FOURTH EDITION

THE ARCHITECTURE OF
COMPUTERHARDWARE,

SYSTEMS SOFTWARE,
NETWORKING

An Information Technology Approach

IRV ENGLANDER

FOURTH EDITION

THE ARCHITECTURE OF
COMPUTER HARDWARE,
SYSTEM SOFTWARE,
AND NETWORKING

AN INFORMATION TECHNOLOGY APPROACH

Irv Englander
Bentley University

WILEY
John Wiley & Sons, Inc.

Vice President & Executive Publisher Don Fowley

Executive Editor Beth Lang Golub

Marketing Manager ~ Christopher Ruel

Marketing Assistant Diana Smith

Design Director Harry Nolan

Senior Designer ~ Kevin Murphy

Senior Production Editor Patricia McFadden

Senior Media Editor Lauren Sapira

Editorial Assistant ~ Mike Berlin

Production Management Services ~Kate Boilard, Laserwords Maine

This book was set in 10/12 Minion by Laserwords India and printed and bound by Courier/Westford. The cover
was printed by Courier/Westford.

The book is printed on acid free paper. ®@

Copyright © 2009 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization through payment
of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA
01923, website www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011,
fax (201)748-6008, website http://www.wiley.com/go/permissions.

To order books or for customer service please, call 1-800-CALL WILEY (225-5945).

ISBN-13: 978-0471-71542-9
Printed in the United States of America

10987654321

To four outstanding teachers and great human beings:

With your guidance, inspiration, and patience, you showed me
that everything is possible.

Dr. Sidney H. Englander (1900—1980)
and Mildred K. Englander (1906—2008),
in memoriam my father and mother

Albert L. Daugherty, in memoriam
teacher of Science in Cleveland Heights, Ohio
from 1927 to 1970

Edith B. Malin, in memoriam
teacher of English in Cleveland Heights, Ohio
from 1924 to 1958

BRIEF CONTENTS

PART ONE
AN OVERVIEW OF COMPUTER SYSTEMS 2

B CHAPTER1 Computersand Systems 4

B CHAPTER2 AnIntroduction to System Concepts and Systems
Architecture 38

PART TWO
DATA IN THE COMPUTER 66

B CHAPTER3 Number Systems 68
B CHAPTER4 DataFormats 96

B CHAPTER5 Representing Numerical Data 136

PART THREE

COMPUTER ARCHITECTURE
AND HARDWARE OPERATION 178

B CHAPTER6 The Little Man Computer 180
B CHAPTER7 TheCPUand Memory 198

B CHAPTER8 CPU and Memory: Design, Enhancement,
and Implementation 240

B CHAPTERY9 Input/Output 276

iv

BRIEF CONTENTS

B CHAPTER10 Computer Peripherals 306

B CHAPTER11 Modern Computer Systems 342

PART FOUR
NETWORKS AND DATA COMMUNICATIONS 368

B CHAPTER12 Networks and Data Communications 370
B CHAPTER13 Ethernet and TCP/IP Networking 422

B CHAPTER14 Communication Channel Technology 446

PART FIVE
THE SOFTWARE COMPONENT 476

B CHAPTER15 Operating Systems: An Overview 478
B CHAPTER16 The User View of Operating Systems 514
B CHAPTER17 File Management 548

B CHAPTER18 The Internal Operating System 592

SUPPLEMENTARY CHAPTERS

On the Web at www.wiley.com/college/englander

B SUPPLEMENTARY CHAPTER1 An Introduction to Digital
Computer Logic

Bl SUPPLEMENTARY CHAPTER2 System Examples

B SUPPLEMENTARY CHAPTER 3 Instruction Addressing
Modes

B SUPPLEMENTARY CHAPTER 4 Programming Tools

CONTENTS

Preface xix
About the Author xxv

PART ONE
AN OVERVIEW OF COMPUTER SYSTEMS 2

B CHAPTER1 Computersand Systems 4

1.0 Introduction 5
1.1 The Starting Point 9
1.2 Components of the Computer System 12
The Hardware Component 13
The Software Component 16
The Communication Component 18
The Computer System 18
1.3 The Concept of Virtualization 20
1.4 Protocols and Standards 20
1.5 Overview of This Book 22
1.6 A Brief Architectural History of the Computer 23
Early Work 24
Computer Hardware 25
Operating Systems 28
Communication, Networks, and the Internet 33
Summary and Review 34 For Further Reading 34
Key Concepts and Terms 35 Reading Review Questions 35
Exercises 36

B CHAPTER2 AnIntroduction to System Concepts and Systems
Architecture 38

2.0 Introduction 39
2.1 The General Concept of Systems 40
2.2 IT System Architectures 48

vi Distributed Processing Systems 49

PART TWO

CONTENTS

The Role of the System Architect 57

Google: A System Architecture Example 58
Summary and Review 62 For Further Reading 63
Key Concepts and Terms 63 Reading Review Questions 63
Exercises 64

DATA IN THE COMPUTER 66

B CHAPTER 3

B CHAPTER 4

Number Systems 68

3.0 Introduction 69
3.1 Numbers as a Physical Representation 70
3.2 Countingin Different Bases 70
3.3 Performing Arithmetic in Different Number Bases 74
3.4 Numeric Conversion between Number Bases 77
An Alternative Conversion Method 79
3.5 Hexadecimal Numbers and Arithmetic 81
3.6 A Special Conversion Case—Number Bases that are
Related 81
3.7 Fractions 83
Fractional Conversion Methods 86
3.8 Mixed Number Conversions 89
Summary and Review 89 For Further Reading 90
Key Concepts and Terms 90 Reading Review Questions 90
Exercises 91

Data Formats 96

4.0 Introduction 97
4.1 General Considerations 97
4.2 Alphanumeric Character Data 100
Keyboard Input 106
Alternative Sources of Alphanumeric Input 107
4.3 ImageData 109
Bitmap Images 110
Object Images 114
Representing Characters as Images 117
Video Images 117
Image and Video Input 118
44 AudioData 119
4.5 Data Compression 123

vii

viii CONTENTS

B CHAPTERS5

PART THREE

4.6 Page Description Languages 124
4.7 Internal Computer Data Format 125

Numerical Character to Integer Conversion 127
Summary and Review 128 For Further Reading 129
Key Concepts and Terms 130 Reading Review Questions 130
Exercises 131

Representing Numerical Data 136

5.0 Introduction 137

5.1 Unsigned Binary and Binary-Coded Decimal
Representations 138

5.2 Representations for Signed Integers 141
Sign-and-magnitude Representation 142

Nine’s Decimal and 1’s Binary Complementary
Representations 143

Ten’s Complement and 2’s Complement 150
Overflow and Carry Conditions 153
Other Bases 153
Summary of Rules for Complementary Numbers 154
5.3 Real Numbers 155
A Review of Exponential Notation 155
Floating Point Format 157
Normalization and Formatting of Floating Point Numbers
A Programming Example 162
Floating Point Calculations 163
Floating Point in the Computer 165
Conversion between Base 10 and Base 2 167
5.4 Programming Considerations 168
Summary and Review 169 For Further Reading 170
Key Concepts and Terms 171 Reading Review Questions 171

Exercises 172

COMPUTER ARCHITECTURE AND HARDWARE

OPERATION
B CHAPTER 6

178

The Little Man Computer 180

6.0 Introduction 181
6.1 Layout of the Little Man Computer 181

159

B CHAPTER?7?

CONTENTS

6.2 Operation of the LMC 183

6.3 ASimpleProgram 185

6.4 An Extended Instruction Set 186

6.5 The Instruction Cycle 189

6.6 A Note Regarding Computer Architectures 192
Summary and Review 192 Key Concepts and Terms 193

Reading Review Questions 193 Exercises 194

The CPU and Memory 198

7.0 Introduction 199
7.1 The Components of the CPU 200
7.2 The Concept of Registers 201
7.3 The Memory Unit 204
The Operation of Memory 204
Memory Capacity 208
Primary Memory Characteristics and Implementation 209
7.4 The Fetch-Execute Instruction Cycle 211
7.5 Buses 214
Bus Characteristics 214
7.6 Classification of Instructions 218

Data Movement Instructions (Loap, store, and Other
Moves) 219

Arithmetic Instructions 221
Boolean Logic Instructions 222
Single Operand Manipulation Instructions 222
Bit Manipulation Instructions 222
Shift and Rotate Instructions 223
Program Control Instructions 224
Stack Instructions 225
Multiple Data Instructions 228
Other Instructions 229
7.7 Instruction Word Formats 229
7.8 Instruction Word Requirements and Constraints 230
Summary and Review 234 For Further Reading 234
Key Concepts and Terms 235 Reading Review Questions 235

Exercises 237

X CONTENTS

B CHAPTERS8

B CHAPTERY

CPU and Memory: Design, Enhancement,
and Implementation 240

8.0 Introduction 241
8.1 CPU Architectures 242
Overview 242
Traditional Modern Architectures 243
VLIW and EPIC Architectures 244
8.2 CPU Features and Enhancements 246
Introduction 246
Fetch-Execute Cycle Timing Issues 247
A Model for Improved CPU Performance 249

Scalar and Superscalar Processor Organization =~ 253

8.3 Memory Enhancements 256

Wide Path Memory Access 257

Memory Interleaving 258

Cache Memory 259
8.4 The Compleat Modern Superscalar CPU 263
8.5 Multiprocessing 265
8.6 A Few Comments on Implementation 269
Summary and Review 269 For Further Reading 270
Key Concepts and Terms 271 Reading Review Questions
Exercises 272

Input/Output 276

9.0 Introduction 277
9.1 Characteristics of Typical I/O Devices 278
9.2 ProgrammedI/O 284
9.3 Interrupts 285
Servicing Interrupts 286
The Uses of Interrupts 288
Multiple Interrupts and Prioritization 293
9.4 Direct Memory Access 297
9.5 I/OModules 300
Summary and Review 302 For Further Reading 303
Key Concepts and Terms 303 Reading Review Questions
Exercises 304

271

304

CONTENTS

B CHAPTER10 Computer Peripherals 306

B CHAPTER11

10.0 Introduction 307
10.1 The Hierarchy of Storage 308
10.2 Solid State Memory 310
10.3 Magnetic Disks 311

Disk Arrays 317
10.4 Optical Disk Storage 318
10.5 Magnetic Tape 321
10.6 Displays 322

Liquid Crystal Display Technology 328

CRT Display Technology 329

OLED Display Technology 330
10.7 Printers 330

Laser Printers 331

Inkjet Printers 332

Thermal Wax Transfer and Dye Sublimation Printers 333
10.8 User Input Devices 333

Keyboards and Pointing Devices 333

Scanners 335

Multimedia Devices 335
10.9 Network Communication Devices 335
Summary and Review 336 For Further Reading 337
Key Concepts and Terms 337 Reading Review Questions 338
Exercises 339

Modern Computer Systems 342

11.0 Introduction 343
11.1 Putting All the Pieces Together 345
11.2 Input/Output System Architectures 353
I/O Bus Architecture 354
Channel Architecture 357
Blurring the Line 358
11.3 Computer Interconnection: A Brief Overview 359
11.4 Clusters 360
Overview 360
Classification and Configuration 360
Beowulf Clusters 362

xi

Xii CONTENTS

11.5 High-Performance Computing 363
Grid Computing 364
Summary and Review 364 For Further Reading 365
Key Concepts and Terms 365 Reading Review Questions 366
Exercises 366

PART FOUR
NETWORKS AND DATA COMMUNICATIONS 368

B CHAPTER12 Networks and Data Communications 370

12.0 Introduction 371
12.1 The Impact of Networking on Business Processes and User
Access to Knowledge and Services 372
12.2 A Simple View of Data Communications 373
12.3 Basic Data Communication Concepts 376
Messages 377
Packets 377
General Channel Characteristics 378
Packet Routing 382
12.4 TCP/IP, OSI, and Other Communication Models 386
Overview 386
The TCP/IP Network Model 387
The OSI Network Model 395
Addressing 396
12.5 Types of Networks 398
Network Topology 399
Local Area Networks 402
Backbone Networks 407
Metropolitan Area Networks 409
Wide Area Networks (WAN) 411
Internet Backbones and the Internet 412
Piconets 414
12.6 Standards 415
Summary and Review 416 For Further Reading 417
Key Concepts and Terms 417 Reading Review Questions 418
Exercises 419

B CHAPTER13

B CHAPTER 14

CONTENTS

Ethernet and TCP/IP Networking 422

13.0 Introduction 423
13.1 Introducing The Process—The Application Layer 423
13.2 Domain Names and DNS Services 424
Domain Name System Directory Services 424
13.3 Next Steps—TCP and the Transport Layer 429
13.4 The Network Layer, IP Addresses, and ARP 430
IP Addresses 431
Dynamic Host Configuration Protocol (DHCP) 433
The Operation of IP 434
13.5 The Data Link Layer 435
Hub-Based Ethernet 436
Switched Ethernet 437
13.6 Quality of Service 437
13.7 Network Security 438
Physical and Logical Access Restriction 439
Encryption 440
13.8 Alternative Protocols 440
MPLS 440
ATM 441
SONET/SDH 441
Frame Relay 441
Summary and Review 442 For Further Reading 442
Key Concepts and Terms 443 Reading Review Questions 443
Exercises 443

Communication Channel Technology 446

14.0 Introduction 447
14.1 Communication Channel Technology 447
14.2 The Fundamentals of Signaling Technology 450
Analog Signaling 451
Digital Signaling 460
Modems and Codecs 465
14.3 Transmission Media and Signaling Methods 466
14.4 Wireless Networking 468
Wi-Fi 469

xiii

Xiv CONTENTS

Summary and Review 471 For Further Reading 471
Key Concepts and Terms 471 Reading Review Questions 472
Exercises 473

PART FIVE
THE SOFTWARE COMPONENT 476

B CHAPTER15 Operating Systems: An Overview 478

15.0 Introduction 479
15.1 The Barebones Computer System 480
15.2 The Operating Systems Concept: An Introduction 481
15.3 Services and Facilities 488
User Interface and Command Execution Services 489
File Management 490
Input/Output Services 491
Process Control Management 492
Memory Management 493
Scheduling and Dispatch 493
Secondary Storage Management 496
Network and Communications Support Services 496
Security and Protection Services 497
System Administration Support 498
15.4 Organization 502
15.5 Types of Computer Systems 505
Summary and Review 509 For Further Reading 510
Key Concepts and Terms 510 Reading Review Questions 510
Exercises 511

B CHAPTER16 The User View of Operating Systems 514

16.0 Introduction 515
16.1 Purpose of the User Interface 516
16.2 User Functions and Program Services 518
Program Execution 518
File Commands 519
Disk and Other I/O Device Commands 520
Security and Data Integrity Protection 521
Interuser Communication and Data Sharing Operations 521
System Status Information 522
Program Services 523

B CHAPTER17

CONTENTS XV

16.3 Types of User Interface 524

The Command Line Interface 525

Batch System Commands 527

Graphical User Interfaces 528

Trade-offs in the User Interface 533

Software Considerations 535
16.4 X Window and Other Graphics Display Methodologies 536
16.5 Command and Scripting Languages 539

The Elements of a Command Language 541

The Command Language Start-up Sequence Files 542
16.6 Services to Programs 542
Summary and Review 544 For Further Reading 544
Key Concepts and Terms 544 Reading Review Questions 545
Exercises 545

File Management 548

17.0 Introduction 549
17.1 The Logical and Physical View of Files 549
17.2 The Role of the File Management System 554
17.3 Logical File Access Methods 560
Sequential File Access 560
Random Access 560
Indexed Access 561
17.4 Physical File Storage 562
Contiguous Storage Allocation 562
Noncontiguous Storage Allocation 564
Indexed Allocation 566
Free Space Management 568
Tape Allocation 569
CD, DVD, and Flash Drive Allocation 570
17.5 File Systems, Volumes, Disks, Partitions, and Storage
Pools 570
17.6 The Directory Structure 573
Tree-Structured Directories 575
Acyclic-Graph Directories 577
17.7 Network File Access 581
17.8 Storage Area Networks 582
17.9 File Protection 584
17.10 Journaling File Systems 585

XVi CONTENTS

Summary and Review 586 For Further Reading 586
Key Concepts and Terms 587 Reading Review Questions 587
Exercises 588

B CHAPTER18 The Internal Operating System 592

18.0 Introduction 593
18.1 Fundamental OS Requirements 594
Example: A Simple Multitasking Operating System 596
18.2 Starting the Computer System: The Bootstrap 599
18.3 Processes and Threads 601
Process Creation 604
Process States 605
Threads 606
18.4 Basic Loading and Execution Operations 607
18.5 CPU Scheduling and Dispatching 608
High-Level Scheduler 608
Dispatching 610
Nonpreemptive Dispatch Algorithms 612
Preemptive Dispatch Algorithms 613
18.6 Memory Management 615
Memory Partitioning 615
18.7 Virtual Storage 617
Overview 617
Pages and Frames 618
The Concept of Virtual Storage 623
Page Faults 624
Working Sets and the Concept of Locality 626
Page Sharing 627
Page Replacement Algorithms 627
Thrashing 629
Page Table Implementation 630
Segmentation 632
Process Separation 633
18.8 Secondary Storage Scheduling 633
First-Come, First-Served Scheduling 633
Shortest Distance First Scheduling 634
Scan Scheduling 634
N-STEP C-SCAN Scheduling 635

CONTENTS

18.9 Network Operating System Services 635

OS Protocol Support and Other Services 635

18.10 Other Operating System Issues 638

Deadlock 638
Other Issues 640

18.11 Virtual Machines 641
Summary and Review 643 For Further Reading 644
Key Concepts and Terms 644 Reading Review Questions 645

Exercises 647

Bibliography 653

Index

SUPPLEMENTARY CHAPTERS

665

On the Web at www.wiley.com/college/englander

B SUPPLEMENTARY CHAPTER1 An Introduction to Digital

$1.0
S1.1
S1.2
S1.3

Computer Logic

Introduction

Boolean Algebra

Gates and Combinatorial Logic
Sequential Logic Circuits

Summary and Review For Further Reading
Key Concepts and Terms Reading Review Questions

Exercises

B SUPPLEMENTARY CHAPTER 2 System Examples

$2.0 Introduction

S2.1

Hardware Examples
The x86 Family
The POWER Family
The IBM System 360/370/390/zSeries Family

§2.2 Operating System Examples

The Microsoft Windows Family
UNIX and Linux
The IBM z/OS Operating System

$2.3 Networking Examples

Google

xvii

Xviii CONTENTS

Summary and Review For Further Reading
Key Concepts and Terms Reading Review Questions
Exercises

B SUPPLEMENTARY CHAPTER 3 Instruction Addressing

$3.0
S$3.1
$3.2
$3.3

Modes

Introduction
Register Addressing
Alternatives to Absolute Addressing
Alternatives to Direct Addressing
Immediate Addressing
Indirect Addressing
Register Indirect Addressing
Indexed Addressing
Indirect Indexed and Indirect Indexed Addressing

Summary and Review For Further Reading
Key Concepts and Terms Reading Review Questions
Exercises

Bl SUPPLEMENTARY CHAPTER4 Programming Tools

$4.0
S$4.1
$4.2
$4.3

S$4.4

$4.5
54.6

Introduction
Program Editing and Entry
The Concept of Program Translation
Assembly Language and the Assembler
Operation of the Assembler
Assembly Language Formats
Features and Extensions
Relocatability
Program Language Description and Rules
A Description of Written English
Programming Language Rules
Computer Language Descriptions
The Compilation Process
Interpreters
Linking and Loading
Debuggers

Summary and Review For Further Reading

Key Concepts and Terms Reading Review Questions

Exercises

PREFACE

The modern world offers lots of readily available online resources for learning. Wikipedia,
Google, news sources, millions of Web sites and blogs, even YouTube, offer access to
information in nearly any subject that triggers your curiosity and interest. Nonetheless, I
continue to believe that for deep understanding of something, nothing beats the integrated
approach and focus of an old-fashioned printed-on-paper textbook.

When I open a new book, in any subject, the first thing I want to know is what the
book has to offer that makes it worth my while to read it. I would like to try to help you
answer that question for the book that you’re holding in your hand.

The information systems and technology fields are wonderfully exciting places to be! It
seems as though every day brings new developments that alter the ways we create and work
with information. Of course, with this excitement comes a challenge. To be a successful
player in IS or IT we have to be adaptable and flexible.

Much of the change occurs around computer system technology. The computer is,
after all, at the foundation of information systems. A deep understanding of computer
systems is, therefore, an essential element of success. We must be able to understand each
new development, assess its value, and place it in the context of our knowledge of computer
systems.

The subject of this book is the architecture of computer systems. Computer architecture
is about the structure and operation of digital computers. Computer architecture is
concerned with the operational methods of the hardware; with the services provided by
operating system software; with the acquisition, processing, storage, and output of data;
and with the interaction between computers.

There is a tendency for people in information systems and technology to neglect a study
of computer architecture. After all, the technology changes so rapidly—is it really worth
trying to understand something that may be out of date by the time I finish this book? There
is no question that computer technology has evolved rapidly. The computer in a personal
computer, or even in a cell phone or MP3 player is far more powerful than the mainframe
computer of twenty-five years ago, with memory, disk and flash storage capacity, display
and multimedia capability, and ease of use that would have been unthinkable just a few
years ago. Even more important, connecting systems to work together is now routine and
simple.

Interestingly enough, however, as profound as advances in the technology have been,
the concepts of computer architecture that really matter have changed only nominally
over the last sixty years. The new technologies are based on a foundation of architectural
concepts that were developed many years ago. The architecture of a modern computer
system was developed in the 1940s. The instruction set in a modern personal computer

xix

XX

PREFACE

is nearly identical to that of computers built in the 1950s and 1960s. Modern operating
system techniques were developed in the 1960s. The graphical user interface is based
on a 1960s project. The Internet is built from concepts developed more than forty
years ago.

So you see that an understanding of computer architecture makes it possible to “ride
the wave” of technological change, secure in the feeling that you are equipped to deal with
new developments as they occur, and to have fun doing so. When you are done reading
this book you will have substantial knowledge about how a computer works and a good
understanding of the operating concepts, the hardware, and system software that make up
a computer. You will see the interaction between computers and between data and the
computer. Plus, you will have learned lots of jargon that you can show off at parties and
job interviews.

This textbook is designed for a wide range of readers, both undergraduate and
graduate. The material is specifically directed toward IS and IT majors. There are no explicit
prerequisites, although the book assumes that the student is familiar with a personal
computer. It also assumes (but does not require) some basic programming skills: although
there is no programming in the book, program code is occasionally used as an example to
clarify an idea, and a knowledge of programming is helpful at understanding instruction
set design and program execution concepts. The material in this textbook conforms to
the criteria of the IT Infrastructure course as described in the December 2008 draft of
the joint IS 2008 standard curriculum. Although the material in this book may be useful
as background for system design and implementation project courses, the course can be
placed anywhere in the curriculum.

Mostinstructors will not cover the entire textbook in a single semester. The organization
of the book is designed to allow an instructor to cover the major topic areas in different
levels of depth, depending on the experience and needs of the students. On the other hand,
it is my intention that this book will serve a student as a useful reference long after the
formal course is completed. It is designed for use as a book where a professional can look
up the basic concepts that clarify new developments as they occur.

This text is the outgrowth of courses that I have taught to IS majors and minors at
Bentley University at both the undergraduate and graduate level for thirty years. Student
responses to the material and the approach have generally been very enthusiastic. Many
students have returned after graduation to tell me that their knowledge in this area has
directly contributed to their career development. Along the way, student comments have
also been extremely helpful to me in the book’s continuing evolution.

Those familiar with previous editions will notice that the organization of the fourth
edition has undergone substantial revision to reflect current technological practices and
trends. In particular, it is no longer reasonable to discuss computers as individual units
without also considering the networks that tie them together; computer networking is
now covered thoroughly in its own section, and there is an increased emphasis on the
integration and synergy of the various components of the computer system and on the
system as a whole. Still, the basic philosophy, organization, and approach remain essentially
similar to those of the first edition, reflecting the unchanging nature of the underlying
principles.

PREFACE XXi

ORGANIZATION OF THE FOURTH EDITION
OF THE BOOK

The biggest challenge for me as the author of this book has been to preserve the guiding
principles established in the first edition, while reflecting the major changes in the way
computers are used, in the rapid deployment of new technology, and in the resulting
evolution of IS/IT curriculum to reflect those changes. The fourth edition is the most
substantial revision of this book to date, with a new title, a new chapter on systems,
and significantly increased coverage of networking. The case study chapters have been
updated and moved to the Web, along with the chapter on programming tools and the
supplementary chapters on logic design and instruction addressing. Still, users of previous
editions will find much that is familiar; after all, the way in which computers are used
in IS/IT may have changed, but the basic guiding principles of computer architecture are
essentially the same as they have been for many years.

The book is now organized into five parts totaling eighteen chapters, plus four
additional supplementary chapters that are posted on the Web. The first part serves as an
introduction and overview of the role of the computer in information systems; it introduces
the concept of a system and provides a brief introduction to each of the components that
make up a modern computer system. Each of the remaining four parts deals with a single
architectural aspect of the computer system.

Part Two discusses the role and representation of data in the computer. Here we
consider numbers, text, sound, images, video, and other data forms. Part Three presents
the hardware architecture and operational concepts. It introduces the components of a
computer and shows how they collaborate to execute computer instructions, discusses
the nature of a computer instruction set, and explores the interaction between the CPU,
memory, and I/O peripheral devices. Part Four presents a thorough introduction to the
basics of computer networking. Part Five discusses the system software, the programs
that function to make the resources of the computer system, and other interconnected
computer systems and components, accessible to the user and to application programs.

The approach within each group of chapters is layered. Each new layer builds upon the
previous material to add depth and understanding to the reader’s knowledge. Each topic
section consists of a short introduction that places the topic to be discussed into the context
of the computer system as a whole and then lays out in detail the organization of the
chapters within the section. Each topic area is introduced as gently as possible, using ideas
and examples that are already familiar to the student. Successive material is progressive and
accumulative. In addition to the numerous examples that are used throughout the text,
the supplementary chapters offer substantial case studies that show application of the text
material to current examples of importance. Overall, the approach is gentle, progressive,
and accumulative. As much as possible, each section is self-contained.

An overview of the organization of each part follows. More details can be found in the
introductions to each section.

Part One consists of two chapters that present a short overview of computing, placing
architectural concepts into the context of information technology. Chapter 1 introduces
the components of a computer system and shows the relationships among the components.

XX

.
1

PREFACE

It also presents a simple model of computing and discusses the importance of standards
and protocols in the development of computer systems. The chapter concludes with a
short history of computers from the architectural point of view. Chapter 2 focuses on the
concepts of systems, models, and system architectures, using various types of computer
systems as examples.

Chapters 3 through 5 comprise Part Two. Chapter 3 introduces number systems and
basic number system operations; it then explores the relationships between numbers in
different number bases and the conversion techniques between the different represen-
tations. Chapter 4 investigates different types of data formats, including alphanumeric,
image, video, and audio formats. It considers the relationship between numerical and
character-based representations and briefly introduces various devices and data formats
used for data input and output. Chapter 5 studies the various formats that are used to
represent and to perform calculations on integer and floating point numbers.

Part Three discusses the hardware architecture and operational aspects of the computer.
Chapter 6 begins the study with the introduction of the Little Man Computer, a simple
model that provides a surprisingly accurate representation of the CPU and memory. The
model is used to develop the concept of an instruction set and to explain the basic principles
of the von Neumann architecture. Chapter 7 extends the discussion to a real computer.
It introduces the components of the CPU and shows their relationship to the Little Man
Computer model. It introduces the bus concept, explains the operation of memory, presents
the instruction fetch-execute cycle, and discusses the instruction set. It identifies important
classes of instructions and discusses the ways in which instructions can be categorized.

Chapter 8 expands the material in Chapter 7 to consider more advanced features of the
CPU and memory. It offers an overview of various CPU architectures. It continues with a
discussion of techniques for improving memory access, particularly cache memory, and an
introduction to current CPU organization, design, and implementation techniques, includ-
ing pipelining and superscalar processing. This chapter also introduces multiprocessing (or
multicore, in current terminology) concepts.

Chapter 9 presents the principles of I/O operation, and Chapter 10 illustrates how I/O
is performed in various I/O devices. Chapter 11 discusses the computer system as a whole. It
discusses interconnection techniques and integration of the various hardware components.
It also addresses the interconnection of computers to increase computer performance and
reliability, with a specific focus on clustering and on grid computing.

Three supplementary chapters on the Web provide additional resources to support the
chapters in Part Three. Supplementary Chapter 1 (SC1) offers an introduction to Boolean
algebra, combinatorial logic, and sequential logic for those readers that would like a deeper
understanding of the computer in its simplest and most elegant form. Supplementary
Chapter 2 (SC2) offers three detailed case studies of important architectures: the Intel
x86 family, including the Pentium IV architecture and Itanium extensions, the PowerPC,
and the IBM zSystem. Supplementary Chapter 3 (SC3) discusses alternative approaches to
instruction addressing.

Part Four presents a thorough introduction to networking. Chapter 12 introduces
the major features and characteristics of networking, including a careful introduction to
communication channels, a detailed discussion of layered network models, with particular
emphasis on TCP/IP and Ethernet models, an introduction to network topologies, and
finally, a discussion of the different types of networks in use, including LANs, MANs, WAN:Ss,

PREFACE XXiii

and the backbones that form the foundation of the Internet. Chapter 13 expands on the
material in Chapter 12 to discuss specific details of various layers, including discussions of
DNS, TCP connections, IP and physical address resolution, the operation of Ethernet, alter-
native protocols, and more. Chapter 14 focuses primarily on communication channel tech-
nology, including analog and digital signaling, modulation and data conversion techniques
between analog and digital, the characteristics of transmission media, and wireless network-
ing. A portion of Chapter 14 appeared in previous editions as a supplementary chapter.

Part Five is dedicated to a discussion of system software. Chapter 15 provides an
overview of the operating system. It explains the different roles played by the operating
system and introduces the facilities and services provided. Chapter 16 presents the role of
the operating system from the viewpoint of the user of a system. Chapter 17 discusses the
all-important topic of file systems. Chapter 18 discusses the operating system as a resource
manager, with an in-depth discussion of memory management, scheduling, process control,
network services, and other basic operating system services. Chapter 18 includes a detailed
introduction to virtual memory technique, and also includes an introduction to virtual
machines. In addition to its hardware discussions, Supplementary Chapter 3 also provides
current Windows, UNIX/Linux, and z/OS case studies.

A fourth supplementary chapter provides an introduction to the system development
software that is used for the preparation and execution of programs.

A detailed list of the changes between the second and third editions of the book can be
found at the book Web site, www.wiley.com/college/englander.

This book has been a continuing labor of love. My primary goal has been to create
and maintain a textbook that explains computer architecture in a way that conveys to you,
the reader, the sense of excitement and fun that I believe makes a career in information
systems and technology so satisfying. I hope that I have succeeded to some extent.

ADDITIONAL RESOURCES

Additional resources for students and instructors may be found at the textbook Web
site, www.wiley.com/college/englander. I can also be reached directly by e-mail at
ienglander@bentley.edu. Although I am happy to communicate with students, I am
unable to supply tutorial help or answers to review questions and exercises in the book.

ACKNOWLEDGMENTS

I’ve discovered that a major, ongoing textbook project is a formidable task. Many individuals
have helped to make the task manageable—and kept me going when, from time to time,
I became convinced that textbooks really do appear by magic and are not written by
humans. It is impossible to thank people adequately for all their help and support. First
and foremost, a special thank you to my nearest and dearest friends, Wilson Wong, Rich
Braun, Luis Fernandez, Jan Harrington, Ray Brackett, and Evan Horn. Their continuing
backup through four editions has been amazing! I couldn’t have asked for a better support
team. The champagne is on ice. Yet again!

My continuing thanks, too, to Stuart Madnick. Stuart, your technical inspiration and
personal encouragement was invaluable to me when I struggled to get the first edition

XXiv

PREFACE

of this book going. You helped me to believe that this project was actually possible and
worthwhile. That support has continued to inspire me through every subsequent edition.

Next, I thank the many colleagues at Bentley University who shared their ideas,
experiences, and encouragement. Colleagues Wilson Wong, David Yates, Doug Robertson,
Mary Ann Robbert, Lynn Senne, Jim Linderman, Kay Green, and Peggy Beranek have
all offered contributions that have substantially improved the book over four editions. A
special thank you, David, for your helpful technical discussions and reviews of the new
data communications material in the fourth edition, and to you, Wilson, for serving as
a technical reviewer for both the third and fourth editions, providing many comments,
rewrites, and suggestions for clarification, and for creating many of the ancillary materials
for the book. A special thank you also to Linda Cotroneo, our Bentley CIS Department
Academic Administrative Assistant, who for the past twenty years has generously offered
more empathy and support than any person deserves. From the bottom of my heart, Linda,
thank you!

Thanks to the editors, production people, and marketing personnel at John Wiley &
Sons and the editors and production people at Laserwords. You hassled me when I needed
to be hassled and left me alone when I needed to be left alone. Incredible intuition, that! I
consider myself fortunate to have worked with such wonderful people. Particular thanks
to Beth Lang Golub, Trish McFadden, and Kate Boilard for your ongoing efforts to make
this book perfect, even though we all know it’s impossible!

I would like to acknowledge the reviewers who gave of their time and effort to
assure that this book was as good as it could be: Dr. Stu Westin, The University of
Rhode Island; Alan Pinck, Algonquin College; Mark Jacobi, Programme Director for
Undergrad Computing at Sheffield Hallam University; Dr. Dave Protheroe, South Bank
University, London; Julius Ilinskas, Kaunas University of Technology; Anthony Richardson,
United States Army Informations Systems Engineering Command; Renee A.Weather, Old
Dominion University; Jack Claff, Southern Cross University; Jan L. Harrington, Marist
College; YoungJoon Byun, California State University, Monterey Bay; William Myers,
Belmont Abbey College; Barbara T. Grabowski, Benedictine College; G.E. Strouse, York
College of Pennsylvania; Martin J. Doyle, Temple University; Richard Socash, Metropolitan
State College of Denver; Fred Cathers, Franklin University. Your comments, suggestions,
and constructive criticism have made a real difference in the quality of this book. Thank you.

Many colleagues offered corrections to previous editions that have had important
impact on the quality of the current edition. To each and everyone, your assistance
in eliminating errors has been much appreciated. Among these, I especially wish to
acknowledge David Feinstein and his crew at the University of South Alabama, Gordon
Grimsey of AIT in Auckland, New Zealand, and Stu Westin of University of Rhode Island
for efforts well above and beyond the call of duty. Stu has also generously made his
excellent Little Man Simulator publicly available, for which I am truly grateful. Thanks for
everything, Stu.

Numerous students, too many to name you all, also offered corrections, made
suggestions, and provided ideas. Please accept my deepest appreciation and thanks.

I hope that I have not forgotten anyone. If I have, I apologize.

I have strived to make this book as technically accurate as is humanly possible.
Nonetheless, I know that errors have a way of creeping in when one least expects them. I
would greatly appreciate hearing from readers who find errors that need correction. Your
comments and suggestions about the book are also welcome.

ABOUT THE AUTHOR

for more than forty-five years. He has designed logic circuits, developed integrated

circuits, developed computer architectures, designed computer-controlled systems,
designed operating systems, developed application software, created the initial system
design for a large water monitoring system, performed software auditing and verification of
critical control software, and developed and specified hardware components and application
software as a consultant for business systems large and small.

Asan educator he has contributed papers and given workshops on end-user computing,
e-commerce, and on computer architecture education in the IS curriculum. He was an
invited contributor and reviewer for the I1S-97 and IS-2002 information systems curricula,
and continues to take an interest in the technical infrastructure components of the IS/IT
curriculum. He is actively involved in the application of new technology to information
systems.

Dr. Englander has a Ph.D. from MIT in Computer Science. His doctoral thesis was
based on the design of a large image processing software laboratory. At MIT he won the
Supervised Investors Award for outstanding teaching. He holds the rank of Professor of
Computer Information Systems at Bentley University, where he has taught full-time for
thirty years.

D r. Irv Englander has been involved in many different aspects of the computing field

XXV

| ONE

The

executes

A computer-based information system is made up of a number of different elements:

The data element. Data is the fundamental representation of facts and
observations. Data is processed by a computer system to provide the information
that is the very reason for the computer’s existence. As you will see, data can take
on a number of different forms.

The hardware element. Computer hardware processes the data by executing
instructions, storing data, and moving data and information between the various
input and output devices that make the system and the information accessible to
the users.

The software element. Software consists of the system and application

programs that define the instructions that are executed by the hardware. The
software determines the work to be performed and controls operation of the
system.

The communication element. Modern computer information systems depend on
the ability to share processing operations and data among different computers
and users, located both locally and remotely. Data communication provides this
capability.

combination of hardware, software, communication, and data make up the

architecture of a computer system. The architecture of computer systems is remarkably
similar whether the system is a playstation, a personal computer that sits on your lap while
you work, an embedded computer that controls the functions in your cell phone or in your
car, or a large mainframe system that is never actually seen by the hundreds of users who
access it every day.

Even more remarkably, the basic architecture of computer systems has changed
surprisingly little over the last fifty-five years. The latest IBM mainframe computer

essentially the same instruction set as the mainframe computer of 1965. The

basic communication techniques used in today’s systems were developed in the 1970s. As
new as it might seem, the Internet will celebrate its fortieth anniversary in 2010. All of

AN OVERVIEW OF
COMPUTER SYSTEMS

this is surprising considering the growth of computing, the rapid change of technology,
and the increased performance, functionality, and ease of use of today’s systems. This
makes the study of computer architecture extremely valuable as a foundation upon which
to understand new developments in computing as they occur.

Computer system architecture is the subject of this textbook. Each element of the
system is addressed in its own section of the text, always with an eye to the system as a
whole.

Part I is made up of two chapters that presents an overview of systems, and of the
computer system in particular.

Chapter 1 addresses a number of issues, including

B The ways in which a knowledge of computer architecture enhances our abilities
as computer users and professionals

B Asimplified view of typical computer system architectures
B The basic components that make up a computer system
B The fundamental operations that are performed by computer systems

Chapter 1 concludes with a brief architectural history of the computer.

An encompassing theme throughout this text is that of systems and system archi-
tecture. The words “system” and “architecture” appear throughout this book: we talk
about information systems, computer systems, operating systems, file systems, software
architecture, I/O architecture, network architecture and more. You will probably take a
course in System Analysis and Design sometime in your college career.

Although most people have an instinctive understanding of what a system is, it is more
important for us as system professionals to understand the concepts of systems and system
architecture at a deeper level than the average person. Chapter 2 offers careful definitions
and examples of the concept of systems and system architecture, both generally and in the
specific context of the computer systems that are the focus of this book.

CHAPTER |

COMPUTERS AND SYSTEMS

— COMPUTERVILLE
\>7 » ‘ﬂ ﬁ‘ LAV

] |

AN

—

|

ENGUISH |

| [SPOKEN
| L HERE J‘

SENGa)

N

[IM HUGH Y'NES. T NEED SOME-]
FEEMER. | ONE T0 EXPLAIN THIS |
MAY T COMPUTER IN PLAWN, |
HELP NOU?

CERTAINLY, NOU.

—

I 5ISTS OF FOUR MAIN
| PRRTS. THIS IS THE

PLAIN, SIMPLE ENGLISH. | THANK | 7 THE COMPUTER cON- Y ThHE

MONITOR. |

.. .UNLESS YOU 6O FOR
THE HARD DISK... OR
CONVERT NOUR PC TO

AN XT WITH A 20-MEGA-
BYTE HARDCARD, TAKING i

[THE COMPUTER CAN 0O
NOTHING UNTIL NOU

ONLY 12 SLOTS, WITH
40K ON THE MOTHER-
BOARD, ALLOWING FuLL
ACCESS TO AL RAM-RESL-
DENT MEMORY AND THE
LATEST UPGRADES ON

ALL MENU-DRIVEN V-, jj
TEGRATED SOFTWARE ! L
A -

THIS 1S THE KEYBOARD. Y DISK |
THIS IS THE CONTROL DRIVES,
UNIT, WITH SPACES FOR

| THE'DISK DRWES.

.
\

LASERTET !
KILOHERTZ !
SPOOLER !

MR. FEEMER HAS |
LAPSED INTO HIS |

NATIVE TONGUE.
s,

327D
Y A ‘

=z

CATHY © 1986 Cathy Guisewite. Reprinted with permission of UNIVERSAL PRESS SYNDICATE. All rights reserved.

1.0 INTRODUCTION

It is nearly impossible today to escape the immediate reach of computers and
computer-based systems. There is probably a cell phone in your pocket or on your
desk and, perhaps, an iPod as well. For many of you, your laptop or desktop computer
is sitting nearby as you read this paragraph. And that’s not all. Your car probably
has several embedded computers controlling various functions. Even your microwave
oven and the machine that launders your clothes depend on computers to function
properly. As you are probably aware, most of these machines can talk to each other,
using the Internet or some other networking technology.

Indeed, the jargon of computers has become a part of common daily language.
You can open a newspaper and find references to expressions such as “2 GB DDRAM”
or “WXGA LCD display” or “2MB level 2 cache” or “Wi-Fi” in articles and
advertisements. (In a way, it’s scary!) The ad in Figure 1.1, taken from a Sunday
newspaper flier, is typical of recent computer ads.

You’ll notice that this computer features a “Core 2 Duo Processor” CPU, 2 GB of
DDR2 SDRAM memory, a 16 x DVD +RW Drive, and a 160 GB SATA hard drive. It
also contains a 256 MB PCI Express graphics card among other things. But how good
a system is this? Are these features important to the user? Is this the right combination
of features that you need in your computer to have the computer perform the work
that you wish to get done? Are there features missing that we need? Is a Core 2 Duo
processor the best CPU for us? Perhaps we are paying too much for the performance
that we need. Or maybe we need more. And what does “Core 2 Duo” mean, anyway?
What I/O ports might you need to assure a satisfy long-term investment of computers
for your organization? Is a 16 x DVD £RW drive adequate for your work? What if you
have to burn a lot of disks? What other information about this system would allow
you to make a more informed decision? (For example: Hey—where’s the networking
capability?)

Some of the expressions used in these articles and ads are obvious from the
context. Other references may be more obscure. Presumably, everyone today knows
what a “display monitor” is. But how many people know the meaning and significance
of the terms “cache memory” or “multitasking” or “PCI Express bus”? Yet all
these expressions have appeared recently in daily newspaper advertisements with the
assumption that people would understand the meaning of the ad.

Despite the jargon, there is obviously no need to understand the inner workings of
most modern computer-based systems to operate them adequately. Indeed, in many
cases the presence of the computer is hidden from us, or embedded, and its operation
invisible to us as users.

Even as experienced users, we can run standard software packages on a personal
computer without understanding exactly how they work; we can program a computer
in a high-level language without understanding the details of how the machine

6 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 1.1

A Typical Computer Ad

TECHNOLOGY CHOICES

New! Vostre 400 Mini Tower

Only Drex delivers this combination of
performance and expandibility in a system
designed exclusively for Small Businesses—
the Vostre 400.

Intex Core 2 Duo Processor

Genuine Home Basic Operating System

2GB DDR2 SDRAM

160GB SATA Hard Drive

16x DVD+/-RW Drive

256MB PCI Express Graphics Card

1-Yr Limited Warranty, Next Business Day On-Site
Service, and Hardware Warranty Support

20" Widescreen Flat Panel Display

ON SALE NEW! Lower-priced upgrades:

NUWI Upgrade to 4GB Memory, 250GB Hard Drive,
. and 22" Widescreen Flat Panel Display for
only $90!!

executes the individual instructions; we can design and implement Web pages without
understanding how the Web browser gets its pages from a Web server or how the Web
server creates those pages; we can purchase a computer system from a salesperson without
understanding the specifications of the system.

And vyet, there is something missing. Perhaps the package doesn’t do exactly what
we want, and we don’t understand the machine well enough to risk fooling around with
the package’s options. Perhaps if we understood the system better we might have written
and configured the program to be faster and more efficient. Perhaps we could create Web
pages that load faster and work better. Perhaps the salesperson did not sell us the optimum
system for our job. Or perhaps it’s nothing more than a sense of excitement that’s missing.
But that’s important, too!

You are reading this book because you are a student studying to become a computer
professional, or maybe you are simply a user wanting a deeper understanding of what the
computer is all about. In either case, you will most likely be interacting with computer
systems for the rest of your life. It’s nice (as well as useful) to know something about the
tools of the trade. More important, understanding the computer system’s operations has
an immediate benefit: it will allow you to use the machine more effectively.

CHAPTER | COMPUTERS AND SYSTEMS 7

As a user, you will be aware of the capabilities, strengths, and limitations of the
computer system. You will have a better understanding of the commands that you use.
You will understand what is taking place during the operation of the programs that you
use. You will be able to make informed decisions about your computer equipment and
application programs. You will understand more clearly what an operating system is, and
how to use it effectively and to your advantage. You will know when it is preferable to do
a job manually, and when the computer should be used. You will understand the most
efficient way to “go online,” and what benefits might be gained from a home network. You
will improve your ability to communicate with system analysts, programmers, and other
computer specialists.

As a programmer, it will allow you to write better programs. You will be able to use
the characteristics of the machine to make your programs operate more effectively. For
example, choosing the appropriate data type for a variable can result in significantly faster
performance. Soon you will know why this is so, and how to make the appropriate choices.

Computers can perform integer calculations incorrectly if the integers exceed a certain
size, but they do not necessarily warn the user of the error. You will learn how this can
occur, and what can be done to assure that your programs generate correct results.

You will discover that some computers will process nested loops much more quickly
if the index variables are reversed. A rather surprising idea, perhaps, and you’ll understand
why this is true.

You will understand why programs written in a compiled language like C++ usually
run much faster than those written in interpreted program languages like BASIC or
scripting languages like JavaScript.

As a systems architect or system analyst, you will be responsible for the design and
implementation of systems that meet an organization’s information technology (IT) needs,
recognizing that the differences in the cost and capabilities of the components that you
select may have significant impact on the organization. With the knowledge gained here you
will be in a better position to determine and justify the set of computer system components
and the system architecture that are appropriate for a particular job and to determine the
tradeofts with other possible system architectures.

You’'ll be able to assist management in making intelligent decisions about system
strategy: should the company adopt a large mainframe/virtual machine system approach
for its Web servers, or would a system consisting of a network of off-the-shelf blade servers
provide better performance at lower cost? You’ll be better prepared to analyze the best way
to provide appropriate facilities to meet the needs of your users. In an era of fast-changing
technology, youw’ll be more able to differentiate between simple technological obsolescence
that does not affect the organization’s requirements significantly and major advances that
suggest a real need to replace older equipment.

When selecting computers, you would like to purchase the computer that best meets
the needs of the organization’s applications and the users. You must be able to read and
understand the technical specifications in order to compare different alternatives and to
match the system to the users’ needs. This book will teach you what you need to know to
specify and purchase a system intelligently. You’ll know the differences between various
CPU technologies and the advantages and disadvantages of each. You will learn what
peripheral hardware is appropriate for your organization’s files and the trade-offs between
different file system formats, what is required to build an intranet, and what the speed and

8

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

size limitations of a particular system are. You’ll be able to compare the features of Windows
and Linux knowledgeably and decide which ones are important to you. You’ll be able to
apply your basic understanding of computers to new technologies such as virtual machines
as they appear. You’'ll learn to understand the jargon used by computer salespeople and
judge the validity of their sales claims.

As a system administrator or manager, your job is to maximize the availability and
efficiency of your systems. You will need to understand the reports generated by your
systems and be able to use the information in those reports to make changes to the systems
that will optimize system performance. You will need to know when additional resources are
required, and be able to specify appropriate choices. You will need to specify and configure
operating system parameters, set up file systems, manage system and user PC upgrades in
a fast-changing environment, reconfigure networks, provide and ensure the robustness of
system security, and perform many other system management tasks. The configuration of
large systems can be very challenging. This text will give you an understanding of operating
system tools that is essential to the effective management of systems.

As a Web services designer, you will be able to make intelligent decisions to optimize
your Web system configurations, page designs, data formatting and scripting language
choices, and operating systems to optimize customer accessibility to your Web services.

In brief, when you complete this book, you will understand what computer hardware
and software are and how programs and data interact with the computer system. You
will understand the computer hardware, software, and communication components that
are required to make up a computer system and what the role of each component in the
system is.

You will have a better understanding of what is happening inside the computer when
you interact with the computer as a user. You will be able to write programs that are
more efficient. You will be able to understand the function of the different components of
the computer system and to specify the computer system you need in a meaningful way.
You will understand the options that you have as a system administrator or Web services
designer.

In an era in which technology changes extremely rapidly, the architecture of the com-
puter system rests on a solid foundation that has changed only slightly and gradually over
the last sixty years. Understanding the foundations of computer system architecture makes
it possible to flow comfortably with technological change and to understand changes in
the context of the improvements that they make and the needs that they meet. In fact,
interviews with former students and with IT executives and other IT professionals clearly
indicate that a deep understanding of the basic concepts presented here is fundamental to
long-term survival and growth in the field of information technology and IT management.

This type of understanding is at the very foundation of being a competent and
successful system analyst, system architect, system administrator, or programmer. It may
not be necessary to understand the workings of an automobile engine in order to drive a
car, but you can bet that a top-notch race car driver knows his or her engine thoroughly
and can use it to win races. Like the professional race car driver, it is our intention to
help you to use your computer engine effectively to succeed in using your computer in a
winning way. The typical end user might not care about how their computer system works,
but you do.

... These are the goals of this book. So let’s get started!

CHAPTER | COMPUTERS AND SYSTEMS 9

1.1 THE STARTING POINT

Before we begin our detailed study of the architecture of computer systems, let us briefly
review some of the fundamental principles and requirements that guide computer system
design and operation.

In asimple scenario, you use your laptop or desktop personal computer to word process
a document. You probably use a mouse to move around the document and to control the
features of the word processor software application, and you use the keyboard to enter
and modify the document text data. The word processor application program, together
with your document, appears on a screen. Ultimately, you might print the document on a
printer. You store the document on a disk or some other storage device.

The fundamentals of a typical computer system are readily exposed in this simple
example. Your mouse movements and clicks and your keyboard entry represent input to
the system. The computer processes the input and provides output to the screen, and,
perhaps, to a printer. The computer system also provides a storage medium of some sort,
usually a hard disk, to store the text for future access. In simplest terms, your computer
receives input from you, processes it, and outputs results to the screen. Your input takes the
form of commands and data. The commands tell the computer how to process the data.

Now consider a second, slightly more complex example. Your task in this example is
to access a Web page on the Internet. Again, your input to the computer is via mouse and
keyboard. When you type the Web page URL, however, your computer sends a message
to another computer that contains Web server software. That computer, in turn, sends a
Web page file that is interpreted by the browser on your computer and presented on your
screen. You are probably already aware that HyperText Transfer Protocol (HTTP) is used
as a standard for Web message exchanges.

The elements of this example differ only slightly from the first example. Your command
inputs tell a Web browser software application on your computer what processing is to take
place; in this case, your desire to access a Web page. The output from your computer is a
message to a Web server on the remote computer requesting the data that represents the
Web page. Your computer receives the data as input from the network; the Web browser
processes the data and presents the Web page output on the screen. Figure 1.2 illustrates
the layout for this example.

The major differences between this and the first example are the source of the input
data and the fact that network connectivity is required between the two computers. Instead
of the keyboard, the input data to be processed by your Web browser comes from a
communication channel. (Note that the exact nature of the channel is not important for
this discussion.) In both cases, your computer receives data input to process, and control
input that determines how the data is to be processed, performs the processing, and
provides output.

These two examples contain all of the key elements found in any IT system, large or
small.

B AnIT system consists of one or more computer systems; multiple computer
systems are connected together using some type of network interconnectivity. As
a matter of necessity, network interfaces must conform to standard agreements,
known as protocols, for messages to be understood by both computers during a
message exchange between a pair of computers. The network itself can take on a

10 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 1.2

Typical Web Browser Application Use

User

Web Browser

Web Server

/

Page request p |=*|
message age request

message

Communication ——

Channel
R —
HTML
file file

variety of forms, provided that the interface requirements are met, and are
determined by such characteristics as performance, convenience, and cost.

The work performed by an individual computer system within the IT system can
be characterized by input, processing, and output. This characterization is often
represented by the Input-Process-Output (IPO) model shown in Figure 1.3.
Storage is also represented within this model. Alternatively, storage can be
interpreted as output to be saved for use as future input. Storage is also used to
hold the software programs that determine the processing operations to be
performed. The ability to store programs and data on a temporary, short-term,
or long-term basis is fundamental to the system. In Chapter 2, Section 2.2, we
will show that all IT systems can ultimately be characterized by the same basic
IPO model at all levels, from a single computer to a complex aggregation of
computers, although the complexity of large systems may obscure the model and
make it more difficult to determine the actual inputs, outputs, and processing

FIGURE 1.3

A Computer Process

Storage

/

L

Input Process Output

3ul3unodoy 1pai)

Jajuld

3uIsIJeApY

9|qefed
SJUN022Y

3|qenladal

sales
SJUN022Y

Jeuld

3uluueld
|eloueul

Suiuue|d
9 yoJeasay

aoueuly

Sunayiel
Suiddiys ~—— ‘ewnd
~
uoddng
uisnoyaiepm Aiojuanu|
Ajus JaplQ
3uiseyoind
sajes
juawjiying
13pio
M
JouIalu| 0L
JONJBS oM JBAJRS JoNIBS JBNIBS gom
18WB1U| ‘sddy asegeleq lauediu|

1n0AeT walsAg Jaindwo) || paudwis v
P'1 34n9H14

12 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

operations. The IPO model provides an important basic tool for system analysis
and design practices.

B The components of an individual computer system consist of processing
hardware, input devices, output devices, storage devices, application software,
and operating system software. The task of the operating system software is to
provide overall control of the individual system, including management of input,
output, and file storage functions. The medium of exchange, both with users and
between computers within a larger system, is data. (Note that the messages
between computers in the second example are a form of data.) Figure 1.4 is a
simple illustration of computer systems embedded in a larger IT system.

Figure 1.5 summarizes the basic operations that are performed during computer
processing. These operations, in turn, can be reduced to the primitive operations that
are also familiar to you from your understanding of programming languages. The prim-
itive processing operations common to high-level programming languages are shown in
Figure 1.6.

1.2 COMPONENTS OF THE COMPUTER SYSTEM

As noted in the previous section, there are three components required for the implemen-
tation of a computerized input-process-output model:

1. The computer hardware, which provides the physical mechanisms to input and
output data, to manipulate and process data, and to electronically control the
various input, output, and storage components.

2. The software, both application and system, which provides instructions that tell
the hardware exactly what tasks are to be performed and in what order.

3. The data that is being manipulated and processed. This data may be numeric, it
may be alphanumeric, it may be graphic, or it may take some other form, but in
all cases it must be representable in a form that the computer can manipulate.

In modern systems, input entry, output display, and storage of the data and software
used for processing often take place at a location different from the computer where the

FIGURE 1.5

Basic Computer Operations

= |nput/output
m Basic arithmetic and logical calculations

m Data transformation or translation (e.g., program compilation, foreign
language translation, file updating)

m Data sorting
m Searching for data matches
m Data storage and retrieval

= Data movement (e.g., movement of text or file data to make room for
insertion of additional data)

CHAPTER | COMPUTERS AND SYSTEMS 13

FIGURE 1.6

Basic High-Level Language Constructs

= |nput/output (including file storage and retrieval)
= Arithmetic and logical assignment statements
m True/false decision branching (IF-THEN-ELSE or [F-GOTO)

m | oops and/or unconditional branching (WHILE-DO, REPEAT-UNTIL,
FOR, GOTO)

actual processing occurs. In many installations, actual processing is distributed among
computer systems, with particular results passed to the individual systems that require
them. Therefore, we must also consider a fourth component:

4. The communication component, which consists of hardware and software that
transport programs and data between interconnected computer systems.

The hardware and system software components make up the architecture of the
computer system. The communication component connects individual computer systems
together. The data component, and also the application software, while fundamental to
the operation of the computer system, are supplied to the computer system by the user,
rather than being a part of the architecture of the computer system itself. (It is useful to
note, however, that application software and data structure are often considered as part of
the overall system architecture when one considers the architecture from the perspective of
the organization. We explore this issue briefly in Chapter 2. Note, however, that the focus
of this book is primarily on computer system architecture, rather than on organizational
system architecture.)

The Hardware Component

The most visible part of the computer system is obviously the hardware that makes up the
system. Consider the computer system upon which you write and execute your programs.
You use a keyboard and mouse to provide input of your program text and data, as well as
for commands to the computer. A display screen is commonly used to observe output. A
printer is frequently available as an alternative output to the screen. These are all physical
components.

Calculations and other operations in your program are performed by a central
processing unit (CPU) inside the computer. Memory is provided to hold your programs
and data while processing is taking place. Other input and output devices, such as a disk
and SD plug-in cards, are used to provide long-term storage of your program and data files.
Data and programs are transferred between the various input/output devices and memory
for the CPU to use.

The CPU, memory, and all the input, output, and storage devices form the hardware
part of a computer system. The hardware forms the tangible part of the system. It is
physical—you can touch it, which is what the word “tangible” means. A typical hardware

14 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 1.7
A Typical Personal Computer System
USB
Interface CD-R/RW or DVD

Network

interface — =
Wb
- KON

Hard disk

_E“:“:“: .
— CPU Memory Printer
Keyboard

I/O Interface l:

Computer

O Speaker

= Mouse

Monitor

block diagram for a computer is seen in Figure 1.7. In addition to the input and output
devices shown in this diagram, Figure 1.8 lists some other input and output devices that
are frequently seen as part of computer systems. The diagram in Figure 1.7 actually applies
equally well to large mainframe computers, small personal computers, and even devices
with computers embedded in them, such as PDAs, iPods, GPSs, and cell phones. Large and
small computers differ primarily in speed, capacity, and the selection of peripheral devices
provided. The basic hardware components and design are very similar.

Conceptually, the CPU itself is often viewed as a composition of three primary subunits:

1. The arithmetic/logic unit (ALU) where arithmetic and Boolean logical
calculations are performed.

2. The control unit (CU), which controls the processing of instructions and the
movement of internal CPU data from one part of the CPU to another.

3. The interface unit, which moves program instructions and data between the
CPU and other hardware components.

(In modern CPUs, the actual implementation is usually modified somewhat to achieve
higher performance, although the basic concepts are carefully preserved. More about that
later, in Chapter 8.)

FIGURE 1.8

Other Common Input/Output Devices

m Bar Code Scanners

m Optical Character Recognition Scanners
m |[mage Scanners

= RFID Readers

m Video and Audio Capture Devices
= TV Tuners

m Video Cameras

m SD, SmartCard, etc. Card Readers
= Fingerprint and Face Readers

= Touch Screens

= Graphics Tablets

= X-Y Plotters

CHAPTER | COMPUTERS AND SYSTEMS 15

The interface unit interconnects the CPU with memory
and also with the various I/O (input/output) modules. It
can also be used to connect multiple CPUs together. In
many computer systems, a bus interconnects the CPU,
memory, and all of the I/O components. A bus is simply
a bundle of wires that carry signals and power between
different components. In other systems, the I/O modules
are connected to the CPU through one or more separate
processors known as channels.

The main memory, often known as primary storage,
working storage, or RAM (for random access memory),
holds programs and data for access by the CPU. Primary
storage is made up of alarge number of cells, each numbered
and individually addressable. Each cell holds a single binary
number representing part of a data value or part of an
instruction. The smallest addressable size of the cell in most

current computers is 8 bits, known as a byte of memory.
Eight bits of memory can only hold 256 different patterns,
so neighboring cells in memory are nearly always combined
to form groupings with a larger number of bits. In many systems, for example, 4 bytes
of memory combine to form a 32-bit word. Modern computers address memory at least
4 bytes (a “32-bit” computer) or 8 bytes (a “64-bit” computer) at a time to take advantage
of larger instruction and data groupings.

The amount of primary storage determines the maximum number of instructions
and data words that can be loaded into memory from a peripheral device at one time.
For example, a computer with 2 gigabytes (GB), actually 2,147,483,648 bytesl, of memory
would not be able to execute a program that requires 2.7 GB for its instructions and data
unless some means is provided within the computer to load the program in sections as
each section of the program is needed.

The amount of primary storage provided in a typical computer has increased rapidly
as computer technology improves. Whereas 64 kilobytes (KB) of memory was considered
a large amount in 1980, even the least expensive personal computers today usually have
2 gigabytes (GB) of memory or more. Large computers may provide many gigabytes of
primary storage. There are programs on the market that require hundreds of megabytes
(MB) of memory to execute. The inexpensive availability of increased amounts of memory
have allowed the design of very sophisticated programs that would not have been possible
just a few years ago.

The same is true for secondary storage. Even small personal computers provide hard
disks with storage measured in tens or hundreds of gigabytes. The storage of images and
video, in particular, requires tremendous amounts of storage capacity. It is not uncommon
to see arrays of hard disks, even on some personal computers, providing trillions of bytes
(specified as terabytes) of long-term storage.

