rmoveto
432 0 rmoveto
0 -360 rmoveto
closepath
stroke

showpage

% move origin to center of page
% define 2" radius black circle

% define 1" radius gray circle

% reset color to black
% start at lower left corner
% and define rectangle
% ...one line at a time

% completes rectangle
% draw outline instead of fill

% produce the image

FIGURE 4.16

Another PostScript Program

stocks

cash

Personal Assets

baseball
cards

% procedure to draw pie slice
%arguments graylevel, start angle, finish angle
/wedge {
       0 0 moveto
       setgray
       /angle1 exch def
       /angle2 exch def
       0 0 144 angle1 angle2 arc
       0 0 lineto
       closepath } def

%set up text font for printing
/Helvetica-Bold findfont
       16 scalefont
        setfont

.4 72 108 wedge fill % 108-72 = 36 = .1 circle

.8 108 360 wedge fill % 70%
% print wedge in three parts
32 12 translate
0 0 72 wedge fill
gsave
-8 8 translate
1 0 72 wedge fill
0 setgray stroke
grestore

% add text to drawing
0 setgray
144 144 moveto
(baseball cards) show
-30 200 (cash) show
-216 108 (stocks) show
32 scalefont
(Personal Assets) show

showpage
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Arguably, the most important feature in PostScript is the inclusion of scalable font
support for the display of text. Font outline objects are specified in the same way as other
objects. Each font contains an object for each printable character in the extended ASCII
character set. PostScript includes objects for thirty-five standard fonts representing eight
font families, plus two symbol fonts, and others can be added. Unicode fonts are also
available. Fonts can be manipulated like other objects. Text and graphics can be intermixed
in an image. The graphic display of text is considered further in the next subsection.

Figure 4.16 shows another, more complicated, example of a PostScript program. This
one presents a pie chart with an expanded slice, and labels. The expanded slice includes a
shadow to improve its appearance. Each slice of the pie is drawn using a procedure called
wedge. The shadow is drawn by drawing the wedge three times, once in black, then moved
a bit and drawn in white and as an outline.

PostScript is a format for storing images in object form. Nonetheless, there are occasions
when it is necessary to embed a bitmap image into what is primarily an object-based image.
PostScript provides this capability. It even provides the ability to crop, enlarge, shrink,
translate, and rotate the embedded bitmap images, within the limits of the bitmap format,
of course.

Representing Characters as Images

The representation of character-based data in a typical modern, graphically based systems
presents an additional challenge. In graphically based systems it is necessary to distinguish
between characters and the object image-based representations of characters, known as
glyphs. Individual glyphs are based on a particular character in a particular font. In some
cases, a glyph may also depend on neighboring characters. Should the data be represented
and stored as characters or as glyphs? The answer depends on what the text is to be used
for. Most text is processed and stored primarily for its content. A typical word processor,
for example, stores text as character data, in Unicode format; fonts are embedded into the
text file using special sequences of characters stored with the data, often in a proprietary file
format supported by the particular application software. Conversion of the character data
to glyphs for presentation is known as rendering and is performed by a rendering engine
program. The glyphs are then converted to bitmap graphics for presentation according to
the characteristics of the display device or printer. For the rare occasion where the text
is actually embedded within an image, the glyphs that represent the characters may be
combined, stored, and manipulated as an object image.

Video Images

Although GIF images are adequate for simple animation loops, there are a number of
additional considerations for the storage, transmission, and display of true video. The most
important consideration is the massive amount of data created by a video application. A
video camera producing full screen 1024 × 768 pixel true-color images at a frame rate of
thirty frames per second, for example, will generate 1024 pixels × 768 pixels × 3 bytes of
color/image × 30 frames per second = 70.8 megabytes of data per second! A one-minute
film clip would consume 4.25 gigabytes of storage.
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There are a number of possible solutions: reduce the size of the image, limit the number
of colors, or reduce the frame rate. It is also possible, or, more likely, necessary to compress
the video data. Each of these options has obvious drawbacks. The solution chosen also
depends on the nature of the method used to make the video available to the user. One
option is to present the video as a file on the system. The video file is either accessed from a
removable medium, such as a DVD-ROM, or downloaded and stored on the system.

Alternatively, the video may be made available to the system in real time. The latter
technique is called streaming video. Streaming video is normally downloaded continuously
from a Web server or network server. Video conferencing is an example of a streaming
video application. The requirements for streaming video are much more stringent than for
locally stored video, because the amount of data that can be downloaded per unit time is
limited by the capability of the network connection. Furthermore, the processor must be
able to uncompress and decode the data fast enough to keep up with the incoming data
stream. Generally speaking, streaming video is of lower display quality than video that is
available locally.

Various mixes of these solutions are used. There are a number of proprietary formats
in use, including RealPlayer from Real.com, Windows Media Format from Microsoft, and
Flash Video from Macromedia. The output, although less than ideal, is adequate for many
applications.

When the video data is local to the system, it is possible to generate and display
high-quality video using sophisticated data compression techniques, but the processing
required for generation of the compressed data is beyond the capabilities of most computer
systems and users at the present time. The MPEG-2 and MPEG-4 formats store real-time
video that produces movie quality images, with the video data compressed to 30–60
megabytes or less of data per minute, even for high definition images. Even the re-creation
of the original images for display requires substantial computing power. Although high-end
modern personal computer systems have adequate processing power to decode high-quality
video data, many computer systems provide additional hardware support for the reading,
decoding, and displaying of real-time video data from DVDs. Direct transmission of
high-quality digital video data is still confined to very high-speed networks and satellite
systems.

Image and Video Input

Of course the obvious input source for images and video these days is the Web. Still, those
images and videos had to originate somewhere, so we’ll take a brief look at the various
means used to input them and convert them to the digital formats that we use. Three classes
of devices provide most of the imaging capability that we use.

IMAGE SCANNING One common way to input image data is with an image scanner.
Data from an image scanner takes the form of a bitmap that represents some sort
of image—a graphic drawing, a photograph, magnetically inked numbers on a check,
perhaps even a document of printed text. The scanner electronically moves over the image,
converting the image row by row into a stream of binary numbers, each representing a pixel.
Software in the computer then converts this raw data into one of the standard bitmap data
formats in use, adding appropriate metadata, applying data compression when desired,
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reconfiguring the data as necessary, and storing the data as a file that is then available
for use.

DIGITAL CAMERAS AND VIDEO CAPTURE DEVICES Digital cameras and video
cameras can be used to capture bitmap images and video. An electronic raster scan
mechanism is used to collect light and digitize the data from the lens. Most modern
cameras collect the data in a simple, vendor-specific so-called raw format. Because the
amount of data generated for a single image in a modern camera is large (a common value
is 8.1 megapixels × 3 or more bytes per pixel for example), the camera usually contains
software to convert the raw data to a compressed JPEG or MPEG image for storage and
transfer to a computer. Some cameras allow the direct transfer of raw images to a computer
for more precise processing control.

GRAPHICAL INPUT USING POINTING DEVICES Mice, pens, and other pointing
devices can be used in conjunction with drawing or painting programs to input graphical
data. The input from most of these devices is a pair of binary numbers representing either X
and Y coordinates on the screen or relative movements in X and Y directions. Some drawing
tablets also provide a measure of the pressure applied to the drawing pen. The pointing
device is an input device. The appearance of a cursor on the output screen results from a
calculation within the program that detects the current set of coordinates. The program
then outputs a cursor as part of the screen image bitmap at the appropriate location on the
screen. Internally, the image drawn will depend on the application program being used.
Paint packages provide tools that use the pointing device to create ‘‘paintings’’ in a bitmap
image form. Drawing packages provide tools that create and manipulate objects. In this
case, the result is an object image.

4.4 AUDIO DATA
Sound has become an important component in modern computer applications. Sound is
used as an instructional tool, as an element of multimedia presentations, to signal events
within the computer, and to enhance the enjoyment of games. Sound can be stored in
digital form on CD-ROMs and other media and made available to accompany a film
clip, illustrate the nuances of a symphony, or reproduce the roar of a lion. Sound can
be manipulated in the computer to compose music and to create the sounds of different
musical instruments, even an entire orchestra.

Sound is normally digitized from an audio source, such as a microphone or amplifier,
although it is possible to purchase instrumentation that connects the computer directly to
a musical keyboard and synthesizer. For most users, the sound was previously digitized and
provided on a CD-ROM or downloaded from a Web site.

Since the original sound wave is analog in nature, it is necessary to convert it to
digital form for use in the computer. The technique used is the same as that used for
music CDs and many other types of analog waveforms. The analog waveform is sampled
electronically at regular time intervals. Each time a sample is taken, the amplitude of the
sample is measured by an electronic circuit that converts the analog value to a binary
equivalent. The circuit that performs this function is known as an A-to-D converter. The
largest possible sample, which represents the positive peak of the loudest possible sound, is
set to the maximum positive binary number being used, and the most negative peak is set
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to the largest negative number. Binary 0 falls in the middle. The amplitude scale is divided
uniformly between the two limits. The sampling rate is chosen to be high enough to capture
every nuance in the signal being converted. For audio signals, the sampling rate is normally
around 50 kilohertz, or fifty thousand times a second. The basic technique is illustrated in
Figure 4.17. A typical audio signal is shown in the upper diagram. A portion of the signal
is shown in expanded form below. In this diagram, the signal is allowed to fall between
−64 and 64. Although we haven’t discussed the representation of negative numbers yet,
the consecutive values for the signal in this diagram will be the binary equivalents to −22,
−7, +26, 52, 49, and 2. The A-to-D conversion method is discussed more thoroughly in
Chapter 14.

Within the computer, most programs would probably treat this data as a one-
dimensional array of integers. Like graphics images, however, it is necessary to maintain,
store, and transmit metadata about the waveform, in addition to the waveform itself.
To process and reproduce the waveform, a program would have to know the maximum
possible amplitude, the sampling rate, and the total number of samples, at the very least. If
several waveforms are stored together, the system would have to identify each individual
waveform somehow and establish the relationships between the different waveforms. Are
the waveforms played together, for example, or one right after another?

As you might expect, there are a number of different file formats for storing audio
waveforms, each with its own features, advantages, and disadvantages. The .MOD format,
for example, is used primarily to store samples of sound that will be manipulated and
combined to produce a new sound. A .MOD file might store a sample of a piano tone.

FIGURE 4.17

Digitizing an Audio Waveform
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Software could then manipulate the sample to reproduce all the different keys on the
keyboard, it could alter the loudness of each tone, and it could combine them to synthesize
the piano lines in a piece of music. Other instruments could be synthesized similarly.
The MIDI format is used to coordinate the sounds and signals between a computer and
connected musical instruments, particularly keyboards. MIDI software can ‘‘read’’ the
keyboard and can also reproduce the sounds. The .VOC format is a general sound format
that includes special features such as markers within the file that can be used to repeat
(loop) a block or synchronize the different components of a multimedia presentation.
Block looping can extend a sound by repeating it over and over again. The .WAV format is
a general-purpose format used primarily to store and reproduce snippets of sound. MP3 is
a derivative of the MPEG-2 specification for the transmission and storage of music. It has
gained popularity because of the large numbers of MP3-coded recordings posted on the
Web and because of the availability of low-cost portable devices that can download, store,
decode, and reproduce MP3 data.

Like video, audio data can also be generated and stored locally or streamed from a
network or website. The data transmission and processing requirements for audio are much
less stringent than those for video, however. Audio is routinely streamed from the Web.
There are numerous websites broadcasting audio from radio stations and other sources,
and streaming audio is also used for Internet telephony.

EXAMPLE
The .WAV format was designed by Microsoft as part of its multimedia specification. The
format supports 8- or 16-bit sound samples, sampled at 11.025 KHz, 22.05 KHz, or
44.1 KHz in mono or stereo. The .WAV format is very simple and does not provide support
for a lot of features, such as the looping of sound blocks .WAV data is not compressed.

The format consists of a general header that identifies a ‘‘chunk’’ of data and specifies
the length of a data block within the chunk. The header is followed by the data block. The
general header is used for a number of different multimedia data types.

The layout of a .WAV file is shown in Figure 4.18. The data block is itself broken into
three parts. First, a 4-byte header identifies a sound file with the ASCII word ‘‘WAVE.’’ A
format chunk follows. This chunk contains such information as the method used to digitize
the sound, the sampling rate in samples per second, the data transfer rate in average number
of bytes per second, the number of bits per sample, and whether the sound is recorded in
mono or stereo. The actual data follows.

FIGURE 4.18

.WAV Sound Format

Chunk id

4 bytes 4 bytes

4 bytes (as needed)

Data (<length of chunk> bytes)

WAVE Actual sound dataFormat
chunk

Length of
chunk
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If you have a personal computer that runs Windows and supports sound, you will
probably find .WAV files in one of your Windows directories. Look for the file tada.wav, which
holds the brief trumpet fanfare that sounds when Windows is started.

EXAMPLE
MP3 is the predominant digital audio data format for the storage and transmission of music.
It is characterized by reasonable audio quality and small file size. MP3 uses a number of
different tactics and options to achieve its small file sizes. These include options for different
audio sampling rates, fixed or variable bit rates, and a wide range of bit rates that represent
different levels of compression. The bit rate, measured in Kbits/second is, of course, directly
related to the size of the file, however lower bit rates result in lower audio quality. The
options chosen are made by the creator of the file during the encoding process, based on the
trade-off between tolerable audio quality versus transmission rate or file size. An MP3 player
must be capable of correctly decoding and playing any of the format variations specified in
the MP3 standard.

The primary contributor to the small MP3 file size is the use of psychoacoustic lossy
compression. The size of an MP3 file is typically about 1/10th the size of an equivalent
uncompressed .WAV file. Psychoacoustic compression is based on the assumption that there
are sounds that a listener cannot hear or will not notice, which can then be eliminated. As an
example, a soft sound in the background is not usually noticeable against a loud foreground
sound. The level of compression depends on the tolerable level of sound quality, but also on
the nature of the audio being compressed. A typical MP3 file samples the audio data 44,100
times per second, which is the same as the data rate used on audio CDs, and presents the
data to the listener at a rate of either 128 or 192 Kb/second.

Figure 4.19 shows the structure of an MP3 file. The file consists of an optional ID field
that contains such information as song title and artist, followed by multiple data frames.
Each frame has a 32-byte header that describes the frame data, followed by an optional

FIGURE 4.19

MP3 Audio Data Format

...
ID

Field
(optional)

MP3
header

MP3
data

MP3 frameMP3 frameMP3 frame

32 bytes 2 bytes 384, 576,
or 1152
samples

MP3 file

error
check

(optional)
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2-byte error-checking code, followed by the data itself. The header contains 2 bytes of
synchronization and MP3 version data followed by the bit rate, the audio sample rate, the
type of data (for example, stereo or monaural audio), copy protection, and other information.
The MP3 standard requires that each frame contains 384, 576, or 1152 audio samples
of data. Note that this format allows the bit rate to vary for each frame, allowing for more
efficient compression, but more difficult encoding procedures.

4.5 DATA COMPRESSION
The volume of multimedia data, particularly video, but also sound and even high resolution
still images, often makes it impossible or impractical to store, transmit, and manipulate the
data in its normal form. Instead it is desirable or, in some cases, necessary to compress the
data. This is particularly true for video clips, real-time streaming video with sound, lengthy
sound clips, and images that are to be transmitted across the Internet through modem
connections. (It is also true of large data and program files of any type.)

There are many different data compression algorithms, but all fall into one of two
categories, lossless or lossy. A lossless algorithm compresses the data in such a way that
the application of a matching inverse algorithm restores the compressed data exactly to its
original form. Lossy data compression algorithms operate on the assumption that the user
can accept a certain amount of data degradation as a trade-off for the savings in a critical
resource such as storage requirements or data transmission time. Of course, only lossless
data compression is acceptable for files where the original data must be retained, including
text files, program files and numerical data files, but lossy data compression is frequently
acceptable in multimedia applications. In most applications, lossy data compression ratios
far exceed those possible with lossless compression.

Lossless data algorithms work by attempting to eliminate redundancies in the data.
For example, suppose that you have the following string of data:

0 5 5 7 3 2 0 0 0 0 1 4 7 3 2 9 1 0 0 0 0 0 6 6 8 2 7 3 2 7 3 2 . . .

There are two simple steps you could take to reduce this string. First, you could reduce
the amount of data by counting the strings of consecutive 0s, and maintaining the count
instead of the string. The character is reproduced once, followed by its count:

0 1 5 5 7 3 2 0 4 1 4 7 3 2 9 1 0 5 6 6 8 2 7 3 2 7 3 2 . . .

Notice that we actually had to add a character when the 0 appeared singly in the string.
Otherwise, the inverse algorithm would have assumed that the first 0 appeared five times
rather than recognizing the data to be a single 0 followed by a 5.

As a second step, the algorithm attempts to identify larger sequences within the string.
These can be replaced with a single, identifiable value. In the example string, the sequence
‘‘7 3 2’’ occurs repeatedly. Let us replace each instance of the sequence with the special
character ‘‘Z’’:

0 1 5 5 Z 0 3 1 4 Z 9 1 0 5 6 6 8 2 Z Z . . .

Application of these two steps has reduced the sample string by more than 35 percent.
A separate attachment to the data would identify the replacements that were made, so
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that the original data can be restored losslessly. For the example, the attachment would
indicate that 0s were replaced by a single 0 followed by their count and the sequences
‘‘7 3 2’’ were replaced by ‘‘Z.’’ You might wish to restore the original string in this example for
practice.

There are many variations on the methods shown in the example. You should also
notice that the second step requires advance access to the entire sequence of data to
identify the repetitive sequences. Thus, it is not useful with streaming data. There are other
variations that are based on the known properties of the data stream that can be used,
however. For example, MPEG-2 uses the knowledge that the image is repeated at a frame
rate of, say, thirty times per second, and that in most instances, very little movement occurs
within small parts of the image between consecutive frames. GIF images and ZIP files are
compressed losslessly.

Lossy algorithms operate on the assumption that some data can be sacrificed without
significant effect, based on the application and on known properties of human perception.
For example, it is known that subtle color changes will not be noticeable in the area of
an image where the texture is particularly vivid. Therefore, it is acceptable to simplify the
color data in this circumstance. There is no attempt to recover the lost data. The amount
of data reduction possible in a particular circumstance is determined experimentally. Lossy
algorithms can often reduce the amount of data by a factor of 10:1 or more. JPEG and MP3
are examples of lossy algorithms.

MPEG-2 uses both variations on both forms of compression simultaneously to achieve
compression ratios of 100:1 or more with very little noticeable degradation in image quality;
however, the compression process itself requires tremendous amounts of computing power.

Ongoing advances in data compression technology have resulted in improved perfor-
mance with existing compression techniques, as well as a number of new video formats,
including new versions of Microsoft’s Windows Media Video format and new formats
based on the MPEG-4 standard, as well as a new JPEG bitmap format, JP-2. As of this
writing, these formats have not yet achieved general acceptance, but there is much promise
for greatly improved video performance.

In general, the use of data compression is a trade-off between the use of processing
power and the need to reduce the amount of data for transmission and storage. In most cases,
the higher the compression ratio, the greater the demand upon the computer processing
resources. At some point, the incremental improvement in compression to be achieved will
no longer justify the additional cost in processing or the degradation of the result.

4.6 PAGE DESCRIPTION LANGUAGES
A page description language is a language that describes the layout of objects on a
displayed or printed page. (In this context we are using the word ‘‘object’’ in the more
general object-oriented programming language sense, rather than as a specific reference
to object images.) Page description languages incorporate various types of objects in
various data formats, including, usually, text, object images, and bitmap images. The page
description language provides a means to position the various items on the page. Most
page description languages also provide the capability to extend the language to include
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new data formats and new objects using language stubs called plug-ins. Most audio and
video extensions fall into this category.

Some page description languages are extremely simple, with limited innate functional-
ity. HTML (HyperText Markup Language), for example, provides little more than a shell.
Except for text, most objects are stored in separate files, the details of layout are left mostly
to the Web browser that is recreating the page, and programming language capability and
other features are provided as extensions. We have already shown you many of the data
formats that are used with HTML. Others, such as PDF (Portable Document Format) and
PostScript offer the ability to recreate sophisticated pages with surprising faithfulness to
the intentions of the original page designer.

PDF, for example, incorporates its own bitmap formats, object image format, and text
format, all optimized for rapid page creation and presentation. It is often difficult to extract
data in their original data formats from a PDF file. Interestingly, PDF does not provide
programming language features. Instead, PDF is treated as a file format. The file contains
objects, along with page positioning information for each object, and that’s about it. It is
presumed that any program execution required to preprocess the objects in the file for
presentation was done prior to the creation of the file.

PostScript, on the other hand, contains a full-featured programming language that
can be processed at display time. In that sense, PDF is something of a subset of PostScript,
though with somewhat different goals and strengths. Many of the features of PDF are
derived from postprocessed PostScript. In particular, the object image descriptions in PDF
are based on the PostScript formats shown as examples earlier in this chapter.

4.7 INTERNAL COMPUTER DATA FORMAT
So now you have an idea of the various forms that data takes when it reaches the computer.
Once inside the computer, however, all data is simply stored as binary numbers of various
sizes, ranging from 1 to 8 bits, or even larger. The interpretation of these binary numbers
depends upon two factors:

■ The actual operations that the computer processor is capable of performing
■ The data types that are supported by the programming language used to create

the application program

As you will see in later chapters, computer processors provide instructions to manip-
ulate data, for searching and sorting, for example, and to manipulate and perform basic
mathematical operations on signed and unsigned integers. They also provide a means to
point to data, using a stored binary value as a pointer or locator to another stored binary
number. Since these pointer values are themselves stored as numbers, they can also be
manipulated and used in calculations. A pointer value might represent the index in an
array, for example. Most recent computers also provide instructions for the direct manip-
ulation of floating point, or real, numbers. In other computers, floating point numbers are
manipulated using software procedures.

The processor instruction set also establishes formats for each data type that it
supports. If a number in the computer is supposed to be a floating point number, for
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example, the instructions are designed to assume that the number is laid out in a particular
format. Specific formats that are used for integer and real numbers are discussed in
Chapter 5.

Thus, the raw binary numbers stored in a computer can easily be interpreted to
represent data of a variety of different types and formats. C, Java, Visual Basic, and other
languages all provide a programmer with the capability to identify binary data with a
particular data type. Typically, there are five different simple data types:

■ Boolean: two-valued variables or constants with values of true or false.
■ char: the character data type. Each variable or constant holds a single alpha-

numeric character code representing, for example, the single strike of a key. It is
also common to process groups of characters together as strings. Strings are
simply arrays of individual characters. The ASC function in Visual Basic shows
the actual binary number code representing a particular character. Thus,
ASC(‘‘A’’) would show a different value on an ASCII-based system from that
shown on an EBCDIC system.

■ enumerated data types: user-defined simple data types, in which each possible
value is listed in the definition, for example,

type DayOfWeek = Mon, Tues, Wed, Thurs, Fri, Sat

■ integer: positive or negative whole numbers. The string of characters representing
a number is converted internally by a conversion routine built into the program
by the compiler and stored and manipulated as a numerical value.

■ real or float: numbers with a decimal portion, or numbers whose magnitude,
either small or large, exceeds the capability of the computer to process and store
as an integer. Again, the routine to convert a string of characters into a real
number is built into the program.

In addition to the simple data types, many programming languages, including C, but
not Java, support an explicit pointer variable data type. The value stored in a pointer variable
is a memory address within the computer. Other, more complex, data types, structures,
arrays, records, and other objects, for example, are made up of combinations of the simple
data types.

The data types just listed correlate rather well with the instruction set capability of
the processor. The integer and real types can be processed directly. The character type is
translated into instructions that manipulate the data for basic character operations that
are familiar to you from your programming classes. Boolean and enumerated data types
are treated within the computer in a manner similar to integers. Most programming
languages do not accept Boolean and enumerated data as input, but the conversion
would be relatively straightforward. It would only be necessary to test the input character
string against the various possibilities, and then set the value to the correct choice
(see Exercise 4.10).

Other languages may support a completely different set of data types. There are even
some languages that don’t recognize any data types explicitly at all, but simply treat data in
a way appropriate to the operation being performed.
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Numerical Character to Integer Conversion

EXAMPLE
As you’ve already seen, the typical high-level language numerical input statement

READ (value)

where value is the name of an integer variable, requires a software conversion from the actual
input, which is alphanumeric, to the numerical form specified for value. This conversion is
normally provided by program code contributed by the language compiler that becomes part
of your program. Some programmers choose instead to accept the input data in character
form and include their own code to convert the data to numerical form. This allows more
programmer control over the process; for example, the programmer might choose to provide
more extensive error checking and recovery than that of the internal conversion program.
(Many internal conversion programs simply crash if the user inputs an illegal character, say,
a letter when a numeral is expected.)

Whether internal or programmer supplied, the conversion process is similar. Just to
deepen your understanding of the conversion process, Figure 4.20 contains a simple

FIGURE 4.20

A Pseudocode Procedure that Performs String Conversion

//variables used
char key; 
int number = 0;
boolean error, stop;
{
   stop = false;
   error = false;
   ReadAKey;
   while (NOT stop && NOT error) {
      number = 10 * number + (ASCIIVALUE(key) - 48);
      ReadAKey;
   } //end while
   if (error == true) {
      printout('Illegal Character in Input');
   else printout('input number is ' number);
   } //end if
} //end procedure

function ReadAKey(); {
   read(key);
   if (ASCIIVALUE(key) == 13 or ASCIIVALUE(key) == 32 or ASCIIVALUE(key) == 44)
      stop = true;
   else if ((key < '0' ) or (key > '9' )) error = true;
} //end function ReadAKey
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pseudocode procedure that converts the string representing an unsigned integer into numer-
ical form. This code contains simple error checking and assumes that the number ends with
a space (ASCII 32), a comma (ASCII 44), or a carriage return (ASCII 13).

Conversion procedures for other data types are similar.

SUMMARY AND REVIEW
Alphanumeric data inputs and outputs are represented as codes, one code for each data
value. Three commonly used code systems for interactive input and output are Unicode,
ASCII, and EBCDIC. Within these codes, each character is represented by a binary number,
usually stored 1 or 2 bytes per character.

The design and choice of a code is arbitrary; however, it is useful to have a code in
which the collating sequence is consistent with search and sort operations in the language
represented. Within the computer, programs must be aware of the code used to assure that
data sorts, number conversions, and other types of character manipulation are handled
correctly. There must also be agreement between input and output devices, so that the
data is displayed correctly. If necessary, translation programs can be used to translate from
one representation to another. When necessary, conversion programs within the computer
convert the alphanumeric character strings into other numeric forms. Numeric data must
be converted back to Unicode, ASCII, or EBCDIC form for output display, however. The
most common source of alphanumeric data is the keyboard.

Data from a keyboard enters the computer in the form of a character stream, which
includes nonprinting characters as well as printing characters. Image scanning with optical
character recognition, voice input, and various special devices, such as bar code readers,
can also be used to create alphanumeric data.

There are two different methods used for representing images in the computer. Bitmap
images consist of an array of pixel values. Each pixel represents the sampling of a small area
in the picture. Object images are made up of simple geometrical elements. Each element is
specified by its geometric parameters, its location in the picture, and other details.

Within the constraint that object images must be constructed geometrically, they are
more efficient in storage and more flexible for processing. They may be scaled, rotated, and
otherwise manipulated without loss of shape or detail. Images with texture and shading,
such as photographs and painting, must be stored in bitmap image form. Generally, images
must be printed and displayed as bitmaps, so object images are converted to bitmap form
by a page description language interpreter before printing or display. There are many
different formats used for storing graphical images.

Video images are difficult to manage because of the massive amounts of data involved.
Video may be stored local to the system, or may be streamed from a network or website.
The quality of streamed video is limited by the capability of the network connection.
Higher quality is possible with locally stored video data, but the processing requirements
are demanding. Some systems provide auxiliary hardware to process video.
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Audio signals are represented in the computer by a sequence of values created by
digitizing the signal. The signal is sampled at regular time intervals. Each sample is then
converted to an equivalent binary value that is proportional to the amplitude of the
sample. Again, different formats are available for storing audio data, depending on the
application.

Audio signals may be streamed or stored locally. The requirements for audio trans-
mission and processing are far less stringent than for those of video.

For images, both still and video, as well as audio, data compression is often appropriate.
Lossless data compression allows complete recovery of the original noncompressed data.
Lossy data compression does not allow recovery of the original data, but is designed to be
perceived as sufficient by the user.

Page description languages combine the characteristics of various specific data formats
together with data indicating the position on the page to create data formats that can be
used for display and printing layouts.

Internally, all data, regardless of use, are stored as binary numbers. Instructions in the
computer support interpretation of these numbers as characters, integers, pointers, and in
many cases, floating point numbers.

FOR FURTHER READING
The general concepts of data formats are fairly straightforward, but additional character-
based exercises and practice can be found in the Schaum outline [LIPS82]. Individual
codes can be found in many references. The actual characters mapped to the keyboard are
directly observable using the Character Map accessory in Windows or the Key Caps desk
accessory on the Macintosh. Extensive information about Unicode is available from the
Unicode website at www.unicode.org.

For graphics formats, there are a number of good general books on graphics. Most of
these books describe the difference between bitmap and object graphics clearly, and most
also discuss some of the different graphics file formats, and the trade-offs between them.
Additionally, there are more specialized books that are often useful in this area. Murray and
Van Ryper [MURR96] provide a detailed catalog of graphics formats. Rimmer [RIMM93]
discusses bitmapped graphics at length.

Smith [SMIT90] presents an easy approach to the PostScript language. The three
Adobe books—[ADOB93], [ADOB99], and [ADOB85], often called the ‘‘green book’’,
the ‘‘red book’’, and the ‘‘blue book’’, respectively—are detailed but clear explanations of
PostScript. Adobe also offers the PDF Reference [ADOB06]. A simple introduction to PDF
is the PDF Primer White Paper [PDFP05].

There are many books on various aspects of digital sound, but most are hard to read;
the Web is a better resource. Similarly, new data formats of all types occur as the need
arises. Because the need seems to arise continuously nowadays, your best source of current
information is undoubtedly the Web.
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KEY CONCEPTS AND TERMS

A-to-D converter
alphanumeric data
ANSI
ASCII
bitmap or raster image
collating sequence
control code
EBCDIC
font
glyph
Graphics Interchange

Format (GIF)
graphical objects

JPEG format
lossless data compression
lossy data compression
metadata
MP3
MPEG-2, MPEG-4
numeric character versus

number
object or vector image
optical character

recognition (OCR)
page description language
palette

phoneme
pixel
PostScript language
plug-ins
proprietary format
resolution
RFID (radio frequency

identification)
scan code
stream, character
streaming (video)
Unicode

READING REVIEW QUESTIONS
4.1 When data is input to a computer, it is nearly always manipulated and stored

in some standard data format. Why is the use of data standards considered
important, or indeed, crucial in this case?

4.2 Name the three standards in common use for alphanumeric characters. Which
standard is designed to support all of the world’s written languages? Which
language is used primarily with legacy programs that execute on mainframe
computers?

4.3 What is the relationship between the ASCII Latin-1 character set and its Unicode
equivalent that makes conversion between the two simple?

4.4 What is a collating sequence?

4.5 Name at least four alternative devices that can be used as sources of alphanumeric
character input data.

4.6 What are the major characteristics of a bitmap image? What are the major
characteristics of an object or vector image? Which is used for displays? What types
of images must be stored and manipulated as bitmap images? Why?

4.7 What is image metadata? Give an at least three examples of metadata that would
be required for a bitmap image.

4.8 Name two advantages to the use of object images.

4.9 Explain briefly how an A-to-D converter converts audio data into binary data.

4.10 Describe briefly the most important characteristics and features of an MP3 audio
file.

4.11 Explain the difference between lossless and lossy data compression. Which type
normally provides a smaller file? What is ‘‘lost’’ in lossy audio data compression?
Under what circumstances is it impossible to use lossy data compression?
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4.12 What is a page description language? Give an example of a page description
language.

4.13 Name five simple data types that are provided in most high-level programming
languages.

4.14 Explain the difference between numeric characters and numbers. Under what
conditions would you expect the computer to use numeric characters? When
would you expect the computer to use numbers? When numeric data is entered
at the keyboard, which form is used? Which form is used for calculations? Which
form is used for display?

EXERCISES
4.1 a. Create a table that shows the ASCII and EBCDIC representations side-by-side

for each of the uppercase letters, lowercase letters, and numerals.

b. Does the hexadecimal representation show you a simple method for con-
verting individual numeric characters into their corresponding numerical
values?

c. Does the hexadecimal representation suggest a simple method for changing
lowercase letters into their corresponding capital letters?

d. Can you use the same methods for EBCDIC as you do for ASCII? If so, what
changes would you need to make in a program to make (b) and (c) work?

4.2 a. What is the ASCII representation for the numeral −3.1415 in binary? in
octal? in hexadecimal? in decimal?

b. What is the EBCDIC representation for the numeral +1,250.1? (Include the
comma.)

4.3 What character string does the binary ASCII code

1010100 1101000 1101001 1110011 0100000 1101001 1110011
0100000 1000101 1000001 1010011 1011001 0100001

represent?

4.4 ASCII, Unicode, and EBCDIC are, of course, not the only possible codes. The
Sophomites from the planet Collegium use the rather strange code shown in
Figure E4.1. There are only thirteen characters in the Sophomite alphabet, and
each character uses a 5-bit code. In addition, there are four numeric digits, since
the Sophomites use base 4 for their arithmetic.

a. Given the following binary code, what is the message being sent by the
Sophomites?

11001110100000111111000000100110111111110111110000000100100

b. You noticed in part (a) that this code does not delimit between characters.
How does one delimit this code? Suppose a bit was dropped during trans-
mission. What happens? Suppose a single bit was altered (0 to 1 or 1 to 0).
What happens?
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FIGURE E4.1

. .

00001
00010
00100
01000
01011
01101
01110

10000
10011
10101
10110
11001
11010

11111000
11111011
11111101
11111110

4.5 As an alternative alphanumeric code, consider a code where punched holes in the
columns of a card represent alphanumeric codes. The punched hole represents a
‘‘1’’; all other bits are ‘‘0’’. The Hollerith code shown in Figure E4.2 is an example
of such a code. This code has been used to represent a message on the card in
Figure E4.3. Each row represents a code level from 0 to 12. Levels 12 and 11, which
are not labeled on the card, are the top row and next-to-top rows, respectively.
Each column represents a single character, so the card can hold one eighty-column
line of text. (This card, prevalent in the 1960s and 1970s as a means of data input,
is the reason that text-based displays are still limited to eighty characters per line.)
Translate the card in Figure E4.3.

4.6 Without writing a program, predict the ORD value for your computer system for
the letter ‘‘A,’’ for the letter ‘‘B,’’ for the letter ‘‘C.’’ How did you know? Might the
value be different on a different system? Why or why not?

4.7 Write a program in your favorite language that will convert all ASCII uppercase
and lowercase letters to EBCDIC code. For an additional challenge, also convert
the punctuation symbols, indicating with a failure-to-convert message, those
symbols that are not represented in the EBCDIC system.

FIGURE E4.2

A
B
C
D
E
F
G
H
I
J
K

12,1
12,2
12,3
12,4
12,5
12,6
12,7
12,8
12,9
11,1
11,2

Character
Punched

code

L
M
N
O
P
Q
R
S
T
U
V

11,3
11,4
11,5
11,6
11,7
11,8
11,9
0,2
0,3
0,4
0,5

Character
Punched

code

W
X
Y
Z
0
1
2
3
4
5
6

0,6
0,7
0,8
0,9
0
1
2
3
4
5
6

Character
Punched

code
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8
9
&
-
/
#
@
‘
=
.

7
8
9
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Punched
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<
(
+
$
*
)
,
%

blank

12,8,4
12,8,5
12,8,6
11,8,3
11,8,4
11,8,5
0,8,3
0,8,4
none

Character
Punched

code
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FIGURE E4.3
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4.8 If you have access to a debug program, load a text file into computer memory
from your disk, and read the text from computer memory by translating the
ASCII codes.

4.9 Suppose you have a program that reads an integer, followed by a character, using
the following prompt and READ statement:

WRITE (‘Enter an integer and a character : ’)
READ (intval, charval);

When you run the program, you type in the following, in response to the prompt

Enter an integer and a character :
1257
z

When you check the value of charval, you discover that it does not contain ‘‘z.’’
Why not? What would you expect to find there?

4.10 Write a program that accepts one of the seven values ‘‘MON,’’ ‘‘TUE,’’ ‘‘WED,’’
‘‘THU,’’ ‘‘FRI,’’ ‘‘SAT,’’ and ‘‘SUN’’ as input and sets a variable named TODAY
to the correct value of type DayOfWeek, and then outputs the ORD value of
TODAY to the screen. (Does the ORD value give you a hint as to the internal
representation of the enumerated data type?)

4.11 Write a procedure similar to procedure Convert that converts a signed integer to
a character string for output.

4.12 Approximately how many pages of pure 16-bit Unicode text can a 650 MB
CD-ROM hold?

4.13 Find a book or article that describes the various bitmapped graphics formats, and
compare .GIF, .PNG, and .BMP.
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4.14 Find a book or article that describes the various bitmapped graphics formats, and
compare .GIF and .RLE.
For Exercises 4.13 and 4.14, there are several books that describe graphics formats
in detail. One of these is Murray [MURR96].

4.15 Investigate several audio formats, and discuss the different features that each
provides. Also discuss how the choice of features provided in different formats
affects the type of processing that the format would be useful for.

4.16 If you have studied COBOL, discuss the difference between numeric characters
and numbers in the context of a COBOL program. Does COBOL distinguish
clearly between the two? If so, in what ways?

4.17 Provide a line-by-line explanation for the PostScript code in Figure 4.14.

4.18 Unicode is downward compatible with the Latin-1 version of 8-bit ASCII in the
sense that a Unicode text file that is limited to the Latin-1 character set will be
read correctly on a system that does not support Unicode, provided that an end
delimiter is used, rather than a character count as the measure of the length of the
message. Why is this so? (Hint: Consider the role of the ASCII NUL character.)

4.19 Use the Web as a resource to investigate MPEG-2 [or MPEG-4]. Explain the data
compression algorithm used by MPEG-2 [or MPEG-4].

4.20 The MP3 audio format is described as ‘‘almost CD quality.’’ What characteristic
of MP3 makes this description accurate?

4.21 Use the Web as a resource to study the PDF format.

a. Describe how PDF provides output that is consistent across different types
of devices, including printers and monitors of various resolutions.

b. Describe the format for storing, laying out, and managing the objects on a
page. Explain the advantages to the use of this format over other formats,
such as that used by HTML.

c. Explain how PDF manages the many different type fonts that might be found
in a document.

d. How does PDF manage bitmap images? Object images?

e. Explain how PDF differs from PostScript.

f. Describe at least three major limitations that PDF places on the end-user of
a PDF document.

4.22 Using the Web as a resource, create a table that compares the features and
capabilities of .PNG, .GIF, and .JPEG.
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CHAPTER 5

REPRESENTING NUMERICAL
DATA

Thomas Sperling, adapted by Benjamin Reece



5.0 INTRODUCTION
As we have noted previously, the computer stores all data and program instructions
in binary form, using only groups of zeros and ones. No special provision is made
for the storage of the algebraic sign or decimal point that might be associated with
a number; all responsibility for interpretation of those zeros and ones is left to the
programmers whose programs store and manipulate those binary numbers. Thus the
binary numbers in a computer might represent characters, numbers, graphics images,
video, audio, program instructions, or something else.

The ability of a computer to manipulate numbers of various kinds is, of course, of
particular importance to users. In Chapter 4, we observed that nearly every high-level
computing language provides a method for storage, manipulation, and calculation of
signed integer and real numbers. This chapter discusses methods of representing and
manipulating these numbers within the zeros-and-ones constraint of the computer.

We saw in Chapter 3 that unsigned integer numbers can be represented directly in
binary form, and this provides a clue as to how we might represent the integer data type
in the computer. There is a significant limitation, however: we have yet to show you
a sign-free way of handling negative numbers that is compatible with the capabilities
of the computer. In this chapter, we explore several different methods of storing and
manipulating integers that may encompass both positive and negative numbers.

Also, as you know, it is not always possible to express numbers in integer form.
Real, or floating point, numbers are used in the computer when the number to be
expressed is outside of the integer range of the computer (too large or too small) or
when the number contains a decimal fraction.

Floating point numbers allow the computer to maintain a limited, fixed number
of digits of precision together with a power that shifts the point left or right within the
number to make the number larger or smaller, as necessary. The range of numbers that
the computer can handle in this way is huge. In a personal computer, for example, the
range of numbers that may be expressed this way may be ±[10−38 < number <10+38]
or more.

Performing calculations with floating point numbers provide an additional chal-
lenge. There are trade-offs made for the convenience of using floating point numbers:
a potential loss of precision, as measured in terms of significant digits, larger storage
requirements, and slower calculations. In this chapter we will also explore the properties
of floating point numbers, show how they are represented in the computer, consider
how calculations are performed, and learn how to convert between integer and floating
point representations. We also investigate the importance of the trade-offs required
for the use of floating point numbers and attempt to come up with some reasonable
ground rules for deciding what number format to specify in various programming
situations.

137
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We remind you that numbers are usually input as characters and must be converted
to a numerical format before they may be used in calculations. Numbers that will not be
used in calculations, such as zip codes or credit card numbers, are simply manipulated as
characters.

5.1 UNSIGNED BINARY AND BINARY-CODED
DECIMAL REPRESENTATIONS

In conventional notation, numbers can be represented as a combination of a value, or
magnitude, a sign, plus or minus, and, if necessary, a decimal point. As a first step in our
discussion, let’s consider two different approaches to storing just the value of the number
in the computer.

The most obvious approach is simply to recognize that there is a direct binary equivalent
for any decimal integer. We can simply store any positive or unsigned whole number as
its binary representation. This is the approach that we already discussed in Chapter 3. The
range of integers that we can store this way is determined by the number of bits available.
Thus, an 8-bit storage location can store any unsigned integer of value between 0 and 255,
a 16-bit storage location, 0–65535. If we must expand the range of integers to be handled,
we can provide more bits. A common way to do this is to use multiple storage locations. In
Figure 5.1, for example, four consecutive 1-byte storage locations are used to provide 32
bits of range. Used together, these four locations can accept 232, or 4,294,967,296 different
values.

The use of multiple storage locations to store a single binary number may increase the
difficulty of calculation and manipulation of these numbers because the calculation may
have to be done one part at a time, possibly with carries or borrows between the parts,
but the additional difficulty is not unreasonable. Most modern computers provide built-in

FIGURE 5.1

Storage of a 32-bit Data Word
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FIGURE 5.2

Value Range for Binary Versus Binary-coded Decimal
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64
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3 digits
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0–255
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7+ digits
9+ digits
19+ digits

Binary range

instructions that perform data calculations 32 bits or 64 bits at a time, storing the data
automatically in consecutive bytes. For other number ranges, and for computers without
this capability, these calculations can be performed using software procedures within the
computer.

An alternative approach known as binary-coded decimal (BCD), may be used in some
applications. In this approach, the number is stored as a digit-by-digit binary representation
of the original decimal integer. Each decimal digit is individually converted to binary. This
requires 4 bits per digit. Thus, an 8-bit storage location could hold two binary-coded
decimal digits—in other words, one of one hundred different values from 00 to 99. For
example, the decimal value 68 would be represented in BCD as 01101000. (Of course you
remember that 01102 = 610 and 10002 = 810.) Four bits can hold sixteen different values,
numbered 0 to F in hexadecimal notation, but with BCD the values A to F are simply not
used. The hexadecimal and decimal values for 0 through 9 are equivalent.

The table in Figure 5.2 compares the decimal range of values that can be stored in
binary and BCD forms. Notice that for a given number of bits the range of values that
can be held using the binary-coded decimal method is substantially less than the range
using conventional binary representation. You would expect this because the values A–F
are being thrown away for each group of 4 bits. The larger the total number of bits, the
more pronounced the difference. With 20 bits, the range for binary is an entire additional
decimal digit over the BCD range.

Calculations in BCD are also more difficult, since the computer must break the number
into the 4-bit binary groupings corresponding to individual decimal digits and use base 10
arithmetic translated into base 2 to perform calculations. In other words, the calculation
for each 4-bit grouping must be treated individually, with arithmetic carries moving from
grouping to grouping. Any product or sum of any two BCD integers that exceeds 9 must
be reconverted to BCD each time to perform the carries from digit to digit.
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EXAMPLE
One method of performing a ‘‘simple’’ one- by two-digit multiplication is shown as an
example in Figure 5.3. In the first step, each digit in the multiplicand is multiplied by the

FIGURE 5.3

A Simple BCD Multiplication
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bcd
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bin
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carry
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bcd

bcd

convert 13  
back to BCD

single-digit multiplier. This yields the result 7 × 6
= 42 in the units place and the result 7 × 7 = 49
in the 10’s place. Numerically, this corresponds to
the result achieved performing the multiplication
in decimal, as is shown at the left of the diagram.

To continue, the binary values for 42 and
49 must be converted back to BCD. This is done
in the second step. Now the BCD addition takes
place. As in the decimal version, the sum of 9 and
4 results in a carry. The binary value 13 must be
converted to BCD 3, and the 1 added to the value
4 in the hundreds place. The final result is BCD
value 532.

If the number contains a decimal point, the same approach can be used, but the
application program must keep track of the decimal point’s location. For example, many
business applications have to maintain full accuracy for real numbers. In many cases, the
real numbers being used represent dollars and cents figures. You are aware from Chapter 3
that rational decimal real numbers do not necessarily remain so when converted into
binary form. Thus, it is possible that a number converted from decimal to binary and back
again may not be exactly the same as the original number. You would not want to add two
financial numbers and have the result off by a few cents. (In fact, this was a problem with
early versions of spreadsheet programs!)

For this reason, business-oriented high-level languages such as COBOL provide
formats that allow the user to specify the number of desired decimal places exactly. Large
computers support these operations by providing additional instructions for converting,
manipulating, and performing arithmetic operations on numbers that are stored in a BCD
format.

EXAMPLE
IBM zSeries computers support numbers stored in a BCD format called packed decimal
format, shown in Figure 5.4. Each decimal digit is stored in BCD form, two digits to a byte.
The most significant digit is stored first, in the high-order bits of the first byte. The sign is
stored in the low-order bits of the last byte. Up to thirty-one digits may be stored. The binary
values 1100 and 1101 are used for the sign, representing ‘‘+’’ and ‘‘−’’ respectively. The
value 1111 can be used to indicate that the number is unsigned. Since these values do not
represent any valid decimal number, it is easy to detect an error, as well as to determine the
end of the number. As we noted earlier, the location of the decimal point is not stored and
must be maintained by the application program. Intel CPUs provide a more limited packed
format that holds two digits (00–99) in a single byte. As an example, the decimal number
-324.6 would be stored in packed decimal form as

0000 0011 0010 0100 0110 1101
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FIGURE 5.4

Packed Decimal Format

Sign

1100 or
1101 or
1111

Most
significant

digit

4 bits 4 bits
Up to 31 digits (16 bytes)

The leading 0s are required to make the number fit exactly into 3 bytes. IBM provides
additional formats that store data one digit to a byte, but provides no instructions for
performing calculations in this format. This format is used primarily as a convenience for
conversion between text and packed decimal format. IBM also provides a compressed version
of its packed decimal format to save storage space.

Even with computer instructions that perform BCD arithmetic, BCD arithmetic is
nearly always much slower. As an alternative, some computers convert each BCD number
to binary form, perform the calculation, and then convert the result back to BCD.

Despite its drawbacks, binary-coded decimal representation is sometimes useful,
especially in business applications, where it is often desirable to have an exact digit-for-digit
decimal equivalent in order to mimic decimal arithmetic, as well as to maintain decimal
rounding and decimal precision. Translation between BCD and character form is also easier,
since the last 4 bits of ASCII, EBCDIC, and Unicode numeric character forms correspond
exactly to the BCD representation of that digit. Thus, to convert from alphanumeric form
to BCD you simply chop off everything but the rightmost 4 bits of the character to get its
BCD value. This makes BCD an attractive option when the application involves a lot of
input and output, but limited calculation. Many business applications fit this description.
In most cases, though, binary representation is preferred and used.

5.2 REPRESENTATIONS FOR SIGNED INTEGERS
With the shortcomings of BCD, it shouldn’t surprise you that integers are nearly always
stored as binary numbers. As you have already seen, unsigned integers can be converted
directly to binary numbers and processed without any special care. The addition of a sign,
however, complicates the problem, because there is no obvious direct way to represent the
sign in binary notation. In fact, there are several different ways used to represent negative
numbers in binary form, depending on the processing that is to take place. The most com-
mon of these is known as 2’s complement representation. Before we discuss 2’s complement
representation, we will take a look at two other, simpler methods: sign-and-magnitude
representation and 1’s complement representation. Each of these latter methods has
some serious limitations for computer use, but understanding these methods and their
limitations will clarify the reasoning behind the use of 2’s complementation.
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Sign-and-magnitude Representation

FIGURE 5.5

Examples of Sign-and-Magnitude
Representation

0100101

37
�

�

�

1100101

37

�

0000000000000001
(�1)

1000000000000001
(�1)

1111111111111111
(�32767)

In daily usage, we represent signed integers by a plus or
minus sign and a value. This representation is known, not
surprisingly, as sign-and-magnitude representation.

In the computer we cannot use a sign, but must restrict
ourselves to 0’s and 1’s. We could select a particular bit,
however, and assign to it values that we agree will represent
the plus and minus signs. For example, we could select the
leftmost bit and decide that a 0 in this place represents a plus
sign and a 1 represents a minus. This selection is entirely
arbitrary, but if used consistently, it is as reasonable as any
other selection. In fact, this is the representation usually
selected. Figure 5.5 shows examples of this representation.

Note that since the leftmost digit is being used as a
sign, it cannot represent any value. This means that the positive range of the signed integer
using this technique is one-half as large as the corresponding unsigned integer of the same
number of bits. On the other hand, the signed integer also has a negative range of equal
size to its positive range, so we really haven’t lost any capability, but have simply shifted it
to the negative region. The total range remains the same, but is redistributed to represent
numbers both positive and negative, though in magnitude only half as large.

Suppose 32 bits are available for storage and manipulation of the number. In this case,
we will use 1 bit for the sign and 31 bits for the magnitude of the number. By convention,
the leftmost, or most significant, bit is usually used as a sign, with 0 corresponding to a
plus sign and 1 to a minus sign. The binary range for 32 bits is 0 to 4,294,967,295; we can
represent the numbers −2, 147, 483, 647 to +2,147,483,647 this way.

There are several inherent difficulties in performing calculations when using
sign-and-magnitude representation. Many of these difficulties arise because the value of
the result of an addition depends upon the signs and relative magnitudes of the inputs.
This can be easily seen from the following base 10 examples. Since the numbers are exactly
equivalent, the same problem of course occurs with binary addition.

EXAMPLE
Consider the base 10 sum of 4 and 2:

4
+ 2

6

The sum of 4 and −2, however, has a different numerical result:

4
− 2

2

Notice that the addition method used depends on the signs of the operands. One
method is used if both signs agree; a different method is used if the signs differ. Even worse,
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the presence of a second digit that can result in a carry or borrow changes the result yet
again:

2
− 4

− 2

But
12
−4
8

Interestingly enough, we have been so well trained that we alter our own mental
algorithm to fit the particular case without even thinking about it, so this situation
might not even have crossed your mind. The computer requires absolute definition
of every possible condition, however, so the algorithm must include every possibility;
unfortunately, sign-and-magnitude calculation algorithms are complex and difficult to
implement in hardware.

In addition to the foregoing difficulty, there are two different binary values for 0,

00000000 and 10000000

representing +0 and −0, respectively. This seems like a minor annoyance, but the system
must test at the end of every calculation to assure that there is only a single value for 0.
This is necessary to allow program code that compares values or tests a value for 0 to work
correctly. Positive 0 is preferred because presenting −0 as an output result would also be
confusing to the typical user.

The one occurrence where sign-and-magnitude is a useful representation is when
binary-coded decimal is being used. Even though the calculation algorithms are necessarily
complex, other algorithms for representing signed integers that you will be introduced to in
this chapter are even more impractical when using BCD. Furthermore, as we have already
discussed, BCD calculation is complex in any case, so the additional complexity that results
from handling sign-and-magnitude representations is just more of the same.

With BCD, the leftmost bit can be used as a sign, just as in the case of binary. With
binary, however, using a sign bit cuts the range in half; the effect on range is much less
pronounced with BCD. (Remember, though, that BCD already has a much smaller range
than binary for the same number of bits.) The leftmost bit in an unsigned BCD integer only
represents the values 8 or 9; therefore, using this bit as a sign bit still allows the computer 3
bits to represent the leftmost digit as a number within the range 0–7.

As an example, the range for a signed 16-bit BCD integer would be

−7999 ≤ value ≤ +7999.

Nine’s Decimal and 1’s Binary Complementary Representations

For most purposes, computers use a different method of representing signed integers
known as complementary representation. With this method, the sign of the number is a
natural result of the method and does not need to be handled separately. Also, calculations
using complementary representation are consistent for all different signed combinations
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of input numbers. There are two forms of complementary representation in common use.
One, known as the radix complement, is discussed in the next section. In this section, we
will introduce a representation known as diminished radix complementary representation,
so called because the value used as a basis for the complementary operation is diminished by
one from the radix, or base. Thus, base 10 diminished radix complementary representation
uses the value 9 as its basis, and binary uses 1. Although the computer obviously uses the 1’s
representation, we will introduce the 9’s representation first, since we have found that it is
easier for most students to understand these concepts in the more familiar decimal system.

NINE’S DECIMAL REPRESENTATION Let us begin by considering a different means
of representing negative and positive integers in the decimal number system. Suppose that
we manipulate the range of a three-digit decimal number system by splitting the three-digit
decimal range down the middle at 500. Arbitrarily, we will allow any number between 0
and 499 to be considered positive. Positive numbers will simply represent themselves. This
will allow the value of positive numbers to be immediately identified. Numbers that begin
with 5, 6, 7, 8, or 9 in the most significant digit will be treated as representations of negative
numbers. Figure 5.6 shows the shift in range.

One convenient way to assign a value to the negative numbers is to allow each digit
to be subtracted from the largest numeral in the radix. Thus, there is no carry, and each
digit can be converted independently of all others. Subtracting a value from some standard
basis value is known as taking the complement of the number. Taking the complement of
a number is almost like using the basis value as a mirror. In the case of base 10 radix, the
largest numeral is 9; thus, this method is called 9’s complementary representation.

FIGURE 5.6

Range Shifting Decimal Integers

Representation 500 999 0

-499 -000

499

4990Number being
represented − +Increasing value

The facing page shows several examples of this
technique.

If we now use the 9’s complement technique to
assign the negative values to the chart in Figure 5.6,
you see that 998 corresponds to a value of−1 and 500
to the value −499. This results in the relationship
shown in Figure 5.7.

An important consideration in the choice of
a representation is that it is consistent with the
normal rules of arithmetic. For the representation
to be valid, it is necessary that, for any value within
the range,

FIGURE 5.7

Addition as a Counting Process

Representation

500 649 899 999

-499 -350 -100 -000

499

499

0

0

Number being
represented

+250

+250

170 420

170 420
+250

+250

−(− value) = value

Simply stated, this says that if we complement
the value twice, it should return to its original
value. Since the complement is just

comp = basis − value

then complementing twice,

basis− ( basis− value) = value

which confirms that this requirement is met.



CHAPTER 5 REPRESENTING NUMERICAL DATA 145

EXAMPLES
Find the 9’s complementary representation for the three-digit number −467.

999
− 467

532

532 represents the value for −467. Notice that the three-digit value range is limited to
0–499, since any larger number would start with a digit of 5 or greater, which is the indicator
for a negative number.

Find the 9’s complementary representation for the four-digit number −467.

9999
−467
9532

Notice that in this system, it is necessary to specify the number of digits, or word size, being
used. In a four-digit representation, the number (0)532 represents a positive integer, since
it is less than 4999 in value. Care is required in maintaining the correct number of digits.

What is the sign-and-magnitude value of the four-digit number represented in 9’s
complement by 3789?

In this case, the leftmost digit is in the range 0–4. Therefore, the number is positive,
and is already in correct form. The answer is +3789.

This example emphasizes the difference between the representation of a number
in complementary form and the operation of taking the complement of a number. The
representation just tells us what the number looks like in complementary form. The operation
of finding the complement of a number consists of performing the steps that are necessary
to change the number from one sign to the other. Note that if the value represents a negative
number, it is necessary to perform the operation if we wish to convert the number into
sign-and-magnitude form.

What is the sign-and-magnitude value of the four-digit number represented by 9990?
This value is negative. To get the sign-and-magnitude representation for this number,

we take the 9’s complement:

9999
−9990

9

Therefore, 9990 represents the value −9.
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Next, let’s consider the operation of addition when the numbers being added are
in 9’s complementary form. When you studied programming language, you learned that
modular arithmetic could be used to find the remainder of an integer division. You recall
that in modular arithmetic, the count repeats from 0 when a limit, called the modulus, is
exceeded. Thus, as an example, 4 mod 4 has the value 0 and 5 mod 4 has the value 1.

The 9’s complement scale shown in Figure 5.6 shares the most important characteristic
of modular arithmetic; namely, in counting upward (from left to right on the scale), when
999 is reached, the next count results in a modular rotation to a value of 0. (Notice that
when you reach the right end of the scale, it continues by flowing around to the left end.)

Counting corresponds to addition; thus, to add a number to another is simply to count
upward from one number by the other. This idea is illustrated in Figure 5.7. As you can see
from the examples in this diagram, simple additions are straightforward and work correctly.
To understand how this process works in a ‘‘wraparound’’ situation, consider the example
shown in Figure 5.8. As you can see in this case, adding 699 to the value 200 leads to the posi-
tion 899 by wrapping around the right end. Since 699 is equivalent to−300 and 899 is equiva-
lent to−100, 699+200 is equivalent to (−300)+200, and the result of the addition is correct.

The reason this technique works can also be seen in the diagram. The wraparound is
equivalent to extending the range to include the addition on the scale.

The same final point should also be reached by moving to the left 300 units, which is
equivalent to subtracting 300. In fact, the result is off by 1. This occurs because we have
again picked a scale with two values for 0, namely, 0 for +0 and 999 for −0. This means
that any count that crosses the modulus will be short one count, since 0 will be counted
twice. In this particular example, the count to the right, which is the a addition 200 + 699,

FIGURE 5.8

Addition with Wraparound

Representation

Number being
represented

500

-499

999 0 200

+699

-300
-000

499

499

999

-000

500

-4990 200

899

-100

yielded the correct result, since the modulus
was not crossed. The count to the left, the sub-
traction 200 − 300, is off by one because of the
double zero. We could correct for this situation
on the chart by moving left an additional count
any time the subtraction requires ‘‘borrowing’’
from the modulus. For example, subtracting
200 − 300 requires treating the value 200 as
though it were 1200 to stay within the 0–999
range. The borrow can be used to indicate that
an additional unit should be subtracted.

FIGURE 5.9

Addition with Modulus Crossing Representation

Representation

Number being
represented

500

-499

799

+300

+300

999

-000

499
(1099)

499

0

0-200

99

100

Next, consider the situation shown in
Figure 5.9. In this case, counting to the right,
or adding, also results in crossing the modulus,
so an additional count must be added to obtain
the correct result. This is an easier situation, how-
ever. Since the result of any sum that crosses the
modulus must initially contain a carry digit (the
1 in 1099 in the diagram), which is then dropped
in the modular addition, it is easy to tell when the
modulus has been crossed to the right. We can
then simply add the extra count in such cases.
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FIGURE 5.10

End-around Carry Procedure

799
100
899

799
300

1099
1

100No end-around carry
End-around carry

This leads to a simple procedure for adding two
numbers in 9’s complementary arithmetic: Add the two
numbers. If the result flows into the digit beyond the spec-
ified number of digits, add the carry into the result. This
is known as end-around carry. Figure 5.10 illustrates the
procedure. Notice that the result is now correct for both
examples.

Although we could design a similar algorithm for
subtraction, there is no practical reason to do so. Instead,
subtraction is performed by taking the complement of the
subtrahend (the item being subtracted) and adding to the

minuend (the item being subtracted from). In this way, the computer can use a single
addition algorithm for all cases.

There is one further consideration. A fixed word size results in a range of some
particular fixed size; it is always possible to have a combination of numbers that adds to a
result outside the range. This condition is known as overflow. If we have a three-digit plus
sign word size in a sign-and-magnitude system, and add 500 to 500, the result overflows,
since 1000 is outside the range. The fourth digit would be evidence of overflow.

It is just as easy to detect overflow in a 9’s complement system, even though the
use of modular arithmetic assures that an extra digit will never occur. In complementary
arithmetic, numbers that are out of range represent the opposite sign. Thus, if we add

300+ 300 = 600 (i.e., −399)

both inputs represent positive numbers, but the result is negative. Then the test for overflow
is this: If both inputs to an addition have the same sign, and the output sign is different,
overflow has occurred.

ONE’S COMPLEMENT The computer can use the binary version of the same method
of representation that we have just discussed. In base 2, the largest digit is 1. Splitting the
range down the middle, as we did before, numbers that begin with 0 are defined to be
positive; numbers that begin with 1 are negative. Since

1 1
− 0 and − 1

1 0

the 1’s complement of a number is performed simply by changing every 0 to a 1 and
every 1 to a 0. How elegantly simple! This exchange of 0s and 1s is also known as
inversion. (Of course, this means that both 000 . . . and 111 . . . represent 0, specifically,
+0 and −0, respectively.) The 1’s complement scale for 8-bit binary numbers is shown in
Figure 5.11.

Addition also works in the same way. To add two numbers, regardless of the implied
sign of either input, the computer simply adds the numbers as though they were unsigned
integers. If there is a carryover into the next bit beyond the leftmost specified bit, 1 is added
to the result, following the usual end-around carry rule. Subtraction is done by inverting
the subtrahend (i.e., changing every 0 to 1 and every 1 to 0) and adding. Overflows are
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FIGURE 5.11

One’s Complement Representation

10000000 11111111 00000000

-12710 -010

01111111

12710010

detected in the same way as previously discussed: if both inputs are of the same sign, and
the sign of the result is different, overflow has occurred; the result is outside the range.
Notice that this test can be performed simply by looking at the leftmost bit of the two
inputs and the result.

An important comment about conversion between signed binary and decimal integers
in their complementary form: although the technique used is identical between 9’s
complement decimal and 1’s complement binary, the modulus used in the two systems
is obviously not the same! For example, the modulus in three-digit decimal is 999, with a
positive range of 499. The modulus in 8-bit binary is 11111111, or 25510, with a positive
range of 01111111, or 12710.

This means that you cannot convert directly between 9’s complement decimal and
1’s complement binary. Instead, you must change the number to sign-and-magnitude
representation, convert, and then change the result to the new complementary form. Of
course, if the number is positive, this process is trivial, since the complementary form is the
same as the sign-and-magnitude form. But you must remember to follow this procedure if
the sign is negative. Remember, too, that you must check for overflow to make sure that
your number is still in range in the new base.

Here are several examples of 1’s complement addition and subtraction, together with
the equivalent decimal results:

EXAMPLES
Add

00101101 = 45
00111010 = 58

01100111 = 103

Add the 16- bit numbers

0000000000101101 = 45
1111111111000101 = −58
1111111111110010 = −13

Note that the addend 1111111111000101 is the inversion of the value in the previous
example with eight additional 0s required to fill up 16 bits. The decimal result, −13, is
found by inverting 1111111111110010 to 0000000000001101 to get a positive magnitude
and adding up the bits.
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EXAMPLES
Add

01101010
11111101
101100111

+1
01101000

=
=

=

106
–2

104
(end-around carry)

Subtract

01101010 = 106
−01011010 = 90

Changing the sign of the addend by inverting

01101010
10100101

100001111
+1

00010000 =16
(end-around carry)

Add

01000000 = 64
+ 01000001 = 65

10000001 = −126
This is an obvious example of overflow. The correct positive result, 129, exceeds the range
for 8 bits. Eight bits can store 256 numbers; splitting the range only allows positive values
0–127.

The overflow situation shown in the last example occurs commonly in the com-
puter,and some high-level languages do not check adequately. In some versions of BASIC,
for example, the sum

16384+ 16386

will show an incorrect result of −32765 or −32766. (The latter result comes from use of a
different complementary representation, discussed in the next section.) What has happened
is that overflow has occurred in a system that uses 16 bits for integer calculations. The
positive range limit for 16 bits is +32767 (a 0 for the sign plus fifteen 1s). Since the sum
of 16384 and 16386 is 32770, the calculation overflows. Unfortunately, the user may never
notice, especially if the overflowing calculation is buried in a long series of calculations.
A good programmer takes such possibilities into account when the program is written.
(This type of error caused some embarrassment when it showed up in a recent version of
Microsoft Excel.)
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Ten’s Complement and 2’s Complement

FIGURE 5.12

Ten’s Complement Scale

Representation 500 999 0

-500 -001

499

4990Number being
represented − +

TEN’S COMPLEMENT You have seen that
complementary representation can be effective for
the representation and calculation of signed integer
numbers. As you are also aware, the system that
we have described,which uses the largest number
in the base as its complementary reflection point,
suffers from some disadvantages that result from
the dual zero on its scale.

By shifting the negative scale to the right by one, we can create a complementary system
that has only a single zero. This is done by using the radix as a basis for the complementary
operation. In decimal base, this is known as the 10’s complement representation. The use
of this representation will simplify calculations. The trade-off in using 10’s complement
representation is that it is slightly more difficult to find the complement of a number. A
three-digit decimal scale is shown in Figure 5.12. Be sure to notice the differences between
this diagram and Figure 5.6.

The theory and fundamental technique for 10’s complement is the same as that for 9’s
complement. The 10’s complement representation uses the modulus as its reflection point.
The modulus for a three-digit decimal representation is 1000, which is one larger than the
largest number in the system, 999.

Complements are found by subtracting the value from the modulus, in this case,
1000. This method assures a single zero, since (1000 − 0) mod 1000 is zero. Again, as
with the previously discussed complementary methods, notice that the complement of the
complement results in the original value. See the examples on the facing page.

There is an alternative method for complementing a 10’s complement number. First,
observe that

1000 = 999+ 1

You recall that the 9’s complement was found by subtracting each digit from 9:

9′s comp = 999− value

From the previous equation, the 10’s complement can be rewritten as

10′s comp = 1000− value = 999+ 1− value = 999− value+ 1

or, finally,

10′s comp = 9′scomp+ 1

This gives a simple alternative method for computing the 10’s complement value: find
the 9’s complement, which is easy, and add 1 to the result. Either method gives the same
result. You can use whichever method you find more convenient. This alternative method
is usually easier computationally, especially when working with binary numbers, as you
will see.

Addition in 10’s complement is particularly simple. Since there is only a single zero in
10’s complement, sums that cross the modulus are unaffected. Thus, the carry that results
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EXAMPLES
Find the 10’s complement of 247.

As a reminder, note that the question asks for the 10’s complement of 247, not the 10’s
complement representation. Since 247 represents a positive number, its 10’s complement
representation is, of course, 247.

The 10’s complement of 247 is

1000− 247 = 753

Since 247 is a positive representation, 753 represents the value −247.

Find the 10’s complement of 17.
As in the 9’s complement work, we always have to be conscious of the number of

specified digits. Since all the work so far has assumed that the numbers contain three digits,
let’s solve this problem from that assumption:

1000− 017 = 983

Find the sign and magnitude of the three-digit number with 10’s complement representation:
777

Since the number begins with a 7, it must be negative. Therefore,

1000− 777 = 223

The sign-magnitude value is −223.

when the addition crosses the zero point is simply ignored. To add two numbers in 10’s
complement, one simply adds the digits; any carry beyond the specified number of digits
is thrown away. (Actually, in the computer, the carry is saved in a special ‘‘carry bit,’’ just
in case it is to be used to extend the addition to another group of bits for multiple-word
additions.) Subtraction is again performed by inverting the subtrahend and adding.

The range of numbers in 10’s complement for three digits can be seen in Figure 5.12.
Of particular interest is the fact that the positive and negative regions are of different size:
there is one negative number, 500, that cannot be represented in the positive region. (The
10’s complement of 500 is itself.) This peculiarity is a consequence of the fact that the total
range of numbers is even for any even-numbered base, regardless of word size (in this
case, 10W). Since one value is reserved for zero, the number of remaining values to be split
between positive and negative is odd and, thus, could not possibly be equal.

TWO’S COMPLEMENT. Two’s complement representation for binary is, of course,
similar to 10’s complement representation for decimal. In binary form, the modulus
consists of a base 2 ‘‘1’’ followed by the specified number of 0s. For 16 bits, for example,
the modulus is

10000000000000000
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FIGURE 5.13

Two’s Complement Representation

10000000 11111111 00000000

-12810 -110

01111111

12710010

As was true for the 10’s complement, the 2’s complement of a number can be found
in one of two ways: either subtract the value from the modulus or find the 1’s complement
by inverting every 1 and 0 and adding 1 to the result.

The second method is particularly well suited to implementation in the computer, but
you can use whichever method you find more convenient.

Figure 5.13 shows an 8-bit scale for 2’s complement representation.
Two’s complement addition, like 10’s complement addition in decimal, consists of

adding the two numbers mod <the modulus>. This is particularly simple for the computer,
since it simply means eliminating any 1s that don’t fit into the number of bits in the word.
Subtraction and overflow are handled as we have already discussed.

As in 10’s complement, the range is unevenly divided between positive and negative.
The range for 16 bits, for example, is −32768 ≤ value ≤ 32767.

There are many 2’s complement problems at the end of the chapter for you to
practice on.

The use of 2’s complement is more common in computers than is 1’s complement, but
both methods are in use. The trade-off is made by the designers of a particular computer: 1’s
complement makes it easier to change the sign of a number, but addition requires an extra
end-around carry step. One’s complement has the additional drawback that the algorithm
must test for and convert −0 to 0 at the end of each operation. Two’s complement simplifies
the addition operation at the expense of an additional add operation any time the sign
change operation is required.

As a final note, before we conclude our discussion of binary complements, it is useful
to be able to predict approximate sizes of integers that are represented in complementary
form without going through the conversion. A few hints will help:

1. Positive numbers are always represented by themselves. Since they always start
with 0, they are easily identified.

2. Small negative numbers, that is, negative numbers close to 0, have
representations that start with large numbers of 1s. The number −2 in 8-bit 2’s
complement, for example, is represented by

11111110

whereas −128, the largest negative 2’s complement number, is represented by

10000000

This is evident from the scale in Figure 5.13.

3. Since there is only a difference in value of 1 between 1’s and 2’s complement
representations of negative numbers (positive numbers are, of course, identical
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in both representations), you can get a quick idea of the value in either
representation simply by inverting all the 1s and 0s and approximating the value
from the result.

Overflow and Carry Conditions

We noted earlier in this discussion that overflows occur when the result of a calculation
does not fit into the fixed number of bits available for the result. In 2’s complement, an
addition or subtraction overflow occurs when the result overflows into the sign bit. Thus,
overflows can occur only when both operands have the same sign and can be detected by
the fact that the sign of the result is opposite that of the operands.

Computers provide a flag that allows a programmer to test for an overflow condition.
The overflow flag is set or reset each time a calculation is performed by the computer. In
addition, the computer provides a carry flag that is used to correct for carries and borrows
that occur when large numbers must be separated into parts to perform additions and
subtractions. For example, if the computer has instructions that are capable of adding two
32-bit numbers, it would be necessary to separate a 64-bit number into two parts, add the
least significant part of each, then add the most significant parts, together with any carry
that was generated by the previous addition. For normal, single precision 2’s complement
addition and subtraction the carry bit is ignored.

Although overflow and carry procedures operate similarly, they are not quite the same,
and can occur independently of each other. The carry flag is set when the result of an
addition or subtraction exceeds the fixed number of bits allocated, without regard to sign.
It is perhaps easiest to see the difference between overflow and carry conditions with an
example. This example shows each of the four possible outcomes that can result from the
addition of two 4-bit 2’s complement numbers.

EXAMPLE

(+4) + (+2) (+4) + (+6)
0100 no overflow, 0100 overflow,
0010 no carry 0110 nocarry
0110 = (+6) the result is correct 1010 = (−6) the result is incorrect

(−4) + (−2) (−4) + (−6)
1100 no overflow, 1100 overflow,
1110 carry 1010 Carry
110106 = (−6) ignoring carry, 10110 = (+6) ignoring the carry,

the result is correct the result is incorrect

If an overflow occurs on any but the most significant part of a multiple part addition, it is
ignored (see exercise 5.13).

Other Bases

Any even-numbered base can be split the same way to represent signed integers in that base.
Either the modulus or the largest-digit value can be used as a mirror for the complementary
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representation. Odd bases are more difficult: either the range must be split unevenly to
use the leftmost digit as an indicator, or the second left digit must be used together with
the first to indicate whether the represented number is positive or negative. We will not
consider odd bases any further.

Of particular interest are the corresponding 7’s and 8’s complements in octal and 15’s
and 16’s complements in hexadecimal. These correspond exactly to 1’s and 2’s complement
in binary, so you can use calculation in octal or hexadecimal as a shorthand for binary.

As an example, consider four-digit hexadecimal as a substitute for 16-bit binary. The
range will be split down the middle, so that numbers starting with 0–716 are positive and
those starting with 8–F are negative. But note that hex numbers starting with 8–F all have a
binary equivalent with 1 in the leftmost place, whereas 0–7 all start with 0. Therefore, they
conform exactly to the split in 16-bit binary.

You can carry the rest of the discussion by yourself, determining how to take the
complement, and how to add, from the foregoing discussions. There are practice examples
at the end of the chapter.

Finally, note that since binary-coded decimal is essentially a base 10 form, the use of
complementary representation for BCD would require algorithms that analyze the first
digit to determine the sign and then perform 9’s or 10’s complement procedures. Since the
purpose of BCD representation is usually to simplify the conversion process, it is generally
not practical to use complementary representation for signed integers in BCD.

Summary of Rules for Complementary Numbers

The following points summarize the rules for the representation and manipulation of
complementary numbers, both radix and diminished radix, in any even number base. For
most purposes you will be interested only in 2’s complement and 16’s complement:

1. Remember that the word ‘‘complement’’ is used in two different ways. To
complement a number, or take the complement of a number, means to change
its sign. To find the complementary representation of a number means to
translate or identify the representation of the number just as it is given.

2. Positive numbers are represented the same in complementary form as they
would be in sign and magnitude form. These numbers will start with 0, 1, . . .
N/2–1. For binary numbers, positive numbers start with 0, negative with 1.

3. To go from negative sign-and-magnitude to complementary form, or to change
the sign of a number, simply subtract each number from the largest number in
the base (diminished radix) or from the value 100 . . . , where each zero
corresponds to a number position (radix). Remember that implied zeros must be
included in the procedure. Alternatively, the radix form may be calculated by
adding 1 to the diminished radix form. For 2’s complement, it is usually easiest
to invert every digit and add 1 to the result.

4. To get the sign-and-magnitude representation for negative numbers, use the
procedure in (2) to get the magnitude. The sign will, of course, be negative.
Remember that the word size is fixed; there may be one or more implied 0s at the
beginning of a number that mean the number is really positive.
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5. To add two numbers, regardless of sign, simply add in the usual way. Carries
beyond the leftmost digit are ignored in radix form, added to the result in
diminished radix form. To subtract, take the complement of the subtrahend
and add.

6. If we add two complementary numbers of the same sign and the result is of
opposite sign, the result is incorrect. Overflow has occurred.

5.3 REAL NUMBERS

A Review of Exponential Notation

Real numbers add an additional layer of complexity. Because the number contains a radix
point (decimal in base 10, binary in base 2), the use of complementary arithmetic must
be modified to account for the fractional part of the number. The representation of real
numbers in exponential notation simplifies the problem by separating the number into an
integer, with a separate exponent that places the radix point correctly. As before, we first
present the techniques in base 10, since working with decimal numbers is more familiar to
you. Once you have seen the methods used for the storage and manipulation of floating
point numbers, we will then extend our discussion to the binary number system. This
discussion will include the conversion of floating point numbers between the decimal and
binary bases (which requires some care) and the consideration of floating point formats
used in actual computer systems.

Consider the whole number

12345

If we allow the use of exponents, there are many different ways in which we can
represent this number. Without changing anything, this number can be represented as

12345× 100

If we introduce decimals, we can easily create other possible representations. Each of
these alternative representations is created by shifting the decimal point from its original
location. Since each single-place shift represents a multiplication or division of the value by
the base, we can decrease or increase the exponent to compensate for the shift. For example,
let us write the number as a decimal fraction with the decimal point at the beginning:

0.12345× 105

or, as another alternative,

123450000× 10−4

or even,

0.0012345× 107

Of course, this last representation will be a poor choice if we are limited to five digits
of magnitude,

0.00123× 107
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since we will have sacrificed two digits of precision in exchange for the two zeros at the
beginning of the number which do not contribute anything to the precision of the number.
(You may recall from previous math courses that they are known as insignificant digits.)
The other representations do retain full precision, and any one of these representations
would be theoretically as good as any other. Thus, our choice of representation is somewhat
arbitrary and will be based on more practical considerations.

The way of representing numbers described here is known as exponential notation or,
alternatively, as scientific notation. Using the exponential notation for numbers requires
the specification of four separate components to define the number. These are

1. The sign of the number (‘‘+’’, for our original example)

2. The magnitude of the number, known as the mantissa (12345)

3. The sign of the exponent (‘‘+’’)

4. The magnitude of the exponent (3, see below)

Two additional pieces of information are required to complete the picture:

5. The base of the exponent (in this case, 10)

6. The location of the decimal (or other base) radix point

Both these latter factors are frequently unstated, yet extremely important. In the
computer, for example, the base of the exponent is usually, but not always, specified to be
2. In some computers, 16 or 10 may be used instead, and it is obviously important to know
which is being used if you ever have to read the numbers in their binary form. The location
of the decimal point (or binary point, if we’re working in base 2) is also an essential piece of
information. In the computer, the binary point is set at a particular location in the number,
most commonly the beginning or the end of the number. Since its location never changes, it
is not necessary to actually store the point. Instead, the location of the binary point is implied.

Knowing the location of the point is, of course, essential. In the example that
accompanies the rules just given, the location of the decimal point was not specified.
Reading the data suggests that the number might be

+12345× 10+3

which, of course, is not correct if we’re still using the number from our original example.
The actual placement of the decimal point should be

12.345× 103

Let us summarize these rules by showing another example, with each component
specifically marked. Assume that the number to be represented is

−0.0000003579

One possible representation of this number is

sign of mantissa

location of
decimal point

mantissa base exponent

sign of exponent

–0.35790 × 10–6
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Floating Point Format

As was the case with integers, floating point numbers will be stored and manipulated in the
computer using a ‘‘standard’’, predefined format. For practical reasons, a multiple of 8 bits
is usually selected as the word size. This will simplify the manipulation and arithmetic that
is performed with these numbers.

In the case of integers, the entire word is allocated to the magnitude of the integer and
its sign. For floating point numbers, the word must be divided: part of the space is reserved
for the exponent and its sign; the remainder is allocated to the mantissa and its sign. The
base of the exponent and the implied location of the binary point are standardized as part
of the format and, therefore, do not have to be stored at all.

You can understand that the format chosen is somewhat arbitrary, since you have
already seen that there are many different ways to represent a floating point number.
Among the decisions made by the designer of the format are the number of digits to use, the
implied location of the binary or decimal point, the base of the exponent, and the method
of handling the signs for the mantissa and the exponent.

For example, suppose that the standard word consists of space for seven decimal digits
and a sign:

SMMMMMMM

This format would allow the storage of any integer in the range

−9,999,999 < I < +99,999,999

with full, seven-digit precision. Numbers of magnitude larger than 9,999,999 result in
overflow. Numbers of magnitude less than 1 cannot be represented at all, except as 0.

For floating point numbers, we might assign the digits as follows:

sign of
mantissa

two digits
for the

exponent

the remaining
five digits for
the mantissa

SEEMMMMM

In addition we have to specify the implied location for the decimal point.
In this example we have ‘‘traded’’ two digits of exponent in exchange for the loss of two

digits of precision. We emphasize that we have not increased the number of values that can
be represented by seven digits. Seven digits can represent exactly 10,000,000 different values,
no matter how they are used. We have simply chosen to use those digits differently—to
increase the expressible range of values by giving up precision throughout the range. If we
wish to increase the precision, one option is to increase the number of digits.

There are other possible trades. We could, for example, increase precision by another
digit by limiting the exponent to a single digit. This might not be as limiting as it first
appears. Since each increment or decrement of the exponent changes the number by a
factor equivalent to the base (in this case, 10), a fairly substantial range of numbers can be
accommodated with even a single digit, in this case 109 to 100, or 1 billion to 1.

The sign digit will be used to store the sign of the mantissa. Any of the methods shown
earlier in this chapter for storing the sign and magnitude of integers could be used for
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FIGURE 5.14

Excess-50 Representation

Representation 0 49 50

-50 -1

99

490Exponent being
represented − +Increasing value

the mantissa. Most commonly, the mantissa is
stored using sign-magnitude format. A few com-
puters use complementary notation.

Notice that we have made no specific provision
for the sign of the exponent within the proposed
format. We must therefore use some method that
includes the sign of the exponent within the digits
of the exponent itself. One method that you have

already seen for doing this is the complementary representation. (Since the exponent and
mantissa are independent of each other, and are used differently in calculations, there is no
reason to assume that the same representation would be used for both.)

The manipulations used in performing exponential arithmetic allow us to use a simple
method for solving this problem. If we pick a value somewhere in the middle of the possible
values for the exponent, for example, 50 when the exponent can take on values 0 to 99, and
declare that value to correspond to the exponent 0, then every value lower than that will be
negative and those above will be positive. Figure 5.14 shows the scale for this offset technique.

What we have done is offset, or bias, the value of the exponent by our chosen amount.
Thus, to convert from exponential form to the format used in our example, we add the
offset to the exponent, and store it in that form. Similarly, the stored form can be returned
to our usual exponential notation by subtracting the offset.

This method of storing the exponent is known as excess-N notation, where N is
the chosen midvalue. It is simpler to use for exponents than the complementary form,
and appropriate to the calculations required on exponents. In our example we have
used excess-50 notation. This allows us to store an exponential range of −50 to +49,
corresponding to the stored values 00 to 99. We could, if we wished, pick a different offset
value, which would expand our ability to handle larger numbers at the expense of smaller
numbers, or vice versa.

If we assume that the implied decimal point is located at the beginning of the five-digit
mantissa, excess-50 notation allows us a magnitude range of

0.00001 × 10−50 < number < 0.99999 × 10+49

This is an obviously much larger range than that possible using integers, and at the
same time gives us the ability to express decimal fractions. In practice, the range may be
slightly more restricted, since many format designs require that the most significant digit
not be 0, even for very small numbers. In this case, the smallest expressible number becomes
0.10000 × 10−50, not a great limitation. The word consisting of all 0s is frequently reserved
to represent the special value 0.0.

If we were to pick a larger (or smaller) value for the offset, we could skew the range to
store smaller (or larger) numbers. Generally, values somewhere in the midrange seem to
satisfy the majority of users, and there seems little reason to choose any other offset value.

Notice that, like the integer, it is still possible, although very difficult, to create an
overflow by using a number of magnitude too large to be stored. With floating point
numbers it is also possible to have underflow, where the number is a decimal fraction
of magnitude too small to be stored. The diagram in Figure 5.15 shows the regions of
underflow and overflow for our example. Note that in the diagram 0.00001 × 10−50 is
expressed equivalently as 10−55.
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FIGURE 5.15

Regions of Overflow and Underflow

0
–0.99999 � 1049

Overflow
region

Underflow
region

Overflow
region

0.99999 � 1049–10-55 10-55

There is one more consideration. As you
are already aware, the computer is actually
capable of storing only numbers, no signs or
decimal points. We have already handled the
decimal point by establishing a fixed, implied
point. We must also represent the sign of the
number in a way that takes this limitation into
account.

Here are some examples of floating point
decimal representations. The format used is that shown on page 157: a sign, two digits of
exponent stored excess-50, and five digits of mantissa. The value 0 is used to represent a
‘‘+’’ sign; 5 has been arbitrarily chosen to represent a ‘‘–’’ sign, just as 1 is usually chosen
within the computer for the same purpose. The base is, of course, 10; the implied decimal
point is at the beginning of the mantissa. You should look at these examples carefully to
make sure that you understand all the details of the floating point format.

EXAMPLES

05324657 = 0.24657× 103 = 246.57
54810000 = −0.10000× 10−2 = −0.0010000

(Note that five significant digits are maintained.)

55555555 = −0.55555× 105 = −55555
04925000 = 0.25000× 10−1 = 0.025000

Normalization and Formatting of Floating Point Numbers

The number of digits used will be determined by the desired precision of the numbers.
To maximize the precision for a given number of digits, numbers will be stored whenever
possible with no leading zeros. This means that, when necessary, numbers are shifted
left by increasing the exponent until leading zeros are eliminated. This process is called
normalization.

Our standard format, then, will consist of a mantissa of fixed, predetermined size with
a decimal point placed at a fixed, predetermined location. The exponent will be adjusted so
that numbers will be stored in this format with no leading zeros.

As an example, let us set up a standard format that reflects the storage capabilities
suggested in the previous section. Our format will consist of a sign and five digits, with the
decimal point located at the beginning of the number:

.MMMMM × 10EE

There are four steps required to convert any decimal number into this standard format:

1. Provide an exponent of 0 for the number, if an exponent was not already
specified as part of the number.

2. Shift the decimal point left or right by increasing or decreasing the exponent,
respectively, until the decimal point is in the proper position.
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3. Shift the decimal point right, if necessary, by decreasing the exponent, until there
are no leading zeros in the mantissa.

4. Correct the precision by adding or discarding digits as necessary to meet the
specification. We discard or round any digits in excess of the specified precision
by eliminating the least significant digits. If the number has fewer than the
specified number of digits, we supply zeros at the end.

Once we have normalized the number and put it into a standard exponential form, we
can perform a fifth step to convert the result into the desired word format. To do this, we
change the exponent into excess-50 notation and place the digits into their correct locations
in the word.

Conversions between integer and floating point format are similar. The integer is
treated as a number with an implied radix point at the end of the number. In the computer,
an additional step may be required to convert the integer between complementary and
sign-magnitude format to make it compatible with floating point format.

Here are some examples of a decimal to floating point format conversion:

EXAMPLES
Convert the number

246.8035

into our standard format.

1. Adding an exponent makes the number

246.8035× 100

2. We shift the decimal to the left three places, thereby increasing the exponent
by 3:

0.2468035× 103

3. Since the number is already normalized (no leading zeros), there is no adjustment
required.

4. There are seven digits, so we drop the two least significant digits, and the final
exponential representation is

0.24680× 103

5. The exponent is 3, which in excess-50 notation is represented as 53. If we
represent a ‘‘+’’ sign with the digit 0, and a ‘‘–’’ sign with the digit 5 (this choice
is totally arbitrary, but we needed to select some digits since the sign itself cannot
be stored), the final stored result becomes

the sign

05324680

the mantissa

excess-50 exponent

�
�
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Assume that the number to be converted is

1255× 10−3

1. The number is already in exponential form.

2. We must shift the decimal to the left four places, so the number becomes

0.1255 × 10+1

The positive exponent results from adding 4 to the original −3 exponent.

3. The number is normalized, so no additional adjustment is required.

4. A zero is added to provide five digits of precision. The final result in exponential
form is

0.12550 × 101

5. The exponent in excess-50 notation becomes 51, and the result in word format is

05112550

Assume that the number to be converted is

−0.00000075

1. Converting to exponential notation, we have

−0.00000075 × 100

2. The decimal point is already in its correct position, so no modification is
necessary.

3. Normalizing, the number becomes

−0.75 × 10−6

4. And the final exponential result,

−0.75000 × 10−6

5. In our word format, this becomes

54475000

Although the technique is simple and straightforward, it will still require some practice
for you to feel comfortable with it. We suggest that you practice with a friend, inventing
numbers for each other to put into a standard format.

Some students have a bit of difficulty remembering whether to increase or decrease the
exponent when shifting the number left or right. There is a simple method that may help
you to remember which way to go: when you shift the decimal to the right, it makes the
resulting number larger. (For example, 1.5 becomes 15.) Thus, the exponent must become
smaller to keep the number the same as it was originally.
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A Programming Example

Perhaps representing the steps as a pseudocode procedure will clarify these concepts even
further. The procedure in Figure 5.16 converts numbers in normal decimal format to the
floating point format

SEEMMMMM

The implied decimal point is at the beginning of the mantissa, and the sign is stored
as 0 for positive, 5 for negative. The mantissa is stored in sign-magnitude format. The
exponent is stored in excess-50 format. The number 0.0 is treated as a special case, with an
all-zero format.

We suggest that you trace through the procedure carefully, until you understand
each step.

FIGURE 5.16

A Procedure to Convert Decimal Numbers to Floating Point Format

function ConvertToFloat();
//variables used:
real decimalin; //decimal number to be converted
//components of the output
integer sign,  exponent,  integermantissa;
float mantissa; //used for normalization
integer floatout; //final form of output
{

if (decimalin == 0.0) floatout = 0;
else {

if (decimalin > 0.0) sign = 0;
else sign = 50000000;
exponent = 50;
StandardizeNumber;
floatout = sign + exponent * 100000 + integermantissa;
} //end else

function StandardizeNumber(); {
mantissa = abs (mantissa);
//adjust the decimal to fall between 0.1 and 1.0.

while (mantissa >= 1.00) {
mantissa = mantissa / 10.0;
exponent = exponent + 1;

} //end while
while (mantissa < 0.1) {

mantissa = mantissa * 10.0;
exponent = exponent - 1;

} //end while
integermantissa = round (10000.0 * mantissa)

} //end function StandardizeNumber
} //end ConvertToFloat
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Floating Point Calculations

Floating point arithmetic is obviously more complex than integer arithmetic. First, the
exponent and the mantissa have to be treated separately. Therefore, each has to be extracted
from each number being manipulated.

ADDITION AND SUBTRACTION You recall that in order to add or subtract numbers
that contain decimal fractions, it is necessary that the decimal points line up. When using
exponential notation, it is thus a requirement that the implied decimal point in both
numbers be in the same position; the exponents of both numbers must agree.

The easiest way to align the two numbers is to shift the number with the smaller
exponent to the right a sufficient number of spaces to increase the exponent to match the
larger exponent. This process inserts insignificant zeros at the beginning of the number.
Note that this process protects the precision of the result by maintaining all the digits of
the larger number. It is the least significant digits of the smaller number that will disappear.

Once alignment is complete, addition or subtraction of the mantissas can take place. It
is possible that the addition or subtraction may result in an overflow of the most significant
digit. In this case, the number must be shifted right and the exponent incremented to
accommodate the overflow. Otherwise, the exponent remains unchanged.

It is useful to notice that the exponent can be manipulated directly in its excess form,
since it is the difference in the two exponents that is of interest rather than the value of the
exponent itself. It is thus not necessary to change the exponents to their actual values in
order to perform addition or subtraction.

EXAMPLE
Add the two floating point numbers

05199520
04967850

Assume that these numbers are formatted using sign-and-magnitude notation for the
mantissa and excess-50 notation for the exponent. The implied decimal point is at the
beginning of the mantissa, and base 10 is used for the exponent.

Shifting the lower mantissa right two places to align the exponent, the two numbers
become

05199520
0510067850

Adding the mantissas, the new mantissa becomes

(1)0019850

We have put the 1 in parentheses to emphasize the fact that it is a carry beyond the
original left position of the mantissa. Therefore, we must again shift the mantissa right one
place and increment the exponent to accommodate this digit:

05210019(850)

Rounding the result to five places of precision, we finally get

05210020
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Checking the result,

05199520 = 0.99520× 101 = 9.9520
04967850 = 0.67850× 10−1 = 0.06785

10.01985 = 0.1001985× 102

which converts to the result that we previously obtained.

MULTIPLICATION AND DIVISION Alignment is not necessary in order to perform
multiplication or division. Exponential numbers are multiplied (or divided) by multiplying
(dividing) the two mantissas and adding (subtracting) the two exponents. The sign is dealt
with separately in the usual way. This procedure is relatively straightforward. There are two
special considerations that must be handled, however:

1. Multiplication or division frequently results in a shifting of the decimal point
(e.g., 0.2 × 0.2 = 0.04) and normalization must be performed to restore the
location of the decimal point and to maintain the precision of the result.

2. We must adjust the excess value of the resulting exponent. Adding two
exponents, each of which contains an excess value, results in adding the excess
value to itself, so the final exponent must be adjusted by subtracting the excess
value from the result. Similarly, when we subtract the exponents, we subtract the
excess value from itself, and we must restore the excess value by adding it to the
result.

EXAMPLE
This is seen easily with an example. Assume we have two numbers with exponent 3. Each is
represented in excess-50 notation as 53. Adding the two exponents,

53
53
106

We have added the value 50 twice, and so we must subtract it out to get the correct
excess-50 result:

106
−50
56

3. The multiplication of two five-digit normalized mantissas yields a ten-digit
result. Only five digits of this result are significant, however. To maintain full,
five-digit precision, we must first normalize and then round the normalized
result back to five digits.

EXAMPLE
Multiply the two numbers

05220000
×04712500
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Adding the exponents and subtracting the offset results in a new, excess-50
exponent of

52+ 47− 50 = 49

Multiplying the two mantissas,

0.20000 × 0.12500 = 0.025000000

Normalizing the result by shifting the point one space to the right decreases the exponent
by one, giving a final result

04825000

Checking our work,

05220000 is equivalent to 0.20000 × 102,
04712500 is equivalent to 0.12500 × 10−3

which multiplies out to

0.0250000000 × 10−1

Normalizing and rounding,

0.0250000000 × 10−1 = 0.25000 × 10−2

which corresponds to our previous result.

Floating Point in the Computer

The techniques discussed in the previous section can be applied directly to the storage of
floating point numbers in the computer simply by replacing the digits with bits. Typically,
4, 8, or 16 bytes are used to represent a floating point number. In fact, the few differences
that do exist result from ‘‘tricks’’ that can be played when ‘‘0’’ and ‘‘1’’ are the only
options.

A typical floating point format might look like the diagram in Figure 5.17. In this
example, 32 bits (4 bytes) are used to provide a range of approximately 10−38 to 10+38.
With 8 bits, we can provide 256 levels of exponent, so it makes sense to store the exponent
in excess-128 notation.

EXAMPLE
Here are some examples of binary floating point format using this notation. Again we have
assumed that the binary point is at the start of the mantissa. The base of the exponent is 2.

0 10000001 11001100000000000000000=
+1.1001100000000000000000

1 10000100 10000111100000000000000=
−1000.0111100000000000000

1 01111110 10101010101010101010101=
−0.0010101010101010101010101
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FIGURE 5.17

Typical Floating Point Format

S E E

bit 0 1 8 9 31

MM

Sign of
mantissa

Mantissa
msb Isb

Excess-128
exponent

Thanks to the nature of the binary system, the 23
bits of mantissa can be stretched to provide 24 bits of
precision, which corresponds to approximately seven
decimal digits of precision. Since the leading bit of the
mantissa must be ‘‘1’’ if the number is normalized,
there is no need to store the most significant bit explic-
itly. Instead, the leading bit can be treated implicitly,
similar to the binary point.

There are three potential disadvantages to using
this trick. First, the assumption that the leading bit is
always a ‘‘1’’ means that we cannot store numbers too
small to be normalized, which slightly limits the small

end of the range. Second, any format that may require a ‘‘0’’ in the most significant bit for
any reason cannot use this method. Finally, this method requires that we provide a separate
way to store the number 0.0, since the requirement that the leading bit be a ‘‘1’’ makes a
mantissa of 0.0 an impossibility!

Since the additional bit doubles the available precision of the mantissa in all numbers,
the slightly narrowed range is usually considered an acceptable trade-off. The number 0.0
is handled by selecting a particular 32-bit word and assigning it the value 0.0. Twenty-four
bits of mantissa corresponds to approximately seven decimal digits of precision.

Don’t forget that the base and implied binary point must also be specified.
There are many variations, providing different degrees of precision and exponential

range, but the basic techniques for handling floating point numbers in the computer are
identical to those that we have already discussed in the previous sections of this chapter.

IEEE 754 STANDARD Most current computers conform to IEEE 754 standard formats.
The IEEE Computer Society is a society of computer professionals. Among its tasks, the
IEEE Computer Society develops technical standards for use by the industry. The IEEE
754 standard defines formats for 32-bit and 64-bit floating point arithmetic. Instructions
built into modern computers utilize the standard to perform floating point arithmetic,
normalization, and conversion between integer and floating point representations internally
under program command. The standard also facilitates the portability of programs between
different computers that support the standard.

In addition to the IEEE 754 format, there are a number of older, machine-specific
formats still in use for legacy data. The Macintosh also provides an additional 80-bit
format. Sun UltraSparc and IBM mainframes systems include additional 128-bit formats.
The Intel IA-64 architecture conforms to the IEEE 754 format, but also provides 64-bit
significand/17-bit exponent range capability; the programmer can set individual precision
control and widest-range exponent values in the floating point status register for additional
flexibility.

The standard defines a single-precision floating point format consisting of 32 bits,
divided into a sign, 8 bits of exponent, and 23 bits of mantissa. Since normalized numbers
must always start with a 1, the leading bit is not stored, but is instead implied; this bit is
located to the left of the implied binary point. Thus, numbers are normalized to the form

1.MMMMMMM . . .
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FIGURE 5.18

IEEE Standard 32-bit Floating Point Value
Definition

0
0
1-254
255
255

± 0
not 0
any
± 0
not 0

Exponent Mantissa Value

0
± 2-126 � 0.M
± 2E-127 � 1.M
±
NaN (Not a Number)

��

The exponent is formatted using excess-127 notation,
with an implied base of 2. This would theoretically allow
an exponent range of 2−127 to 2128. In actuality, the stored
exponent values 0 and 255 are used to indicate special
values, and the exponential range of this format is thus
restricted to

2−126 to 2127

The number 0.0 is defined by a mantissa of 0 together
with the special exponential value 0. The IEEE standard
also allows the values ±∞, very small denormalized
numbers, and various other special conditions. Overall,

the standard allows approximately seven significant decimal digits and an approximate
value range of 10−45 to 1038.

The double-precision floating point format standard works similarly. Sixty-four bits (8
bytes) are divided into a sign, 11 bits of exponent, and 52 bits of mantissa. The same format
is used, with excess-1023 notation for the exponent, an implied base of 2, and an implied
most significant bit to the left of the implied binary point. The double-precision standard
supports approximately fifteen significant decimal digits and a range of more than 10−300

to 10300!
The values defined for all possible 32-bit words are shown in Figure 5.18. The 64-bit

table is similar, except for the limiting exponent of 2047, which results in an excess 1023
offset.

Conversion between Base 10 and Base 2

On occasion, you may find it useful to be able to convert real numbers between decimal
and binary representation. This task must be done carefully. There are two major areas that
sometimes cause students (and others!) difficulty:

1. The whole and fractional parts of numbers with an embedded decimal or binary
point must be converted separately.

2. Numbers in exponential form must be reduced to a pure decimal or binary
mixed number or fraction before the conversion can be performed.

We dealt with the first issue in Section 3.8. Recall from that section that in converting
from one base to another that one must deal with the different multipliers associated with
each successive digit. To the left of the radix point, the multipliers are integer, and there is
a direct relationship between the different bases. To the right of the point, the multipliers
are fractional, and there may or may not be a rational relationship between the multipliers
in the different bases.

The solution is to convert each side of the radix point separately using the techniques
discussed in Chapter 3. As an alternative, you can multiply the entire number in one base
by whatever number is required to make the entire number an integer, and then convert the
number in integer form. When this is complete, however, you must divide the converted
result by that same multiplier in the new base. It is not correct to simply shift the radix point
back, since each shift has a different value in the new base! Thus, if you shift a binary point
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right by seven places, you have effectively multiplied the number by 128, and you must
divide the converted number by 128 in the new base. This latter method is best illustrated
with an example.

EXAMPLE
Convert the decimal number 253.75 to binary floating point form.

Begin by multiplying the number by 100 to form the integer value 25375. This is
converted to its binary equivalent 110001100011111, or 1.10001100011111 × 214. The
IEEE 754 floating point equivalent representation for this integer would be

0
Sign

Excess-127
Exponent = 127 + 14

Mantissa (initial 1 is dropped)

10001101 10001100011111

One more step is required to complete the conversion. The result must be divided by
the binary floating point equivalent of 10010 to restore the original decimal value. 10010

converts to binary 11001002, or 010000101100100 in IEEE 754 form. The last step is to
divide the original result by this value, using floating point division. We will omit this step, as
it is both difficult and irrelevant to this discussion. Although this method looks more difficult
than converting the number directly as a mixed fraction, it is sometimes easier to implement
within the computer.

The problem with converting floating point numbers expressed in exponential notation
is essentially the same problem; however, the difficulty is more serious because it looks as
though it should be possible to convert a number, keeping the same exponent, and this is
of course not true.

If you always remember that the exponent actually represents a multiplier of value Be,
where B is the base and e is the actual exponent, then you will be less tempted to make this
mistake. Obviously it is incorrect to assume that this multiplier would have the same value
for a different B.

Instead, it is necessary to follow one of the two solutions just outlined: either reduce
the exponential notation to a standard mixed fraction and convert each side separately, or
use the value Be as a multiplier to be divided in the new base at the end of the conversion.

5.4 PROGRAMMING CONSIDERATIONS
In this chapter you have been exposed to a number of different ways of storing and
manipulating numeric values. It should be of interest to you to consider how a programmer
might make an intelligent choice between the many different options available.

The trade-offs between integer and floating point are clear. Integer calculations are
easier for the computer to perform, have the potential to provide higher precision, and are
obviously much faster to execute. Integer values usually take up fewer storage locations. As
you will see later, it takes a certain amount of time to access each storage location; thus, the
use of fewer storage locations saves time, as well as space.

Clearly, the use of integer arithmetic is preferred whenever possible. Most modern
high-level languages provide two or more different integer word sizes, usually at least a
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‘‘short’’ integer of 16 bits and a ‘‘long’’ integer of 64 bits. Now that you understand the range
limitations of integer arithmetic, you are in a position to determine whether a particular
variable or constant can use the integer format, and whether special error checking may be
required in your program.

The longer integer formats may require multiple-word calculation algorithms, and as
such are slower to execute than short formats. The short format is preferable when it is
sufficient for the values that you expect. It may also be necessary to consider the limitations
of other systems that the same program may have to operate on.

The use of real numbers is indicated whenever the variable or constant has a fractional
part, whenever the number can take on very large or very small values that are outside of
integer range, or whenever the required precision exceeds the number of different values
that are possible in the longest integer format available to you. (As you’ve seen, most
systems provide a floating point format of very high precision.) Of course, it is sometimes
possible to multiply a mixed number by some multiplier to make it integer, perform the
calculations in integer form, and then divide back. If the number of calculations is large,
and the numbers can be adjusted to operate as integers, this can be a worthwhile option to
consider, especially for the gain in execution speed.

As with integers, it is desirable to use the real number with the least precision that
is sufficient for the task. Higher-precision formats require more storage and usually must
use multiple-word floating point or packed decimal calculation algorithms that are much
slower than the lower-precision formats.

Recall that decimal fractions may convert into irrational binary fractions. For those
languages that provide the capability, the use of packed decimals represents an attractive
alternative to floating point for those business applications where exact calculations
involving mixed decimal numbers are required.

SUMMARY AND REVIEW
Computers store all data as binary numbers. There are a number of different ways to
format these binary numbers to represent the various types of numbers required for
computer processing. Conceptually, the simplest formats are sign-and-magnitude and
binary-coded decimal. Although BCD is sometimes used for business programming, both
of these formatting methods have shortcomings in terms of number manipulation and
calculation.

Unsigned integers can of course be directly represented by their binary equivalents.
Complementary arithmetic is usually the method of choice for signed integers. Nine’s
decimal complement, and its binary equivalent 1’s complement, split the number range in
two, using the upper half of the range to represent negative numbers. Positive numbers
represent themselves. These representations are convenient and especially simple to use,
since the complement is found by subtracting the number from a row of the largest
digits in the base. Binary complements may be found by simply inverting the 0s and
1s in the number. Calculations are a bit more difficult due to the existence of both
positive and negative values for zero, but end-around carry addition may be used for this
purpose.

Ten’s complement and 2’s complement split the range similarly, but use a single value
0 for zero. This requires the use of a complement based on a value one larger than the largest
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number in the base for the given number of digits. This ‘‘base value’’ will always consist of a
1 followed by N zeros, where N is the number of digits being used. Complementation may
be taken by inverting the number as before, and adding 1 to the result, or by subtracting
the number from the base value. Calculation is straightforward, using modulo arithmetic.
Most computer arithmetic instructions are based on 2’s complement arithmetic.

Both 1’s and 2’s complement representations have the additional convenience that
the sign of a number may be readily identified, since a negative number always begins
with a ‘‘1.’’ Small negative numbers have large values, and vice versa. Complementary
representations for other even-numbered bases can be built similarly.

Numbers with a fractional part and numbers that are too large to fit within the
constraints of the integer data capacity are stored and manipulated in the computer as real,
or floating point, numbers. In effect, there is a trade-off between accuracy and range of
acceptable numbers.

The usual floating point number format consists of a sign bit, an exponent, and a
mantissa. The sign and value of the exponent are usually represented in an excess-N format.
The base of the exponent is 2 for most systems, but some systems use a different base for
the exponent. The radix point is implied. When possible, the mantissa is normalized.

In some systems the leading bit is also implied, since normalization requires that the
leading bit of the mantissa be a 1.

Floating point numbers are subject to overflow or underflow, where the exponent of
the number is too large or too small to represent, respectively. Zero is treated as a special
case. Sometimes there is also a special representation for ∞.

Addition and subtraction require that the exponents in each number be equal. This
is equivalent to lining up the decimal point in conventional decimal arithmetic. In
multiplication and division, the exponents are added or subtracted, respectively. Special
care must be taken with exponents that are expressed in excess-N notation.

Most computers conform to the format defined in IEEE Standard 754. Other formats
in use include extra-precision formats and legacy formats.

FOR FURTHER READING
The representation and manipulation of integers and real numbers within the computer
is discussed in most computer architecture texts. A particularly effective discussion is
found in Stallings [STAL05]. This discussion presents detailed algorithms and hard-
ware implementations for the various integer operations. A simpler discussion, with
many examples, is found in Lipschutz [LIPS82]. More comprehensive treatments of
computer arithmetic can be found in the two-volume collection of papers edited
by Swartzlander [SWAR90] and in various textbooks on the subject, including those
by Kulisch and Maranker [KUL81] and Spaniol [SPAN81]. A classical reference on
computer algorithms, which includes a substantial discussion on computer arithmetic,
is the book by Knuth [KNUT97]. One additional article of interest is the article
titled ‘‘What Every Computer Scientist Should Know About Floating-Point Arithmetic’’
[GOLD91].
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KEY CONCEPTS AND TERMS
binary-coded decimal

(BCD)
carry flag
complement
end-around carry
excess-N notation
exponent
exponential notation
floating point format
floating point numbers

integer numbers
integer representation
inversion
mantissa
normalization
1’s complement

representation
overflow
radix point
real numbers

sign-and-magnitude
representation

signed integers
single-precision floating

point format
2’s complement

representation
underflow
unsigned integer
wraparound

READING REVIEW QUESTIONS
5.1 What is the largest unsigned integer that can be stored as a 16-bit number?

5.2 What does BCD stand for? Explain at least two important disadvantages of
storing numbers in BCD format. Offer one advantage for using a BCD format
for storing numbers.

5.3 Give an example that shows the disadvantage of using a sign-and-magnitude
format for manipulating signed integers.

5.4 What is a quick way to identify negative numbers when using 1’s complement
arithmetic?

5.5 How do you change the sign of an integer stored in 1’s complement form? As an
example, the 8-bit representation for the value 19 is 000100112. What is the 1’s
complement representation for −19?

5.6 How do you identify an overflow condition when you add two numbers in 1’s
complement form?

5.7 Explain the procedure for adding two numbers in 1’s complement form. As an
example, convert +38 and −24 to 8-bit 1’s complement form and add them.
Convert your result back to decimal and confirm that your answer is correct.

5.8 If you see a 2’s complement number whose value is 111111102, what rough
estimate can you make about the number?

5.9 How do you change the sign of an integer stored in 2’s complement form? As an
example, the 8-bit representation for the value 19 is 000100112. What is the 2’s
complement representation for −19?

5.10 How do you detect overflow when adding two numbers in 2’s complement form?

5.11 Explain the procedure for adding two numbers in 2’s complement form. As an
example, convert +38 and −24 to 8-bit 2’s complement form and add them.
Convert your result back to decimal and confirm that your answer is correct.

5.12 What is the relationship between complementary representation and sign-
and-magnitude representation for positive numbers?
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5.13 Real numbers in a computer (or float, if you prefer), are most often represented
in exponential notation. Four separate components are needed to represent
numbers in this form. Identify each component in the number 1.2345 × 10−5.
What is the advantage of this type of representation, rather than storing the
number as 0.000012345?

5.14 To represent a number in exponential form in the computer, two additional
assumptions must be made about the number. What are those assumptions?

5.15 Exponents are normally stored in excess-N notation. Explain excess-N notation.
If a number is stored in excess-31 notation and the actual exponent is 2+12, what
value is stored in the computer for the exponent?

5.16 When adding two floating point numbers, what must be true for the exponents
of the two numbers?

5.17 The IEEE provides a standard 32-bit format for floating point numbers. The
format for a number is specified as ±1.M × 2E − 127. Explain each part of this
format.

EXERCISES
5.1 Data was stored in the Digital PDP-9 computer using six-digit octal notation.

Negative numbers were stored in 8’s complement form.

a. How many bits does six-digit octal represent? Show that 8’s complement
octal and 2’s complement binary are exactly equivalent.

b. What is the largest positive octal number that can be stored in this machine?

c. What does the number in (b) correspond to in decimal?

d. What is the largest possible negative number? Give your answer in both
octal and decimal form.

5.2 a. Find the 16-bit 2’s complementary binary representation for the decimal
number 1987.

b. Find the 16-bit 2’s complementary binary representation for the decimal
number −1987.

c. From your answer in (b) find the six-digit 16’s complement hexadecimal
representation for the decimal number −1987.

5.3 Data is stored in the R4-D4 computer using eight-digit base 4 notation. Negative
numbers are stored using 4’s complement.

a. What is the sign-and-magnitude value of the following 4’s complement
number?

333332104

Leave your answer in base 4.

b. Add the following eight-digit 4’s complement numbers. Then, show the
sign-and-magnitude values (in base 4) for each of the input numbers and
for your result.

13220231
120000
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5.4 Convert the decimal number −19575 to a 15-bit 2’s complement binary number.
What happens when you perform this conversion? After the conversion is
complete, what values (base 2 and base 10) does the computer think it has?

5.5 What are the 16-bit 1’s and 2’s complements of the following binary numbers?

a. 10000

b. 100111100001001

c. 0100111000100100

5.6 Add the following decimal numbers by converting each to five-digit 10’s com-
plementary form, adding, and converting back to sign and magnitude.

a.
24379
5098

b.
24379
−5098

c.
−24379

5098

5.7 Subtract the second number from the first by taking the six-digit 10’s complement
of the second number and adding. Convert the result back to sign and magnitude
if necessary.

a.
37968

(−) 24109

b.
37968

(−) − 70925
c.

−10255
(−) −7586

5.8 The following decimal numbers are already in six-digit 10’s complementary
form. Add the numbers. Convert each number and your result to sign and
magnitude, and confirm your results.

a.
1250

772950

b.
899211
999998

c.
970000
30000
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5.9 Add the following two 12-bit binary 2’s complement numbers. Then convert
each number to decimal and check the results.

a.
11001101101

111010111011

b.
101011001100
111111111100

5.10 Given the positive number 2468, what is the largest positive digit that you can add
that will not cause overflow in a four-digit decimal, 10’s complement number
system?

5.11 In 12’s complement base 12, how would you know if a number is positive or
negative?

5.12 Most computers provide separate instructions for performing unsigned additions
and complementary additions. Show that for unsigned additions, carry and
overflow are the same. (Hint: Consider the definition of overflow.)

5.13 Consider a machine that performs calculations 4 bits at a time. Eight-bit 2’s
complement numbers can be added by adding the four least significant bits,
followed by the four most significant bits. The leftmost bit is used for the sign,
as usual. With 8 bits for each number, add −4 and −6, using 4-bit binary
2’s complement arithmetic. Did overflow occur? Did carry occur? Verify your
numerical result.

5.14 Add the following 16’s complement hexadecimal numbers

4F09
D3A5

Is your result positive or negative? How do you know? Convert each number to
binary and add the binary numbers. Convert the result back to hexadecimal. Is
the result the same?

5.15 In the Pink-Lemon-8 computer, real numbers are stored in the format

SEEMMMM8

where all the digits, including the exponent, are in octal. The exponent is stored
excess-408. The mantissa is stored as sign and magnitude, where the sign is 0 for
a positive number and 4 for a negative number. The implied octal point is at the
end of the mantissa: MMMM.
Consider the real number stored in this format as

4366621

a. What real number is being represented? Leave your answer in octal.

b. Convert your answer in part (a) to decimal. You may leave your answer in
fractional form if you wish.

c. What does changing the original exponent from 36 to 37 do to the magnitude
of the number? (Stating that it moves the octal point one place to the right or
left is not a sufficient answer.) What would be the new magnitude in decimal?
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5.16 a. Convert the decimal number 19557 to floating point. Use the format
SEEMMMM. All digits are decimal. The exponent is stored excess-40 (not
excess-50). The implied decimal point is at the beginning of the mantissa.
The sign is 1 for a positive number, 7 for a negative number. Hint: Note
carefully the number of digits in the mantissa!

b. What is the range of numbers that can be stored in this format?

c. What is the floating point representation for −19557?

d. What is the six-digit 10’s complement representation for −19557?

e. What is the floating point representation for 0.0000019557?

5.17 a. Convert the number 123.57 × 1015 to the format SEEMMMM, with the
exponent stored excess-49. The implied decimal point is to the right of the
first mantissa digit.

b. What is the smallest number you can use with this format before underflow
occurs?

5.18 Real numbers in the R4-D4 computer are stored in the format

SEEMMMMM4

where all the digits, including the exponent, are in base 4. The mantissa is stored
as sign and magnitude, where the sign is 0 for a positive number and 3 for a
negative number. The implied quadrinary (base 4!) point is at the beginning of
the mantissa:

.MMMMM

a. If you know that the exponent is stored in an excess-something format,
what would be a good choice of value for ‘‘something?’’

b. Convert the real, decimal number 16.5 to base 4, and show its representation
in the format of the R4-D4 computer. Use the excess value that you
determined in part (a).

5.19 Convert the following binary and hexadecimal numbers to floating point format.
Assume a binary format consisting of a sign bit (negative = 1), a base 2, 8-bit,
excess-128 exponent, and 23 bits of mantissa, with the implied binary point to
the right of the first bit of the mantissa.

a. 110110.0110112

b. −1.11110012

c. −4F7F16

d. 0.000000001111112

e. 0.1100 × 236

f. 0.1100 × 2−36

5.20 For the format used in Exercise 5.5, what decimal number is represented by each
of the following numbers in floating point format?

a. C2F0000016

b. 3C54000016

5.21 Represent the decimal number 171.625 in IEEE 754 format.
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5.22 Show the packed decimal format for the decimal number −129975.

5.23 The following decimal numbers are stored in excess-50 floating point format,
with the decimal point to the left of the first mantissa digit. Add them. A 9 is used
as a negative sign. Present your result in standard decimal sign-and-magnitude
notation.

a.

05225731
04833300

b.

05012500
95325750

5.24 Using the same notation as in Exercise 5.9, multiply the following numbers.
Present your answer in standard decimal notation.

a.

05452500
04822200

b.

94650000
94450000

5.25 Using the same format found in Exercise 5.19, add and multiply the following
floating point numbers. Present your answers in both floating point and sign-
and-magnitude formats.

3DEC000016
C24C000016

5.26 Write a program in your favorite language that converts numbers represented in
the decimal floating point format

SEEMMMMM

into 10’s complementary integer form. Round any fractional decimal value.

5.27 What base is the student in the chapter cartoon using to perform his addition?
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PART THREE

The basic operation of a computer is defined by its hardware architecture. The
hardware architecture establishes the CPU instruction set and the type of operations
that are permitted. It defines the passage of data from one part of the computer to

another. It establishes the ground rules for input and output operation.
The next six chapters introduce the fundamental architectural concepts that define

computer operations and hardware organization. We will attempt to convey the basic
simplicity and elegance of computer instruction sets. We will expose the inner workings of
computer peripherals and show how the various pieces fit together to create a system.

For the past sixty plus years, and for the foreseeable future, basic computer architecture
conforms to the general principles established by von Neumann that were introduced in
Chapter 1. Chapter 6 introduces the principles of von Neumann architecture using a
classic model of the computer called the Little Man Computer as an example. The Little
Man Computer introduces the stored program concept, demonstrates the role of memory,
describes the essential instructions that make up a computer instruction set, and explains
the simple set of operations that implement an instruction set. We also show how the basic
instructions of a computer work together to make up a program.

In Chapter 7 we extend the ideas introduced in Chapter 6 to the operation of a real
computer. We consider the basic components of a CPU, explain the concept of a bus,
discuss the operation of memory, and show how each of these architectural elements fit
together to create a computer system. We also show the individual operations that make up
the execution of instructions, the so-called fetch-execute cycle. We also discuss the formats
for instruction words and present a general classification of the instruction set.

In Chapter 8, we consider the variations that distinguish one CPU architecture from
another. The major topics in Chapter 8 deal with CPU design and organization. We present
different CPU models, and compare them. We investigate alternatives to the traditional
CPU organization and explain the benefits to be gained. We look at improvements to
memory and, especially, the use of cache memory.



COMPUTER ARCHITECTURE
AND HARDWARE OPERATION

In Chapter 9 we shift our focus to I/O. Chapter 9 introduces the various methods that
are used to move data between computer peripherals and memory, including the use of
interrupts and direct access paths between peripherals and memory as efficient ways to
perform I/O with minimal impact on the processing unit. We also introduce the concept
of I/O modules as an interface between the various I/O devices and the CPU and memory
components.

Chapter 10 provides explanations of the requirements and operation of various I/O
peripheral components, including flash memory, disks, displays, tapes, printers, and other
components. This chapter also presents a hierarchical model of storage.

Chapter 11 integrates the major ideas of the previous five chapters and then explores
additional features and innovative techniques at the system level that have expanded the
performance and capability of computers. While these techniques are substantial exten-
sions to the basic design, they do not change the fundamental concepts and operating
methods that are discussed in the earlier chapters. Beyond the discussion of basic com-
puter system hardware architecture, the most important topics in this chapter are the
modern buses and I/O channels that are used to expand I/O capability, and the inter-
connection of computer systems into clusters to increase computing power and improver
reliability.

There are four additional supplementary chapters on the Web at www.wiley.com/
college/Englander. Three of these provide additional insight into material presented in
Part 3. Supplementary Chapter 1 offers an overview of Boolean algebra and the digital
logic circuits that are used to implement CPU hardware circuits. Supplementary Chapter
2 illustrates many of the previous concepts with case studies of three important current
systems, representing three different approaches to computer design. Supplementary
Chapter 3 expands on the discussion of CPU addressing techniques that is touched only
briefly in Chapter 8.
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CHAPTER 6

THE LITTLE MAN COMPUTER

Raeside/Victoria Times-Colonist/Rothco



6.0 INTRODUCTION
The power of a computer does not arise from complexity. Instead, the computer has the
ability to perform simple operations at an extremely high rate of speed. These operations
can be combined to provide the computer capabilities that you are familiar with.

Consistent with this idea, the actual design of the computer is also simple, as you
will see.

(The beauty of the design is that these simple operations can be used to solve
extremely complex problems. The programmer’s challenge, of course, is to produce the
exact sequence of operations to perform a particular task correctly under all possible
circumstances, since any error in selection or sequence of operations will result in
a ‘‘buggy’’ program. With the large number of instructions required by modern
programs, it is not surprising that few of today’s programs are truly bug-free.)

In this chapter, we will begin to explore the operations that the computer is
capable of performing and look at how those operations work together to provide the
computer with its power. To simplify our exploration, we will begin by introducing
a model of the computer; a model that operates in a very similar way to the real
computer but that is easier to understand instinctively.

The model that we will use is called the Little Man Computer (LMC). The original
LMC was created by Dr. Stuart Madnick at MIT in 1965. In 1979, Dr. Madnick
produced a new version of the LMC, with a slightly modified instruction set; the later
version is used in this book. It is a strength of the original model that it operates so
similarly to a real computer that it is still an accurate representation of the way that
computers work thirty-five years after its introduction.

Using this model we will introduce a simplified, but typical, set of instructions that
a computer can perform. We will show you exactly how these instructions are executed
in the Little Man Computer. Then we will demonstrate how these instructions are
combined to form programs.

6.1 LAYOUT OF THE LITTLE MAN COMPUTER
We begin by describing the physical layout of the Little Man Computer. A diagram for
the Little Man Computer appears in Figure 6.1.

The LMC consists of a walled mailroom, represented by the dark line surrounding
the model in the diagram. Inside the mailroom are several objects:

First, there is a series of one hundred mailboxes, each numbered with an address
ranging from 00 to 99. This numbering system is chosen because each mailbox address
can be represented by two digits, and this is the maximum number of mailboxes that
can be represented by two decimal digits.

Each mailbox is designed to hold a single slip of paper, upon which is written
a three-digit decimal number. Note carefully that the contents of a mailbox are not
the same as the address of a mailbox. This idea is consistent with what you already
know about your post office box: your post office box number identifies where you go
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FIGURE 6.1

The Little Man Computer
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01 199
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location counter

Little man

Calculator

Mailboxes

to pick up your mail, but this has no relationship to the actual contents of the letters that
you find in that mailbox.

Next, there is a calculator . . . basically a simple pocket calculator. The calculator can
be used to enter and temporarily hold numbers, and also to add and subtract. The display
on the calculator is three digits wide. At least for the purposes of this discussion, there is no
provision made for negative numbers, or for numbers larger than three digits. As you are
already aware, 10’s complement arithmetic could be used for this purpose, but that is not
of interest here.

Third, there is a two-digit hand counter, the type that you click to increment the count.
The reset button for the hand counter is located outside the mailroom. We will call this
counter an instruction location counter.

Finally, there is the Little Man. It will be his role to perform certain tasks that will be
defined shortly.

Other than the reset switch on the hand counter, the only interaction between the
Little Man Computer and the outside environment are an in basket and an out basket.

A user outside of the mailroom can communicate with the Little Man in the mailroom
by putting a slip of paper with a three-digit number on it into the in basket, to be read by the
Little Man at the appropriate time. Similarly, the Little Man can write a three-digit number
on a slip of paper and leave it in the out basket, where it can be retrieved by the user.
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Note that all communication between the Little Man Computer and the outside world
takes place using three-digit numbers. Except for the reset button on the instruction
location counter, no other form of communication is possible. The same is true within the
mailroom: all instructions to the Little Man must be conveyed as three-digit numbers.

6.2 OPERATION OF THE LMC
We would like the Little Man to do some useful work. For this purpose we have invented
a small group of instructions that he can perform. Each instruction will consist of a single
digit. We will use the first digit of a three-digit number to tell the Little Man which
operation to perform.

In some cases, the operation will require the Little Man to use a particular mailbox to
store or retrieve data (in the form of three-digit numbers, of course!). Since the instruction
only requires one digit, we can use the other two digits in a three-digit number to indicate
the appropriate mailbox address to be used as a part of the instruction. Thus, using the
three digits on a slip of paper we can describe an instruction to the Little Man according to
the following diagram:

3 | 25

instruction | mailbox address

The instruction part of the three-digit code is also known as an ‘‘operation code,’’ or
op code for short. The op code number assigned to a particular instruction is arbitrary,
selected by the computer designer based on various architectural and implementation
factors. The op codes used by the author conform to the 1979 version of the Little Man
Computer model.

Now let’s define some instructions for the Little Man to perform:

LOAD instruction—op code 5
The Little Man walks over to the mailbox address specified in the instruction. He
reads the three-digit number located in that mailbox, and then walks over to the
calculator and punches that number into the calculator. The three-digit number
in the mailbox is left unchanged, but of course the original number in the calcu-
lator is replaced by the new number.

STORE instruction—op code 3
This instruction is the reverse of the LOAD instruction. The Little Man walks over
to the calculator and reads the number there. He writes that number on a slip of
paper and puts it in the mailbox whose address was specified as the address part
of the instruction. The number in the calculator is unchanged; the original num-
ber in the mailbox is replaced with the new value.

ADD instruction—op code 1
This instruction is very similar to the LOAD instruction. The Little Man walks
over to the mailbox address specified in the instruction. He reads the three-digit
number located in the mailbox and then walks over to the calculator and adds it
to the number already in the calculator. The number in the mailbox is unchanged.
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SUBTRACT instruction—op code 2
This instruction is the same as the ADD instruction, except that the Little Man
subtracts the mailbox value from the value in the calculator. The result of a
subtraction can leave a negative value in the calculator. Chapter 5 discussed the
use of complements to implement negative values, but for simplicity, the LMC
model ignores this solution. For the purposes of our LMC model, we will simply
assume that the calculator holds and handles negative values correctly, and
provides a minus sign as a flag to indicate that the value is negative. The Little
Man cannot handle negative numbers outside of the calculator, however, because
there is no provision in the model for storing the negative sign within the
constraint of the three-digit number system used.

INPUT instruction (or read, if you prefer)—op code 9, ‘‘address’’ 01
The Little Man walks over to the in basket and picks up the slip of paper in the
basket. He then walks over to the calculator and punches it into the calculator.
The number is no longer in the in basket, and the original calculator value has
been replaced by the new number. If there are multiple slips of paper in the
basket, the Little Man picks them up in the order in which they were submitted,
but each INPUT instruction handles only a single slip of paper; other input values
must await the execution of subsequent INPUT instructions. Some authors use the
concept of a conveyor belt in place of the in basket, to emphasize this point.

OUTPUT instruction (or print)—op code 9, ‘‘address’’ 02
The Little Man walks over to the calculator and writes down the number that he
sees there on a slip of paper. He then walks over to the out basket and places the
slip of paper there for the user outside the mailroom to retrieve. The original
number in the calculator is unchanged. Each OUTPUT instruction places a single
slip of paper in the out basket. Multiple outputs will require the use of multiple
OUTPUT instructions.

Note that the INPUT and OUTPUT instructions do not use any mailboxes during execution,
since the procedure for each only involves the transfer of data between an in or out basket and
the calculator. Because this is true, the address part of the instruction can be used to extend
the capability of the instruction set, by using the same op code with different ‘‘address’’
values to create a number of different instructions. In the LMC, 901 is the code for an INPUT

instruction, while 902 is used for an OUTPUT instruction. In a real computer, for example, the
instruction address might be used to specify the particular I/O device to be used for input or
output.

COFFEE BREAK (or HALT) instruction—op code 0
The Little Man takes a rest. The Little Man will ignore the address portion of the
instruction.

The instructions that we have defined so far fall into four categories:

■ instructions that move data from one part of the LMC to another (LOAD,
STORE)

■ instructions that perform simple arithmetic (ADD, SUBTRACT)
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■ instructions that perform input and output (INPUT, OUTPUT)
■ instructions that control the machine (COFFEE BREAK)

This is enough for now. We will discuss instructions 6, 7, and 8 later in this chapter.

6.3 A SIMPLE PROGRAM
Now let’s see how we can combine these instructions into a program to have the Little Man
do some useful work.

Before we do this, we need to store the instructions somewhere, and we need a method
to tell the Little Man where to find the particular instruction that he is supposed to perform
at a given time.

Without discussing how they got there, for now we will assume that the instructions
are stored in the mailboxes, starting at mailbox number 00. The Little Man will perform
instructions by looking at the value in the instruction location counter and executing
the instruction found in the mailbox whose address has that value. Each time the Little
Man completes an instruction, he will walk over to the instruction location counter and
increment it. Again he will perform the instruction specified by the counter. Thus, the Little
Man will execute the instructions in the mailboxes sequentially, starting from mailbox 00.
Since the instruction location counter is reset from outside the mailroom, the user can
restart the program simply by resetting the counter to 00.

Now that we have a method for guiding the Little Man through a program of instruction
steps, let’s consider a simple program that will allow the user outside the mailroom to use
the Little Man Computer to add two numbers together. The user will place two numbers
in the in basket. The sum of the two will appear as a result in the out basket. The question
is what instructions we will need to provide to have the Little Man perform this operation.

INPUT 901
Since the Little Man must have access to the data, the first step, clearly, is to have
the Little Man read the first number from the in basket to the calculator. This
instruction leaves the first number to be added in the calculator.

STORE 99 399
Note that it is not possible for the Little Man to simply read another number into
the calculator. To do so would destroy the first number. Instead, we must first
save the first number somewhere.

Mailbox 99 was chosen simply because it is clearly out of the way of the program.
Any other location that is beyond the end of the program is equally acceptable.

Storing the number at a location that is within the program would destroy the
instruction at that location. This would mean that when the Little Man went to
perform that instruction, it wouldn’t be there.

More seriously, there is no way for the Little Man to distinguish between an
instruction and a piece of data—both are made up of three-digit numbers. Thus,
if we were to store data in a location that the Little Man is going to use as an
instruction, the Little Man would simply attempt to perform the data as though it
were an instruction. Since there is no way to predict what the data might contain,
there is no way to predict what the program might do.
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The concept that there is no way to distinguish between instructions and data
except in the context of their use is a very important one in computing. For
example, it allows a programmer to treat an instruction as data, to modify it, and
then to execute the modified instruction.

INPUT 901
With the first number stored away, we are ready to have the Little Man read the
second number into the calculator.

ADD 99 199
Note that there is no specific reason to save the second number. If we were going
to perform some operation that required the reuse of the second number, it
could be stored somewhere.

In this program, however, we have both numbers in place to perform the
addition. The result is, of course, left in the calculator.

OUTPUT 902
All that remains is for us to have the Little Man output the result to the out basket.

COFFEE BREAK 000
The program is complete, so we allow the Little Man to take a rest.

These instructions are stored sequentially starting from mailbox 00, where the
Little Man will retrieve and execute them one at a time, in order. The program is
reshown in Figure 6.2.

Since we were careful to locate the data outside the program, this program can be
rerun simply by telling the Little Man to begin again.

6.4 AN EXTENDED INSTRUCTION SET
The instructions that we have defined must always be executed in the exact sequence
specified. Although this is sufficient for simple program segments that perform a sequence
of operations, it does not provide any means for branching or looping, both constructs that
you know are very important in programming. Let us extend the instruction set by adding
three more instructions for this purpose:

FIGURE 6.2

Program to Add Two Numbers
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Mailbox code Instruction description

BRANCH UNCONDITIONALLY instruction
(sometimes known as JUMP)—op code 6

This instruction tells the Little Man to walk over to
the instruction location counter and actually change
the counter to the location shown in the two address
digits of the instruction. (Assume that the hand
counter has thumbwheels for this purpose.) This
means that the next instruction that the Little Man
will execute is located at that mailbox address.

This instruction is very similar, conceptually, to
the GOTO instruction in BASIC. Its execution
will always result in a break in the sequence to
another part of the program.
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Note that this instruction also uses the address digits in an unusual way, since the
Little Man does not use the data at the address specified. Indeed, the Little Man
expects to find an instruction at that address, the next to be performed.

BRANCH ON ZERO instruction—op code 7
The Little Man will walk over to the calculator and will observe the number
stored there. If its current value is zero, he will walk over to the instruction
location counter and modify its value to correspond to the address specified
within the instruction. The next instruction executed by the Little Man will be
located at that address.

If the value in the calculator is not zero, he will simply proceed to the next
instruction in sequence.

BRANCH ON POSITIVE instruction—op code 8
The Little Man will walk over to the calculator and will observe the number
stored there. If its current value is positive, he will walk over to the instruction
location counter and modify its value, to correspond to the address specified
within the instruction. The next instruction executed by the Little Man will be
located at that address.

If the value in the calculator is negative, he will simply proceed to the next
instruction in sequence. Zero is considered to be a positive value.

Note that is it not necessary to provide BRANCH ON NEGATIVE or BRANCH ON NONZERO

instructions. The instructions supplied can be used together to achieve equivalent
results.

These three instructions make it possible to break from the normal sequential process-
ing of instructions. Instructions of this type are used to perform branches and loops. As an
example, consider the following WHILE-DO loop, common to many programming languages:

WHILE Value = 0 DO
Task;

NextStatement

This loop could be implemented using the Little Man BRANCH instruction as follows.
Assume that these instructions are located starting at mailbox number 45 (comments are
provided to the right of each line):

45 LDA 90 590 90 is assumed to contain value
46 BRZ 48 748 Branch if the value is zero
47 BR 60 660 Exit loop; Jump to NextStatement
48 ..

.
This is where the task is located

59 BR 45 645 End to Task; loop to test again
60 Next statement

EXAMPLE
Here is an example of a Little Man program that uses the BRANCH instructions to alter the flow
of the program. This program finds the positive difference between two numbers (sometimes
known as the absolute magnitude of the difference). For convenience, we are introducing
a set of abbreviations for each instruction. These abbreviations are known as mnemonics
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FIGURE 6.3

Little Man Mnemonic Instruction Codes with
Their Corresponding OP Codes

LDA
STO
ADD
SUB
IN
OUT
COB or HLT
BRZ
BRP
BR
DAT

5xx
3xx
1xx
2xx
901
902
000
7xx
8xx
6xx

Load
Store
Add
Subtract
Input
Output
Coffee break (or Halt)
Branch if zero
Branch if positive or zero
Branch unconditional
Data storage location

(the first ‘‘m’’ is silent). Once you learn to read these mnemonics, you’ll find that programs
written with mnemonics are generally easy to read. It is more common to write programs this
way. For a while, we will continue to print both the mnemonic and the code, but eventually,
we will stop printing the code. Most programs are also written with comments, which help
to clarify the code. The mnemonic instructions that we will use are shown in Figure 6.3.
The DAT abbreviation is used to indicate that a particular mailbox will be used to store data.
The data may be specified in advance, for example, to use as a constant, or it may be zero if
the particular location is to be used to store the data later, during execution of the program.

The program, shown in Figure 6.4, works as follows: the first four instructions simply
input and store the two numbers. The fifth instruction, in mailbox 04, subtracts the first

FIGURE 6.4

LMC Program to Find Positive Difference of Two
Numbers

00
01
02
03
04
05
06
07
08
09
10
11

IN
STO
IN
STO
SUB
BRP
LDA
SUB
OUT
COB
DAT
DAT

901
310
901
311
210
808
510
211
902
000
000
000

test
negative; reverse order

print result and
     stop.
used for data
     “

10

11
10
08
10
11

00
00
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number from the second. Instruction 05 tests the result. If the result is positive, all that’s
left to do is print out the answer. So, the instruction can be used to branch to the printout
instruction. If the answer is negative, the subtraction is performed in the other order. Then
the result is output, and the Little Man takes his break. Note that if the COB instruction is
omitted (as in forgotten—this is a very common error!), the Little Man will attempt to execute
the data stored in locations 10 and 11. Please study the example until you understand how
it works in every detail.

The nine instructions that make up the instruction set that we have presented are
sufficient to perform the steps of any computer program, although not necessarily in the
most efficient way. It is important for you to realize that, although simplified, the Little Man
instruction set is very similar to the instruction sets that appear in most real computers. In
real computers, as in the Little Man Computer, most instruction steps are involved with
the movement of data between the equivalent of mailbox locations and calculators, with
very simple calculations, and with program branching.

The real computer differs mostly in the variations to these instructions that are pro-
vided, and with the addition of a few instructions that provide programming convenience,
particularly multiplication and division instructions, and also instructions that shift the
data in a word left or right. (Note that the traditional method of performing multiplication
can be done in the computer using SHIFT and ADD instructions.)

We will discuss many of these variations when we look at the instruction sets in some
real computers, in Chapters 7, 8, 11, and Supplementary Chapters 2 and 3.

6.5 THE INSTRUCTION CYCLE
We will refer to the steps that the Little Man takes to perform an instruction as the
instruction cycle. This cycle, which is similar for all the instructions, can be broken into
two parts:

1. The fetch portion of the cycle, in which the Little Man finds out what instruction
he is to execute, and

2. The execute portion of the cycle, in which he actually performs the work specified
in the instruction.

The fetch portion of the cycle is identical for every instruction. The Little Man walks to
the location counter and reads its value. He then goes to the mailbox with the address that
corresponds to that value and reads the three-digit number stored there. That three-digit
number is the instruction to be performed. This is depicted in the drawings of Figure 6.5a.

The fetch portion of the cycle has to occur first: until the Little Man has performed the
fetch operation, he does not even know what instruction he will be executing!

The execute portion of each instruction is, of course, different for each instruction.
But even here, there are many similarities. The first six instructions all require the Little
Man to move data from one place in the mailroom to another. The first four instructions
all involve the use of a second mailbox location for the data.

The LOAD instruction is typical. First, the Little Man fetches the instruction. To perform
the execute phase of the LOAD instruction, the Little Man first looks at the mailbox with the
address that is contained in the instruction. He reads the three-digit number on the slip
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FIGURE 6.5(a)

The Fetch Portion of the Instruction Cycle

25 589

89 222

25

25

5  89

333

25 589

89 222

25

333

25 589

89 222

25

333

(1) The Little Man reads the address
      from the location counter

(2) . . . walks over to the mailbox that
     corresponds to the location counter

(3) . . . and reads the number on the
     slip of paper. (He then puts the
     slip of paper back, in case he
     should need to read it again later.)

of paper in that mailbox and returns the slip of paper to its place. Then he walks over to
the calculator and punches the number into the calculator. Finally, he walks over to the
location counter and increments it. He has completed one instruction cycle and is ready to
begin the next. These steps are shown in Figure 6.5b.

With the exception of the step in which the Little Man increments the location counter,
the steps must be performed in the exact sequence shown. (The location counter can be
incremented anytime after the fetch has occurred.) The fetch steps must occur before the
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FIGURE 6.5(b)

The Execute Portion of the Instruction Cycle (LOAD Instruction)

25 589

89 222

222

333

25 589

89 222

25

222

25 589

89 222

25

333

25 589

89 222

222

25

25
26
25
26

5  89 (1) The Little Man goes to the mailbox
     address specified in the instruction he
     previously fetched

(3) . . . he walks over to the calculator and
     punches the number in

(2) . . . he reads the number in that mailbox
     (he remembers to replace it in the case it's
     needed again)

(4) . . . finally, he walks over to the location
    counter and clicks it, which gets him
    ready to fetch the next instruction

222

execution steps; within the fetch, the Little Man must look at the location counter before
he can pull the instruction from its mailbox.

Just as the sequence of instructions in a program is important—and you know that
this is true for any language, Pascal, Little Man, or any other—so it is also true that the
steps within each instruction must be performed in a particular order.

Notice that the ADD and SUBTRACT instructions are almost identical to the LOAD

instruction. The only difference occurs during the execute step, when the Little Man enters
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the number into the calculator. In the case of the arithmetic instructions, the Little Man
adds or subtracts the number that he is carrying into the calculator, rather than simply
entering it.

The other instructions are slightly different, although not any more difficult to trace
through and understand. To improve your understanding, you should trace the steps of
the Little Man through the remaining six instructions.

6.6 A NOTE REGARDING COMPUTER
ARCHITECTURES

As we noted in Chapter 1, John von Neumann is usually considered to be the developer of
the computer as we know it today. Between 1945 and 1951 von Neumann set down a series
of guidelines that came to be known as the von Neumann architecture for computers.
Although other experimental computer architectures have been developed and built, the
von Neumann architecture continues to be the standard architecture for computers; no
other architecture has had any commercial success to date. It is significant that, in a
field where technological change occurs almost overnight, the architecture of computers is
virtually unchanged since 1951.

The major guidelines that define a von Neumann architecture include:

■ Memory holds both programs and data; this is known as the stored program
concept. The stored program concept allows programs to be changed easily.

■ Memory is addressed linearly; that is, there is a single sequential numeric address
for each and every memory location.

■ Memory is addressed by the location number without regard to the data
contained within.

Instructions are executed sequentially unless an instruction or an outside event (such as
the user resetting the location counter) causes a branch to occur.

In addition, von Neumann defined the functional organization of the computer to be
made up of a control unit that executes instructions, an arithmetic/logic unit that performs
arithmetic and logical calculations, and memory. The control unit and arithmetic/logic
unit together make up the CPU, or central processing unit.

If you check over the guidelines just given, you will observe that the Little Man
Computer is an example of a von Neumann architecture. In fact, we took care to point
out features of the von Neumann architecture during our discussion of the Little Man
Computer.

SUMMARY AND REVIEW
The workings of the computer can be simulated by a simple model. The Little Man
Computer model consists of a Little Man in a mailroom with mailboxes, a calculator,
and a counter. Input and output baskets provide communication to the outside world.
The Little Man Computer meets all the qualifications of a von Neumann computer
architecture.
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The Little Man performs work by following simple instructions, which are described
by three-digit numbers. The first digit specifies an operation. The last two digits are used
for various purposes, but most commonly to point to an address. The instructions provide
operations that can move data between the mail slots and the calculator, move data between
the calculator and the input and output baskets, perform addition and subtraction, and
allow the Little Man to stop working. There are also instructions that cause the Little Man
to change the order in which instructions are executed, either unconditionally or based on
the value in the calculator.

Both data and instructions are stored in individual mail slots. There is no differentiation
between the two except in the context of the particular operation taking place. The Little
Man normally executes instructions sequentially from the mail slots except when he
encounters a branching instruction. In that case he notes the value in the calculator, if
required, and resumes executing instructions from the appropriate location.

The exact steps performed by the Little Man are important because they reflect closely
the steps performed in a real CPU in executing an instruction.

KEY CONCEPTS AND TERMS
instruction cycle
linear memory addressing
Little Man Computer

(LMC)

mnemonics
op code
stored program concept
von Neumann architecture

READING REVIEW QUESTIONS
6.1 Without looking at the book, draw a Little Man Computer. Label each of the

components in your drawing.

6.2 Instructions in the Little Man Computer are three digits, divided into two parts.
Show the format of an LMC instruction.

6.3 Describe, step by step, what the Little Man does to execute a STORE instruction.

6.4 Describe, step by step, what the Little Man does to execute an INPUT instruction.

6.5 Extend the simple program shown in Section 6.3 to accept three inputs from a user,
add them, and output the result.

6.6 If a user wants to enter two numbers, what must the Little Man program do before
she enters the second number? Why?

6.7 Write a Little Man program that accepts two numbers as input and outputs the
numbers in reverse order.

6.8 Write a Little Man program that accepts two numbers as input, subtracts the first
from the second and outputs the result.

6.9 Explain carefully what the Little Man will do when he executes a JUMP instruction.

6.10 Explain carefully, step by step, what the Little Man will do when he executes a
BRANCH ON ZERO instruction.

6.11 Why is the instruction cycle called a cycle?
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6.12 Even if he runs out of instructions to execute, the Little Man only stops trying to
execute instructions under one condition. What is that condition? What happens
if the Little Man runs out of instructions and that condition is not met?

6.13 The instruction cycle is divided into two phases. Name each phase. The first phase
is the same for every instruction. What is the purpose of the first phase that makes
this true? Explain what the Little Man does during the first phase.

6.14 What does the Little Man do during the second phase of a COFFEE BREAK or HALT

instruction?

EXERCISES
6.1 The steps that the Little Man performs are closely related to the way in which the

CPU actually executes instructions. Draw a flow chart that carefully describes the
steps that the Little Man follows to execute a branch instruction.

6.2 Repeat Exercise 6.1 for a subtract instruction.

6.3 Repeat Exercise 6.1 for a branch on positive instruction.

6.4 What are the criteria that define a von Neumann architecture? How does the
example in this chapter in which we enter and add two numbers illustrate each of
the criteria?

6.5 Consider the example in this chapter in which we enter and add two numbers.
Suppose we had stored the first input entry in mailbox location 00. Would the
program have produced the same result? What would have happened if the program
were executed a second time? What characteristic of the computer makes this true?

6.6 Write a Little Man program that accepts three values as input and produces the
largest of the three as output.

6.7 Write a Little Man program to accept an indefinite number of input values. The
output value will be the largest of the input values. You should use the value 0 as a
flag to indicate the end of input.

6.8 Write a Little Man program that accepts three values as input and outputs them
in order of size, largest to smallest. (This is a more challenging variation on
Exercise 6.6.)

6.9 Write a Little Man program that adds a column of input values and produces the
sum as output. The first input value will contain the number of values that follow
as input to be added.

6.10 Write a Little Man program that prints out the odd numbers from 1 to 99. No
input is required.

6.11 Write a Little Man program that prints out the sums of the odd values from 1 to
39. The output will consist of 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 + 7 . . . . No input is
required.
As an aside, do you notice anything interesting about the output results that are
produced by this series? (Hint: This series is sometimes used as part of an algorithm
for finding square roots of numbers.)
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6.12 The following Little Man program is supposed to add two input numbers, subtract
a third input number from the sum, and output the result, i.e.,

OUT = IN1 + IN2 -- IN3

mailbox mnemonic code numeric code
00 IN 901
01 STO 99 399
02 IN 901
03 ADD 99 199
04 STO 99 399
05 IN 901
06 SUB 99 299
07 OUT 902
08 COB 000

What is wrong with this program? Modify the program so that it produces the
correct result.

6.13 Suppose we have a need to handle both negative and positive data beyond the
simple test in the various conditional branch instructions. One way to do this
would be to replace the subtract instruction with a 10’s complement instruction.
The COMP instruction complements the value in the calculator and leaves the value
in the calculator.

a. How would subtraction be performed in this case?

b. Carefully trace the steps that the Little Man would perform to execute the new
COMP instruction.

c. What is the new range of values possible with this modification, and how are
these values represented in the Little Man Computer?

d. What would the Little Man do to execute a BRANCH ON POSITIVE instruction?

6.14 The programs that we have discussed in this chapter seem to have appeared in the
mailboxes by magic. Consider a more realistic alternative:

Suppose a small program is permanently stored in the last few mailbox locations.
A BRANCH instruction at location 0, also permanent, will start this program. This
program will accept input values and will store them at consecutive mailbox
locations, starting with mailbox 001. You may assume that these values represent
the instructions and data of a user’s program to be executed. When a 999 is received
as input data, the program jumps to location 001 where it will proceed to execute
the values just entered.

The small program described here is known as a program loader, or, under
certain circumstances as a bootstrap. Write a Little Man program loader. (Hint: It
may be useful to remember that instructions and data are indistinguishable. Thus,
instructions could be treated as if they were data, if necessary.)

6.15 Show carefully how you would implement an IF-ELSE statement using Little Man
instructions.
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6.16 Show how you would implement a DO-WHILE statement using Little Man instructions.

6.17 The input data values in our problems have always been entered in the order that
they were to be used. This is not always possible or convenient. Can you think of a
simple way to accept input data in the wrong order and still use it correctly?

6.18 Suppose the Little Man Computer had been implemented as a 16-bit binary
machine. Assume that the binary LMC provides the same instruction set, with the
same op codes (in binary, of course), and the same instruction format (op code
followed by address). How many bits would be required for the op code portion
of the instruction? How many mailboxes could the binary machine accommodate?
What is the range of 2’s complement data that this machine could handle?

6.19 The original version of the Little Man Computer used op code 7 (i.e., instruction
700) for a COFFEE BREAK instruction instead of op code 0. What is the advantage of
using 000 for the COB instruction instead of 700? (Hint: Consider what happens if
the programmer forgets to put a COB instruction at the end of a program.)

6.20 When we discussed conditional branching we claimed that a BRANCH NEGATIVE

instruction is not necessary. Show a sequence of BRANCH instructions that will cause
a program to branch to location 50 if the value in the calculator is negative.

6.21 Show a sequence of instructions that will cause a program to branch to location 75
if the value in the calculator is greater than zero.
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CHAPTER 7

THE CPU AND MEMORY
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7.0 INTRODUCTION
The previous chapter provided a detailed introduction to the Little Man model of a
computer. In that chapter we introduced a format, using a three-digit number divided
into op code and address fields, for the instructions that a computer can perform. We
introduced an instruction set that we indicated was representative of those found in a
real computer. We also showed the steps that are performed by the Little Man in order
to execute one of these instructions.

In this chapter and the next we will extend these concepts to the real computer.
Our primary emphasis in this chapter is on the central processing unit (CPU), together
with memory. In the real computer, memory is actually separated both physically
and functionally from the CPU. Memory and the CPU are intimately related in the
operation of the computer, however, and so we will treat memory together with the
CPU for the convenience of our discussion. Since every instruction requires memory
access,1 it makes sense to discuss the two together.

We will use the Little Man model and its instruction set as a guideline for our
discussion. The Little Man instruction set is fundamentally similar to the instruction
sets of many different computers. Of course, the Little Man instruction set is based on
a decimal number system, and the real CPU is binary, but this is a detail that won’t
concern us for most of this discussion. The CPU architectural model that we shall
discuss is not based on a particular make and model, but is typical of most computers.
Chapter 8 will discuss the implementation of this model in modern technology.
In Supplementary Chapter 2, we shall look specifically at several popular computer
models.

In this chapter you will see that the execution of instructions in the CPU together
with memory is nearly identical functionally to the Little Man Computer. There is
a one-to-one relationship between the various contents of the mailroom and the
functional components of the CPU plus memory. The major differences occur in the
facts that the CPU instruction set is created using binary numbers rather than decimal
and that the instructions are performed in a simple electronic way using logic based
upon Boolean algebra instead of having a Little Man running around a mailroom.

Sections 7.1 through 7.3 present a systematic introduction to the components of the
CPU and memory, offering a direct comparison with the components of the Little Man
Computer, and focusing on the concept of the register as a fundamental element of CPU
operation. In Section 7.4, we show how simple CPU and memory register operations
serve as the basic mechanism to implement the real computer’s instruction set.

In Section 7.5, we turn our attention to the third major computer system
component, the bus component. Buses provide the interconnection between various
internal parts of the CPU, and between the CPU and memory, as well as providing

1Recall that in the LMC every instruction must be fetched from a mailbox to be executed. The same is
true in the real computer.

199
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connections between input and output devices, the CPU, and memory. There are many
different types of buses in a computer system, each optimized for a different type of task.
Buses can connect two components in a point-to-point configuration or may interconnect
several modules in a multipoint configuration. In general, the lines on buses carry signals that
represent data, addresses, and control functions. We consider the general requirements for
a bus, the features, advantages and disadvantages of different types of buses. In Chapter 11,
we will focus on the specific buses that interconnect the various components of a computer
system, and show you the ways in which the buses connect different parts of an entire
computer system together.

In Sections 7.6, 7.7, and 7.8, we return our attention to the CPU to discuss the
characteristics and features of the instruction sets provided in real computers: the different
types of instructions, the formats of instruction words, and the general requirements and
restraints that are required for instruction words.

You already understand from Chapter 6 how simple instructions can be combined to
form the programs that you write. When you complete this chapter, you will have a good
understanding of how those instructions are executed in a computer.

7.1 THE COMPONENTS OF THE CPU
A simplified conceptual block diagram of a CPU with memory is shown in Figure 7.1.2

For comparison purposes, the block diagram for the Little Man Computer is repeated in
Figure 7.2, with labels corresponding to the components in Figure 7.1.

Note the similarities between the two figures. As noted in Chapter 1, the computer
unit is made up conceptually of three major components, the arithmetic/logic unit (ALU),
the control unit (CU), and memory. The ALU and CU together are known as the central
processing unit (CPU). An input/output (I/O) interface is also included in the diagram.
The I/O interface corresponds in function roughly to the input and output baskets, although
its implementation and operation differ from that of the Little Man Computer in many
respects.

FIGURE 7.1

System Block Diagram

Control unit

Program counter

Memory

CPU

ALU
I/O

interface

The arithmetic/logic unit is the component of the CPU
where data is held temporarily and where calculations take
place. It corresponds directly to the calculator in the Little
Man Computer.

The control unit controls and interprets the execution
of instructions. It does so by following a sequence of actions
that correspond to the fetch-execute instruction cycle that
was described in the previous chapter. Most of these actions
are retrievals of instructions from memory followed by
movements of data or addresses from one part of the CPU
to another.

The control unit determines the particular instruc-
tion to be executed by reading the contents of a program

2This diagram is first attributed to John von Neumann in 1945. As discussed in Chapter 8, current
technology results in a different physical layout for the components in the model; nevertheless, the basic execution
of instructions is still consistent with the original model.
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FIGURE 7.2

The Little Man Computer

50500

00 500

01 199

02 500

03 399

95

96

97

98

99 123

05

123
ALU

Memory

I/O
interface Control

unit

Program
counter

counter (PC), sometimes called an instruction pointer, which is a part of the control
unit. Like the Little Man’s location counter, the program counter contains the address of
the current instruction or the next instruction to be executed. Normally, instructions are
executed sequentially. The sequence of instructions is modified by executing instructions
that change the contents of the program counter. The Little Man branch instructions
are examples of such instructions. A memory management unit within the control unit
supervises the fetching of instructions and data from memory. The I/O interface is also
part of the control unit. In some CPUs, these two functions are combined into a single bus
interface unit. The program counter in the CPU obviously corresponds to the location
counter in the Little Man Computer, and the control unit itself corresponds to the
Little Man.

Memory, of course, corresponds directly to the mailboxes in the LMC.

7.2 THE CONCEPT OF REGISTERS
Before we discuss the way in which the CPU executes instructions, it is necessary to
understand the concept of a register. A register is a single, permanent storage location
within the CPU used for a particular, defined purpose. A register is used to hold a binary
value temporarily for storage, for manipulation, and/or for simple calculations. Note that
each register is wired within the CPU to perform its specific role. That is, unlike memory,
where every address is just like every other address, each register serves a particular purpose.
The register’s size, the way it is wired, and even the operations that take place in the register
reflect the specific function that the register performs in the computer.
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Registers also differ from memory in that they are not addressed as a memory location
would be, but instead are manipulated directly by the control unit during the execution of
instructions. Registers may be as small as a single bit or as wide as several bytes, ranging
usually from 1 to 128 bits.

Registers are used in many different ways in a computer. Depending on the particular
use of a register, a register may hold data being processed, an instruction being executed,
a memory or I/O address to be accessed, or even special binary codes used for some other
purpose, such as codes that keep track of the status of the computer or the conditions
of calculations that may be used for conditional branch instructions. Some registers serve
many different purposes, while others are designed to perform a single, specialized task.
There are even registers specifically designed to hold a number in floating point format,
or a set of related values representing a list or vector, such as multiple pixels in an
image.

Registers are basic working components of the CPU. You have already seen, in
Chapter 6, that the computer is unable to distinguish between a value that is used as a
number in a program and a value that is actually an instruction or address, except in the
context of current use. When we refer to the ‘‘data’’ in a register, we might be talking about
any of these possibilities.

You have already become acquainted with two ‘‘registers’’ in the Little Man Computer,
namely, the calculator and the location counter.

In the CPU, the equivalent to the calculator is known as an accumulator. Even the
short example to add two numbers in Chapter 6 showed that it is often necessary to move
data to and from the accumulator to make room for other data. As a result, modern CPUs
provide several accumulators; these are often known as general-purpose registers. Some
vendors also refer to general-purpose registers as user-visible or program-visible registers
to indicate that they may be accessed by the instructions in user programs. Groups of
similar registers are also sometimes referred to collectively as a register file. General-purpose
registers or accumulators are usually considered to be a part of the arithmetic/logic unit,
although some computer manufacturers prefer to consider them as a separate register unit.
As in the Little Man Computer, accumulator or general-purpose registers hold the data that
are used for arithmetic operations as well as the results. In most computers, these registers
are also used to transfer data between different memory locations, and between I/O and
memory, again similar to the LMC. As you will see in Chapter 8, they can also be used for
some other similar purposes.

The control unit contains several important registers.

■ As already noted, the program counter register holds the address of the current
instruction being executed.

■ The instruction register (IR) holds the actual instruction being executed
currently by the computer. In the Little Man Computer this register was not
used; the Little Man himself remembered the instruction he was executing. In a
sense, his brain served the function of the instruction register.

■ The memory address register (MAR) holds the address of a memory location.
■ The memory data register (MDR), sometimes known as the memory buffer

register, will hold a data value that is being stored to or retrieved from the
memory location currently addressed by the memory address register.
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The last two registers will be discussed in more detail in the next section, when we
explain the workings of memory. Although the memory address register and memory data
register are part of the CPU, operationally these two registers are more closely associated
with memory itself.

The control unit will also contain several 1-bit registers, sometimes known as flags,
that are used to allow the computer to keep track of special conditions such as arithmetic
carry and overflow, power failure, and internal computer error. Usually, several flags are
grouped into one or more status registers.

In addition, our typical CPU will contain an I/O interface that will handle input and
output data as it passes between the CPU and various input and output devices, much like
the LMC in and out baskets. For simplification, we will view the I/O interface as a pair of
I/O registers, one to hold an I/O address that addresses a particular I/O device, the other
to hold the I/O data. These registers operate similarly to the memory address and data
registers. Later, in Chapter 9, we will discuss a more common way of handling I/O that uses
memory as an intermediate storage location for I/O data.

Most instructions are executed by the sequenced movement of data between the
different registers in the ALU and the CU. Each instruction has its own sequence.

Most registers support four primary types of operations:

1. Registers can be loaded with values from other locations, in particular from
other registers or from memory locations. This operation destroys the previous
value stored in the destination register, but the source register or memory
location remains unchanged.

2. Data from another location can be added to or subtracted from the value
previously stored in a register, leaving the sum or difference in the register.

3. Data in a register can be shifted or rotated right or left by one or more bits. This
operation is important in the implementation of multiplication and division.
The details of the shift operation are discussed in Section 7.6.

4. The value of data in a register can be tested for certain conditions, such as zero,
positive, negative, or too large to fit in the register.

In addition, special provision is frequently made to load the value zero into a register,
which is known as clearing a register, and also to invert the 0s and 1s (i.e., take the 1’s
complement of the value) in a register, an operation that is important when working with
complementary arithmetic. It is also common to provide for the addition of the value 1
to the value in a register. This capability, which is known as incrementing the register, has
many benefits, including the ability to step the program counter, to count in for loops,
and to index through arrays in programs. Sometimes decrementing, or subtraction of 1, is
also provided. The bit inversion and incrementing operations are combined to form the
2’s complement of the value in a register. Most computers provide a specific instruction
for this purpose, and also provide instructions for clearing, inverting, incrementing, and
decrementing the general-purpose registers.

The control unit sets (‘‘1’’) or resets (‘‘0’’) status flags as a result of conditions that
arise during the execution of instructions.

As an example, Figure 7.3 identifies the programmer-accessible registers in the IBM
System z computers, which includes a variety of IBM mainframe models. Internal registers,
such as the instruction, memory address, and memory buffer registers are not specifically
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FIGURE 7.3

Programmer-Accessible Registers in IBM zSeries Computers
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1

16
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64
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64

Number

identified in the table, since they are dependent on the implementation of the particular
model in the series.

7.3 THE MEMORY UNIT

The Operation of Memory

To understand the details of instruction execution for the real CPU, you need first to see
how instructions and data can be retrieved from memory. Real memory, like the mailboxes
in the Little Man Computer, consists of cells, each of which can hold a single value, and
each of which has a single address.

Two registers, the memory address register and the memory data register, act as an
interface between the CPU and memory. The memory data register is called the memory
buffer register by some computer manufacturers.

Figure 7.4 is a simplified representation of the relationship between the MAR, the
MDR, and memory. Each cell in the memory unit holds 1 bit of data. The cells in Figure 7.4
are organized in rows. Each row consists of a group of one or more bytes. Each group
represents the data cells for one or more consecutive memory addresses, shown in the
figure as addresses 000, 001, . . . , 2n − 1.

In modern computers, it is common to address 8 bytes at a time to speed up memory
access between the CPU and memory. The CPU can still isolate individual bytes from the
group of eight for its use, however.

The memory address register holds the address in the memory that is to be ‘‘opened’’
for data. The MAR is connected to a decoder that interprets the address and activates a
single address line into the memory. There is a separate address line for each group of
cells in the memory; thus, if there are n bits of addressing, there will be 2n address lines.
(In actuality, the decoding process is somewhat more complex, involving several levels of
address decoding, since there may be several millions or billions of addresses involved, but
the concept described here is correct.)



CHAPTER 7 THE CPU AND MEMORY 205

FIGURE 7.4

The Relationship Between the MDR, the MAR, and Memory
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The memory data register is designed such that it is effectively connected to every cell
in the memory unit. Each bit of the MDR is connected in a column to the corresponding
bit of every location in memory. However, the addressing method assures that only a single
row of cells is activated at any given time. Thus, only one memory location is addressed at
any one time. A specific example of this is shown in Figure 7.5. (Note that in the drawing
msb stands for most significant bit and lsb for least significant bit.)

FIGURE 7.5

MAR-MDR Example
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As a simple analogy to the operation we’ve just described, consider the memory as
being stored in a glass box, as shown in Figure 7.6. The memory data register has a
window into the box. The viewer, who represents each cell in the memory data register,
can see the cells in corresponding bit position for every location in memory through the
window. The cells themselves are light bulbs that can be turned on (1) or off (0). The
output from the memory address register is passed to an address decoder. The output from
the address decoder in our analogy consists of a series of lines, each of which can light
up the bulbs in a single row of cells. Only one line at a time can be activated—specifically,
the one corresponding to the decoded address. The active line will light the bulbs that
correspond to ‘‘1s,’’ leaving the ‘‘0s’’ dark. The viewer therefore will see only the single
group of cells that is currently addressed by the memory address register. We can extend
the analogy to include a ‘‘master switch’’ that controls all the lights, so that the data can be
read only at the appropriate instant.

A more detailed picture of an individual memory cell is shown in Figure 7.7. Although
this diagram is a bit complicated, it may help to clarify how data is transferred between
the MDR and memory. There are three lines that control the memory cell: an address line,
a read/write line, and an activation line. The address line to a particular cell is turned on
only if the computer is addressing the data within that cell. The read/write line determines
whether the data will be transferred from the cell to the MDR (read) or from the MDR to
the cell (write). This line works by turning on one of two switches in conjunction with the
address line and the activation line. The read switch, R, in the diagram turns on when the

FIGURE 7.6

A Visual Analogy for Memory
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FIGURE 7.7

An Individual Memory Cell
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address line and the activation line are both on (on is usually represented by 1, off by 0),
and the read/write line is set to read; the switch then connects the output of the cell to the
MDR line. The write switch, W, works similarly; switch W turns on when the address line
and activation line are both on and the read/write switch is set to write. Switch W connects
the MDR line to the input of the cell, which transfers the data bit on the MDR line to the
cell for storage. Note that only one switch, at most, can be on at a given time.

The interaction between the CPU and the memory registers takes place as follows: to
retrieve or store data at a particular memory location, the CPU copies an address from
some register in the CPU to the memory address register. Note that addresses are always
moved to the MAR; there would never be a reason for an address transfer from the MAR to
another register within the CPU , since the CPU controls memory transfers and is obviously
aware of the memory address being used. At the same time that the MAR is loaded, the
CPU sends a message to the memory unit indicating whether the memory transfer is a
retrieval from memory or a store to memory. This message is sent by setting the read/write
line appropriately.

At the appropriate instant, the CPU momentarily turns on the switch that connects
the MDR with the register by using the activation line, and the transfer takes place between
memory and the MDR. The MDR is a two-way register. When the instruction being
executed is to store data, the data will be transferred from another register in the CPU
to the MDR, and from there it will be transferred into memory. The original data at that
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location will be destroyed, replaced by the new data from the MDR. Conversely, when the
instruction is to load data from memory, the data is transferred from memory to the MDR,
and it will subsequently be transferred to the appropriate register in the CPU. In this case,
the memory data are left intact, but the previous data value in the MDR is replaced by the
new data from memory.

Memory Capacity

The number of possible memory locations in the Little Man Computer, one hundred
locations, was established by the two-digit address space in each instruction. The location
counter also addresses one hundred locations. There is no memory address register per
se, but the Little Man is certainly aware that each memory location requires two digits. In
theory, a larger location counter, say, three digits, would allow the Little Man to fetch more
instructions, but notice that his data fetches and stores are still limited to the one hundred
locations that the two digits of the address field in the instruction word can address.

Similarly, there are two factors that determine the capacity of memory in a real
computer. The number of bits in the memory address register determines how many
different address locations can be decoded, just as the two-digit addresses in the Little
Man Computer resulted in a maximum of one hundred mailboxes. For a memory address
register of width k bits, the number of possible memory addresses is

M = 2k

The other factor in establishing memory capacity is of course the number of bits in the
address field of the instruction set, which establishes how many memory locations can be
directly addressed from the instruction.

In the Little Man Computer, we have assumed that these two size factors are the same,
but in a real computer, that is not necessarily the case. Even if the size of the instruction
address field is sufficient to support a larger amount of memory, the number of physical
memory locations is, in fact, determined by the size of the memory address register. There
are also other ways of extending the addresses specified within instructions so that we can
reach more addresses than the size of the instruction address field would allow. Just to give
you one common method, consider a computer that can use one of the general-purpose
registers to hold an address. To find a memory location, the computer would use the value
in that register as a pointer to the address. Instead of an address field, the instruction needs
only to indicate which register contains the address. Using this technique, the addressing
capability of the computer is determined by the size of the register. For example, a computer
with 64-bit registers could address 264 addresses if the MAR were wide enough. Such an
extension would suggest that the MAR, and thus the actual memory capacity, is normally
at least as large as the instruction address field, but it may be much larger. There is a
brief discussion of simple addressing methods in Chapter 8. Additional, more sophisticated
addressing methods are presented in Supplementary Chapter 3.

Ultimately, the width of the MAR determines the maximum amount of addressable
memory in the computer. Today, a typical memory address register will be at least 32 bits
wide, and probably much wider. Many modern CPUs support 64-bit memory addresses.
A 32-bit memory address allows a memory capacity of 4 gigabytes (GB) (4 × 109 byte-size
spaces), whereas 64 bits allows a memory capacity of 16 × 1018 bytes (16 exabytes or
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16 billion gigabytes). In modern computers, the ultimate size of memory is more likely
limited by physical space for the memory chips or by the time required to decode and
access addresses in a large memory, rather than by the capability of the CPU to address
such a large memory.

Of course the size of memory also affects the speed of access. The time needed for the
address decoder to identify a single line out of four billion is necessarily larger than that
required for a memory that is much smaller.

As an aside, it is worth noting that early models of IBM’s largest mainframe computer
systems had a total memory capacity of only 512 KB, (1/4000th the memory of a typical
modern PC with 2 GB of memory!) and that the original IBM PC came supplied with 64 KB
of memory, with a maximum capacity of 640 KB. In fact, Bill Gates, of Microsoft, was
quoted at the time as saying that he could see no need for more than 640 KB of memory,
ever!

The size of the data word to be retrieved or stored in a single operation is determined
by the size of the memory data register and by the width of the connection between memory
and the CPU. In most modern computers, data and instructions found in memory are
addressed in multiples of 8-bit bytes. This establishes the minimum instruction size as 8
bits. Most instructions cannot fit practically into 8 bits. If one were to allow 3 bits for
the op code (eight instruction types), only 5 bits remain for addressing. Five bits allows
25 = 32 different addresses, which is clearly insufficient address space. As a result, longer
instructions of 16, 24, 32, or even more bits will be stored in successive memory locations.
In the interest of speed, it is generally desirable to retrieve an entire instruction with a
single fetch, if possible. Additionally, data to be used in arithmetic calculations frequently
requires the precision of several bytes. Therefore, most modern computer memories are
designed to allow the retrieval or storage of at least 4 and, more commonly, 8 or even 16,
successive bytes in a single operation. Thus, the memory data register is usually designed
to retrieve the data or instruction(s) from a sequence of several successive addresses all at
once, and the MDR will be several bytes wide.

Primary Memory Characteristics and Implementation

Through the history of computing there have been several different types of primary
memory used, reflecting the technology and the system requirements and capabilities of
the times. In the 1960s and 1970s, the dominant technology was magnetic core memory,
which used a tiny core of magnetic material to hold a bit of data, and the largest machines
might have had 512 KB of memory. Today, the primary memory in most computer systems
is dynamic RAM, and most machines have 1 GB of memory, or more. RAM is an acronym
that stands for random access memory, which is a slight misnomer, since other types of
semiconductor memory can also be accessed randomly (i.e., their addresses can be accessed
in any order). A more appropriate name would be read-write memory.

Memory today is characterized by two predominant operational factors and by a num-
ber of technical considerations. Operationally, the most important memory characteristic
is whether the memory is read-write capable or read-only. Almost as important is whether
the memory is volatile or nonvolatile. Nonvolatile memory retains its values when power
is removed. Volatile memory loses its contents when power is removed. Magnetic core
memory was nonvolatile. RAM is volatile.
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Important technical considerations include the speed of memory access, the total
amount of memory that can be addressed, the data width, the power consumption and
heat generation, and the bit density (specified as the number of bits per square centimeter).
Cost is an additional factor.

Most current computers use a mix of static and dynamic RAM for memory. The
difference between static and dynamic RAM is in the technical design and is not of
importance here. However, dynamic RAM is less expensive, requires less electrical power,
generates less heat, and can be made smaller, with more bits of storage in a single integrated
circuit. Dynamic RAM also requires extra electronic circuitry that ‘‘refreshes’’ memory
periodically; otherwise the data fades away after a while and is lost. Static RAM does not
require refreshing. Static RAM is also faster to access than dynamic RAM and is therefore
useful in very-high-speed computers and for small amounts of high-speed memory, but
static RAM is lower in bit density and more expensive. Both dynamic and static RAM are
volatile: their contents are lost when power is turned off.

At the time of this writing, dynamic RAM is standard for most applications. The
amount of data that can be stored in a single dynamic RAM chip has increased rapidly in
the past few years, going from 64 Kilobits(Kb) to 512 Megabits (Mb) in fewer than fifteen
years. Currently, most systems are built with chips that can hold 256 or 512 Mb of data.
These chips are also designed to be packaged together in convenient plug-in packages that
can supply 1–2 gigabytes of memory, or more, in a single unit. 1 gigabit (Gb) and 2 Gb
RAM chips are also in production, but have not yet replaced 512 Mb chips for most system
applications, with the exception of mainframe systems. Most modern systems also provide
a small amount of static RAM memory that is used for high-speed access. This memory is
known as cache memory. The use of cache memory is discussed in Chapter 8.

Although current RAM technology is fast, inexpensive, and efficient, its volatility
makes some applications difficult or impossible. For example, nonvolatile RAM would
make it possible to shut off a computer without losing the programs and data in memory.
This would make it possible to restart the computer into its previous state without
rebooting, would eliminate the undesirable effects of power failures and laptop battery
discharge, and would simplify the use of computers in situations where power conservation
is critical, such as in long distance space missions. The desire for nonvolatile RAM has led
to considerable research on alternative technologies for creating and producing nonvolatile
RAM.

There are a small number of memory technologies in current use that are capable
of nonvolatile random access, but none in current large-scale production is capable of
replacing standard SRAM and DRAM for use in primary memory. Foremost among these
technologies is flash memory. Flash memory uses a concept called hot carrier injection to
store bits of data. Flash memory allows rewriting of cells by erasing groups of memory
cells selectively, and then writing the new pattern into the cells. Flash memory serves as
an inexpensive form of nonvolatile storage for portable computer storage, digital cameras.
MP3 players, and other electronic devices; however it is unsuitable for primary memory
because the rewrite time is extremely slow compared to standard RAM and the number
of rewrites over the lifetime of the ROM is somewhat limited. Flash memory is viewed
primarily as a potential replacement for slow long-term storage devices such as magnetic
disks and CD or DVD devices, although the significantly higher cost of flash memory is
still a factor at this point in time.
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A number of nonvolatile memory technologies that might be capable of replacing
traditional RAM appear to be nearing production. These include magnetorestrictive
RAM (MRAM), ferroelectric RAM (FeRAM), phase-change RAM (PRAM), and carbon
nano[tube] RAM (NRAM). You will probably be reading about one or more of these in the
future.

ROM, or read-only memory, is used for situations where the software is built
semi-permanently into the computer, is required as part of the computer’s software,
and is not expected to change over the life of the computer, except perhaps very infre-
quently. Bootstrap programs and basic I/O system drivers fall into this category. Early
ROM memory was made up of integrated circuits with fuses in them that could be blown.
These fuses were similar to, but much smaller than, the fuses that you might have in your
home. A blown fuse might represent a ‘‘0,’’ an intact fuse a ‘‘1.’’ Modern ROM memo-
ries use a different technology, such as EEPROM or flash memory. EEPROM (Erasable
Electrically Programmable ROM) uses a concept called Fowler-Nordheim tunneling to
achieve rewritability. Because of its cost, need for special circuitry, and speed, EEPROM
has mostly been replaced by flash memory. Regardless of technology, ROM is nonvolatile.
Thus, although electrical power is required to access the data, the data remains consistent
with or without power.

7.4 THE FETCH-EXECUTE INSTRUCTION CYCLE
The fetch-execution instruction cycle is the basis for every capability of the computer.
This seems like a strong statement, but think about it: the purpose of the computer is
to execute instructions similar to those that we have already introduced. And, as you’ve
already seen from the Little Man Computer, the operation of every instruction is defined
by its fetch-execute instruction cycle. Ultimately, the operation of a computer as a whole
is defined by the primary operations that can be performed with registers, as explained in
Section 7.2: to move data between registers, to add or subtract data to a register, to shift
data within a register, and to test the value in a register for certain conditions, such as
negative, positive, or zero.

With the importance of the instruction cycle in mind, we can consider how these
few operations can be combined to implement each of the instructions in a computer.
The registers that will be of the most importance to us for this discussion will be the
general-purpose registers or accumulators used to hold data values between instructions
(A or GR), the program counter (PC), which holds the address of the current instruction,
the instruction register (IR), which will hold the current instruction while it is being
executed, and the memory address and data registers (MAR and MDR), used for accessing
memory.

To begin, review carefully the steps that the Little Man took to execute an instruction.
(You may want to read Section 6.6 again to refresh your memory.) You will recall that
there were two phases in the process. First, the Little Man fetched the instruction from
memory and read it. This phase was identical for every instruction. Then, he interpreted
the instruction and performed the actions required for that particular instruction.

He repeated this cycle endlessly, until he was given the instruction to stop.
The fetch-execute instruction cycle in a CPU works similarly. As noted, much of the

procedure consists of copying data from one register to another. You should always be
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aware that data copying does not affect the ‘‘from’’ register, but it obviously replaces the
previous data in the ‘‘to’’ register with the new data being copied.

Remember that every instruction must be fetched from memory before it can
be executed. Therefore, the first step in the instruction cycle always requires that the
instruction must be fetched from memory. (Otherwise, how would the computer know
what instruction to perform?) Since the address of the current instruction to be executed is
identified by the value in the program counter register, the first step will be to transfer that
value into the memory address register, so that the computer can retrieve the instruction
located at that address.

We will use the following notation to indicate the transfer of a data value from one
register to another:

REGa → REGb

Then, in this notation, the first step in the execution of every instruction will be

(step 1) PC → MAR

As explained in the description of memory, this will result in the instruction being
transferred from the specified memory location to the memory data register. The next step
is to transfer that instruction to the instruction register:

(step 2) MDR → IR

The instruction register will hold the instruction through the rest of the instruction
cycle. It is the particular instruction in the IR that will control the particular steps that make
up the remainder of the cycle. These two steps comprise the fetch phase of the instruction
cycle.

The remaining steps are, of course, instruction dependent. Let us consider the steps
required to complete a LOAD instruction.

The next thing that the Little Man did was to read the address part of the LOAD

instruction. He then walked over to the mailbox specified by that address, read the data,
and copied it into the calculator. The real CPU will operate similarly, substituting register
transfers for the Little Man, of course. Thus,

(step 3) IR [address] → MAR

The notation IR [address] is used to indicate that only the address part of the contents
of the instruction register is to be transferred. This step prepares the memory module to
read the actual data that will be copied into the ‘‘calculator,’’ which in this case will be the
accumulator:

(step 4) MDR → A

The CPU increments the program counter, and the cycle is complete and ready to
begin the next instruction (actually this step can be performed any time after the previous
instruction is retrieved, and is usually performed early in the cycle in parallel with other
steps).

(step 5) PC+ 1 → PC

Notice the elegant simplicity of this process! The LOAD instruction requires only five
steps. Four of the steps simply involve the movement of data from one register to another.
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The fifth step is nearly as simple. It requires the addition of the value 1 to the contents
of a register, and the new value is returned to the same register. This type of addition is
common in computers. In most cases, the result of an addition or subtraction is returned
to one of the original registers.

The remaining instructions operate similarly. Compare, for example, the steps required
to perform the STORE and the ADD instructions with those of the LOAD instruction, discussed
earlier.

The STORE instruction

PC → MAR
MDR → IR
IR [address] → MAR
A → MDR
PC+ 1 → PC

The ADD instruction

PC → MAR
MDR → IR
IR [address] → MAR
A+ MDR → A
PC+ 1 → PC

Study these examples carefully. For practice, relate them to the steps the Little Man
performs to execute the corresponding instruction. Notice that the only step that changes
in these three instructions is the fourth step.

The fetch-execute cycles for the remaining instructions are left as an exercise (see
Exercise 7.5 at the end of this chapter).

The following example, with comments, recaps the above discussion in the context of
a three-instruction program segment that loads a number from memory, adds a second
number to it, and stores the result back to the first memory location. Note that each
instruction is made up of its corresponding fetch-execute cycle. The program segment is
executed by processing each step of each fetch-execute cycle in sequence.

Assume that the following values are present just prior to execution of this segment:

Program Counter : 65
Value in Mem Location 65 : 590 (LOAD 90)
Value in Mem Location 66 : 192 (ADD 92)
Value in Mem Location 67 : 390 (STORE 90)
Value in Mem Location 90 : 111
Value in Mem Location 92 : 222

EXAMPLE

1st instruction LOAD 90: PC → MAR MAR now has 65
MDR → IR IR contains the instruction: 590
- - - - - - - - - - - - - ← end of fetch
IR [address] → MAR MAR now has 90, the location of the

data
MDR → A Move 111 from MDR to A
PC + 1 → PC PC now points to 66.

——————————————————————— end of execution, end of first instruction
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2nd instruction ADD 92: PC → MAR MAR now contains 66
MDR → IR IR contains the instructions: 192
- - - - - - - - - - - - - ← end of fetch
IR [address] → MAR MAR now has 92
A + MDR → A 111+222=333 in A
PC + 1 → PC PC now points to 67

——————————————————————— end of execution, end of second instruction

3rd instruction STORE 90: PC → MAR MAR now contains 67
MDR → IR IR contains 390
- - - - - - - - - - - - - ← end of fetch
IR [address] → MAR MAR now holds 90
A → MDR The value in A, 333, moves to mem

location 90
PC + 1 → PC PC now points to 68

——————————————————————— end of execution, end of third instruction
← ready for next instruction

7.5 BUSES

Bus Characteristics

You have already seen that instructions are executed within the CPU by moving ‘‘data’’
in many different forms from register to register and between registers and memory. The
different forms that the ‘‘data’’ can take include instructions and addresses, in addition to
actual numerical data. ‘‘Data’’ moves between the various I/O modules, memory, and the
CPU in similar fashion. The physical connection that makes it possible to transfer data
from one location in the computer system to another is called a bus. From our previous
discussion of the way that the CPU and memory work together, it is probably already
obvious to you that there must be a bus of some kind linking the CPU and memory;
similarly, buses internal to the CPU can be used to link registers together at the proper
times to implement the fetch-execute cycles introduced in Section 7.4.

Specifically, a bus may be defined as a group of electrical, or, less commonly, optical,
conductors suitable for carrying computer signals from one location to another. The
electrical conductors may be wires, or they may be conductors on a printed circuit. Optical
conductors work similarly, using light that is directed from point to point in special thin
clear glass fibers. Optical conductors can carry data much faster than electrical conductors,
but their cost is high, which has limited their use to date. Nonetheless, there is considerable
lab research into ways to integrate more optical circuits into computers.

Buses are used most commonly for transferring data between computer peripherals
and the CPU, for transferring data between the CPU and memory, and for transferring data
between different points within the CPU. A bus might be a tiny fraction of an inch long,
carrying data between various parts of the CPU within an integrated circuit chip; it might
be a few inches long, carrying data between the CPU chip and memory; it might even be
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hundreds of feet long, carrying data between different computers connected together in a
network.

The characteristics of buses are dependent on their particular use within the computer
environment. A bus can be characterized by the number of separate wires or optical
conductors in the bus; by its throughput, that is, the data transfer rate measured in bits
per second; by the data width (in bits) of the data being carried; by the number and type
of attachments that the bus can support; by the distance between the two end points; by
the type of control required; by the defined purpose of the bus; by the addressing capacity;
by whether the lines on the bus are uniquely defined for a single type of signal or shared;
and by the various features and capabilities that the bus provides. The bus must also be
specified electrically and mechanically; by the voltages used; by the timing and control
signals that the bus provides, by the protocol used to operate and control the bus, by the
number of pins on the connectors, if any; even by the size of the cards that plug into the
connector. A bus would not be very useful if the cards that it was to interconnect did not fit
into the space allotted! Unfortunately for the concept of standardization, there are dozens
of different buses in use, although a few are far more common than others.

The need to characterize buses comes from the necessity of interfacing the bus to
other components that are part of the computer system. Buses that are internal to the CPU
are usually not characterized formally at all, since they serve special purposes and do not
interface to the outside world. Buses that are used in this way are sometimes known as
dedicated buses. Buses that are intended for more general use must have a well-defined
standard; standard buses generally have a name. PCI Express, USB, IDE, and SATA are all
examples of named buses.

Each conductor in the bus is commonly known as a line. Lines on a bus are often
assigned names, to make individual lines easier to identify. In the simplest case, each line
carries a single electrical signal. The signal might represent one bit of a memory address,
or a sequence of data bits, or a timing control that turns a device on and off at the proper
time. Sometimes, a conductor in a bus might also be used to carry power to a module. In
other cases, a single line might represent some combination of functions.

The lines on a bus can be grouped into as many as four general categories: data,
addressing, control, and power. Data lines carry the ‘‘data’’ that is being moved from one
location to another. Address lines specify the recipient of data on the bus. Control lines
provide control and timing signals for the proper synchronization and operation of the bus
and of the modules and other components that are connected to the bus. A bus connecting
only two specific 32-bit registers within a CPU, for example, may require just thirty-two
data lines plus one control line to turn the bus on at the correct time. A backplane that
interconnects a 64-bit data width CPU, a large memory, and many different types of
peripherals might require many more than a hundred lines to perform its function.

The bus that connects the CPU and memory, for example, needs address lines to pass
the address stored in the MAR to the address decoder in memory and data lines to transfer
data between the CPU and the memory MDR. The control lines provide timing signals
for the data transfer, define the transfer as a read or write, specify the number of bytes to
transfer, and perform many other functions.

In reality, all of the lines except for the power lines in a bus can be used in different
ways. Each line in a bus may serve a single, dedicated purpose, such as a bus line that carries
the twelfth bit of an address, for example. Alternatively, a line may be configured to serve
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different purposes at different times. A single line might be used to carry each of the bits of
an address in sequence, followed by the bits of data, for example. At their two extremes,
buses are characterized as parallel or serial. By definition, a parallel bus is simply a bus
in which there is an individual line for each bit of data, address, and control being used.
This means that all the bits being transferred on the bus can be transferred simultaneously.
A serial bus is a bus in which data is transferred sequentially, one bit at a time, using a
single data line pair. (A data return line is required to complete the circuit, just as there are
two wires in a standard 110-volt power circuit. Multiple data lines can share the same data
return line, commonly known as a ground line, but in some cases it is possible to reduce
noise and other interference by using a separate return line for each data line.)

A bus line may pass data in one direction only, or may be used to pass data in both
directions. A unidirectional line is called a simplex line. A bidirectional line may carry
data one direction at a time, in which case it is called a half-duplex line, or in both
directions simultaneously, known as a full-duplex line. The same nomenclature is also
used to describe data communication channels, because, ultimately, the basic concepts of
bus lines and communication channels are essentially similar.

Buses are also characterized by the way that they interconnect the various components
to which they are attached. A bus that carries signals from a single specific source to a single
specific destination is identified as a point-to-point bus. Point-to-point buses that connect
an external device to a connector are often referred to as cables, as in a printer cable or a
network cable. Thus, the cable that connects the USB port in a personal computer from the
computer to a printer is an example of a point-to-point bus. The internal connectors into
which external cables can be plugged are often called ports. Typical ports on a personal
computer might include parallel printer ports, network ports, USB ports, and firewire
ports.

Alternatively, a bus may be used to connect several points together. Such a bus is known
as a multipoint bus, or sometimes as a multidrop bus. It is also referred to as a broadcast
bus, because the signals produced by a source on the bus are ‘‘broadcast’’ to every other
point on the bus in the same way as a radio station broadcasts to anyone who tunes in. The
bus in a traditional Ethernet network is an example of a broadcast bus: the signal being sent
by a particular computer on the network is received by every other computer connected
to the network. (The operation of Ethernet is discussed in Chapter 13.) In most cases, a
multipoint bus requires addressing signals on the bus to identify the desired destination
that is being addressed by the source at a particular time. Addressing is not required with a
point-to-point bus, since the destination is already known, but an address may be required
if the message is being passed through the destination point to another location. Addressing
is also not required for a multipoint bus where the signal is actually intended to reach all
the other locations at once; this is sometimes the case for buses that are internal to the CPU.
Addressing may be integral to the lines of the bus itself, or may be part of the protocol that
defines the meaning of the data signals being transported by the bus.

Typical point-to-point and multipoint bus configurations are illustrated in Figure 7.8
A parallel bus that carries, say, 64 bits of data and 32 bits of address on separate

data and address lines would require a bus width of 96 lines, even before control lines
are considered. The parallel bus is characterized by high throughput capability because all
the bits of a data word are transferred at once. Virtually every bus internal to the CPU
is a parallel bus, since the high speed is essential to CPU operation. Also most internal
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FIGURE 7.8
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operations and registers are inherently parallel, and the use of serial buses would require
additional circuitry to convert the parallel data to serial and back again. Until recently, the
buses that connected the CPU with memory and various high speed I/O modules such as
disk and display controllers were also parallel, for similar reasons.

The parallel bus does have a number of disadvantages, though. Parallel buses are expen-
sive and consume a considerable amount of space. Connectors used with parallel buses are
also expensive because of the large number of pins involved. External parallel buses, such
as printer cables are also expensive because of the large number of lines required. More
seriously, parallel buses are subject to radio-generated electrical interference between the
different lines at high data transfer rates. The higher the data rate, the worse the interference,
which ultimately limits the speed at which the parallel bus can operate. Additionally, there
is a slight difference in time delay on different lines, known as skew, as signals traverse the
bus. The transfer rate, and thus the clock speed of the bus, is also limited by the requirement
that the data must not change faster than the maximum skew time. Both of these problems
can cause data corruption. Finally, the cost of fiber optic technology makes a parallel optical
cable impractical.

Data on a serial bus is transferred sequentially, one bit at a time. Although you might
think that the throughput of a serial bus would be lower than that of a parallel bus
theoretically capable of the same per line transfer rate, the limitations noted above make
serial bus transmission attractive in many circumstances. Indeed, with advances in serial
bus technology, serial buses are now preferred for many, if not most, applications requiring
high data transfer rates.

Generally, a serial bus has a single data line pair and perhaps a few control lines. (For
simultaneous two-way communication, a second data line pair can be added.) There are
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FIGURE 7.9

Alternative Bus Notations
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no separate address lines in a serial bus. Serial buses are often set up for point-to-point
connection; no addressing is required in this case. If addressing is required in a serial bus
application, the address may be multiplexed with the data. What this means is that the same
line is used for both address and data at different times; if an address is required, for example,
the address might be sent first, one bit at a time, followed by the data. At its simplest, the
serial bus can be reduced to a single data line pair, used for data, control, and addressing.
Using modern materials such as fiber optics, very high transfer rates may be achieved.
In general, control is handled using a bus protocol that establishes agreement as to the
meaning and timing of each signal on the line among the components connected to the line.

It is also possible to design a parallel bus that multiplexes addresses and data on the
same lines, as the PCI bus does, or multiplexes 32-bit data on sixteen data lines, for example.
For example, the Pentium 4 multiplexes 128-bit data words to fit a 64-bit data path on the
Pentium system bus.

To use a bus, the circuits that are connected to the bus must agree on a bus protocol.
Recall from Chapter 1 that a protocol is an agreement between two or more entities that
establishes a clear, common path of communication and understanding between them. A
bus protocol is simply a specification that spells out the meaning of each line and each
signal on each line for this purpose. Thus, a particular control line on a bus might be
defined as a line that determines if the bus is to be used for memory read or memory write.
Both the CPU and memory would have to agree, for example, that a ‘‘0’’ on that particular
line means ‘‘memory read’’ and a ‘‘1’’ on the line means ‘‘memory write’’. The line might
have a name like MREAD/MWRITE, where the bar over MWRITE means that a ‘‘0’’ is the
active state. The bar itself stands for ‘‘NOT’’.3

Buses are frequently notated on diagrams using widened lines to indicate buses.
Sometimes a number is also present on the diagram. The number indicates the number of
separate lines in the bus. Two alternative ways of notating buses in diagrams are shown in
Figure 7.9.

7.6 CLASSIFICATION OF INSTRUCTIONS
Nearly every instruction in a computer performs some sort of operation on one or more
source data values, which results in one or more destination data values. The operation
may be a move or load, it may be an addition or subtraction, it may be an input or output,
or it may be one of many other operations that we have already discussed.

3A pound sign (#) following the name is sometimes used to stand for ‘‘NOT’’ instead.
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Actually, if you think about the classes of instructions that we have discussed, you will
realize that there are only a very few instructions that do not operate on data. Some of these
are concerned with the flow of the program itself, such as unconditional JUMP instructions.
There are also instructions that control the administration of the computer itself; the only
example in the Little Man Computer instruction set is the COFFEE BREAK or HALT that causes
the computer to cease executing instructions. Another example on many computers is the
NO OPERATION instruction that does nothing but waste time (which can be useful when a
programmer wants to create a time delay for some reason).

Most modern computers also provide instructions that aid the operating system
software in its work, by providing security, controlling memory access, and performing
other functions. Because the operating system will frequently be controlling many tasks
and users, these instructions must not be available to the users’ application programs.
Only the operating system can execute these instructions. These instructions are known as
privileged instructions. The HALT instruction is usually a privileged instruction, because
you would not want an individual user to stop the computer while other users are still in
the middle of their tasks.

Computer manufacturers usually group the instruction set into various categories
of instructions, such as data movement instructions, arithmetic instructions, shift and rotate
instructions, input/output instructions, conditional branch instructions, jump instructions,
and special-purpose instructions.

Within each category, the instructions usually have a similar instruction word format,
support similar addressing modes, and execute in a similar way. A typical instruction set,
divided into eight categories, appears in Figure 7.10. This figure represents nearly all the
user-accessible instructions in the Motorola 68000 series of microprocessors used in early
Apple Macintosh computers.4 The privileged instructions are not listed in the diagram,
nor are exception-handling instructions that are used primarily by system programmers.
These constitute an additional two categories for the 68000 series CPUs. Incidentally, notice
that this CPU does not have any I/O instructions. That is because the CPU is designed
in such a way that the move instructions can also be used for I/O. Notice particularly
that, except for the lack of I/O instructions, the categories conform fairly well to the
Little Man Computer instruction set. The additional instructions in this CPU are mostly
variations on instructions that are familiar to you plus special control instructions. The
68000 series CPUs also support a math coprocessor, which adds a category of floating point
arithmetic instructions. The floating point math instructions are built directly into 68000
series processors starting with the 68040 CPU.

Data Movement Instructions (LOAD, STORE, and Other Moves)

Because the move instructions are the most frequently used, and therefore the most basic
to the computer, computer designers try to provide a lot of flexibility in these instructions.
The MOVE category commonly includes instructions to move data from memory to general
registers, from general registers to memory, between different general registers, and, in

4Although the 68000 CPU series is old, it is still used in embedded computer systems. It was selected for this
illustration because of its clean design, with few extraneous bells and whistles.
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some computers, directly between different memory locations without affecting any general
register. There may be many different addressing modes available within a single computer.

Additionally, variations on these instructions are frequently used to handle different
data sizes. Thus, there may be a LOAD BYTE instruction, a LOAD HALF-WORD (2 bytes), a
LOAD WORD (4 bytes), and a LOAD DOUBLE WORD (8 bytes) within the same instruction set.
(Incidentally, the concept of a ‘‘word’’ is not consistent between manufacturers. To some
manufacturers the size of a word is 16 bits; to others, it is 32 or even 64 bits).

The Little Man LOAD and STORE instructions are simple, though adequate, examples
of MOVE instructions. Other than expanding the addressing mode capabilities and adding
multiple word size capabilities, which we have already discussed, the major limitation of
the Little Man LOAD and STORE instructions is the fact that they are designed to operate with
a single accumulator.

When we expand the number of accumulators or general-purpose registers, we must
expand the instruction to determine which register we wish to use. Thus, the instruction
must provide a field for the particular register. Fortunately, it takes very few bits to describe
a register. Even sixteen registers require only 4 bits. On the other hand, if the computer
uses the registers to hold pointers to the actual memory addresses as its standard addressing
mode, the required instruction size may actually decrease, since fewer bits are required for
the address field in this case.

Additionally, it is desirable to have the capability to move data directly between
registers, since such moves do not require memory access and are therefore faster to
execute. In fact, some modern CPUs, including the Sun SPARC and IBM PowerPC
architectures, provide only one pair of LOAD/STORE or MOVE instructions for moving data
between the CPU and memory. All other instructions in these CPUs move and manipulate
data only between registers. This allows the instruction set to be executed much more
rapidly. There is a detailed examination of the Power PC computer and its variants in
Supplementary Chapter 2.

Arithmetic Instructions

Every CPU instruction set includes integer addition and subtraction. Except for a few
special-purpose CPUs, every CPU today also provides instructions for integer multi-
plication and division. Many instruction sets provide integer arithmetic for several different
word sizes. As with the MOVE instructions, there may be several different integer arithmetic
instruction formats providing various combinations of register and memory access in
different addressing modes.

In addition, most current CPUs also provide floating point arithmetic capabilities.
On older PCs with 80386 or earlier processors, a floating point math coprocessor unit
had to be purchased separately and installed in a socket provided for that purpose on the
motherboard of the computer. Because of the expense, most users would not exercise this
option. Extensive floating point calculations are required for many graphics applications,
such as CAD/CAM programs, animation, and computer games; the presence of floating
point instructions reduces the processing time significantly. Floating point instructions
usually operate on a separate set of floating point data registers with 64-, 80-, or 128-bit
word sizes. The modern instruction set usually also contains instructions that convert data
between integer and floating point formats.
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As noted in Chapter 5, most modern CPUs also provide at least a minimal set
of arithmetic instructions for BCD or packed decimal format, which simplifies the
programming of business data processing applications.

Of course, it is not absolutely necessary to provide all these different instruction
options. Multiplication and division can be performed with repeated addition and subtrac-
tion, respectively. In computers there is an even easier technique. In elementary school you
probably learned the ‘‘long’’ multiplication and division methods which multiply or divide
numbers one digit at a time and shift the results until the entire operation is complete.
Because of the simplicity of binary multiplication (1 × 1 = 1, all other results are 0), the
computer can implement the same method using only adds or subtracts together with shift
instructions. Internally, the multiplication and division instructions simply implement in
hardware this same method. Since the fetch-execute cycle requires a single-bit shift and
register add step for each bit in the multiplier, multiply and divide instructions execute
slowly compared to other instructions.

Even the subtract instruction is theoretically not necessary, since we showed in
Chapter 4 that integer subtraction is performed internally by the process of complementing
and adding.

As we already noted, the same is true of BCD and floating point instructions. On
the now rare computers that do not provide floating point instructions, there is usually a
library of software procedures that are used to simulate floating point instructions.

Boolean Logic Instructions

Most modern instruction sets provide instructions for performing Boolean algebra. Com-
monly included are a NOT instruction, which inverts the bits on a single operand, as well as
AND, (inclusive) OR, and EXCLUSIVE-OR instructions, which require two source arguments and
a destination.

Single Operand Manipulation Instructions

In addition to the NOT instruction described in the previous paragraph, most computers
provide other convenient single operand instructions. Most of these instructions operate
on the value in a register, but some instruction sets provide similar operations on memory
values as well. Most commonly, the instruction set will contain instructions for NEGATing a
value, for INCREMENTing a value, for DECREMENTing a value, and for setting a register to zero.
There are sometimes others. On some computers, the increment or decrement instruction
causes a branch to occur automatically when zero is reached; this simplifies the design of
loops by allowing the programmer to combine the test and branch into a single instruction.

Bit Manipulation Instructions

Most instruction sets provide instructions for setting and resetting individual bits in a
data word. Some instruction sets also provide instructions for operating on multiple bits
at once. Bits can also be tested, and used to control program flow. These instructions
allow programmers to design their own ‘‘flags’’ in addition to commonly provided
negative/positive, zero/nonzero, carry/borrow, and overflow arithmetic flags.
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Shift and Rotate Instructions

Shift and rotate operations have been mentioned previously as a means to implement
multiplication and division. Shifts and rotate operations have other programming appli-
cations, and CPU instruction sets commonly provide a variety of different shift and rotate
instructions for the programmer to use. As shown in Figure 7.11, shift instructions move
the data bits left or right one or more bits. Rotate instructions also shift the data bits left or
right, but the bit that is shifted out of the end is placed into the vacated space at the other
end. Depending on the design of the particular instruction set, bits shifted out the end of
the word may be shifted into a different register or into the carry or overflow flag bit, or
they may simply ‘‘fall off the end’’ and be lost.

Two different kinds of shifts are usually provided. The data word being shifted might
be logical or it might be numeric. Logical shift instructions simply shift the data as you
would expect, and zeros are shifted in to replace the bit spaces that have been vacated.
Arithmetic shift instructions are commonly used to multiply or divide the original value
by a power of 2. Therefore, the instruction does not shift the leftmost bit, since that bit
usually represents the algebraic sign of the numeric value—obviously the sign of a number
must be maintained. Left arithmetic shifts do not shift the left bit, but zeros replace the
bits from the right as bits are moved to the left. This will effectively double the numeric
value for each shift of one bit. On the other hand, right arithmetic shifts fill the space of
moved bits with the sign bit rather than with zero. This has the effect of halving the value

FIGURE 7.11
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for each bit shifted, while maintaining the sign of the value. It may not seem obvious to
you that this works correctly, but it becomes more apparent if you recall that negative
numbers in complementary arithmetic count backward starting from the value −1, which
is represented in 2’s complement by all ones.

Rotate instructions take the bits as they exit and rotate them back into the other end of
the register. Some instructions sets include the carry or overflow bit as part of the rotation.
Some CPUs also allow the rotation to take place between two registers. Rotate instructions
can be used to exchange the 2 bytes of data in a 16-bit word, for example, by rotating the
word by 8 bits.

Program Control Instructions

Program control instructions control the flow of a program. Program control instructions
include jumps and branches, both unconditional and conditional, and also subroutine
CALL and RETURN instructions. Various conditional tests are provided, including those with
which you are already familiar: branch on zero, branch on nonzero, branch on positive,
branch on negative, branch on carry, and so on.

CALL instructions, sometimes known as JUMP SUBROUTINE instructions, are used to
implement subroutine, procedure and function calls. Thus, CALL instructions are important
as a means to enable program modularization.

From your programming experience, recall what happens when your program calls a
subroutine or procedure. The program jumps to the starting location of the subroutine

FIGURE 7.12
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instructions are illustrated in Figure 7.12.
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Different computers use different methods to save the return address. One common
method is to store the return address on a memory stack; the RETURN instruction operates
by removing the address from the stack and moving it to the program counter. The use of
stacks is discussed briefly in the next section. Another method for performing CALLs and
RETURNs is explored in Exercise S3.14.

Stack Instructions

One of the most important data storage structures in programming is the stack. A stack
is used to store data when the most recently used data will also be the first needed. For
that reason, stacks are also known as LIFO, for last-in, f irst-out, structures. As an analogy,
stacks are frequently described by the way plates are stored and used in a cafeteria. New
plates are added to the top of the stack, or pushed, and plates already on the stack move
down to make room for them. Plates are removed from the top of the stack, or popped,
so that the last plates placed on the stack are the first removed. Similarly, the last number
entered onto a computer memory stack will be the first number available when the stack is
next accessed. Any data that must be retrieved in reverse order from the way it was entered
is a candidate for the use of stacks. Figure 7.13 shows the process of adding to and removing
numbers from the stack.

Stacks are an efficient way of storing intermediate data values during complex
calculations. In fact, storage in Hewlett-Packard calculators is organized around a stack of
memory. As we already noted, stacks are also an excellent method for storing the return
addresses and arguments from subroutine calls. Program routines that are recursive must
‘‘call themselves.’’ Suppose the return address were stored in a fixed location, as shown in
Figure 7.14a. If the routine is called a second time, from within itself, Figure 7.14b, the
original returning address (56) is lost and replaced by the new return address (76). The
program is stuck in an infinite loop between 76 and 85. In Figure 7.15, the return address is
stored on a stack. This time when the routine is again called, the original address is simply
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FIGURE 7.14
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pushed down the stack, below the most recent address. Notice that the program ‘‘winds its
way back out’’ in the reverse order from which the routines were entered. This is exactly
what we want: we always return from the last called subroutine to the one just previous.
J. Linderman of Bentley University notes that the same technique would be used to back
out of a maze for which the explorer has written down each turn that she made after
entering.

There are many other interesting applications for stacks in computers, but further
discussion is beyond the scope of this book. The curious reader is referred to For Further
Reading for references.

Computers do not generally provide special memory for stack use, although many
machines provide special STACK instructions to simplify the bookkeeping task. Instead,
the programmer sets aside one or more blocks of regular memory for this purpose. The
‘‘bottom’’ of the stack is a fixed memory location, and a stack pointer points to the ‘‘top’’
of the stack, that is, the most recent entry. This is shown in Figure 7.16. A new entry is
added to the stack, or pushed, by incrementing the stack pointer, and then storing the
data at that location. An entry is removed from the stack, or popped, by copying the value
pointed to and then decrementing the stack pointer. If a register is provided for the stack
pointer, register-deferred addressing can be used for this purpose. (You should note that
memory is drawn upside-down in Figure 7.16 so that incrementing the stack pointer moves
it upward.)

Many instruction sets provide PUSH and POP instructions as direct support for stacks,
but stacks can be implemented easily without special instructions. (Exercise S3.15 illustrates
one solution.) Some computers also specify the use of a particular general-purpose register
as a stack pointer register.
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FIGURE 7.16

Using a Block of Memory as a Stack
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Multiple Data Instructions

Multimedia applications rank high in com-
putational demands on the CPU in modern
PCs and workstations. In response to the
demand, CPU designers have created special-
ized instructions that speed up and simplify
multimedia processing operations.

Multimedia operations are commonly
characterized by a number of simple oper-
ations applied identically to every piece of
data in the set. As a simple example, the
brightness of an image might be modified
by multiplying the value of every pixel in
the image by a common scale factor. Or, a

measure of similarity between two images could be established by subtracting all the pixel
values in one image from the corresponding pixel values in a second image and averaging
the results.

Multiple data instructions perform a single operation on multiple pieces of data
simultaneously. For this reason they are also known as SIMD instructions. SIMD
stands for Single Instruction, Multiple Data. The SIMD instructions provided on Intel
Pentium processors are typical. The processor provides eight 128-bit registers specifically
for SIMD instruction use and also allows the use of the standard 64-bit floating point
registers for this purpose. The Pentium CPU SIMD instructions can process from two
64-bit integers up to sixteen 8-bit integer arithmetic operations or up to two 64-bit
floating point number operations simultaneously as well as providing instructions for
packing and unpacking the values and moving them between registers and memory, and a

FIGURE 7.17

Operation of a 4-Wide SIMD ADD Instruction

+ + + +
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1
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2
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A1 + A2 B1 + B2 C1 + C2 D1 + D2
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variety of other related instructions. Other ven-
dors, including AMD, IBM, Sun, Transmeta, and
VIA provide compatible or similar SIMD instruc-
tions. The IBM Cell processor, which serves as the
CPU in the Sony Playstation 3, provides a par-
ticularly powerful SIMD capability that accounts
for much of the Playstation’s graphics strength.
Figure 7.17 shows the operation of a SIMD ADD

instruction.
Although multimedia operations are a primary

application for these instructions, these instructions
can be applied to any vector or array processing
application, and are useful for a number of purposes
in addition to multimedia processing, including
voice-to-text processing, the solutions to large-scale
economics problems, weather prediction, and data
encryption and decryption.
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Other Instructions

The remainder of the instructions includes input/output instructions and machine con-
trol instructions. In most systems both groups are privileged instructions. Input/output
instructions are generally privileged instructions because we do not want input and output
requests from different users and programs interfering with each other. Consider, for
example, two users requesting printer output on a shared printer at the same time, so that
each page of output is divided back and forth between the two users. Obviously, such
output would not be acceptable. Instead, these requests would be made to the operating
system that controls the printer, which would set priorities, maintain queues, and service
the requests. We will deal with the subject of input/output in Chapters 9 and 10, and with
operating systems in Chapters 15 through 18.

7.7 INSTRUCTION WORD FORMATS
Instructions in the Little Man Computer were made up entirely of three-digit decimal
numbers, with a single-digit op code, and a two-digit address field. The address field
was used in various ways: for most instructions, the address field contained the two-digit
address where data for the instruction could be found (e.g., LOAD) or was to be placed
(STORE). In a few instructions, the address field was unused (e.g., HALT). For the branch
instructions, the address field space was used instead to hold the address of the next
instruction to be executed. For the I/O instructions, the address field became a sort of
extension of the op code. In reality, the I/O address field contained the ‘‘address’’ of an I/O
device, in our case 01 for the in basket and 02 for the out basket.

The instruction set in a typical real CPU is similar. Again, the instruction word can be
divided into an op code and zero or more address fields. A simple 32-bit instruction format
with one address field might look like that shown in Figure 7.18. In this example, the 32
bits are divided into an 8-bit op code and 24 bits of address field.

In the Little Man Computer, reference to an address specifically referred to a mem-
ory address. However, we have already noted that the computer might have several
general-purpose registers and that it would be necessary for the programmer to select a
particular register to use as a part of the instruction. To be more general, we will use the
word ‘‘address’’ to refer to any data location, whether it is a user-accessible register or a
memory location. We will use the more specific expression memory address when we want
to specify that the address is actually a memory location.

FIGURE 7.18

A Simple 32-bit Instruction Format

op code Address field

10101010 101010101010101010101010

bit 0 7 8 31

In general, computer instructions that manip-
ulate data require the specification of at least two
locations for the data: one or more source loca-
tions and one destination location. These locations
may be expressed explicitly, as address fields in the
instruction word, or implicitly, as part of the defini-
tion of the instruction itself. The instruction format
of the Little Man LOAD instruction, for example,
takes the data from the single address field as the
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FIGURE 7.19

Typical Two Operation Register Move Format

op code
source
register

destination
register

MOVE 5 10

explicit source address. Explicit addresses in the Little
Man Computer are always memory addresses. The des-
tination address in this case is implicit: this instruction
always uses the accumulator register as a destination.
The Little Man ADD and SUBTRACT instructions require two
sources and a destination. Source data addressed by the
instruction’s single explicit address field is added to the
value in the implicitly stated accumulator, with the result
placed implicitly in the accumulator.

For a particular instruction, the source(s) and destination may be the same or may be
different. For example, an instruction that complements a value to change its sign would
usually be done ‘‘in place’’; that is, the source and destination register or memory location
is usually the same. The Little Man ADD instruction uses the accumulator register both as
a source for one of the numbers to be added and as the destination for the result. On
the other hand, when we move data, using a LOAD or STORE or some other type of MOVE

operation, two operands are required. The source and destination are obviously different,
or the move would not be useful! A register-to-register MOVE, for example, might use an
instruction format such as that shown in Figure 7.19. In the figure, the instruction word
consists of an opcode and two fields that point to registers. As shown, this instruction
would move data from register 5 to register 10. Unless the operation is done in place, the
sources are normally left unchanged by the instruction, whereas the destination is almost
always changed.

The source and destination addresses may be registers or memory locations. Since
most modern computers have multiple registers available to the user it is usually necessary
to provide at least two explicit address fields, even for an address-register move, since the
number of the particular register must be specified in the instruction.

The sources and destinations of data for an instruction, whether implicit or explicit, are
also known as operands. Thus, instructions that move data from one place to another have
two operands: one source operand and one destination operand. Arithmetic operations
such as ADD and SUBTRACT require three operands. Explicit address fields are also known as
operand fields.

Most commonly, instructions that manipulate data will have one address field for
operations that happen in place, and two or three address fields for move and arithmetic
operations. On some computers one or more of the addresses may be implicit, and
no address field is required for the implicit address. However, in modern computers
most address references are explicit, even for register addresses, because this increases
the generality and flexibility of the instruction. Thus, most computer instructions will
consist of an op code and one, two, or three explicit address fields. Some textbooks refer
to instructions with one, two, or three explicit address fields as unary, binary, or ternary
instructions, respectively.

7.8 INSTRUCTION WORD REQUIREMENTS
AND CONSTRAINTS

The size of the instruction word, in bits, is dependent on the particular CPU architecture,
particularly by the design of its instruction set. The size of the instruction word may be
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fixed at, say, 32 bits, or it may vary depending on the usage of the address fields. The Sun
Sparc CPU, for example, takes the former approach: every instruction word is exactly 32
bits wide. Conversely, some of the basic instruction words for the x86 microprocessor line
used in the common PC, for example, are as small as 1 or 2 bytes long, but there are some
instructions in the Pentium microprocessor that are as many as 15 bytes long. The IBM
Series z architecture is an evolutionary extension of upward compatible CPU architectures
dating back to the 1960s. The legacy instructions in the IBM Series z CPU are mostly 4 bytes,
or 32 bits long, with a few 2-byte or 6-byte long instructions. To expand the architecture to
64-bit addressing and data, IBM added a number of new instructions. These are all 6 bytes
in length.

The challenge in establishing an instruction word size is the need to provide both
enough op code bits to support a reasonable set of different instructions as well as enough
address field bits to meet the ever growing demand for increasing amounts of addressable
memory. Consider again, for example, the extremely straightforward instruction format
shown in Figure 7.18. This format assumes a single address field with a 32-bit fixed length
instruction. With the division shown, we have access to 28 = 256 different instructions and
224 = approximately 16 million memory addresses.

Even if the designer creates a smaller instruction set, with fewer op codes, the amount
of memory that may be specified in a 32-bit instruction word is severely limited by modern
standards. Most of today’s computers support an address size of at least 32 bits. Many
newer machines support 64-bit addresses.

Further, with additional registers, the simple instruction format shown in Figure 7.18
must be expanded to handle explicit addressing of multiple registers, including moves
between registers, as well as identifying the proper register in operations between registers
and memory. In short, the simple instruction format used in the Little Man Computer is
inadequate for the instruction sets in modern computers.

The use of instructions of different lengths is one of several techniques developed
by instruction set designers to allow more flexibility in the design of the instruction set.
Simple instructions can be expressed in a small word, perhaps even a single byte, whereas
more complicated instructions will require instruction words many bytes long. Longer
instructions are stored in successive bytes of memory. Thus, a Little Man HALT, IN, or OUT

instruction would be stored in a single location. A LOAD might require two successive
locations to store memory addresses of five digits or three locations for an eight-digit
address. The use of variable length instructions is efficient in memory usage, since each
instruction is only as long as it needs to be.

There are a number of important disadvantages to variable length instructions,
however. Most modern computers increase CPU processing speed by ‘‘pipelining’’
instructions, that is, by fetching a new instruction while the previous one is still completing
execution, similar to the processing on an automobile assembly line. Variable length
instructions complicate pipelining, because the starting point of the new instruction is
not known until the length of the previous instruction has been determined. If you extend
this idea to multiple instructions, you can see the difficulty of maintaining a smooth
assembly line. This issue is discussed in more detail in Chapter 8. Because pipelining has
become so important to processing speed in modern computers, the use of variable length
instructions has fallen out of favor for new CPU designs. Nearly all new CPU designs use
fixed length instructions exclusively.
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As we mentioned previously in our discussion of memory size, an effective alternative
to large instructions or variable instruction words is to store the address that would
otherwise be located in an instruction word address field at some special location that can
hold a large address, such as a general purpose register, and use a small address field within
the instruction to point to the register location. There are a number of variations on this
theme. This technique is used, even on systems that provide variable length instructions. A
single CPU might provide a number of different variations to increase the flexibility of the
instruction set. This flexibility also includes the ability to code programs that process lists
of data more efficiently. The various ways of addressing registers and memory are known
as addressing modes. The Little Man Computer provides only a single mode, known as
direct addressing. The alternative just described is called register deferred addressing. An
example of a deferred LOAD instruction is shown in Figure 7.20. This instruction would load
the data value stored at memory address 3BD421 into general purpose register 7. There
are a number of addressing modes discussed in detail in Supplementary Chapter 3. The
use of different addressing modes is the most important method for minimizing the size of
instruction words and for writing efficient programs.

Examples of instruction formats from two different CPUs are shown in Figure 7.21.
There may be several different formats within a single CPU. We have shown only a partial
set for each machine, although the SPARC set is complete except for small variations. (There
are twenty-three different IBM formats in all.) It is not necessary that you understand every
detail in Figure 7.21, but it is useful to note the basic similarities between the instruction
set formats in different computers.

FIGURE 7.20

Deferred Register Addressing
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FIGURE 7.21

Examples of Instruction Formats

op code Register to registerRsrc Rdst

op code Rsrc Xdst Bdst Ddst
Register to
indexed storage

op code Register to storageRsrc Rdst Bdst Ddst

op code Bdst Ddst Single operand

op code L Bsrc Dsrc Bdst Ddst Storage to storage

op code CALL instruction

31 29 0

Relative displacement

op code op code LOAD high 22 bits immediate

31 29 25 22 0

Rdst Immediate data

op code Test
cond op code

31 29 28 25 22 0

a Relative displacement BRANCH

INTEGER instructions
(also, with 1 in bit 14, and
bits 0-13 immediate address)

FLOATING POINT instructions

op code op code

31 14192529 13 5 0

Rdst Rsrc1 Rsrc20 Alt space

IBM mainframe formats

op code op code

31 14192529 5 0

Rdst Rsrc1 Rsrc2op code (FP)

0 8 12 15

0 8 12 16 20 31

0 8 12 16 20 31

0 8 16 20 32 36 47

0 16 20 31

Code:
R = Data register
B = Base register
X = Index register
D = Relative displacement
L = Length

SPARC formats
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SUMMARY AND REVIEW
Functionally, the operation of the CPU, together with memory, is essentially identical to
that of the Little Man Computer. For each component of the Little Man Computer, there
is a corresponding component in the computer unit.

Within the CPU, the most important components are registers. Data may be moved
between registers, may be added or subtracted from the current contents of a register, and
can be shifted or rotated within a register or between registers. Each instruction in the
instruction set is executed by performing these simple operations, using the appropriate
choice of registers and operations in the correct sequence for the particular instruction.
The sequence of operations for a particular instruction is known as its fetch-execute cycle.
A fetch-execute cycle exists for every instruction in the instruction set. Fetch-execute
instruction cycles constitute the basis for all program execution in the computer. The
sequence for each instruction corresponds closely to the actions taken by the Little Man in
performing a similar instruction.

The operation of memory is intimately related to two registers in particular, the
memory address register and the memory data register. Addresses placed into the MAR
are decoded in memory, resulting in the activation of a single memory address line. At
the proper instant, data can then be transferred in either direction between that memory
location and the MDR. The direction is specified by a read/write control line. The number
of available memory locations is established by the size of the MAR; the data word size is
established by the size of the MDR.

Interconnections between various parts of a computer are provided by buses. There
are many different types of buses. Buses connect different modules within the CPU. They
also connect the CPU to memory and to the I/O peripherals. Buses can connect two
components in a point-to-point configuration or may interconnect several modules in a
multipoint configuration. Buses may be parallel or serial. In general, the lines on buses
carry signals that represent data, address, and control functions.

Instructions fall naturally into a small number of categories: moves, integer arith-
metic, floating point arithmetic, data flow control, and so forth. There are also privileged
instructions, which control functions internal to the CPU and are accessible only to the
operating system.

Instructions in a real CPU are made up of an op code and up to three address field
operands. The size of the instruction word is CPU dependent. Some computers use variable
length instruction words. Other computers use a fixed length instruction, most commonly,
32 bits in length.

FOR FURTHER READING
There are many excellent textbooks that describe the implementation and operation
of the components of the computer system. A brief, but very clear, explanation of the
fetch-execute cycle can be found in Davis and Rajkumar [DAV02]. Three classic engineering
textbooks that discuss the topics of this chapter in great detail are those authored by Stallings
[STAL05], Patterson and Hennessy [PATT07], and Tanenbaum [TAN05]. Wikipedia offers
a brief, but clear, introduction to the principal concepts of von Neumann architecture.
There are many books and papers describing various components and techniques associated
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with the implementation and operation of the CPU and memory. Also see the For Further
Reading section in Chapter 8 for more suggestions.

KEY CONCEPTS AND TERMS
accumulator
address field
arithmetic/logic unit (ALU)
arithmetic shift
broadcast bus
bus
bus interface bridge
bus protocol
cable
central processing unit

(CPU)
control unit (CU)
dynamic RAM
EEPROM (electronically

erasable programmable
ROM)

explicit source address
fetch-execute instruction

cycle
flag
flash memory

full-duplex line
general-purpose register
half-duplex line
implicit source address
instruction pointer
instruction register (IR)
line (bus)
logical shift
memory
memory address register

(MAR)
memory data register

(MDR)
memory management unit
multiplex
multipoint bus
nonvolatile memory
operands
parallel bus
point-to-point bus
port

program counter (PC)
program counter register
Program Status Word

(PSW)
privileged instruction
RAM
register
register file
ROM
rotate operation
serial bus
shift operation
SIMD
simplex line
stack
stack pointer
static RAM
status register
subroutine call and return
user-visible register
volatile memory

READING REVIEW QUESTIONS
7.1 What does ALU stand for? What is its corresponding component in the Little

Man Computer? What does CU stand for? What is its corresponding LMC
component?

7.2 What is a register? Be precise. Name at least two components in the LMC that
meet the qualifications for a register. Name several different kinds of values that
a register might hold.

7.3 What is the purpose of the instruction register? What takes the place of the
instruction register in the LMC?

7.4 When a value is copied from one register to another, what happens to the value
in the source register? What happens to the value in the destination register?

7.5 There are four primary operations that are normally performed on a register.
Describe each operation.

7.6 Explain the relationship between the memory address register, the memory data
register, and memory itself.

7.7 If the memory register for a particular computer is 32 bits wide, how much
memory can this computer support?
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7.8 What is the difference between volatile and nonvolatile memory? Is RAM volatile
or nonvolatile? Is ROM volatile or nonvolatile?

7.9 Registers perform a very important role in the fetch-execute cycle. What is the
function of registers in the fetch-execute instruction cycle?

7.10 Explain each of the fetch part of the fetch-execute cycle. At the end of the fetch
operation, what is the status of the instruction? Specifically, what has the fetch
operation achieved that prepares the instruction for execution? Explain the
similarity between this operation and the corresponding operation performed
steps performed by the Little Man.

7.11 Once the fetch operation is complete, what is the first step of the execution phase
for any instruction that accesses a memory address for data (e.g., LOAD, STORE)?

7.12 Using the ADD instruction as a model, show the fetch-execute cycle for a SUBTRACT

instruction.

7.13 Assume the following values in various registers and memory locations at a given
point in time:
PC: 20 A: 150 Memory location 20: 160 [ADD 60] Memory location 60: 30.
Show the values that are stored in each of the following registers at the completion
of the instruction: PC, MAR, MDR, IR, and A.

7.14 Define a bus. What are buses used for?

7.15 What three types of ‘‘data’’ might a bus carry?

7.16 Explain how data travels on a bus when the bus is simplex. Half-duplex.
Full-duplex.

7.17 What is the difference between a multipoint bus and a point-to-point bus? Draw
diagrams that illustrate the difference.

7.18 Briefly describe each of the major disadvantages of parallel buses.

7.19 Which Little Man Computer instructions would be classified as data movement
instructions?

7.20 What operations would you expect the arithmetic class of instructions to
perform?

7.21 Explain the difference between SHIFT and ROTATE instructions.

7.22 What do program control instructions do? Which LMC instructions would be
classified as program control instructions?

7.23 What is a stack? Explain how a stack works. Create a diagram that shows how
PUSH and POP instructions are used to implement a stack.

7.24 What is a privileged instruction? Which LMC instructions would normally be
privileged?

7.25 Show a 32-bit instruction format that allows 32 different op codes. How many
bits are available for addressing in your format?

7.26 Show an instruction format that could be used to move data or perform
arithmetic between two registers. Assume that the instruction is 32 bits wide and
that the computer has sixteen general-purpose data registers. If the op code uses
8 bits, how many bits are spares, available for other purposes, such as special
addressing techniques?
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EXERCISES
7.1 Draw side-by-side flow diagrams that show how the Little Man executes a store

instruction and the corresponding CPU fetch-execute cycle.

7.2 Suppose that the following instructions are found at the given locations in
memory:

20 LDA 50
21 ADD 51
50 724
51 006

a. Show the contents of the IR, the PC, the MAR, the MDR, and A at the
conclusion of instruction 20.

b. Show the contents of each register as each step of the fetch-execute cycle is
performed for instruction 21.

7.3 One large modern computer has a 48-bit memory address register. How much
memory can this computer address?

7.4 Why are there two different registers (MAR and MDR) associated with memory?
What are the equivalents in the Little Man Computer?

7.5 Show the steps of the CPU fetch-execute cycle for the remaining instructions in
the Little Man instruction set.

7.6 Most of the registers in the machine have two-way copy capability; that is, you
can copy to them from another register, and you can copy from them to another
register. The MAR, on the other hand, is always used as a destination register;
you only copy to the MAR. Explain clearly why this is so.

7.7 a. What is the effect of shifting an unsigned number in a register two bits to
the left? One bit to the right? Assume that 0s are inserted to replace bit
locations at the end of the register that have become empty due to the shift.

b. Suppose the number is signed, that is, stored using 2’s complement. Now
what is the effect of shifting the number?

c. Suppose that the shift excludes the sign bit, so that the sign bit always
remains the same. Furthermore, suppose that during a right shift, the sign
bit is always used as the insertion bit at the left end of the number (instead
of 0). Now what is the effect of these shifts?

7.8 If you were building a computer to be used in outer space, would you be likely
to use some form of flash memory or RAM as main memory? Why?

7.9 Using the register operations indicated in this chapter, show the fetch-execute
cycle for an instruction that produces the 2’s complement of the number in A.
Show the fetch-execute cycle for an instruction that clears A (i.e., sets A to 0).

7.10 Many older computers used an alternative to the BRANCH ON CONDITION instruction
called SKIP ON CONDITION that worked as follows: if the condition were true, the
computer would skip the following instruction and go on to the one after;
otherwise, the next instruction in line would be executed. Programmers usually
place a jump instruction in the ‘‘in-between’’ location to branch on a FALSE
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condition. Normally, the skip instruction was designed to skip one memory
location. If the instruction set uses variable length instructions, however, the
task is more difficult, since the skip must still skip around the entire instruction.
Assume a Little Man mutant that uses a variable length instruction. The op code
is in the first word, and there may be as many as three words following. To make
life easy, assume that the third digit of the op code word is a number from 1 to
4, representing the number of words in the instruction. Create a fetch-execute
cycle for this machine.

7.11 Suppose that the instruction format for a modified Little Man Computer
requires two consecutive locations for each instruction. The high-order digits of
the instruction are located in the first mail slot, followed by the low-order digits.
The IR is large enough to hold the entire instruction and can be addressed as
IR [high] and IR [low] to load it. You may assume that the op code part of the
instruction uses IR [high] and that the address is found in IR [low]. Write the
fetch-execute cycle for an ADD instruction on this machine.

7.12 The Little Prince Computer (LPC) is a mutant variation on the LMC. (The LPC
is so named because the differences are a royal pain.) The LPC has one additional
instruction. The extra instruction requires two consecutive words:

0XX
0YY

This instruction, known as move, moves data directly from location XX to
location YY without affecting the value in the accumulator. To execute this
instruction, the Little Prince would need to store the XX data temporarily. He
can do this by writing the value on a piece of paper and holding it until he
retrieves the second address. The equivalent in a real CPU might be called the
intermediate address register, or IAR. Write the fetch-execute cycle for the LPC
MOVE instruction.

7.13 Generally, the distance that a programmer wants to move from the current
instruction location on a BRANCH ON CONDITION is fairly small. This suggests that it
might be appropriate to design the BRANCH instruction in such a way that the new
location is calculated relative to the current instruction location. For example,
we could design a different LMC instruction 8CX. The C digit would specify the
condition on which to branch, and X would be a single-digit relative address.
Using 10’s complement, this would allow a branch of −5 to +4 locations from
the current address. If we were currently executing this instruction at location 24,
803 would cause a branch on negative to location 27. Write a fetch-execute cycle
for this BRANCH ON NEGATIVE RELATIVE instruction. You may ignore the condition
code for this exercise, and you may also assume that the complementary addition
is handled correctly. The single-digit address, X, is still found in IR [address].

7.14 As computer words get larger and larger, there is a law of diminishing returns:
the speed of execution of real application programs does not increase and may,
in fact, decrease. Why do you suppose that this is so?

7.15 Most modern computers provide a large number of general-purpose registers
and very few memory access instructions. Most instructions use these registers to
hold data instead of memory. What are the advantages to such an architecture?
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7.16 Create the fetch-execute cycle for an instruction that moves a value from general
purpose register-1 to general purpose register-2. Compare this cycle to the cycle
for a LOAD instruction. What is the major advantage of the MOVE over the LOAD?

7.17 What are the trade-offs in using a serial bus versus a parallel bus to move data
from one place to another?

7.18 Until recently, most personal computers used a parallel PCI bus as a backplane
to interconnect the various components within the computer, but the PCI bus
was rarely, if ever, used to connect external devices to the computer. Modern
computers often use a serial adaptation of the PCI bus called PCI Express, which
is sometimes made available as a port to connect external devices. Identify at
least three shortcomings of the original PCI bus that made external use of the
bus impractical. Explain how the PCI Express bus overcomes each of these
limitations.

7.19 Explain why skew is not a factor in a serial bus.

7.20 Point-to-point buses generally omit lines for addressing. Why is this possible?
Suppose a point-to-point bus is used to connect two components together where
one of the components actually represents multiple addresses. How could a bus
with no address lines be used to satisfy the requirement for different addresses
in this case?
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8.0 INTRODUCTION
The Little Man Computer design, implemented in binary form, may be sufficient to
implement any program, but it is not necessarily a convenient way to do so. It is like
traveling overseas by freight steamer instead of by fast plane: it might be fun, but it
sure ain’t the easiest way to get the job done! Computers today are more sophisticated
and flexible, providing a greater variety of instructions, improved methods of
addressing memory and manipulating data, and implementation techniques that
allow instructions to be executed quickly and efficiently.

In Chapter 7, we discussed the principal features of a CPU: the basic architecture
of the CPU, register concept, instruction set, instruction formats, means of addressing
memory, and the fetch-execute cycle. In this chapter we will investigate some of the
additional design features and implementation techniques that help to give the modern
CPU its power.

It probably won’t surprise you to know that there are a large number of different
ways of performing these tasks. At the same time, it is important to recognize, right
from the outset, that additional features and a particular choice of organization do
not change the fundamental operation of the computer as we have already described
it. Rather, they represent variations on the ideas and techniques that we have already
described. These variations can simplify the programmer’s task and possibly speed up
program execution by creating shortcuts for common operations. However, nothing
introduced in this chapter changes the most important idea: that the computer is
nothing more than a machine capable of performing simple operations at very high
speeds.

The first section investigates different CPU architectures, with particular focus on
the modern manifestation and organization of traditional architectures The section
also briefly considers two interesting recent architectures, the Transmeta VLIW and
Intel EPIC architectures.

In the second section we consider various CPU features and enhancements, with
an emphasis on alternatives to the traditional control unit/ALU CPU organization.
We explain how these alternative organizations address major bottlenecks that limit
CPU execution speed, with a number of innovative techniques for improving CPU
performance.

Section 8.3 looks at memory enhancements. The most significant improvement
in memory access speed is cache memory. Cache memory is discussed in considerable
depth.

In Section 8.4, we present a general model that includes the features, enhancements,
and techniques described in Section 8.2. This model represents the organization of
most current CPUs.

Section 8.5 considers the concept of multiprocessing: a computer organization
consisting of multiple CPUs directly connected together, sharing memory, major buses,
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and I/O. This organization adds both performance enhancement and additional design
challenges. We also briefly introduce a complementary feature, simultaneous multithread-
ing. Two types of multiprocessors are presented: the symmetrical multiprocessor is more
common. It is well-suited for general purpose computing. An alternative, the master-slave
multiprocessor is useful for computer applications characterized by computationally
intense, repetitive operations, such as graphics processing.

Finally, in Section 8.6, we present a brief commentary on the implementation of the
CPU organization that we have discussed in previous sections.

It is not our intention to overwhelm you in this chapter with myriad details to
memorize, nor to help you create a new career as an assembly language programmer or
computer hardware engineer, but this chapter will at least introduce you to the major
concepts, methods, and terminology used in modern computers. When reading this
chapter, remember to keep your focus on the larger picture: the details are just variations
on a theme.

8.1 CPU ARCHITECTURES

Overview

A CPU architecture is defined by the basic characteristics and major features of the
CPU. (CPU architecture is sometimes called instruction set architecture (ISA).) These
characteristics include such things as the number and types of registers, methods of
addressing memory, and basic design and layout of the instruction set. It does not include
consideration of the implementation, instruction execution speed, details of the inter-
face between the CPU and associated computer circuitry, and various optional features.
These details are usually referred to as the computer’s organization. The architecture may
or may not include the absence or presence of particular instructions, the amount of
addressable memory, or the data widths that are routinely processed by the CPU. Some
architectures are more tightly defined than others.

These ideas about computer architecture should not surprise you. Consider house
architecture. A split-level ranch house, for example, is easily recognized by its general
characteristics, even though there may be wide differences in features, internal organization,
and design from one split-level ranch to the next. Conversely, an A-frame house or a
Georgian house is recognized by specific, well-defined features that must be present in the
design to be recognized as A-frame or Georgian.

There have been many CPU architectures over the years, but only a few with longevity.
In most cases, that longevity has resulted from evolution and expansion of the architecture
to include new features, always with protection of the integrity of the original architecture,
as well as with improved design, technology, and implementation of the architecture.

At present, important CPU architectural families include the IBM mainframe series,
the Intel x86 family, the IBM POWER/PowerPC architecture, and the Sun SPARC family.
Each of these is characterized by a lifetime exceeding twenty years. The original IBM
mainframe architecture is more than forty-five years old. Architectural longevity protects
the investment of users by allowing continued use of program applications through system
upgrades and replacements.
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Most CPU architectures today are variations on the traditional design described in
Chapter 7.1 There have also been a few interesting attempts to create other types, including
a stack-based CPU with no general-purpose registers, and two recent architectures called
very long instruction word (VLIW) from Transmeta and explicitly parallel instruction
computers (EPIC) from Intel. VLIW and EPIC architectures are too new to assess their
long-term value.

It should be noted that each of these architectures is consistent with the broad
characteristics that define a von Neumann computer.

Traditional Modern Architectures

Early CPU architectures were characterized by comparatively few general-purpose registers,
a wide variety of memory addressing techniques, a large number of specialized instructions,
and instruction words of varying sizes. Researchers in the late 1970s and early 1980s
concluded that these characteristics inhibited the efficient organization of the CPU. In
particular, their studies revealed that

■ Specialized instructions were used rarely, but added hardware complexity to the
instruction decoder that slowed down execution of the other instructions that are
used frequently.

■ The number of data memory accesses and total MOVE instructions could be
reduced by increasing the number of general-purpose registers and using those
registers to manipulate data and perform calculations. The time to locate and
access data in memory is much longer than that required to process data in a
register and requires more steps in the fetch-execute cycle of instructions that
access memory than those that don’t.

■ Permitting the use of general purpose registers to hold memory addresses, also,
would allow the addressing of large amounts of memory while reducing
instruction word size, addressing complexity, and instruction execution
time, as well as simplifying the design of programs that require indexing.
Reducing the number of available addressing methods simplifies CPU design
significantly.

■ The use of fixed-length, fixed-format instruction words with the op code and
address fields in the same position for every instruction would allow instructions
to be fetched and decoded independently and in parallel. With variable-length
instructions it is necessary to wait until the previous instruction is decoded in
order to establish its length and instruction format.

The Intel x86 is characteristic of older architectures; it has comparatively few general
purpose registers, numerous addressing methods, dozens of specialized instructions, and
instruction word formats that vary from 1 to 15 bytes in length. In contrast, every instruction

1Historically, traditional architecture was loosely categorized into one of two types, CISC (complex
instruction set computers) or RISC (reduced instruction set computers). In modern times, the dividing line
between CISC and RISC architectures has become increasingly blurred as many of the features of each have
migrated across the dividing line. Because modern architectures contain the major features of both, it is no longer
useful to distinguish one from the other.



244 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

in the newer Sun SPARC architecture is the same 32-bit length; there are only five primary
instruction word formats, shown earlier in Figure 7.21; and only a single, register-based,
LOAD/STORE memory addressing mode.

VLIW and EPIC Architectures

VLIW (very long instruction word) and EPIC (explicitly parallel instruction computer)
architectures represent recent approaches to architectural design. VLIW architecture is
represented by the Transmeta Crusoe and Efficeon families of CPU processors. The Intel
Itanium IA-64 series is based on EPIC architecture. The basic goal of each of these
architectures is to increase execution speed by processing instruction operations in parallel.
The primary difficulty in doing so results from the inherently sequential order of the
instructions in a program. In particular, the data used in an instruction may depend on
the result from a previous instruction. This situation is known as a data dependency. Also,
branches and loops may alter the sequence, resulting in control dependency. Data and
control dependencies are discussed in more depth in Section 8.2.

The Transmeta Crusoe architecture is based on a 128-bit instruction word called
a molecule. The molecule is divided into four 32-bit atoms. Each atom represents an
operation similar to those of a normal 32-bit instruction word, however, the atoms are
designed in such a way that all four operations may be executed simultaneously in separate
execution units. Figure 8.1 shows an example of a typical molecule.

The Crusoe CPU provides 64 general-purpose registers to assure adequate register
space for rapid register-to-register processing.

Although a programmer could write programs directly for a Crusoe CPU with the
128-bit word instruction set, that is not the primary goal of the Crusoe architecture. Indeed,
the fine details of the instruction set have not been publicly released to date. Instead, the
Crusoe CPU is intended for use with a specific software program that translates instruction
sets on the fly from other types of CPUs to the Crusoe instruction set for execution on
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the Crusoe CPU. This translator is called a code-morphing layer.2 It is a fundamental
component within the Crusoe architecture. It is permanently resident in memory and
processes every instruction prior to execution. In addition to instruction translation,
the code-morphing layer also reorders the instructions as necessary to eliminate data
dependencies and other bottlenecks. Although this sounds like an inefficient way to process
instructions, Transmeta has demonstrated that the simplicity of its VLIW design and the
sophistication of its code-morphing software allow execution of the Pentium instruction
set at speeds comparable to the native execution speeds of a Pentium processor. Transmeta
claims, with apparent justification, that this simplicity allows a much simpler CPU
design, with fewer transistors and a much lower power consumption, resulting from the
elimination of complicated hardware implementation features commonly used to achieve
high execution speeds in a conventional CPU design. The Efficeon CPU extends the Crusoe
architecture to 256 bits, representing eight 32-bit atoms to be executed simultaneously.

At present, Transmeta has provided a code-morphing layer only for the Pentium
CPU family. However, if there were reason to do so, Transmeta could easily create
code-morphing layers for other CPUs.

The EPIC architecture, designed by Intel for its IA-64 processor family, attempts to
achieve similar goals by slightly different means. The basic instruction set architecture is
new, although Intel has built x86 capability into the CPU to support compatibility with its
earlier architecture. The IA-64 offers 128 64-bit general-purpose registers and 128 82-bit
floating point registers. All instructions are 41 bits wide.

Like the VLIW architecture, the EPIC architecture also organizes instructions into
bundles prior to CPU execution, however the methodology and goal are somewhat different.
In this case, the instructions do represent the native instruction set of the architecture.
Instructions are presented to the CPU for execution in 128-bit bundles that include a group
of three instructions plus 5 bits that identify the type of each instruction in the bundle.

An assembly language programmer is expected to follow a set of published guidelines
that identify dependencies and allow the parallel execution of each bundle. Additionally,
bits within each instruction word provide information to the execution unit that identify
potential dependencies and other bottlenecks and help the programmer to optimize the
code for fast execution. High-level language EPIC compilers must also create code that
satisfies the guidelines.

A fundamental difference between the Transmeta VLIW and the Intel EPIC archi-
tectures is the placement of responsibility for correct instruction sequencing. The VLIW
architecture allows any sequence of instructions to enter the CPU for processing. The code-
morphing software, integral to the architecture, handles proper sequencing. The EPIC
architecture places the burden on the assembly language programmer or on the program
compiler software.

This does not suggest that one architecture is superior to the other. It simply indicates
a different approach to the solution of dependencies. Note that the Transmeta VLIW does

2On a lesser scale, code morphing can also be used to translate complex variable-width instruction words to
simpler fixed-width equivalents for faster execution. This technique allows the retention of legacy architectures
while permitting the use of modern processing methods. Modern x86 implementations use this approach.
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not allow direct assembly language access to the CPU. All program code must be processed
through code-morphing software. Each architecture offers an interesting new approach to
program execution with potential benefits.

8.2 CPU FEATURES AND ENHANCEMENTS

Introduction

We have already introduced you to the fundamental model of a traditional CPU, represented
by an instruction set, registers, and a fetch-execute instruction cycle. Additionally, we
have presented some of the bells and whistles that have enhanced CPU capability and
performance. Some of the enhancements that were introduced in Chapter 7 include direct
support for floating point arithmetic, BCD arithmetic, and multimedia processing, as
well as the inclusion of additional addressing modes, which simplify data access, increase
potential memory size capability while maintaining reasonable instruction word sizes,
and improve list and array processing. In this chapter we have already presented a number
of architectural enhancements that can improve performance including features that
allow parallel execution of instructions to improve processing speed, register-oriented
instructions, the use of fixed-width instructions, and integral code-morphing software.

Since the purpose of a computer is to execute programs, the ability of the CPU to
execute instructions quickly is an important contributor to performance. Once a particular
architecture is established, there remain a number of different ways to increase the
instruction execution performance of a computer. One method is to provide a number
of CPUs in the computer rather than just one. Since a single CPU can process only one
instruction at a time, each additional CPU would, in theory, multiply the performance
of the computer by the number of CPUs included. We will return to a discussion of this
technique later, in Section 8.5.

Of more interest at the moment are approaches that can be used to improve the
performance of an individual CPU. In our introduction to CPU architectures, we suggested
a number of possibilities. Some of these require new design, such as the large number of
registers and register-to-register instructions that are characteristic of newer architectures.
As we already noted, even with older instruction sets, it is often possible to use code
morphing to create an intermediate instruction set that is used within the CPU as a
substitute for the more complex, original instruction set.

Another difficulty to be overcome when attempting system optimization is that some
computer instructions inherently require a large number of fetch-execute steps. Integer
division and floating point arithmetic instructions are in this category. Obviously, CPU
architects cannot create modern instruction sets that omit these instructions.

In this section, we consider a number of different, but interrelated, approaches to CPU
optimization that are applicable to nearly any CPU design. Interestingly enough, you will
see that similar approaches can be found in such diverse operations as automobile assembly
plants and restaurants.

In Chapter 7, you learned that the fetch-execute cycle is the basic operation by which
instructions get executed. You also observed that the steps in a fetch-execute cycle generally
must be performed in a particular sequence: an instruction must be fetched and identified
before it can be executed, for example. Otherwise the machine would have no way of
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knowing what to execute. And so on, step by step, through the entire instruction cycle.
(The first step in cooking spaghetti is to add water to the pot.) CPU performance can be
improved by any method that can perform the fetch-execute cycle steps more quickly or
more efficiently.

Then, a program is executed by performing the fetch-execute cycle in a specified
sequence, where the sequence is sometimes determined by the program itself during
execution. To be provably correct during program execution, the sequence must be
maintained and data dependencies resolved in proper order. (The ‘‘cook spaghetti,’’ ‘‘drain
spaghetti,’’ and ‘‘prepare sauce’’ instructions must be completed before the sauce is mixed into
the spaghetti.)

Observe that the limitation to performance results from the serial nature of CPU
processing: each instruction requires a sequence of fetch-execute cycle steps, and the
program requires the execution of a sequence of these instructions. Thus, the keys to
increased performance must rely on methods that either reduce the number of steps in the
fetch-execute cycle or reduce the time required for each step in the cycle and, ultimately,
reduce the time for each instruction in the program.

Fetch-Execute Cycle Timing Issues

As a first step, consider the problem of controlling the timing of each step in the
fetch-execute cycle to guarantee perfect CPU operation, to assure that each step follows the
previous step, in perfect order, as quickly as possible. There must be enough time between
steps to assure that each operation is complete and that data is where it is supposed to be
before the next step takes place. As you saw in Chapter 7, most steps in the fetch-execute
cycle work by copying, combining, or moving data between various registers. When data is
copied, combined, or moved between registers, it takes a short, but finite, amount of time
for the data to ‘‘settle down’’ in the new register, that is, for the results of the operation
to be correct. This occurs in part because the electronic switches that connect the registers
operate at slightly different speeds. (We’re actually talking billionths of a second here!) Also,
design allowances must be made for the fact that some operations take longer than others;
for example, addition takes more time than a simple data movement. Even more significant
is the amount of time that it takes for the address stored in the MAR to activate the correct
address in memory. The latter time factor is due to the complex electronic circuitry that is
required to identify one group of memory cells out of several million or billion possibilities.
This means that reducing the number of memory access steps by using registers for most
data operations will inherently improve performance. (We discuss methods to reduce the
memory access time, itself, in Section 8.3.) To assure adequate time for each step, the times
at which different events take place are synchronized to the pulses of an electronic clock.
The clock provides a master control as to when each step in the instruction cycle takes
place. The pulses of the clock are separated sufficiently to assure that each step has time
to complete, with the data settled down, before the results of that step are required by the
next step. Thus, use of a faster clock alone does not work if the circuitry cannot keep up.

A timing cycle for a Little Man ADD instruction is shown in Figure 8.2. Each block
in the diagram represents one step of the fetch-execute cycle. Certain steps that do not
have to access memory and which are not dependent on previous steps can actually be
performed at the same time. This can reduce the overall number of cycles required for the
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FIGURE 8.2
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instruction, which speeds up the computer. In this diagram, the data from the program
counter has been copied into the memory address register in the first step and is no longer
needed. Therefore, the program counter can be incremented at any time after the first step.
In Figure 8.2 the PC is incremented in parallel with the MDR → IR step. As shown in the
figure, the ADD instruction is completed in four clock cycles.

Figure 8.3 shows the improvement possible by using multiple data registers to
implement an ADD instruction. Since the register-to-register add can be done directly, the
number of steps in the cycle is reduced from four to three, with only a single execute step,
and the extra time required for the memory access is eliminated.

The built-in clock runs continuously whenever the power to the computer is on. The
frequency of its pulses is controlled by a quartz crystal, similar to that which might control
your wristwatch. The frequency of the clock and the number of steps required by each
instruction determine the speed with which the computer performs useful work.

The pulses of the clock are combined with the data in the instruction register to
control electronic switches that open and close in the right sequence to move data from

FIGURE 8.3
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register to register in accordance with the instruction cycle for the particular instruction.
The memory activation line described in Section 7.3 is an example of a timing line. The
activation line is set up so that it will not turn on until the correct address decode line in
the MAR has had time to settle down. If this were not the case, several address lines might
be partially turned on, and the data transferred between the memory and MDR might be
incorrect. Such errors can obviously not be tolerated, so it is important to control timing
accurately.

Conceptually, each pulse of the clock is used to control one step in the sequence,
although it is sometimes possible to perform multiple operations within a single step.
The clock in the original IBM PC, for example, ran at 4.77 MHz (MHz is pronounced
megahertz), which meant that the machine could perform 4.77 million steps every second.
If a typical instruction in the IBM PC requires about ten steps, then the original IBM
PC could execute about (4.77/10) or about 0.5 million PC instructions per second. A
PC running at 8 MHz, with everything else equal, would perform approximately twice
as fast.

There are several factors that determine the number of instructions that a computer
can perform in a second. Obviously the clock speed is one major factor. Some current
PC computers run their clocks at 3 GHz (pronounced gigahertz) or even more to achieve
higher instruction cycle rates.

A Model for Improved CPU Performance

The current organizational model of a CPU uses three primary, interrelated techniques to
address the limitations of the conventional CU/ALU model and to improve performance.

■ Implementation of the fetch-execute cycle is divided into two separate units: a
fetch unit to retrieve and decode instructions and an execution unit to perform
the actual instruction operation. This allows independent, concurrent operation
of the two parts of the fetch-execute cycle.

■ The model uses an assembly line technique called pipelining to allow overlapping
between the fetch-execute cycles of sequences of instructions. This reduces the
average time needed to complete an instruction.

■ The model provides separate execution units for different types of instructions.
This makes it possible to separate instructions with different numbers of
execution steps for more efficient processing. It also allows the parallel execution
of unrelated instructions by directing each instruction to its own execution unit.
You have already seen this method applied to the Transmeta and Itanium
architectures in Section 8.1.

We next consider each of these techniques in turn.

SEPARATE FETCH UNIT/EXECUTE UNIT Picture a modified Little Man Computer
in which the Little Man has been given an assistant. The assistant will fetch and decode
the instructions from the mailboxes at a pace that allows the Little Man to spend his time
executing instructions, one after another. Note that a similar division of labor is used in a
restaurant: waiters and waitresses gather the food orders from the customers and pass them
to the cooks for processing.
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The current preferred CPU implementation model divides the CPU similarly into two
units, which correspond roughly to the fetch and execute parts of the instruction cycle.
To achieve maximum performance, these two parts operate as independently from each
other as possible, recognizing, of course, that an instruction must be fetched before it can
be decoded and executed. Figure 8.4 illustrates this alternative CPU organization.

The fetch unit portion of the CPU consists of an instruction fetch unit and an
instruction decode unit. Instructions are fetched from memory by the fetch unit, based on
the current address stored in an instruction pointer (IP) register. The fetch unit is designed
to fetch several instructions at a time in parallel. The IP register effectively acts as a program
counter, but is given a different name to emphasize that there are a number of instructions
in the pipeline simultaneously. There is a bus interface unit that provides the logic and
memory registers necessary to address memory over the bus. Once an instruction is fetched,
it is held in a buffer until it can be decoded and executed. The number of instructions held
will depend upon the size of each instruction, the width of the memory bus and memory

FIGURE 8.4
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data register3, and the size of the buffer. As instructions are executed, the fetch unit takes
advantage of time when the bus is not otherwise being used and attempts to keep the
buffer filled with instructions. In general, modern memory buses are wide enough and fast
enough that they do not limit instruction retrieval.

Recall that in Figure 8.3 we showed that register-to-register operations could be
implemented with only a single memory access, in the fetch portion of the fetch-execute
cycle. Fetching the instructions in advance allows the execution of these instructions to
take place quickly, without the delay required to access memory.

Instructions in the fetch unit buffer are sent to the instruction decoder unit. The decoder
unit identifies the op code. From the op code it determines the type of the instruction. If
the instruction set is made up of variable length instructions, it also determines the length
of the particular instruction. The decoder then assembles the complete instruction with its
operands, ready for execution.

The execution unit contains the arithmetic/logic unit and the portion of the control
unit that identifies and controls the steps that comprise the execution part for each different
instruction. The remainder of what we previously called the control unit is distributed
throughout the model, controlling the fetching and decoding of instructions at the correct
times, and in the correct order, address generation for instructions and operands, and so
forth. The ALU provides the usual computational abilities for the general registers and
condition flags.

When the execution unit is ready for an instruction, the instruction decoder unit
passes the next instruction to the control unit for execution. Instruction operands requiring
memory references are sent to the addressing unit. The addressing unit determines the
memory address required, and the appropriate data read or write request is then processed
by the bus interface unit.

The bus interface and addressing units operate independently of the instruction
pipeline and provide services to the fetch, decode, and execution units as requested by each
unit.