11 Kilobyte actually equals 1024 bytes. Thus, 1 MB = 1024 x 1024 = 1,048,576 bytes x 2048 = 2,147,483,648
bytes.

16 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

The instructions that form a particular program are stored within the primary storage,
then brought into the central processing unit and executed. Conceptually, instructions are
brought in and executed one at a time, although modern systems overlap the execution
of instructions to some extent. Instructions must be in primary storage in order to be
executed. The control unit interprets each instruction and determines the appropriate
course of action.

Each instruction is designed to perform a simple task. Instructions exist to perform
basic arithmetic, to move data from one place in the computer to another, to perform
/O, and to accomplish many other tasks. The computer’s power comes from the ability
to execute these simple instructions at extremely high speeds, measured in millions or
billions or trillions of instructions executed per second. As you are already aware, it is
necessary to translate high-level language programs into the language of the machine for
execution of the program to take place. It may require tens or even hundreds of individual
machine instructions to form the machine language equivalent of a single high-level
language statement. Program instructions are normally executed sequentially, unless an
instruction itself tells the computer to change the order of processing. The instruction
set used with a particular CPU is part of the design of the CPU and cannot normally
be executed on a different type of CPU unless the different CPU was designed to be
instruction set compatible. However, as you shall see, most instruction sets perform similar
types of operations. As a result, it is possible to write programs that will emulate the
instruction set from one computer on a computer with a different instruction set, although
a program written for the original machine may execute slowly on the machine with the
emulator.

The data that is manipulated by these instructions is also stored in memory while
being processed. The idea that the program instructions and data are both stored in
memory while being processed is known as the stored program concept. This important
concept is attributed primarily to John von Neumann, a famous computer scientist. It
forms the basis for the computer architecture that is standard to nearly every existing
computer.

The Software Component

In addition to the hardware requirement, your computer system also requires software.
Software consists of the programs that tell the computer what to do. To do useful work,
your system must execute instructions from some program.

There are two major categories of software: system software and application software.
System software helps you to manage your files, to load and execute programs, and to
accept your commands from the mouse and keyboard. The system software programs
that manage the computer are collectively known as an operating system, and differ from
the application programs, such as Microsoft Word, or Firefox, or the programs that you
write, that you normally run to get your work done. Windows and Linux are the best
known examples of an operating system. Others include Unix, Mac OS X, Sun Solaris, and
IBM z/OS.

The operating system is an essential part of the computer system. Like the hardware,
it is made up of many components. A simplified representation of an operating system
is shown in Figure 1.9. The most obvious element is the user interface that allows

FIGURE 1.9

Simplified Operating System
Block Diagram

User
interface

!

CHAPTER | COMPUTERS AND SYSTEMS 17

you to execute programs, enter commands, and manipulate files. The
user interface accepts input from a keyboard and, in most modern
systems, a mouse, touch screen, or other pointing device. The user
interface also does output presentation on the display. On some

User systems, the output display might be simple text, but more likely the

display includes a graphical user interface with a windowing system,
Application and various gad'gets for manipulating the windows.
program The operating system’s application program interface (API), acts
as an interface for application programs and utilities to access the
internal services provided by the operating system. These include
file services, I/O services, data communication services, user interface
services, program execution services, and more.’

Many of the internal services are provided by the kernel mod-

Application programming ule, which contains the most important operating system processing
Interface functions. The remaining services are provided by other modules

t that are controlled by the kernel. The kernel manages memory by

File locating and allocating space to programs that need it, schedules time
management Kernel for each application to execute, provides communication between
system programs that are being executed, manages and arranges services

[and resources that are provided by other modules, and provides
1 security.

1/0 Network The file management system allocates and manages secondary
drivers module storage space and translates file requests from their name-based form
¢ ¢ into specific I/O requests. The actual storage and retrieval of the files is
performed by the I/O drivers that comprise the I/O component. Each

Hardware Network

I/O driver controls one or more hardware devices of similar type.

The network module controls interactions between the computer
system and the network(s) to which it is attached.

The operating system software has nearly always been stored on a hard disk, but
on some smaller systems, especially lightweight laptops and embedded systems such as
cell phones and iPods, a solid state disk or SD card may be used instead. On a few
systems the operating system is actually provided as a network service when the system
is turned on. In either case, the bootstrap or IPL (Initial Program Load) program in the
operating system is stored within the computer using a type of memory known as ROM,
or read-only memory. The bootstrap program provides the tools to test the system and to
load the remainder of the operating system from the disk or network. Although the physical
medium where the software is stored can be touched, the software itself is considered
intangible.

Together, the hardware and system software provide a working computer system
environment. Application software, communication support, and user data complete the
picture.

2The same term (API) is also sometimes used to describe the services provided by one application to another.
For example, Amazon and Google are among many companies whose application software provides API tools to
allow users to extend the functionality of the original software.

I8 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

The Communication Component

Very few modern computers or computer-based devices (which includes cell phones, iPods,
and automobile computers, to name just a few possibilities) operate independently. Instead,
they are tied to other computers directly, by modem, or through a network connection of
some sort. The computers may be located physically close to each other, or they may be
separated, even by thousands of miles. To work together, computers must have means to
communicate with each other. The communication component requires both hardware
and software to achieve this goal. Additional hardware components physically connect
computers together into multiprocessing systems, or clusters, or networks, or, via telephone,
satellite, or microwave, to computers at other remote locations. A communication channel
provides the connection between computers. The channel may be a wire cable, a fiber-optic
cable, a telephone line, or a wireless technology, such as infrared light, cellular phone, or
radio-based technology such as Wi-Fi or Bluetooth. Special I/O hardware, consisting of a
device such as a modem or network interface card (NIC) within the computer, serves as an
interface between the computer and the communication channel. There may be additional
hardware within the channel itself.

The communication component also requires additional software within the operating
system of each computer to make it possible for each computer to understand what the
other computers that they are connected with are saying. This software establishes the
connections, controls the flow of data, and directs the data to the proper applications
for use.

The Computer System

Our general description of the computer is valid for all general-purpose computer systems,
and also for most devices with computers embedded in them, regardless of brand name or
size. In more general terms, every computer system consists of a CPU, or central processing
unit, where all the processing takes place; memory to hold the programs and data while they
are being processed; and some form of input and output, usually one or more keyboards
and flat-screen display devices plus one or more forms of long-term storage, usually disks,
CDs or DVDs, and USB or SD plug-in memory. Most modern computer systems provide
more than one CPU (or “core”) within the computer system. A single CPU can process
only one instruction at a time; the use of multiple CPUs can increase processing speed by
allowing instructions that do not affect each other to be executed in parallel.

The validity of our general description is true regardless of how complex or simple the
computer system may seem.

As a specific example, the large z10 EC IBM mainframe computer shown in Figure 1.10
can provide complex Web services to thousands of users at a time. IBM mainframes can
have dozens of CPUs working together, with up to 1.52 terabytes (TB) of primary storage.
They are capable of executing instructions at a rate of tens of billions of instructions per
second! The powerful z/OS operating system can keep track of hundreds or thousands of
simultaneous users and divides the time among them to satisfy their differing requirements.
Even in its smallest configuration, the z10 EC Model S64 system, which is the largest current
model at this writing, provides at least 16 GB of memory and processes instructions at

FIGURE 1.10

IBM System z10 EC Mainframe Computer

Courtesy of International Business Machines Corporation.
Unauthorized use not permitted.

FIGURE I.11
A Laptop Computer

CHAPTER | COMPUTERS AND SYSTEMS |9

the rate of several billion instructions per second. In
addition to the CPU, there are many large I/O devices—
including tape drives and high speed printers—and disks
that store many billions or trillions of characters. The
computer alone weighs over 5000 pounds/2200 kilo-
grams!

In contrast, the laptop PC shown in Figure 1.11 is
designed for personal use. Everything is self-contained
in one package. This system only has 2 GB of primary
RAM storage and operates at a small fraction of the
speed of the z10 EC. A hard drive is one of many
storage options. The entire system, complete with display
screen, built-in webcam, multiple network connections,
and battery, weighs about three pounds (1.4 kilograms, if
you prefer).

Although these two systems seem very different, the
difference is actually one of magnitude, not of concept.
The large system operates much faster, can support much
more memory, and handles more input and output
much faster. It has operating system software that allows
many users to share this larger resource. Nonetheless, the
fundamental system architecture is remarkably similar in
both cases. Even the actual processing performed by the
CPU is similar.

In fact, today’s CPU operates in the same
fundamental way as its CPU counterpart of
fifty-five years ago, even though the con-
struction is very different. Since computers
all operate so similarly, regardless of size or
type, it is not difficult today to transfer data
between these different systems, allowing each
system to do part of the processing for higher
overall efficiency. This concept is known as
distributed computing. The fact that differ-
ent types of computers can work together,
share files, and communicate successfully is
known as open computing. Communication
technology fulfills the requirements that make
open and distributed computing possible.

Computers are sometimes divided into
categories: mainframe computers, minicom-

/ e e i \ puters, workstations, and personal computers,
Ll=l S N Rl i v T_\ but these categories are less significant than
. / o) ~ they once were. The capability of today’s per-
—_—§—§—m—— sonal computer far exceeds the capabilities of

© 2007 Hewlett-Packard Company.

a mainframe computer of just a few years ago.

20

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

The Sun Ultra 40 computer is an example of a workstation that is frequently used as though
it were a minicomputer, or even a small mainframe. Rather than attempting to categorize a
particular computer, it is usually more productive to describe its capabilities in comparison
to other systems being discussed or considered.

1.3 THE CONCEPT OF VIRTUALIZATION

The word “virtual” appears frequently throughout the computer literature in many
different contexts. To name a few applications of the word that appear in this text, there
are virtual computers, a Java Virtual Machine, virtual memory, and virtual networks.
Sometimes, a synonymous word, logical, is used instead: in networking we have logical
connections. Virtual storage consists of a relationship between logical memory and physical
memory.

It is not important at this point that you understand any of the specific concepts
mentioned above. (In fact, we realize that you probably don’t.) Since the words virtual and
logical represent a number of important concepts, however, we introduce them here.

In optics, a virtual image is the reflection that you see when you stand in front of a
regular mirror. (See, for example, the cartoon at the beginning of Chapter 18.) You know
that the image isn’t real. For one thing, it’s behind the wall that the mirror is mounted on.
For another, you can’t touch it. In early, time-shared computing, a large central computer
commonly supplied computing services to users at terminals located remotely from the
computer. In a sense, it seemed as though the user had access to a computer that was all her
own. Starting in the early 1970s, IBM offered the VM (virtual machine) operating system
to support this concept.

The American Heritage Dictionary offers two applicable definitions of virtual that
together describe the usage of the word in modern computing:

B Existing or resulting in essence or effect though not in actual fact, form, or name
B Created, simulated, or carried on by means of a computer or computer network

Wikipedia defines virtualization as “a broad term that refers to the abstraction of
computer resources’”.

In essence, virtual and logical are used to refer to something that appears as though it
is something different. Thus, the Java Virtual Machine (JVM) uses software to simulate a
real computer that works well with the Java programming language, even though the actual
computer executes a different set of instructions than the JVM. A logical connection in
networking offers the appearance of a direct communication link for passing data between
two computers, even though the actual connection might involve a complex series of
interconnections involving many computers and other devices and a variety of software to
make it all look simple. The virtualization of a computer allows a single computer to appear
as a multiplicity of computers, each with its own operating system and hardware resources.

1.4 PROTOCOLS AND STANDARDS

Standards and protocols are of great importance in computer systems. Standards are
agreements among interested parties, often manufacturers, to assure that various system
components will work together interchangeably. Standards make it possible to build

CHAPTER | COMPUTERS AND SYSTEMS 21

a computer with components from different suppliers, for example, knowing that a
graphics card will plug properly into a connector on a motherboard and that the image
representations will be consistent between the connector, the CPU, memory, and the
display monitor.

Standards apply to every aspect of computing: hardware, software, data, and commu-
nications, the voltage of a power supply, the physical spacing of pins on a connector, the
format of a file, the pulses generated by a mouse. Computer language standards, such as
Java and SQL, allow programs written on one type of computer to execute properly and
consistently on another, and also make it possible for programmers to work together to
create and maintain programs.

Similarly, data format and data presentation standards, such as the GIF and JPEG
image format standard, the Unicode text format standard, and the HTML and XML
Web presentation standards allow different systems to manipulate and display data in a
consistent manner.

Standards can arise in many different ways. Many standards occur naturally: a
proprietary data format (PDF) belonging to a single vendor becomes a de facto standard
due to the popularity of the product. The PDF print description language is an example
of such a standard. The format was designed by Adobe Corporation to provide a way
of communicating high-quality printed output between computers and printers. Other
standards are created because of a perceived need in an area where no standard exists.

Often a committee will form to investigate the requirements and create the standard.
The MPEG-2 and MPEG-4 standards, which establish the means for the transmission and
processing of digital video images, occurred in this way. The committee that designed the
standard, made up primarily of motion picture engineers and video researchers, continues
to develop the standard as improved techniques evolve. The JPEG photographic standard
and MP3 sound standard are other examples of standards that were developed formally.
Similarly, each version of HTTP has been formalized after many years of discussion by
parties interested in Web communication. A nonstandard protocol or data format is limited
in use to its supporters and may or may not become a standard, depending on its general
acceptance. For example, DVD videos encoded in the proprietary DivX format will play on
some DVD players, but not on others.

Protocols define the specific agreed-upon sets of ground rules that make it possible for
a communication to take place. Except for special applications, most computers perform
their operations such that each hardware or software computer unit will understand
what other computer units that they are connected with are saying. Protocols exist
for communications between computers, for the communications between various 1/O
devices and a computer, and for communications between many software programs. A
protocol specification defines such communication features as data representation, signaling
characteristics, message format, meanings of messages, identification and authentication,
and error detection. Protocols in a client-server system assure that requests are understood
and fulfilled and that responses are interpreted correctly.

Since the use of a proprietary protocol would be limited to those with permission to
use it, protocols are almost always eventually standardized. Although not always the case,
protocols that are not standardized tend to die out from lack of use. In fact, international
standards are often created to ensure that the protocols are universally compatible. As
an example, HTTP, HyperText Transfer Protocol, guides communication between Web

22

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

servers and Web browsers on the Internet. The movement of data through the Internet is
controlled by a suite of protocols called TCP/IP (Transmission Control Protocol/Internet
Protocol). Storage devices communicate with a computer using a protocol called SATA.
There are thousands of such protocols.

New protocols and other standards are proposed and created and standardized as
the need arises. XML, RSS, and SIP are all examples of protocols developed recently to
meet new demands. Satellite telecasting, near-universal telephone communication, wireless
communications, and the Internet all demonstrate powerful and useful technologies made
possible by protocols and standards. Indeed, the Internet is a measure of the success
to which protocols that govern intercommunication between computer hardware and
software have been standardized throughout the world. Discussions of various protocols
and standards will occur regularly throughout this book.

1.5 OVERVIEW OF THIS BOOK

The focus of this book is upon the architecture and organization of computers, computer
systems, and computer-based IT systems. Technically, there is a slight difference in
definition between the terms “computer architecture” and “computer organization.” In
this book we will usually not attempt to differentiate these terms and will use them
interchangeably.

In this book we will be concerned with all four components of computer systems:
hardware, software, data, and interconnectivity, and with the interactions between each
component. We will also look initially at the larger picture: the organization of computer
systems as components, themselves, to form enterprise IT systems. Chapter 2 of this first
part is concerned with the system as a whole. The remainder of this book is divided into
four additional parts, consisting of discussions of number systems and the representation
of data in the computer, the hardware that makes up the computer, the software that the
computer uses, and the networks that interconnect computers.

Our first step will be to examine the concept of systems in general. We will look
at the characteristics and qualities that define a system. We will then use that basic
understanding to look at the characteristics of computer-based IT systems and show how
the various elements and requirements of computer systems fit into the system concept.
Part 1 illustrates fundamental IT architecture concepts with several examples of IT system
architectures.

In Part 2, we will look at the different forms the input data may take, and we will
consider the translation processes required to convert data into forms that the computer
hardware and software can process. You will see how the various data types that are familiar
to you from programming languages are stored and manipulated inside the computer.
You’'ll learn the many different ways in which math calculations can be performed, and the
advantages and disadvantages of each. You will see the difference between a number and
the alphanumeric representation of a number, and understand why that difference can be
critical in whether a program works or not. You will be able to relate the size of a word
processing text to the storage capability of the computer’s disk.

In Part 3, we will take a detailed look at the various components of the hardware and
how they fit together. You will learn how the CPU works, how different I/O devices work,
and even how text and graphics manage to appear, seemingly by magic, on the display

CHAPTER | COMPUTERS AND SYSTEMS 23

screen. You will learn what makes some computers faster and more powerful than others,
and what that means. You will learn about different ways of connecting I/O devices to the
computer and see why you get a fast response from some devices, a slow response from
others. You’ll learn the difference between a serial port, a USB port, and a parallel port.
We’ll even explain the difference between PCI and PCI Express buses.

Most important, you will have the opportunity to see what a simple, program-obedient
machine the computer really is. You will learn about the limitations of a computer. We all
tend to think of the computer as a resource of infinite capacity, speed, and perhaps even
intelligence, but of course that’s not true. We will consider how these limitations affect
your work as a user, and as a means of specifying a system that will your meet your needs
and requirements.

Part 4 will provide a careful introduction to the foundational principles of com-
munication and networking. We will consider the basic communication technologies,
networking hardware, software, channels and channel media, protocols, and methodolo-
gies that are required to support communication between computer systems in an IT
system environment.

In the final part, we will consider the software thatis used to control the computer’s basic
processing capabilities. Although computer software falls into two categories, operating
system software and application software, we will focus exclusively on the system software.
We will be concerned with control and efficient use of the computer hardware, fair
and effective allocation of computer resources to different programs, security, storage
management and file system structure, system administration, security, user interfaces,
and more.

There are also four supplementary chapters covering topics that are somewhat outside
the scope of the text, but important and interesting nonetheless. The first supplementary
chapter introduces the fundamental logic that makes up a computer. The second supple-
mentary chapter provides case studies that describe the hardware and system software of
important real-world computer systems. These examples include the x86 family of PC
hardware, the Microsoft Windows family of operating systems, Linux operating systems,
and IBM mainframe hardware and software. The remaining two supplementary chapters,
on CPU instruction addressing modes and on programming tools, have been maintained
and updated from the 3rd edition. The supplementary chapters can be found on the book’s
website, www.wiley.com/college/englander.

Additional related topics of current interest may also be found on the book’s website.
The website also contains numerous links to reference materials, both general to computing
as well as specific to individual topics discussed within the book.

1.6 A BRIEF ARCHITECTURAL HISTORY
OF THE COMPUTER

Although a study of the history of computing is generally outside the scope of this book,
a brief introduction is useful in showing the wide-ranging and quirky path by which IT
has arrived to its present position. It is of particular interest to note that nearly all of the
revolutionary concepts that define computer systems today were developed between thirty
and sixty years ago; today’s advances are more evolutionary and incremental in nature.
This suggests that an understanding of the basic concepts that we are presenting in this

24 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

book should serve you, the reader, well in your ability to understand the importance and
significance of future developments as they occur.

Early Work

It is not possible, nor particularly useful, to identify the date of the “invention” of the
computer. Indeed it has always been the aspiration of humankind to create devices that
would simplify people’s work. Thus, it is not surprising that people were envisioning
mechanical devices to simplify the jobs of routine data processing and calculation even in
ancient times. In fact, there is recent evidence of the existence of an ancient computing
device used for astronomical calculations. Instead, this discussion covers just a few of the
major developments related to computer architecture.

In this context, one could consider the abacus, already in use as early as 500 BC by the
ancient Greeks and Romans, to be an early predecessor of the computer. Certainly, the aba-
cus was capable of performing calculations and storing data. Actually, if one were to build a
binary numbered abacus, its calculations would very closely resemble those of the computer.

The abacus remained in common use until the 1500s and, in fact, is still considered
an effective calculating tool in some cultures today. In the late 1500s, though, European
inventors again began to put their minds to the problem of automatic calculation. Blaise
Pascal, a noted French mathematician of the 1600s, invented a calculating machine in 1642
at the age of nineteen, although he was never able to construct the machine. In 1801, Joseph
Marie Jacquard invented a loom that used punched cards to control the patterns woven
into cloth. The program provided by the punched cards controlled rods that raised and
lowered different threads in the correct sequence to print a particular pattern. This is the
first documented application of the use of some form of storage to hold a program for the
use of a semiautomated, programmable machine.

FIGURE 1.12
Babbage’s Analytical Engine

2 L“Lﬂ -

e e 2l e

Courtesy of International Business Machines Corporation. Unauthorized
use not permitted.

Charles Babbage, an English mathemati-
cian who lived in the early 1800s, spent much
of his own personal fortune attempting to
build a mechanical calculating machine that
he called an “analytical engine.” The analyti-
cal engine resembles the modern computer in
many conceptual ways. A photo of an early
version of the analytical engine is shown in
Figure 1.12. Babbage’s machine envisioned the
use of Jacquard’s punched cards for input data
and for the program, provided memory for
internal storage, performed calculations as spec-
ified by the program using a central processing
unit known as a “mill,” and printed output.
Augusta Ada Byron, Countess of Lovelace and
the daughter of the poet Lord Byron, worked
closely with Babbage and developed many of the
fundamental ideas of programming and pro-
gram design, including the concepts of branches
and loops.

FIGURE 1.13
Block Diagram of Babbage’s Analytical Engine

(ALU) |Data

The mill The store Printer and
(memory) “| card punch

, y
Instructions

Operation Variable
cards cards

<«—— Program———

Source: From Computer Architecture and Organization, 2nd ed.,
J. Hayes, copyright © 1988, by McGraw-Hill Companies, pg. 14
Reprinted by permission.

CHAPTER | COMPUTERS AND SYSTEMS 25

A block diagram of the Babbage analytical
engine is shown in Figure 1.13. The mill was
capable of selecting one of four arithmetic oper-
ations, and of testing the sign of a number with
a different program branch specified for each
result. The sequence of operation was speci-
fied by instructions on the operation cards. The
operation cards could be advanced or reversed
as a means of implementing a sort of “goto”
instruction. The second set of cards, known as
variable cards, were to be used to specify par-
ticular memory locations for the data involved
in the calculations.

Babbage envisioned a memory of one thou-
sand 50-digit decimal numbers. Each digit was
to be stored using a ten-toothed gear known as

a counter wheel. Although the analytical engine was never completed, it should be apparent
to you that it contains all the essential elements of today’s computers. At approximately
the same time, another English mathematician, George Boole, developed the binary theory
of logic that bears his name, Boolean logic. He also recognized the relationship between
binary arithmetic and Boolean logic that makes possible the circuitry that implements the

modern electronic computer.

Computer Hardware

In the late 1930s and early 1940s, several different groups of researchers independently
developed versions of the modern electronic computer. The Mark I, built in 1937 by
Howard H. Aiken and associates at Harvard University with help and funding from IBM,
used thousands of relays; relays are mechanical binary switches controlled by electrical
currents, familiar to you perhaps as the clicking devices that control operations in tape
cassette players and telephone answering machines. Although binary relays were used
for computation, the fundamental design was decimal. Storage consisted of seventy-two
23-digit decimal numbers, stored on counter wheels. An additional counter wheel digit
held the sign, using the digit 0 for plus and 9 for minus. The design appears to be based
directly on Babbage’s original concepts and use of mechanical calculator parts from IBM
accounting machines. A similar electromechanical computer was designed and built by
Conrad Zuse in Germany at about the same time.

The first totally electronic digital computer was apparently devised by John V.
Atanasoff, a physicist at [owa State College, in 1937. The machine was built in 1939 by
Atanasoff and a graduate student, Clifford Berry, using electronic vacuum tubes as the
switching components. The machine was known as ABC, for Atanasoff-Berry Computer.
It is claimed that Atanasoff worked out the original details as he drove restlessly late one
winter night from his house in Iowa to a bar in neighboring Illinois. The machine was
not intended as a general-purpose computer, but was built to solve physics equations that
Atanasoff was working on at the time. There is some doubt as to whether the machine ever

worked completely.

26

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

ABC was a binary-based machine, just like today’s computers. It consisted of an
arithmetic/logic unit with thirty units that could do addition and subtraction, a rotating
drum memory that held thirty binary numbers of 50 digits each, and punched card input.
Each punched card held five 15-digit decimal numbers. These numbers were converted
to binary as they entered the machine. Despite its limitations, ABC was an important
pathmark that led to later significant advances in computer design. It is only recently that
Atanasoft has begun to receive recognition for his achievement.

Much of the effort that culminated in a successful general-purpose computer archi-
tecture resulted from a wartime need for the solution to difficult mathematical formulas
related to ballistic missile trajectories and other World War II research. The ENIAC (for
Electronic Numerical Integrator and Computer, believe it or not) is generally considered
to be the first all-electronic digital computer. It was designed and built between 1943 and
1946 by John W. Mauchly and J. Presper Eckert at the University of Pennsylvania, using
the concepts that Mauchly had seen in Atanasoff’s machine, although this was not publicly
known at the time.

ENIAC had very limited storage capability, with only twenty locations each capable of
holding a 10-digit decimal number. An additional one hundred numbers could be stored in
read-only memory. Calculations were performed using decimal arithmetic. Ten electronic
vacuum tube binary switches were used for each digit, with only one switch in the “ON”
position to represent the value of the digit. Input and output used punched cards. The
system could also provide printed output.

Programs could not be stored internally, but were hard wired with external “patch
panels” and toggle switches. It took many hours to change programs, and, of course,
debugging was a nightmare. Nonetheless, ENIAC was an important machine, some say the
most important machine, especially since it led directly to the development of the UNIVAC
I, the first commercially available computer, in 1951.

ENIAC contained eighteen thousand vacuum tubes, occupied a floor space of more
than fifteen thousand square feet, and weighed more than thirty tons. A photograph of
ENIAC, taken from The New York Times of February 15, 1946, is shown in Figure 1.14.
Even in its day, ENIAC was recognized as an important achievement. ENIAC operated
successfully until 1955, when it was dismantled, but not destroyed. Parts of the computer
can be seen at the Smithsonian Institute, at the U.S. Military Academy at West Point, at the
Moore School of the University of Pennsylvania, and at the University of Michigan.

In 1945, John von Neumann, a consultant on the ENIAC project, proposed a computer
that included a number of significant improvements over the ENIAC design. The most
important of these were

1. A memory that would hold both programs and data, the so-called stored
program concept. This solved the difficult problem of rewiring the control panels
for changing programs on the ENIAC.

2. Binary processing of data. This simplified the design of the computer and
allowed the use of binary memory for both instructions and data. It also
recognized the natural relationship between the ON/OFF nature of switches and
calculation in the binary number system, using Boolean logic.

The CPU was to include ALU, memory, and CU components. The control unit read
instructions from memory and executed them. A method of handling input/output through

CHAPTER | COMPUTERS AND SYSTEMS 27

FIGURE 1.14
The ENIAC

Courtesy Sperry Univac, Div. of Sperry Corporation.

the control unit was also established. The instruction set contained instructions representing
all the essential features of a modern computer. In other words, von Neumann’s machine
contained every major feature considered essential to modern computer architecture.
Modern computer architecture is still referred to as von Neumann architecture.

Due to political intrigue and controversy, two different versions of von Neumann’s
architecture were designed and built, EDVAC at the University of Pennsylvania and IAS
at the Princeton University Institute for Advanced Studies (hence the unusual name).
Both machines were completed in 1951-1952. The success of EDVAC and IAS led to
the development of many offspring, mostly with odd names, and to several commercial
computers, including the first IBM computers.

At this point, von Neumann’s architecture was firmly established. It remains the
prevalent standard to this day and provides the foundation for the remainder of the
material in this book. Although there have been significant advances in technology, and
improvements in design that have resulted, today’s designs still reflect the work done prior
to 1951 on ABC, ENIAC, EDVAC, and IAS.

All of these early electronic computers relied on the electronic vacuum tube for their
operation. Vacuum tubes were bulky, made of glass, fragile, short-lived, and required large
amounts of power to operate. Vacuum tubes require an internal electric heater to function,
and the heaters tend to fail quickly, resulting in what was known as a “burned out” tube.
Furthermore, the heat generated by the large number of tubes used in a computer required
a massive forced-air or water-cooling system. A report reprinted by computer historian
James Cortada [CORT87] states that the average error-free operating time for ENIAC
was only 5.6 hours. Such bulky, maintenance-requiring systems could not have attained
the prevalence that computers have in our society. The technological breakthrough that
made possible today’s small, sophisticated computers was the invention of the transistor

28

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

and, subsequently, the integration of transistors and other electronic components with the
development of the integrated circuit.

The invention of the integrated circuit led to smaller, faster, more powerful computers
as well as a new, compact, inexpensive form of memory, RAM. Although many of these
computers played an important role in the evolution of today’s computers, two specific
developments stand out from the rest: (1) development of the first widely accepted
personal computer, by IBM in 1981, and (2) design of the Intel 8008 microprocessor,
predecessor to the x86 CPU family, in 1972. The impact of these two developments is felt to
this day.

Companies have developed better ways of moving data between different parts of
the computer, better ways of handling memory, and methods for increasing the speed of
instruction execution. There is a lot more processing power in today’s personal computer
than there was in the largest mainframe computer in the 1970s. Nonetheless, the basic
architecture of today’s machines is remarkably similar to that developed in the 1940s.

Operating Systems

Given how easy it is to communicate with computers today, it is hard to picture a time
when the user had to do everything by hand, one step at a time. We take it for granted
that we can type commands at a keyboard or move a mouse and launch programs, copy
files, send text to a printer, and perform myriad other computer tasks. We power up and
bootstrap our systems by pressing a switch.

It was not always this way. Early computers had no operating systems. The user,
who was also the programmer, entered a program by setting it, one word at a time, with
switches on the front panel, one switch per bit, or by plugging wires into a patch panel that
resembled a cribbage board. Not a pleasant operation! Needless to say, early computers
were single-user systems. Much of the computer’s time was tied up with this primitive
form of program and data entry. In fact, as late as the mid-1970s, there were still vendors
producing computer systems with no operating system and computer hardware that was
still bootstrapped by entering the bootstrap program one instruction at a time into switches
on the front panel of the computer.

The history of system software, particularly operating systems, is much less well defined
than that of hardware. According to Cortada [CORT87],

Without more sophisticated operating systems, scientists would not have been
able to take full advantage of the power of the transistor and later of the
[microprocessor] chip in building the computers known today. Yet their
contribution to the overall evolution of digital computers has been overlooked
by historians of data processing.

Part of the reason, undoubtedly, is that software evolved gradually, rather than as a series
of important individually identifiable steps. The first operating systems and high-level
programming languages appeared in the early 1950s, particularly associated with IBM and
MIT, but with only a few exceptions, these efforts have not been associated with individual
people or projects.

The need for operating system software came from the increasing computer power
that resulted from the rapid development of new computers in the 1950s. Although the

CHAPTER | COMPUTERS AND SYSTEMS 29

hardware architecture has not changed substantially since that time, improved technology
has resulted in a continuum of ever-increasing computer capability that continues to this
day. It has been necessary to continually modify and improve operating system architecture
to take advantage of that power and make it available to the user. Computing has changed
from single-user batch processing (where only a single user, with a single program, could
access the machine at one time), to multiple-user batch job submission (where each
user’s “job” was submitted to the computer by an operator for sequential runs), to
multiuser batch job execution (where the computer executed several jobs simultaneously,
thereby keeping the CPU busy while I/O took place on another user’s job), to multiuser
online computing (where each user had direct access to the computer), to single-user
interactive personal computing, to today’s powerful interactive networked systems, with
multitasking, easy-to-use graphical interfaces, the ability to move data between applications,
and near-instant access to other computers all over the world.

Each of these developments, plus various hardware developments—minicomputers,
PCs, new I/O devices, multimedia—have required additional operating system sophistica-
tion; in each case, designers have responded to the need.

The early computers were used primarily by scientists and engineers to solve technical
problems. The next generation of computers, in the late 1950s, provided a punched card
reader for input and a printer for output. Soon after, magnetic tape systems became
available. The first “high-level” languages, primarily assembly language, then FORTRAN,
made it possible to write programs in a language other than binary, and offline card punch
machines allowed programmers to prepare their programs for entry without tying up the
machine. Algol, COBOL, and Lisp followed shortly after. New technology improved the
reliability of the computers. All these advances combined to make the computer system
practical for business commercial use, especially for large businesses.

Still, these computers were single-user batch systems. Initially, users submitted the
cards that they had prepared to the computer for execution. Later, separate, offline systems
were developed that allowed the cards to be grouped together onto a magnetic tape for
processing together. Programs were then submitted to the computer room in the form
of jobs. A job consisted of one or more program card decks, together with the required
data decks for each program. An output tape could also be used to support printing
offline. As an example, Figure 1.15 shows a job that compiles and executes a FORTRAN
program.

I/O routines were needed to operate the card readers, tape drives, and printers. The
earliest operating systems consisted of just these I/O routines, but gradually operating
systems evolved to perform other services. Computer time was very expensive, hundreds
of dollars per minute, and in growing demand. To increase availability, control of the
computer was placed in the hands of an operator, who fed the punched cards, mounted
tapes, and generally tried to keep the system busy and efficient. The operating system
provided a monitor that fed jobs to the system and supported the operator by notifying
him or her of necessary actions, such as loading a new tape, setting switches on the panel,
removing printout, and so on. As system demand increased, the monitor expanded to
include accounting and simple, priority-based scheduling of jobs.

It is generally accepted that the first operating system was built by General Motors
Research Laboratories in 1953—1954 for their IBM 701 computer. Other early systems
included the FORTRAN Monitor System (FMS), IBSYS, and Share Operating System

30 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 1.15
Job Card Deck Used to Compile and Execute a FORTRAN Program

[$END

[$DATA
[$RUN
[$LOAD

|
[$FORTRAN

Data for the run

$JOB ENGLANDER

Program to compile

(SOS).> Many important breakthroughs in operating system design occurred in the early
1960s. These breakthroughs laid the groundwork for the operating system as we know it

today.
|

In 1963, Burroughs released its Master Control Program (MCP). MCP contained
many of the features of modern systems, including high-level language facilities
and support for multiprocessing (with two identical CPUs). Most important,
MCP supported virtual storage, as well as powerful multitasking capabilities.
IBM introduced OS/360 as the operating system for its new System/360 in 1964.
0S/360 provided a powerful language to expedite batch processing, JCL, or Job
Control Language, and a simple form of multiprogramming that made it possible
to load several jobs into memory, so that other jobs could use the CPU when one
job was busy with input/output. By this time, disks were also becoming available,
and the system was capable of reading cards onto disk while the CPU executed its
jobs; thus, when a job completed, the operating system could load another job
from disk into memory, ready to run. This improved the OS scheduling
capability. JCL is still used for batch processing! The enormous success of the
IBM OS/360 and its successors firmly established the basis of an operating system
as a fundamental part of the computer.

In 1962, a group at MIT known as Project MAC introduced the concept of
time-sharing with an experimental operating system called CTSS. Project
MAC was one of the seminal centers for the development of computer science.
Shortly thereafter, MIT, Bell Labs, and GE formed a partnership to develop a
major time-sharing system. The system was called MULTICS (Multiplexed

3Share was a consortium of system programmers who used IBM systems and who met to discuss problems

and develop solutions. SOS was produced by a team of consortium members.

CHAPTER | COMPUTERS AND SYSTEMS 31

Information and Computing Service), and although MULTICS never fully
realized its dream of becoming a major computer utility, many of the most
important multitasking concepts and algorithms were developed by the
MULTICS team. It was supplied for many years as the operating system for
Honeywell computer systems.

When Bell Labs withdrew from the MULTICS project, Ken Thompson, a
MULTICS researcher, turned to the development of a small personal operating
system, which he called Unics, later UNIX, to contrast it from MULTICS. He was
later joined by Dennis Ritchie. The original UNIX development was performed
on a Digital PDP-7 minicomputer and later moved to a PDP-11 minicomputer,
the forerunner of the VAX computer. Originally, the system was written in
assembly language, but Ritchie developed a new high-level language, which he
called C, and the operating system was largely rewritten in C.

UNIX introduced many important OS concepts that are standard today,
including the hierarchical file system, the shell concept, redirection, piping, and
the use of simple commands that can be combined to perform powerful
operations. Thompson and Ritchie included facilities for document production
and formatting, including such novelties as a spell checker and a grammar
checker. They created many inventive algorithms to improve operating system
performance, developed techniques for interprocess communication, and even
provided tools for networked and distributed processing. Many facets of
operating systems that are taken for granted today were originated in UNIX
development.

UNIX earned a reputation for power and flexibility. Because it was written in
G, it was also easy to port it, that is, convert it for use, to other computers. As a
result of these factors, UNIX became an important operating system for
universities and was ultimately adopted, in many versions, by the commercial
marketplace as well. UNIX continues to be of great importance, particularly due
to its flexibility in the area of networks and distributed systems.

Another important innovation, some would say the most important
development in making the computer accessible to nontechnical users, was the
development of the concept of graphical user interfaces. Most historians

would credit the invention of the windows and mouse interface to Doug
Englebart. This work was done, amazingly enough, in the 1960s, at Stanford
Research Institute. A practical windowing system was built in the 1970s by Alan
Kay and others at Xerox PARC (Palo Alto Research Center), as part of a
visionary computer concept known as the Dynabook project. The original
intention of Dynabook was to develop a book-sized personal computer with a
high-resolution color display and wireless communication that would provide
computer capabilities (particularly secretarial), games, e-mail, and a reference
library. Although the technology of the time was not sufficient to bring the
Dynabook as an entirety to fruition, the engineers at Xerox in the late 1970s built
a personal computer workstation with a graphical user interface known as Star. It
is believed that a visit to Xerox PARC by Steve Jobs, the founder of Apple, in
1979, inspired the development of the Apple Lisa and, subsequently, the Apple
Macintosh.

32

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

The next important breakthrough in computer use occurred in 1982, with the
introduction of the IBM personal computer. The IBM PC was designed as a stand-alone,
single-user computer for the mass market. The IBM PC was supplied with a reasonably
easy-to-use operating system, PC-DOS, which was developed and also later marketed by
Microsoft as MS-DOS. PC-DOS was actually derived from an earlier personal computer
operating system, CP/M (Control Program for Microcomputers), but is important because
of the tremendous success of the IBM PC and its derivatives. Gradually, PC-DOS and
MS-DOS became the prevalent operating system of the era. With later versions, Microsoft
made many improvements, including hierarchical directory file storage, file redirection,
better memory management, and an improved and expanded command set. Many of these
improvements were derived from UNIX innovations. With the addition of Englebart and
Kay’s user interface innovations, MS-DOS has gradually evolved into Windows XP and
Windows Vista, and most recently, Windows 7.

Even with all these earlier innovations, there continue to be tremendous advances in
operating system software. Today’s systems, such as Windows XP and Vista, Linux, and
Macintosh OS X, combine much more power on one hand with improved user friendliness
and ease of use on the other. There are several reasons for this:

B There has been a great increase in computer speed and power. More powerful
integrated circuits have allowed the design of faster computers using faster clocks
and larger internal data paths, together with techniques for speeding up
instruction execution. Even small personal computers can support tens of
megabytes of memory and many gigabytes of disk storage. A modern PC may
contain as much as one thousand times the memory and execute instructions one
thousand times as fast as the 1965 IBM OS/360 mainframe computer. Thus, more
capability can be built into the operating system without sacrificing performance.

B There have been fundamental improvements in computer hardware design.
Many modern computers are designed as an integrated unit, hardware and
operating system software together. Most computer hardware contains special
features intended to support a powerful operating system. Such features as
special graphics, cache memory, vector processing, and virtual storage memory
management hardware are intended primarily for use by the operating system.
These features used to be available only on large mainframes. A protected mode
of hardware instructions, accessible only to the operating system, provides
security and protection to the operating system and allows the operating system
to protect the system’s resources and users.

B There have been fundamental improvements in operating system software
design. Operating system programs have grown in size and complexity. Increased
memory capacity has made a larger operating system feasible. Increased speed
has made it practical. Gradually, innovative operating system techniques from
large computers have drifted down to the PC level. In addition, program design
itself has helped the process. New languages, well designed for system
programming, and better programming methods such as object-oriented
programming have also contributed to the process.

B There has been a shift in focus to creating operating systems that better serve the
end user. This has resulted in much current research on human-computer

CHAPTER | COMPUTERS AND SYSTEMS 33

interfaces, and on the ways in which humans work and use the computer. New
work paradigms, based on object-oriented programming and communication
technologies, and new interfaces continue to extend the role of the operating
system. There is a new willingness to include features that were not a part of
earlier operating systems and to modularize the operating system in different
ways to improve the delivery of services to the user and to the user’s application
programs.

B Networking has provided the opportunity for innovative research and
development in distributed computing, including client-server technology,
shared processing, and grid computing. There is a continuing progression of new
operating system techniques, developed in response to the changing
requirements of modern distributed systems.

B The rapid growth of the Internet, and of e-mail use, the Web, and multimedia in
particular, has created opportunities and the need for better methods of
accessing, retrieving, and sharing information between different systems. The
results have impacted network design, user interface design, distributed
processing technology, and open system standardization with corresponding
effects in operating system design.

Although today’s operating systems are highly complex and sophisticated, with many
capabilities made possible by modern technology, particularly fast processors, large amounts
of memory, and improved graphical I/O design, it is interesting to note that the major
operating system features that we take for granted today are all evolutions based on
innovations of more than thirty years ago.

Communication, Networks, and the Internet

With the development of large, multiterminal computer systems in the 1960s and 1970s, it
was natural that users would want to use the computer to communicate with each other
and to work collaboratively. Data was centrally stored in storage that was available to all,
so it was easily shared among users on the same system. It soon occurred to software
developers that it would be desirable to allow direct discussion among the users, both in
real time and in the form of messages that could be stored on the system and made available
to users when they logged in. Since data was centrally stored, the addition of message
storage was a minor enhancement. “Talk” facilities that allowed users to communicate in
real time were added later. These were similar to today’s text messaging, although some had
split-screen capability that allowed two users to send messages simultaneously. By 1965,
some of these systems supported e-mail, and in 1971, Ray Tomlinson created the standard
username@hostname format that is still in use today. As modems became available for users
to log into their office systems from home and computers became more affordable, software
innovators developed bulletin board systems, newsgroups, and discussion boards, where
users could dial in and leave and retrieve messages. Gradually, it became possible to support
modems on multiple lines, and affordable real-time “chat rooms” became possible.
During the same period, various developments occurred that made it possible to
connect different computers together into simple networks. Some were based on direct
links between modems on each computer. Others were based on early protocols, notably

34 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

X.25, a packet-switching protocol using phone lines. By 1980, these various innovations had
evolved into a number of international networks, as well as three companies, Compuserve,
AOL, and Prodigy, who offered e-mail, Usenet news, chat rooms, and other services to
personal computer users.

All of this activity was, of course, a precursor to the Internet. Much of the modern history
of networking and communication can be traced back to two specific developments: (1) a
research project, ARPANET, whose goal was to connect computers at various universities
and research centers, funded starting in 1969 by the U.S. Defense Department and later
by the National Science Foundation and other groups, and (2) the development of the
Ethernet by Robert Metcalfe, David Boggs, and others, which started at Xerox PARC in
1973. The ARPANET project was responsible for the design of TCP/IP, which was first
tested in 1974, and issued as an international standard in 1981.

Because ARPANET and its successors, CSNet and NSFNet, were funded by the U.S.
government, its use was initially limited to noncommercial activities. Gradually, other
networks, some of them commercial, joined the network in order to exchange e-mails and
other data, while the administrators of NSFNet chose to “look the other way”. Ultimately,
the government turned over its Internet resources to private interests in 1995; at that point
the Internet became commercial and expanded rapidly into the form that we know today.

Although it is only marginally related to the major issues addressed in this book,
we would be remiss if we did not complete this discussion with a mention of Sir Tim
Berners-Lee, of CERN, the European organization for nuclear research, who in 1991
developed the concepts that became the World Wide Web and Max Andreessen of the
University of Illinois, who, in 1993, developed Mosaic, the first graphical Web browser.

SUMMARY AND REVIEW

This chapter has presented a brief review of the basics of computing. We began by recalling
the input-process-output model for computing. Next we demonstrated the connection
between that model and the components of the computer system. We noted that implemen-
tation of the model requires four components: hardware, software, communication, and
data. The architecture of the computer system is made up of the hardware and system soft-
ware. In addition, a communication component exists to enable interconnecting systems.
We discussed the general architecture of a computer and noted that the same description
applies to CPUs both modern and ancient, both large and small. We introduced the
important concepts of virtualization, standards and protocols, noting that these ideas will
appear throughout the book. The chapter concluded with a brief history of the computer
from an architectural perspective.

FOR FURTHER READING

There are many good general introductory computer texts available for review if you feel
you need one. New books appear so rapidly that we are reluctant to recommend any
particular one. For alternative coverage of material in this book, you may find recent
editions of various books by Stallings [e.g., STAL0O5] or Tanenbaum [e.g., TANE(7] to be
useful. Various chapters offer additional suggestions that are specifically applicable to the
material in those chapters. The Web is also a rich source of knowledge. Two websites that

CHAPTER | COMPUTERS AND SYSTEMS 35

we have found particularly useful are wikipedia.org and howstuffworks.org. In addition to
a wide range of material, these websites also offer numerous references to facilitate further
study. Other useful websites include arstechnica.com and realworldtech.com.

The book by Rochester and Gantz [ROCH83] is a fun way to explore the history of
computing. Historical facts are blended with other facts, anecdotes, humor, and miscellany
about computers. Although the book is (sadly) out of print, it is available in many libraries.
You can learn, in this book, about von Neumann’s party habits, about movies that became
video games, about computer scams and ripoffs, and lots of other interesting stuff. Perhaps
the most thorough discussion of computer history is found in the three-volume dictionary
by Cortada [CORT87]. Although Cortada is not really designed for casual reading, it
provides ready access and solid information on particular topics of interest. Much of the
historical discussion in this chapter was obtained from the Cortada volumes.

If you live or vacation in a city with a computer museum, you can enjoy another
approach to computer history. Computer museums even allow you to play with some of
the older computers. Well-known museums can be found in Washington, D.C., and within
the Science Museum in Boston.

KEY CONCEPTS AND TERMS

application programming hardware port (from one computer to
interface (API) input another)
arithmetic/logic unit (ALU) input-process-output primary storage
bus (TPO) model protocol
byte interface unit random access memory
central processing unit kernel (RAM)
(CPU) logical read-only memory (ROM)
channel (I/0) memory software
communication channel modem standards
control unit (CU) network interface card stored program concept
data deck (NIC) submit (a job)
deck (program) open computing suite (protocol)
distributed computing operating system virtual
embedded computer output von Neumann architecture
graphical user interface word

READING REVIEW QUESTIONS

1.1 Any computer system, large or small, can be represented by the four elements of
an [PO model. Draw an IPO model; clearly label each of the four elements in your
drawing.

1.2 One way to view an information technology system is to consider an IT system
as consisting of four major components or building blocks. This book takes this
approach by dividing the remainder of the book into parts, with a part devoted to
each major type of component. What are the four components of an IT system that
you will study in this book?

36 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

EXERCISES

1.3

1.4

1.5

1.6

1.7

1.1

1.2

1.3

1.4

1.5

1.6
1.7

Explain the differences between primary storage and secondary storage. What is
each type used for?

The book divides the software component of a computer system into two major
categories. Identify each category and give an example of each that you are already
familiar with. Briefly explain the role of each category.

The book compares a large mainframe computer to a small laptop computer or
PDA, and states that the difference between them is one of magnitude, not of
concept. Explain the meaning of that statement.

Virtualization is a concept that has taken on major importance in the early
twenty-first century. Explain what is meant by virtualization.

What is a protocol? What is a standard? Do all protocols have to be standards?
Explain. Are all standards protocols? Explain.

Look at the computer ads on the business pages of a large daily newspaper and
make a list of all the terms used that you don’t understand. Save this list and
check it from time to time during the semester. Cross out the items that you now
understand and look up the items that have been covered but which you still don’t
understand.

For the computer that you normally use, identify which pieces constitute the
hardware and which pieces constitute the system software. Now think about the
file system of your computer. What part of the file system is hardware, what part
software, and what part data?

Suppose you would like to buy a computer for your own needs. What are the
major considerations and factors that would be important in your decision? What
technical factors would influence your decision? Now try to lay out a specification
for your machine. Consider and justify the features and options that you would
like your machine to have.

Write a small program in your favorite high-level language. Compile your program.
What is the ratio of high-level language statements to machine language statements?
As a rough estimate, assume that each machine language statement requires
approximately four bytes of file storage. Add various statements one at a time to
your program and note the change in size of the corresponding machine language
program.

Locate a current reference that lists the important protocols that are members of
the TCP/IP protocol suite. Explain how each protocol contributes to the operation
and use of the Internet.

Protocols and standards are an important feature of networks. Why is this so?

Although there is substantial overlap between protocols and standards there are
protocols that are not standards and standards that are not protocols. With the
help of a dictionary, identify the differences between the definition of protocol and
the definition of standard; then, identify a specific example of a standard that is not
a protocol; identify a specific example of a protocol that is not a standard.

CHAPTER | COMPUTERS AND SYSTEMS 37

CHAPTER 2

AN INTRODUCTION TO
SYSTEM CONCEPTS AND
SYSTEMS ARCHITECTURE

‘Now, this is just a simulation of what the blocks
will look like once they're assembled.”

C. Covert Darbyshire/The Cartoon Bank

2.0 INTRODUCTION

In this book we discuss systems: computer systems, operating systems, file systems,
I/O (sub)systems, network systems, and more. Each of these same systems is also
an element with a major role in the information technology systems that form the
backbone of modern organizations. Indeed, these elements—computer hardware,
software, data, and communication—together represent the infrastructure of every IT
system. If we are to understand the various types of systems that are the focus of this
book, it is important that we first understand the concept of “system” itself, and, then,
equally important, the basic architectures of the IT systems that use these elements.
Only then is it possible to see clearly the role of the various system elements in the
larger IT picture as we visit each in turn.

Use of the word “system” is obviously not unique to IT. In our daily lives, too,
we often use the word “system” to describe things in everyday language. Our homes
have electrical systems, plumbing systems, heating and air conditioning systems, and
maybe for some, even, home theatre systems. There are ignition, braking, fuel, exhaust,
and electrical systems in our cars. Our cities have water systems, sewer systems,
and transportation systems, to name a few. Philosophers and social scientists talk
about social systems and linguistic systems. The economy deals with banking systems,
financial systems and trading systems, and, for that matter, economic systems. The
word “system” even appears in the names of thousands of companies.

So it seems as though everyone knows what a system is, but what is a system? We
use the word “system” intuitively, without thinking about the meaning of the word,
so we obviously have an intuitive understanding of what a system is. IT professionals,
however, spend their careers analyzing, designing, developing, implementing, upgrad-
ing, maintaining, administering, and using systems everyday. It is therefore important
that we have a deeper, more formal understanding of system concepts.

In this chapter, we consider the concept of a system from an IT perspective. We
investigate the characteristics and composition of systems, explain the meaning of
system architecture, and show the fundamental role of systems, particularly various
types of IT systems, in business. We offer examples of different types of IT systems,
and show how IT systems work together to accomplish tasks and solve problems. We
show how systems can themselves be composed of subsystems, where the subsystems
also fit the definition of systems.

After you have studied this chapter, you should have a clear understanding of
what a system is, what kinds of systems are used in IT, the purpose and goals for each
of these systems, and how these systems fit together and interact with each other and
with their environment. You’ll understand the concept of system architecture. This
discussion will set the stage for the remainder of the book, which considers individually
and collectively the specific computer-based systems and subsystems that constitute
the primary tools and components of business information technology.

39

40

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

2.1 THE GENERAL CONCEPT OF SYSTEMS

The most important characteristic that is shared by all of the systems mentioned above,
and, indeed, by all systems, is that each is built up from a set of components that are
linked together to form what we think of as a single unit. The house plumbing system, for
example, consists of sinks, faucets, toilets, a hot water heater, bathtubs or showers, valves,
and more, all connected together by pipes. An IT system consists of groups of computer
hardware, various I/O devices, and application and system software, connected together by
networks.

Often, the system is intended to serve a purpose or to produce results. The purpose of
the house plumbing system is to allow the residents of the home access to water to wash,
bathe, and drink. The purpose of an IT system is to allow organizations to process, access,
and share information. The results of a successful IT system are documents, information,
improved business processes and productivity, profits, strategic plans, and the like. This is,
in fact, the “output” of the IPO model described in Chapter 1. In general, though, there
is no requirement that a system serve a specific, definable purpose. The fact that the set
of components may be considered as a single unit is sufficient to satisfy the concept of a
system. The solar system is an example of a system where the purpose is unspecified.

There is also no requirement that the components of a system be physical. The links
between components can also be physical or conceptual. In fact, the system itself may be
conceptual, rather than physical. The number system is an example of a conceptual system.
Computer operating systems are also conceptual, rather than physical. Business systems
are also conceptual, although some of the components that they contain may be physical.
The words tangible and intangible are sometimes used in place of physical and conceptual,
respectively. Intangible or conceptual components and systems include ideas, methods,
principles and policies, processes, software, and other abstractions. If, for example, the
components in a system represent steps (intangible) in a multistep process, the links may
represent the need to complete one step before the next is begun (also intangible).

Figure 2.1 illustrates a number of different systems to show you some of the possi-
bilities. Figure 2.1(a) is a model of a home plumbing system. This is a physical system.
The components are plumbing fixtures, linked by pipes. Figure 2.1(b) is a simplified
representation of the solar system. The sun and planets are physical; the links in this system
are conceptual, specifically, the distance of each planet from the sun, interplanetary and
solar gravity, orbital relationships, the distances between planets at a particular point in
time, and other attributes. Figure 2.1(c) is a diagram of a home networking system. The
links in this case are a mixture of physical wires and (intangible) wireless connections.
Sometimes the nature of the links is important only in terms of providing the proper
interface connections to the components. Figure 2.1(d) is a simplified diagram of part of
the inventory control portion of a sales system. The relationships between the components
in this case are temporal (i.e., related to time). For example, inventory from a previous sale
must be deducted from stock before we process the next order; otherwise we can’t promise
delivery of goods on the new order because we don’t know if we still have sufficient goods
in stock to fill the order.

With these pictures and ideas about systems in mind, we will define a system as follows:

A system is a collection of components linked together and organized in such
a way as to be recognizable as a single unit.

Hoinys
WEN

an[eA
Joll9y

Homys

Kddns Jo1em wou}
adid 821AIBS UlR

HOINYS

Homys

—

7@7

Jaguwieyo
iy

adid Ajddns L
W10V 5% |

Z

,

wajshs Ajddns 191eMm

weJseiq waishs Suiquin|d

(e)1°T 34no14

41

42 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 2.1(b)
The Solar System

Mercury Earth

|

o0 ©® O
\ Mars
Venus
Sun

FIGURE 2.1(c)

A Typical Home Network System

1

Phone fine [pg| or cable Wireless
or cable modem router

Jupiter

Neptune

O

Saturn

—

Network-Ready
Network-Attached Printer

Storage (NAS)

o

Uranus

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 43

FIGURE 2.1(d)

Flow Diagram for Part of an Inventory Control System

Sales
order 1
[Check order Inventory
against
inventory
2b
2a Available;
Not Available deduct from
inventory
Check against
To sales to Todwarfer;](c)_lljlse for inventory
notify customer order fulfillment reorder point
and shipping

To purchasing to [Stock < minimum]

determine availability
and shipping date To purchasing
for reorder

A general representation of a system is shown in Figure 2.2.

The linked components that constitute a system also define a boundary for the system.
Anything outside the boundary repesents the environment that the system operates or
presents itself within. The environment may interact with and affect the system in various
ways. The reverse is also true. The interface between the system and its environment is an
important characteristic of the system. If the interface is well-defined, it is often possible
to replace the existing system with a different system, as long as the interface between the
system and the environment remains constant. This idea can have important implications
when designing IT systems. For example, in a particular IT installation, a single large
computer may be functionally the same as a network of small computers. When we define
inputs and outputs for a system, the environment is the source of the input and also the
receiver of the output.

As an example of the relationship between a system and its environment, consider the
rather simplistic view of an e-business system illustrated in Figure 2.3. The organization
represented by this illustration purchases goods from suppliers and makes them available
for sale. (The value-adding component in the figure consists of various operations that
make it worthwhile to buy from this organization, rather than directly from the supplier.
For example, Amazon.com makes it possible to buy a wide variety of books from one source,
rather than having to place separate orders from a number of different suppliers.) The
environment for this system consists of customers who purchase from the system, suppliers

44 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 2.2
General Representation of a System
Environment Environment
Boundar
Interface ! y
Interfyce .
Links/
Environment Components

Environment

to the system, governments who control the legal aspects of the business and collect taxes,
employees and prospective employees, external support personnel (such as repair people),
financial resources, and others. The primary interfaces for this system are system input
from suppliers and system output to purchasers; however, there are additional, more subtle
interfaces to be considered, including legal, cultural, and financial interactions with the
system. For example, sensitive cultural and language issues that offend potential customers
on a website migh have an important impact on an organization’s sales.

When analyzing a system, the components of the system may be treated as irreducible
or they may themselves be representable as systems. When considered in the context of
a particular system, these components would be viewed more accurately as subsystems.
A business IT system, for example, might have marketing, manufacturing, purchasing,
inventory, finance, and accounting subsystems, among others. Even these components
might be expanded. The marketing subsystem might be further broken down into sales,
development, and advertising components, as one possibility. The level of detail to be
considered depends on the context in which the system is being considered, discussed,
evaluated, or used. The division of a system or subsystem into its components and linkages is
called decomposition. Decomposition is inherently hierarchical. The ability to decompose
a system hierarchically into subsequent sets of components and subsytems is an important
property of systems.

FIGURE 2.3

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE ~ 45

A Simple E-Business System

Suppliers

Employees &
prospective employees

Competitors

Purchasing &
receiving

Value-adding

processing Customers

Finance &
accounting

Financial
Government, Culture, resources
law language

The fundamental properties, and the patterns of relationships, connections, constraints,
and linkages among the components and between the system and its environment are
known collectively as the architecture of the system. Some people choose to differentiate
the architecture of a system from the organization of a system. The assumption is that
the architecture is fundamental to the meaning and value of the system whereas the
organization is one of possibly many combinations of components and linkages that meets
the requirements of the architecture. The difference is subtle and often unimportant.

It is common to represent systems and their components by models or drawings on
paper or objects within a computer program. These representations are abstractions. They
represent the real system but are not actually the real system. (For example, the solar system
does not fit conveniently inside a computer!) It should be obvious to you that all of the
illustrations of systems in Figures 2.1, 2.2, and 2.3 are abstractions.

The primary reason for humans to group components into systems and to represent
them as abstractions is to simplify understanding and analysis, particularly if the individual
components are numerous and complex. We can study the relationships between the
different components without the distraction created by the details of individual compo-
nents. We can decompose, isolate and study individual components when required. We
can study the interactions between the environment and the system as a whole. Effectively,
our analyses are simplified by eliminating factors that are not relevant in the context of our
interests. In a large network of computers, for example, we may be concerned primarily

46

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

with the flow of data between computers. The details of the individual computers are
unimportant. In general, dealing with models at the system level allows us to isolate and
focus on the specific elements of interest more easily, by treating other elements collectively.

To escape our fixation on information technology systems for an instant, consider,
just for fun, the solar system that we’ve used previously as an example. If we are studying
the Milky Way galaxy, it is convenient and sufficient to treat the solar system as a single
irreducible component in the galaxy. We might be interested in the location and movement
of our Sun in the galaxy, for example, but the structure of the planets is irrelevant to our study
in this case. On the other hand, if we are interested in studying the effects of the tides on a
sea shore where we are planning to vacation, we will have to expand the “Earth” component
and look at the specific effects of the moon and other nearby objects as part of our analysis.

Consider, too, the role played by decomposition and the ability to isolate and study
individual components. A complex system may be divided into relatively independent
components and analyzed by different individuals, each a specialist in their own area. Thus
a plumber can create a home water system component without concern for the details
of the electrician’s efforts. They can work together on the linkages that concern both of
them, for example, the wiring for the boiler in a hot water heating system. The system
architect coordinates the different efforts. The role of an IT system architect is similar: to
work with finance experts on the finance component, marketing experts on the marketing
component, and so forth.

When the goal of a project is to implement a system of some type, it is sometimes
convenient to view the components of a system as modules that can be implemented
independently, then linked together to produce the final result. This technique can simplify
analysis, design, assembly, upgrading, and even repair. It also supports collaboration during
the design process, since individual components can be designed by different individuals
using specifications for the interfaces.

For example, a cell phone might consist of a computer control module, a memory
module, a display module, an audio input/output module, a radio transmitter/receiver
module, a keypad/text input module, and a wireless networking module. Each component
might have been developed by a different team. These modules, designed, constructed, and
manufactured as individual assemblies, properly interfaced, wired together, and mounted
into a case, constitute the design of a typical cell phone. They also represent the components
that might appear in the system diagram for a cell phone. The same approach might be
taken with a computer system, with a central processor module, a graphics display module,
an audio module, a network module, a hard drive controller module, and so on. Figure 2.4,
for example, shows the basic system hardware components that make up an iPhone.