PIPELINING Look at Figure 8.2 again. In the figure, there are two stages to the execution
phase of the instruction cycle. If each stage is implemented separately, so that the instruction
simply passes from one stage to the next as it is executed, only one stage is in use at any given
time. If there are more steps in the cycle, the same is still true. Thus, to speed up processing
even more, modern computers overlap instructions, so that more than one instruction is
being worked on at a time. This method is known as pipelining. The pipelining concept is
one of the major advances in modern computing design. It has been responsible for large
increases in program execution speed.

In its simplest form, the idea of pipelining is that as each instruction completes a step,
the following instruction moves into the stage just vacated. Thus, when the first instruction
is completed, the next one is already one stage short of completion. If there are many steps
in the fetch-execute cycle, we can have several instructions at various points in the cycle.
The method is similar to an automobile assembly line, where several cars are in different
degrees of production at the same time. It still takes the same amount of time to complete

3Recall that in Chapter 7 we noted that it is common modern practice to retrieve several bytes from memory
with each memory access.
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one instruction cycle (or one car), but the pipelining technique results in a large overall
increase in the average number of instructions performed in a given time.

Of course, a branch instruction may invalidate all the instructions in the pipeline
at that instant if the branch is taken, and the computer still must have the data from
the previous instruction if the next instruction requires it in order to proceed. Modern
computers use a variety of techniques to compensate for the branching problem. One
common approach is to maintain two or more separate pipelines so that instructions from
both possible outcomes can be processed until the direction of the branch is clear. Another
approach attempts to predict the probable branch path based on the history of previous
execution of the same instruction. The problem of waiting for data results from previous
instructions can be alleviated by separating the instructions so that they are not executed
one right after the other. Many modern computer designs contain logic that can reorder
instructions as they are executed to keep the pipelines full and to minimize situations
where a delay is necessary. Instruction reordering also makes it possible to provide parallel
pipelines, with duplicate CPU logic, so that multiple instructions can actually be executed
simultaneously. This technique is equivalent to providing multiple car assembly lines. It is
known as superscalar processing. We will look at superscalar processing again in the next
section.

Pipelining and instruction reordering complicate the electronic circuitry required for
the computer and also require careful design to eliminate the possibility of errors occurring
under unusual sequences of instructions. (Remember that the programmer must always be
able to assume that instructions are executed in the specified order.) Despite the added com-
plexity, these methods are now generally accepted as a means for meeting the demand for
more and more computer power. The additional task of analyzing, managing, and steer-
ing instructions to the proper execution unit at the proper time is usually combined
with instruction fetching and decoding to form a single instruction unit that handles all
preparation of instructions for execution.

A diagram illustrating pipelining is shown in Figure 8.5. For simplicity, instruction
reordering has not been included. The figure shows three instructions, one for each row in
the diagram. The ‘‘steps’’ in the diagram represent the sequence of steps in the fetch-execute
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cycle for each instruction. Timing marks are indicated along the horizontal axis. The F-E
cycle for instruction 3 shows a delay between step 1 and step 2; such a delay might result
because the second step of the instruction needs a result from step 3 of the previous
instruction, for example, the data in a particular register.

MULTIPLE, PARALLEL EXECUTION UNITS It is not useful to pipe different types of
instructions through a single pipeline. Different instructions have different numbers of
steps in their cycles and, also, there are differences in each step. Instead, the instruction
decode unit steers instructions into specific execution units. Each execution unit provides
a pipeline that is optimized for one general type of instruction. Typically, a modern CPU
will have a LOAD/STORE unit, an integer arithmetic unit, a floating point arithmetic unit,
and a branch unit. More powerful CPUs may have multiple execution units for the more
commonly used instruction types and, perhaps, may provide other types of execution
units as well. Again, an analogy may aid in understanding the concept of multiple, parallel
execution units. A simple automobile plant analogy would note that most automobile
plants have separate assembly lines for different car models. The most popular models
might have multiple assembly lines operating in parallel.

The use of multiple execution units operating in parallel makes it possible to perform
the actual execution of several instructions simultaneously.

Scalar and Superscalar Processor Organization

The previous discussion has shown you that modern CPUs achieve high performance by
separating the two major phases of the fetch-execute cycle into separate components, then
further separating the execution phase into a number of independent execution units,
each with pipeline capability. Once a pipeline is filled, an execution unit can complete an
instruction with each clock tick. With a single execution unit pipeline, ignoring holes in
the pipeline resulting from different instruction types and branch conditions, the CPU
can average instruction execution approximately equal to the clock speed of the machine.
A processor fulfilling this condition is called a scalar processor. With multiple execution
units it is possible to process instructions in parallel, with an average rate of more than
one instruction per clock cycle. The ability to process more than one instruction per
clock cycle is known as superscalar processing. Superscalar processing is a standard
feature in modern CPUs. Superscalar processing can increase the throughput by double
or more. Commonly, current CPU designs produce speed increases of between two and
five times.

It is important to remember that pipelining and superscalar processing techniques
do not affect the cycle time of any individual instruction. An instruction fetch-execute
cycle that requires six clock cycles from start to finish will require six clock cycles whether
instructions are performed one at a time or pipelined in parallel with a dozen other
instructions. It is the average instruction cycle time that is improved by performing some
form of parallel execution. If an individual instruction must be completed for any reason
before another can be executed, the CPU must stall for the full cycle time of the first
instruction.

Figure 8.6 illustrates the difference between scalar and superscalar processing with
pipelining in the execution unit. In the illustration the execution phase of the fetch-execute



254 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 8.6
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cycle is divided into three parts that can be executed separately. Thus, the diagram is divided
into steps that fetch, decode, execute, and write back the results of the execute operation.
Presumably, each step is carried out by a separate component within the execution unit.
To simplify the illustration, we have also assumed that in each case the pipeline is full.
Generally, a single fetch unit pipeline is sufficient to fetch multiple instructions, even when
multiple execution units are present.

In the scalar processor, Figure 8.6a, each step is assumed to take one clock cycle. If
the instructions are all of the same length, they will finish consecutively, as shown in the
diagram. More complexity in the instruction set will create bubbles in the pipeline, but
does not alter the basic idea that we are illustrating. Panel b of the figure assumes the
presence of two execution units. It also assumes that the instructions executing in parallel
are independent of each other; that is, the execution of one does not depend upon results
from the other. Therefore, two instructions can be executed at a time in parallel, resulting
in a substantial improvement in overall instruction completion performance.

Superscalar processing complicates the design of a CPU considerably. There are a
number of difficult technical issues that must be resolved to make it possible to execute
multiple instructions simultaneously. The most important of these are

■ Problems that arise from instructions completing in the wrong order
■ Changes in program flow due to branch instructions
■ Conflicts for internal CPU resources, particularly general-purpose registers
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OUT-OF-ORDER PROCESSING Out-of-order instruction execution can cause prob-
lems because a later instruction may depend on the results from an earlier instruction. This
situation is known as a hazard or a dependency. If the later instruction completes ahead of
the earlier one, the effect of the earlier instruction upon the later cannot be satisfied. The
most common type of a dependency is a data dependency. This is a situation in which the
later instruction is supposed to use the results from the earlier instruction in its calculation.
There are other types of dependencies also.

With multiple execution units, it is possible for instructions to complete in the wrong
order. There are a number of ways in which this can occur. In the simplest case, an
instruction with many steps in its cycle may finish after an instruction with just a few steps,
even if it started earlier. As a simple example, a MULTIPLY instruction takes longer to execute
than a MOVE or ADD instruction. If a MULTIPLY instruction is followed in the program by an
ADD instruction that adds a constant to the results of the multiplication, the result will be
incorrect if the ADD instruction is allowed to complete ahead of the MULTIPLY instruction.
This is an example of data dependency. Data dependency can take several different forms.

Many data dependencies are sufficiently obvious that they can be detected by the
CPU. In this case, execution of the dependent instruction is suspended until the results
of the earlier instruction are available. This suspension may, itself, cause out-of-order
execution, since it may allow another, still later, instruction to complete ahead of the
suspended instruction. Some CPUs provide reservation stations within each execution unit
or a general instruction pool to hold suspended instructions so that the execution unit may
continue processing other instructions.

Finally, some systems intentionally allow out-of-order instruction execution. These
CPUs can actually search ahead for instructions without apparent dependencies, to keep
the execution units busy. Current Intel x86 CPUs, for example, can search twenty to thirty
instructions ahead, if necessary, to find instructions available for execution.

BRANCH INSTRUCTION PROCESSING Branch instructions must always be processed
ahead of subsequent instructions, since the addresses of the proper subsequent instructions
to fetch are determined from the branch instruction. For unconditional branch instructions,
this is simple. Branch instructions are identified immediately as they enter the instruction
fetch pipeline. The address in the instruction is decoded and used to fill the instruction
fetch pipeline with instructions from the new location. Normally, no delay is incurred.

Unfortunately, conditional branch instructions are more difficult, because the condi-
tion decision may depend on the results from instructions that have not yet been executed.
These situations are known as flow or branch dependencies. If the wrong branch is in the
pipeline, the pipeline must be flushed and refilled, wasting time. Worse yet, an instruction
from the wrong branch, that is, one that should not have been executed, can alter a previous
result that is still needed.

The solution to the conditional branching problem may be broken into two parts:
methods to optimize correct branch selection and methods to prevent errors as a result of
conditional branch instructions. Selection of the wrong branch is time wasting, but not
fatal. By contrast, incorrect results must be prevented.

Errors are prevented by setting the following guideline: although instructions may be
executed out of order, they must be completed in the correct order. Since branches and
subtle data dependencies can occur, the execution of an instruction out of order may or
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may not be valid, so the instruction is executed speculatively, that is, on the assumption
that its execution will be useful. For this purpose, a separate bank of registers is used to
hold results from these instructions until previous instructions are complete. The results
are then transferred to their actual register and memory locations, in correct program
instruction order. This technique of processing is known as speculative execution. On
occasion, the results from some speculatively executed instructions must be thrown away,
but on the whole, speculative execution results in a performance boost sufficient to justify
the extra complexity required.

A few systems place the burden for error prevention on the assembly language pro-
grammer or program language compiler by requiring that a certain number of instructions
following a conditional branch instruction be independent of the branch. In these systems,
one or more instructions sequentially following the branch are always executed, regardless
of the outcome of the branch.

There are various creative methods that are used in CPUs to optimize conditional
branch processing. One possible solution to this problem is to maintain two separate
instruction fetch pipelines, one for each possible branch outcome. Instructions may be
executed speculatively from both branches until the correct pipeline is known. Another
solution is to have the CPU attempt to predict the correct path based on program usage
or past performance. A loop, for example, may be expected to execute many times before
exiting. Therefore, the CPU might assume that a branch to a previous point in the program
is usually taken. Some systems provide a branch history table, a small amount of dedicated
memory built into the CPU that maintains a record of previous choices for each of several
branch instructions that have been used in the program being executed to aid in prediction.
A few systems even include a ‘‘hint’’ bit in the branch instruction word that can be set
by the programmer to tell the CPU the more probable outcome of the branch. Of course,
when a branch prediction is incorrect, there is a time delay to purge and refill the fetch
pipeline and speculative instructions, but, overall, branch prediction is effective.

CONFLICT OF RESOURCES Conflicts between instructions that use the same registers
can be prevented by using the same bank of registers that is used to hold the results of
speculative instructions until instruction completion. This register bank is given different
names by different vendors. They are called variously rename registers or logical registers
or register alias tables. The registers in the bank can be renamed to correspond logically to
any physical register and assigned to any execution unit. This would allow two instructions
using the ‘‘same’’ register to execute simultaneously without holding up each other’s
work At completion of an instruction, the CPU then selects the corresponding physical
register and copies the result into it. This must occur in the specified program instruction
order.

8.3 MEMORY ENHANCEMENTS
Within the instruction fetch-execute cycle, the slowest steps are those that require memory
access. Therefore, any improvement in memory access can have a major impact on program
processing speed.

The memory in modern computers is usually made up of dynamic random access
memory circuit chips. DRAM is inexpensive. Each DRAM chip is capable of storing millions
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of bits of data. Dynamic RAM has one major drawback, however. With today’s fast CPUs,
the access time of DRAM is too slow to keep up with the CPU, and delays must be inserted
into the LOAD/STORE execution pipeline to allow memory to keep up. Thus, the use of
DRAM is a potential bottleneck in processing. Instructions must be fetched from memory
and data must be moved from memory into registers for processing.

The fetch-execute CPU implementation introduced in Section 8.2 reduces instruc-
tion fetch delay to a minimum with modern instruction prefetch and branch control
technologies, and the increased adoption of register-to-register instructions also reduces
delays. Nonetheless, memory accesses are always required ultimately to move the data from
memory to register and back, and improvements in memory access still have an impact on
processing speed.

As mentioned in Chapter 7, static RAM, or SRAM, is an alternative type of random
access memory that is two to three times as fast as DRAM. The inherent memory capacity of
SRAM is severely limited, however. SRAM design requires a lot of chip real estate compared
to DRAM, due to the fact that SRAM circuitry is more complex and generates a lot of
heat that must be dissipated. One or two MB of SRAM requires more space than 64 MB of
DRAM, and will cost considerably more.

With today’s memory requirements, SRAM is not a practical solution for large amounts
of memory except in very expensive computers; therefore, designers have created alternative
approaches to fulfill the need for faster memory access. Three different approaches are
commonly used to enhance the performance of memory:

■ Wide path memory access
■ Memory interleaving
■ Cache memory

These three methods are complementary. Each has slightly different applicability, and they
may be used together in any combination to achieve a particular goal. Of these techniques,
the use of cache memory has the most profound effect on system performance.

Wide Path Memory Access

As mentioned in Chapter 7, Section 7.3, the simplest means to increase memory access is
to widen the data path so as to read or write several bytes or words between the CPU and
memory with each access; this technique is known as wide path memory access. Instead
of reading 1 byte at a time, for example, the system can retrieve 2, 4, 8, or even 16 bytes,
simultaneously. Most instructions are several bytes long, in any case, and most data is at
least 2 bytes, and frequently more. This solution can be implemented easily by widening
the bus data path and using a larger memory data register. The system bus on most modern
CPUs, for example, has a 64-bit data path and is commonly used to read or write 8 bytes of
data with a single memory access.

Within the CPU, these bytes can be separated as required and processed in the usual
way. With modern CPU implementation, instruction groups can be passed directly to the
instruction unit for parallel execution. As the number of bytes simultaneously accessed
is increased, there is a diminishing rate of return, since the circuitry required to separate
and direct the bytes to their correct locations increases in complexity, fast memory access
becomes more difficult, and yet it becomes less likely that the extra bytes will actually be
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used. Even a 64-bit data path is adequate to assure that a pipeline will remain filled and
bursts of consecutive 64-bit reads or writes can handle situations that require high-speed
access to large blocks of data. Very few systems read and write more than 8 bytes at a time.
Most systems read and write a fixed number of bytes at a time, but there are a few systems
that can actually read and write a variable number of bytes.

Modern computers are commonly built with standard, off-the-shelf memory circuits
and chips that include wide path memory access as a standard feature.

Memory Interleaving

Another method for increasing the effective rate of memory access is to divide memory into
parts, called memory interleaving, so that it is possible to access more than one location at
a time. Then, each part would have its own address register and data register, and each part
is independently accessible. Memory can then accept one read/write request from each part
simultaneously. Although it might seem to you that the obvious way to divide up memory
would be in blocks, for example, by separating the high addresses into one block and the
low addresses into the other, it turns out that as a practical matter it is usually more useful
to divide the memory so that successive access points, say, groups of 8 bytes (see above),
are in different blocks. Breaking memory up this way is known as n-way interleaving,
where a value of 2 or 4 or some other value is substituted for n, depending on the number
of separate blocks. For example, two-way interleaving would be designed so that it would
be possible to access an odd memory address and an even memory address concurrently.
If 8-byte wide access is provided, this would allow the concurrent access to 16 successive
bytes at a time. A memory with eight-way interleaving would allow access to eight different
locations simultaneously, but the system could not access locations 0, 8, 16, or 24 at the
same time, for instance, nor 1, 9, 17, or 25. It could access locations 16 and 25 or 30 and 31
concurrently, however. Since memory accesses tend to be successive, memory interleaving
can be effective. A diagram of four-way interleaving is shown in Figure 8.7.

FIGURE 8.7
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This method is particularly applicable when multiple devices require access to the
same memory. The IBM mainframe architecture, for example, is designed to allow multiple
CPUs to access a common memory area; the I/O channel subsystem also has access to
the storage area. Thus, several different components may make memory requests at the
same time. The IBM S/3033 computer, for example, partitioned memory into eight logical
storage elements. Each element can independently accept a memory request. Thus, eight
memory requests can be processed concurrently.

The personal computer memory that holds images while they are being displayed,
known as video RAM, is another example. Changes to part of the video RAM can be made
at the same time that another part of the video RAM is being used to produce the actual
display on the monitor.

Cache Memory

A different strategy is to position a small amount of high-speed memory, for example,
SRAM, between the CPU and main storage. This high-speed memory is invisible to the
programmer and cannot be directly addressed in the usual way by the CPU. Because it
represents a ‘‘secret’’ storage area, it is called cache memory. This concept is illustrated in
Figure 8.8.

Cache memory is organized differently than regular memory. Cache memory is
organized into blocks. Each block provides a small amount of storage, perhaps between
8 and 64 bytes, also known as a cache line. The block will be used to hold an exact
reproduction of a corresponding amount of storage from somewhere in main memory.
Each block also holds a tag. The tag identifies the location in main memory that corresponds
to the data being held in that block. In other words, taken together, the tags act as a directory
that can be used to determine exactly which storage locations from main memory are also
available in the cache memory. A typical 64 KB cache memory might consist of 8000
(actually 8192) 8-byte blocks, each with tag.

A simplified, step-by-step illustration of the use of cache memory is shown in Figure 8.9.
Every CPU request to main memory, whether data or instruction, is seen first by cache
memory. A hardware cache controller checks the tags to determine if the memory location
of the request is presently stored within the cache. If it is, the cache memory is used as if it
were main memory. If the request is a read, the corresponding word from cache memory
is simply passed to the CPU. Similarly, if the request is a write, the data from the CPU is
stored in the appropriate cache memory location. Satisfying a request in this way is known
as a hit.

FIGURE 8.8
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If the required memory data is not already present
in cache memory, an extra step is required. In this case,
a cache line that includes the required location is copied
from memory to the cache. Once this is done, the transfer is
made to or from cache memory, as before. The situation in
which the request is not already present in cache memory
is known as a miss. The ratio of hits to the total number
of requests is known as the hit ratio.

When cache memory is full, some block in cache mem-
ory must be selected for replacement. Various algorithms
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FIGURE 8.9
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have been implemented by different computer designers to make this selection, but most
commonly, some variation on a least recently used, or LRU , algorithm is used. An LRU
algorithm, as the name implies, keeps track of the usage of each block and replaces the
block that was last used the longest time ago.

Cache blocks that have been read, but not altered, can simply be read over during
replacement. Memory write requests impose an additional burden on cache memory
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operations, since written data must also be written to the main memory to protect the
integrity of the program and its data. Two different methods of handling the process of
returning changed data from cache to main storage are in common use. The first method,
write through, writes data back to the main memory immediately upon change in the
cache. This method has the advantage that the two copies, cache and main memory, are
always kept identical. Some designers use an alternative technique known variously as store
in, write back, or copy back. With this technique, the changed data is simply held in cache
until the cache line is to be replaced. The write back method is faster, since writes to
memory are made only when a cache line is actually replaced, but more care is required in
the design to ensure that there are no circumstances under which data loss could occur. If
two different programs were using the same data in separate cache blocks, for example, and
one program changed the data, the design must assure that the other program has access
to the updated data.

The entire cache operation is managed by the cache controller. This includes tag
searching and matching, write through or write back, and implementation of the algorithm
that is used for cache block replacement. The CPU and software are unaware of the presence
of cache memory and the activities of the cache controller. We note in passing that to
be effective, these operations must be controlled completely by hardware. It is possible
to envision using a program to implement the cache block replacement algorithm, for
example, but this is not feasible. Since memory accesses would be required to execute the
program, this would defeat the entire purpose of cache memory, which is to provide access
quickly to a single memory location.

Cache memory works due to a principle known as locality of reference. The locality of
reference principle states that at any given time, most memory references will be confined
to one or a few small regions of memory. If you consider the way that you were taught to
write programs, this principle makes sense. Instructions are normally executed sequentially;
therefore, adjoining words are likely to be accessed. In a well-written program, most of
the instructions being executed at a particular time are part of a small loop or a small
procedure or function. Likewise, the data for the program is likely taken from an array.
Variables for the program are all stored together. Studies have verified the validity of the
locality principle. Cache memory hit ratios of 90 percent and above are common with
just a small amount of cache. Since requests that can be fulfilled by the cache memory are
fulfilled much faster, the cache memory technique can have a significant impact on the
overall performance of the system. Program execution speed improvements of 50 percent
and more are common.

The hit ratio is an important measure of system performance. Cache hits can access
memory data at or near the speed that instructions are executed, even with sophisticated
instruction steering and multiple execution units. When a miss occurs, however, there is
a time delay while new data is moved to the cache. The time to move data to the cache is
called stall time. The stall time is typically long compared to instruction execution time.
This can result in a condition in which there are no instructions available to feed to the
execution units; the pipelines empty and instruction execution is stalled until the needed
cache line is available, reducing performance.

Some modern architectures even provide program instructions to request cache
preloading for data or instructions that will be needed soon. This improves execution speed
even more. Also, some system designers interleave the cache or implement separate caches
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for instructions and data. This allows even more rapid access, since the instruction and
its operands can be accessed simultaneously much of the time. Furthermore, design of a
separate instruction cache can be simplified, since there is no need to write the instruction
cache back to main memory if the architecture imposes a pure coding requirement on
the programmer. The trade-off is that accommodating separate instruction and data
caches requires additional circuit complexity, and many system designers opt instead for a
combined, or unified, cache that holds both data and instructions.

It is also possible to provide more than one level of cache memory. Consider the two
level cache memory shown in Figure 8.10. This memory will work as follows. The operation
begins when the CPU requests an instruction (or piece of data) be read (or written) from
memory. If the cache controller for the level closest to the CPU, which we’ll call level 1
(normally abbreviated as L1), determines that the requested memory location is presently
in the level 1 cache, the instruction is immediately read into the CPU.

Suppose, however, that the instruction is not presently in level 1 cache. In this case,
the request is passed on to the controller for level 2 cache. Level 2 cache works in exactly
the same way as level 1 cache. If the instruction is presently in the level 2 cache, a cache
line containing the instruction is moved to the level 1 cache and then to the CPU. If not,
then the level 2 cache controller requests a level 2 cache line from memory, the level 1
cache receives a cache line from the level 2 cache, and the instruction is transferred to the
CPU. This technique can be extended to more levels, but there is usually little advantage in
expanding beyond level 3.

What does the second level buy us? Most system designers believe that more cache
would improve performance enough to be worthwhile. In this case, the system designers
provide a second level of cache, external to the chip. A personal computer secondary
cache commonly provides an additional 512 KB–2 MB of cache. A typical AMD Athlon 64
processor provides 64 KB of L1 data cache, 64 KB of L1 instruction cache, and 512 KB or
1 MB of level 2 cache within the same package as the CPU. The use of a dedicated on-chip
bus between level 1 cache and level 2 cache provides faster response than connecting the
level 1 cache to memory or to a level 2 cache on the regular memory bus.

To be useful, the second level of cache must have significantly more memory than the
first level; otherwise, the two cache levels would contain the same data, and the secondary
cache would serve no purpose. It is also normal to provide a larger cache line in the
secondary cache. This increases the likelihood that requests to the secondary cache can be
met without going out to main memory every time.
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Before leaving the subject of memory caching, a side note: the concept of caching also
shows up in other, unrelated but useful, areas of computer system design. For example,
caching is used to reduce the time necessary to access data from a disk. In this case, part of
main memory can be allocated for use as a disk cache. When a disk read or write request is
made, the system checks the disk cache first. If the required data is present, no disk access
is necessary; otherwise, a disk cache line made up of several adjoining disk blocks is moved
from the disk into the disk cache area of memory. Most disk manufacturers now provide
separate buffer memory for this purpose. This feature is implemented within the hardware
of a disk controller. Another example is the cache of previous Web pages provided by Web
browser application software.

All of these examples of caching share the common attribute that they increase
performance by providing faster access to data, anticipating its potential need in advance,
then storing that data temporarily where it is rapidly available.

8.4 THE COMPLEAT MODERN
SUPERSCALAR CPU

Figure 8.11 is a model of a CPU block diagram that includes all the ideas just discussed. The
design shown in this diagram is very similar to the one used in Sun SPARC and IBM Power
and PowerPC processors and, with minor variations, to that used in various generations of
the Intel Pentium and Itanium families, as well as various IBM mainframe processors. As
you would expect, the CPU is organized into modules that reflect the superscalar, pipelined
nature of the architecture. Although it is difficult to identify the familiar components that
we introduced in Chapter 7, the control unit, arithmetic/logic unit, program counter, and
the like, they are indeed embedded into the design, as you saw in Figure 8.4. The control
unit operation is distributed through much of the diagram, controlling each step of the
usual fetch-execute cycle as instructions flow through different blocks in the CPU. The
functions of the arithmetic/logic unit are found within the integer unit. The program
counter is part of the instruction unit.

In operation, instructions are fetched from memory by the memory management unit
as they are needed for execution, and placed into a pipeline within the instruction unit. The
instructions are also partially decoded within the instruction unit, to determine the type of
instruction that is being executed. This allows branch instructions to be passed quickly to
the branch processing unit for analysis of future instruction flow.

Instructions are actually executed in one of several types of execution units. Each
execution unit has a pipeline designed to optimize the steps of the execute cycle for a
particular type of instruction.

As you can see from the block diagram, there are separate execution units for branch
instructions, for integer instructions, for floating point instructions, and for load and
store instructions. Some processors provide multiple integer execution units to increase
the processing capacity of the CPU still further. Some models also have a separate system
register unit for executing system-level instructions. Some CPUs combine the load/store
instructions into the integer unit. The PowerPC provides reservation stations in each
execution unit. The Intel Pentium processors provide a general instruction pool where
decoded instructions from the instruction unit are held as they await operand data from
memory and from unresolved data dependencies. The Pentium instruction pool also holds



264 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 8.11
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completed instructions after execution until they can be retired in order. The Pentium also
separates the LOAD and STORE execution units.

The instruction unit is responsible for maintaining the fetch pipeline and for dis-
patching instructions. Because branch instructions affect the addresses of the following
instructions in the pipeline, they are processed immediately. Other instructions are pro-
cessed as space becomes available in the appropriate execution unit(s). Branch prediction is
usually built into the branch unit. When conditional branches occur, execution of instruc-
tions continues speculatively along the predicted branch until the condition is resolved.
Also, the use of multiple execution units makes it possible that instructions will execute
in the wrong order, since some instructions may have to wait for operands resulting from
other instructions and since the pipelines in each execution unit are of different lengths. As
we noted earlier, some current superscalar processors can look ahead several instructions
to find instructions that can be processed independently of the program order to prevent
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delays or errors arising from data dependency. The ability to process instructions out of
order is an important factor in the effectiveness of these processors. The completion or
‘‘retire’’ unit accepts or rejects speculative instructions, stores results in the appropriate
physical registers and cache memory locations, and retires instructions in the correct pro-
gram order, assuring correct program flow. The Crusoe and Itanium architectures prevent
out-of-order retirement by reordering the instructions prior to execution. This simplifies
the CPU design.

From this discussion, you can see that the modern CPU includes many sophisticated fea-
tures designed to streamline the basically simple fetch-execute cycle for high-performance
processing. The modern CPU features different types of execution units, tailored to the
needs of different types of instructions, and a complex steering system that can steer
instructions through the instruction unit to available execution units, manage operands,
and retire instructions in correct program order. The goal of each of these techniques is
to increase the parallelism of instruction execution, while maintaining the basic sequential
characteristic of a von Neumann computer architecture.

As a brief diversion, consider the similarities between the operation of the modern
CPU and the operation of a moderately large restaurant. Each of the waiters and waitresses
taking orders represent the fetch unit fetching instructions. Customers’ orders are fed to
the kitchen, where they are sorted into categories: soup orders to the soup chef, salads to
the salad chef, entrées to the entrée chef, and so on. Typically, the entrée chef will have the
most complex orders to fill, equivalent to the longest pipeline in the CPU. If the kitchen
is large, the entrée area will be further subdivided into multiple execution areas: frying,
baking, and so on, and there may be multiple cooks working in the busiest areas. As with
the programs being executed in a computer, there are dependencies between the various
cooks. For example, green beans must be blanched before they may be placed in the salad.
Finally, we observe that, like computer program instructions, the restaurant must provide
food from the kitchen to the customers in the proper sequence, and with appropriate
timing, to satisfy the customers’ requirements.

In this section we have introduced the basic ideas of superscalar processing, briefly
indicated the difficulties, and explained the reasoning for its use. There are many excellent
references listed in the For Further Reading if you are interested in more of the details of
superscalar processing and modern CPU design.

8.5 MULTIPROCESSING
One obvious way to increase performance in a computer system is to increase the number
of CPUs. Computers that have multiple CPUs within a single computer, sharing some or all
of the system’s memory and I/O facilities, are called multiprocessor systems, or sometimes
tightly coupled systems. When multiple CPU processors are supplied within a single
integrated circuit, they are more commonly called multicore processors. Figure 8.12 shows
a typical multiprocessor configuration. All the processors in a multiprocessor configuration
have access to the same programs and data in shared memory and to the same I/O devices, so
it is possible to divide program execution between different CPUs. Furthermore, programs
or pieces of programs may be run in any CPU that is available, so that each additional
processor extends the power available for multitasking in a multiprocessing system, at least
within the capability of the shared components, the memory, buses, and I/O controllers.
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FIGURE 8.12

Typical Multiprocessing System Configuration
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Under ideal conditions, each CPU processes
its own assigned sequence of program instruc-
tions independently. Thus, a dual-core processor
effectively doubles the number of instructions
executed in a given time, a quad-core processor
would quadruple the rate, and so forth. Of course
this assumes that there are multiple independent
tasks available to be executed simultaneously.
Since modern computer systems are normally
executing many programs and segments of pro-
grams concurrently this is nearly always the case.

In practice, increasing the number of CPUs
is, in fact, usually effective, although, as the
number of CPUs increases, the value of the addi-
tional CPUs diminishes because of the overhead
required to distribute the instructions in a useful
way among the different CPUs and the conflicts
among the CPUs for shared resources, such as
memory, I/O, and access to the shared buses.
With the exception of certain, specialized sys-
tems, there are rarely more than sixteen CPUs

sharing the workload in a multiprocessing computer; more commonly today, a multipro-
cessor might consist of two, four, or eight core CPUs within a single chip. Still, each core
in the chip is a full-blown superscalar CPU, of the type discussed in the previous sections
of this chapter.

Although increased computing power is a significant motivation for multiprocessing,
there are other considerations that make multiprocessing attractive:

■ Since the execution speed of a CPU is directly related to the clock speed of the
CPU, equivalent processing power can be achieved at much lower clock speeds,
reducing power consumption, heat, and stress within the various computer
components.

■ Programs can be divided into independent pieces, and the different parts
executed simultaneously on multiple CPUs.

■ With multiprocessing, increasing computational power may be achieved by
adding more CPUs, which is relatively inexpensive.

■ Data dependencies and cache memory misses can stall the pipelines in a single
CPU. Multiprocessing allows the computer to continue instruction execution in
the other CPUs, increasing overall throughput.

Assignment of work to the various processors is the responsibility of the operating
system. Work is assigned from among the programs available to be executed, or, more
commonly, from independent segments of those programs called threads. Since each of the
CPUs has access to the same memory and I/O, any CPU can theoretically execute any thread
or program currently in memory, including the operating system. This raises the question
of control of the system. There are two basic ways of configuring a multiprocessing system:
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■ Master-slave multiprocessing, in which one CPU, the master, manages the
system, and controls all resources and scheduling. Only the master may execute
the operating system. Other CPUs are slaves, performing work assigned to them
by the master.

■ Symmetrical multiprocessing (SMP), in which each CPU has identical access
to the operating system, and to all system resources, including memory. Each
CPU schedules it own work, within parameters, constraints, and priorities set by
the operating system. In a normal SMP configuration, each of the CPUs is
identical.

A number of CPUs also implement a simplified, limited form of multiprocessing using
parallel execution units within a single CPU to process two or more threads simultaneously.
This technique is called simultaneous thread multiprocessing (STM). STM is also known
as hyperthreading. STM is particularly useful in dealing with cache stalls, because the CPU
can be kept busy working on the alternative thread or threads. The operating system
manages STM in a manner similar to SMP. Since STM operates within a single CPU and
SMP operates between CPUs, STM and SMP can be used together.

For general purpose computing, the symmetrical configuration has many advantages.
Because every CPU is equal, every CPU has equal access to the operating system. Any
CPU can execute any task and can process any interrupt.4 Processors are all kept equally
busy, since each processor can dispatch its own work as it needs it. Thus, the workload
is well balanced. It is easy to implement fault-tolerant computing with a symmetrical
configuration—critical operations are simply dispatched to all CPUs simultaneously.
Furthermore, a failure in a single CPU may reduce overall system performance, but it will
not cause system failure. As an interesting aside, note that a program may execute on a
different CPU each time it is dispatched, although most SMP systems provide a means to
lock a program onto a particular CPU, if desired. Thus, the symmetrical configuration offers
important capabilities for multiprocessing: maximum utilization of each CPU, flexibility,
high reliability, and optional support for fault-tolerant computing. Most modern general
purpose multiprocessing systems are SMP systems.

Because of the somewhat limited flexibility in distributing the workload, the master-
slave configuration is usually considered less suitable for general purpose computing. In
a master-slave configuration the master is likely to be the busiest CPU in the system. If a
slave requires a work assignment while the master is busy, the slave will have to wait until
the master is free. Furthermore, since the master handles all I/O requests and interrupts, a
heavily loaded system will cause a backload in the master. If slaves are dependent on the
results of these requests, the system is effectively stalled.

Conversely, there are a number of specialized computing applications for which the
master-slave configuration is particularly well suited. These applications are characterized by
a need for a master control program, supported by repetitive or continuous, computation-
and data-intensive, time-critical tasks. For example, the processor in a game controller

4Interrupts are a special feature of the CPU in which outside events such as mouse movements and power
interruptions can affect the sequence of instructions processed by the CPU. Interrupts are discussed in detail in
Chapter 9.
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must execute the code that plays the game. At the same time, it requires support that can
rapidly calculate and display new images based on movements of the objects in the image,
compute shadings and light reflections resulting from the movements; often, the processor
must create new pixel values for every pixel in the image. It must also be able to create the
appropriate reactions and display in response to events that occur, such as explosions or
fires or objects bouncing off a wall, and more.

Many important applications in economics, biology, physics, and finance, particularly
those based on simulation and modeling, have similar requirements.

EXAMPLE
The recently developed Cell Broadband Engine processor is organized in a master-slave con-
figuration. It was developed jointly by IBM, Sony, and Toshiba as the first of a new generation
of processors intended for use in high-performance intensive computing applications. It is
the main processor used in the Sony PlayStation 3.

A block diagram of the Cell processor is shown in Figure 8.13. The master processor
is similar to a 64-bit PowerPC CPU. There are eight slave processors. A high-speed bus
interconnects the master processor and each of the slave processors. For those interested, a
more detailed description of the PowerPC Cell processor can be found in Gschwind, et. al.
[GSCH06].

FIGURE 8.13

Cell Processor Block Diagram
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8.6 A FEW COMMENTS ON IMPLEMENTATION
It is not the intention of this book to discuss the electronic implementation of the computer
in any detail. A brief introduction is provided in Supplementary Chapter 1, but the details
of such a discussion are better left to an engineering textbook. There are several good
computer engineering textbooks listed in the For Further Reading for the supplementary
chapter if you are interested in learning more about how the computer works.

Although the increased capacity of current integrated circuit technology has allowed
computer designers the option of creating very complex circuits, much of that capacity
is currently used to provide increased capability in the form of multiple execution units,
increased amounts of cache memory, and multicore processing; the basic design and
implementation of a processor is simpler than you might imagine.

If you look again at the instruction classes that constitute the operations of a CPU
together with the fetch-execute cycles that make up each of the instructions, you can see
that the great majority of operations within the CPU consist of moving data from one
register to another. The steps

PC → MAR and
MDR → IR

are examples of this type of operation.
In addition, we must include the capability to add data to a register with data from

another register or from a constant (usually the constant 1 or −1), the capability to perform
simple Boolean functions (AND, OR, NOT) on data in registers, and the capability to shift the
data in a register to the left or right. Finally, the CPU must include the capability to make
simple decisions based on the values stored in flags and registers (conditional branches).
All of these operations are under the timed control of a clock. Control unit logic opens and
closes switches at the right times to control the individual operations and the movement of
data from one component within the CPU to another.

And for all practical purposes, that’s about it. The small number of different operations
used in a CPU suggest that the CPU can be directly implemented in electronic hardware, and
indeed that is the case. In Supplementary Chapter 1, we demonstrate for the curious reader,
in somewhat simplified fashion, that all of the preceding functions can be implemented
using logic gates that perform Boolean algebra. The registers, flags, and counters that
control timing are made up of electronic devices called flip-flops, which are, themselves,
made up of logic gates.

So, as you can see, the basic hardware implementation of the CPU is relatively
straightforward and simple. Although the addition of pipelining, superscaling, and other
features complicates the design, it is possible, with careful design, to implement and
produce an extremely fast and efficient CPU at low cost and in large quantities.

SUMMARY AND REVIEW

In this chapter we presented a number of different techniques that are used to enhance the
power and flexibility of a CPU. We began with a discussion of three different approaches
to CPU architecture, with particular emphasis on traditional computer architecture. We
presented the advantages, disadvantages, and trade-offs for each architecture.
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Next, we looked at the various aspects of instruction execution in a CPU, with the
purpose of improving performance. This discussion culminated in the presentation of a
model for an alternative organization that preserves the basic rules of execution, but allows
much faster instruction execution. The important features of this model include separating
the fetch-execute cycle into two separate fetch and execute units that can operate in
parallel, pipelining to allow instructions to execute in an assembly line, and multiple
execution units to allow parallel execution of unrelated instructions. A variety of innovative
techniques, including rename registers, speculative execution, out-of-order execution, and
branch prediction help to reduce bottlenecks and contribute to the performance. We noted
that the resulting model is capable of superscalar processing, with instructions processed at
average rates far exceeding the cycle rate of the clock.

We then turned our attention to memory enhancements, particularly the techniques
and benefits of cache memory, a fast, intermediate memory between then CPU and regular
memory. Following this, we put together a model of the compleat susperscalar CPU that
contained all of the features that we had presented up to this point.

To increase performance even further, it is possible to combine CPUs into multiple
units that share memory, buses, I/O, and other resources, a concept called multiprocessing.
We presented two different configurations of multiprocesors.

We concluded the chapter with a brief introduction to the technology used to
implement the modern processor.

With all of the advances and variations in technology, architecture, and organization
that we have introduced in this chapter, and despite all of the different types of computers,
applications, and uses for computers that are available today, it is important to remember
that, regardless of the specifics, every current CPU conforms to the basic model created by
Von Neumann more than a half century ago. There is little evidence that the basic concepts
that govern CPU operation are likely to change in the near future.

FOR FURTHER READING

The many references used to write this chapter are all listed in the bibliography section
at the end of the book. The following books and articles are particularly useful for their
clear descriptions and explanations of these topics. Stallings [STAL05] and Tanenbaum
[TANE05] describe the different types of architectures, focusing on the differences between
CISC and RISC architectures in great depth. Information about the VLIW and EPIC archi-
tectures may be found at the Transmeta and Intel websites, respectively. The IBM website
contains a wealth of information about zSeries, POWER, and Cell architectures, including
the Redbooks, which are free, downloadable, book-length explanations of various computer
topics. These range in difficulty from beginner to highly technical. Intel.com (for the x86
series) and sun.com (for the SPARC architecture) are other useful brand-specific websites.

Instruction sets, instruction formats, and addressing are discussed at length in every
computer architecture textbook. The book by Patterson and Hennessy [PATT07] covers
the topics of Chapters 7 and 8 thoroughly, and has the additional benefit of being highly
readable. A more advanced treatment, by the same authors, is found in [HENN06].
Good discussions of multiprocessing are also found in Patterson and Hennessy and in
Tanenbaum. Two readable websites introducing the Cell processor are Gschwind, et. al.
[GSCH06] and Moore [MOOR06].
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A different approach to this material is to compare the architectures of various
machines. The book by Tabak [TABA95] looks at several different CPUs in detail. Most
of these CPUs are obsolete, but the comparison between different architectures is useful.
There are textbooks and trade books devoted to the architecture of every major CPU.
The most thorough discussion of the x86 architecture is found in Mueller [MUEL08].
I also recommend Brey [BREY08], Messmer [MESS01], and Sargent and Shoemaker
[SARG95] for the Intel x86 series. The PC System Architecture series is a collection of short
books describing the architectures of various parts of computers. Volume 5 [SHAN04]
describes the evolution and architecture of the Pentium 4. The case studies provided in
Supplementary Chapter 2 are additional information resources.

Stallings also includes an entire chapter on superscalar processors. Clear, detailed
discussions of all aspects of CPU and memory design can be found in the two books by
Patterson and Hennessy [PATT07, HENN06]. There are many additional references in each
of these books. Specific discussions of the superscalar processing techniques for particular
CPUs can be found in Liptay [LIPT92] for the IBM ES/9000 mainframe, in Becker and
colleagues [BECK93], Thompson and Ryan [THOM94], Burgess and colleagues [BURG94],
and Ryan [RYAN93] for the PowerPC, and ‘‘Tour of the P6’’ [THOR95] for the P6.

An alternative approach to the topics in this chapter can be found in any assembly lan-
guage textbook. There are many good books on these topics, with new ones appearing every
day. A website such as Amazon is a good resource for identifying the best currently available.

KEY CONCEPTS AND TERMS
branch history table
cache controller
cache line
clock
code morphing layer
control dependency
data dependency
disk cache
execution unit
explicitly parallel

instruction computer
(EPIC)

fetch unit
hazard
hit
hit ratio
instruction reordering

instruction set architecture
(ISA)

instruction unit
locality of reference
logical register
logical storage elements
master-slave

multiprocessing
memory interleaving
miss
multiprocessor systems
multicore processor
n-way interleaving
organisation
pipelining
register alias table
rename register

scalar processing
simultaneous thread

multiprocessing (STM)
speculative execution
stall time
superscalar processing
symmetrical

multiprocessing (SMP)
tag
threads
tightly coupled system
very long instruction word

(VLIW)
wide path memory access
write-back
write through

READING REVIEW QUESTIONS
8.1 The x86 series is an example of a CPU architecture. As you are probably aware, there

are a number of different chips, including some from different manufacturers even,
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that qualify as x86 CPUs. What, exactly, defines the x86 architecture? What word
defines the difference between the various CPUs that share the same architecture?
Name at least one different CPU architecture.

8.2 What is the major performance advantage that results from the use of multiple
general-purpose data registers?

8.3 Explain the advantage in implementing separate fetch and execute units in a
CPU. What additional task is implemented in the fetch unit as a performance
enhancement measure?

8.4 Explain how pipelining serves to reduce the average number of steps in the
execution part of the fetch-execute cycle.

8.5 Which class of instructions can reduce performance by potentially invalidating
the instructions in a pipeline? Identify two methods that can be used to partially
overcome this problem.

8.6 Most CPUs today are superscalar. What does that mean?

8.7 The use of multiple execution units can improve performance but also cause
problems called hazards or dependencies. Explain how a hazard can occur. How can
hazards be managed?

8.8 What is a rename register? What is it used for?

8.9 What performance improvement is offered by memory interleaving?

8.10 What specific performance improvement is offered by the use of cache memory?

8.11 Describe how cache memory is organized. What is a cache line? How is it used?

8.12 Explain the hit ratio in cache memory.

8.13 Explain the difference between cache write-through and cache write-back. Which
method is safer? Which method is faster?

8.14 Explain what takes place when cache memory is full.

8.15 Explain the locality of reference principle and its relationship to cache memory
performance and the hit ratio.

8.16 When a system has multiple levels of cache memory, L2 always has more memory
than L1. Why is this necessary?

8.17 Modern computers are usually described as multicore. What does this mean? Under
ideal conditions, what performance gain would be achieved using a four-core
processor over a single-core processor?

8.18 Identify and briefly explain two different ways of configuring a multiprocessing
system. Which configuration is more effective for general purpose computing?
Which configuration is more effective for handling specialized processing tasks,
such as those used in game applications?

EXERCISES
8.1 Find a good reference that describes the x86 chip. Discuss the features of the

architecture that make superscalar processing possible in this chip. What limitations
does the Pentium architecture impose on its superscalar processing?

8.2 Consider a CPU that implements a single instruction fetch-decode-execute-write-
back pipeline for scalar processing. The execution unit of this pipeline assumes
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that the execution stage requires one step. Describe, and show in diagram form,
what happens when an instruction that requires one execution step follows one
that requires four execution steps.

8.3 a. Consider a CPU with two parallel integer execution units. An addition
instruction requires 2 clock pulses to complete execution, and a multiplication
requires 15 clock pulses. Now assume the following situation: the program is
to multiply two numbers, located in registers R2 and R4, and store the results
in R5. The following instruction adds the number in R5 to the number in R2
and stores the result in R5. The CPU does not stall for data dependencies, and
both instructions have access to an execution unit simultaneously. The initial
values of R2, R4, and R5 are 3, 8, and 0, respectively. What is the result? Now
assume that the CPU does handle data dependencies correctly. What is the
result? If we define wasted time as time in which an execution unit is not busy,
how much time is wasted in this example?

b. Now assume that a later instruction in the fetch pipeline has no data
dependencies. It adds the value in R1, initially 4, to the value in R4 and stores
the result in R5. Data dependencies are handled correctly. There are no rename
registers, and the CPU retires instructions in order. What happens? If the
CPU provides rename registers, what happens? What effect does out-of-order
execution have upon the time required to execute this program?

8.4 Suppose that a CPU always executes the two instructions following a branch
instruction, regardless of whether the branch is taken or not. Explain how this can
eliminate most of the delay resulting from branch dependency in a pipelined CPU.
What penalties or restrictions does this impose on the programs that are executed
on this machine?

8.5 Some systems use a branch prediction method known as static branch prediction,
so called because the prediction is made on the basis of the instruction, without
regard to history. One possible scenario would have the system predict that all
conditional backward branches are taken and all forward conditional branches are
not taken. Recall your experience with programming in the Little Man Computer
language. Would this algorithm be effective? Why or why not? What aspects of
normal programming, in any programming language, support your conclusion?

8.6 How would you modify the Little Man Computer to implement the pipelined
instruction fetch-execution unit model that was described in this chapter? What
would it take to supply multiple execution units? Describe your modified LMC in
detail and show how an instruction flows through it.

8.7 a. Suppose we are trying to determine the speed of a computer that executes
the Little Man instruction set. The LOAD and STORE instructions each make up
about 25% of the instructions in a typical program; ADD, SUBTRACT, IN, and
OUT take 10% each. The various branches each take about 5%. The HALT

instruction is almost never used (a maximum of once each program, of
course!). Determine the average number of instructions executed each second
if the clock ticks at 100 MHz.

b. Now suppose that the CPU is pipelined, so that each instruction is fetched
while another instruction is executing. (You may also neglect the time required
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to refill the pipeline during branches and at the start of program execution.)
What is the average number of instructions that can be executed each second
with the same clock in this case?

8.8 The goal of scalar processing is to produce, on average, the execution of one
instruction per clock tick. If the clock ticks at a rate of 2 GHz, how many
instructions per second can this computer execute? How many instructions would
a 2 GHz superscalar processor that processes three instructions per clock cycle
execute?

8.9 Consider a cache memory that provides three hundred 16-byte blocks. Now
consider that you are processing all the data in a two-dimensional array of, say, four
hundred rows by four hundred columns, using a pair of nested loops. Assume that
the program stores the array column by column. You can write your program to
nest the loops in either direction, that is, process row by row or column by column.
Explain which way you would choose to process the data. What is the advantage?
Conversely, what is the disadvantage of processing the data the other way? What
effect does choosing the incorrect way have on system performance?

8.10 Carefully discuss what happens when a cache miss occurs. Does this result in a
major slowdown in execution of the instruction? If so, why?

8.11 What is the purpose of the tag in a cache memory system?

8.12 Describe the trade-offs between the memory cache write-through and write-back
techniques.

8.13 Carefully describe the advantages and disadvantages of master-slave multiprocess-
ing and symmetrical multiprocessing. Which would you select for fault-tolerant
computing? Why?

8.14 Locate information about the Cell Processor. Describe the tasks performed by the
various slave processors. What is the primary role of the master processor? Explain
the advantages of master-slave multiprocessing over other forms of processing for
this application. Can you think of some other types of computer problems that
would benefit from this approach?

8.15 As you know, a single CPU processes one instruction at a time. Adding a second
CPU (or core, in current terminology) allows the system to process two instructions
at a time, simultaneously, effectively doubling the processing power of the system.
A third core will offer triple the processing power of a single CPU, and so on.
However, studies have shown that, in general, the expected increase in computing
power starts to decline when the number of cores grows large, beyond eight or so.
Why would you expect this to be the case? For what types of computing problems
might this not be true?
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CHAPTER 9

INPUT/OUTPUT
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9.0 INTRODUCTION
Of course you’re aware that no matter how powerful the CPU is, a computer system’s
usefulness ultimately depends on its input and output facilities. Without I/O there is
no possibility of keyboard input, of screen output, of printout, or even of disk storage
and retrieval. Although you might be inclined to think of I/O in terms of user input and
output, there would be no computer network or Internet access either. To the CPU
and its programs, all these devices require specialized input and output processing
facilities and routines.

In fact, for most business programs and for nearly every multimedia application,
I/O is the predominant factor. E-commerce applications offer an even bigger challenge:
Web services generally require massive amounts of fast I/O to handle and process
I/O requests as they occur. The speed at which most of these programs operate is
determined by the ability of their I/O operations to stay ahead of their processing.
With PCs rapidly increasing in CPU processing capability, but still somewhat limited
in I/O processing, it has been greater I/O capability that has maintained, until recently,
the advantage of mainframe computers over PCs for business transaction processing.

We handled input and output in the Little Man Computer by providing input
and output baskets for that purpose. Each input instruction transferred one three-digit
data number from the input basket to the calculator; similarly, each output instruction
transferred one data number from the calculator to the output basket. If we wanted to
input three numbers, for example, an input instruction had to be executed three times.
This could be done with three separate input instructions or in a loop, but either way,
each individual piece of data required the execution of a separate input instruction.

It is possible to transfer data between input and output devices and the CPU of
a real computer in a similar manner. In the real computer, the in basket and out
basket are commonly replaced by a bus interface that allows a direct transfer between a
register within the CPU and a register within an I/O module that controls the particular
device. Both input and output are handled similarly. The technique is known as pro-
grammed I/O.

There are a number of complicating factors in handling input/output processes
(which we will normally simply call I/O) in a real computer. Although the method
of transferring data one word at a time does really exist, and may be adequate and
appropriate for some slow-operating I/O devices, the volume of data commonly
transferred in I/O devices, such as disks and tapes, makes this method too slow and
cumbersome to be practical as the only I/O transfer method in a modern high-speed
machine. We need to consider some method of transferring data in blocks rather than
executing an instruction for each individual piece of data.

The problem is further complicated by the fact that in a real computer, there may be
many input and output devices all trying to do I/O, sometimes at the same time. There
needs to be a way of distinguishing and separating the I/O from these different devices.
Additionally, devices operate at different speeds from each other and from the CPU.

277
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An inkjet printer may output characters at a rate of 150 per second, whereas a disk may
transfer data at a rate of tens or hundreds of thousands, or even millions, of bytes per
second. Synchronization of these different operations must be achieved to prevent data loss.

Finally, it should be noted that I/O operations take up a lot of computer time. Even if
a block of data can be transferred between the CPU and a disk with a single instruction,
much time is potentially wasted waiting for the completion of the task. A CPU could
execute millions of instructions in the time it takes a printer to print a single character. In
a large modern computer, the number of I/O operations may be very large. It would be
convenient and useful to be able to use the CPU for other tasks while these I/O transfers
are taking place.

In the computer, several different techniques are combined to resolve the problem
of synchronizing and handling I/O between a variety of different I/O devices operating
with different quantities of data at different speeds. In this chapter, we first consider the
I/O requirements of some commonly used devices. This discussion, which appears in
Section 9.1, leads to a set of requirements that the I/O-CPU interface should meet to
optimize system performance. Next, in Section 9.2 we briefly review programmed I/O, the
method used in the Little Man Computer, and consider its limitations. Section 9.3 addresses
the important issue of interrupts, the method used to communicate events that need special
attention to the CPU. Interrupts are the primary means for the user to interact with the
computer, as well as the means used for communication between the CPU and the various
I/O devices connected to the system. In Section 9.4 we look at Direct Memory Access, or
DMA, a more efficient alternative technique used to perform I/O in the computer. DMA
provides the ability to utilize the CPU more fully while I/O operations are taking place.
Finally, Section 9.5 considers the I/O modules that provide the capability both to control
the I/O devices and to interact with the CPU and memory.

9.1 CHARACTERISTICS OF TYPICAL I/O DEVICES
Before discussing the techniques that are used in the real computer for performing I/O, it
will help to consider some characteristics of the devices that will typically be connected to
the computer. In this chapter we are not interested in the inner workings of these devices nor
with the interconnection of the various computer components and I/O devices that make
up the whole computer system—these discussions we’ll save for Chapters 10 and 11, respec-
tively. For now, we are only interested in those characteristics of these devices that will affect
the I/O capabilities of the computer, in particular the speed and quantity of data transfer
required to use the computer efficiently and fully. This survey is intended to be intuitive: what
must be true about the I/O, based on what you already know about the particular devices
from your own practical experience. Although this discussion may seem like a digression, it
is intended to establish a set of basic principles and requirements that will help you to better
understand the reasons behind the methods that are used to perform I/O in computers.

Consider, for example, the keyboard as an input device. The keyboard is basically a
character-based device. You are probably already aware that typing on the keyboard of
your PC results in Unicode or ASCII input to the computer, one character at a time. Even
mainframe terminals, many of which can send text to the computer a page at a time, only
transmit a page occasionally, so the data rate for keyboards is obviously very slow compared
to the speed at which the CPU processes the data.
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Input from the keyboard is very slow because it is dependent on the speed of typing, as
well as on the thought process of the user. There are usually long thinking pauses between
bursts of input, but even during those bursts, the actual input requirements to the computer
are very slow compared to the capability of the computer to execute input instructions.
Thus, we must assume that if the computer is simply performing a single task, it will spend
most of its time waiting for input from the keyboard.

It is also useful to note that there are two different types of keyboard input. There
is input that is expected by the application program in response to a ‘‘read’’ statement of
some kind requesting input data for the program. Then there are other times when the
user wishes to interrupt what the computer is doing. On many computers, a character
such as Control-‘‘C’’ or Control-‘‘D’’ or Control-‘‘Q’’ can be typed to stop the program
that is running. Control-‘‘S’’ is used on some machines to stop the display from scrolling.
Typing Control-Alt-Delete on a PC will stop normal processing and open an administrative
window that can be used to kill a program or shut down the computer. These are examples
of unpredicted input, since the executing program is not necessarily awaiting specific input
at those times. Using the input method that we already described would not work: the
unexpected input would not be noticed, possibly for a long time until the next input
instruction was executed for some later expected input.

Finally, on a multiuser system, there may be many keyboards connected to a single
computer. The computer must be able to distinguish between them, must not lose input
data even if several keyboards send a character simultaneously, and must be able to respond
quickly to each keyboard. The physical distances from the computer to these keyboards
may be long.

Another input device that will generate unexpected input is the mouse. When you
move the mouse, you expect the cursor to move on the screen. Clicking on a mouse button
may serve as expected input to a program, or it may be unexpected and change the way
in which the program is executing. In fact, unexpected input is fundamental to programs
written in modern event-driven languages such as Visual Basic and Java. When the user
selects an item on a drop-down menu or clicks on a toolbar icon, she expects a timely
response. Again, data rates are slow.

Printers and display screens must operate over a wide range of data rates. Although
most monitors and printers are capable of handling pure ASCII or Unicode text, most
modern output is produced graphically or as a mixture of font descriptors, text, bitmap
graphics, and object graphics, a page or a screen at a time, using a page description language.
The choice of page description language and mixture of elements is determined by the
capabilities of the printer or graphics card. Clearly, output to a printer consisting only of
an occasional page or two of text will certainly not require a high data rate regardless of the
output method used.

The output of high resolution bitmap graphics and video images to a monitor is
quite a different situation. If the graphics must be sent to the graphics card as bitmap
images, even in compressed form, with data for each pixel to be produced, it may take
a huge amount of data to produce a single picture, and high-speed data transfer will be
essential. A single, color image on a high-resolution screen may require several megabytes
of data, and it is desirable to produce the image on the screen as fast as possible. If the
image represents video, extremely high data transfer rates are required. This suggests that
screen image updates may require bursts of several megabytes per second, even when data
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compression methods are used to reduce the transfer rate. It may also suggest to you why
it is nearly impossible to transmit high quality images quickly over voice-grade phone lines
using modems.

Contrast the I/O requirements of keyboards, screens, and printers with those of disks
and DVDs. Since the disk is used to store programs and data, it would be very rare that
a program would require a single word of data or program from the disk. Disks are used
to load entire programs or store files of data. Thus, disk data is always transferred in
blocks, never as individual bytes or words. Disks may operate at transfer rates of tens or,
even, hundreds of megabytes per second. As storage devices, disks must be capable of both
input and output, although not simultaneously. On a large system there may be several
disks attempting to transfer blocks of data to or from the CPU simultaneously. A DVD
attempting to present a full screen video at movie rates without dropouts must provide
data steadily at input rates approaching 10 megabytes per second, with some transient
rates and high definition video rates even higher. In addition, video and audio devices
require a steady stream of data over long periods of time. Contrast this requirement with
the occasional bursts of data that are characteristic of most I/O devices.

For both disk and image I/O, therefore, the computer must be capable of transferring
massive amounts of data very quickly between the CPU and the disk(s) or image devices.
Clearly, executing a single instruction for each byte of data is unacceptable for disk and
image I/O, and a different approach must be used. Furthermore, you can see the importance
of providing a method to allow utilization of the CPU for other tasks while these large I/O
operations are taking place.

With the rapid proliferation of networks in recent years, network interfaces have also
become an important source of I/O. From the perspective of a computer, the network is
just another I/O device. In many cases, the network is used as a substitute for a disk, with
the data and programs stored at a remote computer and served to the local station. For the
computer that is acting as a server, there may be a massive demand for I/O services. User
interfaces such as X Windows, which allow the transfer of graphical information from a
computer to a display screen located elsewhere on the network, place heavy demands on
I/O capability. With simple object graphics, or locally stored bitmap images, and with a
minimal requirement for large file transfers, a small computer with a modem may operate
sufficiently at I/O transfer rates of 3,000 bytes per second, but computers with more
intensive requirements may require I/O transfer rates of 50 megabytes per second, or more.

A table of typical data rates for various I/O devices appears in Figure 9.1. The values
given are rough approximations, since the actual rates are dependent on the particular hard-
ware systems, software, and application. As computer technology advances, the high end
data rates continue to increase at a rapid pace. For example, local area networks operating at
1 gigabit (or, equivalently, 125 megabytes) per second are increasingly common.

It should be pointed out that disks, printers, screens, and most other I/O devices
operate almost completely under CPU program control. Printers and screens, of course, are
strictly output devices, and the output produced can be determined only by the program
being executed. Although disks act as both input and output devices, the situation is similar.
It is the executing program that must always determine what file is to be read on input, or
where to store output. Therefore, it is always a program executing in the CPU that initiates
I/O data transfer, even if the CPU is allowed to perform other tasks while waiting for the
particular I/O operation to be completed.
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FIGURE 9.1

Examples of I/O Devices Categorized by a Typical Data Rate

Device Input/Output TypeData rate

Keyboard
Mouse
Voice input/output
Sound input 
Scanner
Laser printer 
Sound output 
Flash drive 

USB
Network/Wireless LAN 
Network/LAN
Graphics display
Optical disk
Magnetic tape
Magnetic disk

Input
Input
Input/Output
Input 
Input
Output 
Output 
Storage 

Input or output
Input or output
Input or output
Output
Storage
Storage
Storage

100 bps
3800 bps
264 Kbps
3 Mbps 
3.2 Mbps
3.2 Mbps 
8 Mbps 
480-800 Mbps read; 
80 Mbps write 
1.6-480 Mbps
11-100 Mbps
100-1000 Mbps 
800-8000 Mbps
4-400 Mbps 
32-90 Mbps
240-3000 Mbps

char
char
block burst
block burst or steady 
block burst
block burst 
block burst or steady 
block burst 

block burst
block burst
block burst
block burst or steady
block burst or steady
block burst or steady 
block burst

Adapted from Patterson, David A. and John L. Hennessy, (2005), Computer Organization and Design, 3rd Edition,
Morgan Kaufmann Publishers, Inc, San Fransisco, CA

Some input devices must be capable of generating input to the CPU independent of
program control. The keyboard and mouse were mentioned earlier in this context, and
voice input would also fall into this category. Some devices, such as CD-ROMs and USB
devices, can self-initiate by signaling their presence to a program within the operating
system software. Local area networks can also generate this kind of input, since a program
on a different CPU might request, for example, a file stored on your disk. In a slightly
different category, but with similar requirements, are input devices for which input is under
program control, but for which the time delay until arrival of the data is unpredictable,
and possibly long. (You might consider regular keyboard input in this category, especially
when writing a paper using your word processor.) This would be true if the data is being
telemetered from some sort of measurement device. For example, the computer might be
used to monitor the water level at a reservoir, and the input is water-level data that is
telemetered by a measurement device once per hour. Provision must be made to accept
unpredictable input and process it in some reasonable way, preferably without tying up the
CPU excessively.

Additionally, there will be situations where an I/O device being addressed is busy or
not ready. The most obvious examples are a printer that is out of paper or a DVD drive
with no disk in it or a hard disk that is processing another request. It would be desirable for
the device to be able to provide status information to the CPU, so that appropriate action
can be taken.
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The discussion in this section establishes several requirements that will have to be met
for a computer system to handle I/O in a sufficient and effective manner:

1. There must be a means for individually addressing different peripheral devices.

2. There must be a way in which peripheral devices can initiate communication
with the CPU. This facility will be required to allow the CPU to respond to
unexpected inputs from peripherals such as keyboards, mice, and networks, and
so that peripherals such as printers and floppy disk drives can convey emergency
status information to the executing program.

3. Programmed I/O is suitable only for slow devices and individual word transfers.
For faster devices with block transfers, there must be a more efficient means of
transferring the data between I/O and memory. Memory is a suitable medium
for direct block transfers, since the data has to be in memory for a program to
access it. Preferably this could be done without involving the CPU, since this
would free the CPU to work on other tasks.

4. The buses that interconnect high-speed I/O devices with the computer must be
capable of the high data transfer rates characteristic of modern systems. We will
return to this issue in Chapter 11.

5. Finally, there must be a means for handling devices with extremely different
control requirements. It would be desirable if I/O for each of these devices could
be handled in a simple and similar way by programs in the CPU.

The last requirement suggests that it is not practical to connect the I/O devices directly
to the CPU without some sort of interface module unique to each device. To clarify this
requirement, note the following conditions established from the previous discussion:

1. The formats required by different devices will be different. Some devices require
a single piece of data, and then must wait before another piece of data can be
accepted. Others expect a block of data. Some devices expect 8 bits of data at a
time; others require 16, 32, or 64. Some devices expect the data to be provided
sequentially, on a single data line. Other devices expect a parallel interface. These
inconsistencies mean that the system would require substantially different
interface hardware and software for each device.

2. The incompatibilities in speed between the various devices and the CPU will
make synchronization difficult, especially if there are multiple devices attempting
to do I/O at the same time. It may be necessary to buffer the data (i.e., hold it and
release part of it at particular times) to use it. A buffer works something like a
water reservoir or tower. Water enters the reservoir or tower as it becomes
available. It is stored and released as it can be used. A computer buffer uses
registers or memory in the same way.

3. Although the I/O requirements for most devices occur in bursts, some
multimedia, video and audio in particular, provide a steady stream of data that
must be transferred on a regular basis to prevent dropouts that can upset a user.
I/O devices and the interconnections that support multimedia services must be
capable of guaranteeing steady performance. This often includes network
interfaces and high-speed communication devices as well as such devices as video
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cameras, since networks are frequently used to supply audio and video. (Think of
downloading streaming video from the Web.)

4. Devices such as disk drives have electromechanical control requirements that
must be met, and it would tie up too much time to use the CPU to provide that
control. For example, the head motors in a disk drive have to be moved to the
correct disk track to retrieve data and something must continually maintain the
current head position on the track once the track is reached. There must be a
motor controller to move the print heads in an inkjet printer across the paper to
the correct position to print a character. And so on. Of course, the requirements
for each device are different.

The different requirements for each I/O device plus the necessity for providing devices
with addressing, synchronization, status, and external control capabilities suggest that it
is necessary to provide each device with its own special interface. Thus, in general, I/O
devices will be connected to the CPU through an I/O module of some sort. The I/O module
will contain the specialized hardware circuits necessary to meet all the I/O requirements
that we established, including block transfer capability with appropriate buffering and a
standardized, simple interface to the CPU. At the other interface, the I/O module will have
the capability to control the specific device or devices for which it is designed.

The simplest arrangement is shown in Figure 9.2. I/O modules may be very simple and
control a single device, or they may be complex, with substantial built-in intelligence, and
may control many devices. A slightly more complex arrangement is shown in Figure 9.3.

FIGURE 9.2

Simple I/O Configuration

CPU I/O
module

I/O
device

The additional I/O modules require addressing to distinguish them
from each other. The lower module will actually recognize addresses
for either of the I/O devices connected to it. I/O modules that control
a single type of device are often called device controllers. For example,
an I/O module that controls disks would be a disk controller. We look
at the I/O modules more carefully in Section 9.5.

FIGURE 9.3

A Slightly More Complex I/O Module Arrangement
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9.2 PROGRAMMED I/O
In the simplest method for performing I/O, an I/O module is connected to a pair of I/O
registers in the CPU via a bus. The I/O data register serves the same role in the real CPU
as the input and output baskets served in the Little Man Computer. Alternatively, one
might view the I/O baskets as buffers, holding multiple inputs or outputs, with the I/O data
register as the interface between the CPU and the buffer. The I/O operation is similar to
that of the Little Man Computer. Input from the peripheral device is transferred from the
I/O module or buffer for that peripheral device one word at a time to the I/O data register
and from there to an accumulator register under program control, just as occurred in the
Little Man Computer. Similarly, individual words of output data pass from an accumulator
register to the I/O data register where they can be read by the appropriate I/O module,
again under program control. Each instruction produces a single input or output. This
method is known as programmed I/O.

In practice, it is most likely that there will be multiple devices connected to the CPU.
Since each device must be recognized individually, address information must be sent with
the I/O instruction. The address field of the I/O instruction can be used for this purpose. An
I/O address register in the CPU holds the address for transfer to the bus. Each I/O module
will have an identification address that will allow it to identify I/O instructions addressed
to it and to ignore other I/O not intended for it.

As has been noted, it is common for an I/O module to have several addresses, each
of which represents a different control command or status request, or which addresses
a different device when a particular module supports multiple devices. For example, the
address field in the Little Man input and output instructions could be used to address up
to a combination of one hundred devices, status requests, or control commands. Figure 9.4
illustrates the concept of programmed I/O. Indeed, the LMC uses the address field to select
the I-basket (901) or O-basket (902) as the I/O device within the 900 instruction.

The I/O data and address registers work similarly to the memory address register
(MAR) and memory data register (MDR). In fact, in some systems, they may even be
connected to the same bus. The CPU places a control signal on the bus to indicate whether
the transfer is I/O or memory.

Programmed I/O is obviously slow, since a full instruction fetch-execute cycle must
be performed for each and every I/O data word to be transferred. Programmed I/O is
used today primarily with keyboards, with occasional application to other simple character
based data transfers, such as the transmission of commands through a network I/O module
or modem. These operations are slow compared with the computer, with small quantities
of data that can be handled one character at a time. One limitation, which we shall address
later in the chapter, is that with programmed I/O, input from the keyboard is accepted only
under program control. An alternative means must be found to accept unexpected input
from the keyboard.

There is one important application for programmed I/O: alternative methods of I/O
use the I/O module to control I/O operations from outside the CPU, independent of the
CPU, using memory as the intermediate site for the data transfer. Programmed I/O is used
by programs in the CPU to send the necessary commands to the I/O modules to set up
parameters for the transfer and to initiate I/O operations. We shall return to this topic in
Section 9.4.
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FIGURE 9.4

Programmed I/O
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    control line indicates that the
    instruction is an INPUT.

3. A buffer in the I/O module holds a
    keystroke, in this case ASCII 68,
    the letter “D”. The data is transferred
    to the I/O data register.

4. From there it is copied to
    the appropriate accumulator
    or general-purpose register,
    completing the operation.

9.3 INTERRUPTS
As you know from our previous discussion, there are many circumstances under which
it is important to interrupt the normal flow of a program in the computer to react to
special events. An unexpected user command from the keyboard or other external input,
an abnormal situation, such as a power failure, that requires immediate attention from the
computer, an attempt to execute an illegal instruction, a request for service from a network
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controller, or the completion of an I/O task initiated by the program: all of these suggest
that it is necessary to include some means to allow the computer to take special actions
when required. Interrupt capabilities are also used to make it possible to time share the
CPU between several different programs or program segments at once.

Modern computers provide interrupt capability by providing one or more special
control lines to the central processor known as interrupt lines. For example, the standard
I/O for a modern PC may contain as many as thirty-two interrupt lines, labeled IRQ0
through IRQ31. (IRQ stands for Interrupt ReQuest.) The messages sent to the computer
on these lines are known as interrupts. The presence of a message on an interrupt line will
cause the computer to suspend the program being executed and jump to a special interrupt
processing program.

Consider, as an example, the following situation:

EXAMPLE
In a large, multiuser system there may be hundreds of keyboards being used with the
computer at any given time. Since any of these keyboards could generate input to the
computer at any time, it is necessary that the computer be aware of any key that is struck
from any keyboard in use. This process must take place quickly, before another key is struck
on the same keyboard, to prevent data loss from occurring when the second input is generated.

Theoretically, though impractically, it would be possible for the computer to perform this
task by checking each keyboard for input in rotation, at frequent intervals. This technique
is known as polling. The interval would have to be shorter than the time during which a fast
typist could hit another key. Since there may be hundreds of keyboards in use, this technique
may result in a polling rate of thousands of samples per second. Most of these samples will
not result in new data; therefore, the computer time spent in polling is largely wasted.

This is a situation for which the concept of the interrupt is well suited. The goal
is achieved more productively by allowing the keyboard to notify the CPU by using an
interrupt when it has input. When a key is struck on any keyboard, it causes the interrupt
line to be activated, so that the CPU knows that an I/O device connected to the interrupt
line requires action. Interrupts satisfy the requirement for external input controls, and also
provide the desirable feature of freeing the CPU from waiting for events to occur.

Servicing Interrupts

Since the computer is capable only of executing programs, interrupt actions take the form of
special programs, executed whenever triggered by an interrupt signal. Interrupt procedures
follow the form shown in Figure 9.5.

Specifically, the interrupt causes the temporary suspension of the program in progress.
All the pertinent information about the program being suspended, including the location
of the last instruction executed, and the values of data in various registers, is saved in
a known part of memory, either in a special area associated with the program, known
as the process control block (PCB), or in a part of memory known as the stack area.
This information is known as the program’s context, and will make it possible to restart
the program exactly where it left off, without loss of any data or program state. Many
computers have a single instruction that saves all the critical information at once. The



CHAPTER 9 INPUT/OUTPUT 287

FIGURE 9.5

Servicing an Interrupt
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1. Before interrupt arrives, program A
   is executing. The program counter
   points to the current instruction.

2. When the interrupt is received by
   the CPU, the current instruction is
   completed, all the registers are
   saved in the stack area (or in a
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   B, the interrupt handler program.
   This causes a jump to program B,
   which becomes the executing program.

3. When the interrupt routine is complete,
   the registers are restored, including the
   program counter, and the original
   program resumes exactly where it left off.

memory belonging to the original program is kept intact. The computer then branches to
a special interrupt handler program elsewhere in memory; the interrupt handler program
is also known as an interrupt routine. The interrupt handler program determines the
appropriate course of action. This process is known as servicing the interrupt. Since many
interrupts exist to support I/O devices, most of the interrupt handling programs are also
known as device drivers.

When the interrupt routine completes its task, it normally would return control
to the interrupted program, much like a subroutine. Original register values would be
restored, and the original program would resume execution exactly where it left off, and
in its identical state, since all the registers were restored to their original values. There
are some circumstances when this is not the case, however, since actions taken by the
interrupt routine may make a difference in what the original program is supposed to do.
For example, a printer interrupt indicating that the printer is out of paper would require a
different action by the original program (perhaps a message to the screen telling the user to
load more paper); it would not be useful for the program to send more characters!
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Intuitively, the servicing of interrupts works just the way that you would expect.
Suppose that you were giving a speech in one of your classes, and someone in the class
interrupts you with a question. What do you do? Normally, you would hold your current
thought and answer the question. When you finish answering the question, you return
to your speech just where you left off, pick up the thought, and continue as though no
interrupt had occurred. This would be your normal interrupt servicing routine. Suppose,
however, that the interrupt is the bell ending class or the instructor telling you that you
have run out of time. In this case, your response is different. You would not return to your
speech. Instead, you might do a quick wrap-up followed by an exit.

In other words, you would react in a way quite similar to the way in which the interrupt
servicing routines work.

The Uses of Interrupts

The way in which an interrupt is used depends on the nature of the device. You’ve already
seen that externally controlled inputs are best handled by generating interrupts whenever
action is required. In other cases, interrupts occur when some action is completed. This
section introduces several different ways in which interrupts are used.

THE INTERRUPT AS AN EXTERNAL EVENT NOTIFIER As previously discussed,
interrupts are useful as notifiers to the CPU of external events that require action. This frees
the CPU from the necessity of performing polling to determine that input data is waiting.

EXAMPLE
Keyboard input can be processed using a combination of programmed I/O and interrupts.
Suppose a key is struck on the keyboard. This causes an interrupt to occur. The current
program is suspended, and control is transferred to the keyboard interrupt handler program.

FIGURE 9.6

Using a Keyboard Handler Interrupt
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The keyboard interrupt handler first inputs the character, using programmed I/O, and
determines what character has been received. It would next determine if the input is
one that requires special action. If so, it would perform the required action, for example,
suspending the program or freezing the data on the screen. Otherwise, it would pass the input
data to the program expecting input from that keyboard. Normally, the input character would
be stored in a known memory location, ready for the program to use when it is reactivated.

When the action is complete, that is, when the interrupt has been serviced, the computer
normally restores the register values and returns control to the suspended program, unless
the interrupt request specifies a different course of action. This would be the case, for
example, if the user typed a command to suspend the program being run.

Figure 9.6 shows the steps in processing a keyboard input interrupt.

EXAMPLE
A real-time system is a computer system used primarily to measure external events that
happen in ‘‘real time’’; that is, the event, when it occurs, requires processing quickly because
the data is of critical time-sensitive value.

As an example, consider a computer system that monitors the coolant temperature from
the core of a power plant nuclear reactor. The temperature is transmitted once a minute by
a temperature measurement transducer to the computer.

In this particular case, the transducer input is expected, and, when it occurs, requires
immediate evaluation. It is reasonable to assume, however, that the computer system is to
be used for other purposes, and it is not desirable to tie up the CPU in an input loop waiting
for the transducer data to arrive.

This is a perfect application for interrupts. The transducer input is assigned to an inter-
rupt. The interrupt service routine in this case is used to process the transducer input data.
When the interrupt occurs, the interrupt routine evaluates the input. If everything is normal,
the routine returns control to whatever the computer was doing. In an emergency, the interrupt
routine would transfer control instead to the program that handles emergency situations.

THE INTERRUPT AS A COMPLETION SIGNAL The keyboard and transducer examples
demonstrate the usefulness of the interrupt as a means for the user to control the computer
from an input device, in this case the keyboard or transducer. Let us next consider the
interrupt technique as a means of controlling the flow of data to an output device. Here,
the interrupt serves to notify the computer of the completion of a particular course
of action.

EXAMPLE
As noted previously, the printer is a slow output device. The computer is capable of outputting
data to the printer much faster than the printer can handle it. The interrupt can be used to
control the flow of data to the printer in an efficient way.

The computer sends one block of data at a time to the printer. The size of the block
depends on the type of printer and the amount of memory installed in the printer. When the
printer is ready to accept more data, it sends an interrupt to the computer. This interrupt
indicates that the printer has completed printing the material previously received and is
ready for more.
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In this case, the interrupt capability prevents the loss of output, since it allows the
printer to control the flow of data to a rate that the printer can accept. Without the interrupt
capability, it would be necessary to output data at a very slow rate to assure that the computer
did not exceed the ability of the printer to accept output. The use of an interrupt also allows
the CPU to perform other tasks while it waits for the printer to complete its printing.

By the way, you might notice that the printer could use a second, different interrupt as a
way of telling the computer to stop sending data temporarily when the printer’s buffer fills up.

This application is diagrammed in Figure 9.7. Another application of the interrupt as
a completion signal is discussed in Section 9.4, as an integral part of the direct memory
access technique.

THE INTERRUPT AS A MEANS OF ALLOCATING CPU TIME A third major applica-
tion for interrupts is to use the interrupt as a method of allocating CPU time to different
programs or threads that are sharing the CPU. (Threads are small pieces of a program that
can be executed independently, such as the spell checker in a word processing program.)

Since the CPU can only execute one sequence of instructions at a time, the ability to
time share multiple programs or threads implies that the computer system must share the
CPU by allocating small segments of time to each program or thread, in rapid rotation
among them. Each program sequence is allowed to execute some instructions. After a
certain period of time, that sequence is interrupted and relinquishes control to a dispatcher
program within the operating system that allocates the next block of time to another
sequence. This is illustrated in Figure 9.8.

FIGURE 9.7
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FIGURE 9.8

Using an Interrupt for Time Sharing
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The system cannot count on an instruction sequence relinquishing control voluntarily,
since a program caught in an infinite loop would not be able to do so. Instead, the computer
system provides an internal clock that sends an interrupt periodically to the CPU. The
time between interrupt pulses is known as a quantum, and represents the time that each
program or thread will have allotted to it. When the clock interrupt occurs, the interrupt
routine returns control to the operating system, which then determines which program
or thread will receive CPU time next. The interrupt is a simple but effective method for
allowing the operating system to share CPU resources among several programs at once.

Time sharing is discussed in more depth in Chapters 15 and 18.

THE INTERRUPT AS AN ABNORMAL EVENT INDICATOR The fourth major use
for interrupts is to handle abnormal events that affect operation of the computer system
itself. Under certain conditions, we would like the computer to respond with a specific
course of action, quickly and effectively. This usage is similar to that of other external input
events, but in this case, the events are directed at problems or special conditions within the
computer system itself.

One obvious example of an external event requiring special computer action is power
failure. Most computers provide enough internal power storage to save the work that
is being performed and to shut down gracefully, provided that the computer has quick
notification of the power failure. A power line monitor that connects to the interrupt
facility provides this capability. The interrupt routine will save the status of programs that
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are in memory, close open files, and perform other housekeeping operations that will allow
the computer to restart without any loss of data. It will then halt the computer.

Another important application of the abnormal event interrupt is when a program
attempts to execute an illegal instruction such as a divide by 0 or a nonexistent op code, or
when a hardware error is detected, such as a memory parity error. When the error occurs
it is not possible to complete the executing program. Yet it is important that the system
attempt to recover from the error and that the appropriate personnel be notified. It is
not acceptable simply to halt the computer. Particularly in modern multitasking computer
systems this would be undesirable since it would also stop other executing programs that
might not be affected by the error and would affect other users if the system is a multiuser
system. Instead, an interrupt routine can notify the user of the error and return control
of the CPU to the operating system program. You should notice that these interrupts
are actually generated from inside the CPU, whereas the other interrupts that we have
discussed so far are generated externally. Internal interrupts are sometimes called traps or
exceptions.

EXAMPLE
Most modern computers have a set of instructions known as privileged instructions. These
instructions are intended for use by an operating system program. The HALT instruction
generally is a privileged instruction. Privileged instructions are designed to provide system
security by preventing application programs from altering memory outside their own region,
from stopping the computer, or from directly addressing an I/O device that is shared by
multiple programs or users. (Suppose, for example, that two programs sharing the computer
each sent text out to a printer. The resulting printout would be garbage, a mixture of
the outputs from each program.) An attempt by a user’s program to execute a privileged
instruction would result in an illegal instruction interrupt.

You might assume from the examples above that abnormal event interrupts always
result from critical errors or catastrophic failures within the computer system, but this
not necessarily the case. Virtual storage is a memory management technology that makes
it appear that a computer system has more memory than is physically installed in the
computer. (There is a detailed discussion of virtual storage in Chapter 18.) One particularly
important interrupt event occurs as an integral part of the design and operation of virtual
storage. Other internal and external events also make use of the interrupt facility. The
table in Figure 9.9 shows a list of the built-in interrupts for the IBM System z family of
computers.

SOFTWARE INTERRUPTS In addition to the actual hardware interrupts already dis-
cussed, modern CPU instruction sets include an instruction that simulates an interrupt.
In the Intel x86 architecture, for example, this instruction has the mnemonic INT, for
INTerrupt. The IBM System z uses the mnemonic SVC for SUPERVISOR CALL. The interrupt
instruction works in the same way as a hardware interrupt, saving appropriate registers
and transferring control to an interrupt handling procedure. The address space of the
INT instruction can be used to provide a parameter that specifies which interrupt is to be
executed. The software interrupt is very similar to a subroutine jump to a known, fixed
location.
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FIGURE 9.9

Table of Interrupts for zSeries Family

Highest

Lowest

Priority

Machine check
Supervisor call
Program check

Machine check
External

I/O
Restart

Interrupt class

Nonrecoverable hardware errors
Software interrupt request by program
Hardware-detectible software errors: illegal 
instruction, protected instruction, divide by 0, 
overflow, underflow, address translation error
Recoverable hardware errors
Operator intervention, interval timer expiration, 
set timer expiration
I/O completion signal or other I/O-related event
Restart key, or restart signal from another CPU 
when multiple CPUs are used

Type of interrupts

Software interrupts make the interrupt routines available for use by other programs.
Programs can access these routines simply by executing the INT instruction with the
appropriate parameter.

An important application for software interrupts is to centralize I/O operations. One
way to assure that multiple programs do not unintentionally alter another program’s files or
intermingle printer output is to provide a single path for I/O to each device. Generally, the
I/O paths are interrupt routines that are a part of the operating system software. Software
interrupts are used by each program to request I/O from the operating system software. As
an example, a software interrupt was used in Figure 9.7 to initiate printing.

Multiple Interrupts and Prioritization

As you have now seen, there may be many different input and output devices and event
indicators connected to interrupt lines. This means that there may be many different events
vying for attention. Inevitably, multiple interrupts will occur from time to time.

There are two questions that must be answered when an interrupt occurs. First, are
there other interrupts already awaiting service, and, if so, how does the computer determine
the order in which the interrupts get serviced? And, second, how does the computer identify
the interrupting device?

Two different processing methods are commonly used for determining which device
initiated the interrupt. Some computers use a method known as vectored interrupt, in
which the address of the interrupting device is included as part of the interrupt. Another
method provides a general interrupt that is shared by all devices. The computer identifies
the interrupting device by polling each device. These two methods are illustrated in
Figures 9.10 and 9.11, respectively. The vectored interrupt method is obviously faster, but
requires additional hardware to implement. Some systems use different interrupt lines for
each interrupt; others use a method called ‘‘daisy chaining,’’ which places the interrupts onto
a single interrupt line to the CPU in such a way that highest priorities are recognized first.
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FIGURE 9.10

Vectored Interrupt Processing
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Address of interrupt A
Address of interrupt B

Address of interrupt K

Interrupt A
service routine
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Multiple interrupts can be handled by
assigning priorities to each interrupt. In
general, multiple interrupts will be handled
top priority first. A higher-priority interrupt
will be allowed to interrupt an interrupt of
lower priority, but a lower-priority inter-
rupt will have to wait until a higher-priority
interrupt is completed.

This leads to a hierarchy of interrupts, in
which higher-priority interrupts can inter-
rupt other interrupts of lower priority, back
and forth, eventually returning control to
the original program that was running.
Although this sounds complicated, this situ-
ation is actually quite common, and is fairly
easy to implement. Figure 9.12 shows a sim-
ple example of this situation. In this figure,
interrupt routine C is the highest priority,
followed by B and A.

Most computer systems allow the system manager to establish priorities for the various
interrupts. Priorities are established in a logical way. The highest priorities are reserved for
time-sensitive situations, such as power failure or external events that are being time mea-
sured. Keyboard events are also usually considered high-priority events, since data loss can
occur if the keyboard input is not read quickly. Task completion interrupts usually take lower
priorities, since the delay will not affect the integrity of the data under normal conditions.

Depending on the system, priorities may be established with software or with hardware.
In some systems, the priority of I/O device interrupts is established by the way their I/O
module cards are physically placed on the backplane. The daisy chain interrupt line can

FIGURE 9.11

Polled Interrupt Processing
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FIGURE 9.12

Multiple Interrupts
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be used for this purpose: the highest-priority devices are placed closest to the CPU and
block the signals of lower-priority devices that are farther down the line. In other systems,
priorities are established by assigning a priority number to each interrupt.

Most interrupts can be temporarily disabled by program instructions when a program
is performing a critical task that would be negatively affected if an interrupt were to occur.
This is particularly true of time-sensitive tasks. In many systems, interrupts are maskable;
that is, they can be selectively disabled. Certain interrupts, such as power failure, that are
never disabled are sometimes referred to as nonmaskable interrupts. Most modern computer
systems save interrupts that occur when interrupts are disabled, so that when the interrupts
are reenabled, the pending interrupts will be processed.

EXAMPLE
In the IBM System z architecture, interrupts are divided into six classes, with the priorities
shown in Figure 9.9. All the different interrupts within each class are handled by the interrupt
service routine for that class. Each interrupt class has two vectored addresses permanently
associated with it. The first of these is a space reserved for the Program Status Word of
the current program, known in IBM jargon as the OLD PSW. The Program Status Word is
a 64-bit word that includes the program counter and other significant information about
the program. The second vectored address contains a pointer to the interrupt routine. This
address is known as the NEW PSW. The method used to switch from the original program to
a service routine and back is illustrated in Figure 9.13.

When an interrupt occurs, the PSW for the current program is stored automatically in
the OLD PSW space, and the NEW PSW is loaded. The effect is a jump to the location in
memory pointed to by the NEW PSW, which is the location of the interrupt service routine for
that class of interrupts. Incidentally, note that this procedure does not save other registers.
Each interrupt service routine saves and restores the registers that it uses.
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Processing an Interrupt in the IBM zSeries
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1. Before the interrupt occurs, the current program
    is executing normally. The OLD PSW space is empty,
    the NEW PSW space contains the starting address of
    the service routine. In this example, the service routine
    starts at location 200.

2. The interrupt occurs while current program is
    executing the instruction at location 633.

3. As a result, the current PSW value, 634, is
    stored in the OLD PSW space...

4. and the NEW PSW value, 200, is placed in
    the PSW. This will cause the service routine
    to execute.

5. When the service routine is complete, it
    executes a LOAD OLD PSW instruction.
    This causes the value 634 to be loaded into the
    PSW. Thus, the current program resumes where
    it left off.

296
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The Z-architecture CPU has an instruction LOAD OLD PSW. When the interrupt service
routine is completed, it simply uses this instruction to return to the original program.
Interrupts of lower priority are masked, but higher-priority interrupts are allowed to interrupt
the lower priority service routine while it is executing. Most important, interrupts belonging
to the same class must be masked. Since there is only a single address space available for
storing the OLD PSW for each class, a second interrupt of the same class would destroy
the return address to the original program. Worse yet, the second interrupt would store the
current address being executed in the OLD PSW space. Since that address is itself within the
service routine, this would result in an infinite loop. To see this, look again at Figure 9.13.
Pick a location inside the service routine, say, 205, and cause an interrupt to occur at that
point. Now, follow through the diagram, and notice the results.

The preceding example demonstrates one way of providing return access from
interrupts. An alternative method is used in x86 series computers. The x86 interrupt
structure is also vectored, but the context is stored on an interrupt stack. Using a stack in
this way is essentially analogous to the way in which subroutine jumps and returns work.
These were discussed in detail in Chapter 7. Stack storage for interrupts makes interrupts
reentrant, although such a condition would seem to be extremely rare.

Interrupts are normally checked at the completion of each instruction. That is,
interrupts are normally checked after one instruction is finished and before another begins.
This assures that conditions won’t change in the middle of an instruction that would affect
the instruction’s execution. Certain long System z instructions can be interrupted in the
middle of their fetch-execution cycle, however. These instructions use the general-purpose
registers for their intermediate values, so it is important that the general-purpose registers
be stored during an interrupt for later retrieval; otherwise, some instructions could not be
restarted properly. The System z computer does not automatically store registers when an
interrupt occurs. It is therefore important that the interrupt programs be written carefully
so that the interrupted instruction doesn’t crash when the routine is restarted. In the x86
computer, the registers are also generally stored on a stack, which makes retrieval simple
even if the interrupt routine itself is interrupted. Virtual storage also requires the ability to
interrupt in the middle of an instruction.

9.4 DIRECT MEMORY ACCESS
For most applications, it is impractical to transfer data to the CPU from a peripheral device
using programmed I/O, even with interrupts. Indeed, the data from disks and tapes are
transferred only in blocks, and it does not make sense to execute a separate instruction for
each piece of data in the block. It is also more reasonable to transfer blocks of data directly
between a device’s I/O module and memory, since most processing will also take place in
blocks. This suggests bypassing the CPU registers, if possible, and then processing the block
of data as a group, from memory.

As a simple example, consider a program that sorts a block of numbers. To operate
efficiently, the entire block of numbers must be stored in memory for the sort operation
to take place, since instructions in the CPU can operate only on data in memory. Thus, it
makes sense to move the entire block from disk to memory at once.
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For this purpose, computer systems provide a more efficient form of I/O that transfers
block data directly between the I/O module and computer memory, under control of the
I/O module. The transfer is initiated by a program in the CPU, using programmed I/O,
but the CPU can then be bypassed for the remainder of the transfer. The I/O module will
notify the CPU with an interrupt when the transfer is complete. Once this has occurred,
the data is in memory, ready for the program to use. This technique of I/O–memory data
transfer is known as direct memory access, or more commonly, simply as DMA.

In Little Man terms, direct memory access could be viewed as providing data for the
Little Man by loading data directly into the mailboxes through a rear door, bypassing the
Little Man I/O instruction procedures. To reemphasize the fact that this operation only
takes place under program control, we would have to provide a means for the Little Man
to initiate such a transfer and a means to notify the Little Man when the data transfer is
complete.

For direct memory access to take place, three primary conditions must be met:

1. There must be a method to connect together the I/O interface and memory. In
some systems both are already connected to the same bus, so this requirement is
easily met. In other cases, the design must contain provisions for interconnecting
the two. The issue of system configuration is discussed in Chapter 11.

2. The I/O module associated with the particular device must be capable of reading
and writing to memory. It does so by simulating the CPU’s interface with
memory. Specifically, the I/O module must be able to load a memory address
register and to read and write to a memory data register, whether its own or one
outside the I/O module.

3. There must be a means to avoid conflict between the CPU and the I/O module. It
is not possible for the CPU and a module that is controlling disk I/O to load
different addresses into the MAR at the same instant, for example, nor is it
possible for two different I/O modules to transfer data between I/O and memory
on the same bus at the same instant. This requirement simply means that
memory can only be used by one device at a time, although, as we mentioned in
Chapter 8, Section 8.3, some systems interleave memory in such a way that the
CPU and I/O modules can access different parts of memory simultaneously.
Special control circuits must be included to indicate which part of the system,
CPU or particular I/O module, is in control of the memory and bus at any given
instant.

DMA is particularly well suited for high-speed disk transfers, but there are several
other advantages as well. Since the CPU is not actively involved during the transfer, the
CPU can be used to perform other tasks during the time when I/O transfers are taking
place. This is particularly useful for large multiuser systems. Of course, DMA is not limited
to just disk-to-memory transfers. It can be used with other high-speed devices. And the
transfers may be made in either direction. DMA is an effective means to transfer video data
from memory to the video I/O system for rapid display, for example.

The procedure used by the CPU to initiate a DMA transfer is straightforward. Four
pieces of data must be provided to the I/O controller for the particular I/O device to initiate
the transfer. The four pieces of data that the I/O module must have to control a DMA
transfer are
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1. The location of the data on the I/O device (for example, the location of the block
on the disk)

2. The starting location of the block of data in memory

3. The size of the block to be transferred

4. The direction of transfer, read (I/O → memory) or write (memory → I/O)

Normally, the I/O module would have four different registers, each with its own
I/O address available for this purpose. In most modern systems, normal programmed
I/O output instructions are used to initiate a DMA transfer. On some systems, a fifth
programmed I/O instruction actually initiates the transfer, whereas other systems start the
DMA transfer when the fourth piece of data arrives at the I/O module.

IBM mainframes work a bit differently, although the principle is the same. A single
programmed I/O START CHANNEL instruction initiates the process. A separate channel program
is stored in memory. The I/O module uses this channel program to perform its DMA
control. The four pieces of data are a part of the channel program and are used by the I/O
module to initiate the DMA transfer. The concept of I/O channels is considered in more
detail in Chapter 11.

Once the DMA transfer has been initiated, the CPU is free to perform other processing.
Note, however, that the data being transferred should not be modified during this period,
since doing so can result in transfer errors, as well as processing errors.

If, for example, a program should alter the number in a memory location being
transferred to disk, the number transferred is ambiguous, dependent on whether the
alteration occurred before or after the transfer of that particular location. Similarly, the
use of a number being transferred into memory depends on whether the transfer for that
particular location has already occurred.

This would be equivalent to having the Little Man read a piece of data from the area
of memory being loaded from the rear of the mailboxes. The number on that piece of data
would depend on whether a new value loaded in from the rear came before or after the
Little Man’s attempt to read it. Clearly, this is not an acceptable situation.

It is thus important that the CPU know when the transfer is complete, assuring that the
data in memory is stable. The interrupt technique is used for this purpose. The program
waiting for the data transfer is suspended or performs other, unrelated processing during
the time of transfer. The controller sends a completion signal interrupt to the CPU when
the transfer is complete. The interrupt service routine notifies the program that it may
continue with the processing of the affected data.

Finally, note that it takes several programmed output instructions to initiate a DMA
transfer. This suggests, correctly, that it is not useful to perform a DMA transfer for very
small amounts of data. For small transfers, it is obviously more efficient to use programmed
I/O. It is also worth pointing out that if a computer is capable only of performing a single
task, then the time freed up by DMA cannot be used productively, and there is little
advantage in using DMA.

It is worth interrupting the discussion at this point (yes, the pun was intentional) to
remind you that in reality an application program would not be performing I/O directly,
since doing so might conflict with other programs that are also performing I/O at the same
time. Instead, the application program would request I/O services from the operating system
software by calling a procedure within the operating system that performs the I/O operations
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described here. The I/O instructions and interrupt procedures are, of course, privileged:
only the operating system software is allowed access to these instructions and procedures.

EXAMPLE
Consider the steps required to write a block of data to a disk from memory. The executing
program has already created the block of data somewhere in memory.

First, the I/O service program uses programmed I/O to send four pieces of data to the
disk-controlling I/O module: the location of the block in memory; the location where the data
is to be stored on disk; the size of the block (this step might be unnecessary if a fixed disk
size is always used on the particular system); and the direction of transfer, in this case a
write to disk.

Next, the service program sends a ‘‘ready’’ message to the I/O module, again using
programmed I/O. At this point, the DMA transfer process takes place, outside the control of
the CPU, the I/O service, or the program that requested I/O service. Depending on the design
of the operating system programs, the current application program may resume execution of
other tasks, or it may be suspended until the DMA transfer is complete.

When the transfer is complete, the I/O module sends an interrupt to the CPU. The
interrupt handler either returns control to the program that initiated the request or notifies the
operating system that the program can be resumed, depending on the design of the system.

This example shows how the programmed I/O, DMA, and interrupt methodologies
work together in the most important and common way of doing I/O. The technique is
diagrammed in Figure 9.14.

9.5 I/O MODULES
In the example shown in Figure 9.14, a major role is played by the disk controller. The disk
controller is an example of an I/O module. The I/O module serves as an interface between

FIGURE 9.14

DMA Initiation and Control

Memory Data

Interrupt

CPU

CPU

I/O module
(disk controller)

Disk
controller

Disk
controller

I/O instructions
Memory address

Disk address
Size of block
Read or write

Initiate transfer

1. Programmed I/O used to
   prepare I/O module for transfer
   by providing required information
   and initiating transfer.

2. DMA transfer. In this case
   data is transferred from disk
   to memory.

3. Upon completion, disk
   controller sends completion
   interrupt to CPU.



CHAPTER 9 INPUT/OUTPUT 301

the CPU and the specific device, in this case a disk drive, accepting commands from the
CPU on one side and controlling the device on the other. In this example, the I/O module
provides the following functions:

■ The I/O module recognizes messages addressed to it and accepts commands from
the CPU establishing what the disk drive is to do. In this case, the I/O module
recognizes that a block of data is to be written from memory to disk using DMA.

■ The I/O module provides a buffer where the data from memory can be held until
it can be transferred to the disk.

■ The I/O module provides the necessary registers and controls to perform a direct
memory transfer. This requires that the I/O module have access to a memory
address register and a memory data register separate from those of the CPU,
either within the I/O module or as a separate DMA controller.

■ The I/O module controls the disk drive, moving the head to the physical location
on the disk where data is to be written.

■ The I/O module copies data from its buffer to the disk.
■ The I/O module has interrupt capability, which it uses to notify the CPU when

the transfer is complete. It can also interrupt the CPU to notify it of errors or
problems that arise during the transfer.

It is desirable to offload tasks specific to I/O operations from the CPU to a separate
module or modules which are designed specifically for I/O data transfer and device control.
In some cases, the I/O module even provides a processor of its own to offload I/O related
processing from the system CPU.

The use of separate I/O modules offers several benefits:

■ The module can be designed to provide the specialized control required by a
particular device.

■ The module frees the CPU to perform other tasks while the much slower I/O
operations are taking place.

■ The presence of I/O modules allows control of several different I/O devices to
occur simultaneously.

■ A processor-based module can provide specialized services that would otherwise
overload the system CPU with time-consuming CPU-intensive work. For
example, a high-end graphics display I/O controller can decode compressed and
encrypted MPEG video or adjust images for lighting and shading effects.

As seen in Figure 9.15, I/O modules perform two different functions. At the CPU inter-
face, the module performs CPU interfacing tasks: accepting I/O commands from the CPU,
transferring data between the module and the CPU or memory, and sending interrupts and

FIGURE 9.15
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computer, and must be able to pass the request in the form of an interrupt to the computer.
This is true for any device that can cause an unexpected interrupt, including devices that can
be installed or removed during computer operation, (sometimes known as hot-swappable
or plug-and-play), devices with removable media, and network modules.

An I/O module or control unit module used to control a peripheral device is known as
a device controller, or sometimes as a device card. Often, the device is named–the module
in the preceding example would be referred to specifically as a disk controller, a network
module would be called a network interface controller or network interface card. And, of
course, you’re probably already familiar with graphics cards. A device controller accepts
I/O requests and interacts directly with the device to satisfy those requests. The device
controllers are individually designed to provide the specialized built-in circuitry necessary
for control of a particular type of device. This ability is important, because there is such
a variety of requirements for different peripheral devices. A tape drive must be turned on
and off and switched between fast forward, play, and rewind. A disk head must be moved
to the correct track. A display screen requires a steady transfer of data representing each
point on the screen and special circuitry to maintain the correct position on the screen for
the display of each point. (Operation of a display controller is discussed in Chapter 10.)

It would be difficult to program the CPU to provide the correct types of signals to
operate these and other types of I/O devices, and the CPU time required to control these
devices would significantly reduce the usefulness of the system. With a device controller,
simple CPU I/O instructions can be used to control quite complex operations. Multiple
devices of the same kind can often be controlled with a single controller.

In a small system, most of the I/O modules are device controllers that serve as direct
interfaces between a general system bus and each of the system’s peripheral devices. There
may also be I/O modules that act as an additional interface between the system bus and
other modules that then connect to the device. In a typical PC, for example, the disk
controller is normally mounted inside the PC case and connects directly to a system bus.
The printer, on the other hand, is controlled indirectly. One I/O module connects to the
system bus and terminates in a parallel bus or USB port; the actual print controller is inside
the printer, at the other end of the bus.

In general I/O modules simplify the task of interfacing peripheral devices to a CPU. I/O
modules offload a considerable amount of work from the CPU. They make it possible to
control I/O to a peripheral with a few simple I/O commands from the CPU. They support
DMA, so that the CPU may be free to perform other tasks. And, as we have already noted,
device controllers provide the specialized circuitry required to interface different types of
peripherals to the computer.

Much of the power in modern computers comes from the ability to separate out CPU
operations from other, more individualistic, I/O peripheral functions, and allowing the
processing of each to progress in parallel. In fact, the more powerful the computer, the
more essential is the separation of I/O to the satisfactory operation of the system as a whole.

SUMMARY AND REVIEW
This chapter describes the two methods used for input/output, programmed I/O and
DMA, and introduces the various components and configurations that make both methods
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possible. After a brief description of the I/O requirements of the most common peripherals,
the text describes the process of programmed I/O, and describes the advantages and
disadvantages of this technique. In general, the use of programmed I/O is limited to slow
devices such as keyboards and mouses that are not block oriented.

Next, we introduced the concept of an interrupt, a means of causing the CPU to take
special action. We described various ways in which an interrupt could be used, including as
notification of an external event that requires attention, as a completion signal for I/O, as a
means of allocating CPU time, as an abnormal event indicator, and as a way for software
to cause the CPU to take special action. We explained the method used by the interrupt to
attract the CPU’s attention and the ways in which the interrupt is serviced by the CPU. We
considered the situation in which multiple interrupts occur and discussed the prioritization
of interrupts.

As an alternative to programmed I/O, direct memory access allows the transfer of
blocks of data directly between an I/O device and memory. We discussed the hardware
requirements that make DMA possible and showed how DMA is used. We explained how
DMA works in conjunction with interrupts.

We concluded with a discussion of the I/O modules that serve to control the I/O
devices and act as an interface between the peripheral devices, the CPU, and memory. The
I/O modules receive messages from the CPU, control the device, initiate and control DMA
when required, and produce interrupts. The I/O modules in a channel architecture also
serve to direct I/O requests to the proper channel and provide independent, intelligent
control of the I/O operation.

FOR FURTHER READING
Detailed discussions of I/O concepts and techniques, including the concepts of interrupts
and DMA, can be found in the engineering textbooks previously mentioned, particularly
those by Stallings [STAL05] and Tanenbaum [TAN05]. An outstanding treatment of I/O
in the IBM mainframe architecture can be found in Prasad [PRAS94] and in Cormier
and others [CORM83]. PC I/O is discussed in a number of excellent books, among them
Messmer [MESS01] and Sargent [SARG95]. Somewhat less organized, but still valuable, is
the treatment found in Henle [HENL92].

KEY CONCEPTS AND TERMS
abnormal event
buffer
channel program
context
device card
device controller
device driver
direct memory access

(DMA)

exception
external event
interrupt
interrupt handler
interrupt lines
interrupt routine
interrupt service
maskable
polling

priority
privileged instruction
process control block

(PCB)
programmed I/O
quantum
software interrupt
trap
vectored interrupt
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READING REVIEW QUESTIONS
9.1 In terms of the nature of the data, how does a keyboard differ from a hard disk as

an input device?

9.2 Name at least two devices that can generate unexpected input.

9.3 Explain the purpose of a buffer.

9.4 Explain the reasons why programmed I/O does not work very well when the I/O
device is a hard disk or a graphics display.

9.5 When an interrupt occurs, what happens to the program that is currently executing
at the time?

9.6 What is a context? What does it contain? What is it used for?

9.7 The book lists four primary uses for interrupts. State and explain at least three of
them.

9.8 What kind of interrupt occurs when a user’s program tries to execute a privileged
instruction?

9.9 What does DMA stand for? What capability does DMA add to a computer?

9.10 What are the three primary conditions that are required for DMA to take place?

9.11 What data must an I/O controller have before a DMA transfer takes place? How is
this data sent to the controller?

9.12 What is the purpose of a completion interrupt at the conclusion of a DMA transfer?

9.13 A graphics card is an example of an I/O controller. I/O controllers have (at least)
two interfaces. What are the two interfaces of a graphics card connected to?

9.14 Name at least three benefits that are provided by I/O modules.

EXERCISES
9.1 Why would DMA be useless if the computer did not have interrupt capability?

9.2 What is the advantage of using a disk controller to control the hard disk? How else
could you do the job that the disk controller does?

9.3 DMA is rarely used with dumb computer terminals. Why?

9.4 Consider the interrupt that occurs at the completion of a disk transfer.

a. ‘‘Who’’ is interrupting ‘‘whom’’?

b. Why is the interrupt used in this case? What would be necessary if there were
no interrupt capability on this computer?

c. Describe the steps that take place after the interrupt occurs.

9.5 Suppose you wish to send a block of data to a tape drive for storage using DMA.
What information must be sent to the tape controller before the DMA transfer can
take place?

9.6 What is an interrupt vector?

9.7 What is polling used for? What are the disadvantages of polling? What is a better
way to perform the same job?

9.8 To use a computer for multimedia (moving video and sound), it is important to
maximize the efficiency of the I/O. Assume that the blocks of a movie are stored
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consecutively on a CD-ROM. Describe the steps used to retrieve the blocks for
use by the movie display software. Discuss ways in which you could optimize the
performance of the I/O transfer.

9.9 Consider the interface between a computer and a printer. For a typical printout
it is clearly impractical to send output data to the printer one byte or one word
at a time (especially over a network!). Instead data to be printed is stored in a
buffer at a known location in memory and transferred in blocks to memory in
the printer. A controller in the printer then handles the actual printing from the
printer’s memory.

The printer’s memory is not always sufficient to hold the entire printout data at
one time. Printer problems, such as an ‘‘out of paper’’ condition, can also cause
delays. Devise and describe, in as much detail as you can, an interrupt/DMA scheme
that will assure that all documents will be successfully printed.

9.10 The UNIX operating system differentiates between block-oriented and
character-oriented devices. Give an example of each, explain the differences
between them, and explain how the I/O process differs for each.

9.11 Describe a circumstance where an interrupt occurs at the beginning of an event.
Describe a circumstance where an interrupt occurs at the completion of an event.
What is the difference between the types of events?

9.12 In general, what purpose does an interrupt serve? Stated another way, suppose
there were no interrupts provided in a computer. What capabilities would be lost?

9.13 What is the difference between polling and polled interrupt processing?

9.14 Describe the steps that occur when a system receives multiple interrupts.
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COMPUTER PERIPHERALS

Thomas Sperling. Adapted, courtesy of David Ahl, Creative Computing.



10.0 INTRODUCTION
The typical personal computer system described in an advertisement consists of a
CPU, memory, a DVD or CD read-write drive, a hard disk drive, a keyboard, a
mouse, wireless and wired network interfaces, USB ports, sound and video system
components, usually a modem, perhaps parallel, FireWire, and serial ports, and a
monitor. Additional available components include scanners of various types, printers,
plotters, TV tuners, floppy disk drives, and tape drives. Internal to the computer there
is also a power supply that converts wall plug power into voltages suitable for powering
a computer. All the items mentioned, except for the CPU, memory, and power supply,
are considered peripheral (that is, external) to the main processing function of the
computer itself and are known, therefore, as peripherals. Some of the peripherals use
the USB, parallel, and serial ports as their interconnection point to the computer.
Others have their own interface to internal system buses that interconnect various
parts of the computer.

The peripherals in a large server or mainframe computer are similar, except
larger, with more capacity. Large numbers of hard disk drives may be grouped into
arrays to provide capacities of tens or hundreds of terabytes (TB). One or more
high-speed network interfaces will be a major component. The capability for handling
large amounts of I/O will likely be a requirement. Means of implementing large-scale,
reliable backup will be necessary. Conversely, fancy displays, high-end graphics and
audio cards, and other multimedia facilities may be totally unneeded.

Despite different packaging and differences in details, the basic operations of
these devices are similar, regardless of the type of computer. In previous chapters we
have already looked at the I/O operations that control devices that are external to the
CPU. Now we direct our attention to the operation of the devices themselves. In this
chapter we study the most important computer peripheral devices. We look at the
usage, important characteristics, basic physical layouts, and internal operations of each
device. We will also briefly consider the interface characteristics for these devices.

Peripheral devices are classified as input devices, output devices, or storage devices.
As you would expect, input data is data from the outside world into the CPU, and
output data is data moving from the CPU out to the outside world. Storage devices are,
of course, both input and output devices, though not at the same time. If you recall
the concept of input process-output from Chapter 1, programs require input, process
it, and then produce output. Using a storage device, data output is stored, to be used
as input at a future time. In a transaction processing system, for example, the database
files are stored on line. When a transaction occurs, the transaction processing program
will use input from the new transaction together with data from the database to update
the appropriate database records as output. The updated database remains in storage
for the next transaction.

Because of the importance of storage, we will begin with a discussion of storage
devices. Following that, we will consider various input and output devices.
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It should be noted that the technologies used for many peripheral components are very
sophisticated; some would even say that these devices operate by magic! You may agree
when you see the descriptions of some components. It is not uncommon to have more
sophisticated control and technology in a peripheral component than in the computer itself.
Perhaps you have wondered how these devices work. Here’s your opportunity to find out!

We have not attempted to provide a detailed explanation of every possible peripheral
device in a computer system. Instead, we have selected several interesting devices that are
representative of a number of technologies.

At the completion of this chapter, you will have been exposed to every important
hardware component of the computer system, with the exception of the pieces that tie
the components of the computer systems together, and furthermore extend the systems
themselves together into networks. You will have seen the role and the inner workings of each
component that we have discussed, and you will have seen how the different components
fit together to form a complete computer system. You will have a better understanding of
how to select particular components to satisfy specific system requirements and of how to
determine device capacities and capabilities.

10.1 THE HIERARCHY OF STORAGE
Computer storage is often conceptualized hierarchically, based upon the speed with which
data can be accessed. The table in Figure 10.1 shows this hierarchy, together with some
typical access times.

At the top of the hierarchy are the CPU registers used to hold data for the short term
while processing is taking place. Access to registers is essentially instantaneous, since the
registers are actually a part of the CPU. Cache memory, if present, is the fastest memory
outside the CPU. You recall from Chapter 8 that cache memory is a small fast memory
that is used to hold current data and instructions. The CPU will always attempt to access
current instructions and data in cache memory before it looks at conventional memory.
There may be as many as three different levels of cache. The CPU accesses the data or
instruction in conventional memory if cache memory is not present. Next in the hierarchy
is conventional memory. Both conventional and cache memory are referred to as primary

FIGURE 10.1

The Storage Hierarchy

CPU registers

Device Typical access times

Cache memory (SRAM)

Conventional memory (DRAM)

Flash memory

Increasing
storage
capacity

Magnetic disk drive

Optical disk drive

Magnetic tape

0.25 nsec

1-10 nsec

10-50 nsec

120 �sec

10-50 msec

100-500 msec

0.5 and up sec

Increasing
access
times
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memory. Both provide immediate access to program instructions and data by the CPU
and can be used for the execution of programs. The data throughput rate of memory is
determined primarily by the capability of the bus and interfaces that connect memory to
the CPU. Rates well in excess of 1 GB/sec are common in modern computers.

Below the level of conventional memory, storage in the hierarchy is not immediately
available to the CPU, is referred to as secondary storage, and is treated as I/O. Data and
programs in secondary storage must be copied to primary memory for CPU access.1 Except
for flash memory, access to secondary storage is significantly slower than primary storage.
Disks and other secondary storage devices are mechanical in nature, and mechanical devices
are of necessity slower than devices that are purely electronic. The location of the desired
data is usually not immediately accessible, and the medium must be physically moved to
provide access to the correct location. This requires a seek time, the time needed to find the
desired location. Once the correct data is located, it must be moved into primary memory
for use. The throughput rate in Figure 10.1 indicates the speed with which the transfer of
data between memory and the I/O device can take place. Most of the access time specified for
secondary storage devices consists of seek time. As a result of this access time, even the fastest
disks are only about one-millionth as fast as the slowest memory. It should be apparent that
a lot of CPU instructions can be performed while waiting for a disk transfer to take place.

One important advantage of secondary storage, of course, is its permanence, or lack of
volatility. As noted in Chapter 7, RAM data is lost when the power is shut off. Flash memory
uses a special type of transistor that can hold data indefinitely without power. The magnetic
media used for disk and tape and the optical media used for DVD and CD disks also retain
data indefinitely. Secondary storage has the additional advantage that it may be used to store
massive amounts of data. Even though RAM is relatively inexpensive, disk and tape storage
is much cheaper yet. Large amounts of online secondary storage may be provided at low
cost. Current hard disks store data at a density of nearly 40 Gbits per square centimeter!

Tape, most flash memory devices, optical disks, and many magnetic disks are designed
for easy removal from the computer system, which makes them well suited for backup and
for off-line storage of data that can be loaded when the data is needed. This provides the
additional advantage that secondary storage may be used for offline archiving, for moving
data easily from machine to machine, and for offline backup storage. For example, a flash
memory card may be used to store digital camera photographs until they are moved to a
computer for long term storage; similarly, a removable hard disk can be used to move large
amounts of data between computers.

As an increasingly common alternative, data and programs may be stored on a
secondary storage device connected to a different computer and accessed through a
network connection between the computers. In this context, the computer with secondary
storage is sometimes known as a server or a file server. In fact, the primary purpose of
the server may be to act as a storage provider for all the computers on the network. Web
services are a common application of this type. Optical disks require little space and can

1In the earliest days of computing, secondary storage devices, particularly rotating drums (forerunner of the
disk), were actually used as memory with direct access to the CPU. To run efficiently, programs had to be designed
to minimize the number of rotations of the drum, which meant that the programmer would always attempt to
have the next required location be just ahead of where the drum head was at that instant. Those were interesting
days for programmers!
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store large amounts of data for archiving and installation purposes, with rapid mounting
for retrieval when required. A few high-capacity optical disks could store all the medical
records and history for a large insurance company, for example. Most modern programs
are supplied on DVD or CD-ROM.

Of the various secondary storage components, flash memory and disk devices are the
fastest, since data can be accessed randomly. In fact, IBM refers to disks as direct access
storage devices (DASDs). With tape, it may be necessary to search sequentially through a
portion of the tape to find the desired data. Also, the disk rotates continuously, while the
tape will have to start and stop, and possibly even reverse direction and rewind to find
the desired data. These factors mean that tape is inherently slower unless the data is to be
read sequentially. This makes tape suitable only for large-scale offsite backup storage where
the entire contents of a disk are transferred to tape to protect the data from a potential
catastrophe or to meet legal long term data retention requirements. Although magnetic
tape storage had large inherent cost and storage capacity advantages in the past, that is no
longer the case, and the use of tape is decreasing as businesses replace their equipment with
newer technology.

10.2 SOLID STATE MEMORY
Flash memory is nonvolatile electronic integrated circuit memory, similar conceptually to
the read-only memory discussed in Chapter 7, but different in technology. The difference
makes flash memory suitable for use in situations where traditional ROM would be
impractical. Whereas traditional ROM must be read, erased, and written in large blocks
of addresses, it is possible to read individual bytes or small blocks of flash memory when
necessary. This makes flash memory useful for applications that require random access,
particularly those applications where most accesses are reads.

Although read accesses and certain simple overwrite accesses are relatively fast, flash
memory must be erased in blocks, so that most write accesses require an additional step
that rewrites the unchanged data back to the block. Furthermore, the erase-and-rewrite
operation is very slow compared to the read access. Although there is research into other
types of nonvolatile memory that might solve this problem, flash memory is generally
considered to be impractical as a replacement for conventional RAM, at least for now.

Because of its small size, flash memory is frequently the secondary storage of choice
for the memory cards that plug into portable devices such as cell phones, portable music
players, and digital cameras. It is also well suited for small, portable ‘‘thumb drives’’ that
plug directly into a USB port. These drives are useful for moving files and data from one
machine to another and also serve as an inexpensive and convenient backup medium.

Flash memory is more expensive than disk storage at this writing. However, its capacity
is rapidly increasing and its price falling. As a result, large capacity flash memory units
called ‘‘solid-state drives’’ have appeared on the market and are starting to supplant disk
drives as the long-term storage device of choice in computers where less weight, low
power consumption, and small size are important. ‘‘Solid-state drives’’ have the additional
advantages of being relatively immune to failure due to physical shock and vibration (since
they have no moving parts), and generate little heat and no noise. Solid-state drives have not
yet reached the huge storage capacities of large disk drives, but their capacity is continually
expanding, and is already adequate for many applications.
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10.3 MAGNETIC DISKS
A magnetic disk consists of one or more flat, circular platters made of glass, metal, or
plastic, and coated with a magnetic substance. Particles within a small area of the magnetic
substance can be polarized magnetically in one of two directions with an electromagnet;
an electromagnet can also detect the direction of polarization previously recorded. Thus,
magnetic polarization can be used to distinguish 1s and 0s. Electromagnetic read/write
heads are used for this purpose.

A drive motor rotates the disk platter(s) about its central axis. On most drives, the
motor rotates the disk at a fixed speed. An arm has the read/write head mounted at the end.
The arm makes it possible for the head to move radially in and out across the surface of
the disk. A head motor controls precisely the position of the arm on the disk.

Most hard disk drives contain several platters, all mounted on the same axis, with
heads on each surface of each platter. The heads move in tandem, so they are positioned
over the same point on each surface. Except for the top and bottom, each arm contains two
read/write heads, which service the surfaces of two adjoining platters.

With the head in a particular position, it traces out a circle on the disk surface as
the disk rotates; this circle is known as a track. Since the heads on each surface all line
up, the set of tracks for all the surfaces form a cylinder. Each track contains one or more
blocks of data. On most disks the surface of the disk platter is divided into equally sized
pie shape segments, known as sectors, although the disks on some large computers divide
up the track differently. Each sector on a single track contains one block of data, typically
512 bytes, which represents the smallest unit that can be independently read or written.
Figure 10.2 shows the layout of a hard disk.

If you assume that the number of bytes in a sector is the same anywhere on the disk,
then you can see from the layout that the bits on the disk are more closely packed on the
inner tracks than they are on the outer tracks. Regardless of the track, the same angle is
swept out when a sector is accessed; thus, the transfer time is kept constant with the motor
rotating at a fixed speed. This technique is called CAV, for constant angular velocity. CAV
has the advantage of simplicity and fast access.

It is possible to increase the capacity of the disk by utilizing the space at the outer
tracks to pack more bits onto the disk. But this would result in a different number of bytes
per sector or a different number of sectors per track depending on which track is being

FIGURE 10.2

A Hard Disk Layout
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accessed. This would make it more difficult to locate the required sector. Notice, too, that
with a constant speed motor, the time to move the head over a pie-shaped sector at the
edge is the same as that near the center. If there were more bits packed into the outer
tracks, the data would be transferred faster at the edge than at the center. Since the disk
controller is designed to expect data at a constant speed, it would seem to be necessary
to design the motor so that it would slow down when the head was accessing the outer
tracks to keep the data transfer speed constant. In this case, the motor speed would be
adjusted such that the speed along the track would be constant regardless of the position of
the head. This approach is called CLV, for constant linear velocity. The capacity of a CLV
disk with the same diameter and bit density is approximately double that of an equivalent
CAV disk. Although CLV technology is commonly used with CDs and DVDs, the design
makes it more difficult to access individual blocks of data rapidly, so it is rarely used
for hard disks.

As a compromise, modern disk drives divide the disk into a number of zones, typically
sixteen. This approach is shown in Figure 10.3. The cylinders in different zones have a
different number of sectors but the number of sectors within a particular zone is constant.

FIGURE 10.3

Multiple-Zone Disk Configuration

Zone 1

Zone 2

Zone 3

Zone 4

Sectors
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Obviously, the largest number of sectors will be in the zone containing the outermost
cylinders, Instead of adjusting the motor speed, the disk controller buffers the data rate so
that the data rate to the I/O interface is constant, despite the variable data rate between
the controller and the disk. Different vendors call this technique multiple zone recording,
zone bit recording (ZBR), or zone-CAV recording (Z-CAV).

The platter on a hard disk drive is made of a rigid material and is precisely mounted.
The heads on a hard disk do not touch the surface; rather, they ride on a bed of air a
few millionths of an inch above the surface. The location of the heads radially is tightly
controlled. This precision allows the disk to rotate at high speed and also allows the designers
to locate the tracks very close together. The result is a disk that can store large amounts
of data and that retrieves data quickly. A typical hard disk rotates at 5400 revolutions per
minute (rpm), 7200 rpm, or even 10,800 rpm.

A photograph of a hard disk assembly showing a disk platter, arm, and read/write
head is shown in Figure 10.4. This particular hard disk drive contains three platters and
six heads. Only the topmost platter and head are fully visible. The entire assembly is sealed
to prevent dirt particles from wedging between the heads and the disk platter, since this
situation could easily destroy the drive. Even a particle of cigarette smoke is much larger
than the space between the head and the disk. When the disk is stationary, the head rests
in a parked position on the edge of the drive. The head has an aerodynamic design, which
causes it to rise on a cushion of air when the disk platter spins.

Figure 10.5 shows the operation required to locate an individual block of data. First,
the arm moves the head from its present track until it is over the desired track. The time
that is required to move from one track to another is known as the seek time. Since the
distance between the two tracks is obviously a factor, the average seek time is used as a
specification for the disk. Once the head is located over the desired track, the read/write

FIGURE 10.4

A Hard Disk Mechanism

Courtesy Western Digital Corporation.
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FIGURE 10.5

Locating a Block of Data: (a) Seek Time, (b) Latency Time, (c) Transfer Time

Head

Seek

a. Seek time

Desired track

Latency

b. Latency time

Desired block

Transfer

c. Transfer time

operation must wait for the disk to rotate to the beginning of the correct sector. The time
for this to occur is known as the rotational latency time, or sometimes as rotational delay
or simply latency time. The latency time is obviously variable, depending on the position
of the disk. As a best case, the head is just about to enter the sector, and the rotational
latency time is 0.

At the opposite extreme, the head has just passed the beginning of the sector, and a
full rotation is required to reach the beginning of the sector. This time can be calculated
from the rotational speed of the disk. Both situations are equally probable. On average, the
disk will have to rotate half way to reach the desired block. Thus, the average latency time
can be calculated from the rotational speed of the disk as

average latency = 1
2

× 1
rotational speed

For a typical hard disk rotating at 3600 revolutions per minute, or 60 revolutions per
second, the average latency is

average latency = 1
2

× 1
60

= 8.33 milliseconds

Once the sector is reached, the transfer of data can begin. Since the disk is rotating at a
fixed speed, the time required to transfer the block, known as transfer time, is defined by
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the number of sectors on a track, since this establishes the percentage of the track that is
used by a single data block. The transfer time is defined by

transfer time = 1
number of sectors × rotational speed

If the hard drive in the example contains 30 sectors per track, the transfer time for a single
block would be

transfer time = 1
30× 60

= 0.55 milliseconds

Figure 10.6 shows a table of typical disks of different types, comparing various
characteristics of the disks.

Since the total time required to access a disk block is approximately the sum of these
three numbers, a typical disk access might require 20 to 25 msec. To put these speeds in
perspective, consider that the typical modern computer can execute an instruction in less
than 1 nanosecond. Thus, the CPU is capable of executing millions of instructions in the
time required for a single disk access. This should make it very clear to you that disk I/O
is a major bottleneck in processing and also that it is desirable to find other work that the
CPU can be doing while a program is waiting for disk I/O to take place.

An expansion of part of a track to show a single data block is shown in Figure 10.7.
The block consists of a header, 512 bytes of data, and a footer. An interblock gap separates
the block from neighboring blocks. Figure 10.8 shows the layout of the header for a
Windows-based disk. The track positions, blocks, and headers must be established before
the disk can be used. The process to do this is known as formatting the disk. Since the
header identifier must be a unique pattern of 1s and 0s, the data being stored must be
checked by the disk controller to assure that the data pattern does not accidentally match
the header identifier. If it does, the pattern stored on the disk is modified in a known way.

The entire track is laid down as a serial stream of bits. During write and read operations,
the bytes must be deconstructed into bits and reconstructed.

Because the transfer speed of the disk is not the same as that required to transfer
the block to memory, buffering is provided in the disk controller. The buffer is a first-in,
first-out buffer, which receives data at one speed and releases it as required at the other
speed. Buffer memory also makes it possible to read a group of blocks in advance so that
requests for subsequent blocks can be transferred immediately, without waiting for the
disk. Most modern disks provide substantial buffers for this purpose.

It is important to realize that the layout of the disk as discussed here does not take into
account the structure of the files stored there, nor does it naturally provide a filing system.
There is no direct relationship between the physical size of the block and the logical size
of the data block or file that it contains, other than that the data must fit into the physical
block or provisions made to extend the data to another block. It is also possible to store
multiple logical blocks in a single physical block, if they fit.

File organization issues and the allocation of physical blocks for storage are within the
domain of the operating system software, not the disk controller. File storage and allocation
issues are discussed extensively in Chapter 17.

Before leaving the subject of disks, it will be useful to review briefly some of the material
from Chapter 9 to give you an overview of the typical disk I/O operation. You will recall that
the CPU initiates a request to the disk controller and that the disk controller does most of the
work from that point on. As you now know from this chapter, the disk controller identifies
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FIGURE 10.7

A Single Data Block
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the disk block to be located, moves the head to
the correct track, then reads the track data until
it encounters the header for the correct block.
Assuming that it is performing a read, it then
transfers the data from the disk to a buffer. From
the buffer, the data is transferred to conventional
memory using DMA. Once the DMA transfer is
complete, the disk controller notifies the CPU
with a completion interrupt.

Disk Arrays

In larger computer environments, with mainframe computers or large PCs that provide
program and data storage facilities for a network, it is common to group multiple disks
together. Such a grouping of two or more disk drives is called a disk array or a drive array.
A disk array can be used to reduce overall data access time by sharing the data among
multiple disks and also to increase system reliability by providing storage redundancy.
The assumption made is that the number of blocks to be manipulated at a given time is
large enough and important enough to justify the additional effort and additional space
requirements. One useful type of disk array is known as RAID, which stands for Redun-
dant Array of Inexpensive Disks. (Some people say ‘‘Redundant Array of Independent
Disks’’).

There are two standard methods of implementing a disk array. One is known as a
mirrored array, and the other as a striped array.

A mirrored array consists of two or more disk drives. In a mirrored array, each disk
stores exactly the same data. During reads, alternate blocks of the data are read from
different drives, then combined to reassemble the original data. Thus, the access time for
a multiblock read is reduced approximately by a factor equal to the number of disk drives
in the array. If a read failure occurs in one of the drives, the data can be read from another
drive and the bad block marked to prevent future use of that block, increasing system
reliability. In critical applications, the data can be read from two, or even three, drives
and compared to increase reliability still further. When three drives are used, errors that
are not detected by normal read failures can be found using a method known as majority
logic. This technique is particularly suitable for highly reliable computer systems known
as fault-tolerant computers. If the data from all three disks is identical, then it is safe to
assume that the integrity of the data is acceptable. If the data from one disk differs from the
other two, then the majority data is used, and the third disk is flagged as an error.
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The striped array uses a slightly different approach. In a striped array, a file segment
to be stored is divided into blocks. Different blocks are then written simultaneously to
different disks. This effectively multiplies the throughput rate by the number of data disks
in the array. A striped array requires a minimum of three disk drives; in the simplest
configuration, one disk drive is reserved for error checking. As the write operation is taking
place, the system creates a block of parity words from each group of data blocks and stores
that on the reserved disk. During read operations, the parity data is used to check the
original data.

There are five well-defined RAID standards, labeled RAID 1 through RAID 5, and a
number of additional proprietary and nonstandard varieties, including one labeled RAID 0.
The most common of these are RAID 0, RAID 1, and RAID 5.

RAID 1 is a mirrored array as described above. RAID 1 provides protection by storing
everything at least twice, but offers a substantial performance gain, particularly under heavy
data read usage. RAIDs 2, 3, and 4 are arrays that are striped in different ways. Each uses a
separate disk for error checking. Since data on every disk must be checked, this can create
a roadblock on the single disk that is used for error checking. RAID 5 eases the roadblock
by spreading the error-checking blocks over all of the disks.

RAID 0 is not a true RAID, because it provides no redundancy and no inherent error
checking. Data is striped across all of the disks, primarily for fast access. However, the lack
of redundancy means that a failure of any single disk block in the array corrupts all of
the data in the system. However, this shortcoming can be overcome with proper backup
and with certain types of journaling file systems, which we will discuss in Chapter 17. It
is also possible to ‘‘nest’’ RAIDs. For example, we can use a pair of RAID 0 groups inside
RAID 1 to achieve mirrored redundancy. The combination is known as RAID 0+1. With
or without the additional protection, RAID 0 is sometimes attractive as a low-cost method
of achieving high data transfer rates when they are required.

A number of vendors provide RAID controller hardware. particularly for large RAID 5
systems. With RAID controller hardware, RAID processing takes place within the array
controller. The array appears as a single large disk drive to the computer. It is also possible
to create a RAID using conventional, off-the-shelf disk controllers and operating system
software. Although this uses CPU processing time, modern computers have enough spare
power to make this a practical solution in many instances. It also reduces the possibility
that a single RAID controller can cause the entire array to fail.

10.4 OPTICAL DISK STORAGE
An alternative to magnetic disk storage is optical storage. Optical storage technologies
include various types of CDs and DVDs, in read-only, write-once, and read/write forms.
Optical disks are portable and are capable of packing a relatively large amount of data into
a convenient package. For example, an inexpensive CD-ROM, 12 centimeters in diameter,
stores approximately 650 MB, while a Blu-Ray DVD of the same physical size can hold
more than 50 GB of data. (There is also a standard for a new optical disk, called HVD,
for Holographic Disk, that, when fully developed, is expected to hold more than 1.6 TB,
but presently the cost is too high for most uses.) Optical storage serves a different purpose
from magnetic disk storage. While magnetic disk storage serves primarily to store, read,
and write data for current use, optical storage is intended more for offsite archiving, as well
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FIGURE 10.9
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as program and file distribution, although the latter use has declined
somewhat due to the growth of the World Wide Web.

CDs and DVDs used for data storage use the same basic disk format
as their audio and video equivalents. Within certain file structure
limitations, personal computer CD and DVD drives can read and
write audio and video CDs and DVDs that will play on home media
equipment and vice versa.

Conceptually, CD-ROM data storage is similar to magnetic disk:
data is stored in blocks on the disk. The blocks can be arranged in
files, with a directory structure similar to that of magnetic disks. The
technical details are very different, however. Figure 10.9 compares the
layout of a CD-ROM to that of a sectored magnetic disk. Rather than
concentric tracks, data on a CD-ROM is stored on a single track,
approximately three miles long, which spirals from the inside of the
disk to the outside. Instead of sectors, the data is stored in linear blocks
along the track. It should be remembered that the CD design was
originally intended primarily for audio applications, where most data
access is sequential, from the start of a musical selection to its finish;
thus, a single spiral track was a reasonable decision.

Since the CD format was designed for maximum capacity, the
decision was made to pack the bits on the disk as tightly as possible by
making each block the same length along the spiral track, regardless
of location on the disk. Thus, the disk is read at a constant linear
velocity (i.e., CLV), using a variable speed motor to keep the transfer

rate constant. Since the angle of a block is smaller on the outer tracks, the disk moves more
slowly when outside tracks are being read. This is easily observable if you have access to a
portable CD player that allows you to observe the disk as it rotates.

A CD-ROM typically stores 270,000 blocks of data. Each block is 2352 bytes long and
holds 2048 bytes of data. In addition, there is a 16-byte header, which provides 12 bytes
to locate the start of a block and 4 bytes for block identification. Due to the difficulty of
the manufacturing process, errors can occur, so the CD-ROM provides extensive means
for correcting the errors. Therefore, each block also provides 288 bytes of an advanced
form of parity known as cross-interleaved Reed-Solomon error correcting code. This code
repairs not only isolated errors but also groups of errors that might result from a scratch
or imperfection on the disk. The resulting total data capacity of a single CD-ROM is
approximately 550 MB. The error correction is occasionally omitted for applications where
errors can be tolerated, such as audio, which increases the capacity of a CD-ROM to
about 630 MB.

Blocks on a CD-ROM are identified by a 4-byte identification code that was inherited
from the audio origins of the medium. Three bytes, stored in binary-coded decimal (BCD)
format, identify the block by minute, second, and sector. There are 75 sectors per second
and 60 seconds per minute. Normally, there are 60 minutes, although this number can
be increased to 70 minutes if necessary. This increases the disk capacity to about 315,000
blocks. The fourth byte identifies a mode of operation. Mode 1, the normal data mode,
provides the data as we’ve described, with error correction. Mode 2 increases the capacity
by eliminating the error correction. Other modes are provided for special audio and video
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features. It is possible to mix data, audio, and video on the same disk. Data blocks on
CD-ROMs are sometimes called large frames.

Data is stored on the disk in the form of pits and lands. These are burned into the
surface of the master disk with a high-powered laser. The disk is reproduced mechanically,
using a stamping process that is less expensive than the bit-by-bit transfer process required
of magnetic media. The disk is protected with a clear coating. Figure 10.10 shows a basic
diagram of the read process. A laser beam is reflected off the pitted surface of the disk as a
motor rotates the disk. The reflection is used to distinguish between the pits and lands, and
these are translated into bits.

On the disk itself, each 2352-byte data block, or large frame, is broken up into 98 24-byte
small frames. Bytes are stored using a special 17-bit code for each byte, and each small
frame also provides additional error correcting facilities. Translation of the small frames
into more recognizable data blocks is performed within the CD-ROM hardware and is
invisible to the computer system. The bit-encoding method and additional error correction
built into the small frames increases the reliability of the disk still further.

DVD technology is essentially similar to CD-ROM technology. The disk is the same
size, and is formatted similarly. However, the use of a laser with a shorter light wavelength
(visible red, instead of infrared) allows tighter packing of the disk In addition, the laser can
be focused in such a way that two layers of data can be placed on the same side of the disk,
one underneath the other. Finally, a different manufacturing technique allows the use of
both sides of a DVD. Each layer on a DVD can hold approximately 4.7 GB. If both layers
on both sides are used, the DVD capacity is approximately 17 GB. The use of a blue laser
extends this capability even further, to approximately 50 GB.

WORM, or write-once-read-many-times, disks were originally designed to provide
an inexpensive way for archiving data. WORM disks provide high-capacity storage with
the convenience of compact size, reasonable cost, and removability. As the name indicates,
WORM disks can be written, but, once written, a data block cannot be rewritten. The
inability to tamper with the data on a WORM disk has taken on importance in business,
where the permanence of many business data archives is required for legal purposes. When
a file is updated, it is simply written again to a new block and a new directory entry is
provided. Thus, a complete audit trail exists automatically. When the disk is filled, it is
simply stored away and a new disk used.

WORM disks work similarly to a CD or DVD. The major difference is that the disk is
made of a material that can be blistered by a medium-power laser. Initially, the entire disk
is smooth. When data is to be written, the medium-power laser creates tiny blisters in the

FIGURE 10.10
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appropriate locations. These correspond to the pits in a normal CD-ROM. The WORM
disk is read with a separate low-power laser in the same way as a CD-ROM.

This blister technology is used in various CD and DVD formats, called CD-R, DVD-R,
and DVD+R. Additionally, there are rewriteable versions of this technology. These are
known as CD-RW, DVD-RW, DVD+RW, DVD-RAM, and DVD+RAMBD-RE. There
are file compatibility issues between the different WORM and rewriteable CD and DVD
formats. Some drives will read every format; others will only read some of the formats.

10.5 MAGNETIC TAPE
Magnetic tape is used by many companies for backups and archives in large computer
systems. Like other magnetic media, tape is nonvolatile, and the data can be stored
indefinitely. Note that tape is a sequential medium, which makes it impractical for random
access tasks. Generally, full system backups are made to tape and moved to offsite locations
for long term storage.

There are several basic tape layouts, but all current formats are cartridge-based
mechanisms. Regardless of type, the tape cartridge is removable from the tape drive for
offline storage. When the tape is in the tape drive, ready for operation, it is said to be
mounted. Tape cartridges have the major advantage of convenience. They are easy to
mount and dismount, and small and easy to store. Current tape cartridges can store as
much as 1.6 TB of compressed data or 800 GB of uncompressed data. Cartridges with
uncompressed capacities as large as 4 TB are currently in development.

There are two main categories of data cartridge formats in use. The LTO (linear tape
open) formats are representative of linear recording cartridges. An LTO format data
cartridge is shown in Figure 10.11. The LTO format typically holds up to 820 meters of

FIGURE 10.11

Tape Cartridge with Top Removed

Image from Wikipedia, http://en.wikipedia.org/wiki/File:LT02-cart-wo-top-shell.jpg



322 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 10.12
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one-half inch wide tape in a 102 mm × 105 mm × 21.5 mm cartridge. The technique
used for storage and retrieval is called data streaming. The cartridge tape is divided
longitudinally into many tracks, currently as many as 886. The tape mechanism writes and
reads the bits longitudinally, along the length of one group of tracks. At each end, the tape
reverses, and the next group of tracks are written or read. Data is usually stored on the tape
starting with the centermost track and moving outward toward the edge of the tape. Error
correction is built into the system, and WORM archiving is also available as an option.

An alternative data cartridge format is based on the technology that was originally
developed for videotape. These are called helical scan cartridges. The data on helical scan
cartridges is very tightly packed, using a read/write head that rotates at a high speed to pack
the tape more tightly with data. This results in a track that is made up of diagonal lines
across the width of the tape. There are two different helical scan cartridges in common use.
The smaller AIT (advanced intelligent format) uses 8-mm wide tape in tape lengths of up
to 246 meters, with a current maximum uncompressed capacity of 400 GB in a cartridge
95 mm × 62.5 × 15 mm. The larger SAIT (super-AIT) cartridge contains up to 640 meters
of one-half inch wide tape, with a current maximum uncompressed capacity of 800 GB.
The SAIT cartridge is the same size as the LTO cartridge, but the two types of cartridge are
not interchangeable.

Figure 10.12 shows the track layouts for both types of cartridges.

10.6 DISPLAYS
As viewed by the user, a display is an image made up of thousands of individual pixels, or
picture elements, arranged to make up a large rectangular screen. Each pixel is a tiny square
on the display. The layout for a display is shown in Figure 10.13. Older display screens
have a horizontal to vertical ratio of 4:3. More recent displays are typically 16:9, described
as ‘‘widescreen’’. A typical 4:3 screen is made up of 768 rows of 1024 pixels each, known
as a 1024 × 768 pixel screen. Screens with resolutions of 1280 × 1024 pixels, or higher
have also become common, especially on physically larger screens. Typical 16:9 screens are
1280 × 720 or 1920 × 1080.

Displays are specified by their screen sizes are measured diagonally. Figure 10.14 shows
the relationship between the horizontal, vertical, and diagonal dimensions. The resolution
of the screen is specified either as the size of an individual pixel or as the number of pixels
per inch. The pixel size for a typical 15.4-inch wide laptop screen with 1280 × 720 pixel
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FIGURE 10.13

Layout for a Display

2

resolution is approximately 0.01 inch square, or about 100 pixels per inch resolution. Since
the resolution essentially specifies the minimum identifiable object size capability of the
monitor, the larger the number of pixels per inch, the better.

As we noted in Chapter 4, each individual pixel represents a shade of gray (on a
monochrome screen) or a color. A color pixel is actually made up of a mixture of different
intensities of red, green, and blue (RGB). We could represent a black-and-white image with
1 bit per pixel (for example, on for white, off for black), but, more typically, a color display
would present at least 256 colors, and normally many more. It takes 2 bytes per pixel to
represent a 65,536-color image, considered the minimum acceptable for Web use. A more
sophisticated system would use 8 bits per color, or 24 bits in all. Such a system can present
256 × 256 × 256, or more than 16 million, different colors on the screen and is sometimes
described as a true color system. There are even a few 30-bit and 36-bit systems.

FIGURE 10.14
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Even 16 bits per pixel requires a substantial amount of video
memory. To store a single 1024-pixel by 768-pixel graphic image
requires 1.55 MB of memory. A 24-bit-per-pixel image of the same
size would require over 2.3 MB.

With 8 bits, there is no way to divide the bits to represent reds,
blues, and greens equally. Instead, 256 arbitrary combinations of red,
blue, and green are chosen from a larger palette of colors. The 256
colors might be chosen by the artist who created the image. More
commonly, a default color scheme is used. Originally designed by
Netscape for its Web browser, the default color scheme presents a
reasonably uniform selection of colors ranging from black to white.
Each selected color is represented by a red value, a green value, and a
blue value that together will present the selected color on the screen.
Most commonly, the system will use 1 byte for each color, providing
an overall palette of sixteen million colors to choose from.

Each pixel value is represented by a value between 0 and 255, rep-
resenting the color for that pixel. A color transformation table, also
known as a palette table, holds the RGB values for each of the 256 pos-
sible colors. A few rows of a color transformation table are shown in
Figure 10.15. To display a pixel on the screen, the system transforms
the pixel color to a screen color by reading the RGB values that corre-
spond to the particular pixel value from the table. The RGB colors are
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FIGURE 10.15

Use of a Color Transformation Table
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then sent to the screen for display. Although this trans-
formation requires an extra step, the task is performed
in special circuitry on the video card and is not difficult
to implement.

Transformation is also required for a display of sixty-
four thousand colors, which uses 16 bits per pixel, how-
ever, a 24-bit color can be divided equally into three bytes,
one for each color, so no transformation table is required.

In a modern system nearly all output, including
text data, is presented graphically. For graphical output,
values for each pixel on the screen are produced by
a program, then stored in a display memory. Usually,
the display memory is separately associated directly with
a graphics display controller. On inexpensive personal
computers, video memory is sometimes allocated as part
of the regular memory.

The actual display is produced by scanning and displaying each pixel, one row at a
time, from left to right, top to bottom. This method of displaying all the pixels is known
as a raster scan. It is essentially identical to the way that television pictures are generated.
When one row has been displayed, the scanner returns to the left edge and scans the
succeeding row. This is done for each row, from top to bottom. This process is repeated
more than thirty times a second. Most display monitors scan each row in turn, row 1,
row 2, row 3, and so on. Some monitors interlace the display, by displaying the odd rows,
row 1, row 3, row 5, and so on, and then coming back and displaying the even rows.
Interlacing the rows is less demanding on the monitor, since each row is only displayed half
as often, but results in flickering that is annoying to some users. Figure 10.16 shows the
difference between interlaced and noninterlaced displays. Noninterlaced displays are also

FIGURE 10.16
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sometimes called progressive scan displays. Although some TV displays are interlaced,
most computer display monitors are noninterlaced,

An alternative to raster scan is vector scan, in which pixels are displayed in whatever
order is necessary to trace out a particular image. Vector scan could trace a character, for
example, by following the outline of the character. Vector scan is obviously not suitable
for bit map graphics, but can be used with object graphics images, such as those used for
CAD/CAM applications. Generating vector scan images on a display screen is electronically
much more difficult and expensive than producing raster scans, consequently, raster scans
are used almost universally today for display. Vector scans are sometimes used when
printing object graphics-based drawings to a plotter.

Figure 10.17 is a simplified diagram of the process that is necessary to produce a
raster scan image. Each value to be displayed is read from the appropriate location in
video memory in synchronization with its appearance on the screen. Although a palette
table is shown in the figure, a 3-byte value would be read directly from video memory
to the RGB display inputs when 24-bit color is used. A scan generator controls both the
memory scanner and the video scanner that locates the pixel on the display screen. For
normal images displayed graphically on a noninterlaced monitor, the values are stored
consecutively, row by row, so that each traverse through memory corresponds to a single
complete scan of the image. Video memory is designed so that changes in the image can
be made concurrently by the CPU while the display process is taking place. The display
process is illustrated with a simple example.

FIGURE 10.17
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EXAMPLE
Suppose our system has a 7-pixel by 5-pixel display monitor. On that monitor we wish to
display an ‘‘X’’. The desired output is shown in Figure 10.18a. The different pixels on the
‘‘X’’ are to be colored as shown in the figure.

To support the display, our system provides 35 bytes of video memory. Each byte
corresponds to one location. Since each location holds 1 byte, the system supports up to
256 different colors. The display memory is shown in Figure 10.18b. The memory is the
usual type of linear memory, but we have redrawn it so that you can see more easily the
relationship between the memory and the display. If you look carefully, you can see the ‘‘X’’
in this figure. Initially, the video memory was set to all zeros, where zero represents the
background color. Presumably, a program in the CPU has since entered the data that
represents the figure ‘‘X’’ to be currently displayed.

The table in Figure 10.18c represents the color translation palette for this example. The
table has a red, blue, and green column for each entry. In our system, each RGB entry in the
table holds a 6-bit number. This means that this system can produce 64 × 64 × 64 = 256K
different colors. The RGB value (0, 0, 0) would produce black, the value (63, 0, 0) would pro-
duce pure red (i.e., maximum red, no green, no blue), and (63, 63, 63) would produce white.
In this case, you can see from the table that the background color for the screen is white.

The display controller reads each memory location in turn, looks up the three values in
the palette table, and displays the corresponding pixel on the screen. This process repeats
indefinitely. The red, blue, and green signals that go to the video system as a result of the
display operation are shown in Figure 10.18d. This pattern will be repeated over and over
again, at least thirty times a second, until the display is changed. Notice that the red and
blue signals are identical, since red and blue always appear together in maroon and are both
totally absent from green.

As noted, the method just described is used for graphical images. Since characters are
also represented by displaying pixels, most modern computers also treat character output
graphically; the popularity of what-you-see-is-what-you-get (WYSIWYG) output requires
the ready availability of different fonts and flexibility in layout on the screen. Both these
requirements are easily met with the graphical techniques already described.

Some systems, particularly older systems, provide an additional method for dedicated
character output. In this method, usually called text mode, the pixels of the display screen
are divided into blocks, often twenty-five rows of eighty, although other values are often
also provided. Each block will display a single ASCII character. Instead of storing individual
pixels, the video memory is used to store the ASCII values of the characters to be displayed.
Many PCs start up in text mode.

Pixels are displayed on the screen in the usual way. To convert the characters to a
raster scan line, the display controller provides a set of character-to-pixel tables, stored
in ROM. As each character is read from memory, the appropriate pixels are pulled from
the table and output to the screen. Most controllers limit the display output to the fonts
that are provided in ROM. Some controllers also provide video memory that can be used
to download additional character conversion tables. Most systems also include an ASCII
extension set that provides simple graphical shapes for drawing lines and boxes, as well as
facilities for creating underlines, blinking characters, and color changes of the character or
the block. Note that in text mode it is not possible to alter individual pixels. All addressing
of the screen must be performed by block.
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FIGURE 10.18

Display Example: (a) Desired Display, (b) Video Memory
Contents, (c) Color Palette Table, (d) Color Signals
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Every pixel in a graphics display must be stored and manipulated individually;
therefore, the requirements for a graphic display are much more stringent than those for
a character display. Also, text mode display has the advantage that it requires significantly
less memory than does graphics mode. As the price of memory has declined rapidly, this
has become less of an issue. Text mode has one important additional advantage, however.
Text data can be transmitted to a terminal located remotely from the computer much
more compactly and efficiently in text mode than in graphics mode. It is obviously easier
to transmit a single character than the dozens of pixels that make up the image of that
character. Because of this, some terminals are still character based, particularly in business
environments where most of the data is alphanumeric.

A compromise between the simplicity of text mode and the elegance of graphics mode
is to transmit the data using an object-based description language such as PostScript. Fonts
described in this way are known as outline fonts. By contrast, those fonts that are described
by laying out the detailed pixel diagram for the characters are known as bitmapped fonts.
Outline fonts and graphics described by page description languages have the additional
advantage that they may be scaled easily to different sizes and rotated to different angles.
The graphic image is then reconstructed at the terminal by translation software that is
built into the display controller. This method is particularly amenable to printers and to
Postscript displays used for precision graphical and layout work. The methods of managing
graphical images are explored more fully in Chapter 16.

Liquid Crystal Display Technology

Although CRT display technology is still in use, liquid crystal display technology has
become the prevalent means of displaying images. A diagram of a liquid crystal display
(LCD) is shown in Figure 10.19. A fluorescent light or LED panel, located behind the
display, produces white light. A polarizing filter in front of the light panel polarizes the

FIGURE 10.19
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light so that most of it is polarized in one direction. The polarized light then passes through
a matrix of liquid crystal cells. In a color display, there are three cells positioned properly
for each pixel. When an electrical current is applied to one of these cells, the molecules in
the cell spiral. The strongest charge will cause the molecules to spiral 90 degrees. Since the
light is passed through the crystal, its polarization will change, the amount depending on
the strength of the electrical current applied.

Therefore, the light coming out of the crystal is now polarized in different directions,
depending on the strength of the current that was applied to the crystal. The light is
now passed through a red, blue, or green color filter and through a second polarizing
filter. Because a polarizing filter blocks all light that is polarized perpendicular to its
preferred direction, the second filter will only pass through the light that is polarized in the
correct direction. Therefore, the brightness of the light is proportional to the amount of
polarization twist that was applied by the liquid crystal’s spiral.

There are several different ways of applying the electric current to the crystal. In an
active matrix display, the display panel contains one transistor for each cell in the matrix.
This guarantees that each cell will receive a strong charge, but is also expensive and difficult
to manufacture. (Remember that even one imperfect cell will be apparent to the viewer!)
A less expensive way provides a single transistor for each row and column of the matrix
and activates each cell, one at a time, repetitively, using a scan pattern. This type of panel
is known as a passive matrix display. The charge is applied for less time and is therefore
lower. The result is a dimmer picture. Most modern LCD displays use the active matrix
approach.

LCD panels have the advantage of bright images, no flicker, low power consumption,
and thinness, so they are ideal for laptop computers. They are also used in most desktop
displays. Because they are essentially flat, they can be placed anywhere. The same technology
is also used for large-screen computer projectors.

CRT Display Technology

With CRT technology, the image is produced on the face of a cathode ray tube (CRT),
using a methodology similar to that used for older television receivers. A diagram of a
color cathode ray tube is shown in Figure 10.20. Three electron guns within the tube shoot
beams of electrons from the back of the tube. There is a gun for each of the primary colors,
red, blue, and green. A high voltage applied to the inside of the face of the tube attracts the
beams to the face. The face of the tube is painted with tiny dots or thin stripes of phosphors,
which glow when struck by electrons. There are phosphors that glow red, blue, and green.
A shadow mask in the tube is designed such that electrons from each gun can strike only
phosphors of the matching color. The strength of the beams varies depending on the color
and brightness of the point being displayed. The stronger the beam for a particular color,
the brighter that color appears on the screen.

The three beams of electrons are deflected both horizontally and vertically by a pair
of electromagnetic coils, so that the beam scans across the screen and top to bottom, to
form the scan pattern that you already saw in Figure 10.16. Monochrome video monitors
work identically, except that only a single gun is required, the phosphor is white, yellow, or
green, and no shadow mask is required.
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FIGURE 10.20
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OLED Display Technology

OLED (Organic Light-Emitting Diode) technology is a new screen technology that is
poised to supplement or replace LCD technology in display monitors. OLED technology
offers an image that is brighter, with colors that are more vivid and with vastly improved
contrast. Despite the improved image, the OLED panel consumes less power, with a package
that is even thinner than current flat screen monitors. LCD technology is passive in the
sense that light is generated by a backlight; the light is selectively blocked by the LCD cells
in the panel. Leakage in the cells limits the level of darkness that can be achieved and the
maximum brightness is limited by the brightness of the backlight.

In contrast, OLED technology is active. OLED technology consists of a thin display
panel that contains red, green, and blue LEDs for each pixel with transistors for each LED
that generate electrical current to light the LED. The light output is produced directly by
these LEDs. The brightness of a pixel is determined by the amount of current supplied
by the transistor, which in turn is determined by an input signal indicating the desired level
of brightness. The simplicity of the panel, combined with the lack of need for a backlight,
result in the thinness of the panel. Sony and Samsung have both demonstrated OLED
panels less than 3 mm thick.

10.7 PRINTERS
Earlier printers were derived from typewriters. They used formed characters that were
mounted at the ends of arms, on wheels shaped like a daisy, on chains, or on spheres.
Printing resulted from the hammer-like physical impact of the character through an
inked ribbon onto paper. These printers were difficult to maintain and were incapable of
generating any character or graphical image that was not provided in the set of formed
characters. Later impact printers used pins that were selectively employed to generate dot
matrix representations of the characters on the page. These printers were known as dot
matrix printers; in addition to the standard characters, they were also capable of printing
simple geometric shapes. Impact printers have mostly disappeared from use.

Except for some commercial printing of items such as books, magazines, and news-
papers, nearly all modern printing is done using nonimpact technologies. This is true
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FIGURE 10.21

Creating a Gray Scale
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regardless of the size of the system, the
quantity of printing, or the capacity of
the printer.2 Single-color (usually black
and white) printers normally use laser, or
inkjet printing technology. Low-cost color
printing also uses inkjet technology. More
expensive color printing uses thermal wax
transfer or dye sublimation, inkjet, or laser
technology.

The impression on the paper is sprayed
at the paper or laid down on the paper.
Like displays, printer output can be charac-
ter based or graphics based. Most printers
have built-in character printing capability
and can also download fonts. Nonetheless,
much of the output from modern comput-

ers is graphics based, even when text is being printed, since graphics output produces more
flexibility. The output to many printers takes the form of graphical bitmaps that represent
the required pixels directly. Some printers have built-in computing capability and can
accept data in the form of a page description language, predominantly Adobe PostScript
or PCL, an industry standard print command language originally developed by HP. The
controller in the printer can then convert from the page description language to the bitmap
within the printer itself. Memory is provided within the printer to hold the bitmapped
image while it is being printed.

Nearly all modern computer printers produce their output as a combination of dots,
similar in style to the pixels used in displays. There are two major differences between the
dots used in printers and the pixels used in displays. First, the number of dots per inch
printed is generally much higher than the number of pixels per inch displayed. The number
of pixels displayed usually ranges between about 70 and 150 per inch. Typical printers
specify 600, 1200, or even 2400 dots per inch.

This difference in resolution is partially compensated for by the second major
difference: the dots produced by most printers are either off or on. A few printers can vary
the size of the dots somewhat, but, in general, the intensity, or brightness, of the dots is
fixed, unlike the pixels in a display, which can take on an infinite range of brightnesses.
Thus, to create a gray scale or color scale, it is necessary to congregate groups of dots into a
single equivalent point and print different numbers of them to approximate different color
intensities. An example of this is shown in Figure 10.21.

Laser Printers

Today, the prevalent form of printing for most applications is laser printing. Laser printing
is derived from xerography. The major difference is that the image is produced electronically

2Even most modern commercial printing uses a nonimpact technique called offset printing that is based on
contact between a rubber mat containing a print image and the paper, a method similar in many respects to laser
printing. The impact printing press technology that you see in old movies is called letterpress printing.
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FIGURE 10.22

Operation of a Laser Printer
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1. A laser is fired in correspondence to
    the dots that are to be printed. A  
    spinning mirror causes the dots to be
    fanned out across the drum. The drum
    rotates to create the next line, usually
    1/300th or 1/600th of an inch.

    The drum is photosensitive. As a 
    result of the laser light, the drum will
    become electrically charged wherever
    a dot is to be printed.

2. As the drum continues to rotate, the
    charged part of the drum passes
    through a tank of black powder
    called toner. Toner sticks to the drum
    wherever the charge is present.
    Thus, it looks like the image.

3. A sheet of paper is fed toward the
    drum. A charge wire coats the paper
    with electrical charges. When it
    contacts the drum, it picks up the
    toner from the drum.

4. As the paper rolls from the drum, it
    passes over a heat and pressure
    area known as the fusing system.
    The fusing system melts the toner to
    the paper. The printed page then
    exits the printer.

    At the same time, the surface of the
    drum passes over another wire,
    called a corona wire. This wire
    resets the charge on the drum, to
    ready it for the next page.
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from the computer using a laser or light-emitting diodes, rather than scanning a real image
with a bright light, as in a copy machine. A description of the steps in the operation of a
laser printer is shown in Figure 10.22. Color images are produced by printing the sheet four
times with different colored toners.

Inkjet Printers

Inkjet printers operate on a simple mechanism that also has the advantages of small size
and economy. Despite their simplicity, inkjet printers with high-quality inks are capable
of photographic quality color output. Mechanically, the inkjet printer consists of a print
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cartridge that moves across the page to print a number of rows of dots, and mechanical
rollers that move the page downward to print successive rows.

The inkjet print cartridge contains a reservoir of ink and a column of tiny nozzles,
so that several rows can be printed at once. Each nozzle is smaller than the width of a
human hair. A dot is produced by heating the ink behind a nozzle. When the ink is boiled
it sprays a tiny droplet of ink toward the paper. The volume of each droplet is about
one-millionth the volume of the drop from an eyedropper of water! Some printers use a
vibrating piezo-crystal instead of heat to produce the ink droplets. Multiple reservoirs of
ink make it possible to print multiple colors.

Thermal Wax Transfer and Dye Sublimation Printers

For the highest quality color images, more specialized methods are required. The preferred
methods are thermal wax transfer and dye sublimation. The mechanisms for both types are
similar. The paper is fed into the printer and clamped against a drum. A print head provides
a row of dot-sized heating elements. Between the paper and the print head, the printer
feeds a roll of film that is impregnated with either colored wax or dye. The film is made up
of page-sized sections of magenta, cyan, and yellow colors; sometimes an additional section
of black is also included. Each rotation of the drum exposes the paper to a different color.
The heat from the print head melts the wax or dye onto the paper.

Thermal wax can be applied to ordinary paper. To improve quality, some printers
precoat the paper with clear wax. This compensates for slight imperfections in the paper
so that the wax may be applied more uniformly. Different colors are produced in the same
way that black-and-white printers produce gray scales.

The dye sublimation technique differs slightly, in that transparent dyes diffuse in the
paper, so that the dots of color actually blend. Furthermore, it is possible to control the
amount of dye by adjusting the temperature of individual print head elements. Thus,
dye sublimation can print continuous color tones. Unfortunately, the dye sublimation
technique also requires higher temperatures, therefore, special paper must be used.

10.8 USER INPUT DEVICES

Keyboards and Pointing Devices

Users use a variety of devices to interact with the computer, but most commonly, the
modern user interface is based upon a keyboard and a pointing device. Keyboards consist
of a number of switches and a keyboard controller. The keyboard controller is built into
the keyboard itself. There are several different types of switches in use, including capacitive,
magnetic, and mechanical. In most environments, the type of switch used is not important.
Different types of switches feel differently when used. Some switches are more suitable than
others for environments where dust or electrical sparks or the need for ultra-high reliability
are a problem. When a key is pushed, a signal called a scan code is sent to the controller.
A different scan code is sent when the key is released. This is true for every key on the
keyboard, including special keys such as Control, Alt, and Shift keys. The use of two scan
codes allows keys to be used in combination, since the controller is able to tell whether a
key is being held down while another key is struck. The controller can also determine when
a key is to cause a repeated action.
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If the keyboard is part of a terminal, the scan codes are converted to ASCII, Unicode,
or EBCDIC (see Chapter 4 if you need a reminder) and sent to the computer, usually via
a serial port. Keyboards local to a computer such as a PC interrupt the computer directly.
The scan codes are converted to ASCII or Unicode by software in the computer. This
latter method allows more flexibility in remapping the keyboard for different languages
and keyboard layouts.

Modern graphical user interfaces also require the use of a pointer device as input to
locate and move a cursor on the display screen. The best known pointer device is a mouse,
but there are other pointer devices in use, including light pens, touch screens, and graphics
tablets, as well as the special pointer devices used for interfacing with computer games.

The simplest device is the mechanical mouse. As the mouse is moved across a surface,
the roller ball protruding from bottom of the mouse also moves. Two wheels, mounted at
a 90-degree angle from each other, touch the roller ball, and move with it. These wheels
are called encoders. As the encoders move, they generate a series of pulses. The number
of pulses corresponds to the distance that the mouse was moved. One encoder records
movement forward and backward; the other records sideway motion. The pulses are sent
to a program in the computer to interpret the current location of a cursor. Some encoders
use a tiny light and sensor to create the pulses, others use a tiny mechanical switch, but the
method used is not important. Desktop game pointing devices and trackballs work similarly.
Space-based game controllers, such as the Nintendo Wii remote, use accelerometers to
detect movement in all three dimensions; software in the game console then uses that
information to perform the appropriate action upon the object of interest.

Light pens are used differently and work differently. A light pen is pointed at the
screen to identify a position on the screen. By moving the pen around the screen, a cursor
can be made to follow the pen. The light pen can be used to point to a target, such as a
control button on the screen, and can also be used as a drawing tool. The light pen is not
actually capable of telling the system its position. Instead, the software program that is used
with the light pen rapidly generates pixels of light on the display screen at known locations
in the area where the light pen is believed to be pointing. The light pen has a photodetector
that can respond to the point of light on the screen, so when the point on the screen that
corresponds to the light pen is lit, the light pen is activated, which notifies the program that
the current location is correct.

Graphics tablets use a variety of techniques, including pressure-sensitive sensors,
optical sensors, magnetic sensors, and capacitive sensors to determine the location of a
pen on the pad. Some techniques require the use of a special pen, which is attached to
the tablet, while others allow the use of any pointed object, such as a wooden pencil, with
or without lead, or even a finger. The resolution and accuracy of graphics tablets depends
on the technique employed. Graphics tablets can be used as mouse replacements, but are
particularly suited for drawing. A similar mechanism is used for the touch pads commonly
found on laptop computers.

Touch screens provide a capability similar to that of graphics tablets, but with the
sensing mechanism attached directly to the display screen, allowing the user to point
directly to an object on the screen. Touch screens are particularly popular on devices such
as PDAs, cell phones, portable game consoles, and portable music and video players. They
are also available on many commercial devices that require user interaction with the public,
such as store self-checkout machines and information kiosks, as well as some personal
computers. A number of different technologies can be used to detect the point of touch.
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These technologies differ in cost, accuracy, and durability. Common technologies include
resistive, capacitive, and surface acoustic wave. Some touch screens are capable of detecting
multiple touch points.

Scanners

Scanners are the primary means used to input paper images. Although video frame
grabbers and television cameras can also be used for this purpose, scanners are generally
less expensive and more convenient.

There are three primary types of scanners, flatbed scanners, sheet-fed scanners, and
handheld scanners, but all three work similarly and differ only in the way the scan element
is moved with respect to the paper. In a flatbed scanner, the paper is placed on a glass
window, while the scan element moves down the page, much like a copy machine. In a
sheet-fed scanner, a single page of paper is propelled through the mechanism with rollers;
the scan element is stationary. Handheld scanners are propelled by the user over the page.

Regardless of which means is used, the basic operation is the same. The scanning
mechanism consists of a light source and a row of light sensors. As the light is reflected
from individual points on the page, it is received by the light sensors and translated to
digital signals that correspond to the brightness of each point. Color filters can be used to
produce color images, either by providing multiple sensors or by scanning the image three
times with a separate color filter for each pass. The resolution of scanners is similar to that
of printers, approximately 600–2400 points per inch.

Multimedia Devices

Despite its importance in modern systems, not much needs to be said about this topic.
Most modern personal and workstation computers provide input ports with an audio
analog-to-digital converter for microphones and other audio input equipment, as well as
an output converter and speakers and headphone jacks for audio output. USB ports can also
be used for this equipment and for computer-compatible video cameras, TV tuners, and
other multimedia devices.

10.9 NETWORK COMMUNICATION DEVICES
It is impossible to overemphasize the fact that, from the perspective of a computer, a
network is simply another I/O device, a device that, like a disk, offers input to applications
on the computer and receives output from applications on the computer. Like other I/O
devices, there is a controller, in this case a network interface unit (NIU) controller or
network interface card (NIC) that handles the physical characteristics of the connection
and one or more I/O drivers that manage and steer input data, output data, and interrupts.

There are a number of different types of network interfaces, with different network
interface controllers for each. On large mainframe systems, there may be network interface
controllers for a variety of different network connections, including various flavors
of Ethernet, FDDI fiber, token-ring, and other types. On most systems, the standard
connection is to an Ethernet network. Nearly every current computer system is supplied
with one or more Ethernet network interface cards as a basic part of the system. Wireless
Ethernet and Bluetooth network interface cards are also commonplace.
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The interface between a computer and a network is more complicated than that for most
other I/O peripherals. Data must be formatted in specific ways to communicate successfully
with a wide range of application and system software located on other computers. The
computer also must be able to address a large number of devices individually, specifically,
every other computer connected to the network, whether connected directly to the local
network, or indirectly connected through the Internet. Unlike many device controllers,
NICs must be capable of accepting requests and data from the network, independent of
the computer, and must be able to provide interrupt notification to the computer. Security
of communication is an important concern, whereas local devices normally require only
minimal security considerations. Many of these concerns are handled with protocol software
in the operating system. The NIC is responsible only for the electrical signals that connect
the computer to the network, either directly or through a communication channel, and for
the protocols, implemented in hardware, that define the specific rules of communication
for the network. These protocols are called medium access control protocols, or MACs.
We note in passing that every NIC and network device throughout the world has a unique
address called a MAC address that can be used to identify the specific device and its
characteristics. The MAC address is sometimes used by cable and DSL vendors to restrict
network access to a specific device.

The hardware aspects of the network interface are considered more fully in Chapter 14.
A deeper look at the fundamentals of networking infrastructure, including types of
networks, the nature of communication channels, media, the movement of data across a
network, protocols, and the operation of the Internet, is described in Chapters 12 and 13.

SUMMARY AND REVIEW

This chapter provides an overview of the workings of the most common computer
peripheral devices. Peripheral devices are classified as input devices, output devices, and
storage devices. We began by demonstrating that storage can be thought of hierarchically,
with registers the most immediately available form of storage, followed by memory, and
then the various peripheral devices. We discussed the trade-offs that make each form
desirable for some purposes.

Following this general introduction, we introduced flash memory, and discussed its
applications, strengths, and weaknesses.

Next, we showed the layout and explained the operation of various forms of disk,
including hard magnetic and optical. We showed how the performance factors, capacity and
various speed measures, are obtained. For each device we showed how a block is identified
and located. We noted the difference between the concentric tracks used on magnetic disks
and the spiral tracks used on many optical disks. We explained the difference between
CAV and CLV operation. The discussion of disks is followed by a similar discussion for
magnetic tape.

The display is the most important output device. We explained the process used to
produce a display, from the bytes in memory that represent individual pixels or characters
to the actual output on a screen. We showed that there are two different forms of output,
character and graphic. We showed how colors are determined for the display. We also
showed the basic technology for the two methods that are used to produce an image, video
on a CRT, and liquid crystal display.
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There are a number of different technologies used in printers. We introduced laser
printers, inkjet printers, and thermal transfer printers as representative of the most
important current technologies.

The chapter continues with a brief discussion of keyboards, various pointer devices,
scanners, and multimedia devices that are used for input. We conclude with a brief
consideration of the network as an input/output device, a discussion to be expanded greatly
in later chapters.

FOR FURTHER READING
Much of the discussion in this chapter reviews material that you have seen before, probably
in an introduction to computers course. Any good introductory textbook will also serve as
a further reference for this chapter. In addition, there are several good books that describe
I/O devices. White [WHIT05] provides straight-forward explanations of many I/O devices.
Mueller [MUEL08] contains comprehensive treatments of memory, disk storage, optical
disks, video hardware, and more.

KEY CONCEPTS AND TERMS
active matrix (LCD)
average seek time
bitmapped fonts
block (of data)
cathode ray tube (CRT)
CD-ROM
constant angular velocity

(CAV)
constant linear velocity

(CLV)
cylinder
data streaming
direct access storage devices

(DASDs)
disk array
DVD
drive array
dye sublimation
electron guns
encoders
fault-tolerant computers
file server
flash memory
formatting
graphics tablet
hard disk drive

helical scan cartridge
impact printer
inkjet printer
interblock gap
interlace
laser printer
latency time
light pen
linear recording cartridge
liquid crystal display

(LCD)
majority logic
medium access control

(MAC)
mirrored array
mounted
multiple zone recording
network interface card

(NIC)
network interface unit

(NIU) controller
off-line storage
OLED (organic

light-emitting diode)
display

online secondary storage

outline fonts
parked (position)
passive matrix (LCD)
peripherals
phosphors
pixels
PostScript
primary memory
progressive scan display
raster scan
redundant array of

inexpensive disks
(RAID)

resolution
rotational delay
rotational latency time
secondary storage
sectors
seek time
server
shadow mask
striped array
text mode
thermal wax transfer
touch screen
track
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transfer time
true color
vector scan

WORM (write-once-
read-many-times)
disks

zone bit recording (ZBR)
zone-CAV recording

(Z-CAV)

READING REVIEW QUESTIONS
10.1 Peripheral devices can be categorized into three classes. What are the three

classes? Give an example of each.

10.2 State at least three reasons why storage in a computer is organized hierarchically.

10.3 What is the advantage of flash memory over RAM? What is the advantage of
RAM over flash memory? What is the advantage of flash memory over magnetic
hard disk?

10.4 Draw a circle representing one platter surface of a hard disk. On your drawing
show an example of a track, of a sector, and of a block.

10.5 Draw a sector representing one platter surface of a hard disk with sixteen sectors.
On your drawing show a track, the sectors, and a single block. Place a magnetic
head somewhere on your drawing. Show on your drawing the seek time, latency
time, and read time for the block that you drew on the disk.

10.6 Suppose a disk is rotating at 7200 rpm. What is the minimum latency time for
this disk? What is the maximum latency time for this disk?

10.7 What is a disk array? What advantages does a disk array offer over those of a
single disk?

10.8 How does the layout of a typical optical disk differ from that of a magnetic disk?
How many tracks does a standard single-layer CD-ROM contain?

10.9 What does WORM stand for when it is used to describe an optical disk?

10.10 What are the advantages and disadvantages of magnetic tape as compared to
other peripheral storage devices?

10.11 What do the numbers 1920 × 1080 represent when describing a display?

10.12 How many pixels are there in a 1024 × 768 display? What is the picture ratio of
this display?

10.13 What is true of the red, blue, and green pixel values if the color of the pixel is
white? What if it’s black?

10.14 What is the difference between interlaced scan and progressive (or noninterlaced)
scan?

10.15 Explain how a raster scan works.

10.16 What are the advantages of LCD technology over CRT technology?

10.17 What does OLED stand for? How does OLED technology differ from LCD
technology?

10.18 What are the two types of printers in primary use today?

10.19 What is the measure used to indicate the resolution of a printer?

10.20 Name at least three user input devices in common use.

10.21 What does NIC stand for?
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EXERCISES
10.1 Explain why it is easy to perform read and write in place on a disk but not on a

tape.

10.2 What are the advantages of flash memory over hard disk storage? What are the
advantages of hard disk over flash memory storage? What are the advantages
of both hard disk and flash memory storage over RAM? What is the major
advantage of RAM over other types of storage?

10.3 A multiplattered hard disk is divided into 1100 sectors and 40,000 cylinders.
There are six platter surfaces. Each block holds 512 bytes.

The disk is rotating at a rate of 4800 rpm. The disk has an average seek time of
12 msec.

a. What is the total capacity of this disk?

b. What is the disk transfer rate in bytes per second?

c. What are the minimum and maximum latency times for this disk? What is
the average latency time for this disk?

10.4 The average latency on a disk with 2200 sectors is found experimentally to be
110 msec.

a. What is the rotating speed of the disk?

b. What is the transfer time for one sector?

10.5 Old fashioned twelve-inch laser video disks were produced in two different
formats, known as CAV and CLV. The playing time of a CLV disk is approximately
twice that of a CAV disk, although the number of tracks, track width of the tracks
on the disk, and amount of data per video frame is the same. Explain why this is
so.

10.6 An optical disk consists of two thousand concentric tracks. The disk is 5.2 inches
in diameter. The innermost track is located at a radius of 1/2 inch from the
center. The outermost track is located 2 1/2 inches from the center. The density
of the disk is specified as 1630 bytes per inch along the track. The transfer rate is
specified as 256,000 bytes per second. The disk is CLV. All blocks are of equal
size.

a. The innermost track consists of ten blocks. How many bytes are contained
in a block?

b. How many blocks would the outermost track contain?

c. The capacity of the disk is approximately equal to the capacity in bytes
of the middle track times the number of tracks. What is the approximate
capacity of the disk?

d. What is the motor rotation speed when reading the innermost track? the
outermost track?

10.7 Why is the average seek time for a hard disk much shorter than for a CD-ROM
or DVD-ROM?

10.8 There is a current proposal to cut the size of an individual bit in a DVD-ROM
in half so as to increase the capacity of the disk. This would cut both the width
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of the track and the track length required per bit in half. If the current capacity
of a DVD-ROM is approximately 4.7 GB, what would be the capacity of the new
‘‘high-density’’ DVD-ROM?

10.9 A typical published page consists of approximately forty lines at seventy-five
characters per line. How many published pages of 16-bit Unicode text would fit
on a typical 600 MB CD-ROM? How many published pages of text would fit on
a netbook computer with an 80 GB flash memory?

10.10 A high-quality photographic image requires 3 bytes per pixel to produce sixteen
million shades of color.
a. How large a video memory is required to store a 640 × 480 image during

display? A 1600 × 900 image? A 1440 × 1080 image?

b. How many 1024 × 768 non-compressed color images will fit on 4.7 GB
DVD-ROM?

10.11 A 1024 × 768 image is displayed, noninterlaced, at a rate of thirty frames per
second.
a. If the image is stored with 64K-color resolution, which uses 2 bytes per

pixel, how much memory is required to store the picture?

b. How much video memory is required to store the picture as a ‘‘true color’’
image, at 3 bytes per pixel?

c. What is the transfer rate, in bytes per second, required to move the pixels
from video memory to the screen for the ‘‘true color’’ image?

10.12 For a motion picture image it may be necessary to change every pixel in the
image as many as thirty times per second, although usually the amount of change
is somewhat smaller. This means that without data compression or other tricks
that a large number of pixel values must be moved from main memory to video
memory each second to produce moving video images. Assume a video image
on the screen of 1 1/2′′ × 2′′, with a pixel resolution of seventy-two dots per
inch and a frame rate of thirty per second. Calculate the required data transfer
rate necessary to produce the movie on the screen. Do the same for an image of
3′′ × 4′′.

10.13 The cost of a monitor increases rapidly with increasing bandwidth. The band-
width of a monitor is measured roughly as the number of pixels displayed on the
screen per second.

a. Calculate the bandwidth of a 640-pixel by 480-pixel display operating in an
interlace mode. One-half of the image is generated every 1/60th of a second.

b. Do the same for a 1920-pixel by 1080-pixel display operating in noninterlace
mode. One entire image is generated every 1/60th of a second.

10.14 A 1600-pixel by 900-pixel display is generated on a 14-inch (diagonal) monitor.

a. How many dots per inch are displayed on this monitor?

b. What is the size of an individual pixel? Would a .26 mm pixel resolution
monitor be sufficient for this display?

c. Repeat (a) and (b) for a 1280 × 720 display.
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10.15 A text display displays 24 rows of 80 characters on a 640-pixel by 480-pixel
15-inch monitor. Assuming four spaces for horizontal space between each row
of characters, how big are the characters in inches? In pixels? How big would a
character of the same pixel size be if the display is increased to 800 × 600? How
many rows of characters could be displayed in this case?

10.16 What is the actual resolution of a gray scale picture printed on a 600-dot-per-inch
laser printer if the gray scale is created with a 3 × 3 matrix?

10.17 In printer jargon, ‘‘replaceables’’ are the items that are used up as part of the
printing process. What are the replaceables in a laser printer? In an inkjet printer?
In a dot-matrix impact printer?

10.18 Explain the difference in the method used to generate characters between graphics
mode and character mode display.

10.19 Explain the difference between pixel graphics and object graphics, and discuss
the advantages and disadvantages of each.

10.20 What are the limitations of typewriter-type (formed character) printers that
caused them to fade from popularity?
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11.0 INTRODUCTION
It’s time to put all the pieces together!

In the last five chapters, we carefully explored the various fundamental components
of computer systems. We explained in detail the operation of the computer CPU and
introduced some of the many variations on the basic CPU design found in different
systems. You learned that there is a fundamental group of instructions that make up the
repertoire of the computer and that each instruction is performed in a series of simple
steps known as a fetch-execute cycle. You have seen variations in instruction sets and
memory addressing techniques that differentiate computers from one another and
extend the flexibility of the basic architecture. We explored various CPU architectures,
memory enhancements, and CPU organizations that expand the processing power of
the CPU. We also considered various techniques used to perform I/O operations. We
explored the advantages of adding additional CPUs in the form of multiprocessing
and of off-loading operations into additional processors built into I/O modules. In
addition, we presented the workings of various peripheral devices. You have also seen
some of the interactions between the various components in the computer system.
You’ve learned that various buses tie everything together.

The primary goal of this chapter is to complete our discussion of computer system
hardware by showing you how all these pieces fit together in real modern computer
systems. Considering the system as a whole will also give us the opportunity to study
some of the ways in which computer designers are meeting the demand for more
computing power.

Today’s software places tremendous demands on all components of a computer
system. Forty years ago, an IBM mainframe computer was supplied with a maximum
of 512 KB of primary memory. The performance of this machine was measured at 0.2
millions of instructions per second (MIPS). Today, a personal computer or personal
digital assistant with that level of performance would be considered unusable for most
applications. It wouldn’t even be adequate for a cell phone! Graphics and multimedia
applications, in particular, require performance far in excess of previously acceptable
levels. Most modern computers perform at levels of a billion instructions per second
or more. Supercomputers can perform trillions of instructions per second! There is a
continuing demand for higher and higher levels of performance, driven by the desire to
solve complex problems that require more computer power, as well as by market needs
and by competition. As you’ll see, we’ve even learned to tie computers together into
massive networks and clusters and grids to accumulate even more computer power for
the massive problems that require ever-increasing computer capability: sophisticated
problems in physics, weather analysis, searches for medical cures, complex financial,
economic, and business analyses, even the search for extraterrestial intelligence.

Obviously, individual components—CPU, memory, I/O modules, and the
connections between them—have been optimized to maximize computer system
performance. Considering the system as a whole allows further advances in perfor-
mance, which result from system integration. Individual components are designed
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to work together in such a way that overall performance is enhanced beyond the performance
of each component. This concept is known as synergy.

Much of the discussion in this chapter is devoted to innovations in computer
system design resulting from a synergistic approach to system integration. An important
consideration in this discussion is the means used to interconnect the various components
to achieve effective integration. This chapter introduces bus and channel computer system
architectures that attempt to optimize interconnectivity goals, as well as maximize I/O
throughput and fast storage capability.

Some of the new techniques in computers are improvements in technology, design, and
implementation: improved materials, manufacturing techniques, and circuit components
and better ways of performing the same task that enhance the operation of a particular system
component. Others are architectural changes: new features and implementation methods
that change in a fundamental way the design of the system.1 Many of the innovations and
enhancements that are used to achieve high performance are a fundamental part of modern
systems. The terminology that names and describes these techniques is a basic part of the
vocabulary of computing. To analyze, purchase, and manage modern business systems
intelligently, it is important to understand these techniques.

In Chapters 7, 8, 9, and 10 we provided the conceptual framework for a computer
system, and analyzed the operations and methods used by the individual components.
In this chapter we focus on the modern computer system as a whole. Section 11.1 puts
together everything that we’ve discussed up to this point and shows you the organization of
complete, modern, high-performance computer systems. Perhaps surprisingly, the model
presented is relatively independent of system size or CPU type; it applies across the board,
from the embedded system found in a car, to the cell phone or game controller or PC
laptop, to the mainframe system used in the largest businesses.

Although computer power has increased tremendously, one continuing challenge is
the ability to support the massive amounts of input/output, including networking, as well
as storage requirements that accompany modern computer usage. There are a number of
different approaches in use. Enhanced traditional bus approaches are suitable for smaller
systems, particularly with specialized high-speed buses, such as USB and FireWire, designed
for this purpose. Larger systems, particularly mainframe computer systems, supplement
their I/O capability with specialized I/O processors that offload much of the I/O processing
to separate I/O equipment to achieve extremely high I/O data transfer rates. The best known
of these is IBM’s channel architecture, a technology that has been continually updated to
achieve ever-increasing I/O capability. In Section 11.2 we present discussions of the various
means used to support current I/O and storage requirements.

Many modern computer systems satisfy the demand for computing power by inte-
grating multiple processors. In Chapter 8, Section 8.5, we introduced multiprocessing as
one possible solution. In Section 11.3 we briefly present an overview to coupling entire
computer systems together as an alternative approach. Section 11.4 introduces clustering
as one means to couple individual computer systems together to provide more power.

1It is useful to note that computer science establishes the ultimate theoretical capability of a computer to
solve a particular problem. None of the developments in computer architecture have changed the fundamental
capability of the computer in this regard.
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Multiprocessing and clustering are often used together to provide the tremendous comput-
ing power offered in many large scale modern systems, including supercomputer systems.
In fact, modern large-scale computers are predominantly designed as carefully integrated
combinations of multiprocessing and clustering technology.

In Section 11.5 we consider briefly special purpose methods used to achieve even more
computing power. The primary method used for this purpose utilizes spare CPU capability
available when individual computers on a large network facility, such as the Internet, are
working at less than full capacity. This technique, gradually increasing in importance, is
known variously as grid computing or cloud computing.

Interestingly, despite the previous discussion, it is sometimes not practical to utilize
the available CPU capability of a system effectively. A programmer may wish to test a
program, for example, that presents a security or failure risk to the production work of
the system. Or there may be a need for systems to support a number of tasks in a facility
where it may be more cost effective to provide and support a single large system rather
than a number of smaller systems. One important solution to situations such as these
is a technique called virtualization, in which an individual computer system is used to
simulate multiple computers, all sharing the same CPU and I/O facilities. The simulated
machines are known as virtual computers. Each virtual computer runs its own operating
system and programs. Special hardware and software is designed to assure isolation
between the various virtual computers, to prevent unwanted interactions, such as security
breaches. Many organizations consider virtualization an important tool in building large,
cost effective, system solutions. We mention virtualization here because, in a sense, it is the
opposite side of the coin—now that all this computing power is available, how do we put
it to use? An introduction to the concept of virtualization is presented in Chapter 18.

Of course, there are other parts of the system we have yet to consider, in particular the
operating system software and the interconnection of individual computing systems into
larger systems using network technology. But, hey, it’s not possible to discuss everything
all at once! Those discussions take place in later chapters.

11.1 PUTTING ALL THE PIECES TOGETHER
At this point we have explored the various components that make up a computer system:
one or more CPUs, primary storage, I/O modules, various I/O devices, and the buses that
connect everything together. You have seen how the CPU processes instructions, and the
kinds of instructions that are executed. You have seen the different methods that are used
to transfer data between an I/O device and memory for use by the CPU. You’ve seen that
the use of DMA and a completion interrupt is an effective and efficient way to move large
blocks of data quickly. You’ve also seen that programmed I/O is more effective for small
amounts of data, particularly when speeds are extremely slow. You’ve seen how interrupts
can be used together with programmed I/O to keep a pipeline of slow, character-based I/O
data moving, for example, from a program to a modem.

In this section we are concerned about the blocks and interconnections that make up
the organization of a computer system. There are various ways to interconnect the CPU,
memory, and I/O peripherals, each with their own advantages and disadvantages.

The blocks that make up the essential components of a personal computer or
workstation are shown as a simplified diagram in Figure 11.1. The major components in
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FIGURE 11.1

A Basic Personal Computer System
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this model are a CPU, memory, optical disk drive, one or more hard disks, (or, perhaps,
solid-state disks), the keyboard, and built-in video and audio capability.

The unit typically also provides USB, parallel, Ethernet, WiFi, and modem interface
controllers and ports (perhaps FireWire, also, and maybe even Bluetooth). These ports can
be used for network connections, printers, modems, mice, and other devices. The package
also includes plug-in connectors for additional option boards that will interface to the
master bus.

For comparison, Figure 11.2 shows the block diagram of a processor unit for a large
mainframe computer system. The main components in this system are one or more CPUs,
memory, and a variety of disks and other I/O devices, connected to the processor with
an I/O channel system. In this diagram, the processor unit includes the CPUs, memory,
and I/O interface components. Specialized internal buses interconnect the various parts of
the processor unit. The keyboard and video display connected to the processor unit are
used only for control of the system. Other terminals and workstations are connected to the
processor indirectly, through the I/O system or by network. In addition, multiple processor
units may be coupled together to form a large, integrated computer facility that can share
programs and data.

A diagram showing more detail of a typical personal computer’s components is shown
in Figure 11.3. Although early PCs used separate integrated circuits for each of the various
functions, today most of the functions shown in the diagram are combined into just a few
very-large-scale integrated circuits (VLSIs) (usually just called chips or support chips).

The block diagram in Figure 11.3 connects together many of the important concepts
familiar to you from previous chapters. The PC is driven by one or more CPUs, which
interface to memory and to the various I/O peripherals and ports by one or more buses.
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FIGURE 11.2

A Mainframe Computer System
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FIGURE 11.3

Major PC Systems Components
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A clock controls the operation of the CPU. Interrupt and direct memory access (DMA)
capabilities are provided to enable rapid and efficient I/O processing. L1 and L2 cache
memory for each CPU is included within the same integrated circuit as the CPU for most
modern processors. Older systems also include an Industry Standard Architecture (ISA)
bus or its 8-bit predecessor on the IBM PC, or the NuBus on an Apple Macintosh system.
Today, the ISA bus is nearly obsolete, and multiple buses are used, to maximize data
transfer rates between components.

Figure 11.4 shows the layout of a typical desktop PC, including the motherboard, case,
and other components. The wiring for the primary buses that interconnect the CPU and its
peripheral components is printed on the motherboard. Connectors on the motherboard

FIGURE 11.4

The Components in a Typical Desktop PC
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FIGURE 11.5

Basic CPU-Memory-I/O Pathway
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combine with the frame of the case to hold
the motherboard and plug-in peripheral
cards in place, and, of course, the connec-
tors on the motherboard provide the elec-
trical connections between the peripherals
and the buses. The mainframe computer is
packaged differently, since the mainframe
computer is much larger physically, as well
as operationally. Still, the essential compo-
nents and operations are similar to those
of the personal computer.

Figure 11.5 illustrates the basic path-
ways required in a CPU-memory-I/O sys-

tem. There are five basic components involved in the interfaces between the CPU, memory,
and the I/O peripherals:

1. The CPU or CPUs.

2. The I/O peripheral devices.

3. Memory. Except for single pieces of input or output that can be transferred
directly from a register, data from input or intended for output is normally
stored at least temporarily in memory, where it can be accessed by the
appropriate program, even for situations preferring programmed I/O.

4. I/O modules. The I/O modules act as interfaces between the CPU and memory
and one or more I/O devices. As you recall from Chapter 9, an I/O module
receives commands from the CPU and provides the control of the I/O device or
devices so as to execute those commands. It also responds to requests from
devices and provides interrupt service to the CPU to process those requests.

5. The buses connecting the various components together. The buses may be an
integral part of the architecture of the system or may simply be a point-to-point
connection between other components, depending on the architectural design.

The pathways include a required connection between the CPU and the I/O module to
enable the CPU to issue programmed I/O commands to the I/O module and also for the
I/O module to provide service request, special condition, and completion interrupt signals
to the CPU. The connection from the I/O module to the device or devices is required both
for I/O module control of the devices and as a passageway for the data. There must be a
connection between the I/O module and memory for DMA to take place.

Although the illustration implies that these pathways represent actual direct connec-
tions between the various component blocks, this is not actually true. The connections
could be direct or they could be electronic switches that provide the connections at the
time they are required. For example, memory and the I/O modules could each be attached
to different buses that are connected together when DMA takes place, or the I/O module
could be attached by separate connections both to memory and to the CPU. These differ-
ences constitute different computer system architectures, representing different vendors,
different goals, and different design philosophies.

In nearly every system, one or more buses form the backbone for connection of the
various components, memory and I/O, to the CPU. In simplest form, a single system bus
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could connect the CPU to memory and to all the various modules that control I/O devices.
Of course this approach would subject the overall performance of the system to the limited
bandwidth of a single bus. More commonly, the system bus in a bus architecture connects
through one or more bus interface circuits to a number of different interconnected buses.

A more realistic general bus interface configuration is shown in Figure 11.6. The bus
organization of a PC, for example, often consists of the system bus, a video display bus, a
PCI-Express and/or PCI bus, a serial or parallel ATA bus for the disk drives, probably a
Universal Serial Bus, and sometimes an ISA bus or other buses. The system bus, which is the
primary interface with the CPU, is sometimes referred to as the front side bus (FSB). The
bus interfaces are known by a variety of different names, including expansion bus interfaces
or bus bridges or bus controllers.

Bus interfaces expand the flexibility of the system bus architecture by converting the
format of the bus signals from one bus to another so that different types of buses can
be used together. These other bus types can then be used to connect to specific devices,
such as disks or terminals. The ability to interconnect buses makes it possible for the
system designer to optimize each I/O function for maximum speed and flexibility, as well
as to maximize overall system performance. It also makes possible the design and use of

FIGURE 11.6

General Bus Interface Configuration for a Modern Personal Computer
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industry standard buses on equipment of different vendors. The use of standard system
buses generally simplifies the purchase, setup, and proper operation of peripherals from
multiple vendors by allowing the connection of I/O devices that have been standardized
across a wide range of equipment types and manufacturers. This is a major aspect of the
concept of open architectures.

In most computer systems, the CPU, memory, and other major components are
mounted to wiring on a printed circuit board known as a motherboard. Figure 11.7 is a
photograph of a recent motherboard. The wiring on the motherboard interconnects all of
the peripheral cards that are plugged in to connectors, together with circuitry that steers
I/O to the CPU and memory. In general, this arrangement is known as a backplane. A
predominant example of a backplane bus is the PCI-Express bus, used to plug in various
peripherals in a personal computer. Each peripheral has its own address. The wiring in
this configuration carries data, addresses, control signals, and power for the peripheral
cards.

FIGURE 11.7

A Personal Computer Motherboard
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For example, numerous manufacturers produce various I/O modules mounted on
printed circuit cards that plug into the PCI-Express bus that is provided on the backplane of
nearly every current ‘‘PC-compatible’’ model. (PCI bus interface capability is also available
on most midsize and mainframe computers, including recent IBM mainframes.) Most PC
models also support plug-in cards for older PCI slots. Bus interface switching circuitry in
the PC connects memory and the PCI-Express bus together during DMA transfers, which
provides the required CPU-memory-I/O link. PCI and PCI-Express cards provide graphic
display support, audio capability, serial and parallel ports, modem connections, Ethernet
interfaces, and many other functions, demonstrating the advantages of standardization.
Although Intel originally designed the PCI backplane, it and its PCI-Express successor have
become standards through common use and agreement.

The ability to interconnect buses also provides flexibility for the future; as bus designs
evolve, new bus interfaces can be implemented to add the capabilities of new and improved
buses to the system. As Figure 11.6 shows, there can even be multiple levels of bus control.
Notice from Figure 11.6 that an interconnection of two buses also suggests that memory
and I/O devices will often be connected to different buses. The bus interface includes the
necessary connections to allow DMA, interrupt, and control capability.

Except for issues of performance, it is not important to understand the details of a
particular bus. What is important to note is how similar buses are, in essence, differing
mostly in details and implementation. Each bus provides the necessary data and address
lines, lines for interrupts, and lines to control timing, reads and writes, and so on. The major
differences, other than specifications, actual pin assignments, and physical differences, lie
in the way the control signals are implemented. For example, the ISA bus is defined by
its data width as a ‘‘16-bit’’ bus. The PCI bus can be used to support either a 32-bit or 64-bit
data width. The ISA bus has separate data and address lines. As noted earlier, addresses
and data are multiplexed on the PCI bus. The PCI bus is designed to transfer several pieces
of data in a rapid sequence called a burst once a starting address is established.

For most current personal computer motherboard designs, the PCI-Express has
assumed predominance as the master bus of choice. PCI-Express is gradually replacing an
older bus, called simply PCI. PCI-Express is a serial I/O bus that was designed to replace
the parallel PCI bus that long dominated backplane design. PCI-Express is designed to
be data and signal compatible with components designed for the PCI bus. The original
PCI bus is a ‘‘32- or 64-bit’’ (meaning 32 or 64 bits of data at a time) backplane bus that
provides plug-in capability for various I/O modules that control external serial and parallel
ports, sound cards, network cards, and the like. The PCI bus provides 32 or, optionally, 64
lines that are used for both addresses and data, labeled AD00 through AD31 or AD63, plus
various control and power lines. The power lines provide required power for the plug-in
peripheral interface cards. The control lines control timing, handle interrupts, arbitrate
between different devices seeking to use the bus, and perform other similar functions. All
lines, other than the power lines, carry digital signals. A connection diagram of the PCI
bus, which is still provided as an I/O interface in most PCs and many other computers, is
shown in Figure 11.8.

Unlike the parallel PCI bus, however, the PCI-Express is made up of a bundle of
thirty-two serial, bidirectional point-to-point buses. Each bus consists of two simplex lines
that carry data, addresses, and control signals simultaneously in both directions at a current
maximum rate of 1 GB per second in each direction. Each two-way bus is called a lane.
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FIGURE 11.8
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One end of each lane is connected to an I/O device controller, or perhaps to a controller
for another bus. The other end of each lane is connected to a shared switch that is capable
of connecting any two pairs of lanes together. The controller also provides connections
between the serial lanes, the system bus, and the memory bus, converting the format as
necessary between serial and parallel. The controller can use multiple lanes to achieve
higher data rates where necessary. The switch is similar to those used in networking. Many
new computer systems are adopting this technology to achieve the high throughput being
demanded by today’s customers, particularly in the area of video display.

11.2 INPUT/OUTPUT SYSTEM ARCHITECTURES
Modern computer systems are highly dependent on fast, reliable I/O. Even small systems
must be capable of managing the large amounts of I/O data that are required for storing
and retrieving large files on disk, communicating with a high speed network, and managing
a high resolution display. In business use, a system must manage large databases, satisfy
client requests for Web services, manage customer accounts, and print large numbers of
invoices, to name just a few of the many I/O intensive tasks.

There are two basic I/O system architectures in common use: bus architecture and
channel architecture. The bus architecture is used in almost all personal computers, work-
stations, and in some mainframe computers. The channel architecture is found primarily
in IBM mainframe computers. The newest IBM mainframes use a combination of both.
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I/O Bus Architecture

Recall that in Chapter 9 we introduced the concept of an I/O device controller, a
module that serves as an interface between an I/O device and a system bus to facilitate
communication between the device, memory, and the CPU. Devices that are physically
mounted within the system are generally connected to I/O device controllers that are
either plugged into a system bus connector on a motherboard or permanently wired to
the bus. As Figure 11.4 shows, buses and network connections also provide a means for
devices external to the system buses to communicate with the system. Such I/O devices are
commonly called peripherals or peripheral devices because they are connected peripherally
to the system.

Keyboards, mice, printers, and many other devices are often designed to operate from
a standard port. (A reminder from Chapter 7: a port is simply a connector at the end of a
bus into which a device can be plugged.) General control for the port is provided by a
port controller. The port controller connects to a standard bus, such as a PCI or ISA bus.
Specific device control is built into a controller within some devices and into the computer
software programs that control I/O from these devices. These programs are called device
drivers. Device drivers are either built into the computer’s operating system, or they
are installed into the operating system as supplements to the system. Other devices are
controlled by controllers and device drivers associated with the particular bus port. In this
case, the controllers also convert the bus signals between the form that is used on the main
bus and the form required at the port where the alternative bus is to be connected. Until
recently, most printers, modems, and mice were connected to computer systems through
general I/O bus ports called parallel and serial ports. Today, these devices, plus disk drives,
DVD-ROMs, graphics scanners, video cameras, and other devices are more commonly
connected to the computer system through one of several high-speed general interface bus
ports or through a network connection. Interface buses in common use for this purpose
include USB, SCSI, SATA, and IEEE 1394 buses. USB stands for Universal Serial Bus; SCSI
stands for Small Computer System Interface. SATA stands for Serial Advanced Technology
Attachment; it replaces an older standard, IDE (Integrated Drive Electronics), and is used
primarily as an interface for magnetic and optical disk storage devices. A variation, eSATA,
extends the SATA bus to support external storage drives. The IEEE 1394 bus is officially
named after the specification that describes it, but is more often called FireWire or, less
commonly, ilink.

The Universal Serial Bus was created to offer a simple, effective way to plug external
devices into a computer as they are required. USB-2 is capable of a data transfer rate up
to 480 megabits per second, which makes it suitable for use with a wide range of devices.
A proposed new standard, USB-3, would increase the data transfer rate to 4.8 gigabits
per second using a mix of fiber optic cable and standard copper wire. Globally, USB can
be viewed as a multipoint bus. Multiple devices can be connected to USB. USB uses a
hierarchical connection system, in which hubs are used to provide multiple connection
points for I/O devices. Although the host controller is aware of the location of each of
the hubs, the hubs simply pass data through, so that it appears that each I/O device is
directly connected to the bus at the host controller. The USB topology is illustrated in
Figure 11.9. Devices can be added and removed at any time without powering down the
system. Removal of a hub removes all of the devices attached to the hub. Data is transferred
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FIGURE 11.9
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over the USB in packets. Each packet contains a device identifier and a small set of data,
representing all or a portion of the data to be transferred by that device. Thus, a single
device cannot tie up the system. The USB protocol allows packets to be scheduled for
delivery at regular time intervals. This technique is known as isochronous data transfer.
This assures that a device transmitting data such as audio or video at a regular rate will
receive sufficient bus time to prevent data dropouts, as long as the aggregate requirement
of all the devices connected does not exceed the maximum data transfer rate of the bus.
The USB supports up to 127 devices. A system can support multiple USB host controllers
to increase this number even further.

The USB cable holds four wires. Two lines make up a single data pair to carry the data,
as well as address and control information. The other two lines can be used to provide
power to devices connected to the bus. USB connectors at each end of a cable are polarized
to force a hierarchical structure emanating from the host controller.

Like USB, FireWire is a serial, multipoint bus specification. FireWire is designed for
extremely fast data transfer. The latest version of FireWire will support a projected data
transfer rate of up to 3.2 gigabits per second, which is suitable for the transfer of full
motion video with sound, for handling video conferencing data, and for other applications
with high-speed data transfer requirements. FireWire has many of the characteristics of a
network: FireWire devices can be daisy-chained or connected together with hubs; network
components such as repeaters, splitters, and bridges can be used to segment and extend the
FireWire bus to support longer distances and additional devices. FireWire connections can
be made using either copper or fiber optic cable. Each segment of the bus can handle up to
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sixty-three devices. Like USB, I/O devices may be connected or removed during operation,
and, like USB, a packet protocol that can guarantee performance for isochronous data
transfer is used for data transfer and control. One major difference between USB and
FireWire is that each device controller in a FireWire connection is independent, so that
no host bus controller is required. Thus, devices can communicate with each other via
FireWire without the presence of a computer. However, FireWire control capability must
be built into every I/O module connected to a FireWire bus. An example of a FireWire
application is shown in Figure 11.10. FireWire uses a cable made up of two data pairs and
an optional pair of power lines.

The SCSI bus is an older parallel bus designed for ‘‘universal’’ I/O interfacing. It is
rarely found on current personal computer systems, but is still in use on larger systems.
SCSI devices include disk drives, optical drives, tape drives, scanners, and other I/O devices.
The SCSI bus is designed to be ‘‘daisy-chained’’. The SCSI bus provides addressing for each
device. Each device on the bus is plugged into the previous device, as shown in Figure 11.11.
The final device on the daisy chain has a terminator, which prevents signals from echoing

FIGURE 11.10
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back down the bus in the wrong direction. There is also a terminator in the SCSI bus
controller. The I/O devices each contain their own specific built-in device controller.

A large number of modern I/O devices, particularly network-attached hard disks and
printers, are designed to connect to a network, rather than to an individual computer.
This allows users to share use of the device among multiple computers. Network-attached,
large-capacity storage devices serve to store large files, such as video downloads, and to
provide system backup.

Channel Architecture

An alternative I/O architecture is used by IBM in all their mainframe computers since
the late 1970s. The channel architecture in the z10, IBM’s most recent mainframe system
as of this writing, can handle I/O data at rates of hundreds of gigabits per second. The
basic architecture, known as channel architecture, is shown in Figure 11.12. The channel
architecture is based on separate I/O processors known as a channel subsystem. The I/O
processor acts as a separate computer just for I/O operations, thus freeing the computer
CPU for other tasks. The channel subsystem executes its own set of instructions, known
as channel control words, independent of the CPU. Channel control words are stored as
‘‘programs’’ in memory, just like other computer instructions.

The channel subsystem is made up of subchannels, each of which is connected through
a control unit module to an individual device by one or more channel paths. The control
unit module serves the same role as a device controller. The design allows multiple channel
paths between the channel subsystem and a control unit, so that if one is busy another
can be selected. Up to eight different channel paths can exist for a particular I/O device.
Channel paths can also be used to interconnect computers into a cluster. Information about
the characteristics of each subchannel and its corresponding device are stored in memory.
Each subchannel is operated by executing a channel program, also stored in memory, made
up of channel command words. The primary purpose of channel programs is to transfer
data using DMA between an I/O device and memory.

FIGURE 11.12
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Several different channel programs are
available to perform different I/O functions,
such as read a block, write a block, and so on,
for each type of device on the system. The chan-
nel subsystem manages all I/O, independent of
the CPU, and also supplies the appropriate
interrupts and status information to the CPU
upon completion of an I/O operation or if a
problem occurs. The channel subsystem can
perform several I/O functions simultaneously.

A CPU program initiates an I/O operation
by issuing a START SUBCHANNEL command to
the channel subsystem. The START SUBCHANNEL

command specifies the subchannel number,
which identifies the device, and the particular
channel program to be executed. The channel
subsystem attempts to identify an available
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FIGURE 11.13
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channel path and initiates data transfer. If there is no available channel path, the channel
subsystem simply holds the request until a path becomes available. In this way, the channel
subsystem frees the CPU from having to keep track of the status of the I/O operation.
The IBM architecture also provides I/O instructions to halt the subchannel operation, to
resume the subchannel operation, to test subchannels, and to configure the subchannels.
There are six different types of channel control word instructions:

■ Read
■ Write
■ Read backward (used for tape)
■ Control (used for controlling a device, such as rewinding a tape or positioning a

disk head)
■ Sense (used to determine the status of a device)
■ Transfer in channel (equivalent to a JUMP instruction)

Although these instructions are used specifically for I/O, in other respects they are
similar to other computer instructions. Each instruction has its own op code and address
field. Each instruction results in the execution of a fetch-execute cycle by the channel
subsystem. A simple channel program appears in Figure 11.13. This program performs a
disk read operation. The channel control word instructions are designed in such a way
that a single I/O operation can transfer a number of blocks. The blocks do not have to be
contiguous on the disk or tape, nor do they have to be contiguous in memory. This feature
provides a lot of flexibility.

Physically, the channel subsystem is connected to the CPU by a bus, and the various
control units and I/O devices are also connected by buses. Conceptually, the channel
architecture is very different, however, and the buses connecting the various parts of the
I/O system are not identified as such.

Blurring the Line

It is worth observing that there has been a recent significant blurring of the line that
distinguishes between I/O buses, I/O channels, and networks. PCI-Express, USB and
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FireWire are all examples of recent I/O buses that have many of the characteristics
of networks. PCI-Express uses a switch similar to that found in Ethernet networks to
connect lanes together. PCI-Express, USB and FireWire all break messages into packets
for transmission across the bus, and protocols that provide the capability to access the
bus, to identify and reconstruct messages, and prevent conflict. Although USB is built on
a hierarchical, hub-based structure that clearly identifies a single host, FireWire devices
share the bus, in a manner similar to a network. There may be multiple hosts. The
FireWire protocol establishes means for multiple hosts to access the bus without conflict.
The FireWire protocol standard defines physical, data link and transaction layers, as well
as a bus configuration manager that bears resemblance to a shared session layer. These
are network features that will be presented in the next chapter. FireWire also supports
network-type components, such as hubs, repeaters, and bridges. This blurring reflects an
important tendency to adapt and combine the use of various architectural features and
components in computer system and data communication technology in an ongoing effort
to provide ever more system power and capability.

An interesting example of convergence between I/O and networking is a protocol,
Ficon over IP, that enables IBM mainframe computers to extend access to I/O devices over
a network. Ficon is an IBM fiber optic high-speed channel component used to connect
IBM peripheral devices to an I/O channel processor. The protocol allows a user to connect
a Ficon-based I/O device anywhere there is a network connection and control it from an
IBM mainframe I/O processor at the user’s location.

11.3 COMPUTER INTERCONNECTION:
A BRIEF OVERVIEW

In Chapter 8, we first introduced the concept of multiprocessing. Multiprocessing systems
are also known as tightly coupled systems. In multiprocessing we increase processing speed
by introducing multiple CPUs, or cores, to share the processing load. Each core shares
access to memory and to I/O resources.

As an alternative approach, it is possible to build systems in which the computers are
tied together loosely. By this we mean that each computer is complete in itself, each with its
own CPU, memory, and I/O facilities. Data communications provide the link between the
different computers. Such systems of computers are called loosely coupled systems. Some
authors refer to these systems as multicomputer systems. Loosely coupled systems enable
program and data sharing and exchange between complete computers.

Some loosely coupled systems share a disk resource or a small amount of memory that
can be used to communicate between the different computers. The determining factor that
distinguishes a loosely coupled system is the autonomy of each computer within the system
complex or network.

There are two basic methods of connecting loosely coupled computers. Clustered
computers are connected directly together with a dedicated communication channel
or link that passes messages between machines. The cluster is designed to operate as
a single autonomous system sharing a workload. Networked computers operate more
independently. The data communication channel between machines is used to exchange
and share data and external resources, rather than to share the actual processing. Our focus
in this chapter is on clusters. Networks are discussed in the next part of this book.
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11.4 CLUSTERS

Overview

A cluster is a group of loosely coupled computers configured to work together as a unit.
Unlike the tightly coupled multiprocessing system, each computer in a cluster is a complete
unit, with its own CPU, memory, and I/O facility. In fact, the individual computers in a
cluster may, themselves, be multiprocessing systems. Each computer in the cluster is called
a node. Unlike a network, the computers in a cluster are intended to appear to users as
though they are a single machine. The clustering is transparent to the users.

IT experts identify four primary, interrelated reasons for creating clusters of computers:

1. Clustering is used to increase the available computing power by combining the
power of the individual systems. Since each computer can process data
independently, the increase is approximately proportional to the number of
nodes in the cluster. Brewer [BREW97] and others have noted that clusters are
inherently scalable, both incrementally and absolutely. An installation can add
nodes incrementally as additional computing power is needed. Furthermore, it is
possible to create a cluster with a large number of nodes. Such a cluster will have
more computing power, at lower cost, than would be possible using even the
largest single machine. Clustering is a fundamental technology in the design of
high performance computing systems. The processing of problems that are
amenable to parallel processing can be broken into subtasks and distributed
among different nodes and solved in parallel.

2. Clustering is used to create fault tolerant systems. Since each computer in the
cluster is capable of standalone operation, a failure in one node will not bring
down the entire system. Instead, the software controlling the cluster can simply
switch processing to other nodes in the cluster, an operation called failover. A
single point of failure is defined as a single component in a system that, upon
failure, prevents further operation of the system. It is possible to design a cluster
in which there is no single point of failure. This can be an extremely important
advantage in systems that perform critical applications.

3. Clustering is used to create high-availability systems. The computers in a cluster
can be geographically disbursed over a wide area. A user would normally access
the closest computer system in the cluster, creating a natural balancing of loads
between the different nodes in the cluster. Software can attempt to balance the
processing workload evenly between different nodes even further. The failure of
a system in one area, due to an area power failure, perhaps, simply shifts the load
to other computers in the cluster. Backup is also simplified.

4. Clustering is used for load-balancing systems with large workloads. For example,
the email accounts for a large organization can be divided up alphabetically and
assigned to different machines for storage and processing.

Classification and Configuration

There are two primary models used for clustering, the shared-nothing model, and
the shared-disk model. Both models are shown in Figure 11.14. As you can see from
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FIGURE 11.14
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Figure 11.14(a), the shared-nothing model bears resemblance to a point-to-point network
connection between two computers. Each computer has its own disks. The critical difference
is the presence of a high-speed messaging link between the nodes, plus software that controls
the behavior of each node and the interaction between nodes. At least one of the nodes
will provide access to the outside world and manage the cluster. The link is used to pass
messages and data between nodes. It can also be used to repartition the disks as conditions
change. The workload is divided by partitioning the data between the nodes so that requests
made of each node will be approximately equal. This method has the advantage that little
communication is required between nodes because each node is essentially independent.
The primary difficulty with this configuration is that it is not always possible to plan for
and predict accurately the partitioning. As a result, individual nodes may be over-utilized
or under-utilized, and the efficiency of the cluster as a whole suffers.

The alternative, shared-disk model is shown in Figure 11.14(b). In this model, data
may be shared between cluster nodes because of the presence of disks that are accessible
to every node. This model offers the advantage of easy dynamic workload balancing and,
with careful design, high availability, and fault tolerance. Availability is enhanced on many
systems by the use of RAID technology for the shared disks. (See Chapter 10 if you need a
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reminder.) Although these benefits make shared-disk clusters attractive, there is a cost in
software complexity. The software that controls the cluster must be capable of maintaining
coordination and synchronization of the data that is being processed by different nodes, to
prevent corruption of the shared data and to assure accurate retrieval.

For example, suppose that one node attempts to retrieve data that has been modified
in memory, but not yet stored on the shared disk, by another node. This type of activity
must be controlled. (If this doesn’t seem too problematic to you, consider the following
example: you make two ATM transactions in quick succession and they are processed on
different nodes of a cluster. Without synchronization, your deposit could be wiped off the
record!)

Different nodes of a cluster may be located in the same physical cabinet or may be
located miles apart, provided there is a way to interconnect the high speed messaging link,
and, if applicable, the shared-disk links. In fact, creating a cluster with widely separated
nodes can also serve to protect the overall system and its data from catastrophe at a single
location, particularly if the shared disks are also available at both locations. Clusters can
even be configured to operate over the Internet.

Despite the additional complexity and planning effort, clustering has grown in
importance in the last few years, because it provides a scalable and reliable way to attain
large amounts of computer power at relatively low cost.

Beowulf Clusters

Beowulf clusters are simple, highly configurable clusters designed to provide high per-
formance at low cost. Beowulf clusters consist of multiple computers connected together
by a dedicated, private Ethernet, which serves as the link between the computers in the
cluster. The cluster can be configured either as a shared-nothing or shared-disk model.
Each node contains a CPU, memory, an Ethernet connection, and, sometimes, hard disks,
floppy disks, and other peripherals. Beowulf clusters are generally configured with one of
two types of computer components.

■ COTS, or commodity-off-the-shelf components are simply inexpensive
computers connected together to form a Beowulf cluster. In many cases the
COTS components are older PCs scavenged from the scrap pile, and connected
together to do some useful work.

■ Blade components are computers mounted on a board that can be plugged into
connectors on a rack, in much the same way peripheral cards are plugged into a
PC motherboard. The backplane of the rack provides power and the dedicated
Ethernet connection to each blade. The blades themselves are built from standard
off-the-shelf parts.

Figure 11.15 shows photographs of a blade and the rack that together comprise the
components of a Beowulf cluster in use at Los Alamos National Laboratory. Each blade
contains a Crusoe processor, 256 MB of memory, a 10 GB hard disk, and three 100-MB/sec
Ethernet interfaces.

The network connection between the nodes is not accessible from outside the cluster,
which eliminates security concerns other than the authentication required to maintain
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FIGURE 11.15

Blade and Rack of Beowulf Cluster

Source: W. Feng, M. Warren, and E. Weigle, ‘‘The Bladed
Beowulf: A Cost-Effective Alternative to Traditional Beowulfs,’’
Advanced Computing Laboratory, Los Alamos National
Laboratory, Los Alamos, NM, 2002. Used with permission.

cluster integrity. Instead, a Beowulf cluster gen-
erally has a single front-end gateway server that
manages the nodes in the cluster and provides
connectivity to the outside world. It also provides
a monitor and keyboard to be shared among all
of the nodes in the cluster. Each node is config-
ured with its own hardware, its own operating
system, and its own Beowulf clustering software.
In a COTS system, it is common to see a variety
of hardware from different vendors in use at dif-
ferent nodes, but blade systems tend to be more
uniform. Linux is generally the operating system
of choice because of its flexibility. In addition
to its own configurability, Linux provides the
tools needed to configure the cluster to include
all the features of a powerful distributed system.
Beowulf clusters are ideal for use as Web servers
because blades can be added or removed as
required to maintain performance levels under
varying loads. Most systems allow this oper-
ation to take place without powering down or
rebooting the cluster. With their distributed pro-
cessing capability, Beowulf clusters can also be
used effectively for shared or parallel processing,
where a single large task is divided into subtasks
that can be processed simultaneously by different
computers within the cluster.

11.5 HIGH-PERFORMANCE COMPUTING
Many interesting and important problems are not amenable to normal computer solution,
either because the problem is so complex computationally or because the volume of data
to be processed is prohibitively large. Example problems include the analysis of weather
patterns, the behavior of physics particles, models of the effects of various factors on global
warming, and prediction of the economic and social effects of a particular political policy.

The field of high-performance computing, sometimes called supercomputing, arose
in an attempt to meet the challenge of solving difficult problems that require massive
amounts of computing power. There have been a number of different approaches to
high-performance computing, but recently developed systems tend to fall loosely into one
of two architectural categories:

■ Systems that are built from clusters of powerful machines or larger Beowulf blade
clusters. These were discussed in the previous section.

■ Systems that use the spare processing capacity of computers connected to a
network. Each computer is given a small portion of the task to process in its spare
time. This technique is called grid computing.
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Grid Computing

Research by David Gelernter [MAR92] and others demonstrated that it was possible to
produce supercomputer performance for processing large problems by distributing the
problem and using the spare processing time of personal workstations connected to a
network. Much additional research on grid computing has been done since then. Issues
include effective division of the workload, scheduling work, preventing interference with
local processing, effective use of the results, and security and privacy for the client machines.
There have been a number of projects that are attempting to solve large-scale problems
using grid computing. One interesting project is the SETI@home project, which is a
systematic search for extraterrestrial intelligence organized by the Space Science Laboratory
of the University of California at Berkeley [KORP00]. A radio telescope at Arecibo, Puerto
Rico scans the sky for signals. An entire sky survey returns about 39 TB of data for
processing.

The processing algorithms allow the data to be broken into tiny chunks for analysis.
More than half a million active volunteers from all over the world receive chunks of data
over the Internet. Application software built into a screen saver analyzes the data when the
client’s system is idle and returns the results to the collection system at Berkeley, where the
results are stored in a giant database for analysis.

On a smaller scale, grid computing is moving into a number of large financial
enterprises to provide more processing capability for their employees by harnessing
the combined unused processing power of their servers and their end-user workplace
computers to augment their own machines for the fast solutions of large financial
applications (Schmerken [SCHM03]).

SUMMARY AND REVIEW
We started by showing how the components of a computer are interconnected to form a
complete computer system.

Two different methods are commonly employed as architectures to connect the CPU,
memory, and I/O. The I/O channel method is used by IBM on its mainframe computers.
The bus method is used on most computers smaller than a mainframe. In the text we
explain both methods. We expand on the discussion of buses in Chapter 7 to include buses
used for I/O, including PCI-Express, USB, FireWire, and SCSI. We show the layout for
an I/O channel and discuss how it is used in practice. We noted the growing convergence
between I/O bus technology and network technology.

The emphasis in modern computers is on increasing amounts of power and capability.
To that end, computer designers have resorted to a variety of techniques to increase the
amount of capability in a computer system. In addition to increasing the raw power of
individual components, current technology relies on the high-speed interconnection of
computers to achieve the capabilities required of modern systems.

A number of autonomous computer systems, each with its own memory and I/O, can
be loosely coupled into a cluster or a network. Clusters represent a form of loosely coupled
system in which computers are interconnected with high-speed messaging links. A cluster
consists of multiple computers acting as one. Shared-nothing clusters utilize separate disks
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and data partitioned and distributed among the systems in the cluster. Shared-disk systems
provide multiple system access to one or more shared disks that hold the data to be
processed by all.

High-performance computing utilizes large numbers of interconnected CPUs or
computers to provide large amounts of computing power. The two primary technologies
are clustering and grid computing.

FOR FURTHER READING
Mueller [MUEL08] and Messmer [MESS01] have both long provided an ‘‘indispensable’’
and thorough discussion of PC hardware, with all its bells and whistles. Unfortunately,
Messmer is now dated, but one can only hope that a new edition will appear at some
point. Mueller continues to publish a new edition every year. The best discussion of IBM
mainframe architecture appears in Prasad [PRAS94]. This discussion includes a detailed
explanation of I/O channels. The cases in Supplementary Chapter 2 present the features of
the x86, POWER, and IBM zSeries system architectures.

There are a number of different buses, both internal and external, used to connect
components together. Discussions of the USB can be found in McDowell and Sager [McD99]
and Anderson [AND01]. FireWire is presented in Anderson [AND98]. PCI-Express is
discussed in Anderson [AND03]. Much additional information may be found on the Web.
Simple explanations of FireWire can be found at www.skipstone.com/compcon.html or
at www.1394ta.org. The USB specification is available at www.usb.org. PCI-Express bus
developments are presented at www.pcisig.com.

Good discussions of clustering can be found in Pfister [PFIS98], Brewer [BREW97],
and Nick, et al. [NICK97]. The ‘‘Green Destiny’’ Beowulf cluster is described in [FENG02].
The SETI@Home project is the best known example of grid computing. This project is
discussed in Korpela [KORP01]. Three readable introductions to grid computing are IBM
Redbooks by Jacobs, et. al. [JAC05], Joseph [JOS04] and Berstis [BERS02].
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READING REVIEW QUESTIONS
11.1 Explain what is meant by synergy.

11.2 What are the five basic hardware components that make up a computer?

11.3 What is the purpose of a bus interface or bus bridge?

11.4 Explain what you expect to find on a motherboard.

11.5 What is the predominant master bus found on modern personal computers?
What advantages does this bus offer over other buses?

11.6 What are major similarities and differences between the PCI-Express bus and
the PCI bus?

11.7 What are the advantages of USB as a means to connect peripheral devices to the
computer?

11.8 What is a topology? Describe the basic USB topology.

11.9 What are the advantages offered by I/O channel architecture, such as that used
on mainframe computer systems, over bus architecture?

11.10 What is a ‘‘loosely coupled’’ computer system? How does it differ from a ‘‘tightly
coupled’’ system?

11.11 Define cluster.

11.12 Briefly explain each of the four reasons for creating a cluster. Give an example of
each reason if you can.

11.13 What is a shared-nothing cluster?

11.14 Explain grid computing.

EXERCISES
11.1 Find a current computer ad similar to the one in Figure 1.1 of this text. Identify

each of the featured items in the ad, show its position in the system block diagram
of Figure 11.1, explain how it operates, and define its purpose in the system.

11.2 Figure 11.6 shows that a typical computer system is interconnected with a
number of different buses, both internal and external. The diagram includes
multiple cache buses, an external CPU bus, PCI-Express buses, a parallel PCI
bus, SATA buses, USB ports, and more. What are the advantages of providing
multiple buses rather than connecting everything together with a single bus?

11.3 Carefully explain the purpose of a bus interface.

11.4 What are the trade-offs in using a serial bus versus a parallel bus to move data
from one place to another?

11.5 As described in the text, the PCI-Express bus consists of thirty-two ‘‘lanes.’’ As
of January, 2009, each lane is capable of a maximum data rate of 500 MB per
second. Lanes are allocated to a device 1, 2, 4, 8, 16, or 32 lanes at a time.
Assume that a PCI-Express bus is to be connected to a high definition video card
that is supporting a 1920 × 1080 true-color (3 bytes per pixel) progressive scan
monitor with a refresh rate of 60 frames per second. How many lanes will this
video card require to support the monitor at full capability?
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11.6 Why is a multilane PCI-Express bus not subject to the same problem of skew as
an equivalent parallel bus?

11.7 How many PCI-Express lanes are required to support a 10 Gb per second
Ethernet card?

11.8 PCI-Express, SATA, USB, FireWire, and Serial Attached SCSI (SAS) are all
serial buses used to connect external devices to a computer system. Locate the
specifications or descriptions of each type. Compare the features of each type.
Compare the speeds of each type.

11.9 Discuss the major differences, advantages, and disadvantages between bus I/O
and channel I/O.

11.10 Explain how the three primary conditions required for DMA described in
Chapter 9 of the text are met by the I/O channel architecture.

11.11 Describe how you might use a cluster to provide fault-tolerant computing.
Describe the trade-offs between your solution and a single multiprocessor-based
computer system solution.

11.12 Describe how you might use a cluster architecture to provide rapid scalability
for a Web-based company experiencing rapid growth.

11.13 Obtain information and compare the features, capabilities, performance, and
operational methods between Windows Server, Linux, and IBM zSeries clustering
techniques.

11.14 Clearly and carefully discuss each of the advantages of clustering.

11.15 How does a Beowulf cluster differ from other types of clusters?

11.16 Clusters and networks are both categorized as loosely-coupled systems, but they
serve different purposes. Explain the differences in purpose between clusters and
networks.

11.17 Find a current example of a large-scale grid computing project and describe it
in as much detail as you can. What is the purpose of the project? What is the
problem being addressed? How is grid computing being used to implement a
solution to the problem?

11.18 Cloud computing is a recent technology being marketed and used as a means to
provide off-site computing power to an organization. Locate information about
cloud computing and compare cloud computing with grid computing. In what
ways are they similar? How do they differ?



PART FOUR

It is almost impossible to find a piece of computer-based equipment operating by
itself, without connection to other computers. This is true of laptop and desktop
computers, PDAs, cell phones, automobile computers, even satellite TV receivers

and other computer-embedded devices. Computer networks are an essential part of the
infrastructure of modern systems. Indeed, it would be fair to say that the Internet is an
essential part of modern society as a whole. The three chapters that make up Part 4 of
this textbook consider different aspects of the technology of data communication and
networking.

Chapter 12 presents a careful, detailed overview of the essential features of networking.
We consider the basic requirements for communicating data through a network. Topics
include the definition and nature of communication channels; the two layered models:
TCP/IP and OSI, which together with Ethernet are the basis for nearly all networking;
the various types of addresses—port numbers, domain names, IP addresses, and MAC
addresses—that are used to make global communication possible; and the various types
of networks, including local area, metropolitan area, and wide area networks, and the
Internet.



NETWORKS AND DATA
COMMUNICATIONS

Chapter 13 expands on the concepts presented in Chapter 12. This chapter reviews the
fundamental concepts of TCP/IP and Ethernet from Chapter 12. For each layer, there are
issues of importance and interest—how are domain names translated into IP addresses?
how are IP addresses constructed? what is DHCP all about?—that are explained in detail.
We also look very briefly at three special topics: quality of service, security, and some
alternatives to TCP/IP and Ethernet that are in use.

Chapter 14 introduces the basic technology that is used for data communication:
analog and digital signaling techniques, the methods used for sharing networks; and the
characteristics and use of different media: wire, fiber optic cable, and radio. This chapter
concludes with a detailed introduction to the foundations of wireless Ethernet.

The material in these three chapters could fill a book. In fact, it does even more than
that—it fills many books! It’s impossible to tell you everything you should know about
networks, but at least we’ve tried to give you a good head start!
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NETWORKS AND DATA
COMMUNICATIONS
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12.0 INTRODUCTION
In Chapter 10, we observed that a network connected to a computer could be viewed
from the perspective of the computer simply as another I/O device. Indeed, for many
purposes, this is an attractive and appropriate choice. As users, we don’t really care if
a file that we are using is stored on a local disk drive or on a network server located
halfway ’round the world, provided the file is readily accessible. As long as we can
retrieve our printouts conveniently, it is not important to us that our printer is actually
an office printer being shared by others. In Chapter 2, Figure 2.6, shown again in
Figure 12.1, we viewed the network as a cloud. To each computer in the figure, the
cloud is simply another source of I/O.

As an alternative point of view, the network represents an essential component
of modern technology infrastructure, offering the ability to interconnect computers,
storage devices, computer peripherals, cellular telephones, personal digital assistants,
video and audio devices, and, most importantly, other networks, to share resources
and services, to share and exchange data and knowledge, and even to communicate
and socialize. From this perspective, a computer is simply another device connected to
the network. In this view, for example, a computer connected to a network might be
masquerading as a telephone or a display device for videos or a source of music, using
the network as the medium of communication.

Both views are important and useful at different times. Often, viewing a network
connection as an I/O device is a very useful approach to system design and problem
solving, particularly if your goal as a user is simply to obtain data from a database
stored on a server somewhere on a particular network. On the other hand, if your job is
to design and implement, or maintain and administer a network, you must thoroughly
understand the design issues from the perspective of the technology and infrastructure
of the network itself.

FIGURE 12.1

Basic Client-Server Architecture
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In this chapter, we are interested in the latter view. We will ‘‘open the cloud’’, so to
speak, and study the basic concepts and infrastructure of network technology. As has been
the case throughout this text, our primary focus in this chapter is on broad fundamental
concepts, rather than the specifications and details of a particular type of network or
methodology. In a field as fast-changing as network technology, specifications can and will
change. Basic concepts are more stable and evolutionary. Even so, most of our specific
examples in this chapter and the next are based on TCP/IP and Ethernet, the prevalent
implementations of network technology at present and for the foreseeable future.

Section 12.1 discusses the importance of networking as a major impact on modern
business processes and user access to knowledge. Networking makes collaboration and
cooperation between organizations possible and practical. It provides new marketing,
research, and sales channels. There are many who would argue that the Internet is the most
important social and business tool ever created. As such, networking is an essential element
in the study of computer system infrastructure.

Section 12.2 introduces three simple examples of network models, offering a first look
at some of the criteria and requirements that form the basis for networking.

Section 12.3 serves as an overview to the fundamental concepts of data communication
and networking. It introduces the general requirements and considerations that a network
must meet to be effective and useful, as well as common components and common
terminology that are basic to network technology.

Section 12.4 expands the discussions of Sections 12.2 and 12.3 to explore com-
munication models with the capability to manage multiple nodes, support and provide
transparent conversion for a variety of channel technologies, share channel resources, and
provide international network addressing capability. This discussion focuses primarily on
the TCP/IP model that defines nearly every modern network, and the Internet as well.
There is also a somewhat briefer introduction to the OSI reference model and a comparison
between the two models.

Section 12.5 provides an overview of different types of networks, including local area
networks, metropolitan area networks, wide area networks, and backbone networks. It also
introduces the tools, devices, and methods used to interconnect various types of networks,
ultimately leading to an introduction of the technology of the Internet.

Last, but not least, Section 12.6 provides a brief introduction to the standards
organizations, and to the specific protocols and other standards that serve as the basis for
modern global interconnectivity and pervasive computing.

12.1 THE IMPACT OF NETWORKING
ON BUSINESS PROCESSES AND USER
ACCESS TO KNOWLEDGE AND SERVICES

Although it is easy to think of a specific need for a communication between your system and
some particular source of data, the concept of networking is much bigger than that. Even
if we wanted to, it would be impossible to store all the information that we use daily on a
single machine. There is simply too much information ‘‘out there’’, and our requirements
and needs for information change on a minute-to-minute basis. We would not have the
expertise to understand and store all of it knowledgeably, accurately, and intelligently.
Instead, data is stored and supplied on a distributed basis. Networks provide access to this
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data wherever and whenever it is needed. Note that we use the word ‘‘data’’ in the broadest
possible sense of the word, to include programs, as well as traditional data, e-mail, music,
streaming video, instant messaging, network-based telephony—indeed, anything that can
be communicated with bits and bytes.

This capability to store and access data across a vast network facility has revolutionized
our access to knowledge and has had major impact on both individual quality of life and
on business processes and capabilities. At the personal level, we check our bank accounts
and pay our bills online. We socialize on facebook.com or myspace.com and network our
careers at linkedIn.com.

At the organizational level, we access files and databases to accomplish our daily work.
More generally, we rely on new types of organizations that use a mix of traditional business
practices and network access to create products and services that were difficult to locate and
obtain just a few years ago. Companies such as Amazon and eBay have built their business
models around the ability of users to access a vast array of goods on their online stores
through general network capability. Companies such as Ford and Toyota use networking to
communicate and collaborate (or synchronize their business processes) with their suppliers,
dealers, and customers, and use the results to improve their production and their products.
Music and video are downloaded from media services, and stored and played on miniature
portable devices that can be carried anywhere. Goods that were available only in limited
areas are now readily available everywhere internationally. Marketing and advertising can
be localized to meet an individual’s needs and location. Information is located and obtained
from information resources such as Wikipedia and Google.

The same is true of interpersonal communication: e-mail, instant messaging (IM),
social networking, voice-over-IP Internet telephony, Internet multiplayer games, collabo-
rative work tools, real-time video conferencing, and more convert the computer from a
high power calculator to a ubiquitous communication device; all of these capabilities are
dependent on computing devices with ready access to networking.

Thus, we can’t consider modern information system infrastructure without including
data communication technology as a fundamental component of the equation.

Despite the complex interactions implied by modern computing, most of the com-
plexity results from the large number of simple messages that are sent between the various
computers involved in the operations, rather than any inherent complexity in the basic pro-
cess of communication itself. Indeed, it is possible to reduce the basic ideas of networking
to a few simple basic ideas. (In a sense, the issue is analogous to the way in which complex
programs are constructed out of the simple instructions that make up basic computer
program operations.)

No matter how complex the overall communication, the communication ultimately
reduces to a series of individual ‘‘messages’’, each of which is a communication between a
source computing device and one or more receiving computing devices.

12.2 A SIMPLE VIEW OF DATA
COMMUNICATIONS

From the simplest perspective, it is natural to compare data communication by its similarity
to the I/O methods that we have already considered. In each case, the computer sends data to
or receives data in the form of ‘‘messages’’ from another device. For example, the ‘‘messages’’



374 PART FOUR NETWORKS AND DATA COMMUNICATIONS

in the Little Man Computer were three-digit numbers that were ‘‘communicated’’ with the
user using the input and output baskets as a communication channel. The communication
in this case consisted of two factors: the messages (the three-digit numbers) that were sent
to or received from the application program that was being executed and the medium of
exchange (the I/O baskets.) One important assumption that we made is that both the user
and the program understood the ‘‘protocol’’, specifically the meanings of the three-digit
numbers that represented the ‘‘messages’’.

Another hint at the origins of data communication can be deduced from POTS, the
acronym for Plain Old Telephone Service. Again, the goal is communication of ‘‘messages’’
between two end users. The messages in this case are conversations between the users. Of
course, the medium in this case is more complex. Assuming that you have ‘‘land-line’’
service, copper wires (or, perhaps, fiber-optic cables) connect your phone to a central
office. Switching mechanisms at the central office connect your wire to the wire of the
party with whom you plan to communicate. Although there is additional complexity in
the communication channel due to the switching required to serve the large number of
potential users that may wish to communicate at a given time, the principal conceptual
components are the same: messages to be shared by users and a communication channel
to transport the messages between users. There is an implied ‘‘protocol’’ in this case also;
namely, the assumption that both users share a common language which they both can
speak. For this example, there are also more subtle protocols that determine how the
connection is made and standards that establish the identities of the users in the form of
‘‘addresses’’ on the telephone network—or to be more specific, telephone numbers.

Although these two examples seem superficial and simplistic, they do establish
three essential ingredients for data communication: first, the data being passed between
sender and receiver represents messages that are to be shared among the parties to the
communications, second, there must be a communication channel that can capably and
reliably transport the messages, and third, there must exist protocols that establish accurate
and appropriate meaning to the messages that are understood by both senders and receivers.
The second example also raises the issues of connectivity methods and addressing.

As a more realistic example of real-world data communication, consider the commu-
nication between a Web browser and a Web server. In this case, the message sent by the
browser is a request for a Web page to be sent by the server. Assuming that everything
works correctly, the response message by the server is a Web page to be displayed on the
browser. The standard protocol used for this communication is HTTP, hypertext transfer
protocol. Figure 12.2 shows the format of this communication.

The request from the Web browser consists of the key word GET (in ASCII or Unicode,
of course) followed by the location of the web server on the host computer, as derived
from the Universal Resource Locator (URL), in this case /webapps/Login/. The request also
contains the version of HTTP used by the browser HTTP/1.1, and the URL of the host,
blackboard.bentley.edu, where the server resides. The HTTP request also provides the date
and time of the request, the name of the browser, and, if the request comes from a link, the
name of the referring URL that provided the link. (The referrer field in this case is omitted
because the user typed the URL directly into the browser URL field.) An optional section
to the request can also offer additional information, such as responses to questions on a
Web form, for example. These are usually the data that appear on the URL request line
following a question mark. The last line of the request closes the communication.
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FIGURE 12.2

An HTTP Request and Response

GET /webapps/login/ HTTP/1.1
Host: blackboard.bentley.edu
Date: Wed, 23 Jul 2008 22:01:44 GMT
User–Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1;
 en–US; rv:1.8.1.16) Gecko/20080702 Firefox/2.0.0.16
Connection: close

HTTP/1.1.200.OK(CR)(LF)
Date:.Wed,.23.Jul.2008.22:01:46.GMT(CR)(LF)
Server:.Apache/1.3.37.(Unix).mod_ssl/2.8.28
 OpenSSL/0.9.8d.mod_jk/1.2.21(CR)(LF)
X–Blackboard–product:.Blackboard.Academic.Suite&#8482;
 7.2.383.23(CR)(LF)
Pragma:.no–cache(CR)(LF) 
Cache–Control:.no–cache(CR)(LF)
Set–Cookie:.session_id=@@C296D067A2A703542F0C959C25\
 314FFE(CR)(LF)
Set–Cookie:.JSESSIONID=0115BEF92808AF234DD8843E\
 509AD2BD.root;.Path=/webapps/login(CR)(LF)
Connection:.close(CR)(LF)
Transfer–Encoding:.chunked(CR)(LF) 
Content–Type:.text/html;charset=UTF–8(CR)(LF)
(CR)(LF) 
<HTML content>

HTTP message sent:

HTTP response received:

In its response message, the Web server identifies the version of HTTP that it is using
and a status code. The status code is accompanied by a brief explanation of the code, in
this case, ‘‘OK’’. The server message also includes a date and time, the name and version
of the server, and information about the content. (Note, for example, that this website
sets a cookie.) Under normal conditions, this header data is followed by actual Web page
content, most commonly specified in HTML, a standard markup language.

There are a number of useful observations to be made about this example, which is far
more representative of a real data communications situation than the previous examples.

■ This example clearly represents a client-server model, as we defined it in
Chapter 2. The Web browser client requests services from the Web server in the
form of Web pages. In fact, most data communications are client-server based.

■ The Web browser request requires an addressing method for the identification
and location of the Web server, since the request specifies the Web server only by
its URL.

■ The nature of the communication channel connecting the sender and receiver
nodes is unspecified for this example, but possibly far more complex than those
of the previous examples. Although details of the channel must be resolved for
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the communication to take place, you can see that the physical connection is
independent of the messaging. This suggests that a networking model must
support at least two independent means of communication: a message-sharing
‘‘connection’’ between corresponding applications at the sender and receiver
computers, and also a physical connection with signaling that represents the
messages being transported. In reality, addressing individual nodes out of the
many that are typically available in a large multinetworked system,
communication line sharing, and other issues require a number of additional
layers of communication management that will be presented in Section 12.4.

As we just indicated, these examples do not attempt to present a full picture of the
requirements for effective data communication. We chose to omit many important factors
in order to clarify the basic communication process. Some of the factors that we must
consider include the characteristics of the communication channels; the nature and formats
of the interfaces with the sender and receiver end points, usually referred to as hosts or
nodes; the nature and contents of the messages; the means of transporting messages where
the distances between sender and receiver are large and the routes complex; the association
of network addresses with their physical location; the means of sharing channel resources
efficiently; methods for dealing with heavy network traffic and congestion; providing
network security when required; maximizing network reliability and minimizing errors;
providing timely network response; and more.

12.3 BASIC DATA COMMUNICATION CONCEPTS
Figure 12.3 shows a model that constitutes the essential elements of data communica-
tion. Two nodes, or hosts, are connected by a communication channel. An interface
connects each node with the channel. The channel carries signals that represent messages
between the nodes. Protocols define the ground rules for the channel signals and for the
messages.

FIGURE 12.3

Model of a Communication Channel
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To get a better understanding of this model, let us consider each of the elements in
turn.

Messages

The message is the primary purpose of the communication. It can take many forms. It
may be data in the traditional sense of the word. It may also be a program or a file or a
snippet of personal conversation or a request or status information or a stream of audio
or video or some other agreed-upon purpose. For our discussion, we will assume that it
is represented digitally, as a series of bits, in the sense of the data formats presented in
Chapter 4. Since data communication is predominantly serial, we usually describe the data
as a byte stream. Regardless of form or content, the message is a communication between
cooperating applications at each node. The meaning of the message is established by the
protocols recognized by the cooperating applications. Thus, the HTTP keyword ‘‘GET’’
used by the web browser in the third example in Section 12.2, above, is recognized by
the cooperating Web server application as a request for a Web page as the appropriate
response. The use of standard protocols by the application is not required as long as the
cooperating applications agree on the meaning of the messages (some applications choose
to use their own, nonstandard protocols for various reasons). However, the use of standard
protocols such as HTTP makes the operation and administration of large networks much
easier. There are definitions for a large number of standard applications, with standard
protocols, designed for many of the most common communication tasks.

As you may have noticed, one of the major limitations of the use of messages as
a communication tool is that the message length may vary widely from application to
application. Without some form of control, a streaming video download, for example,
could tie up a communication channel indefinitely. This situation is obviously intolerable if
there are other messages that need to share use of the channel. (Note the similarity between
this situation and that of traditional telephone switching, by the way. Any time there is a
pause in the conversation, the capability of the communication lines used for the call is
wasted.) The demand for channel capacity is large, therefore, full utilization of the channel
is a desirable and reasonable goal.

Packets

To solve the related problems of channel availability and maximum utilization, there must
be a way to break long messages into smaller units. These units are called packets. Packets
can take turns using the channel, allowing sharing of the channel for different messages.
Packets are used for most data communications. A packet consists of data of some kind
encapsulated by information about the packet. A packet is equivalent to an envelope
containing pages of data. Like envelopes, packets come in different shapes and sizes. A
description of the packet, the designated receiver and source addresses, and information
about the data enclosed is provided in a preamble or header, followed by the data. The
amount of data depends on the type and length of the messages, the design of the packet,
and the requirements of the channel. Some packets require a fixed amount of data, others
allow a variable amount within some maximum limit. Some packet designs also include
a trailer or footer at the end of the packet. The packet design used for a communication
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installation reflects the protocol suite in use. We will look at some specific packet formats
in Chapter 13.

The use of packets offers a number of important advantages in data communication:

■ The use of packets simplifies operations and increases communication efficiency. It
reduces communication overhead by making it possible to transmit a large block
of data while requiring only a single block of overhead information to identify
the destination and meaning of the enclosed data.

■ It represents a reasonable unit for the routing of data. This factor is particularly
important in wide area networks, where a packet of data may be passed through
many different networks and communication channels before it reaches its
destination. (We discuss the routing of packets later in this section. Wide area
networking is presented in Section 12.5.)

■ Packets offer an alternative to dedicating a channel for the entire length of a
message. This increases utilization and availability of a channel by allowing
packets from several sources to access and share a single channel.

■ The use of packets presents a productive way to use a communication channel. A
channel can be switched to route data packets to different destinations in such a
way that each sender-receiver pair appears to have a channel to itself.

■ The receiving computer is able to process a block of data all at once, instead of a
character or a byte at a time. Furthermore, it is usually easier to organize the data,
since there are fewer individual blocks of data to deal with.

■ It simplifies synchronization of the sending and receiving systems. Packets provide a
clearly delineated burst of data, with an identifiable start and stop point.

There are different types of packets defined for different situations. Some types of
packets go by specific names, such as frame or datagram, which identify their purpose.
For long messages, there may be many packets. To recover the message, it is sometimes
necessary to number the packets, so that they may be reassembled in their original order at
the receiving node. In addition to data transmission, packets can also be used for control of
the network itself. To do so, the data is replaced by control messages that specify the action
to be taken. Packets are a fundamental unit of communication.

General Channel Characteristics

The communication channel provides the path for the message between the two commu-
nicating nodes in the model. Although the model in Figure 12.3 represents the channel
as a direct point-to-point connection between the nodes, this is not generally the case. In
reality, the channel can take many different forms. In the simplest case, it might be a direct
connection between nodes in a local area network. More typically, the communication
channel is actually divided into segments, called links, with intermediate nodes between
the links that forward packets from one link to the next. Data originates at one end point
and passes through each link to reach the destination end point. As an example, consider
Figure 12.4. In this example, data (perhaps a Web request) originating from a home
computer connects wirelessly through a router to a DSL modem. From there, the data
passes through the DSL link to an Internet Service Provider, then through many additional
connections to a computer somewhere on the Internet.



CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS 379

FIGURE 12.4

A Multi-Link Channel
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In other words, the communication channel between your Web browser and the Web
server on the Internet may be divided into many links, each with its own characteristics.
This is true in general of most communication channel connections. Conversely, there may
be many nodes sharing the use of a single channel or channel link. Thus, a channel or
channel link may be required to carry several messages from different sources and bound
for different destinations simultaneously. The requirements for data communication must
include the ability to share the channel elements among many different sender-receiver
pairs and to direct messages to their correct nodes, wherever those nodes might be located.

One way to view the channel is to consider the connection between the end point
sender-receiver pair as the communication channel for that pair. If our prime objective
is to consider the overall characteristics of the channel as a conduit for messages being
sent between that pair, this view may be useful and sufficient. We noted in the previous
paragraph, however, that the channel between two end points may actually consist of
a number of links, with intermediate nodes connecting the links. Each link has its own
characteristics of interest. In a more limited sense, each link can also be described as a
communication channel.

Since the channel may be made up of multiple links, the interfaces at each end
of the connection may differ from each other and the characteristics of the end-to-end
channel may differ from, and depend upon, those of the individual links. For example,
the computer initiating a message might be connected to a network using a telephone
modem, which transmits messages one byte at a time using audio tones as a signaling
method. The receiving computer might be connected to the network using Ethernet, which
expects messages formatted as digital packets consisting of many bytes of data, together
with additional bytes that define the specific characteristics of the particular packet. Again,
there are protocols and standards that define the makeup of the packets. The network
must be capable of converting the message from one format to another at the intermediate
nodes when required. The points where conversion is required for the previous example
are noted in Figure 12.4.

Not only do the characteristics of each link obviously impact the overall capability of
the end-to-end connection, they also affect the technical and business decisions that must
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be made when the channel and its affiliated networks are designed, implemented, modified,
and upgraded. Consider, for example, the effect on the users of an organizational network
that is connected to its external resources with a link of severely limited capacity.

Thus, we must accept some ambiguity in the way we define a particular communication
channel, depending on the purpose that we have in mind. As we study data communications
we will be concerned with the characteristics of different types of channels, as well as the
nature of the interconnections between them. In this text, we shall be careful to indicate
what kind of channel we are discussing at a particular time, end-to-end, or link.

As shown in Figure 12.3, each end node has an interface to the end-to-end commu-
nication channel. Our primary concerns for an end-to-end connection are the interface
characteristics of the end points and the rate of speed with which data can be moved
successfully through the channel, usually measured in bits per second and known as the
bit rate or bandwidth1 of the overall channel. ‘‘Successfully’’ in this case means that any
noise or errors incurred during the passage through the channel can be removed and that
the message can be accurately recovered at the receiving end. For example, if the channel
connects a Web browser with a Web server, we are most interested in how quickly and
accurately we can download the Web pages and data of interest. The same definition of bit
rate or bandwidth also applies to individual links.

Note, however, that the characteristics of the end-to-end communication channel are
determined by the characteristics of individual links. For example, the modem in the first
link of the channel described above limits the overall speed of the channel, regardless of the
speed in the remaining links.

Each link channel may be individually characterized by the type of medium it uses, by
the signaling method and data formats used to carry its messages, by the directionality of
signals supported by the channel, by its interfaces with the end nodes and with other links,
by its bandwidth, by restrictions on the length of the channel, by the time delay between
the time the channel receives data from its incoming node and the time it releases the
data to its outgoing node, by the number of connections sharing the channel, by the noise
characteristics of the channel, by the way in which packets are steered through the channel
from link to link (see the next part of this section), and by the electrical or optical properties
of the channel. Note that there are numerous similarities between communication channels
and buses. The following is a brief description of some of the more important characteristics
that apply to link channels:

MEDIUM A communication channel medium can be either guided or unguided. Radio
waves transmitted from an antenna are unguided. They may be received by any radio
receiver tuned to the corresponding radio frequency within the range and directionality
of the transmitting antenna. Unguided media include cellular phone, broadcast radio,
microwave, wireless networking, infrared light, and satellite technologies. Laser signals
that are not confined to an optical cable are also generally considered unguided, although
the field of view is extremely narrow. Note in particular that unguided communication
channels are inherently insecure, since they can be intercepted easily by anyone within the
field of view of the channel. Wireless networking is particularly vulnerable to interception
because the transmitting antenna is generally omnidirectional.

1Bit rate and bandwidth are actually somewhat different, but are directly related as measures of channel
capacity.



CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS 381

Guided media limit communications to a specific path constrained to a cable of some
sort. Guided media can be either electrical or optical and include various forms of wire and
fiber optic cables.

DATA TRANSMISSION DIRECTIONALITY Like the buses discussed earlier in
Section 7.5 of Chapter 7, channels can also be characterized by the direction in which
the messages can flow. A channel that carries messages in only one direction is known as
a simplex channel. Television broadcasting stations use a simplex channel. Programs are
sent from a transmitting antenna to television receivers, but the receivers do not respond
with messages or data back to the broadcasting station. A channel may carry messages in
both directions, but only one direction at a time. This channel is known as a half-duplex
channel. If the computer at point B wants to send a message to point A, it must wait
until point A has stopped transmitting to do so. Most walkie-talkies are half-duplex
communication devices. Channels which carry signals simultaneously in both directions
are called full-duplex channels. Traditional telephone lines are full-duplex channels. Both
parties can speak simultaneously, and each can hear the other. Some channels are made up
of separate lines for each direction. Some practitioners characterize these as full duplex;
others refer to these as dual-simplex channels. The PCI-Express bus specification calls them
lanes, a term that is likely to catch on within the network community.

NUMBER OF CONNECTIONS Like buses, a communication channel can be
point-to-point or multipoint, although the choice is often predetermined by the nature
of the medium. Wireless networking, for example, is, of necessity, multipoint, because
there is no realistic technological way to limit the number of radio signals in a given space.
Conversely, fiber optics are usually point-to-point because of the difficulty of tapping into
a fiber optic cable. Note that even a point-to-point channel can be shared by packets
arriving at its input node from different sources.

Some channel characteristics are determined innately by the medium. For example,
unguided messaging must be carried by an analog signal: radio transmission is based
intrinsically on sine waves, which are analog. Signaling is achieved by varying certain
properties of the radio wave at the transmitter and detecting the variations at the receiver.
This process is called modulation and demodulation. (A modem works on the same
principle.) The signals in guided media may be either analog or digital, although digital
is usually preferred because of its better immunity to noise and the ease with which the
medium can be shared by multiple messages. We will expand on these ideas in Chapter 14.
Recall from Chapter 4 that the conversion of data between analog and digital is often
required because of the nature of the data that we are processing. Audio and video are
analog in nature, but are converted to digital and processed digitally in the computer.

Today, the most common end-node interface to a channel is a local area network
connection, usually either wired or wireless Ethernet. Nonetheless, there are other possible
interfaces to consider: Bluetooth, WiMax, DSL or cable link, various forms of cell phone
technology, older types of network connections, and, to a more limited extent, telephone
modem. Each technology has its own requirements. We will consider a few of these in
Chapters 13 and 14. Regardless of the characteristics of the end-to-end communication
channel and of its links, we must re-emphasize the fact that the message must ultimately
arrive at its destination node in a form expected and recognized by the application
receiving it.



382 PART FOUR NETWORKS AND DATA COMMUNICATIONS

FIGURE 12.5

An End-to-End Channel with Many Possible
Paths through Intermediate Nodes
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In the previous section, you saw that the typical commu-
nication channel is made up of a series of intermediate
nodes, connected together by links. Packets are passed
along the links from node to node. We next consider
how the path is selected.