It is also important to realize that there may be many different representations for a
system, to reflect the various uses of the system model. Returning to our IT roots for an
example, the representation of the business system shown in Figure 2.5(a) is a traditional
hierarchical oranization chart. The components are departments that perform various
functions within the business. In contrast, a partial model of the same business shown in
Figure 2.5(b) represents the application architecture of an IT system within this business.
Take another look at Figure 1.4 for still another representation of a business. As another
simple example, you could represent a house by the physical appearance of its exterior, by
the function and layout of its rooms, or by the various subsystems, electrical, plumbing,
heating, and so on that the house requires. Presumably, each of these representations would
be useful to a different participant. In fact, we would expect an architect to provide all of
these for use by the owner, the builder, and the various contractors.

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE

FIGURE 2.4

iPhone Components

Flash memory =

CPU — / Main circuit boards

Communications
GSM cell, WiFi, EDGE

Display (rear)

Courtesy Christopher Harting.
FIGURE 2.5(a)

Business Organization Chart

Corporate
exec. management

Marketing and T Human

Finance
sales Resources

— Sales — Sféi%%mg?tg — Employment — Accounting
L Advertisi System | | Organizational || Financial
vertising Administration development planning
— Planning — User support — Contracts — Purchasing
Order L | Auditing &
Fulfillment control

47

48 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 2.5(b)

Partial View of a Business Application Architecture

Marketing Executive
Information Information
System System

N
N

Accounts

Customers

N

Receivable

Order Entry
System

N
N

Orders Order
fulfillment Financial

N— Information
System

N
N

Products
N— l

A)
N Purchasing

Suppliers
N—_

Accounts
payable

2.2 IT SYSTEM ARCHITECTURES

The use of system concepts is particularly applicable when discussing the various types of
IT systems. In general, the goal of IT systems is to assist organizations to meet the strategic
needs of the enterprise. Not surprisingly, I'T systems are frequently complex, and the ability
to separate them naturally into subsystems or components of manageable size simplifies
understanding of the system as a whole. The analysis, design, and implementation of IT
systems must take place at different levels of detail and frequently require collaboration
among many analysts and designers. This corresponds well with the ability to decompose
systems into components, hierarchically, which allows us to concentrate at the appropriate

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 49

levels of detail during each step along the way. This approach is known as a top-down
approach. The top-down approach allows us to focus on the specific areas of interest
without the distraction of details that are irrelevant for the level that we’re studying. In
this way, a system architect can analyze and study the IT system as a whole, encapsulating
the computer systems, software systems, network architecture, and Web architecture that
represent components, and focusing instead on the large picture: the purpose of each
component and the requirements for the interfaces and linkages that connect and integrate
them. With the IT system architecture firmly established, we can consider the individual
business functions, computer systems, and networks that will link them together. For IT
system analysis, this is often sufficient, at least superficially, assuming that the system
architects actually understand the conditions and constraints imposed by details at the
lower levels.

Although there are other, equally valid, approaches to IT system analysis and design,
and many other important considerations as well, this approach suits the purposes of this
book well because it allows us to establish general requirements for IT systems and then
to show how the specific capabilities and characteristics of computer hardware, operating
systems, networks, and data fulfill those requirements.

With these ideas in mind, let us return to the simple word processing example from
Chapter 1 and reconsider it from a system architecture perspective. Recall that in this
example you are sitting at your computer typing text into a word processor. We noted that
the computer accepted input from your mouse and keyboard, processed it according to
rules established by the application software, and produced output, which appeared on a
display. From the system perspective, we can, for now, treat the whole computer, keyboard,
display, printer, storage, software, and all as a single component. You're the relevant part
of the environment for this discussion. Forgetting the issue of control for now, the system
has an input and an output. Both of these interface with you, the environment. The data
for this interface is alphanumeric text in human-readable form. Other input data to the
document might include graphics drawn with the mouse, photographic images from a
digital camera, bar codes, or music from an iPod or other audio source. We described this
scenario earlier, in Chapter 1, as input-process-output.

A system this simple is unlikely to meet all the needs of even the smallest enterprise
or, even, the least computer-literate individual. But it does serve as a starting point to
recognizing the value of a system approach to the understanding of information technology.

Distributed Processing Systems

Realistically, modern IT system architectures generally rely on multiple computers con-
nected by networks of communication channels to achieve their goals. In all but the smallest
organizations, input data is collected from locations scattered throughout the organization,
stored, processed, and distributed to other locations within the organization. Since modern
computer hardware and networking equipment is plentiful and inexpensive, it is practical
to distribute computing capability to everyone who needs it. Furthermore, the availability
of the Internet and alternative structures, such as satellite communications, make global
data communication practical. Web access, organization intranets, e-mail capability, anal-
ysis tools, such as Microsoft Excel, and document preparation tools are widely available
and are considered essential business tools throughout most organizations. Collaboration

50

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

between different organizations, particularly in the area of automated business-to-business
purchasing and sales, is commonplace.

Therefore, when envisioning effective IT systems, designers typically must create
system architectures that are capable of supporting large numbers of user workstations
who will have ready access to the organizational information that they need. The system
must be able to reliably store and protect large amounts of organizational data. For many
organizations, customers outside of the organization may also need access to the system to
get information and to make purchases.

Consider a few typical simple scenarios:

A global fast food chain collects data each day from each of its restaurants
worldwide to establish sales figures and determine sales trends. This allows the
company to determine which locations are most productive and which locations
need assistance, which items sell best and which need to be modified or replaced,
and so on.

A large travel organization conducts much of its business online, using travel
agents located all over the world. It maintains Web servers that have immediate
access to large databases of client information and travel information, as well as
continual and instant access to airline and hotel reservation systems to determine
current airfares, seat availability, and hotel room availability. All of this
information must be immediately accessible to every agent and must be current
at every instant. Even brief system failures are very costly.

A large Web-based retail sales organization sells large quantities of a wide variety
of merchandise. (Think Amazon or Wal-Mart.) Orders initially come in to a
central facility, where they are billed. Inventory is stored in warehouses in
various countries and local regional areas to expedite delivery and reduce
delivery costs. The system must be able to distribute orders to the various
regional facilities efficiently; it must also maintain appropriate levels of goods

at each warehouse to match sales and must be able to locate goods and arrange
shipping in response to orders as they come in.

Inventory replenishment is handled by an automated purchasing IT system
component that is integrated with the IT systems of the suppliers. Purchase order
data is passed from the retailer to a supplier, which triggers order placement,
billing and shipment components in the supplier’s systems. Web technology is
commonly used to satisfy the need for data and communication compatability
between the systems.

Even conventional business order processing is inherently distributed within an
organization. A purchase order, for example, might be entered into the system by
a salesperson in the sales department; the order is checked by order fulfillment
for inventory, then distributed to the accounting department for a credit check
and billing, and sent to the warehousing area for packaging and shipping. Back
orders and inventory replenishment are sent to the purchasing department. For
planning and marketing purposes, data will be collected into a central location
and processed into sales figures, inventory planning and purchase requirements
data, and the like. In a large organization, these functions might be widely
scattered over a city, country, or even the world.

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 51

The emphasis in each of these scenarios is the flow and processing of data within an
organization or between organizations or between an organization and its environment. The
system architecture representation of such operations is called application architecture.
Application architecture is primarily concerned with the activities and processing of
application programs and the communications between them. Since the application
architecture addresses the fundamental business needs of the organization, the application
architecture is typically the primary consideration in IT system design. Therefore, the
system requirements and constraints set by the application architecture have major impact
on the hardware architecture and network architecture requirements for the system.
Within the application architecture realm the selection and layout of computer systems
and communication networks is of concern primarily to the extent that it adequately
supports the application software and its functionality. However, additional factors such
as scalability, convenience, information availability, data security, system administration,
power and space requirements, and cost may also play important roles in computer and
network architectural designs.

CLIENT-SERVER COMPUTING There are a variety of possible application architectures
that can satisfy the requirements of modern organizations. Most, however, are based on
different applications of a simple technological concept, the client-server model.

In a client-server configuration, a program on a client computer accepts services
and resources from a complementary program on a server computer. The services and
resources can include application programs, processing services, database services, Web
services, file services, print services, directory services, e-mail, remote access services, even
computer system initial startup service. In most cases, the client-server relationship is
between complementary application programs. In certain cases, particularly for file services
and printer sharing, the services are provided by programs in the operating system. Basic
communication and network services are also provided by operating system programs.

Basic client-server architecture is illustrated in Figure 2.6. Notice that the link between
client and server is essentially irrelevant within the application architecture view of the
system. The “cloud” in the figure is intended to indicate only that there is a link of some
kind between the client and the server. The link can be a network connection, an intranet

FIGURE 2.6
Basic Client-Server Architecture
Client Server
—

Request Request
E— —_—

s] e]
Service Service
response Communication response

channel

52

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

or Internet connection, or some sort of direct connection. In fact, a single computer can
act as both client and server, if desired. (A situation where this is the case is described in
Chapter 16.)

The client-server model describes the relationship and behavior of programs in one or
two computers under particular prescribed circumstances. It is important to understand
that the client-server model does not require any special computer hardware. Furthermore,
networking software within the operating system of each computer routinely provides basic
communication capabilities. The only “special” software required is the software within
the complementary application programs that provides the communications between the
programs. The requests and responses take the form of data messages between the client
and server that are understood by both application programs. As an example, slightly
simplified, the HTTP request message sent to a Web server by a Web browser requesting
a Web page consists of the word cer followed by a URL. If the request is successful, the
message returned by the server contains the HTML text for the page.

From the description and the figure you can see that the Web browser—Web server
application described as an example in Chapter 1 fits the description of a client-server
application. We will return to this example momentarily.

A typical use of the client-server concept within an organization is shown in Figure 2.7.
In this case, a number of clients are sharing a number of servers, showing both the
shared server nature of client-server computing, as well as to show that there may be
multiple servers offering different services on the same network. Notice, also, that the
server computer labeled S2 in the figure is running two different server applications. Since
computers are capable of running multiple tasks concurrently, this is a possible scenario.
The only limitations to running multiple applications on a single server are the potential
slowdowns that may result from the load on the server computer and the traffic on the
network to that server. Overall, there is a multiple-multiple relationship between clients
and servers: a server can serve multiple clients, and a client can request services from
multiple servers.

The use of client-server processing as a basis for IT system architecture has a number
of advantages:

B Providing services on a single computer or on a small number of computers in a
central location makes the resources and services easy to locate and available to
everyone who needs them, but also allows the IT administrators to protect the
resources and control and manage their use. The consistency of files and data can
be managed and assured.

For example, client-server technology can ensure that every user requesting
a particular program from a server will receive the same version of the program.
As another example, suppose a program has a license that limits the number of
simultaneous users. The program server can easily limit distribution of the
program appropriately.

B The amount of data to be stored, processed, and managed may be extremely
large. It is more efficient to equip a small number of computers with the power
needed than to require powerful computers at every station.

B Typically, humans request information from knowledgeable sources as they need
it. Thus, the client-server approach is naturally consistent with the way humans
acquire and use information.

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 53

FIGURE 2.7
Clients and Servers on a Network
Database) E-mail
Web server File server server
server
Application
Servers 52 server &
print server
Network

Clients

The most familiar example of the use of client-server technology is the Web
browser—Web server model used in intranets and on the Internet. In its simplest form, this
model is an example of two-tier architecture. Two-tier architecture simply means that
there are two computers involved in the service. The key features of this architecture are a
client computer running the Web browser application, a server computer running the Web
server application, a communication link between them, and a set of standard protocols,
in this case, HTTP, for the communication between the Web applications, HTML for the
data presentation requirements, and, usually, the TCP/IP protocol suite for the networking
communcations.

In the simplest case, a Web browser requests a Web page that is stored as a pre-created
HTML file on the server. More commonly, the user is seeking specific information, and a
custom Web page must be created “on the fly”, using an application program that looks
up the required data in a database, processes the data as necessary, and formats it to build
the desired page dynamically.

Although it is possible to maintain the database and perform the additional database
processing and page creation on the same computer as the Web server, the Web server in a

54 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

FIGURE 2.8

large Internet-based business may have to respond to thousands of requests simultaneously.
Because response time is considered an important measure by most Web users, it is often
more practical to separate the database and page processing into a third computer system.
The result, shown in Figure 2.8, is called a three-tier architecture. Note that, in this case, the
Web server machine is a client to the database application and database server on the third
computer. CGI, the Common Gateway Interface, is a protocol for making communication
between the Web server and the database application possible. (In the figure, we have
placed the page creation application software on the database machine, but it could be
located on the Web server instead if doing so would balance the loads on the two machines
better.) In some situations, it is even desirable to extend this idea further. Within reason,
separating different applications and processing can result in better overall control, can
simplify system upgrades, and can minimize scalability issues. The most general case is
known as an n-tier architecture.

Client-server architecture is a distributed processing methodology, in which some of
the processing is performed on the client system and some is performed on the server
system. To see this more clearly, consider the distribution of processing between the client
and server in a database application, in which the client requests specific information from
a database stored on a database server.

At one extreme, the client application provides little more than a request form and a
means to display the results. All of the processing is performed on the server. This might
be appropriate if there is little computing power in the client. Certain so-called “thin”
clients or “end-user” terminals might meet this criterion, but this situation is increasingly
rare. Because this extreme case puts the entire processing load on the server, the system
designer will have to specify a more powerful computer for the server; additionally, the
requirements of the database server may limit the capability of the server computer system
to perform other tasks or to scale for increased usage.

At the other extreme, the database server application simply accesses data from the
database and passes all of the data to the client. The client application performs all of
the processing. This relieves the load on the server, and it is reasonable to assume that
modern client computers would be able to handle most database processing tasks relatively
easily. However, the potential transfer of large amounts of raw data from the server to

Three-Tier Database Architecture

Web database
server server
HTTP CGI*
Request — Request P
——
C}_ database
~—
HTTP CGl
response response
(HTML)

*CGl: Common Gateway Interface

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 55

the client for processing may put an extra burden on the network instead, requiring the
system designer to specify higher speed network components at potentially higher cost and
additional implementation difficulty.

A well-designed system analysis will consider the different factors, the complexity
of the applications, expected network traffic, usage patterns, and the like. The optimum
solution is likely to fall somewhere in the middle, with some pieces of applications on the
server, others on the client.

One of the strengths of client-server architecture is its ability to enable different
computer hardware and software to work together. This provides flexibility in the selection
of server and client equipment tailored to the needs of both the organization and the
individual users. One difficulty that sometimes arises when different computers have
to work together is potential incompatibilities between the application software that
resides on different equipment. This problem is commonly solved with software called
middleware. Middleware resides logically between the servers and the clients. Typically,
the middleware will reside physically on a server with other applications, but on a large
system it might be installed on its own server. Either way, both clients and servers send
all request and response messages to the middleware. The middleware resolves problems
between incompatible message and data formats before forwarding the messages. It also
manages system changes, such as the movement of a server application program from one
server to another. In this case, the middleware would forward the message to the new
server transparently. The middleware thus assures continued system access and stability. In
general, the use of middleware can improve system performance and administration.

WEB-BASED COMPUTING The widespread success of the World Wide Web has
resulted in a large base of computer users familiar with Web techniques, powerful
development tools for creating Web sites and Web pages and for linking them with
other applications, and protocols and standards that offer a wide and flexible variety
of techniques for the collection, manipulation, and display of data and information. In
addition, a powerful website is already a critical component in the system strategy of
most modern organizations. Much of the data provided for the website is provided by
architectural components of the organization’s systems that are already in place.

Not surprisingly, these factors have led system designers to retrofit and integrate Web
technology into new and existing systems, creating modern systems which take advantage
of Web technology to collect, process, and present data more effectively to the users of the
system.

The user of a Web-based system interacts with the system using a standard Web
browser, enters data into the system by filling out Web-style forms, and accesses data
using Web pages created by the system in a manner essentially identical to those used
for the Internet. The organization’s internal network, commonly called an intranet, is
implemented using Web technology. To the user, integration between the intranet and the
Internet is relatively seamless, limited only by the security measures designed into the system.
This system architecture offers a consistent and familiar interface to users; Web-enabled
applications offer access to the organization’s traditional applications through the Web.
Web technology can even extend the reach of these applications to employees in other parts
of the world, using the Internet as the communication channel.

56

FIGURE 2.9

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

Since Web technology is based on a client-server model, it requires only a simple
extension of the n-tier architecture to implement Web-based applications. As an example,
Figure 2.9 shows a possible system architecture to implement Web-based e-mail. Note the
similarity between this example and the three-tier database application shown in Figure 2.8.

Many organizations also now find it possible and advantageous to create system
architectures that integrate parts of their systems with other organizations using Web
technology and Web standards as the medium of communication. For example, an
organization can integrate and automate its purchasing system with the order system of its
suppliers to automate control of its inventory, leading to reduced inventory costs, as well as
to rapid replacement and establishment of reliable stocks of inventory when they are needed.
Internet standards such as XML allow the easy identification of relevant data within data
streams between interconnected systems, making these applications possible and practical.
This type of automation is a fundamental component of modern business-to-business
operations.

PEER-TO-PEER COMPUTING An alternative to client-server architecture is peer-to-
peer architecture. Peer-to-peer architecture treats the computers in a network as equals,
with the ability to share files and other resources and to move them between computers.
With appropriate permissions, any computer on the network can view the resources of
any other computer on the network, and can share those resources. Since every computer
is essentially independent, it is difficult or impossible to establish centralized control to
restrict inappropriate access and to ensure data integrity. Even where the integrity of the
system can be assured, it can be difficult to know where a particular file is located and
no assurance that the resource holding that file is actually accessible when the file is
needed. (The particular computer that holds the file may be turned off.) The system also
may have several versions of the file, each stored on a different computer. Synchronization
of different file versions is difficult to control and difficult to maintain. Finally, since

Three-Tier Web-Based E-Mail Architecture

Web Mail
server server
HTTP CGlI*
Request R Request —= R’cvd mail
— —_—
-
HTTP CGlI Sent mail
response response
(HTML)
SMTP*
to another
mail server

*SMTP: Simple Mail Transfer Protocol
*CGI: Common Gateway Interface

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 57

data may pass openly through many different machines, the users of those machines may
be able to steal data or inject viruses as the data passes through. All of these reasons are
sufficient to eliminate peer-to-peer computing from consideration in any organizational
situation where the computers in the network are controlled by more than one individual
or group. In other words, nearly always.

There is one exception: peer-to-peer computing is adequate, appropriate, and useful
for the movement of files between personal computers or to share a printer in a small office
or home network.

Peer-to-peer technology has also proven viable as an Internet file sharing methodology
outside the organizational structure, particularly for the downloading of music and video.
The perceived advantage is that the heavy loads and network traffic associated with a server
are eliminated. (There are legal ramifications, also, for a server that is sharing copyrighted
material illegally.) This technique operates on the assumption that the computer searching
for a file is able to find another computer somewhere by broadcasting a request across
the Internet and establishing a connection with a nearby computer that can supply the
file. Presumably, that computer already has established connections with other systems. All
of these systems join together into a peer-to-peer network that can then share files. One
serious downside to this approach, noted above, is the fact that the computers in an open,
essentially random, peer-to-peer network can also be manipulated to spread viruses and
steal identities. There are several serious documented cases of both.

An alternative, hybrid model uses client-server technology to locate systems and files
that can then participate in peer-to-peer transactions. The hybrid model is used for instant
messaging, for Skype and other online phone systems, and for Napster and other legal file
download systems.

Although there have been research studies to determine if there is a place for
peer-to-peer technology in organizational computing, the security risks are high, the
amount of control low, and the overall usefulness limited. The results to date have been
disappointing.

The Role of the System Architect

In Section 2.1, we suggested that there are different ways of viewing systems. From the
discussion within this section, you can see that the IT system architect must consider
the system from the perspectives of application architecture, data architecture, network
architecture, and computer architecture. Each of these addresses different aspects of the
IT system as a whole. For example, our consideration of different general application
architectures—client-server, web-based architecture, peer-to-peer architecture—ignored
the networking that links the various computers together. Similarly, we attempted to
minimize the effects due to the specifics of individual computer systems when exploring
the various requirements of a system from the perspective of application architecture.
Ultimately, it is the responsibility of the system architect to assess the particular needs
of an organization and create a system that meets those needs while attempting to achieve
an optimum balance of computer power, network capability, user convenience, and budget.
To do so, the architect will consider each aspect of the system: application architecture,
network requirements, specification of computer systems, and data requirements, just as
the architect designing a house considers flow of people through the house, overall use of

58

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

space and room layout, individual room layouts, mechanical systems, and aesthetic design
as different views of the overall architecture of the house.

Although the infrastructure design as defined by the computer hardware, system
software, and communication channels is subordinate to the fundamental business require-
ments that determine a basic IT system architecture, the system architect must understand
the features and constraints that establish the feasibility and desirability of a particular
infrastructure configuration.

Google: A System Architecture Example

So far, we have considered basic system concepts and simple system architectures as
examples. Most IT business systems operate primarily within an organization, with limited
collaboration with other, partnered organizations and carefully controlled public access. At
the opposite extreme are massive systems that are widely open to the public. Google offers
a primary example of such a system.

The primary mission of Google is to provide powerful, fast search capability of
material on the Internet for billions of users all over the world. Income to the organization
is provided from advertising that is targeted to each user based on the specific nature of the
user’s search. The design of Google’s IT system architecture is obviously fundamental to
Google’s ability to achieve its mission and to meet reasonable income goals. In keeping with
the focus of this book, our primary interest is in the computer and network architectures
that Google uses to meet its system requirements; however we will use this example to
explore the relationship between the basic system requirements, the IT system architecture
created to meet those requirements, and the specific computer and network architectures
that evolved from the system architecture.

Some of the basic requirements that the Google IT system must satisfy include the
following:

B It must be capable of responding to millions of simultaneous requests from all
over the world with pertinent, ranked search results and appropriately targeted
advertising. Most desirably, the results and advertising would be matched in
language, geographic suitability, and culture as much as possible to the location
of the user.

B The system must be able to troll the Internet systematically and thoroughly to
retrieve data and to organize the data in such a way as to make it readily available
for response to user requests. There must be a processing mechanism to establish
a ranking of the results to a request.

B The system must respond to requests with a reliability as near to 100 percent as is
technically possible. Individual hardware and software component failures
within the system must not affect system performance adversely.

B The system must be easily scalable to handle ever-increasing numbers of requests
and must be cost effective.

At the application level, the requirements identify three specific processing tasks that

the system must fulfill:
1. The system must accept search requests from users, identify and rank matches,
create a Web page, and serve it to the user.

FIGURE 2.10

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 59

2. The system must collect data—Tlots of data! This task “crawls the Web”,
identifies the search terms (every significant word) on every Web page it
encounters, and maintains an index database connecting each term to the
corresponding page. It likewise stores every Web page in a Web page database
and assigns a ranking value to each entry.

3. The system must manage advertisements, identify appropriate advertisements in
response to user search requests, and make the advertisements available to the
Web page creation application mentioned in 1.

For this discussion we will focus on the processing of search requests. When a user
types the Google URL www.google.com into her browser, the Web browser uses a service
called Domain Name Service (DNS) to identify the IP address of the Web server to which
the request is to be sent. Because Google must be able to handle several milllion requests
per hour, Google provides a number of alternative IP addresses representing different sites
to which the request may be redirected. Based on the approximate location from which the
request was sent, the request is routed by DNS to a Google data center near that location.
Google maintains more than forty separate data centers around the world to serve user
requests.

A simplified system diagram of the application architecture for a Google data center
is shown in Figure 2.10. All of the data centers are architecturally identical, differing
only in such details as the number of processors and the hardware specifications for each
processor. Each data center processes requests independently. Multiple copies of all of the

Google Data Center Search Application Architecture

Index
databases

Internet

Interface to

internet
Spell Web Servers Ad Checker
Checker
4 A 4 A
Web Page
Index A
Servers |\ _:> Document
Servers

Page
databases

60

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

index word data and Web page data are stored locally at every data center, and updated
from master data at regular intervals.

A request enters the system from the Internet and is distributed to a Google Web server
for processing. A request consists of words and phrases. There are many separate Web
servers available so that many requests can be processed in parallel. The words are passed
to a spell checker, to an ad server, and to a pool consisting of a large number of index
servers.

The spell checker checks each word and considers possible alternatives if it believes
that the user may have intended something different. When appropriate, the output of
the spell checker will become part of the response sent to the user. (“Did you mean ... ”
is familiar to most Google users.) The ad checker searches for words in the advertising
database that match the user’s request and adds the corresponding advertisement(s) to the
material that will be used to create the response page.

The index servers look up each word from the request in the index database and
compile a list of matching pages for each word. The list is then adjusted for multiple words
and phrases and sorted in order of relevance, based on Google’s ranking algorithms. This
list is then passed back to the Web server.

Next, the Web server calls upon the document servers to look up each matching page
in the Web page database. The document servers return a URL, a title, and a short snippet
of text for each document to the Web server. Finally, the Web server creates an HTML
document from the spelling, ad, and matching page results and returns the page to the
user’s Web browser.

Although the application processing just described is relatively straightforward, the
implementation of this system presented a number of challenges to the system architects,
The index and document databases are both massive in size. Many searches will result in a
large number of “hits”; each hit must be evaluated and ranked. Each hit requires retrieval
and processing of a separate page from the document database. All of this processing must
occur very quickly. And the numbers of searches occurring simultaneously may also be
extremely large.

Google’s system architects responded to these challenges by recognizing that each
search could be processed independently on a separate computer, except for certain
bottlenecks. For example, each search request arriving from the Internet could be steered
by a computer to a different Web browser. They also observed that the major bottleneck
was the time required to access the databases on disks, which had to be shared among all
the searches taking place. Since the data in the databases never changed as a result of a
search, however, they reasoned that the databases could also be replicated and accessed in
parallel.

A simplified hardware representation of their solution is shown in Figure 2.11. Groups
of up to eighty computers are connected together in a network, then these networks, up
to sixty-four of them, are, themselves, connected together to form a larger network, sort
of like a miniature Internet of up to 5,120 computers. (There are additional switches and
connections built in for reliability that are not shown in the diagram.) Each computer
acts as a server, with different computers assigned to different pieces of the application
architecture. Each data center is equipped similarly.

Although the computers are manufactured specifically for Google, they are essentially
inexpensive commodity PCs, similar to standard, medium power, non-state-of-the-art,

FIGURE 2.11

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 61

Simplified Google System Hardware Architecture

To Internet

Network
switch

Up to 64
lines

Network
switch

Network
switch

=/

<—— Up to 80 PCs — >

O = AR
\\= =17 \\ = ...[=

<—— Up to 80 PCs —>

<«——Up to 80 PCs —>

off-the-shelf PCs. Each computer has a fairly large, but still off-the-shelf, hard disk. The
index and document databases are divided up among the hard disks on many computers.
(Google calls these partial databases shards.) This design allows different searches to access
different parts of the databases simultaneously. There are multiple copies of each database,
so that the failure of a PC or hard disk does not affect the overall ability of the system to
conduct searches. Each computer runs standard Linux operating system software, but the
application software was specially written by Google programmers.

Opverall, this design allows a large number of searches to progress in parallel. The use of
inexpensive PC hardware makes the solution cost-effective. The system can be scaled easily
by adding more computers. Finally, the failure of a PC does not result in failure and, in
fact, has minimal effect on the performance of the system overall. Thus, this solution meets
the original requirements admirably. It is worth noting that a fundamental understanding
of computer infrastructure was key to the system architects’ solution.

This discussion provides a simple overview of the Google system. Hopefully you found
even this brief look at the Google system interesting and informative. There are a number of
other considerations in the Google system architecture that we have glossed over for now.
However, to understand the Google architecture better, it is first necessary to continue our
exploration of the hardware, software, and network components that make up the Google
system, as well as every other IT system. We will return for a more in-depth discussion of
the Google system architecture in Supplementary Chapter 2.

62

PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

SUMMARY AND REVIEW

When working with large concepts with defined boundaries, it is often easiest to think of
them in terms of systems. A system can be defined as a collection of components, linked
together and organized in such a way as to be recognizable as a single unit. The components
themselves may also be recognized as subsystems, to be further reduced into components,
when appropriate. The area outside the boundaries of a system is its environment. The
system affects and is affected by various elements of the environment. In many situations,
the environment supplies inputs to the system and receives outputs from the system. The
patterns of relationships, connections, constraints, and linkages among the components
of a system and between a system and its environment are known collectively as the
architecture of the system.

Information technology systems are systems that support the strategy and operations of
organizations. The technological components of an IT system include computer hardware,
application software, operating system software, networks, and data. Other components
include personnel, policies, and more.

There are a number of different ways of viewing an IT system, including application
architecture, network architecture, software architecture, and hardware architecture. The
general architecture for an IT system includes all of these considerations.

Nearly all modern IT systems rely on distributed processing. Data comes from many
sources and information is required by users distributed throughout an organization
and beyond. The most common application architecture to support distributed pro-
cessing is client-server architecture, in which server computer systems provide various
services—Web, database, file, print, processing—to client computer systems. Client-server
systems are convenient for users and offer centralized control for the organization.
Client-server architecture is commonly organized in tiers, ranging from two-tier to n-tier.
The alternative architecture to client-server computing, peer-to-peer computing, is used
outside of organizations as a means for sharing files over the Internet, but is of limited
use in organizational settings due to difficulties in establishing stable data sources, security
risks, and lack of central control. It is also possible to create a hybrid architecture, with
features from both client-server and peer-to-peer computing.

A specific type of client-server architecture, Web-based computing, predominates the
IT scene, primarily because users are generally familiar with the use of Web browsers, the
technology is standardized and already in use in most organizations, and good development
tools for designing Web pages and accessing data are readily available. Both intranets and
the Internet provide user access.

Protocols are the means used to communicate between computers. I'T system protocols
of interest to us include network protocols such as TCP/IP, I/O protocols such as USB
and PCI-Express, and application protocols such as HTTP. Standards make it possible for
different system components to work together. Most modern standards are global. There
are standards that are defined by interested groups and de facto standards that arise from
common usage.

The first step in IT system analysis and design is about finding an appropriate
architecture for a particular business situation. The task can be difficult and challenging.
It is easy to see why system architects need a deep understanding of the computer system

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 63

and network components that comprise the modern IT system to make the appropriate
design, selections, and tradeoffs.

Hopefully this short but concentrated chapter has prepared you for the remainder of
the book, which considers in detail the data, computer system hardware, operating systems,
and networks that make up the technological infrastructure of an IT system.

FOR FURTHER READING

Surprisingly, there are few books that discuss system concepts and system architecture in
a truly general way. Most books that claim to be about system architecture are actually
specific to a particular field, usually the field of information systems. One general book
about systems is by Laszlo [LASZ96]. Some IS systems design and analysis textbooks
provide a brief introduction to general system concepts. (Unfortunately, many don’t!)
One example of a book that provides a good introduction to system concepts is Stampf
[STAMOS5]. Chapter 1 of Stampf covers the topics in this chapter well. Wikipedia offers
other references under the topic system.

KEY CONCEPTS AND TERMS

abstraction interface subsystem
application architecture intranet system

architecture middleware three-tier architecture
client-server (model) n-tier architecture top-down approach
decomposition peer-to-peer architecture two-tier architecture
environment shared server

READING REVIEW QUESTIONS

2.1 What are the most important ideas, keywords, and phrases that are stated in the
definition of a system?

2.2 Explain the relationships among the following words: system, environment, bound-
ary, interface.

2.3 Explain the following statement about systems: “Decomposition is inherently
hierarchical.”

2.4 Explain what is meant by the architecture of a system.

2.5 What does the top-down approach allow a system architect to do that might be
more difficult otherwise?

2.6 What is the primary concern of application architecture? Give an example of
application architecture, either your own, or one from the examples in the book.
Explain how this example fulfills the features and requirements of the concept of
application architecture.

2.7 Most modern computing in organizations is based on client-server models. Explain
why this tends to be the case. Give an example of client-server computing that you

64 PART ONE AN OVERVIEW OF COMPUTER SYSTEMS

EXERCISES

2.8

2.9
2.10

2.1

2.2

2.3

2.4

2.5

2.6

2.7

are familiar with and explain the characteristics of your example that fulfill the
concept of client-server computing.

Web-based system architecture is a popular approach to many organizational
systems because it offers a number of advantages to the users and to the organization
over other types of systems. Discuss the primary advantages to this approach.

What are the principal responsibilities of a system architect?

Many system architects base their IT system designs on an n-tier architecture, where
n is a number with value 2 or greater. Explain the difference between a single-tier
architecture and an n-tier architecture. What are the main advantages claimed for
an n-tier architecture?

The human body is an example of an object that can be represented as a system.
Consider the various ways in which you could represent the human body as a
system. Select a representation and identify the components that constitute the
system. Select one component and decompose it to the next subsystem level. Now
consider a completely different system representation of the human body and
repeat this exercise.

Consider a representation of a work organization or school with which you are
familiar. Identify the major components that characterize the primary operations
within the organization and draw a diagram that represents the system’s organi-
zation. Show and identify the links that connect the various components. Identify
the major environmental factors that impact the organization.

Consider this textbook. Using the detailed table of contents as a reference, we can
represent this textbook as a hierarchical system. As a first pass, we can define this
book by the five component parts that make up the body of the text. Identify by
general name the objects that constitute the next level of decomposition below
the parts components. Continue to do this for at least three more levels of the
hierarchy.

Thinking in terms of systems allows us to analyze situations that are too complicated
for us to understand as a whole. What specific characteristics and features of system
thinking make this possible?

Figure 2.8 illustrates the basic architecture for a three-tier database system. This
system can be viewed as an IPO (input-processing-output) system. What is the
input for this system? What environmental element generates the input? (Hint:
the Web browser computer is within the system boundary.) What is the expected
output from this system? What environmental element receives the output? Briefly
describe the processing that takes place in this system.

Based on the illustration of an iPhone shown in Figure 2.4, draw a system model
for an iPhone.

It is common to represent network connections in IT systems as a cloud. (See, for
example, Figures 2.6, 2.7, 2.8, and 2.9). The cloud is obviously an abstraction as
we defined abstraction in this chapter. What does the cloud abstraction actually
represent?

CHAPTER 2 AN INTRODUCTION TO SYSTEM CONCEPTS AND SYSTEMS ARCHITECTURE 65

2.8 Suppose that you have been hired to develop a website-based sales system for a
large international retail sales firm. Discuss some environmental issues that are
specific to the Web design of your system that you must consider if your system is
to be successful at attracting and keeping purchasing customers.

2.9 Consider a home theatre system consisting of a television set, a receiver, a DVD
player, speakers, and any other components you wish to include. Draw a system
diagram for this system. Include both components and links. What are the inputs
to this system? What are the outputs? (Remember that the DVD player and receiver
are both components within the system.) Now draw a system diagram for the
receiver subsystem. Include both its primary components and the links between
them. What are the inputs and outputs for the receiver subsystem? Do these inputs
and outputs conform to the links connected to the receiver in your original system
diagram?

PART Y

numbers, using only 1s and 0s. The situation is more complicated than this, however,

because those binary numbers represent both program instructions and data, and
they may represent the data in many different forms. Programming languages such as Java,
for example, allow a programmer to specify data in primitive form as integer numbers, real
numbers, characters, or Booleans. In addition, the files on your computer probably include
representations of graphical images, sounds, photo images and video, and who knows what
all else!

Each of the myriad different data types and objects uses its own format or formats for
storage in the computer. Manipulating data requires keeping track of which format is in use
for a particular set of data. Each numerical data format requires a different method for doing
arithmetic calculations, and there are a number of different formats for representations
of images and the like with different capabilities and manipulation requirements, which
complicates data handling even further. Naturally, the computer must be able to perform
format conversions between equivalent but different types. Most of this data-type record
keeping must be handled within programs; to the computer, the bits all look the same.
Only the programs know what the bits actually represent.

Each data type and format has its own uses, advantages, and disadvantages, determined
by the context in which it is being used. There is no single “ideal” data type. Knowing when
to use each type involves understanding what happens to the data within the computer.
When you understand the effect of your data-type choices upon the processing that will be
required you can write better, more efficient programs.

Each of the chapters in this section deals with a different aspect of data. We begin in
Chapter 3 by reviewing the basics of number systems, to offer you a better understanding
of how numbers work, the nature of counting, and how calculations are performed. You

‘- 7 ou are probably aware that all data in a computer is stored in the form of binary

DATA IN THE COMPUTER

will learn how to convert from one number base to another. Although the binary number
system is used within computers, we must be able to convert between the system the
computer uses and the more familiar decimal system that we use. You will also have a
chance to work with the octal and hexadecimal number systems, which are closely related to
the binary system. These are frequently used for representing computer data and programs
in machine form because they are easy to read and easy to convert to and from binary form.

In Chapter 4 we will explore the ways in which data gets into the computer in the first
place and the different forms that it can take inside the computer. We will consider text,
sound, and images. You will study the difference between characters and other symbols
stored as text and the same symbols stored as images. You will see the different binary
codes that are used to represent symbols in text form. We will also consider the difference
between numbers stored as groups of numeric characters and those stored in actual
numerical form. The chapter also looks at the representations of graphics, photo images,
and sound. We present several different formats that are used for the manipulation and
storage of image and sound data.

In Chapter 5 we will look at various ways in which numbers are stored and manipulated
in computers. We consider various forms of integers and real, or “floating point,” number
representations and calculations. We discuss the conversion process between real and
integer number representations. We look at the strengths and shortcomings of each type
from the perspectives of data storage requirements and calculation considerations. The
discussion will conclude by considering when the use of each of the different numerical
types is appropriate.

67

CHAPTER 3

NUMBER SYSTEMS

“{ call them numbers, you can add them, subtract
them, multiply them, divide them ... find their
square root..."”

Courtesy of David Ahl, Creative Computing

3.0 INTRODUCTION

As humans, we generally count and perform arithmetic using the decimal, or base 10,
number system. The base of a number system is simply the number of different digits,
including zero, that exist in the number system. In any particular set of circumstances,
a particular base might be chosen for convenience, efficiency, technological, or any
other reasons. Historically, it seems that the main reason that we use base 10 is that
humans have ten fingers, which is as good a reason as any.

Any number can be represented equivalently in any base, and it is always possible
to convert a number from one base to another without changing its meaning.

Computers perform all of their operations using the binary, or base 2, number
system. All program code and data are stored and manipulated in binary form.
Calculations are performed using binary arithmetic. Each digit in a binary number
is known as a bit (for binary digit) and can have only one of two values, 0 or 1. Bits
are commonly stored and manipulated in groups of 8 (known as a byte), 16 (usually
known as a halfword), 32 (a word), or 64 bits (a doubleword). Sometimes other
groupings are used.

The number of bits used in calculations affects the accuracy and size limitations of
numbers manipulated by the computer. And, in fact, in some programming languages,
the number of bits used can actually be specified by the programmer in declaration
statements. In the programming language Java, for example, the programmer can
declare a signed integer variable to be short (16 bits), int (32 bits), or long (64 bits)
depending on the anticipated size of the number being used and the required accuracy
in calculations.

The knowledge of the size limits for calculations in a particular language is
sometimes extremely important, since some calculations can cause a numerical result
that falls outside the range provided for the number of bits used. In some cases this
will produce erroneous results, without warning to the end user of the program.

It is useful to understand how the binary number system is used within the
computer. Often, it is necessary to read numbers in the computer in their binary or
equivalent hexadecimal form. For example, colors in Visual Basic can be specified as a
six-digit hexadecimal number, which represents a 24-bit binary number.

This chapter looks informally at number systems in general and explores the
relationship between our commonplace decimal number system and number systems
of other bases. Our emphasis, of course, is upon base 2, the binary number system.
The discussion is kept more general, however, since it is also possible, and in fact
common, to represent computer numbers in base 8 (octal) or base 16 (hexadecimal).
Occasionally we even consider numbers in other bases, just for fun, and also, perhaps,
to emphasize the idea that these techniques are completely general.

69

70

PART TWO DATA IN THE COMPUTER

3.1 NUMBERS AS A PHYSICAL REPRESENTATION

FIGURE 3.1

A Number of Oranges

As we embark upon our investigation of number systems, it is important to note that
numbers usually represent some physical meaning, for example, the number of dollars in
our paycheck or the number of stars in the universe. The different number systems that we
use are equivalent. The physical objects can be represented equivalently in any of them. Of
course, it is possible to convert between them.

In Figure 3.1, for example, there are a number of oranges, a number that you recognize
as 5. In ancient cultures, the number might have been represented as

ITITII

or, when in Rome,

Similarly, in base 2, the number of oranges in Figure 3.1 is represented as
101;

And in base 3, the representation looks like this:
125

The point we are making is that each of the foregoing examples is simply a different way
of representing the same number of oranges. You probably already have experience at
converting between the standard decimal number system and Roman numerals. (Maybe
you even wrote a program to do so!) Once you understand the methods, it is just about as
easy to convert between base 10 and the other number bases that we shall use.

3.2 COUNTING
IN DIFFERENT BASES

Let’s consider how we count in base 10, and
what each digit means. We begin with single digits,

LN kO

[

CHAPTER 3 NUMBER SYSTEMS 71

When we reach 9, we have exhausted all possible single digits in the decimal number
system; to proceed further, we extend the numbers to the 10’s place:

10
11
12

It is productive to consider what “the 10’s place” really means.
The 10’s place simply represents a count of the number of times that we have cycled
through the entire group of 10 possible digits. Thus, continuing to count, we have

1 group of 10 + 0 more
1 group of 10 + 1 more
1 group of 10 + 2

1 group of 10 + 9

~no

groups of 10 + 0

9 groups of 10 + 9

At this point, we have used all combinations of two digits, and we need to move
left another digit. Before we do so, however, we should note that each group shown here
represents a count of 10, since there are 10 digits in the group. Thus, the number

43
really refers to
4%x10+3

As we move leftward to the next digit, that is, the hundreds place, we are now counting
cycles of the rightmost two digits or, in other words, groups of 10 x 10, or 10%, or hundreds.
Thus, the number

527
really represents

five groups of (10 x 10)+
two groups of 10 + 7

72 PART TWO DATA IN THE COMPUTER

FIGURE 3.2 This is also represented as
Counting in Base 2 5x10°42x 10" +7 x10°
DECIMAL This method can, of course, be
NUMBER EQUIVALENT EQUIVALENT extended indefinitely.
0 The same method, exactly,
e DR 0 applies to any number base. The only
1 1x 20 1 change is the size of each grouping.
10 1x 2l 1 gx20 2 For example, in base 8, there are only
1 0 eight different digits available (0, 1,
11 1x2"+1x2 3 2,3, 4,5, 6, 7). Thus, each move left
100 1% 22 4 represents eight of the next rightmost
101 1% 22 41 %20 5 grouping. The number
110 1x2%+1x21 6 6244
111 1x22+1x2l+1x20 7
1000 - 8 corresponds to
1001 1x23 +1x 20 9 6x8°+2x8 4+4x8°
1010 1x23 +1x2! 10

Since 82 =649, 8! =89, and 8° =1,

624g=6x 64 +2 x 844 =404,

Each digit in a number has a weight, or importance, relative to its neighbors left and
right. The weight of a particular digit in a number is the multiplication factor used to
determine the overall value of the particular digit. For example, the weights of the digits in
base 8, reading from right to left are 1, 8, 64, 256, . .. , or, if your prefer, 80, 81,8283, ...
Just as you would expect, the weight of a digit in any base # is n times as large as the digit
to its right and (1/n)th as large as the digit to its left.

Figure 3.2 shows the corresponding method of counting in base 2. Note that each
digit has twice the weight of its next rightmost neighbor, just as in base 10 each digit
had ten times the weight of its right neighbor. This is what you would expect if
you consider that there are only two different values for digits in the binary cycle.
You should spend enough time studying this table until you understand every detail
thoroughly.

Note, too, that the steps that we have followed do not really depend on the number
base that we are using. We simply go through a complete cycle, exhausting all possible
different digits in the base set, and then move to the left one place and count the cycles. We
repeat this process as necessary to represent the entire number.

In general, for any number base B, each digit position represents B to a power, where
the power is numbered from the rightmost digit, starting with B°. B, of course, is one
(known as the units place) for any number base.

Thus, a simple way to determine the decimal equivalent for a number in any number
base is to multiply each digit by the weight in the given base that corresponds to the position
of the digit for that number.

EXAMPLES

CHAPTER 3 NUMBER SYSTEMS 73

As an example,

1423054 =
Ix6°+4x6%+2x63+3x624+0x6+5=
7776 +5184 +4324+108+0+5=1350549

H B B
Similarly,

110010100, =
Ix284+1x2" +0x204+0x2°+1x2%+0x23+1x22+
O0x2+0=
256+ 128416+ 4 = 4044,

You should probably work out these two examples and check your results against ours.

Often it is useful to be able to estimate quickly the value of a binary number. Since the
weight of each place in a binary number doubles as we move to the left, we can generate
a rough order-of-magnitude by considering only the weight for the leftmost bit or two.
Starting from 1, and doubling for each bit in the number to get the weight, you can see that
the most significant bit in the previous example has a value of 256. We can improve the
estimate by adding half that again for the next most significant bit, which gives the value
of the number in the neighborhood of 384, plus a little more for the additional bits. With
a little practice, it is easy to estimate the magnitudes of binary numbers almost instantly.
This technique is often sufficient for checking the results of calculations when debugging
programs. (You might also want to consider it as a way of doing quick checks on your
solutions to exam problems!)

We will discuss number conversion between different bases more carefully later in the
chapter.

From the preceding discussion, it is fairly easy to determine the total range of possible
numbers—or, equivalently, the smallest and largest integer—for a given number of digits
in a particular number base. Since the weight of each digit is one larger than the largest
value that can be represented by all the digits to its right, then the range of possible values
for n digits is simply the weight of the nth digit, which is represented by the value

range = base”

Thus, if we want to know how many different numbers can be represented by two decimal
digits, the answer is 10?. We can represent one hundred different numbers (0 ... 99) with
two decimal digits.

It’s obviously easier to simply memorize the formula; if you are told that you are
working with four digit numbers in base 8, you know from the formula that you can
represent 8% or 4096 different numbers, ranging from 0 ... 7777, or the decimal equiva-
lent (0 ... 4095).

Just as a pocket calculator stores, manipulates, and displays numbers as a group of
digits, so computers store and manipulate numbers as groups of bits. Most computers
work with numbers 16 bits, 32 bits, or 64 bits at a time. Applying the preceding formula
to a “16-bit” PC, you can represent 216 = 65,536 different number values in each 16-bit

74 PART TWO DATA IN THE COMPUTE

FIGURE 3.3
Decimal Range for Selected Bit Widths

R

BITS DIGITS RANGE
0+ 2 (0and 1)
4 1+ 16 (0to 15)
2+ 256
10 3 1,024
16 4+ 65,536 (64K)
20 6 1,048,576 (1M)
32 9+ 4,294,967,296 (4G)
64 19+ approx. 1.6 x 10'°
128 38+ approx. 2.6 x 10%

location. If you wish to extend this range, it is necessary
to use some technique for increasing the number of bits
used to hold your numbers, such as using two 16-bit
storage locations together to hold 32 bits. There are
other methods used, which are discussed in Chapter 5,
but note that, regardless of the technique used, there
is no way to store more than 65,536 different number
values using 16 bits.

A table of base 10 equivalent ranges for several com-
mon computer “word lengths” is shown in Figure 3.3.
There is a simple way to calculate the approximate range
for a given number of bits, since 2!'° is approximately
1000. To do so, we break up the total number of bits into
a sum that consists of values where the range is easily
figured out. The overall range is equal to the product of
the subranges for each value. This method is best seen
with examples.

For example, if you need to know the range for 18 bits, you would break up the
number 18 into the sum of 10 and 8, then multiply the range for 10 bits to that for 8
bits. Since the range for 10 bits is approximately 1K (1024, actually) and 8 bits is 256,
the range for 18 bits is approximately 256 K. Similarly, the range for 32 bits would be
(10-bit range) x (10-bit range) x (10-bit range) x (2-bit range) =1 K x 1K x 1K x4=4
gigabytes. This technique becomes easy with a bit of practice.

Notice that it takes 18 bits to represent a little more than five decimal digits. In general,
approximately 3.3 bits are required for each equivalent decimal digit. This is true because

233 is approximately equal to 10.

3.3 PERFORMING ARITHMETIC IN DIFFERENT

NUMBER BASES

Next, we consider simple arithmetic operations in various number bases. Let us begin by
looking at the simple base 10 addition table shown in Figure 3.4.

FIGURE 3.4
The Base 10 Addition Table

We add two numbers by finding
one in the row and the other in the
column. The table entry at the inter-
section is the result. For example, we
have used the table to demonstrate that

< 0o 1 2 3 4 5 6 7 8 9 the sum of 3 and 6 is 9. Note that the
ol o 1 2 3 24 5 6 7 8 9 extra digit sometimes required becomes
a carry that gets added into the next left

11 2 3 4 5 6 7 8 9 10 column during the addition process.
ol 2 3 4 5 6 7 8 9 10 11 More fundamentally, we are inter-
ested in how the addition table is actu-
3] 3 4 5 6 7 8 9 10 11 12 ally created. Each column (or row)
4] 4 5 6 7 8 9 10 11 12 13 represents an increase of 1 from the
. previous column (or row), which is

etc.

equivalent to counting. Thus, starting

EXAMPLE

CHAPTER 3 NUMBER SYSTEMS 75

FIGURE 3.5
The Base 8 Addition Table

+ 0 1 2 3 4 5 6 7

ol o 1 2 3 4 5 6 7

1l 1 2 3 4 5 6 7 10

2| 2 3 4 5 6 7 10 11

3l 3 4 5 6 7 10 11 12 (Me8ors,
of course)

4l 4 5 6 7 10 11 12 13

5| 5 6 7 10 11 12 13 14

6| 6 7 10 11 12 13 14 15

71 7 10 11 12 13 14 15 16

from the leftmost column in the table, it is only necessary to count up 1 to find the next
value. Since 3 + 6 =9, the next column will have to carry to the next place, or 10, just as
occurred when we demonstrated counting in base 10, earlier. This knowledge should make
it easy for you to create a base 8 addition table. Try to create your own table before looking
at the one in Figure 3.5.

Of special interest is the base 2 addition table:

+ 0 1
0 0 1
1 1 10

Clearly, addition in base 2 is going to be easy!

Addition in base 2 (or any other base, for that matter) then follows the usual methods
of addition that you are familiar with, including the handling of carries that you already
know. The only difference is the particular addition table being used. There are practice
problems representing multidigit binary arithmetic and column arithmetic (Exercise 3.8)
at the end of the chapter.

Add 11100001, and 1010115, (superscripts are carried amounts).
1 1'1 00 0to0'1
+ 101011
100001100

Let's use the estimation technique to see if our result is approximately correct.
11100001 is approximately 128 +64 + 32, or 224. 101011 is approximately 32. Thus,
the sum should be about 256; 100001100 is indeed approximately 256, so at least we
know that our calculation is in the ballpark.

As an aside, it may be of interest to some readers to consider how this addition table
can be implemented in the computer using only Boolean logic, without performing any

76

FIGURE 3.7
The Base 8 Multiplication Table

N o o A WDN

PART TWO DATA IN THE COMPUTER

FIGURE 3.6
The Base 10 Multiplication Table

0 1 2 3 4 5 6 7 BN 9

«0—>

3 4 5 6 7 8 9
6 8 10 12 14 16 18
9 12 15 18 21 24 27
12 16 20 24 28 32 36
10 15 20 25 30 35 40 45
12 18 24 30 36 42 48 54
14 21 28 35 42 49 56 63
16 24 32 40 48 56 64 72
18 27 36 45 54 63 72 81

2
4
6
8

<« O —>»

© O N o o b~ w NN = o X
O 00 N O o » W N o~

actual arithmetic: the result bit (the bit in the column that corresponds to the inputs) can
be represented by the ExcLUSIVE-OR function of the two input bits. The EXCLUSIVE-OR function
has a “1” as output only if either input, but not both inputs, is a “1.” Similarly, the carry bit
is represented as an AND function on the two input bits. (“1” as output if and only if both
inputs are a “1.”) This approach is discussed in more detail in Supplementary Chapter 1.

The process of multiplication can be reduced conceptually to multiple addition, so
it should not surprise you that multiplication tables in different number bases are also
reasonably straightforward. The major difference in appearance results from the fact that
the carry occurs at different places.

The easiest way to create a multiplication table is to treat multiplication as multiple
addition: each column (or row) represents the addition of the value in the row (or column)
being created. Thus, in the following table, you can see
that5 x 8isequivalentto5 x 7 + 5 = 40. The familiar
decimal multiplication table appears in Figure 3.6,
with the example just given indicated.

0O 1 2 3 4 5 6 7 The same technique can be applied to the base 8
0 multiplicat.ion table (Figgre 3.7).
Note in the foregoing table that 3 x 3=3 x
12 3 4 5 6 7 2+ 3. Note, though, that counting up 3 from 6 (or
2 4 6 10 12 14 16 adding 3 to 6) results in a carry after 7 is reached:
T 6—7—10—11.
0 D ¢ L/ 22 25 The base 2 multiplication table is almost trivial,
l 4 10 14 20 24 30 34 since 0 times anything is 0 and 1 times 1 is itself:
5 12 17 24 31 36 43 X 0 1
6 14 22 30 36 44 52 0 0 0
7 16 25 34 43 52 6l 1 0 1

CHAPTER 3 NUMBER SYSTEMS 77

Because the binary multiplication table is so simple, it turns out that multiplication
can be implemented in a computer fairly easily. There are only two possible results: if the
multiplier is 0, the answer is 0, even if the multiplicand is a nonzero multidigit number. If
the multiplier is 1, the multiplicand is brought down as the result. You might recognize the
multiplication table as a Boolean axp function.

If you recall that decimal multidigit multiplication is performed by multiplying the
multiplicand by each digit of the multiplier, shifting the result of each multiplication to
line up with the multiplier, and adding up the results, then you realize that multidigit
binary multiplication can be performed by simply shifting the multiplicand into whatever
positions in the multiplier are “1” bits and adding to the result. This is easily illustrated
with an example:

EXAMPLE
Multiply

1101101
x 100110

1101101 bits shifted to line up with 2's place of multiplier
1101101 4's place
1101101 32's place

1000000101110 result (note the O at the end, since the 1's place is
not brought down)

We note in passing that shifting a binary number one position to the left has the
effect of doubling its value. This is a result you would expect, since the shift is equivalent
to multiplying the value by a 1 in the 2’s place of the multiplier. This result is consistent
with the fact that shifting a decimal number to the left by one position will multiply
its value by 10. In general, shifting a number in any base left one digit multiplies its
value by the base, and, conversely, shifting a number right one digit divides its value
by the base.

Although we have not mentioned subtraction or division, the methods are similar to
those that we have already discussed. In fact, the addition and multiplication tables can be
directly used for subtraction and division, respectively.

3.4 NUMERIC CONVERSION BETWEEN
NUMBER BASES

Conversions between whole numbers in decimal (base 10) and any other number base are
relatively straightforward. With the exception of one special case discussed in Section 3.6,
it is impractical to convert directly between two nondecimal number bases. Instead, base
10 would be used as an intermediary conversion base.

The easiest intuitive way to convert between base 10 and another number base is to
recognize the weight of each digit in the alternative number base and to multiply that

78

PART TWO DATA IN THE COMPUTER

EXAMPLE

EXAMPLE

EXAMPLE

weight by the value of the digit in that position. The sum taken over all digits represents
the base 10 value of the number. This is easily seen in an example:

Convert the number
13754

to base 10.
From the following diagram we can see the result easily:

(84) (83) (82) (81) (8Y)

4096 512 64 8 1 <«—weights
~N N /S
X 1 3 7 5 4 «—values

VA

4096 + 1536 + 448 + 40 + 4 = 6124

We can use the same method in reverse to convert from base 10 to another base,
although the technique is not quite as simple. In this case, it is just a question of finding the
value corresponding to the weight of each digit such that the total will add up to the base
10 number that we are trying to convert.

Note that the value for each digit must be the largest value that will not exceed the
number being converted. If this were not true, then there would be more than a full
grouping of the next less significant digit. This idea is best clarified by example:

Suppose that we are reverse converting the preceding example, and we assume that there
are six groups of 64 instead of seven. In this case, the 8's place and 1's place combined
must add up to more than 64, and we've already seen that is impossible.

This provides a simple methodology for the conversion. Start with the digit whose
weight is the largest possible without exceeding the number to be converted. Determine
the largest value for that weight that does not exceed the number to be converted. Then, do
the same for each successive digit, working from left to right.

As an example, let us convert 6124¢ to base 5. The weights of each digit in base 5 are as
follows:

15625 3125 625 125 25 5 1

Clearly the 15625 digit is too large, so the result will be a six-digit base 5 number.
The number 3125 fits into 6124 only once; thus, the first digit is a 1, and the remainder
to be converted is 2999. Proceeding to the next digit, 625 goes into 2999 four times with
a remainder of 499, 125 into 499 three times with a remainder of 124, 25 into 124 four

EXAMPLE

CHAPTER 3 NUMBER SYSTEMS 79

times, and so on. We get a final result of
1434444

It would be useful for you to confirm the answer by converting the result back to base 10.

This method is particularly simple if you are converting from decimal to binary, since
the value that corresponds to a particular bit either fits (1) or it doesn’t (0). Consider the
following example:

Convert 31931¢ to binary. The weights in binary are 4096, 2048, 1024, 512, 256, 128,
64, 32,16,8,4,2,and 1.

Proceeding as before, the largest bit value in this conversion is the 2048 weight.
Subtracting 2048 from 3193 leaves 1145 yet to be converted; thus, there is also a 1 in the
1024 place. Now the remainder is 1145 — 1024 =121. This means that there are O’s in
the 512, 256, and 128 places. Continuing, you should confirm that the final result is

110001111001,

Note that, in general, as the base gets smaller, the representation of a value requires
more digits, and looks bigger.

An Alternative Conversion Method

EXAMPLE

Although the preceding methods are easy to understand, they are computationally difficult
and prone to mistakes. In this section we will consider methods that are usually simpler to
compute but are less intuitive. It is helpful to understand the reasons that these methods
work, since the reasoning adds insight to the entire concept of number manipulation.

BASE10TOANOTHERBASE Suppose we divide the number to be converted successively
by the base, B, that we are converting to, and look at the remainders of each division. We
will do this until there is nothing left to divide. Each successive remainder represents the
value of a digit in the new base, reading the new value from right to left. Again, let us
convert 61241, to base 5:

) 6124 (4 least significant digit

) 1224 (4

) 244 (4

) 48 (3

) 9 (14

) 1 (1 most significant digit
0

The answer is 1434445, which agrees with our earlier result.

o1 o o1 o1 O O

80

PART TWO DATA IN THE COMPUTER

EXAMPLE

EXAMPLE

The first time that we perform the division, we are, in effect, determining how many
groups of 5 (or, in the general case, B) fit into the original number. The remainder is the
number of single units left over, which is, in other words, the units place of the converted
number.

The original number has now been divided by 5, so the second division by 5 determines
how many groups of 52, or 25, fit into the number. The remainder in this case is the number
of 5-groups that are left over, which is the second digit from the right.

Each time we divide by the base, we are increasing the power of the group being tested
by one, and we do this until there is no group left. Since the remainders correspond to the
part of the number that does not exactly fit the group, we can read the converted number
easily by reading the remainders from the bottom up.

Here’s another example:

Convert 81511 to base 16, also known as hexadecimal:

16) 8151 (7

16) 509 (13 in base 16, this is represented by the letter “D”
16) 31 (15 in base 16, this is represented by the letter “F”
1

The answer is 1FD71¢. We suggest that you verify this answer by using the technique of
digit weight multiplication to convert this answer back to decimal form.

ANOTHER NUMBER BASE TO BASE 10 An alternative method can be used to convert
from other number bases to base 10. The technique is also computationally simple: starting
from the most significant digit, we multiply by the base, B, and add the next digit to the
right. We repeat this process until the least significant digit has been added.

Convert 13754g to base 10:

1
x 8
g+ 3=11
x 8
88+ 7 =95
x 8
760 + 5 = 765

6120 + 4 = 61241

CHAPTER 3 NUMBER SYSTEMS 81

If you count the number of times that each digit in the example is multiplied by the
base number, in this case 8, you discover that the leftmost digit is multiplied by 8 four
times, or 8%, and that each successive digit is multiplied by 8 one less time, until you arrive
at the rightmost digit, which is not multiplied by the base number at all. Thus, each digit
is multiplied by its proper weight, and the result is what we would expect. In the next
chapter, you will see that this method is also useful for converting a sequence of digits in
alphanumeric form to an actual number.

You have now been introduced to two different methods for performing conversions
in each direction. You should practice all four methods; then you can use whichever two
methods are easiest for you to remember.

3.5 HEXADECIMAL NUMBERS AND ARITHMETIC

The hexadecimal, or base 16, number representation system is important because it is
commonly used as a shorthand notation for binary numbers. The conversion technique
between hexadecimal and binary notations is particularly simple because there is a direct
relationship between the two. Each hexadecimal number represents exactly 4 binary bits.
Most computers store and manipulate instructions and data using word sizes that are
multiples of 4 bits. Therefore, the hexadecimal notation is a convenient way to represent
computer words. Of course, it is also much easier to read and write than binary notation.
The technique for converting between binary and hexadecimal is shown later in this
chapter.

Although hexadecimal numbers are represented and manipulated in the same way
as those of other bases, we must first provide symbols to represent the additional digits
beyond 9 that we require to represent sixteen different quantities with a single integer.