Figure 12.5 illustrates a simplified version of an
end-to-end channel with some of its intermediate nodes.
In some cases, the movement of data from node to node
is obvious: there is only a single path. In many cases,
however, there may be several choices. Figure 12.5 shows
two possible channel paths out of many between end

nodes A and B. Overall, in a large interconnection of networks, a so-called internet (with a
small i), there may be thousands of possible paths connecting end nodes A and B.

There are two basic techniques for selecting the path through a channel: circuit
switching and packet switching. A third technique, virtual circuit switching, is an important
alternative to ordinary packet switching that also operates on packets.

Traditional telephony uses circuit switching. Circuit switching dedicates a path for
the exclusive use of the sender-receiver pair for the entire length of time of the connection.
The previous discussion of POTS in Section 12.2 was an example of circuit switching. The
telephone circuits are dedicated to the individual lines for the length of the phone call.
Circuit switching is inefficient and is rarely used today, even for telephony.

A virtual circuit is a channel path that is set up when a connection is established for
communication between two end nodes, and maintained until the connection is closed.
Data is sent through the channel in packets; each packet follows the same channel links.
However, the links and intermediate nodes are shared with other connections, making the
use of the channel more effective. Figure 12.6 shows the use of two virtual circuits, one
connecting end nodes A and B, another connecting end nodes C and D. These two circuits
share intermediate nodes k, n, and p, as well as the path between n and p. The use of virtual
circuits simplifies the routing of packets and also assures that packets will arrive in the
correct order, since all packets follow the same path. However, congestion at an intermediate
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mode or through an intermediate channel segment
that is used by several different virtual circuits can
affect the overall performance of the network.

Some network protocols use virtual circuit
technology as the basis for packet flow. ATM
(asynchronous transfer method, not the bank
machine!) is one example. ATM uses very small
packets (53 bytes) and careful path selection to
control traffic. The fact that packets always arrive
in correct order makes ATM effective for stream-
ing data, such as video. The use of extremely
small packets minimizes time delay through the
ATM network, assuring that video will traverse the
network in a timely and consistent fashion.
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Ordinary packet switching, usually called datagram switching, assumes that each
packet is routed from node to node independently, based on such criteria as the shortest
path to the packet’s destination and traffic conditions, At each intermediate node, the next
link is determined by the node’s switch or router at the time the packet arrives. TCP/IP
uses datagram switching exclusively for all of its routing decisions.

Now consider the most common network scenario, illustrated in Figure 12.7. In the
figure, the makeup of the cloud from Figure 12.1 is viewed as a large network of networks.
In this scenario, each end node is linked to an intermediate node that is part of a network,
most commonly a local area network. (We will describe the details about local area networks
later, in Section 12.5 and in Chapter 13.) The intermediate links connect nodes belonging
to various networks together. A component at each intermediate node routes the packet
to the next appropriate node. It also converts the data format of the packet to the format
required for the next link, if necessary. The component may be a computer programmed
to do routing, but it’s more likely to be a router or a gateway. Routers and gateways are
specialized devices used to interconnect networks and pass packets from one network to
the other. Depending on the network protocols in use, either ordinary packet switching or
virtual circuit switching will be used to guide the decisions made at each router or gateway
as the packet is forwarded from node to node through the system. This same explanation
also describes the functioning of the Internet (with a capital I).

As you’ve just seen, routers and gateways are used to set the path that each packet takes
to move through the channel. A simplified diagram of a router is shown in Figure 12.8. The
router consists of one or more input ports, one or more output ports, a switch mechanism,
and a processor with memory. The input ports and output ports are connected to links.

FIGURE 12.7
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FIGURE 12.8
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Routing protocols are sent to the router processor and stored, using packets with control
information. The basic operation of a router is simple. When a packet arrives at an input
port, the processor makes a decision on where the packet is to be directed and sets the switch
to direct the packet to the correct output port. Routers are used wherever the incoming
networks and outgoing networks operate on the same set of network protocols, although
the physical characteristics of the links might be different. For example, a router could be
used to switch packets between wireless and wired Ethernet networks.

Gateways operate similarly, but are intended for use when two dissimilar networks
are connected together. The router operation is the same; the major difference is that the
gateway is able to convert the packet headers that arrive at the input ports to meet the
requirements of the different types of networks at the output ports. Traditionally, gateways
have been thought of as complex routing devices that converted (in both directions)
between TCP/IP networks and the older network protocols that were common on large
mainframe systems. Since most modern mainframes also operate predominantly using
the TCP/IP protocols, the use of this type of gateway is now relatively rare. Gateways are
sometimes used to interconnect TCP/IP networks with Frame Relay network links that are
supplied by some vendors for connection to computers beyond the local area. Similarly,
although we rarely think about DSL and cable modems as routing equipment, it is worth
noting that they do fit the technical definition of a gateway.

EXAMPLE
The technique of routing can perhaps be clarified with a simple example. The delivery of
packets through a system of networks can be compared to a delivery system that delivers
packages by train. See Figure 12.9. Suppose you live in Freetown and wish to send a birthday
present to your Aunt Margaret DuMont in Sylvantown. You hand the present to the agent at
the Freetown railroad station (the initial link from you to the network), who places it on the
train headed towards Sylvania.
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The train passes through a number of stations on the way to Sylvania. At each station,
there are switches on the railroad tracks that direct the train towards Sylvania. Obviously the
switches will be set differently for trains headed for other destinations. (Note, by the way,
that the tracks are shared.) The track switches are equivalent to the routers in the packet
switching model.

When the train reaches the border town of Freevania, the package must be passed to
a different train, because the gauge of the railroad tracks from Freevania to Sylvantown is
narrower, so the Freedonia train can’t use them. Instead, the agent at Freevania removes the
package from the Freedonia train and places it on another train to Sylvantown. The package
has just passed through a gateway. The package is removed from the train at Sylvantown
and delivered by van (the link to the end node) to your Aunt Margaret’s house.

12.4 TCP/IP, OSI, AND OTHER COMMUNICATION
MODELS

Overview

We remind you that in simplest and most general terms, the goal of data communication
is to provide a means of reliable and efficient data communication between two end nodes
or hosts. The communication takes the form of a message or a group of messages between
an application or service at one end node and a corresponding application or service at a
second end node. The message may be discreet or a continuous stream of data.

It is possible to implement the simplest forms of data communication with nothing
more complicated than a message format that both ends agree on and a means to access
the channel. Realistically, this simple approach is inadequate in most real-world situations.

Suppose that two or more computers are to communicate via a communication
channel. What are the requirements for them to communicate successfully? As we already
noted, they must agree on the signaling methods and the means used to access the
connecting channel, but in addition there is much more. Even the format of the message is
more complicated than it first appears. How long is the message? Which part of the message
is actual data and which part is overhead information such as the address of the sender and
the address of the recipient? How are errors to be detected by the receiver, and what will
be done about them? How does the receiver know that it has received a complete message,
and how does it reassemble a message that was sent in parts, possibly with the parts arriving
in the wrong order? Each end of the communication must recognize all of the commands
and requests of the other and be able to respond in a reasonable way. For example, if
one computer speaks ASCII and the other speaks Unicode or some other code, successful
communication will not occur unless they are aware of the difference and are prepared
to perform the translations back and forth. E-mail messages will become garbled or not
reach their destination if there isn’t agreement on the meaning of the name and address on
the ‘‘envelope’’. What if there is no obvious communication path between the sender and
receiver or one link of the path is missing? How does the message get relayed appropriately?
There are many more such issues, and it’s easy to see that communication is not trivial.

Indeed, a substantial number of ground rules are required to satisfy all the conditions
necessary to communicate successfully.



CHAPTER 12 NETWORKS AND DATA COMMUNICATIONS 387

The key to successful communication is a set of protocol standards that agree upon
hardware and software rules that will allow computers to establish and maintain useful
communication at various levels, from the rules that govern messages to the hardware
protocols that define the physical nature of the channels themselves. International protocol
standards exist for communication by modem, for local area networks, for connection
between local area and wide area networks, for Internet and other wide area network
communications, and for many other purposes.

The ability to communicate between dissimilar computing and channel resources,
the efficient use of channel resources, the ability to identify, associate, and locate specific
addresses to which the messages are to be sent, and the ability to deliver messages through
a complex system of channels are essential requirements for a successful message delivery
system.

Two slightly different, but overlapping, standard models address these goals and
concerns. The Open Systems Interconnection Reference Model (OSI) is a theoretical
model, developed over many years as a standard by the International Standards Organization
(ISO). TCP/IP is an older and more practical model, independently developed to meet the
needs of the original Internet design, and regularly modified and updated to meet current
needs. Each model is conceived and implemented as a hierarchical protocol stack, in which
each layer of the stack at the sender node contributes information that will be used by the
corresponding peer, layer at the receiver node. (You can see the similarity between the
behavior of a protocol stack and the last-in, first-out nature of other types of computer
stacks that we have already discussed and that you’ve also seen in programming courses.)
As you will see, there are many similarities between the OSI and TCP/IP models, despite
the fact that they were developed independently.

In each model, there are different protocols for different aspects of the communication.
Each protocol is responsible for a particular set of tasks. As long as the interfaces between
tasks are well defined, it is possible to separate the tasks. Separating the tasks involved
in communication adds flexibility, simplifies design of the protocols, makes it possible to
modify protocols or substitute alternative protocols without affecting unrelated tasks, and
allows a system to select only the protocols that it needs for a particular application.

The TCP/IP Network Model

The prevalent collection of protocols that are designed to work together and guide all
aspects of network communications is called the TCP/IP protocol suite. Although the
name suggests two protocols, TCP/IP is actually a name encompassing an integrated suite
consisting of numerous protocols that control various aspects of data communication,
including modem communication, communication through a gateway, error reporting,
address resolution, and many other functions. There are also a number of perhaps familiar
application protocols, including HTTP, telnet, ftp, smtp, and many more.

The TCP/IP model consists of five layers.2 Each layer represents an attempt to isolate
a single factor that is relevant to communication between computers and other devices.

2Strictly speaking, the lowest two of the five layers in the model are not part of the ‘‘official’’ TCP/IP protocol
suite, although their operations are required and directly related to the overall data communication procedure.
We will clarify this issue later in the chapter, but the difference is unimportant to our present discussion.
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FIGURE 12.10

The Layers of the TCP/IP Network Model
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Figure 12.10 identifies the five layers in the model, along
with some of the major protocols found at each layer. In
addition to the layer names, each layer is also identified by a
layer number, starting from 1 at the lowest layer. Figure 12.11
shows the operation of the TCP/IP model. As you can see from
Figure 12.11, operation of the model is hierarchical. Each layer
of the model is implemented to fulfill a specific function in
the communication process. Each layer at the sending node
performs its services, and adds additional data to the message,
usually in the form of a header that encapsulates the data
from above. (A few protocols also require a trailer.) The result
is then passed to the next lower layer. This is also shown
in the diagram. Each layer relies on the layers below it to
provide all the additional functionality necessary to fulfill
the communication function. At the receiving node, the peer

layer interprets and removes the information provided for it by the sender, then passes the
remainder upwards, layer by layer, until the original, reassembled message finally reaches
the application layer.

The independence of each layer means that an individual layer needs to be concerned
only with the interfaces of the layers immediately above it and below it. Ideally, the

FIGURE 12.11
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operation of a particular layer is transparent to other layers and could be modified or
replaced without affecting other layers, provided that the layer continues to provide its
required services to the communication process and that there is agreement between the
equivalent, or peer, layers at the sender and receiver end nodes.

Not surprisingly, the message to be sent through the communication channel gets
larger and larger as it passes down the chain, since each layer in the sender must add its
own component to the message from the previous layer. There is an obvious advantage in
eliminating layers, whenever they are not needed, to reduce message traffic and overhead.
If a message is being sent point-to-point directly between a sender and the ultimate user
of a message (i.e., the message is not being forwarded), for example, there is no reason to
specify an address for the receiver. Therefore, the five layers specified in the protocol suite
actually represent a maximum.

In an earlier, 2001, edition of his book, Fitzgerald [FITZ07] likened the layered model
to a pair of office buildings, where the people on each floor are responsible for a specific
set of business tasks. The TCP/IP buildings are each five stories tall. The people on the
fifth floor of one building put a message for the other building into an envelope, seal
the envelope, and send it down to the fourth floor. Each floor adds its own message
and puts the previous envelope plus the new message into another, somewhat larger,
envelope.

When the package reaches the first floor, a messenger person (this is the physical layer)
carries the package across the street to the other building, where the people on each floor
retrieve their messages and pass the remaining envelopes back up the hierarchy, until the
final message, actually the original, reaches the fifth floor.

Now consider briefly the function of each layer in the model. (We will expand on the
role of each layer in Chapter 13.)

APPLICATION LAYER (LAYER 5) The procedure begins at the application layer, where
the message is created. The TCP/IP suite offers protocols that support a wide assortment of
applications, including Web resources, e-mail, instant messaging, RSS news feeds, network
management tools, file transfer capability, remote login (SSH and telnet), and lots more.
The application layer also provides utilities and tools, such as domain name system services,
that support use of the TCP/IP suite itself. The application layer passes its messages to the
transport layer as a stream of bytes, together with its intended destination address and
other relevant information about the message.

As an interesting side note, there is no requirement that applications must be ‘‘official’’
members of the TCP/IP protocol suite. As long as an application provides software that
can communicate successfully with the transport layer, it can be used. For this purpose,
operating systems provide an interface called a socket, which makes it easy to add to the
communication services provided by the TCP/IP suite. The concept of sockets originated
with BSD UNIX. Sockets provide the interface between the application layer and the
transport layer. Sockets are used by applications to initiate connections and to send
messages through the network. You can picture a socket as a sort of software doorway
through which bytes can flow. This allows new applications simply to ‘‘plug in’’ software
that adds to the communication services available from the system. Sockets also provide
a means for adding new protocols and keeping the network facilities current in their
offerings. This capability offers some interesting possibilities. For example, it is possible
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to use TCP/IP to extend a different protocol over a TCP/IP-based network. The example
below illustrates this option.

EXAMPLE
SCSI is an I/O bus protocol used for connecting hard disks and other devices to a computer.
By using a computer interface with an application layer program that converts the SCSI bus
protocol to a message that can be transmitted over a TCP/IP network it is possible to locate
and operate a hard disk drive anywhere on any network that is reachable from the original
site. The hard disk has a similar interface that translates the message back to its SCSI form.
This type of application is usually named ‘‘XYZ over IP’’, where XYZ is the name of the
original protocol. In this case, the application is called iSCSI or SCSI over IP. Note that this
example again illustrates the duality of I/O and networking. See Figure 12.12.

There are many examples of this technique in the literature.

TRANSPORT LAYER (LAYER 4) The purpose of the transport layer is to provide services
that support reliable end-to-end communications. It is responsible for receiving a message
from an application at the source node and delivering it to a corresponding application at
the destination node. In a wide area network, a message is passed from node to node to
get from its source to its destination. The message will often pass through a large number
of intermediate nodes. In effect, each node forwards the message to the next. The three
lower layers provide communication services between nodes that are immediate neighbors.
The transport layer is responsible for generating the final address of the destination and
for all end-to-end communication facilities, including establishing a connection with
the destination, flow control, data assurance, reordering of packets, if necessary, error
recovery, and termination of the connection. The transport layer is the layer responsible
for packetization of the message, that is, the breaking up of the message into packets of
reasonable size.

The ultimate destination address is established at the transport layer, although the
network layer is the layer responsible for the routing of packets through the intermediate
nodes to the destination. The message headers and control messages of the application
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and transport layers make it possible for end nodes to communicate fully without regard
or concern for the nature of any intermediate nodes, and conversely, the end-to-end
communication is essentially transparent to the intermediate nodes.

The transport layer is implemented with three different standard protocols: TCP,
UDP, and SCTP. When a message reaches the transport layer, one of these three is selected,
based on the characteristics and requirements of the particular type of message. Each of the
transport layer protocols works slightly differently. Transmission Control Protocol (TCP)
is known as a connection-oriented service. Before data packets are sent to the receiving
node, TCP at the sending node establishes a connection with TCP at the receiving node
by exchanging control packets. TCP also uses sockets as the interface for this purpose. To
establish a connection, the sending and receiving TCP each create a socket; the connection
is made by connecting the sockets together. Ignoring the lower layers of the model for a
moment, this conceptually results in a stream of bytes leaving the sender’s application and
flowing into the receiver’s application. The connection made is full-duplex: packets can
flow in both directions. The use of sockets allows a single TCP service to create multiple
connections that operate simultaneously simply by creating additional sockets as they are
needed.

Once the connection is made, TCP divides the message into packets, numbers them, and
sends them to the network layer for transmission. TCP requires that an acknowledgment
message be sent from the receiving node back to the sender to verify the receipt and
acceptability of each packet in the message. If a packet is not acknowledged, TCP resends
it. This capability is enhanced by the full-duplex connection that TCP establishes: data
packets and acknowledgment packets can flow through the channel simultaneously. Thus,
TCP offers a reliable delivery service. When the communication is complete, TCP closes
the connection. In a way, TCP is like a pipe that opens to pass data in the form of a byte
stream from an application at the sending node to the corresponding application at the
receiving node, without regard for the details of the underlying mechanism (i.e., the lower
layers). The pipe is called a logical connection because it operates independently of the
actual physical characteristics of the network. Figure 12.13 illustrates this idea.

Note that the path that the packets take is not established by TCP; routing is the
responsibility of the network layer. The network layer uses datagram switching, therefore
the packets may each be routed differently. This creates the possibility that packets may
arrive at the receiving node out of order. Numbering the packets allows the receiving node
transport layer to reorder the packets, if necessary, to recreate the original message. TCP
packets are called segments by some network practitioners, because their data content is
part of an ordered sequence of bytes that is maintained across an entire packetized message.

An alternative protocol, UDP, for User Datagram Protocol, is used for some appli-
cations instead of TCP. UDP is a connectionless service. Unlike TCP, there is no
communication between the sender and receiver nodes to set up a connection in advance.
UDP packets are known as user datagrams. A UDP packet contains the message exactly
as delivered from the application, thus it is the responsibility of the application to divide
the message into smaller pieces, if necessary. Every datagram is sent independently. UDP is
faster and simpler, but does not guarantee delivery. There is no acknowledgment of receipt
by the receiving node. UDP is useful for communications in which the retransmission of a
lost, out of order, or error-containing packet is not practical or in which the loss of a packet
is relatively inconsequential. Streaming video is an example of this situation.
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FIGURE 12.13
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The newest alternative, SCTP, for Stream Control Transmission Protocol, offers
features similar to TCP, with additional features that improve fault tolerance and enable
multiple messages (in the form of byte streams—hence the name) to be transported
simultaneously through the same connection Although SCTP could theoretically replace
TCP, its current use is limited primarily to new applications, primarily those used with IP
telephony and multimedia applications.

NETWORK LAYER (LAYER 3) The network layer is responsible for the addressing and
routing of packets to their proper final destination. The TCP/IP network layer is also called
the internetworking layer or IP layer. IP is the single standard protocol for this layer,
although there are several additional support protocols for matching IP addresses to the
physical addresses that are used by the data link layer, for error reporting, for making
information requests, and other auxiliary tasks.

For communications confined to a local area network, the task is usually simple. IP
appends a header with a node-specific physical address to each packet (these are now
referred to as IP datagrams), and passes the datagrams on to the data link layer. There is
no routing to do, since all the nodes on a local area network are connected together and
directly addressable. If the message address is in the form of an IP address, the software
looks up the corresponding physical address in a table.

When the message is being sent to a node outside a local network, for example, to
the Internet, the network layer is responsible for moving the message from sender to
receiver, packet by packet, from one intermediate node to another through router packet
switches. At each intermediate node, the network layer removes the current node address
and establishes an address for the next node, using various tables and algorithms. The new
address is added to the packet and the packet is passed to the data link layer, which handles
the actual connection between nodes. It is not possible to store the address of every location
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at each node. Instead, the network layer has access to tables at various sites that assist in
routing the message. Because routing takes place at the network layer, routers and gateways
are sometimes called layer 3 switches to indicate the layer at which routing takes place.

Remember that the IP datagram may pass through different types of links. For certain
types of physical layer connections, it is necessary to further divide the IP datagrams into
smaller packets before they are delivered to the data link layer. IP has this capability,
although it is rarely needed in modern systems, where the vast majority of linkages are
based on Ethernet. These smaller packets are called fragments. IP datagram fragments are
reassembled by IP when the final destination is reached, using header information that is
stored with each fragment.

Although IP attempts to route every datagram to its final destination, it is a con-
nectionless, packet switching service. Every IP datagram is routed independently. IP is
an unreliable, best-effort delivery service: it does not guarantee delivery nor check for
errors. Those tasks are the responsibility of the TCP layer, which takes responsibility for the
entire message. Services similar to those of TCP are also available in the data link layer for
reassembling and correcting packet errors that occur at the node-to-node level, although
the services offered by the data link layer are rarely used since they mostly duplicate the
services performed by TCP.

The intention of the original TCP/IP designers was to provide universal connectivity,
with connection-independent protocols at the network layer. Thus, the TCP/IP standard
does not ‘‘officially’’ address the data link and physical layers at all, although it recognizes
the existence of these two layers as a necessity. As we noted earlier, these layers are generally
addressed by a mixture of hardware and software that is directly tied to the needs of
each particular type of communication channel. Nonetheless, there are clear relationships
between the IP network layer and the data link layers, as described below.

DATA LINK LAYER (LAYER 2) The data link layer is responsible for the reliable
transmission and delivery of packets across the communication link between two adjacent
nodes. Because the data link layer must be specific to the characteristics of the network or
link and medium to which the node is attached, there are many different standards in use.
The most common of these are the Ethernet standards, but there are many others.3

Most data communication practitioners divide the data link layer into two separate
sublayers: the hardware medium-access control sublayer, which defines procedures for
accessing the channel and detecting errors, and a software logical link control sublayer,
which provides error correction and manages IP datagram/frame conversions, flow control,
retransmission, and packet reconstruction.

If necessary, packets from the network layer are resized for compatibility with the
medium-access control protocol used by the particular network or link. Packets at the
data link layer are called frames. In most cases, the data link layer simply encapsulates
the incoming IP datagram without change, and adds a data link layer header, and in some
cases, a trailer, to create a frame.

3The author’s favorite is a proposed standard for ‘‘IP over Avian Carrier,’’ specifically, for carrier pigeons.
The standard proposes that IP datagrams be written out on small sheets of paper and attached to the legs of
carrier pigeons. The concept was implemented and successfully tested in Norway using the ping application. See
the references in For Further Reading at the end of the chapter.
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The logical link control sublayer provides appropriate error detection for each frame.
Most data link protocols offer a means for requesting and retransmitting a frame that has
not been received successfully. Since some communication conditions make it possible
that frames will be received in the wrong order, the data link layer also numbers the frames
and reorders the received frames if necessary to recreate the original message. Frames may
be received in the wrong order if they are separately routed over communication paths of
significantly different path lengths (it takes longer to get a message from Los Angeles to San
Diego if it is routed via Alaska and Hawaii, for example) or if a frame has to be resent due
to an error. As we noted above, the transport layer also provides these services, therefore
the services of the logical link control layer are usually bypassed.

The medium-access control (MAC) sublayer is responsible for providing orderly
access to the physical medium. Because there are a variety of media and signaling
techniques in use, the standards define a number of different protocols and frame headers,
each corresponding to a particular physical medium and signaling method. The protocol is
responsible for such services as data encoding, collision handling (when multiple computers
try to access a multipoint connection at the same time, for example), synchronization,
and multiplexing. We will defer further consideration of this sublayer to Section 12.5 and
Chapter 13.

PHYSICAL LAYER (LAYER 1) The physical layer is the layer at which communication
actually takes place. Communication at the physical layer consists of a bare stream of
bits. The physical access protocol includes definition of the medium, the signaling method
and specific signal parameters, voltages, carrier frequencies, lengths of pulses, and the
like; synchronization and timing issues; and the method used to physically connect the
computer to the medium. An example of a physical access protocol is the specification
describing the specifics of the communication between an 802.11n wireless network card
and a corresponding access point. The physical layer protocol defines the frequency of the
carrier signal, data modulation and demodulation technique, bandwidth, strength of the
transmitted signal under different conditions, and more. Physical communication between
computers, routers, and other devices takes place only at the physical layer. The physical
layer is implemented primarily in hardware by a network interface controller (NIC)4,
which generates the particular voltages, light pulses, radio waves, clock and synchronizing
signals, and the like appropriate to a particular specification. More on this topic will be
found in Chapter 14.

Figure 12.14 illustrates the use of the various layers in a simple end-to-end communi-
cation with an intermediate node that is used for routing The transport layer controls the
flow of packets from the source to the destination. For each link, the network, data link, and
physical layers are established according to the rules for the immediate communication. At
the intermediate node, the lower three layers are stripped from the message-at-large and
recreated according to the rules for the next link. For the first link, the network layer delivers
the packets to the address of the router; the second link delivers the packets to the physical
address that corresponds to their destination. The upper layers, consisting of the message

4NIC originally stood for ‘‘Network Interface Card’’ because the networking hardware was on a separate
card that plugged into a bus on a computer. Today, the interface is often integrated into the motherboard, so the
word ‘‘card’’ is a bit outdated, but ‘‘NIC’’ is firmly established as the name of the unit. Hence, ‘‘Controller’’.
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FIGURE 12.14
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encapsulated in transport layer packets, pass through intermediate nodes untouched until
the packets reach their destination. At that point, the transport layer opens the packets,
performs error checking, and delivers the message to the designated application. If TCP or
SCTP services are used, it also assures that all the pieces of the encapsulated message are
present and reassembled correctly before delivery.

The OSI Network Model

As we noted above, the Open Systems Interconnection Reference Model or, more familiarly,
the OSI model, represents an important theoretical attempt to present a complete protocol
standard. The OSI model identifies all the factors that must be standardized in order
for two computers to communicate completely and successfully at every possible level.
The OSI standard was created by the International Standards Organization (ISO) after
many years of study. Originally, the intention was to create a single protocol standard that
would be used internationally for all computers. Although the OSI protocol suite itself has
not been widely accepted and used for actual communication, the model is considered
conceptually important as a means of identifying the factors involved for different types of
communications and for comparing the performance and capabilities of different protocols.
It is generally not viewed as an implementable alternative to the TCP/IP model. Figure 12.15
is a diagram comparing some of the more important protocols in the TCP/IP suite to the
OSI reference layer model.

The OSI model consists of seven layers, instead of five. The most important difference
between TCP/IP and OSI is that the functions of the application layer of the TCP/IP
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FIGURE 12.15
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model are essentially divided among three OSI lay-
ers. The capabilities and features of the additional
two layers, the presentation layer and the session
layer, are almost entirely subsumed into the TCP/IP
application layer. However, a few services of the
session layer in the OSI model are actually part of
the TCP/IP transport layer. There are only minor
differences in the other layers. Since the other layers
have already been described as part of the TCP/IP
model, we only explain the additional two OSI
layers.

SESSION LAYER The upper three layers of the OSI model assume that a successful
end-to-end connection is established and maintained at the transport layer. These layers
are concerned with the flow of data and control between applications on the communicating
nodes.

A session is the dialogue between two cooperating applications or processes at the ends
of the communication link. The session layer is responsible for establishing the session
between the applications, controlling the dialogue, and terminating the session. Remote
login and spooling operations would use the services of the session layer to assure successful
login and to control the flow of data to the remote printer, for example.

PRESENTATION LAYER The presentation layer provides common data conversions
and transformations that allow systems with different standards to communicate. The
presentation layer includes services such as data compression and restoration, encryption
and decryption, ASCII-Unicode conversion, data reformatting, and the like. The funda-
mental purpose of the presentation layer is to present data at the destination with the same
meaning and appearance as it would have at the source.

There are a number of different protocol suites in use that operate similarly to the
OSI reference model, or implement parts of it. In addition to TCP/IP, these include the
IBM Systems Network Architecture (SNA), Novell IPX/SPX, and Appletalk, among others.
In the past few years, the TCP/IP protocol suite has become the network connectivity
protocol of choice for a huge number of installations. TCP/IP has been closely associated
with connection to local area networks and to the Internet in people’s minds. While the
association is accurate, TCP/IP is also popular for general communication at all levels
of network connectivity, from the smallest local area networks to the largest wide area
networks, even for modem connections to networks through the telephone system. (PPP,
Point-to-Point Protocol, may be familiar to you as it is used for dial-up modem, DSL, and
cable access to the Internet.) TCP/IP is included for nearly every modern operating system.
TCP/IP is reliable and mature.

Addressing

The ability to tie multiple network devices into a network require addressing standards
that are implemented for every device attached to the network. When the network is
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interconnected with other networks, the requirements for addressing are even more
stringent, and the addressing standards must apply globally. TCP/IP is typical of network
models in this respect. TCP/IP requires addresses to specify the applications responsible
for message communication, the addresses of the sender and receiver nodes plus all
intermediate nodes involved in a communication, and finally, a physical address that selects
a particular node within a network.

A user creates a message at the application layer. Like any messaging system, the
user must also specify the address of a receiver for the message. The message could be
a print server request, a Web request, an e-mail message or any other application-based
message. The user will normally specify this address as a user-friendly address: a URL such
as www.youtube.com, or an e-mail address such as somebody@yahoo.com, or perhaps
even the name of a printer on the local network. User-friendly addresses allow a user to
work with addresses that are familiar and understandable.

To be effective, user-friendly addresses must be global in scope if they are to exist
outside the confines of an isolated network. There must also be no possibility of duplicates.
The use of a standard global domain name system with required name registration provides
these assurances and provides a hierarchical system for name creation and registration and
tools for locating and identifying specific names.

TCP/IP requires addresses to be specified numerically in the form of IP addresses.
IP addresses are also called logical addresses. There are two standards for IP addresses.
The older system, IPv4, specifies 32-bit addresses. To make these easier for humans to
read, they are generally separated into 8-bit groups called octets, delimited by dots. Each
octet is written as a decimal number from 0 to 255. A typical address might be written
as 208.80.152.2 (it’s Wikipedia), for example. IPv6, which is intended to supplant IPv4,
specifies 128-bit addresses. These are expressed as eight groups of four-digit hexadecimal
numbers separated by colons. To simplify the written description somewhat, leading zeros
and zero values in one or more consecutive groups can be eliminated. A typical IPv6
address might look like this: 6E:2A20::35C:66C0:0:5500. (This one is tricky: there are two
consecutive groups of 0 between the empty colons in this example, but the :0: is required to
avoid ambiguity. Otherwise, you would not be able to tell which pair of empty colons had
the two groups of 0.) Needless to say, user-friendly names take on even more importance
when working with IPv6!

Before a message is sent by an application to the transport layer for data transmis-
sion, the address is translated, if necessary, from user-friendly to IP address using an
application-support program that utilizes a global domain name directory service. We will
expand our discussion of DNS, the domain name system service in Chapter 13.

In addition to the message and the IP address to whom the message is being sent,
the transport identifies the application that created the message and the application that
is to receive the message with port addresses, or more commonly, port numbers.5 Port
numbers are sixteen bits in length. The first 1024 numbers are called well-known ports.
These are standard addresses specified for most common applications. You are probably

5Network port numbers are different than I/O ports. They are created and used in software, as opposed to
I/O ports, which are hardware based.
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FIGURE 12.16

Some Well-Known Port Numbers
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familiar with port number 80, which is commonly used
for Web services. Figure 12.16 shows the port numbers for
some of the familiar applications.

Port numbers can be modified by an application. A
large number of user-defined port numbers are available for
this purpose. To accommodate this option, the application
of the sender can specify the port number of the application
to which the message is being sent. For example, if a
user knows that the Web server being addressed is on
port 8080, instead of port 80 (a common trick used to
hide a Web server from users who do not have access
privileges), she can specify the port number by appending it
to the URL with a colon thus: www.somewhere.org/hidden
Server:8080.

FIGURE 12.17

The Different Addresses Used
in a Network
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As noted previously, the application sends its message to the
transport layer, together with sending and receiving port addresses
and sending and receiving IP addresses. The transport layer and
network layers perform the tasks we described earlier. The port
addresses will not be looked at again until the message reaches the
transport level at the receiver.

The network layer uses IP addresses to forward datagrams to
the receiving node. This is not the whole story, however, because
the data link and physical layers require physical addresses to
identify the nodes to which they are attached. Physical addresses
are associated with individual devices connected to a network. IP
addresses are converted to physical addresses by an address resolu-
tion protocol at the network layer. The details of this process are left
for Chapter 13. Both physical and IP addresses are required because

devices can be moved from one network to another and because IP addresses can be assigned
dynamically.

The physical addressing of individual devices attached to a network is part of the
standard for that type of network. By far the most common type of physical address in use,
however, is the medium-access control (MAC) address. Every manufactured device that
may connect to a network anywhere in the world is supplied with a permanent, unique
MAC address. A MAC address is 48 bits in length described as six two-digit hexadecimal
numbers separated by colons. For example, the Ethernet adapter for the computer upon
which this text is being typed has MAC address 00:C0:9F:6C:F9:D0.

Figure 12.17 shows the positions of all of the different addresses used in networking.

12.5 TYPES OF NETWORKS
There are numerous ways to categorize networks: by medium (coaxial cable, wireless, fiber,
for example), by protocol group (TCP/IP, Frame Relay, FDDI, ATM), by standard specifi-
cation number (802.3, 802.11, X.25), by usage (Web server, database server, peer-to-peer,
storage area network), or by range of service (Bluetooth, LAN, MAN, WAN) to name a few.
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The most familiar, and often most practical and useful, of these is to categorize
networks by their geographical range of service. A common approach is to categorize them
hierarchically. From smallest range to largest, the major categories are local area networks,
backbone networks, metropolitan area networks, and wide area networks. We will also
include Internet backbones and the Internet. These designations are somewhat arbitrary,
and more a matter of style and architecture than of rigid rule, but they are helpful as a
starting point for visualizing and designing networks. We will also mention briefly some
special cases: virtual local area networks, intranets, extranets, personal area networks (also
known as piconets), and virtual private networks, that do not fit neatly into the standard
categories.

Network Topology

Before we describe each type of network, we need to provide a brief introduction to the
concept of network topology. Network topology describes the fundamental layout of a
network. Topology is a characteristic of all networks, large and small. It defines the path,
or paths, between any two points in the network, and therefore affects the performance
of the network, particularly in terms of availability, speed, and traffic congestion. If you
picture the packets in a network as tiny automobiles (actually, this is often a useful way to
think about networks), there is an obvious similarity to automobile traffic. Figure 12.18
illustrates a few of the potential issues.

Figure 12.18(a) shows one common approach to road traffic design. A single main road
runs through a small city, with side roads intersecting the main road at regular intervals.
There is only a single road from one end of the city to the other. Traffic lights control the
flow of traffic along the main road, but of course, they must allow the lines of traffic on the
side streets to enter the main road from time to time. If traffic is sufficiently light (think
4 a.m.), this layout works adequately; at rush hour, it’s a nightmare!

Figure 12.18(b) shows an alternative approach. In this case, there are a number of
main streets running from one end of town to the other, with cross streets that allow traffic
to move from one main street to another. Traffic will distribute itself along different routes,

FIGURE 12.18
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depending on each driver’s preferences and destination. Traffic in general will probably
flow more smoothly, although there could be congestion at certain intersections.

Figure 12.18(c) shows a third approach. In this case a superhighway runs alongside
the city, with ramps at strategic locations that connect into the main streets. For short
distances, the average driver will use the city streets because it is easier: the distances are
shorter and the overall travel time is normally less. For longer distances, the superhighway
is the way to go.

Figure 12.19 shows the four basic topologies used for networks. Each topology has its
tradeoffs, advantages, and disadvantages. In given circumstances, a particular topology is
often more natural or appropriate for the application. The art of network design is about
selecting the right combination to attain the mixture of features, performance, network
availability, maintenance, cost, and convenience to meet a given set of requirements or
needs.

Figure 12.19(a) shows a mesh network. Mesh networks provide multiple paths between
end nodes. The failure of an individual intermediate node will slow, but not stop network
traffic as long as an alternative path is available. As you will see shortly, large networks are

FIGURE 12.19
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FIGURE 12.20

A Five-Node Full Mesh Network
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usually made up of a mixture of local area
networks, links, and connecting nodes, with
switches and routers connecting the different
networks and links together. By default, the
result is usually a mesh network. It is also
possible to create a mesh network intention-
ally, by design. ATM, mentioned earlier in
Section 12.3, is an example of a mesh network
of this type.

The ‘‘best’’ configuration for connecting
a number of end nodes would be to provide
a direct point-to-point channel connecting
each pair of nodes. This scheme, known as a
full mesh network, is not practical for most
installations, however, because the number
of lines required increases too rapidly as the
number of nodes increases. Furthermore, each
node requires an interface for each connecting
line. Figure 12.20 shows a mesh network with

five nodes. Even this simple case requires ten connections to provide full connectivity.
Since each node is connected to four others, the network also requires four interfaces for
each node, for a total of twenty interfaces. Simply increasing the number of nodes to twenty
increases the number of connections to 190 and requires 380 interfaces. For 500 computer
nodes, we would require nearly 125,000 interconnecting cables! In general, the number of
connections for a fully connected mesh network with N nodes is the sum of all integer
values from 1 to N−1. Fortunately, this reduces to a simple formula:

number of connections = (nodes) × (nodes−1)/2.

More realistically, most mesh networks are partial mesh networks. One rare exception
is the use of full mesh networks to connect a small number of major corporate centers for a
large organization in a metropolitan or wide area network, particularly when the network
traffic between centers is heavy and relatively evenly distributed.

Figure 12.19(b) shows a bus topology. Note the obvious similarity to the multipoint
buses described in Chapter 7. With a bus topology, each node is tapped into the bus
along the bus. To communicate, a sending node ‘‘broadcasts’’ a message which travels
along the bus. Every other node receives the message, but, because each node matches its
address to that of the message, the message is ignored by every node except that of the
desired recipient. Each end of the bus is equipped with a terminator to prevent signals
from echoing. Branches can be added to a bus, expanding it into a tree. Messages are still
broadcast through the tree. Terminators are placed at the ends of each branch in the tree.

Bus topology is the easiest to wire. It is only necessary to run a single pair of wires
from one end of the network space to the other. Bus topology also has the advantage of low
cost, however, traffic congestion is a major issue with bus topology. Compare this figure
with that of Figure 12.18(a) and the reason becomes clear. Bus topology is still in use for
legacy and local area networks and some backbone networks, but is now rarely used for
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new designs. Because of the unguided nature of radio waves, some form of bus topology is
a requirement for wireless networking.

Figure 12.19(c) shows a star topology. This topology is used primarily for local
area networks, although it is sometimes used in metropolitan and wide area networks to
connect individual centers of activity to a central office. In this configuration, all nodes
are connected point-to-point to a central device. Nodes communicate through the central
device. Switching in the central device connects pairs of nodes together to allow them to
communicate directly and steers data from one node to another as required. Most modern
switches allow multiple pairs of nodes to communicate simultaneously.

Figure 12.19(d) shows a ring topology. A ring topology consists of a point-to-point
connection from each node on the network to the next. The last node on the network is
connected back to the first to form a closed ring. Each node retransmits the signal that it
receives from the previous node to the next node in the ring. Packets are placed on the loop
at a node, and travel from node to node until the desired node is reached. Although the
ring is inherently unidirectional (data passes through it in one direction), it is possible to
build a bidirectional ring network.

Ring networks were popular in the past because they provided a controlled way in
which to guarantee network performance. This was an important issue when increased
network capacity incurred a large incremental cost. Today, that is no longer the case. It
is often cheaper and easier to increase capacity than it is to try to wring the last bit of
performance out of a network. Nonetheless, there are legacy token-ring local area networks
and FDDI fiber optic backbone and metropolitan area networks still in service.

When we consider topology—any topology—it is important to understand that
there is a difference between physical topology and logical topology. Physical topology
describes the actual layout of the wiring for the network. Logical topology defines the
operational relationship between the various network components. The physical topology
is unimportant when trying to understand how a network works, but very important to a
network designer trying to figure out where to place the wires in a room. However, our
focus in this text is on the logical topology only.

Local Area Networks

A local area network (LAN) is a network that connects computers and other supporting
devices over a relatively small localized area, typically a room, the floor of a building,
a building, or multiple buildings within close range of each other. Usually, most of the
computers in a local area network are personal computers or workstations, although
sometimes there may be larger server computers present. Supporting devices might include
printers, external storage devices, and routers. Routers, and perhaps gateways, will be used
to connect the LAN to other networks.

Some LANs are further limited in geographical scope by the particular medium in use.
Wireless Ethernet, commonly identified by its trade name, Wi-Fi, for example, is limited
to a maximum range of a few hundred feet under ideal conditions by the usable strength
of the radio signal that is used to carry the data. Walls and other obstructions will limit the
range of the signal even more.

Since all communication channels are limited in the amount of data that they can
carry, it is sometimes useful to design a LAN to minimize extraneous traffic on the network
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where possible. One common way to do this in business is to create separate LANs for
different business functions or departments. Traffic between the different LANs is enabled
by connecting the LANs together with a backbone network, as described later in this
section. For example, there would be a LAN for the accounting department, a LAN for
the marketing department, and so on. The interconnection between networks allows the
different departments to communicate with each other, as well as to access data stored on
central company servers. This was the approach shown in Figure 1.4 of Chapter 1.

There are different kinds of local area networks, each defined by its network protocols,
particularly the data link and physical layers, maximum bit rate, connecting media, topology
(the physical and logical layout), and various features. Most modern local area networks are
based on a set of standards and associated protocols called Ethernet. They are also identified
by their IEEE standards (see Section 12.6). The standards define Ethernet at the data link
and physical layers. Although Ethernet comes in a number of ‘‘flavors’’, three are prevalent:
switched Ethernet (IEEE 802.3), Wi-Fi (IEEE 802.11), and hub-based Ethernet (also IEEE
802.3). The Ethernet protocols are designed to make It is possible to mix different flavors
in a single network. There are a number of variations on each flavor. Figure 12.21 describes
the features of some of the prevalent Ethernet standards.

As an example of how Ethernet units operate together, consider a home network with
a router that also provides a wireless access point and an Ethernet switch. The router
uses Ethernet to connect to a DSL or cable modem for Internet access, an Ethernet cable

FIGURE 12.21
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FIGURE 12.22
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connects a printer directly to the switch, and one or more computers use wireless Ethernet
to connect wirelessly. See Figure 12.22.

FIGURE 12.23

Hub-Based Ethernet

Hub

As shown in Figure 12.23, hub-based Eth-
ernet is based on a the bus topology shown
in Figure 12.19(b). A hub is a passive central
connection device used to simplify wiring and
maintenance. A hub is a layer 1 physical layer
device. All of the connections at the hub are
simply tied together inside the hub. The word
‘‘passive’’ means that the hub performs no oper-
ation or modification of the signals as they arrive
at the hub. Signals arriving at the hub are simply
broadcast in their original form to every other
device connected to the hub. In other words,
logically the hub is basically a ‘‘squeezed-down’’
version of a multipoint bus topology. Network
interface units from various computers, com-
puter peripherals, and other network support
devices such as routers are connected to the
hub and share the ‘‘bus’’. The signals, of course,
represent frames. Since each frame has a des-
tination address, the NICs simply ignore the
broadcast data for any frame whose destination
address does not match that of the NIC.

Because every device connected to the hub
is sharing the bandwidth of the network, the
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FIGURE 12.24

Switch-Based Ethernet

Switch

bandwidth available to individual connections
decreases at least proportionally to the number
of units using the network. When traffic is heavy,
there may be many devices contending for use
of the bus. A medium access control protocol
called CSMA/CD (Carrier Sense Multiple Access
with Collision Detection) is used to manage
access to the bus, but, like the main street in
Figure 12.18(a), traffic jams can occur, and the
performance of hub-based Ethernet deteriorates
rapidly when traffic is heavy.

Hubs are used primarily in local area net-
works, but are also sometimes seen in backbone
networks. However, the use of hubs is declin-
ing because better performance can be obtained
from other devices that can isolate and oper-
ate on individual nodes, particularly switches,
discussed next.

Figure 12.24 shows an alternative topology
called switched Ethernet. Switched Ethernet is
based logically on a star topology. Each node
of the network is connected to a central switch
that is capable of connecting any two nodes

together. When a node on the network wishes to communicate with another node, the
switch sets up a direct connection between the two. Standard Ethernet cables contain at
least two pairs of wires, which are used to make the connections full-duplex. Multiple pairs
of nodes can communicate at full bandwidth through the switch simultaneously. For wired
local area networks, switched Ethernet is the prevalent method in use today.

Wireless Ethernet, or ‘‘Wi-Fi’’ is a radio-based, compatible extension to the Ethernet
standard. Wi-Fi is based around a central access point that is somewhat equivalent to a
hub. However the access point is an active node, since it must transmit and receive radio
waves to communicate with the nodes.

FIGURE 12.25
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There are a number of different ver-
sions of the Wi-Fi standard, operating at
different radio frequencies and with dif-
ferent bit rates. Only those operating at
the same radio frequency are compatible
with each other, however Wi-Fi compo-
nents that operate at higher bit rates can
slow their data rate for compatibility with
slower speed units. Some access points
and NICs support multiple radio frequen-
cies. Figure 12.25 compares the features
of the current Wi-Fi standards.

Like hub-based Ethernet, the ‘‘radio
space’’ must be shared; only one unit can
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transmit at a time. Therefore, the bit rate of Wi-Fi is dependent both on the specified
maximum speed and the number of simultaneous users. Twice the users means half the
speed.

Nodes on a Wi-Fi LAN attempting to transmit simultaneously are more difficult to
manage with Wi-Fi than with hub-based Ethernet, particularly because it is possible for
units to have radio signals that are strong enough to communicate with the access point
but still be far enough apart to be unaware of each other’s presence. The Wi-Fi standard
provides a number of medium access protocols to handle possible interference between
nodes. These protocols are proactive. They are designed to avoid collisions, unlike the hub
protocol, which is designed simply to detect and correct for collisions.

Traditionally, multiple access points have been linked by wire. A new standard
introduces the concept of mesh points, which extends the range of a wireless network by
creating a wireless mesh network of access points. Mesh points operate at the medium-access
control layer (layer 2) and are essentially invisible to the upper layers of the network. This
new standard effectively adds backbone capability to wireless networking. Figure 12.26
shows a simple wireless mesh network.

FIGURE 12.26
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More information about Ethernet local area networks will be found in Chapter 13.
Information about Wi-Fi and wireless networking in particular will be found in Section 14.4
of Chapter 14.

Backbone Networks

Backbone networks are used to interconnect local area networks. A backbone can tie several
local area networks together to provide for the passage of data between the individual
networks and from the networks to the Internet or other external network resources. A
primary motivation for a backbone network is to improve overall performance of a larger
network by creating separate local area networks for groups of users who communicate
primarily with each other. Network traffic can be isolated into small areas of usage, replacing
one large heavily used local area network with a number of smaller, isolated LANs. The
backbone enables communication between the individual LANs when it is required. For
example, a college campus might have LANs built around dormitory areas, plus wireless
access points in classrooms, study areas, libraries, dining halls, and various other points
around the campus where people congregate. A backbone network would provide the
interconnections between all of these LANs. The backbone network also makes it possible
to extend the overall range of the combined networks well beyond that of a single LAN.
In this case fiber optic cables in the backbone combined with the use of switches makes
coverage of a large geographical area, such as a large college campus, feasible.

One simple way to view a backbone network is to picture it as a large local area network
where each node is, itself, a local area network. Figure 12.27 shows an example of such an
Ethernet-based backbone network implementation. In this example, we have assumed that
the interLAN traffic would be light, so a hub-based form of Ethernet is used. If traffic were
heavy, or if the length of the connections between the hub and the individual LANs is long,
switched Ethernet would be used instead, that is, the hub would be replaced by a switch.
The longer cables and interconnections with heavier traffic might also be connected with
fiber optic cable instead of copper wire to improve overall performance. Since the backbone
network shown in Figure 12.27 is obviously hierarchical, the concept can be extended to
another hierarchical level, if desired. Some network designers actually call this backbone
network layout tiered Ethernet.

There are two additional features to observe in the backbone network shown in
Figure 12.27. First, is the presence of a server. Since it is located directly on an arm of the
backbone it is readily available from every LAN. The other feature is a router or gateway
that will connect the backbone to other networks through a common carrier. This feature
will enable the capabilities of metropolitan and wide area networking that we discuss below
and will also provide access to the Internet.

One important use for backbone networks is to extend the availability of wireless
Ethernet access beyond the limited range of an individual access point. Instead, multiple
access points are distributed over a large area to provide a wider range of coverage. A
backbone network provides the interconnection between the access points. This method
also improves the speed for individual users, since fewer users are sharing any single
access point. This is a particularly common application of backbone network technology
on college campuses. Although the current discussion is focused on wired or fiber optic
backbone networks, and although most access point backbones are currently based on wire
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FIGURE 12.27
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or fiber, we have already mentioned wireless mesh networks as a new alternative backbone
technology.

Backbone networks are well suited for small intranets. An intranet is an organizational
network where the user interfaces and applications are based primarily on Web services. Its
use is restricted to authorized users within the organization. Some network practitioners
refer to it as a ‘‘private Internet’’. Intranets for larger organizations require the connectivity
of metropolitan area networks or wide area networks. As we discuss next, the primary
limiting factor in larger networks is the ability to connect separate locations over intervening
public and private property.

It is worth mentioning that it is possible to design a backbone area network with switches
in such a way that the network can be reconfigured dynamically. Specifically, individual
hosts can be moved from one local area network to another by changing the settings in the
switches. This feature allows the network administrator to tailor the traffic load on various
parts of the network to optimize performance. Such a network is called a virtual local area
network. Further discussion of virtual networks is beyond the scope of this text.
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Metropolitan Area Networks

A metropolitan area network (MAN) is usually defined as a network larger in geographical
scope than a local area network, but generally within a range of less than 30 miles or
50 kilometers. A MAN would be used to connect several buildings in an area together or,
perhaps, connect a company’s buildings in a city or region together. Some communities
have built or plan to build MANs, both for their own use, and as a service utility for their
residents and businesses.

When the area is relatively small, it may be possible to implement a MAN almost
entirely with a combination of local area networks and one or more backbone networks,
plus some easy-to-manage form of Internet access such DSL. More commonly, there
is a desire to create network links to connect properties over areas that would require
right-of-way access, that is, permission to run wires through somebody else’s property.
When this is the case, a company generally requires services from a service provider (SP)
or other public carrier, and the infrastructure of the MAN begins to resemble that of a wide
area network. A service provider is a company that provides the equivalent of a link or links
between nodes that are not directly accessible to simple forms of connection, like wire or
fiber optic cable. A connection to a provider occurs at an access point on the customer’s
premises. The access point is usually connected to the company networks with a switch, a
router, or a gateway, depending on the type of connection. The connection is often referred
to as an edge connection, because it sits at the ‘‘edge’’ of the local network. Thus, a router
at the access point would be called an edge router.

Figure 12.28 illustrates the features of a medium-sized MAN. This business operates
a small chain of stores, together with a related, company-operated website. Most of the
business and IT operations in this company take place at company headquarters; those
needs are satisfied by an intranet consisting of local area networks connected with an on-site
backbone. On the outskirts of the city, however, are three additional offices with links that
connect to the backbone system at company headquarters.

The office that hosts the Web service is connected to the Internet with a high-speed
optical fiber link to an Internet Service Provider (ISP). (All connections to the Internet
are made through an ISP—more about that later.) The Web server is located here because
the ISP has a point of presence in the immediate vicinity that provides the required
connection. The office is connected to company headquarters with a point-to-point Metro
Ethernet link; Metro Ethernet is a relatively new approach, in which a service provider
provides Ethernet access to each site, creating a logical connection between the two sites.
The literature refers to this link as an Ethernet Virtual Connection. Standard Ethernet
switches at the access points connect the company’s backbone network to the service at the
headquarters and to a local area network at the satellite office.

A brief comment about the carrier providing the Metro Ethernet service offers a
worthwhile opportunity to expand your perspective on the protocol layers in the network
models. We noted earlier in the chapter, in Section 12.4, that the network model makes it
possible to substitute protocols for a given layer (in the example, SCSI over IP), provided
the interfaces between layers are suitably maintained. The network within the service
provider itself, then, has a number of options that are transparent at the access points.
Some provider networks are based entirely on Ethernet, from end to end, but many use
alternative protocols within their own networks, for various reasons including bandwidth
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FIGURE 12.28
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control, protection of service privacy, reliability, scalability, and legacy (i.e., the system was
already in place). Common alternatives include (Ethernet over) MLPS, ATM, Sonet, and
SDH. (A brief overview of these protocols will be found in Chapter 13.) Metro Ethernet
was developed specifically with metropolitan area networks in mind.

The other two offices communicate with each other and with headquarters using
a virtual network created by a carrier using T1 lines and a Frame Relay supplied by
the telephone company. T1 and Frame Relay are more traditional approaches to carrier
connectivity. Gateways are required to convert between the various office networks in this
case.
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This figure illustrates a number of fundamental features of metropolitan area net-
working. Most important, notice that the carrier-provided service links and the links in
the outlying offices form an integral part of the overall company network, just as though
they were all located on the same premises with the main backbone network. With this
understanding, you can see that the design is based on traffic requirements between the
different offices and between each office and headquarters, just as the backbone network
was designed to optimize traffic with each LAN and between the various LANs.

The role of the service provider is to supply network links that are transparent to the
overall topology of the network. There are a number of different options available. We
will expand on the various types of service connections in the discussion of wide area
networking.

Some network specialists also define a network type between LAN and MAN, which
they call a campus area network (CAN). A campus area network consists of a number of
interconnected local area networks operating over a limited geographic region consisting
of several buildings clustered together, such as would be found on a college campus,
military base, or multi-building company setting. Campus area networks are commonly
implemented as backbone-based networks with high-speed optical fiber interconnections
that are topologically similar to MANs, but without the requirements of a service provider.
One or more edge gateways or routers connect the campus area network to the Internet
and perhaps to other facilities, as well. Connections to other facilities would, of course,
create a more MAN- or LAN-like configuration.

Wide Area Networks (WAN)

Wide area networks are networks designed to facilitate communications between users and
applications over large distances—between the various corporate offices of an international
organization that are located in cities all over the world, for example.

There are two primary compelling reasons for designing and building wide area
network capabilities:

■ An organization requires data communication links between widely spread
facilities and between an organization and its business partners, customers, and
suppliers.

■ An organization requires fast access to the Internet, either as a consumer or as a
provider of Internet services, or both.

These two requirements, may, of course, overlap substantially. For example, an
extranet is a connection between a business and its business partners, used for the exchange
of information and services, and for collaboration, coordination and planning. The Internet
is generally preferred as the medium for extranet activities.

The main distinguishing feature that characterizes the wide area network concept is
the extensive reliance on service providers to supply the required connectivity between the
various locations of the network nodes. The distances are too large to connect directly with
a network owner’s own resources and it is impractical to obtain rights of access to all of
the intervening property, public or private. Plus, it just isn’t practical for a company to lay
its own cable across the Pacific Ocean! Wide area networks require the use of resources
that are within the sphere of public switched telephone networks (PSTNs), large cable
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companies, and other common carrier service providers. A company builds its network
at each location out to an edge access point, usually a gateway or router, at which point
it is connected to the carrier’s facilities with a leased line to the carrier’s nearest point of
presence.

Despite the distances between nodes, it is still possible to view the networks as a whole
in the same way as we have viewed other, much smaller networks. Local area networks and
backbone networks, and, perhaps even metropolitan area networks, are linked to form a
large wide area network. However, it is common to represent the services provided by the
carrier as a ‘‘black box.’’ (Actually, they are usually represented as a cloud!) Our interest
in the details of the carrier network are generally limited to the edge connections and to
the performance of the network as a whole. For clarity, the carrier network is sometimes
represented as a collection of private virtual circuits, within the cloud which reflect the
logical connections of the wide area network as a whole.

Most wide area networks are classified topologically as partial mesh networks, but
occasionally you may see examples of full mesh topology and star topology at the visible
and logically connected top level of a wide area network. Figure 12.29 shows two examples
of wide area network configurations. Figure 12.29(a) shows an example of a star-configured
wide area network. In this example, all of the logical connections within the carrier network
connect between individual regional research and educational centers and the main center
in Amsterdam. There are no direct connections between the branches. Figure 12.29(b)
shows a more typical partial-mesh configuration.

There are a number of different options to provide the carrier connections for a wide
area network These can be classified into three categories, according to the layer of the
network selected for access: physical, data link, or network. The table in Figure 12.30 shows
some of the more popular options.

Internet Backbones and the Internet

In theory, it should be possible to link any two computers or computer-based devices in
the world using nothing but the routing capabilities of interconnected networks, TCP/IP,
routers and gateways, plus appropriate data link layer software and physical connections.
And indeed, the Internet is a gigantic partial mesh network, connecting a high percentage
of all the computers in the world. In practice, though, the number of intermediate nodes,
measured as hops between nodes, would make this scheme impractical. The connections
would be too slow, the order of arrival of packets too erratic, and the traffic too heavy, to
sustain the effort for long. Although the Internet concept postulates that such connections
can occur, it is more practical to provide fast connections between distant points to reduce
the time it takes to traverse long distances, to reduce the number of hops to just a few,
and to reduce the traffic on the local connections. The Internet can be compared to a
structure of roads and highways. We travel on long distance, high-speed, limited access
superhighways for the longest legs of a journey and use the local roads for initial access
to the highways and for the final access to our destination. There might even be a middle
tier of medium-speed highways that provide a means to get from the nearest superhighway
exit to the network of local roads. In the United States, for example, Interstate highways
provide the long legs of the journey, national and state highways the connections to the
local roads of cities and towns, and local roads to start and finish our journeys.
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FIGURE 12.30

Wide Area Network Carrier Options

Layer Name Description Speed range Media

1
(Physical)

T-1, T-2, T-3, 
T-4, E-1, E-3;
(fractional T-1)

Traditional telephone co. T-lines, 
E-lines; known as Digital Service 
(DS-1, etc.)

OCn/STMn 50 Mbps–40 Gbps fiber opticSONET/SDH Optical fiber network

1.5 Mbps–275 Mbps 

(< 1 Mbps)

data-grade 
UTP or 
fiber optic

2 
(Data Link)

DSL (HDSL,
HDSL2, SHDSL)

Digital Subscriber Line, 
business class

384 Mbps–2.3 Mbps voice-grade 
UTP

IP carrier
network

Similar to Internet, but private;
used for corporate; carrier may
use MPLS, ATM, Ethernet,
SONET, ...

depends on carrier depends on 
carrier

Frame Relay Public Switched Data Networks
(PSDN)

1.5 Mbps–45 Mbps depends

ATM Asynchronous Transfer Mode 155 Mbps–650 Mbps 
std., several Gbps
unofficial

any

3 
(Network)

Internet Use the Internet, usually with
VPN for security

depends on ISP
connections

depends on 
ISP

Although there is no official central backbone for the Internet and no official guidance
for its development, the Internet has developed similarly. All access to the Internet
is provided by ISPs—Internet Service Providers. The arrangement is approximately
hierarchical. A small number of large ISPs, known as national or international service
providers, have built high-speed fiber optic Internet backbones that carry traffic between
large cities throughout the world. The speeds of these backbones generally range from 45
to 625 GBps, with faster backbones on the way. Interchanges between these backbones
occur at network access points (NAPs). Smaller ISPs, known as regional ISPs, receive
their Intenet access from one or more national service providers. In addition to their
interconnection with the national service providers, most regional ISPs also interconnect
among themselves. Local ISPs receive their service from the regional ISPs. Most of us are
customers of local ISPs, although large businesses and others with stringent requirements
may connect directly to the regional or, even, national service providers. We connect to
the Internet at one or more service provider’s points of presence. Figure 12.31 shows a
comparison between the road system and the Internet.

Piconets

Piconets, or personal area networks (PANs) are a different category than the other
networks previously discussed. These are networks created for the personal use of an
individual. They generally have ranges of thirty feet or less, sufficient for an individual to
interconnect his personal computing devices. Connections between different cooperating
users are possible, but rare. Bluetooth is the primary medium for personal area networks.
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FIGURE 12.31

A Comparison of Internet and Highway Architecture
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Bluetooth is used for such purposes as the interconnection between a cell phone or GPS and
a car radio or hands-free speaker/microphone device, or for transferring and synchronizing
pictures and other data between a cell phone and a computer.

12.6 STANDARDS
The need for data communication standards is evident throughout this chapter. Amusingly,
there is no single standard or standards organization for creating standards. Instead,
there are a number of different government agencies, technical groups, trade groups, and
industry organizations, each of whom are responsible for particular areas of standardization.
Occasionally, this has resulted in competitions and conflicts, but for the most part this
technique has worked pretty well.
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The major organizations that participate in the creation of standards for data com-
munications, networks, and internetworks include ISO, the International Organization
for Standardization, an agency made up of standards-setting organizations from many
countries (www.iso.ch); the International Telecommunications Union Telecommunica-
tions Group (ITU-T), a UN agency made up of various major players from other standards
organizations, government agencies, and industry representatives; the Institute for Elec-
trical and Electronics Engineers (IEEE), a technical organization that oversees most local
area networking standards (www.standards.ieee.org); and the Internet Engineering Task
Force (IETF), a large volunteer group of network designers, network operators, industry
representatives, and researchers, operated under the auspices of the Internet Society, a
nonprofit corporation (www.ietf.org).

ISO is probably best known to network engineers for its development of the OSI
Reference Model, but it has also published more than 17,000 international standards on a
wide variety of topics, ranging from steel to sewing machines to telecommunications.

Among other technical standards, IEEE is responsible for the standards that define
most local area and metropolitan area networking, including Ethernet (802.3), Wi-Fi
(802.11), Bluetooth (802.15), and WiMax (802.16).

IETF is concerned with the evolution of the Internet architecture and the smooth
operation of the Internet. IETF standards are based on a large published list of requests
for comments (RFCs), that define every aspect of TCP/IP and the Internet. There are more
than 5000 RFCs, representing information, proposed standards, and accepted standards.

There are various other groups who monitor very specific areas. Of particular interest
to us are ICANN and IANA. The Internet Corporation for Assigned Names and Numbers
(ICANN) is a private, nonprofit corporation responsible for IP address allocation, domain
name registration, and protocol parameter assignment, as well as management of domain
name and root server systems (www.icann.org). ICANN also maintains a list of registrars
accredited to assign domain names to individuals, groups, and corporations. ICANN
also operates the Internet Assigned Numbers Authority (IANA), which is responsible for
registering application layer port numbers, as well as the specific parameter values used in
the headers of various Internet protocols and other similar tasks (www.iana.org).

SUMMARY AND REVIEW

Chapter 12 introduced many different aspects of networking. Networking is ubiquitous—it
is hard to find a computer of any kind that is totally unconnected from a network. Organi-
zations rely on networks for their daily work and to interact with customers, collaborators,
and suppliers. Individuals use networks to locate information, make purchases, and for
interpersonal communications: e-mail, instant messaging, social networking, and more.

Networks work by passing messages over a channel between end nodes. The channel
may be divided into links, made up of local area networks and point-to-point connecting
links between intermediate nodes. Individual links may differ in data format and medium.
Switches, routers, and gateways steer messages from one node to another, converting the
data format as necessary at each node.

The basic unit of data communication is the packet. Messages are broken into packets
for transmission through the network. The prevalent transmission media are fiber optic
cable, copper wire, and radio.
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Packets are routed using either packet switching or virtual circuit switching. With
packet switching, each packet is routed individually. With virtual circuit switching, all
packets in a message follow the same path through the network.

Management of packets is performed by protocol suite software. The most common
suite is TCP/IP. TCP/IP tasks are divided into five layers: application, transport, network,
data link, and physical. Most messages are created at the source application layer, are
converted to packets, and pass through the other layers, adding header information at each
layer along the way. At the destination, the process is reversed; each layer strips off its
header, until the message is finally delivered to the corresponding application.

There are four types of addresses used in networking. Port numbers identify the
application. IP, or logical, addresses are used for the source and destination. Physical
addresses identify each hardware component. User-friendly addresses, such as domain
names, make it easier for users to interact with the network.

Topology describes the physical and logical layout of a network. The common
topologies include bus, start, mesh, and ring.

Networks are loosely categorized by range as local area networks, backbone networks,
metropolitan area networks, and wide area networks. The Internet is a large wide area
network. There are also personal area networks, of which Bluetooth is the best-known
example.

FOR FURTHER READING
Chapter 12 presents a general overview of networking. There are many excellent
network/data communications textbooks that can support and expand your understanding
of networks. The ones listed here are just a sampling that reflect my personal preferences
at the time of this writing. New data communications textbooks appear frequently; the
recommendations and personal reviews at amazon.com may be helpful in sorting through
the many possibilities. My current basic preferences, based primarily on the appropriateness
of level of difficulty, readability, breadth, and accuracy, are Stallings [STAL09], Kurose
[KUR08], Dumas and Schwartz [DUM09], and Panko [PANK09]. At a more advanced
level, Forouzan [FOR07] is also excellent. The IP Datagrams on Avian Carriers rfc men-
tioned in the text can be found at www.ietf.org/rfc/rfc1149.txt; the test, with pictures and
comments, is located at www.blug.linux.no/rfc1149.

There are a number of books devoted specifically to TCP/IP. One appropriate choice
is Comer [COM05]. Parker [PARK02] is another. Parker presents TCP/IP in a very
straightforward, self-teaching way. The specifics of ATM are discussed in great depth in a
special issue of the Communications of the ACM for February, 1995.

KEY CONCEPTS AND TERMS
access point
analog
asynchronous transfer

method (ATM)
backbone networks
bandwidth

best-effort delivery
service

bit rate
broadcast
bus topology
byte stream

Carrier Sense Multiple
Access with Collision
Detection (CSMA/CD)

circuit switching
communication channel
connectionless service
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connection-oriented service
datagram switching
demodulation
domain name
edge
edge router
Ethernet
extranet
fragment
frame
full-duplex channel
gateway
guided medium
half-duplex channel
hop
hosts
hub
hub-based Ethernet
Internet backbone
Internet Service Provider

(ISP)
intranet
IP address
IP datagram
layer 3 switches
links
local area network (LAN)
logical addresses
logical connection
logical link control

sublayer
logical topology

medium-access control
(MAC)

MAC address
mesh network
mesh point
message
metropolitan area network
modulation
network access point

(NAP)
network interface controller

(NIC)
network topology
nodes
octet
Open Systems

Interconnection
Reference Model (OSI)

packet
packetization
packet switching
peer
personal area network

(PAN)
physical address
physical topology
piconet
point of presence
port address
port number
private virtual circuits
protocol stack

public switched telephone
network (PSTN)

reliable-delivery service
requests for comments

(RFCs)
right-of-way access
ring topology
route
router
segments
service provider (SP)
simplex channel
socket
star topology
Stream Control

Transmission Protocol
(SCTP)

switched Ethernet
TCP/IP
tiered Ethernet
Transmission Control

Protocol (TCP)
unguided medium
user datagrams
User Datagram Protocol

(UDP)
virtual circuit
virtual local area network
well-known port
wide area network (WAN)
Wi-Fi
Wireless Ethernet

READING REVIEW QUESTIONS
12.1 Offer at least three examples that show the importance of data communications

in your daily life.

12.2 What is a message in the context of data communications?

12.3 Explain briefly the communications between a Web browser and a Web server
in fulfilling a Web page request.

12.4 State at least three reasons why messages are broken into packets for transmission
through a network.

12.5 What is the physical or logical connection between a sender and a receiver called?
This connection is usually broken into several parts. What are those parts called?
What are the connection points between parts called?
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12.6 State three major general characteristics that define a channel.

12.7 What is routing? Explain the difference between circuit switching and virtual
circuit switching. What is a third, more common, alternative? How does it differ
from the other two?

12.8 TCP/IP is arguably the most important example of a protocol suite. Why is it
called a suite? Name another protocol suite that could be used for networking.

12.9 Including the layers that are not ‘‘officially’’ part of TCP/IP, how many layers are
there in the TCP/IP network model? Name and briefly describe each layer. Offer
at least one specific example of a protocol at each of the layers that is an official
part of the TCP/IP standards. At what layer does HTTP reside?

12.10 What is the relationship between neighboring layers in the TCP/IP model? What
is the relationship between corresponding layers at the sender and receiver nodes?

12.11 What is the major advantage of layering in the network model?

12.12 What is a socket?

12.13 Explain the major differences between TCP and UDP.

12.14 IP is described as a ‘‘best-effort delivery service’’. What does this mean?

12.15 What layer simply delivers a stream of bits from one node to another?

12.16 How many layers are there in the OSI model? What are the layers that are not
found in TCP/IP called? What is their relationship to the layers in TCP/IP?

12.17 What is the more common name for a logical address?

12.18 Explain the use of port numbers or port addresses.

12.19 What is a MAC address?

12.20 Identify and briefly explain the four fundamental topologies used in networks.

12.21 What is the difference between a physical topology and a logical topology?

12.22 What are the advantages of switched Ethernet over hub- or bus-based Ethernet?

12.23 It is common to characterize networks by their range or area of coverage. What
are the major categories of networks based on this criterion?

12.24 What is the purpose of a backbone network?

12.25 Explain intranet.

12.26 What is the major difference in implementation between a LAN and a MAN or
WAN?

12.27 What is an edge connection in a MAN or WAN?

12.28 What is a point of presence?

12.29 Who owns Internet backbones?

EXERCISES
12.1 Discuss the trade-offs between circuit switching, packet switching, and virtual

circuit switching.

12.2 Explain the differences between circuit switching and virtual circuit switching.

12.3 Explain the differences between virtual circuits and packet switching.
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12.4 Consider the e-business system of a large automobile manufacturer such as Ford.
List at least a dozen mission-critical ways that this system would be used to
communicate between its various locations, between itself and its suppliers, and
between itself and its dealers. For each item, indicate the benefit that results from
the networking capability of such a system.

12.5 In the text, we identify four different ‘‘addresses’’ that are normally used during
the passage of a message from source to destination using TCP/IP and Ethernet.
These include a ‘‘user-friendly’’ address, a port number, an IP address, and a
physical address. For each ‘‘address’’, state which layer or pair of layers uses that
address and explain carefully how the address is used.

12.6 Describe, as precisely as you can, the tasks that must be performed by a NIC
connected to a network.

12.7 A short-circuit failure is a failure in which the connection point signal line is
electrically shorted to ground. Although NIC short-circuit failures are extremely
rare, they do occur occasionally. What is the effect on a bus-based network if a
short-circuit failure occurs? How would a repair person locate the source of the
problem? What is the effect of an open-circuit failure?

12.8 Suppose that you are trying to design a network that would be suitable for
a company that is located in several buildings scattered around a town. No
building is more than a 1/4 mile from another building, but direct wire
connections between all buildings are not possible due to roads, houses, and
other obstacles. Propose a network configuration for this company, and justify
your proposal.

12.9 Packages and high priority mail are handled by The Typical Large Corporation
(TyplCorp) in a way that is typical of large corporations. Each company building
has a centralized mailroom where packages are received from personnel from
various departments. Packages destined for other offices in the same building are
delivered directly by the mailroom to those offices. Other packages are picked up
by a van driver for OPS (Other Parcel Service) for handling and delivery by OPS.

The OPS driver delivers the packages to a local district OPS office where
packages are sorted for shipment to different areas. Packages with addresses
within the district are delivered directly by the local OPS drivers. Other packages
are trucked to the nearest OPS central air shipping facility. At OPS air shipping
facilities, packages are normally each shipped to a facility near their destination,
trucked to a district office, and delivered. However, during peak seasons or bad
flying weather, some packages may be shipped more indirectly, by truck or air,
through multiple central facilities and district offices, before they reach their
final destination.

Network professionals would argue that the OPS model is nearly identical to
the TCP/IP model conceptually. Carefully describe the similarities between these
two models.

12.10 Describe clearly, step by step, and layer by layer, the operation that takes place
when passing a datagram through an intermediate node in a switching network.

12.11 Is it possible to build a network that can recognize more than one protocol? If
so, explain how this could be done.
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12.12 The TCP/IP protocol suite appears to have no equivalents to the OSI session
and presentation layers. How are the services provided by those layers handled
in TCP/IP? Be as specific as you can when you refer to the particular services
provided by those layers.

12.13 Carefully explain the difference between the physical topology of a network and
the logical topology of a network.

12.14 Suppose you own a widespread chain of turkey tartare and sushi fast-food joints.
Your stores are scattered all over the mainland United States and Canada. There
are also a few stores in Western Europe. The computers in each store must
communicate with the central operation in Texas on a regular basis, but not
with each other. Design a network that would meet the requirements of your
company.

12.15 IP is described as a ‘‘best-effort delivery service’’. What exactly does this mean?
What happens if the ‘‘best effort’’ is not good enough?

12.16 Using the operations of UDP and TCP as a basis, carefully explain the difference
between connectionless and connection-oriented communication.

12.17 Your cousin has asked you to help her to design a small home network for her
own use.

a. What are the important questions that you will need to ask as you start to
consider your design?

b. What are the critical components that you will need to specify in your
design?

12.18 Each of the input and output ports on a router have a separate physical address.
Why is this an important requirement for the operation of a router in a network?

12.19 Explain the relationship between corresponding layers at the source and desti-
nation nodes of a TCP/IP communication connection.

12.20 Locate and read the proposed standard and test report for the ‘‘IP over Avian
Carrier’’ proposed standard. Explain how this proposed standard fulfills the
requirements of the TCP/IP model.

12.21 Locate protocol information for the IBM System Network Architecture (SNA)
model. Compare the operation of SNA with that of TCP/IP.

12.22 Locate, download, and install a copy of traceroute or tracert software. Use the
software to ping an IP address at least 2000 miles from your location. Do this
several times and record the paths that your packets take. Assuming that you’re
not unlucky enough to have all your packets use the same route, draw a diagram
of the portion of the mesh network revealed by your results.

12.23 Draw a six-node full mesh network. How many connections did your drawing
require? Does this agree with the formula in the text? (If not, fix your drawing!)
How many connections would a fifty-node full mesh network require?
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13.0 INTRODUCTION
Although there are other types of networks and network protocol suites, the combi-
nation of TCP/IP and Ethernet represents the vast majority of network connectivity
and use today. Chapter 12 presented a careful introduction to the basic concepts
of networking, and introduced TCP/IP and Ethernet. In Chapter 13, we expand the
discussion to clarify many areas of importance and interest in the implementation of
TCP/IP and Ethernet networks. The goal in Chapter 12 was to help you to achieve a
basic understanding of networking. The goal of Chapter 13 is to add richness and color
to the overall picture of how your e-mail and Web surfing and IMing retrieves your
Web pages successfully most of the time and gets your messages to the right place.

This chapter focuses particularly on TCP/IP and Ethernet protocols that solve some
of the more interesting and important problems—domain name translation, the for-
mats of the packets, address resolution between IP and physical addresses, and the like.
We also expand our discussion of TCP/IP and the Ethernet to improve your under-
standing of the overall process of moving packets of data from one place to another.

For this chapter, we have taken a different approach. In Chapter 12 you studied
the overall operation of the five layers of a TCP/IP-Ethernet network transaction,
starting at the application layer of a source end node with a data request and working
down to the lower layers, through a number of intermediate nodes, to the destination
end node. In this chapter, we review the overall process, stopping to raise various
issues of interest along the way.

Section 13.1 briefly reviews the application layer as background for the remaining
discussion.

Section 13.2 raises the first important issue of interest: the method used to extract
the domain name from the URL and convert it to an IP address using DNS.

After obtaining the IP address from DNS, the application sends its request to the
transport layer. Section 13.3 discusses some of the features of the transport layer.

Section 13.4 addresses several issues that arise in the networking layer: the nature
of IP addresses, DHCP, and ARP, the address resolution protocol.

Section 13.5 is concerned with the operation of the medium access control portion
of the Ethernet data link layer.

In the final sections of the chapter, we briefly address two additional issues: quality
of service and network security, and also provide brief overviews of other important
technologies that are alternatives to TCP/IP and Ethernet.

13.1 INTRODUCING THE PROCESS—THE
APPLICATION LAYER

The TCP/IP protocol offers a large number of applications for use on a network.
These include voice over IP telephoning, video conferencing, instant messaging (IM),
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remote login, RSS news feeds, file transfer, remote program execution, and much more.
Nonetheless, three applications: Web services, e-mail, and peer-to-peer music and video
sharing account for the vast majority of the traffic on the Internet.

We remind you at the outset that a typical communication requires lots of little
operations. Each operation is, in itself, fairly simple, but they all add up to a powerful
and elegant set of tools for communication. At the same time, trying to view the whole
picture at once can be somewhat intimidating. As you read through the description that
runs through this chapter, be sure that you always keep the simplicity in mind!

For this purpose, we assume that a user sitting at his computer types a URL into
his Web browser. The URL consists of a domain name. In Chapter 12, Figure 12.2 we
showed you the format of an HTTP message that is sent by the Web browser HTTP client
application to an HTTP server application in response to a user’s request for a Web page.
As you are already aware from the previous chapter, the HTTP client initiates the process
with a request to the TCP socket to establish a logical connection with the HTTP server
at the destination site. Before it can do so, however, the HTTP client must first obtain the
IP address of the computer that holds the Web server. For this purpose, the HTTP client
will request the services of a domain name service application. This is the first step in the
process of sending the HTTP message to the Web server.

13.2 DOMAIN NAMES AND DNS SERVICES

Domain Name System Directory Services

As a user you know that domain names serve as user address identifiers for most of
your network transactions. Domain names are used throughout the Internet, as well as
on local area networks, intranets, and extranets. As we noted in Chapter 12, network
navigation within the network itself relies on numeric IP addresses and physical addresses.
The inventors of the Internet understood that the average user would have difficulty
remembering the number groupings that are used as IP addresses, and created a hierarchical
system of domain names as an alternative. The decision to offer translation from domain
names to IP addresses as a basic Internet service is one of the cleverest and most successful
aspects in the original development of the TCP/IP protocol suite.

When an application requests services from TCP, UDP, or SCTP at the transport layer,
it must supply a numerical IP address. TCP/IP provides a support application that fulfills
the role of the Domain Name System (DNS) protocol, to translate domain names into IP
addresses. The DNS application uses a massive distributed database organized as a directory
system of servers to obtain the required information. Each entry in the database consists of
a domain name and an associated IP address (plus some other information about the entry
that is not of concern to us here.)

The directory system that is used to translate domain names into IP addresses is
organized as a tree structure, very similar to the directory structure of a computer operating
system, except that there is a separate server at each node on the tree. Figure 13.1 shows the
structure of the tree. Each directory node on the tree provides name-to-IP address services
corresponding to its position on the tree. There are three primary levels of interest. Below
that, individual domain name owners can extend the number of levels down as far as they
wish for convenience of organization and clarity.
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FIGURE 13.1

Domain Name System Server Hierarchy
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At the top of the tree is the root directory, called the DNS root server. Actually, there are
thirteen of these servers, scattered all over the world, and each of them is actually a cluster
consisting of many computers, also disbursed widely. As you will see shortly, the DNS root
servers must handle a large number of queries, more than 50 billion a day as of June 2008.
Disbursing the root servers geographically reduces the amount of long distance traffic by
providing nearby access for as many queries as possible. The DNS root servers have entries
for all of the so-called top-level domains. There are country-code top-level domain name
servers (ccTLDs) for every identifiable country in the world plus a number of authorized
commercial and noncommercial type domains. The non-country-code domains include
.com, .edu, .org, .net, and many more. In mid-2008, a decision was made to allow the
creation of additional top-level domains. Figure 13.2 shows a table of some of the leading
top-level domains in current use. As of June, 2008, there were more than 160 million
domain name registrations, according to the Domain Name Industry Brief [Domain2008].

Domain names below the top-level domains are registered for a small fee by users
with one of a number of registrars. ICANN (see Chapter 12, Section 12.6) assumes overall
responsibility for the millions of registered names on the Internet. Domain names at this
level are called local domains. The name must, of course, be unique; there can be no
duplicates anywhere in the world. Once the domain name is registered, it can be used to
assign names of individual nodes or hosts within that domain, and matched to one or more
assigned IP addresses. Domain names are read left to right, from the lowest subdomain to
the top level domain. See Figure 13.3 for an example.

Each local domain must register the IP address of a domain name service of its own
to identify its hosts and subdomains, if any. This server is called an authoritative domain
name server. In the simplest case there are no subdomains. Rather than complicate matters,
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FIGURE 13.2
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simple domains usually rely on the authoritative domain name service of the Internet
Service Provider to fulfill this requirement. Larger domains provide their own authoritative
DNS servers. The authoritative domain name servers are the third tier in Figure 13.1.

Each top-level domain maintains multiple servers with tables containing entries for
all of the registered names; each name entry contains the IP address of its authoritative
domain name server. As you can imagine, the tables for .com are huge! These tables are
updated continually. Multiple servers are required to handle the volume, for redundancy,
and to protect the integrity of the Internet domain name system against attacks. These
servers are also widely disbursed geographically. Each table is updated and synchronized
periodically, using a process called replication.

Now, consider a slightly simplified step-by-step description of the translation process
that takes place when a user types a URL into her Web browser application. The translation
process is known as domain name resolution. The steps are diagrammed in Figures 13.4
and 13.5. Figure 13.4 is a simple pointer diagram showing each of the steps. Figure 13.5
is a traditional flow diagram showing the same information in a different way. Both are
included to make it easier for you to follow the steps.

1. The HTTP application extracts the domain name from the URL and requests
resolution of the name from the DNS support application. The DNS support
application is a client program residing on the same host as the HTTP
application, so this is a simple program call. The DNS client issues a query packet
with the name to a local DNS server for resolution.

FIGURE 13.3

The Elements of a Domain Name
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FIGURE 13.4

Resolving a Domain Name to its IP Address
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The local DNS server is not part of the domain name server hierarchy. It could be
on the host machine requesting service, or elsewhere. More commonly it is
located elsewhere, on the same LAN as the host or at an ISP’s site. Regardless of
where it is located, its IP address is already known by the DNS client application.
Its task is simply to respond to requests from the DNS application with the IP
address requested. Note that the DNS client request must follow the usual path
through the layers of the network model. Since DNS request packets are simple
and small, UDP datagrams are used for packet transport.

2. The local DNS server table generally contains the addresses of its own
subdomains. It also frequently contains the addresses of commonly used domain
names, such as www.google.com and www.yahoo.com, as well as addresses for
various top-level servers. It also stores, on a more temporary basis, the names
and IP addresses resulting from other recently issued requests. If the information
is in the local DNS table, the information is returned to the DNS client by the
local DNS server as a response to the query (again through all five layers, using
UDP as the transport mechanism.) The DNS client passes the IP address to the
HTTP application. The DNS application’s job is done.

3. If the local DNS server does not have the information in its own table, the
process continues. Unless the local server already has an IP address for the
appropriate top-level DNS server, it must query one of the DNS root servers
seeking that address. In that case, the root server responds with the IP address of
a nearby top-level server.

4. Next, the local DNS server issues a query to the DNS top-level server, requesting
the IP address of the authoritative DNS server associated with the requested
domain name.
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5. Finally, the authoritative DNS server responds with the
requested IP address. The local DNS server returns the
address to the DNS client on the host machine making the
original request. The IP address is delivered to the HTTP
application. We’re done!

FIGURE 13.5

Resolving a Domain Name - Flow Diagram
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DNS offers useful services beyond the basic one-to-one
name-to-IP address translation service described above. Two
of these are mentioned here:

■ The domain name system permits the use
of alias names that share the same IP address. This
is particularly useful when the actual host is deep
within a subdomain and is hard to remember. Its
name can be aliased with a simpler name. DNS can
determine the actual name and IP address from the
simpler name. This aliasing capability even extends
to the use of the same alias for both Web and mail
applications.

■ DNS can also perform load balancing for
organizations that require multiple replicated servers
to handle large request loads. An obvious example of
such an organization is google.com, whose websites
receive billions of communications every year. Recall
that we mentioned in Chapter 2 that google.com
has a large number of Web server sites all over
the world for handling search queries. Each site is
connected to a different part of the Internet and each
site has its own IP address. However, one domain
name, google.com is associated with all of these sites.
DNS includes all of the IP addresses associated with
that name in its database. DNS will return the entire
list of potential IP addresses in response to a query;
however, it modifies the order of the listing each
time a query is made. DNS clients normally select
the first IP address on the list, therefore the requests
are distributed approximately evenly among the
different sites. This has the additional advantage of
equalizing the traffic load over different parts of the
Internet.
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13.3 NEXT STEPS—TCP AND
THE TRANSPORT LAYER

Once the HTTP application has obtained the IP address, it is ready to pass the request to
the transport layer for transmission through the network. HTTP issues a request asking
TCP to open a connection to the desired website. Sockets (see Chapter 12 if you forgot
what these are) are used for this purpose. Sockets are equivalent to an open door through
which messages can pass. The use of sockets makes it possible to create multiple open
connections through which data can flow simultaneously without losing track of which
is which. Obviously, a Web server must be able to handle many requests simultaneously.
The HTTP request includes the IP address of the site and the port number of the server
application at the destination, presumably port 80 in this case.

As we already discussed in the previous chapter, TCP sends a packet (through the
usual network layers) to TCP at the Web site, requesting a connection; this results in
a brief back-and-forth series of requests and acknowledgments known as handshaking.
See Figure 13.6. If the negotiation is successful, a connection is opened. This connection

FIGURE 13.6

Three-Way TCP Connection Handshake
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FIGURE 13.7

TCP Segment Format
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is logically a full-duplex connection, both because Web page requests from the browser
application at one end node will result in file transfers from the Web server at the other, and
because TCP requires an acknowledgment packet be sent in return for every packet received.

Figure 13.7 shows the format of a TCP packet. The same format is used at both ends of
the connection. Notice that the packet format cleverly facilitates two-way communication
by allowing the inclusion of a data packet together with an acknowledgment for a packet
received. The packet specifies both the source and destination port numbers, but does not
require IP addresses because the connection is already established, and thus is known. The
sequence number and acknowledgment number are cleverly designed both to number the
packets in order and to indicate the amount of data present in the data field of the packet.
Since the packet format provides a field for options, the packet must also contain a header
size field. The header is twenty bytes long if there are no options.

13.4 THE NETWORK LAYER, IP ADDRESSES,
AND ARP

You are already aware, from Chapter 12, that the network layer, specifically the IP protocol,
is responsible for relaying packets from the source end node through intermediate nodes
to the destination end node. This task is performed using datagram packet switching and
logical IP addresses. We also remind you that IP is a best-attempt unreliable service.
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FIGURE 13.8

IPv4 IP Datagram Format
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The format for an IP datagram is shown in Figure 13.8. The total size of an IP datagram
can range from 20 to 65,536 bytes, although the total size is usually determined by the
capability of the data link that will be carrying the data. This avoids the need for datagram
fragmentation. (See Chapter 12 if you need a reminder.) The header size is between 20 and
60 bytes; the rest is available for data from the transport layer. The header identifies the
source and destination IP addresses, as well as the transport protocol and the version of IP
in use. It also provides the total length of the datagram and an error checking field. There
are several additional fields and options.

IP Addresses

You know that DNS translates domain names into IP addresses. You also know that IP
addresses and domain names are registered and allocated by ICANN. This section provides
more information about the IP addressing system used with IPv4. IPv6 is outside the scope
of our discussion.

An IPv4 address is 32 bits long. Every node on the Internet has a unique address. As
you are aware, the 32 bits are divided into four octets for easier reading; in the earlier days of
the Internet, these octets also identified the assignee to some extent, however that is less
true today. Nonetheless, IP addresses are still assigned in blocks. The addresses in a block
are contiguous, and the number of addresses in a block must be a power of two. A block
is assigned by specifying a given number of bits, from left to right; the remaining bits
represent addresses in the block.



432 PART FOUR NETWORKS AND DATA COMMUNICATIONS

FIGURE 13.9

IP Block Addresses
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Look at Figure 13.9. For example, if your organization is issued a block starting with
the 28 bits to the left of the dividing line in the figure, the four remaining bits would provide
a block of sixteen addresses for computers within your organization. Your organization
could allocate these sixteen addresses any way it wishes. The first address in the block is
defined as the network address for your organization; it is used for routing.

Traditionally, most blocks are larger than sixteen addresses, and IP addresses are usually
divided into three levels, and in some cases four or more. Figure 13.10 shows an IP address
divided into three levels; the top level is, of course, the network address. The remaining bits
are divided into subnetworks, or subnets. Each subnet has a number of hosts (or nodes).
Masks are used to separate the different parts of the address. A mask consists of a number
of 1s followed by 0s. When the mask is suitably combined with the IP address using Boolean
algebra, individual components of the address can be identified. A mask is specified by
placing a slash mark with the number of 1s at the end of the IP address. Alternatively, it
can be specified in dotted decimal notation. Both notations are shown in the figure.

A number of IP addresses are reserved for private use. These IP addresses may not be
used on the Internet, but they are suitable for networks which are not directly exposed to
the Internet. There is also a universal broadcast address consisting of all 1s that addresses
all nodes on a subnet. The private addresses are listed in Figure 13.11.

FIGURE 13.10

IP Hierarchy and Subnet Mask
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FIGURE 13.11

Reserved Private and Broadcast IP Addresses
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For some time, people have been aware that the total number of possible IPv4 addresses
available is inadequate to meet the needs in the near future. Although IPv6 has the potential
to solve this problem in the long term, its adoption to date has been limited. The potential
shortage of IP addresses is further exacerbated by the block numbering design of the IPv4
addressing system, in which organizations are often assigned more IP addresses than they
need. There are two alternative methods that are presently used to distribute IP addresses
more efficiently:

1. Small organizations with limited Internet gateway access can place their
networks behind a router that keeps the addresses private and use the private IP
addresses that are designed for this purpose. Private IP addresses are not
recognized as valid on the Internet. The source address of IP packets originating
on the private network is modified to conform to the public IP address.
Conversely, IP packets from the outside are readdressed with the private
destination address when they pass through the router from the outside into the
private network. There are two difficulties with this approach:
■ Traffic passing through the router to the outside, for example Web requests,

must be carefully tracked by the router, so that responses from the outside are
routed to the correct private address on the inside. For a small network, this is
relatively manageable. The task becomes far more challenging when the
number of privately addressed computers is large and traffic through the
interface is substantial. The correct routing of e-mail is particularly
challenging.

■ An organization with multiple local area networks connected with a backbone
network must configure the private networks in such a way that traffic between
the various private local area networks can be managed successfully. One
possible solution is to use a single private IP addressing scheme for all
networks attached within the backbone, with translation at the edge router.
Again, the problem of translation becomes large and difficult to manage.

2. The second alternative is to maintain a bank of available IP addresses, and assign
them dynamically to computers for use during the time that the computers are
connected to the network. This is the approach generally taken by large
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organizations and by DSL and cable service providers. DHCP is used for this
purpose.

Dynamic Host Configuration Protocol (DHCP) is an application layer protocol used
to assign and reclaim IP addresses from a pool of addresses when a computer is connected
to or removed from a network. The DHCP client resides on the computer or other device
that is being connected. The client communicates with a DHCP server. The IP addresses
are a block of addresses reserved for this purpose.

When a computer is connected to a network, the DHCP client broadcasts a query to
every computer on the network, in order to locate the DHCP server. The DHCP server
responds with a lease, which includes an IP address, and other configuration parameters,
including the domain name of the network, the IP address of a local DNS server, a subnet
mask to identify other nodes on the local area network, and the default IP address of the
Internet gateway. Some DHCP servers also include the addresses of other useful services,
such as a time server. The lease is issued for a fixed period of time. Most systems allow
the DHCP client to renew the lease before it expires. This allows the client computer to
maintain the same IP address while it is actively connected to the network.

Because the IP address is allocated at the time of connection, most computers connected
using DHCP are not used to provide services to other computers on the network because
there is no consistent domain name–IP address link for the computer. A companion
protocol, Dynamic Domain Name Service, DDNS, can provide this link by updating the
local DNS server. DDNS is a documented part of the DNS protocol. However, DDNS is
rarely used.

The Operation of IP

IP performs two major functions:

1. It routes datagrams from node to node until they reach their destination end
node.

2. It translates IP addresses to physical addresses before it passes the packets to the
data link later for delivery.

The topic of datagram routing is dependent on a number of different mathematical
algorithms and sophisticated statistical techniques that are outside the scope of this text.
We will not consider this topic further.

You will recall from Chapter 12 that the network layer bases its addressing on IP
addresses. Before IP sends a datagram from the source to the data link layer, it must
identify the physical address of the destination node on the network it is attached to.
IP address-to-physical address translation is performed in conjunction with a support
protocol, Address Resolution Protocol (ARP). ARP is implemented at the network layer.

Once IP has determined the address of the node where the datagram is to be sent, it
uses ARP to determine the corresponding physical address. The destination node may be
a router on an intermediate node or it may be the node of the final destination for the
datagram. ARP sends a broadcast packet with the IP address to every node on the local
network. The matching node responds with its physical address; in the case of Ethernet, the
physical address is the MAC address of the destination node. The physical address is then
sent in a frame to the data link layer. At each intermediate node, this process is repeated



CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 435

until the final destination is reached; the current destination MAC address is stripped from
the frame and replaced with the new address. At the final destination, the packet is passed
up to the transport layer for deployment to the application layer. ARP maintains a cache
of recently used IP address–physical address pairs to simplify the process. Only the first
packet in a set of packets headed for the same destination requires use of the broadcast
process.

13.5 THE DATA LINK LAYER
The task of the data link layer is to transmit the packet from the current node to the next
node. In Chapter 12, we presented a brief overview of the Ethernet protocols. In this section
we take a closer look at the medium access protocol for wired Ethernet.

Node access for a particular network is defined by the medium access control protocol.
The purposes of a medium access protocol are to steer data to its destination, to detect
errors, and to prevent multiple nodes from accessing the network simultaneously in such
a way that their messages become mixed together and garbled. Such an event is called
a collision. As you already know, the predominant medium-access protocol for local
area networks is Ethernet. MAC protocols are implemented primarily in hardware in
the NIC.

Local area networks are defined generally in the IEEE Standard 802 suite. Ethernet
is defined in Standard 802.3. In Chapter 12, we introduced two different forms of wired
Ethernet, based on hubs and switches. Technically, Ethernet is called the Carrier Sense
Multiple Access with Collision Detection (CSMA/CD) protocol. Ethernet is a trade name
for this protocol. The trade name belongs to Xerox Corporation, who did the original
development on the protocol. Ethernet was originally based on bus topology. The name
CSMA/CD reflects that fact. Switched Ethernet, which is defined in the same specifi-
cation, does not actually implement the CSMA/CD protocol, because connections are
point-to-point and collisions are not possible. The 802.3 specifies many variations, which
differ in the type of wiring or fiber optic cable used, in the method used to connect to the
physical medium, in the signaling method used, and in the speed of operation. The address
for each node on an Ethernet network is called a MAC address. It is set in the hardware.
Addresses are permanently assigned by the IEEE organization to the manufacturers of
Ethernet-attached equipment.

Every node on the network has equal access to the bus and is normally in ‘‘listening’’
mode; that is, each node is listening for messages addressed to it. Remember that messages
on the bus are broadcast; every node receives every message, but a node will ignore messages
that are not addressed to it. The bus is silent when no node is transmitting.

The standard Ethernet packet is a frame. The format of an Ethernet frame is shown in
Figure 13.12. The frame consists of a preamble, used for timing synchronization between
the sender and receiver, a start frame delimiter to indicate the beginning of the frame
contents, the destination and source addresses, specified as MAC addresses, a data length
field to indicate the amount of data in the frame, the data field itself, and a field that is
used to confirm the integrity of the frame. The data field requires a minimum of 46 bytes,
with padding if necessary; this value was originally selected to guarantee that collisions
on the original Ethernet bus could be detected before the frame was accepted by the
receiver. The maximum data field is 1500 bytes. Although the destination field is specified
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FIGURE 13.12
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as a MAC address, there are special addresses that allow a frame to be delivered to a
group of receivers simultaneously. The ability to broadcast a frame to every receiver is
required as part of the ARP protocol. A destination address consisting of all 1s is used for
this purpose.

Hub-Based Ethernet

Ethernet was originally based on a bus topology. Hub-based Ethernet provides a simple
means of wiring a bussed Ethernet together, but the hub does not affect the operation
logically. Any node may use the bus to send a message to another node any time the bus
is not in use; there is no specific timing control on the bus. When a node has a message
to send, it listens to see if the bus is in use. If not, it begins to send its packet. If the bus
is already in use, the node waits until the bus is available. This is the ‘‘CSMA’’ part of
CSMA/CD.

CSMA/CD does not try to prevent the occurrence of collisions. As the node sends its
frame, it continues to listen to the bus. If network traffic is light, the node will usually
complete sending the frame and will then return to listening mode. Occasionally, two (or
more) nodes may sense that the bus is free and initiate transmission simultaneously. A
collision occurs, and the message on the bus becomes scrambled, due to the interference
between the two signals. Since each node continues to listen as it transmits, it can recognize
that the message is scrambled—the signal on the bus is not the same as the message it is
transmitting. When a node detects a collision, it immediately stops transmitting, waits a
short time, then returns to listening mode, and tries again when the bus is free. The amount
of time each node waits after a collision is random for each node. If both nodes waited the
same length of time, collisions would continue to recur indefinitely.

It might seem to you that collisions would occur very rarely, especially on a network
with sparse traffic. There is an additional factor to consider, however. Signals on the bus
require a small but finite (and, as it turns out, sometimes significant) amount of time to
travel down the bus. Signals on a bus travel at approximately three-fourths the speed of
light, or roughly 9 inches per nanosecond. This may seem like a very small number, but if
two nodes on the bus are 500 feet apart, it will create a window of about 5/8 microseconds
after one node begins transmitting before the second node is aware that the bus is in
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use. In other words, the probability of collisions is higher than one would first assume.
Particularly if bus traffic is heavy, a node may have to try several times before it sends a
packet successfully. The amount of time that it takes for a packet to get from one end of the
network is called the network propagation delay.

Hub-based Ethernet is adequate for networks with light traffic, because of its simplicity.
Every node is independent. Nodes may be added simply by plugging them into the hub.
No central network control is required. However, Ethernet is unsuitable for networks with
widely separated nodes, due to the increase in the probability of collisions. Similarly, as
traffic increases, the number of collisions and retransmissions also increases and Ethernet
performance deteriorates, making Ethernet less suitable also for networks that frequently
carry heavy traffic.

Switched Ethernet

The desire to operate local area networks at higher speed and with longer ranges also makes
hub-based Ethernet unusable in many circumstances. Instead, switched Ethernet permits
the point-to-point connection of any pair of nodes. Multiple pairs can be connected
simultaneously. Modern switches even provide a buffer to hold frames destined for
a receiver already in use. Switching thus prevents collisions, and there is no need to
implement CSMA/CD in switched Ethernet systems. Switched Ethernet has two additional
advantages: (1) it is possible to connect nodes together in full-duplex mode, which is not
possible with a single bus connection, and (2) each pair of connections can operate at the
maximum bit rate of the network.

Wireless Ethernet is similar to hub-based Ethernet because of the nature of the medium.
A variation on CSMA/CD is used for Wi-Fi. Wi-Fi protocols are presented in Chapter 14.

13.6 QUALITY OF SERVICE
Certain types of data are dependent on reliable end-to-end transport where packets arrive
at the receiving host in order, with sufficient throughput, with minimum, or at least,
consistent, delay, at precise, even time intervals, and with a low probability of errors and
missing packet failures. These necessary qualities are particularly important for streaming
audio and video applications, such as IPTV and VoIP, and for online gaming and virtual
reality applications. In contrast, IP offers unreliable, best-effort service that provides limited
support for any of these qualities. Similarly, the basic Ethernet specifications do not indicate
any level of quality support, although a number of alternative data link layer protocols do
include such methods and measures in their specifications. These include Frame Relay,
ATM, and MLSP, among others, as well as certain variants on Ethernet.

There is no simple, effective measure of the quality of packet switched delivery. Instead,
Quality of Service (QoS) focuses on two parameters: (1) methods to reserve and prioritize
channel capacity to favor packets that require special treatment, and (2) service guarantees
from contracted carrier services that specify particular levels of throughput, delay, and
jitter. Throughput is important to assure that the network can deliver the entire stream at
the required data rate. (Picture a favorite song that gets slower and slower as you listen
to it—not entirely accurate, but you get the idea.) Jitter is defined as the variation in
delay from packet to packet. It is a particularly important parameter in the transmission of
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video and audio because jitter causes large fluctuation in the image and sound. Note that a
large amount of jitter can actually cause the packets to arrive at the receiver in the wrong
order. Delay is somewhat less important, but only provided that the delay itself is constant.
Generally, if there is substantial delay, it is due to network congestion, and the throughput
and jitter will also suffer.

With the growing prominence of multimedia on the Internet the need for effective QoS
has taken on increased importance. Various partial solutions have emerged. IP provides a
6-bit field in its header which has been adapted for this purpose. This field is called the
differentiated service (DS) field, usually abbreviated to DiffServ. (DS is actually an 8-bit
field, but the other 2 bits do not concern us here.) The DS field serves as an index into a table
that defines various classes of service. For a particular set of packets, the DS field is set by the
application at the sender or by the first node. Modern routers, sometimes called DiffServ
capable nodes, can then prioritize and route packets based on the packet class. Interestingly,
there are no ground rules on the basis for setting the DS field, nor for the way the routers
make decisions based on the class of service, but it is generally agreed that routers prioritize
streaming multimedia if they can do so without creating major congestion at the router’s
node and beyond.

Currently, the DiffServ approach appears to be the most successful in practice.
However, its success is contingent on a number of factors; the major factor is sufficient
network capacity to minimize congestion at router nodes.

QoS is a complex topic with many nuances and implications for the design and use of
networks. There are references to QoS in a number of networking specifications, and many
books and articles written about various facets of QoS. A few of these are indicated in the
For Further Reading section at the end of this chapter.

13.7 NETWORK SECURITY
The words ‘‘network security’’ are an oxymoron. Networks are inherently insecure.
Therefore, strong security measures must be taken independently of the network to protect
the components of the network as well as the data flowing through the network. Security
measures are an essential part of any system, large or small. The issue of computer system
and network security is a broad and extensive topic; it is often taught as a separate
course. We shall only touch the surface in this discussion. Our focus is upon issues related
specifically to network security measures that are an essential part of the design of any
network infrastructure.

Network-related security issues are often placed into one or more of five categories,
with specific types of measures required for each category:

■ Intrusion—Keeping network and system resources intact and free from the
results of intrusion. Intrusion includes the ability of an intruder to modify the
system for future access, destroying system data and program files, injecting
viruses, and more. The primary measures required are physical and circuit
protection of the network to the extent possible; firewalls on individual
components, including routers, where appropriate; and protection of passwords
that traverse the network with encryption.
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■ Confidentiality—Keeping the content of data traversing the network and
information about the communication taking place private. Encryption
measures are required for this purpose.

■ Authentication—verifying the identity of a source of data being received. This is
similar to the concept of electronic signatures. Special encryption features are
used for this purpose.

■ Data integrity and nonrepudiation—Protecting the content of data
communication against changes and verifying the source of a message. Special
encryption features are also used for this purpose.

■ Assuring network availability and access control—Restricting access to network
resources to those permitted to use them and keeping network resources
operational and available.

Although there is obvious overlap between these requirements, the measures to be
taken fall into three primary categories: physical and logical access to systems, firewalls
(which are a type of logical access restriction), and encryption technology.

Physical and Logical Access Restriction

There are numerous ways to intrude into a networked system. The tools for packet sniffing
are free and readily available to anyone. Packet sniffing is defined as the reading of the data
in a packet as it passes through a network. With wired networks, packet sniffing can be
achieved by physically tapping into the network itself or by reading packets as they pass
through a node. Hub-based networks are particularly vulnerable because anyone connected
to the ‘‘bus’’ at any point can read every packet that uses the bus. Wireless networks are
even worse. Anyone within range of a radio signal can receive the signal.

In general, it is safest to assume that it is possible to intercept and read any packet passing
through a network. This makes passwords that travel through a network unencrypted useless
at protecting a network and its computers from intrusion.

The Internet provides an additional means of intrusion access. Any system on any
network that is publicly accessible from the Internet is susceptible to probing attacks
that seek IP address/port numbers combinations that will accept data packets. Specially
constructed packets can then be used to access and modify the host machine.

A number of measures are used to protect systems and networks from intrusion.
Physical eavesdropping on local area networks is minimized by limiting access to network
wiring and network equipment to personnel who are responsible for the equipment.
Logical access is limited with intelligent firewall design that blocks public access where it
is not required and robust network applications that drop or repel packets that might be
invasive. Intelligent firewall design includes making port numbers that are not in active use
unavailable, evaluating every packet according to a set of acceptability criteria, blocking or
hiding local IP addresses and computers from the Internet, and more.

Logical access is also limited with the use of private networks. These make it difficult
for intruders to identify individual machines within the firewall/router that protects the
network.
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Public MAN and WAN carrier networks are secured by using protocols that hide and
separate a user’s packets from other users. Stringent password policies are enforced and
passwords are never transmitted over unencrypted networks.

Encryption

Encryption provides security beyond that of other measures, provided that the security is
strong and effectively applied. Encryption in various forms is used to prevent intrusion,
to protect privacy, for authentication, and to assure data integrity and nonrepudiation.
There are a number of different algorithms for encryption, but they generally fall into
one or both of two categories. Symmetric key cryptography requires that the same key
be used for both encryption and decryption. This means that both users must have
access to the same key, which is often difficult to achieve securely. The second category
is called public key–private key cryptography, in which two different keys, one publicly
available, the other private, are used together in various ways to achieve the different goals
mentioned above.

The reader is referred to a number of excellent books dealing with the details of this
topic.

13.8 ALTERNATIVE PROTOCOLS
Although this chapter is focused primarily on TCP/IP and Ethernet, there are a number
of important alternative technologies in use, particularly by carriers providing wide
area network services, and also for specialty purposes, such as Internet backbones and
storage area networking. New developments in this area occur frequently and rapidly. At
this writing, the prevalent alternatives include Multi-Protocol Label Switching (MPLS),
Asynchronous Transfer Mode (ATM), Sonet/SDH, and Frame Relay.

Each of these protocols can be implemented at different layers of the OSI or TCP/IP
models, and each can serve as a carrier mechanism for IP datagrams and Ethernet frames.
In typical use, wide area network service providers connect a TCP/IP or Ethernet gateway
to their service at the customer’s edge point. The alternate technology carries the packets
to another edge point where they are converted back to their original form.

What follows is a brief description of each. More information on these and other
protocols can be found in various network text books and on the Web.

MPLS

The goal of MPLS (Multi-Protocol Label Switching) is to improve the forwarding speed
of IP datagrams by creating virtual circuit capability over traditional packet switched
networks, such as Ethernet. MPLS operates at the data link layer. MPLS is a relatively
recent, but fast growing, technology. MPLS inserts a small, 32-bit fixed-length header
between the layer 2 and layer 3 headers in a packet. In the case of a TCP/IP-Ethernet frame,
the header would be situated between the Ethernet header and the embedded IP header.
The MPLS header contains a label that identifies a virtual circuit path. The label is added
initially by a label edge router when it enters the network and removed by a corresponding
edge label router at the exit point.
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MPLS requires routers that are capable of reading and acting on the MPLS header. Such
a router is called a label-switched router. The label-switched router can route IP datagrams
through the virtual circuit without the overhead of returning to the network layer, thereby
simplifying routing speed. MPLS is sometimes called a layer 2.5 protocol because it works
with existing networks between the two layers.

ATM

ATM (Asynchronous Transfer Mode) is a partial-mesh network technology, in which data
passes through the network in cells. Data enters an ATM network at an ATM adaption
layer. There, the data (which could be, for example an Ethernet frame or IP datagram)
is combined with a header and broken into cells. The combination is called a protocol
data unit, and assigned a 28-bit virtual circuit number called a virtual circuit identifier that
is used throughout the network for routing. Cells are 53-byte packets, containing a 5-bit
header and 48 bits of data. At the exit point, a matching adaption layer recombines the cells
into their original form.

ATM is well-suited for the transmission of multimedia because the combination of
mesh networking and small cell size makes it easier to control congestion and the quality
of service. Interestingly, the physical layer of ATM is loosely defined. ATM is used with
different media, including both wire and fiber-optic cable, and with different technologies.
It was originally designed to operate over SONET/SDH (see below) as its physical layer.
It is capable of extremely high performance, and is used for Internet backbones. To some
extent it is being supplanted by MPLS, but ATM will probably be in use for some time to
come.

SONET/SDH

SONET (Synchronous Optical Network) and SDH (Synchronous Digital Hierarchy)
are related protocols and architectures that are designed to take advantage of fiber optic
technology. The intention of both standards was to create wide area networks capable of
extremely high bit rates over long distances. The differences between the two standards
are minor. We shall refer to both as SONET for the remainder of this discussion. SONET
is based on networks that are synchronized globally to a single clock. Electrical signals
from different sources are converted to light, then synchronously multiplexed and added
and removed from nodes by add/drop multiplexers as required to optimize the speed of
each packet. To extend the distance, regenerators are built into the network. These recreate
the signal as it is attenuated within the fiber, to extend its range. SONET networks are
constructed as meshes, or rings, or point-to-point links.

SONET is frequently employed as a physical layer carrier, supporting other higher-level
protocols. The technology, frame formats, and details of operation of SONET are complex.
Further information is beyond the scope of this text.

Frame Relay

Frame Relay is a relatively slow, wide area network standard. It is included because it is
still in common use as an inexpensive on-ramp to wide area networks and to the Internet
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through service providers, especially large telephone companies. Like the other protocols
discussed here, Frame Relay relies on edge connections to convert data between other
protocols and frame relay frames for transmission over the network.

Frame Relay operates at the data link and physical layers, using its own switch design
to forward frames through virtual circuits. Frame Relay allows the use of permanent virtual
circuits. These are circuits that route all packets between a source and destination by the
same route, which is advantageous for some private wide area network links. At the physical
layer, Frame Relay operates over a variety of networks.

SUMMARY AND REVIEW
In Chapter 13, we described each of the TCP/IP and Ethernet layers in more detail, focusing
on specific areas of interest.

The domain name system translates, or resolves, user-friendly names into their
corresponding IP addresses. The domain name addressing system is hierarchical, with
a root, generic and country-code top-level domains, local domains, and, sometimes,
subdomains. DHCP is a protocol that allows the dynamic assignment of IP addresses on a
short-term lease basis.

The interface between the TCP/IP network layer and Ethernet data link layer requires
translation between IP addresses and physical addresses. This task is performed by the
Address Resolution Protocol.

Local area Ethernet networks are either switched or hub-based. CSMA/CD manages
collisions in a hub-based network.

Two issues of interest when discussing modern networks are quality of service and
network security. Quality of service attempts to measure and provide packet routing with
speeds and reliability sufficient for tasks such as multimedia. Network security identifies
the problems that must be overcome to provide adequate protection, and the tools that are
used for this purpose.

FOR FURTHER READING
For the most part, the suggestions made in Chapter 12 apply to Chapter 13, as well. There
are also a number of special topics in this chapter that deserve extra attention. Although
the QoS concept is vague, reasonable discussions of quality of service (usually abbreviated
QoS) can be found in the white paper by Hartmann [HART04] and in the QoS chapter
of Cisco’s Internetworking Technology Handbook [INT08]. Two well-regarded books are
by Armitage [ARM00] and Ferguson and Huston [HUST98]. Stallings [STAL09], Kurose
[KUR08], and Forouzan [FOR07] all provide substantial coverage of network security.
Forouzan is the most technical, offering detailed explanations of encryption techniques.
There are numerous books devoted exclusively to network security. One of many readable
choices is Cheswick [CHES03].



CHAPTER 13 ETHERNET AND TCP/IP NETWORKING 443
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READING REVIEW QUESTIONS
13.1 What is a domain name? How is it used on the Internet?

13.2 What task is performed by a DNS root server?

13.3 What does TLD stand for? What is a ccTLD? What other kinds of TLDs are
there? What is the function of a TLD?

13.4 What function is performed by a local domain name server? What two kinds of
addresses would you expect to find stored in a local domain name server table?

13.5 What does ARP stand for? What task does an ARP perform?

13.6 What two major tasks are performed by IP?

13.7 Briefly explain CSMA/CD. What common name does this protocol go by? What
topology does CSMA/CD apply to?

13.8 Explain how an Ethernet frame provides synchronization between sender and
receiver nodes.

13.9 What does the expression Quality of Service mean?

13.10 What is meant by data nonrepudiation?

13.11 What types of security problems does a firewall try to prevent?

EXERCISES
13.1 Name at least four different application layer protocols other than HTTP. For

each, describe the purpose of the protocol, and give a brief overview of the
methodology of its operation.
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13.2 The DNS database is described as ‘‘a directory system of servers’’. Based upon your
understanding of DNS from the text, explain the meaning of this description.

13.3 Explain the purpose of an authoritative domain name server. How does its
purpose differ from that of a local DNS server.

13.4 What service is provided by a DNS root server? To whom is this service provided?

13.5 How does someone obtain a URL?

13.6 Explain the technique that is used by DNS to distribute the load of large websites.

13.7 Explain carefully the purpose and use of the sequence number and acknowledg-
ment number in connection-oriented communications. Create a multi-packet
example that illustrates exactly how these packets are used by TCP.

13.8 Why does the IP datagram require separate fields for the header length and the
total datagram length, instead of combining both into a single value?

13.9 What is the purpose of an IP address mask? Suppose an IP address is identified
as 222.44.66.88/24. What is the network address in this case? What is the host
address? How many hosts can this network address support? Repeat this exercise
for the IP address 200.40.60.80/26.

13.10 Explain the concept of a DHCP lease. How is it obtained? How is it used? What
does it provide?

13.11 Explain the operation of the Address Resolution Protocol.

13.12 The chapter notes that the physical layer is only concerned with the transmission
of a sequence of bits from one point to another. Suppose that the sequence
110010011 is used as a synchronization sequence preamble to a data packet.
Propose a method that can be used to allow the channel to distinguish the
synchronization sequence from an identical data sequence within the packet. In
what layer of the TCP/IP model would you implement your solution? Why?

13.13 Prior to the invention of Ethernet, researchers at the University of Hawaii
proposed a broadcast radio network called ALOHANet as a means to provide
wireless links between the Hawaiian islands. Each node had a radio transmitter
which could be used to send data packets. When two stations attempted to
transmit simultaneously, a collision occurred, and like Ethernet, each station
would wait a random period of time, then try again.

Compare ALOHANet with Ethernet. What are the similarities? What are
the differences? What are the major factors contributing to the differences? What
effects do the differences have upon performance? Under what conditions would
you expect ALOHANet to perform satisfactorily? Less satisfactorily?

13.14 Discuss the trade-offs between bus-based and switched Ethernet. State the various
conditions under which one or the other would be preferred and explain why.

13.15 Find and read a good article that describes ATM in more detail than is provided
in this text. Compare ATM methodology with the other networking topologies
that we have discussed. What characteristics of ATM make it capable of high
performance compared to other networking techniques?

13.16 Before effective Ethernet switching existed, some network designers used an
alternative bus collision avoidance protocol known as the token bus protocol.
With the token bus protocol, a ‘‘token’’ made up of a short, standard string of
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1s and 0s was circulated constantly in a round robin fashion among the NIUs
attached to the bus. NIUs did not hold the token; they simply passed it without
delay to the next NIU in the chain. An NIU was only allowed to place a message
on the bus when it possessed the token. After the message was delivered, the
token was again put into circulation. No NIU was allowed to use the token again
until the token had circulated to every other NIU at least once.

Under what conditions would this protocol perform more satisfactorily than
CSMA/CD? Explain. Under what conditions is CSMA/CD preferable? Explain.

13.17 Consider again the network described in Exercise 12.14. For each of the links in
this network, describe a technology (medium and signaling method) that would
be suited to this application.

13.18 The governments of Freedonia and Sylvania need to set up data communications
to prevent the possibility of war. Discuss the security implications of fiber optic
versus coaxial wire versus satellite as a means of communication.

13.19 Explain the differences between TCP and UDP in the context of ordering a
number of items from an online seller such as amazon.com.

13.20 What are the specific so-called ‘‘qualities’’ that quality of service attempts to
measure and achieve? Describe the two methods that are normally used as an
attempt to achieve this quality.

13.21 Explain the purpose of repudiation. How does repudiation differ from authenti-
cation? Create a business scenario that illustrates the importance of each.

13.22 Locate, download, and install a packet-sniffing software package, such as Wire-
Shark (formerly known as Ethereal). Experiment with this software until you
understand how it works and the range of its capabilities. Write a brief paper
describing several of its most important capabilities and the potential security
dangers that those capabilities create.
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14.0 INTRODUCTION
In Chapter 12, we introduced the concept of a communication channel. We noted
that communication channels are fundamental to modern technology, whether we are
discussing wired networks, wireless networks, a backbone of the Internet, cell phones,
satellite television, or even your TV remote control. The discussion of channels in
Chapter 12 presents features of the channel, introduces channel media and shows
how communication channels and channel segments—or links—are interconnected
to build networks. Chapter 14 extends the discussion by introducing the fundamental
technology of communication channels. After we have introduced the technology, we
will apply the technology to offer an understanding of wireless data communication.

First, in Section 14.1, we review some of the characteristics and features of
the channel that are governed most directly by the technology. We have carefully
differentiated between end-to-end channels and channels that are links. Since the
technology can differ from link to link, we note that the emphasis in this chapter
is almost entirely on channels that are individual links. The major topics of interest
include the signaling methods used to represent data, interaction between the signaling
methods and the choice of media, and the characteristics of channels.

Fundamental signaling techniques and the general characteristics of channels are
covered in Section 14.2. As you hopefully recall from Chapter 4, data comes in many
forms, both analog and digital. Similarly, there are both analog and digital signaling
methods in use. Section 14.2 introduces the fundamental characteristics of both analog
and digital signals and shows how the channel manages different kinds of data with
both kinds of signaling. It also considers the tradeoffs between different combinations
of data and signaling.

In Section 14.3, we look more closely at the nature of transmission media, identify
specific media that are commonly used, and discuss the relationship between the
selection of a communication channel medium and a signaling method.

One of the most important technological concepts explained in this chapter is the
use of radio as a medium for the transmission of digital data. Section 14.4 discusses
wireless data communication methods.

A note: Overall, our focus is specific to networks and network interconnectivity.
There are other types of communication channels, those used in traditional telephony,
for example, which are basically similar to those used in networks, but differ in the
details. While these are occasionally mentioned to clarify some of the concepts in the
chapter, they are generally outside the scope of the discussion in this chapter.

14.1 COMMUNICATION CHANNEL TECHNOLOGY
You will recall that a communication channel consists of a NIC transmitter that places
a signal from a sending node onto the channel and a receiver that transfers the signal
from the channel to the NIC of the receiving node, a transmission signaling method,
and a medium to carry the signal. This is, of course, equally true for any type of
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FIGURE 14.1

Model of a Communication Channel
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channel. To refresh your memory, Figure 14.1 reproduces the model of a communication
channel shown previously in Figure 12.3.

At this point, we remind you that the view of a end-to-end communication channel is
conceptual. In reality, the signal coming from one end node may pass through a number
of different channel links, each with its own medium, signaling method, and channel
characteristics, and connected by intermediate nodes that consist of switches, routers, and
other devices, before reaching the other end node. In order to discuss the technology of a
particular medium with a particular signaling method, we must treat each channel segment
as an independent channel. We use the word ‘‘channel’’ in this chapter to mean the smallest
link with a pair of nodes, whether end or intermediate. Our focus in this chapter is on the
data link and physical layers of the TCP/IP-OSI models.

For a particular channel, the transmission signaling method used depends not only on
the channel medium but also on other factors such as the distance between nodes, the appli-
cation, and other technical, physical, and economic considerations. The network interface
units at each node connect to a computer or router or some other connecting device and may
also be required to convert the data into a form suitable for the signaling method used, and
for compatibility with other equipment connected to the channel. The channel may pass data
in one direction only, or it may be used to transmit and receive data in both directions. We
have already noted that a channel may be point-to-point or may be shared and that, with rare
exception, a channel carries data serially. At any given instant, the computers or other devices
using the channel may be sending, receiving, or both. All the transmitters and receivers
connected to a channel must agree on the signaling method to be used on that channel.

As an example, recall the end-to-end channel presented in Chapter 12, Figure 12.4,
reprinted here as Figure 14.2. This example uses various combinations of media and
signaling technologies to relay a Web request from a home computer to a Web server
somewhere on the Internet. The data in this example originates at a computer, is converted
to an Ethernet-based radio signal by a NIC in the computer, transmitted to a router,
converted back to wired Ethernet and passed to a DSL modem, converted again, this
time to a DSL format then passed through various routers, backbone networks, and other
Internet devices until it is ultimately directed to a network with the Web server. Some of
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FIGURE 14.2

A Multi-Link Channel
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these links will be wires, some fiber optic cables, perhaps even a microwave or satellite link
along the way. The data signals in this example take the form of radio waves, electrical
pulses, and perhaps, light pulses at various points along its journey.

Although there are a number of data conversions along the way in this example, it is not
untypical of modern communication applications. We selected it to show you some of the
different possible forms that the data might take as it passes from one end of the end-to-end
channel to the other. Conceptually, the channel is an Ethernet connection carrying digital
signals between two computers. Physically, the data passes through several different com-
munication channel forms, with signal format converters at each node, but the intermediate
operations are invisible to the nodes located at each end of the conceptual channel.

A communication channel is characterized primarily by the signaling transmission
method used; by its bandwidth or bit rate capacity; by the direction or directions in which
signals can flow; by its noise, attenuation, and distortion characteristics; by the time delay
and time jitter imposed by the channel and node connections; and by the medium used.

There are many different signaling methods in use, but the most important consid-
eration is whether a signaling method is analog or digital. Analog transmission uses a
continuously varying waveform to carry data. Digital transmission carries data in digital
form, using two different values of electrical voltage or current or an on/off light source.1

The choice of digital or analog transmission signaling depends upon a number of factors.
Some media are only suitable for one or the other. Where either is suitable, the choice
is made on the basis of other factors such as noise characteristics, the application, the
bandwidth requirements, and other uses for which the channel is to be shared.

1To be strictly accurate, technically, switched light is a digital signal superimposed on an analog waveform of
extremely high frequency, using a modulation technique called amplitude shift keying (ASK).We will introduce
modulation and amplitude shift keying later in this section. ASK imposes some technical conditions on the use of
light as a transmission signaling method that are beyond the scope of our discussion. Practically speaking, we can
treat light transmission as if it were digital.
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Except where analog transmission is required by the medium, there is a strong tendency
toward digital transmission in most circumstances. Digital transmission has the advantage
that it is less susceptible to noise and interference, which means a higher likelihood that
the original data can be reproduced exactly, error-free, at the receiving end of the channel.
Digital transmission is also simpler, more efficient and more economical. When a digital
signal is to be transmitted on an analog channel, it is necessary to convert the digital signal
into a form suitable for analog transmission. The converse is also true. The methods of
conversion, and resulting limitations, are discussed in Section 14.2.

It is also possible to share a channel among multiple sender-receiver pairs, using one of
several multiplexing techniques. Digital channels use time division multiplexing (TDM).
Analog channels can also use time division multiplexing, but most use frequency division
multiplexing (FDM) instead. There are several important variations on these two primary
methods, as well. Again, digital technology has an advantage: digital multiplexing is easier
to implement than analog multiplexing, is less expensive, and requires less maintenance.
Multiplexing techniques are also discussed in Section 14.2.

14.2 THE FUNDAMENTALS OF SIGNALING
TECHNOLOGY

Signals are the means used to communicate data. A signal is carried on a communication
channel as an electrical voltage, an electromagnetic radio wave, or a switched light. Data
is represented by changes in the signal as a function of time. The signal may take on a
continuous range of values, in which case it is known as an analog signal, or it can take
on only discrete values, in which case it is known as a discrete signal. A binary discrete
signal is usually called a digital signal. A representation of a signal shown as a function of
time is called a waveform. Figure 14.3 shows an analog signal and a digital signal. We are
primarily interested here in analog and digital signals, although we note in passing that the
‘‘analog’’ video signals going to a display from a computer video card takes on only specific

FIGURE 14.3

Analog and Digital Waveforms
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values, 16 or 256 or some different number of values depending on the video adapter used,
and are therefore more accurately considered to be discrete rather than analog or digital.
(We shall not consider discrete signals further here, although discrete signals are used in
certain cases to increase the bandwidth of a channel. For example, discrete signals are used
to increase the speed of a modem beyond its basic bit rate.)