By convention, we use the digits 0-9, followed by the first six alphabetical characters
A-F. Thus, the digits 0-9 have their familiar meaning; the letters A—F correspond to what
in a decimal base would be quantities of 10—15, respectively. To count in hexadecimal we
count from 0 to 9, then A to F, and then move left to the next digit. Since there are sixteen
digits, each place represents a power of 16. Thus, the number

2A4F 16

is equivalent to

2x163+10x162+4x164+15, or
1083119

Addition and multiplication tables can be created for the hexadecimal number system.
These tables each have sixteen rows and sixteen columns, as you would expect. The addition
table is shown in Figure 3.8. Before you look at the figure, you should try to work the
hexadecimal addition and multiplication tables out for yourself (see Exercise 3.7).

3.6 A SPECIAL CONVERSION CASE—NUMBER
BASES THAT ARE RELATED

A special possibility for conversion exists when one number base is an integer power of
another. In this case, a direct conversion can easily be made. In fact, with a bit of practice, the
conversion can be done mentally and the answer written down directly. These conversions

82

FIGURE 3.8

PART TWO DATA IN THE COMPUTER

Hexadecimal Addition Table

m m O O W > O 0 N O o b~ w N~ O +

0 1 2 8 4 5 6 7 8 9 A B C D E F
0 1 2 3 4 b 6 7 8 9 A B C D E F
1 2 3 4 5 6 7 8 g A B C D E F 10
2 3 4 5 6 7 8 9 A B C D E F 10 11
8 4 5 6 7 8 9 A B C D E F 10 11 12
4 5 6 7 8 9 A B c D E F 10 11 12 13
5 6 7 8 9 A B C D E F 10 11 12 13 14
6 7 8 9 A B C D E F 10 11 12 13 14 15
7 8 9 A B C D E F 10 11 12 13 14 15 16
8 9 A B C D E F 10 11 12 13 14 15 16 17
9 A B C D E F 10 11 12 13 14 15 16 17 18
A B C D E F 10 11 12 13 14 15 16 17 18 19
B C D E F 10 11 12 13 14 15 16 17 18 19 1A
C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B
D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C
E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E

work because a grouping of several digits in the smaller number base corresponds, or maps,
exactly to a single digit in the larger number base.

Two particularly useful examples for computer work are the cases of conversion
between base 2 and base 8 and conversion between base 2 and base 16. Since 8 =23, we
can represent binary numbers directly in base 8 using one octal digit to correspond to each
three binary digits. Similarly, it takes one hexadecimal digit to exactly represent 4 bits.

The advantage of representing binary numbers in hexadecimal or octal is obvious: it
is clearly much easier to read and manipulate four-digit hexadecimal numbers than 16-bit
binary numbers. Since the conversion between binary and octal and hexadecimal is so
simple, it is common to use hexadecimal or octal representation as a shorthand notation
for binary. (Note that base 8 and base 16 are not directly related to each other by power,
but conversion could be performed easily by using base 2 as an intermediary.)

Since the correspondence of binary and octal or hexadecimal is exact, the conversion
process simply consists of breaking the binary number into groups of three or four, starting
from the least significant bit (the unit bit), and converting each group independently. It

CHAPTER 3 NUMBER SYSTEMS 83

may be necessary to mentally add Os to the left end of the number to convert the most
significant digit. This is most easily illustrated with an example:

EXAMPLE

Let us convert
11010111011000

to hexadecimal.
Grouping the binary number by fours, we have

0011 0101 1101 1000
or
35D816

Note that we added two zeros at the left end of the binary number to create groups of four.
The conversion in the other direction works identically. Thus,

2753314
becomes
010 111 101 011 011 001,

For practice, now convert this value to hexadecimal.

Most computer manufacturers today prefer to use hexadecimal, since a 16-bit or 32-bit
number can be represented exactly by a four- or eight-digit hexadecimal number. (How
many octal digits would be required?) A few manufacturers still use octal representation
for some applications.

You might ask why it is necessary to represent data in binary form at all. After all, the
binary form is used within the computer, where it is usually invisible to the user. There are
many occasions, however, where the ability to read the binary data is very useful. Remember
that the computer stores both instructions and data in binary form. When debugging a
program, it may be desirable to be able to read the program’s instructions and to determine
intermediate data steps that the computer is using. Older computers used to provide binary
dumps for this purpose. Binary dumps were complete octal listings of everything stored in
memory at the time the dump was requested. Even today it is sometimes important, for
example, to be able to read the binary data from a floppy disk to recover a lost or damaged
file. Modern computer operating systems and networks present a variety of troubleshooting
data in hexadecimal form.

Conversions between binary and hexadecimal notation are used frequently. We strongly
recommend that you practice to become proficient at working with hexadecimal notation.

3.7 FRACTIONS

Up to this point we have limited our discussion to whole numbers, or, if you prefer,
integers. The representation and conversion of fractional numbers are somewhat more
difficult because there is not necessarily an exact relationship between fractional numbers

84

PART TWO DATA IN THE COMPUTER

EXAMPLE

in different number bases. More specifically, fractional numbers that can be represented
exactly in one number base may be impossible to represent exactly in another. Thus, exact
conversion may be impossible. A couple of simple examples will suffice:

The decimal fraction
0.1;9 or 1/10

cannot be represented exactly in binary form. There is no combination of bits that will add
up exactly to this fraction. The binary equivalent begins

0.00011001100115...
This binary fraction repeats endlessly with a repeat cycle of four. Similarly, the fraction
1/3

is not representable as a decimal value in base 10. In fact, we represent this fraction
decimally as

0.3333333...
As you will realize shortly, this fraction can be represented exactly in base 3 as

0.13

Recall that the value of each digit to the left of a decimal point in base 10 has a
weight ten times that of its next right neighbor. This is obvious to you, since you already
know that each digit represents a group of ten objects in the next right neighbor. As
you have already seen, the same basic relationship holds for any number base: the weight
of each digit is B times the weight of its right neighbor. This fact has two important
implications:

1. If we move the number point one place to the right in a number, the value of the
number will be multiplied by the base. A specific example will make this obvious:

139019 is ten times as large as 139.0q
139.0.
Lt

Moving the point right one space, therefore, multiplies the number by ten. Only
a bit less obvious (pun intended),

100, istwiceasbigas 10,

(Note: We have used the phrase “number point” because the word “decimal”
specifically implies base 10. More generally, the number point is known by the
name of its base, for example, binary point or hexadecimal point. It is sometimes
also called a radix point.)

CHAPTER 3 NUMBER SYSTEMS 85

2. The opposite is also true: if we move the number point to the left one place, the
value is divided by the base. Thus, each digit has strength 1/B of its left neighbor.
This is true on both sides of the number point.

246 .8
t

Moving the point to the left one space divides the value by ten.

Thus, for numbers to the right of the number point, successive digits have values 1/B,
1/B%, 1/B?, and so on. In base 10, the digits then have value

.D; D, D3 Dy

[

107t 1072 1077 107*
which is equivalent to
1/10 1/100 171000 1/10,000

This should come as no surprise to you, since 1/10 =0.1, 1/100 =0.01, and so forth.
(Remember from algebra that B~k =1/B%)
Then, a decimal number such as

0.2589
has value
2x(1/10)+5x(1/100)4+8 x (1/1000)+ 9 x (1/10,000)

Similarly in base 2, each place to the right of the binary point is 1/2 the weight of its
left-hand neighbor. Thus, we have

By B, By By

Pl

172 1/4 1/8 1/16 etc.

As an example,

0.101011
is equivalent to
1/2+1/8+1/32+1/64
which has decimal value
0.5+0.125+0.03125+0.015625=10.67187519

Since there is no general relationship between fractions of types 1/10F and 1/2, there is
no reason to assume that a number that is representable in base 10 will also be representable

86 PART TWO DATA IN THE COMPUTER

in base 2. Commonly, it isn’t so. (The converse is not the case; since all fractions of the
form 1/2 can be represented in base 10, and since each bit represents a fraction of this
form, fractions in base 2 can always be converted exactly to fractions in base 10.) As we
have already shown with the value 0.1,9, many base 10 fractions result in endless base 2
fractions.

Incidentally, as review, consider the hexadecimal representation of the binary fraction
representing 0.1;¢. Starting from the numeric point, which is the common element of all
number bases (B® = 1 in all bases), you group the bits into groups of four:

0.0001 1001 1001 1001 = 0.1999916

In this particular case, the repeat cycle of four happens to be the same as the hexadecimal
grouping of four, so the digit “9” repeats forever.

When fractional conversions from one base to another are performed, they are simply
stopped when the desired accuracy is attained (unless, of course, a rational solution exists).

Fractional Conversion Methods

EXAMPLE

The intuitive conversion methods previously discussed can be used with fractional numbers.
The computational methods have to be modified somewhat to work with fractional
numbers.

Consider the intuitive methods first. The easiest way to convert a fractional number
from some base B to base 10 is to determine the appropriate weights for each digit, multiply
each digit by its weight, and add the values. You will note that this is identical to the method
that we introduced previously for integer conversion.

Convert 0.122013 to base 10.
The weights for base 3 fractions (we remind you that the rules work the same for any
number base!) are:
1 1 1 1 1
3 9 27 8l 243
Then, the result is
1x1/342x1/942x1/27+1x1/243

Two different approaches could be taken at this point. Either we can convert each value
to decimal base, multiply, and add,

value =0.33333+40.22222 4 0.07407 +0.00412 = 0.6337419

or, more easily, we can find a common denominator, convert each fraction to the common
denominator, add, and then divide by the common denominator. Most easily, we can pick
the denominator of the least significant digit, in this case 243:
8l+2x27+2x9+1 154
value = 513 _m_0.63374

If you look at the numerator of the last equation carefully, you might notice that the
numerator consists of weighted digits, where the digits correspond to the weights of the

EXAMPLE

EXAMPLE

CHAPTER 3 NUMBER SYSTEMS 87

fraction as if the ternary point had been shifted five places right to make the fraction into
a whole number. (The base 3 number point is called a ternary point.) A shift five places to
the right multiplies the number by 3 -9 — 27 — 81 — 243; therefore, we have to divide
by 243 to restore the original fraction.

Repeating this exercise with another, perhaps more practical, example should help to
solidify this method for you:

Convert 0.110011, to base 10.
Shifting the binary point six places to the right and converting, we have

numerator value=32+16+2+1=51

Shifting the binary back is equivalent to dividing by 28, or 64. Dividing the numerator
51 by 64 yields

value =0.796875

The intuitive method for converting numbers from base 10 to another base can also
be used. This is the method shown earlier where you fit the largest product of weights
for each digit without exceeding the original number. In the case of fractions, however,
you are working with fractional decimal numbers, and the actual calculation may be time
consuming and difficult except in simple cases.

Convert the number 0.11¢ to binary representation. The weights for binary fractions are
1 1 1 1

1
2 1 8 6 32 °te

These are easier to use when converted into decimal form: 0.5, 0.25, 0.125, 0.0625,
and 0.03125, respectively. The largest value that fits into 0.1;¢ is 0.0625, which corre-
sponds to a value of 0.0001,. The remainder to be converted is 0.1 —0.0625=0.0375.
Since 0.03125 fits into this remainder, the next bit is alsoa 1: 0.000115,, and so on. As an
exercise, you may want to carry this conversion out a few more places.

To convert fractional numbers from base 10 to another base, it is usually easier to use
a variation on the division method shown earlier. Recall that for an integer, this involved
dividing the number repeatedly by the base value and retaining the remainders. Effectively,
this method works by shifting the radix point to the left one place each time we divide by
the base value and noticing what drops over the radix point, which is the remainder. The
number point is initially assumed to be to the right of the number.

When the value being converted is to the right of the number point, the procedure
must work exactly the opposite. We multiply the fraction by the base value repeatedly,
and record, then drop, the values that move to the left of the radix point. We repeat this
procedure until the desired number of digits of accuracy is attained or until the value being
multiplied is zero. Each time we multiply, we effectively expose the next digit.

88

PART TWO DATA IN THE COMPUTER

EXAMPLE

For example, if the value in base 10 is 0.5, multiplying that by 2 would yield 1.0, which
says that in base 2 there would have been a 1 in the 1/2-bit location. Similarly, 0.25 would
be multiplied by 2, twice, to reach a value of 1.0, indicating a 1 in the 1/4-bit location. An
example of the procedure should clarify this explanation:

Convert 0.828125,¢ to base 2. Multiplying by 2, we get

.828125
2

.656250 The 1 is saved as result,
2 then dropped, and the
312500 Process repeated

x 2
625000
x 2
.250000
x 2
.500000
x 2
.000000

=X O|X —[X OlX —|X —|X

The final result, reading the overflow values downward, is 0.110101,. This is an
example of a conversion that reaches closure. You will recall that we stated earlier that
0.110 is an example of a number that does not convert exactly into base 2. The procedure
for that case follows.

.100000
X 2
0.200000
x 2
0.400000
X 2
0.800000
X a
1.600000
X 2
1.200000
x 2
0.400000

The repeating nature of this conversion is clear at this point.

Finally, we note that conversion between bases where one base is an integer power
of the other can be performed for fractions by grouping the digits in the smaller base as

CHAPTER 3 NUMBER SYSTEMS 89

before. For fractions, the grouping must be done from left to right; the method is otherwise
identical.

EXAMPLE

To convert 0.1011, to base 8, group the digits by threes (since 23 =8) and convert each
group as usual. Note that it is necessary to supplement the second group with O’s. As you
would expect, fractional zeros are appended to the right of the fraction.

Therefore,

0.101_100, = 0.54¢

3.8 MIXED NUMBER CONVERSIONS

The usual arithmetic rules apply to fractional and mixed numbers. When adding and
subtracting these numbers, the radix points must line up. During multiplication and
division, the radix point is determined in exactly the same way as it would be in base 10.
For multiplication in base 8, for example, you would add the number of digits to the right
of the radix in the multiplier and the multiplicand; the total would be the number of digits
to the right of the radix point in the result.

Extra caution is required when performing base conversions on numbers that contain
both integer and fractional parts. The two parts must be converted separately.

The radix point is the fixed reference in a conversion. It does not move, since the digit
to its left is a unit digit in every base; that is, B® is always 1, regardless of B.

It is possible to shift a mixed number in order to make it an integer. Unfortunately,
there is a tendency to forget that the shift takes place in a particular base. A number shifted
in base 2, say, cannot be converted and then shifted back in base 10 because the factor used
in the shift is 2%, which obviously has a different value than 10, Of course, it is possible to
perform the shift and then divide the converted number by the original shift value, but this
is usually more trouble than it’s worth.

Instead, it’s usually easier to remember that each part is converted separately, with the
radix point remaining fixed at its original location.

SUMMARY AND REVIEW

Counting in bases other than 10 is essentially similar to the familiar way of counting. Each
digit place represents a count of a group of digits from the next less significant digit place.
The group is of size B, where B is the base of the number system being used. The least
significant digit, of course, represents single units. Addition, subtraction, multiplication,
and division for any number base work similarly to base 10, although the arithmetic tables
look different.

There are several different methods that can be used to convert whole numbers from
base B to base 10. The informal method is to recognize the base 10 values for each digit
place and simply to add the weighted values for each digit together. A more formal method
converts from base B to base 10 using successive multiplication by the present base and
addition of the next digit. The final total represents the base 10 solution to the conversion.
Similar methods exist for converting from base 10 to a different number base.

90

PART TWO DATA IN THE COMPUTER

The conversion of number bases in which one base is an integer power of the other
may be performed by recognizing that multiple digit places in the smaller base represent a
single-digit place in the larger. Conversion is then done by grouping and converting each
multiple set of digits individually.

Fractional and mixed numbers must be handled more carefully. The integer and
fractional parts must be treated independently of each other. Although the conversion
method is the same, the choice of the multiplication or division operation is reversed for
the fractional part. Again, directly related bases can be converted by grouping digits in one
base and converting each group independently.

FOR FURTHER READING

Working in different number bases was part of a trend in the teaching of mathematics
in the 1960s and 1970s known as “the new math”. The material is still taught in many
elementary schools.

Many libraries carry texts with such titles as “Elementary Math”. A good, brief review
of arithmetic as it applies to the computer can be found in the Schaum outline series
book Essential Computer Mathematics [LIPS82]. A funny introduction to “new math” can
be found on the recording “That Was the Year That Was” by Tom Lehrer [LEHR65].
In addition, most books on computer arithmetic contain substantial discussions of the
topics covered in this chapter. Typical computer arithmetic books include those by Spaniol
[SPAN81] and Kulisch and Maranker [KULI81]. A clear and thorough discussion of this
material can be found in the computer architecture book by Hennessy and Patterson
[HENNO6].

KEY CONCEPTS AND TERMS

base binary-octal conversion hexadecimal number
binary arithmetic bit left shift
binary number decimal point mixed number conversion
binary point decimal-binary conversion ~ octal number
binary-decimal conversion fractional conversion radix point
binary-hexadecimal hexadecimal-binary right shift

conversion conversion

READING REVIEW QUESTIONS

3.1 In the book we show that 527 represents 5 x 10> 42 x 10! 47 x 10°. What is
the representation for 527g? What would its equivalent base 10 value be?

3.2 How many different digits would you expect to find in base 6? What is the largest
digit in base 6?2 Let z represent that largest digit. What is the next value after 21z
if you’re counting up by 1’s? What is the next value after 4zz if you’re counting
up by 1’s?

3.3 Use the table in Figure 3.5 to add 21g and 33s. Use the table in Figure 3.5 to add
468 and 438

EXERCISES

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.12

3.13

3.14

3.15

3.16

3.17

3.1

3.2

3.3

CHAPTER 3 NUMBER SYSTEMS 91

Use the base 2 addition table to add 10101, and 1110,. Use the base 2
multiplication table to multiply 10101, and 1110,.

What are the first six weights in base 2? Using these weights, convert 100101, to
base 10.

What are the first three weights in base 16? Using these weights, convert 3594 to
base 10. (Notice that the same technique works for any base, even if the base is
larger than 10.)

Using the weights in base 8, convert 212, into base 8. Convert 3212, into base 8.
Using the weights in base 16, convert 117, into base 16. Convert 1170, into
base 16.

Use the division conversion method to convert 3212, into base 8. Confirm that
your answer is the same as that in question 7, above.

Use the division method to convert 11704 to base 16. Confirm that your answer
is the same as that in question 8, above.

Use the division method to convert 12345, to base 16. Verify your answer by
using the weights method to convert your answer back to base 10.

Use the division method to convert 12345,y to base 2. Verify your answer by
using the weights method to convert your answer back to base 10.

Use the multiplication method to convert 1011, to base 10. Verify your answer
by using the wieghts method to convert the number back to base 2.

Use the multiplication method to convert 13574 to base 10. Verify your answer
by using the division method to convert your answer back to base 16.

What number in base 10 is equivalent to D in base 16?2 What number in base 16
is equivalent to the number 10 in base 10? Use the weights method to convert
the number 5D to base 10. Use the division method to convert your answer
back to base 16.

Convert the number 101000101100, directly from binary to hexadecimal. With-
out looking at the original number, convert your answer directly back to binary
and compare your final answer with the original number.

Convert the number 1111001101100, directly from binary to hexadecimal.
Without looking at the original number, convert your answer directly back to
binary and compare your final answer with the original number.

a. Determine the power of each digit for five-digit numbers in base 6.

b. Use your results from part (a) to convert the base 6 number 245314 to
decimal.

Determine the power of each digit for four-digit numbers in base 16. Which
place digits in base 2 have the same power?

Convert the following hexadecimal numbers to decimal:
a. 4E

b. 3D7

c. 3D70

92 PART TWO DATA IN THE COMPUTER

3.4

3.5

3.6

3.7

3.8

Some older computers used an 18-bit word to store numbers. What is the
decimal range for this word size?

How many bits will it take to represent the decimal number 3,175,0002 How
many bytes will it take to store this number?

a.

b.

Create addition and multiplication tables for base 12 arithmetic. Use
alphabetic characters to represent digits 10 and larger.

Using your tables from part (a), perform the following addition:

25A84,
+ 703961,

Multiply the following numbers together:

2A61,
X 8112

Create the hexadecimal multiplication table.

Use the hexadecimal table in Figure 3.8 to perform the following addition:

2AB3
+ 35DC

Add the following numbers:

1 FF9
+ 7

Multiply the following numbers:

2E26
x 4A

Add the following binary numbers:

a.

101101101

+ 10011011

110111111
+ 110111111

11010011

+ 10001010

1101
1010
111

+ 101

Repeat the previous additions by converting each number to hexadecimal,
adding, and converting the result back to binary.

3.9

3.10

3.12

3.13

3.14

3.15

3.16

3.17

CHAPTER 3 NUMBER SYSTEMS 93

Multiply the following binary numbers together:

a.
1101
x 101
b.
11011
x 1011
Perform the following binary divisions:
a.
110)1010001001
b.

1011)11000000000

Using the powers of each digit in base 8, convert the decimal number 6026 to
octal.

Using the powers of each digit in hexadecimal, convert the decimal number 6026
to hexadecimal.

Using the division method, convert the following decimal numbers:

a. 13750 to base 12

b. 6026 to hexadecimal

c. 3175tobase5

Using the division method, convert the following decimal numbers to binary:

a. 4098
b. 71269
c. 37

In each case, check your work by using the power of each digit to convert back
to decimal.

Using the multiplication method, convert the following numbers to decimal:

a. 1100010100100001,

b. C521y6

c. 3ADFj

d. 24556;

Convert the following binary numbers directly to hexadecimal:
a. 101101110111010

b. 1111111111110001

c. 1111111101111

d. 110001100011001

Convert the following hexadecimal numbers to binary:
a. 4F6A

b. 9902

94

PART TWO DATA IN THE COMPUTER

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

c. A3AB
d. 1000

Select a number base that would be suitable for direct conversion from base 3,
and convert the number 220112105 to that base.
a. Convert the base 4 number 130230314 directly to hexadecimal. Check your
result by converting both the original number and your answer to decimal.
b. Convert the hexadecimal number 9B62,¢ directly to base 4; then convert
both the original number and your answer to binary to check your result.
Convert the base 3 number 2101023 to octal. What process did you use to do
this conversion?
Convert the octal number 27745¢ to hexadecimal. Do not use decimal as an inter-
mediary for your conversion. Why does a direct conversion not work in this case?
Using whatever programming language is appropriate for you, write a program
that converts a whole number input by the user from base 8 to base 10. Your
program should flag as an error any input that contains the digits 8 or 9.
Using whatever programming language is appropriate for you, write a program
that converts a whole number input from decimal to hexadecimal.
Using whatever programming language is appropriate for you, write a program
that converts whole numbers in either direction between binary and hexadecimal.
Convert the following numbers from decimal to hexadecimal. If the answer is
irrational, stop at four hexadecimal digits:

a. 0.6640625
b. 0.3333
c. 69/256

Convert the following numbers from their given base to decimal:

a. 0.1001001,

b. 0.3A2

c. 0.2Al1p

Convert the following numbers from decimal to binary and then to hexadecimal:

a. 27.625

b. 4192.37761

What is the decimal value of the following binary numbers?

a. 1100101.1

b. 1110010.11

c. 11100101.1

Draw a flow diagram that shows step by step the process for converting a mixed
number in a base other than 10 to decimal.

Write a computer program in a language appropriate for you that converts
mixed numbers between decimal and binary in both directions.

CHAPTER 3 NUMBER SYSTEMS 95

CHAPTER 4

DATA FORMATS

i

Thomas Sperling, adapted by Benjamin Reece

4.0 INTRODUCTION

In Chapter 3 you had a chance to explore some of the properties of the binary number
system. You are already aware that within the computer the binary number system is
the system of choice, both for all forms of data storage and for all internal processing
of operations. As human beings, we normally don’t choose to do our work in binary
form. Our communications are made up of language, images, and sounds. For written
communications, and for our own data storage, we most frequently use alphanumeric
characters and symbols, representing English or some other language. Sometimes we
communicate with a photograph, or a chart or diagram, or some other image. Images
may be black and white or color; they may be still frames or moving. Sounds often
represent a different, spoken, form of written language, but they may also represent
other possibilities, such as music, the roar of an engine, or a purr of satisfaction. We
perform calculations using numbers made up of a set of numeric characters.

In the past, most business data processing took the form of text and numbers.
Today, multimedia, consisting of images and sounds in the form of video conferencing,
PowerPoint presentations, VoIP telephony, Web advertising, and more is of at least
equal importance. Since data within the computer is limited to binary numbers, it is
almost always necessary to convert our words, numbers, images, and sounds into a
different form in order to store and process them in the computer.

In this chapter, we consider what it takes to get different types of data into
computer-usable form and the different ways in which the data may be represented,
stored, and processed.

4.1 GENERAL CONSIDERATIONS

At some point, original data, whether character, image, sound, or some other form,
must be brought initially into the computer and converted into an appropriate
computer representation so that it can be processed, stored, and used within the
computer system. The fundamental process is shown in Figure 4.1.

Different input devices are used for this purpose. The particular choice of input
device reflects the original form of the data, and also the desired data representation
within the computer. Some devices perform the conversion from external form to
internal representation within the input device. At other times, the input device merely
serves to transform the data into a raw binary form that the computer can manipulate.
Further conversion is then performed by software within the computer.

There are varying degrees of difficulty associated with the input task. Normal
keyboard input, for example, is relatively straightforward. Since there are a discrete
number of keys on the keyboard, it is only necessary for the keyboard to generate
a binary number code for each key, which can then be identified as a simple
representation of the desired character. On the other hand, input from a device that

97

98 PART TWO DATA IN THE COMPUTER

FIGURE 4.1 presents a continuous range of data (i.e.,
analog data) presents a more formidable

Data C [dR tati
ata onversion and Representation task, particularly if the data is continuously

Human changing with time, which is the case with a
form Computer) .
\ a8 Computer video camera or microphone.
er‘%Y\g' Input representation Adequate representation of the sound
“gov Data | device input from a microphone, for example, will
1101000101010101.... require hardware designed to convert the
sound into binary numbers and may require

hundreds or even thousands of separate
pieces of data, each representing a sample of the sound at a single instant in time. If
the sound is to be processed within the computer into the form of words in a document the
task becomes even more challenging, since the translation of sounds into character form is
very complex and difficult, requiring sophisticated, specialized software.

The internal representation of data within the computer reflects the complexity of the
input source, and also the type of processing that is to take place. There is no need to
preserve all the individual points that make up a photographic image, for example, if the
goal is only to extract and process the characters that are present on the page; it is only
necessary to input and represent the entire set of data long enough to extract the actual
data that is to be used or kept. On the other hand, if the image is to be used as a figure
in an art book, it will be necessary to represent the image, with all its details, as accurately
as possible. For input forms that represent a continuum of values, such as photographic
images, video, and sound, the quantity of binary numbers and the number of bits in
each that are required to represent the input data accurately will grow quite rapidly with
increasing accuracy and resolution. In fact, some form of algorithmic data compression
will often be necessary to reduce the amount of data to a manageable level, particularly if
the data is to be downloaded or streamed over a low-speed transmission device, such as a
telephone modem or a network with limited bandwidth.

Of course, once the input data is in computer form it can be stored for future use,
or it can be moved between computers through networks or by using portable computer
media such as CD-ROM, flash drives, or, perhaps, even iPods. Images and sounds can be
downloaded from a website or attached to e-mail, for example. Provided that the receiving
computer has the appropriate software, it can store, display, and process a downloaded
image just as though the picture had been produced by an image scanner connected directly
to its own input.

For storage and transmission of data, a representation different from that used for
internal processing is often necessary. In addition to the actual data representing points in
an image or characters being displayed, the system must store and pass along information
that describes or interprets the meaning of the data. Such information is known as metadata.
In some cases, the description is simple: to read a pure text file may require only a single
piece of information that indicates the number of characters in the text or marks the end of
the text. A graphic image or sound requires a much more detailed description of the data.
To reproduce the image, a system must know the type of graphical image, the number of
colors represented by each data point, the method used to represent each color, the number
of horizontal and vertical data points, the order in which data points are stored, the relative
scaling of each axis, the location of the image on the screen, and much more. For a sound, the

CHAPTER 4 DATA FORMATS 99

system must know how long a time period each sample represents, the number of bits in each
sample, and even, perhaps, how the sound is to be used and coordinated with other sounds.

Individual programs can store and process data in any format that they want. The
format used to process and store text in WordPerfect is different from that used by
Microsoft Word, for example. The formats used by individual programs are known as
proprietary formats. Proprietary formats are often suitable for an individual user or a
group of users working on similar computer systems. As noted in Chapter 1, proprietary
standards sometimes become de facto standards due to general user acceptance.

Note that it is important to distinguish between the data representation used within an
individual piece of software and the data representation used for the input, output, storage,
and exchange of data, however. Modern computer systems and networks interconnect
many different types of computers, input and output devices, and computer programs.
A Web page viewed on a Macintosh computer might contain an image scanned on a
Hewlett-Packard image scanner, with HTML created on a Dell PC, and be served by an
IBM mainframe, for example.

Thus, it is critical throughout this discussion that standard data representations exist
to be used as interfaces between different programs, between a program and the I/O devices
used by the program, between interconnected hardware, and between systems that share
data, using network interconnections or transportable media such as CD-ROMs. These
data representations must be recognized by a wide variety of hardware and software so that
they can be used by users working within different computer environments.

A well-designed data representation will reflect and simplify the ways in which the data
is to be processed and will encompass the widest possible user community. For example,
the order of the letters in the alphabet is commonly used for the sorting and selection of
alphanumeric business data. It makes sense, then, to choose a computer representation of
alphabetic characters that will simplify these operations within the computer. Furthermore,
the representation of alphanumeric characters will encompass as many of the world’s
languages as possible to aid in international communication.

FIGURE 4.2

Some Common Data Representations

Type of data Standard(s)
Alphanumeric Unicode, ASCII, EBCDIC
Image (bitmap) GIF (graphical image format), TIFF

(tagged image file format), PNG
(portable network graphics), JPEG,

Image (object) PostScript, SWF (Macromedia Flash),
SVG

Outline graphics and fonts PostScript, TrueType

Sound WAV, AVI, MP3, MIDI, WMA

Page description pdf (Adobe Portable Document Format),
HTML, XML

Video Quicktime, MPEG-2 or -4, RealVideo,

WMV, DivX

100 PART TWO DATA IN THE COMPUTER

There are many different standards in use for different types of data. A few of the
common ones are shown in Figure 4.2. We have not included the standard representations
for numerical data; those are discussed in the next chapter.

This section described the general principles that govern the input and representation
of data. Next, we consider some of the most important data forms individually.

4.2 ALPHANUMERIC CHARACTER DATA

Much of the data that will be used in a computer are originally provided in human-readable
form, specifically in the form of letters of the alphabet, numbers, and punctuation, whether
English or some other language. The text of a word processing document, the numbers
that we use as input to a calculation, the names and addresses in a database, the transaction
data that constitutes a credit card purchase, the keywords, variable names, and formulas
that make up a computer program, all are examples of data input that is made up of letters,
numbers, and punctuation.

Most of this data is initially input to the computer through a keyboard, although
alternative means, such as magnetic card stripes, document image scanning, voice-to-text
translation, and bar code scanning are also used. The keyboard may be connected directly
to a computer, or it may be part of a separate device, such as a video terminal, an online
cash register, or even a bank ATM. The data entered as characters, number digits, and
punctuation are known as alphanumeric data.

It is tempting to think of numeric characters as somehow different from other
characters, since numbers are often processed differently from text. Also, a number may
consist of more than a single digit, and you know from your programming courses that
you can store and process a number in numerical form within the computer. There is no
processing capability in the keyboard itself, however. Therefore, numbers must be entered
into the computer just like other characters, one digit at a time. At the time of entry, the
number 1234.5 consists of the alphanumeric characters “17, “27, “37, “4”, “.”, and “5”.
Any conversion to numeric form will take place within the computer itself, using software
written for this purpose. For display, the number will be converted back to character form.

The conversion between character and number is also not “automatic” within the
computer. There are times when we would prefer to keep the data in character form,
for example, when the numbers represent a phone number or an address to be stored
and processed according to text criteria. Since this choice is dependent on usage within a
program, the decision is made by the programmer using rules specified within the program
language being used or by a database designer specifying the data type of a particular
entity. In simple languages like BASIC, for example, the programmer makes the choice
by placing a $ character at the end of a variable name that is to be used to keep data
in alphanumeric form. In C++ or Java, the type of variable must be declared before the
variable is used. When the data variable being read is numerical, the compiler will build
into the program a conversion routine that accepts numerical characters and converts them
into the appropriate numerical variable value. In general, numerical characters must be
converted into number form when calculations are to be performed.

Since alphanumeric data must be stored and processed within the computer in binary
form, each character must be translated to a corresponding binary code representation as
it enters the computer. The choice of code used is arbitrary. Since the computer does not

CHAPTER 4 DATA FORMATS 101

“recognize’ letters, but only binary numbers, it does not matter to the computer what code
is selected.

What does matter is consistency. Most data output, including numbers, also exits the
computer in alphanumeric form, either through printed output or as output on a video
screen. Therefore, the output device must perform the same conversion in reverse. It is
obviously important that the input device and the output device recognize the same code.
Although it would be theoretically possible to write a program to change the input code so
that a different output code would result in the desired alphanumeric output, this is rarely
done in practice. Since data is frequently shared between different computers in networks,
the use of a code that is standardized among many different types of computers is highly
desirable.

The data is also stored using the same alphanumeric code form. Consistent use of the
same code is required to allow later retrieval of the data, as well as for operations using data
entered into the computer at different times, such as during merge operations.

It also matters that the programs within the computer know something about the
particular data code that was used as input so that conversion of the characters that make
up numbers into the numbers themselves can be done correctly, and also so that such
operations as sorting can be done. It would not make a lot of sense to pick a code in which
the letters of the alphabet are scrambled, for example. By choosing a code in which the value
of the binary number representing a character corresponds to the placement of the character
within the alphabet, we can provide programs that sort data without even knowing what
the data is, just by numerically sorting the codes that correspond to each character.

Three alphanumeric codes are in common use. The three codes are known as
Unicode, ASCII (which stands for American Standard Code for Information Interchange,
pronounced “as-key” with a soft “s”), and EBCDIC (Extended Binary Coded Decimal
Interchange Code, pronounced “ebb-see-dick”). EBCDIC was developed by IBM. Its use is
restricted mostly to older IBM and IBM-compatible maniframe computers and terminals.
The Web makes EBCDIC particularly unsuitable for current work. Nearly everyone today
uses Unicode or ASCII. Still, it will be many years before EBCDIC totally disappears from
the landscape.

The translation table for ASCII code is shown in Figure 4.3. The EBCDIC code is
somewhat less standardized; the punctuation symbols have changed over the years. A
recent EBCDIC code table is shown in Figure 4.4. The codes for each symbol are given in
hexadecimal, with the most significant digit across the top and the least significant digit
down the side. Both ASCII and EBCDIC codes can be stored in a byte. For example, the
ASCII value for “G” is 47,6. The EBCDIC value for “G” is C7;6. When comparing the two
tables, note that the standard ASCII code was originally defined as a 7-bit code, so there
are only 128 entries in the ASCII table. EBCDIC is defined as an 8-bit code. The additional
special characters in both tables are used as process and communication control characters.

The ASCII code was originally developed as a standard by the American National
Standards Institute (ANSI). ANSI also has defined 8-bit extensions to the original ASCII
codes that provide various symbols, line shapes, and accented foreign letters for the
additional 128 entries not shown in the figure. Together, the 8-bit code is known as Latin-1.
Latin-1 is an ISO (International Standards Organization) standard.

Both ASCII and EBCDIC have limitations that reflect their origins. The 256 code
values that are available in an 8-bit word limit the number of possible characters severely.

102 PART TWO DATA IN THE COMPUTER

FIGURE 4.3

ASCII Code Table

Lo 0 1 2 3 4 5 6 7
0 NUL DLE space 0 @ P i p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 " 2 B R b r
3 ETX DC3 # 3 C S c s
4 EOT DC4 $ 4 D T d t
5 ENQ NAK % 5 E U e u
6 ACK SYN & 6 F % f v
7 BEL ETB ' 7 G w g w
8 BS CAN (8 H X h X
9 HT EM) 9 | Y i y
A LF SUB i J Z j z
B VT ESC + ; K [k {
c FF FS , < L \ | |
D CR GS . = M] m }
E SO RS . > N A n ~
F Sl us / ? 0 _ 0 DEL

Both codes provide only the Latin alphabet, Arabic numerals, and standard punctuation
characters that are used in English; Latin-1 ASCII also includes a small set of accents and
other special characters that extend the set to major western European cultures. Older
forms of EBCDIC omit certain characters, in particular, the “[” and “]” characters that are
used to represent subscripts in the C and Java programming languages, the “*” character,
used as a mathematical operator in a number of languages, “{” and “}”, used to enclose
code blocks in many languages, and the “~” character, used for UNIX system commands
and Internet and Internet URLs. These shortcomings led to the development of a new,
mostly 16-bit, international standard, Unicode, which is quickly supplanting ASCII and
EBCDIC for alphanumeric representation in most modern systems. Unicode supports
approximately a million characters, using a combination of 8-bit, 16-bit and 32-bit words.
The ASCII Latin-1 code set is a subset of Unicode, occupying the values 0-255 in the
Unicode table, and therefore conversion from ASCII to Unicode is particularly simple: it is
only necessary to extend the 8-bit code to 16 bits by setting the eight most significant bits
to zero. Unicode to ASCII conversion is also simple, provided that the characters used are
limited to the ASCII subset.

The most common form of Unicode, called UTF-16 can represent 65,536 characters
directly, of which approximately forty-nine thousand are defined to represent the world’s
most used characters. An additional 6,400 16-bit codes are reserved permanently for
private use. A more recent standard, Unicode 5.0, allows for multiple code pages; presently
about one hundred thousand different characters have actually been defined. Unicode

FIGURE 4.4

An EBCDIC Code Table

#|®-| |- — =
o
|~ —| -3 Al - (%)
zZ
5] — |l x | —~| | T -
Sl o >
1 K%) © V] —| +]|-- < T
ol LO
(%2}
= Z|lo|=|w Lo | x m
Sl z|o|o|la|lE|lL]| D] o<) -
»n Flz|d]l v x|o|lal= 1%}
s =
%) To = m| o Ll ol|l<|olx| o
A EIREE R R EE !
n = = Ll NSO =S|u|<| >
@ %)
i NI)| QZ|s|L2 2| w]|v|lv|x
dlololol = o oo i =
ala|alala|z[2|2[S|=]|3|3|x|8| x| =2
x| =<2 = 22| u]|e| =
=) [o T Z|w alalzllx=2l5 ©
=AM E EHEREEEE A E R
o ||| s |w|o|~|o|o|<|a|o|afw|w — < L

103

104 PART TWO DATA IN THE COMPUTER

FIGURE 4.5

Two-byte Unicode Assignment Table

Code range

(in hexadecimal)

0000-} 5000-00FF Latin-I (ASCII)

1000-
2000-
3000

General character alphabets: Latin, Cyrillic, Greek, Hebrew, Arabic, Thai, etc.

} Symbols and dingbats: punctuation, math, technical, geometric shapes, etc.
~ } 3000-33FF Miscellaneous punctuations, symbols, and phonetics for Chinese, Japanese, and Korean

4000— } Unassigned

5000—-

o 4EOO-9FFF Chinese, Japanese, Korean ideographs

HEED nassigned

BOOO—-

CO00—)} ACOO-D7AF Korean Hangui syllables

DO00O—-

EOOO—} Space for surrogates
FOOO—} EOOO-F8FF Private use
FCOO -} FCOO-FFFF Various special characters

is multilingual in the most global sense. It defines codes for the characters of nearly
every character-based alphabet of the world in modern use, as well as codes for a large
set of ideographs for the Chinese, Japanese, and Korean languages, codes for a wide
range of punctuation and symbols, codes for many obsolete and ancient languages,
and various control characters. It supports composite characters and syllabic clusters.
Composite characters are those made up of two or more different components, only one
of which causes spacing to occur. For example, some vowels in Hebrew appear beneath
a corresponding consonant. Syllabic clusters in certain languages are single characters,
sometimes made up of composite components, that make up an entire syllable. The private
space is intended for user-defined and software-specific characters, control characters, and
symbols. Figure 4.5 shows the general code table layout for the common, 2-byte, form of
Unicode.

Reflecting the pervasiveness of international communications, Unicode is gradually
replacing ASCII as the alphanumeric code of choice for most systems and applications.
Even IBM uses ASCII or Unicode on its smaller computers, and provides two-way
Unicode-EBCDIC conversion tables for its mainframes. Unicode is the standard for use in
current Windows and Linux operating systems. However, the vastamount of archival data in
storage and use assures that ASCIT and EBCDIC will continue to exist for some time to come.

CHAPTER 4 DATA FORMATS 105

Returning to the ASCII and EBCDIC tables, there are several interesting ideas to be
gathered by looking at the tables together. First, note, not surprisingly, that the codes for
particular alphanumeric characters are different in the two tables. This simply reemphasizes
that, if we use an ASCII terminal for the input, the output will also be in ASCII form
unless some translation took place within the computer. In other words, printing ASCII
characters on an EBCDIC terminal would produce garbage.

More important, note that both ASCII and EBCDIC are designed so that the order
of the letters is such that a simple numerical sort on the codes can be used within the
computer to perform alphabetization, provided that the software converts mixed upper-
and lowercase codes to one form or the other. The order of the codes in the representation
table is known as its collating sequence. The collating sequence is of great importance in
routine character processing, since much character processing centers on the sorting and
selection of data.

Uppercase and lowercase letters, and letters and numbers, have different collating
sequences in ASCII and EBCDIC. Therefore, a computer program designed to sort
ASCII-generated characters will produce a different, and perhaps not desired, result when
run with EBCDIC input. Particularly note that small letters precede capitals in EBCDIC,
but the reverse is true in ASCII. The same situation arises for strings that are a mix of
alphabetical characters and numbers. In ASCII the numbers collate first, in EBCDIC, last.

Both tables are divided into two classes of codes, specifically printing characters and
control characters. Printing characters actually produce output on the screen or on a printer.
Control characters are used to control the position of the output on the screen or paper, to
cause some action to occur, such as ringing a bell or deleting a character, or to communicate
status between the computer and an I/O device, such as the Control-“C” key combination,
which is used on many computers to interrupt execution of a program. Except for position
control characters, the control characters in the ASCII table are struck by holding down the
Control key and striking a character. The code executed corresponds in table position to
the position of the same alphabetic character. Thus, the code for SOH is generated by the
Control-“A” key combination and SUB by the Control-“Z” key combination. Looking at
the ASCII and EBCDIC tables can you determine what control codes are generated by the
tab key? An explanation of each control character in the ASCII table is shown in Figure 4.6.
Many of the names and descriptions of codes in this table reflect the use of these codes for
data communications. There are also additional control codes in EBCDIC that are specific
to IBM mainframes, but we won’t define them here.

Unless the application program that is processing the text reformats or modifies the
data in some way, textual data is normally stored as a string of characters, including
alphanumeric characters, spaces, tabs, carriage returns, plus other control characters and
escape sequences that are relevant to the text. Some application programs, particularly
word processors, add their own special character sequences for formatting the text.

In Unicode, each UTF-16 alphanumeric character can be stored in two bytes, thus,
half the number of bytes in a pure text file (one with no images) is a good approximation
of the number of characters in the text. Similarly, the number of available bytes also
defines the capacity of a device to store textual and numerical data. Only a small percentage
of the storage space is needed to keep track of information about the various files; almost
all the space is thus available for the text itself. Thus, a 1 GB flash drive will hold about sixty
million characters (including spaces—note that spaces are also characters, of course!). If

106

PART TWO DATA IN THE COMPUTER

FIGURE 4.6
Control Code Definitions [STAL96]

NUL
SOH

STX

ETX
EOT
ENQ

ACK

BEL
BS
HT
LF
VT
FF

CR
SO

SI

(Null) No character; used to fill space DLE (Data Link Escape) Similar to escape, but
(Start of Heading) Indicates start of a used to change meaning of data control
header used during transmission characters; t,[sed to pgrmit selndir.lg of data
(Start of Text) Indicates start of text characters with any bit combination
during transmission DC1,0€2, (Device Controls) Used for the control of
(End of Text) Similar to above DC3, DC4 devices or special terminal features
(End of Transmission) NAK X\(J:e}zgative Acknowledgment) Opposite of
Enquiry) A request for response from a .
Eem%te }gtation? the response is usually an SYN (Synchronous) Used to synchronize a
ertirication synchronous transmission system
(Acknowledge) A character sent by a STB (End of Transmission Block) Indicates end
receiving device as an affirmative of a block of transmitted data
response to a query by a sender CAN (Cancel) Cancel preViOUS data
(Bell) Rings a bell EM (End of Medium) Indicates the physical
(Backspace) end of a medium such as tape
(Horizontal Tab) SuB (Substitute) Substitute a character for one
(Line Feed) sent in error . .
(Vertical Tab) ESC (Escape) _Prowdes extensions to the <_:ode

. by changing the meaning of a specified
(Form Feed) Moves cursor to the starting number of contiguous following characters
position of the next page, form, or screen g gg (File, group, record, and united separators)
(Carriage return) RS, US Used in optional way by systems to provide
(Shift Out) Shift to an alternative separations within a data set
character set until S| is encountered DEL (Delete) Delete current character

(Shift In) see above

you assume that a page has about fifty rows of sixty characters, then the flash drive can hold
almost twenty thousand pages of text or numbers.

In reality, the flash drive will probably hold less because most modern word processors
can combine text with graphics, page layout, font selection, and other features. And it
probably has a YouTube video or two on there, as well. Graphics and video, in particular,
consume a lot of disk space. Nonetheless, this book, graphics and all, fits comfortably on a
single 1 GB flash drive.

Keyhoard Input

Most alphanumeric data in the computer results from keyboard input, although alternative
forms of data input can be used. Operation of a keyboard is quite simple and straightforward:
when a key is struck on the keyboard, the circuitry in the keyboard generates a binary code,
called a scan code. When the key is released, a different scan code is generated. There are
two different scan codes for every key on the keyboard. The scan codes are converted to the
appropriate Unicode, ASCII, or EBCDIC codes by software within the terminal or personal
computer to which the keyboard is connected. The advantage of software conversion is

FIGURE 4.7

Keyboard Operation

CHAPTER 4 DATA FORMATS 107

that the use of the keyboard can be
easily changed to correspond to dif-
ferent languages or keyboard layouts.

Translation of | ASCII data The use of separate scan codes for key

scan codes 1000100 press and release functions allows.the

1101001 system to detect and process multiple

1010010 key combinations, such as those used

0001101 by the shift and control keys.

The keyboard operation is shown

in Figure 4.7. In the figure, the user

has typed the three letters “D,” “I,” “R,” followed by the carriage return character. The

computer translates the four scan codes to ASCII binary codes 1000100, 1001001, 1010010,

0001101, or their Unicode equivalents. Nonprinting characters, such as Control characters,

are treated identically to Printing characters. To the computer, keyboard input is treated

simply as a stream of text and other characters, one character after another, in the sequence
typed. Note that the carriage return character is part of the stream.

The software in most computer systems echoes printable keyboard input characters
directly back to the display screen, to allow the user to verify that the input has been typed
correctly. Since the display circuitry and software recognizes the same character code set as
the input, the characters are correctly echoed on the screen. In theory, a system could accept
Unicode input from a keyboard and produce EBCDIC output to a display screen, using
software to convert from one code set to the other. In practice, this is almost never done.

ERINY

Alternative Sources of Alphanumeric Input

OPTICAL CHARACTER RECOGNITION Alphanumeric data may also be entered into
a computer using other forms of input. One popular alternative is to scan a page of text
with an image scanner and to convert the image into alphanumeric data form using optical
character recognition (OCR) software. Early OCR software required the use of special
typefaces for the scanned image and produced a lot of errors. The amount of proofreading
required often nullified any advantage to using the scanner. As OCR software continues
to improve, the use of scanners to read typed text directly from the page will undoubtedly
increase as a source of alphanumeric data input.

A variation on OCR is also used to read specially encoded characters, such as those
printed magnetically on checks. Another variation, handwriting recognition, is used to
identify characters entered as input to a graphics tablet pad or the touch screen of a tablet
PC, personal digital assistant, or cell phone. This technology continues to improve, but
is still limited to small quantities of data, carefully printed. Attempts to extend character
recognition to scanned documents and to characters written in cursory script have been
largely unsuccessful to date.

BAR CODE READERS Another alternative form of data input is the bar code reader.
Bar code input is practical and efficient for many business applications that require fast,
accurate, and repetitive input with minimum employee training. You are probably most
familiar with its use at grocery checkout counters, but many organizations use bar codes,
particularly for inventory control and order filling.

108 PART TWO

FIGURE 4.8
UPC Bar Code

DATA IN THE COMPUTER

Bar codes represent alphanumeric data. The UPC bar code
in Figure 4.8, for example, translates to the alphanumeric value
780471 108801 90000. Bar codes are read optically using a device
called a wand that converts a visual scan of the code into electrical

codes, one code per digit, that can then be input into the computer.
The process is essentially similar to those already discussed. The

90000>
binary signals that a bar code translation module can read. The
module translates the binary input into a sequence of number
97780471"108801

FIGURE 4.9
An RFID tag used

Chip
Antenna

code is usually then translated to Unicode or ASCIL.

MAGNETIC STRIPE READERS Magnetic stripe readers are used to read alphanumeric
data from credit cards and other similar devices. The technology used is very similar to that
used for magnetic tape.

RFID INPUT RFID (Radio Frequency IDentification) is an inexpensive technology that
can be used to store and transmit data to computers. RFID technology can be embedded
in RFID tags or “smart cards” or even implanted in humans or animals. One familiar type
of RFID tag is shown in Figure 4.9. An RFID tag can store anywhere from a few kilobytes
to many megabytes of data. Using radio waves, RFID tags can communicate with a nearby
transmitter/receiver that captures and passes the data as input to a computer for processing.
Most RFID data is alphanumeric, although it is also possible with some RFID systems to
provide graphical images, photographs, and even video. RFID technology is used for a
wide variety of applications, including store inventory, theft prevention, library book and
grocery checkout, car key verification, passport identification, cargo tracking, automobile
toll and public transportation fare collection, golf ball tracking (!), animal identification,
implanted human medical record storage, and much more.

VOICE INPUT It is currently possible and practical to digitize audio for use as input
data. As we discuss in Section 4.4, most digitized audio data is simply stored for later
output or is processed in ways that modify the sound of the data. The technology necessary
to interpret audio data as voice input and to translate the
data into alphanumeric form is still relatively primitive. The
translation process requires the conversion of voice data into
sound patterns known as phonemes. Each phoneme in a
at WalMart particular language represents one or more possible groupings
of letters in that language. The groupings must then be matched
and manipulated and combined to form words and sentences.
Pronunciation rules, grammar rules, and a dictionary aid in
the process. The understanding of sentence context is also
necessary to correctly identify words such as to, too, or two.
As you can see, the task is a daunting one! Progress is being
made, however, and it is expected that voice input will be a
major source of alphanumeric input in the foreseeable future.

CHAPTER 4 DATA FORMATS 109

4.3 IMAGE DATA

Although alphanumeric data was long the traditional medium of business, improved
computer technology and the growth of the Web have elevated the importance of images in
the business computing environment. Photographs can be stored within the computer to
provide rapid identification of employees. Drawings can be generated rapidly and accurately
using tools that range from simple drawing packages to sophisticated CAD/CAM systems.
Charts and graphs provide easily understood representations of business data and trends.
Presentations and reports contain images and video for impact. Multimedia of all kinds is
central to the success of the Web.

Images come in many different shapes, sizes, textures, colors, and shadings. Different
processing requirements require different forms for image data. All these differences
make it difficult to define a single universal format that can be used for images in the
way that the standard alphanumeric codes are used for text. Instead, the image will be
formatted according to processing, display, application, storage, communication, and user
requirements.

Images used within the computer fall into two distinct categories. Different computer
representations, processing techniques, and tools are used for each category:

B Images such as photographs and paintings that are characterized by continuous
variations in shading, color, shape, and texture. Images within this category may
be entered into the computer using an image scanner, digital camera, or video
camera frame grabber. They may also be produced within the computer using
a paint program. To maintain and reproduce the detail of these images, it is
necessary to represent and store each individual point within the image. We will
refer to such images as bitmap images. Sometimes, they are called raster images
because of the way the image is displayed. (See Figure 10.16, page 324). The GIF
and JPEG formats commonly used on the Web are both examples of bitmap
image formats.

B Images that are made up of graphical shapes such as lines and curves that can
be defined geometrically. The shapes themselves may be quite complex. Many
computer experts refer to these shapes as graphical objects. For these images, it
is sufficient to store geometrical information about each object and the relative
position of each object in the image. We will refer to these images as object
images. They are also known, somewhat incorrectly, as vector images, because
the image is often (but not always) made up of straight-line segments called
vectors. Object images are normally produced within the computer using some
sort of drawing or design package. They may also result from other types of
processing, for example, as data plots or graphs representing the data in a
spreadsheet. More rarely, they may occur as the result of the translation by
special software of scanned bitmap images that are simple enough to reduce to
object form.

Most object image formats are proprietary. However, W3C, the
international consortium that oversees the Web, has defined a standard, SVG

110 PART TWO DATA IN THE COMPUTER

(scalable vector graphics), based on XML Web description language tags.
Macromedia Flash is also in popular use.

With only rare exceptions', the nature of display technology make it much more
convenient and cost effective to display and print all images as bitmaps. Object images
are converted to bitmap for display. Looking at an image, it can sometimes be difficult to
determine whether the original form is bitmap or object. It is possible, for example, to
describe subtle gradations of color within an image geometrically. The processing required
to create movement in computer-animated images may dictate the use of object images,
even if the objects themselves are very complex. The type of image representation is
often chosen on the basis of the computer processing to be performed on the image. The
movies Shrek and Toy Story are amazing examples of the possibilities of object images.
(See Figure 4.14, for example.)

Sometimes, both types of image data occur within the same image. It is always possible
to store graphical objects in a bitmap format, but it is often desirable in such cases to
maintain each type of image separately. Most object image representations provide for the
inclusion of bitmap images within the representation.

Bitmap Images

Most images—photographs, graphical images and the like—are described most easily
using a bitmap image format. The basic principle for representing an image as a digital
bitmap is simple. A rectangular image is divided into rows and columns, as shown in
Figure 4.10. The junction of each row and column is a point (actually a small area) in the
image known as a pixel, for pi[x]cture element. Corresponding to each pixel is a set of
one or more binary numerical values that define the visual characteristics of that point.

FIGURE 4.10
A 16 x 8 Bitmap Image Format
pixel(0,0) pixel(0,1)
—
pixel(1,0)— - ——
row — IR pixels
//
L
Q
pixel(7,15)

pixels stored in order p(0,0), p(0,1),... p(0,15), p(1,0),... p(1,15),... p(7,15)

'The exceptions are the circular scan screens used for radar display and ink plotters used for architectural
and engineering drawings.

FIGURE 4.11

Image Pixel Data

CHAPTER 4 DATAFORMATS |11

o
TR 21 fig 121
TN TRHIT 1 12 11 2111112 468843
JTI7RI 2 U201 122238 1 M Z20 2234454432 1.1 1 122111 1128083311
OSSR 12010 I 12211 2 111 1 1212223223200 11 1210 11112211 1 2921
TRMTESSALIZRIIZ 11 11 111211 12121820 11010 1 1 L2 11201 2 1S9t
SPRETMNZUZNIL 1L U1 2 120 1232200 121120 11 112 19722 12y 1eadh 124
WBTEBSIMARIRIATAX 1121111230231 1 2212121228111 iz sz
STIMSAZ2 1123212 13A605009a987521211 112011200 220 1 200120 §1 221 1 1ML 6agA 23835
U112 11I66S6666666TT8742311 12 22220 1 1111111 1 12 1 121212 1411 1 111 . 27a72K:
1 1722211211 § 0ASESMRAL 11 11111
12211 1 20 111 11113841 33,
1 1
T 12T ANZ2ITTAES3 11 1 112KbISTSIZISMTENGBNIL 1 a2,
AN A 209652 12222011 ISISIS3NN 1321 120690643121 1112841 1203
WIRTIEEAN AT 11 269742 121 2 124943411111 212211 ZS8ITS2 12T
1491 9412123
25211 112 sz
m 12212321 1 a
uzm et STRL1 159 1137583 1 mmm
m nt BBU2 1111 1208
o 169751112414117672 111 % 1112 mvm
BUZIRN2%NG 1IZB2ABAIRIZ 166N 12221 17¢71 202132 1 131212 daesl 11111 2890
13 1312222 49472 22222113112 12111128962 $1211 276TIAIRAI HRUNNATH2AL 11135
134113112221 I9TIN2A221121231 11399521 11321 1672 132121nmznzzzmam1z 1124578
RNz 11485421 2 1223
1SS 121 1o
89962 11221 1 i 117¢3 11 lzz 1 me
s 11111 1 24729511 p<d
S IRQRRANZBMR 122211 Aab9n 121 11 13SEIBSA 1411 xmmnmmm 2z
SUZZZIZE 16STSAN J11 12269965 220101 MI3eaTALIY 1NIZ23SecaalSRI0L U2 L .
oz 1 21 1 101111028 1 482
1 um [LRTIRTITTRNTH
[y 1n 21 \1 [RITRRTE IRt
ST /12112 9 11t 1 1o 2100
SRUBIR 120117 1 12230 1121 1332 22010 mz;«mdmumn nonzz2

Most commonly, color and color intensity are the primary characteristics of interest, but
secondary characteristics such as transparency may also be present. The meaning and scales
for these values are defined within the image metadata that is included with the image,
along with the number of rows and columns, identification of the bitmap format in use,
and other relevant information about the image.

A pixel aspect ratio may also be included so that display of the image may be adjusted
if the pixel is rectangular rather than square. The specific metadata included with an image
is part of the definition for a particular bitmap format.

Pixel data is normally stored from top to bottom, one row at a time, starting from
pixel(0, 0), the top, leftmost pixel, to pixel(n;ow—1, neo1—1), representing the pixel at the
bottom right corner of the image. (For quirky reasons, this image would be known as a n¢|
X Nyow image, instead of the other way around.) Because the representation is so similar
to the way in which television images are created, this layout is called a raster, and the
presentation of pixels as input or output, one pixel at a time, in order, is called a raster scan.
The actual pixel coordinates, pixel(row,column), do not need to be stored with their values,
because the pixels are stored in order, and the number of rows and columns is known.

The actual data value representing a pixel could be as simple as one bit, for an image
that is black and white (0 for black, 1 for white, for example) or quite complex. Each pixel
in a high-quality color image, for example, might consist of many bytes of data: a byte for
red, a byte for green, and a byte for blue, with additional bytes for other characteristics such
as transparency and color correction.

As a simple example, look at the image shown in Figure 4.11. Each point in the
photograph on the left is represented by a 4-bit code corresponding to one of sixteen gray
levels. For this image, hexadecimal F represents black, and hexadecimal 0 represents white.
The representation of the image shown on the right indicates the corresponding values for
each pixel.

The storage and processing of bitmap images frequently requires a large amount of
memory, and the processing of large arrays of data. A single color picture containing 768

112

PART TWO DATA IN THE COMPUTER

EXAMPLE

rows of 1024 pixels each, (i.e., a 1024 x 768 image) with a separate byte to store each of
three colors for each pixel, would require nearly 2.4 megabytes of storage. An alternative
representation method that is useful for display purposes when the number of different
colors is small reduces memory requirements by storing a code for each pixel, rather than
the actual color values. The code for each pixel is translated into actual color values using a
color translation table known as a palette that is stored as part of the image metadata. This
method is discussed in Chapter 10. Data compression may also be used to reduce storage
and data transmission requirements.

The image represented within the computer is really only an approximation to the
original image, since the original image presents a continual range of intensity, and perhaps
also of color. The faithfulness of the computer representation depends on the size of the
pixels and the number of levels representing each pixel. Reducing the size of each pixel
improves the resolution, or detail level, of the representation by increasing the number of
pixels per inch used to represent a given area of the image. It also reduces the “stepping”
effects seen on diagonal lines. Increasing the range of values available to describe each pixel
increases the number of different gray levels or colors available, which improves the overall
accuracy of the colors or gray tones in the image. The trade-off, of course, is in storage
requirements and processing and transmission time.

Bitmap representations are particularly useful when there is a great amount of detail
within an image, and for which the processing requirements are fairly simple. Typical
processing on bitmap images includes storage and display, cutting and pasting of pieces of
the image, and simple transformations of the image such as brightness and contrast changes,
changing a dimension, or color alterations. Most bitmap image processing involves little
or no direct processing of the objects illustrated within the image.

As an example of a bitmap image storage format, consider the popular Graphics Interchange
Format (GIF), method of storing images. GIF was first developed by CompuServe in 1987 as a
proprietary format that would allow users of the online service to store and exchange bitmap
images on a variety of different computing platforms. A second, more flexible, form of GIF
was released in 1989. The later version, GIF89a, also allows a series of GIF images to be
displayed sequentially at fixed time intervals to created ‘‘animated GIF images.” The GIF
format is used extensively on the Web.