Computer data is fundamentally digital in nature. A digital waveform on a channel
might represent a sequence of bits of data representing a text file, for example. Sound is
analog. The loudness of sound coming from a stereo speaker would be represented by a
continuously changing waveform. It is important to know that the electromagnetic waves
used for radio transmission are also analog.

It is often necessary or desirable to be able to transform a digital signal into some analog
equivalent representation or vice versa. For example, analog sound is stored digitally in an
MP3 player. To listen to the audio on the player requires that the bits of data be converted
to analog waveforms. Headphones reproduce the waveforms as sound. Conversely, to
transmit computer data on an ordinary voice-grade phone line requires that the computer
data must be represented by an analog signal, since the phone line is designed to carry
sound. A modem is used to perform the conversion. (Actually, to be more accurate, the
phone line carries analog electrical voltage signals that represent the sound wave, which are
converted back to actual sound at the earpiece of the phone receiving the signal.)

Ideally, the transformation between digital and analog should be reversible. That
is to say, if we transform a digital waveform into an analog representation and then
transform it back, the resulting digital waveform should be identical to the original. For
digital waveforms, this is theoretically achievable. In practice, all systems, both digital and
analog, are subject to noise, attenuation, and distortion, and it is often necessary to provide
compensation in the form of error correction. Nonetheless, under most conditions, it is
possible to recover the original digital data exactly. When analog data is converted into
digital form, however, a small amount of information is lost during the transformation,
and it is not possible to recover the original analog waveform exactly, although the error
can be reduced to the point that it doesn’t matter.

The medium itself may require transformation of a signal from analog to digital
(A-to-D) or vice versa if the signal is to be transmitted through a medium that can carry
only one or the other. Wires can carry either digital or analog signals, but as we already
noted, normal residential phone lines carry analog signals. Radio signals, known as radio
waves, require another type of analog signal, with the digital signal embedded within.

Analog Signaling

Although digital transmission is favored for most use these days, analog transmission
methods are required for wireless media, such as radio and sound, for wireless networking,
and for other forms of wireless data communication. Radio transmission methods include
satellite, cellular phone, wireless networking, and microwave communications. Radio waves
can also be converted to equivalent electrical signals and used with wire media and may
be preferred when a mixture of digital and analog data is being transmitted through the
cable, such as cable TV with a digital Internet feed, though most cable TV is now digitally
distributed and converted, if necessary, to analog at the customer’s site.
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FIGURE 14.4

A Sine Wave
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The basic unit of analog transmission is a sine wave. A sine wave is shown in Figure 14.4.
A sine wave has a peak amplitude A, or size, and a frequency, measured as the number of
times the sine wave is repeated per second. The instantaneous value of the sine wave varies
with time, ranging from 0 to amplitude A, back to 0, to value −A, and back to 0 again. The
value may measure voltage, or loudness, or the mechanical movement of the metal in a
bell, or the movement of air in an organ pipe, or some other quantity. The period of a sine
wave is the amount of time it takes to trace out one complete cycle of the wave. Thus, the
frequency, f , is defined as the number of periods per second, or mathematically,

f = 1/T or conversely, T = 1/f

where T is the period, measured in seconds.
The amplitude and period are shown in the diagram. For this particular sine wave,

the period is one-quarter second, and the frequency is four cycles per second, or more
commonly, 4 Hertz. Hertz, usually abbreviated Hz, is the unit used to measure frequency.
One Hertz corresponds to one cycle per second. Note from the diagram, also, that since
the sine wave is symmetric about the center axis, its amplitude is measured from the center
axis to either peak, not from negative peak to positive peak.

Sometimes it is useful to view a sine wave from a slightly different perspective: what
is the physical length of a sine wave that is traveling in space at the speed of light? This
parameter is known as the wavelength of the sine wave. It is usually designated by the Greek
letter lambda (λ). It should be apparent to you that at a higher frequency the wavelength of
a single sine wave will be shorter because the waveform will not have time to travel as far
before the wave is complete. In fact, the wavelength of a sine wave signal is inversely related
to its frequency as follows:

λ = c/f where c is the speed of light.

For calculation purposes, the speed of light in a vacuum is approximately 300 million
meters per second or one foot per nanosecond. (This latter figure might surprise you.) You
may be unconsciously aware of one interesting application of this formula: perhaps you
have noticed that when the frequency of a radio wave is higher, the antenna is shorter. The
size of an antenna is based on the wavelength of the signal that one is trying to receive.

Why a sine wave? Sine waves occur naturally throughout nature. Sound, radio waves,
and light are all composed of sine waves. Even ripples on a pond are sinusoidal. Although
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FIGURE 14.5

Circle and the Sine Wave
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the sine wave may seem an odd waveform to occur so commonly, the sine wave is related
in a simple way to a circle. Picture a marble rolling around a circle at constant speed. If you
view the circle edgewise, the marble will trace out a sine wave in time. This is illustrated in
Figure 14.5. For this reason, points on the sine wave are often designated in degrees. The
sine wave begins at 0◦ and ranges to 360◦ and then repeats from 0◦ again. At any given
instant in time, the amplitude of the wave is given by the position of the marble for the
specified angle. Mathematically, that value is represented by the equation

v[t]=A sin[2πft+ϕ]

where A is the maximum amplitude, corresponding to the radius of the circle, and f
is the number of times that the marble rolls around the circle per second. For math-
ematical reasons unimportant to us here, the angle is usually given in radians, rather
than degrees. When t = T, the marble has rolled around the circle once, therefore 2π

radians is equal to 360◦. A radian is therefore approximately 57.3◦. ϕ (the Greek letter
phi), represents the angle of the marble when we begin our viewing, i.e., when t = 0. For
the view shown in the figure, ϕ = 0.

FIGURE 14.6

Phase-Shifted Sine Waves: (a) Reference
Waveform, (b) Phase-Shifted 90◦, (c) Phase-
Shifted 180◦

Reference waveform

Phase-shifted 90˚

Phase-shifted 180˚

To show you the practical aspect of this illus-
tration, electricity is generated by the rotor of an
electrical generator rotating in a circle at the rate of
sixty revolutions per second. The electrical output (in
many countries) is a standard 117-volt 60-cycle (more
accurately Hertz) alternating current sine wave. The
instantaneous output of the sine wave corresponds to
the angular position of the rotor as it rotates. (Inci-
dentally, the actual peak amplitude of a 117-volt sine
wave is approximately 165 volts. The technique used
to measure AC voltage is based on a special kind of
averaging of the sine wave voltage over a period of
time.)

In addition to the amplitude and frequency, it
is possible to measure the position of a sine wave
with respect to a reference sine wave. The difference,
measured in degrees, is known as the phase of the sine
wave. This measurement is shown in Figure 14.6.
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An important characteristic of sine waves is that mathematically all waveforms,
regardless of shape, both analog and digital, can be represented as the sum of sine
waves of different frequencies, phases, and amplitudes. For example, Figure 14.7 shows
the construction of a square wave from the first few of its sine wave constituents. The
constituent frequencies that make up a signal are known as the spectrum of the signal. The
bandwidth of a channel is the range of frequencies that are passed by the channel with only
a small amount of attenuation. (Yes, there is a direct mathematical relationship between the
bandwidth defined here and that defined earlier in terms of bits per second, but it’s a detail
that we shall not go into. Suffice it to say that a wider range of frequencies allows more bits
per second to flow through the channel.) Other frequencies are blocked by the channel. To
reproduce a signal faithfully, the spectrum of the signal must fall within the bandwidth of
the channel, and conversely the bandwidth of the channel must be wide enough to pass

FIGURE 14.7

Creating a Square Wave from Sine Waves
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all the frequency components of desired signals. Note that the waveform in Figure 14.7(b)
is the way that the square wave would appear if the frequencies above three times the
fundamental sine wave frequency were blocked. In many cases, it is appropriate to limit the
bandwidth intentionally to prevent interference from other signals. There are electronic
means to control the bandwidth of a channel, using a process called filtering. As we will
show later, filtering is also used to separate the bands in frequency division multiplexing.

Sound waves use frequencies between approximately 20 Hz and 20,000 Hz, although
some animals can hear sounds outside this range. A dog whistle produces a sine wave of
approximately 25,000 Hz. Most stereo systems have a bandwidth of at least 20–20,000 Hz,
for the faithful reproduction of sound. Telephones have a bandwidth of only about
20–4000 Hz, which makes them unsuitable to carry high-fidelity sound but adequate for
voice. The ordinary telephone bandwidth limits the speed that data can be transmitted
through a conventional phone line, however additional bandwidth is actually available for
the use of DSL technology, discussed later in this chapter. Sound waves are produced by
vibrating molecules and require a medium such as air or water. A microphone converts
sound to an identical analog electrical signal for transmission through the wires of a phone
line, or stereo amplifier, or whatever.

Radio waves are electromagnetic in nature. Radio waves can be transmitted at
frequencies as low as 60 Hz, although radio waves of frequencies this low are not useful for
most purposes. Currently, radio waves can use frequencies up to about 300 GHz or 300
billion Hertz. To give you some reference points, the standard AM radio band occupies
the range between 550 KHz and 1.6 MHz in most countries, the standard FM band from
88 MHz to 108 MHz (what is the frequency of your favorite station?), television from
54 MHz to about 700 MHz, and cellular telephones, Wi-Fi wireless networks, and other
devices occupy several bands between 800 MHz and 5.2 GHz. The bandwidth required for
different types of signals depends on the application. AM radio stations, for example, use a
bandwidth of about 20 KHz, centered about the dial frequency of the station. TV stations
require a bandwidth in excess of 4.5 MHz. Each TV channel provides a 6-MHz bandwidth
in a different part of the frequency spectrum. In North America, for example, channel 2
uses the frequency range 54–60 MHz, and channel 3 uses 60–66 MHz. By limiting the
bandwidth of the TV receiver’s tuner, we are able to tune in separate stations. (As you
will see later, this is also the principle used by frequency division multiplexing for sharing
channels.) A general map of the useful frequency spectrum indicating various familiar
sound and electromagnetic wave regions is shown in Figure 14.8.

Electromagnetic waves use space as a medium, although many materials are nearly
transparent to the wave at some frequencies, so that the wave passes right through the
material with little or no attenuation. Air, for example, is transparent at all frequencies.
Most other materials are more transparent at low frequencies than at high frequencies.
AM radio band waves will pass through reasonable thicknesses of solid stone, for example,
whereas FM radio band waves are attenuated more. The result is that your AM/FM car
radio works better on AM when you’re in a tunnel, because the AM radio band uses lower
frequencies than the FM radio band. Leaves and thick rain clouds can block a satellite TV
signal. Light is also made up of electromagnetic waves, with frequencies in the region of 100
thousand billion Hz. There are only a few materials that are transparent to light. Materials
that are not transparent can be used to guide or reflect a wave. A satellite dish, for example,
works by reflecting radio waves from the dish to a single point, where they are concentrated
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FIGURE 14.9

Amplitude Modulations:
(a) Data Waveform, (b) Carrier,
(c) Modulated Waveform

Data waveform

Modulated waveform

Carrier

and collected by a sensitive receiver. Similarly, fiber-optic cables
maximize the light at the receiving end of the cable by guiding
the light through the cable.

In practice, the sine waves that we have discussed are of
limited use by themselves. A sound made up of a sine wave
produces a single, pure tone. A 440-Hz sine wave produces
the tone called ‘‘A,’’ for example. There is not much useful
information value (or musical interest) in a pure sine wave tone.
Instead, sine waves are used as carriers for the data that we
wish to transmit. We modulate, or change, one or more of the
three characteristics of the sine wave, amplitude, frequency, or
phase, to represent the signal that is to be transmitted. Thus,
an AM, or amplitude-modulated, radio station at 1100 KHz
would use a sine wave carrier of 1100 KHz. The music broadcast
on that station would modulate the amplitude of the carrier
to correspond to the sound of the music. The AM station uses
only one type of modulation. You should be able to guess what

kind of modulation is used by an FM station! To restore the original waveform that was
used to modulate the carrier, we use a demodulator or detector. An example of a carrier
amplitude modulated by another analog signal is shown in Figure 14.9. Note that amplitude
modulation is symmetric with respect to the center of the carrier sine wave.

For digital signals, the carrier signal is modulated with only two possible values, the
value representing a ‘‘0’’ and the value representing a ‘‘1.’’ In this case, the modulation
technique is called amplitude shift keying (ASK), frequency shift keying (FSK), or phase
shift keying (PSK). Examples of each are shown in Figure 14.10.

FIGURE 14.10
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The spectrum of frequencies used for a modulated signal depend on the frequency of the
carrier used and will include the carrier frequency itself. The bandwidth of the modulated
signal depends on the type of modulation. The bandwidth of an amplitude-modulated
wave is approximately double the highest frequency in the waveform being modulated. In
other words, the 20-KHz bandwidth of an AM radio station is suitable for transmitting
audio frequencies up to about 10 KHz; FM bandwidth requirements are somewhat larger.
The 400-KHz bandwidth of an FM station can carry audio frequencies up to approximately
45 KHz.

When considering the bandwidth required for a single FM station, think about what
would happen if the FM station were placed instead on the AM radio band. The spectrum
of the entire AM band is only 1050 KHz wide (550–1600 KHz) so there would only be
enough bandwidth for two stations! The point to be made is that at higher frequencies more
bandwidth is available; at higher frequencies, the bandwidth is a smaller percentage of the
frequency. From Chapter 12, you are aware that fiber-optic cable is a preferred medium
for carrying data. As you can see from the frequency spectrum shown in Figure 14.8, the
frequency of light is extremely high, allowing very wide bandwidths, and hence high bit rates.

When we modulate a particular signal with a sine wave carrier of different frequencies
the modulated signal will require the same amount of bandwidth but will move the
spectrum by changing the basic frequency about which the bandwidth of the signal occurs.
This means that, by modulating different data signals with different carrier frequencies, it
is possible to carry multiple signals on the same channel, if the overall channel bandwidth
is wide enough to include the spectra for each signal. Filtering can separate the different
data signals at the receiving end. This technique is called frequency division multiplexing
(FDM). It can be used to carry several phone conversations on long-distance phone lines,
for example, or to provide multiple channels for wireless Ethernet (Wi-Fi). Ultimately it
uses the bandwidth more effectively to increase the capacity of the channel. An Illustration
of FDM is shown in Figure 14.11.

The same technique can be applied to the light transmitted through a fiber-optic
cable. Light of different colors have different frequencies. Viewed from the perspective of
ASK analog signaling, it is possible to increase the bit rate of data transmitted optically
by combining lights of different color, with filters on the receiving end of the cable
to separate the different color signals. This procedure is essentially identical to that of
frequency division multiplexing, although the implementation is actually somewhat easier.
To differentiate optical multiplexing from lower frequency radio multiplexing, we give the
process a different name: wavelength division multiplexing (WDM). This name reflects
the fact that light is usually identified by its wavelength, rather than by its frequency. As of
this writing, there are claims that current optic technology can support bit rates of 8 Tbps
over distances of 2500 km using a dense form of WDM called DWDM. As we noted earlier,
most users think of the signals in fiber-optic cables as digital.

Both wired and wireless analog signals are particularly susceptible to noise and
attenuation and other forms of distortion in a channel because the distortion created
cannot be detected and reversed. There is also interference from other signals operating
nearby in the same spectrum. Attenuation, or signal loss, is the reduction of a signal that
occurs in a medium as a function of the physical length of the channel. Attenuation limits
the possible length of a channel. Signal loss can also occur if there are taps or splitters
along the channel. These are devices that remove some of the energy of the signal for
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FIGURE 14.11

Frequency Division Multiplexing
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use, for example, to implement multipoint connectivity. Amplifiers can be used to restore
the original strength of the signal. All channels generate some noise internally, and as
the signal gets weaker, the noise becomes more predominant with respect to the signal.
In this case, amplification does not help, since the noise is amplified also. Maintaining a
high signal-to-noise ratio is important in maintaining the integrity of an analog signal.
Minimizing external noise, such as electrical noise from other devices and from such
natural sources as lightning, is also important. External noise, of course, can change the
basic shape of the signal, and may make it impossible to recover the original signal. If
the noise falls within the same frequency range as the signal, there is no way to separate the
noise from the signal. See Figure 14.12.

In addition, analog signals are susceptible to distortion of the waveform that results
from variations in attenuation and phase shifts that occur across the channel spectrum.
Slight distortion is, unfortunately, common in real-world systems. Consider the situation
shown in Figure 14.13. If the signal is made up of sine waves of frequencies from different
parts of the spectrum, say, at the points marked f 1 and f 2, then the composite signal
at the output of the channel is distorted, since the different sine wave components have
been attenuated by different amounts. The channel will also change the phase of some
components more than others, which also contributes to the distortion. To some extent,
filtering can compensate for these variations, but realistically, signal distortion is always
present in a channel. The goal, then, when working with analog signaling, is to design a
system in which noise, attenuation, and spectral distortion do not prevent recovery of the
original data to the degree required.
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FIGURE 14.12

The Effects of Noise on a Signal
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Digital Signaling

Digital data being carried by a digital communication channel is already in correct format,
so theoretically no conversion is necessary. In practice, the situation is somewhat different.
Since there is no carrier present on the channel, there may be no way to detect a string of
bits at the receiving end of the channel for some signals. The signal in Figure 14.14, for
example, consists of a string of twelve zeros, but there’s no way to tell. A ‘‘0’’ is represented
by a value of 0 volts, and the state of the line when no signal is present is also 0 volts.
Obviously, there is no way to determine the presence of this signal.

This example shows one difficulty in coordinating digital data that is transmitted from
one node to another. One obvious way to solve this problem is to use a different value for
the ‘‘0’’ bit, say, −5 volts. This solution helps somewhat, but we still can’t tell one bit from
another in the data stream.
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FIGURE 14.14

A Problematic Digital Signal
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As another example, consider a related
problem, a steady stream of bits across a com-
munication channel from one computer to
another. Suppose that each group of 8 bits forms
a byte. If the stream is continuous, how does
the receiving computer know how to group the
bits into bytes?

Some method of synchronizing digital sig-
nals between the sending computer and the

receiving computer is always necessary, to be able to identify the position of each bit
successfully at the receiver. The basic problem is that the sending computer may opt to
transmit data at any time, and the receiving computer has no way of knowing when data
will actually be sent. The difficulty of synchronization is compounded by likely slight
differences in timing in each system, so that the receiver may sample the data at a slightly
different rate. If the sequence of bits is long, the receiver may ultimately sample the wrong
bit, creating an error. Figure 14.15 illustrates this situation. In this illustration the timing
difference is somewhat exaggerated, for clarity.

There are a number of different ways of synchronizing the two systems. For modems,
which transmit data one byte at a time, the solution is to provide clear start and stop signals
for the data and to resynchronize the timing between the transmitter and receiver for each
byte of data, so that the receiver knows exactly when each bit is expected to occur. This
approach is somewhat inefficient, because two extra bits (the start and stop signals) must
be sent for each byte of data. This technique is called asynchronous transmission.

For longer bit sequences, the solution is to convert the data into a signaling method
that provides clocking as part of the data. Consider a signaling method that say, generates
a 0 → 1 transition whenever the bit is a one, and a 1 → 0 transition whenever the bit is a
zero. This technique guarantees at least one transition per bit of data sent through the
channel. The transitions can be used for clock synchronization. Look at the example in
Figure 14.16. The required transitions are shown as heavy arrows within the resulting

FIGURE 14.15
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FIGURE 14.16

Manchester Encoding
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waveform. Note that the fourth and fifth bits both require 0 → 1 transitions. To accomplish
this, there must be an additional downward transition to make the second 0 → 1 transition
possible, however the extra downward transition occurs between the data points and is
ignored. This particular method is called Manchester encoding. It is one of several pos-
sible self-synchronization techniques. Manchester encoding is used in 10 Mbps Ethernet

FIGURE 14.17

4B/5B Block Coding
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transmissions. For practice, you might wish to
create the waveform for the original example
shown in Figure 14.14: the case of twelve zeros.

An alternative encoding methodology is
called block coding. Block coding adds addi-
tional bits to small blocks of data; it then
converts each block to a different block of data
that supplies the required self-clocking. At the
receiving end, the blocks are converted back to
the original data. Block coding is often used to
compensate for shortcomings of other methods.
A simple example will clarify the idea. 4B/5B is
a block coding algorithm that compensates for
a shortcoming of a method called NRZ-I that
loses synchronization if the data contains a lot of
zeros. 4B/5B converts 4-bit groups into 5 bits for
transmission using the conversion table shown
in Figure 14.17 (a). Figure 14.17 (b) shows the
resulting encoding. Block encoding has the addi-
tional advantage that it can detect certain errors.
There are sixteen unused 5-bit blocks. If any of
these blocks appear at the receiver, the system
knows that there is an error. There are a num-
ber of different block codes in use. The block
coding shown in this example is used for most
100 Mbps Ethernet transmissions.

In addition to self-synchronization, there
must be a means to synchronize the data so that
the receiver knows the boundaries of each byte.
Ethernet frames use an 8-byte preamble for this
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purpose. The pattern 10 is repeated twenty-eight times, followed by a start frame delimiter
with the pattern 10101011.

As you know, digital signals can also be used to represent analog waveforms. We have
already mentioned the iPod as an example. Other examples include the digital signals that
represent video in a direct satellite TV system and the digitization of sound that can be used
to store telephone voice mail in a computer.

One way of converting analog data into digital form is shown in Figure 14.18. This
method is called pulse code modulation (PCM). There are three steps in the process. In
step 1, the analog waveform is sampled at regular time interval, as shown in Figure 14.18a.
In Figure 14.18b the maximum possible amplitude of the waveform is divided into intervals

FIGURE 14.18
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FIGURE 14.19

Use of a Repeater

Repeater

corresponding to a range of binary numbers. This example uses 256 levels, which will result
in 8 bits per sample. This intermediate step is called pulse amplitude modulation (PAM).
PAM can be used directly, to provide a discrete signal signal, if desired. More commonly,
the sampled values are each converted into their corresponding number value. The result
is PCM. Incidentally, the information lost in converting data from analog to digital can be
seen in this step: it consists of the difference between the actual value of the sample and the
value corresponding to the nearest available number. Finally, in Figure 14.18c, the number
is reduced to its binary equivalent. The device that performs this conversion is called an
A-to-D converter.

Digital signals are susceptible to noise, attenuation, and distortion, just as analog
signals are. However, it is only necessary to distinguish between two levels, so much more
distortion and noise in the channel can be tolerated. It is also possible to recreate the
original signal at intervals along the channel, since the original shape is limited to ones and
zeros. Repeaters are used for this purpose. Repeaters make it possible to transmit digital
signals over long distances. Error correction techniques can also be used to repair data.
Error correction can be particularly effective in the presence of bursts of noise. Figure 14.19
illustrates the operation of a repeater.

Digital signals can also be multiplexed to allow different signals to share a channel.
Time division multiplexing (TDM) is normally employed for this purpose. Figure 14.20
illustrates a time division multiplexer being used to share a communication channel among
three digital signals. We’ve used the idea of a rotary switch to illustrate the operation of the
multiplexer, although the switch is actually electronic. Each signal is sampled in turn, at a
rate high enough to assure that no data is lost. The number of bits in each sample depends
on the application. The data is combined and transmitted over the channel. At the other
end of the channel the process is reversed. Each sample is sent to its respective destination.
TDM has one potential shortcoming. If there is a lot of data in one incoming channel and
very little in another, TDM is inefficient. There will be empty slots from the lightly used
channel while data is backlogged in another. An alternative form of TDM, called statistical
TDM, solves this problem by adding a small header to each slot of data that identifies its
channel. In this way, every slot can be filled when the data load requires it.

The bandwidth of a channel is also important for digital transmission. Remember
that even digital signals can be represented as a sum of sine waves of different frequency.
The higher the data rate, the higher the frequencies of the sine waves that make up the
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FIGURE 14.20

Time Division Multiplexing (TDM)
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signal. Thus, a channel of wider bandwidth can carry data at a higher data rate, effectively
increasing the data capacity of the channel.

Modems and Codecs

Home-to-service-provider network connections commonly rely on telephone or cable
service to provide connectivity. In some areas, service providers offer fiber direct delivery to
the home, supplying telephone service, TV, and Internet connectivity digitally on a single
fiber-optic cable. In older systems, modems (modulator/demodulators) convert Ethernet
signals from a computer or router to analog signals for transmission over the phone line
or cable system and vice versa. Speeds of 10 Mbps and more are possible under some
conditions with DSL and cable services. DSL technology uses FDM to separate a traditional
phone line into a traditional voice component and two or more data components. The
data components use a mixture of ASK and PSK for the transmission of data between the
user and the telephone switching center. At the switching center, a DSL access multiplexer
packetizes the data component for transmission to the Internet. See Figure 14.21.

FIGURE 14.21
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14.3 TRANSMISSION MEDIA AND SIGNALING
METHODS

A transmission medium is defined as the means used to carry the signal being transmitted
from one location to another. Data may be transmitted using electrical signals on wires,
with light signals on fiber-optic cable, or wirelessly, using radio waves or, less commonly,
light or sound. A transmission medium is characterized by its physical properties, by the
signaling method(s) that it supports, by its bandwidth, and by its sensitivity to outside
interference, or noise.

Transmission media that confine the signal physically to a cable of some kind are called
guided media. Media that broadcast the signal openly using radio waves, light, or sound
are called unguided media. Unguided media do not confine the signal to a particular area,
but the signal may be focused in a particular direction.

You have already seen that the bandwidth and noise affect the capability of a channel
to transmit data. Although the effect is more obvious with analog signaling, the same is true
for both analog and digital signaling. Communication theory shows that the data capacity
of a channel increases as the bandwidth of the channel increases. Noise in a channel is
measured relative to the size of the signal. The measurement is called the signal-to-noise
ratio. As you would expect, a higher signal-to-noise ratio for a given bandwidth increases
the data capacity of a channel.

Consider the characteristics and general capabilities of each media type in turn:

■ Electrically based media require a complete circuit consisting of two wires, one
to carry the signal, the other as a return. This is perhaps most familiar to you
from the electrical wiring in your house. (Some electrical wiring uses a third wire,
which is connected to the ground to protect you from shocks, but the third wire
is not actually part of the circuit.)

Electrically based media are often referred to as wired media, or just wire.
Wire carries the signals in the form of changing electrical voltage or current.
Analog or digital signaling methods may be used. Wired media are the natural
choices in many instances because the signals to be transmitted are already in
electrical form and will be used in electrical form at the receiving end, so no
conversions are necessary. Wire is inexpensive and easy to use. Wire channels are
easily interconnected to extend a channel, to form networks, and to pass signals
from one channel to another.

The most common electrical transmission medium is twisted pair. Twisted
pair is used for standard telephone and most local area network wiring. Twisted
pair consists of two wires twisted together. One wire acts as the signal carrier, the
other is the ground return. Twisting the two wires together reduces noise
interference somewhat because the same noise presumably occurs in both wires,
which cancels the noise to some extent. Groups of twisted pairs are frequently
bundled together in a larger cable. There are a number of standardized types of
twisted pair wiring. There are also some wire pairs that are untwisted.

Coaxial cable consists of a wire surrounded by insulation. The second
‘‘wire’’ consists of a copper shield that surrounds the insulation. The shield acts
as a signal return, but also prevents external noise signals from interfering with
the signal carried by the inner wire.



CHAPTER 14 COMMUNICATION CHANNEL TECHNOLOGY 467

Coaxial cable is capable of high bandwidths. It can be used for high-speed
transmission of digital signals, at rates of up to 100 million bps, or even more. It
can also carry wide-bandwidth analog signals. The cable used to carry cable TV is
usually coaxial cable, although fiber optic cable (see below) is gradually replacing
coaxial cable. Analog cable TV uses frequency division multiplexing to carry
dozens of channels of television at 6 MHz of bandwidth per channel. Coaxial
cable bandwidths in excess of 500 MHz are possible. Similarly, the cable can also
be used to carry a large number of data compressed time division multiplexed
digital TV signals. Coaxial cable is far less susceptible to noise than twisted pair,
and is well suited for relatively long distance connections, however its cost is
significantly higher than twisted pair, and its bandwidth is small compared to
fiber, so its use is fading.

■ Fiber-optic cables carry signals in the form of light. Optical signals are
produced by using the electrical data signal to turn a light on and off very
rapidly. A laser or light-emitting diode is used as the light source. It is not
possible to use a conventional light bulb, because a light bulb cannot be
switched on and off rapidly enough. An optical detector at the other end of the
cable converts the light signal back to electrical form. The cable itself consists
of one or more strands of glass fiber specially designed to carry waves of light.
Each strand is thinner than a human hair and may be tens or hundreds of
miles long. The bundle of fibers is surrounded by a plastic sheath, called
cladding, to protect the fibers. Fiber-optic cables are often grouped together in
bundles, which are further protected by an additional tough plastic jacket.
Light is confined to the fibers, and attenuation is very low. Since light is an
electromagnetic wave, turning a light on and off is technically a form of ASK.
Most users tend to think of fiber-optic transmission as a digital signaling
method, for practical purposes. Since light waves are of such high frequency,
fiber-optic cable provides an extremely wide bandwidth. A single fiber can
carry information at rates of hundreds of millions of bits per second.
Fiber-optic cable is nearly invulnerable to most forms of noise, since the signal
is optical, not electrical. It is also difficult to tap into a fiber-optic cable, which
offers some measure of security. At the nodes, signals are readily converted
between light and electrical for interconnection with other media types.

Its huge data-carrying capacity makes fiber-optic technology highly desirable
in many situations. Entire communities are being ‘‘rewired’’ with fiber-optic
cables to provide improved communication capability for the future.

■ Electromagnetic wave transmissions do not require a specific physical medium,
but simply propagate through space or through any material that is relatively
transparent to the waves. For signaling purposes, the medium is space; radio
waves are the carriers. Electromagnetic waves having frequencies above 1 GHz
but below the frequencies of light are generally referred to as microwaves.
Microwaves are the most common form of wave transmission carrier although
lower-frequency radio waves are also used. Microwaves are unguided, but they
can be tightly focused and used point-to-point between microwave antennas or
between a microwave antenna and a satellite. Lower-frequency radio waves are
less directional and harder to focus and require much larger antennas. (Recall
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that the size of an antenna is inversely proportional to its frequency.) They also
provide less bandwidth. Conversely, higher-frequency waves are more susceptible
to attenuation within the physical medium that the wave travels through. A heavy
rainstorm can make microwave communication difficult, whereas low-frequency
radio waves are sometimes used as a communication channel under water.

Microwave communication applications include large-scale Internet
backbone channels, direct satellite-to-home television, cellular telephony, and
802.11 (‘‘Wi-Fi’’) wireless networking.

It is usually necessary to convert between electrical and electromagnetic media formats.
However, this technology is well developed and relatively inexpensive. One difficulty with
the use of radio waves is interference between different communications using the same
carrier frequencies. Although the frequency spectrum seems large, it is heavily used for
many different purposes in most areas of the spectrum where communication is practical.
(Consider the interference between a microwave oven and a cordless phone, for example.)
Higher frequencies are somewhat more available because of the ability to focus the wave in
a particular direction. The highest usable frequencies are, of course, light waves. There are
wireless networks and direct computer-to-computer channels that use infrared light as a
medium.

14.4 WIRELESS NETWORKING
Wireless networking uses radio wave technology as a transmission medium. Like wired
networking, wireless networking tends to fall into categories based on range. For typical
short-range, local area networking, wireless Ethernet, more commonly called Wi-Fi is
the standard. For longer ranges there are two contenders, WiMAX and cellular telephone
technology, although as of this writing neither technology has achieved the standardization,
degree of deployment, or use to determine its long-term success. At the personal level,
Bluetooth is the generally accepted standard. As we mentioned in Chapter 12, there is also
a recent development of technology and standards to interconnect wireless Ethernet into
a wireless mesh network using wireless technology that can link many Wi-Fi areas into a
larger network.

Wireless data communications must deal with a lot of difficult issues that are not
present with standard networking. These include signals whose strengths vary widely,
buildings, trees, and other structural signal blocks, and interference from other wireless
devices, including both devices designed for wireless data communication and devices
with other purposes, such as microwave ovens and standard cordless phones. There is the
additional problem that mobile users may move from one signal source to another during
their communication, with the expectation that there will be no interruption in data flow.
Finally, the bandwidth of wireless systems is limited, with the number of users who want to
share the bandwidth increasing rapidly. This has required the development of sophisticated
signaling techniques to maximize the use of the bandwidth.

Cellular and WiMAX data communication technologies are complex and not
well-standardized as of the time of this writing. We focus here solely on wireless Ethernet.
Other technologies are beyond the scope of this text.
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Wi-Fi

The most common use of wireless networking is defined by IEEE Standard 802.11. There
are several different versions of Wi-Fi. As of this writing, these are known as 802.11a,
802.11b, 802.11g, and 802.11n. A table in Figure 12.25 compared the various versions of
Wi-Fi. The basic configuration of a Wi-Fi local area network is shown in Figure 14.22. Each
wireless unit is connected by radio to a base station access point, which serves as a hub
to enable data communication between the various wireless devices and also as a router to
enable communication between a wireless device and a wired network. As the figure shows,
it is common for an installation to have multiple base stations for wireless access.

All nodes communicate with the access point. The access point forwards the packet to
the destination station. Packet forwarding is a necessity because there is no guarantee that
nodes can ‘‘hear’’ each other. As Figure 14.23 shows, it is possible for stations to be out
of range or blocked by buildings or other obstacles from each other, however all stations
can communicate with the access point. This is sometimes referred to as a hidden node
condition.

The Wi-Fi standard also includes an ad hoc mode where wireless units can communicate
with each other without the use of a base station. This mode is almost never used. We won’t
discuss it further.

The Wi-Fi standard divides the total bandwidth into overlapping channels; the number
depends on the type of wireless and the bandwidth permitted within a particular country.
For example, in the United States, the 2.4 GHz band is divided into eleven channels.
However, interference between channels requires that channels being used simultaneously
must be separated by at least four channels to communicate successfully. This means that

FIGURE 14.22
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FIGURE 14.23

Examples of a Hidden Node Condition and Out-of-Range Conditions

there is only a single group of three channels that can be used simultaneously, channels 1,
6, and 11. (A nearby access point that is nearly out of range might be configured to use
channels 3 and 8 though.)

Since the medium effectively has the characteristics of a hub, collision handling is
required. The standard specifies two techniques, one mandatory, one elective. Collisions in
a wireless network are harder to detect than in a wired network and the consequences are
greater. It is much more difficult to receive a signal from another station while transmitting
a signal. In addition, the hidden node condition means that is is possible that some stations
can never detect collisions from each other. Furthermore, once a sender begins to transmit
a frame, it will be transmitted to its conclusion, even if a collision has occurred, meaning
the delays due to collisions are much longer than those on a wired hub.

Instead, the 802.11 standard specifies the use of a collision avoidance MAC protocol,
CSMA/CA. As with CSMA/CD, a station is always listening. When a station wishes to
transmit a packet it waits until the channel is clear, plus an additional short random
amount of time. It then transmits its frame. The wireless Ethernet frame contains a field
that states the time duration of the packet, which assists other stations in knowing how
long a transmission will take. When the frame reaches its destination, the receiver checks
for errors, then sends a short acknowledgment packet to indicate satisfactory receipt of the
frame. The requirement for receivers to acknowledge the receipt of frames is the reason for
the extra delay in starting transmission. The acknowledgment is the only sure way to know
that a collision has not occurred.

An optional enhancement uses a reservation system to improve collision avoidance
between hidden nodes. Instead of transmitting a frame, a sender will send a short ‘‘request
to send’’ (RTS) packet to the access point, including the time duration that it needs to send
a frame. If the channel is clear, the access point will return a ‘‘clear to send’’ (CTS) packet,
at which time the sender begins transmission of its frame. Even if a node cannot receive the
RTS packet, it will be able to receive the CTS packet that was sent from the access point.



CHAPTER 14 COMMUNICATION CHANNEL TECHNOLOGY 471

SUMMARY AND REVIEW
Communication between loosely coupled computers consists of messages passed over a
communication channel. A communication channel is characterized by the transmission
medium; the signaling transmission method; the channel capacity or bandwidth; the
direction(s) of message flow; and the noise, attenuation, and distortion factors. Realistically,
a channel may be made up of several subchannels, each with its own characteristics. The
overall channel is defined primarily by the characteristics measured and observed at its
access points.

The signaling method may be either analog or digital depending on the medium, the
requirements of the sender and receiver stations, and a number of other factors. There are
three primary types of medium in use: wires, fiber optics, and electromagnetic radiation.
Wires can pass analog and digital signals. Fiber optics use light signals. Electromagnetic
radiation media include radio and microwaves and require analog waveforms. Wire and
fiber optics are guided media; electromagnetic radiation is unguided.

It is possible to transform data between analog and digital signaling methods; however,
there is a small amount of unavoidable data loss in the analog-to-digital transformation
process. Digital signals (and some analog signals) are transformed into electromagnetic
waves by the process of modulation. Modulation works by varying the amplitude, frequency,
or phase of the sine wave that acts as a carrier for the signal carrier.

Currently, the most important wireless data technology is wireless Ethernet, also
known as Wi-Fi. There are several different types of Wi-Fi. A Wi-Fi network consists of an
access point and a number of wireless stations. Collision avoidance is important; CSMA/CA
and RTS/CTS protocols are used to minimize collisions.

FOR FURTHER READING
Any of the books recommended in Chapter 12 are also useful references for the material in
Chapter 14. The most thorough discussion of the topics discussed in Chapter 14 is found
in Forouzan [FOR07].

KEY CONCEPTS AND TERMS
access point
A-to-D converter
amplifier
amplitude
amplitude modulation
amplitude shift keying

(ASK)
analog (signal)
asynchronous transmission
attenuation
bandwidth
block coding

bundled twisted pair
carriers
circuit
coaxial cable
CSMA/CA protocol
demodulation
detector
digital signal
discrete signal
electromagnetic wave
fiber-optic cable
filtering

frequency
frequency division

multiplexing (FDM)
frequency shift keying

(FSK)
guided media
Hertz (Hz)
Manchester encoding
modem
modulation
multiplexing
noise
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period
phase
phase shift keying (PSK)
pulse amplitude

modulation (PAM)
pulse code modulation
radian
repeaters
self-synchronization

signal
signal-to-noise

ratio
sine wave
spectrum
statistical TDM
time division multiplexing

(TDM)
twisted pair

unguided media
untwisted pair
waveform
wavelength
wavelength division

multiplexing (WDM)
Wi-Fi
WiMAX
Wireless Ethernet

READING REVIEW QUESTIONS
14.1 Which layers of the network model are specifically concerned with communica-

tion channel media and signaling technology?

14.2 List at least four properties that characterize a communication channel.

14.3 What determines the choice of analog or digital signaling?

14.4 What is the purpose of multiplexing? Briefly explain time division multiplexing.
Briefly explain frequency division multiplexing.

14.5 Which, analog signals or digital signals, are more susceptible to noise? Justify
your answer.

14.6 What is a waveform?

14.7 What is the basic unit of analog signaling?

14.8 Explain the relationship between frequency, period, and wavelength in a sine
wave.

14.9 What is the spectrum of a signal? What is the relationship between the spectrum
of a signal and the bandwidth of a channel?

14.10 What is modulation? Is the image in Figure 14E.1 an example of AM, FM, or PM?

FIGURE 14E.1
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14.11 When attenuation occurs in an analog signal, what hardware device is used to
restore the original signal? When attenuation occurs in a digital signal, what
hardware device is used to restore the original signal?
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14.12 What problem does Manchester encoding address? What alternative to Man-
chester encoding is also discussed in this chapter?

14.13 What potential shortcoming of TDM is addresses by statistical TDM?

14.14 Name a guided medium. Name an unguided medium.

14.15 What is the relationship between the data capacity of a channel and its
signal-to-noise ratio?

14.16 Coaxial cable, twisted pair, and untwisted pair are examples of what type of
medium?

14.17 What factors contribute to the high data capacity of fiber-optic cable?

14.18 What is an access point?

14.19 What are the major differences between CSMA/CD and CSMA/CA? Which
is used in Wi-Fi wireless networking? What properties of wireless networking
necessitate the use of this approach?

EXERCISES
14.1 Draw a pair of sine waves that are 45◦ out of phase.

14.2 Consider a message that is made up of a sequence of bits as follows:

0111001011010110 . . .

Suppose that we transmit this message using a combination of FSK and ASK.
Draw waveforms that would represent each pair of bits, then use your represen-
tations to draw a complete waveform that represents the entire message.

14.3 On a sheet of graph paper, draw an FSK waveform that represents the following
waveform. The carrier frequency of a 0 is 1000 Hz, and that of a 1 is 2000 Hz.
The data rate is 500 bps.

14.4 Many phone companies are replacing the wire in their phone systems with fiber
optic cable. What do they expect to gain from doing so?

14.5 In recent years, much of the storage and communication of data has been in
digital form, even if the source data is actually analog. Even most television is
now transmitted digitally. What benefits and advantages are gained by using
digital storage and signaling?

14.6 Consider a communication system that converts a digital signal to analog form
for transmission, then recovers the digital signal at the receiving end. Another
system starts with an analog signal, which it then converts to digital form for
transmission, and recovers the analog signal at the receiving end. Both systems
require both A-to-D and D-to-A conversion, yet one system is considered
more reliable than the other. Which one? Why? Compare the A-to-D-to-A
communication system with one that is entirely analog. What are the important
factors affecting the performance of each system?

14.7 Discuss the trade-offs between coaxial wire and fiber optics in a network made
up of fifty computer stations all located within 1000 feet of each other.

14.8 What effect does time division multiplexing have on the bandwidth requirements
of a channel?

14.9 Describe the advantages that repeaters have over amplifiers.



474 PART FOUR NETWORKS AND DATA COMMUNICATIONS

14.10 Discuss the trade-offs between fiber optic and satellite communication in terms
of costs, signal capacity, signaling method, interference, likelihood of failure and
repair issues, multipoint capability, reconfiguration capability, and noise.

14.11 What effect would you expect a wider bandwidth to have on the noise in a
channel?

14.12 A waveform travels in space at a rate of approximately 300 million meters per
second. The wavelength of a sine wave is the actual distance in space that is used
by one sine wave as it travels. What is the wavelength of a 100-MHz sine wave?
What is the wavelength of a 500-MHz sine wave? Antennas to send and receive
electromagnetic waves are often sized to be one-half of the wavelength for the
particular wave being used. Compare your previous calculations to the size of
VHF and UHF television antennas. How large would a 1/2 wavelength antenna
have to be to transmit a 60-Hz wave?

14.13 What is the carrier frequency of your favorite radio station? Is the station
amplitude modulated or frequency modulated? How do you know? What is the
bandwidth of this station? (Hint: what is the carrier frequency of the next nearest
possible station on the dial?)

14.14 a. The Doppler effect is the varying frequency of the sound made by a train
whistle as the train approaches and then moves away from you. The Doppler
effect is also used to measure the speed of stars in space relative to the earth.
Explain this effect on the basis of what you know about the relationship of
wavelength (see Exercise 14.12), speed of light or sound, and frequency.

b. On a cold day, the speed of sound decreases. What effect would that have
on the sound of the train whistle?

14.15 a. A simple TV cable converter converts the TV signal of a channel on the
cable to channel 3 for reception on the TV set. A clever viewer notices that
she can pick up the adjacent channel that is normally blacked out by tuning
her TV set to channel 4. What does this tell you about the way channels are
carried on the cable?

b. The converter on a direct broadcast satellite also converts TV signals to
channel 3 for reception. However, changing the TV set to channel 4 does
not result in reception of the adjacent channel. Why not? How are the
different TV signals carried on the channel?

14.16 As indicated in the chapter text, any wave can be represented as a sum of sine
waves of various frequencies, amplitudes, and phases. This problem explores
the effects of channel bandwidth, shape of the spectrum, and phase distortion
on the shape of a waveform. A square wave is made up of sine waves according
to the following equation:

S = sin(2ft) + 1/3 sin(3× 2ft) + 1/5 sin(5× 2ft) + . . .

It is difficult to plot sine waves with any accuracy. Instead, we will use a trian-
gular waveform shape as an approximation for the sine wave.

a. On a sheet of graph paper, carefully construct a triangular wave that starts
at 0, rises to a maximum value of 15, falls to a minimum value of −15, then
returns to 0. Your waveform should extend over 15 units on the time scale.
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Now construct a second triangle wave with an amplitude of 5 and a time
span of 5. Your second waveform should start at 0. Add the amplitudes of
the new waveform and the previous one to produce a new waveform which
is the sum of the two. What do you observe?

b. Now create a third waveform of amplitude 3 and time span 3, and add it
to the previous result. What do you observe? If the bandwidth is limited so
that only the first two waves can pass through the channel, what is the effect
on the waveform?

c. Next, start with a fresh sheet of graph paper. Draw the fundamental triangle
wave. Draw the second triangle wave, but this time shift the phase 90◦, so
that the positive peak of the second wave coincides with the initial zero
position of the fundamental. Add the two waveforms. What effect did the
phase shift have on the summed waveform shape?

d. On another fresh sheet of graph paper, draw the fundamental waveform
one more time. Draw the second waveform, this time with a height of 3
instead of 5. Also draw the third waveform with a height of 4 instead of
3. All waveforms start at 0, that is, with no phase shift distortion. Add the
three waveforms. What effect did the altered spectrum shape have on the
waveform?

e. Based on the original amplitudes of the waves and the modified amplitudes
used in part (d), draw the spectrum of the channel.

14.17 Carefully draw a diagram that represents the binary sequence 00101110100010.
Now, below your original diagram, draw the Manchester encoded representation
of the same sequence.

14.18 Identify the binary sequence that is represented by the Manchester encoded
sequence shown in Figure 14E.2.

FIGURE 14E.2

1

0

14.19 What is the 4B/5B encoding for the binary sequence 1101000011001101?

14.20 a. What is the binary sequence represented by the 4B/5B encoded sequence

11110011111101111110?

b. What is the binary sequence represented by the 4B/5B encoded sequence

10101010101010101011?

14.21 Describe the differences between CSMA/CD and CSMA/CA. Explain the reasons
why CSMA/CA is used instead of CSMA/CD for wireless networks. Would the use
of CSMA/CA improve the performance of bus-based Ethernet? Why or why not?
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The bare bones computer system described in Chapters 6 through 11 cannot, by itself,
meet the needs of today’s computer users. Since the job of the hardware is simply to
execute the instructions given to it in the form of programs, the ultimate task is the

responsibility of software.
Without software, there is no easy way to load programs into memory, no user

interface, no means for controlling the various peripheral devices connected to the system,
no means for storing, retrieving, or manipulating files, and no way to manage concurrent
multiple programs or multiple users.

Of course, we could insist that each application program provide its own tools and
facilities, but this would be inconvenient and inefficient. It would also severely limit use of
the system. It is obviously useful to provide a set of programs that perform basic functions
as an integral part of the computer system.

These programs control the hardware, load and start application programs, provide
file services, implement communication between systems, and support a user interface to
the computer. This system software provides a complete environment in which the user can
concentrate on the problem to be solved rather than deal with the nuances of the computer
itself. The user interface allows system access to users of different skill levels, and the file and
hardware control modules effectively isolate the user from internal computer operations.

Most of this system software is grouped into a set of programs known as an operating
system. You are probably most familiar with the operating systems known as Windows,
but there are many other important operating systems. Linux, z/OS, and Mac OS X are just
a few that may come to mind.

In the next four chapters, we will devote our attention to a study of system software and
operating systems. We begin in Chapter 15 with an overview of operating systems. In this
chapter we introduce the various tasks to be performed by the operating system software.
We show the various ways in which the operating system software interacts with the user
and with application programs. We show how the operating system is implemented to
allow the sharing of resources, so that a user may execute more than one program at a time.
It also enables multiple users to share the system.
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The remaining chapters in this section offer more detailed discussions of various
parts of the operating system, following the natural hierarchy of the operating system,
as described in Chapter 15. In Chapter 16, we look at the interface between user and
computer. We consider the various types of commands that are required or desired and the
different types of interfaces that are provided on different systems to initiate commands
and control the system. We also discuss the concept of command languages, powerful ways
of combining system commands and utilities that allow the user to perform sophisticated
computer tasks with a minimum of effort.

File management is so important that it merits a chapter of its own. Database manage-
ment systems are at the core of most large modern information technology systems. File
management provides the storage facility that makes database management possible. It also
provides the capability that allows you to access files by name on your personal computer.

In Chapter 17 we discuss the methods used to store, retrieve, and manipulate files. We
look at the methods used for accessing files and consider how the files are stored on various
peripheral devices. We study the methods used to implement file directory systems, and
consider why some file access methods work better than others under different conditions.

Chapter 18 explores some of the most important algorithms and methods used
internally to implement various aspects of the operating system. We begin with a discussion
of a simple system that includes the key components required to implement a multitasking
system. The remainder of the chapter focuses on primary and secondary storage scheduling,
and memory management. The discussion of memory management includes a thorough
discussion of virtual storage. We show how the operating system and computer hardware
work together synergistically to provide powerful primary storage management capability.
Other operating system issues are considered briefly. The chapter concludes with a
discussion of virtualization, a topic of considerable importance in modern computer usage.

At the completion of this section, you can expect to have a good understanding of
the four major components that make up a computer system: the data, the hardware, the
software, and the communication facilities that connect systems together into powerful
information resources at both corporate and international levels.
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15.0 INTRODUCTION
In Chapter 2, we introduced the modern computer system as a synergistic set of
components that work together to make the computer accessible and productive to the
user. The operating system (OS) software component provides the basic functionality
of the system by offering programs that operate, control, and support the fundamental
resources of the computer. Those resources include both CPU and peripheral hard-
ware, network services, application programs, short-term program and data storage for
use while a program is executing, time in which to execute programs, and overall access
to the system. The operating system programs make system resources available to the
user(s), the user’s application programs, and to other application programs running
on the computer. The operating system also provides and controls access to other,
interconnected systems through its networking and clustering capabilities. Although
the operating system programs are tailored to the specific hardware provided on a par-
ticular system, it is possible to offer different operating systems on a particular hardware
platform and to offer the same operating system on different hardware platforms.

The hardware and the operating system operate together architecturally to form
a complete working individual computer environment. The operating system has two
fundamental purposes: to control and operate the hardware in an efficient manner
and to allow the ‘‘users’’ powerful access to the facilities of the machine by providing
a variety of facilities and services. (For this discussion, we will define ‘‘users’’ loosely
to include server requests from networked clients on other machines as well as users
directly accessing the machine.) These services are available both directly to the users
and to the programs that the users execute. In addition, the operating system expands
the capability of the computer system to allow for the concurrent processing of
multiple programs and support for multiple users, both local and networked, as well as
other specialized tasks that would not be possible otherwise. The operating system also
makes possible the synergistic implementation of specialized hardware that is designed
to improve system performance and capability. The primary example of this, virtual
storage, is introduced in Chapter 18.

This chapter provides an overview of the various components, facilities, and
services of the operating system. We explore the services that an operating system can
provide and show how the operating system integrates these services into a unified
working environment. We introduce the tasks that the operating system performs and
show how these tasks are interrelated and work together to make it possible for users
to get their work done more efficiently.

There are many different types of operating systems, reflecting different pur-
poses and goals, and many different methods of organizing operating systems.
These differences are indicated by the way in which the user interacts with the
system—an idea that is often surprising to the user who has worked with a single
system. This chapter discusses various types of systems and organizations. It notes
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the different ways in which work is accomplished on a computer system and the different
services that are provided.

Although the focus of this book is on IT systems, we note at the outset of this discussion
that the use of computer-based operating systems is not limited to business systems or other
obvious computer-based devices. Mobile phones, home theater systems, TV sets and DVD
players, automobiles, digital cameras, electronic toys, even many household appliances, all
rely on computers with their associated operating systems to provide their functionality.
The material in this chapter applies, to lesser or greater extent, to all of these. Interestingly
enough, the convergence of these diverse areas has, itself, had a major impact on the design
and use of business systems.

15.1 THE BAREBONES COMPUTER SYSTEM
Consider once again the Little Man model that we introduced in Chapter 6. To use this
model, a single program was stored in memory. The Little Man executed the program by
executing each instruction in turn until he encountered a HALT instruction, which stopped
the computer. For simplicity, the Little Man scenario was designed to ignore several issues
that must be considered in a real computer.

First, we assumed that the program was already loaded into memory, without
considering how it got there. In a real computer, the contents of RAM are destroyed when
power is shut off. When power is again turned on, the contents of memory are initially
unknown. Means must be provided to load a program when the machine is turned on.
Remember that the CPU simply executes whatever it finds in memory as instructions,
so there must be a program in memory before the computer can even begin to execute
instructions. After the computer is on, there must be a method to load a program into
memory any time a new program is to be executed.

Second, there must be a means to tell the computer to start executing the instructions
in a program. The Little Man began executing instructions whenever the location counter
was reset to zero.

Third, the barebones computer has no user interface except for the I/O routines that
are provided with the executing program. This means that common program requirements
such as keyboard and screen I/O, file operations, interrupt capability and other internal
facilities, and printout must be created and supplied as a part of every program written. It
would be dangerous for programs to share disks because there would be no way to establish
and protect ownership of particular space on a disk.

The most important consideration to remember is that once the computer is running,
it will continue to execute instructions until a HALT instruction is encountered or until
power is removed. Halting a program at its conclusion means restarting the computer.
This suggests that it is highly desirable that there be an additional program in memory
that is always available to execute instructions whenever no other program is being run.
This would allow programs to complete execution without halting the machine. Instead,
a program would terminate with a jump instruction to the alternative program. The
alternative program could be used to accept user commands and to provide a memory
loader for the execution of other programs.

As a final consideration, notice that the barebones computer is limited to one program
at a time. To run multiple programs concurrently, each program must be in memory and
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there must be a method in place for sharing the time to execute instructions in the CPU.
Since the barebones computer offers no provisions for the functions required to handle
the memory management and time scheduling needed, multitasking—the execution of
multiple programs concurrently—is not possible. Sharing of the computer by multiple
users is also not possible, for the same reason. In Chapters 8 and 9 you were made aware of
the CPU time wasted during I/O transfers that could be used by other programs. An even
more important waste of time occurs as a program waits for user input. The barebones
computer is not capable of using the CPU productively during these intervals.

Behind these considerations is the realization that ultimately the purpose of the
computer is to help the user to get work done. Obviously, modern computers are not
meant to be operated in a barebones fashion like the Little Man. The user should be
able to start and operate the computer easily, should be able to choose programs to
load and execute, should be able to communicate with others users and other systems,
and should be able to perform these operations in a convenient, flexible, and efficient
manner. Larger computer systems should be able to share the resources among many users.
What is required is additional programs that can provide services to make these expanded
capabilities possible.

15.2 THE OPERATING SYSTEMS CONCEPT:
AN INTRODUCTION

The solution to the limitations of a barebones system is to include programs with the
computer system that will accept commands from the user and that will provide desired
services to the user and to the user’s programs. These included programs are known
collectively as an operating system. The operating system acts as a system manager,
controlling both hardware and software and acting as an interface between the user and the
system. The operating system itself consists of a collection of programs that work together
collectively to accomplish these tasks.

An operating system may be defined as

a collection of computer programs that integrate the hardware resources of
the computer and make those resources available to a user and the user’s
programs, in a way that allows the user access to the computer in a productive,
timely, and efficient manner.

In other words, the operating system acts as an intermediary between the user and
the user’s programs and the hardware of the computer. It makes the resources available to
the user and the user’s programs in a convenient way, on the one hand, and controls and
manages the hardware, on the other.

Intuitively we think of a user as a human interacting with a computer system; however,
there are situations in which the ‘‘user’’ is actually another computer or a mechanical or
electronic device of some sort. A common example of this situation is one in which an
application program on one computer requests services from an application program or
system service on another machine, for example a Web server application requesting data
from a back-end database server. Another example would be a situation in which a user on
a client machine requests file or printer services on a server machine.
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In serving as an intermediary between the users of computer services and the computer’s
resources, the operating system provides three basic types of services:

1. It accepts and processes commands and requests from the user and the user’s
programs and presents appropriate output results.

2. It manages, loads, and executes programs.

3. It manages the hardware resources of the computer, including the interfaces to
networks and other external parts of the system.

The relationship between the various components of a computer system is shown
schematically in Figure 15.1.

In its intermediary role, the operating system makes it possible for users and programs to
control the computer hardware transparently without dealing with the details of hardware
operation. Programs can be executed and controlled with mouse clicks and keyboard
commands and other types of input. When programs are completed or interrupted, control
returns to the operating system, enabling the user to continue to operate without restarting
the computer.

Effectively, the operating system provides a complete working environment, making
the system convenient for the user by providing the services necessary to get work done.

FIGURE 15.1

The Modern Integrated Computer Environment
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The easiest way to think of an oper-
ating system is to consider it as a master
‘‘program’’ that accepts requests from the
user, the user’s programs, or other sources,
and then calls its own programs to perform
the required tasks. At the same time, it also
calls programs to control and allocate the
resources of the machine, including the
use of memory, the use of I/O devices, and
the time available to various programs.
Thus, if the user issues a command to load
a program, a program loader is executed,
which then loads the desired program into
memory and transfers control to the user’s
program to run. That program can then
issue its own requests, for example to pro-
duce output to a printer or to send a
message through the Internet to a Web
server somewhere.

If you like, you could picture a com-
mand - interpreter - and - program - loader
program sitting at the high end of the
Little Man Computer memory. When
a particular value is received as input,
say, 999, that corresponds to the user’s
command to load a program, the loader
performs a loop that inputs the instruc-
tions one at a time from the input box
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into lower memory and then jumps to mailbox 00 to execute the new program. (See
Exercise 15.14.)

In a real computer, the operation is more complex, of course. There are many different
I/O devices to be controlled, for one thing. There will usually be more than one program
sharing the hardware resources, for another. To accept a command from a user, the
operating system must first service mouse clicks and input keystrokes from the keyboard.
It must interpret these actions, for example, as a command that requests that a program
be loaded and executed. It must provide a file system that can interpret the name of the
program being requested and determine the location of the file, first by determining the
secondary storage device to be used and then by locating the file on the device. It must read
the appropriate blocks from the device into memory. Only then can the operating system
transfer control to the program being executed.

Modern computer systems enable users to work with more than one program at the
same time as a way to improve their efficiency. A user can be listening to music on the Web
while word processing a document (which is what the author is doing at this moment). A
programmer can be editing one program while compiling another. Nearly every modern
system provides means and support for manipulating multiple programs, even on a system
with only a single CPU. This technique is known as multitasking or multiprogramming.1

Since a system may be manipulating many tasks on a computer with one or a few
CPUs, the operating system must support concurrency, which simulates the simultaneous
execution of multiple programs to provide multitasking and multiuser support. To support
concurrency there will be additional requirements: programs to allocate memory and other
computer resources to each program, programs to allot the CPU time in an equitable way
to each program, programs to direct input and output appropriately, and programs to
maintain the integrity of each program, to name a few.

Multitasking also enables multiple users to share the computer resources of a single
system. Such a system, known as a multiuser system, would still have to be multitasking,
of course, because each user on the system would be running at least one program, and
might even be running several programs concurrently.

This suggests that most operating systems will include additional services that augment
the basic operating system services to be provided. These additional services include one or
more interfaces that simplify the user’s ability to interact with the system and standardize
the system’s I/O operations. Modern operating systems also provide the necessary tools
to facilitate the sharing of the system services and resources among multiple programs,
computers, and users. Typically, an operating system provides most or all of the following
capabilities:

■ The operating system provides interfaces for the user and also for the user’s
programs.

■ It provides file system access and file support services.
■ It provides I/O support services that can be used by every program.

1Note that even though operating systems commonly refer to executing programs as processes, multipro-
gramming is not the same as multiprocessing. The latter refers to the presence of multiple CPUs within the
system.
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■ It provides a means for starting the computer. This process is known as
bootstrapping or Initial Program Load (IPL). The word bootstrapping is often
abbreviated simply to boot or booting. (An explanation of bootstrapping is
provided in Chapter 18, Section 18.2)

■ It handles all interrupt processing, including error handling and recovery, as well
as I/O and other routine interrupts.

■ It provides services for networking. Most modern systems also provide services to
support symmetric multiprocessing, clustering, and distributed processing.
Where necessary, the operating system may also provide support for special
features of the system. For example, the operating system for a Sony Playstation 3
must support the asymmetric multiprocessing that is a principal feature of the
Cell multiple CPU processor used within.

■ The operating system provides services that allocate resources, including
memory, I/O devices, and CPU time to programs as they need them.

■ It provides security and protection services: specifically, program and file control
services to protect users’ programs and files from each other and from outsiders,
as well as to make communication between programs possible, when desired.

■ It provides information and tools that can be used by the (human) system
administrator to control, tailor, and tune the system for appropriate behavior
and optimum performance.

Figure 15.2 is a simplified diagram showing the relationships between the different
components of an operating system. The diagram focuses on the interactions among the
most user-visible services. Specific multitasking and bootstrapping components are not
shown. These are part of the core services, which also include process and thread man-
agement, resource allocation, scheduling, memory management, security, and interprocess
communication. Also not shown on the diagram, many operating systems allow programs
to call the command interface directly to execute commands. Thus, a C++ program
operating under Linux could issue a Linux command as part of its processing.

The diagram also shows the command interface as part of the operating system. In
some systems, this is not quite the case. Instead, the command interface is viewed as a shell
outside of the operating system per se. As you will see, this view can result in increased user
flexibility by allowing the user to select different shells for different types of tasks.

Since the programs that make up the operating system occupy space in memory that
might be needed for application programs, the operating system is commonly divided into
resident and nonresident parts. Some operating system services are critical to the operation
of the system and must be resident in memory all the time. Others can be loaded into
memory only when they are needed, and executed just like other programs.

The critical programs are loaded into memory by the bootstrap loader at start-up
time and will remain resident as long as the computer is running. The bootstrap for most
modern computers is stored in read-only memory; on some computers, part or all of the
resident operating system will also be contained in ROM, so that it is permanently resident
in memory and always available for use. This is particularly true for operating systems
embedded into electronic devices such as mobile phones or DVD players.

The memory resident components of an operating system are commonly known
as the kernel of the operating system. For example, the operating system program that
accepts user commands must always be present whenever the machine is operative, as
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FIGURE 15.2

A Simplified Diagram of Operating System Services
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must the routines that handle interrupts and manage
commonly used resources in a multitasking system.
On the other hand, an operating system command
that formats a new disk is only used occasionally; it
can be loaded and executed only when it is required.

Most people assume that the operating system
software for a conventional computer system is stored
on a disk that is connected directly to the computer,
but this is not necessarily true. If the computer is
attached to a network, it may obtain its programs,
including the operating system, from another com-
puter on the network. This has led to the concept
of the diskless workstation, a personal computer
that, once booted, relies completely on the network
for its data and program storage and access. Diskless
workstations are also known as thin clients.

The size of the kernel and the particular services
provided within a kernel vary from operating system
to operating system, depending on the organization
and capabilities of the system, as well as by the type
of system. Some operating system vendors define
the kernel more narrowly than others, precluding
from memory residency some components that are
deemed less critical to the basic operation of the
system. Thus, the kernel in one system may be small,
with only the most critical components included, and
another might be large, with a tremendous range of
services.

There are many different types of operating systems, some tailored for very specific
purposes, but general-purpose computing systems can be loosely divided into categories,
as follows:

■ Single-user, single-tasking systems (this category is essentially obsolete)
■ Single-user, multitasking systems
■ Mainframe operating systems
■ Operating systems for mobile devices
■ Distributed systems
■ Network servers: Web servers, database servers, application servers, and the like
■ Embedded systems, such as those found in medical instruments, basic

cellphones, automobile control systems, marketplace kiosks, household
appliances, DVD players and TVs, electronic toys, and the like

■ Real-time systems, used for instrumentation where system responses are time
sensitive

Not surprisingly, these categories are somewhat arbitrary and are not mutually
exclusive. Indeed, there is a lot of overlap between the various categories. For example,
the embedded computer system that controls the braking system for an automobile must
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obviously be capable of real-time response when the driver of the car slams on the brakes
in an emergency.

Systems can also be categorized by the degree of activity between the user and the
system during program execution. As a student, you are probably most familiar with
interactive systems. When the system is interactive, the user interacts directly with the
program to provide input data and guidance during program execution. Interactive
systems are sometimes known as conversational systems. Most personal computing is
done interactively.

Many business tasks are performed more effectively in a batch, where the data input
for the program is collected together into a file on disk or tape. It does not make
sense to have a user enter data one record at a time if an entire set of data is to
be processed into monthly credit card bills, for example. Instead, the user submits the
program(s), or job(s), to the computer for processing. This type of processing is known as
batch processing. The user does not interact with the program during batch processing.
Large-scale billing, payroll, and other similarly data intensive systems are usually processed
this way.

We remind you that a CPU can execute only one instruction at a time; therefore,
time used by the operating system on a single CPU system is not available for the
execution of user programs. In general, the time used by the OS program is considered
overhead. In reality, though, the operating system actually saves time for the users in most
situations:

■ In a single-user system, the operating system program creates minimal overhead.
While the OS program is available to the user at any time, the executing user
programs have priority; the OS program runs only to distribute CPU time among
executing programs, or to handle interrupts, or if the users’ programs request its
services.

■ The operating system program performs tasks directly for the user that would
otherwise have to be performed, with more difficulty, by the user. This includes
the various commands available to the user and I/O services to the user’s
programs. Most important, this includes the loading and execution of programs.
When a user program is not being executed, the OS is always available to the user
for these purposes.

■ The OS user interface provides a means for the user to get work done more
quickly and efficiently. This is especially true for the user interface found on
modern operating systems. The best modern operating systems combine
graphical simplicity with sophisticated text command input capability and
output display of results to provide the user with powerful access to the facilities
of the computer.

■ Under most conditions, the computer system operates well below full capacity.
The CPU sits idle while waiting for I/O transfers to occur. A user sits thinking at
the keyboard. Multiuser and multitasking operating systems make it possible for
many users or tasks to share the computer resource, providing fuller utilization
of the system.

■ The operating system extends the capability of the computer to include features
that require special coordinated hardware and software that is invisible to the
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user. These features include virtual memory, cache memory, multiprocessing,
vector processors, and networking.

■ The operating system provides powerful tools to the user’s programs that
improve the quality of the programs and make the user’s work easier. For
example, modern OS tools allow work to be easily transferred between
applications through a clipboard, or make it possible to embed a spreadsheet into
a word processing document. System services are provided by an API, or
Application Programming Interface. The API provides file and I/O services,
tools that create and support the graphical user interface, even tools to embed a
spreadsheet into a word processing document.

We say that the operating system is event driven. This means that the operating
system normally sits idle and executes only if some event occurs that requires oper-
ating system action. Events may result from interrupts or from service requests by
a program or a user. Events include file requests, I/O, keyboard inputs from users,
memory requests from programs, messages sent from one program to another, clock
interrupts that allow the operating system scheduler program to dispatch programs
during time sharing operation, network requests, and much, much more. In real-
ity, the operating system on a large computer has quite a bit of work to do. Service
requests and interrupts are a fundamental means of communication with the operating
system.

Computer designers attempt to integrate the computer hardware and operating
system, so that each supports the features of the other in such a way as to create a powerful
environment for the users and for the users’ programs. Such an environment is called
symbiotic. This would seem to suggest that each type of computer hardware would require
its own proprietary operating system. In fact, this is not necessarily the case. Most modern
hardware vendors do not provide their own brand of operating system at all. Instead, their
systems are supplied with a standard operating system such as Linux or Windows XP or
Vista.

Linux and Windows Vista are both examples of operating systems that operate on a
variety of different hardware platforms. There is a strong advantage at providing a standard
operating system that works on different hardware. Such a system provides program
portability, as well as file portability, and also allows users to move comfortably from one
machine to another by providing a recognizable interface and command structure.

Portable operating systems are designed in such a way that they may be tailored for
different hardware by changing only the small portion of the operating system program
code that interacts directly with the hardware. Most of the operating system is written
in high-level language, which can be ported easily to a new machine by recompiling the
high level code. The portion of the operating system that must be built for the individual
machine is written in a mixture of high-level language and assembly language. Languages
such as C++ and Java are ideal system languages, because they provide facilities that make
it possible to interact with the hardware with very little need for assembly language. In
fact, the language C was originally designed specifically for this purpose. The portability of
Linux, and other modern operating systems, stems directly from this capability.

While it is true that a single operating system can be ported to operate with different
hardware, it is also true that a particular hardware platform can support different operating
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systems. Thus, the user or system designer can select an operating system that provides
the desired facilities for the particular use of the system. Although x86-based personal
computers have traditionally been provided with some version of Windows, there are other
operating system options available that a user could select. An unsophisticated user on a
stand-alone system might run Windows XP or Vista for its familiarity and ease of use,
but a more sophisticated user with particular needs might prefer Apple MacIntosh OS X
for its excellent tools and applications or Linux for its additional power. Particularly, if
the machine is supporting multiple users, an X Windows-based Linux or UNIX operating
system might be more appropriate.

15.3 SERVICES AND FACILITIES
Section 15.2 provided an overview of the various services and components that make up
an operating system. In this section we consider the fundamental building blocks of an
operating system in more detail. There are ten major blocks to be considered, not all of
which will necessarily be found in any particular operating system:

■ The command processor, application program interface, and user interface
■ The file management system
■ The input/output control system
■ Process control management and interprocess communication
■ Memory management
■ Scheduling and dispatching
■ Secondary storage management
■ Network management, communication support, and communication interfaces
■ System protection management and security
■ Support for system administration

Some systems also provide a program known as a system manager, commonly known
as a monitor or supervisor, which handles competing requests or conflicts, and which acts
as a general controller and arbiter for the entire system. There are other system functions,
such as accounting and error handling, that are sometimes handled as separate blocks but
frequently appear within the blocks already listed.

In different types of operating systems, some of these components may be combined,
or even absent. An embedded system may not require a file system or memory manager if
all its programs are permanently resident in ROM, for example, but the listed components
represent a collection of the most general operating system requirements.

Some of these modules, particularly the command interface and file system modules,
are quite visible to the user. The other modules are primarily used for internal control
of the system, controlling and optimizing use of the hardware resources, and maximizing
program throughput and efficiency. Most modules also make their services available to
user programs through the API.

In this section, we present an overview of the services provided by each of these
operating system components. Individual components are discussed in more detail in
other chapters, the capabilities and operation of the user interface and related services in
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Chapter 16, and the file management services in Chapter 17. Details of the most important
internal components and operations of the operating system are discussed in Chapter 18.

User Interface and Command Execution Services

To the user, the most important and visible service provided by the operating system is the
user interface and the capability that it provides to execute commands.

Some systems do not consider the user interface and command processor to be a part
of the operating system kernel, even though much of it is likely to be memory resident.
Instead, these systems consider the user interface as a separate shell that is provided with the
operating system and that interacts with the kernel to provide the necessary user command
capabilities. Theoretically, a different shell could be used that provides different command
capabilities. In Linux, for example, two different GUI shells, KDE and Gnome, and three
different text-based shells, bash, csh, and zsh are in common use, and many other shells for
Linux are available. Each of these shells provides different features and command structures
and capabilities.

Different types of user interfaces exist. The most common are the graphical user
interface (GUI), and the command line interface (CLI). The graphical user interface
accepts commands primarily in the form of icons, drop-down menus or tabbed ribbons,
mouse movements, and mouse clicks. Some GUI interfaces are also sensitive to touch or
to hand motion in the vicinity of the screen. The command line interface relies on typed
commands. Underneath the very different appearances of these interfaces, however, similar
commands are being executed.

Regardless of the user interface provided, the command interface provides direct access
to various other modules within the operating system. The most often used commands
access the file system for file operations and the scheduler for program loading and
execution. On some systems, commands may also provide direct access to the I/O system,
protection services, network services, and process control services. On other systems, these
commands may be processed indirectly, using built-in operating system utilities intended
for the purpose.

A few systems even provide commands and built-in utilities for access to memory and
to secondary storage. Generally, use of these commands is restricted to users with special
access needs, such as the people who control and maintain the system. UNIX and Linux,
for example, refer to these individuals as ‘‘superusers.’’

Some commands are built directly into the operating system. They remain in memory
for immediate access. These are known as resident commands. Other commands are
loaded only as they are needed. These are called nonresident commands.

Most modern operating systems provide some capability for combining computer
commands into pseudo-programs, commonly called shell scripts. Batch-oriented systems
also make it possible to combine individual commands into a sequence of control
statements, which will be interpreted and executed one at a time without user intervention
to control the processing of a multistep ‘‘job.’’ Each step in the job performs an individual
task. On large IBM systems, for example, the set of commands used for this purpose form
a language known as Job Control Language (JCL).

In addition to the standard operating system commands, shell scripting languages
typically provide branch and loop commands and other computer language features. Shell
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scripts can be executed as though they were actual programs. Other common features
include:

■ A means for redirecting I/O data to a device different from that ordinarily used,
to a disk file instead of the screen, for example

■ A way to combine commands using a technique called piping, so that the output
from one command is automatically used as the input for another

■ A means for providing additional parameters to the script that can be entered by
the user at the time the program is executed

More sophisticated command languages provide larger command sets with a more
extensive and powerful set of options and with more extensive control structures that
allow the creation of shell scripts with more flexibility, both in design and in run-time
execution. Some command languages even provide special powerful commands that can
eliminate normal programming effort. UNIX and Linux are particularly notable in this
regard, providing commands that can search, select, edit, sort, enumerate, and process data
from files in a way that rivals many programming languages.

The simplest Windows scripts are based on a command set that evolved from MS-DOS.
These scripts are commonly called .BAT files. Recent versions of Windows also include a
more powerful scripting facility called Windows PowerShell. PowerShell is based on an
object-oriented language similar to C# and can manipulate both text and graphical objects.

There are a number of scripting languages that are designed to work independently of
the particular operating system in use. The most popular of these include perl, python, PHP,
Ruby, and JavaScript. Command and scripting languages extend the power and flexibility
of the operating system and simplify use of the system for less sophisticated users.

File Management

The concept of a file is central to the effective use of a computer system. A file is generally
loosely defined as a collection of related information. Defined in this way, a file is a rather
abstract concept; indeed, the contents of the file only have meaning in the context of their
particular internal description and use. Thus, the sequence of bytes in a file might represent
a program, or a graphical image, or maybe the alphanumeric text data for a book, to be
used within a word processor. A file may be organized internally into records or it may
simply be a stream of bytes. A file constitutes a logical unit of storage, that is, logical to
the person or program using the file. The logical unit may or may not correspond to the
physical storage characteristics of the I/O device where it is stored.

The file management system provides and maintains the mapping between a file’s
logical storage needs and the physical location where it is stored. The file management
system identifies and manipulates files by the names provided by their users. It determines
the physical requirements of the file, allocates space for it, stores it in that space, and
maintains the information about the file so that it may be retrieved, partially or in full, later.
The file management system keeps track of the available space on each device connected to
the system. The user and the user’s programs need not be aware of the underlying physical
storage issues. Users and programs simply access the files by name, and the file management
system handles the details.



CHAPTER 15 OPERATING SYSTEMS: AN OVERVIEW 491

The file management system provides a consistent view of files across different I/O
devices. This view even extends to files located elsewhere, on devices accessible from a
network. To the user, file requests operate in the same way independent of the device, even
between devices of different characteristics. Thus, it is not necessary to know the physical
differences between, say, disk and tape, to move a file from one to the other. A program
can request file services without knowing the file structure of the device being addressed,
indeed without even knowing what kind of device the file is stored on.

The file management system provides and maintains

■ Directory structures for each I/O device in the system and tools to access and
move around these structures. The directory structure allows the retrieval and
storage of files by name, keeps track of the mappings, allocates and frees space,
allows the mounting and unmounting of file structures, and provides other
functions required to maintain the structures of the file system. Provisions are
made to move easily from one structure to another.

■ Tools that copy and move files from one I/O device to another and from one
directory to another, merge files, create and delete files and directories, and
undertake other basic file manipulations.

■ Information about each file in the system and tools to access that information.
Typically, information about a file might include its name, type of file, size, date
and time of creation, date and time of the most recent update, and protection
and backup characteristics.

■ Security mechanisms to protect files and control and limit file access to
authorized users. Most modern systems also provide encryption protection and
journaling, a technique which assures the currency and integrity of files when
system failures occur during file changes.

Some file management systems also provide advanced features, including auditing,
backup, emergency retrieval and recovery mechanisms, file compression, and transparent
network file access.

File management systems are particularly important in systems in which secondary
storage devices are shared in common by multiple users, since they provide a directory
system that assures that there is no duplicate use of physical storage. Without this facility,
it is likely that users would unintentionally overwrite each other’s files. And, of course, we
already noted that the file management system also provides file access protection between
the different users. The file management system is discussed more fully in Chapter 17.

Input/Output Services

In Chapter 9, we introduced the concept of interrupts and showed the various techniques
for handling I/O. Programs that implement these concepts are known as I/O device drivers.
It would be awkward to require each program to provide its own I/O services. I/O device
drivers are important because they are available to serve every program that will be executed
on the system and provide a standard methodology for the use of each device. Even more
important, the use of standard I/O drivers within the operating system limits access and
centralizes control of the operations for each device.
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The operating system includes I/O device driver programs for each device installed
on the system. These drivers provide services to the file management system and are also
available, through the API, to other programs for their use. The I/O device drivers accept
I/O requests and perform the actual data transfers between the hardware and specified
areas of memory.

In addition to the I/O device drivers provided by the operating system, modern systems
provide certain I/O drivers with minimal functionality in ROM, to assure access to critical
devices, such as the keyboard, display, and boot disk during the system startup process.
The ROM-based drivers are replaced or integrated with other I/O drivers during normal
system operation. On IBM-type PCs, these drivers are stored in the system BIOS (basic
input/output system).

Device drivers for newly installed devices are added and integrated into the operating
system at the time of installation. On some systems, the process is manual. On many systems,
the Apple Macintosh, for example, this process is completely automatic. In Windows, this
capability is known as plug-and-play. Many modern systems even make it possible to add
and modify devices on the fly, without shutting down the system. USB and FireWire both
provide this capability.

Every operating system, large or small, provides input/output services for each device
in the system. The use of one set of I/O services for each device assures that multiple
programs will not be competing for the device and assures that the use of each device will
be managed through a single point of control. Multiple access can cause serious conflict in
multitasking systems. For example, a user would not be pleased to discover that parts of
the printouts from two different programs were intermingled on the pages, even more so
if the outputs belonged to two different users! The operating system assigns and schedules
I/O devices appropriately to each process to eliminate this problem.

Process Control Management

Briefly, a process is an executing program. It is considered the standard unit of work within
a computer system. Every executing program is treated as a process. This includes not only
application programs, but the programs within the operating system itself. The process
concept considers the program, together with the resources that are assigned to it, including
memory, I/O devices, time for execution, and the like. When admitted to the system, each
program is assigned memory space and the various resources that it initially requires to
complete its work. As the process executes, it may require additional resources, or it may
release resources that it no longer needs. The operating system performs various functions
with processes, including scheduling and memory management, by providing the various
services that we have discussed in this chapter. Processes must often be synchronized, so
that processes sharing a common resource do not step on each other’s toes by altering
critical data or denying each other needed resources. Systems also provide communication
capability between different processes. Processes may cooperate with each other by sending
messages back and forth using interprocess messaging services. Other services include
functions such as setting process priorities and calculating billing information.

Process control management keeps track of each process in memory. It determines the
state of each process: whether it is running, ready to run, or waiting for some event, such
as I/O to be completed, in order to proceed. It maintains tables that determine the current
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program counter, register values, assigned files and I/O resources, and other parameters
for each process in memory. It coordinates and manages message handling and process
synchronization.

Many modern systems further break the process down into smaller units called
threads. A thread is an individually executable part of a process. It shares memory and
other resources with all other threads in the same process, but can be scheduled to run
separately from other threads.

Memory Management

The purpose of the memory management system is to load programs and program data
into memory in such a way as to give each program loaded the memory that it requires for
execution. Each program that is being executed must reside in memory. For multitasking
to occur, multiple programs will occupy memory simultaneously, with each program in its
own memory space.

The memory management system has three primary tasks. It attempts to perform these
tasks in a way that is fair and efficient to the programs that must be loaded and executed.

1. It keeps track of memory, maintaining records that identify each program loaded
into memory together with the space being used and also keeps track of available
space. It allocates additional space for running programs as required. It prevents
programs from reading and writing memory outside their allocated space, so that
they cannot accidentally or intentionally damage other programs.

2. If necessary, it maintains one or more queues of programs waiting to be loaded
into memory as space becomes available, based on such program criteria as
priority and memory requirements. When space is available, it allocates memory
to the programs that are next to be loaded.

3. It deallocates a program’s memory space when it completes execution. The
deallocated space is made available for other programs.

Older systems used a variety of algorithms to divide up the available memory space.
Except for special-purpose embedded systems, every modern computer system provides
virtual storage, a method of utilizing memory which includes hardware support for
sophisticated memory management capability. Virtual storage creates the illusion of a
memory space that is potentially much larger than the actual amount of physical storage
installed in the computer system; its development was a major breakthrough in system
capability. Where virtual storage is available, the memory management module of the
operating system works directly with the hardware and provides the software support to
create an integrated memory management environment that takes maximum advantage
of the features of virtual storage. Virtual storage is explained in detail in Chapter 18,
Section 18.7.

Scheduling and Dispatch

The operating system is responsible for the allocation of CPU time in a manner that is fair
to the various programs competing for time, as well as maximizing efficient utilization of
the system overall.
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There are two levels of scheduling. One level of scheduling determines which jobs
will be admitted to the system and in what order. Admission to the system means that a
job will be placed into a queue, based on some order of priority, and ultimately assigned
memory space and other resources, which will allow the program to be loaded into memory
and executed. (Some operating systems divide this operation into two separate tasks, one
for admittance to the system, the other to assign memory.) This scheduling function is
sometimes known as high-level scheduling. The other level of scheduling is known as
dispatching. Dispatching is responsible for the actual selection of processes that will be
executed at any given instant by the CPU. The dispatch component of the operating system
makes concurrency possible by allocating CPU time in such a way as to make it appear that
several processes are executing simultaneously. For those systems that allow the division of
processes into threads, dispatch is done at the thread level, instead of at the process level.

In modern systems, with their extensive facilities and capabilities, high-level scheduling
is relatively straightforward. Most of the time, new processes will simply be admitted to
the system and given memory space if it is available, or held until space is available, then
admitted.

Selecting the appropriate candidate for CPU time at any given instant is much more
important and difficult, since the capability of the dispatcher directly affects the ability of
the users to get their work done. A single program cannot be allowed to ‘‘hog’’ the machine;
therefore, the dispatcher must interrupt whatever process is running periodically and run
itself to determine the status of the machine’s resources and to reassign CPU resources to
assure that every user and task is receiving what it needs.

Since a single CPU can process only one instruction at a time, the simultaneous
execution of two or more programs is obviously impossible with a single processor. Instead,
the dispatcher acts as a controller to provide concurrent processing. There are various
ways in which multitasking can be achieved with concurrent processing, but mostly these
methods take advantage of two simple strategies:

1. While one program is waiting for I/O to take place, another can be using the
CPU to execute instructions. This strategy is shown in Figure 15.3. In Chapter 9
we demonstrated that I/O could be performed efficiently without tying up the
instruction executing capability of the CPU. We further showed that most of the
time, the CPU was idle, since I/O represents such a large percentage of a typical

FIGURE 15.3

Sharing the CPU During I/O Breaks

Executing

Executing

Executing I/O

WaitingI/O

Program
1

Program
2

Program
3

ExecutingI/O Waiting



CHAPTER 15 OPERATING SYSTEMS: AN OVERVIEW 495

program’s execution. This suggests that the idle time can be used to execute
other programs, as an effective way to increase utilization of the CPU.

2. The CPU may be switched rapidly between different programs, executing a few
instructions from each, using a periodic clock-generated interrupt. This method
was discussed in Chapter 9, Section 9.3, and diagrammed in Figure 9.8, redrawn
here as Figure 15.4. This strategy will slow down execution of each program,
since each program must split its time with other programs. There is also some
operating system overhead, as a dispatcher must be invoked at each interrupt to
select the next program to receive CPU time. In most cases the CPU is so
powerful compared to the requirements of the programs that the slowdown is
not even noticeable. This technique is called time-slicing.

The algorithms used by the dispatcher combine these two methodologies, taking into
account such issues as fairness to each program, the priorities of the different programs,
quick response for critical situations, such as displaying a user’s cursor movement or
displaying streaming video, the number of CPUs available for dispatching, and other
criteria.

Different processes have different requirements. Some processes require extensive
amounts of CPU time; such processes are considered to be CPU bound. Others are mostly
I/O operations, with very little CPU processing; these are known as I/O bound. Immediate
response time is important under some conditions, for example, when echoing cursor
movement to a screen and unimportant in others, such as producing printed output from a
batch job that will not be picked up by the user until later in the day. It is obviously desirable
to dispatch processes in such a way that the system is used effectively. Various dispatching
algorithms are used to meet these different requirements, and there are various criteria for
measuring how well the dispatcher is doing its job. Generally, interactive processes require
faster response than do batch processes. Processes that must control instrumentation in
real time require the fastest response of all.

FIGURE 15.4
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The dispatcher is also responsible
for the actual transfer of control to the
process that is being dispatched. This
responsibility includes preservation of
the previous running program’s pro-
gram counter, register values, and other
parameters that represent the state of
the program at the time it was stopped,
as well as restoration, if necessary, of
the exact previous state of the pro-
gram being dispatched. This operation
is called context switching.

The operation of the dispatcher is
dependent on the nature of the system
and on the nature of the programs that
the system is running. The dispatcher
can be preemptive or nonpreemptive.
The dispatcher for a nonpreemptive
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system replaces an executing program only if the program is blocked because of I/O
or some other event or if the program voluntarily gives up the CPU. When necessary, the
executing program may be suspended momentarily, so that the CPU can handle interrupts,
but when the interrupting task is complete, control is returned to the same program. (This
exception is necessary for several reasons. Without it, there would be no way to stop a
runaway program, for example, a program with an infinite loop in it. It is also necessary
to prevent losing keystrokes from user keyboards and to echo keystrokes back to users’
screens.)

Preemptive multitasking uses the clock interrupt, as described earlier, to preempt the
executing program and to make a fresh decision as to which program executes next.

In general, nonpreemptive dispatching algorithms apply mostly to older, batch-
oriented systems. Modern dispatchers are predominately preemptive. However, most
provide a mechanism to dispatch individual programs nonpreemptively, for programs that
must execute to completion without unnecessary interruptions. Linux uses nonpreemptive
dispatching to protect certain operating system operations from interrupts that could
destroy the integrity of operating system data, for example.

A more detailed explanation of process creation can be found in Chapter 18,
Section 18.3. Scheduling and dispatching are discussed further in Chapter 18, Section 18.5.

Secondary Storage Management

The file management system keeps track of free secondary storage space and maintains the
file system and its directories. The input/output control system provides device drivers that
actually control the transfer of data between memory and the secondary storage devices.

On large multitasking systems there may be many programs requesting I/O services
from a secondary storage device at one time. The order in which these requests are fulfilled
affects the ability of the different programs to get their work completed, since the programs
must usually stop and wait for their I/O requests to be completed before proceeding.
Although it would be simplest to process I/O requests in the order received, it may be
more efficient to process the requests out of order, particularly if the blocks requested are
scattered all over the disk. This is true because the disk seek time (i.e., the time to move
from track to track) is long compared to other times within the system.

The secondary storage management system attempts to optimize the completion of
I/O tasks by using algorithms that reorder the requests for more efficient disk usage. For
example, it might attempt to read all the requested data blocks from the tracks in one area
of the disk before going to read data on tracks at the other end of the disk. In some large
modern systems, optimization is provided by a combination of I/O hardware and operating
system software. Further details of secondary storage management appear in Chapter 18,
Section 18.8.

Network and Communications Support Services

With the exception of some specialized embedded systems, nearly all computers today
are interconnected, directly or indirectly, into networks. (There is even a trend toward
networking embedded computers: modern automobile computers routinely report main-
tenance problems to the service technician when you bring your car in for service—some
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cars even report problems wirelessly from the road to a service representative. And you may
have heard of the refrigerator that calls an order in to an Internet grocery delivery service
when food stocks are low.) The network and communications support facilities within the
operating system carry out the functions required to make the system perform seamlessly
in a networked and distributed environment.

Most modern communications services rely on the TCP/IP protocol suite, together
with its IP-based applications. TCP/IP provides the facilities to locate and connect to
other computer systems, to pass application data in packet form from one system to
another, to access files, I/O devices, and programs from remote systems, to provide error
checking and correction when appropriate, and to support the requirements of distributed
processing. Network and communication services within the operating system provide the
communication software necessary to implement the features and facilities of TCP/IP. Most
systems also implement a substantial set of TCP/IP applications and extensions, including
e-mail, remote login, Web services, streaming multimedia, voice over IP telephony (VoIP),
secure networking across the Internet (called a virtual private network, or VPN), and more.
Some systems also offer support for alternative communication protocols, for example,
Novell IPX/SPX and IBM Systems Network Architecture.

Communications services within the operating system also provide the interface
between the communication software and the OS I/O control system that provides access
to the network. The I/O control system includes the software drivers for modems, network
interface cards, wireless communication cards, and other devices that are used to connect
the computer physically and electrically to the network or networks.

Larger computers used for server applications often require the capability for additional
growth and reliability to serve the needs of their clients. These capabilities are sometimes
referred to as system scalability and fail-safe operation respectively. In addition to
networking support, the operating systems for such machines often include clustering
software, so that these computers can be clustered together and viewed transparently
by clients and users as a single, high-powered system. The clustering software provides
single-point logins, single-point user and client requests, request steering, failure detection
and cutover, and system load balancing between the individual nodes within the cluster.

Security and Protection Services

It is certainly no surprise to anyone that modern systems require security and protection
services to protect the operating system from user processes, to protect processes from
each other, and to protect all processes from the outside world. Without protection, a
buggy or malicious program, for example, could unintentionally or intentionally modify or
destroy the program code or data in the memory space belonging to the operating system
or to another process. It is also important to protect the system and user processes from
unauthorized entry to the system, and against unauthorized use of the system, even by
authorized users.

In most modern systems, executing processes are limited to the execution of instruc-
tions and access to data within their own memory space. All other services, such as file
management and I/O, must be requested by the process from the operating system, using
the service requests provided by the OS for that purpose. This methodology is fundamental
to the security of the system. In this way, the operating system, the file system, and other
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processes are protected from unauthorized use or operations, protecting the integrity of
the system as a whole. Interprocess messaging services are usually provided by the oper-
ating system to allow processes to communicate with each other without compromising
the system. Critical parts of the operating system execute in a specially protected mode of
operation provided as part of the CPU design. In protected mode, the operating system can
prevent programs from executing certain instructions and from accessing parts of memory
specified by the operating system, for example, parts being used by other programs.

Each module in the operating system includes provisions that protect its assets. Thus,
the file management system would not allow a process to store data on a part of a disk
that is being used by another file. Nor would process management allow the assignment
of an I/O resource that would prevent another process from completing its task. Since all
services are requested from the operating system, the OS has the capability to determine
that requests will not damage other processes or the system itself.

The operating system also provides login and password services that can help to prevent
entry from unauthorized users and access control facilities that allow users to protect their
individual files at various levels of availability to other users and outsiders. The modern
operating system includes firewall protection, which, artfully administered, can make it
more difficult for outsiders to penetrate the system, but is not foolproof; the need for
security must be carefully balanced with the needs of the users to get their work done.
Despite all the protection offered by a modern system, bugs, viruses, and vulnerabilities
within the operating system, poor configuration of firewalls and other security features,
and poor user management policies such as weak password enforcement can make a system
vulnerable to attack by outsiders. The design and deployment of effective security and
prevention services is an important ongoing concern in operating system design. A number
of research projects that show promise are attempting to design OS security mechanisms
that prevent infiltrators from moving beyond the actual program that they invaded into
other areas of the operating system.

System Administration Support

The system administrator, or sysadmin, for short, is the person who is responsible for
maintaining the computer system or systems. In a large organization, the sysadmin may
support hundreds, or even thousands, of computers, including those of the employees.
Some of the important administrative tasks managed by a system administrator include:

■ System configuration and setting group configuration policies
■ Adding and deleting users
■ Controlling and modifying user privileges to meet the changing needs of the users
■ Providing and monitoring appropriate security
■ Managing, mounting, and unmounting file systems
■ Managing, maintaining, and upgrading networks
■ Providing secure and reliable backups
■ Providing and controlling software, installing new software, and upgrading

software as required
■ Patching and upgrading the operating systems and other system software
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■ Recovering lost data
■ Tuning the system for optimum availability and performance
■ Monitoring system performance and recommending system modifications and

upgrades when necessary to meet user requirements

These and other important tasks must be applied both to central server systems and
to client machines and other desktop computers on a network to coordinate and maintain
a reliable and useful system. Modern operating systems provide software to simplify these
tasks.

On small personal computers, the user is often the administrator as well. The major
administrative tasks of the user are to install and upgrade software, to reconfigure the
system and the desktop from time to time, to maintain network connections as required,
and to perform regular file backup and disk maintenance and defragmentation. For user
administration of this type, simple tools are sufficient. Indeed, the goal of a desktop
operating system might be to hide the more sophisticated tools from the typical user.
For example, Windows operating systems store the system configuration within a registry
that is normally hidden from the user, and provide, instead, a variety of simple tools
specifically for tailoring the system to user preferences and performing maintenance tasks.
The Windows operating system supplies default configuration parameters for many tasks
that suit the needs of most users, with tools to modify the parameters to meet specific user
requirements. The simplest tools are sufficient for most users to perform routine system
administration. Knowledgeable users can also manipulate the system registry directly, when
necessary. On desktop computers connected to a larger system within an organization,
central administration tools allow the application of group policies and configuration to
individual desktop computers without user involvement.

On larger systems, administration is much more important and much more complex.
The hardware and software to be managed is far more extensive, and there are numerous
users requiring accounts and service. Installation of new equipment on large systems is
common, and in some cases, the system must be reconfigured to use the new equipment.
IBM calls this process sysgen, for system generation. It is one of the most important tasks of
system administration on large systems. Modern systems provide software for simplifying
common system administration tasks. Large mainframe operating systems provide tools for
performing all the major system administration requirements. They also provide tools that
allow the administrator to tailor the system to optimize its performance, for example, to
optimize throughput or the use of resources. This is done by modifying system parameters
and selecting particular scheduling and memory management algorithms. Among the
parameters that can be adjusted on various systems are the amount of memory allocated to
a program, user disk space allocation, priorities, assignments of files to different disks, the
maximum number of programs to be executed concurrently, and the scheduling method
employed. IBM z/OS even includes a Workload Manager, which attempts to optimize
system resources automatically, without administrator intervention.

The system administrator on a traditional UNIX/Linux system, for example, can log
in to the system as a superuser, with privileges that override all the restrictions and security
built into the system. The superuser can modify any file in the system. (However, the
new security mechanisms mentioned above might make it much more difficult to override
the security, thereby protecting a system from a hacker who manages to infiltrate the
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kernel.) More important, the UNIX system provides tools that simplify the tasks of system
administration. These tools take the form of commands that can be executed only by the
superuser and text-based configuration files that can be modified with any text editor.

For example, UNIX/Linux systems typically provide a menu-driven or graphical
adduser program for administering user accounts. This program provides a simple pro-
cedure for performing all the tasks required to add a new user to the system, including
setting up the user name and ID number, building entries to the appropriate user and
group tables, creating the user’s home directory, assigning login shells, and establishing
user initialization files (corresponding to the user’s particular terminal hardware, prompt
preferences, and the like).

Other typical UNIX/Linux administration commands include a partition tool for
partitioning hard disk drives; newfs for building a file system; mount and umount for
mounting and unmounting file systems; fsck for checking and repairing the file system
(similar in concept to, but much more complex and thorough than, CHKDSK on Windows
systems); du and df for measuring disk usage and free space; tar for collecting files
into archives; and ufsdump and ufsrestore for creating backups and recovering damaged
files. config is used to build the system. There are many additional tools available to the
UNIX/Linux sysadmin.

Like other large systems, server-based versions of Windows provide a full suite of
tools for measuring system performance and managing the system, including the ability to
control and configure client systems remotely.

Most systems provide a variety of statistical information that indicates the load on
the system and the efficiency of the system. This information is used by the system
administrator as a basis for tuning the system. Part of a typical system status report appears
in Figure 15.5. This particular report comes from a Linux system. The report indicates the
load on the system as a function of time, shows CPU and memory usage, identifies the most
CPU-intensive processes, together with the name of the user and the percent of CPU and
memory resources consumed, shows the efficiency of virtual storage, and provides many
other useful system parameters. It even provides an analysis of the data shown. Although
the typical user might not find a report such as this very useful in terms of what steps to take
as a result of the information presented, a skilled system administrator can make valuable
use of the information in determining ways in which to improve system performance. A
consistently heavy load on a particular disk might suggest splitting the most used files on
that disk onto two separate disks, so that they might be accessed in parallel, for example.
Or heavy use of the CPU by a particular user during peak hours might suggest lowering the
priorities for that user at those times.

SYSTEM GENERATION One of the most important system administration tasks to
be performed is the creation of an operating system tailored to the specific needs of a
particular installation. The process of building a system is called a system generation,
or more familiarly, a sysgen. The result of a sysgen matches the operating system to the
characteristics and features of the hardware provided and includes the desired operating
system features and performance choices. Two primary means are used to tailor the system:

■ By selecting the operating system program modules to be installed. Typically, an
operating system provides a large number of modules that might be used under
different circumstances. Only those modules that are relevant to the installation
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FIGURE 15.5

A Typical System Status Report

are selected. As an example, a particular installation has an individualized
selection of I/O devices. Only those device drivers that are required for the
installed I/O devices would be included in the tailored system.

■ By assigning values to parameters of the system. Parameters are used to provide
the details of an installation. On a Windows-based PC system, for example,
devices are assigned to specific, numbered interrupt channels known as IRQs;
memory locations for each device interrupt driver are also specified. Another
example of a parameter would be the number of concurrent users permitted on a
multiuser system. On some systems, a parameter might be used to determine
whether a module is memory resident or is loaded on demand. Most large
systems also provide parameters that tailor the system scheduling mechanism
and adjust the behavior of other resource control modules. These and other
parameters must be determined by the system administrator to meet the needs of
the installation.
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Some systems provide a lot of flexibility, with many options. Other systems may provide
only a minimal amount of selection, perhaps no more than a selection of I/O device drivers.

The method used to perform a sysgen depends on the operating system. Some systems
provide the operating system modules in source code form. Modules and parameters are
selected, and the operating system is assembled or compiled and linked to form the loadable
binary operating system. A barebones operating system with the appropriate compilation
tools may be provided to enable the sysgen procedure to take place on the target system,
or the procedure may be executed on a different machine. Other operating systems use
an installation program to determine which modules should be included in the operating
system, and parameters are selected during the installation procedure. On these systems,
the various modules are already provided in binary form and need only be linked during
the sysgen procedure.

On many systems, the sysgen procedure is provided as a series of menu selections and
parameter entry forms that guide the operator through the procedure. On some systems,
the procedure is entered as a script or batch file. Most systems also allow some degree of
dynamic configuration, which makes it possible to build changes into the system without
rebuilding the entire system. We noted earlier that in Linux configuration script files are
used for this purpose.

15.4 ORGANIZATION
There is no standard model for the organization of an operating system. Some systems were
developed in a deliberate and carefully planned manner, while others grew topsy-turvy over
a long period of time, adding new functions and services as they were required. Thus, the
programs that make up an operating system may be relatively independent of each other,
with little central organization, or they may form a formal structure.

Overall, the organization of most operating systems can be described generally by
one of three configuration models. These are commonly referred to in the literature
as the monolithic configuration, the layered or hierarchical configuration, and the
microkernel configuration. Within a configuration, individual programs can be categorized
in different ways. As we noted earlier, operating system programs can be memory resident
or nonresident, depending on their function. Of the resident programs, some will operate
in a protected mode, often called kernel mode, others in a conventional user mode.

FIGURE 15.6

A Simplified Representation
of UNIX

Shell

Kernel

Utilities

As an example of a monolithic configuration, UNIX is commonly
described by the model shown in Figure 15.6. In this model, the var-
ious memory resident operating system functions are represented by a
monolithic kernel. There is no specific organization. The operating system
programs simply interact as required to perform their functions. The crit-
ical functions within the kernel operate in protected mode, the remainder,
in user mode. The shell is separate from the kernel and serves as an
interface between the users, utilities, and user programs with the kernel.
Thus, the shell can be replaced without affecting kernel operations. (UNIX
organization is considered in more detail as a case study in Supplementary
Chapter 2.)

The major difficulty with a monolithic configuration is the stability
and integrity of the system as a whole. Any defect in a program within
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the kernel can crash the entire system, as can unexpected interactions between different
programs in the kernel. Thus, the addition of a new device driver, for example, could
compromise the entire system. Nonetheless, with proper design and control, it is possible
to build a secure and stable system, as evidenced by Linux.

An alternative operating system organization is built around a hierarchical structure.
A simple representation of a hierarchical operating system organization is shown in
Figure 15.7. This representation shows the operating system divided into layers. The upper
layers are the ones that are visible to the user; the middle layers comprise the major kernel
operations. The lowest layers are the I/O device drivers that interact with the hardware.

In this model, each layer is relatively independent of the other layers. Thus, the file
management layer determines the location of a file identified by logical name and interprets
the nature of the request, but does not attempt to access the hardware directly. Instead, it
makes a request to the kernel. Local requests are then passed on to the I/O device driver
level for access to the hardware. Network requests are passed on to the I/O device drivers
on the machines providing the services.

The hierarchy is arranged so that access to the various layers of the operating system
is from the top. Each layer calls the next lower layer to request the services that it needs.
Most computer systems today provide appropriate hardware instructions that allow the
operating system design to enforce this procedure. This provides security, as well as a clean
interface between the different functions within the operating system.

FIGURE 15.7

A Hierarchical Model of an OS
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Layered operating systems must be designed carefully, because the hierarchy requires
that services be layered in such a way that all requests move downward. A program
at a particular layer must never require services from a higher layer because this could
compromise system integrity. Another disadvantage of the layered approach is the time
required to pass the request through intermediate layers to receive services from the lowest
layers. In contrast, a program in a monolithic operating system could request the service
directly from the program that supplies the service, resulting in much faster operation. The
obvious advantage of the layered approach is the stability and integrity that result from a
well-structured modular design.

Still another approach to operating system design is the microkernel. An illustration of
a microkernel configuration is shown in Figure 15.8. The microkernel configuration model
is based on a small protected kernel that provides the minimum essential functionality. The
definition of ‘‘minimum essential functionality’’ differs from system to system. The Mach
operating system kernel includes message passing, interrupt processing, virtual memory
management, scheduling, and a basic set of I/O device drivers. It is possible to build a
microkernel with nothing but message passing, interrupt processing, and minimal memory
management, although the practical advantage of doing so has not been shown.

The microkernel configuration constitutes a client-server system, where clients and
servers reside on the same system. Operating system services outside the essential func-
tionality are performed by programs in user mode. Each program acts as a server that
performs specific operating system tasks upon request of application programs as well as
other operating system programs, the clients in this model. Clients request services by
sending messages directly to the microkernel. The microkernel passes the messages to the
appropriate server, which performs the required function, and replies to the request by
sending a message back to the client. The reply is also passed through the microkernel.
System security and integrity is maintained, because all communication must pass through
the microkernel.

One of the advantages of the microkernel configuration is that it is possible to create
different operating system designs simply by changing the service programs that reside
outside the microkernel, while maintaining the security and stability of the microkernel. For
example, Macintosh OS X is one of many operating systems built on the Mach microkernel.

FIGURE 15.8

Microkernel Architecture
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The microkernel approach offers reliability, flexibility, extensibility, and portability. It is
particularly amenable to object-oriented design. New features can be added easily without
compromising the system. The extensive message-passing required in a microkernel
configuration can result in a performance penalty over other types of designs, but practical
applications of the model have shown that, with care, the potential disadvantage of this
approach can be minimized.

15.5 TYPES OF COMPUTER SYSTEMS
Modern computer system hardware is essentially similar regardless of the type of system.
Therefore, the differences among computer systems are set primarily by the operating
system software. The operating system software is selected to meet desired requirements
and goals.

As we outlined briefly in Section 15.2, there are many different types of operating
systems, each designed to meet a particular set of requirements and needs. Some of the
factors that influence operating system design/architecture are the primary type of user
base, whether the system is intended for direct user access or behind-the-scenes server
access, or whether the system is to be used for a specific purpose, such as embedded
electronic control or mobile use.

For example, one computer might be designed for business end users, another for
programmers and engineers, and other high-technology specialists. The Macintosh, for
example, is well designed for the inexperienced user (and for other users too, of course!)
Windows is adequate for a user with simple needs; a more sophisticated user might choose a
system with Linux instead. The PC is adequate for many single users, but a large mainframe
type system might be more appropriate for use as a large server, or, perhaps, a network- or
cluster-based system is more appropriate for a particular server application. Special-purpose
applications that require specialized designs might include embedded control applications
(such as automotive and microwave oven applications), CAD/CAM graphics, multimedia
(the Pixar computer is a special system designed specifically for motion picture animation
and special effects), and real-time control applications. An operating system designed
for mobile computing may have to operate with limited resources, particularly in the
areas of power consumption, network connectivity, memory size, and display. Each of
these systems has different needs and requirements that are met by the operating system
design.

There are, of course, costs associated with increasing sophistication in operating system
software. As more features are added, more memory is required for the operating system.
The original version of MS-DOS ran successfully in 64 KB of memory. The IBM MVS
operating system for the IBM S/370 family required more than 6 MB of memory even
before any applications were considered. Some computer experts have recommended a
minimum of 2 GB of memory for Windows Vista and its applications. The overhead time
required for the operating system to perform its functions becomes a sizable fraction of the
overall time. One hopes that the overhead is worthwhile in terms of increased efficiency
and ease of use. For example, graphical user interfaces and multimedia support consume a
high percentage of system resources on personal computers. On a computer used primarily
as a Web server, those resources might be better utilized in providing faster Web access or
supporting more users.
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Within the context of the previous discussion, we can loosely categorize computer
systems into seven types: single-user systems and workstations; mainframe systems;
operating systems for mobile devices, network server systems; real-time systems; embedded
control systems; and distributed systems. (We noted earlier that systems capable of only a
single task at a time, while historically important, are essentially obsolete.)

■ The predominant systems in current use are single-user, multitasking systems.
These are the systems found on laptop and desktop computers, workstations,
tablets, personal digital assistants, ‘‘smart phones’’, and other similar devices.
Common examples include various versions of Windows, Macintosh OS X,
Linux, and Sun Solaris. A GUI is usually a key feature of these systems since it
allows the user easily to run several processes at the same time, maximizing
overall productivity. Windowing interfaces allow output presentations from
several tasks to appear on the screen simultaneously, and provide methods for
easy task switching. (Note, however, that a windows environment is not a
requirement for multitasking. Some single-user systems allow an individual user
to multitask from a command line interface. Linux, Sun Solaris, and other
UNIX-based systems, in particular, allow users to specify that processes are to
execute in the ‘‘background.’’ Background processes can present output to the
screen, but only the foreground process can accept input from the keyboard. The
operating system provides commands that allow the user to select which process
is in the foreground at any particular time.) Workstations generally provide
single-user multitasking operating systems, although most workstations have the
capability to be configured for multiuser or server operation.

■ Mainframe operating systems are designed to manage large-scale computing
resources, particularly in major enterprise environments, where large numbers of
transactions requiring extensive I/O capability are the norm. Mainframe systems
were originally created to to allow hundreds of users to share the computing
power of a central facility, as well as to support batch data processing operations
such as billing and credit card processing. Today, mainframe operating systems
manage typical mainframe computer hardware made up of clusters of multi-
processor units, all designed to work together as a single processing unit, with
hundreds of gigabytes of memory, femtobytes of disk storage and I/O and
networking capabilities of hundreds of gigabytes per second. Mainframe
operating systems differ from smaller multitasking systems in the variety of
features that they offer, in the versatility with which they can be configured, with
the level of security that they supply, with the degree of control that they offer the
system administrator(s), and in the overall amount of power and capability that
they offer.

■ Network server systems are similar to single-user multitasking systems in most
respects. However, the major focus of system use is shifted from meeting the
needs of the direct user to the support of clients connected to the server through
a network. The server may have no direct user facilities of its own, other than
those required for management of the system. The server is designed to provide
Web services, file services, print services, application services, and/or database
services to the clients, as determined by the particular requirements of the system
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application. It may also provide some program execution services for clients,
including support for client system start-up, particularly on networks with thin
clients. Network servers often work together in clusters. For these applications,
one would expect the network server OS to provide improved security and
system integrity protection, high reliability file management and backup with
large file capability, strong support for clustering and multiprocessing, improved
mechanisms for failure prevention, automatic cutover to alternative systems
when failures occur, and failure recovery, as well as strong system administration
capability.

■ Mobile operating systems are operating systems designed for small hand-held
devices, such as personal digital assistants (PDAs) and smart phones. These
systems must provide the basic capabilities and features of traditional single-user
multitasking systems within the constraints of electrical power limitations,
limited memory, lower CPU execution speed, slower network capability, and file
storage that is generally limited to small stationary nonvolatile memory devices,
along with some special features that would not be required in a larger system,
such as touch screen capability, special keyboard handling, careful management
of battery power consumption, support for special I/O devices such as global
positioning and telephony mechanisms, features for synchronizing data with
other systems, and handwriting recognition.

■ Real-time systems are systems in which one or more processes must be able to
access the CPU immediately when required. Real-time systems are used for
applications in which one or more programs are measuring or controlling I/O
devices that must respond within specific time restraints. A real-time system
might be used to control instrumentation, such as the control rockets on a space
flight, or to measure time-sensitive data, such as the periodic measurements of
the temperature in a nuclear reactor. Although some real-time systems are
created special for the particular application, most are general-purpose
multitasking systems that have been designed so that they can be used for other
tasks except when the time-sensitive application is being executed. A real-time
system could be viewed as a multitasking system in which the interrupts that
cause execution of the real-time program or programs have very high priority,
but in many cases, special effort is made to assure that the real-time program can
operate within its required time restraints.

■ Embedded control systems are specialized systems designed to control a single
piece of equipment, such as an automobile or microwave oven. The software for
embedded control systems is usually provided in ROM. Nonetheless, many
functions of the operating system may still be found in these systems. The
computer that controls an automobile, for example, requires most of the features
of a multitasking system. There are many measurement sensors representing
CPU input on a car and many different control functions to manage. The service
technician must be able to connect an I/O terminal to the system for car analysis.
Effectively, an embedded control system is a real-time system that is dedicated to
the particular application.

■ Finally, distributed systems are rapidly growing in prominence and importance.
In a distributed system, processing power is distributed among the computers in
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a cluster or network. Even the Internet can be used as a distributed system.
Programs, files, and databases may be also be dispersed. Programs may be
divided into functional pieces, with execution distributed throughout the
network. Alternatively, program components may be stored on different systems,
and executed in place upon remote request. .NET and CORBA, discussed briefly
in Chapter 16, are two standards designed to expedite this process. Regardless of
which method is used, the operating system or systems require additional
complexity to handle the distribution of tasks or instructions within a process,
the sharing of memory and I/O, and the intercommunication of data and control
that are required of these systems. Many modern computing systems include
additional operating system modules to make distributed processing feasible and
practical. Distributed Computing Environment (DCE), is an OpenGroup
standard that establishes a set of features for a distributed computing operating
system. (OpenGroup is an organization that promotes open computing by
setting standards and certifying products in a number of major areas of
computing. UNIX is arguably the best known OpenGroup standard.) The DCE
standard is supported and incorporated into the operating systems of a number
of major vendors, including Microsoft, Sun, and IBM.

There are, of course, other ways of categorizing computer systems. One way of
describing systems that is sometimes useful is to consider the intent and philosophy of the
designers of the system. This description can sometimes provide a lot of insight into the
strengths and weaknesses of a system. For example, the IBM mainframe operating system,
z/OS, is an offshoot of an operating system that was originally designed primarily for large,
batch-oriented business transaction processing systems. As business users moved their
operations online, predecessors of z/OS were provided with capabilities to handle large
numbers of online transactions. This would suggest that the modern z/OS is well equipped
to handle routine Web transactions from hundreds or thousands of network clients
concurrently. At the same time, it might suggest that z/OS is not particularly user-friendly
to individuals doing their own independent work on the system. Development tools are
more difficult to use on z/OS than on many other systems. Most people would agree that
these statements describe z/OS fairly well.

As a different example, the Apple Macintosh system was designed to make tasks as
easy as possible for the average, minimally trained computer end user. As a result, much
of the design effort for the Macintosh system has continually gone into the user interface.
The operating system provides powerful interface and graphical resources to the user and
to the user’s programs. Other operating system facilities, such as time sharing and memory
management, became secondary to the stated purpose. Indeed, these functions in OS X are
implemented with a kernel built from a UNIX variant called FreeBSD.

Finally, consider an operating system whose primary design goal is to be capable of
open system operation. The primary features that define an open system are as follows:

■ The system should be capable of operating on many different hardware platforms.
■ Communication between systems should be simple and straightforward.

Commands that access remote systems should perform nearly identically to those
performing local operations and should appear as transparent as possible to the
user or the user’s programs. Thus, a COPY command that copies files between
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systems should operate essentially the same as one copying files between different
points on a single system.

■ Shell programs should behave identically, regardless of platform. Source level
application programs should operate identically, once compiled on the new
platform.

These features dictate an operating system with considerable thought given to net-
working, as well as to a system with minimum dependency on the particular hardware being
used. This suggests an operating system with a small kernel, with powerful networking
facilities built in, and with the hardware-specific part of the system concentrated into a
single part of the kernel, isolating all other parts of the system from the platform. FreeBSD
is an example of such a system, which makes it an ideal basis for the MacInosh OS X design.

There have been many attempts to build operating systems whose activities are truly
distributed across a network. Some of the best known of these are Mach, Amoeba, Locus,
and Chorus.

SUMMARY AND REVIEW
Chapter 15 presents a comprehensive overview of the operating system. The operating
system software is a collection of programs that extend the power of the computer hardware
by providing a user interface to the computer, plus control and support for the computer’s
resources, plus other facilities that make it easier to manage and control the computer
system. Many operating systems also make possible the sharing of computer resources
concurrently among multiple users and among multiple tasks for each user.

The operating system provides one or more user interfaces, file support, control for
I/O devices, network support, and management of the computer resources, including
memory, the various I/O devices, and the scheduling of time. The operating system is event
driven. It performs these tasks in response to user commands, program service requests,
and interrupts. We noted that although the operating system represents overhead, under
most conditions the overall computer system performance is improved and enhanced by
the presence of the operating system. Some operations, particularly concurrency, would be
difficult or impossible without the operating system.

In our discussion of the various operations performed by an operating system, we
identified ten of the major services and facilities provided within an operating system and
described each. These included the user interface and command execution, the file system,
the I/O control system, process control, memory management, scheduling and dispatch,
secondary storage management, network management, security, and system administration
facilities.

The programs that provide these services must be organized in some way. There is
a considerable amount of interaction between the different program modules that make
up an operating system. Many operating systems use a hierarchical model to organize the
various modules. This model has the advantage of a significant amount of protection, since
it is easy to control access and the flow of information between modules using a hierarchy.
Other models in use include the monolithic model and the microkernel model.

The chapter concluded by presenting various types of computer systems in use and
compared the operating system facilities required for each. We noted that these categories
are somewhat arbitrary, with substantial overlap between them.
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FOR FURTHER READING
There are a number of excellent textbooks that describe operating systems in detail;
recommended are books by Silberschatz and others [SILB08], Deitel [DEIT03], Tanenbaum
[TANE07], Davis and Rajkumar [DAVI04], McHoes and Flynn [McHO08], and Stallings
[STAL08]. Davis, in particular, presents a very practical, hands-on view of operating
systems, with many examples. McHoes and Flynn is also quite practical and readable. The
others tend to be deeper and more theoretical. For particular topics in operating systems,
see the references at the back of this textbook and references in any of the other books.
There are also numerous trade books that discuss particular topics in operating systems and
specific operating systems. Henle and Kuvshinoff [HENL92] provides a satisfying low-level
introduction to desktop computer operating systems.

KEY CONCEPTS AND TERMS

application programming
interface (API)

basic input/output system
(BIOS)

.BAT file
batch processing
bootstrapping
command line interface

(CLI)
concurrent processing
context switching
control statements
conversational systems
CPU bound
diskless workstation
dispatching
Distributed Computing

Environment (DCE)
distributed system
embedded control system
event driven
fail-safe operation
file management

system

graphical user interface
(GUI)

hierarchical configuration
high-level scheduling
Initial Program Load (IPL)
interactive systems
interprocess message

servicing
I/O bound
I/O services
Job
Job Control Language (JCL)
Journaling
kernel
kernel mode
layered configuration
microkernel configuration
monitor
monolithic configuration
multiprogramming
multitasking
multiuser system
nonpreemptive dispatch
nonresident commands

operating system (OS)
plug-and-play
preemptive dispatch
process
real-time system
resident commands
service request
shell
shell scripts
supervisor
system administrator

(sysadmin)
system generation

(sysgen)
system languages
system scalability
thin client
threads
time-slicing
virtual private network

(VPN)
virtual storage
Windows PowerShell
Windows Scripting Host

READING REVIEW QUESTIONS
15.1 The definition of an operating system specifies two primary purposes served by

the operating system. What are they?

15.2 Explain the major error in the following sentence: ‘‘One of the major tasks
performed by the operating system program is to load and execute programs.’’
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15.3 Explain concurrent processing. Briefly describe at least two services that an
operating system must provide to support concurrent processing.

15.4 What are the memory resident parts of an operating system called? When are
these parts loaded into memory?

15.5 What is a diskless workstation or thin client?

15.6 What does API stand for? What is the purpose of an API?

15.7 Operating systems are said to be event driven. Explain what this means.

15.8 What is the difference between multiprogramming and multiprocessing?

15.9 Explain dispatching. Describe the two basic methods that are used by operating
systems to implement dispatching.

15.10 What tasks are performed by device drivers?

15.11 The basic role of a file management system is to provide a mapping service.
Between what and what?

15.12 Briefly describe at least three of the four major services provided by a file
management system.

15.13 Explain the concept of a process. How does a process differ from a program?

15.14 Describe at least two primary tasks performed by the memory management
component of an operating system.

15.15 Explain what is meant by preemptive and nonpreemptive scheduling.

15.16 Identify at least four different tasks performed by a sysadmin.

15.17 What is true of system administration on small personal computers that is usually
not true of larger systems or of personal computers within an organization?

15.18 What is the purpose of system generation?

15.19 The UNIX kernel is described as a monolithic organization. What does this mean?
What are the major challenges presented by a monolithic organization?

15.20 Describe the organization of a hierarchically structured operating system.

15.21 How do real-time systems differ from other types of operating systems?

EXERCISES
15.1 What are the specific limitations of a computer system that provides no operating

system? What must be done to load and execute programs?

15.2 For each of the most popular commands in Windows (or Linux if you prefer),
identify the type of operating system service that is being provided, and identify
the basic module or modules that are involved. Which commands would you
assume are memory resident and which loaded as required? Explain your
assumptions.

15.3 Concurrency, of course, is a requirement for modern operating systems. What
are the major challenges that an OS designer faces in supporting efficient
concurrency that she would not face if the operating system could just run one
program at a time?

15.4 What are the limitations of providing a BIOS in ROM?
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15.5 You are probably familiar with the standard Windows interface. Suppose you
could replace the Windows shell with a different interface shell. What might be
the advantages and disadvantages of selecting a different command shell as a
replacement for the standard Windows interface?

15.6 Describe the two methods that are used to provide concurrent operation of
multiple processes on a single CPU. What are the advantages of each method?
What is the advantage of providing concurrent operation?

15.7 An operating system is described as an event-driven program. What is meant by
event driven? Explain how the dispatching operation fits this description.

15.8 What is the difference between the logical description of a file and the physical
description?

15.9 Nearly every operating system separates the file system from the I/O services.
What is the advantage in doing so?

15.10 Discuss the similarities and differences between memory management fragmen-
tation and disk fragmentation.

15.11 Early versions of Windows did not support true preemptive multitasking.
Instead, the designers of Windows provided something they called ‘‘cooperative
multitasking’’ in which each program was expected to give up control of the
CPU at reasonable time intervals, so that the Windows dispatcher could provide
execution time to another waiting program. Describe the disadvantages of this
method.

15.12 If you have access to the system administrator of a large system, find out the
steps that are required to perform a sysgen on the system. Also, determine the
options that are available for that system.

15.13 One approach to operating system design is to provide as small a kernel as
possible and to make all other modules optional. What are the minimum
services that must be provided in such a miniature kernel?

15.14 Write a Little Man bootstrap loader that will reside permanently in high memory
for the Little Man Computer. The reset button will automatically cause the Little
Man to start executing the first instruction of your bootstrap loader. Assume
that the application program to be loaded will be input one instruction at a
time through the input basket and will be loaded into consecutive locations of
memory. The last instruction of the application program will be a 999. When
your loader sees this slip of paper, it will cause the Little Man to start executing
the program.

15.15 Windows hides most of its configuration in a binary file called the registry.
Special Windows tools must be used to read and modify the registry. What are
the advantages and disadvantages of this approach versus the use of text-based
configuration files?

15.16 Based on the system status report shown in Figure 15.5, describe some of the
ways in which the system could be tailored, and explain how the various items
in the report would influence your tailoring decisions.

15.17 What are the conditions and restrictions that you would want to impose on a
multitasking system that is being used with real-time processes?
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15.18 What operating system functions would you expect to find in the computer that
is built in to control your automobile, and which functions would be omitted?
Justify your answer.

15.19 Clearly explain the differences between multiprogramming, multiuser, and
multiprocessing.

15.20 a. Of what use is the list of active processes shown in Figure 15.5? What
changes might a system administrator make in the system on the basis of
this information?

b. What does the average number of processes data tell you about the way that
this system is normally used?

c. Compare the three graphs in the figure.
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THE USER VIEW OF
OPERATING SYSTEMS
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16.0 INTRODUCTION
In Chapter 15, we introduced you to two different views of the role of the operating
system as part of the overall computer architecture. Specifically, we looked at the
operating system both as a means of delivering services to the user and as a way of
controlling and operating the system facilities. In this chapter, we take a closer look at
the operating system from the perspective of service to the user.

Much of the material in this chapter is at least superficially very familiar to you. You
have worked closely with at least one type of computer system and quite possibly with
more than one. You are familiar with some of the tasks, services, and capabilities that are
provided for you by the system or systems that you have worked with. You are familiar
with the different types of interfaces that you have used to perform those tasks and
with the commands and the command structure that are built into the system for you.

In this chapter we are interested in two aspects of the operating system as it
pertains to the user. First, we will consider the services that are provided to the user,
and second, we will consider the medium for delivery of those services, namely, the
type and appearance of the user interface that the system provides. You will see the
standard tasks that a user interface is expected to perform, various ways in which
those tasks can be implemented, and the advantages and disadvantages of different
implementations. You will be able to observe that the services provided are relatively
independent of the means used to access them.

As for the interface, we are more interested in the concepts of a user interface
than in the specific commands, syntax, appearance, and usage of a particular interface.
You will understand that different design approaches to the interface meet different
goals and achieve different ends and are often aimed at different classes of users. You
will see additional features that are frequently built into an operating system to make
the system more ‘‘user-friendly’’, or more powerful, or more efficient. Some of these
represent additional services; many are simply ways to make access to the services
easier, or more powerful, or more efficient. You will see that one interface may not be
powerful enough for some tasks, while another interface requires too much effort to
accomplish the common tasks that are required on a regular basis.

User services are a fundamental purpose for the existence of an operating sys-
tem, and the user interface is essential to the access of those services. Nonetheless,
some systems elect to view the user interface, and even many user services, as
outside the realm of the operating system. Instead, these services and the user interface
are treated as a shell that itself interfaces the operating system. There are strong
arguments for this point of view. It makes possible different shells, each with their
own services, capabilities, and work styles. If you don’t like the shell that is provided,
you simply exchange it for another. As we noted in Chapter 15, operating systems
based on UNIX and its variants are the strongest proponents of this view—operating
systems such as Linux are routinely supplied with several different shells offering
different capabilities; in many cases, the user can change shells with a single com-
mand. The counterargument to this point of view is that building the user interface
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and services into the operating system provides standardization, consistency, and much
improved integration of services. Apple Macintosh systems take this approach.

There is a third approach to the user interface, namely to hide the system user interface
and to use a Web browser model to serve as the interface for the applications that the
user works with. Limited access to system utilities can also be supported through the Web
interface.

This chapter takes a detailed look at the issues we’ve just raised. It explains and justifies
the different types of user services that are provided with an operating system. It discusses
and illustrates and shows the rationale for the various types of user interfaces, and it
considers the trade-offs between them. It shows how user services are accomplished with
each type of interface. Our primary goal in this chapter is to expand your ability to use your
systems effectively and to understand the alternative methods available to you for using the
operating system to achieve higher productivity. We hope that the chapter will also provide
you with a better understanding of what happens internally within the system when you
use your computer.

16.1 PURPOSE OF THE USER INTERFACE
The primary purpose of the user interface is to make the facilities of the computer system
accessible to the user by providing the necessary services and commands and means of
access to allow the user to get her work done conveniently and efficiently. We emphasize
that it is not the intention of the user to interact with the operating system per se. Rather,
the operating system exists to help the user to use the computer system productively. In
modern operating systems, a secondary purpose has arisen that is almost as important:
the operating system provides user interface services to application programs that assure
that different programs have user interfaces that operate in the same way. This simplifies
use of different applications on the system and reduces the user’s learning curve for new
programs. We identify programs that use the operating system to provide similar interfaces
as having the same (common) look and feel.

Although the operating system can support a common look and feel across the
applications on a particular type of system, there is an important, steady trend toward the
use of Web browsers to provide a common look and feel for applications across all types of
systems. Because the World Wide Web is familiar to a large range of users, an organization
can simplify the training requirements and enhance its productivity by using Web-based
application interfaces as the predominant means of communication with its personnel.
A Web-based approach is also attractive to the programmers that create the applications,
because Web page creation is well understood and reasonably well standardized across
different computer platforms. The use of internal corporate Internet-like intranets to
provide information resources throughout an organization is an example of this trend, as
is the capability of location-independent Web-based access to e-mail. In addition to the
processing and display of data, documents, images, audio, and video, there is even a growing
use of Web-based productivity tools such as word processors and spread sheet applications.

We note in passing that the Web interface is particularly effective when the ‘‘user’’
is not a person, but another machine. The standard languages shared across the Web,
particularly XML and HTML, make it relatively easy to create Web-based interfaces that
can coordinate work between systems.
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A well-designed interface can enhance the user’s experience of the system and make
use of the computer system a pleasure. This will allow the system to provide maximum
benefit to its users. Conversely, a system with a poor user interface will be used reluctantly,
and its potential value to its users will be diminished. Different classes of users are likely to
define the concept of a good interface differently.

The operating system provides a variety of services to the user and to the user’s
programs. The user interface provides access to these services using three different
approaches. These are:

■ A command interface of some type that accepts commands in some form directly
from the user interface. Most commonly, the interface is either graphical (GUI)
or command line (CLI).

■ A command language that accepts and executes organized groups of commands
as a form of program. Most command languages include capabilities for
branching and looping, prompted user input, and passed arguments. Command
languages are also referred to as scripting languages.

■ An interface that accepts and performs requests for operating system services
directly from the user’s programs (the API).

Modern operating systems provide all three of these capabilities. There are even a
number of scripting languages that support portability between different operating systems.

The user services provided by an operating system typically include:

■ Loading and execution of program files
■ Retrieval, storage, and manipulation of files
■ User I/O services, in the form of disk commands, printer spooling, and so on
■ Security and data integrity protection
■ Interuser communication and shared data and programs, on multiuser and

networked systems
■ Information about the status of the system and its files
■ I/O and file services plus other specialized services for user programs

Many systems also provide utilities that can be used in place of programs to manipulate
the data within files and programs. These utilities can be used to sort data and to retrieve
data selectively from within files. Frequently, utilities can be combined into ‘‘programs’’
using the command programming language to perform powerful and useful tasks. Linux is
particularly strong in this regard. The choice of user services provided is dependent on the
original focus and goals of the operating system designers.

Finally, modern systems expand on the concept of I/O service to provide libraries of
specialized service routines that can be used by programs to generate graphics, control a
mouse, create and manipulate user windows, generate and control menus, and perform
other sophisticated functions. These make it easy for application programmers to supply a
common-look-and-feel interface to their programs.

The difference in skills and interests among the various users on a system affects the
design of an operating system user interface in two major areas:

■ It affects the choice of services to be provided. For example, powerful
programming services may not be needed by the typical user, but may be
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extremely useful to a system programmer. Conversely, tools that allow the end
user easier access to the system may actually hinder the system programmer.

■ It affects the design of the actual interface. The sophisticated user may be more
comfortable with a more powerful, but difficult to use, interface. The typical user
does not want to, and should not have to, learn a special and difficult operating
system lingo just to use the computer.

The operating system must ultimately serve both groups of users, but a particular
operating system may be tailored toward one or the other. An operating system that was
designed with the goal of supporting engineers may be difficult for a graphic layout artist
or secretary to use. Conversely, an engineer may not be able to work effectively on a system
that the secretary finds ideal. An alternative is to provide two (or even more) different
interfaces, intended for different user groups. If the command interface is implemented as
a shell independent of the remainder of the operating system, this is easy to do. The normal
user can work with an interface that provides a menu or windowing interface. The more
technically sophisticated user can use the GUI for typical tasks, but bypass the windowing
shell and enter commands directly to a command interface, when necessary or convenient.

16.2 USER FUNCTIONS AND PROGRAM
SERVICES

In Section 16.1 we listed seven major groups of user functions and program services that are
provided by most operating systems. Now we’ll consider these functions more specifically.

Program Execution

The most obvious user function is the execution of programs. Most operating systems
also allow the user to specify one or more operands that can be passed to the program as
arguments. The operands might be the name of data files, or they might be parameters that
modify the behavior of the program.

To the typical end user, the smooth loading and execution of programs are nearly the
sole purpose for the operating system. Many operating systems treat program execution
the same as they treat nonresident operating system commands. The name of the program
is treated as a command; loading and execution begin when the command is typed or,
equivalently for a windowing system, when the mouse double-clicks on the graphical icon.
Alternatively, the user may click on a data file icon. The program associated with the data
file is executed with the data file as an operand.1

Since the operating system treats application and user programs in the same way as it
treats nonresident commands, it is conveniently impossible to tell the difference. Most of
the programs that you have used are not part of the operating system, but since they are
initiated the same way, you cannot tell the difference. This provides a consistency that is
convenient to the user. Microsoft Excel, Quicken, Firefox, and Adobe Acrobat, to name

1If you are not used to graphical system terminology, an icon is a small graphical representation of a program
or data file. ‘‘Double-clicking’’ involves clicking a button on the mouse twice in rapid succession.
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just a few, are all independent, nonoperating system programs that share this common
behavior, look, and feel.

Application programs perform their operations on a user-specified data file. Spread-
sheet programs, for example, require a file of spreadsheet data; word processors use a file
of formatted text. The command interface provides a method for specifying the data file
to be used when the program is executed. In a command line system, the data file may
be specified as an operand typed on the same line with the command. In a graphical
system, data files may be associated with a particular application. This association is set up
automatically by the operating system when the data file is created, or it may be manually
established by the user. Once the association is set up, the application can be initiated
automatically by selecting the data file. On most computers, for example, each data file
has an icon associated with it; the application is launched with the particular data file by
double-clicking the mouse on the data file icon. In Microsoft Windows, the same result
can also be achieved by double-clicking the mouse on the name of the data file within the
Windows Explorer.

To expedite the execution of programs, the system also provides a means for moving
around the system between different peripheral devices and between different storage areas
on those devices. Most operating systems embed these operations in a logical device and
directory structure and provide commands for moving around the structure. In a command
line system, commands provide the ability to attach to different devices and to change one’s
attachment from one directory to another with a command such as cd, for change directory.
Graphical interfaces provide file folders as the equivalent to achieve the same purpose.

Although you are probably most familiar with running your programs interactively,
most operating systems also allow a program or sequence of programs to be run nonin-
teractively, in a batch mode. The operating system allows the user to specify conditions
under which the execution is to take place, for example, the priority of the programs, the
preferred time when they should be executed, the stored location of the programs and the
particular data files that are to be used. For example, the system can be told to perform
a partial backup at a given time every night, with a full backup on Sundays.

File Commands

The second, and most familiar, category of user services are commands for the storage,
retrieval, organization, and manipulation of files.

From the perspective of the user, the file management system is what ‘‘makes it all
possible’’. Four factors account for the importance of the file management system to the
user:

■ The ability to treat data and programs by logical file name, without regard to the
physical characteristics of the file or its physical storage location

■ The ability of the file management system to handle the physical manipulation of
the files and to translate between logical and physical representations

■ The ability to issue commands to the operating system that store, manipulate,
and retrieve files and parts of files

■ The ability to construct an effective file organization utilizing directories or file
folders to organize one’s files in a meaningful way
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FIGURE 16.1

Common Windows and UNIX/Linux File Commands

Windows UNIX / Linux

dir
copy
move
del or erase
type
mkdir
rmdir

ls
cp
mv
rm
cat
mkdir
rmdir

List a directory of files or get information about files
Copy a file from one place to another
Move a file from one place to another
Delete (remove) a file
Type a file out to the screen (or redirected to a printer)
Attach a new subdirectory to the tree at this tree junction
Delete a subdirectory

The file management system is so important that we have devoted the entirety of
Chapter 17 to it. Of interest to us here, as users, is the fact that most of the user commands
in the operating system are directly used to manipulate files and file data. This is evident
if you consider the commands that you use in your regular work with the computer.
The brief partial list of Windows and UNIX/Linux CLI commands in Figure 16.1 typifies
the commands that you would probably consider to be most important to you. Other
operating systems provide essentially identical commands, although the commands might
appear quite different, depending on the user interface. Graphical user interfaces provide
equivalent operations for each of these commands. On a Macintosh computer, for example,
you move a file by dragging its icon with the mouse from its current location to the desired
location. You create a new directory by moving an empty file folder into the window that
represents the desired attachment point.

Many additional features built into the command structure reflect the importance of
a flexible file structure to the user. These include

■ The ability to change from one device and one directory or subdirectory to
another without otherwise modifying the file

■ The ability to redirect input and output to different devices and files from their
usual locations

Disk and Other I/O Device Commands

In addition to the file commands, the operating system provides commands for direct
operation on various I/O devices. There are commands for formatting and checking disks,
for copying entire disks, for providing output directly to the screen or to a printer, and for
other useful I/O operations. Some systems also require the mounting and unmounting
of devices. This effectively attaches and detaches the directory structure of a device to the
already existent directory structure as a means of adding devices to the system.

Most operating systems also provide a queuing system for spooling output to a printer.
The printer is generally much slower than other computer facilities. The spooler works by
copying the output text into a buffer in memory and then printing as a separate task. This
allows programs to proceed as though printing had already taken place.
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Security and Data Integrity Protection

Every operating system provides security protection for files. Generally, individual pro-
visions are made to protect files from being read, written to, or executed. Some operating
systems also provide protection from deletion. A few operating systems provide additional
security, requiring a correct password to be typed before a disk can be used in the system,
or a keyboard unlocked.

Systems with network multiple user access, of course, must provide much more
protection. The system as a whole must be protected from unauthorized access. Files must
be protected, so that the owner of the file can control who has access to the file. The owner
can also protect the file from himself or herself by specifying read-only or execute-only
access.

Many operating systems also allow controlled access from other users. UNIX provides
three levels of security for each file, consisting of read, write, and execute access privileges
for the owner, for associates of the owner (known as groups), and for anybody with access to
the system. Windows offers share privileges to control file and device access between users
on a network. Many large systems also provide access control lists, or ACLs (pronounced
ack-ulls), that allow the system administrator to control access to program and data files on
an individual user/file pair basis. In addition to file protection, every operating system with
multiple user access provides a login procedure to limit access on the system to authorized
users. Commands exist to allow the user to modify the access rights on a file and to change
the user’s password. Networks also require the use of a login procedure that limits the user
to the appropriate computers and facilities.

Interuser Communication and Data Sharing Operations

Modern systems generally provide means for multiple users to share data files and
programs. Most systems also provide a means to pass data between programs and to
communicate between users. Application programs like Lotus Notes, instant messaging,
and videoconferencing can extend this capability of users to work collaboratively in a
powerful way to both small and large networks of computer systems.

The simplest form of program sharing on a single system is to place the shared
programs in a common memory area where all users can reach them. This is done for
editors, compilers, general utilities, and other system software that is not part of the
operating system. Many operating systems even allow several different levels of control over
such shared programs. For example, the Little Man Computer simulator used at Bentley
College is accessible to all computer majors, but other users must have permission to
access it.

Data file sharing is an important resource when using databases, because it makes it
possible for multiple users to access the same data in a way that the integrity of the data is
protected. Needless to say, the system must provide tight security to limit data file access to
those who should have it. An additional use for data file sharing is when two or more users
work as a group on a document. All these users have access to the document. Some can
only read it, while others can modify it. Some systems provide means for attaching notes
to the document for other users to see. As with program sharing, it is possible to set several
levels of data file sharing.
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Modern networks routinely provide operating system message passing services in the
form of e-mail and newsgroup support, file transfer (ftp), simple terminal facilities for
connecting to a different system (telnet or ssh), Web support (http), instant messaging, and
audio and video conferencing. Some systems also provide an internal messaging service for
rapid communication between users logged on to the system, either directly or through a
network.

Operating systems also provide internal services that allow programs to communicate
with each other during execution. Modern systems go one step farther and extend this
concept to allow the user to control interprogram communication as a means of extending
the capabilities of individual programs.

The simplest example of this is the PIPE command available in many systems for taking
the output from one program and using it as the input to another. More sophisticated
techniques allow a user to link two programs together so that a spreadsheet, for example,
can appear in a word processing document. Double-clicking the mouse on the spreadsheet
actually launches the spreadsheet program from within the word processor program, so
that the spreadsheet can be modified. The most sophisticated systems actually allow the
user to work with different application programs transparently, that is, without even being
aware that an operation has launched another program. For example, modification of the
spreadsheet would take place right within the word processing document; the user would
not even be aware that a spreadsheet application program was being executed at the time.

This approach relies heavily on the operating system to support communication
between different programs in a fashion invisible to the user. The user is not even aware of
which application is executing at any given instant. This technique views the document as
the center of focus, instead of the applications that are being executed.

System Status Information

As previously seen in Chapter 15, most operating systems provide status information that
can be useful to a user who knows how to interpret the data. This data is usually more
important to the people who operate and maintain the computer system, but sometimes
status information can be useful to programmers and users in optimizing their work.

Commands commonly exist to determine the amount of available disk space, the
amount of available memory, the number of users on the system and who they are, the
percentage of time that the CPU and I/O channels are busy, and many other statistics.

As an example of how this data might be useful, consider an application program that
does the billing for a large electric utility company. Such a program might require many
hours of CPU time to complete a month’s billing. A small change in the program could cut
the CPU time by a significant percentage. The measurement of CPU time used is essential
to assess the improvement. This data might also be important to a user who is being billed
for her time.

The names of other users on the system might be used to establish a phone-type
conference or to send a quick message to another user.

Many systems provide a logging facility that maintains a file of all keyboard and screen
I/O. With a log file the user can determine at a later time what commands were typed and
what modifications made to programs and data.



CHAPTER 16 THE USER VIEW OF OPERATING SYSTEMS 523

The examples given here are only a few of the possible uses for system status and
information. There are many other possibilities. Status information can be particularly
important to personal computer users who must maintain their own systems. For example,
status information allows the user to ascertain the condition of a disk: to determine the
number of bad blocks on the disk or to analyze and reduce the fragmentation that is present
on the disk. For example, Windows provides the SCANDISK and DEFRAG commands for this
purpose.

Program Services

One of the most important user functions provided by the operating system is actually
invisible to the user. The operating system provides a variety of services directly to the user’s
programs. The most important of these are the I/O and file services. Also important are
requests for the use of system resources that a program needs, such as additional memory
or larger blocks of time and GUI services that support ‘‘common look and feel’’.

Typical program services can be used to retrieve a file, to save a file, or to locate the
individual blocks of a file. The program services can read one or a few particular blocks of
a file into a designated user area of memory. Most program service facilities can keep track
of several files at once.

Typical program services also allow an application program to bypass the file system
under certain conditions and to perform I/O directly to disk and other I/O devices. For
example, the program could request a service that retrieves a particular block on the disk.
This type of service might be important to a program that attempts to repair damaged data
files, for example. Most operating systems control these services in such a way as to prevent
damage to the system or to other users’ files and resources. As another example, output to a
screen is performed directly to I/O, rather than through the file system, on many computer
systems. These I/O services allow programs to write text and graphics to the screen without
compromising the system.

Services to programs also include services that are less apparent to the user, but
important nonetheless. Interprocess message passing allows programs to synchronize their
actions to protect data integrity, to share and exchange data, and even to distribute program
processing among different machines on a network. DCOM (Distributed Component
Object Model), its extension .NET, and CORBA (Common Object Request Broker
Architecture) are two standards that allow programs to locate and share objects, either on
a system or across a network. Remote Procedure Call (RPC) allows a program to call a
procedure at a remote location across a network.

.NET and other equivalent operating system tools also ease a programmer’s task
at creating new programs by providing commonly required program objects and allow
computers on a network to share the processing load. Particularly in modern systems, where
elegant user interfaces and graphics are the norm rather than the exception, the operating
system provides a library of powerful service routines for implementing user interfaces and
graphics for individual programs. On most modern workstations and personal computers,
it is only necessary for a program to call a series of these routines to maintain control of
windows, drop-down menus, dialog boxes, and mouse events. The routines also include
powerful system calls for drawing complex graphic shapes on the screen.
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To use the program service routines, the user’s program makes requests to the operating
system through the application programming interface (API). In most systems, the API
consists of a library of service functions that may be called by a program.2 The call and
required parameters are passed to the selected service function, using whatever method is
implemented for the given machine. Most commonly, a simple call is used, with a stack
used to pass the parameters. The service function is responsible for communication with
appropriate routines within the operating system that perform the requested operation.
A software interrupt or service request instruction is used for this purpose. The service
routine returns required results, if any, to the calling program. On some systems, the
calling program uses a software interrupt directly to access the API. Windows win32,
the standard API on every Microsoft Windows system, provides hundreds of service
functions to programs.

The use of operating system program services provides convenience for a program
developer. More important, providing a single gateway through which all I/O must pass
assures the integrity of files and other I/O. If each program placed its files on the disk
independently, there would be no way to assure that the files didn’t destroy each other. The
integrity of the system is even more important if the system is multiprogramming and/or
multiuser. As an example of what could go wrong, consider a printer being addressed
directly by two different programs. The output would be a garbled mix of the output
to be printed from the two programs, obviously useless to anyone. Early, single-user
systems allowed programs to bypass the operating system and do their own I/O. Doing
so increases the risk that data may be destroyed. Furthermore, bypassing the I/O services
of the operating system may make the program incompatible with other, similar (such as
clone) computers that may use different internal addresses for the I/O device functions.
Finally, the I/O services provided are convenient. They make it possible to simplify the task
of writing programs by providing the difficult I/O and file functions automatically.

A properly designed multiprogramming operating system will not allow programs to
perform their own I/O; the operating system services must be used. It is the role of the
system services to properly queue I/O requests and to perform them in such a way as to
protect the data. No current machine allows a user program to bypass operating system
services.

16.3 TYPES OF USER INTERFACE
There are two types of user interface in common use. One of these is the command
line interface (CLI), which is seen on a wide variety of operating systems, including the
command prompt in Windows. Although this is historically the most common interface,
the graphical user interface (GUI) has supplanted the CLI for most routine day-to-day
use. GUIs are seen on the Apple Macintosh, Windows-based PCs, Sun workstations, most
Linux desktop systems,3 and a variety of other devices such as PDAs and mobile phones.

2The concept of an API also applies to applications that allow other applications to ‘‘piggyback’’ or ‘‘plug
in’’ to their services. For example, Web browsers provide API services to their plug-ins, as do several Google tools.

3Many Linux servers have only a CLI, no GUI, because the GUI consumes so many computer resources that
might be better used to provide a higher level of client services.
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Although Web browsers are not actually part of the operating system, there are many
computer people who believe that a Web browser (together with its tools) is viable as an
adjunct or alternative to the standard GUI in many circumstances. It is possible to use the
Web browser to perform many common tasks, such as file management. (As an experiment,
try using file:///C: as a URL on any Web browser in Windows and notice that you can drag
a file to the desktop, for example. Or double-click on a file icon in the browser to launch it.)
There is even a Linux shell that promotes the use of a customized Web browser for most
operations.

As already noted, the type of interface seen by the user depends on the focus of the
operating system. A batch system requires a different interface than a system primarily
intended for interactive use. A system designed primarily for inexperienced end users will
differ from one designed for sophisticated technical users. Today, most users are reasonably
comfortable at a computer screen, the purely batch system is in declining use, and the
primary user interface with a computer is interactive, using a keyboard, mouse, and video
display. Furthermore, the graphical user interface and Web browser are rapidly becoming
the predominant user interfaces for most work.

The Command Line Interface

The command line interface is the simplest form of user-interactive interface. The operating
system command shell provides a prompt; in response, the user types textual commands
into the keyboard. The command line is read serially, character by character, into a keyboard
buffer, where it is interpreted by the command interpreter and executed. Commands are
entered and executed one line at a time, although most interpreters provide a means
for extending a command onto multiple lines. The command line interpreters for most
operating systems use a standard format for their commands. The command itself is
followed by operands appropriate to the particular command, as shown:

command operand1 operand2 . . .

The operands are used to specify parameters that define the meaning of the command
more precisely: the name of a particular file to be used with the command, a particular
format for listing data, or a detail about how the command is to be performed. Many times,
some or all of the operands are optional; this simply means that a default condition is to be
used if the operand is not specified.

In some circumstances, the command itself may be preceded by a logical path name
that specifies the particular device or file location where the command is to be found.
However, most operating systems maintain an internal list where most commands can be
found. This list is often referred to as path variable.

As an example, the Linux command

ls -lF pathparta/pathpartb

consists of the command ls and the two operands -lF and pathparta/pathpartb. This
command requests a directory listing from the subdirectory with path name path-
parta/pathpartb. Without the optional operand pathparta/pathpartb, the command lists
the current directory (or file folder, if you prefer), wherever that happens to be. An
additional operand might redirect the output to a file or printer, for example, instead of to
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the screen. The Linux command to store the directory list in putfilea (presumably for later
printing) would look like this:

ls -lF pathparta/pathpartb >putfilea

The equivalent command at a Windows command prompt would look like this:

DIR PATHPARTA\PATHPARTB>PUTFILEA

In each of these cases, many other optional operands are possible; these operands
would be used to modify the facts listed and the format of the directory listing. The
additional operand -lF in the Linux command tells the system to list the directory in a
specific ‘‘long’’ format, one file to a line (the ‘‘l’’), with subdirectories indicated (the ‘‘F’’).

Operands are either keyword or positional. In some systems, the operands may be
both. Positional operands require the operand to be located in a particular position within
the line. For example, in the Windows command

COPY SOURCE-FILE DESTINATION

the first operand, SOURCE-FILE, positionally specifies the path name of the file to be copied.
the second operand, DESTINATION, which is optional, specifies either a new name for the
file or the path name of a directory to which the file is to be copied. If the second operand
is absent, the directory to which the user is currently ‘‘attached’’ is used. The importance of
the position of these positional operands is obvious: some older operating systems specified
the destination operand first; reversing the position could destroy the file to be copied.

Keyword operands are identified by the use of a particular keyword. In many systems,
the keyword is accompanied by a modifier symbol that identifies the operand as a keyword
as opposed to a file name. The keyword identifies the purpose of the operand. Keyword
operands are frequently used as optional operands, sometimes with a particular positional
value attached. In some systems, keyword operands and modifiers can be placed anywhere
after the command without affecting the positions of positional operands. In other systems,
the keyword operands, if present, must be placed in a particular position. The slash mark (/)
in Windows and hyphen (-) in Linux are examples of modifier symbols. Keyword operands
are sometimes known as switches or modifiers.

The Windows command

MODE COM1 BAUD=2400 PARITY=N DATABITS=8

uses the positional operand COM1 to identify a particular communications port or other
device. BAUD, PARITY, and DATABITS are all examples of keyword operands. Each has
its own positional operand that selects a particular option, but the order of the keywords is
immaterial.

Similarly, the command

DIR /P/A:DH PATHNAME

uses the /P and /A switches to specify that files are displayed on a screen one page at a
time, and to modify the list of path name directory files that will be displayed. Command
line interpreters also include other provisions designed to increase the flexibility of the
command. The most important provisions include the ability to redirect input and output,
the ability to combine commands using pipes, and the ability to combine commands into
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shell scripts or, as they are sometimes incorrectly called, batch programs. (You are already
aware of the correct usage of this term. In this book we will always differentiate between
shell scripts and batch programs.) Another important capability is the use of the wild card,
a character symbol or symbols that can substitute for one or more unspecified letters in
an operand. Use of a wild card in a command can make possible a search, or can cause a
command to be repeated with several different arguments.

Although they work somewhat differently, both Linux and Windows use the question
mark symbol (?) to replace a single character and an asterisk (*) to replace a group of 0 or
more characters. Linux has additional wild card possibilities, shown in the Linux case in
Supplementary Chapter 2. For example, the Linux command

ls -l boo.*

would search the current directory for all files that have the name boo. This command
might result in the following output:

-r--r--rwx 1 irv cisdep 221 May 16 7 : 02 boo.dat
---x--xrwx 1 irv cisdep 5556 May 20 13 : 45 boo.exe
-r--rw-rw- 1 irv cisdep 20 Jun 5 2 : 02 boo.hoo

In the Windows command,

COPY ABC* B:

all files whose names begin with ABC are copied to the drive B: master directory. In this
case, the wild card is used to expand the command to repeat the copy process for several
different files.

In addition to wild card provisions, some operating systems allow the user to back
up and repeat a previous command using the cursor keys on the keyboard. Such systems
usually allow the user to edit the command, as well.

Command line interfaces are well suited to experienced users who are comfortable
with the system and who want the power and flexibility that a CLI offers them. Command
line interfaces are generally the hardest to learn. The range of possibilities and options
that accompany many commands often make it difficult to figure out the particular syntax
that is required for a desired operation. Manuals and online help are particularly useful in
working with command line interfaces. Online help is available for all Linux commands
using the ‘‘man commandname’’ command.

Batch System Commands

Batch systems use an interface that is similar to the command line interpreter in many
respects, but the purpose is different. Commands specify the location of programs to be
executed and data to be used, using a Job Control Language. Job control commands use a
format similar to that of the command line interpreter:

command operand1 operand2 . . .

Batch command operands also are either of keyword or positional type. The most
familiar language of this type is IBM zOS/Job Control Language. Batch jobs consisting of
one or more programs are ‘‘submitted’’ to a system for execution and are generally executed
with no human interaction. Since direct human interaction with the batch system is not
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possible, all steps must be carefully planned out, including actions to be taken when errors
occur. Batch programs are well suited for routine transaction processing applications, such
as credit card billing and payroll.

As we noted above, command line interfaces also provide the ability to ‘‘batch’’
commands together to form pseudoprograms, known as shell scripts, or just scripts, that
will be executed as a unit. These are not true batch programs, as they are still intended for
interactive use. Nonetheless, Windows users sometimes refer to these programs as batch
programs or, more commonly, as bat files. Most command line interfaces provide additional
commands that are intended especially for the creation of powerful scripts. The overall
command structure is then referred to as a command language, or scripting language. The
topic of command languages is considered further in Section 16.5. There is an example of
a JCL procedure in Supplementary Chapter 2.

Graphical User Interfaces

The mouse-driven, icon-based graphical user interface, or GUI (pronounced gooey)
has, for all practical purposes, replaced the command line interface as the prevalent
interface between user and computer. The GUI has been implemented in many forms.
The best-known implementations are the user interfaces present on the Apple Macintosh
computer and on IBM-type PCs that are equipped with the Microsoft Windows interface.
Most other computer systems offer a similar interface. Figure 16.2 is a picture of a typical
Windows XP screen. The screen of a Linux computer running the KDE shell appears in
Figure 16.3. Notice the similarities between the two. The graphical user interface provides
the convenience of a desktop metaphor. The user can arrange the desktop to his or her own
preferences, can easily move around the desktop to perform different tasks, and can see the
results in WYSIWYG (what-you-see-is-what-you-get) form.

Windowing systems from different vendors take on different appearances, but share
similar elements. Normally, a graphic interface consists of one or more screens or desktops,
each of which contains one or more windows. A window is a portion of the screen that
is allocated to the use of a particular program, document, or process. Windows contain
gadgets or widgets for resizing the windows, for moving the windows around the screen,
for scrolling data and images within a window, and for moving windows in front of or
behind other windows on the screen. Windows usually also contain a title bar that identifies
the window. There is also at least one menu bar on the screen. On some systems, a single
menu bar on the screen is always associated with the active window (discussed shortly).
On other systems, each window has its own menu bar. Each item on the menu bar can be
used to activate a hierarchical set of pull-down menus, used for selecting options within
the program being executed. Windows and Linux screens also provide a task bar for rapid
program start-up, task switching, and status information.

On many modern systems, Windows can be configured to look and act in different
ways. As we already noted, one important option is the Web interface, which provides the
look and feel of a Web browser for all operations within the window.

Many systems allow windows to be iconified, tiled, overlapped, or cascaded. Iconifying
a window means reducing it to the size of an icon, even though the window is still open.
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FIGURE 16.2

A Typical Windows Vista Screen

This allows screen space to be saved. The window is reexpanded by clicking on it. Tiled
windows are lined up on the screen in such a way that they do not overlap and use all the
available space on the screen. Overlapping windows is the normal situation, with windows
located where placed by the system or by the user. Cascaded windows are a version of
overlapped windows where the windows are overlapped in such a way that the title bar and
one other border of each window can be seen. Some of the newest systems use transparent
windows and miniaturized windows to ease the user’s task of keeping track of everything
on her desktop. A less common, but creative, approach used on certain systems ‘‘rolls up’’
the windows like a windows shade, showing only the title bar.

On systems that allow multiple screens, a group of windows is attached to a particular
screen. Individual screens, together with their associated windows, can be minimized or can
be moved forward or behind other screens, but are not usually resizable. When multiple
screens are allowed, each screen represents a separate user interface. Four desktops are
indicated in the task bar in Figure 16.3. A new, somewhat gimmicky, approach places the
different screens on the sides of a cube that can be rotated to reveal the desired workspace.
The future of this approach is (hopefully) uncertain.
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FIGURE 16.3

A Linux Computer Running the KDE Shell

To the user, the window is a box that is used for the input of text and commands to a
program and the graphical or text output resulting. Placing multiple windows on the screen
provides a convenient way to implement a multiprogramming interface with separate input
and output for each program. At any given time, one window is active, meaning that it will
respond to the keyboard and mouse. The color or appearance of the title bar is frequently
used to indicate which window on the screen is currently active. On some systems, moving
the mouse cursor into a window activates the window. This method is known as mouse
focus. In other systems, the window must be activated by clicking the mouse while the
cursor is inside the window or by opening the window. This is known as click to focus.

Depending on the GUI design, data and program files can take the form of text or of
graphical symbols called icons. On most systems, icons can be animated. Icons that are
in use change shape or color. Icons can be moved around the screen with a mouse. Some
systems also allow the use of a light pen or a tablet or a pressure pen, or even, a finger, for
this purpose. Pressure pens are commonly used as the pointing device on personal digital
assistants such as the Palm Pilot. The pressure pen itself is just a piece of plastic. The actual
pointing signal is produced when the system detects the physical pressure at a particular
location on the screen or senses the position and movement of a finger near the screen.
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Many commands are issued to the operating system by moving the mouse and
manipulating a button on the mouse at the appropriate time. For example, a program is
initiated by pointing the mouse cursor at the icon for the program and clicking the mouse
button twice. A copy command involves holding the mouse button down while the user
drags the icon from its original position to a position on top of the desired destination
directory icon or window, then drops it by releasing the button. A delete command is
performed by dragging the icon to an icon that represents the picture of a trash can. Other
commands use the mouse together with pop-up or pull-down menus.

Both program and data files are stored in folders, and folders may be nested.
Double-clicking on a folder opens a window that shows the contents of the folder. In other
words, folders are equivalent to a file directory structure. The active window corresponds
to the current directory attachment point.

Requestor boxes can be used for commands that require textual input, such as a new
file name. Additional gadgets, such as push buttons and sliders, exist for other types of
control of the interface.

Most window-interfaced operating systems also allow the use of special keys on the
keyboard to duplicate commands that use the mouse-icon-menu method.

EXAMPLE
The Macintosh OS X interface consists of a single screen known as the desktop. The desktop
can be used to hold various items, such as a trashcan, folders, and data that is being worked
on. A typical Macintosh OS X screen is shown in Figure 16.4. The desktop consists of icons
representing each volume on the system, a menu bar, the dock, and a trash icon. A volume
consists of a disk or partition of a disk.

Clicking the mouse on a volume or dock icon opens a window. On the Macintosh,
icons can represent folders, applications, and documents. Clicking on an application will
launch (load and execute) the program. Clicking on a document icon will open the associated
application program and load the indicated data. Some windows may also be opened from
the menu bar.

The dock serves as a convenient receptacle for applications, folders, documents, files,
and volumes that are accessed often. It also holds icons for minimized open applications.
Mac OS X does not distinguish between applications which are open and minimized from
those that are permanently placed on the dock for convenience. If you look at the figure
carefully, you will see that the dock is divided by a vertical line into two sections. The
left section holds applications. The right side of the dock holds folders, documents, and
the like.

Names for the icons on the dock are hidden; they appear when the mouse pointer is
positioned on the icon. Some dock icons also sprout pop-up menus. Drag-and-drop is used
to add icons to the dock. Icons are removed by dragging them out of the dock. The dock can
be hidden, shrunk, or rotated into a new position on the desktop.

Two windows are open in the figure. The open windows provide a title bar that contains
the usual gadgets, known on the Macintosh as controls. These are used to close the window,
to expand the window to full screen size, to minimize the window, to resize the window to a
desired size, and to provide scrolling left and right, up and down to expose the underlying
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FIGURE 16.4

A Typical Macintosh OS X Screen

Controls Title bars Tool bar

Status bar

Volume iconsMenu bar

The dock Finder window

parts of the window. The mouse can also be used to move the window around the desktop.
Some windows also offer a tool bar and a status bar.

The Macintosh desktop uses a single menu bar that is shared by the active window
and the desktop. The mouse can be moved over the menu bar to cause pull-down menus
to appear. Many of the items on pull-down menus are standard no matter what the user is
doing. Those that are inappropriate at a particular time are ‘‘grayed out’’, that is, represented
in a lighter color. These items do not respond to the mouse. This standardization makes
the interface easier to learn and to use. Some menu bar items change to represent possible
actions that are unique to a particular situation.

Numerous windows can be open at once, each with its own work, and it is possible to
cut or copy and paste data between different windows by marking the desired data using
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the mouse and using the cut, copy, and paste menu functions. Only one window is active
at a time. The user selects the active window by clicking the mouse anywhere inside it.
Even though windows can overlap, the active window will always be brought to the front and
displayed in full. Once a window is active, the user can manipulate the window and the data
within it. During program execution, buttons, dialog boxes, and pull-down menus are used
to control the program and to enter data, simplifying interaction between the user and the
program.

In the figure, iPhoto is an application. The other open window is a special Finder window.
The Finder window is used to navigate the system. It contains a tool bar that works similarly
to a web browser and panels that represent a hierarchy of folders and their contents. The tool
bar can be modified for a particular user’s preferences. Applications can be launched and
documents opened directly from the Finder.

Besides ease of use, what is important about the Macintosh interface is its consistency.
Throughout the interface, every operation works the same way. This enhances ease of use
and quick learning, as well as user comfort. A powerful library of graphics software routines
within the operating system is used to enforce this consistency.

It should be noted that the graphical interface is totally committed to the user end
of the user interface. Internally, the commands are executed by the operating system in
essentially the same way as that of any other interface. We mention this so that you can see
the value of separating the various layers of the operating system conceptually. Modification
or change of one layer does not have to affect other layers, as long as the interface between
layers is self-consistent.

Trade-offs in the User Interface

It might seem obvious to you that the ease of use of a graphical interface makes this the
ideal interface for most users. For the typical end user, the graphical interface is indeed
an attractive choice. It is easy to learn and easy to use. Little training is required, and the
basic operations are intuitive. It therefore meets the most important criterion of the user
interface: it is effective in allowing the user to get work done. The graphical interface has a
second, less obvious, advantage as well. With a graphical interface, it is easy to implement
a multitasking system in which the user can control every task by placing each executing
task in a separate window. Although some command line systems provide a way to execute
programs ‘‘in the background’’, the method is much more awkward: switching between
tasks is not convenient, displayed output is mixed together, and it is difficult to separate
and interact with both programs.

In addition, the GUI reflects current computer usage. Modern computers are used
routinely to display graphics, photos, and video. The interface is simply more consistent
with this type of usage than the CLI would be. The common use of the Web browser
on devices such as cell phones, in addition to its use as a primary application tool on
computers, provides further support for the GUI as a primary interface for the average
user.

The graphical interface is not without disadvantages, however. The graphical interface
is much harder to implement and much more demanding in its hardware and software
requirements. This interface works best with a powerful graphic video capability. It requires
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a lot of memory, just to store the pictures as well as to hold the programs. The software
is complex, although visual and object-oriented languages and API services simplify the
coding of such programs.

In contrast, the command line interface is simple and straightforward. It is text
oriented, and input to the command interpreter can be treated as a simple serial character
stream. The command line interface also has more inherent flexibility and power. Many
experienced users consider the graphical interface to be slow and clumsy. They prefer to
type a command to get their work done. Arguments and operands are easy to use and to
specify. It is easier to work with wild card commands when an operation is to be repeated
many times or when a specialized search is to take place. It is more difficult to combine
commands or to use piping techniques using a graphical interface.

Even though the graphical I/O built into user programs is easy to use, the development
of graphical I/O for user programs is more difficult, and the programs are larger and slower,
because of the numerous details that must be handled by service routines. It is obviously
easier to read and write a stream of text than it is to draw windows, handle menus, and
identify mouse movements and actions.

Finally, it is more difficult to combine a series of graphical actions into a working
script of commands, especially when branches and loops are required, although Windows
is attempting to move in that direction with Windows PowerShell. One of the powers of
the command line interface is the ability to ‘‘program’’ the commands.

Despite these difficulties, the graphical user interface is convenient and useful for most
users in most circumstances. It is the primary interface on most personal computer systems
and is relatively common on mainframe computers as well.

Gradually, too, the disadvantages of this interface are being solved. Most systems
now provide an alternative command line interface, such as the command prompt in
Windows, for example, for use in situations where the graphical interface is inconvenient
or weak. Application programs now exist to help the program developer with the creation
of windows and other tasks required for the program interface. And of course the Web
browser offers simple tools to create application interfaces that are both inherently graphical
and easy to develop.

Standards exist that allow different computers and terminals to share the same
graphical interface, even though the individual hardware and software is different. Such
capability is important in networked and distributed computing environments, where
display elements from one system must be displayed faithfully on a different system. As we
have already noted, one obvious choice for this capability is the use of Web technology—
Java applets, scripting languages, HTML, and XML and the like—to create the required
display.

An attractive alternative in many instances is X Window, which allows various
computers that use various forms of UNIX, Linux, and certain other operating systems
to work together graphically. X Window provides a language that describes the graphical
interface; each individual computer implements the language within its own operating
system to produce the desired result. The X Window system was developed at MIT in
1986 and has been accepted by most manufacturers as a way of furthering the idea of
a standard graphical interface regardless of hardware. X Window is discussed further in
Section 16.4. In many instances, Web browsers can serve in this role, using Java applets,
scripting languages, HTML, and XML to create the required display.



CHAPTER 16 THE USER VIEW OF OPERATING SYSTEMS 535

Software Considerations

The programs that control the user interface must perform two primary functions:

■ Maintain the appearance of the user interface on the screen
■ Translate user requests into user services and initiate the programs that will

provide those services

Of course, if the interface is a command line, maintaining the appearance of the
interface on the screen is trivial, since it is necessary only to print a prompt and wait for
a response. CLI interfaces are text based; therefore, any necessary remote display over a
network, for example, is not a problem.

Similarly, translation of CLI commands into the appropriate services is simple. It is

FIGURE 16.5

Moving an Object on the Screen

Created by Larry Ewing lewing@isc.tamu.edu

necessary only to compare the text typed by the user to that
of known commands or file names and execute the command
as typed by the user. If the command is internal, it is executed
within the operating system. If it is external, it is loaded and
executed. The operands on the line are passed to the command
procedure as arguments.

Windowing interfaces are more difficult. The window-
ing software is responsible for drawing and maintaining the
appearance of the screen; for creating pull-down menus and
dialog boxes; for reacting to requests made by the user in the
form of mouse clicks; for maintaining the positions of different
objects on the screen; for opening, closing, moving, and resizing
windows when requested; and for accomplishing many other
tasks.

Even a task as conceptually simple as moving an object on
the screen, say, the cursor or an icon or a window or a slider
control, requires a considerable effort in terms of programming.
(Picture trying to write the program to do it using the Little
Man Computer machine language!) As the user moves the
mouse, the mouse generates interrupts to the CPU. The mouse
interrupt program determines the direction and distance that
the mouse has moved. It calculates the new X and Y coordinates
of the object on the screen by geometrically adding the move
to the present position of the object. Then it redraws the object
at the new location, by storing a picture of the object in display
memory. When it does so, it must also store the shadow of
the image stored ‘‘behind’’ the new position of the object and
restore the image of whatever was hidden by the object in its
previous position. This operation is depicted in Figure 16.5.

(We note that in modern desktop computer systems and
workstations, the software required to perform tasks such as
the image shadowing just described is actually built into some
graphics display controllers. The division of labor between
the controller and the operating system is established by the
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device driver software used with a particular graphics controller. Either way, the task must
be performed.)

In addition to display maintenance and handling, the interface program must also
interpret the commands and request the appropriate services. Double-clicking on a
document icon, for example, requires the software to identify the icon from its location
on the display screen, determine the associated application program, load and execute the
application, and load the document data. The command interpreter is thus somewhat more
complicated for a windowing system. Note that requesting a service will also require use of
the display services, since it will be necessary for the new application to open one or more
windows of its own, set up its own menus, and so on.

Finally, it is useful to consider the display of objects within a window, such as images
in a photograph processing application, or formatted text in a word processor, or a page
in a Web browser. Responsibility for each of these displays lies within the particular
applications. The output to be displayed in a window will take the form of objects and
bitmaps, as described in Chapter 4. The applications use the API facilities within the
operating system to produce the actual display. In turn, the operating system will then
create the overall screen display using a combination of its own software with that of the
graphics display controller.

Overall, you can see that the graphical user interface software is considerably more
complex than the corresponding CLI or menu interface software.

16.4 X WINDOW AND OTHER GRAPHICS
DISPLAY METHODOLOGIES

Graphical user interfaces are attractive, convenient, and relatively straightforward when the
computer and display are located together, such as in a personal computer or workstation.
When the display terminal is separated by a distance from the computer the graphical
interface is more difficult to achieve. Such a situation might occur, for example, if a user is
trying to operate her computer across a network, using the local display and mouse facilities
on a remote computer. The difficulty is the large amount of data that must be transmitted
from one location to the other to transmit graphic images. In Chapter 9 we observed
that a single bitmapped graphical image might contain thousands or millions of bytes of
information. Clearly, it is not practical to transmit the screen display as a bitmapped image
across the network on a continual basis.

The X Window standard represents one successful attempt to solve this problem. X
Window works by separating the software that actually produces the display image on the
screen from the application program that creates the image and requests the display into
a somewhat unusual client-server arrangement. The program that produces the image on
the screen is known as a display server. We remind you that in data communications
terminology a server is a program that provides services for other programs. In this case,
the server provides display services for one or more client application programs. (We
have assumed that the client application programs are running on computer systems
located remotely from the display, although, as you will see shortly, this is not a necessary
assumption.) The display server is located at the display terminal, computer, or workstation
where the image is to appear. The display server can draw and control windows. It provides
gadgets, dialog boxes, and pull-down and pop-up menus. It can create and display various
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fundamental shapes, such as points, rectangles, circles, straight and curved lines, icons, a
cursor, and text fonts. In conjunction with a mouse and keyboard located on the same
terminal the display server can move, resize, and otherwise control these windows. The
mouse can also move the cursor under display server control, that is, local to the terminal.
It has only to notify the application as to the final position of the cursor.

Thus, much of the work in creating a graphical window interface is performed local
to the display itself and does not have to be transmitted from the computer system that
is running the application program. The application program uses the display services
to produce its desired images by interacting with the display server. Again, in data
communication terminology, the application program acts as a client, requesting display
services that it needs from the display server. The program may request that a pull-down
menu be displayed, for example; the display server draws the menu on the screen at the
appropriate location, as determined by its knowledge of the size and location of the window.
If the user at the terminal clicks a mouse on a particular menu entry, the server notifies
the application that this event has occurred. Figure 16.6 illustrates the operation of an
X Window application with a display server.

Although it is unavoidable that the application must still transmit actual image data to
the display, the amount of data to be transmitted is considerably reduced. Essentially, the
display server can perform many of the basic display operations with very little commu-
nication required. WYSIWYG text, for example, requires only that the choice of font, the

FIGURE 16.6

The X Window Client-server Relationship
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Source: From The UNIX Operating System, 3rd ed., K. Christian and S. Richter, copyright  1994, by John Wiley &
Sons. Reprinted with permission.
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display location, and the actual text data be transmitted. The font data is stored at the display
server. The server also provides a library of all the basic tools and widgets to draw windows,
provide drop-down menus, present control buttons, respond to mouse clicks, and many
other functions. This method requires far less data communication between the program
and the display than if the transmission of actual text images and windows were required.

X Window places no restrictions on the location of the client application; therefore,
the application program could reside on the same computer system as the display server
or remotely on a different system. Furthermore, the display server can process requests
from several different client applications concurrently, each in its own window. You would
expect this to be true, since a graphical user interface can have several open windows at
one time. This leads to an interesting and exciting possibility: that different windows on a
single display could be communicating with application programs on different machines!
Indeed, this is the case. The picture in Figure 16.7 illustrates this situation. The window
in the upper-left corner is communicating with a program located on the same PC with
the display. The PC is running an X Window server under Microsoft Windows. The other
windows on the screen are connected to various systems located remotely: a (now ancient)
VMS system connected to a local area network and a Sun UNIX workstation connected

FIGURE 16.7

A Multicomputer X Window Display

Sun
workstation
via modem

VAX VMS
computer

on local area
network

Local
PC
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via telephone and modem. This image was taken many years ago, but the X Window
technology that created it has changed only in minor details.

As in other windowing systems, the location of the cursor is used to determine the
active window.

Notice that the operating system at the display need not be the same as the operating
systems where the application programs are running, as long as display server software
is available for the particular operating system in use at the display terminal. X Window
display server software is available for most operating systems, including UNIX, Linux,
Windows, the Macintosh OS, and many others. In fact, an X Window server can even be
built into a bare bones display terminal and used with a central processor located elsewhere.

Systems similar to the X Window system also exist at the application level for services
such as the Web-based services mentioned previously. Although these systems operate
somewhat differently, the concept is quite similar: to produce as much of the display as
possible using software located at the display and to minimize the amount of image data
to be transmitted. These services provide software, display standard formats such as PNG,
PDF, and SVG, and communications protocols, particularly HTML and XML for this
purpose, and also store commonly used images and display features at the display site.

16.5 COMMAND AND SCRIPTING LANGUAGES
In early batch systems it was necessary to submit all pieces of a program at one time,
including the data and any other programs that were required as part of the operation.
Generally, punched cards were used for this purpose.

Suppose you had a COBOL program (it would have been COBOL in those days!) that
was to be compiled and executed. Your submittal to the computer required the cards that
made up the COBOL compiler, the COBOL program itself, perhaps a library of binary
math routines that will be called by the program when it is executed, and finally some data
for the program. Your submittal also contained commands to the computer telling it what
to do with all these cards. (Some of the commands were actually more informational, like
‘‘load the following group of cards, which are data for the program that you are running.’’)
The entire submission was known as a job.

Later on, the COBOL compiler and math routines became part of the software that
was permanently stored on disk within the computer system, but the system still needed to
be told what to do, what programs (e.g., the COBOL compiler) to call from the disk, where
to find the data, and where to print the results.

As noted, the commands to the computer took the form of punched cards that
contained the required information. These cards were called job control cards because they
told the computer system how to control the job. The different types of commands made
up a sort of language, called job control language or, more commonly, JCL. In other words,
a job consisted of a series of commands in JCL intermixed with the appropriate programs
and data.

The best known of these languages is IBM zOS/JCL, but you should be aware that
other vendors have their own JCL languages. Generally, there is no compatibility between
JCL languages from different vendors, and in fact, there are several different incompatible
versions of ‘‘IBM JCL’’. (By the way, you might note that the expression ‘‘JCL language’’,
which is in common use, is redundant.) The use of JCL continues to this day. JCL statements
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are entered into the system with a screen editor and are stored in the system as a file of
card images, so called because each statement is still laid out as though it were stored on an
80-column card. These card images are usually batched together as a file of commands that is
executed in the same way that a program is, except that each line of the ‘‘program’’ is actually
a command to the operating system. Operands in each JCL command specify the appropriate
files and other details that are required. Both positional and keyword operands are used.

The commands that you use on your computer are not very different from the ones
that make up a job control language. After all, a computer is a computer, and the tasks that
you do are not really very different from those that are done as part of a batch job. Although
you commonly perform command operations one at a time, you can probably think of
times when it would have been convenient to combine a group of commands that you
could have done all at once. In fact, you may already be aware that there is a way to do this.

As we previously have noted, operating systems provide a way to group commands
into a single file that can be executed as if it were a program. The file may itself even contain
executable programs. In addition to the usual commands, the operating system provides
additional commands that are used specifically for this purpose, commands that allow
branching and looping, for example. Figure 16.8 is an example of a Windows command
language script that prepares backup for a text file by copying an old version to a flash drive
(E:), creating a new backup on hard disk, and then opening the word processor program.
The name of the text file is given as an operand when the command file is executed. ‘‘%1’’
is a placeholder for the operand.

Most modern operating systems provide command languages. Perhaps the most elegant
implementation of this concept belongs to UNIX. In addition to the usual commands,
the UNIX and Linux shells contain a set of powerful utility commands and other features
that allow the creation of very sophisticated command programs. In UNIX and Linux,
shell scripts are a fundamental way of getting work done. Shell scripts can be executed just
as if they were programs, and in fact, due to the power of the shell script language, it is
frequently possible to avoid writing a normal program by using a shell script instead.

FIGURE 16.8

Windows Program DOWP

@echo
if ’%1’ == ’’ go to error
if not exist %1 goto error
if not exist %1.txt goto newtxt
if exist %1.old copy %1.old e:\%.arc
copy %1.txt %1.old
wordproc %1.txt
goto end
:newtxt
echo This is a new file. Opening word processor....
wordproc
goto end
:error
echo proper command format is ’dowp filname’
echo with no extension.
:end
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FIGURE 16.9

The Linux Airport Distance Shell Script

export city state lat long port
grep -i "$1 $2" townfile ¦ read city state lat long port
if [ -z "$city" ] then
    echo "this city is not in the file"
elif [ "$port" = "y" ] then
    echo " $city $state has its own airport"
else
    awk '
    BEGIN {close = 10000}
    $5 == "y" {dist = ($3 - '$lat')*($3 - $lat')+($4 - '$long')*($4 - '$long')
           if (dist < close) {
               close = dist
               ccity = $1
               cstate = $2 } }
    END   {print ( "the nearest airport is in " ccity, cstate)
          print ( " approximate distance is " 60* sqrt (close) " miles")
          } ' townfile
fi

A typical line in townfile:

Boston MA 42.3333 71.083 y

You’ve already seen an example of a Windows command language script that assists
the user in performing a routine computer task. Many Linux operating system operations
are, in fact, shell scripts. Shell scripts often can be used in place of a conventional program,
as well. The example shown in Figure 16.9 is a UNIX Bourne shell program that determines
the nearest major airport to an arbitrary city entered by the user.

Scripting languages are expanded forms of command languages, often encompassing
features well beyond those found in a standard command language. Some scripting
languages even provide portability between different operating systems. Perl, Javascript,
PHP, and Python are examples of portable scripting languages.

The Elements of a Command Language

Like any programming language, there are certain elements in a command language that
affect the usefulness of the language. The choice of commands and utilities is an important
consideration, but it is not the only consideration. There are other features that enhance
the value of a language. These are some of the most important features of a command
language:

■ The ability to print messages on the screen and to accept input from the user into
the script.

■ The ability to specify variables and a method to assign and change the value for
those variables.
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■ The ability to branch and loop. Notice that the ability to change variable values is
important as a means of controlling branches and ending loops.

■ The ability to specify arguments with the command that executes the program
and to transfer those arguments into parameters and variables within the
program. The command script in Figure 16.8 uses this technique to allow the
user to specify the name of the file to be backed up.

■ The ability to detect an error that results from a command and recover from it in
a graceful way. If the operating system attaches numerical values to its errors, the
command program can make decisions and branch based on the level of error.
This could be used to determine if a particular file or a particular hardware
component exists, for example.

The Command Language Start-up Sequence Files

A major use for a command language is the system start-up file. Most modern operating
systems allow the execution of specific command files at system start-up and also when a
user logs in to the system. Two types of start-up files exist. One type is used to configure
the basic operating system, as we discussed in Chapter 15. Start-up configuration files are
only modified by the system administrator.

The second type of start-up file is used to tailor the system to the user’s preferences.
User start-up commands can be used to set various parameters, such as the preferred
places to look for files, the type of terminal that the user is working with, the selection of
a command shell, and the appearance of the command line prompt. On a system shared
by many users, the user start-up command file can be tailored to each individual user. It
is executed whenever a user logs in. Login start-up files for a UNIX system depend on the
default shell being used for the system. The Bourne shell start-up script is called .login; the
C-shell script is called .cshrc. Since these files are text files, they can be easily communicated
across a network to provide uniform capability to all users on the network. This allows a
system administrator to change every user’s profile with the modification of a single file.

16.6 SERVICES TO PROGRAMS
Most of the discussion in this chapter has centered around the user interface and methods
of controlling and using the interface, but we would be remiss if we did not say a few
additional words about services provided by the operating system to application programs
that support and affect the user interface. As we noted in Chapter 15, operating systems
have long provided services to application programs in the areas of file management, I/O
processing, and system resource management. A few operating systems, particularly the
Macintosh OS, have provided services such as the ToolBox that extend these capabilities
to include the graphical user interface. Services outside the operating system, but not
quite applications either, such as X Window, extend graphical capabilities to other
systems.

Windows provides similar services through the Win32 API. These services reflect the
trend to expand the role of the operating system generally to include services and support
to application programs and users that provide many capabilities that were formerly
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within the applications themselves. As we noted earlier, these services enable the system
to provide a standard look and feel for different applications extending, even, to the Web
interface. They simplify and extend the graphic capabilities of application programs, they
improve the capability of programs to communicate with each other and to pass data
from one application to another, they provide the ability to launch an application program
from within another, they provide e-mail and other communication capabilities, and they
provide document and graphical storage services at a more sophisticated level than was
found previously in traditional OS file management facilities.

By integrating these capabilities into the operating system, the system can assure
that every application program responds in similar ways to user actions. Integration also
provides smooth and seamless interaction between the different applications. Just as the
file manager assures a consistent representation and interface for file manipulation across
different devices, so these new services provide the user with a more powerful and easier
to use way to access his program applications. The overall effect is an increased emphasis
on the user interface and new ways of working that are more oriented toward the work
to be accomplished and less to the launching and manipulation of application programs.
Although many of these tools are found in a ‘‘shell’’, they are more tightly integrated into
the operating system than was true of previous shells.

The addition of new operating system services is intimately tied to improved program-
ming methods, particularly object-oriented programming. These services commonly take
the form of libraries of objects that application programs request via the usual call mech-
anisms. Several standards continue to evolve for these services. Standards are necessary
so that applications may be developed with the assurance that the services required will
be available. The most important of these standards include DCOM, .NET, and CORBA.
The dividing line between the operating system and the application programs has become
increasingly unclear, as the operating system moves into a realm that has traditionally been
part of the application programs themselves. The use of the Web browser as a primary
user interface provides a common look and feel that extends all the way from local file
management to Web-based business applications to the services of the Web. Perhaps these
services will be considered part of a new OS layer, called application program services,
or perhaps the operating system itself will be divided differently, into user services and a
kernel that provides just the basic internal services. Some researchers and operating system
designers envision a model consisting of a small operating system extended by objects
that support the user’s applications. This approach suggests the growing operating system
emphasis on the user environment and on application integration.

Overall, the effect on the user’s interaction with the computer has changed dramatically
in the last few years and promises to change even more profoundly in the future. Presently,
the user performs her work by opening applications and working within those applications.
The concepts of suites of applications, at the application program level, and of object linking,
at the system level, extend this capability to allow the applications to communicate, to share
data, and to perform operations within an application by launching another application.
The additional capabilities envisioned for software at the system level, whether considered
part of the operating system or another type of interface shell, will expand this process
and ultimately can be expected to shift the user’s focus almost entirely to the document,
data set, or other work entity, with applications launched invisibly as they are required to
accomplish a particular task.
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SUMMARY AND REVIEW
Modern operating systems provide an interface that is used by programs and by the
user to interact with the system. The interface provides a variety of user and program
services, including a user interface with command capability, program execution and
control capability, I/O and file services for programs and for users, command languages
for building programs of commands, system information, security features, and interuser
communication and file sharing capability. An application programming interface (API)
provides a standard set of services that application programs use to access the operating
system and to provide a common look and feel to their user interfaces. In this chapter we
considered each of these services.

Most systems are primarily interactive. For this purpose there are currently two primary
types of user interface, the command line interface and the graphical user interface, each
with its own advantages and disadvantages. Similar operations can be performed with
each, although the method employed is different for each. For users with limited needs, a
Web-based interface is often a more suitable and productive means of access to the system.

X Window is an important graphical display methodology, particularly in networked
and distributed environments. X Window is an attempt to provide windowing capability
while partially solving the difficulty of transmitting large quantities of graphical data from
one location to another. X Window is built around a client-server architecture.

Command languages allow a user to build more powerful functions out of the
command set. Most command languages provide looping and selection capability, as
well as interactive input and output. Some command languages are intended for batch
processing. IBM’s zOS/JCL is an important example of a batch language.

FOR FURTHER READING
A general book that discusses the user interface in great detail is Sharp [SHAR07]. Marcus
and colleagues [MARC95] provide an easy-to-read discussion and comparison of graphical
user interfaces. There are several others listed in the references, including Weinschenk
[WEIN97], Tidwell [TIDW06], and Tufte [TUFT90]. There are also numerous books on
Web design, a related topic not included here. The general operating system aspects of
the user interface and program services can be found in any of the operating system
texts identified in Chapter 15. The X Window system is introduced well in Christian and
Richter [CHRI94] and presented in much more detail in many books, including Mansfield
[MANS93] or Jones [JONE00].

KEY CONCEPTS AND TERMS

access control list
(ACL)

active window
application association
application program

interface (API)

batch program
card image
click to focus
command language
command line interface

(CLI)

command shell
common look and feel
controls
CORBA (Common Object

Request Broker
Architecture)
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DCOM (Distributed
Component Object
Model)

desktop
display server
dock
drag-and-drop
Finder
gadget
graphical user interface

(GUI)
icon
intranet

job control language (JCL)
keyword operand
launch
menu bar
modifier
mount a device
mouse focus
.NET
operand
path variable
positional operand
Remote Procedure Call

(RPC)

screen
scripting language
(shell) script
switch
task bar
title bar
unmount a device
volume
widget
wild card
window
X Window

READING REVIEW QUESTIONS
16.1 What is the primary purpose for a user interface?

16.2 What effect does the quality of a user interface have on the use and productivity
of a computer?

16.3 What is the purpose of a command language or scripting language?

16.4 What is the advantage of offering the same user interface for applications, user
programs, and commands?

16.5 Discuss the major tradeoffs between a command line interface and a graphical
user interface.

16.6 Describe the user interface provided by a CLI command shell.

16.7 Describe the format of a CLI command. What is an operand? What is the
difference between a keyword operand and a positional operand?

16.8 Sketch or ‘‘print screen’’ a typical GUI screen. Label each of the major components
on the screen.

16.9 In addition to the commands themselves, command languages provide additional
capabilities that are important when a user is not directly involved in the control
and execution of each command. Name at least three features that are necessary
to make a command language useful.

16.10 Although Web-based user interfaces are somewhat limited when compared to
CLIs and GUIs, their use in organizations has grown and continues to grow.
What advantages do Web interfaces offer over CLIs and GUIs?

EXERCISES
16.1 List and explain some definite advantages to the use of a command line interface

over other types of interfaces. Do the same for a graphical user interface. Do the
same for a Web-based interface. What is the target audience for each type of
interface?

16.2 Discuss the advantages and disadvantages of providing the user interface as a
separate shell, rather than as an integral part of the operating system.
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16.3 If you have access to two or more command line interface shells, such as
Windows and Linux bash or Linux bash and tcsh, compare the major commands
that are available on each. Note the similarities and differences between them,
particularly in their capabilities and in the way the command task is performed.

16.4 Consider the major commands in a command line interface system such as the
Linux bash shell. Explain how each task would be performed on a graphical user
interface system such as Windows or the Macintosh.

16.5 There are some capabilities that are easy to achieve with a GUI, but much more
difficult with a CLI. Describe a few of these capabilities.

16.6 Explain piping. What additional capability does piping add to a command
language?

16.7 Explain the concept of redirection. Illustrate your answer with an example of a
situation where redirection would be useful.

16.8 What purpose do arguments serve in a batch file or shell script?

16.9 Identify the name and purpose of each of the components of the GUI that you
use.

16.10 Use the batch file or shell script capability of your system to build a menuing
interface that implements the most common commands that you use.

16.11 Describe the difficulties that exist in providing a GUI at a location remote
from the computer that is creating the display. Describe the methods used
by X Window to partially overcome these difficulties. Why is it not possible for
X Window to totally solve these problems?

16.12 Discuss the advantages that result from the client-server architecture of the
X Window system.

16.13 When people describe client-server architecture, they are usually referring to a
system in which a large server is serving a client on a PC. With X Window, the
reverse is frequently the case. Explain.

16.14 The designers of the UNIX operating system described the ideal shell command
language as one that is made up of a large set of simple commands, each
designed to perform one specialized task well. They also provided various means
to combine these simple commands to form more powerful commands.

a. What tools are provided to combine the commands?

b. What are the advantages of this approach over providing a smaller set of
much more powerful commands? What are the disadvantages?

c. If you know something about the UNIX or Linux command set, discuss the
characteristics of UNIX/Linux commands that make it easier to combine
these commands powerfully.

16.15 If you could design a ‘‘wild card’’ system with features beyond those normally
provided in a CLI, what features would you add?
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CHAPTER 17

FILE MANAGEMENT

Thomas Sperling



17.0 INTRODUCTION
Most direct interactions between the user and the computer involve significant use
of the file management system layer of the operating system. From the perspective of
the user, the file management system is one of the most important and visible features
of the operating system. Most user commands, whether typed into a command line
interface (CLI) or activated with a mouse, are operations on files. Many interactions
between programs and the operating system are file requests. When a user retrieves
a document file using the drop-down file menu in a word processor, the word
processor program is using the services of the operating system file manager to retrieve
the document file. Even the database management application software requires
the services of the file management system to perform its file storage and retrieval
operations. It is the file management system software that allows users and programs
to store, retrieve, and manipulate files as logical entities, rather than as physical blocks
of binary data. Because of its importance and visibility to the user, we have chosen to
discuss the file management system separately from the rest of the operating system.

We begin this chapter by reviewing the differences between the logical, or user,
view of a file and the physical requirements of its storage and retrieval. Next, we
show how the file management system accomplishes its mission of providing a logical
file view to the user and the user’s programs. You will see how logical file system
requests are mapped to physical files. You will see how files are physically stored and
retrieved, and how the logical file commands that you issue to the operating system
are implemented. You will see some of the trade-offs that must be made as a result
of specific user and program requirements and the limitations of different file storage
methods. You will understand how a directory system works and read about some of
the different methods that are used by file systems to keep track of and locate files and
directories. You will see how the file manager finds and allocates space for files, and
how it reclaims and keeps track of space vacated when a file is moved or deleted.

We hope that, as a result of the discussion in this chapter, you will be able to use
and manage computer file systems more effectively.

17.1 THE LOGICAL AND PHYSICAL VIEW
OF FILES

Whether on computer or paper, a file is an organized collection of data. The
organization of the file depends on the use of the data and is determined by the
program or user who created the file. Similarly, the meaning of the data in the file is
established by the program or user. A computer file may be as simple as a single data
stream that represents an entire program to be loaded at one time or a collection of
text data read sequentially, or as complex as a database made up of individual records,
each with many fields and subfields, to be retrieved one or a few records at a time in
some random order.

549
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Nearly all data in the computer is stored and retrieved as files. Thus, files may take
many different forms. Here are a few examples of common forms files might take:

■ A program file consisting of binary data; the bytes of data in the file represent the
sequence of instructions that make up a program. The file is stored on a device
such as disk and is loaded sequentially into succeeding locations in memory for
execution.

■ A data file consisting of alphanumeric Unicode text that represents a program in
source code form and will serve as ‘‘data’’ input to a C++ compiler.

■ A data file consisting of a sequence of numbers stored in ASCII format and sepa-
rated by delimiters that will be used as input to a program that does data analysis.

■ A data file consisting of a mixture of alphanumeric ASCII characters and special
binary codes that represents a text file for a word processor or spreadsheet.

■ A data file consisting of alphanumeric Unicode characters representing records
made up of names, addresses, and accounting information applicable to a
business database.

■ A data file configured in some special way to represent an image, sound, or other
object. Several examples of these types of files were illustrated in Chapter 4.

■ A directory file consisting of information about other files.

One common file representation views a file logically as a collection of records, each
made up of a number of fields. A typical record-oriented file is shown in Figure 17.1. In this
illustration, each record is made up of the same fields, and each field is the same fixed length
for all records, but these restrictions are not necessarily valid in all cases. Some fields may
not be required for certain records. The company personnel file shown in Figure 17.2 does
not require the salary field for retired employees. This file also uses a field of comments.
The comments field is a variable-length field, so that more comments can be added when
necessary. This figure also shows that the file may appear differently, without affecting the
record structure underneath. The layout shown in Figure 17.1 is sometimes called a table
image, while the layout in Figure 17.2 is referred to as a form image.

Describing a file by its records and fields represents the file logically; that is, it represents
the file the way the user views it. The logical view may or may not be related to the physical
view of the file, the way in which the data is actually stored. Most commonly, the data

FIGURE 17.1

A Typical File

Name field Address field Zip code

A B N E R J O H N 1 2 3 L A I N L A N E 0 2 1 3 5,

B O U D R A U , L O U 7 7 7 T H A V E N U E 1 0 0 0 1 etc.E

D I M A G I O , J O E 2 M E M O R Y L A N E 9 0 2 1 0G
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FIGURE 17.2

Database File—Form Image

Name
Address
City

Department    Maintenance
Employee Level    Nuclear Engr.
Salary $275,000

Comments
is relia
donuts
sleep

Homer Simpson           Status active
1775 Elm Street
Springfield, US

Name
Address
City

Department      Administration
Employee Level    Asst. to Pres
Date of Retirement   January, 2008

Comments   Current position, and volunteer assistant
         bartender and nuclear energy consultant

Mr. Smithers           Status retired
123 OldTimer Rd.
Springfield, US

is stored in physical blocks on a disk. The blocks are of fixed size, say, 512 bytes. Just as
there is no reason to assume that a paper record will fit exactly on a single sheet of paper,
there is no reason to assume that the size of the logical records within the computer file
corresponds to the physical in any particular way, although on some computer systems it
may. This is an issue to which we shall return shortly.

Consider again, for example, the file shown in Figure 17.1. Another representation of
this file, more akin to the means used physically for its storage, is shown in Figure 17.3. As
another example, the program file mentioned earlier could be interpreted as a single-record,
single-field logical file, with one long variable field in the record. Physically, the file might be
stored as a sequence of physical blocks, accessed one after another to retrieve the program.
Many word processors also treat files this way. Files of these types are frequently loaded
entirely into memory as a single unit.

Different file management systems exhibit a range of capabilities in the ways in which
they represent files logically. Some operating systems recognize and manipulate several
different types of files and record structures, while others simply treat all files as streams

FIGURE 17.3

Yet Another File Representation

ABNER, JOHN~~~123~LAIN~LANE~~02135<tab>BOUDREAU, LOU~77~7TH~AVENU
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of bytes and leave it to utility and application programs to determine the meaning of the
data within the file. The file managers in Linux and Windows, for example, differentiate
only between directories and byte stream files. On these systems, program and data files
are treated identically by the file manager. You may have seen this as a result of using a
command that displays the contents of a file on the screen, such as cat or TYPE or MORE,
with a program file. Since the program file can contain any combination of bytes, including
control characters, the result on the screen is gibberish. IBM z/OS represents the opposite
extreme, providing detailed record management within its file management system.

There are good arguments for either approach. It would certainly be reasonable to
interpret the program and word processing files mentioned above as a single stream of
bytes, for example. Furthermore, we note that the structure of files can be complex, and
every one is different. Treating all files in a similar way simplifies the file management
programs, while at the same time adding flexibility to the application programs and utilities,
since each application program can define the contents of its files in any way convenient
to meet its own needs. Input and output redirection is simplified, since all data is treated
in the same way, as a stream of bytes. The same is true for the use of program pipes, as
described in Chapter 16.

Conversely, treating all files as a stream of bytes requires significantly more effort on
the design of application and utility programs. Retrieval of data in the ‘‘middle of the
stream’’, for example, is more difficult when the application program must keep track of
its position in the file. A file management system that imposes well-designed standards on
its files can simplify data storage and retrieval and simplify application program design,
without severely limiting application flexibility.

As a practical matter, much of the data that is useful to a user is logically represented in
record form. Data files whose records are always retrieved in sequence from the beginning of
the file are known as sequential files. Some applications require that records be retrievable
from anywhere in the file in a random sequence. These are known as random access files,
or sometimes as relative access files, since the location is frequently specified relative to
the beginning of the file. (We want the twenty-fifth record, for example.) One common
method for retrieving records randomly from a file uses one field, known as the key field,
as an index to identify the proper record. The key field in Figure 17.2 might be employee’s
name, since the file is alphabetized by name.

There are other methods of retrieving particular records from within a file. Some of
these are discussed in Section 17.3. For now, it is only important that you be aware that, for
certain types of files, it is necessary for either the file management system or the application
program to be able to locate and access individual records from within the file.

In addition to the data within the file, it is convenient to attach attributes to the file that
identify and characterize the file. The most important file attribute, obviously, is its name.
The name itself may be specified in such a way as to allow identification with a particular
type of file (usually known as a file extension); it may also be expanded to identify the file
with a particular group of files or a particular storage device. In Windows, for example, the
expanded name

D : \GROUPA\PROG31.CPP

identifies the file (if the user chose an appropriate name!) as a C++ program named
PROG31, stored together in a group of files known as GROUPA, and located on the
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DVD-ROM inserted into disk drive D:. The file extension may be important only to the
user, or it may be required by the operating system or by an application program, to activate
the correct application programs, for example. The extension .EXE, for example, notifies
Windows that the file is an executable file. Similarly, the file extension may or may not be
relevant to the file management system.

In addition to the name, the file can be characterized in various other useful ways. A file
may be executable, as a program, or readable, as data. A file may be considered to be either
binary or alphanumeric (although, of course, even alphanumeric characters are actually
stored in binary form). The file may be characterized by the way data is to be retrieved. A
file might be temporary or permanent. A file might be writeable or write-protected. There
are other possibilities.

Files may also have such attributes as the date of origination, the most recent update,
and information about who has the right to access, update, and delete the file. Some
systems allow a data file to specify the program it is to be used with. This property is
called an association. In such a case, calling the data file automatically loads and starts
the associated program file. For example, Windows uses the file extension to create the
necessary association. Other operating systems may store the association as a property of
the data file.

The previous discussion has focused on the logical view of a file, the meaning of its
contents and its attributes as viewed by the user, operating system utilities, and application
programs. All the files, plus all the attributes and information describing those files, are
stored, controlled, and manipulated by the file management system.

The physical view of a file is the way in which the file is actually stored within the
computer system. We have already indicated that the physical view of a file may look very
different from the file’s logical view.

Physically, the file on nearly every system is stored and manipulated as a group of blocks.
The blocks on a disk are normally of fixed size, typically 256, 512, or 1024 bytes. Some systems
refer to a group of one or more blocks as a cluster.1 The block or cluster will correspond
to one or more sectors on a single track or cylinder. The block or cluster is the smallest unit
that the file management system can store or retrieve in a single read or write operation.

There is, of course, no direct correlation between the logical size of a record and the
physical block or cluster—the logical record size is designed by the programmer or user for
the particular application and may actually be of variable size; the physical block is fixed as
a part of the computer system design.

A file may fit entirely within a single physical block or cluster, or it may require
several blocks or clusters. The file management system may pack the file into physical
blocks without regard to the logical records, as shown in Figure 17.4a, or it may attempt to
maintain some relationship between the logical records and physical blocks, as shown in
Figure 17.4b. Logical records may be packed several to a physical record, or may be larger
than a physical record and require several physical records for each logical record.

A minimum of one full block is required for a file, even if the file only contains a single
byte of data. Depending on the file management system design, and perhaps on attributes
of the file, the blocks that hold a particular file may be contiguous, that is, stored together,
or may be scattered all over the disk or tape, noncontiguously.

1Note that a disk cluster is not related to a computer system cluster. Same word, totally different meaning.



554 PART FIVE THE SOFTWARE COMPONENT

FIGURE 17.4
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The physical block or cluster size is a compromise between file access speed and wasted
space. If the blocks are too small, then most files will require several disk reads or writes to
retrieve or store the data, as well as considerable space to keep track of usage of each block.
Conversely, if the block size is too large, there will be a large amount of unused space at the
end of many, perhaps most, blocks.

Note that it is the logical view that gives the data in a file meaning. Physically, the
file is simply a collection of bits stored in blocks. It is the file management system that
establishes the connection between the logical and physical representations of the file. Tape
organization is somewhat different. Most tape systems use a variable size block, so it is
possible to store a file exactly, with no internal fragmentation. Furthermore, some file
management systems separate logical records into different blocks, making it possible to
record individual records on tape.

17.2 THE ROLE OF THE FILE MANAGEMENT
SYSTEM

The file management system is commonly called the file manager. In this text, we will
primarily use the term ‘‘file manager’’, so please remember we are talking about a software
program, not a person! The file manager acts as a transparent interface between the user’s
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logical view of the file system and the computer’s physical reality of disk sectors, tracks, and
clusters, tape blocks, and other I/O vagaries. It provides a consistent set of commands and
a consistent view of files to the user regardless of the file type, file characteristics, choice of
physical device, or physical storage requirements. It translates those commands to a form
appropriate for the device and carries out the required operation. To do so, it maintains
directory structures for each device. These, too, are presented in logical form to the user
and to the user’s programs.

User file commands and program file requests are interpreted by the command shell,
then passed in logical form as requests to the file manager. Program requests are made
directly to the file manager. These requests commonly take the form of OPEN, READ, WRITE,
MOVE FILE POINTER, RESET POINTER TO BEGINNING OF FILE, or CLOSE, and other similar procedure calls.

The file manager checks the validity of the requests and then translates the requests into
the appropriate physical course of action. The directory system assists in the location and
organization of the file. When required, the file manager makes specific I/O data transfer
requests to the I/O device handler layer for execution of the transfer. Upon completion of
the request, the directory is updated, if necessary, and control is returned to the command
shell or program. A general view of the process is illustrated in Figure 17.5.

FIGURE 17.5
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As a specific example of this process, consider what occurs within the operating system
when the user of a typical system types the command

COPY D : \FILEX TO C :

(or moves the FILEX icon with a mouse to the C: drawer on a system with a graphical
command interface—the operation is the same).

The following sequence of steps takes place. (Although this description seems long, the
steps are reasonable and should not be too difficult to follow):

1. The command interface interprets the command and determines that a copy of
FILEX on device D: is to be made and stored on device C:. The command shell
passes the request to the file manager. Typically, the shell will request that the file
manager open FILEX on D: and create FILEX on C:.

2. The file manager looks in the directory for device D: to find a file named FILEX.
If it succeeds, the file manager reserves a block of space in memory, called a
memory buffer, large enough to hold one or more physical blocks of data from
the file.

3. Next, the file manager looks in the device C: directory to determine if there is
enough free space to fit the file. If there is, the file manager adds FILEX to the
directory and assigns enough blocks to the file for storage of the file.

4. The shell is informed that these requests succeeded. It now requests that the file
manager read a block from D:FILEX. The file manager requests that the data
from the first block or group of blocks from FILEX be read into the memory
buffer. This request is addressed to the I/O device handler for device D:.

5. The device D: I/O device handler completes the transfer and notifies the file
manager that the requested data is in the memory buffer.

6. The file manager now passes on a request that the data in the memory buffer be
transferred to the first block or group of blocks that it assigned to C:FILEX. This
request is addressed to the I/O device handler for device C:. (If device D: and
device C: are the same type of device, both disks for example, the same I/O
handler may service both devices.)

7. The last three steps are repeated until the file copy is complete. Some systems
allow the user to specify the size of the memory buffer. Note that the use of a
larger memory buffer can make the copy operation for a large file much faster by
limiting the number of individual I/O transfers.

8. The file manager returns control to the command interface with an internal
message to the command shell to indicate that the copy was successful.

If device D: is actually located somewhere on a network, rather than on the local
machine, a number of additional substeps are required. The OS network services on both
machines must be invoked to request services from the file manager on the machine where
the file is located, the data is retrieved into a buffer on the remote machine using the I/O
device driver, and the network drivers are used to move the data across the network to the
buffer on the local machine; overall, these additional activities do not significantly alter the
procedure decribed here, however.
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The COPY operation is typical of requests made to the file manager. You are probably
familiar with many others. Most user commands to the operating system are actually
requests to the file manager.

Consider the operations on a file that a file management system would perform. These
operations can be divided into three different categories of operations: those that work on
the entire file, those that operate on data within the file, and those that actually manipulate
the directory of the file without actually accessing the file itself.

The following examples of operations that work on the file as a whole are likely to be
familiar to you as a user:

■ Copy a file
■ Load and execute a (program) file
■ Move a file (assuming the move is to a different device)
■ List or print a file
■ Load a file into memory
■ Store a file from memory
■ Compile or assemble a file
■ Append data from memory to a file

Fundamental to every file manager, both stream- and record-based, is the ability to
manipulate the data within the file itself. The file manager provides a basic set of operations
that are used for this purpose. These operations probably seem less familiar to you as
a user. That is because they are usually requested by a program, rather than directly by
the user.

■ Open a file for reading or writing. This procedure provides a buffer for holding
the data as it is read or written and also creates a pointer that moves through the
data as it is read or written.

■ Read a number of bytes from the file. The number of bytes can be specified as
part of the request, or it may be indicated by a delimiter, such as a carriage return
or comma, depending on the system.

■ Write a number of bytes to the file.
■ Move the file pointer a distance forward or backward.
■ ‘‘Rewind’’ the pointer to the beginning of the file.
■ Close the file.

A file management system that provides support for individual record storage and
retrieval includes additional operations. The following are examples of record-based
operations. These operations can be performed either sequentially or randomly, depending
on the nature of the file, the capabilities of the file manager, and the particular application:

■ Read (retrieve) a record
■ Write (store) a record
■ Add a record to a file
■ Delete a record from a file
■ Change the contents of a record
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These operations manipulate the file directory, rather than the file itself:

■ Delete a file
■ Rename a file
■ Append one file to another (known as concatenation)
■ Create a new (empty) file. On some systems this operation will assign a block to

the file even though the file is empty
■ Move a file from one directory to another on the same physical device

It is often convenient to operate on a group of files together, for example, to copy all
the files whose names begin with assign from your hard drive to a floppy disk for backup
purposes. One way to do this is to organize your files in such a way that they are grouped
into different areas of the disk. As we will discuss later, most systems provide a subdirectory
structure for doing this.

An alternative method provided by most systems is the use of wild cards to identify
a group of files. Wild cards are replacements for letters or groups of letters in a file name.
When used with a command, they can identify a group of files whose names qualify when
the wild card is substituted for some of the letters in the name. The most common wild
cards in use are ‘‘?’’ which replaces any single letter in a file name, and ‘‘*’’ which replaces a
group of zero or more letters that can be any letters that are legal in a file name. With one
exception, the examples that follow work the same in UNIX or at a Windows command
line prompt.

EXAMPLES
ASSIGN?.DAT will find files ASSIGN1.DAT and ASSIGNX.DAT, but will ignore ASSIGN.DAT,
ASSIGN1.TXT, and ASSIGN12.DAT.

ASSIGN*.DAT will find ASSIGN.DAT, ASSIGNXQ.DAT, and ASSIGN12.DAT, but not
ASSIGN2.TXT.

*DE*.DAT will find HOWDEDOO.DAT, ADAMBEDE.DAT, and DESIREE.DAT.
*.* will find every Windows file, even if there is no extension. It will find the UNIX file

textfile., but not the file textfile, because the latter has no dot in it.

UNIX provides an additional wild card form, ‘‘[choices]’’. For example, [aeiou] would
look for a file name with a single letter a, e, i, o, or u in the given position. [a-zA-Z]* would
accept zero or more uppercase or lowercase letters, but no numbers, in the given position.

In addition, many systems provide file utilities within the command structure that call
upon the file management system for support. Sort utilities sort the records within a file by
key field or by some other positional indicator. Some sort utilities load the entire file
into memory, while others retrieve and store records one by one. In both cases, the file
management system is used to perform the actual file and record retrieval and storage.
Other examples of utilities commonly provided include utilities to merge two files record
by record and to compare two files record by record.

The file management system is directly responsible for all aspects of the maintenance
of the file system. This requires the file system to perform five major functions:

■ The file management system provides the connection between the logical file
system with its physical implementation, allowing the physical view to remain
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essentially invisible. It creates a logical view for the user, masks the physical view,
and provides the mapping between the two views. Stating this more informally,
the user requests a file by name, and the file is retrieved; the user does not know
where the file is actually stored, nor does he or she care.

■ The file management system maintains the directory structure for each I/O
device in use. It also maintains a record of available space for each device and
assigns and reclaims physical space as required to meet the needs of file storage.

■ The file management system supports manipulation of the data within the file.
For some systems, it can identify, locate, and manipulate individual records or
individual blocks within a file, possibly for several different methods of file
access. For others, the manipulation is limited to reads, writes, and the
movement of a pointer.

■ The file management system acts as an interface for the transfer of data to and
from the various I/O devices by requesting transfers from the I/O device driver
level of the operating system. It also assigns buffer spaces in memory to hold
the data being transferred. The actual transfer, and the interface between the
physical device and the operating system, is handled by the appropriate I/O
device driver.

■ The file system manages file security and protection. It attempts to protect the
integrity of files and prevent corruption. It provides a mechanism to control
access to files. There are several different types of access control in use. These are
discussed in Section 17.7.

Summing up the operation, the file manager receives requests from the utility/
command layer of the operating system or from application programs, determines the
course of action, and attempts to fulfill the request. In those cases that require data transfer
to or from an I/O device, the file manager will issue a request to the appropriate I/O device
driver in the next inner layer to perform the actual I/O transfer. The file manager specifies
the physical block to be transferred, the direction of the transfer, and the memory location
to be used, but the actual transfer is performed by the I/O device driver.

There are two powerful advantages in separating the file and I/O functions into
different tasks.

1. When new I/O devices are added, or the device is changed, it is necessary only to
replace the I/O driver for that device. The file system remains unchanged. The
idea of changing an I/O device driver is familiar to you if you have ever installed
a new printer, video card, or disk drive for your PC.

2. A command request to redirect data is easy to implement, since the file manager
controls the file. The file manager simply directs the binary data to a different I/O
driver.

In general, the file manager is responsible for, and assumes the chore of, organizing,
locating, accessing, and manipulating files and file data and managing space for different
devices and file types. The file manager takes requests as its input, selects the device,
determines the appropriate format, and handles the request. It uses the services of the I/O
device layer to perform actual transfers of data between the devices and memory.
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17.3 LOGICAL FILE ACCESS METHODS
There are a number of different ways in which to access the data in a file. The method
used reflects both the structure of the file and the way in which the data is to be used. For
example, a program file made up of executable code will be read as a whole into memory.
A file made up of inventory data records will often be accessed one record at a time, in
some random order queried to the system. As we have already seen, some file management
systems support a number of different formats, while others leave the structuring and
formatting of data within a file to the application programs and utilities that use the file.

It is beyond the scope of this textbook to discuss file access methods in any detail. That
material is better left to a file and data structures text. To an extent, however, the access
method used affects the ways in which the file may be stored physically. For example, a
file in which variable-sized records must be accessed in random order is not conveniently
stored on tape, where the system must wind from the beginning of the tape to find the
desired record. An overview of file access methods will serve to pinpoint the requirements
of physical file storage.

Sequential File Access

Nearly every file management system supports sequential file access. Files that are accessed
sequentially represent the great majority of all files. Sequential files include programs in
both source and binary form, text files, and many data files. Information in a sequential file
is simply processed in order of storage. If the file is record-oriented, records are processed as
they are stored. A file pointer maintains the current position in the file. For read operations,
the data is read into a buffer, and the pointer is moved forward into position for the next
read. For write operations, the new data is appended to the end of the file. The pointer
always points to the end. Most systems allow resetting the pointer to the beginning of
the file. This operation is often referred to as rewind, because of its similarity to a tape
operation. Some systems also allow the pointer to be moved a fixed amount. This operation
is sometimes called seek. Sequential access is based on a tape model, since files on tape can
only be read sequentially.

A file that is always read in its entirety is clearly accessed sequentially. Sequential access
is fast, since no seek is required to find each succeeding record. Appending new records to
the end of the file is also easy. On the other hand, it is not possible to add a record in the
middle of a file accessed sequentially without rewriting at least all the succeeding records.
This is a severe disadvantage in some situations.

Random Access

Random access assumes that a file is made up of fixed length logical records. The file
manager can go directly to any record, in any order, and can read or write records in place
without affecting any other record.

Some systems rely on the application to determine the logical block number where data
is to be accessed. Others provide mechanisms for selecting locations based on a number
of different possible criteria: for example, sequenced alphabetically on a key, sequenced
in order of the time of entry, or calculated mathematically from the data itself. The most
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common method used is called hashing. Hashing is based on some simple mathematical
algorithm that calculates a logical record number somewhere within the permissible range
of record numbers. The range is based on the anticipated number of records in the file.

Hashing is very effective when the number of records is relatively small compared to
the overall capacity of the file. However, hashing depends on the idea that the algorithm will
result in a unique record number for each record. As the file fills, this becomes less and less
probable. A collision occurs when two different records calculate to the same logical record
number. Collisions must be detected by the file manager to prevent erroneous results. This
is done by comparing the key used for hashing with that stored in the file. When a collision
occurs, the system stores the additional record in an overflow area that is reserved for this
purpose.

Once the logical record number is known, the file manager can locate the corresponding
physical record relative to the start of the file. If there is an integer-to-one relationship
between the logical and physical blocks, this calculation is almost trivial. Even at its most
difficult, the translation requires nothing more than the use of a simple mathematical
formula

P = int (L × SL / SP)

where

P = the relative physical block number

L = the relative logical block number

SL = the size in bytes of a logical block

SP = the size in bytes of a physical block

Once the relative physical record is known, the actual physical location is located using
information stored with the directory. Because physical records must be accessed a block at
a time, the file manager provides a memory buffer large enough to hold the physical record
or records that contain at least a single logical record. It then extracts the logical record
from the buffer and moves it to the data area for the program requesting access.

Random access is also known as relative access, because the record number to be
accessed is expressed relative to the start of the file. Most modern file management systems
provide a way for an application to access files randomly. It is easy to simulate sequential
access in a system that supports random access. The system simply reads the records in
order. The reverse is not true. It is possible, but difficult, to simulate a random access file
using sequential access. Random access is based on a disk model; the head on a disk can be
moved immediately to any desired block.

Indexed Access

Indexes provide an additional means for accessing specific records in a file. A file may have
multiple indexes, each representing a different way of viewing the data. A telephone list
could be indexed by address, by name, and by phone number, for example. The index
provides pointers that can immediately locate a particular logical record. Furthermore, an
index is often small enough that it can be kept in memory for even faster access. Indexes
are generally used in combination with sequential and random access methods to provide
more powerful access methods.
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Simple systems normally provide sequential and random access at the file manager
level and rely on application programs to create more complex methods of access. Large
systems provide additional access methods. The most common of these is the indexed
sequential access method (ISAM). ISAM files are kept sorted in order of a key field. One
or more additional index files are used to determine the block that contains the desired
record for random access.

The IBM mainframe operating system z/OS provides six different access methods, and
one of these, VSAM, is further divided into three different submethods. All these additional
methods are built upon either random or sequential access or a mix of the two and use
index files to expand their capability.

17.4 PHYSICAL FILE STORAGE
The file manager allocates storage based on the type of I/O device, the file access method to
be used for the particular file, and the particular design of the file manager. There are three
primary file storage methods used for random access devices, such as disks. For sequential
access devices, particularly tape, the options are somewhat more limited. We shall deal with
each type of device separately.

Consider the disk first. As you are already aware, disk files are stored in small, fixed-size
blocks. This gives disks the important advantage that individual blocks can be read and
written in place, without affecting other parts of the file. Many files require several blocks
of storage. If the file is larger than a block, then the system needs to be concerned about an
efficient storage method that allows for efficient retrieval of the file. If the file is accessed
sequentially, then the file manager must be able to access all of it quickly. If the file is
accessed randomly, the file manager must be able to get to the correct block quickly. As you
will see, the methods that are most convenient for storage are not necessarily consistent
with these requirements. There is no ideal solution to this problem. The physical allocation
method chosen may depend on the way in which the file is to be logically retrieved. In
particular, you will see that there is more flexibility in the physical storage method if the
file is to be retrieved sequentially than if random access capability is required.

Three methods are commonly used to allocate blocks of storage for files. These are
commonly known as contiguous, linked, and indexed storage allocation.

Contiguous Storage Allocation

The simplest method to allocate storage is to assign contiguous blocks sufficient to hold the
file. Figure 17.6 shows a group of files of different sizes assigned using contiguous storage.

On the surface, this seems like the obvious way to allocate storage. Only a single
directory pointer is required to locate the entire file. Since the file is contiguous, file
recovery is quite easy. Retrieval is straightforward: the file manager can simply request a
multiblock read and read the entire file in one pass. Relative file access is also straightforward:
the correct block can be determined easily from the formula shown in Section 17.3 and
then added to the pointer value that locates the beginning of the file.

There are some important difficulties with contiguous storage allocation, however.

■ The file system must find a space large enough to hold the file plus its anticipated
growth.
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FIGURE 17.6
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■ Unless sufficient space is allocated initially, the file may grow to exceed the
capacity of its storage allocation. In this case, the file may have to be moved to
another area, or other files rearranged to make expanded room for the enlarged
file.

■ The use of contiguous storage allocation eventually leads to fragmentation of the
disk. As files come and go there will occur small block areas between files, but
none large enough to hold a new file unless the new file is small.

Fragmentation also occurs when a file is deleted or moved. Unless the space can be filled
with a new file of the same size, there will be a space left over. Finding an exact replacement
is unlikely: files are rarely exactly the same size, file space may be limited, a new, smaller
file needs to be stored, and there is no alternative space available, so the space is used.

Allocation strategies can be used to try to minimize fragmentation. The first-fit strategy
simply places the file into the first available space that the system finds. The best-fit strategy
looks for the space that will most closely fit the file, thereby minimizing the external
fragmentation. (At one time there was also a worst-fit strategy, which allocated file space
from the largest available cluster. The idea was to leave as much room for another file as
possible, but studies showed that it didn’t work any better than the others.)

Ultimately, it becomes necessary to reorganize the space periodically to eliminate the
fragments by collecting them together to form one new, usable space. This operation is called
defragmentation, usually shortened to defragging. It is also sometimes called compaction.
The time and effort required to defrag a disk is large, but pays off in faster disk access.
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Noncontiguous Storage Allocation

A file system will normally attempt to allocate file storage space contiguously. When this
is not possible, the file must be stored noncontiguously in whatever blocks are available.
With noncontiguous storage, new blocks do not have to be assigned until they are actually
needed. Fragmentation of the storage space cannot occur, although defragmentation may
still be used to reduce the number of file accesses by maximizing the contiguous use of space.

The use of noncontiguous space requires that the file system maintain a detailed,
ordered list of assigned blocks for each file in the system, as well as a list of free blocks
available for assignment. For consistency, the file system will maintain ordered lists for all
files, contiguous and noncontiguous.

There are two basic approaches to maintaining the lists of blocks allocated to each file:

1. The block numbers for a file may be stored as a linked list, using pointers from
one block to the next. This method is known as a linked allocation.

2. The block numbers for each file may be stored in a table. This method is known
as indexed allocation. Commonly, there is a separate table for each file.

LINKED ALLOCATION AND THE FILE ALLOCATION TABLE METHOD At first it
would seem that the system could simply place link pointers to the next block at the end
of every file block. However, placing link pointers within the file blocks themselves is
impractical, because it would be necessary to read each block from the beginning of the file,
in sequence, to obtain the location of its succeeding block. This method would therefore
be slow, awkward, and unsuitable for relative access files, where it is desirable to read or
write only blocks containing relevant data.

A somewhat more practical method is to store the pointers as linked lists within a table.
Windows still makes this available for small disks and solid-state storage devices, such as
low-capacity flash drives and floppy disks. When this method is used, Windows provides
a single table on each disk (or disk partition, since these systems allow a disk to be divided
into partitions) on the system. This table is called a file allocation table or FAT. Each file
allocation table holds the link pointers for every file stored on the particular disk or disk
partition. These file allocation tables are copied to memory at system boot time or, in the case
of removable devices, mount time, and remain in memory as long as the file system is active.

The FAT method is illustrated in Figure 17.7. It will help to ‘‘follow the trail’’ in the
diagram as you read this description.

The directory for each file contains an entry that points to the first block of the file.
Each entry in the FAT corresponds to a block or cluster on the disk. Each entry contains
the link pointer that points to the next block in the file. A special value is used to indicate
the end of a file. Any 0 entry in the FAT represents a block that is not in use. Therefore, it
is easy for the system to locate free space when it is needed. To locate a particular block in
a particular file, the file manager goes to the directory entry and finds the starting block for
the file. It then follows the links through the FAT until the desired block is reached. Since
the FAT is stored in memory, access to a particular block is fast.

For example, for the file STRANGE.DAT shown in Figure 17.7, the directory entry
indicates that the first block of the file is stored in block number 42. Successive blocks of
this file are stored in blocks 48, 70, and 16. Confirm your understanding of the FAT method
by finding the third block of the file WORK.TXT in the figure.
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FIGURE 17.7
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A major disadvantage of the FAT approach is that it becomes unacceptably inefficient
for devices with large amounts of storage because the FAT itself requires a large amount of
memory. Observe that the FAT table requires an entry for every block on the device, even
if the block is unused. If a disk is broken into 216, or 65,536 clusters, with a corresponding
2-byte entry for each cluster, the FAT will require 128 KB of memory. A 1 GB disk would
require a cluster size of 16 KB. If most of the files on the disk are small, then much of the
capacity of the disk is wasted. A 1 KB file stored in a single cluster would waste more than
90 percent of the capacity of the cluster. Alternatively, the number of blocks in the table
can be increased with a corresponding increase in the memory requirements to hold the
table. FAT32 allows as many as 228 or 256 million clusters. Each entry requires 4 bytes of
storage. Of course, the actual number of clusters is set much smaller than that, because the
size of such a table would require an outrageous amount of memory.

Neither of the above solutions is acceptable for modern, large capacity storage devices.
The FAT technique appears to have reached the end of its useful life, but because it is still
offered sometimes as an option when formatting devices, it is useful to understand the
method and its shortcomings.
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FIGURE 17.8
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Files Shown in Figure 17.7

STRANGE.DAT

42

48

70

16

end

33

59

5

24

25

end

WORK.TXT

Indexed Allocation

Indexed allocation is similar to linked allocation, with
one major difference: the link pointers for a file are all
stored together in one block, called an index block. There
is a separate index block for each file. Loading the index
block into memory when the file is opened makes the
link pointers available at all times for random access.
Assuming the same linkages shown in Figure 17.7, the
index blocks would look like those in Figure 17.8.

Since the only index blocks in memory are those for
open files, indexed allocation represents a much more
efficient use of memory.

One method used by some systems, including recent
versions of Windows, to reduce memory usage even
further is to allocate storage in groups of contiguous
blocks as much as possible. Rather than store individual

block links, this method allows the system to store a single link to the starting block of each
group, together with a count of the number of blocks in the group. For files that grow in
size gradually this may not be a useful strategy, but even for a file of known size that is to
be stored on a disk that does not have a single contiguous space that is sufficient for the
entire file, it may be possible to store the file in a small number of groups. Some modern
file systems offer excess capacity when the file is created to allow for future growth in the
size of the file. Although this would have been considered wasteful in earlier days, the large
capacity of modern disks makes this solution feasible and practical today.

There are several possible options as to where the index block should be placed. As
you will see in Section 17.6, the file management system maintains a directory structure
that identifies and locates each file by name. Directory entries also store the attributes of
the file that we mentioned earlier. Some systems store a single pointer to the index block
in the directory entry as a way of locating the file. Other systems store link pointers in the
directory entry itself.

The following examples show two of the most common approaches, the UNIX i-node
method and the NTFS method.

UNIX and Linux use an indexed file allocation method, as shown in Figure 17.9. The
directory entries in a UNIX system each contain just the name of the file plus a single
pointer to an index block called an i-node. The i-node for a file contains the index pointers,
and also the attributes of the file.

A typical i-node design allocates thirteen index pointers. The first ten pointers are
links, just as we have described. This is adequate for small files. In fact, the needs of most
of the files on the system are met this way. The last three entries in the table serve a
special purpose. These are called the single indirect, double indirect, and triple indirect
block pointers. The single indirect block pointer points to another index block. Additional
links are found in that block. The number of links is determined solely by the size of a
standard disk block. The double and triple indirect blocks are two and three steps removed,
respectively. We have shown the single and double indirect blocks on the diagram. Using
4 KB clusters, this scheme is sufficient to access files in the hundreds of gigabytes. Actually,
the limiting factor turns out to be the number of bits in each pointer.
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FIGURE 17.9
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WINDOWS NTFS FILE SYSTEM The Windows NT File System (NTFS) was originally
created to solve the shortcomings of the FAT file system, specifically to support large files
and large disks, to provide file security, to reduce access times, and to provide recovery
capability.

NTFS operates on volumes. In Windows NT volumes were determined solely by the
layout of logical disk partitions. A volume in Windows NT was created by creating a logical
disk partition, using the Windows NT fault-tolerant disk manager. Current versions of
Windows continue to support the Windows NT disk manager for legacy volumes, but new
volumes in Windows are created and managed by a disk manager, that allows the creation
of volumes dynamically. Newer Windows volumes need not correspond to logical disk
partitions. Dynamic volumes can be expanded or contracted to meet changing user needs
while the system is online. Volumes may occupy part of a disk or an entire disk or may
span multiple disks.

Like other systems, the NTFS volume allocates space in clusters. Each cluster is made
up of a contiguous group of sectors. The NTFS cluster size is set when the volume is created.
The default cluster size is generally 4 KB or less, even for large disks.

Figure 17.10 shows the layout for an NTFS volume. The core of each volume is a single
file called the master file table (MFT). The master table is configured as an array of file
records. Each record is 1 KB in size, regardless of the volume cluster size. The number of
rows is set at volume creation time. The array contains one row for each file in the volume.
The first sixteen rows contain metadata files: files that describe the volume. The first record
stores attributes of the MFT itself. The second record points to another location in the
middle of the disk that contains a duplicate of the metadata, for disk recovery.

NTFS file records are made up of attributes. An attribute is a stream of bytes that
describes some aspect of the file. Standard attributes include the file name, its security
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FIGURE 17.10
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descriptor, time stamps, read-only and archive flags, links, and data (i.e., the file’s
contents). Directory files have attributes that index the directory. Each attribute has a name
or number plus a byte stream representing the value of the attribute. The primary data
stream is unnamed, but it is possible to have named data streams in addition. Thus, there
may be multiple data streams in a single file record.

Small files may fit within the MFT record itself. For larger files, the MFT record will
contain pointers to clusters in an area of the disk outside the MFT. Attributes that extend
beyond the MFT are called nonresident attributes (usually the data attribute, obviously).
Nonresident clusters are called runs. If the attribute outgrows its space, the file system
continues to allocate runs as needed.

Free Space Management

To allocate new blocks as they are required, the file management system must keep a list of
the free available space on a disk. To create a new file or add blocks to an existing file, the
file manager takes space from the free space list. When a file is deleted, its space is returned
to the free space list. There are two methods commonly used for this purpose.
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FIGURE 17.11
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BITMAP METHOD One method of maintaining a free
space list is to provide a table with one bit for each block on
the disk. The bit for a particular block is set to 1 if the block
is in use and to 0 if the block is free. (Many systems also set
defective blocks to 1 permanently to prevent their use.) This
table is known as a free space bitmap or, sometimes, as a
table of bit vectors. A bitmap is illustrated in Figure 17.11.
A bitmap is usually kept in memory for fast access.

The bitmap method is an economical way of keeping
track of free space, since only one bit is needed for each block
on the disk. It has the further advantage that it is easy for the
file manager to locate contiguous blocks or blocks that are
nearby to those already allocated to a file. This allows the file
manager to maintain files in a way that can minimize disk
seeks during file access.

Although the bitmap must be stored 8 bits to a byte, CPU instruction sets provide bit
manipulation instructions that allow efficient use of the bitmap. One disadvantage of the
bitmap method is that there is some processing overhead in returning space from a large file
with many blocks to the free space list. A second disadvantage is that once space has been
returned to the bitmap, it may be immediately reassigned. There is no way of determining
the order in which the space was returned. Therefore, the space used by a deleted file may
be reused again immediately, eliminating the chance for file recovery.

LINKED LIST METHOD An alternative method maintains all the free space on the disk
in a linked list. A pointer to the first free block is kept in a special location on disk and also
in memory. Each free block is then linked to the next. The file manager allocates blocks
from the beginning of the list. The blocks from deleted files are added to the end of the
list.

This method has considerable overhead in disk seeks if a large number of blocks are
to be allocated, but is simple and efficient for small numbers of blocks. It is not practical
with this method to identify blocks in particular locations for optimizing allocation to an
individual file. One advantage of the linked list method is that file recovery is enhanced.
The blocks in a linked free space list are stored in the order in which files are deleted. Since
deleted files are placed at the end of the list, the data on those blocks will be recoverable
until the blocks are needed for reuse.

Note that the data in deleted files is not truly deleted from disk unless special effort
is made to clear or scramble all the bits in the blocks used by the file. This is a potential
security risk. Special software, called shredder software, is available for the purpose of truly
deleting files from disk in a way that they cannot be recovered. New systems are starting to
offer this feature as ‘‘secure delete’’.

Tape Allocation

Tape allocation is simpler than disk allocation. The size of a block can be varied to fit the
logical requirements of the file. It is usually not practical to reallocate space in the middle of
a tape, so files that grow must be rewritten. If necessary, the tape can be compacted, but it is
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usually easier to do so by copying the tape to a new tape. Tape blocks can be linked, but, in
general, files are stored contiguously whenever possible. Tape is convenient for sequential
access, but not practical for random access. Random access files that are stored on tape are
normally moved to disk as a whole before use.

CD, DVD, and Flash Drive Allocation

The file system used for various optical drives and flash drives is similar to those found on
hard disks. The standard format is called UDF, for Universal Data Format. It can support
up to 2 TB of data on a disk. The directory format is hierarchical., consistent with other
file directory systems There are also extensions that make it possible to store a mixture of
data, audio, and images on the same disk. The UDF system includes support for both High
Definition and Blu-Ray DVD formats.

17.5 FILE SYSTEMS, VOLUMES, DISKS,
PARTITIONS, AND STORAGE POOLS

Even a medium-sized computer system may store thousands or even millions of files. To
locate and use files effectively there must be some organization that makes sense to the
users of the system, as well as to the people responsible for administering the system. For a
desktop system, the files may all be stored on a single disk drive. On a larger system, files
may be stored on a number of different disks, either locally or on a network. Some disks
may be fixed, others removable. Some may be set up as RAID drives. (Forgot what RAIDs
are? Check Chapter 9.)

So how is the operating system to handle all of this effectively? From the perspective of
the user, the goal is simplicity and convenience; for the system, the goal is efficiency. The
system administrator looks for manageability.

Although operating systems manage the massive amounts of data in modern systems
differently, most attempt to provide a structure that can divide the files, both logically and
physically, into reasonable groupings that attempt to meet the goals of the different parties.

Even the definition of a file system is somewhat arbitrary. Think of all the different
ways that you could use to organize and store all of your college research papers in file
boxes. Your main concern would be your ability to locate the files you need with minimum
effort. You might choose to create a single file system with the papers filed alphabetically by
title. Or, you might create a number of file systems, where each file box contains the papers
for a particular course sequence.

The computer file system works similarly. The user might face a single file system that
hides all of the storage details. Alternatively, she may be working on a system where each
I/O device is catalogued individually.

An important (and, it turns out, reasonable) assumption is that it is possible to group
the logical view of the files differently from that of physical storage as a means to achieve
an optimum solution. The file management component of the operating system provides
the connectivity between the two. The primary methods used for grouping files are based
on dividing and organizing file systems into disks, partitions, volumes, storage pools, and
multiple, separate file systems. Some designers carry the concept of separate file systems
even further into virtual file systems.
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As an example, an inexpensive desktop computer might have a single disk and a CD
drive or DVD drive. By default, Windows would treat this simple configuration as two
file systems, one for each disk, probably labeled C: and D:, respectively. In this situation,
each disk has a single file and directory system, logically facing the user, and a single I/O
interface facing the disk controller for each device. This configuration is illustrated in
Figure 17.12(a).

FIGURE 17.12
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Many systems also provide a means for dividing physical devices, particularly disks,
into independent sections called partitions. Disks may be divided physically or logically.
(Think the drawers of a file cabinet versus the dividers in a single drawer.) The partitions
themselves can be further divided conceptually into primary and extended partitions. Each
partition can have its own file system and directory structure. Figure 17.12(b) illustrates a
disk partitioned into two separate file systems. Files located on other partitions are often
invisible to the file system on an active partition. Each partition in a Windows system, for
example, is assigned a different letter and has its own file system. A partition is selected by
specifying the letter of the desired file system, followed by a colon. Of course, all of the file
systems are accessible to the file manager, so that a user can open multiple windows, each
representing its own file system, to move data from one to another, and to perform other
operations requiring simultaneous access.

The partition concept includes the option of providing separate operating system
facilities on different partitions, so that each partition may have its own bootstrap loader,
operating system, and file management system. When this is the case, the file systems on
different partitions may be incompatible with each other, so that it is not natively possible
for one file system to read the directory or load the files from a different partition, even on
the same physical disk. In most cases, utilities exist that allow conversions between different
file formats. For example, utilities built into Linux systems can read and write to Windows
FAT and NTFS file systems. Conversely, the freeware ext2fs.sys utility can be installed on
Windows systems to enable Windows to read and write to Linux file systems.

(A brief historical note: disk partitioning was originally created because the file systems
in early personal computers, particularly MS-DOS and early versions of Windows, were
barely adequate to handle numbers large enough to address all of the blocks on the small
disks of the era. As a means of extending the capability of the file system to address all of the
blocks on larger disks, the disks themselves were partitioned. As the addressing capability of
the file systems grew, disk partitioning was retained as a means of creating separate logical
spaces for the user, as well as for making it possible to provide different types of file systems
and/or different operating systems on a single disk.)

Figure 17.12(c) illustrates another possibility. On many systems, different disks or disk
partitions from different disks and other devices can be combined into a single file system.

The file system must maintain a directory structure for each device or partition. In
most cases, the directory for each device is stored on the device itself. In many computer
systems, each file system is called a volume. On some of these systems, the directory is called
a volume table of contents. The volumes are indicated for each file system organization
shown in Figure 17.12. In particular, note that the volume concept is relatively independent
of the actual physical disk configuration, but is instead tuned to the needs of the user(s)
and the requirements of the system administrator(s).

On many systems, it is necessary to mount a volume, device, or partition before it
can be used. Mounting a volume means that the directory structure for the volume is
merged into an overall file structure for the system by attaching the directory structure of
the volume to some point in the overall file structure. This point is known as the mount
point. In some systems mounting is automatic. In others, mounting must be performed
manually, using a MOUNT command. Volumes in the Macintosh system, for example, are
mounted automatically if they are present when the system is booted. Flash drives, CDs,
and DVDs are also mounted automatically when they are inserted into the drive. Other
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devices must be mounted manually. On older UNIX systems, all directories are mounted
manually. Thus, it is necessary for the user to issue a MOUNT command when a CD is
changed on a traditional UNIX workstation. The mount point also depends on the system.
On a Macintosh, all volumes are mounted on the desktop; on UNIX and Linux systems,
a volume can be mounted anywhere on the directory structure. The Linux file system
design allows the mounting of multiple file system types for transparent access across
partitions and, even, across networks. It also offers automatic mounting similar to that of
the Macintosh.

An alternative file management model is implemented on the Sun Solaris 10 operating
system. Solaris 10 is a UNIX-based system intended for use in medium to large computer
installations. This model views disk storage as a single storage pool. The storage pool can
be shared by multiple file systems, but allocation of file space is controlled by a single
file manager. A major feature of this organization is that disks can be added to the pool
dynamically as additional storage is required without modifying the file structure as viewed
by the users. Because data can easily be stored by the file management system in multiple
locations, the use of RAID drives, data backup, and data integrity measures can be built into
the system as routine operations, handled invisibly by the system. Data and programs will
also naturally spread fairly evenly over all of the avilable physical devices, resulting in faster
average access times, especially in systems with heavy I/O requirements. Figure 17.12(d)
illustrates the storage pool approach.

Although the storage pool design concept is recent, it was released by Sun to the open
source community. It has already been adapted for the FreeBSD operating system and
partially adapted for OS X; its use is likely to spread to other operating systems in the future.

17.6 THE DIRECTORY STRUCTURE
The directory system provides a means of organization so that files may be located easily
and efficiently in a file system. The directory structure provides the linkages between logical
files identified by their names and their corresponding physical storage area. Every stored
file in a file system is represented in the directory for that system. The directory system
serves as the basis for all the other file operations that we have already discussed. It also
maintains records of the attributes for each file. Some of the important attributes for a
file that are commonly found in a directory (or in the UNIX-style i-node) are shown in
Figure 17.13.

A file system may support many different devices, including, often, multiple disks,
as well as tapes, CD-ROMs, flash drives and cards, and devices elsewhere on a network.
In many systems, the directory system conceals the physical differences from the user,
providing logical consistency throughout the system. On others, the physical device on
which the file resides may be represented by nothing more than a letter change preceding the
file name, F: for the CD-ROM on a Windows system, perhaps, and M: for the network file
server. On a system with a graphical interface, different devices may simply be represented
by different disk or folder icons.

There are a number of possible ways in which a directory can be organized. The
simplest directory structure is just a list. It is also known as a single-level, or flat, directory.
All the files stored in the system, including system files, application programs, and user
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FIGURE 17.13
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files, are listed together in a single directory. The single-level directory system has some
obvious disadvantages:

■ There is no way for a user to organize his work into logical categories as all the
files are of equal status in the directory.

■ It is possible to destroy a file by mistake if the user isn’t careful when naming files.
This is particularly true because many of the files in the directory, notably the
system and application program files, were not originally created and named by
the user. There is even potential naming conflict between different commercial
software packages. Installation of a software package could cause another
package to fail at a later date, and it would be difficult to track down the problem.

■ The single-level directory is unsuitable for a system with multiple users. There
would be no way to differentiate which files belong to which user. Naming of files
by the users would have to be done extremely carefully to prevent destroying
another user’s work. (How often have you named a program assignment
‘‘PROG1.JSP’’ or ‘‘ASSIGN3.C’’? How many other students in your class would
you guess also did so?)

■ Implementation of a single-level directory system is simple. However, as the
directory grows, the list will expand beyond its original space allocation and it
will be necessary for the system to allocate additional space, with pointers to
move between the spaces. Although this is also true of other directory systems,
the single-level directory system does not provide any organization that will
make it easier to locate file entries when the files are to be retrieved, so the search
procedure must follow all the pointers until the file is located. This is somewhat
akin to searching an unalphabetized address book from the beginning to find the
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name you want. On a large system, with many files, an undirected search of this
kind could take a considerable amount of time.

As a result of these disadvantages, it is rare to see a single-level directory system in use
today.

Tree-Structured Directories

A tree structure satisfies most file directory requirements and is in common use in mod-
ern computer systems. The directory in MS-DOS and older versions of Windows is a
tree-structured directory. A variation on a tree-structured directory, the acyclic-graph
directory structure is even more powerful, but introduces some difficulties in imple-
mentation. UNIX, Windows 2000, XP, and Vista, and Macintosh systems support an
acyclic-graph directory structure. Nearly all modern computer systems provide one of
these two structures.

An example showing part of a tree-structured directory, also known as a hierarchical
directory, is represented in Figure 17.14. The tree structure is characterized by a root
directory, from which all other directories stem. On most systems, the root directory
contains few, if any, files. In this illustration, two files, AUTOEXEC.BAT and CONFIG.SYS,
are found in the root directory. All other entries in the root directory are themselves
directories, sometimes called subdirectories for clarity. The root directory and all its
subordinate directories can contain files or other directories. Additional branches can stem
from any directory. The root directory is stored in a particular location, known to the file
system. Other directories are themselves stored as files, albeit files with a special purpose.
This means that directories can be manipulated by the system like any other file.

The root directory, other directories, and files are all identified by names. Duplicates
within a particular directory are not legal, but use of the same name in different directories
is acceptable. Every file in the system can be uniquely identified by its pathname. The
pathname for a file is the complete list of names along the path starting from the root and

FIGURE 17.14
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ending at the particular file. A separator symbol separates each name along the path. In
many systems, the separator symbol is the same as the name of the root directory. This is
true both for Windows, with a root named ‘‘\’’, and for UNIX, ‘‘/’’.

Although the visual appearance is considerably different, graphical interface systems
support a similar structure. Folders have a one-to-one correspondence to directories.
Starting from the desktop, you move through the tree structure by opening folders until
you reach the folder containing the desired files.

On single-user systems, the hierarchy is established by the user, usually in response to
a logical arrangement of his or her work. On systems that support multiple users, the main
part of the hierarchy is established by the system administrator, usually in an arrangement
that is consistent with a standard layout for the particular type of system. This makes it
easier for users who must move between multiple machines. Generally, the system has a
particular subdirectory that serves as the account directory for everyone on the system.
Each user is assigned a tree branch that can be expanded below that subdirectory and a
starting point, known as the initial working directory. On a single-user system, the initial
working directory is established by the system. In Windows, it is C:\Users\yourusername.
In the Macintosh, it is a subdirectory just below the root called the desktop.

From the current directory, the user can access files anywhere in the system. The file
name or new working directory can be specified relative to the current working directory,
or absolutely, from the root, by using a relative or absolute pathname, respectively. The
difference is easily determined by the system, since absolute pathnames begin with the root
name or symbol and relative pathnames don’t. In Figure 17.14, the file called BACKUP.Q
can be specified absolutely as \FINANCE\QUICKEN\BACKUP.Q. If the current working
directory is FINANCE, then the file can be accessed relatively as QUICKEN\BACKUP.Q.
Systems generally do not directly allow the use of a relative pathname above the current
directory. Instead, these systems provide a special name that can be used for the node at the
next level above the current working directory. In both Windows and Linux, this name is
‘‘..’’ (double dot). Thus, to open the file CHAPTER1.DOC in the directory 4TH EDITION
from a current working directory of 3RD EDITION, you can specify the file with the
absolute pathname \BOOK\4TH EDITION\CHAPTER1.DOC. The same file can also be
accessed relatively as ..\4TH EDITION\CHAPTER1.DOC.

When a user requests a file from the system, the system looks for the file in the user’s
current working directory, or in the location specified by the pathname. Most systems also
provide an environmental variable called path that allows the user to specify other path
locations that are to be searched for the file if a pathname is not given and if the file is not
found in the current working directory. There is a specified order to the search so that if
there is more than one file that qualifies, only the first file found is accessed.

The user can also change his or her current working directory. The user moves around
the tree using a CHANGE DIRECTORY command. An absolute or relative pathname can be
used. To change the current working directory from directory 3RD EDITION to directory
4TH EDITION in the figure, for example, one could issue a CD ..\4TH EDITION
command or one could use the full path name, CD \BOOK\4TH EDITION. On systems
that do not allow relative pathnames above the current directory, the CD .. command
provides a convenient way to move upward to the next-level node. The user can also add
and remove branches from the tree with MAKE DIRECTORY and REMOVE DIRECTORY commands
to provide a file organization that meets the user’s requirements and desires.
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In a graphical interface system, the current working directory is the folder that is
currently open. Folders can be created and deleted, which is equivalent to adding and
removing branches to the tree structure. Since there may be many folders open on the
screen, it is easy to move from one current working directory to another on a graphical
interface system.

The tree-structured directory system provides solutions to the problems described
at the beginning of this section. The tree structure provides flexibility that allows users
to organize files in whatever way they wish. The tree structure solves the problem of
organization for a system with a large number of files. It also solves the problem of growth,
since there is essentially no limit on the number of directories that the system can support.
It also solves the problem of accessing files in an efficient manner. A directory is located by
following the pathname from the current directory or from the root, one directory file at
a time. One negative consequence of this method is that it may require retrieval of several
directory files from different parts of the disk, with the corresponding disk seek times, but
at least the path is known, so extensive searching is not necessary. Since duplicate names
in a tree structure use different paths there is no confusion between identical file names,
because each has a different pathname. For this textbook, for example, the author has two
different sets of files named CHAPTER1.DOC, CHAPTER2.DOC, and so on. One set is
located in a directory with the (relative) pathname BOOK\4TH EDITION. The other set
is in a directory called BOOK\3RD EDITION. This provides protection for the author
in case of a disk error. Similarly, each user on a system with multiple users starts from a
different pathname, so the use of similar file names by different users is not a problem.

Acyclic-Graph Directories

The acyclic-graph directory is a generalization of a tree-structure directory, expanded to
include links between separate branch structures on the tree. The links appear in the
directory structure as though they were ordinary file or directory entries. In actuality, they
serve as pseudonyms for the original file name. The link provides an alternative path to
a directory or file. An example is shown in Figure 17.15. In this diagram there are two
links, shown in heavy print. There is a link between the directory CURRENT, belonging
to user imwoman, and the directory 2008, belonging to user theboss. This makes all
the files in directory 2008 available to imwoman. There is also a link between directory
MYSTUFF, belonging to user jgoodguy, and the file PROJ1.TXT. (Apparently, jgoodguy is
working only on this one project.) The file PROJ1.TXT can be accessed by theboss from
her current directory by using the pathname PROJECTS/2008/PROJ1.TXT. jgoodguy can
access the same file using pathname MYSTUFF/PROJ1.TXT. imwoman uses pathname
CURRENT/2008/PROJ1.TXT to reach the file. Note that it is also possible for imwoman to
change her current directory to 2008 as a result of the link.

The ability to add links between branch structures in a tree makes it possible to create
multiple paths, and pathnames, that lead to a single directory or file. From the perspective
of users on the system, this adds the powerful capability of being able to share files among
users. Each user has his path to the file with its own pathname. For a group collaborating
on a document, for example, a subdirectory could be created with all the pertinent files
and then linked to the working directories of each of the users. An individual user can
even create multiple paths to a file, if so desired. This capability could be useful if the file is
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FIGURE 17.15

An Acyclic-Graph Directory
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associated with two different directories, and the user would like to place it as an entry in
both for more convenient access.

One difficulty with implementation of an acyclic-graph directory is assuring that the
links do not connect in such a way that it is possible to cycle through a path more than
once when tracing out the path to a file. Consider the situation in Figure 17.16. The links
between current and projects and between projects and imwoman complete a cycle. Thus,
the file name PROJ1.TXT can be reached by an infinite number of paths, including

IMWOMAN/CURRENT/PROJECTS/2008/PROJ1.TXT

IMWOMAN/CURRENT/PROJECTS/IMWOMAN/CURRENT/
PROJECTS/2008/PROJ1.TXT

IMWOMAN/CURRENT/PROJECTS/IMWOMAN/CURRENT/
PROJECTS/IMWOMAN/CURRENT/PROJECTS/ . . .

and so on. This is obviously an unsatisfactory situation. When the file system is searching
for files, it will encounter an infinite number of paths that it believes must be checked. The
system must assure that the addition of a link does not create a cycle.

An additional difficulty is establishing a policy for the deletion of files that have
multiple links. Removing a file without removing the links leaves dangling links, links that
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FIGURE 17.16

Graph with a Cycle

users

theboss imwomanjgoodguy

Link

projectsmystuff current

Cycle

2007 2008

proj3.txt proj2.txtproj1.txt

bin

/ root

other

Source: Adapted from [CHR94]. Reprinted by permission of John Wiley & Sons, Inc.

point to nowhere. It is also possible on some systems to remove all links to the file, leaving
file space that can’t be reclaimed by the system.

There is also the necessity for setting rules about the modification of a file that is open
by two different users at the same time. As an example, suppose that users 1 and 2 are
both working on the same file. User 1 makes some modifications and saves the file with his
changes. Then, user 2 makes other modifications and saves the file with her changes. Under
certain conditions, the changes made by user 2 will destroy the changes made by user 1.
A system for locking the file temporarily to prevent this type of error is required. Further
discussion of locking is outside the scope of this textbook.

As you can see, there are difficulties and dangers in providing and using acyclic-graph
directories. Many system designers feel that the advantages outweigh the disadvantages,
however.

UNIX and the Macintosh both support acyclic-graph directories. Macintosh links are
called aliases. The Macintosh uses a simple implementation. An alias is a hard-coded link
that points to the original file. If the original file is moved or deleted, use of the link will
cause an error. The Macintosh does not check for the presence of cycles; however, the visual
nature of the Macintosh interface makes cycles less likely to occur and less problematic.
The search operations that can cause loops are instead performed visually, and there is no
reason for the user to continue opening folders beyond a point of usefulness. Windows
implements links similarly with shortcuts.
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UNIX provides two different kinds of links. The difference between them is shown in
Figure 17.17. A hard link points from a new directory entry to the same i-node as another
directory entry somewhere in the file system. Since both entries point to the same i-node,
any changes made in the file are automatically reflected to both. The i-node has a field that
keeps track of the number of directory entries pointing to it. Any time a link is added, the
counter is increased by one. When a file is ‘‘deleted’’, the count is reduced by one. The
file is not actually deleted until the count is zero. A major disadvantage of hard links is
that some programs, such as editors, update files by creating a new file, then renaming it
with the original name. Since the file creation results in a new i-node, the links now point
to different i-nodes and different versions of the original file. In other words, the link is
broken.

Symbolic links work differently. With a symbolic link, the new directory entry creates a
file that holds a pointer to the original file’s pathname. Then, when accessing the new entry,
the symbolic link uses this file to identify the original pathname. Even if the original file is
physically moved, the link is maintained as long as the original pathname exists. Of course,
the link is broken if the original file is logically moved to a different directory, deleted, or
renamed. In this case, an attempt to reference the file specified by the link will cause an
error. UNIX does not attempt to keep track of symbolic links, as it does with hard links. An
additional minor disadvantage of symbolic links is that the symbolic link also requires the
existence of an additional file to hold the link pointer.

The UNIX system does not attempt to avoid cycles. Instead, it restricts access to the
linking capability of the system. Normal users may only create hard links to files, but not

FIGURE 17.17

The Difference Between Hard and Symbolic Links
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to directories. This prevents the normal users from inadvertently creating cycles. Only
the system administrators can create links between directories. It is their responsibility to
assure that they do not create cycles.