GIF assumes the existence of a rectangular ““screen’’ upon which is located one or more
rectangular images of possibly different sizes. Areas not covered with images are painted
with a background color. Figure 4.12 illustrates the layout of the screen and its images.
The format divides the picture information and data into a number of blocks, each of which
describes different aspects of the image. The first block, called the header block, identifies
the file as a GIF file and specifies the version of GIF that is being used.

Following the header block is a logical screen-descriptor block, which identifies the
width and height of the screen, describes an optional color table for the images on the screen
(the palette), indicates the number of bits per color available, identifies the background
screen color, and specifies the pixel aspect ratio.

Each image within the screen is then stored in its own block, headed by an
image-descriptor block. The image-descriptor block identifies the size and position of
the image on the screen, and also allows for a palette specific to the particular image, if
desired. The block also contains information that makes it possible to display individual

CHAPTER 4 DATAFORMATS 113

FIGURE 4.12
GIF Screen Layout

Screen width

i » Screen
Background Ve
Image 1
T Image
Screen ! Image top Image 2 height
height 1 position o
1
Image left ¥ i ‘
[position i i
P Image 3 I I
: :
1 1
1 1
1 1
\ 1 1 J
T T
' Image !
' width 1
FIGURE 4.13
GIF File Format Layout
Header | Logical screen | Global
block descriptor color Image 1 | Image 2
“GIFxxa” block table
6 bytes 6 bytes (optional)
Up to 768
bytes Image Local |
descriptor color Bnatge
block table ata

9 bytes (optional) Determined (Depends
Up to 768 from on size
bytes descriptor of image)

images at different resolutions. The actual pixel data for the image follows. The pixel data
is compressed, using an algorithm called LZW. The basic GIF file format layout is shown in
Figure 4.13.

Even though we have simplified the description, you can see that a graphical data
format can be quite complex. The complexity is required to provide all the information
that will allow the use of the image on a variety of different equipment.

There are a number of alternatives to the GIF format. In particular, the GIF format is
limited to 256 colors, which is sometimes insufficient to display the details of a painting or

114 PART TWO DATA IN THE COMPUTER

photograph, for example. A popular alternative, JPEG format (Joint Photographers Expert
Group), addresses this concern by allowing more than sixteen million colors to be repre-
sented and displayed. JPEG employs a lossy compression algorithm to reduce the amount of
data stored and transmitted, but the algorithm used reduces image resolution under certain
circumstances, particularly for sharp edges and lines. This makes JPEG more suitable for
the representation of highly detailed photographs and paintings, but GIF is preferable
for line drawings and simple images. Other formats include TIFF, which is popular on
Macintosh platforms, BMP, a Windows format, and PCX, a format originally designed for
use with PC Paintbrush software. PNG is a recent format that eliminates many GIF and
JPEG shortcomings. It is intended to replace GIF and JPEG for many Internet applications.

Object Images

FIGURE 4.14

When an image is made up of geometrically definable shapes, it can be manipulated
efficiently, with great flexibility, and stored in a compact form. Although it might seem that
such images are rare, this turns out not to be the case.

Object images are made up of simple elements like straight lines, curved lines (known
as Bezier curves), circles and arcs of circles, ovals, and the like. Each of these elements can
be defined mathematically by a small number of parameters. For example, a circle requires
only three parameters, specifically, the X and Y coordinates locating the circle in the image,
plus the radius of the circle. A straight line needs the X and Y coordinates of its end points,
or alternatively, by its starting point, length, and direction. And so on.

Because objects are defined mathematically, they can be easily moved around, scaled,
and rotated without losing their shape and identity. For example, an oval can be built

from a circle simply by scaling the
horizontal and vertical dimensions dif-

An Object Image

ferently. Closed objects can be shaded
and filled with patterns of color, also
described mathematically. Object ele-
ments can be combined or connected
together to form more complex ele-
ments, and then those elements can
also be manipulated and combined. You
might be surprised to learn that Shrek,
the image in Figure 4.14, is an example
of an object image.

Object images have many advan-
tages over bitmap images. They require
far less storage space. They can be
manipulated easily, without losing their
identity. Note, in contrast, that if a
bitmap image is reduced in size and
reenlarged, the detail of the image is
permanently lost. When such a process

Dreamworks LLC/Photofest. is applied to a bitrnapped Straight line,

EXAMPLE

CHAPTER 4 DATAFORMATS |15

the result is “jaggies.” Conversely, images such as photographs and paintings cannot be
represented as object images at all and must be represented as bitmaps.

Because regular printers and display screens produce their images line by line, from the
top to the bottom of the screen or paper, object images also cannot be displayed or printed
directly, except on plotters. Instead, they must be converted to bitmap images for display
and printing. This conversion can be performed within the computer, or may be passed on
to an output device that has the capability to perform the conversion. A PostScript printer
is an example of such a device. To display a line on a screen, for example, the program
would calculate each of the pixels on the screen that the line passes through, and mark them
for display. This is a simple calculation for a computer to perform. If the line is moved or
resized, it is only necessary to perform the calculation again to display the new image.

The PostScript page description language is an example of a format that can be used to
store, transmit, display, and print object images. A page description is a list of procedures
and statements that describe each of the objects on a page. PostScript embeds page
descriptions within a programming language. Thus, an image consists of a program written
in the PostScript language.

The programming language is stored in ASCII or Unicode text form. Thus, PostScript
files can be stored and transmitted as any other text file. An interpreter program in the
computer or output device reads the PostScript language statements and uses them to
create pages that can then be printed or displayed. The interpreter produces an image that is
the same, regardless of the device it is displayed or printed on. Compensation for differences
in device resolution and pixel shape is built into the interpreter.

PostScript provides a large library of functions that facilitate every aspect of an
object-based image. There are functions that draw straight lines, Bezier curves, and arcs of
a circle, functions that join simple objects into more complex ones, translate an object to
a different location on the page, scale or distort an object, rotate an object, and create the
mirror image of an object, and functions that fill an object with a pattern, or adjust the width
and color of a line. There are methods for building and calling procedures, and IF-THEN-ELSE
and loop programming structures. The list goes on and on.

A simple program that draws a pair of shaded and concentric circles within a rectangle
in the middle of an 81/2 x 11-inch page is shown in Figure 4.15. This example shows a
number of features of the language. The page is laid out as an X, Y grid, with the origin at
the lower left corner. Each unit in the grid is 1/72 of an inch, which corresponds to 1 point
in publishing. Each line contains a function, with a number of parameters that provide the
specific details for the function. The parameters precede the function call. Text following
the % symbols are comments.

The first line contains a translate function that moves the X, Y origin to the center of
the page. The parameters for this function, 288 and 396, represent the X and Y distances
moved in points. (Note that 288/72 = 4 inches in X and 396/72 = 5 inches in Y.) Each
circle is created with an arc function. The parameters for the arc function are X origin and
Y origin for the arc, radius, and starting and finishing angle in degrees. (O to 360 produces
a full circle.) You should be able to follow the remainder of the program on your own. Note
that the statements are interpreted in sequence: the second, gray circle is layered on top of
the first.

116 PARTTWO DATA IN THE COMPUTER

FIGURE 4.15
A PostScript Program

288 396 translate % move origin to center of page

00 144 0 360 arc % define 2" radius black circle

fill

0.5 setgray % define 1" radius gray circle

00720360 arc

fill

0 setgray % reset color to black

-216 -180 moveto % start at lower left corner

0 360 rmoveto % and define rectangle

432 0 rmoveto % ...one line at a time

0 -360 rmoveto

closepath % completes rectangle

stroke % draw outline instead of fill

showpage % produce the image
FIGURE 4.16

Another PostScript Program

% procedure to draw pie slice % add text to drawing
%arguments graylevel, start angle, finish angle O setgray
/wedge { 144 144 moveto
0 0 moveto (baseball cards) show
setgray -30 200 (cash) show
/anglel exch def -216 108 (stocks) show
/angle2 exch def 32 scalefont
0 0 144 anglel angle2 arc (Personal Assets) show
0 O lineto
closepath } def showpage

%set up text font for printing
/Helvetica-Bold findfont
16 scalefont

setfont cash

;) baseball
.4 72 108 wedge fill % 108-72 = 36 = .1 circle stocks cards
.8 108 360 wedge fill % 70%

% print wedge in three parts
32 12 translate

0 0 72 wedge fill

gsave

-8 8 translate

1 0 72 wedge fill Personal Assets
0 setgray stroke

grestore

CHAPTER 4 DATAFORMATS 117

Arguably, the most important feature in PostScript is the inclusion of scalable font
support for the display of text. Font outline objects are specified in the same way as other
objects. Each font contains an object for each printable character in the extended ASCII
character set. PostScript includes objects for thirty-five standard fonts representing eight
font families, plus two symbol fonts, and others can be added. Unicode fonts are also
available. Fonts can be manipulated like other objects. Text and graphics can be intermixed
in an image. The graphic display of text is considered further in the next subsection.

Figure 4.16 shows another, more complicated, example of a PostScript program. This
one presents a pie chart with an expanded slice, and labels. The expanded slice includes a
shadow to improve its appearance. Each slice of the pie is drawn using a procedure called
wedge. The shadow is drawn by drawing the wedge three times, once in black, then moved
a bit and drawn in white and as an outline.

PostScript is a format for storing images in object form. Nonetheless, there are occasions
when it is necessary to embed a bitmap image into what is primarily an object-based image.
PostScript provides this capability. It even provides the ability to crop, enlarge, shrink,
translate, and rotate the embedded bitmap images, within the limits of the bitmap format,
of course.

Representing Characters as Images

The representation of character-based data in a typical modern, graphically based systems
presents an additional challenge. In graphically based systems it is necessary to distinguish
between characters and the object image-based representations of characters, known as
glyphs. Individual glyphs are based on a particular character in a particular font. In some
cases, a glyph may also depend on neighboring characters. Should the data be represented
and stored as characters or as glyphs? The answer depends on what the text is to be used
for. Most text is processed and stored primarily for its content. A typical word processor,
for example, stores text as character data, in Unicode format; fonts are embedded into the
text file using special sequences of characters stored with the data, often in a proprietary file
format supported by the particular application software. Conversion of the character data
to glyphs for presentation is known as rendering and is performed by a rendering engine
program. The glyphs are then converted to bitmap graphics for presentation according to
the characteristics of the display device or printer. For the rare occasion where the text
is actually embedded within an image, the glyphs that represent the characters may be
combined, stored, and manipulated as an object image.

Video Images

Although GIF images are adequate for simple animation loops, there are a number of
additional considerations for the storage, transmission, and display of true video. The most
important consideration is the massive amount of data created by a video application. A
video camera producing full screen 1024 x 768 pixel true-color images at a frame rate of
thirty frames per second, for example, will generate 1024 pixels x 768 pixels x 3 bytes of
color/image x 30 frames per second = 70.8 megabytes of data per second! A one-minute
film clip would consume 4.25 gigabytes of storage.

118 PARTTWO DATA IN THE COMPUTER

There are a number of possible solutions: reduce the size of the image, limit the number
of colors, or reduce the frame rate. It is also possible, or, more likely, necessary to compress
the video data. Each of these options has obvious drawbacks. The solution chosen also
depends on the nature of the method used to make the video available to the user. One
option is to present the video as a file on the system. The video file is either accessed from a
removable medium, such as a DVD-ROM, or downloaded and stored on the system.

Alternatively, the video may be made available to the system in real time. The latter
technique is called streaming video. Streaming video is normally downloaded continuously
from a Web server or network server. Video conferencing is an example of a streaming
video application. The requirements for streaming video are much more stringent than for
locally stored video, because the amount of data that can be downloaded per unit time is
limited by the capability of the network connection. Furthermore, the processor must be
able to uncompress and decode the data fast enough to keep up with the incoming data
stream. Generally speaking, streaming video is of lower display quality than video that is
available locally.

Various mixes of these solutions are used. There are a number of proprietary formats
in use, including RealPlayer from Real.com, Windows Media Format from Microsoft, and
Flash Video from Macromedia. The output, although less than ideal, is adequate for many
applications.

When the video data is local to the system, it is possible to generate and display
high-quality video using sophisticated data compression techniques, but the processing
required for generation of the compressed data is beyond the capabilities of most computer
systems and users at the present time. The MPEG-2 and MPEG-4 formats store real-time
video that produces movie quality images, with the video data compressed to 30—60
megabytes or less of data per minute, even for high definition images. Even the re-creation
of the original images for display requires substantial computing power. Although high-end
modern personal computer systems have adequate processing power to decode high-quality
video data, many computer systems provide additional hardware support for the reading,
decoding, and displaying of real-time video data from DVDs. Direct transmission of
high-quality digital video data is still confined to very high-speed networks and satellite
systems.

Image and Video Input

Of course the obvious input source for images and video these days is the Web. Still, those
images and videos had to originate somewhere, so we’ll take a brief look at the various
means used to input them and convert them to the digital formats that we use. Three classes
of devices provide most of the imaging capability that we use.

IMAGE SCANNING One common way to input image data is with an image scanner.
Data from an image scanner takes the form of a bitmap that represents some sort
of image—a graphic drawing, a photograph, magnetically inked numbers on a check,
perhaps even a document of printed text. The scanner electronically moves over the image,
converting the image row by row into a stream of binary numbers, each representing a pixel.
Software in the computer then converts this raw data into one of the standard bitmap data
formats in use, adding appropriate metadata, applying data compression when desired,

CHAPTER 4 DATAFORMATS 119

reconfiguring the data as necessary, and storing the data as a file that is then available
for use.

DIGITAL CAMERAS AND VIDEO CAPTURE DEVICES Digital cameras and video
cameras can be used to capture bitmap images and video. An electronic raster scan
mechanism is used to collect light and digitize the data from the lens. Most modern
cameras collect the data in a simple, vendor-specific so-called raw format. Because the
amount of data generated for a single image in a modern camera is large (a common value
is 8.1 megapixels x 3 or more bytes per pixel for example), the camera usually contains
software to convert the raw data to a compressed JPEG or MPEG image for storage and
transfer to a computer. Some cameras allow the direct transfer of raw images to a computer
for more precise processing control.

GRAPHICAL INPUT USING POINTING DEVICES Mice, pens, and other pointing
devices can be used in conjunction with drawing or painting programs to input graphical
data. The input from most of these devices is a pair of binary numbers representing either X
and Y coordinates on the screen or relative movements in X and Y directions. Some drawing
tablets also provide a measure of the pressure applied to the drawing pen. The pointing
device is an input device. The appearance of a cursor on the output screen results from a
calculation within the program that detects the current set of coordinates. The program
then outputs a cursor as part of the screen image bitmap at the appropriate location on the
screen. Internally, the image drawn will depend on the application program being used.
Paint packages provide tools that use the pointing device to create “paintings” in a bitmap
image form. Drawing packages provide tools that create and manipulate objects. In this
case, the result is an object image.

4.4 AUDIO DATA

Sound has become an important component in modern computer applications. Sound is
used as an instructional tool, as an element of multimedia presentations, to signal events
within the computer, and to enhance the enjoyment of games. Sound can be stored in
digital form on CD-ROMs and other media and made available to accompany a film
clip, illustrate the nuances of a symphony, or reproduce the roar of a lion. Sound can
be manipulated in the computer to compose music and to create the sounds of different
musical instruments, even an entire orchestra.

Sound is normally digitized from an audio source, such as a microphone or amplifier,
although it is possible to purchase instrumentation that connects the computer directly to
amusical keyboard and synthesizer. For most users, the sound was previously digitized and
provided on a CD-ROM or downloaded from a Web site.

Since the original sound wave is analog in nature, it is necessary to convert it to
digital form for use in the computer. The technique used is the same as that used for
music CDs and many other types of analog waveforms. The analog waveform is sampled
electronically at regular time intervals. Each time a sample is taken, the amplitude of the
sample is measured by an electronic circuit that converts the analog value to a binary
equivalent. The circuit that performs this function is known as an A-to-D converter. The
largest possible sample, which represents the positive peak of the loudest possible sound, is
set to the maximum positive binary number being used, and the most negative peak is set

120

PART TWO DATA IN THE COMPUTER

to the largest negative number. Binary 0 falls in the middle. The amplitude scale is divided
uniformly between the two limits. The sampling rate is chosen to be high enough to capture
every nuance in the signal being converted. For audio signals, the sampling rate is normally
around 50 kilohertz, or fifty thousand times a second. The basic technique is illustrated in
Figure 4.17. A typical audio signal is shown in the upper diagram. A portion of the signal
is shown in expanded form below. In this diagram, the signal is allowed to fall between
—64 and 64. Although we haven’t discussed the representation of negative numbers yet,
the consecutive values for the signal in this diagram will be the binary equivalents to —22,
—7, 426, 52, 49, and 2. The A-to-D conversion method is discussed more thoroughly in
Chapter 14.

Within the computer, most programs would probably treat this data as a one-
dimensional array of integers. Like graphics images, however, it is necessary to maintain,
store, and transmit metadata about the waveform, in addition to the waveform itself.
To process and reproduce the waveform, a program would have to know the maximum
possible amplitude, the sampling rate, and the total number of samples, at the very least. If
several waveforms are stored together, the system would have to identify each individual
waveform somehow and establish the relationships between the different waveforms. Are
the waveforms played together, for example, or one right after another?

As you might expect, there are a number of different file formats for storing audio
waveforms, each with its own features, advantages, and disadvantages. The .MOD format,
for example, is used primarily to store samples of sound that will be manipulated and
combined to produce a new sound. A .MOD file might store a sample of a piano tone.

FIGURE 4.17
Digitizing an Audio Waveform

Typical
. audio
; N waveform
Amplitude / .
64 = . -
48 - = :
32 — ,/ \
16 / /] \ Section
R / expanded
0 »
_16 P
Samples t—-

EXAMPLE

CHAPTER 4 DATA FORMATS 121

Software could then manipulate the sample to reproduce all the different keys on the
keyboard, it could alter the loudness of each tone, and it could combine them to synthesize
the piano lines in a piece of music. Other instruments could be synthesized similarly.
The MIDI format is used to coordinate the sounds and signals between a computer and
connected musical instruments, particularly keyboards. MIDI software can “read” the
keyboard and can also reproduce the sounds. The .VOC format is a general sound format
that includes special features such as markers within the file that can be used to repeat
(loop) a block or synchronize the different components of a multimedia presentation.
Block looping can extend a sound by repeating it over and over again. The . WAV format is
a general-purpose format used primarily to store and reproduce snippets of sound. MP3 is
a derivative of the MPEG-2 specification for the transmission and storage of music. It has
gained popularity because of the large numbers of MP3-coded recordings posted on the
Web and because of the availability of low-cost portable devices that can download, store,
decode, and reproduce MP3 data.

Like video, audio data can also be generated and stored locally or streamed from a
network or website. The data transmission and processing requirements for audio are much
less stringent than those for video, however. Audio is routinely streamed from the Web.
There are numerous websites broadcasting audio from radio stations and other sources,
and streaming audio is also used for Internet telephony.

The .WAV format was designed by Microsoft as part of its multimedia specification. The
format supports 8- or 16-bit sound samples, sampled at 11.025KHz, 22.05KHz, or
44,1 KHz in mono or stereo. The .WAV format is very simple and does not provide support
for a lot of features, such as the looping of sound blocks .WAV data is not compressed.

The format consists of a general header that identifies a ““‘chunk’ of data and specifies
the length of a data block within the chunk. The header is followed by the data block. The
general header is used for a number of different multimedia data types.

The layout of a .WAV file is shown in Figure 4.18. The data block is itself broken into
three parts. First, a 4-byte header identifies a sound file with the ASCII word “WAVE.” A
format chunk follows. This chunk contains such information as the method used to digitize
the sound, the sampling rate in samples per second, the data transfer rate in average number
of bytes per second, the number of bits per sample, and whether the sound is recorded in
mono or stereo. The actual data follows.

FIGURE 4.18
WAV Sound Format

Chunk id Length of Data (<length of chunk> bytes)
chunk

4 bytes 4 bytes

Format

WAVE chunk

Actual sound data

4 bytes (as needed)

122 PART TWO DATA IN THE COMPUTER

EXAMPLE

FIGURE 4.19

If you have a personal computer that runs Windows and supports sound, you will
probably find .WAV files in one of your Windows directories. Look for the file tada.wav, which
holds the brief trumpet fanfare that sounds when Windows is started.

MP3 is the predominant digital audio data format for the storage and transmission of music.
It is characterized by reasonable audio quality and small file size. MP3 uses a number of
different tactics and options to achieve its small file sizes. These include options for different
audio sampling rates, fixed or variable bit rates, and a wide range of bit rates that represent
different levels of compression. The bit rate, measured in Kbits/second is, of course, directly
related to the size of the file, however lower bit rates result in lower audio quality. The
options chosen are made by the creator of the file during the encoding process, based on the
trade-off between tolerable audio quality versus transmission rate or file size. An MP3 player
must be capable of correctly decoding and playing any of the format variations specified in
the MP3 standard.

The primary contributor to the small MP3 file size is the use of psychoacoustic lossy
compression. The size of an MP3 file is typically about 1/10th the size of an equivalent
uncompressed .WAV file. Psychoacoustic compression is based on the assumption that there
are sounds that a listener cannot hear or will not notice, which can then be eliminated. As an
example, a soft sound in the background is not usually noticeable against a loud foreground
sound. The level of compression depends on the tolerable level of sound quality, but also on
the nature of the audio being compressed. A typical MP3 file samples the audio data 44,100
times per second, which is the same as the data rate used on audio CDs, and presents the
data to the listener at a rate of either 128 or 192 Kb/second.

Figure 4.19 shows the structure of an MP3 file. The file consists of an optional ID field
that contains such information as song title and artist, followed by multiple data frames.
Each frame has a 32-byte header that describes the frame data, followed by an optional

MP3 Audio Data Format

MP3 frame MP3 frame MP3 frame

A A Al

ID
Field
(optional)

MP3 error MP3

check
header (optional) data

N

32 bytes 2 bytes 384, 576,

or 1152

samples J

——

MP3 file

CHAPTER 4 DATA FORMATS 123

2-byte error-checking code, followed by the data itself. The header contains 2 bytes of
synchronization and MP3 version data followed by the bit rate, the audio sample rate, the
type of data (for example, stereo or monaural audio), copy protection, and other information.
The MP3 standard requires that each frame contains 384, 576, or 1152 audio samples
of data. Note that this format allows the bit rate to vary for each frame, allowing for more
efficient compression, but more difficult encoding procedures.

4.5 DATA COMPRESSION

The volume of multimedia data, particularly video, but also sound and even high resolution
still images, often makes it impossible or impractical to store, transmit, and manipulate the
data in its normal form. Instead it is desirable or, in some cases, necessary to compress the
data. This is particularly true for video clips, real-time streaming video with sound, lengthy
sound clips, and images that are to be transmitted across the Internet through modem
connections. (It is also true of large data and program files of any type.)

There are many different data compression algorithms, but all fall into one of two
categories, lossless or lossy. A lossless algorithm compresses the data in such a way that
the application of a matching inverse algorithm restores the compressed data exactly to its
original form. Lossy data compression algorithms operate on the assumption that the user
can accept a certain amount of data degradation as a trade-off for the savings in a critical
resource such as storage requirements or data transmission time. Of course, only lossless
data compression is acceptable for files where the original data must be retained, including
text files, program files and numerical data files, but lossy data compression is frequently
acceptable in multimedia applications. In most applications, lossy data compression ratios
far exceed those possible with lossless compression.

Lossless data algorithms work by attempting to eliminate redundancies in the data.
For example, suppose that you have the following string of data:

05573200001473291000006682732732...

There are two simple steps you could take to reduce this string. First, you could reduce
the amount of data by counting the strings of consecutive 0s, and maintaining the count
instead of the string. The character is reproduced once, followed by its count:

0155732041473291056682732732...

Notice that we actually had to add a character when the 0 appeared singly in the string.
Otherwise, the inverse algorithm would have assumed that the first 0 appeared five times
rather than recognizing the data to be a single 0 followed by a 5.

As a second step, the algorithm attempts to identify larger sequences within the string.
These can be replaced with a single, identifiable value. In the example string, the sequence
“7 3 27 occurs repeatedly. Let us replace each instance of the sequence with the special
character “Z”:

0155203147291056682177...

Application of these two steps has reduced the sample string by more than 35 percent.
A separate attachment to the data would identify the replacements that were made, so

124 PART TWO DATA IN THE COMPUTER

that the original data can be restored losslessly. For the example, the attachment would
indicate that Os were replaced by a single 0 followed by their count and the sequences
“732” werereplaced by “Z.” You might wish to restore the original string in this example for
practice.

There are many variations on the methods shown in the example. You should also
notice that the second step requires advance access to the entire sequence of data to
identify the repetitive sequences. Thus, it is not useful with streaming data. There are other
variations that are based on the known properties of the data stream that can be used,
however. For example, MPEG-2 uses the knowledge that the image is repeated at a frame
rate of, say, thirty times per second, and that in most instances, very little movement occurs
within small parts of the image between consecutive frames. GIF images and ZIP files are
compressed losslessly.

Lossy algorithms operate on the assumption that some data can be sacrificed without
significant effect, based on the application and on known properties of human perception.
For example, it is known that subtle color changes will not be noticeable in the area of
an image where the texture is particularly vivid. Therefore, it is acceptable to simplify the
color data in this circumstance. There is no attempt to recover the lost data. The amount
of data reduction possible in a particular circumstance is determined experimentally. Lossy
algorithms can often reduce the amount of data by a factor of 10:1 or more. JPEG and MP3
are examples of lossy algorithms.

MPEG-2 uses both variations on both forms of compression simultaneously to achieve
compression ratios of 100:1 or more with very little noticeable degradation in image quality;
however, the compression process itself requires tremendous amounts of computing power.

Ongoing advances in data compression technology have resulted in improved perfor-
mance with existing compression techniques, as well as a number of new video formats,
including new versions of Microsoft’s Windows Media Video format and new formats
based on the MPEG-4 standard, as well as a new JPEG bitmap format, JP-2. As of this
writing, these formats have not yet achieved general acceptance, but there is much promise
for greatly improved video performance.

In general, the use of data compression is a trade-off between the use of processing
power and the need to reduce the amount of data for transmission and storage. In most cases,
the higher the compression ratio, the greater the demand upon the computer processing
resources. At some point, the incremental improvement in compression to be achieved will
no longer justify the additional cost in processing or the degradation of the result.

4.6 PAGE DESCRIPTION LANGUAGES

A page description language is a language that describes the layout of objects on a
displayed or printed page. (In this context we are using the word “object” in the more
general object-oriented programming language sense, rather than as a specific reference
to object images.) Page description languages incorporate various types of objects in
various data formats, including, usually, text, object images, and bitmap images. The page
description language provides a means to position the various items on the page. Most
page description languages also provide the capability to extend the language to include

CHAPTER 4 DATA FORMATS 125

new data formats and new objects using language stubs called plug-ins. Most audio and
video extensions fall into this category.

Some page description languages are extremely simple, with limited innate functional-
ity. HTML (HyperText Markup Language), for example, provides little more than a shell.
Except for text, most objects are stored in separate files, the details of layout are left mostly
to the Web browser that is recreating the page, and programming language capability and
other features are provided as extensions. We have already shown you many of the data
formats that are used with HTML. Others, such as PDF (Portable Document Format) and
PostScript offer the ability to recreate sophisticated pages with surprising faithfulness to
the intentions of the original page designer.

PDF, for example, incorporates its own bitmap formats, object image format, and text
format, all optimized for rapid page creation and presentation. It is often difficult to extract
data in their original data formats from a PDF file. Interestingly, PDF does not provide
programming language features. Instead, PDF is treated as a file format. The file contains
objects, along with page positioning information for each object, and that’s about it. It is
presumed that any program execution required to preprocess the objects in the file for
presentation was done prior to the creation of the file.

PostScript, on the other hand, contains a full-featured programming language that
can be processed at display time. In that sense, PDF is something of a subset of PostScript,
though with somewhat different goals and strengths. Many of the features of PDF are
derived from postprocessed PostScript. In particular, the object image descriptions in PDF
are based on the PostScript formats shown as examples earlier in this chapter.

4.7 INTERNAL COMPUTER DATA FORMAT

So now you have an idea of the various forms that data takes when it reaches the computer.
Once inside the computer, however, all data is simply stored as binary numbers of various
sizes, ranging from 1 to 8 bits, or even larger. The interpretation of these binary numbers
depends upon two factors:

B The actual operations that the computer processor is capable of performing

B The data types that are supported by the programming language used to create
the application program

As you will see in later chapters, computer processors provide instructions to manip-
ulate data, for searching and sorting, for example, and to manipulate and perform basic
mathematical operations on signed and unsigned integers. They also provide a means to
point to data, using a stored binary value as a pointer or locator to another stored binary
number. Since these pointer values are themselves stored as numbers, they can also be
manipulated and used in calculations. A pointer value might represent the index in an
array, for example. Most recent computers also provide instructions for the direct manip-
ulation of floating point, or real, numbers. In other computers, floating point numbers are
manipulated using software procedures.

The processor instruction set also establishes formats for each data type that it
supports. If a number in the computer is supposed to be a floating point number, for

126

PART TWO DATA IN THE COMPUTER

example, the instructions are designed to assume that the number is laid out in a particular
format. Specific formats that are used for integer and real numbers are discussed in
Chapter 5.

Thus, the raw binary numbers stored in a computer can easily be interpreted to
represent data of a variety of different types and formats. C, Java, Visual Basic, and other
languages all provide a programmer with the capability to identify binary data with a
particular data type. Typically, there are five different simple data types:

B Boolean: two-valued variables or constants with values of true or false.

B char: the character data type. Each variable or constant holds a single alpha-
numeric character code representing, for example, the single strike of a key. It is
also common to process groups of characters together as strings. Strings are
simply arrays of individual characters. The ASC function in Visual Basic shows
the actual binary number code representing a particular character. Thus,
ASC(“A”) would show a different value on an ASCII-based system from that
shown on an EBCDIC system.

B enumerated data types: user-defined simple data types, in which each possible
value is listed in the definition, for example,

type DayOfWeek = Mon, Tues, Wed, Thurs, Fri, Sat

B integer: positive or negative whole numbers. The string of characters representing
anumber is converted internally by a conversion routine built into the program
by the compiler and stored and manipulated as a numerical value.

B real or float: numbers with a decimal portion, or numbers whose magnitude,
either small or large, exceeds the capability of the computer to process and store
as an integer. Again, the routine to convert a string of characters into a real
number is built into the program.

In addition to the simple data types, many programming languages, including C, but
not Java, support an explicit pointer variable data type. The value stored in a pointer variable
is a memory address within the computer. Other, more complex, data types, structures,
arrays, records, and other objects, for example, are made up of combinations of the simple
data types.

The data types just listed correlate rather well with the instruction set capability of
the processor. The integer and real types can be processed directly. The character type is
translated into instructions that manipulate the data for basic character operations that
are familiar to you from your programming classes. Boolean and enumerated data types
are treated within the computer in a manner similar to integers. Most programming
languages do not accept Boolean and enumerated data as input, but the conversion
would be relatively straightforward. It would only be necessary to test the input character
string against the various possibilities, and then set the value to the correct choice
(see Exercise 4.10).

Other languages may support a completely different set of data types. There are even
some languages that don’t recognize any data types explicitly at all, but simply treat data in
a way appropriate to the operation being performed.

CHAPTER 4 DATA FORMATS 127

Numerical Character to Integer Conversion

EXAMPLE

FIGURE 4.20

As you've already seen, the typical high-level language numerical input statement
READ (value)

where value is the name of an integer variable, requires a software conversion from the actual
input, which is alphanumeric, to the numerical form specified for value. This conversion is
normally provided by program code contributed by the language compiler that becomes part
of your program. Some programmers choose instead to accept the input data in character
form and include their own code to convert the data to numerical form. This allows more
programmer control over the process; for example, the programmer might choose to provide
more extensive error checking and recovery than that of the internal conversion program.
(Many internal conversion programs simply crash if the user inputs an illegal character, say,
a letter when a numeral is expected.)

Whether internal or programmer supplied, the conversion process is similar. Just to
deepen your understanding of the conversion process, Figure 4.20 contains a simple

A Pseudocode Procedure that Performs String Conversion

//variables used
char key;

int number

=O;

boolean error, stop;

{

}
if

}

stop = false;
error
ReadAKey;

while (NOT stop && NOT error) |

false;

number = 10 * number + (ASCIIVALUE(key) - 48);
ReadAKey;

//end while
(error == true) {

printout('ITlegal Character in Input');

else printout("input number is
//end if

number);

} //end procedure

function ReadAKey(); {

}

read(key);
if (ASCIIVALUE(key) == 13 or ASCIIVALUE(key) == 32 or ASCIIVALUE(key) == 44)

stop = true;

else if ((key < '0") or (key > '9'")) error = true;
//end function ReadAKey

128 PART TWO DATA IN THE COMPUTER

pseudocode procedure that converts the string representing an unsigned integer into numer-
ical form. This code contains simple error checking and assumes that the number ends with
a space (ASCII 32), a comma (ASCII 44), or a carriage return (ASCII 13).

Conversion procedures for other data types are similar.

SUMMARY AND REVIEW

Alphanumeric data inputs and outputs are represented as codes, one code for each data
value. Three commonly used code systems for interactive input and output are Unicode,
ASCII, and EBCDIC. Within these codes, each character is represented by a binary number,
usually stored 1 or 2 bytes per character.

The design and choice of a code is arbitrary; however, it is useful to have a code in
which the collating sequence is consistent with search and sort operations in the language
represented. Within the computer, programs must be aware of the code used to assure that
data sorts, number conversions, and other types of character manipulation are handled
correctly. There must also be agreement between input and output devices, so that the
data is displayed correctly. If necessary, translation programs can be used to translate from
one representation to another. When necessary, conversion programs within the computer
convert the alphanumeric character strings into other numeric forms. Numeric data must
be converted back to Unicode, ASCII, or EBCDIC form for output display, however. The
most common source of alphanumeric data is the keyboard.

Data from a keyboard enters the computer in the form of a character stream, which
includes nonprinting characters as well as printing characters. Image scanning with optical
character recognition, voice input, and various special devices, such as bar code readers,
can also be used to create alphanumeric data.

There are two different methods used for representing images in the computer. Bitmap
images consist of an array of pixel values. Each pixel represents the sampling of a small area
in the picture. Object images are made up of simple geometrical elements. Each element is
specified by its geometric parameters, its location in the picture, and other details.

Within the constraint that object images must be constructed geometrically, they are
more efficient in storage and more flexible for processing. They may be scaled, rotated, and
otherwise manipulated without loss of shape or detail. Images with texture and shading,
such as photographs and painting, must be stored in bitmap image form. Generally, images
must be printed and displayed as bitmaps, so object images are converted to bitmap form
by a page description language interpreter before printing or display. There are many
different formats used for storing graphical images.

Video images are difficult to manage because of the massive amounts of data involved.
Video may be stored local to the system, or may be streamed from a network or website.
The quality of streamed video is limited by the capability of the network connection.
Higher quality is possible with locally stored video data, but the processing requirements
are demanding. Some systems provide auxiliary hardware to process video.

CHAPTER 4 DATA FORMATS 129

Audio signals are represented in the computer by a sequence of values created by
digitizing the signal. The signal is sampled at regular time intervals. Each sample is then
converted to an equivalent binary value that is proportional to the amplitude of the
sample. Again, different formats are available for storing audio data, depending on the
application.

Audio signals may be streamed or stored locally. The requirements for audio trans-
mission and processing are far less stringent than for those of video.

For images, both still and video, as well as audio, data compression is often appropriate.
Lossless data compression allows complete recovery of the original noncompressed data.
Lossy data compression does not allow recovery of the original data, but is designed to be
perceived as sufficient by the user.

Page description languages combine the characteristics of various specific data formats
together with data indicating the position on the page to create data formats that can be
used for display and printing layouts.

Internally, all data, regardless of use, are stored as binary numbers. Instructions in the
computer support interpretation of these numbers as characters, integers, pointers, and in
many cases, floating point numbers.

FOR FURTHER READING

The general concepts of data formats are fairly straightforward, but additional character-
based exercises and practice can be found in the Schaum outline [LIPS82]. Individual
codes can be found in many references. The actual characters mapped to the keyboard are
directly observable using the Character Map accessory in Windows or the Key Caps desk
accessory on the Macintosh. Extensive information about Unicode is available from the
Unicode website at www.unicode.org.

For graphics formats, there are a number of good general books on graphics. Most of
these books describe the difference between bitmap and object graphics clearly, and most
also discuss some of the different graphics file formats, and the trade-offs between them.
Additionally, there are more specialized books that are often useful in this area. Murray and
Van Ryper [MURR96] provide a detailed catalog of graphics formats. Rimmer [RIMM93]
discusses bitmapped graphics at length.

Smith [SMIT90] presents an easy approach to the PostScript language. The three
Adobe books—[ADOB93], [ADOB99], and [ADOB85], often called the “green book”,
the “red book”, and the “blue book”, respectively—are detailed but clear explanations of
PostScript. Adobe also offers the PDF Reference [ADOB06]. A simple introduction to PDF
is the PDF Primer White Paper [PDFPO05].

There are many books on various aspects of digital sound, but most are hard to read;
the Web is a better resource. Similarly, new data formats of all types occur as the need
arises. Because the need seems to arise continuously nowadays, your best source of current
information is undoubtedly the Web.

130

PART TWO DATA IN THE COMPUTER

KEY CONCEPTS AND TERMS

A-to-D converter JPEG format phoneme
alphanumeric data lossless data compression pixel

ANSI lossy data compression PostScript language
ASCII metadata plug-ins

bitmap or raster image MP3 proprietary format

MPEG-2, MPEG-4 resolution

numeric character versus

collating sequence
control code

EBCDIC number identification)
font object or vector image scan code
glyph optical character stream, character

Graphics Interchange recognition (OCR)
Format (GIF) page description language
graphical objects palette

streaming (video)
Unicode

RFID (radio frequency

READING REVIEW QUESTIONS

4.1

4.2

4.3

4.4
4.5

4.6

4.7

4.8
4.9
4.10

4.11

When data is input to a computer, it is nearly always manipulated and stored
in some standard data format. Why is the use of data standards considered
important, or indeed, crucial in this case?

Name the three standards in common use for alphanumeric characters. Which
standard is designed to support all of the world’s written languages? Which
language is used primarily with legacy programs that execute on mainframe
computers?

What is the relationship between the ASCII Latin-1 character set and its Unicode
equivalent that makes conversion between the two simple?

What is a collating sequence?

Name at least four alternative devices that can be used as sources of alphanumeric
character input data.

What are the major characteristics of a bitmap image? What are the major
characteristics of an object or vector image? Which is used for displays? What types
of images must be stored and manipulated as bitmap images? Why?

What is image metadata? Give an at least three examples of metadata that would
be required for a bitmap image.

Name two advantages to the use of object images.
Explain briefly how an A-to-D converter converts audio data into binary data.

Describe briefly the most important characteristics and features of an MP3 audio
file.

Explain the difference between lossless and lossy data compression. Which type
normally provides a smaller file? What is “lost” in lossy audio data compression?
Under what circumstances is it impossible to use lossy data compression?

EXERCISES

4.12

4.13

4.14

4.1

4.2

4.3

4.4

CHAPTER 4 DATA FORMATS 131

What is a page description language? Give an example of a page description
language.

Name five simple data types that are provided in most high-level programming
languages.

Explain the difference between numeric characters and numbers. Under what
conditions would you expect the computer to use numeric characters? When
would you expect the computer to use numbers? When numeric data is entered
at the keyboard, which form is used? Which form is used for calculations? Which
form is used for display?

a. Createa table that shows the ASCIT and EBCDIC representations side-by-side
for each of the uppercase letters, lowercase letters, and numerals.

b. Does the hexadecimal representation show you a simple method for con-
verting individual numeric characters into their corresponding numerical
values?

c. Does the hexadecimal representation suggest a simple method for changing
lowercase letters into their corresponding capital letters?

d. Can you use the same methods for EBCDIC as you do for ASCII? If so, what
changes would you need to make in a program to make (b) and (c) work?

a. What is the ASCII representation for the numeral —3.1415 in binary? in
octal? in hexadecimal? in decimal?

b. What is the EBCDIC representation for the numeral +1,250.1? (Include the
comma.)

What character string does the binary ASCII code

1010100 1101000 1101001 1110011 0100000 1101001 1110011
0100000 1000101 1000001 1010011 1011001 0100001

represent?

ASCII, Unicode, and EBCDIC are, of course, not the only possible codes. The
Sophomites from the planet Collegium use the rather strange code shown in
Figure E4.1. There are only thirteen characters in the Sophomite alphabet, and
each character uses a 5-bit code. In addition, there are four numeric digits, since
the Sophomites use base 4 for their arithmetic.

a. Given the following binary code, what is the message being sent by the
Sophomites?

11001110100000111111000000100110111111110111110000000100100

b. You noticed in part (a) that this code does not delimit between characters.
How does one delimit this code? Suppose a bit was dropped during trans-
mission. What happens? Suppose a single bit was altered (0 to 1 or 1 to 0).
What happens?

132 PART TWO DATA IN THE COMPUTER

FIGURE E4.1

r

e — + %N

~~= 00001 |, <= 10000

11111000
11111011
11111101
11111110

00010
00100
01000
01011
01101
01110

10011
10101
10110
11001
11010

€<y>1

¥ xXxom

4.5

4.6

4.7

As an alternative alphanumeric code, consider a code where punched holes in the
columns of a card represent alphanumeric codes. The punched hole represents a
“17; all other bits are “0”. The Hollerith code shown in Figure E4.2 is an example
of such a code. This code has been used to represent a message on the card in
Figure E4.3. Each row represents a code level from 0 to 12. Levels 12 and 11, which
are not labeled on the card, are the top row and next-to-top rows, respectively.
Each column represents a single character, so the card can hold one eighty-column
line of text. (This card, prevalent in the 1960s and 1970s as a means of data input,
is the reason that text-based displays are still limited to eighty characters per line.)
Translate the card in Figure E4.3.

Without writing a program, predict the ORD value for your computer system for
the letter “A,” for the letter “B,” for the letter “C.” How did you know? Might the
value be different on a different system? Why or why not?

Write a program in your favorite language that will convert all ASCII uppercase
and lowercase letters to EBCDIC code. For an additional challenge, also convert
the punctuation symbols, indicating with a failure-to-convert message, those
symbols that are not represented in the EBCDIC system.

FIGURE E4.2
Punched Punched Punched Punched Punched

Character code Character code Character code Character code Character code
A 12,1 L 11,3 W 0,6 7 7 < 12,8,4
B 12,2 M 11,4 X 0,7 8 8 (12,8,5
© 12,3 N 11,5 Y 0,8 9 9 + 12,8,6
D 12,4 0 11,6 VA 0,9 & 12 $ 11,8,3
E 12,5 P 11,7 0 0 - 11 * 11,8,4
F 12,6 Q 11,8 1 1 / 0,1) 11,8,5
G 12,7 R 11,9 2 2 # 8,3 , 0,8,3
H 12,8 S 0,2 3 3 @ 8,4 % 0,8,4
| 12,9 T 0,3 4 4 ! 8,5 blank none
J 11,1 u 0,4 5 5 = 8,6
K 11,2 V 0,5 6 6 12,8,3

CHAPTER 4 DATA FORMATS 133

FIGURE E4.3

11 m 111 |
00fB00000F0B00000000F00 EB000NEOB00

8 91011121314151617181920212223242526272829303132333435363738394041424344454647 4849505152 5354555657 58596061 626364 65666768697071727374757677787980

ir11r1111111111111111121111112111

O

222022222202222222022222222222222202002022
3333333333333 33
B444444Q4044404444404 0444488888488 84848000080808A0A0008008888848848400000A00000000848404444444
555555555505555 055555 15055055555555555555555555565555555555555555555555555555
66666666J66
77
888888888838 33888)]838838388388838888888883888838888888838888888838888888888888888

90999
12345678 9101112131415161718192021 222324 26262728 293031323334 353637 38394041 42 4344 4546 47 484950 51 5253 5455 56 57 58 59 60 61 626364 65 66 67 686970717273747576 77787980 /
1BV mmc

4.8 If you have access to a debug program, load a text file into computer memory
from your disk, and read the text from computer memory by translating the
ASCII codes.

4.9 Suppose you have a program that reads an integer, followed by a character, using
the following prompt and READ statement:

WRITE (‘Enter aninteger anda character:’)
READ (intval, charval);

When you run the program, you type in the following, in response to the prompt

Enteranintegerandacharacter:
1257
z

When you check the value of charval, you discover that it does not contain “z.”
Why not? What would you expect to find there?

4.10 Write a program that accepts one of the seven values “MON,” “TUE,” “WED,”
“THU,” “FRI,” “SAT,” and “SUN” as input and sets a variable named TODAY
to the correct value of type DayOfWeek, and then outputs the ORD value of
TODAY to the screen. (Does the ORD value give you a hint as to the internal
representation of the enumerated data type?)

4.11 Write a procedure similar to procedure Convert that converts a signed integer to
a character string for output.

4.12 Approximately how many pages of pure 16-bit Unicode text can a 650 MB
CD-ROM hold?

4.13 Find a book or article that describes the various bitmapped graphics formats, and
compare .GIF, .PNG, and .BMP.

134

PART TWO DATA IN THE COMPUTER

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

Find a book or article that describes the various bitmapped graphics formats, and
compare .GIF and .RLE.

For Exercises 4.13 and 4.14, there are several books that describe graphics formats
in detail. One of these is Murray [MURR96].

Investigate several audio formats, and discuss the different features that each
provides. Also discuss how the choice of features provided in different formats
affects the type of processing that the format would be useful for.

If you have studied COBOL, discuss the difference between numeric characters
and numbers in the context of a COBOL program. Does COBOL distinguish
clearly between the two? If so, in what ways?

Provide a line-by-line explanation for the PostScript code in Figure 4.14.
Unicode is downward compatible with the Latin-1 version of 8-bit ASCII in the
sense that a Unicode text file that is limited to the Latin-1 character set will be
read correctly on a system that does not support Unicode, provided that an end
delimiter is used, rather than a character count as the measure of the length of the
message. Why is this so? (Hint: Consider the role of the ASCII NUL character.)
Use the Web as a resource to investigate MPEG-2 [or MPEG-4]. Explain the data
compression algorithm used by MPEG-2 [or MPEG-4].

The MP3 audio format is described as “almost CD quality.” What characteristic
of MP3 makes this description accurate?

Use the Web as a resource to study the PDF format.
a. Describe how PDF provides output that is consistent across different types
of devices, including printers and monitors of various resolutions.

b. Describe the format for storing, laying out, and managing the objects on a
page. Explain the advantages to the use of this format over other formats,
such as that used by HTML.

c. Explain how PDF manages the many different type fonts that might be found
in a document.

d. How does PDF manage bitmap images? Object images?
e. Explain how PDF differs from PostScript.

f. Describe at least three major limitations that PDF places on the end-user of
a PDF document.

Using the Web as a resource, create a table that compares the features and
capabilities of .PNG, .GIF, and .JPEG.

CHAPTER 4 DATA FORMATS 135

CHAPTER 5

REPRESENTING NUMERICAL
DATA

"It's OK, Mrs. Grumpworthy,
my brother's teaching me arithmetic
on our computer at home.”

Thomas Sperling, adapted by Benjamin Reece

5.0 INTRODUCTION

As we have noted previously, the computer stores all data and program instructions
in binary form, using only groups of zeros and ones. No special provision is made
for the storage of the algebraic sign or decimal point that might be associated with
a number; all responsibility for interpretation of those zeros and ones is left to the
programmers whose programs store and manipulate those binary numbers. Thus the
binary numbers in a computer might represent characters, numbers, graphics images,
video, audio, program instructions, or something else.

The ability of a computer to manipulate numbers of various kinds is, of course, of
particular importance to users. In Chapter 4, we observed that nearly every high-level
computing language provides a method for storage, manipulation, and calculation of
signed integer and real numbers. This chapter discusses methods of representing and
manipulating these numbers within the zeros-and-ones constraint of the computer.

We saw in Chapter 3 that unsigned integer numbers can be represented directly in
binary form, and this provides a clue as to how we might represent the integer data type
in the computer. There is a significant limitation, however: we have yet to show you
a sign-free way of handling negative numbers that is compatible with the capabilities
of the computer. In this chapter, we explore several different methods of storing and
manipulating integers that may encompass both positive and negative numbers.

Also, as you know, it is not always possible to express numbers in integer form.
Real, or floating point, numbers are used in the computer when the number to be
expressed is outside of the integer range of the computer (too large or too small) or
when the number contains a decimal fraction.

Floating point numbers allow the computer to maintain a limited, fixed number
of digits of precision together with a power that shifts the point left or right within the
number to make the number larger or smaller, as necessary. The range of numbers that
the computer can handle in this way is huge. In a personal computer, for example, the
range of numbers that may be expressed this way may be +[107*® < number <107%8]
or more.

Performing calculations with floating point numbers provide an additional chal-
lenge. There are trade-offs made for the convenience of using floating point numbers:
a potential loss of precision, as measured in terms of significant digits, larger storage
requirements, and slower calculations. In this chapter we will also explore the properties
of floating point numbers, show how they are represented in the computer, consider
how calculations are performed, and learn how to convert between integer and floating
point representations. We also investigate the importance of the trade-offs required
for the use of floating point numbers and attempt to come up with some reasonable
ground rules for deciding what number format to specify in various programming
situations.

137

138 PART TWO DATA IN THE COMPUTER

We remind you that numbers are usually input as characters and must be converted
to a numerical format before they may be used in calculations. Numbers that will not be
used in calculations, such as zip codes or credit card numbers, are simply manipulated as
characters.

5.1 UNSIGNED BINARY AND BINARY-CODED
DECIMAL REPRESENTATIONS

In conventional notation, numbers can be represented as a combination of a value, or
magnitude, a sign, plus or minus, and, if necessary, a decimal point. As a first step in our
discussion, let’s consider two different approaches to storing just the value of the number
in the computer.

The most obvious approach is simply to recognize that there is a direct binary equivalent
for any decimal integer. We can simply store any positive or unsigned whole number as
its binary representation. This is the approach that we already discussed in Chapter 3. The
range of integers that we can store this way is determined by the number of bits available.
Thus, an 8-bit storage location can store any unsigned integer of value between 0 and 255,
a 16-bit storage location, 0-65535. If we must expand the range of integers to be handled,
we can provide more bits. A common way to do this is to use multiple storage locations. In
Figure 5.1, for example, four consecutive 1-byte storage locations are used to provide 32
bits of range. Used together, these four locations can accept 232 or 4,294,967,296 different
values.

The use of multiple storage locations to store a single binary number may increase the
difficulty of calculation and manipulation of these numbers because the calculation may
have to be done one part at a time, possibly with carries or borrows between the parts,
but the additional difficulty is not unreasonable. Most modern computers provide built-in

FIGURE 5.1
Storage of a 32-bit Data Word

Memory) .

location 1 byte bit bit

— 31 2423 1615 87 0

M Most S|gn|flcant | | I | I
bits (31-24)

32-bit Data word

M+ 1 bits 23-16
M+ 2 bits 15-8 <:r|
M+ 3 Least significant

bits (7-0)

M+ 4 Next data item
]

CHAPTER 5 REPRESENTING NUMERICAL DATA 139

FIGURE 5.2

Value Range for Binary Versus Binary-coded Decimal

No. of Bits BCD range Binary range

4 0-9 1 digit 0-15 1+ digit

8 0-99 2 digits 0-255 2+ digits
12 0-999 3 digits 0-4,095 3+ digits
16 0-9,999 4 digits 0-65,535 4+ digits
20 0-99,999 5 digits 0-1 Million 6 digits
24 0-999,999 6 digits 0-16 Million 7+ digits
32 0-99,999,999 8 digits 0-4 Billion 9+ digits
64 0-(10'6-1) 16 digits 0-16 Quintillion 19+ digits

instructions that perform data calculations 32 bits or 64 bits at a time, storing the data
automatically in consecutive bytes. For other number ranges, and for computers without
this capability, these calculations can be performed using software procedures within the
computer.

An alternative approach known as binary-coded decimal (BCD), may be used in some
applications. In this approach, the number is stored as a digit-by-digit binary representation
of the original decimal integer. Each decimal digit is individually converted to binary. This
requires 4 bits per digit. Thus, an 8-bit storage location could hold two binary-coded
decimal digits—in other words, one of one hundred different values from 00 to 99. For
example, the decimal value 68 would be represented in BCD as 01101000. (Of course you
remember that 0110, = 6;¢ and 1000, = 8;(.) Four bits can hold sixteen different values,
numbered 0 to F in hexadecimal notation, but with BCD the values A to F are simply not
used. The hexadecimal and decimal values for 0 through 9 are equivalent.

The table in Figure 5.2 compares the decimal range of values that can be stored in
binary and BCD forms. Notice that for a given number of bits the range of values that
can be held using the binary-coded decimal method is substantially less than the range
using conventional binary representation. You would expect this because the values A—F
are being thrown away for each group of 4 bits. The larger the total number of bits, the
more pronounced the difference. With 20 bits, the range for binary is an entire additional
decimal digit over the BCD range.

Calculations in BCD are also more difficult, since the computer must break the number
into the 4-bit binary groupings corresponding to individual decimal digits and use base 10
arithmetic translated into base 2 to perform calculations. In other words, the calculation
for each 4-bit grouping must be treated individually, with arithmetic carries moving from
grouping to grouping. Any product or sum of any two BCD integers that exceeds 9 must
be reconverted to BCD each time to perform the carries from digit to digit.

140 PART TWO DATA IN THE COMPUTER

EXAMPLE

FIGURE 5.3

A Simple BCD Multiplication

One method of performing a ‘‘simple’ one- by two-digit multiplication is shown as an
example in Figure 5.3. In the first step, each digit in the multiplicand is multiplied by the
single-digit multiplier. This yields the result 7 x 6
=42 in the units place and theresult 7 x 7 =49
inthe 10’s place. Numerically, this corresponds to
the result achieved performing the multiplication
in decimal, as is shown at the left of the diagram.

76— 0111 01104y convert partial To continue, the binary values for 42 and
X 77— 0111y } 49 must be converted back to BCD. This is done
42 — 1010104, — 0100 0010xcq in the second step. Now the BCD addition takes
49 — 110001y, —>+ 0100 10014 place. As in the decimal version, the sum of 9 and
432 — 0100 1101 0010 4 results in a carry. The binary value 13 must be
s o fotkcto oo — +0001 0011 converted to BCD 3, and the 1 added to the value
532 — 0101 0011 0010 4 in the hundreds place. The final result is BCD
=532 in BCD value 532.

EXAMPLE

If the number contains a decimal point, the same approach can be used, but the
application program must keep track of the decimal point’s location. For example, many
business applications have to maintain full accuracy for real numbers. In many cases, the
real numbers being used represent dollars and cents figures. You are aware from Chapter 3
that rational decimal real numbers do not necessarily remain so when converted into
binary form. Thus, it is possible that a number converted from decimal to binary and back
again may not be exactly the same as the original number. You would not want to add two
financial numbers and have the result off by a few cents. (In fact, this was a problem with
early versions of spreadsheet programs!)

For this reason, business-oriented high-level languages such as COBOL provide
formats that allow the user to specify the number of desired decimal places exactly. Large
computers support these operations by providing additional instructions for converting,
manipulating, and performing arithmetic operations on numbers that are stored in a BCD
format.

IBM zSeries computers support numbers stored in a BCD format called packed decimal
format, shown in Figure 5.4. Each decimal digit is stored in BCD form, two digits to a byte.
The most significant digit is stored first, in the high-order bits of the first byte. The sign is
stored in the low-order bits of the last byte. Up to thirty-one digits may be stored. The binary
values 1100 and 1101 are used for the sign, representing *‘+'" and *‘—"" respectively. The
value 1111 can be used to indicate that the number is unsigned. Since these values do not
represent any valid decimal number, it is easy to detect an error, as well as to determine the
end of the number. As we noted earlier, the location of the decimal point is not stored and
must be maintained by the application program. Intel CPUs provide a more limited packed
format that holds two digits (00-99) in a single byte. As an example, the decimal number
-324.6 would be stored in packed decimal form as

0000 0011 0010 0100 0110 1101

CHAPTER 5 REPRESENTING NUMERICAL DATA 141

FIGURE 5.4

Packed Decimal Format
Most
significant

digit Sign

/1
1100 or
1101 or
1111
4 bits 4 bits /1

-«—— Up to 31 digits (16 bytes) ——>

The leading Os are required to make the number fit exactly into 3 bytes. IBM provides
additional formats that store data one digit to a byte, but provides no instructions for
performing calculations in this format. This format is used primarily as a convenience for
conversion between text and packed decimal format. IBM also provides a compressed version
of its packed decimal format to save storage space.

Even with computer instructions that perform BCD arithmetic, BCD arithmetic is
nearly always much slower. As an alternative, some computers convert each BCD number
to binary form, perform the calculation, and then convert the result back to BCD.

Despite its drawbacks, binary-coded decimal representation is sometimes useful,
especially in business applications, where it is often desirable to have an exact digit-for-digit
decimal equivalent in order to mimic decimal arithmetic, as well as to maintain decimal
rounding and decimal precision. Translation between BCD and character form is also easier,
since the last 4 bits of ASCII, EBCDIC, and Unicode numeric character forms correspond
exactly to the BCD representation of that digit. Thus, to convert from alphanumeric form
to BCD you simply chop off everything but the rightmost 4 bits of the character to get its
BCD value. This makes BCD an attractive option when the application involves a lot of
input and output, but limited calculation. Many business applications fit this description.
In most cases, though, binary representation is preferred and used.

5.2 REPRESENTATIONS FOR SIGNED INTEGERS

With the shortcomings of BCD, it shouldn’t surprise you that integers are nearly always
stored as binary numbers. As you have already seen, unsigned integers can be converted
directly to binary numbers and processed without any special care. The addition of a sign,
however, complicates the problem, because there is no obvious direct way to represent the
sign in binary notation. In fact, there are several different ways used to represent negative
numbers in binary form, depending on the processing that is to take place. The most com-
mon of these is known as 2’s complement representation. Before we discuss 2’s complement
representation, we will take a look at two other, simpler methods: sign-and-magnitude
representation and 1’s complement representation. Each of these latter methods has
some serious limitations for computer use, but understanding these methods and their
limitations will clarify the reasoning behind the use of 2’s complementation.

142

PART TWO DATA IN THE COMPUTER

Sign-and-magnitude Representation

FIGURE 5.5

In daily usage, we represent signed integers by a plus or
minus sign and a value. This representation is known, not

Examples of Sign-and-Magnitude surprisingly, as sign-and-magnitude representation.

Representation

0100101

/

37

1100101
e
37

EXAMPLE

In the computer we cannot use a sign, but must restrict
ourselves to 0’s and 1’s. We could select a particular bit,

0000000000000001 . . .
(+1) however, and assign to it values that we agree will represent
the plus and minus signs. For example, we could select the
1000000000000001 leftmost bit and decide that a 0 in this place represents a plus
(=1) sign and a 1 represents a minus. This selection is entirely
arbitrary, but if used consistently, it is as reasonable as any
1111 % 1 131217%;17% 1111 other selection. In fact, this is the representation usually

selected. Figure 5.5 shows examples of this representation.

Note that since the leftmost digit is being used as a
sign, it cannot represent any value. This means that the positive range of the signed integer
using this technique is one-half as large as the corresponding unsigned integer of the same
number of bits. On the other hand, the signed integer also has a negative range of equal
size to its positive range, so we really haven’t lost any capability, but have simply shifted it
to the negative region. The total range remains the same, but is redistributed to represent
numbers both positive and negative, though in magnitude only half as large.

Suppose 32 bits are available for storage and manipulation of the number. In this case,
we will use 1 bit for the sign and 31 bits for the magnitude of the number. By convention,
the leftmost, or most significant, bit is usually used as a sign, with 0 corresponding to a
plus sign and 1 to a minus sign. The binary range for 32 bits is 0 to 4,294,967,295; we can
represent the numbers —2, 147, 483, 647 to +2,147,483,647 this way.

There are several inherent difficulties in performing calculations when using
sign-and-magnitude representation. Many of these difficulties arise because the value of
the result of an addition depends upon the signs and relative magnitudes of the inputs.
This can be easily seen from the following base 10 examples. Since the numbers are exactly
equivalent, the same problem of course occurs with binary addition.

Consider the base 10 sum of 4 and 2:

‘-I—
oo~

The sum of 4 and —2, however, has a different numerical result:

~

no

Notice that the addition method used depends on the signs of the operands. One
method is used if both signs agree; a different method is used if the signs differ. Even worse,

CHAPTER 5 REPRESENTING NUMERICAL DATA 143

the presence of a second digit that can result in a carry or borrow changes the result yet
again:

But

Interestingly enough, we have been so well trained that we alter our own mental
algorithm to fit the particular case without even thinking about it, so this situation
might not even have crossed your mind. The computer requires absolute definition
of every possible condition, however, so the algorithm must include every possibility;
unfortunately, sign-and-magnitude calculation algorithms are complex and difficult to
implement in hardware.

In addition to the foregoing difficulty, there are two different binary values for 0,

00000000 and 10000000

representing +0 and —O0, respectively. This seems like a minor annoyance, but the system
must test at the end of every calculation to assure that there is only a single value for 0.
This is necessary to allow program code that compares values or tests a value for 0 to work
correctly. Positive 0 is preferred because presenting —0 as an output result would also be
confusing to the typical user.