17.7 NETWORK FILE ACCESS
One of the primary capabilities provided by networks is the access to files on other systems
connected to the network. Depending on the method used, files may be copied from one
system to another or may be accessed directly on the system holding the file. For the transfer
of files from one system to another, the TCP/IP protocol family includes ftp, a standard
file transfer protocol. ftp is implemented as a series of commands that can be used to move
around and view directories on a remote system and to upload or download a file or group
of files residing on that system. HTTP includes similar capabilities. However, ftp and HTTP
do not include a facility for accessing and using the file remotely. It must be copied to the
local system for use. For more general use, most operating systems provide a facility for
using files from their remote locations, without copying them onto the local system. There
are two different approaches. One technique, used primarily by Microsoft, is to identify with
a name a connection point on each system that allows access, and to alias a local drive letter
to that name. Files may then be manipulated using the drive letter as though the files were
stored locally. For example, files stored in the USER/STUDENT/YOURNAME directory on
the Icarus system might be aliased to drive letter M: on your personal computer. Then, you
could perform any file or directory operation as though the files and directories were stored
locally on drive M:. The M: drive icon would appear in your ‘‘My Computer’’ window if
you were using Windows NT, XP, or Vista, for example. Notice that it is not necessary to
copy the file to your local system to read or write it, but that you can do so if you wish,
using the usual copy command or by dragging-and-dropping the file icon with the mouse.

The alternative method is to use the approach originated by Sun with the Network File
System (NFS). With NFS and similar systems, a remote directory is mounted to a mount
point on the local system. Remote files and directories are then used transparently in the
same way as local files. In fact, if the mount procedure was performed by the system as part
of the network connection procedure, the user might not even be aware of which files and
directories are local and which are remote. The NFS client/server manager is built into the
operating system kernel, and operates as an alternative to the local file system manager,
using the RPC (Remote Procedure Call) protocol. A typical NFS connection is shown in
Figure 17.18. Linux and Macintosh OS X work similarly. To add a file system to a local
directory tree, the user simply connects to a server and identifies a local mount point. File
systems of different types are handled automatically by the local system.

More recently, steps have been taken to provide more generalized, distributed network
directory services. These would be used for locating other types of information, in addition
to file services. Such generalized services could identify the configuration of a system or
information about employees in a business, for example. These systems are based on
generalized naming schemes, such as the Internet Domain Name Service, and are designed
to locate files and information uniquely wherever the information is located. A standard
protocol, LDAP (Lightweight Directory Access Protocol), exists for this purpose. Two
examples of generalized network directory services are ActiveDirectory, supported by
Microsoft, and Novell Directory Services.
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FIGURE 17.18
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17.8 STORAGE AREA NETWORKS
Traditional network file access uses a client-server approach. Figure 17.19(a) shows this
approach. To access a file, a user client requests service from a file server. Files are stored
on hard disks and other devices attached to the server computer. In an organization, there
may be many servers, with file storage attached to each.

In large enterprises, this approach is unwieldy. A user has to know on which server
a desired file resides. The number of files in use is large. Synchronization of files that
are stored on multiple servers is difficult and risky. Backup requires additional care and
effort. Data warehousing and data mining applications are difficult because the data may
be scattered over a large number of servers.

An alternative approach that is used by large enterprises is to store data in a storage
area network (SAN). Figure 17.19(b) illustrates the organization of a storage area network.
In a storage area network, storage devices are stored together in a separate network that is
accessible from all servers. A variety of different storage devices, hard disks, RAID, tape, and
optical storage can all be used. Any server can access any storage device, with appropriate
permission, of course. To a server, the network appears as a storage pool, similar to those
that we discussed earlier. The technology of the network itself, as well as access to the
network, is hidden within a cloud. SAN terminology refers to this cloud as the fabric.
A storage network can extend over large distances using wide area network technology,
allowing the use of devices at remote locations for backup.

Clients access files in the usual ways. Servers act as an intermediary, accessing the data
from the SAN in the background, transparent to the client users.

There are standards and protocols in place for SAN technology, allowing products of
differrent vendors to be mixed and matched. The most common network technology used
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FIGURE 17.19
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is fibre channel.2 However, other technologies, including TCP/IP, ATM, SCSI, and Ficon
can all interface directly with a fibre channel network.

For a deeper understanding of SAN, the reader is referred to Tate et al. [TATE06].

2The British spelling of fibre is intentional. The original network was designed for use with fiber optics.
However, the standard includes options for the use of copper wire, so the decision was made to name the
technology fibre channel instead.
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17.9 FILE PROTECTION
Except in small, single-user systems, the system must provide file protection to limit file
access to those who have authorization to use the file. File protection is provided on an
individual file-by-file basis. There are several different forms that file protection might take.
A user might be allowed to execute a file but not copy it, for example, or may be able to
read it but not modify it. A file might be shared by a group of individuals, and the file
protection system should make it convenient for group members to access the file, while
protecting the file from others.

Although some systems provide additional forms of protection, most systems provide
three types of protection on files:

■ A file may be read or not be readable (read protection).
■ A file may be written to or not accessible for writing (write protection).
■ A file may be executed or not be executable (execution protection).

Although there are other, more specific, possibilities, these restrictions are sufficient
for nearly every purpose and represent a good compromise for implementation purposes.
For example, it might be important that a particular user not be able to delete a file. Write
protection, although more restrictive, prevents deletion. If the user needs to modify such
a file, the user can copy the file, provided he or she has read rights, and modify the copy.
The ideal form of protection on a multiuser or server-based system would provide each
file with an access control list (ACL) of users that may access the file for each of the
three forms of protection. The list for a particular file would be maintained by the owner
of the file. The amount of overhead required to maintain and use ACLs is tremendous.
The system must provide utilities for maintaining the lists, storage space for the lists, and
the mechanisms to check the lists whenever a file is accessed. If the number of users on
the system is large, the ACL for each file might require a large amount of storage space.
Since the system administrator is effectively the owner of all the system files, there is a
tremendous responsibility on one person to maintain a large number of ACLs. Nonetheless,
some systems do provide ACL protection.

A simpler, but more practical, protection method divides the user base of the system
into three categories. For each file, the system defines an owner, a group associated with the
file, and a universe that consists of everyone else. The file system maintains lists of groups.
Each group has a name, and a user can be a member of more than one group. Generally,
groups are administered by the system administrator, but on some systems, a group can be
created by the owner of a file.

Under this protection method, each file provides nine protection flags, specifically,
read, write, and execute permission for each of the three categories’ owner, group, and
universe. When a file is created, the system sets a default protection established by the
system administrator. The owner of the file can then determine and set the protection
differently, if so desired. In UNIX, there is a CHMOD command for this purpose. The nine
protection flags can be stored in a single word within the directory. Figure 17.20 shows
a typical UNIX directory listing. The leftmost flag in the listing simply indicates whether
a file is a directory (d), a symbolic link (l), or an ordinary file (-). The next nine flags
represent read, write, and execute privileges for owners, groups, and universe, respectively.
The presence of a hyphen in the listing indicates that the privilege is turned off. The number



CHAPTER 17 FILE MANAGEMENT 585

FIGURE 17.20

File Directory Showing Protection

$1s -1F
drwx------ 1 iengland csdept 36005 Feb 15 12:02 bookchapters/
-rw-r--r-- 1 iengland csdept  370 Sep 17  1:02 assignment1.txt
--wx--x--- 2 iengland csdept 1104 Mar 5 17:35 littleman*
-rwxrwx--- 1 iengland csdept 2933 May 22  5:15 airport shell*
drwxr--r-- 1 iengland csdept 5343 Dec 3 12:34 class syllabi/

of links to the file is next, then the name of the owner and the name of the group. The
remainder of each row gives the name of the file and various file attributes.

Since directories are, themselves, files, most systems, including UNIX, provide similar
protection for directories. You’ll notice the same protection pattern listings for directories
in Figure 17.20. A read-protected directory, for example, could not be listed by a user with
no read access. It is not possible to save a file or delete a file to a write-protected directory.
And a user without execute permission cannot change his or her current directory to an
execute-protected directory.

A few systems provide an alternative form of file protection by assigning passwords to
every file or to every directory. This method puts a burden on the user to remember the
different passwords attached to each file or each directory.

No matter how file protection is implemented, file protection adds considerable
overhead for the system, but file protection is an essential part of the system. In addition
to the file protection provided by limiting file access to authorized users, most modern
systems also provide file encryption capability, either for individual files and directories or
to the file system as a whole. This additional layer of protection is particularly useful when
the file is exposed to users (and, potentially, system invaders) on a network.

17.10 JOURNALING FILE SYSTEMS
For many business applications, the integrity of the file system is critical to the health of the
business. Of course, the first line of defense against the file system failure is a well-defined
set of proper system backup and file maintenance procedures. Journaling file systems
extend this protection to include automated file recovery procedures in the event of a disk
crash or system failure during file access operations.

Journaling systems provide a log file that records every system transaction that requires
a write access to the file system. Before a file write operation actually occurs, the logging
system reads the affected file blocks and copies them to the log, which is stored as a separate
file. If a system fault occurs during the write operation, the journaling file system log
provides the information necessary to reconstruct the file. Of course, there is a performance
cost for journaling, due to the extra file block reads and writes that are necessary to support
the log file.

Journaling file systems provide two levels of capability. Simple journaling file systems
protect the integrity of the file system structure, but cannot guarantee the integrity of data
that has not yet been written to the disk. The disk is simply restored to its pre-failure
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configuration. The Windows NTFS file system is a simple journaling file system. It is able
to recover all of the file system metadata, but does not recover current data that had not yet
been saved when the failure occurred.

A full journaling file system provides the additional ability to recover unsaved data
and to write it to the proper file location, guaranteeing data integrity as well as file system
integrity.

Current full journaling file systems include IBM JFS, Silicon Graphics XFS, and Linux
ext3 and ext4.

SUMMARY AND REVIEW
The file management system makes it possible for the user, and for programs, to operate
with files as logical entities, without concern for the physical details of file storage and
handling. The file system opens and closes files, provides the mechanism for all file transfers,
and maintains the directory system.

File systems vary in complexity and capability from the very simple, where all file data
is treated as a stream and just a few operations are provided, to the very sophisticated, with
many file types and operations. The simpler file systems require more effort within each
program but, in trade, provide additional flexibility.

Files are accessed sequentially, randomly, or some combination of the two. More
complex file accesses generally involve the use of indexes. To some extent, the method
of storage depends on the required forms of access. Files may be stored contiguously
or noncontiguously. Each has advantages and disadvantages. The pointers to the various
blocks that allow noncontiguous access can be stored as links in the blocks themselves or
in an index table provided for that purpose. Often the index tables are associated with
individual files, but some systems store the indexes for every file in a single table, called a
file allocation table. The file system also maintains a record of available free space, either as
a bitmap or in linked form.

The directory structure provides mapping between the logical file name and the
physical storage of the file. It also maintains attributes about the files. Most modern file
systems provide a hierarchical directory structure, either in tree form or as an acyclic graph.
The hierarchical file structure makes it possible for the user to organize files in whatever way
seems appropriate. The acyclic-graph structure adds file-sharing capability, at the expense
of more difficult maintenance of the structure.

Network file access is accomplished using files that are attached to servers or by using
a storage area network. Files that are attached to servers are accessed either by aliasing a
name or by mounting the directories locally. The server acts as an intermediary for files
that are stored on an SAN.

The file system also provides file protection. Some file systems maintain access lists,
which can establish privileges for any user on a file-by-file basis. Most systems provide
a simpler form of security that divides users into three categories and affords protection
based on category.

FOR FURTHER READING
General discussions of file management systems will be found in any of the operating
systems texts that we have mentioned in previous chapters. Details about the file systems
for particular operating systems can be found in books that describe the operating system
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innards for the particular system. For example, Glass and Ables [GLAS06] and Christian
and Richter [CHRI94] describe the Linux and UNIX file systems. NTFS is described in
Russinovich and Solomon [RUSS05]. There are many good books on file management
systems. Among the best are those of Weiderhold [WEID87], Grosshans [GROS86], and
Livadas [LIVA90].

KEY CONCEPTS AND TERMS
absolute pathname
access control list (ACL)
acyclic-graph directory
alias
association
attributes
best-fit strategy
bitmap
bit vectors
block
cluster
collision
contiguous storage

allocation
cycle
dangling link
defragmentation

(defragging)
directory
double indirect block

pointers
environmental variable
execution protection
fibre channel
fields
file allocation table (FAT)
file extension
file manager
first-fit strategy

form image
free space bitmap
ftp (file transfer protocol)
group
hard-coded link
hashing
hierarchical directory
i-node
index block
indexed sequential access

method (ISAM)
indexed storage allocation
journaling file system
key field
Lightweight Directory

Access Protocol (LDAP)
linked list
linked storage allocation
locking
logical file
master file table (MFT)
mount
mount point
NFS (Network File System)
noncontiguous storage

allocation
NT File System (NTFS)
overflow
owner

partition
pathname
physical view
random access files
read protection
records
relative access files
relative pathname
separator symbol
sequential access
sequential files
shortcut
shredder software
single indirect block

pointers
storage area network (SAN)
storage pool
subdirectories
table image
tree-structured directory
triple indirect block

pointers
universe
volume
volume table of contents
wild cards
working directory
write protection

READING REVIEW QUESTIONS
17.1 The file management system provides a connection between a logical view of

files and a physical view of files. What is meant by a ‘‘logical view of files’’? What
is meant by a ‘‘physical view of files’’?

17.2 Consider a data file made up of records. Invent a simple file, then draw a table
image and a form image that each represent your file. In each of your drawings,
identify a record and a field. Is your file a logical view or a physical view?

17.3 What is a file attribute? Give two or three examples of a file attribute. Where
would the file attributes of a particular file be found?
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17.4 The physical block or cluster size of a device that holds a file is a tradeoff between
access speed and wasted space. Explain.

17.5 Give at least three examples of file operations that operate on the file as a whole.

17.6 Give at least three examples of file operations that manipulate the data within
the file itself.

17.7 Give three examples of file operations that operate only on the directories, not
on the files themselves.

17.8 A program file is always read in its entirety. Would this file be accessed sequentially
or randomly or by indexed access? Explain.

17.9 Describe the challenges faced by a file system when attempting to store files
contiguously.

17.10 Briefly explain the concept of linked allocation, noncontiguous file storage. For
a file that is stored in blocks 5, 12, 13, 14, 19, 77, and 90, show what a linked
allocation might look like.

17.11 What operation can a user perform to improve the ratio of contiguous to
noncontiguous files in a system?

17.12 NTFS file records are made up of components which are also called attributes,
although the word has a different meaning. What is an NTFS attribute? What
are the contents of an NTFS data attribute?

17.13 Describe the contents and format of a free space bitmap.

17.14 What does it mean to mount a volume into a file system?

17.15 What is a pathname?

17.16 What is the difference between a relative pathname and an absolute pathname?
How does the system know which one a user is specifying at a particular
time?

17.17 Windows and Linux use two different methods to identify files on a network.
Briefly describe each method.

17.18 How does a storage area network differ from a client-server approach to storage?

17.19 You are given the directory tree in Figure 17E.1. Assume that you are currently
located at the point indicated with the arrow labeled (A) in the diagram. What is
the relative pathname for the file ourfile.doc? What is the absolute pathname for
this file? Suppose you are user Joan, located at the point indicated by the arrow
labeled (B). What is your relative pathname to the file ourfile.doc?

EXERCISES
17.1 You have noticed that loading the programs from your hard disk seems to take

longer than it used to. A friend suggests copying the files from your disk, one at a
time, to a different device, and back to your disk. You do so and discover that the
programs load much faster now. What happened? What alternative approach
would achieve a similar result more easily?

17.2 Explain why a MOVE operation from one device to another requires manipulation
of the file itself, whereas a MOVE operation from one place to another on the same
device involves manipulation only of the directory.
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FIGURE 17E.1
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17.3 In many systems, the operations that work on a file as a whole are made up by
combining the operations that manipulate the internal file data. Explain how you
would copy a file from one location to another using the internal file operations.
Does this method seem consistent with your experience of what happens when
you copy a large file from one disk drive to another on your PC?

17.4 From a Windows command line prompt, do a DIR command. Carefully note how
much space remains on your disk. Now open up NOTEPAD, and create a new
file containing just a period with a carriage return. Call this file PROB174.TXT
and return to the prompt. Do a DIR PROB174.TXT command. How much space
does your new file take up? How much space remains on your disk? Explain what
happened.

17.5 List a number of types of files that you would expect to be accessed sequentially.
Do the same for files that you would expect would require random access.

17.6 Select a directory and list the files in that directory. For each file, determine how
many blocks would be required if the block size were to be 512 bytes, 1 KB, 4 KB,
and 8 KB. Calculate the internal fragmentation for each file and for each block
size. How much disk space on your PC is wasted for each block size? Also give
the answer as a percentage of the total block space used for that directory.

17.7 Explain the trade-offs between contiguous, noncontiguous linked, and noncon-
tiguous indexed file allocation. In particular, note the effect on sequential and
random access methods.
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17.8 Assume a UNIX i-node requires a block of 60 bytes. How many disk blocks can
be accessed using just direct, single, and double indirect indexing, as shown in
Figure 17.9?

17.9 What are the advantages of partitioning a disk, rather than using the entire disk
as one partition?

17.10 What does it mean to mount a disk?

17.11 What role does a path serve?

17.12 Explain the specific file privileges for each file in Figure 17.20. Who is the owner
of these files? What is the name of the group that has access to these files?

17.13 The access control list for a file specifies which users can access that file, and
how. Some researchers have indicated that an attractive alternative would be a
user control list, which would specify which files a user could access, and how.
Discuss the trade-offs of such an approach in terms of space required for the
lists, and the steps required to determine whether a particular file operation is
permitted.

17.14 What is the purpose of the open and close operations?

17.15 a. Disk caching is a technique that is used to speed up disk access by holding
blocks of disk in memory. Discuss strategies that could be used to improve
system performance with disk caching.

b. The time of write back for files that have been altered depends on the system.
Some systems write back a file immediately when it has been altered. Others
wait until the file is closed or until the system is not busy or until activity
on the particular file has stopped for a given period of time. Discuss the
trade-offs between these different approaches.

17.16 Consider a file that has just grown beyond its present space on disk. Describe
what steps will be taken next for a contiguous file, for a linked noncontiguous
file, and for an indexed file.
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CHAPTER 18

THE INTERNAL OPERATING
SYSTEM

Thomas Sperling



18.0 INTRODUCTION
In Chapter 15 we presented an overview of the role of the operating system as a primary
computer system component and observed that it is possible to represent the archi-
tecture of the operating system as a hierarchy, consisting of several layers of programs
that interact with each other to handle the routine tasks of command processing,
file management, I/O, resource management, communication, and scheduling. We
continued the discussion in Chapter 16 by starting with the most familiar layer, the
user interface. Chapter 17 moved inward to the next layer and presented the features
and organization of the file management system. The file manager converts the logical
representation of files as seen by the user or the user’s programs to the physical
representation stored and manipulated within the computer.

Now we are ready to examine major features of the remaining inner layers. These
layers are designed primarily to manage the hardware and software resources of the
computer and its interactions with other computers. In this chapter, we will look
at how these internal operations are performed; we will consider how the operating
system programs manage processes, memory, I/O, secondary storage, CPU time, and
more for the convenience, security, and efficiency of the users.

We will briefly review the concepts from Chapter 15 first. Then we expand our
focus to look at the various components, features, and techniques that are characteristic
of modern operating systems. We will show you a simple example in which the different
pieces have been put together to form a complete system.

A modern system must have the means to decide which programs are to be
admitted into memory and when, where programs should reside in memory, how
CPU time is to be allocated to the various programs, how to resolve conflicting
requirements for I/O services, and how to share programs and yet maintain security
and program and data integrity, plus resolve many other questions and issues. It is
not uncommon for the operating system to require several hundreds of megabytes of
memory just for itself.

In this chapter, we consider the basic operations performed by the operating
system. We introduce individually the various tasks that are to be performed by the
operating system and consider and compare some of the methods and algorithms used
to perform these tasks in an effective manner. We discuss the basic procedure of loading
and executing a program, the boot procedure, the management of processes, memory
management, process scheduling and CPU dispatch, secondary storage management,
and more.

As we have mentioned previously, the modern computer includes additional CPU
hardware features that work in coordination with the operating system software to
solve some of the more challenging operating system problems. Virtual storage is
arguably the most important of these advances. Virtual storage is a powerful technique
for solving many of the difficulties of memory management. Section 18.7 is devoted
to a detailed introduction to virtual storage. It also serves as a clear example of the
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integration of hardware and operating system software that is characteristic of modern
computer systems.

Other examples include the layering of the instruction set to include certain protected
instructions for use only by the operating system, which we presented in Chapter 7, and
memory limit checking, which the operating system can use to protect programs from each
other.

The subject of operating systems can easily fill a large textbook and an entire course all
by itself. There are many interesting questions and problems related to operating systems
and many different solutions to the problem of creating a useful and efficient operating
system. Obviously, we won’t be able to cover this subject in a great amount of detail, but
at least you’ll get a feeling for some of the more important and interesting aspects of how
operating systems work.

The many tasks that a modern operating system is expected to perform also expand
the overhead required by the operating system, both in terms of memory and in the time
required to perform the different functions. We will also look at some of the measures
that are used to determine the effectiveness of an operating system. Finally, you’ll have a
chance to read about a few of the more interesting problems, especially those that can have
a significant effect on the user.

18.1 FUNDAMENTAL OS REQUIREMENTS
Always keep in mind that the fundamental purpose of any operating system is to load
and execute programs. This is true regardless of the specific goals, design features, and
complexity of the particular operating system that you happen to be looking at.

With this fundamental idea in mind, look again at the various functions that are
provided within the operating system. To assist with this task, the hierarchical model is
shown again for your convenience in Figure 18.1.

Recall that to load and execute a program, the system must provide a method of getting
the program from its storage location on some I/O device, such as disk, into memory; it
must provide locations in memory for the program and its data; it must provide CPU time
for the program to execute; and it must provide access to the I/O facilities that the program
needs during its execution. Since multiple programs are normally sharing the system and
its resources, it must do all this in a way that is fair and meets the sometimes conflicting
requirements of the different programs.

The lower layers of the model provide programs that fulfill these requirements. The
file manager layer translates logical file requests from the command shell or the user’s
programs into specific physical I/O requests that are then performed by the appropriate I/O
device management programs. Resource allocation management is also provided in this
layer to resolve conflicts between different programs that may require I/O services at the
same time. The I/O device management and resource allocation programs are sometimes
known collectively as an I/O control system, or more commonly, IOCS.

The memory management and scheduling operations within the resource allocation
function determine if it is possible to load programs and data into memory, and, if so, where
in memory the program is to be loaded. Once the program is in memory, the scheduler
allocates time for the program to execute. If there are multiple programs in memory, the
scheduler attempts to allocate time for each of them in some fair way.
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FIGURE 18.1

A Hierarchical Model of an OS
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The monitor program, when included, provides overall control of the system. It
establishes guidelines for the general management of the system based on goals provided
by the human manager of the system. It watches for conflicts, breakdowns, and problems
and attempts to take appropriate action to ensure smooth and efficient system operation.
Some monitors can even reconfigure and reassign resources dynamically to optimize
performance, particularly in clustered systems. These roles are handled by other operating
system components in some systems.

To increase security, many operating systems construct these programs as a hierarchy
in which each layer of programs in the model requests services from the next innermost
layer, using an established calling procedure. Most modern computers provide special
protected hardware instructions for this purpose. Recall from Chapter 15 that this is not
the only possible architecture for an operating system. At the very least, the critical parts of
the operating system will execute in a protected mode while other programs will execute in
user mode. A well-designed operating system will repel attempts to penetrate the internal
layers of the system by means other than established OS calling procedures. It must isolate
and protect each program, yet allow the programs to share data and to communicate, when
required.

There are many different ways of performing each of these functions, each with
advantages and disadvantages. The trade-offs selected reflect the design goals of the
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particular system. To give you a simple example, a computer that operates strictly in a
batch mode might use a simple CPU scheduling algorithm that allows each program to
run without interruption as long as the program does not have to stop processing to wait
for I/O. This strategy would not be acceptable on an interactive system that requires fast
screen response when a user clicks the mouse or types something into the keyboard. In the
latter case, a more sophisticated scheduling algorithm is clearly required.

Before we continue with discussions of the individual resource managers, you should
be aware that these managers are not totally independent of each other. For example,
if there are more programs in the memory of an interactive system, the scheduler must
give each program a shorter period of time if satisfactory user response is to be achieved.
Similarly, more programs in memory will increase the workload on a disk manager, making
it more likely that there will be several programs waiting for disk I/O at the same time.
A well-designed operating system will attempt to balance the various requirements to
maximize productive use of the system.

Before proceeding to detailed discussions of each of the major modules in a multitasking
operating system, it may provide some insight to introduce you to a simple example of
a system, a sort of ‘‘Little Man multitasking operating system’’, if you will. The system
discussed here does not run on the Little Man Computer, however. It was designed for a real,
working computer system. This example illustrates many of the important requirements
and operations of a multitasking system.

Example: A Simple Multitasking Operating System

The miniature operating system (hereafter referred to as MINOS) is an extremely small and
simple multitasking system with many of the important internal features of larger systems.
It is based on a real operating system that was developed by the author in the 1970s for a
very early and primitive microcomputer that was used primarily to measure data in remote
rural locations. Calculations were performed on the data and the results telecommunicated
back to a larger computer for further processing. The original goals of the design were

■ First and foremost, simplicity. Memory was very expensive in those days, so we
didn’t want to use much for the operating system. There was only 8 KB of
memory in the machine.

■ Real-time support for one very important program that was run frequently and
had to operate very fast. This was the data measurement program. The system
therefore features a priority scheduling system in choosing which program is to
run.

The internal design of MINOS was of more interest and importance to the designers
than the user interface or the file system. There was no disk on this computer, only an
audio cassette tape recorder, modified to hold computer data, so the file system was simple.
(Disks were too expensive, too large, and too fragile for this type of system back then!)
There was a keyboard/printer user interface, but no CRT display interface. Security was not
a concern.

The features of particular interest to us here are the operation of memory management,
process scheduling, and dispatching. Despite their simplicity, the design of these modules
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is characteristic of the way current operating systems work. These were the important
specifications for MINOS:

■ Keyboard/printer command line user interface. To keep things simple, there
were only a few commands, most of which could be entered by typing a single
character. For example, the letter ‘‘l’’ was used to load a program from tape, the
letter ‘‘s’’ to save a program to tape.

■ Memory was divided into six fixed partitions of different sizes. A memory map is
shown in Figure 18.2. One partition was reserved for MINOS, which was entirely
memory resident. Partition P-1 was reserved for high-priority programs, most
commonly the data retrieval program, since it had to retrieve data in real time.
Partitions P-2, P-3, and P-4 were of different sizes, but all shared equal, middle
priority. Partition P-5 was a low-priority area, which was used for background
tasks, mostly internal system checking, but there was a simple binary editor
available that could be loaded into the low-priority partition for debugging and
modifying programs.

■ The operating system was divided into three levels: the command interface; the
I/O subsystem; and the kernel, which contained the memory manager, the
communication interface, and the scheduler. The operating system kernel had
the highest priority by default, since it had to respond to user commands and
provide dispatching services. It could interrupt and preempt other programs.
However, routine operations such as program loading were processed at the
lowest priority level. A block diagram of MINOS appears in Figure 18.3.

Note again that MINOS did not support a file system or most other user amenities; it
was primarily oriented toward program loading and execution. This limitation does not
concern us, since the primary focus of this discussion is the internal operation of the system.
The two major components of the kernel were the process scheduler/memory manager and
the dispatcher.

MINOS was capable of manipulating up to five user programs at a time. The
process scheduler handled requests for program loading. The header for a program to be

FIGURE 18.2

The MINOS Memory Map
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loaded specified a priority level and a memory size requirement.
Programs were loaded into the smallest available memory space
of the correct priority level that would fit the program. Of course,
there was only a single memory area available for each program
of the highest and lowest priorities. If space was not available,
the process scheduler notified the user; it was up to the user to
determine which program, if any, should be unloaded to make
room.

For each program in memory, there was an entry in a process
control table, shown in Figure 18.4. Recall from Chapter 14 that
at any instant in time, one process per CPU is running, while
the others are ready to run or waiting for an event, such as
I/O completion, to occur. The process control table shows the
status of each program and the program counter location where
the program will restart when it is next run. In MINOS, it also
contained locations for storage and restoration of each of the
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FIGURE 18.3

Block Diagram, MINOS
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two registers that were present in the microcomputer
that was used. There was also one additional reg-
ister that kept track of which mid-priority process,
partition 2, partition 3, or partition 4, was run most
recently. We called this register the mid-priority pro-
cess run last, or MPRL, register. Since there was one
entry in the process table for each partition, the prior-
ity value for each program was already known by the
operating system.

The most interesting part of MINOS was the
program dispatcher. A real-time clock in the computer
interrupted the computer every 1/100th of a second

and returned control to the dispatcher. The dispatcher went through the process control
table in order of priority and checked the status of each active entry. (An inactive entry is
one in which there was no program loaded into the space, or in which the program in the
space had completed execution and was not running.) If the entry was blocked because it
was waiting for I/O to be completed, it was not available to run and was passed by. The
highest-priority ready program was selected and control passed to it. If there were two or
three ready programs of the same priority, they were selected in a round-robin fashion
(program 2, program 3, program 4, program 2, program 3, . . . ), so that each got a turn.
The MPRL register was used for this purpose.

The MINOS dispatching algorithm guaranteed that the high-priority real-time pro-
gram always got first shot at the CPU and that the maximum delay before it could execute

FIGURE 18.4
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was 1/100th of a second. The ready bit for this program was actually set by a small interrupt
routine controlled by the measuring device. Figure 18.4 illustrates the dispatching process.

The background task represented the lowest priority. By default, this partition con-
tained software routines for testing various aspects of the hardware. Thus, when no other
program was selected, MINOS defaulted to the hardware diagnostic routines.

With MINOS as a background, the next nine sections of Chapter 18 consider various
aspects of a multitasking operating system in more detail. You may also wish to review
Section 15.3 of Chapter 15, which introduces the various services and modules present in a
modern multitasking system, before proceeding.

18.2 STARTING THE COMPUTER SYSTEM:
THE BOOTSTRAP

As a first step, we need to consider what is required to get the computer started. You
will recall that when the computer is first turned on, the contents of RAM are unknown.
Furthermore, you know that there must be a program in memory for CPU execution to
take place. These two considerations are contradictory; therefore, special means must be
included to get the system into an operating state.

Initial program loading and start-up is performed by using a bootstrap program
that is built permanently into a read-only part of memory for the computer. This
bootstrap program begins execution as soon as the machine is powered up. The bootstrap
program contains a program loader that automatically loads a selected program from
secondary storage into normal memory and transfers control to it. The process is known
as bootstrapping, or more simply, as booting the computer. IBM calls the process Initial
Program Load, or IPL. Figure 18.5 illustrates the bootstrapping operation.

FIGURE 18.5

Bootstrapping a Computer
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Since the bootstrap is a read-only program, the program that it loads must be
predetermined and must be found in a known secondary storage location, usually at a
particular track and sector on a hard disk, although the bootstrap can be tailored to
start the computer from another device, or even from another computer if the system is
connected to a network. Usually the bootstrap loads a program that is itself capable of
loading programs. (This is the reason that the initial program loader is called a bootstrap.)
Ultimately, the program loaded contains the operating system kernel. In other words, when
the boot procedure is complete, the kernel is loaded, and the computer is ready for normal
operation. The resident operating system services are present and ready to go. Commands
can be accepted, and other programs loaded and executed. The bootstrap operation is
usually performed in two or more stages of loading to increase flexibility in the location of
the kernel and to keep the initial bootstrap program small.

EXAMPLE
The PC serves as an appropriate and familiar example of the bootstrap start-up procedure.
Although the PC uses a multistep start-up procedure, the method is essentially identical to
that we have just described.

The PC bootstrap loader is permanently located in the system BIOS, read-only memory
included as part of the computer, and introduced previously in Chapter 15. When the
power switch for the computer is turned on, or when the reset button is pushed, control is
transferred to the first address of the bootstrap loader program. The PC bootstrap begins by
performing a thorough test of the components of the computer. The test verifies that various
components of the system are active and working. It checks for the presence of a monitor,
of a hard drive if installed, and of a keyboard. It checks the instructions in ROM for errors
by calculating an algebraic function of the 1s and 0s, known as a checksum, and comparing
that value with a predetermined correct value. It checks RAM by loading known data into
every location and reading it back. Finally, it resets the segment registers, the instruction
pointer, flags, and various address lines. (The 386, 486, P5, and P6 CPUs set many other
registers as well.) The results of these tests appear on the monitor screen.

At the completion of this test, the bootstrap loader determines which disk is the system
disk. This location is a setting stored permanently in a special memory, modifiable by the
user at startup time. On modern PCs, the system may be booted from a hard disk, a floppy
disk, a CD or DVD, or many USB-pluggable devices. The system disk contains a sector known
as a boot record, and the boot record is loaded next.

The boot record now takes control. It also contains a loader, which is tailored to the
I/O requirements for the particular disk. Assuming that Windows 2000, NT, or XP is to be
loaded, the boot record then loads a sequence of files, including the kernel and executive
program, NTOSKRNL.EXE; the registry; the hardware interface; various kernel, subsystem,
and API libraries; and a number of other components. The items loaded are based on entries
in the registry. The user has little control over this process while it is happening. Next, a
logon program, WINLOGON.EXE is initiated. Assuming that the user is authorized and that
the logon is successful, the kernel sets the user parameters defined in the registry, the
Windows GUI is displayed, and control of the system is turned over to the user.

Different BIOSes vary slightly in their testing procedures, and some allow the user
to change some PC setup settings when testing takes place. The user can also force the
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bootstrap to occur one step at a time to remedy serious system problems. Other than
that, the user or system administrator controls the PC environment with standard tools
provided by the operating system.

As noted, the procedure described here takes place when power is first applied to the
computer. This procedure is also known as a cold boot. The PC also provides an alternate
procedure known as a warm boot, for use when the system must be restarted for some
reason. The warm boot, which is initiated from a selection on the shutdown menu, causes
an interrupt call that reloads the operating system, but it does not retest the system and it
does not reset the various registers to their initial values.

EXAMPLE
It is important to realize that basic computer procedures are not dependent on the size of the
computer. The boot procedure for a large IBM mainframe computer is quite similar to that of
a PC. IBM mainframe computers are bootstrapped using the Initial Program Load procedure.
IPL works very similarly to the PC bootstrap procedure. Whenever power is applied to an IBM
mainframe computer, the computer is in one of four operating states: operating, stopped,
load, and check stop. The operating and stopped states are already familiar to you. The
check stop state is a special state used for diagnosing hardware errors. The load state is the
state corresponding to IPL.

The system operator causes the system to enter load state by setting load-unit-address
controls and activating the load-clear or load-normal key on the operator’s console. The
load-unit-address controls establish a particular channel and I/O device that will be used for
the IPL. The load normal key performs an initial CPU reset that sets the various registers in
the CPU to their initial values and validates proper operation. The load-clear key does the
same, but also performs a clear reset, which sets the contents of main storage and many
registers to zero.

Following the reset operation, IPL performs the equivalent of a START I/O channel
command, as discussed in Chapter 11. The first channel command word is not read from
memory, since memory may have been reset to zero. Instead, a built-in READ command is
used, which reads the IPL channel program into memory for execution. The IPL channel
program then reads in the appropriate operating system code and transfers control to it.

18.3 PROCESSES AND THREADS
When considering a multitasking system, it is easiest to think of each executing task as a
program. This representation is not inaccurate, but it is not sufficiently inclusive, precise,
or general to explain all the different situations that can occur within a computer system.
Instead, we may define each executing task more usefully as a process. A process is defined
to include a program, together with all the resources that are associated with that program
as it is executed. Those resources may include I/O devices that have been assigned to the
particular process, keyboard input data, files that have been opened, memory that has been
assigned as a buffer for I/O data or as a stack, memory assigned to the program, CPU time,
and many other possibilities.
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Another way of viewing a process is to consider it as a program in execution. A program
is viewed passively: it’s a file or a listing, for example. A process is viewed actively: it is being
processed or executed.

In batch systems, a different terminology is sometimes used. A user submits a job
to the system for processing; the job is made up of job steps, each of which represents
a single task. It is not difficult to see the relationship among jobs, tasks, and processes.
When the job is admitted to the system, a process is created for the job. Each of the tasks
within the job also represent processes, specifically, processes that will be created as each
step in the job is executed. In this book we tend to use the words job, task, and process
interchangeably.

The difference between a program and a process is not usually important in normal
conversation, but from the perspective of the operating system the difference may be
quite significant and profound. For example, most modern operating systems have the
capability of sharing a single copy of a program such as an editor among many processes
concurrently. Each process has its own files and data. This practice can save memory space,
since only a single copy of the program is required, instead of many; thus, this technique
increases system capability. Crucial to this concept, however, is the understanding that
each process may be operating in a different part of the program; therefore, each process
maintains a different program counter value during its execution time, as well as different
data. This concept is illustrated in Figure 18.6. By maintaining a separate process for
each user, the operating system can keep track of each user’s requirements in a straight-
forward manner.

Even in a single-user system, multiple processes may share program code. For example,
the program code that produces the Windows interface will be shared by all the processes
with open windows on a screen. Each process will have its own data: the coordinates of the
window, pointers to the menu structure for that window, and so forth.

FIGURE 18.6
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To the operating system, the basic unit of work
is a process. When a process is admitted to the sys-
tem, the operating system is responsible for every
aspect of its operation. The operating system must
allocate initial memory for it and must continue to
assure that memory is available to the process as it
is needed. It must assign the necessary files and I/O
devices and provide stack memory and buffers. It must
schedule CPU execution time for the process and per-
form context switching between the various executing
processes. The operating system must maintain the
integrity of the process. Finally, when the process is
completed, it terminates the process in an orderly way
and restores the system facilities and resources to make
them available to other processes.

Processes that do not need to interact with any
other processes are known as independent processes.
In modern systems, many processes will work together.
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They will share information and files. A large task will often be modularized by splitting
it into subtasks, so that each process will only handle one aspect of the task. Processes
that work together are known as cooperating processes. The operating system provides
mechanisms for synchronizing and communicating between processes that are related
in some way. (If one process needs the result from another, for example, it must know
when the result is available so that it can proceed. This is known as synchronization.
It must also be able to receive the result from the other process. This is communi-
cation.) The operating system acts as the manager and conduit for these interprocess
events.

To keep track of each of the different processes that are executing concurrently in
memory, the operating system creates and maintains a block of data for each process in
the system. This data block is known as a process control block, frequently abbreviated as
PCB. The process control block contains all relevant information about the process. It is
the central resource used by the various operating system modules as they perform their
process-related functions.

In MINOS, the process control block was simple. It was only necessary to keep track of
the program counter and a pair of register values so that processes could be suspended and
restarted, plus the status and priority of the program. Since MINOS divided memory into
partitions of fixed size, there was exactly one process and therefore one PCB per partition,
so it was not even necessary for the operating system to keep track of the memory limits of
a process.

In a larger system, process control is considerably more complex. There may be many
more processes. Contention for the available memory and for various I/O resources is

FIGURE 18.7
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more likely. There may be requirements for communication between
different processes. Scheduling and dispatch are more difficult. The
complexity of the system requires the storing of much additional
information about the process, as well as more formal control of
process operations.

The contents of a typical process control block are shown
in Figure 18.7. Different system PCBs present this information in
different order and with some differences in the information stored,
but these differences are not important for the purposes of this
discussion.

Each process control block in Figure 18.7 contains a process
identification name or number that uniquely identifies the block.
In Linux, for example, the process identification number is known
as a process identifier, or more commonly, a PID. Active pro-
cesses are readily observable on the Linux system using the ps
command.

Next, the PCB contains pointers to other, related processes.
This issue is related to the way in which new processes are cre-
ated. It is discussed in the next section. The presence of this area
simplifies communication between related processes. Following the
pointer area is an indicator of the process state. In MINOS, four
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process states were possible: inactive, ready, blocked, and running. In larger systems, there
are other possible states; processor states are discussed later in this section. The program
counter and register save areas in the process control block are used to save and restore the
exact context of the CPU when the process gives up and regains the CPU.

Memory limits establish the legal areas of memory that the process may access. The
presence of this data simplifies the task of security for the operating system. Similarly,
priority and accounting information is used by the operating system for scheduling and for
billing purposes.

Finally, the process control block often contains pointers to shared program code and
data, open files, and other resources that the process uses. This simplifies the tasks of the
I/O and file management systems.

Process Creation

A little thought should make it clear to you that a process is created when you issue a
command that requests execution of a program, either by double-clicking on an icon or
by typing an appropriate command. There are also many other ways in which a process
is created. Particularly on interactive systems, process creation is one of the fundamental
tasks performed by the operating system. Processes in a computer system are continually
being created and destroyed.

Since any executing program is a process, almost any command that you enter into
a multitasking interactive system normally creates a process. Even logging in creates a
process, since logging in requires providing a program that serves as your interface, giving
you a prompt or GUI, monitoring your keystrokes, and responding to your requests. In
many systems, this is known as a user process. In some systems, all processes that are not
modules of the operating system are known as user processes.

It should also be remembered that the operating system itself is made up of program
modules. These modules, too, must share the use of the CPU to perform their duties. Thus,
the active parts of the operating system are, themselves, processes. When a process requests
I/O or operating system services, for example, processes are created for the various operating
system program modules that will service the request, as well as for any additional processes
resulting from the request. These processes are sometimes known as system processes.

In batch systems, jobs are submitted to the system for processing. These jobs are
copied, or spooled, to a disk and placed in a queue to await admission to the system.
A long-term scheduler in the operating system, discussed in Section 18.5, selects jobs as
resources become available and loads them into memory for execution. A process is created
when the long-term scheduler determines that it is able to accept a batch job and admits it
to the system.

For convenience, operating systems generally associate processes with the process that
created them. Creating a new process from an older one is commonly called forking or
spawning. The spawning process is called a parent. The spawned process is known as a
child. Many systems simply assign priorities, resources, and other characteristics to the
child process by cloning the parent process. This means creating a process control block
that is a duplicate of itself. Once the child process begins to execute, it goes by way of its
own path. It can request its own resources and change whatever characteristics it needs to.

As an example of process creation, a C++ program compiler might create child
processes that perform the different stages of compilation, editing, and debugging. Each
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child process is created when the specific task is needed and killed when the task is complete.
Incidentally, note the synchronization between processes that is suggested by this example.
If the compile process encounters an error, for example, the parent is notified so that it can
activate an editor process. A successful compile will result in a load process that will load
the new program for execution. And so on.

Removing a parent process usually kills all the child processes associated with it.
Since a child process can itself have children, the actual process structure may be several
generations deep. Pointers are used within the process control block to help keep track of
the relationships between different processes.

When the process is created, the operating system gives it a unique name or identi-
fication number, creates a process control block for it, allocates the memory and other
initial resources that the process needs, and performs other operating system bookkeeping
functions. When the process exits, its resources are returned to the system pool, and its
PCB is removed from the process table.

Process States

Most operating systems define three primary operating states for a process. These are known
as the ready state, the running state, and the blocked state. The relationship between the
different process states is shown in Figure 18.8.

Once a process has been created and admitted to the system for execution, it is brought
into the ready state, where it must compete with all other processes in the ready state for
CPU execution time. Being in the ready state simply means that a process is capable of
execution if given access to the CPU.

At some point in time, presumably, the process will be given time for execution. The
process is moved from the ready state to the running state. Moving from the ready state to
the running state is called dispatching the process. During the time that the process is in
the running state, the program has control of the CPU and is able to execute instructions.

FIGURE 18.8
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Of course, only one process can be in the running state at a time for a uniprocessor system.
If there are multiple processors or a cluster under the operating system’s control, the OS is
responsible for dispatching a process to run in each available CPU. In a typical multitasking
system, there may be many processes in blocked or ready states at any given time.

When I/O or other services are required for the continuation of program execution,
the running process can no longer do any further useful work until its requirement is
satisfied. Some operating systems will suspend the program when this occurs; others will
allow the program to remain in the running state, even though the program is unable to
proceed. In the latter case, most well designed programs will suspend themselves, unless the
interruption is expected to be extremely brief. This state transition is known as blocking,
and the process remains in a blocked state until its I/O requirement is complete. When the
I/O operation is complete, the operating system moves the process from the blocked state
back to the ready state. This state transition is frequently called wake-up. Blocking can also
occur when a process is waiting for some event other than I/O to occur, for example, a
completion signal or a data result from another process.

Nonpreemptive systems will allow a running process to continue running until it is
completed or blocked. Preemptive systems will limit the time that the program remains
in the running state to a fixed length of time corresponding to one or more quanta. If the
process remains in the running state when its time limit has occurred, the operating system
will return the process to the ready state to await further time for processing. The transition
from the running state to the ready state is known as time-out.

When the process completes execution, control returns to the operating system, and
the process is destroyed or killed or terminated.

Some operating systems provide one or more additional states, which are used to
improve the efficiency of the computer system. Some processes make heavy demands on
particular resources, say, a disk drive or a printer, or even the CPU, in such a way that
other processes are unable to complete their work in an efficient manner. In this case the
operating system may place a process in a suspended state until the required resources
can be made available. When this occurs, the process is returned to a ready state. The
transition from the suspended state to the ready state is known as resumption. Some
operating systems also allow a user to suspend a process. On UNIX systems, for example,
typing Control-z is one way in which to suspend a process. The process may be resumed
by issuing the command fg, together with the process identification number of the process.
Some operating systems will also swap out a suspended process from memory to secondary
storage when the system becomes overloaded and will swap it back in when the load is
lighter. Particularly in small systems, the use of swap files for this purpose is common.
Even in large computer systems, transaction processing software often contains interactive
processes that are used infrequently. These processes are often swapped out when they are
not being used and returned to memory when they are activated by a user request. This
technique is called roll-out, roll-in. The suspend, resume, and swap states have been left off
the diagram for clarity.

Threads

It is common in modern systems to provide capability for a sort of miniprocess, known
as a thread. A thread represents a piece of a process that can be executed independently
of other parts of the process. (Think of the spell-checker in a word processor that checks
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words as you type, for example.) Each thread has its own context, consisting of a program
counter value, register set, and stack space, but shares program code, and data, and other
system resources such as open files with the other member threads in the process. Threads
can operate concurrently. Like processes, threads can be created and destroyed and can be
in ready, running, and blocked states. Context switching among threads is easier for the
operating system to manage because there is no need to manage memory, files, and other
resources and no need for synchronization or communication within the process, since
this is handled within the process itself. This advantage suggests, however, that more care
needs to be taken when the program is written, to assure that threads do not interact with
each other in subtle ways that can create conditions that cause the program to fail. Note
that there is no protection among the threads of a process, since all the threads are using
the same program code and data space.

Some systems even provide a mechanism for context switching of threads independent
of the process switching mechanism. This means that in these systems threads can be
switched without the involvement of the operating system kernel. If a process becomes
I/O blocked, it cannot proceed until the block is resolved. On the other hand, if a thread
becomes blocked, other threads in the process may be able to continue execution within the
process’s allotted time, resulting in more rapid execution. Because the inner layers of the
operating system are not even aware of thread context switching in these systems, thread
switching is extremely rapid and efficient. Threads in these systems are commonly known
as user-level threads.

Threads came about as a result of the advent of event-driven programs. In older
programs with traditional text-based displays and keyboard input, there was a single flow
of control. Event-driven programs differ in that the flow of control depends in a much
more dramatic way on user input. With a modern graphical user interface, a user can pull
down a menu and select an action to be performed at almost any time. Selecting an item
from a menu or clicking a mouse in a particular place in a particular way is known as an
event. The program must be able to respond to a variety of different events, at unknown
times, and in unknown order of request.

Most such events are too small to justify creation of a new process. Instead, the action
for each event is treated as a thread. The thread can be executed independently, but without
the overhead of a process. There is no control block, no separate memory, no separate
resources. The primary requirement for a thread is a context storage area to store the
program counter and registers when context switching takes place. A very simple thread
control block is adequate for this purpose. Threads are processed in much the same way as
processes.

18.4 BASIC LOADING AND EXECUTION
OPERATIONS

Since the CPU’s capability is limited to the execution of instructions, every operation in
a computer system ultimately arises from the fundamental ability to load and execute
programs. Application programs do the users’ work. Operating system programs and
utilities manage files, control I/O operations, process interrupts, provide system security,
manage the user interface, log operations for the system administrator to analyze, and
much more. Except for programs that permanently reside in ROM, every one of these
programs must be loaded into memory before it can be executed.
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In general-purpose computer systems, the only programs permanently resident in
ROM are usually just the few that are needed to boot the system. All other programs are
loaded after the system is operational. Many of these programs are loaded into memory
at start-up time and remain resident as long as the computer is on; others are loaded as
they are requested or needed, but in either case, the program loading operation is central
to system operation. Observing the steps in the loading process exposes the workings and
interactions of many of the basic operating system components.

Incidentally, the program loader itself is a program that generally must be loaded; as
we already noted in Section 18.2, this initial load occurs during the boot process. After that,
the loader process remains resident in memory, ready for use.

In the previous section, you saw how processes are created from programs adminis-
tratively by the process management component of the operating system. You are already
aware, therefore, that requests for program loads are spawned from application or system
programs that are already running. Now we take a brief look at the next step: what happens
after the process is created but before it is loaded into memory and executed. This will
prepare you for more detailed discussions of the memory management and scheduling
issues that follow.

Figure 18.9 shows the basic steps required to load the program and ready it for
execution.

18.5 CPU SCHEDULING AND DISPATCHING
CPU scheduling provides mechanisms for the acceptance of processes into the system and
for the actual allocation of CPU time to execute those processes. A fundamental objective
of multitasking is to optimize use of the computer system resources, both CPU and I/O,
by allowing multiple processes to execute concurrently. CPU scheduling is the means for
meeting this objective. There are many different algorithms that can be used for CPU
scheduling. The selection of a CPU scheduling algorithm can have a major effect on the
performance of the system.

As a way to optimize system performance, the CPU scheduling task is separated into
two different phases. The high-level, or long-term, scheduler is responsible for admitting
processes to the system. The dispatcher provides short-term scheduling, specifically, the
instant-by-instant decision as to which one of the processes that are ready should be
given CPU execution time. The dispatcher also performs context switching. Some systems
also include a third, middle-level scheduler, which monitors system performance. When
present, the middle-level scheduler can suspend, or swap out, a process by removing it
from memory temporarily and replace it with another waiting process. This operation is
known as swapping. Swapping is done to improve overall system performance. It would
be used if a particular process were hogging a resource in such a way as to prevent other
processes from executing.

High-Level Scheduler

The high-level scheduler determines which processes are to be admitted to the system.
The role of the high-level scheduler is minimal for processes created in an interactive
environment. Such processes are usually admitted to the system automatically. If a user
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FIGURE 18.9
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requests a service that requires the creation of a new process, the high-level scheduler will
attempt to do so unless the system is seriously overloaded. To refuse the user in the middle
of her or his work would be undesirable. The high-level scheduler will refuse a login process,
however, if it appears that doing so would overload the system. The high-level scheduler
will refuse admission to the system if there is no place to put the program in memory or if
other resources are unattainable. If the request is a user login request, the user will have to
wait until later to try again. Otherwise, requests are usually accepted, even though it may
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slow down the system. You may have experienced such slowdowns when working with
Windows. You may have even gotten an ‘‘out-of-memory’’ message if you tried to do too
many things at once!

For batch processes, the high-level scheduler has a much more important role. Since
most modern systems are predominately interactive, the use of batch processes is generally
limited to processes with demanding resource requirements, for example, a monthly billing
program for a large utility or department store chain, or an economics problem with huge
amounts of data and complex calculations to be performed on the data. Processes of this
type can make it difficult for regular users to get their work done if the process is executed
during a busy time of day.

With batch processes, a delay in processing is usually acceptable to the user; therefore,
the high-level scheduler has more flexibility in deciding when to admit the process to the
system. The high-level scheduler can use its power to balance system resource use as an
attempt to maximize the efficiency of the system and minimize disruption to the regular
users.

Dispatching

Conceptually, the dispatching process is simple. Whenever a process or thread gives up
the CPU, the dispatcher selects another candidate that is ready to run, performs a context
switch, and sets the program counter to the program counter value stored in the process
control block to start execution. In reality, dispatching is much more complex than it first
appears. There are a number of different conditions that might cause a process to give up
the CPU, some voluntary and some involuntary, as established by the operating system.
Presumably, the goal of the dispatcher is to select the next candidate in such a way as to
optimize system use. But, in fact, there are a number of different measurement criteria that
can be used to define ‘‘optimum’’ system performance. Frequently, these criteria are in
conflict with each other, and the characteristics of the candidates in contention as well as
different conditions within the system can also affect the selection of a particular candidate
for CPU execution at any given time.

Similarly, processes vary in their requirements. Processes can be long or short in their
requirement for CPU execution time, they can require many resources, or just a few, and
they can vary in their ratio of CPU to I/O execution time. Different scheduling algorithms
favor different types of processes or threads and meet different optimization criteria. For
example, an algorithm that maximizes throughput by consistently placing short jobs at the
front of the queue is clearly not fair to a longer job that keeps getting delayed.

As a result, there are a number of different scheduling algorithms that can be used. The
choice of scheduling algorithm then depends on the optimization objective(s) chosen, along
with the expected mix of process types. Analysis requires consideration of a wide variety
of process mix possibilities and dynamic situations. Some of the objectives considered are
shown in the table in Figure 18.10. Of the various objectives in the table, the prevention of
starvation is particularly noticeable. Some algorithms with otherwise desirable properties
have a potential to cause starvation under certain conditions. It is particularly important
that the algorithm selected not permit starvation to occur.

With operating systems that support threads, dispatching normally takes place at the
thread level. As an additional criterion, the candidate selection decision can be made at



CHAPTER 18 THE INTERNAL OPERATING SYSTEM 611

FIGURE 18.10
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The scheduler should treat every process equally. This means that every 
process should get a fair share of the CPU time.
The scheduler should attempt to maximize the number of jobs 
completed in any given time period.
The scheduler should minimize the time between submission of a job 
and its completion.
The scheduler should attempt to keep the CPU busy as close to 100% 
of the time as possible.
The scheduler should attempt to maximize the use of all resources by 
balancing processes that require heavy CPU time with those 
emphasizing I/O.
This objective states that as the system load becomes heavy, it should 
degrade gradually in performance. This objective is based on the 
assumption that users expect a heavily loaded system to respond more 
slowly, but not radically or suddenly so.
This objective is particularly important in interactive systems. Processes 
should complete as quickly as possible.
Users expect long jobs to require more actual time than short jobs. They 
also expect a job to take about the same amount of time each time it is 
executed. An algorithm that allows a large variation in the response time 
may not be considered acceptable to users.
Processes should not be allowed to starve. Starvation is a situation that 
occurs when a process is never given the CPU time that it needs to 
execute. Starvation is also called indefinite postponement.

either the process or thread level. Some systems will select a candidate that meets criteria
measured at the process level. A process is selected, then a thread within that process is
dispatched. Other systems will select a thread for dispatch based on thread performance
criteria without regard to the process to which they belong.

Some systems implement only a single algorithm, selected by the original system
designers. Others provide options that can be selected by the administrator of the particular
system installation. Other than preventing starvation, the most important consideration in
selecting a scheduling algorithm is to determine the conditions under which dispatching is
to be performed preemptively or nonpreemptively.

Early batch systems were predominately nonpreemptive. In a nonpreemptive system,
the process assigned to the CPU by the dispatcher is allowed to run to completion,
or until it voluntarily gives up the CPU. Nonpreemptive dispatching is efficient. The
overhead required for the dispatcher to select a candidate and perform context switching
in a preemptive system, particularly if the quantum time is short, becomes a substantial
percentage of the overall CPU time available.

Nonpreemptive dispatching does not quite work in modern interactive systems.
Some interrupts, particularly user keystrokes and mouse movements, demand immediate
attention. Response time is an important criterion to a user sitting at a terminal waiting
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for a result. A long process executing nonpreemptively can cause the system to ‘‘hang’’ for
a while. An additional disadvantage of nonpreemptive processing is that a buggy program
with an infinite loop can hang the system indefinitely. Most nonpreemptive systems actually
have a time-out built in for this purpose. A compromise position uses nonpreemptive
processing for executing processes that do not require immediate responses, but allows
critical processes to interrupt temporarily, always returning control to the nonpreemptive
process. Earlier versions of Windows, through Version 3.1, presented another compromise
that was dependent on the cooperation of the processes themselves. This position assumed
that processes would voluntarily relinquish control on a regular basis, to allow other
processes a chance to execute. To a large measure, this approach worked, although less
well than true preemptive multitasking; however, it is subject to errors that may occur in
individual processes that can prevent the execution of other processes.

Linux presents another compromise approach: user processes (i.e., regular programs)
run preemptively, but operating system programs run nonpreemptively. An important
requirement to this approach is that operating system processes run quickly and very
reliably. The advantage to this approach is that critical operating system processes can get
their work done efficiently without interruption from user processes.

The next section introduces a few typical examples of dispatching algorithms. There
are many other possibilities, including algorithms that use combinations of these examples.

Nonpreemptive Dispatch Algorithms

FIRST-IN, FIRST-OUT Probably the simplest possible dispatch algorithm, first-in,
first-out (FIFO) simply assumes that processes will be executed as they arrive, in order.
Starvation cannot occur with this method, and the method is certainly fair in a general
sense; however, it fails to meet other objectives. In particular, FIFO penalizes short jobs
and I/O-bound jobs, and often results in underutilized resources. As an illustration of the
subtle difficulties presented when analyzing the behavior of an algorithm, consider what
happens when one or more short, primarily I/O-based jobs are next in line behind a very
long CPU-bound job in a FIFO queue. We assume that the scheduler is nonpreemptive but
that it will allow another job to have the CPU when the executing job blocks for I/O. This
assumption is essential to the full utilization of the CPU.

At the start of our observation, the long job is executing. While this happens, the short
job(s) must sit and wait, unable to do anything. Eventually, the long job requires I/O and
blocks. This finally allows the short jobs access to the CPU. Because they are predominately
I/O-based jobs, they execute quickly and block, waiting to do I/O. Now, the short jobs must
wait again, because the long job is using the I/O resources. Meanwhile, the CPU is idle,
because the long job is doing I/O, and the short jobs are also idle, waiting to do I/O. Thus,
FIFO can result in long waits and poorly balanced use of resources, both CPU and I/O.

SHORTEST JOB FIRST The shortest job first (SJF) method will maximize throughput
by selecting jobs that require only a small amount of CPU time. The dispatcher uses as
its basis time estimates provided with the jobs when they are submitted. To prevent the
user from lying, systems that use this algorithm generally inflict a severe penalty on jobs
that run more than a small percentage over their estimate. Since short jobs will be pushed
ahead of longer jobs, starvation is possible. When SJF is implemented, it generally includes
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a dynamic priority factor that raises the priority of jobs as they wait, until they reach a
priority where they will be processed next regardless of length. Although SJF maximizes
throughput, you might note that its turnaround time is particularly inconsistent, since the
time required to complete a job depends entirely on the mix of the jobs submitted both
before it, and possibly after it.

PRIORITY SCHEDULING Priority scheduling assumes that each job has a priority
assigned to it. The dispatcher will assign the CPU to the job with the highest priority. If
there are multiple jobs with the same priority, the dispatcher will select among them on a
FIFO basis.

Priorities can be assigned in different ways. On some systems that charge their users for
CPU time, users select the priority. The fee is scaled to the priority, so that higher priorities
cost more. In other systems, the priority is assigned by the system. Many factors can be
used to affect performance, and the priorities may be assigned statically or dynamically.
For example, a system may assign priority on the basis of the resources that the process
is requesting. If the system is presently CPU-bound, it can assign an I/O-bound process a
high priority to equalize the system.

Another variation on priority scheduling is basically nonpreemptive, but adds a
preemptive element. As the process executes, it is periodically interrupted by the dispatcher,
which reduces its priority, a little at a time, based on its CPU time used. If its priority falls
below that of a waiting process, it is replaced by the higher-priority process.

Preemptive Dispatch Algorithms

ROUND ROBIN The simplest preemptive algorithm, round robin gives each process a
quantum of CPU time. If the process is not completed within its quantum, it is returned to
the back of the ready queue to await another turn. The round-robin algorithm is simple
and inherently fair. Since shorter jobs get processed quickly, it is reasonably good on
maximizing throughput. Round robin does not attempt to balance the system resources
and, in fact, penalizes processes when they use I/O resources, by forcing them to reenter
the ready queue. A variation on round robin that is used by some UNIX systems calculates
a dynamic priority based on the ratio of CPU time to total time that the process has been in
the system. The smallest ratio is treated as the highest priority and is assigned the CPU next.
If no process is using I/O, this algorithm reduces back to round robin, since the process
that had the CPU most recently will have the lowest priority, and the priority will climb as
it waits. The round-robin technique is illustrated in Figure 18.11.

MULTILEVEL FEEDBACK QUEUES The multilevel feedback queue algorithm
attempts to combine some of the best features of several different algorithms. This
algorithm favors short jobs by providing jobs brief, but almost immediate, access to
the system. It favors I/O-bound jobs, resulting in good resource utilization. It provides
high throughput, with reasonably consistent response time. The technique is shown in
Figure 18.12. The dispatcher provides a number of queues. The illustration shows three.
A process initially enters the queue at the top level. The queue at the top level has top
priority, so a new process will quickly receive a quantum of CPU time. Short processes
will complete at this point. Since I/O-bound processes often require just a short amount
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FIGURE 18.11
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of initialization to establish their I/O needs, many I/O-bound processes will be quickly
initialized and sent off for I/O.

Processes that are not completed are sent to a second-level queue. Processes in
the second-level queue receive time only when the first-level queue is empty. Although
starvation is possible, it is unlikely, because new processes pass through the first queue so
quickly. When processes in the second level reach the CPU, they generally receive more
time. A rule of thumb doubles the number of quanta issued at each succeeding level. Thus,
CPU-bound processes eventually receive longer time slots in which to complete execution.
This method continues for as many levels as the system provides.

The final level is a round robin, which will continue to provide time until the process is
complete. Some multilevel feedback queues provide a good behavior upgrade to processes
that meet certain criteria.

DYNAMIC PRIORITY SCHEDULING As noted above, the technique of dynamic
priority recalculation can also be used as a preemptive dispatching technique. Both
Windows 2000 and Linux use a dynamic priority algorithm as their primary criterion
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for dispatch selection. The algorithms on both systems adjust priority based on their use
of resources. Details of the Windows and Linux dispatch algorithms are presented in
Supplemental Chapter 2.

18.6 MEMORY MANAGEMENT
Memory management is the planned organization of programs and data into memory.
The goal of memory management is to make it as simple as possible for programs to find
space, so that they may be loaded and executed, together with the additional space that
may be required for various buffers. A secondary and related goal is to maximize the use of
memory, that is, to waste as little memory as possible.

Today, nearly all memory management is performed using virtual storage, a method-
ology that makes it appear that a system has a much larger amount of memory than actually
exists physically. Virtual storage is discussed in Section 18.7.

Until the advent of virtual storage, however, effective memory management was a
difficult problem. There may be more programs than can possibly fit into the given amount
of physical memory space. Even a single program may be too large to fit the amount of
memory provided. Compounding the difficulty, recall that most programs are written to be
loaded contiguously into a single space, so that each of the spaces must be large enough to
hold its respective program. Fitting multiple programs into the available physical memory
would require considerable juggling by the memory management module.

In passing, we point out to you that there is also a potential relationship between
scheduling and memory management. The amount of memory limits the number of
programs that can be scheduled and dispatched. As an extreme example, if the memory
is only large enough to hold a single program, then the dispatch algorithm is reduced to
single tasking, simply because there is no other program available in memory to run. As
more programs can be fit into memory, the system efficiency increases. More programs get
executed, concurrently, in the same period of time, since the time that would be wasted
when programs are blocked is now used productively. As the number of programs increases
still further, beyond a certain point the resident time of each program starts to increase,
because the available CPU time is being divided among programs that can all use it, and
new programs are continually being added that demand CPU time.

Nonetheless within reason, it is considered desirable to be able to load new processes
as they occur, particularly in interactive systems. A slight slowdown is usually considered
preferable to a user being told that no resources are available to continue his or her work.
As we have hinted a number of times, virtual storage provides an effective and worthwhile
solution to the problem of memory management, albeit at the cost of additional hardware,
program execution speed, disk usage, and operating system complexity. Before we explain
the process of memory management using virtual storage, however, it is useful to offer
a brief introduction to traditional memory management techniques to set the issues of
memory management in perspective.

Memory Partitioning

The simplest form of memory management divides the memory space into a number of
separate partitions. This was the method used prior to the introduction of virtual storage.
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Today, it is used only in small embedded systems, where the number of programs running
at a given time is small and well controlled. Each partition is used for a separate program.

Two different forms of memory partitioning can be used. Fixed partitioning divides
memory into fixed spaces. The MINOS memory was managed using fixed partitioning.
Variable partitioning loads programs wherever enough memory space is available, using
a best-fit, first-fit, or largest-fit algorithm. The best-fit algorithm uses the smallest space
that will fit the program. The first-fit algorithm simply grabs the first space available that
fits the program. The largest-fit algorithm, sometimes called worst-fit, uses the largest
space available, on the theory that this will leave the maximum possible space for another
program. Figure 18.13 shows variable partitioning at work. Note that the starting positions
of programs shift as space becomes available for new programs.

Realistically, partitionining is not suitable for modern general-purpose computing
systems. There are two reasons for this:

■ First, no matter which method is used, memory partitioning results in
fragmentation of memory. This is seen in Figure 18.13. Fragmentation means
that memory is being used in such a way that there are small pieces of memory
available that, if pushed together, would be sufficient to load one or more
additional programs. Internal fragmentation means that there is memory that
has been assigned to a program that does not need it, but can’t be used elsewhere.
Fixed partitioning results in internal fragmentation. External fragmentation
means that there is memory that is not assigned, but is too small to use. Variable
partitioning will, after a while, result in external fragmentation, since the
replacement of one program in an available space with another will almost always
result in a bit of space left over. Eventually, it may be necessary to have the
memory manager move programs around to reclaim the space. Internal and
external fragmentation are shown in Figure 18.14.

FIGURE 18.13
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FIGURE 18.14
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Although fragmentation is manageable when the number of programs to be
loaded is small, and the size of each program known in advance, this is not the
case for any general-purpose system.

■ Second, the size of most modern programs is sufficiently large that partitioning
memory will make it even more difficult to find memory spaces large enough to
accommodate all of the programs and data that the average user routinely expects
to run concurrently. (You have already seen, in Chapter 17, similar fragmentation
and partitioning problems that occur in the storage of files on disk.)

18.7 VIRTUAL STORAGE

Overview

There are three major problems inherent in the traditional (now outdated) memory
management schemes described in the previous section:

1. As the system runs, fragmentation makes it harder and harder to find open
spaces large enough to fit new programs as they are introduced into the system.

2. From Chapters 6 and 7, you should recall that Little Man programs, and indeed,
all, programs, are coded on the assumption that they will be loaded into memory
and executed starting from memory location 0. The address field in many, but
not all, instructions points to an address where data is found or to the target
address of a branch. Of course in reality, it is only possible to load one program
at that location in memory. All other programs must be loaded into memory
starting from some other address. That means that the operating system’s
program loader must carefully adjust the address field of all affected instructions
to compensate for the actual addresses where the data or the branch target will
actually be found.

3. There is often not enough memory to load all of the programs and their
resources that we wish to execute at once.
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Virtual storage (or virtual memory—the words are synonymous), is the near-
universally accepted solution to the problems inherent in memory management. Virtual
storage uses a combination of operating system software and special purpose hardware to
simulate a memory that meets the management needs of a modern system. The primary
method of implementing virtual storage is called paging.

Pages and Frames

To begin, assume that memory is divided into blocks. These blocks are called frames.
Usually, all the frames are of equal size, typically 1 KB–4 KB. The exception, an alternative
method called segmentation is used more rarely, and will be described later. The size of
the blocks is permanently set as a design parameter of the particular hardware architecture,
based on a number of factors. The most important criterion for the block size is that it
must correspond exactly to a particular number of address bits. This guarantees that every
address within the block is expressed by the same number of digits. In the Little Man
Computer, for example, a block size of 10 would be the only reasonable choice, since every
address within the block would be expressed with one digit (0–9). Similarly, in a real,
binary-based computer, a 12-bit address can access an address space of exactly 4 KB.

The number of blocks depends on the amount of memory installed in the machine,
but, of course, can’t exceed the largest memory address possible, as determined by the
architecture of the instruction set. We could install 60 mailboxes in the Little Man
Computer, for example; this would give us six frames within the constraint that the address
field of the LMC instructions limits us to a maximum of 100 mailboxes, or ten frames.

The blocks are numbered, starting from 0. Because the block size was selected to use
a specific, fixed number of bits (or decimal digits for the Little Man Computer), an actual
memory address consists simply of the block number concatenated with the address within
the block. By selecting a frame size that corresponds exactly to a given number of digits, we
can simply concatenate to get the whole address.

EXAMPLE
Suppose that a Little Man memory consisted of 6010 mailboxes, divided into 6 frames. Each
frame is a one-digit block of size 10. The frames would be numbered from 0 through 5,
and the address of a particular location within the frame would be a number from 0 to 9.
Then, location number 6 in frame 3 would correspond to location 36 in memory. Similarly,
memory address 49 would be in frame 4; the address would correspond to location 9 in that
frame. Figure 18.15(a) illustrates this example.

EXAMPLE
Now consider a binary computer with 1 GB of memory divided into 4 KB frames. There will
be 256 K, or approximately a quarter of a million, frames. (We divided 1 G by 4 K to get
256 K.) Another way to look at this is to realize that to address 1 GB of memory requires
a 30-bit address. 4 KB frames will require 12 bits for addresses; therefore the number of
frames will correspond to 18 bits, or 256 K frames.

For convenience, we will illustrate the example in hexadecimal. Remember that each
hexadecimal digit represents 4 bits. Memory location 3A874BD716 would then be located in
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the frame block numbered 3A87416, and specifically found at location BD716 of that frame.
Notice that the frame block number requires a maximum of 18 bits and that the location
within the frame uses 12 bits. See Figure 18.15(b) for clarification. Similarly, location
number 02016 within frame number 15A316 corresponds to memory location 15A302016.

Effectively, we are dividing each memory address into two parts: a frame number and
the specific address within the particular frame. The address within the frame is called an
offset, because it represents the offset from the beginning of the frame. (It should be clear
to you that the first address in a frame, which is the beginning of the frame, is 0, with the
correct number of digits of course, so address 1 is offset by 1 from the beginning, and so on.)

It is not immediately obvious why we are dividing memory into frame blocks, but
the reason will become clear shortly. Here’s a hint: note the similarity between the frame
blocks that make up the memory space and the blocks that make up the space on a hard
disk. Then, recall that we can find data within a file even if we store the files on a hard disk
noncontiguously.

Suppose we also divide a program into blocks, where each block in the program is
the same size as a frame. The blocks in a program are called pages. See Figure 18.16. The
number of pages in a program obviously depends on the size of the program. We will
refer to the instruction and data memory address references in a program as ‘‘logical’’ or
‘‘virtual’’ memory references, as opposed to the physical memory references that actually
go out to memory and store and retrieve instructions and data. The words logical and
virtual are used interchangeably.

Like frames, the number of pages is also constrained by the instruction set architecture,
but, as we will show you later, it is not limited to the size of installed memory. Stated
differently, a program can be larger than the amount of memory installed in a computer,
and still execute successfully, although possibly slowly.

The key to this magical sleight-of-hand is a technique called dynamic address
translation (DAT). Dynamic address translation is built into the CPU hardware of

FIGURE 18.16
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every modern computer. The hardware automatically and
invisibly translates every individual address in a program (the
virtual addresses) to a different corresponding physical location
(the physical addresses). This allows the operating system’s pro-
gram loader to place the pages of a program into any available
frames of physical memory, page by page, noncontiguously,
so that it is not necessary to find a contiguous space large
enough to fit the entire program. Any page of any program can
be placed into any available frame of physical memory. Since
every frame is essentially independent, the only fragmentation
will be the small amount of space left over at the end of the last
page of each individual program.

For each program, the operating system creates a page
table, which keeps track of the corresponding frame location in
physical memory where each page is stored. There is one entry
in the table for each page of the program. The entry contains
the page number and its corresponding frame number.
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Since each page fits exactly into a frame, the offset of a particular address from the
beginning of a page is also exactly the same as the offset from the beginning of the frame
where the page is physically loaded. To translate a virtual address to a physical address, the
virtual address is separated into its page number and an offset; a look-up in the program’s
page table locates the entry in the table for the page number, then translates, or maps, the
virtual memory reference into a physical memory location consisting of the corresponding
frame number and the same offset. We remind you again: this operation is implemented
in hardware. Every memory reference in a fetch-execute cycle goes through the same
translation process. The address that would normally be sent to the memory address
register (MAR) is mapped through the page table and then sent to the MAR. It is also
important to remember that the translation process is entirely invisible to the program. As
far as the program can tell, every memory reference is exactly where the program says it is.

A simple example illustrates the translation process.

EXAMPLE
Consider a program that fits within one page of virtual memory. Placement of the program
is shown in Figure 18.17a. The page for the program would be numbered 0, of course. If
we assume a page size of 4 KB, then any logical memory location in this program would be
between 0000 and 0FFF. Suppose frame 3 is available in which to place this program in
physical memory. Then the physical addresses for this program to execute properly must all
be between 3000 and 3FFF. We obtain the correct address in each case by changing the
page number (0) to the frame number (3), keeping the offset the same as it was. A LOAD

instruction, LOAD 028A, for example, would be translated to find its data in physical memory
at 328A.

FIGURE 18.17(a)
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FIGURE 18.17(b)
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Another example, drawn differently to show the translation process more clearly, is
presented in Figure 18.17b.

With virtual storage, each process in a multitasking system has its own virtual memory,
and its own page table. Physical memory is shared among the different processes. Since
all the pages are the same size, any frame may be placed anywhere in memory. The pages
selected do not have to be contiguous. The ability to load any page into any frame solves
the problem of finding enough contiguous memory space in which to load programs of
different sizes.

Figure 18.18 shows a mapping for three programs located in memory. Note that each
program is written as though it will load starting from address 0, eliminating the need for
the loader to adjust a program’s memory addresses depending on where the program is
loaded. Since each program’s page table points to a different area of physical memory, there
is no conflict between different programs that use the same virtual addresses.

To complete this part of the discussion, let us answer two questions that may have
occurred to you:

■ Where do the page tables reside and how are they accessed by the hardware for
address translation?

■ How are memory frames managed and assigned to pages?

The simple answer to the first question is that page tables reside in memory, just like
any other program or data. A page table address register in the CPU holds a pointer to
the address in memory where the page table is located. The pointer is stored as part of the
process control block; the address of the page table for the current process is loaded into
the register as part of the context switching mechanism.

Although this answer is accurate, it is not quite complete. There are a few bells and
whistles that improve performance, to be discussed later in this section under the paragraph
title Page Table Implementation.
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FIGURE 18.18
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The answer to the second question is that
physical memory is shared among all of the active
processes in a system. Since each process has its
own page table, it is not practical to identify
available memory frames by accumulating data
from all of the tables. Rather, there must be a
single resource that identifies the entire pool of
available memory frames from which the memory
manager may draw, when required. There are two
common approaches in use. One is to provide
an inverted page table, which lists every memory
frame with its associated process and page. This
table shows the actual use of physical memory at
every instant. Any frame without an associated
page entry is available for allocation. Figure 18.19
illustrates an inverted page table. We’ll leave it as
a simple exercise for you to identify the available
frames.

A second method maintains a list of available
frames, usually as a simple linked list. When a
process needs frames, it takes them from the top
of the list. When a process exits, its frames are

added to the end of the list. Since frame contiguity is unimportant, this is an effective way
to manage the free frame pool.

The Concept of Virtual Storage

The first two issues of memory management that we raised initially are thus solved. But, as
the TV infomercials say, ‘‘Wait—there’s still more!’’
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As we noted before, the third major challenge for memory management is the limited
total quantity of physical memory available. Even hundreds of megabytes of memory can
only hold a few modern programs. Up to this point, we have assumed that there is a frame
available for every page that needs one. While page-to-frame translation has eliminated
the question of how to fit programs into existing memory space, the next step is more
important and useful: we will show you how the concept of virtual storage allows the system
to extend the address space far beyond the actual physical memory that exists. As you will
see, the additional address space required to store a large number of programs is actually
provided in an auxiliary form of storage, usually disk, although some systems now make it
possible to use flash memory for this purpose.

So far we have assumed that all the pages of an executing program are located in frames
somewhere in physical memory. Suppose that this were not the case—that there are not
enough frames available to populate the page table when the program is loaded. Instead,
only some pages of the program are present in physical memory. Page table entries without
a corresponding frame are simply left empty. Can the program execute?

The answer depends on which pages are actually present in corresponding frames of
physical memory. To execute a program instruction or access data, two requirements must
be met.

■ The instruction or data must be in physical memory.
■ The page table for that program must contain an entry that maps the virtual

address being accessed to the physical location containing the instruction or data.

These two requirements are related. The existence of a page listing in the page table
implies that the required value is in memory and vice versa. If these two conditions are
met, then the instruction can execute as usual. This suggests, correctly, that instructions
and data that are not being accessed do not have to be in memory. At any given time in
the execution of a program, there are active pages and inactive pages. Only the active pages
require corresponding frames in the page table and in physical memory. Thus, it is possible
to load only a small part of a program and have it execute.

Page Faults

The real question is what happens when an instruction or data reference is on a page
that does not have a corresponding frame in memory. The memory management software
maintains the page tables for each program. If a page table entry is missing when the
memory management hardware attempts to access it, the fetch-execute cycle will not be
able to complete.

In this case, the CPU hardware causes a special type of interrupt called a page fault or
a page fault trap. This situation sounds like an error, but actually it isn’t. The page fault
concept is part of the overall design of virtual storage.

When the program is loaded, an exact, page-by-page image of the program is also
stored in a known auxiliary storage location. The auxiliary storage area is known as a
backing store or, sometimes, as a swap space or a swap file. It is usually found on disk,
but some recent systems use flash memory for this purpose. Also assume that the page size
and the size of the physical blocks on the auxiliary storage device are integrally related, so
that a page within the image can be rapidly identified, located, and transferred between the
auxiliary storage and a frame in memory.
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When a page fault interrupt occurs, the operating system memory manager answers
the interrupt. And now the important relationship between the hardware and the operating
system software becomes clearer. In response to the interrupt, the memory management
software selects a memory frame in which to place the required page. It then loads the
page from its program image in auxiliary storage. If every memory frame is already in use,
the software must pick a page in memory to be replaced. If the page being replaced has
been altered, it must first be stored back into its own image, before the new page can be
loaded. Page replacement algorithms are discussed later in this section. The process of page
replacement is also known as page swapping. The steps involved in handling a page fault
are shown in Figure 18.20.

FIGURE 18.20
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Most systems perform page swapping only when it is required as a result of a page
fault. This procedure is called demand paging. A few systems attempt to anticipate page
needs before they occur, so that a page is swapped in before it is needed. This technique is
called prepaging. To date, prepaging algorithms have not been very successful at predicting
accurately the future page needs of programs.

When the page swap is complete, the process may be started again where it left off. Most
systems return to the beginning of the fetch-execute cycle where the page fault occurred,
but a few systems restart the instruction in the middle of its cycle. Regardless of which
way is used, the required page is now present, and the instruction can be completed. The
importance of page swapping is that it means that a program does not have to be loaded
into memory in its entirety to execute. In fact, the number of pages that must be loaded
into memory to execute a process is quite small. This issue is discussed further in the next
section.

Therefore, virtual storage can be used to store a large number of programs in a small
amount of physical memory and makes it appear that the computer has more memory
than is physically present. Parts of each program are loaded into memory. Page swapping
handles the situations when required pages are not physically present. Furthermore, since
the virtual memory mapping assures that any program page can be loaded anywhere into
memory, there is no need to be concerned about allocating particular locations in memory.
Any free frame will do.

Working Sets and the Concept of Locality

How many pages should be assigned to a new process just entering the system? It would
seem that the more pages that are initially assigned to a process, the less likely it would be
that a page fault would occur during execution of the process. Conversely, the more pages
assigned to a process, the fewer the number of processes that will fit into memory. There is
a lower limit on the number of pages to be assigned, which is determined by the instruction
addressing modes used by the particular computer. Executing a single instruction in an
indirect addressing machine, for example, requires at least three pages, the page where the
instruction resides, the page where the indirect address is stored, and the page where the
data is found. This assumes that each item is on a different page, but it is necessary to
make the worst-case assumption to prevent instructions from failing in this way. Other
instruction sets can be analyzed similarly.

More practically, experimentation performed in the early 1970s showed that during
execution programs exhibit a tendency to stay within small areas of memory during
any given period of time. Although the areas themselves change over time, the property
continues to hold throughout the execution of the program. This property is called the
concept of locality. An illustration of the concept at work is shown in Figure 18.21.
The concept of locality makes sense intuitively. Most well-written programs are written
modularly. During the initial phase of execution of a program, a small part of the program
initializes variables and generally gets the program going. During the main body of the
program, the likely operations consist of small loops and subroutine calls. These represent
the different area of memory being executed at different times.

An effective compromise would allocate a sufficient number of pages to satisfy the
locality of a particular program. This number of pages would be sufficient to run the
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FIGURE 18.21
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program normally. Page faults would
only occur when the local area being
used by the program moves to a
different part of the program. The
number of pages that meets the
requirement of locality is called a
working set. It differs somewhat
from program to program, but it
is possible to establish a reasonable
page quantity that meets the needs
of most programs without an undue
number of page faults. Some systems
go further and monitor the number
of page faults that actually occur for
each process. They then dynamically
adjust the size of the working set for
each process to try to meet its needs.

Page Sharing

An additional feature of virtual
storage is the ability to share pages
among different processes that are
executing the same program. As
long as the code is not modified, that
is, the code is pure, there is no need
to have duplicate program code
stored in memory. Instead, each
process shares the same program
code page frames and provides its
own work space for data. The page
tables for each process will simply

point to the same physical memory frames. This simplifies the management of multiple
processes executing the same program.

Page Replacement Algorithms

There will be times on a heavily loaded system when every available page in memory is in
use. When a page fault occurs, the memory manager must pick a page to be eliminated
from memory to make room for the new page that is needed. The goal, of course, is to
replace a page that will not be needed in the near future. There are a number of different
algorithms that are used. As usual with operating system algorithms, each has advantages
and disadvantages, so selecting an algorithm is a matter of trade-offs. Some systems select
pages to be replaced from the same process. Others allow replacement from any process
in the system. The former is known as local page replacement; the latter is called global
page replacement. Global page replacement is more flexible, since there are a much larger
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number of pages to choose from. However, global page replacement affects the working set
size of different processes and must be managed carefully.

As an additional consideration, some pages must never be removed from memory
because doing so could eventually make the system inoperable. For example, removing the
disk driver would make it impossible to swap in any new pages, including the disk driver! To
prevent this situation, the frames corresponding to critical pages are locked into memory.
These frames are called locked frames. An additional bit in each row of the page table is set
to indicate that a frame is locked. Locked frames are never eligible for replacement.

FIRST-IN, FIRST-OUT PAGE REPLACEMENT The simplest page replacement algo-
rithm is a first-in, first-out algorithm. The oldest page remaining in the page table is selected
for replacement. FIFO does not take into account usage of the page. Logically, a page that
has been in memory for a long period of time is probably there because it is heavily used.
The page being removed may be in current use, which would result in a second page fault
and force the system to reload the page almost immediately. FIFO has a second, interesting
deficiency. You would assume that increasing the number of pages available to a process
would reduce the number of page faults for that process. However, it has been shown that
under certain conditions, use of the FIFO page replacement algorithm results in more page
faults with an increased number of pages, instead of fewer. This condition is known as
Belady’s anomaly. If you are interested, examples of Belady’s anomaly can be found in the
references by Deitel [DEIT03] and Silberschatz et al. [SILB08]. For these reasons, FIFO is
not considered a good page replacement algorithm.

LEAST RECENTLY USED PAGE REPLACEMENT The least recently used (LRU)
algorithm replaces the page that has not been used for the longest time, on the assumption
that the page probably will not be needed again. This algorithm performs fairly well, but
requires a considerable amount of overhead. To implement the LRU algorithm, the page
tables must record the time every time the page is referenced. Then, when page replacement
is required, every page must be checked to find the page with the oldest recorded time. If
the number of pages is large, this can take a considerable amount of time.

LEAST FREQUENTLY USED PAGE REPLACEMENT Another possibility is to select the
page that has been used the least frequently. Intuitively, this algorithm has appeal, since it
would seem that a page not used much is more replaceable than one that has received a lot
of use. The flaw with this algorithm is that a page that has just been brought into memory
has not been used much, compared to a page that has been in memory for a while. Still,
the new page was brought into memory because it was needed, and it is likely that it will be
needed again.

NOT USED RECENTLY PAGE REPLACEMENT The not used recently (NUR) algo-
rithm is a simplification of the least recently used algorithm. In this method, the computer
system hardware provides two additional bits for each entry in the page tables. One bit is
set whenever the page is referenced (used). The other bit is set whenever the data on the
page is modified, that is, written to. This second bit is called a dirty bit. Periodically, the
system resets all the reference bits.

The memory manager will attempt to find a page with both bits set to 0. Presumably,
this is a page that has not been used for a while. Furthermore, it is a page that has not been
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modified, so it is necessary only to write the new page over it. The page being replaced does
not have to be saved back to the backing store, since it has not been modified. The second
choice will be a page whose dirty bit is set, but whose reference bit is unset.

This situation can occur if the page has not been accessed for a while, but was modified
when it was accessed, prior to the resetting of the reference bits. This page must be written
back to the backing store before a new frame can be read into its spot. Third choice will be
a page that has been referenced, but not modified. And finally, least desirable will be a page
that has been recently referenced and modified. This is a commonly used algorithm.

One difficulty with this algorithm is that gradually all the used bits fill up, making
selection difficult or impossible. There are a number of variations on this algorithm that
solve this problem by selectively resetting used bits at regular intervals or each time a page
replacement occurs. The most common approach pictures the process pages as numerals
on a clock. When a page replacement must be found, the clock hand moves until it finds
an unset used bit and the corresponding page is replaced. Pages with set used bits that the
hand passes over are reset. The hand remains at the found replacement page awaiting the
next replacement requirement. This variation on NUR is called the clock page replacement
algorithm.

SECOND CHANCE PAGE REPLACEMENT ALGORITHMS One second chance algo-
rithm uses an interesting variation on FIFO, using a referenced bit similar to that of NUR.
When the oldest page is selected for replacement, its referenced bit is checked. If the
referenced bit is set, the bit is reset, and the time is upgraded, as though the page had
just entered memory. This gives the page a second pass through the list of pages. If the
referenced bit is not set, then the page is replaced, since it is safe to assume that it has not
been referenced in some time.

Another second chance algorithm keeps a small pool of free pages that are not assigned.
When a page is replaced, it is not removed from memory but, instead, is moved into the
free pool. The oldest page in the free pool is removed to make room. If the page is accessed
while in the free pool, it is moved out of the free pool and back into the active pages by
replacing another page.

Both second chance algorithms reduce the number of disk swaps by keeping what
would otherwise be swapped-out pages in memory. However, the first of these algorithms
has the potential of keeping a page beyond its usefulness, and the second decreases the
number of possible pages in memory by using some of those pages for the free pool.

Thrashing

A condition that can arise when a system is heavily loaded is called thrashing. Thrashing is
every system administrator’s nightmare. Thrashing occurs when every frame of memory is
in use, and programs are allocated just enough pages to meet their minimum requirement.
A page fault occurs in a program, and the page is replaced by another page that will itself
be needed for replacement almost immediately. Thrashing is most serious when global
page replacement is used. In this case, the stolen page may come from another program.
When the second program tries to execute, it is immediately faced with its own page fault.
Unfortunately, the time required to swap a page from the disk is long compared to CPU
execution time, and as the page fault is passed around from program to program, no
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program is able to execute, and the system as a whole slows to a crawl or crashes. The
programs simply continue to steal pages from each other. With local page replacement, the
number of thrashing programs is more limited, but thrashing can still have a serious effect
on system performance.

Page Table Implementation

As we mentioned previously, the data in the page table must be stored in memory. You
should realize that data in the page table must be accessed during the fetch-execute cycle,
possibly several times, if the fetch-execute cycle is executing an instruction with a complex
addressing mode. Thus, it is important that the page table be accessed as quickly as possible,
since the use of paging can negatively affect the performance of the system in a major
way otherwise. To improve access, many systems provide a small amount of a special type
of memory called associative memory. Associative memory differs from regular memory
in that the addresses in associative memory are not consecutive. Instead, the addresses in
associative memory are assigned to each location as labels. When associative memory is
accessed, every address is checked at the same time, but only the location whose address
label matches the address to be accessed is activated. Then the data at that location can be
read or written. (Cache memory lines are accessed similarly.)

A mailbox analogy might be useful in helping you to understand associative memory.
Instead of having mailboxes that are numbered consecutively, picture mailboxes that have
those little brass inserts that you slide a paper label into. On each label is written the
address of that particular box. By looking at all the boxes, you can find the one that
contains your mail. For a human, this technique would be slower than going directly to a
mailbox in a known location. The computer, however, is able to look at every address label
simultaneously.

Suppose, then, that the most frequently used pages are stored in this associative
memory. They may be stored in any order, since the address labels of all locations are
checked simultaneously. The page number is used as the address label that is being accessed.
Then, the only frame number that will be read is the one that corresponds to that page. A page
table that is constructed this way is known as a translation lookaside buffer (TLB), table.

The number of locations available in a TLB table is small because associative memory
is expensive. There must be a second, larger, page table that contains all the page entries for
the program. When the desired page is found in the TLB table, known as a hit, the frame
can be used without further delay. When the desired page is not found in the TLB table,
called a miss, the memory management unit defaults to conventional memory, where the
larger page table is stored. Access to the table in memory does, in fact, require an extra
memory access, which will significantly slow down the fetch-execute cycle, but that can’t
be helped.

To locate the correct entry in the larger page table, most computers provide a special
register in the memory management unit that stores the address of the origin of the page
table in memory. Then, the nth page can be located quickly, since its address in memory
is the address of the origin plus the offset. The process of page table lookup is shown in
Figure 18.22. Figure 18.22a shows how the page is accessed when the page is found in
associative memory; Figure 18.22b shows the procedure when the TLB does not contain
the desired page.
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FIGURE 18.22

Frame Lookup Procedures: (a) Page in TLB, (b) Page Not in TLB
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Beyond the requirement that the frame or page size conform exactly to a fixed number
of bits, the size of a frame or page is determined by the computer system designer as a
fundamental characteristic of the system. It is not changeable. There are several trade-offs
in the determination of page size. The page table for a program must contain an entry
for every page in the program. The number of pages is inversely proportional to the page
size, so as the page size is decreased, the number of page table entries required increases.
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FIGURE 18.23
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On the other hand, we have assumed that
the size of the program corresponds ex-
actly to the amount of memory occupied
by the pages required for the program.
This is not usually true. More com-
monly, the last page is partly empty. The
wasted space is internal fragmentation.
An example is shown in Figure 18.23.

Also, if the pages are small, mem-
ory will consist of more pages, which
allows more programs to be resident.
Conversely, smaller pages will require
more swapping, since each program will
have less code and data available to it at
any given time. Experimentally, designers
have determined that 2 KB or 4 KB pages
seem to optimize overall performance.

Page tables on large machines can, themselves, require considerable memory space.
One solution is to store the page tables in virtual memory. Page tables, or portions of page
tables, in current use will occupy frames, as usual. Other portions or tables will reside only
in virtual memory until needed.

Segmentation

Segmentation is essentially similar to paging conceptually, but differs in many details. A
segment is usually defined as a logically self-contained part of a program, as determined
by a programmer or by a compiler translation program. Thus, in most systems, segments
can be variable in size. (A few systems define segments instead as large pages, of fixed size,
but of 1 MB, 2 MB, or 4 MB, or even more. This definition does not interest us here, since
the previous discussion of paging applies in this case. When a fixed size segment is further
divided into pages, the program address is divided into three parts, a segment, a page, and
an offset, and the mapping process takes place in two steps, but the procedure is otherwise
identical to our previous discussion.) Program segments can represent parts of a program
such as main routines and subroutines or functions, or they can represent program code
and data, even separate data tables. The crucial difference between segments and pages is
that due to their variability in size, the boundaries between segments do not fall on natural
borders, as pages do.

Therefore, in the segment table, it is necessary to provide the entire physical address
for the start of the segment instead of just a page number. It is also necessary to record
the size or upper limit location of the segment, so that the system can check to make sure
that the requested location does not fall outside the limit of the segment. Otherwise, it
would be possible to read or write data to a location belonging to another segment, which
would compromise the integrity of the system. This is not a problem with paging, since it
is impossible for the offset to exceed the size of a page.

The program segment numbers are stored with each segment and are treated similarly
to page numbers. For each segment number, there is an entry in the segment table
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containing the starting location of the segment in physical memory plus the limit of the
segment. The physical address is calculated by adding the program segment offset from
the start of the segment to the memory starting location and checking this value against the
limit. As with the page table, part of the segment table can be stored in associative memory
for faster access. When segmentation and paging are both provided, there may be two TLB
tables, one for each. When both are provided, the translation process performs its mapping
in two steps. First, the segment table is used to determine the location of the pages that
make up the segment. Then, the page table locates the desired frame. Since the programmer
establishes the segments, segmentation is less invisible to the programmer than paging,
even though during operation it is still invisible. This provides a few advantages to the
programmer, stemming from the fact that each segment can be treated independently. This
means that a particular segment could be shared among different programs, for example.
Nonetheless, segmentation is harder to operate and maintain than paging and has rapidly
fallen out of favor as a virtual storage technique.

Process Separation

The use of virtual storage offers one additional benefit that should be mentioned. Under
normal program execution without virtual storage, every memory access has the potential
to address a portion of memory that belongs to a different process. This would violate
system security and data integrity; for example, a program in a partitioned memory could
access data belonging to another process simply by overflowing an array. Prior to virtual
storage memory management, this was a difficult problem. It was necessary to implement
memory access limits for each process in hardware, because there is no way for operating
system software to check every attempted memory access while a program is executing.
With virtual storage, every memory access request points to a logical address, not a physical
one. Since the logical address is within the space of the process itself, the translation process
assures that it is not possible to point to a physical address belonging to another process,
unless the page tables have been set up intentionally to share frames between the processes.
Thus, virtual storage provides simple, effective separation protection between processes.

18.8 SECONDARY STORAGE SCHEDULING
On a busy system, it is common to have a number of disk requests pending at any given
time. The operating system software will attempt to process these requests in a way that
enhances the performance of the system. As you might expect by now, there are several
different disk scheduling algorithms in use.

First-Come, First-Served Scheduling

First-come, first-served (FCFS) scheduling is the simplest algorithm. As requests arrive,
they are placed in a queue and are satisfied in order. Although this may seem like a fair
algorithm, its inefficiency may result in poorer service to every request in the queue. The
problem is that seek time on a disk is long and somewhat proportional to the distance that
the head has to move. With FCFS, one can expect the head to move all over the disk to
satisfy requests. It would be preferable to use an algorithm that minimizes seek distances.
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This would suggest processing requests that are on nearby tracks first. The other algorithms
in use attempt to do so.

Shortest Distance First Scheduling

The shortest distance first (SDF) scheduling algorithm looks at all the requests in the
queue and processes the one nearest to the current location of the head. This algorithm
suffers from the possibility of indefinite postponement. If the head is near the middle track
on the disk, a request near the edge of the disk may never get serviced if requests continue
to join the queue.

Scan Scheduling

The scan scheduling algorithm attempts to satisfy the limitation of SDF scheduling. The
head scans back and forth across the disk surface, processing requests as it goes. Although
this method is fairer than SDF, it suffers from a different limitation, namely, that blocks
near the middle tracks are processed twice as often as blocks near the edge. To see this
more clearly, consider the diagram in Figure 18.24. Consider the head moving smoothly
back and forth across the disk at a constant speed. The diagram shows the time at which
the head crosses various tracks. Note that the middle track is crossed in both directions, at
about equal intervals. Tracks near either the inside or outside track, however, are crossed
twice in quick succession. Then there is a long interval in which they are not touched. A

FIGURE 18.24
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track at the very edge, inside or outside, is touched only once for every two times that a
track in the middle is touched.

N-STEP C-SCAN Scheduling

Two changes improve the n-step c-scan scheduling algorithm. One is to cycle in only one
direction, then return to the other end before accessing blocks again. This assures that each
block is treated equally, even though a bit of time is wasted returning the head to its original
position. The other change is to maintain two separate queues. Once the head has started
to traverse the disk, it will read only blocks that were already waiting when the traverse
started. This prevents block requests that are just ahead of the head from jumping into the
queue. Instead, such a block would be placed in the alternate queue to wait for the next
pass. This approach is fairer to requests that have already been waiting. Practically, there is
no reason to move the head beyond the last block sought, and reversal will take place at
that time. Some writers refer to this as c-look scheduling.

Figure 18.25 compares the head movement for different scheduling algorithms. These
drawings, based on an example and drawings by Silberschatz et al. [SILB08], assume a disk
queue containing blocks in tracks 98, 183, 37, 122, 14, 124, 65, and 67. The head starts at
track 53.

18.9 NETWORK OPERATING SYSTEM SERVICES
To take advantage of networking, the operating system must include services that support
networking and provide the features offered by networking capability. These services
include implementation of network software protocols, augmentation of the file system
to support the transfer and use of files from other locations, remote login capability, and
additional utilities and tools. Modern operating systems include networking facilities as
part of the base system.

OS Protocol Support and Other Services

The operating system implements the protocols that are required for network communica-
tion and provides a variety of additional services to the user and to application programs.
Most operating systems recognize and support a number of different protocols. This
contributes to open system connectivity, since the network can then pass packets with
less concern for the protocols available on the network stations. In addition to standard
communication protocol support, the operating system commonly provides some or all of
the following services:

■ File services transfer programs and data files from one computer on the network
to another. Network file services require that identification of the network node
occur ahead of the file manager in the operating system hierarchy. This allows file
requests to be directed to the appropriate file manager. Local requests are passed
on to the local file manager; other requests go to the network for service by the
file manager on the machine where the file resides. This concept is shown in
Figure 18.26.
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FIGURE 18.26
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■ Some file services require a logical name for the machine to be included on
network file requests. For example, Windows assigns pseudodrive letters to file
systems accessible through the network. To the user, a file might reside on drive
‘‘M:’’. Although this system is simple, it has one potential shortcoming: different
computers on the network might access the same drive by different letters if care
isn’t taken to prevent this situation. This can make it difficult for users to find
their network-based files when they move between computers. Other systems
allow the network administrator to assign names to each machine. Many Bentley
University machines, for example, are named after Greek gods. To access a file on
the ‘‘zeus’’ computer, the user types ‘‘zeus:’’ ahead of the file path name.

■ Some operating systems provide transparent access to files on the network. On
these systems, network files are mounted to the file system in such a way that
network files simply appear in the directory structure like any other file. The
operating system uses whatever method is appropriate, local or network, to
access the requested files. The user need not know the actual location of the file.

■ Print services work similarly to file services. Print requests are redirected by the
operating system to the network station that manages the requested printer. This
allows users to share expensive printer resources.

■ Other peripherals and facilities can also be managed as network services.
System-intensive operations, such as database services, can be processed on large
computers with the capability and then passed over the network to other
computers. This technique places the processing burden on the system that is
most qualified to handle it and has the additional benefit of making the data
available wherever it is needed.

■ Web services accept requests from the network connections and return answers
in the form of HTML files, image files, and more. Frequently, Web pages require
data processing on the server to prepare dynamically created pages. Operating
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system scripts and servers are often used for this purpose. The common gateway
interface (CGI) protocol provides a standard connection between the Web server
and the scripts and operating system services.

■ Messaging services allow users and application programs to pass messages from
one to another. The most familiar application of messaging services is e-mail and
chat facilities. The network operating system not only passes these messages, it
also formats them for display on different systems.

■ Application program interface services allow a program to access network
services. Some network operating systems also provide access to services on
remote machines that might not be available locally. These services are called
remote procedure calls (RPCs). RPCs can be used to implement distributed
computing.

■ Security and network management services provide security across the network
and allow users to manage and control the network from computers on the
network. These services also include protection against data loss that can occur
when multiple computers access data simultaneously.

■ Remote processing services allow a user or application to log in to another system
on the network and use its facilities for processing. Thus, the processing
workload can be distributed among computers on the network, and users have
access to remote computers from their own system. The most familiar services of
this type are probably telnet, and SSH.

When considered together, the network services provided by a powerful network
operating system transform a user’s computer into a distributed system. Tanenbaum
[TAN95] defines a distributed system as follows:

A distributed system is a collection of independent computers that appear to
the users of the system as a single computer.

Network operating systems are characterized by the distribution of control that they
provide. Client-server systems centralize control in the server computer. Client computers
have their network access limited to services provided by the server(s). Novell NetWare
is an example of a client-server system. The operating system software on the server can
communicate with every computer on the network, but client software communicates
only with the server. In contrast, peer-to-peer network software permits communication
between any two computers on the network, within security constraints, of course.

18.10 OTHER OPERATING SYSTEM ISSUES
There are many challenges in the design of an operating system. In this section we make a
few comments about one of the more interesting operating system issues, deadlock.

Deadlock

It is not unusual for more than one process to need the same computer resource. If the
resource is capable of handling multiple concurrent requests, then there is no problem.
However, some resources can operate with only one process at a time. A printer is one
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example. If one process is printing, it is not acceptable to allow other processes access to
the printer at that time.

When one process has a resource that another process needs to proceed, and the other
process has a resource that the first process needs, then both are waiting for an event that
can never occur, namely, the release by the other process of the needed resource. This
situation can be extended to any number of processes, arranged in a circle.

This situation is called deadlock, and it is not unfamiliar to you in other forms. The
most familiar example is the automobile gridlock situation depicted in Figure 18.27. Each
vehicle is waiting for the one to its right to move, but of course no one can move.

In a computer system, deadlock is a serious problem. Much theoretical study has been
done on deadlock. This has resulted in three basic ways in which deadlock is managed. These
are deadlock prevention, deadlock avoidance, and deadlock detection and recovery.

Deadlock prevention is the safest method; however, it also has the most severe effect on
system performance. Deadlock prevention works by eliminating in general any condition
that could create a deadlock. It is equivalent to closing one of the streets.

Deadlock avoidance provides a somewhat weaker form of protection. It works by
continually monitoring the resource requirements, looking for situations in which a
deadlock potential exists and then not allowing that situation to occur. If the fourth car is
not allowed into the street because there are three other cars already in the intersection,
that is deadlock avoidance. In a computer system, the equivalent would be a refusal by the
operating system to allocate a resource because doing so would have a potential to cause
deadlock.

FIGURE 18.27

A Familiar Deadlock Situation
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Deadlock detection and recovery is the simplest method to implement, but the most
costly when things go wrong. This methodology allows deadlocks to occur. The operating
system monitors the resources. If everything stops, it assumes that a deadlock has occurred.
It may take some time to notice the condition, time that is lost to productive system work.
Recovery techniques include terminating processes and preempting resources. Terminated
processes must be rerun. Much work could be lost and require re-creation. Deadlock
recovery is generally considered the least satisfactory solution. To drivers too!

Other Issues

There are other issues that must be considered in the design of an operating system.
Operating systems require a method for communication between processes. In some
systems, interprocess communication may be as simple as sharing variables in a special
pool or sending semaphore messages that indicate completion of a task. In others, there
may be a complex message passing arrangement, with mailboxes set up for each process.
Interprocess communication has increased in importance over the past few years, due to the
desire to move data and program execution more easily from one application to another.

One form of communication that is sometimes very important is the ability to
synchronize processes with each other. Two or more processes may be cooperating on the
solution of a complex problem, and one may be dependent on the solution provided by
another. Furthermore, both may be required to access the same data, the order and timing
in which access takes place can be critical, and these conditions can affect the overall results.
This requires a solution to the problem of process synchronization.

As a simple example, consider an address card file shared by you and your roommate
or partner. A friend calls to tell you that she has moved and to give you her new phone
number. You place a new card with this information in the card file box. Meanwhile, your
roommate has taken the old card from the box and has used it to write a letter. He returns
to the box, sees the new card, figures that it must be obsolete, and so throws it away and
replaces it with the original. The new data is now lost. Similar situations can occur with
data being shared by more than one process.

As another simple example, consider two processes, with the goal to produce the result
c, where process 1 solves the program statement

a = a+ b

with initial values a = 2 and b = 3.
The second process solves the statement

c = a+ 5

where the value of a is to be taken from the first process.
Clearly, it is important that the first process complete before the value of a is used by

process 2. If process 2 looks at the value of a too early, the result, c, will be 2 + 5 = 7.
The correct value is 5 + 5 = 10. The solutions to the problems of interprocess communi-
cation and process synchronization are beyond the scope of this textbook. They are both
difficult and interesting. Various books, such as Stallings [STAL08], Silberschatz et al.
[SILB08], and Tanenbaum [TAN07], discuss these issues at length.
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18.11 VIRTUAL MACHINES
From Chapter 11, you’re aware that it is possible to combine the processing power of a
number of computers to form a cluster that acts as a single, more powerful computer.
The inverse is also true. It is possible to use a powerful computer to simulate a number
of smaller computers. The process for doing so is called virtualization. The individual
simulations that result are called virtual machines. Each virtual machine has its own access
to the hardware resources of the host machine and an operating system that operates as a
guest of the host machine. On a desktop or laptop computer, the user interface for each
virtual machine typically appears in a separate GUI window on a display. A user can switch
from one to another simply by clicking in a different window.

The use of virtualization has increased rapidly in volume and importance in recent
years. There are a number of factors that account for this:

■ Although computer hardware is relatively inexpensive to purchase, the overhead
costs—software, networking, power consumption, space requirements, and
support costs of various kinds—make the overall cost of ownership of each
additional machine a significant burden.

■ Modern computers generally have processing capability far in excess of usage or
need.

■ The development of virtualization technology has reached the state that even
small computers can be virtualized easily, effectively, and securely, with complete
isolation between virtual machines operating on the same host. Recent
virtualization software and hardware also supports a wider range of different
operating systems.

The obvious application for virtual machines is the ability to consolidate servers by
operating multiple servers on the same hardware platform, but there are a number of other
useful purposes as well:

■ A server can be set up to create a separate virtual machine for each client. This
protects the underlying system and other clients from malware and other
client-generated problems.

■ A system analyst can evaluate software on a virtual machine without concern for
its behavior. If the software crashes or damages the operating system, the analyst
can simply kill the virtual machine without damage to the underlying system or
any other virtual machine that is running on the host.

■ A software developer or Web developer can test his software on different
operating systems, with different configurations, all running on the same host.
For example, a database specialist can test changes to the database without
affecting the production system and then place them into production easily and
efficiently.

■ A user can operate in a sandbox. A sandbox is a user environment in which all
activity is confined to the sandbox itself. A virtual machine is a sandbox. For
example, a user can access dangerous resources on the Internet for testing a
system against malware safely. Malware loaded into a virtual machine disappears
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when the virtual machine is closed. The sandbox is also useful for Web research,
where the safety of the Web sites accessed is not assured.

Virtualization creates an important illusion. The virtualization mechanism makes it
appear that each virtual machine has the computer system entirely to itself. It allocates
physical resources on a shared basis, processes on different machines can communicate
with each other using built-in networking protocols, and there is a common set of interrupt
routines, controlled by the virtualization software. In effect, each virtual machine offers an
exact duplicate of the system hardware, providing the appearance of multiple machines,
each the equivalent of a separate, fully configured system. The virtual machines can execute
any operating system software that is compatible with the hardware. Each virtual machine
supports its own operating system, isolated both from the actual hardware and from other
virtual machines. The virtual machine mechanism is invisible to the software executing on
a virtual machine.

As an example, the IBM z/VM operating system simulates multiple copies of all
the hardware resources of the IBM mainframe computer, registers, program counter,
interrupts, I/O, and all. This allows the system to load and run one or more operating
systems on top of z/VM, including even other copies of z/VM. The loaded operating systems
each think that they are interacting with the hardware, but actually they are interacting
with z/VM. Using virtualization, an IBM mainframe can support hundreds of virtual Linux
machines simultaneously.

Figure 18.28 shows the basic design of virtualization. An additional layer called a
hypervisor separates one or more operating systems from the hardware. The hypervisor
may consist of software or a mixture of software and hardware, if the CPU provides
hardware virtualization support. Most recent CPUs do so. There are two basic types of
hypervisors.

■ A native, or type 1, hypervisor is software that interfaces directly with the
computer hardware. The hypervisor provides required software drivers, manages
interrupts, and directs the results to the correct results of its work to the proper
virtual machine. To the operating system or systems, the hypervisor looks like a

FIGURE 18.28
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hardware interface. One way to implement a type 1 hypervisor is to use the
facilities of a stripped-down operating system.

■ A hosted or type 2 hypervisor is software that runs as a program on a standard
operating system. Some operating systems routinely provide hypervisor software
as part of the standard package. Guest operating systems then run on top of the
hypervisor.

SUMMARY AND REVIEW
An operating system is quite complex internally. This chapter has considered some of the
more important components of the operating system in some detail. We began by looking
at the critical components of a simple multitasking system, particularly scheduling and
memory management.

Turning our attention to more general multitasking systems, we discussed the concepts
of processes and threads. We showed you how the operating system creates and manages
processes, including description of the standard process states. Threads are important in
current systems, and we discussed threads as simplified processes, without the overhead.

Next, we introduced the two, and sometimes three, types of CPU scheduling. We
described the difference between preemptive and nonpreemptive multitasking, described
the different objectives that can be used to measure performance, and introduced
several CPU dispatching algorithms, comparing the way in which these met different
objectives.

The focus of memory management is to load programs in such a way as to enhance
system performance. We briefly discussed the shortcomings of partitioning methods as a
way to introduce virtual storage. The emphasis in this chapter is on the symbiosis between
the hardware and the operating system to provide a memory management technique that
addresses many of the shortcomings of other memory management techniques. The virtual
storage methodology eliminates the requirement that the sum of programs to be loaded as
a whole must fit all at once into available memory; instead, the active parts of each program
are sufficient. It allows each program to exist in the same virtual memory space. It allows
programs to be loaded anywhere in memory, and noncontiguously. And it eliminates the
need for relocation procedures.

We explained the page fault procedure and discussed several page replacement
algorithms. We considered the number of pages that are required to execute a program
successfully and efficiently, and we considered the problem of thrashing.

Next, we discussed the algorithms used for secondary storage. Following that, we
presented the operating system components that support networking. We next introduced
briefly the issues of deadlock, process synchronization, and interprocess communication.
These issues are representative of some of the more complex problems that must be faced
by operating system designers and administrators. Finally, we introduced the concept of a
virtual machine. We explained why virtualization is so important, explained how it’s used,
and showed how it works. The VM operating system provides virtual machines that can
be treated as independent machines, each with its own operating system, applications, and
users.
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FOR FURTHER READING
Any of the references mentioned in the For Further Reading section of Chapter 15 also
address the topics in this chapter. If you have become intrigued by operating systems
and would like to know more, there are a large number of interesting problems and
algorithms with intriguing names like ‘‘the dining philosophers problem.’’ We have only
barely touched upon the surface of operating system design and operation, especially
in the areas of deadlock, process synchronization, and interprocess communication. We
highly recommend the textbooks by Deitel [DEIT03], Tanenbaum [TAN07], Silberschatz,
et al. [SILB08], and Stallings [STAL08] for thorough and detailed treatment of these and
other topics. Information about network and distributed operating systems can be found
in Tanenbaum [TAN/WOOD06, TAN/VANS06] and in most recent operating systems
and networking texts. See the For Further Reading section in Chapter 13 for additional
references.

Virtualization is currently a hot topic. Much information, including readable intro-
ductions, can be found at the vmware.com, xen.org, and sun.com websites. There are also
numerous books and magazine articles on virtualization. Some of these are listed in the
references at the back of this book.
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(FCFS) disk scheduling
first-fit algorithm
first-in, first-out (FIFO)
fixed partitioning
forking
fragmentation
frame (memory)
global page replacement
guest
high-level (long-term)

scheduler
hit
hypervisor
indefinite postponement
independent processes

internal fragmentation
job
job steps
largest-fit algorithm
least recently used (LRU)

page replacement
algorithm

local page replacement
locked frame
miss
multilevel feedback queue

algorithm
n-step c-scan scheduling

algorithm
nonpreemptive systems
not used recently (NUR)

page replacement
algorithm

offset
page fault (trap)
page swapping
page replacement algorithm
page table
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paging
parent process
peer-to-peer network

software
preemptive systems
prepaging
priority scheduling
process
process control block

(PCB)
process identifier

(PID)
process state
process synchronization
ready state
remote procedure call

(RPC)
response time

resumption
roll-out, roll-in
round robin
running state
sandbox
scan disk scheduling
segmentation
segment table
shortest job first (SJF)
shortest distance first (SDF)

disk scheduling
spawning
starvation
suspended state
swap file
swap out
swap space
swapping

system process
task
thrashing
thread
time-out
translation lookaside buffer

(TLB)
turnaround time
user-level thread
user process
variable partitioning
virtualization
virtual machine (VM)
virtual memory
virtual storage
wake-up
working set
worst-fit algorithm

READING REVIEW QUESTIONS
18.1 What is the fundamental purpose of any operating system? What is the role of

the file manager? What other basic functions must the operating system be able
to perform?

18.2 Where is the first stage of a bootstrap loader for a computer stored? What tasks
does it perform?

18.3 What are the major items found in a process control block?

18.4 How does a process differ from a program?

18.5 What are user processes? What are system processes?

18.6 Explain the purpose of a spawning operation. What is the result when the
spawning operation is complete?

18.7 Draw and label the process state diagram used for dispatching work to the CPU.
Explain each state and the role of each connector.

18.8 What features characterize threads? How are threads used?

18.9 What is an event-driven program?

18.10 What are the potential difficulties that can occur when nonpreemptive dispatch-
ing is used in an interactive system?

18.11 Explain the first-in-first-out dispatch algorithm. Discuss the advantages and
disadvantages of this algorithm. Is this a preemptive or nonpreemptive algorithm?

18.12 Explain how the shortest job first algorithm can result in starvation.

18.13 UNIX systems use a dynamic priority algorithm where the priority is based on
the ratio of CPU time to the total time a process has been in the system. Explain
how this reduces to round robin in the absence of any I/O.
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18.14 What is the basic problem that memory management is supposed to solve? What
is the shortcoming of memory partitioning as a solution?

18.15 What is a page in virtual storage? What is the relationship between a program
and pages?

18.16 What is a frame in virtual storage? What is the relationship between a frame and
physical memory?

18.17 What are the contents of a page table? Explain how a page table relates pages and
frames.

18.18 Explain how page translation makes it possible to execute a program that is
stored in memory noncontiguously.

18.19 A program’s page table is shown in Figure 18Q.1. Assume that each page is 4 KB
in size. (4 KB = 12 bits). The instruction currently being executed is to load data
from location 5E2416. Where is the data located in physical memory?

18.20 Virtual storage makes it possible to execute a program that is larger than the
available amount of memory. What obvious characteristic of program code
makes this possible?

18.21 Describe the process that takes place when a page fault occurs? What happens if
there are no frames available when a page fault occurs?

18.22 Explain the concept of a working set.

18.23 The not used recently page replacement algorithm stores two bits with each page to
determine a page that is suitable for replacement. What does each bit represent?
Which combination of bits makes a page the most desirable for replacement?
Justify your answer. What combination would be second best?

18.24 Explain thrashing.

18.25 Describe at least three network services offered by most operating systems in
addition to protocol services.

18.26 Explain deadlock. What are the three possible ways that an operating system can
handle the issue of deadlock?

FIGURE 18Q.1
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18.27 State at least three advantages that result from the use of virtual machines.

18.28 Describe the tasks that are performed by a hypervisor.

EXERCISES
18.1 Describe, in step-by-step form, the procedure that the operating system would

use to switch from one user to another in a multiuser time sharing system.

18.2 What values would you expect to find in the process state entry in a process
control block? What purpose is served by the program counter and register save
areas in a process control block? (Note that the program counter entry in a PCB
is not the same as the program counter!)

18.3 Discuss the steps that take place when a process is moved (a) from ready state to
running state, (b) from running state to blocked state, (c) from running state to
ready state, and (d) from blocked state to ready state.

18.4 Why is there no path on the process diagram from blocked state to running state?

18.5 Describe what occurs when a user types a keystroke on a terminal connected to
a multitasking system. Does the system respond differently for a preemptive or
nonpreemptive system? Why or why not? If the response is different, how is it
different?

18.6 The multilevel feedback queue scheduling method looks like FIFO at the upper
levels and like round robin at the lowest level, yet it frequently behaves better
than either in terms of the performance objectives mentioned in the text. Why
is this so?

18.7 Discuss the shortest-job-first scheduling method in terms of the various objectives
given in the text.

18.8 What is the risk that can result from the mixed nonpreemptive-preemptive
scheduling system taken by Linux, as discussed in the text?

18.9 A VSOS (very simple operating system) uses a very simple approach to scheduling.
Scheduling is done on a straight round-robin basis, where each job is given a
time quantum sufficient to complete very short jobs. Upon completion by a
job, another job is admitted to the system and immediately given one quantum.
Thereafter, it enters the round-robin queue. Consider the scheduling objectives
given in the text. Discuss the VSOS scheduling approach in terms of these
objectives.

18.10 Earlier versions of Windows used an essentially nonpreemptive dispatching
technique that Microsoft called ‘‘cooperative multitasking.’’ In cooperative
multitasking, each program was expected to voluntarily give up the CPU
periodically to give other processes a chance to execute. Discuss. What potential
difficulties can this method cause?

18.11 In the memory management schemes used in earlier operating systems, it was
necessary to modify the addresses of most programs when they were loaded
into memory because they were usually not loaded into memory starting at
location 0. The OS program loader was assigned this task, which was called
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program relocation. Why is program relocation unnecessary when virtual storage
is used for memory management?

18.12 Discuss the impact of virtual storage on the design of an operating system.
Consider the tasks that must be performed, the various methods of performing
those tasks, and the resulting effect on system performance.

18.13 There are a number of different factors, both hardware and OS software, that
affect the operating speed of a virtual storage system. Explain carefully each of
the factors and its resulting impact on system performance.

18.14 Show in a drawing similar to Figure 18.18 how two different programs with the
same logical address space can be transformed by virtual storage into independent
parts of physical memory.

18.15 Show in a drawing similar to Figure 18.18 how two different programs with
the same logical address space can be transformed by virtual storage partially
into the same part of physical memory and partially into independent parts of
physical memory. Assume that the two programs use the same program code,
located from logical addresses 0 to 100, and that they each have their own data
region, located from logical addresses 101 to 165.

18.16 Create a page table that meets the translation requirements of Figure 18.E1.
Assume a page size of 10.

FIGURE 18.E1
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18.17 Explain why the installation of additional physical memory in a virtual memory
system often results in substantial improvement in overall system performance.

18.18 Develop an example that explains thrashing clearly.

18.19 What kind of fragmentation would you find in virtual storage? Is this a serious
problem? Justify your answer. Discuss the relationship between fragmentation
and page size.

18.20 Explain why page sharing can reduce the number of page faults that occur in a
virtual storage system.

18.21 The manual for a popular operating system points out that the number of
concurrent users on the system can be increased if the users are sharing
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programs, such as editors, mail readers, or compilers. What characteristics of
virtual storage make this possible?

18.22 Explain deadlocking.

18.23 The CPU scheduling algorithm (in UNIX) is a simple priority algorithm. The
priority for a process is computed as the ratio of the CPU time actually used by
the process to the real time that has passed. The lower the figure, the higher the
priority. Priorities are recalculated every tenth of a second.

a. What kind of jobs are favored by this type of algorithm?

b. If there is no I/O being performed, this algorithm reduces to a round-robin
algorithm. Explain.

c. Discuss this algorithm in terms of the scheduling objectives given in the
text.

18.24 Explain the working set concept. What is the relationship between the working
set concept and the principle of locality?

18.25 Why is the working set concept much more effective if it is implemented
dynamically, that is, recalculated while a process is executing?

18.26 What are the differences, trade-offs, advantages, and disadvantages between
an OS that implements deadlock prevention versus deadlock avoidance versus
deadlock detection and recovery?

18.27 Figure 18.E2 shows that, for a given process, the page fault rate in a virtual
storage system increases as the page size is increased and then decreases to 0 as
the page size approaches P, the size of the process. Explain the various parts of
the curve.

FIGURE 18.E2
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18.28 Assume that you have a program to run on a Little Man-type computer that
provides virtual storage paging. Each page holds ten locations (in other words,
one digit). The system can support up to one hundred pages of memory. As
Figure 18.E3 shows, your program is sixty-five instructions long. The available
frames in physical memory are also shown in the diagram. All blocked-in areas
are already occupied by other programs that are sharing the use of the Little Man.

a. Create a starting page table for your program. Assume that your program
will start executing at its location 0.

b. Suppose a page fault occurs in your program. The OS has to decide whether
to swap out one of your older pages, or one of somebody else’s pages.
Which strategy is less likely to cause thrashing? Why?



650 PART FIVE THE SOFTWARE COMPONENT

FIGURE 18.E3
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18.29 What is a real-time system? Discuss the impact of a real-time system on the design
of the operating systems, paying particular note to the various components and
algorithms to be used.

18.30 Consider the operation of a jukebox. Each table has a jukebox terminal where
customers can feed coins to play songs (50 cents apiece, three for a dollar). Prior
to the iPod era, the queue to hear your songs in a busy restaurant could be quite
long, sometimes longer than the average dining time, in fact.

Discuss the various disk scheduling algorithms as methods of selecting the
order in which to play the requested songs. Be sure to consider the advantages
and disadvantages of each method in terms of fairness, probability that each diner
will get to hear their songs, ease of implementation, and any other important
issues that you feel should be considered. You might note that multiple diners
would sometimes request the same song.

18.31 Tanenbaum notes that the problem of scheduling an elevator in a tall building is
similar to that of scheduling a disk arm. Requests come in continuously, calling
the elevator to floors at random. One difference is that once inside, riders request
that the elevator move to a different floor. Discuss the various disk scheduling
algorithms as options for scheduling the elevator in terms of fairness, service,
and ease of implementation.

18.32 Discuss possible tape scheduling algorithms for a tape controller. Assume that
files are stored contiguously on tape. What effect would noncontiguous, linked
files have on your algorithm?

18.33 You may have noticed a number of similarities between virtual storage paging
and cache memory paging. One major difference, of course, is that main memory
is much faster than disk access.

Consider the applicability and performance of the various paging algorithms
in a memory caching system, and discuss the advantages and disadvantages of
each.

18.34 The designer of a new operating system to be used especially for real-time
applications has proposed the use of virtual storage memory management so
that the system can handle programs too large to fit in the limited memory
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space sometimes provided on real-time systems. What are the implications of
this decision in terms of the way that virtual storage works?

18.35 Discuss the various trade-offs and decisions involved in task dispatching and the
options and methods used for implementing those trade-offs and decisions.

18.36 A system status report for a virtual storage operating system shows that between
2 p.m. and 4 p.m. CPU usage and I/O usage both climbed steadily. At 4 p.m.,
the I/O usage reached 100 percent, but continued to increase. After 4 p.m., the
CPU usage, however, dropped off dramatically. What is the explanation for this
behavior?

18.37 Discuss the network features and services provided in an operating system.
Which services are mandatory? Why?

18.38 Explain the bootstrap procedure for a diskless workstation.

18.39 Consider the operation of an OS dispatcher on a computer with multiple cores
operating under symmetric multiprocessing. Assuming that there are more
processes being executed than there are cores, the dispatcher is responsible for
maximizing the work load by keeping every core as busy as possible. In addition
to the usual dispatch criteria and algorithms, there are two options for selecting
in which core a process is to execute. The first option is to allow a process to
execute in any core that is available each time it is selected to run; with this
option, a process might execute in several different cores during its run. The
second option is to require that the process run in the same core each time it is
selected.

a. What are the advantages of the first option?

b. What are the advantages of the second option? (Hint: consider the inter-
action between a process and the cache memory that is assigned to each
core.)

18.40 [courtesy of W. Wong] Assume that a program is to be executed on a computer
with virtual storage. The machine supports 10,000 words of logical memory
overall, broken into pages of 100 words each. This particular machine contains
400 physical memory locations. Suppose that the machine starts to execute a
program. The page table is initially empty, and is filled as necessary. Suppose
that the program references the following sequence of memory locations:

start 951, 952, 4730, 955, 2217, 3663, 2217, 4785, 957, 2401,
959, 2496, 3510, 962 end

a. Indicate each of the points where page faults occur.

b. Show the page table at the end of the sequence for each of the following
demand page replacement algorithms:

i. first in first out

ii. least recently used

iii. least frequently used (using FIFO as a tie breaker)
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496
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46–47
solar, 42
subsystems, 44

system administration support,
498–502

system administrator (sysadmin), 8,
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