The one occurrence where sign-and-magnitude is a useful representation is when
binary-coded decimal is being used. Even though the calculation algorithms are necessarily
complex, other algorithms for representing signed integers that you will be introduced to in
this chapter are even more impractical when using BCD. Furthermore, as we have already
discussed, BCD calculation is complex in any case, so the additional complexity that results
from handling sign-and-magnitude representations is just more of the same.

With BCD, the leftmost bit can be used as a sign, just as in the case of binary. With
binary, however, using a sign bit cuts the range in half; the effect on range is much less
pronounced with BCD. (Remember, though, that BCD already has a much smaller range
than binary for the same number of bits.) The leftmost bit in an unsigned BCD integer only
represents the values 8 or 9; therefore, using this bit as a sign bit still allows the computer 3
bits to represent the leftmost digit as a number within the range 0-7.

As an example, the range for a signed 16-bit BCD integer would be

—7999 < value < +7999.

Nine’s Decimal and 1’s Binary Complementary Representations

For most purposes, computers use a different method of representing signed integers
known as complementary representation. With this method, the sign of the number is a
natural result of the method and does not need to be handled separately. Also, calculations
using complementary representation are consistent for all different signed combinations

144 PART TWO DATA IN THE COMPUTER

FIGURE 5.6

Range Shifting Decimal Integers

of input numbers. There are two forms of complementary representation in common use.
One, known as the radix complement, is discussed in the next section. In this section, we
will introduce a representation known as diminished radix complementary representation,
so called because the value used as a basis for the complementary operation is diminished by
one from the radix, or base. Thus, base 10 diminished radix complementary representation
uses the value 9 as its basis, and binary uses 1. Although the computer obviously uses the 1’s
representation, we will introduce the 9’s representation first, since we have found that it is
easier for most students to understand these concepts in the more familiar decimal system.

NINE’S DECIMAL REPRESENTATION Let us begin by considering a different means
of representing negative and positive integers in the decimal number system. Suppose that
we manipulate the range of a three-digit decimal number system by splitting the three-digit
decimal range down the middle at 500. Arbitrarily, we will allow any number between 0
and 499 to be considered positive. Positive numbers will simply represent themselves. This
will allow the value of positive numbers to be immediately identified. Numbers that begin
with 5, 6, 7, 8, or 9 in the most significant digit will be treated as representations of negative
numbers. Figure 5.6 shows the shift in range.

One convenient way to assign a value to the negative numbers is to allow each digit
to be subtracted from the largest numeral in the radix. Thus, there is no carry, and each
digit can be converted independently of all others. Subtracting a value from some standard
basis value is known as taking the complement of the number. Taking the complement of
a number is almost like using the basis value as a mirror. In the case of base 10 radix, the
largest numeral is 9; thus, this method is called 9°s complementary representation.

The facing page shows several examples of this
technique.

If we now use the 9’s complement technique to
assign the negative values to the chart in Figure 5.6,

Representation _500 99910 499 you see that 998 corresponds to a value of —1 and 500
) to the value —499. This results in the relationship
Number being -499 -00010 499 -
shown in Figure 5.7.
represented

FIGURE 5.7

- Increasing value >t An important consideration in the choice of

a representation is that it is consistent with the
normal rules of arithmetic. For the representation
to be valid, it is necessary that, for any value within
the range,

—(—value)= value

Addition as a Counting Process Simply stated, this says that if we complement

Representation

the value twice, it should return to its original
value. Since the complement is just

4250 4250
500 649 899 999,0 170 420 499 comp = basis — value
-499 -350 -100 -000|0 170 420 499 then complementing twice,

250" 42507

Number being
represented

basis —(basis— value)= value

which confirms that this requirement is met.

EXAMPLES

CHAPTER 5 REPRESENTING NUMERICAL DATA 145

Find the 9’s complementary representation for the three-digit number —467.

999
— 467

532

532 represents the value for —467. Notice that the three-digit value range is limited to
0-499, since any larger number would start with a digit of 5 or greater, which is the indicator
for a negative number.

Find the 9’s complementary representation for the four-digit number —467.

9999
—467

9532

Notice that in this system, it is necessary to specify the number of digits, or word size, being
used. In a four-digit representation, the number (0)532 represents a positive integer, since
it is less than 4999 in value. Care is required in maintaining the correct number of digits.

What is the sign-and-magnitude value of the four-digit number represented in 9's
complement by 37897

In this case, the leftmost digit is in the range 0—4. Therefore, the number is positive,
and is already in correct form. The answer is +3789.

This example emphasizes the difference between the representation of a number
in complementary form and the operation of taking the complement of a number. The
representation just tells us what the number looks like in complementary form. The operation
of finding the complement of a number consists of performing the steps that are necessary
to change the number from one sign to the other. Note that if the value represents a negative
number, it is necessary to perform the operation if we wish to convert the number into
sign-and-magnitude form.

What is the sign-and-magnitude value of the four-digit number represented by 99907
This value is negative. To get the sign-and-magnitude representation for this number,
we take the 9’s complement:

9999
—9990

9

Therefore, 9990 represents the value —9.

146 PART TWO DATA IN THE COMPUTER

FIGURE 5.8

Next, let’s consider the operation of addition when the numbers being added are
in 9’s complementary form. When you studied programming language, you learned that
modular arithmetic could be used to find the remainder of an integer division. You recall
that in modular arithmetic, the count repeats from 0 when a limit, called the modulus, is
exceeded. Thus, as an example, 4 mod 4 has the value 0 and 5 mod 4 has the value 1.

The 9’s complement scale shown in Figure 5.6 shares the most important characteristic
of modular arithmetic; namely, in counting upward (from left to right on the scale), when
999 is reached, the next count results in a modular rotation to a value of 0. (Notice that
when you reach the right end of the scale, it continues by flowing around to the left end.)

Counting corresponds to addition; thus, to add a number to another is simply to count
upward from one number by the other. This idea is illustrated in Figure 5.7. As you can see
from the examples in this diagram, simple additions are straightforward and work correctly.
To understand how this process works in a “wraparound” situation, consider the example
shown in Figure 5.8. As you can see in this case, adding 699 to the value 200 leads to the posi-
tion 899 by wrapping around the right end. Since 699 is equivalent to —300 and 899 is equiva-
lentto —100,699 + 200 is equivalent to (—300) 4200, and the result of the addition is correct.

The reason this technique works can also be seen in the diagram. The wraparound is
equivalent to extending the range to include the addition on the scale.

The same final point should also be reached by moving to the left 300 units, which is
equivalent to subtracting 300. In fact, the result is off by 1. This occurs because we have
again picked a scale with two values for 0, namely, 0 for 40 and 999 for —0. This means
that any count that crosses the modulus will be short one count, since 0 will be counted
twice. In this particular example, the count to the right, which is the a addition 200 + 699,

yielded the correct result, since the modulus
was not crossed. The count to the left, the sub-
traction 200 — 300, is off by one because of the

Addition with Wraparound double zero. We could correct for this situation

Representation

500 993

on the chart by moving left an additional count

+699 any time the subtraction requires “borrowing”

0 200/299 500 899 999 from the modulus. For example, subtracting

-499 -000

200 — 300 requires treating the value 200 as
0 200\1199 '4&;100 -000 though it were 1200 to stay within the 0-999

Number being -300 range. The borrow can be used to indicate that
represented an additional unit should be subtracted.

Next, consider the situation shown in

FIGURE 5.9 Figure .5.9. In this case, count.ing to the right,

or adding, also results in crossing the modulus,

Addition with Modulus Crossing Representation so an additional count must be added to obtain

Representation the correct result. This is an easier situation, how-

+300 ever. Since the result of any sum that crosses the

500 799 999,0 \‘99(1099) 499 modulus must initially contain a carry digit (the

1in 1099 in the diagram), which is then dropped

-499 200\'8(1203 /lOO 499 in the modular addition, it is easy to tell when the

Number being
represented

modulus has been crossed to the right. We can
then simply add the extra count in such cases.

FIGURE 5.10

End-around Carry Procedure

CHAPTER 5 REPRESENTING NUMERICAL DATA 147

This leads to a simple procedure for adding two
numbers in 9’s complementary arithmetic: Add the two
numbers. If the result flows into the digit beyond the spec-

799 ified number of digits, add the carry into the result. This
799 300 is known as end-around carry. Figure 5.10 illustrates the
100 1099 procedure. Notice that the result is now correct for both
899 = examples.
No end-around carry 100 Although we could design a similar algorithm for
End-around carry subtraction, there is no practical reason to do so. Instead,

subtraction is performed by taking the complement of the

subtrahend (the item being subtracted) and adding to the
minuend (the item being subtracted from). In this way, the computer can use a single
addition algorithm for all cases.

There is one further consideration. A fixed word size results in a range of some
particular fixed size; it is always possible to have a combination of numbers that adds to a
result outside the range. This condition is known as overflow. If we have a three-digit plus
sign word size in a sign-and-magnitude system, and add 500 to 500, the result overflows,
since 1000 is outside the range. The fourth digit would be evidence of overflow.

It is just as easy to detect overflow in a 9’s complement system, even though the
use of modular arithmetic assures that an extra digit will never occur. In complementary
arithmetic, numbers that are out of range represent the opposite sign. Thus, if we add

3004300 =1600(i.e,—399)

both inputs represent positive numbers, but the result is negative. Then the test for overflow
is this: If both inputs to an addition have the same sign, and the output sign is different,
overflow has occurred.

ONE’S COMPLEMENT The computer can use the binary version of the same method
of representation that we have just discussed. In base 2, the largest digit is 1. Splitting the
range down the middle, as we did before, numbers that begin with 0 are defined to be
positive; numbers that begin with 1 are negative. Since

1 1
-0 and -1
1 0

the I’s complement of a number is performed simply by changing every 0 to a 1 and
every 1 to a 0. How elegantly simple! This exchange of 0Os and Is is also known as
inversion. (Of course, this means that both 000 ... and 111 ... represent 0, specifically,
40 and —O0, respectively.) The 1’s complement scale for 8-bit binary numbers is shown in
Figure 5.11.

Addition also works in the same way. To add two numbers, regardless of the implied
sign of either input, the computer simply adds the numbers as though they were unsigned
integers. If there is a carryover into the next bit beyond the leftmost specified bit, 1 is added
to the result, following the usual end-around carry rule. Subtraction is done by inverting
the subtrahend (i.e., changing every 0 to 1 and every 1 to 0) and adding. Overflows are

148

PART TWO DATA IN THE COMPUTER

EXAMPLES

FIGURE 5.11

One’s Complement Representation

10000000 11111111,00000000 01111111
_12710 _010 010 12710

detected in the same way as previously discussed: if both inputs are of the same sign, and
the sign of the result is different, overflow has occurred; the result is outside the range.
Notice that this test can be performed simply by looking at the leftmost bit of the two
inputs and the result.

An important comment about conversion between signed binary and decimal integers
in their complementary form: although the technique used is identical between 9’s
complement decimal and 1I’s complement binary, the modulus used in the two systems
is obviously not the same! For example, the modulus in three-digit decimal is 999, with a
positive range of 499. The modulus in 8-bit binary is 11111111, or 255;¢, with a positive
range of 01111111, or 127.

This means that you cannot convert directly between 9’s complement decimal and
I’s complement binary. Instead, you must change the number to sign-and-magnitude
representation, convert, and then change the result to the new complementary form. Of
course, if the number is positive, this process is trivial, since the complementary form is the
same as the sign-and-magnitude form. But you must remember to follow this procedure if
the sign is negative. Remember, too, that you must check for overflow to make sure that
your number is still in range in the new base.

Here are several examples of 1’s complement addition and subtraction, together with
the equivalent decimal results:

Add

00101101 = 45
00111010= 58

01100111 =103
EEN

Add the 16- bit numbers

0000000000101101 = 45
1111111111000101 = =58

1111111111110010=-13

Note that the addend 1111111111000101 is the inversion of the value in the previous
example with eight additional Os required to fill up 16 bits. The decimal result, —13, is
found by inverting 1111111111110010 to 0000000000001101 to get a positive magnitude
and adding up the bits.

CHAPTER 5 REPRESENTING NUMERICAL DATA 149

EXAMPLES
Add
01101010 =106
11111101 = -2
001100111
(end-around carry) L——— +1
01101000 =104
HEN
Subtract

01101010=106
—01011010=_90

Changing the sign of the addend by inverting

01101010
10100101

00001111
(end-around carry) L—— +1
00010000 =16

Add

01000000= 64
+01000001 = 65

10000001 =—-126
This is an obvious example of overflow. The correct positive result, 129, exceeds the range

for 8 bits. Eight bits can store 256 numbers; splitting the range only allows positive values
0-127.

The overflow situation shown in the last example occurs commonly in the com-
puter,and some high-level languages do not check adequately. In some versions of BASIC,
for example, the sum

16384 4+ 16386

will show an incorrect result of —32765 or —32766. (The latter result comes from use of a
different complementary representation, discussed in the next section.) What has happened
is that overflow has occurred in a system that uses 16 bits for integer calculations. The
positive range limit for 16 bits is 432767 (a 0 for the sign plus fifteen 1s). Since the sum
of 16384 and 16386 is 32770, the calculation overflows. Unfortunately, the user may never
notice, especially if the overflowing calculation is buried in a long series of calculations.
A good programmer takes such possibilities into account when the program is written.
(This type of error caused some embarrassment when it showed up in a recent version of
Microsoft Excel.)

150 PART TWO DATA IN THE COMPUTER

Ten’s Complement and 2’s Complement

FIGURE 5.12 TEN’S COMPLEMENT You have seen that
Ten’s Complement Scale complementary representation can be effective for
the representation and calculation of signed integer

Representation _500 999]0 499 numbers. As you are also aware, the system that
Number being -500 -001lo 499 we have described,which uses the largest number

represented B N in the base as its complementary reflection point,

suffers from some disadvantages that result from
the dual zero on its scale.

By shifting the negative scale to the right by one, we can create a complementary system
that has only a single zero. This is done by using the radix as a basis for the complementary
operation. In decimal base, this is known as the 10’s complement representation. The use
of this representation will simplify calculations. The trade-off in using 10’s complement
representation is that it is slightly more difficult to find the complement of a number. A
three-digit decimal scale is shown in Figure 5.12. Be sure to notice the differences between
this diagram and Figure 5.6.

The theory and fundamental technique for 10’s complement is the same as that for 9’s
complement. The 10’s complement representation uses the modulus as its reflection point.
The modulus for a three-digit decimal representation is 1000, which is one larger than the
largest number in the system, 999.

Complements are found by subtracting the value from the modulus, in this case,
1000. This method assures a single zero, since (1000 — 0) mod 1000 is zero. Again, as
with the previously discussed complementary methods, notice that the complement of the
complement results in the original value. See the examples on the facing page.

There is an alternative method for complementing a 10’s complement number. First,
observe that

1000=999 +1
You recall that the 9’s complement was found by subtracting each digit from 9:
9’s comp =999 —value
From the previous equation, the 10’s complement can be rewritten as
10’s comp =1000—-value=999+1—-value=999 —value+1
or, finally,
10’s comp = 9’scomp + 1

This gives a simple alternative method for computing the 10’s complement value: find
the 9’s complement, which is easy, and add 1 to the result. Either method gives the same
result. You can use whichever method you find more convenient. This alternative method
is usually easier computationally, especially when working with binary numbers, as you
will see.

Addition in 10’s complement is particularly simple. Since there is only a single zero in
10’s complement, sums that cross the modulus are unaffected. Thus, the carry that results

EXAMPLES

CHAPTER 5 REPRESENTING NUMERICAL DATA |51

Find the 10’s complement of 247.

As a reminder, note that the question asks for the 10’s complement of 247, not the 10’s
complement representation. Since 247 represents a positive number, its 10’s complement
representation is, of course, 247.

The 10’s complement of 247 is

1000 — 247 =753

Since 247 is a positive representation, 753 represents the value —247.

Find the 10’s complement of 17.

As in the 9's complement work, we always have to be conscious of the number of
specified digits. Since all the work so far has assumed that the numbers contain three digits,
let’s solve this problem from that assumption:

1000 -017 =983

Find the sign and magnitude of the three-digit number with 10’s complement representation:
777
Since the number begins with a 7, it must be negative. Therefore,

1000 —-777 =223

The sign-magnitude value is —223.

when the addition crosses the zero point is simply ignored. To add two numbers in 10’s
complement, one simply adds the digits; any carry beyond the specified number of digits
is thrown away. (Actually, in the computer, the carry is saved in a special “carry bit,” just
in case it is to be used to extend the addition to another group of bits for multiple-word
additions.) Subtraction is again performed by inverting the subtrahend and adding.

The range of numbers in 10’s complement for three digits can be seen in Figure 5.12.
Of particular interest is the fact that the positive and negative regions are of different size:
there is one negative number, 500, that cannot be represented in the positive region. (The
10’s complement of 500 is itself.) This peculiarity is a consequence of the fact that the total
range of numbers is even for any even-numbered base, regardless of word size (in this
case, 10V). Since one value is reserved for zero, the number of remaining values to be split
between positive and negative is odd and, thus, could not possibly be equal.

TWO’S COMPLEMENT. Two’s complement representation for binary is, of course,
similar to 10’s complement representation for decimal. In binary form, the modulus
consists of a base 2 “1” followed by the specified number of 0s. For 16 bits, for example,
the modulus is

10000000000000000

152

PART TWO DATA IN THE COMPUTER

FIGURE 5.13

Two’s Complement Representation

10000000 11111111,00000000 01111111
_12810 _110 OlO 12710

As was true for the 10’s complement, the 2’s complement of a number can be found
in one of two ways: either subtract the value from the modulus or find the 1’s complement
by inverting every 1 and 0 and adding 1 to the result.

The second method is particularly well suited to implementation in the computer, but
you can use whichever method you find more convenient.

Figure 5.13 shows an 8-bit scale for 2’s complement representation.

Two’s complement addition, like 10’s complement addition in decimal, consists of
adding the two numbers mod <the modulus>. This is particularly simple for the computer,
since it simply means eliminating any s that don’t fit into the number of bits in the word.
Subtraction and overflow are handled as we have already discussed.

As in 10’s complement, the range is unevenly divided between positive and negative.
The range for 16 bits, for example, is —32768 < value < 32767.

There are many 2’s complement problems at the end of the chapter for you to
practice on.

The use of 2’s complement is more common in computers than is 1’s complement, but
both methods are in use. The trade-off is made by the designers of a particular computer: 1’s
complement makes it easier to change the sign of a number, but addition requires an extra
end-around carry step. One’s complement has the additional drawback that the algorithm
must test for and convert —0 to 0 at the end of each operation. Two’s complement simplifies
the addition operation at the expense of an additional add operation any time the sign
change operation is required.

As a final note, before we conclude our discussion of binary complements, it is useful
to be able to predict approximate sizes of integers that are represented in complementary
form without going through the conversion. A few hints will help:

1. Positive numbers are always represented by themselves. Since they always start
with 0, they are easily identified.

2. Small negative numbers, that is, negative numbers close to 0, have
representations that start with large numbers of 1s. The number —2 in 8-bit 2’s
complement, for example, is represented by

11111110
whereas —128, the largest negative 2’s complement number, is represented by

10000000

This is evident from the scale in Figure 5.13.

3. Since there is only a difference in value of 1 between 1’s and 2’s complement
representations of negative numbers (positive numbers are, of course, identical

CHAPTER 5 REPRESENTING NUMERICAL DATA 153

in both representations), you can get a quick idea of the value in either
representation simply by inverting all the 1s and 0s and approximating the value
from the result.

Overflow and Carry Conditions

EXAMPLE

Other Bases

We noted earlier in this discussion that overflows occur when the result of a calculation
does not fit into the fixed number of bits available for the result. In 2’s complement, an
addition or subtraction overflow occurs when the result overflows into the sign bit. Thus,
overflows can occur only when both operands have the same sign and can be detected by
the fact that the sign of the result is opposite that of the operands.

Computers provide a flag that allows a programmer to test for an overflow condition.
The overflow flag is set or reset each time a calculation is performed by the computer. In
addition, the computer provides a carry flag that is used to correct for carries and borrows
that occur when large numbers must be separated into parts to perform additions and
subtractions. For example, if the computer has instructions that are capable of adding two
32-bit numbers, it would be necessary to separate a 64-bit number into two parts, add the
least significant part of each, then add the most significant parts, together with any carry
that was generated by the previous addition. For normal, single precision 2’s complement
addition and subtraction the carry bit is ignored.

Although overflow and carry procedures operate similarly, they are not quite the same,
and can occur independently of each other. The carry flag is set when the result of an
addition or subtraction exceeds the fixed number of bits allocated, without regard to sign.
It is perhaps easiest to see the difference between overflow and carry conditions with an
example. This example shows each of the four possible outcomes that can result from the
addition of two 4-bit 2’s complement numbers.

(+4) + (+2) (+4) + (+6)
0100 no overflow, 0100 overflow,
0010 nocarry 0110 nocarry

0110 = (+6) theresultiscorrect 1010 =(—6) theresultisincorrect

(=4)+(=2) (—=4)+(-6)

1100 no overflow, 1100 overflow,

1110 carry 1010 Carry

110106 = (—=6) ignoringcarry, 10110 = (+6) ignoringthecarry,
theresultiscorrect theresultisincorrect

If an overflow occurs on any but the most significant part of a multiple part addition, it is
ignored (see exercise 5.13).

Any even-numbered base can be split the same way to represent signed integers in that base.
Either the modulus or the largest-digit value can be used as a mirror for the complementary

154 PART TWO DATA IN THE COMPUTER

representation. Odd bases are more difficult: either the range must be split unevenly to
use the leftmost digit as an indicator, or the second left digit must be used together with
the first to indicate whether the represented number is positive or negative. We will not
consider odd bases any further.

Of particular interest are the corresponding 7’s and 8’s complements in octal and 15’s
and 16’s complements in hexadecimal. These correspond exactly to 1’s and 2’s complement
in binary, so you can use calculation in octal or hexadecimal as a shorthand for binary.

As an example, consider four-digit hexadecimal as a substitute for 16-bit binary. The
range will be split down the middle, so that numbers starting with 0—7;¢ are positive and
those starting with 8—F are negative. But note that hex numbers starting with 8—F all have a
binary equivalent with 1 in the leftmost place, whereas 0—7 all start with 0. Therefore, they
conform exactly to the split in 16-bit binary.

You can carry the rest of the discussion by yourself, determining how to take the
complement, and how to add, from the foregoing discussions. There are practice examples
at the end of the chapter.

Finally, note that since binary-coded decimal is essentially a base 10 form, the use of
complementary representation for BCD would require algorithms that analyze the first
digit to determine the sign and then perform 9’s or 10’s complement procedures. Since the
purpose of BCD representation is usually to simplify the conversion process, it is generally
not practical to use complementary representation for signed integers in BCD.

Summary of Rules for Complementary Numbers

The following points summarize the rules for the representation and manipulation of
complementary numbers, both radix and diminished radix, in any even number base. For
most purposes you will be interested only in 2’s complement and 16’s complement:

1. Remember that the word “complement” is used in two different ways. To
complement a number, or take the complement of a number, means to change
its sign. To find the complementary representation of a number means to
translate or identify the representation of the number just as it is given.

2. Positive numbers are represented the same in complementary form as they
would be in sign and magnitude form. These numbers will start with 0, 1, . ..
N/2-1. For binary numbers, positive numbers start with 0, negative with 1.

3. To go from negative sign-and-magnitude to complementary form, or to change
the sign of a number, simply subtract each number from the largest number in
the base (diminished radix) or from the value 100 . .. , where each zero
corresponds to a number position (radix). Remember that implied zeros must be
included in the procedure. Alternatively, the radix form may be calculated by
adding 1 to the diminished radix form. For 2’s complement, it is usually easiest
to invert every digit and add 1 to the result.

4. To get the sign-and-magnitude representation for negative numbers, use the
procedure in (2) to get the magnitude. The sign will, of course, be negative.
Remember that the word size is fixed; there may be one or more implied Os at the
beginning of a number that mean the number is really positive.

CHAPTER 5 REPRESENTING NUMERICAL DATA |55

5. To add two numbers, regardless of sign, simply add in the usual way. Carries
beyond the leftmost digit are ignored in radix form, added to the result in
diminished radix form. To subtract, take the complement of the subtrahend
and add.

6. Ifweadd two complementary numbers of the same sign and the result is of
opposite sign, the result is incorrect. Overflow has occurred.

5.3 REAL NUMBERS
A Review of Exponential Notation

Real numbers add an additional layer of complexity. Because the number contains a radix
point (decimal in base 10, binary in base 2), the use of complementary arithmetic must
be modified to account for the fractional part of the number. The representation of real
numbers in exponential notation simplifies the problem by separating the number into an
integer, with a separate exponent that places the radix point correctly. As before, we first
present the techniques in base 10, since working with decimal numbers is more familiar to
you. Once you have seen the methods used for the storage and manipulation of floating
point numbers, we will then extend our discussion to the binary number system. This
discussion will include the conversion of floating point numbers between the decimal and
binary bases (which requires some care) and the consideration of floating point formats
used in actual computer systems.

Consider the whole number

12345

If we allow the use of exponents, there are many different ways in which we can
represent this number. Without changing anything, this number can be represented as

12345 x 10°

If we introduce decimals, we can easily create other possible representations. Each of
these alternative representations is created by shifting the decimal point from its original
location. Since each single-place shift represents a multiplication or division of the value by
the base, we can decrease or increase the exponent to compensate for the shift. For example,
let us write the number as a decimal fraction with the decimal point at the beginning:

0.12345 x 10°
or, as another alternative,
123450000 x 10~
or even,
0.0012345 x 10/

Of course, this last representation will be a poor choice if we are limited to five digits
of magnitude,

0.00123 x 10/

156

PART TWO DATA IN THE COMPUTER

since we will have sacrificed two digits of precision in exchange for the two zeros at the
beginning of the number which do not contribute anything to the precision of the number.
(You may recall from previous math courses that they are known as insignificant digits.)
The other representations do retain full precision, and any one of these representations
would be theoretically as good as any other. Thus, our choice of representation is somewhat
arbitrary and will be based on more practical considerations.

The way of representing numbers described here is known as exponential notation or,
alternatively, as scientific notation. Using the exponential notation for numbers requires
the specification of four separate components to define the number. These are

1. The sign of the number (“+”, for our original example)

2. The magnitude of the number, known as the mantissa (12345)

3. The sign of the exponent (“+”)

4. The magnitude of the exponent (3, see below)

Two additional pieces of information are required to complete the picture:

5. The base of the exponent (in this case, 10)
6. The location of the decimal (or other base) radix point

Both these latter factors are frequently unstated, yet extremely important. In the
computer, for example, the base of the exponent is usually, but not always, specified to be
2. In some computers, 16 or 10 may be used instead, and it is obviously important to know
which is being used if you ever have to read the numbers in their binary form. The location
of the decimal point (or binary point, if we’re working in base 2) is also an essential piece of
information. In the computer, the binary point is set at a particular location in the number,
most commonly the beginning or the end of the number. Since its location never changes, it
isnotnecessary to actually store the point. Instead, the location of the binary pointis implied.

Knowing the location of the point is, of course, essential. In the example that
accompanies the rules just given, the location of the decimal point was not specified.
Reading the data suggests that the number might be

+12345 x 10*3

which, of course, is not correct if we’re still using the number from our original example.
The actual placement of the decimal point should be

12.345 x 10°

Let us summarize these rules by showing another example, with each component
specifically marked. Assume that the number to be represented is

—0.0000003579

One possible representation of this number is

sign of mantissa sign of exponent

AN

~0.35790 x 10°°

location of

) . mantissa base exponent
decimal point

CHAPTER 5 REPRESENTING NUMERICAL DATA |57

Floating Point Format

As was the case with integers, floating point numbers will be stored and manipulated in the
computer using a “‘standard”, predefined format. For practical reasons, a multiple of 8 bits
is usually selected as the word size. This will simplify the manipulation and arithmetic that
is performed with these numbers.

In the case of integers, the entire word is allocated to the magnitude of the integer and
its sign. For floating point numbers, the word must be divided: part of the space is reserved
for the exponent and its sign; the remainder is allocated to the mantissa and its sign. The
base of the exponent and the implied location of the binary point are standardized as part
of the format and, therefore, do not have to be stored at all.

You can understand that the format chosen is somewhat arbitrary, since you have
already seen that there are many different ways to represent a floating point number.
Among the decisions made by the designer of the format are the number of digits to use, the
implied location of the binary or decimal point, the base of the exponent, and the method
of handling the signs for the mantissa and the exponent.

For example, suppose that the standard word consists of space for seven decimal digits
and a sign:

SMMMMMMM
This format would allow the storage of any integer in the range

-9,999,999 < I <+99,999,999

with full, seven-digit precision. Numbers of magnitude larger than 9,999,999 result in
overflow. Numbers of magnitude less than 1 cannot be represented at all, except as 0.
For floating point numbers, we might assign the digits as follows:

SEEMMMMM
signof twodigits the remaining
mantissa for the five digits for
exponent the mantissa

In addition we have to specify the implied location for the decimal point.

In this example we have “traded” two digits of exponent in exchange for the loss of two
digits of precision. We emphasize that we have not increased the number of values that can
be represented by seven digits. Seven digits can represent exactly 10,000,000 different values,
no matter how they are used. We have simply chosen to use those digits differently—to
increase the expressible range of values by giving up precision throughout the range. If we
wish to increase the precision, one option is to increase the number of digits.

There are other possible trades. We could, for example, increase precision by another
digit by limiting the exponent to a single digit. This might not be as limiting as it first
appears. Since each increment or decrement of the exponent changes the number by a
factor equivalent to the base (in this case, 10), a fairly substantial range of numbers can be
accommodated with even a single digit, in this case 10° to 10°, or 1 billion to 1.

The sign digit will be used to store the sign of the mantissa. Any of the methods shown
earlier in this chapter for storing the sign and magnitude of integers could be used for

158 PART TWO DATA IN THE COMPUTER

FIGURE 5.14

Excess-50 Representation

Representation

Exponent being -50 -110 49

represented

the mantissa. Most commonly, the mantissa is
stored using sign-magnitude format. A few com-
puters use complementary notation.

0 49,50 99 Notice that we have made no specific provision

for the sign of the exponent within the proposed

format. We must therefore use some method that

———Increasing value ——+ includes the sign of the exponent within the digits

of the exponent itself. One method that you have

already seen for doing this is the complementary representation. (Since the exponent and

mantissa are independent of each other, and are used differently in calculations, there is no
reason to assume that the same representation would be used for both.)

The manipulations used in performing exponential arithmetic allow us to use a simple
method for solving this problem. If we pick a value somewhere in the middle of the possible
values for the exponent, for example, 50 when the exponent can take on values 0 to 99, and
declare that value to correspond to the exponent 0, then every value lower than that will be
negative and those above will be positive. Figure 5.14 shows the scale for this offset technique.

What we have done is offset, or bias, the value of the exponent by our chosen amount.
Thus, to convert from exponential form to the format used in our example, we add the
offset to the exponent, and store it in that form. Similarly, the stored form can be returned
to our usual exponential notation by subtracting the offset.

This method of storing the exponent is known as excess-N notation, where N is
the chosen midvalue. It is simpler to use for exponents than the complementary form,
and appropriate to the calculations required on exponents. In our example we have
used excess-50 notation. This allows us to store an exponential range of —50 to +49,
corresponding to the stored values 00 to 99. We could, if we wished, pick a different offset
value, which would expand our ability to handle larger numbers at the expense of smaller
numbers, or vice versa.

If we assume that the implied decimal point is located at the beginning of the five-digit
mantissa, excess-50 notation allows us a magnitude range of

0.00001 x 107°Y < number < 0.99999 x 1047

This is an obviously much larger range than that possible using integers, and at the
same time gives us the ability to express decimal fractions. In practice, the range may be
slightly more restricted, since many format designs require that the most significant digit
not be 0, even for very small numbers. In this case, the smallest expressible number becomes
0.10000 x 107°%, not a great limitation. The word consisting of all 0s is frequently reserved
to represent the special value 0.0.

If we were to pick a larger (or smaller) value for the offset, we could skew the range to
store smaller (or larger) numbers. Generally, values somewhere in the midrange seem to
satisfy the majority of users, and there seems little reason to choose any other offset value.

Notice that, like the integer, it is still possible, although very difficult, to create an
overflow by using a number of magnitude too large to be stored. With floating point
numbers it is also possible to have underflow, where the number is a decimal fraction
of magnitude too small to be stored. The diagram in Figure 5.15 shows the regions of
underflow and overflow for our example. Note that in the diagram 0.00001 x 107 is
expressed equivalently as 107°°,

FIGURE 5.15

Regions of Overflow and Underflow

-0.99999 x 10% —10-55O 19'55 0.99999 x 10*°

CHAPTER 5 REPRESENTING NUMERICAL DATA 159

There is one more consideration. As you
are already aware, the computer is actually
capable of storing only numbers, no signs or
decimal points. We have already handled the
decimal point by establishing a fixed, implied

—
1
Overflow
region

EXAMPLES

X
||: point. We must also represent the sign of the

Underflow Overflow number in a way that takes this limitation into

region region account.
Here are some examples of floating point

decimal representations. The format used is that shown on page 157: a sign, two digits of
exponent stored excess-50, and five digits of mantissa. The value 0 is used to represent a
“4” sign; 5 has been arbitrarily chosen to represent a “~ sign, just as 1 is usually chosen
within the computer for the same purpose. The base is, of course, 10; the implied decimal
point is at the beginning of the mantissa. You should look at these examples carefully to
make sure that you understand all the details of the floating point format.

05324657 = 0.24657 x 10° = 246.57
54810000 = —0.10000 x 102 = —0.0010000

(Note that five significant digits are maintained.)

55555555 = —0.55555 x 10° = —55555
04925000 = 0.25000 x 10~ = 0.025000

Normalization and Formatting of Floating Point Numbers

The number of digits used will be determined by the desired precision of the numbers.
To maximize the precision for a given number of digits, numbers will be stored whenever
possible with no leading zeros. This means that, when necessary, numbers are shifted
left by increasing the exponent until leading zeros are eliminated. This process is called
normalization.

Our standard format, then, will consist of a mantissa of fixed, predetermined size with
a decimal point placed at a fixed, predetermined location. The exponent will be adjusted so
that numbers will be stored in this format with no leading zeros.

As an example, let us set up a standard format that reflects the storage capabilities
suggested in the previous section. Our format will consist of a sign and five digits, with the
decimal point located at the beginning of the number:

MMMMM x 10FE

There are four steps required to convert any decimal number into this standard format:
1. Provide an exponent of 0 for the number, if an exponent was not already
specified as part of the number.

2. Shift the decimal point left or right by increasing or decreasing the exponent,
respectively, until the decimal point is in the proper position.

160

PART TWO

EXAMPLES

DATA IN THE COMPUTER

3. Shift the decimal point right, if necessary, by decreasing the exponent, until there
are no leading zeros in the mantissa.

4. Correct the precision by adding or discarding digits as necessary to meet the
specification. We discard or round any digits in excess of the specified precision
by eliminating the least significant digits. If the number has fewer than the
specified number of digits, we supply zeros at the end.

Once we have normalized the number and put it into a standard exponential form, we
can perform a fifth step to convert the result into the desired word format. To do this, we
change the exponent into excess-50 notation and place the digits into their correct locations
in the word.

Conversions between integer and floating point format are similar. The integer is
treated as a number with an implied radix point at the end of the number. In the computer,
an additional step may be required to convert the integer between complementary and
sign-magnitude format to make it compatible with floating point format.

Here are some examples of a decimal to floating point format conversion:

Convert the number
246.8035
into our standard format.
1. Adding an exponent makes the number
246.8035 x 10°
2. We shift the decimal to the left three places, thereby increasing the exponent
by 3:
0.2468035 x 10°

3. Since the number is already normalized (no leading zeros), there is no adjustment
required.

4. There are seven digits, so we drop the two least significant digits, and the final
exponential representation is
0.24680 x 10°

5. The exponent is 3, which in excess-50 notation is represented as 53. If we
represent a ‘‘+"’ sign with the digit O, and a “~"" sign with the digit 5 (this choice
is totally arbitrary, but we needed to select some digits since the sign itself cannot
be stored), the final stored result becomes

the sign the mantissa
\ ——

05324680

/
excess-50 exponent

CHAPTER 5 REPRESENTING NUMERICAL DATA 161

Assume that the number to be converted is

1255 x 1073

1. The number is already in exponential form.

2. We must shift the decimal to the left four places, so the number becomes
0.1255 x 10*!
The positive exponent results from adding 4 to the original —3 exponent.
3. The number is normalized, so no additional adjustment is required.

4. A zero is added to provide five digits of precision. The final result in exponential
form is

0.12550 x 10!
5. The exponent in excess-50 notation becomes 51, and the result in word format is

05112550

Assume that the number to be converted is

—0.00000075

1. Converting to exponential notation, we have
—0.00000075 x 10°
2. The decimal point is already in its correct position, so no modification is

necessary.
3. Normalizing, the number becomes

—-0.75 x 107°
4. And the final exponential result,
—0.75000 x 107°
5. In our word format, this becomes

54475000

Although the technique is simple and straightforward, it will still require some practice
for you to feel comfortable with it. We suggest that you practice with a friend, inventing
numbers for each other to put into a standard format.

Some students have a bit of difficulty remembering whether to increase or decrease the
exponent when shifting the number left or right. There is a simple method that may help
you to remember which way to go: when you shift the decimal to the right, it makes the
resulting number larger. (For example, 1.5 becomes 15.) Thus, the exponent must become
smaller to keep the number the same as it was originally.

162

A Programming Example

Perhaps representing the steps as a pseudocode procedure will clarify these concepts even
further. The procedure in Figure 5.16 converts numbers in normal decimal format to the
floating point format

The implied decimal point is at the beginning of the mantissa, and the sign is stored
as 0 for positive, 5 for negative. The mantissa is stored in sign-magnitude format. The
exponent is stored in excess-50 format. The number 0.0 is treated as a special case, with an
all-zero format.

We suggest that you trace through the procedure carefully, until you understand

each step.

FIGURE 5.16

PART TWO DATA IN THE COMPUTER

SEEMMMMM

A Procedure to Convert Decimal Numbers to Floating Point Format

function ConvertToFloat();
//variables used:

real decimalin;

//decimal number to be converted

//components of the output
integer sign,

float mantissa;
integer floatout;

{
if
else {

if (decimalin > 0.0) sign =

(decimalin == 0.0)

exponent,

integermantissa;
//used for normalization
//final form of output
floatout = 0;

0;

else sign = 50000000;

exponent =

50;

StandardizeNumber;

floatout =

}

//end else

function StandardizeNumber(); {
mantissa =

//adjust the decimal

abs (mantissa);
to fall between 0.1 and 1.0.
while (mantissa >= 1.00) {

}

}

integermantissa =

mantissa =
exponent =

mantissa / 10.0;
exponent + 1;

//end while
while (mantissa < 0.1) {

mantissa =
exponent =

mantissa * 10.0;
exponent - 1;

//end while

round (10000.0 * mantissa)

} //end function StandardizeNumber
} //end ConvertToFloat

sign + exponent * 100000 + integermantissa;

CHAPTER 5 REPRESENTING NUMERICAL DATA 163

Floating Point Calculations

EXAMPLE

Floating point arithmetic is obviously more complex than integer arithmetic. First, the
exponent and the mantissa have to be treated separately. Therefore, each has to be extracted
from each number being manipulated.

ADDITION AND SUBTRACTION You recall that in order to add or subtract numbers
that contain decimal fractions, it is necessary that the decimal points line up. When using
exponential notation, it is thus a requirement that the implied decimal point in both
numbers be in the same position; the exponents of both numbers must agree.

The easiest way to align the two numbers is to shift the number with the smaller
exponent to the right a sufficient number of spaces to increase the exponent to match the
larger exponent. This process inserts insignificant zeros at the beginning of the number.
Note that this process protects the precision of the result by maintaining all the digits of
the larger number. It is the least significant digits of the smaller number that will disappear.

Once alignment is complete, addition or subtraction of the mantissas can take place. It
is possible that the addition or subtraction may result in an overflow of the most significant
digit. In this case, the number must be shifted right and the exponent incremented to
accommodate the overflow. Otherwise, the exponent remains unchanged.

It is useful to notice that the exponent can be manipulated directly in its excess form,
since it is the difference in the two exponents that is of interest rather than the value of the
exponent itself. It is thus not necessary to change the exponents to their actual values in
order to perform addition or subtraction.

Add the two floating point numbers

05199520
04967850

Assume that these numbers are formatted using sign-and-magnitude notation for the
mantissa and excess-50 notation for the exponent. The implied decimal point is at the
beginning of the mantissa, and base 10 is used for the exponent.

Shifting the lower mantissa right two places to align the exponent, the two numbers
become

05199520
0510067850

Adding the mantissas, the new mantissa becomes
(1)0019850

We have put the 1 in parentheses to emphasize the fact that it is a carry beyond the
original left position of the mantissa. Therefore, we must again shift the mantissa right one
place and increment the exponent to accommodate this digit:

05210019(850)
Rounding the result to five places of precision, we finally get

05210020

164

PART TWO DATA IN THE COMPUTER

EXAMPLE

EXAMPLE

Checking the result,

05199520 = 0.99520 x 101 = 9.9520
04967850 = 0.67850 x 10~'= 0.06785

10.01985 =0.1001985 x 10?

which converts to the result that we previously obtained.

MULTIPLICATION AND DIVISION Alignment is not necessary in order to perform
multiplication or division. Exponential numbers are multiplied (or divided) by multiplying
(dividing) the two mantissas and adding (subtracting) the two exponents. The sign is dealt
with separately in the usual way. This procedure is relatively straightforward. There are two
special considerations that must be handled, however:

1. Multiplication or division frequently results in a shifting of the decimal point
(e.g., 0.2 x 0.2 = 0.04) and normalization must be performed to restore the
location of the decimal point and to maintain the precision of the result.

2. We must adjust the excess value of the resulting exponent. Adding two
exponents, each of which contains an excess value, results in adding the excess
value to itself, so the final exponent must be adjusted by subtracting the excess
value from the result. Similarly, when we subtract the exponents, we subtract the
excess value from itself, and we must restore the excess value by adding it to the
result.

This is seen easily with an example. Assume we have two numbers with exponent 3. Each is
represented in excess-50 notation as 53. Adding the two exponents,

53
53
106

We have added the value 50 twice, and so we must subtract it out to get the correct
excess-50 result:
106
-50
56

3. The multiplication of two five-digit normalized mantissas yields a ten-digit
result. Only five digits of this result are significant, however. To maintain full,
five-digit precision, we must first normalize and then round the normalized
result back to five digits.

Multiply the two numbers

05220000
x04712500

CHAPTER 5 REPRESENTING NUMERICAL DATA 165
Adding the exponents and subtracting the offset results in a new, excess-50
exponent of
52 +47 -50=149
Multiplying the two mantissas,
0.20000 x 0.12500 = 0.025000000

Normalizing the result by shifting the point one space to the right decreases the exponent
by one, giving a final result

04825000

Checking our work,

05220000 is equivalent to 0.20000 x 107,
04712500 is equivalent to 0.12500 x 1073

which multiplies out to
0.0250000000 x 107!
Normalizing and rounding,
0.0250000000 x 107! = 0.25000 x 107?

which corresponds to our previous result.

Floating Point in the Computer

EXAMPLE

The techniques discussed in the previous section can be applied directly to the storage of
floating point numbers in the computer simply by replacing the digits with bits. Typically,
4, 8, or 16 bytes are used to represent a floating point number. In fact, the few differences
that do exist result from “tricks” that can be played when “0” and “1” are the only
options.

A typical floating point format might look like the diagram in Figure 5.17. In this
example, 32 bits (4 bytes) are used to provide a range of approximately 107¢ to 1073,
With 8 bits, we can provide 256 levels of exponent, so it makes sense to store the exponent
in excess-128 notation.

Here are some examples of binary floating point format using this notation. Again we have
assumed that the binary point is at the start of the mantissa. The base of the exponent is 2.

010000001 11001100000000000000000=
+1.1001100000000000000000
110000100 10000111100000000000000=
—1000.0111100000000000000
101111110 10101010101010101010101=
—0.0010101010101010101010101

166 PART TWO DATA IN THE COMPUTER

FIGURE 5.17

Typical Floating Point Format

Thanks to the nature of the binary system, the 23
bits of mantissa can be stretched to provide 24 bits of
precision, which corresponds to approximately seven

bit—>=0 1 89 31 decimal digits of precision. Since the leading bit of the
mantissa must be “1” if the number is normalized,
Rl ey [V M there is no need to store the most significant bit explic-
msb Isb itly. Instead, the leading bit can be treated implicitly,

Sign of Mantissa similar to the binary point.
mantissa There are three potential disadvantages to using
Excess-128 this trick. First, the assumption that the leading bit is
exponent always a “1” means that we cannot store numbers too

small to be normalized, which slightly limits the small

end of the range. Second, any format that may require a “0” in the most significant bit for
any reason cannot use this method. Finally, this method requires that we provide a separate
way to store the number 0.0, since the requirement that the leading bit be a “1” makes a
mantissa of 0.0 an impossibility!

Since the additional bit doubles the available precision of the mantissa in all numbers,
the slightly narrowed range is usually considered an acceptable trade-off. The number 0.0
is handled by selecting a particular 32-bit word and assigning it the value 0.0. Twenty-four
bits of mantissa corresponds to approximately seven decimal digits of precision.

Don’t forget that the base and implied binary point must also be specified.

There are many variations, providing different degrees of precision and exponential
range, but the basic techniques for handling floating point numbers in the computer are
identical to those that we have already discussed in the previous sections of this chapter.

IEEE 754 STANDARD Most current computers conform to IEEE 754 standard formats.
The IEEE Computer Society is a society of computer professionals. Among its tasks, the
IEEE Computer Society develops technical standards for use by the industry. The IEEE
754 standard defines formats for 32-bit and 64-bit floating point arithmetic. Instructions
built into modern computers utilize the standard to perform floating point arithmetic,
normalization, and conversion between integer and floating point representations internally
under program command. The standard also facilitates the portability of programs between
different computers that support the standard.

In addition to the IEEE 754 format, there are a number of older, machine-specific
formats still in use for legacy data. The Macintosh also provides an additional 80-bit
format. Sun UltraSparc and IBM mainframes systems include additional 128-bit formats.
The Intel IA-64 architecture conforms to the IEEE 754 format, but also provides 64-bit
significand/17-bit exponent range capability; the programmer can set individual precision
control and widest-range exponent values in the floating point status register for additional
flexibility.

The standard defines a single-precision floating point format consisting of 32 bits,
divided into a sign, 8 bits of exponent, and 23 bits of mantissa. Since normalized numbers
must always start with a 1, the leading bit is not stored, but is instead implied; this bit is
located to the left of the implied binary point. Thus, numbers are normalized to the form

I.MMMMMMM. ..

CHAPTER 5 REPRESENTING NUMERICAL DATA 167

FIGURE 5.18 The exponent is formatted using excess-127 notation,
IEEE Standard 32-bit Floating Point Value with an implied base 05122.7Th151;~;0u1d theor'etlcally allow
- an exponent range of 2 to 2°°°. In actuality, the stored
Definition o .
exponent values 0 and 255 are used to indicate special
Exponent Mantissa Value values, and the exponential range of this format is thus
restricted to
0 +0 0
0 not0 +2'%5x0.M 27126 ¢ 2%
E-127
L2 any = 4 Al The number 0.0 is defined by a mantissa of 0 together
— 0 £ with the special exponential value 0. The IEEE standard
255 not O NaN (Not a Number)

also allows the values 400, very small denormalized

numbers, and various other special conditions. Overall,
the standard allows approximately seven significant decimal digits and an approximate
value range of 10™*° to 1078,

The double-precision floating point format standard works similarly. Sixty-four bits (8
bytes) are divided into a sign, 11 bits of exponent, and 52 bits of mantissa. The same format
is used, with excess-1023 notation for the exponent, an implied base of 2, and an implied
most significant bit to the left of the implied binary point. The double-precision standard
supports approximately fifteen significant decimal digits and a range of more than 1073%
to 10°%!

The values defined for all possible 32-bit words are shown in Figure 5.18. The 64-bit
table is similar, except for the limiting exponent of 2047, which results in an excess 1023
offset.

Conversion between Base 10 and Base 2

On occasion, you may find it useful to be able to convert real numbers between decimal
and binary representation. This task must be done carefully. There are two major areas that
sometimes cause students (and others!) difficulty:

1. The whole and fractional parts of numbers with an embedded decimal or binary
point must be converted separately.

2. Numbers in exponential form must be reduced to a pure decimal or binary
mixed number or fraction before the conversion can be performed.

We dealt with the first issue in Section 3.8. Recall from that section that in converting
from one base to another that one must deal with the different multipliers associated with
each successive digit. To the left of the radix point, the multipliers are integer, and there is
a direct relationship between the different bases. To the right of the point, the multipliers
are fractional, and there may or may not be a rational relationship between the multipliers
in the different bases.

The solution is to convert each side of the radix point separately using the techniques
discussed in Chapter 3. As an alternative, you can multiply the entire number in one base
by whatever number is required to make the entire number an integer, and then convert the
number in integer form. When this is complete, however, you must divide the converted
result by that same multiplier in the new base. It is not correct to simply shift the radix point
back, since each shift has a different value in the new base! Thus, if you shift a binary point

168 PART TWO DATA IN THE COMPUTER

right by seven places, you have effectively multiplied the number by 128, and you must
divide the converted number by 128 in the new base. This latter method is best illustrated
with an example.

EXAMPLE

Convert the decimal number 253.75 to binary floating point form.

Begin by multiplying the number by 100 to form the integer value 25375. This is
converted to its binary equivalent 110001100011111, or 1.10001100011111 x 24, The
IEEE 754 floating point equivalent representation for this integer would be

S_/0 | 10001101 |10001100011111

ign

8 Excess-127 Mantissa (initial 1 is dropped)
Exponent = 127 + 14

One more step is required to complete the conversion. The result must be divided by
the binary floating point equivalent of 1001¢ to restore the original decimal value. 10010
converts to binary 1100100,, or 010000101100100 in IEEE 754 form. The last step is to
divide the original result by this value, using floating point division. We will omit this step, as
it is both difficult and irrelevant to this discussion. Although this method looks more difficult
than converting the number directly as a mixed fraction, it is sometimes easier to implement
within the computer.

The problem with converting floating point numbers expressed in exponential notation
is essentially the same problem; however, the difficulty is more serious because it looks as
though it should be possible to convert a number, keeping the same exponent, and this is
of course not true.

If you always remember that the exponent actually represents a multiplier of value B¢,
where B is the base and e is the actual exponent, then you will be less tempted to make this
mistake. Obviously it is incorrect to assume that this multiplier would have the same value
for a different B.

Instead, it is necessary to follow one of the two solutions just outlined: either reduce
the exponential notation to a standard mixed fraction and convert each side separately, or
use the value B® as a multiplier to be divided in the new base at the end of the conversion.

5.4 PROGRAMMING CONSIDERATIONS

In this chapter you have been exposed to a number of different ways of storing and
manipulating numeric values. It should be of interest to you to consider how a programmer
might make an intelligent choice between the many different options available.

The trade-offs between integer and floating point are clear. Integer calculations are
easier for the computer to perform, have the potential to provide higher precision, and are
obviously much faster to execute. Integer values usually take up fewer storage locations. As
you will see later, it takes a certain amount of time to access each storage location; thus, the
use of fewer storage locations saves time, as well as space.

Clearly, the use of integer arithmetic is preferred whenever possible. Most modern
high-level languages provide two or more different integer word sizes, usually at least a

CHAPTER 5 REPRESENTING NUMERICAL DATA 169

“short” integer of 16 bits and a “long” integer of 64 bits. Now that you understand the range
limitations of integer arithmetic, you are in a position to determine whether a particular
variable or constant can use the integer format, and whether special error checking may be
required in your program.

The longer integer formats may require multiple-word calculation algorithms, and as
such are slower to execute than short formats. The short format is preferable when it is
sufficient for the values that you expect. It may also be necessary to consider the limitations
of other systems that the same program may have to operate on.

The use of real numbers is indicated whenever the variable or constant has a fractional
part, whenever the number can take on very large or very small values that are outside of
integer range, or whenever the required precision exceeds the number of different values
that are possible in the longest integer format available to you. (As you’ve seen, most
systems provide a floating point format of very high precision.) Of course, it is sometimes
possible to multiply a mixed number by some multiplier to make it integer, perform the
calculations in integer form, and then divide back. If the number of calculations is large,
and the numbers can be adjusted to operate as integers, this can be a worthwhile option to
consider, especially for the gain in execution speed.

As with integers, it is desirable to use the real number with the least precision that
is sufficient for the task. Higher-precision formats require more storage and usually must
use multiple-word floating point or packed decimal calculation algorithms that are much
slower than the lower-precision formats.

Recall that decimal fractions may convert into irrational binary fractions. For those
languages that provide the capability, the use of packed decimals represents an attractive
alternative to floating point for those business applications where exact calculations
involving mixed decimal numbers are required.

SUMMARY AND REVIEW

Computers store all data as binary numbers. There are a number of different ways to
format these binary numbers to represent the various types of numbers required for
computer processing. Conceptually, the simplest formats are sign-and-magnitude and
binary-coded decimal. Although BCD is sometimes used for business programming, both
of these formatting methods have shortcomings in terms of number manipulation and
calculation.

Unsigned integers can of course be directly represented by their binary equivalents.
Complementary arithmetic is usually the method of choice for signed integers. Nine’s
decimal complement, and its binary equivalent 1’s complement, split the number range in
two, using the upper half of the range to represent negative numbers. Positive numbers
represent themselves. These representations are convenient and especially simple to use,
since the complement is found by subtracting the number from a row of the largest
digits in the base. Binary complements may be found by simply inverting the Os and
s in the number. Calculations are a bit more difficult due to the existence of both
positive and negative values for zero, but end-around carry addition may be used for this
purpose.

Ten’s complement and 2’s complement split the range similarly, but use a single value
0 for zero. This requires the use of a complement based on a value one larger than the largest

170 PART TWO DATA IN THE COMPUTER

number in the base for the given number of digits. This “base value” will always consist of a
1 followed by N zeros, where N is the number of digits being used. Complementation may
be taken by inverting the number as before, and adding 1 to the result, or by subtracting
the number from the base value. Calculation is straightforward, using modulo arithmetic.
Most computer arithmetic instructions are based on 2’s complement arithmetic.

Both 1’s and 2’s complement representations have the additional convenience that
the sign of a number may be readily identified, since a negative number always begins
with a “1.” Small negative numbers have large values, and vice versa. Complementary
representations for other even-numbered bases can be built similarly.

Numbers with a fractional part and numbers that are too large to fit within the
constraints of the integer data capacity are stored and manipulated in the computer as real,
or floating point, numbers. In effect, there is a trade-off between accuracy and range of
acceptable numbers.

The usual floating point number format consists of a sign bit, an exponent, and a
mantissa. The sign and value of the exponent are usually represented in an excess-N format.
The base of the exponent is 2 for most systems, but some systems use a different base for
the exponent. The radix point is implied. When possible, the mantissa is normalized.

In some systems the leading bit is also implied, since normalization requires that the
leading bit of the mantissa be a 1.

Floating point numbers are subject to overflow or underflow, where the exponent of
the number is too large or too small to represent, respectively. Zero is treated as a special
case. Sometimes there is also a special representation for oco.

Addition and subtraction require that the exponents in each number be equal. This
is equivalent to lining up the decimal point in conventional decimal arithmetic. In
multiplication and division, the exponents are added or subtracted, respectively. Special
care must be taken with exponents that are expressed in excess-N notation.

Most computers conform to the format defined in IEEE Standard 754. Other formats
in use include extra-precision formats and legacy formats.

FOR FURTHER READING

The representation and manipulation of integers and real numbers within the computer
is discussed in most computer architecture texts. A particularly effective discussion is
found in Stallings [STALO5]. This discussion presents detailed algorithms and hard-
ware implementations for the various integer operations. A simpler discussion, with
many examples, is found in Lipschutz [LIPS82]. More comprehensive treatments of
computer arithmetic can be found in the two-volume collection of papers edited
by Swartzlander [SWAR90] and in various textbooks on the subject, including those
by Kulisch and Maranker [KUL81] and Spaniol [SPANS81]. A classical reference on
computer algorithms, which includes a substantial discussion on computer arithmetic,
is the book by Knuth [KNUT97]. One additional article of interest is the article
titled “What Every Computer Scientist Should Know About Floating-Point Arithmetic”
[GOLD91].

CHAPTER 5 REPRESENTING NUMERICAL DATA 171

KEY CONCEPTS AND TERMS

binary-coded decimal integer numbers sign-and-magnitude
(BCD) integer representation representation

carry flag inversion signed integers

complement mantissa single-precision floating

end-around carry normalization point format

excess-N notation I’s complement 2’s complement

exponent representation representation

exponential notation overflow underflow

floating point format radix point unsigned integer

floating point numbers real numbers wraparound

READING REVIEW QUESTIONS

5.1
5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10
5.11

5.12

What is the largest unsigned integer that can be stored as a 16-bit number?
What does BCD stand for? Explain at least two important disadvantages of
storing numbers in BCD format. Offer one advantage for using a BCD format
for storing numbers.

Give an example that shows the disadvantage of using a sign-and-magnitude
format for manipulating signed integers.

What is a quick way to identify negative numbers when using 1’s complement
arithmetic?

How do you change the sign of an integer stored in 1’s complement form? As an
example, the 8-bit representation for the value 19 is 00010011,. What is the 1’s
complement representation for —19?

How do you identify an overflow condition when you add two numbers in 1’s
complement form?

Explain the procedure for adding two numbers in 1’s complement form. As an
example, convert +38 and —24 to 8-bit 1’s complement form and add them.
Convert your result back to decimal and confirm that your answer is correct.

If you see a 2’s complement number whose value is 11111110,, what rough
estimate can you make about the number?

How do you change the sign of an integer stored in 2’s complement form? As an
example, the 8-bit representation for the value 19 is 00010011,. What is the 2’s
complement representation for —19?

How do you detect overflow when adding two numbers in 2’s complement form?
Explain the procedure for adding two numbers in 2’s complement form. As an
example, convert +38 and —24 to 8-bit 2’s complement form and add them.
Convert your result back to decimal and confirm that your answer is correct.
What is the relationship between complementary representation and sign-
and-magnitude representation for positive numbers?

172 PART TWO DATA IN THE COMPUTER

EXERCISES

5.13

5.14

5.15

5.16

5.17

5.1

5.2

5.3

Real numbers in a computer (or float, if you prefer), are most often represented
in exponential notation. Four separate components are needed to represent
numbers in this form. Identify each component in the number 1.2345 x 1077,
What is the advantage of this type of representation, rather than storing the
number as 0.000012345?

To represent a number in exponential form in the computer, two additional
assumptions must be made about the number. What are those assumptions?
Exponents are normally stored in excess-N notation. Explain excess-N notation.
If a number is stored in excess-31 notation and the actual exponent is 272, what
value is stored in the computer for the exponent?

When adding two floating point numbers, what must be true for the exponents
of the two numbers?

The IEEE provides a standard 32-bit format for floating point numbers. The
format for a number is specified as =1.M x 2£~ 1?7, Explain each part of this
format.

Data was stored in the Digital PDP-9 computer using six-digit octal notation.
Negative numbers were stored in 8’s complement form.

a. How many bits does six-digit octal represent? Show that 8’s complement
octal and 2’s complement binary are exactly equivalent.

b. Whatis the largest positive octal number that can be stored in this machine?

What does the number in (b) correspond to in decimal?

& oo

What is the largest possible negative number? Give your answer in both

octal and decimal form.

a. Find the 16-bit 2’s complementary binary representation for the decimal
number 1987.

b. Find the 16-bit 2’s complementary binary representation for the decimal
number —1987.

c. From your answer in (b) find the six-digit 16’s complement hexadecimal
representation for the decimal number —1987.

Data is stored in the R4-D4 computer using eight-digit base 4 notation. Negative

numbers are stored using 4’s complement.

a. What is the sign-and-magnitude value of the following 4’s complement

number?

333332104

Leave your answer in base 4.

b. Add the following eight-digit 4’s complement numbers. Then, show the
sign-and-magnitude values (in base 4) for each of the input numbers and
for your result.

13220231
120000

5.4

5.5

5.6

5.7

5.8

CHAPTER 5 REPRESENTING NUMERICAL DATA 173

Convert the decimal number —19575 to a 15-bit 2’s complement binary number.
What happens when you perform this conversion? After the conversion is
complete, what values (base 2 and base 10) does the computer think it has?

What are the 16-bit 1’s and 2’s complements of the following binary numbers?
a. 10000

b. 100111100001001

c. 0100111000100100

Add the following decimal numbers by converting each to five-digit 10’s com-
plementary form, adding, and converting back to sign and magnitude.

a,
24379
5098

b.
24379
—-5098

c.
—24379
5098

Subtract the second number from the first by taking the six-digit 10’s complement
of the second number and adding. Convert the result back to sign and magnitude
if necessary.

a.
37968
(—) 24109

b.
37968
(—)—70925

c.
—10255
(—) — 7586

The following decimal numbers are already in six-digit 10’s complementary
form. Add the numbers. Convert each number and your result to sign and
magnitude, and confirm your results.

a.
1250
772950

b.
899211
999998

c.
970000

30000

174

PART TWO DATA IN THE COMPUTER

5.9

5.10

5.11

5.12

5.13

5.14

5.15

Add the following two 12-bit binary 2’s complement numbers. Then convert
each number to decimal and check the results.

a.
11001101101
111010111011

b.
101011001100
111111111100

Given the positive number 2468, what is the largest positive digit that you can add
that will not cause overflow in a four-digit decimal, 10’s complement number
system?

In 12’s complement base 12, how would you know if a number is positive or
negative?

Most computers provide separate instructions for performing unsigned additions
and complementary additions. Show that for unsigned additions, carry and
overflow are the same. (Hint: Consider the definition of overflow.)

Consider a machine that performs calculations 4 bits at a time. Eight-bit 2’s
complement numbers can be added by adding the four least significant bits,
followed by the four most significant bits. The leftmost bit is used for the sign,
as usual. With 8 bits for each number, add —4 and —6, using 4-bit binary
2’s complement arithmetic. Did overflow occur? Did carry occur? Verify your
numerical result.

Add the following 16’s complement hexadecimal numbers

4F09

D3AS
Is your result positive or negative? How do you know? Convert each number to
binary and add the binary numbers. Convert the result back to hexadecimal. Is
the result the same?

In the Pink-Lemon-8 computer, real numbers are stored in the format

SEEMMM Mg

where all the digits, including the exponent, are in octal. The exponent is stored
excess-40g. The mantissa is stored as sign and magnitude, where the sign is 0 for
a positive number and 4 for a negative number. The implied octal point is at the
end of the mantissa: MMM M.

Consider the real number stored in this format as

4366621

a. What real number is being represented? Leave your answer in octal.

b. Convert your answer in part (a) to decimal. You may leave your answer in
fractional form if you wish.

c. Whatdoes changing the original exponent from 36 to 37 do to the magnitude
of the number? (Stating that it moves the octal point one place to the right or
leftis notasufficient answer.) What would be the new magnitude in decimal?

5.16

5.17

5.18

5.19

5.20

5.21

o B0 T

b.

CHAPTER 5 REPRESENTING NUMERICAL DATA |75

Convert the decimal number 19557 to floating point. Use the format
SEEMM M M. All digits are decimal. The exponent is stored excess-40 (not
excess-50). The implied decimal point is at the beginning of the mantissa.
The sign is 1 for a positive number, 7 for a negative number. Hint: Note
carefully the number of digits in the mantissa!

What is the range of numbers that can be stored in this format?

What is the floating point representation for —195572

What is the six-digit 10’s complement representation for —19557¢2

What is the floating point representation for 0.0000019557?

Convert the number 123.57 x 10'° to the format SEEMMM M, with the
exponent stored excess-49. The implied decimal point is to the right of the
first mantissa digit.

What is the smallest number you can use with this format before underflow
occurs?

Real numbers in the R4-D4 computer are stored in the format

SEEMMMMMy

where all the digits, including the exponent, are in base 4. The mantissa is stored
as sign and magnitude, where the sign is 0 for a positive number and 3 for a
negative number. The implied quadrinary (base 4!) point is at the beginning of
the mantissa:

.MMMMM

If you know that the exponent is stored in an excess-something format,
what would be a good choice of value for “something?”

Convert the real, decimal number 16.5 to base 4, and show its representation
in the format of the R4-D4 computer. Use the excess value that you
determined in part (a).

Convert the following binary and hexadecimal numbers to floating point format.
Assume a binary format consisting of a sign bit (negative = 1), a base 2, 8-bit,
excess-128 exponent, and 23 bits of mantissa, with the implied binary point to
the right of the first bit of the mantissa.

- 0o 0 TP

110110.011011,
—1.1111001,
—4F7F ¢
0.00000000111111,
0.1100 x 2%
0.1100 x 273¢

For the format used in Exercise 5.5, what decimal number is represented by each
of the following numbers in floating point format?

a.

b.

C2F00000;6
3C540000,6

Represent the decimal number 171.625 in IEEE 754 format.

176

PART TWO DATA IN THE COMPUTER

5.22
5.23

5.24

5.25

5.26

5.27

Show the packed decimal format for the decimal number —129975.

The following decimal numbers are stored in excess-50 floating point format,
with the decimal point to the left of the first mantissa digit. Add them. A 9 is used
as a negative sign. Present your result in standard decimal sign-and-magnitude
notation.

a.
05225731
04833300
b.
05012500
95325750

Using the same notation as in Exercise 5.9, multiply the following numbers.
Present your answer in standard decimal notation.

a.
05452500
04822200
b.
94650000
94450000

Using the same format found in Exercise 5.19, add and multiply the following
floating point numbers. Present your answers in both floating point and sign-
and-magnitude formats.

3DEC000016
C24C000016

Write a program in your favorite language that converts numbers represented in
the decimal floating point format

SEEMMMMM

into 10’s complementary integer form. Round any fractional decimal value.
What base is the student in the chapter cartoon using to perform his addition?

CHAPTER 5 REPRESENTING NUMERICAL DATA 177

| THREE

he basic operation of a computer is defined by its hardware architecture. The

hardware architecture establishes the CPU instruction set and the type of operations

that are permitted. It defines the passage of data from one part of the computer to
another. It establishes the ground rules for input and output operation.

The next six chapters introduce the fundamental architectural concepts that define
computer operations and hardware organization. We will attempt to convey the basic
simplicity and elegance of computer instruction sets. We will expose the inner workings of
computer peripherals and show how the various pieces fit together to create a system.

For the past sixty plus years, and for the foreseeable future, basic computer architecture
conforms to the general principles established by von Neumann that were introduced in
Chapter 1. Chapter 6 introduces the principles of von Neumann architecture using a
classic model of the computer called the Little Man Computer as an example. The Little
Man Computer introduces the stored program concept, demonstrates the role of memory,
describes the essential instructions that make up a computer instruction set, and explains
the simple set of operations that implement an instruction set. We also show how the basic
instructions of a computer work together to make up a program.

In Chapter 7 we extend the ideas introduced in Chapter 6 to the operation of a real
computer. We consider the basic components of a CPU, explain the concept of a bus,
discuss the operation of memory, and show how each of these architectural elements fit
together to create a computer system. We also show the individual operations that make up
the execution of instructions, the so-called fetch-execute cycle. We also discuss the formats
for instruction words and present a general classification of the instruction set.

In Chapter 8, we consider the variations that distinguish one CPU architecture from
another. The major topics in Chapter 8 deal with CPU design and organization. We present
different CPU models, and compare them. We investigate alternatives to the traditional
CPU organization and explain the benefits to be gained. We look at improvements to
memory and, especially, the use of cache memory.

COMPUTER ARCHITECTURE
AND HARDWARE OPERATION

In Chapter 9 we shift our focus to I/O. Chapter 9 introduces the various methods that
are used to move data between computer peripherals and memory, including the use of
interrupts and direct access paths between peripherals and memory as efficient ways to
perform I/O with minimal impact on the processing unit. We also introduce the concept
of I/O modules as an interface between the various I/O devices and the CPU and memory
components.

Chapter 10 provides explanations of the requirements and operation of various I/O
peripheral components, including flash memory, disks, displays, tapes, printers, and other
components. This chapter also presents a hierarchical model of storage.

Chapter 11 integrates the major ideas of the previous five chapters and then explores
additional features and innovative techniques at the system level that have expanded the
performance and capability of computers. While these techniques are substantial exten-
sions to the basic design, they do not change the fundamental concepts and operating
methods that are discussed in the earlier chapters. Beyond the discussion of basic com-
puter system hardware architecture, the most important topics in this chapter are the
modern buses and I/O channels that are used to expand I/O capability, and the inter-
connection of computer systems into clusters to increase computing power and improver
reliability.

There are four additional supplementary chapters on the Web at www.wiley.com/
college/Englander. Three of these provide additional insight into material presented in
Part 3. Supplementary Chapter 1 offers an overview of Boolean algebra and the digital
logic circuits that are used to implement CPU hardware circuits. Supplementary Chapter
2 illustrates many of the previous concepts with case studies of three important current
systems, representing three different approaches to computer design. Supplementary
Chapter 3 expands on the discussion of CPU addressing techniques that is touched only
briefly in Chapter 8.

179

CHAPTER 6

THE LITTLE MAN COMPUTER

SR o [oo
LH l]j 'L JtR(;THCO
{h,jﬁ o
18] e

//

G PN I
TEIE DT 5TEI D
CERTET T2 T
LA

AT LI 3080, o
SCEETE '“Lfaj/ ‘

Raeside/Victoria Times-Colonist/Rothco

6.0 INTRODUCTION

The power of a computer does not arise from complexity. Instead, the computer has the
ability to perform simple operations at an extremely high rate of speed. These operations
can be combined to provide the computer capabilities that you are familiar with.

Consistent with this idea, the actual design of the computer is also simple, as you
will see.

(The beauty of the design is that these simple operations can be used to solve
extremely complex problems. The programmer’s challenge, of course, is to produce the
exact sequence of operations to perform a particular task correctly under all possible
circumstances, since any error in selection or sequence of operations will result in
a “buggy” program. With the large number of instructions required by modern
programs, it is not surprising that few of today’s programs are truly bug-free.)

In this chapter, we will begin to explore the operations that the computer is
capable of performing and look at how those operations work together to provide the
computer with its power. To simplify our exploration, we will begin by introducing
a model of the computer; a model that operates in a very similar way to the real
computer but that is easier to understand instinctively.

The model that we will use is called the Little Man Computer (LMC). The original
LMC was created by Dr. Stuart Madnick at MIT in 1965. In 1979, Dr. Madnick
produced a new version of the LMC, with a slightly modified instruction set; the later
version is used in this book. It is a strength of the original model that it operates so
similarly to a real computer that it is still an accurate representation of the way that
computers work thirty-five years after its introduction.

Using this model we will introduce a simplified, but typical, set of instructions that
a computer can perform. We will show you exactly how these instructions are executed
in the Little Man Computer. Then we will demonstrate how these instructions are
combined to form programs.

6.1 LAYOUT OF THE LITTLE MAN COMPUTER

We begin by describing the physical layout of the Little Man Computer. A diagram for
the Little Man Computer appears in Figure 6.1.

The LMC consists of a walled mailroom, represented by the dark line surrounding
the model in the diagram. Inside the mailroom are several objects:

First, there is a series of one hundred mailboxes, each numbered with an address
ranging from 00 to 99. This numbering system is chosen because each mailbox address
can be represented by two digits, and this is the maximum number of mailboxes that
can be represented by two decimal digits.

Each mailbox is designed to hold a single slip of paper, upon which is written
a three-digit decimal number. Note carefully that the contents of a mailbox are not
the same as the address of a mailbox. This idea is consistent with what you already
know about your post office box: your post office box number identifies where you go

181

182

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 6.1
The Little Man Computer

Calculator

Mailboxes

7

E 00]500]
=R=1 =] 01199
ooon 02[500

In
Basket

™~y

991123

\—/

Out /

Basket

Instruction Little man

Reset button >
location counter

to pick up your mail, but this has no relationship to the actual contents of the letters that
you find in that mailbox.

Next, there is a calculator . .. basically a simple pocket calculator. The calculator can
be used to enter and temporarily hold numbers, and also to add and subtract. The display
on the calculator is three digits wide. At least for the purposes of this discussion, there is no
provision made for negative numbers, or for numbers larger than three digits. As you are
already aware, 10’s complement arithmetic could be used for this purpose, but that is not
of interest here.

Third, there is a two-digit hand counter, the type that you click to increment the count.
The reset button for the hand counter is located outside the mailroom. We will call this
counter an instruction location counter.

Finally, there is the Little Man. It will be his role to perform certain tasks that will be
defined shortly.

Other than the reset switch on the hand counter, the only interaction between the
Little Man Computer and the outside environment are an in basket and an out basket.

A user outside of the mailroom can communicate with the Little Man in the mailroom
by putting a slip of paper with a three-digit number on it into the in basket, to be read by the
Little Man at the appropriate time. Similarly, the Little Man can write a three-digit number
on a slip of paper and leave it in the out basket, where it can be retrieved by the user.

CHAPTER 6 THE LITTLE MAN COMPUTER 183

Note that all communication between the Little Man Computer and the outside world
takes place using three-digit numbers. Except for the reset button on the instruction
location counter, no other form of communication is possible. The same is true within the
mailroom: all instructions to the Little Man must be conveyed as three-digit numbers.

6.2 OPERATION OF THE LMC

We would like the Little Man to do some useful work. For this purpose we have invented
a small group of instructions that he can perform. Each instruction will consist of a single
digit. We will use the first digit of a three-digit number to tell the Little Man which
operation to perform.

In some cases, the operation will require the Little Man to use a particular mailbox to
store or retrieve data (in the form of three-digit numbers, of course!). Since the instruction
only requires one digit, we can use the other two digits in a three-digit number to indicate
the appropriate mailbox address to be used as a part of the instruction. Thus, using the
three digits on a slip of paper we can describe an instruction to the Little Man according to

the following diagram:
3| 25

instruction | mailbox address

The instruction part of the three-digit code is also known as an “operation code,” or
op code for short. The op code number assigned to a particular instruction is arbitrary,
selected by the computer designer based on various architectural and implementation
factors. The op codes used by the author conform to the 1979 version of the Little Man
Computer model.

Now let’s define some instructions for the Little Man to perform:

LOAD instruction—op code 5
The Little Man walks over to the mailbox address specified in the instruction. He
reads the three-digit number located in that mailbox, and then walks over to the
calculator and punches that number into the calculator. The three-digit number
in the mailbox is left unchanged, but of course the original number in the calcu-
lator is replaced by the new number.

STORE instruction—op code 3
This instruction is the reverse of the LoD instruction. The Little Man walks over
to the calculator and reads the number there. He writes that number on a slip of
paper and puts it in the mailbox whose address was specified as the address part
of the instruction. The number in the calculator is unchanged; the original num-
ber in the mailbox is replaced with the new value.

ADD instruction—op code 1
This instruction is very similar to the Loap instruction. The Little Man walks
over to the mailbox address specified in the instruction. He reads the three-digit
number located in the mailbox and then walks over to the calculator and adds it
to the number already in the calculator. The number in the mailbox is unchanged.

184

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

SUBTRACT instruction—op code 2

This instruction is the same as the App instruction, except that the Little Man
subtracts the mailbox value from the value in the calculator. The result of a
subtraction can leave a negative value in the calculator. Chapter 5 discussed the
use of complements to implement negative values, but for simplicity, the LMC
model ignores this solution. For the purposes of our LMC model, we will simply
assume that the calculator holds and handles negative values correctly, and
provides a minus sign as a flag to indicate that the value is negative. The Little
Man cannot handle negative numbers outside of the calculator, however, because
there is no provision in the model for storing the negative sign within the
constraint of the three-digit number system used.

INPUT instruction (or read, if you prefer)—op code 9, “address” 01

The Little Man walks over to the in basket and picks up the slip of paper in the
basket. He then walks over to the calculator and punches it into the calculator.
The number is no longer in the in basket, and the original calculator value has
been replaced by the new number. If there are multiple slips of paper in the
basket, the Little Man picks them up in the order in which they were submitted,
but each ivpuT instruction handles only a single slip of paper; other input values
must await the execution of subsequent INPUT instructions. Some authors use the
concept of a conveyor belt in place of the in basket, to emphasize this point.

OUTPUT instruction (or print)—op code 9, “address” 02

The Little Man walks over to the calculator and writes down the number that he
sees there on a slip of paper. He then walks over to the out basket and places the
slip of paper there for the user outside the mailroom to retrieve. The original
number in the calculator is unchanged. Each outpuT instruction places a single
slip of paper in the out basket. Multiple outputs will require the use of multiple
OUTPUT instructions.

Note that the npuT and ouTpuT instructions do not use any mailboxes during execution,
since the procedure for each only involves the transfer of data between an in or out basket and
the calculator. Because this is true, the address part of the instruction can be used to extend
the capability of the instruction set, by using the same op code with different “address”
values to create a number of different instructions. In the LMC, 901 is the code for an inpUT
instruction, while 902 is used for an ouTpuT instruction. In a real computer, for example, the
instruction address might be used to specify the particular I/O device to be used for input or

output.

COFFEE BREAK (or HALT) instruction—op code 0

The Little Man takes a rest. The Little Man will ignore the address portion of the
instruction.

The instructions that we have defined so far fall into four categories:

instructions that move data from one part of the LMC to another (LOAD,
STORE)
instructions that perform simple arithmetic (ADD, SUBTRACT)

CHAPTER 6 THE LITTLE MAN COMPUTER 185

B instructions that perform input and output (INPUT, OUTPUT)
B instructions that control the machine (COFFEE BREAK)

This is enough for now. We will discuss instructions 6, 7, and 8 later in this chapter.

6.3 A SIMPLE PROGRAM

Now let’s see how we can combine these instructions into a program to have the Little Man
do some useful work.

Before we do this, we need to store the instructions somewhere, and we need a method
to tell the Little Man where to find the particular instruction that he is supposed to perform
at a given time.

Without discussing how they got there, for now we will assume that the instructions
are stored in the mailboxes, starting at mailbox number 00. The Little Man will perform
instructions by looking at the value in the instruction location counter and executing
the instruction found in the mailbox whose address has that value. Each time the Little
Man completes an instruction, he will walk over to the instruction location counter and
increment it. Again he will perform the instruction specified by the counter. Thus, the Little
Man will execute the instructions in the mailboxes sequentially, starting from mailbox 00.
Since the instruction location counter is reset from outside the mailroom, the user can
restart the program simply by resetting the counter to 00.

Now that we have a method for guiding the Little Man through a program of instruction
steps, let’s consider a simple program that will allow the user outside the mailroom to use
the Little Man Computer to add two numbers together. The user will place two numbers
in the in basket. The sum of the two will appear as a result in the out basket. The question
is what instructions we will need to provide to have the Little Man perform this operation.

INPUT 901
Since the Little Man must have access to the data, the first step, clearly, is to have
the Little Man read the first number from the in basket to the calculator. This
instruction leaves the first number to be added in the calculator.

STORE 99 399
Note that it is not possible for the Little Man to simply read another number into
the calculator. To do so would destroy the first number. Instead, we must first
save the first number somewhere.

Mailbox 99 was chosen simply because it is clearly out of the way of the program.
Any other location that is beyond the end of the program is equally acceptable.

Storing the number at a location that is within the program would destroy the
instruction at that location. This would mean that when the Little Man went to
perform that instruction, it wouldn’t be there.

More seriously, there is no way for the Little Man to distinguish between an
instruction and a piece of data—both are made up of three-digit numbers. Thus,
if we were to store data in a location that the Little Man is going to use as an
instruction, the Little Man would simply attempt to perform the data as though it
were an instruction. Since there is no way to predict what the data might contain,
there is no way to predict what the program might do.

186 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

The concept that there is no way to distinguish between instructions and data
except in the context of their use is a very important one in computing. For
example, it allows a programmer to treat an instruction as data, to modify it, and
then to execute the modified instruction.

INPUT 901
With the first number stored away, we are ready to have the Little Man read the
second number into the calculator.

ADD 99 199
Note that there is no specific reason to save the second number. If we were going
to perform some operation that required the reuse of the second number, it
could be stored somewhere.

In this program, however, we have both numbers in place to perform the
addition. The result is, of course, left in the calculator.

OUTPUT 902
All that remains is for us to have the Little Man output the result to the out basket.

COFFEE BREAK 000
The program is complete, so we allow the Little Man to take a rest.

These instructions are stored sequentially starting from mailbox 00, where the
Little Man will retrieve and execute them one at a time, in order. The program is
reshown in Figure 6.2.

Since we were careful to locate the data outside the program, this program can be

rerun simply by telling the Little Man to begin again.

6.4 AN EXTENDED INSTRUCTION SET

The instructions that we have defined must always be executed in the exact sequence
specified. Although this is sufficient for simple program segments that perform a sequence
of operations, it does not provide any means for branching or looping, both constructs that
you know are very important in programming. Let us extend the instruction set by adding
three more instructions for this purpose:

FIGURE 6.2

Program to Add Two Numbers

BRANCH UNCONDITIONALLY instruction
(sometimes known as JUMP)—op code 6
This instruction tells the Little Man to walk over to
the instruction location counter and actually change

Mailbox code Instruction description the counter to the location shown in the two address
00 901 INPUT digits of the instruction. (Assum.e that the hand.

01 399 STORE DATA counter has thumbwheels for this purpose.) This

02 901 INPUT 2ND # means that the next instruction that the Little Man
03 199 ADD 1ST # TO IT will execute is located at that mailbox address.

04 902 OUTPUT RESULT This instruction is very similar, conceptually, to

05 000 STOP the GOTO instruction in BASIC. Its execution

99 DATA will always result in a break in the sequence to

another part of the program.

EXAMPLE

CHAPTER 6 THE LITTLE MAN COMPUTER 187

Note that this instruction also uses the address digits in an unusual way, since the
Little Man does not use the data at the address specified. Indeed, the Little Man
expects to find an instruction at that address, the next to be performed.

BRANCH ON ZERO instruction—op code 7
The Little Man will walk over to the calculator and will observe the number
stored there. If its current value is zero, he will walk over to the instruction
location counter and modify its value to correspond to the address specified
within the instruction. The next instruction executed by the Little Man will be
located at that address.

If the value in the calculator is not zero, he will simply proceed to the next
instruction in sequence.

BRANCH ON POSITIVE instruction—op code 8
The Little Man will walk over to the calculator and will observe the number
stored there. If its current value is positive, he will walk over to the instruction
location counter and modify its value, to correspond to the address specified
within the instruction. The next instruction executed by the Little Man will be
located at that address.

If the value in the calculator is negative, he will simply proceed to the next
instruction in sequence. Zero is considered to be a positive value.

Note that is it not necessary to provide BRANCH ON NEGATIVE Or BRANCH ON NONZERO
instructions. The instructions supplied can be used together to achieve equivalent
results.

These three instructions make it possible to break from the normal sequential process-
ing of instructions. Instructions of this type are used to perform branches and loops. As an
example, consider the following wHILE-DO loop, common to many programming languages:

WHILE Value=0 DO
Task;
NextStatement

This loop could be implemented using the Little Man BRANCH instruction as follows.
Assume that these instructions are located starting at mailbox number 45 (comments are
provided to the right of each line):

45 LDA 90 590 90 is assumed to contain value
46 BRZ 48 748 Branch if the value is zero
47 BR 60 660 Exitloop; Jump to NextStatement

48 : This is where the task is located
59 BR 45 645 End to Task; loop to test again
60 Next statement

Here is an example of a Little Man program that uses the BRANCH instructions to alter the flow
of the program. This program finds the positive difference between two numbers (sometimes
known as the absolute magnitude of the difference). For convenience, we are introducing
a set of abbreviations for each instruction. These abbreviations are known as mnemenics

188 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 6.3

Little Man Mnemonic Instruction Codes with
Their Corresponding OP Codes

LDA 5xx Load

STO 3xx Store

ADD Ixx Add

SUB 2xx Subtract

IN 901 Input

ouT 902 Output

COB or HLT 000 Coffee break (or Halt)
BRZ 7xx Branch if zero

BRP 8xx Branch if positive or zero
BR 6xx Branch unconditional
DAT Data storage location

(the first “m’’ is silent). Once you learn to read these mnemonics, you'll find that programs
written with mnemonics are generally easy to read. It is more common to write programs this
way. For a while, we will continue to print both the mnemonic and the code, but eventually,
we will stop printing the code. Most programs are also written with comments, which help
to clarify the code. The mnemonic instructions that we will use are shown in Figure 6.3.
The DAT abbreviation is used to indicate that a particular mailbox will be used to store data.
The data may be specified in advance, for example, to use as a constant, or it may be zero if
the particular location is to be used to store the data later, during execution of the program.

The program, shown in Figure 6.4, works as follows: the first four instructions simply
input and store the two numbers. The fifth instruction, in mailbox 04, subtracts the first

FIGURE 6.4
LMC Program to Find Positive Difference of Two
Numbers

00 IN 901

01 STO 10 310

02 IN 901

03 STO 11 311

04 SUB 10 210

05 BRP 08 808 test

06 LDA 10 510 negative; reverse order
07 SuB 11 211

08 OUT 902 print result and

09 COB 000 stop.

10 DAT 00 000 used for data

11 DAT 00 000 “

CHAPTER 6 THE LITTLE MAN COMPUTER 189

number from the second. Instruction 05 tests the result. If the result is positive, all that's
left to do is print out the answer. So, the instruction can be used to branch to the printout
instruction. If the answer is negative, the subtraction is performed in the other order. Then
the result is output, and the Little Man takes his break. Note that if the coB instruction is
omitted (as in forgotten—this is a very common error!), the Little Man will attempt to execute
the data stored in locations 10 and 11. Please study the example until you understand how
it works in every detail.

The nine instructions that make up the instruction set that we have presented are
sufficient to perform the steps of any computer program, although not necessarily in the
most efficient way. It is important for you to realize that, although simplified, the Little Man
instruction set is very similar to the instruction sets that appear in most real computers. In
real computers, as in the Little Man Computer, most instruction steps are involved with
the movement of data between the equivalent of mailbox locations and calculators, with
very simple calculations, and with program branching.

The real computer differs mostly in the variations to these instructions that are pro-
vided, and with the addition of a few instructions that provide programming convenience,
particularly multiplication and division instructions, and also instructions that shift the
data in a word left or right. (Note that the traditional method of performing multiplication
can be done in the computer using sHiFT and ADD instructions.)

We will discuss many of these variations when we look at the instruction sets in some
real computers, in Chapters 7, 8, 11, and Supplementary Chapters 2 and 3.

6.5 THE INSTRUCTION CYCLE

We will refer to the steps that the Little Man takes to perform an instruction as the
instruction cycle. This cycle, which is similar for all the instructions, can be broken into
two parts:

1. The fetch portion of the cycle, in which the Little Man finds out what instruction
he is to execute, and

2. The execute portion of the cycle, in which he actually performs the work specified
in the instruction.

The fetch portion of the cycle is identical for every instruction. The Little Man walks to
the location counter and reads its value. He then goes to the mailbox with the address that
corresponds to that value and reads the three-digit number stored there. That three-digit
number is the instruction to be performed. This is depicted in the drawings of Figure 6.5a.

The fetch portion of the cycle has to occur first: until the Little Man has performed the
fetch operation, he does not even know what instruction he will be executing!

The execute portion of each instruction is, of course, different for each instruction.
But even here, there are many similarities. The first six instructions all require the Little
Man to move data from one place in the mailroom to another. The first four instructions
all involve the use of a second mailbox location for the data.

The LoaD instruction is typical. First, the Little Man fetches the instruction. To perform
the execute phase of the LoAD instruction, the Little Man first looks at the mailbox with the
address that is contained in the instruction. He reads the three-digit number on the slip

190

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 6.5(a)

The Fetch Portion of the Instruction Cycle

333
=t 25[589
[-1-0-1-]
@ AT | (1) The Little Man reads the address
/ ° from the location counter
222
—/
i
333
[-1-0-1-]
-1-1-1-1 589
[=1-1-1-}
A1 | (2). .. walks over to the mailbox that
/ corresponds to the location counter
89[222)
—/
£
333
=aal 7efEs
1T | 3)...and reads the number on the
/ slip of paper. (He then puts the
slip of paper back, in case he
89|222) i i
W=y should need to read it again later.)

of paper in that mailbox and returns the slip of paper to its place. Then he walks over to
the calculator and punches the number into the calculator. Finally, he walks over to the
location counter and increments it. He has completed one instruction cycle and is ready to
begin the next. These steps are shown in Figure 6.5b.

With the exception of the step in which the Little Man increments the location counter,
the steps must be performed in the exact sequence shown. (The location counter can be
incremented anytime after the fetch has occurred.) The fetch steps must occur before the

CHAPTER 6 THE LITTLE MAN COMPUTER 191
FIGURE 6.5(b)

The Execute Portion of the Instruction Cycle (LOAD Instruction)

anm 589
L- | (1) The Little Man goes to the mailbox
address specified in the instruction he
AT previously fetched
_—/
222)
\—/
333
J_ [=D=1=1=]
oEE@ 589
(2) ... he reads the number in that mailbox -
(he remembers to replace it in the case it's o
needed again)
\—/
Ly 222
£
(3) ... he walks over to the calculator and
-/ punches the number in
\—/
207
anam 25[589
T Pl
—~PT
-
(4) . .. finally, he walks over to the location
counter and clicks it, which gets him - 891222
ready to fetch the next instruction

execution steps; within the fetch, the Little Man must look at the location counter before
he can pull the instruction from its mailbox.

Just as the sequence of instructions in a program is important—and you know that
this is true for any language, Pascal, Little Man, or any other—so it is also true that the
steps within each instruction must be performed in a particular order.

Notice that the app and SUBTRACT instructions are almost identical to the rLoaDp
instruction. The only difference occurs during the execute step, when the Little Man enters

192 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

the number into the calculator. In the case of the arithmetic instructions, the Little Man
adds or subtracts the number that he is carrying into the calculator, rather than simply
entering it.

The other instructions are slightly different, although not any more difficult to trace
through and understand. To improve your understanding, you should trace the steps of
the Little Man through the remaining six instructions.

6.6 A NOTE REGARDING COMPUTER
ARCHITECTURES

As we noted in Chapter 1, John von Neumann is usually considered to be the developer of
the computer as we know it today. Between 1945 and 1951 von Neumann set down a series
of guidelines that came to be known as the von Neumann architecture for computers.
Although other experimental computer architectures have been developed and built, the
von Neumann architecture continues to be the standard architecture for computers; no
other architecture has had any commercial success to date. It is significant that, in a
field where technological change occurs almost overnight, the architecture of computers is
virtually unchanged since 1951.
The major guidelines that define a von Neumann architecture include:

B Memory holds both programs and data; this is known as the stored program
concept. The stored program concept allows programs to be changed easily.

B Memory is addressed linearly; that is, there is a single sequential numeric address
for each and every memory location.

B Memory is addressed by the location number without regard to the data
contained within.

Instructions are executed sequentially unless an instruction or an outside event (such as
the user resetting the location counter) causes a branch to occur.

In addition, von Neumann defined the functional organization of the computer to be
made up of a control unit that executes instructions, an arithmetic/logic unit that performs
arithmetic and logical calculations, and memory. The control unit and arithmetic/logic
unit together make up the CPU, or central processing unit.

If you check over the guidelines just given, you will observe that the Little Man
Computer is an example of a von Neumann architecture. In fact, we took care to point
out features of the von Neumann architecture during our discussion of the Little Man
Computer.

SUMMARY AND REVIEW

The workings of the computer can be simulated by a simple model. The Little Man
Computer model consists of a Little Man in a mailroom with mailboxes, a calculator,
and a counter. Input and output baskets provide communication to the outside world.
The Little Man Computer meets all the qualifications of a von Neumann computer
architecture.

CHAPTER 6 THE LITTLE MAN COMPUTER 193

The Little Man performs work by following simple instructions, which are described
by three-digit numbers. The first digit specifies an operation. The last two digits are used
for various purposes, but most commonly to point to an address. The instructions provide
operations that can move data between the mail slots and the calculator, move data between
the calculator and the input and output baskets, perform addition and subtraction, and
allow the Little Man to stop working. There are also instructions that cause the Little Man
to change the order in which instructions are executed, either unconditionally or based on
the value in the calculator.

Both data and instructions are stored in individual mail slots. There is no differentiation
between the two except in the context of the particular operation taking place. The Little
Man normally executes instructions sequentially from the mail slots except when he
encounters a branching instruction. In that case he notes the value in the calculator, if
required, and resumes executing instructions from the appropriate location.

The exact steps performed by the Little Man are important because they reflect closely
the steps performed in a real CPU in executing an instruction.

KEY CONCEPTS AND TERMS

instruction cycle mnemonics

linear memory addressing op code

Little Man Computer stored program concept
(LMC) von Neumann architecture

READING REVIEW QUESTIONS

6.1 Without looking at the book, draw a Little Man Computer. Label each of the
components in your drawing.

6.2 Instructions in the Little Man Computer are three digits, divided into two parts.
Show the format of an LMC instruction.

6.3 Describe, step by step, what the Little Man does to execute a STORE instruction.
6.4 Describe, step by step, what the Little Man does to execute an INPUT instruction.

6.5 Extend the simple program shown in Section 6.3 to accept three inputs from a user,
add them, and output the result.

6.6 If a user wants to enter two numbers, what must the Little Man program do before
she enters the second number? Why?

6.7 Write a Little Man program that accepts two numbers as input and outputs the
numbers in reverse order.

6.8 Write a Little Man program that accepts two numbers as input, subtracts the first
from the second and outputs the result.

6.9 Explain carefully what the Little Man will do when he executes a jump instruction.

6.10 Explain carefully, step by step, what the Little Man will do when he executes a
BRANCH ON ZERO instruction.

6.11 Why is the instruction cycle called a cycle?

194 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

6.12

6.13

6.14

EXERCISES

6.1

6.2
6.3
6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

Even if he runs out of instructions to execute, the Little Man only stops trying to
execute instructions under one condition. What is that condition? What happens
if the Little Man runs out of instructions and that condition is not met?

The instruction cycle is divided into two phases. Name each phase. The first phase
is the same for every instruction. What is the purpose of the first phase that makes
this true? Explain what the Little Man does during the first phase.

What does the Little Man do during the second phase of a COFFEE BREAK Or HALT
instruction?

The steps that the Little Man performs are closely related to the way in which the
CPU actually executes instructions. Draw a flow chart that carefully describes the
steps that the Little Man follows to execute a branch instruction.

Repeat Exercise 6.1 for a subtract instruction.
Repeat Exercise 6.1 for a branch on positive instruction.
What are the criteria that define a von Neumann architecture? How does the

example in this chapter in which we enter and add two numbers illustrate each of
the criteria?

Consider the example in this chapter in which we enter and add two numbers.
Suppose we had stored the first input entry in mailbox location 00. Would the
program have produced the same result? What would have happened if the program
were executed a second time? What characteristic of the computer makes this true?
Write a Little Man program that accepts three values as input and produces the
largest of the three as output.

Write a Little Man program to accept an indefinite number of input values. The
output value will be the largest of the input values. You should use the value 0 as a
flag to indicate the end of input.

Write a Little Man program that accepts three values as input and outputs them
in order of size, largest to smallest. (This is a more challenging variation on
Exercise 6.6.)

Write a Little Man program that adds a column of input values and produces the
sum as output. The first input value will contain the number of values that follow
as input to be added.

Write a Little Man program that prints out the odd numbers from 1 to 99. No
input is required.

Write a Little Man program that prints out the sums of the odd values from 1 to
39. The output will consist of 1, 1+3, 1+3+5,14+3+5+7.... No input is
required.

As an aside, do you notice anything interesting about the output results that are
produced by this series? (Hint: This series is sometimes used as part of an algorithm
for finding square roots of numbers.)

6.12

6.13

6.14

6.15

CHAPTER 6 THE LITTLE MAN COMPUTER 195

The following Little Man program is supposed to add two input numbers, subtract
a third input number from the sum, and output the result, i.e.,

QUT = IN1+ IN2--IN3

mailbox mnemonic code numeric code
00 IN 901
01 STO 99 399
02 IN 901
03 ADD 99 199
04 STO 99 399
05 IN 901
06 SUB 99 299
07 ouT 902
08 COB 000

What is wrong with this program? Modify the program so that it produces the
correct result.

Suppose we have a need to handle both negative and positive data beyond the
simple test in the various conditional branch instructions. One way to do this
would be to replace the subtract instruction with a 10’s complement instruction.
The comp instruction complements the value in the calculator and leaves the value
in the calculator.

a. How would subtraction be performed in this case?

b. Carefully trace the steps that the Little Man would perform to execute the new
COMP 1nstruction.

c. What is the new range of values possible with this modification, and how are
these values represented in the Little Man Computer?

d. What would the Little Man do to execute a BRANCH ON POSITIVE instruction?

The programs that we have discussed in this chapter seem to have appeared in the
mailboxes by magic. Consider a more realistic alternative:

Suppose a small program is permanently stored in the last few mailbox locations.
A BRANCH instruction at location 0, also permanent, will start this program. This
program will accept input values and will store them at consecutive mailbox
locations, starting with mailbox 001. You may assume that these values represent
the instructions and data of a user’s program to be executed. When a 999 is received
as input data, the program jumps to location 001 where it will proceed to execute
the values just entered.

The small program described here is known as a program loader, or, under
certain circumstances as a bootstrap. Write a Little Man program loader. (Hint: It
may be useful to remember that instructions and data are indistinguishable. Thus,
instructions could be treated as if they were data, if necessary.)

Show carefully how you would implement an 1r-ELSE statement using Little Man
instructions.

196

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

6.16
6.17

6.18

6.19

6.20

6.21

Show how you would implement a po-wHILE statement using Little Man instructions.

The input data values in our problems have always been entered in the order that
they were to be used. This is not always possible or convenient. Can you think of a
simple way to accept input data in the wrong order and still use it correctly?
Suppose the Little Man Computer had been implemented as a 16-bit binary
machine. Assume that the binary LMC provides the same instruction set, with the
same op codes (in binary, of course), and the same instruction format (op code
followed by address). How many bits would be required for the op code portion
of the instruction? How many mailboxes could the binary machine accommodate?
What is the range of 2’s complement data that this machine could handle?

The original version of the Little Man Computer used op code 7 (i.e., instruction
700) for a COFFEE BREAK instruction instead of op code 0. What is the advantage of
using 000 for the cos instruction instead of 700? (Hint: Consider what happens if
the programmer forgets to put a cos instruction at the end of a program.)

When we discussed conditional branching we claimed that a BRANCH NEGATIVE
instruction is not necessary. Show a sequence of BRANCH instructions that will cause
a program to branch to location 50 if the value in the calculator is negative.

Show a sequence of instructions that will cause a program to branch to location 75
if the value in the calculator is greater than zero.

CHAPTER 6 THE LITTLE MAN COMPUTER 197

CHAPTER 7

THE CPU AND MEMORY

G)\ . [THNKOFITAS THAT'S THE My BRAIN IS
THE COMPUTER TR | VILLIONS OF TINY | pROBLEM.. WHEN ONE BIG OFF
sasiee P70 AN QRGO | THEAR THE WORD SWITCH

DEVICE, REALLY... \ ; COMPUTER....

SHOE © MACNELLY. DISTRIBUTED BY KING FEATURES SYNDICATE

7.0 INTRODUCTION

The previous chapter provided a detailed introduction to the Little Man model of a
computer. In that chapter we introduced a format, using a three-digit number divided
into op code and address fields, for the instructions that a computer can perform. We
introduced an instruction set that we indicated was representative of those found in a
real computer. We also showed the steps that are performed by the Little Man in order
to execute one of these instructions.

In this chapter and the next we will extend these concepts to the real computer.
Our primary emphasis in this chapter is on the central processing unit (CPU), together
with memory. In the real computer, memory is actually separated both physically
and functionally from the CPU. Memory and the CPU are intimately related in the
operation of the computer, however, and so we will treat memory together with the
CPU for the convenience of our discussion. Since every instruction requires memory
access,! it makes sense to discuss the two together.

We will use the Little Man model and its instruction set as a guideline for our
discussion. The Little Man instruction set is fundamentally similar to the instruction
sets of many different computers. Of course, the Little Man instruction set is based on
a decimal number system, and the real CPU is binary, but this is a detail that won’t
concern us for most of this discussion. The CPU architectural model that we shall
discuss is not based on a particular make and model, but is typical of most computers.
Chapter 8 will discuss the implementation of this model in modern technology.
In Supplementary Chapter 2, we shall look specifically at several popular computer
models.

In this chapter you will see that the execution of instructions in the CPU together
with memory is nearly identical functionally to the Little Man Computer. There is
a one-to-one relationship between the various contents of the mailroom and the
functional components of the CPU plus memory. The major differences occur in the
facts that the CPU instruction set is created using binary numbers rather than decimal
and that the instructions are performed in a simple electronic way using logic based
upon Boolean algebra instead of having a Little Man running around a mailroom.

Sections 7.1 through 7.3 present a systematic introduction to the components of the
CPU and memory, offering a direct comparison with the components of the Little Man
Computer, and focusing on the concept of the register as a fundamental element of CPU
operation. In Section 7.4, we show how simple CPU and memory register operations
serve as the basic mechanism to implement the real computer’s instruction set.

In Section 7.5, we turn our attention to the third major computer system
component, the bus component. Buses provide the interconnection between various
internal parts of the CPU, and between the CPU and memory, as well as providing

Recall that in the LMC every instruction must be fetched from a mailbox to be executed. The same is
true in the real computer.

199

200 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

connections between input and output devices, the CPU, and memory. There are many
different types of buses in a computer system, each optimized for a different type of task.
Buses can connect two components in a point-to-point configuration or may interconnect
several modules in a multipoint configuration. In general, the lines on buses carry signals that
represent data, addresses, and control functions. We consider the general requirements for
a bus, the features, advantages and disadvantages of different types of buses. In Chapter 11,
we will focus on the specific buses that interconnect the various components of a computer
system, and show you the ways in which the buses connect different parts of an entire
computer system together.

In Sections 7.6, 7.7, and 7.8, we return our attention to the CPU to discuss the
characteristics and features of the instruction sets provided in real computers: the different
types of instructions, the formats of instruction words, and the general requirements and
restraints that are required for instruction words.

You already understand from Chapter 6 how simple instructions can be combined to
form the programs that you write. When you complete this chapter, you will have a good
understanding of how those instructions are executed in a computer.

7.1 THE COMPONENTS OF THE CPU

A simplified conceptual block diagram of a CPU with memory is shown in Figure 7.1.>
For comparison purposes, the block diagram for the Little Man Computer is repeated in
Figure 7.2, with labels corresponding to the components in Figure 7.1.

Note the similarities between the two figures. As noted in Chapter 1, the computer
unit is made up conceptually of three major components, the arithmetic/logic unit (ALU),
the control unit (CU), and memory. The ALU and CU together are known as the central
processing unit (CPU). An input/output (I/O) interface is also included in the diagram.
TheI/O interface corresponds in function roughly to the input and output baskets, although
its implementation and operation differ from that of the Little Man Computer in many
respects.

The arithmetic/logic unit is the component of the CPU
where data is held temporarily and where calculations take

FIGURE 7.1 - . .

place. It corresponds directly to the calculator in the Little
System Block Diagram Man Computer.
CPU The control unit controls and interprets the execution
of instructions. It does so by following a sequence of actions
ALU that correspond to the fetch-execute instruction cycle that
int (l,/r?a ce was described in the previous chapter. Most of these actions
] Memory are retrievals of instructions from memory followed by
movements of data or addresses from one part of the CPU
Control unit to another.

" Program counter The control unit determines the particular instruc-
tion to be executed by reading the contents of a program

>This diagram is first attributed to John von Neumann in 1945. As discussed in Chapter 8, current
technology results in a different physical layout for the components in the model; nevertheless, the basic execution
of instructions is still consistent with the original model.

CHAPTER 7 THE CPU AND MEMORY 201

FIGURE 7.2
The Little Man Computer

00]500
ALU—|ooog 011199
gggg Al 02[500
= 03]399
/7‘ —
,/AR/’
95
_J\ 10 96
interface Control 97
unit 98
\—/ 99123
Memory

—r— Pro
gram
<_counter

counter (PC), sometimes called an instruction pointer, which is a part of the control
unit. Like the Little Man’s location counter, the program counter contains the address of
the current instruction or the next instruction to be executed. Normally, instructions are
executed sequentially. The sequence of instructions is modified by executing instructions
that change the contents of the program counter. The Little Man branch instructions
are examples of such instructions. A memory management unit within the control unit
supervises the fetching of instructions and data from memory. The I/O interface is also
part of the control unit. In some CPUs, these two functions are combined into a single bus
interface unit. The program counter in the CPU obviously corresponds to the location
counter in the Little Man Computer, and the control unit itself corresponds to the
Little Man.
Memory, of course, corresponds directly to the mailboxes in the LMC.

7.2 THE CONCEPT OF REGISTERS

Before we discuss the way in which the CPU executes instructions, it is necessary to
understand the concept of a register. A register is a single, permanent storage location
within the CPU used for a particular, defined purpose. A register is used to hold a binary
value temporarily for storage, for manipulation, and/or for simple calculations. Note that
each register is wired within the CPU to perform its specific role. That is, unlike memory,
where every address is just like every other address, each register serves a particular purpose.
The register’s size, the way it is wired, and even the operations that take place in the register
reflect the specific function that the register performs in the computer.

202

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Registers also differ from memory in that they are not addressed as a memory location
would be, but instead are manipulated directly by the control unit during the execution of
instructions. Registers may be as small as a single bit or as wide as several bytes, ranging
usually from 1 to 128 bits.

Registers are used in many different ways in a computer. Depending on the particular
use of a register, a register may hold data being processed, an instruction being executed,
a memory or I/O address to be accessed, or even special binary codes used for some other
purpose, such as codes that keep track of the status of the computer or the conditions
of calculations that may be used for conditional branch instructions. Some registers serve
many different purposes, while others are designed to perform a single, specialized task.
There are even registers specifically designed to hold a number in floating point format,
or a set of related values representing a list or vector, such as multiple pixels in an
image.

Registers are basic working components of the CPU. You have already seen, in
Chapter 6, that the computer is unable to distinguish between a value that is used as a
number in a program and a value that is actually an instruction or address, except in the
context of current use. When we refer to the “data” in a register, we might be talking about
any of these possibilities.

You have already become acquainted with two “registers” in the Little Man Computer,
namely, the calculator and the location counter.

In the CPU, the equivalent to the calculator is known as an accumulator. Even the
short example to add two numbers in Chapter 6 showed that it is often necessary to move
data to and from the accumulator to make room for other data. As a result, modern CPUs
provide several accumulators; these are often known as general-purpose registers. Some
vendors also refer to general-purpose registers as user-visible or program-visible registers
to indicate that they may be accessed by the instructions in user programs. Groups of
similar registers are also sometimes referred to collectively as a register file. General-purpose
registers or accumulators are usually considered to be a part of the arithmetic/logic unit,
although some computer manufacturers prefer to consider them as a separate register unit.
Asin the Little Man Computer, accumulator or general-purpose registers hold the data that
are used for arithmetic operations as well as the results. In most computers, these registers
are also used to transfer data between different memory locations, and between I/O and
memory, again similar to the LMC. As you will see in Chapter 8, they can also be used for
some other similar purposes.

The control unit contains several important registers.

B Asalready noted, the program counter register holds the address of the current
instruction being executed.

B The instruction register (IR) holds the actual instruction being executed
currently by the computer. In the Little Man Computer this register was not
used; the Little Man himself remembered the instruction he was executing. In a
sense, his brain served the function of the instruction register.

The memory address register (MAR) holds the address of a memory location.

B The memory data register (MDR), sometimes known as the memory buffer
register, will hold a data value that is being stored to or retrieved from the
memory location currently addressed by the memory address register.

CHAPTER 7 THE CPU AND MEMORY 203

The last two registers will be discussed in more detail in the next section, when we
explain the workings of memory. Although the memory address register and memory data
register are part of the CPU, operationally these two registers are more closely associated
with memory itself.

The control unit will also contain several 1-bit registers, sometimes known as flags,
that are used to allow the computer to keep track of special conditions such as arithmetic
carry and overflow, power failure, and internal computer error. Usually, several flags are
grouped into one or more status registers.

In addition, our typical CPU will contain an I/O interface that will handle input and
output data as it passes between the CPU and various input and output devices, much like
the LMC in and out baskets. For simplification, we will view the I/O interface as a pair of
I/O registers, one to hold an I/O address that addresses a particular I/O device, the other
to hold the I/O data. These registers operate similarly to the memory address and data
registers. Later, in Chapter 9, we will discuss a more common way of handling I/O that uses
memory as an intermediate storage location for I/O data.

Most instructions are executed by the sequenced movement of data between the
different registers in the ALU and the CU. Each instruction has its own sequence.

Most registers support four primary types of operations:

1. Registers can be loaded with values from other locations, in particular from
other registers or from memory locations. This operation destroys the previous
value stored in the destination register, but the source register or memory
location remains unchanged.

2. Data from another location can be added to or subtracted from the value
previously stored in a register, leaving the sum or difference in the register.

3. Datain a register can be shifted or rotated right or left by one or more bits. This
operation is important in the implementation of multiplication and division.
The details of the shift operation are discussed in Section 7.6.

4. The value of data in a register can be tested for certain conditions, such as zero,
positive, negative, or too large to fit in the register.

In addition, special provision is frequently made to load the value zero into a register,
which is known as clearing a register, and also to invert the Os and 1s (i.e., take the 1’s
complement of the value) in a register, an operation that is important when working with
complementary arithmetic. It is also common to provide for the addition of the value 1
to the value in a register. This capability, which is known as incrementing the register, has
many benefits, including the ability to step the program counter, to count in for loops,
and to index through arrays in programs. Sometimes decrementing, or subtraction of 1, is
also provided. The bit inversion and incrementing operations are combined to form the
2’s complement of the value in a register. Most computers provide a specific instruction
for this purpose, and also provide instructions for clearing, inverting, incrementing, and
decrementing the general-purpose registers.

The control unit sets (“17) or resets (“0”) status flags as a result of conditions that
arise during the execution of instructions.

As an example, Figure 7.3 identifies the programmer-accessible registers in the IBM
System z computers, which includes a variety of IBM mainframe models. Internal registers,
such as the instruction, memory address, and memory buffer registers are not specifically

204 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.3

Programmer-Accessible Registers in IBM zSeries Computers

Register type

Number Size of each in hits Notes

General

Floating point
PSW
Control (+1

32-bit floating
point control)

16 64 For arithmetic, logical, and addressing operations;
adjoining registers may be joined to form up to eight
128-bit registers

16 64 Floating point arithmetic; registers may be joined to
form 128-bit registers

1 128 Combination program counter and status-flag register,
called the Program Status Word (PSW)

16 64 Various internal functions and parameters connected
with the operating system; accessible only to systems
programmers

identified in the table, since they are dependent on the implementation of the particular
model in the series.

7.3 THE MEMORY UNIT

The Operation of Memory

To understand the details of instruction execution for the real CPU, you need first to see
how instructions and data can be retrieved from memory. Real memory, like the mailboxes
in the Little Man Computer, consists of cells, each of which can hold a single value, and
each of which has a single address.

Two registers, the memory address register and the memory data register, act as an
interface between the CPU and memory. The memory data register is called the memory
buffer register by some computer manufacturers.

Figure 7.4 is a simplified representation of the relationship between the MAR, the
MDR, and memory. Each cell in the memory unit holds 1 bit of data. The cells in Figure 7.4
are organized in rows. Each row consists of a group of one or more bytes. Each group
represents the data cells for one or more consecutive memory addresses, shown in the
figure as addresses 000, 001, ... , 2" — 1.

In modern computers, it is common to address 8 bytes at a time to speed up memory
access between the CPU and memory. The CPU can still isolate individual bytes from the
group of eight for its use, however.

The memory address register holds the address in the memory that is to be “opened”
for data. The MAR is connected to a decoder that interprets the address and activates a
single address line into the memory. There is a separate address line for each group of
cells in the memory; thus, if there are n bits of addressing, there will be 2" address lines.
(In actuality, the decoding process is somewhat more complex, involving several levels of
address decoding, since there may be several millions or billions of addresses involved, but
the concept described here is correct.)

CHAPTER 7 THE CPU AND MEMORY 205

FIGURE 7.4
The Relationship Between the MDR, the MAR, and Memory

-<—0ne or more bytes—>-

—{—{—{1—

5 bit 0 000 BRES
k%] o \\ -
a0 3 ~ Individual
” s|eety 0T L memory
4 3 : o cells
5 ° Adqress :
S @ line
: 5
o

<
§ |bitn—1 2"—1
= —{—i——{—-

VLT

Memory data register

The memory data register is designed such that it is effectively connected to every cell
in the memory unit. Each bit of the MDR is connected in a column to the corresponding
bit of every location in memory. However, the addressing method assures that only a single
row of cells is activated at any given time. Thus, only one memory location is addressed at
any one time. A specific example of this is shown in Figure 7.5. (Note that in the drawing
msb stands for most significant bit and Isb for least significant bit.)

FIGURE 7.5
MAR-MDR Example
msb
2 A\ 0
B _
o | [l sl
o
g 8
3 0 2 : ;
2 s | 49 i
= 0 3 A il «Active
g |1 < line
) 63
=

1lsoboo12= -| -| H |_ |_

Memory data register

206

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

As a simple analogy to the operation we’ve just described, consider the memory as
being stored in a glass box, as shown in Figure 7.6. The memory data register has a
window into the box. The viewer, who represents each cell in the memory data register,
can see the cells in corresponding bit position for every location in memory through the
window. The cells themselves are light bulbs that can be turned on (1) or off (0). The
output from the memory address register is passed to an address decoder. The output from
the address decoder in our analogy consists of a series of lines, each of which can light
up the bulbs in a single row of cells. Only one line at a time can be activated—specifically,
the one corresponding to the decoded address. The active line will light the bulbs that
correspond to “ls,” leaving the “0s” dark. The viewer therefore will see only the single
group of cells that is currently addressed by the memory address register. We can extend
the analogy to include a “master switch” that controls all the lights, so that the data can be
read only at the appropriate instant.

A more detailed picture of an individual memory cell is shown in Figure 7.7. Although
this diagram is a bit complicated, it may help to clarify how data is transferred between
the MDR and memory. There are three lines that control the memory cell: an address line,
a read/write line, and an activation line. The address line to a particular cell is turned on
only if the computer is addressing the data within that cell. The read/write line determines
whether the data will be transferred from the cell to the MDR (read) or from the MDR to
the cell (write). This line works by turning on one of two switches in conjunction with the
address line and the activation line. The read switch, R, in the diagram turns on when the

FIGURE 7.6

A Visual Analogy for Memory
OO T e Al cells
& dark

= msb 0

3 LI I

& 1 |3

@ o |3

S 0o |2 a9

° n

® [o]8 g © ;0 yilyi5 0 K18
j N 7
2 1 | 2] 63 5 ’

G) .

= isb

110001, = 49,

Memory data register

CHAPTER 7 THE CPU AND MEMORY 207

FIGURE 7.7
An Individual Memory Cell

address line = “1 W‘\ READ
> AND

activate line = “1” SWITCH, R
R/W line = “1"” (read)

Data read
ONE
MEMORY when READ

when WRITE
SWITCH is ON

address line = “1” w\ WRITE
activate line = “1” AND 5 SWITCH, W
R/W line = “0” (write)

'/

Data written T

MDR line

address line and the activation line are both on (on is usually represented by 1, off by 0),
and the read/write line is set to read; the switch then connects the output of the cell to the
MDR line. The write switch, W, works similarly; switch W turns on when the address line
and activation line are both on and the read/write switch is set to write. Switch W connects
the MDR line to the input of the cell, which transfers the data bit on the MDR line to the
cell for storage. Note that only one switch, at most, can be on at a given time.

The interaction between the CPU and the memory registers takes place as follows: to
retrieve or store data at a particular memory location, the CPU copies an address from
some register in the CPU to the memory address register. Note that addresses are always
moved to the MAR; there would never be a reason for an address transfer from the MAR to
another register within the CPU, since the CPU controls memory transfers and is obviously
aware of the memory address being used. At the same time that the MAR is loaded, the
CPU sends a message to the memory unit indicating whether the memory transfer is a
retrieval from memory or a store to memory. This message is sent by setting the read/write
line appropriately.

At the appropriate instant, the CPU momentarily turns on the switch that connects
the MDR with the register by using the activation line, and the transfer takes place between
memory and the MDR. The MDR is a two-way register. When the instruction being
executed is to store data, the data will be transferred from another register in the CPU
to the MDR, and from there it will be transferred into memory. The original data at that

208

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

location will be destroyed, replaced by the new data from the MDR. Conversely, when the
instruction is to load data from memory, the data is transferred from memory to the MDR,
and it will subsequently be transferred to the appropriate register in the CPU. In this case,
the memory data are left intact, but the previous data value in the MDR is replaced by the
new data from memory.

Memory Capacity

The number of possible memory locations in the Little Man Computer, one hundred
locations, was established by the two-digit address space in each instruction. The location
counter also addresses one hundred locations. There is no memory address register per
se, but the Little Man is certainly aware that each memory location requires two digits. In
theory, a larger location counter, say, three digits, would allow the Little Man to fetch more
instructions, but notice that his data fetches and stores are still limited to the one hundred
locations that the two digits of the address field in the instruction word can address.

Similarly, there are two factors that determine the capacity of memory in a real
computer. The number of bits in the memory address register determines how many
different address locations can be decoded, just as the two-digit addresses in the Little
Man Computer resulted in a maximum of one hundred mailboxes. For a memory address
register of width k bits, the number of possible memory addresses is

M= 2k

The other factor in establishing memory capacity is of course the number of bits in the
address field of the instruction set, which establishes how many memory locations can be
directly addressed from the instruction.

In the Little Man Computer, we have assumed that these two size factors are the same,
but in a real computer, that is not necessarily the case. Even if the size of the instruction
address field is sufficient to support a larger amount of memory, the number of physical
memory locations is, in fact, determined by the size of the memory address register. There
are also other ways of extending the addresses specified within instructions so that we can
reach more addresses than the size of the instruction address field would allow. Just to give
you one common method, consider a computer that can use one of the general-purpose
registers to hold an address. To find a memory location, the computer would use the value
in that register as a pointer to the address. Instead of an address field, the instruction needs
only to indicate which register contains the address. Using this technique, the addressing
capability of the computer is determined by the size of the register. For example, a computer
with 64-bit registers could address 2°4 addresses if the MAR were wide enough. Such an
extension would suggest that the MAR, and thus the actual memory capacity, is normally
at least as large as the instruction address field, but it may be much larger. There is a
brief discussion of simple addressing methods in Chapter 8. Additional, more sophisticated
addressing methods are presented in Supplementary Chapter 3.

Ultimately, the width of the MAR determines the maximum amount of addressable
memory in the computer. Today, a typical memory address register will be at least 32 bits
wide, and probably much wider. Many modern CPUs support 64-bit memory addresses.
A 32-bit memory address allows a memory capacity of 4 gigabytes (GB) (4 x 107 byte-size
spaces), whereas 64 bits allows a memory capacity of 16 x 10'® bytes (16 exabytes or

CHAPTER 7 THE CPU AND MEMORY 209

16 billion gigabytes). In modern computers, the ultimate size of memory is more likely
limited by physical space for the memory chips or by the time required to decode and
access addresses in a large memory, rather than by the capability of the CPU to address
such a large memory.

Of course the size of memory also affects the speed of access. The time needed for the
address decoder to identify a single line out of four billion is necessarily larger than that
required for a memory that is much smaller.

As an aside, it is worth noting that early models of IBM’s largest mainframe computer
systems had a total memory capacity of only 512 KB, (1/4000th the memory of a typical
modern PC with 2 GB of memory!) and that the original IBM PC came supplied with 64 KB
of memory, with a maximum capacity of 640 KB. In fact, Bill Gates, of Microsoft, was
quoted at the time as saying that he could see no need for more than 640 KB of memory,
ever!

The size of the data word to be retrieved or stored in a single operation is determined
by the size of the memory data register and by the width of the connection between memory
and the CPU. In most modern computers, data and instructions found in memory are
addressed in multiples of 8-bit bytes. This establishes the minimum instruction size as 8
bits. Most instructions cannot fit practically into 8 bits. If one were to allow 3 bits for
the op code (eight instruction types), only 5 bits remain for addressing. Five bits allows
25 = 32 different addresses, which is clearly insufficient address space. As a result, longer
instructions of 16, 24, 32, or even more bits will be stored in successive memory locations.
In the interest of speed, it is generally desirable to retrieve an entire instruction with a
single fetch, if possible. Additionally, data to be used in arithmetic calculations frequently
requires the precision of several bytes. Therefore, most modern computer memories are
designed to allow the retrieval or storage of at least 4 and, more commonly, 8 or even 16,
successive bytes in a single operation. Thus, the memory data register is usually designed
to retrieve the data or instruction(s) from a sequence of several successive addresses all at
once, and the MDR will be several bytes wide.

Primary Memory Characteristics and Implementation

Through the history of computing there have been several different types of primary
memory used, reflecting the technology and the system requirements and capabilities of
the times. In the 1960s and 1970s, the dominant technology was magnetic core memory,
which used a tiny core of magnetic material to hold a bit of data, and the largest machines
might have had 512 KB of memory. Today, the primary memory in most computer systems
is dynamic RAM, and most machines have 1 GB of memory, or more. RAM is an acronym
that stands for random access memory, which is a slight misnomer, since other types of
semiconductor memory can also be accessed randomly (i.e., their addresses can be accessed
in any order). A more appropriate name would be read-write memory.

Memory today is characterized by two predominant operational factors and by a num-
ber of technical considerations. Operationally, the most important memory characteristic
is whether the memory is read-write capable or read-only. Almost as important is whether
the memory is volatile or nonvolatile. Nonvolatile memory retains its values when power
is removed. Volatile memory loses its contents when power is removed. Magnetic core
memory was nonvolatile. RAM is volatile.

210

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Important technical considerations include the speed of memory access, the total
amount of memory that can be addressed, the data width, the power consumption and
heat generation, and the bit density (specified as the number of bits per square centimeter).
Cost is an additional factor.

Most current computers use a mix of static and dynamic RAM for memory. The
difference between static and dynamic RAM is in the technical design and is not of
importance here. However, dynamic RAM is less expensive, requires less electrical power,
generates less heat, and can be made smaller, with more bits of storage in a single integrated
circuit. Dynamic RAM also requires extra electronic circuitry that “refreshes” memory
periodically; otherwise the data fades away after a while and is lost. Static RAM does not
require refreshing. Static RAM is also faster to access than dynamic RAM and is therefore
useful in very-high-speed computers and for small amounts of high-speed memory, but
static RAM is lower in bit density and more expensive. Both dynamic and static RAM are
volatile: their contents are lost when power is turned off.

At the time of this writing, dynamic RAM is standard for most applications. The
amount of data that can be stored in a single dynamic RAM chip has increased rapidly in
the past few years, going from 64 Kilobits(Kb) to 512 Megabits (Mb) in fewer than fifteen
years. Currently, most systems are built with chips that can hold 256 or 512 Mb of data.
These chips are also designed to be packaged together in convenient plug-in packages that
can supply 1-2 gigabytes of memory, or more, in a single unit. 1 gigabit (Gb) and 2 Gb
RAM chips are also in production, but have not yet replaced 512 Mb chips for most system
applications, with the exception of mainframe systems. Most modern systems also provide
a small amount of static RAM memory that is used for high-speed access. This memory is
known as cache memory. The use of cache memory is discussed in Chapter 8.

Although current RAM technology is fast, inexpensive, and efficient, its volatility
makes some applications difficult or impossible. For example, nonvolatile RAM would
make it possible to shut off a computer without losing the programs and data in memory.
This would make it possible to restart the computer into its previous state without
rebooting, would eliminate the undesirable effects of power failures and laptop battery
discharge, and would simplify the use of computers in situations where power conservation
is critical, such as in long distance space missions. The desire for nonvolatile RAM has led
to considerable research on alternative technologies for creating and producing nonvolatile
RAM.

There are a small number of memory technologies in current use that are capable
of nonvolatile random access, but none in current large-scale production is capable of
replacing standard SRAM and DRAM for use in primary memory. Foremost among these
technologies is flash memory. Flash memory uses a concept called hot carrier injection to
store bits of data. Flash memory allows rewriting of cells by erasing groups of memory
cells selectively, and then writing the new pattern into the cells. Flash memory serves as
an inexpensive form of nonvolatile storage for portable computer storage, digital cameras.
MP3 players, and other electronic devices; however it is unsuitable for primary memory
because the rewrite time is extremely slow compared to standard RAM and the number
of rewrites over the lifetime of the ROM is somewhat limited. Flash memory is viewed
primarily as a potential replacement for slow long-term storage devices such as magnetic
disks and CD or DVD devices, although the significantly higher cost of flash memory is
still a factor at this point in time.

CHAPTER 7 THE CPU AND MEMORY 211

A number of nonvolatile memory technologies that might be capable of replacing
traditional RAM appear to be nearing production. These include magnetorestrictive
RAM (MRAM), ferroelectric RAM (FeRAM), phase-change RAM (PRAM), and carbon
nano[tube] RAM (NRAM). You will probably be reading about one or more of these in the
future.

ROM, or read-only memory, is used for situations where the software is built
semi-permanently into the computer, is required as part of the computer’s software,
and is not expected to change over the life of the computer, except perhaps very infre-
quently. Bootstrap programs and basic I/O system drivers fall into this category. Early
ROM memory was made up of integrated circuits with fuses in them that could be blown.
These fuses were similar to, but much smaller than, the fuses that you might have in your
home. A blown fuse might represent a “0,” an intact fuse a “1.” Modern ROM memo-
ries use a different technology, such as EEPROM or flash memory. EEPROM (Erasable
Electrically Programmable ROM) uses a concept called Fowler-Nordheim tunneling to
achieve rewritability. Because of its cost, need for special circuitry, and speed, EEPROM
has mostly been replaced by flash memory. Regardless of technology, ROM is nonvolatile.
Thus, although electrical power is required to access the data, the data remains consistent
with or without power.

7.4 THE FETCH-EXECUTE INSTRUCTION CYCLE

The fetch-execution instruction cycle is the basis for every capability of the computer.
This seems like a strong statement, but think about it: the purpose of the computer is
to execute instructions similar to those that we have already introduced. And, as you’ve
already seen from the Little Man Computer, the operation of every instruction is defined
by its fetch-execute instruction cycle. Ultimately, the operation of a computer as a whole
is defined by the primary operations that can be performed with registers, as explained in
Section 7.2: to move data between registers, to add or subtract data to a register, to shift
data within a register, and to test the value in a register for certain conditions, such as
negative, positive, or zero.

With the importance of the instruction cycle in mind, we can consider how these
few operations can be combined to implement each of the instructions in a computer.
The registers that will be of the most importance to us for this discussion will be the
general-purpose registers or accumulators used to hold data values between instructions
(A or GR), the program counter (PC), which holds the address of the current instruction,
the instruction register (IR), which will hold the current instruction while it is being
executed, and the memory address and data registers (MAR and MDR), used for accessing
memory.

To begin, review carefully the steps that the Little Man took to execute an instruction.
(You may want to read Section 6.6 again to refresh your memory.) You will recall that
there were two phases in the process. First, the Little Man fetched the instruction from
memory and read it. This phase was identical for every instruction. Then, he interpreted
the instruction and performed the actions required for that particular instruction.

He repeated this cycle endlessly, until he was given the instruction to stop.

The fetch-execute instruction cycle in a CPU works similarly. As noted, much of the
procedure consists of copying data from one register to another. You should always be

212

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

aware that data copying does not affect the “from” register, but it obviously replaces the
previous data in the “to” register with the new data being copied.

Remember that every instruction must be fetched from memory before it can
be executed. Therefore, the first step in the instruction cycle always requires that the
instruction must be fetched from memory. (Otherwise, how would the computer know
what instruction to perform?) Since the address of the current instruction to be executed is
identified by the value in the program counter register, the first step will be to transfer that
value into the memory address register, so that the computer can retrieve the instruction
located at that address.

We will use the following notation to indicate the transfer of a data value from one
register to another:

REG, — REGy
Then, in this notation, the first step in the execution of every instruction will be
(step1) PC — MAR

As explained in the description of memory, this will result in the instruction being
transferred from the specified memory location to the memory data register. The next step
is to transfer that instruction to the instruction register:

(step2) MDR — IR

The instruction register will hold the instruction through the rest of the instruction
cycle. It is the particular instruction in the IR that will control the particular steps that make
up the remainder of the cycle. These two steps comprise the fetch phase of the instruction
cycle.

The remaining steps are, of course, instruction dependent. Let us consider the steps
required to complete a LOAD instruction.

The next thing that the Little Man did was to read the address part of the Loap
instruction. He then walked over to the mailbox specified by that address, read the data,
and copied it into the calculator. The real CPU will operate similarly, substituting register
transfers for the Little Man, of course. Thus,

(step3) IR[address] — MAR

The notation IR [address] is used to indicate that only the address part of the contents
of the instruction register is to be transferred. This step prepares the memory module to
read the actual data that will be copied into the “calculator,” which in this case will be the
accumulator:

(step4) MDR — A

The CPU increments the program counter, and the cycle is complete and ready to
begin the next instruction (actually this step can be performed any time after the previous
instruction is retrieved, and is usually performed early in the cycle in parallel with other
steps).

(step5) PC+1 — PC

Notice the elegant simplicity of this process! The LoaD instruction requires only five
steps. Four of the steps simply involve the movement of data from one register to another.

EXAMPLE

CHAPTER 7 THE CPU AND MEMORY 213

The fifth step is nearly as simple. It requires the addition of the value 1 to the contents
of a register, and the new value is returned to the same register. This type of addition is
common in computers. In most cases, the result of an addition or subtraction is returned
to one of the original registers.

The remaining instructions operate similarly. Compare, for example, the steps required
to perform the store and the ApD instructions with those of the LoD instruction, discussed
earlier.

The sTORE instruction

PC — MAR

MDR — IR

IR [address] — MAR
A — MDR

PC+1— PC

The ADD instruction
PC — MAR
MDR — IR
IR [address] — MAR
A+ MDR — A
PC+1— PC

Study these examples carefully. For practice, relate them to the steps the Little Man
performs to execute the corresponding instruction. Notice that the only step that changes
in these three instructions is the fourth step.

The fetch-execute cycles for the remaining instructions are left as an exercise (see
Exercise 7.5 at the end of this chapter).

The following example, with comments, recaps the above discussion in the context of
a three-instruction program segment that loads a number from memory, adds a second
number to it, and stores the result back to the first memory location. Note that each
instruction is made up of its corresponding fetch-execute cycle. The program segment is
executed by processing each step of each fetch-execute cycle in sequence.

Assume that the following values are present just prior to execution of this segment:

Program Counter: 65

Value in Mem Location 65: 590 (Loap 90)
Value in Mem Location 66: 192 (AbD 92)
Value in Mem Location 67: 390 (sTore 90)
Value in Mem Location 90: 111

Value in Mem Location 92: 222

1st instruction Loap 90: PC — MAR MAR now has 65
MDR — IR IR contains the instruction: 590
————————————— <« end of fetch
IR [address] — MAR MAR now has 90, the location of the

data
MDR — A Move 111 from MDR to A
PC+1— PC PC now points to 66.

end of execution, end of first instruction

214 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

7.5 BUSES

2nd instruction AbD 92: PC — MAR MAR now contains 66
MDR — IR IR contains the instructions: 192
------------- <« end of fetch
IR [address] — MAR MAR now has 92
A+ MDR — A 111+222=333 in A
PC+1— PC PC now points to 67

end of execution, end of second instruction

3rd instruction sTore 90: PC — MAR MAR now contains 67
MDR — IR IR contains 390
------------- <« end of fetch
IR [address] — MAR MAR now holds 90

A — MDR The value in A, 333, moves to mem
location 90
PC+1— PC PC now points to 68

end of execution, end of third instruction

<« ready for next instruction

Bus Characteristics

You have already seen that instructions are executed within the CPU by moving “data”
in many different forms from register to register and between registers and memory. The
different forms that the “data” can take include instructions and addresses, in addition to
actual numerical data. “Data” moves between the various I/O modules, memory, and the
CPU in similar fashion. The physical connection that makes it possible to transfer data
from one location in the computer system to another is called a bus. From our previous
discussion of the way that the CPU and memory work together, it is probably already
obvious to you that there must be a bus of some kind linking the CPU and memory;
similarly, buses internal to the CPU can be used to link registers together at the proper
times to implement the fetch-execute cycles introduced in Section 7.4.

Specifically, a bus may be defined as a group of electrical, or, less commonly, optical,
conductors suitable for carrying computer signals from one location to another. The
electrical conductors may be wires, or they may be conductors on a printed circuit. Optical
conductors work similarly, using light that is directed from point to point in special thin
clear glass fibers. Optical conductors can carry data much faster than electrical conductors,
but their cost is high, which has limited their use to date. Nonetheless, there is considerable
lab research into ways to integrate more optical circuits into computers.

Buses are used most commonly for transferring data between computer peripherals
and the CPU, for transferring data between the CPU and memory, and for transferring data
between different points within the CPU. A bus might be a tiny fraction of an inch long,
carrying data between various parts of the CPU within an integrated circuit chip; it might
be a few inches long, carrying data between the CPU chip and memory; it might even be

CHAPTER 7 THE CPU AND MEMORY 215

hundreds of feet long, carrying data between different computers connected together in a
network.

The characteristics of buses are dependent on their particular use within the computer
environment. A bus can be characterized by the number of separate wires or optical
conductors in the bus; by its throughput, that is, the data transfer rate measured in bits
per second; by the data width (in bits) of the data being carried; by the number and type
of attachments that the bus can support; by the distance between the two end points; by
the type of control required; by the defined purpose of the bus; by the addressing capacity;
by whether the lines on the bus are uniquely defined for a single type of signal or shared;
and by the various features and capabilities that the bus provides. The bus must also be
specified electrically and mechanically; by the voltages used; by the timing and control
signals that the bus provides, by the protocol used to operate and control the bus, by the
number of pins on the connectors, if any; even by the size of the cards that plug into the
connector. A bus would not be very useful if the cards that it was to interconnect did not fit
into the space allotted! Unfortunately for the concept of standardization, there are dozens
of different buses in use, although a few are far more common than others.

The need to characterize buses comes from the necessity of interfacing the bus to
other components that are part of the computer system. Buses that are internal to the CPU
are usually not characterized formally at all, since they serve special purposes and do not
interface to the outside world. Buses that are used in this way are sometimes known as
dedicated buses. Buses that are intended for more general use must have a well-defined
standard; standard buses generally have a name. PCI Express, USB, IDE, and SATA are all
examples of named buses.

Each conductor in the bus is commonly known as a line. Lines on a bus are often
assigned names, to make individual lines easier to identify. In the simplest case, each line
carries a single electrical signal. The signal might represent one bit of a memory address,
or a sequence of data bits, or a timing control that turns a device on and off at the proper
time. Sometimes, a conductor in a bus might also be used to carry power to a module. In
other cases, a single line might represent some combination of functions.

The lines on a bus can be grouped into as many as four general categories: data,
addressing, control, and power. Data lines carry the “data” that is being moved from one
location to another. Address lines specify the recipient of data on the bus. Control lines
provide control and timing signals for the proper synchronization and operation of the bus
and of the modules and other components that are connected to the bus. A bus connecting
only two specific 32-bit registers within a CPU, for example, may require just thirty-two
data lines plus one control line to turn the bus on at the correct time. A backplane that
interconnects a 64-bit data width CPU, a large memory, and many different types of
peripherals might require many more than a hundred lines to perform its function.

The bus that connects the CPU and memory, for example, needs address lines to pass
the address stored in the MAR to the address decoder in memory and data lines to transfer
data between the CPU and the memory MDR. The control lines provide timing signals
for the data transfer, define the transfer as a read or write, specify the number of bytes to
transfer, and perform many other functions.

In reality, all of the lines except for the power lines in a bus can be used in different
ways. Each line in a bus may serve a single, dedicated purpose, such as a bus line that carries
the twelfth bit of an address, for example. Alternatively, a line may be configured to serve

216

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

different purposes at different times. A single line might be used to carry each of the bits of
an address in sequence, followed by the bits of data, for example. At their two extremes,
buses are characterized as parallel or serial. By definition, a parallel bus is simply a bus
in which there is an individual line for each bit of data, address, and control being used.
This means that all the bits being transferred on the bus can be transferred simultaneously.
A serial bus is a bus in which data is transferred sequentially, one bit at a time, using a
single data line pair. (A data return line is required to complete the circuit, just as there are
two wires in a standard 110-volt power circuit. Multiple data lines can share the same data
return line, commonly known as a ground line, but in some cases it is possible to reduce
noise and other interference by using a separate return line for each data line.)

A bus line may pass data in one direction only, or may be used to pass data in both
directions. A unidirectional line is called a simplex line. A bidirectional line may carry
data one direction at a time, in which case it is called a half-duplex line, or in both
directions simultaneously, known as a full-duplex line. The same nomenclature is also
used to describe data communication channels, because, ultimately, the basic concepts of
bus lines and communication channels are essentially similar.

Buses are also characterized by the way that they interconnect the various components
to which they are attached. A bus that carries signals from a single specific source to a single
specific destination is identified as a point-to-point bus. Point-to-point buses that connect
an external device to a connector are often referred to as cables, as in a printer cable or a
network cable. Thus, the cable that connects the USB port in a personal computer from the
computer to a printer is an example of a point-to-point bus. The internal connectors into
which external cables can be plugged are often called ports. Typical ports on a personal
computer might include parallel printer ports, network ports, USB ports, and firewire
ports.

Alternatively, a bus may be used to connect several points together. Such a bus is known
as a multipoint bus, or sometimes as a multidrop bus. It is also referred to as a broadcast
bus, because the signals produced by a source on the bus are “broadcast” to every other
point on the bus in the same way as a radio station broadcasts to anyone who tunes in. The
bus in a traditional Ethernet network is an example of a broadcast bus: the signal being sent
by a particular computer on the network is received by every other computer connected
to the network. (The operation of Ethernet is discussed in Chapter 13.) In most cases, a
multipoint bus requires addressing signals on the bus to identify the desired destination
that is being addressed by the source at a particular time. Addressing is not required with a
point-to-point bus, since the destination is already known, but an address may be required
if the message is being passed through the destination point to another location. Addressing
is also not required for a multipoint bus where the signal is actually intended to reach all
the other locations at once; this is sometimes the case for buses that are internal to the CPU.
Addressing may be integral to the lines of the bus itself, or may be part of the protocol that
defines the meaning of the data signals being transported by the bus.

Typical point-to-point and multipoint bus configurations are illustrated in Figure 7.8

A parallel bus that carries, say, 64 bits of data and 32 bits of address on separate
data and address lines would require a bus width of 96 lines, even before control lines
are considered. The parallel bus is characterized by high throughput capability because all
the bits of a data word are transferred at once. Virtually every bus internal to the CPU
is a parallel bus, since the high speed is essential to CPU operation. Also most internal

CHAPTER 7 THE CPU AND MEMORY 217

FIGURE 7.8

Point-to-Point and Multipoint Buses

Serial — Computer Computer
port ——— Modem I -
11 |
Computer Printer
Control
unit ALU
CPU Memory

_ Examplles of Disk ’—J |;
point-to-point buses 1S Video

controller
|— controller

Examples of
multipoint buses

operations and registers are inherently parallel, and the use of serial buses would require
additional circuitry to convert the parallel data to serial and back again. Until recently, the
buses that connected the CPU with memory and various high speed I/O modules such as
disk and display controllers were also parallel, for similar reasons.

The parallel bus does have a number of disadvantages, though. Parallel buses are expen-
sive and consume a considerable amount of space. Connectors used with parallel buses are
also expensive because of the large number of pins involved. External parallel buses, such
as printer cables are also expensive because of the large number of lines required. More
seriously, parallel buses are subject to radio-generated electrical interference between the
different lines at high data transfer rates. The higher the data rate, the worse the interference,
which ultimately limits the speed at which the parallel bus can operate. Additionally, there
is a slight difference in time delay on different lines, known as skew, as signals traverse the
bus. The transfer rate, and thus the clock speed of the bus, is also limited by the requirement
that the data must not change faster than the maximum skew time. Both of these problems
can cause data corruption. Finally, the cost of fiber optic technology makes a parallel optical
cable impractical.

Data on a serial bus is transferred sequentially, one bit at a time. Although you might
think that the throughput of a serial bus would be lower than that of a parallel bus
theoretically capable of the same per line transfer rate, the limitations noted above make
serial bus transmission attractive in many circumstances. Indeed, with advances in serial
bus technology, serial buses are now preferred for many, if not most, applications requiring
high data transfer rates.

Generally, a serial bus has a single data line pair and perhaps a few control lines. (For
simultaneous two-way communication, a second data line pair can be added.) There are

218

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.9

Alternative Bus Notations

16 16

—r— | 0=

no separate address lines in a serial bus. Serial buses are often set up for point-to-point
connection; no addressing is required in this case. If addressing is required in a serial bus
application, the address may be multiplexed with the data. What this means is that the same
line is used for both address and data at different times; if an address is required, for example,
the address might be sent first, one bit at a time, followed by the data. At its simplest, the
serial bus can be reduced to a single data line pair, used for data, control, and addressing.
Using modern materials such as fiber optics, very high transfer rates may be achieved.
In general, control is handled using a bus protocol that establishes agreement as to the
meaning and timing of each signal on the line among the components connected to the line.

It is also possible to design a parallel bus that multiplexes addresses and data on the
same lines, as the PCI bus does, or multiplexes 32-bit data on sixteen data lines, for example.
For example, the Pentium 4 multiplexes 128-bit data words to fit a 64-bit data path on the
Pentium system bus.

To use a bus, the circuits that are connected to the bus must agree on a bus protocol.
Recall from Chapter 1 that a protocol is an agreement between two or more entities that
establishes a clear, common path of communication and understanding between them. A
bus protocol is simply a specification that spells out the meaning of each line and each
signal on each line for this purpose. Thus, a particular control line on a bus might be
defined as a line that determines if the bus is to be used for memory read or memory write.
Both the CPU and memory would have to agree, for example, that a “0” on that particular
line means “memory read” and a “1” on the line means “memory write”. The line might
have a name like MREAD/MWRITE, where the bar over MWRITE means that a “0” is the
active state. The bar itself stands for “NOT”.?

Buses are frequently notated on diagrams using widened lines to indicate buses.
Sometimes a number is also present on the diagram. The number indicates the number of
separate lines in the bus. Two alternative ways of notating buses in diagrams are shown in
Figure 7.9.

7.6 CLASSIFICATION OF INSTRUCTIONS

Nearly every instruction in a computer performs some sort of operation on one or more
source data values, which results in one or more destination data values. The operation
may be a move or load, it may be an addition or subtraction, it may be an input or output,
or it may be one of many other operations that we have already discussed.

3A pound sign (#) following the name is sometimes used to stand for “NOT” instead.

CHAPTER 7 THE CPU AND MEMORY 219

Actually, if you think about the classes of instructions that we have discussed, you will
realize that there are only a very few instructions that do not operate on data. Some of these
are concerned with the flow of the program itself, such as unconditional jump instructions.
There are also instructions that control the administration of the computer itself; the only
example in the Little Man Computer instruction set is the COFFEE BREAK or HALT that causes
the computer to cease executing instructions. Another example on many computers is the
NO OPERATION instruction that does nothing but waste time (which can be useful when a
programmer wants to create a time delay for some reason).

Most modern computers also provide instructions that aid the operating system
software in its work, by providing security, controlling memory access, and performing
other functions. Because the operating system will frequently be controlling many tasks
and users, these instructions must not be available to the users’ application programs.
Only the operating system can execute these instructions. These instructions are known as
privileged instructions. The HALT instruction is usually a privileged instruction, because
you would not want an individual user to stop the computer while other users are still in
the middle of their tasks.

Computer manufacturers usually group the instruction set into various categories
of instructions, such as data movement instructions, arithmetic instructions, shift and rotate
instructions, input/output instructions, conditional branch instructions, jump instructions,
and special-purpose instructions.

Within each category, the instructions usually have a similar instruction word format,
support similar addressing modes, and execute in a similar way. A typical instruction set,
divided into eight categories, appears in Figure 7.10. This figure represents nearly all the
user-accessible instructions in the Motorola 68000 series of microprocessors used in early
Apple Macintosh computers.* The privileged instructions are not listed in the diagram,
nor are exception-handling instructions that are used primarily by system programmers.
These constitute an additional two categories for the 68000 series CPUs. Incidentally, notice
that this CPU does not have any I/O instructions. That is because the CPU is designed
in such a way that the move instructions can also be used for I/O. Notice particularly
that, except for the lack of I/O instructions, the categories conform fairly well to the
Little Man Computer instruction set. The additional instructions in this CPU are mostly
variations on instructions that are familiar to you plus special control instructions. The
68000 series CPUs also support a math coprocessor, which adds a category of floating point
arithmetic instructions. The floating point math instructions are built directly into 68000
series processors starting with the 68040 CPU.

Data Movement Instructions (Loap, store, and Other Moves)

Because the move instructions are the most frequently used, and therefore the most basic
to the computer, computer designers try to provide a lot of flexibility in these instructions.
The MoVE category commonly includes instructions to move data from memory to general
registers, from general registers to memory, between different general registers, and, in

4 Although the 68000 CPU series is old, it is still used in embedded computer systems. It was selected for this
illustration because of its clean design, with few extraneous bells and whistles.

220

FIGURE 7.10
68000 Instruction Set

Mnemonic Operation Mnemonic Operation
Data Movement Instructions Shift and Rotate Instructions
CAS* Compare and swap with operand ASL Arithmetic shift register left
CAS2* Compare upper/lower and swapASR ASR Arithmetic shift right
EXG Exchange registers LSL Logical shift left
LEA Load effective address LSR Logical shift right
LINK Link and allocate stack ROL Rotate left
MOVE Move src to dst ROR Rotate right
MOVE16 Move src to dst (68030-68060 only) ROXL Rotate left with extend bit
MOVEA Move src to address register ROXR Rotate right with extend bit
MOVEM Move multiple registers at once SWAP Swap words of a long word
MOVEP Move to peripheral
MOVEQ Move short data to dst Bit Manipulation Instructions
PEA Push effective address to stack BCHG Change bit
UNLK Unlink stack BCLR Clear bit
BTEST Set bit
Integer Arithmetic Instructions BTST Test bit
ADD Add src to dst
ADDA Add src to address register Bit Field Instructions
ADDI Add immediate data to dst BFCHG* Change bit field
ADDQ Add short data to dst BFCLR* Clear bit field
ADDX Add with extend bit to dst BFEXTS* Extract and sign extend bit field
SUB, SUBA, Subtracts act similarly to adds BFEXTU* Extract and zero extend bit field
SUBI, SUBQ, BFFFO* Find first set bit in bit field
SUBX BFINS* Insert bit field
MULS Signed multiply BFSET* St bit field
MULU Unsigned multiply BFTST* Tesit (5t Gl
DIVS Signed divide
DIVU Unsigned divide Binary Coded Decimal Instructions
DIVSL* Long signed divide ABCD Add src to dst
DIVUL* Unsigned long divide NBCD Negate destination
CLR Clear value in register PACK* Pack src to dst
CMP Compare src to dst SBCD* Subtract src from dst
CMPA Compare src to address register UNPK* Unpack src to dst
CMPI Compare immediate data to dst
CMPM Compare memory Program Flow Instructions
CMP2* Compare register to upper/lower bounds ~ Bcc Branch on condition code cc
EXT Sign extend BRA Branch unconditionally
EXTB Sign extend byte BSR Branch to subroutine
NEG Negate register CALLM* Call module
NEGX Negate with extend DBcc Test, decrement, and branch on condition
JMP Jump to address
Boolean Logic Instructions JSR Jump to subroutine
AND AND src to dst NOP No operation
ANDI AND immediate data to dst RTD* Return and deallocate stack (also 68010)
EOR Exclusive OR src to dst RTE Return from exception (privileged)
EORI Exclusive OR immediate data to dst RTM* Return from module
NOT NOT destination RTR Return and restore condition codes
OR OR src to dst RTS Return from subroutine
ORI OR immediate data to dst TRAP Trap to system
Scc Test condition codes and set operand
TAS Test and set operand *(68020-68060 only)
TST Test operand and set condition codes (src = source; dst = destination; cc = condition code
TRAPcc* Trap on condition indicator, e.g. BGT branch of greater than)

CHAPTER 7 THE CPU AND MEMORY 221

some computers, directly between different memory locations without affecting any general
register. There may be many different addressing modes available within a single computer.

Additionally, variations on these instructions are frequently used to handle different
data sizes. Thus, there may be a LOAD BYTE instruction, a LOAD HALE-WORD (2 bytes), a
LOAD WORD (4 bytes), and a LOAD DOUBLE WORD (8 bytes) within the same instruction set.
(Incidentally, the concept of a “word” is not consistent between manufacturers. To some
manufacturers the size of a word is 16 bits; to others, it is 32 or even 64 bits).

The Little Man roap and STORE instructions are simple, though adequate, examples
of MOVE instructions. Other than expanding the addressing mode capabilities and adding
multiple word size capabilities, which we have already discussed, the major limitation of
the Little Man LoAD and sTORE instructions is the fact that they are designed to operate with
a single accumulator.

When we expand the number of accumulators or general-purpose registers, we must
expand the instruction to determine which register we wish to use. Thus, the instruction
must provide a field for the particular register. Fortunately, it takes very few bits to describe
a register. Even sixteen registers require only 4 bits. On the other hand, if the computer
uses the registers to hold pointers to the actual memory addresses as its standard addressing
mode, the required instruction size may actually decrease, since fewer bits are required for
the address field in this case.

Additionally, it is desirable to have the capability to move data directly between
registers, since such moves do not require memory access and are therefore faster to
execute. In fact, some modern CPUs, including the Sun SPARC and IBM PowerPC
architectures, provide only one pair of LOAD/STORE or MOVE instructions for moving data
between the CPU and memory. All other instructions in these CPUs move and manipulate
data only between registers. This allows the instruction set to be executed much more
rapidly. There is a detailed examination of the Power PC computer and its variants in
Supplementary Chapter 2.

Arithmetic Instructions

Every CPU instruction set includes integer addition and subtraction. Except for a few
special-purpose CPUs, every CPU today also provides instructions for integer multi-
plication and division. Many instruction sets provide integer arithmetic for several different
word sizes. As with the MOVE instructions, there may be several different integer arithmetic
instruction formats providing various combinations of register and memory access in
different addressing modes.

In addition, most current CPUs also provide floating point arithmetic capabilities.
On older PCs with 80386 or earlier processors, a floating point math coprocessor unit
had to be purchased separately and installed in a socket provided for that purpose on the
motherboard of the computer. Because of the expense, most users would not exercise this
option. Extensive floating point calculations are required for many graphics applications,
such as CAD/CAM programs, animation, and computer games; the presence of floating
point instructions reduces the processing time significantly. Floating point instructions
usually operate on a separate set of floating point data registers with 64-, 80-, or 128-bit
word sizes. The modern instruction set usually also contains instructions that convert data
between integer and floating point formats.

222

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

As noted in Chapter 5, most modern CPUs also provide at least a minimal set
of arithmetic instructions for BCD or packed decimal format, which simplifies the
programming of business data processing applications.

Of course, it is not absolutely necessary to provide all these different instruction
options. Multiplication and division can be performed with repeated addition and subtrac-
tion, respectively. In computers there is an even easier technique. In elementary school you
probably learned the “long” multiplication and division methods which multiply or divide
numbers one digit at a time and shift the results until the entire operation is complete.
Because of the simplicity of binary multiplication (1 x 1 = 1, all other results are 0), the
computer can implement the same method using only adds or subtracts together with shift
instructions. Internally, the multiplication and division instructions simply implement in
hardware this same method. Since the fetch-execute cycle requires a single-bit shift and
register add step for each bit in the multiplier, multiply and divide instructions execute
slowly compared to other instructions.

Even the subtract instruction is theoretically not necessary, since we showed in
Chapter 4 that integer subtraction is performed internally by the process of complementing
and adding.

As we already noted, the same is true of BCD and floating point instructions. On
the now rare computers that do not provide floating point instructions, there is usually a
library of software procedures that are used to simulate floating point instructions.

Boolean Logic Instructions

Most modern instruction sets provide instructions for performing Boolean algebra. Com-
monly included are a NOT instruction, which inverts the bits on a single operand, as well as
AND, (inclusive) or, and EXCLUSIVE-OR instructions, which require two source arguments and
a destination.

Single Operand Manipulation Instructions

In addition to the NoT instruction described in the previous paragraph, most computers
provide other convenient single operand instructions. Most of these instructions operate
on the value in a register, but some instruction sets provide similar operations on memory
values as well. Most commonly, the instruction set will contain instructions for NEGATIng a
value, for INCREMENTIng a value, for DECREMENTIng a value, and for setting a register to zero.
There are sometimes others. On some computers, the increment or decrement instruction
causes a branch to occur automatically when zero is reached; this simplifies the design of
loops by allowing the programmer to combine the test and branch into a single instruction.

Bit Manipulation Instructions

Most instruction sets provide instructions for setting and resetting individual bits in a
data word. Some instruction sets also provide instructions for operating on multiple bits
at once. Bits can also be tested, and used to control program flow. These instructions
allow programmers to design their own “flags” in addition to commonly provided
negative/positive, zero/nonzero, carry/borrow, and overflow arithmetic flags.

CHAPTER 7 THE CPU AND MEMORY 223

Shift and Rotate Instructions

Shift and rotate operations have been mentioned previously as a means to implement
multiplication and division. Shifts and rotate operations have other programming appli-
cations, and CPU instruction sets commonly provide a variety of different shift and rotate
instructions for the programmer to use. As shown in Figure 7.11, shift instructions move
the data bits left or right one or more bits. Rotate instructions also shift the data bits left or
right, but the bit that is shifted out of the end is placed into the vacated space at the other
end. Depending on the design of the particular instruction set, bits shifted out the end of
the word may be shifted into a different register or into the carry or overflow flag bit, or
they may simply “fall off the end” and be lost.

Two different kinds of shifts are usually provided. The data word being shifted might
be logical or it might be numeric. Logical shift instructions simply shift the data as you
would expect, and zeros are shifted in to replace the bit spaces that have been vacated.
Arithmetic shift instructions are commonly used to multiply or divide the original value
by a power of 2. Therefore, the instruction does not shift the leftmost bit, since that bit
usually represents the algebraic sign of the numeric value—obviously the sign of a number
must be maintained. Left arithmetic shifts do not shift the left bit, but zeros replace the
bits from the right as bits are moved to the left. This will effectively double the numeric
value for each shift of one bit. On the other hand, right arithmetic shifts fill the space of
moved bits with the sign bit rather than with zero. This has the effect of halving the value

FIGURE 7.11
Typical Register Shifts and Rotates

Before shift «—— EI Before shift

|

<«—0]0]1]0]1]1]0]1 0j0J1|0f1])1]0}f1
@01011010 110]10f1]0J1f1]0
X
After shift After shift
a. Left logical shift register 1 hit b. Rotate right 1 hit
Sign bit
\

F

c. Right arithmetic shift 2 bits

224 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

for each bit shifted, while maintaining the sign of the value. It may not seem obvious to
you that this works correctly, but it becomes more apparent if you recall that negative
numbers in complementary arithmetic count backward starting from the value —1, which
is represented in 2’s complement by all ones.

Rotate instructions take the bits as they exit and rotate them back into the other end of
the register. Some instructions sets include the carry or overflow bit as part of the rotation.
Some CPUs also allow the rotation to take place between two registers. Rotate instructions
can be used to exchange the 2 bytes of data in a 16-bit word, for example, by rotating the
word by 8 bits.

Program Control Instructions

FIGURE 7.12

Operation of CALL and RETURN Instructions

Program control instructions control the flow of a program. Program control instructions
include jumps and branches, both unconditional and conditional, and also subroutine
cALL and RETURN instructions. Various conditional tests are provided, including those with
which you are already familiar: branch on zero, branch on nonzero, branch on positive,
branch on negative, branch on carry, and so on.

CALL instructions, sometimes known as JUMP SUBROUTINE instructions, are used to
implement subroutine, procedure and function calls. Thus, caLL instructions are important
as a means to enable program modularization.

From your programming experience, recall what happens when your program calls a
subroutine or procedure. The program jumps to the starting location of the subroutine
and executes the code in the subrou-
tine. When the subroutine is completed,
program execution returns to the calling
program and continues with the instruc-
tion following the call. The machine lan-
guage caLL instruction works the same
way. A jump to the starting location

Calling program

305 instruction
306 instruction before call
307 CALL 425

—> 308 instruction after call

——<— Jumps to 425

Subroutine

—> 425 first instruction

Saves program
counter somewhere

308

Returns to 426 instruction
308 : /
435 returnj Reloads program counter
with original value (308)
~—
Causing return to instruction
after call

of the subroutine occurs, and execution
continues from that point. The only dif-
ference between a caLL instruction and
a normal jump instruction is that the
CALL instruction must also save some-
where the program counter address from
which the jump occurred, so that the
program may return to the instruction
in the calling program following the call
after the subroutine is completed. The
RETURN instruction restores the original
value to the program counter, and the
calling program proceeds from where it
left off. Operation of the caLL and RETURN
instructions are illustrated in Figure 7.12.

CHAPTER 7 THE CPU AND MEMORY 225

Different computers use different methods to save the return address. One common
method is to store the return address on a memory stack; the RETURN instruction operates
by removing the address from the stack and moving it to the program counter. The use of
stacks is discussed briefly in the next section. Another method for performing carLs and
RETURNS is explored in Exercise S3.14.

Stack Instructions

One of the most important data storage structures in programming is the stack. A stack
is used to store data when the most recently used data will also be the first needed. For
that reason, stacks are also known as LIFO, for last-in, first-out, structures. As an analogy,
stacks are frequently described by the way plates are stored and used in a cafeteria. New
plates are added to the top of the stack, or pushed, and plates already on the stack move
down to make room for them. Plates are removed from the top of the stack, or popped,
so that the last plates placed on the stack are the first removed. Similarly, the last number
entered onto a computer memory stack will be the first number available when the stack is
next accessed. Any data that must be retrieved in reverse order from the way it was entered
is a candidate for the use of stacks. Figure 7.13 shows the process of adding to and removing
numbers from the stack.

Stacks are an efficient way of storing intermediate data values during complex
calculations. In fact, storage in Hewlett-Packard calculators is organized around a stack of
memory. As we already noted, stacks are also an excellent method for storing the return
addresses and arguments from subroutine calls. Program routines that are recursive must
“call themselves.” Suppose the return address were stored in a fixed location, as shown in
Figure 7.14a. If the routine is called a second time, from within itself, Figure 7.14b, the
original returning address (56) is lost and replaced by the new return address (76). The
program is stuck in an infinite loop between 76 and 85. In Figure 7.15, the return address is
stored on a stack. This time when the routine is again called, the original address is simply

FIGURE 7.13
Using a Stack

505
] il

153 017 505 017 153
299 153 017 153 299
701 299 153 299 701
428 701 299 701 428
428 701 428
428

(a) Adding to the stack (b) Removing from the stack

226 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.14
Fixed Location Subroutine Return Address Storage

55 CALL 70

——> 56 next instruction
after subroutine

Most recent
return address

55 CALL 70

56 next instruction
after subroutine

Most recent

69 56 <1 69 761 return address
70 —>| 70
Subrolutine Subréutine
75 CALL 70
Jump to location | 76 Jump to location
85 RETURN | indicated by 69 85 RETURN | indicated by 69
a. Subroutine called from loc.55 b. Subroutine re-called from 75,

within the subroutine

pushed down the stack, below the most recent address. Notice that the program “winds its
way back out” in the reverse order from which the routines were entered. This is exactly
what we want: we always return from the last called subroutine to the one just previous.
J. Linderman of Bentley University notes that the same technique would be used to back
out of a maze for which the explorer has written down each turn that she made after
entering.

There are many other interesting applications for stacks in computers, but further
discussion is beyond the scope of this book. The curious reader is referred to For Further
Reading for references.

Computers do not generally provide special memory for stack use, although many
machines provide special stack instructions to simplify the bookkeeping task. Instead,
the programmer sets aside one or more blocks of regular memory for this purpose. The
“bottom” of the stack is a fixed memory location, and a stack pointer points to the “top”
of the stack, that is, the most recent entry. This is shown in Figure 7.16. A new entry is
added to the stack, or pushed, by incrementing the stack pointer, and then storing the
data at that location. An entry is removed from the stack, or popped, by copying the value
pointed to and then decrementing the stack pointer. If a register is provided for the stack
pointer, register-deferred addressing can be used for this purpose. (You should note that
memory is drawn upside-down in Figure 7.16 so that incrementing the stack pointer moves
it upward.)

Many instruction sets provide pusH and pop instructions as direct support for stacks,
but stacks can be implemented easily without special instructions. (Exercise S3.15 illustrates
one solution.) Some computers also specify the use of a particular general-purpose register
as a stack pointer register.

FIGURE 7.15
Stack Subroutine Return Address Storage

Subroutine call from 2nd subroutine call from LOC
LOC 55 75 (within the subroutine)
55 CALL 70

56 next instruction
after subroutine
completes

Return address Return address

_}STACK _»STACK
70 beginning: 5_6 70 beginning 76
of subroutine . of subroutine 56
75 CALL 70
@ Return from Return from
inner call original call
—>56 next instruction
after subroutine
completes
STACK STACK
56
R I~
%
%
i
85 RETURN Return to 76 85 RETURN Return to 56
(top of stack) (top of stack)
and pop stack and pop stack

227

228

FIGURE 7.16
Using a Block of Memory as a Stack

PUSH increments
pointer, then
STORES data

323

POP loads data, then
decrements pointer

323

_/

/

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Multiple Data Instructions

Multimedia applications rank high in com-
putational demands on the CPU in modern
PCs and workstations. In response to the
demand, CPU designers have created special-
ized instructions that speed up and simplify
multimedia processing operations.
Multimedia operations are commonly
characterized by a number of simple oper-
ations applied identically to every piece of
data in the set. As a simple example, the
brightness of an image might be modified
by multiplying the value of every pixel in
the image by a common scale factor. Or, a

measure of similarity between two images could be established by subtracting all the pixel
values in one image from the corresponding pixel values in a second image and averaging

Multiple data instructions perform a single operation on multiple pieces of data
simultaneously. For this reason they are also known as SIMD instructions. SIMD
stands for Single Instruction, Multiple Data. The SIMD instructions provided on Intel
Pentium processors are typical. The processor provides eight 128-bit registers specifically
for SIMD instruction use and also allows the use of the standard 64-bit floating point
registers for this purpose. The Pentium CPU SIMD instructions can process from two
64-bit integers up to sixteen 8-bit integer arithmetic operations or up to two 64-bit
floating point number operations simultaneously as well as providing instructions for
packing and unpacking the values and moving them between registers and memory, and a

54| 323 54| 323
ﬁ 53| 555 53| 555
53 3
53] 521108 52(108
Stack - F5T519g Stack - 571519
pomter, 501277 pomter’ 501277
Bottom of Bottom of
stack stack
the results.
FIGURE 7.17
Operation of a 4-Wide SIMD ADD Instruction
Regist T T T
S L B
ml = = =
Register| i1 ik ik 28
£ A, 1B, 1iic, D,

Register
2

variety of other related instructions. Other ven-
dors, including AMD, IBM, Sun, Transmeta, and
VIA provide compatible or similar SIMD instruc-
tions. The IBM Cell processor, which serves as the
CPU in the Sony Playstation 3, provides a par-
ticularly powerful SIMD capability that accounts
for much of the Playstation’s graphics strength.
Figure 7.17 shows the operation of a SIMD app
instruction.

Although multimedia operations are a primary
application for these instructions, these instructions
can be applied to any vector or array processing
application, and are useful for a number of purposes
in addition to multimedia processing, including
voice-to-text processing, the solutions to large-scale
economics problems, weather prediction, and data
encryption and decryption.

CHAPTER 7 THE CPU AND MEMORY 229

Other Instructions

The remainder of the instructions includes input/output instructions and machine con-
trol instructions. In most systems both groups are privileged instructions. Input/output
instructions are generally privileged instructions because we do not want input and output
requests from different users and programs interfering with each other. Consider, for
example, two users requesting printer output on a shared printer at the same time, so that
each page of output is divided back and forth between the two users. Obviously, such
output would not be acceptable. Instead, these requests would be made to the operating
system that controls the printer, which would set priorities, maintain queues, and service
the requests. We will deal with the subject of input/output in Chapters 9 and 10, and with
operating systems in Chapters 15 through 18.

7.7 INSTRUCTION WORD FORMATS

FIGURE 7.18

A Simple 32-bit Instruction Format

Instructions in the Little Man Computer were made up entirely of three-digit decimal
numbers, with a single-digit op code, and a two-digit address field. The address field
was used in various ways: for most instructions, the address field contained the two-digit
address where data for the instruction could be found (e.g., 10AD) or was to be placed
(storE). In a few instructions, the address field was unused (e.g., HALT). For the branch
instructions, the address field space was used instead to hold the address of the next
instruction to be executed. For the I/O instructions, the address field became a sort of
extension of the op code. In reality, the I/O address field contained the “address” of an I/O
device, in our case 01 for the in basket and 02 for the out basket.

The instruction set in a typical real CPU is similar. Again, the instruction word can be
divided into an op code and zero or more address fields. A simple 32-bit instruction format
with one address field might look like that shown in Figure 7.18. In this example, the 32
bits are divided into an 8-bit op code and 24 bits of address field.

In the Little Man Computer, reference to an address specifically referred to a mem-
ory address. However, we have already noted that the computer might have several
general-purpose registers and that it would be necessary for the programmer to select a
particular register to use as a part of the instruction. To be more general, we will use the
word “address” to refer to any data location, whether it is a user-accessible register or a
memory location. We will use the more specific expression memory address when we want
to specify that the address is actually a memory location.

In general, computer instructions that manip-
ulate data require the specification of at least two
locations for the data: one or more source loca-
tions and one destination location. These locations
may be expressed explicitly, as address fields in the

10101010 | 101010101010101010101010 instruction word, or implicitly, as part of the defini-
tion of the instruction itself. The instruction format

bit 0 78 31 of the Little Man roaDp instruction, for example,
op code Address field takes the data from the single address field as the

230 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.19

Typical Two Operation Register Move Format

explicit source address. Explicit addresses in the Little
Man Computer are always memory addresses. The des-
tination address in this case is implicit: this instruction
source destination always uses the accumulator register as a destination.

op code register register The Little Man apD and SUBTRACT instructions require two
MOVE 5 10 sources and a destination. Source data addressed by the
instruction’s single explicit address field is added to the

value in the implicitly stated accumulator, with the result
placed implicitly in the accumulator.

For a particular instruction, the source(s) and destination may be the same or may be
different. For example, an instruction that complements a value to change its sign would
usually be done “in place”; that is, the source and destination register or memory location
is usually the same. The Little Man aDpD instruction uses the accumulator register both as
a source for one of the numbers to be added and as the destination for the result. On
the other hand, when we move data, using a LOAD or STORE or some other type of MOVE
operation, two operands are required. The source and destination are obviously different,
or the move would not be useful! A register-to-register MOVE, for example, might use an
instruction format such as that shown in Figure 7.19. In the figure, the instruction word
consists of an opcode and two fields that point to registers. As shown, this instruction
would move data from register 5 to register 10. Unless the operation is done in place, the
sources are normally left unchanged by the instruction, whereas the destination is almost
always changed.

The source and destination addresses may be registers or memory locations. Since
most modern computers have multiple registers available to the user it is usually necessary
to provide at least two explicit address fields, even for an address-register move, since the
number of the particular register must be specified in the instruction.

The sources and destinations of data for an instruction, whether implicit or explicit, are
also known as operands. Thus, instructions that move data from one place to another have
two operands: one source operand and one destination operand. Arithmetic operations
such as ApD and suBTRACT require three operands. Explicit address fields are also known as
operand fields.

Most commonly, instructions that manipulate data will have one address field for
operations that happen in place, and two or three address fields for move and arithmetic
operations. On some computers one or more of the addresses may be implicit, and
no address field is required for the implicit address. However, in modern computers
most address references are explicit, even for register addresses, because this increases
the generality and flexibility of the instruction. Thus, most computer instructions will
consist of an op code and one, two, or three explicit address fields. Some textbooks refer
to instructions with one, two, or three explicit address fields as unary, binary, or ternary
instructions, respectively.

7.8 INSTRUCTION WORD REQUIREMENTS
AND CONSTRAINTS

The size of the instruction word, in bits, is dependent on the particular CPU architecture,
particularly by the design of its instruction set. The size of the instruction word may be

CHAPTER 7 THE CPU AND MEMORY 231

fixed at, say, 32 bits, or it may vary depending on the usage of the address fields. The Sun
Sparc CPU, for example, takes the former approach: every instruction word is exactly 32
bits wide. Conversely, some of the basic instruction words for the x86 microprocessor line
used in the common PC, for example, are as small as 1 or 2 bytes long, but there are some
instructions in the Pentium microprocessor that are as many as 15 bytes long. The IBM
Series z architecture is an evolutionary extension of upward compatible CPU architectures
dating back to the 1960s. The legacy instructions in the IBM Series z CPU are mostly 4 bytes,
or 32 bits long, with a few 2-byte or 6-byte long instructions. To expand the architecture to
64-bit addressing and data, IBM added a number of new instructions. These are all 6 bytes
in length.

The challenge in establishing an instruction word size is the need to provide both
enough op code bits to support a reasonable set of different instructions as well as enough
address field bits to meet the ever growing demand for increasing amounts of addressable
memory. Consider again, for example, the extremely straightforward instruction format
shown in Figure 7.18. This format assumes a single address field with a 32-bit fixed length
instruction. With the division shown, we have access to 28 = 256 different instructions and
22* = approximately 16 million memory addresses.

Even if the designer creates a smaller instruction set, with fewer op codes, the amount
of memory that may be specified in a 32-bit instruction word is severely limited by modern
standards. Most of today’s computers support an address size of at least 32 bits. Many
newer machines support 64-bit addresses.

Further, with additional registers, the simple instruction format shown in Figure 7.18
must be expanded to handle explicit addressing of multiple registers, including moves
between registers, as well as identifying the proper register in operations between registers
and memory. In short, the simple instruction format used in the Little Man Computer is
inadequate for the instruction sets in modern computers.

The use of instructions of different lengths is one of several techniques developed
by instruction set designers to allow more flexibility in the design of the instruction set.
Simple instructions can be expressed in a small word, perhaps even a single byte, whereas
more complicated instructions will require instruction words many bytes long. Longer
instructions are stored in successive bytes of memory. Thus, a Little Man HALT, IN, or ouT
instruction would be stored in a single location. A LoAD might require two successive
locations to store memory addresses of five digits or three locations for an eight-digit
address. The use of variable length instructions is efficient in memory usage, since each
instruction is only as long as it needs to be.

There are a number of important disadvantages to variable length instructions,
however. Most modern computers increase CPU processing speed by “pipelining”
instructions, that is, by fetching a new instruction while the previous one is still completing
execution, similar to the processing on an automobile assembly line. Variable length
instructions complicate pipelining, because the starting point of the new instruction is
not known until the length of the previous instruction has been determined. If you extend
this idea to multiple instructions, you can see the difficulty of maintaining a smooth
assembly line. This issue is discussed in more detail in Chapter 8. Because pipelining has
become so important to processing speed in modern computers, the use of variable length
instructions has fallen out of favor for new CPU designs. Nearly all new CPU designs use
fixed length instructions exclusively.

232 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

FIGURE 7.20

As we mentioned previously in our discussion of memory size, an effective alternative
to large instructions or variable instruction words is to store the address that would
otherwise be located in an instruction word address field at some special location that can
hold a large address, such as a general purpose register, and use a small address field within
the instruction to point to the register location. There are a number of variations on this
theme. This technique is used, even on systems that provide variable length instructions. A
single CPU might provide a number of different variations to increase the flexibility of the
instruction set. This flexibility also includes the ability to code programs that process lists
of data more efficiently. The various ways of addressing registers and memory are known
as addressing modes. The Little Man Computer provides only a single mode, known as
direct addressing. The alternative just described is called register deferred addressing. An
example of a deferred LoAD instruction is shown in Figure 7.20. This instruction would load
the data value stored at memory address 3BD421 into general purpose register 7. There
are a number of addressing modes discussed in detail in Supplementary Chapter 3. The
use of different addressing modes is the most important method for minimizing the size of
instruction words and for writing efficient programs.

Examples of instruction formats from two different CPUs are shown in Figure 7.21.
There may be several different formats within a single CPU. We have shown only a partial
set for each machine, although the SPARC set is complete except for small variations. (There
are twenty-three different IBM formats in all.) It is not necessary that you understand every
detail in Figure 7.21, but it is useful to note the basic similarities between the instruction
set formats in different computers.

Deferred Register Addressing

address data
3
3BD421
LOAD 3 7
op code source destination) 3BD421 4BAA30E -
register register
7
4BAA30E
registers
memory

FIGURE 7.21

Examples of Instruction Formats

Code:
op code e R g Register to register R = Data register
B = Base register
0 8 12 15 X = Index register
D = Relative displacement
Register to L= Length
op code i3 Kas Bast Dast indexed storage
0 8 12 16 20 31
op code e Ry B B Register to storage
0 8 12 16 20 31
op code Bl Dl Single operand
0 16 20 31
op code Il B, D, B B Storage to storage
0 8 16 20 32 36 47
IBM mainframe formats
|op codel Relative displacement | CALL instruction
31 29 0
|op codel Ry |op codel Immediate data | LOAD high 22 bits immediate
31 29 25 22 0
|op code|a| Jgﬁg |op code| Relative displacement | BRANCH
31 2928 25 22 0

|op codel R |op codel R |0| Alt space |R

src2

INTEGER instructions
(also, with 1 in bit 14, and

o bits 0-13 immediate address)

FLOATING POINT instructions

31 29 25 19 14 13 5
|op codel R |op codel Roer op code (FP) | Roeo
31 29 25 19 14 5 0

SPARC formats

233

234

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

SUMMARY AND REVIEW

Functionally, the operation of the CPU, together with memory, is essentially identical to
that of the Little Man Computer. For each component of the Little Man Computer, there
is a corresponding component in the computer unit.

Within the CPU, the most important components are registers. Data may be moved
between registers, may be added or subtracted from the current contents of a register, and
can be shifted or rotated within a register or between registers. Each instruction in the
instruction set is executed by performing these simple operations, using the appropriate
choice of registers and operations in the correct sequence for the particular instruction.
The sequence of operations for a particular instruction is known as its fetch-execute cycle.
A fetch-execute cycle exists for every instruction in the instruction set. Fetch-execute
instruction cycles constitute the basis for all program execution in the computer. The
sequence for each instruction corresponds closely to the actions taken by the Little Man in
performing a similar instruction.

The operation of memory is intimately related to two registers in particular, the
memory address register and the memory data register. Addresses placed into the MAR
are decoded in memory, resulting in the activation of a single memory address line. At
the proper instant, data can then be transferred in either direction between that memory
location and the MDR. The direction is specified by a read/write control line. The number
of available memory locations is established by the size of the MAR; the data word size is
established by the size of the MDR.

Interconnections between various parts of a computer are provided by buses. There
are many different types of buses. Buses connect different modules within the CPU. They
also connect the CPU to memory and to the I/O peripherals. Buses can connect two
components in a point-to-point configuration or may interconnect several modules in a
multipoint configuration. Buses may be parallel or serial. In general, the lines on buses
carry signals that represent data, address, and control functions.

Instructions fall naturally into a small number of categories: moves, integer arith-
metic, floating point arithmetic, data flow control, and so forth. There are also privileged
instructions, which control functions internal to the CPU and are accessible only to the
operating system.

Instructions in a real CPU are made up of an op code and up to three address field
operands. The size of the instruction word is CPU dependent. Some computers use variable
length instruction words. Other computers use a fixed length instruction, most commonly,
32 bits in length.

FOR FURTHER READING

There are many excellent textbooks that describe the implementation and operation
of the components of the computer system. A brief, but very clear, explanation of the
fetch-execute cycle can be found in Davis and Rajkumar [DAV02]. Three classic engineering
textbooks that discuss the topics of this chapter in great detail are those authored by Stallings
[STALO5], Patterson and Hennessy [PATT07], and Tanenbaum [TANO5]. Wikipedia offers
a brief, but clear, introduction to the principal concepts of von Neumann architecture.
There are many books and papers describing various components and techniques associated

CHAPTER 7 THE CPU AND MEMORY 235

with the implementation and operation of the CPU and memory. Also see the For Further
Reading section in Chapter 8 for more suggestions.

KEY CONCEPTS AND TERMS

accumulator

address field

arithmetic/logic unit (ALU)

arithmetic shift

broadcast bus

bus

bus interface bridge

bus protocol

cable

central processing unit
(CPU)

control unit (CU)

dynamic RAM

EEPROM (electronically
erasable programmable
ROM)

explicit source address

fetch-execute instruction
cycle

flag

flash memory

full-duplex line

general-purpose register

half-duplex line

implicit source address

instruction pointer

instruction register (IR)

line (bus)

logical shift

memory

memory address register
(MAR)

memory data register
(MDR)

memory management unit

multiplex

multipoint bus

nonvolatile memory

operands

parallel bus

point-to-point bus

port

program counter (PC)

program counter register

Program Status Word
(PSW)

privileged instruction

RAM

register

register file

ROM

rotate operation

serial bus

shift operation

SIMD

simplex line

stack

stack pointer

static RAM

status register

subroutine call and return

user-visible register

volatile memory

READING REVIEW QUESTIONS

7.1

7.2

7.3

7.4

7.5

7.6

7.7

What does ALU stand for? What is its corresponding component in the Little
Man Computer? What does CU stand for? What is its corresponding LMC
component?

What is a register? Be precise. Name at least two components in the LMC that
meet the qualifications for a register. Name several different kinds of values that
a register might hold.

What is the purpose of the instruction register? What takes the place of the
instruction register in the LMC?

When a value is copied from one register to another, what happens to the value
in the source register? What happens to the value in the destination register?
There are four primary operations that are normally performed on a register.
Describe each operation.

Explain the relationship between the memory address register, the memory data
register, and memory itself.

If the memory register for a particular computer is 32 bits wide, how much
memory can this computer support?

236

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

7.8

7.9

7.10

7.11

7.12

7.13

7.14
7.15
7.16

7.17

7.18
7.19

7.20

7.21
7.22

7.23

7.24

7.25

7.26

What is the difference between volatile and nonvolatile memory? Is RAM volatile
or nonvolatile? Is ROM volatile or nonvolatile?

Registers perform a very important role in the fetch-execute cycle. What is the
function of registers in the fetch-execute instruction cycle?

Explain each of the fetch part of the fetch-execute cycle. At the end of the fetch
operation, what is the status of the instruction? Specifically, what has the fetch
operation achieved that prepares the instruction for execution? Explain the
similarity between this operation and the corresponding operation performed
steps performed by the Little Man.

Once the fetch operation is complete, what is the first step of the execution phase
for any instruction that accesses a memory address for data (e.g., LOAD, STORE)?
Using the ApD instruction as a model, show the fetch-execute cycle for a suBTRACT
instruction.

Assume the following values in various registers and memory locations at a given
point in time:

PC:20 A:150 Memory location 20: 160 [aDD 60] Memory location 60: 30.
Show the values that are stored in each of the following registers at the completion
of the instruction: PC, MAR, MDR, IR, and A.

Define a bus. What are buses used for?

What three types of “data” might a bus carry?

Explain how data travels on a bus when the bus is simplex. Half-duplex.
Full-duplex.

What is the difference between a multipoint bus and a point-to-point bus? Draw
diagrams that illustrate the difference.

Briefly describe each of the major disadvantages of parallel buses.

Which Little Man Computer instructions would be classified as data movement
instructions?

What operations would you expect the arithmetic class of instructions to
perform?

Explain the difference between sHirt and ROTATE instructions.

What do program control instructions do? Which LMC instructions would be
classified as program control instructions?

What is a stack? Explain how a stack works. Create a diagram that shows how
pUsH and pop instructions are used to implement a stack.

What is a privileged instruction? Which LMC instructions would normally be
privileged?

Show a 32-bit instruction format that allows 32 different op codes. How many
bits are available for addressing in your format?

Show an instruction format that could be used to move data or perform
arithmetic between two registers. Assume that the instruction is 32 bits wide and
that the computer has sixteen general-purpose data registers. If the op code uses
8 bits, how many bits are spares, available for other purposes, such as special
addressing techniques?

EXERCISES

7.1

7.2

7.3
7.4
7.5

7.6

7.7

7.8

7.9

7.10

CHAPTER 7 THE CPU AND MEMORY 237

Draw side-by-side flow diagrams that show how the Little Man executes a store
instruction and the corresponding CPU fetch-execute cycle.

Suppose that the following instructions are found at the given locations in
memory:

20 LDA 50
21 ADD 51
50 724
51 006

a. Show the contents of the IR, the PC, the MAR, the MDR, and A at the
conclusion of instruction 20.

b. Show the contents of each register as each step of the fetch-execute cycle is
performed for instruction 21.

One large modern computer has a 48-bit memory address register. How much
memory can this computer address?

Why are there two different registers (MAR and MDR) associated with memory?
What are the equivalents in the Little Man Computer?

Show the steps of the CPU fetch-execute cycle for the remaining instructions in
the Little Man instruction set.

Most of the registers in the machine have two-way copy capability; that is, you
can copy to them from another register, and you can copy from them to another
register. The MAR, on the other hand, is always used as a destination register;
you only copy to the MAR. Explain clearly why this is so.

a. What is the effect of shifting an unsigned number in a register two bits to
the left? One bit to the right? Assume that Os are inserted to replace bit
locations at the end of the register that have become empty due to the shift.

b. Suppose the number is signed, that is, stored using 2’s complement. Now
what is the effect of shifting the number?

c. Suppose that the shift excludes the sign bit, so that the sign bit always
remains the same. Furthermore, suppose that during a right shift, the sign
bit is always used as the insertion bit at the left end of the number (instead
of 0). Now what is the effect of these shifts?

If you were building a computer to be used in outer space, would you be likely

to use some form of flash memory or RAM as main memory? Why?

Using the register operations indicated in this chapter, show the fetch-execute

cycle for an instruction that produces the 2’s complement of the number in A.

Show the fetch-execute cycle for an instruction that clears A (i.e., sets A to 0).

Many older computers used an alternative to the BRANCH ON CONDITION instruction

called skip on conpITION that worked as follows: if the condition were true, the

computer would skip the following instruction and go on to the one after;
otherwise, the next instruction in line would be executed. Programmers usually
place a jump instruction in the “in-between” location to branch on a FALSE

238

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

7.11

7.12

7.13

7.14

7.15

condition. Normally, the skip instruction was designed to skip one memory
location. If the instruction set uses variable length instructions, however, the
task is more difficult, since the skip must still skip around the entire instruction.
Assume a Little Man mutant that uses a variable length instruction. The op code
is in the first word, and there may be as many as three words following. To make
life easy, assume that the third digit of the op code word is a number from 1 to
4, representing the number of words in the instruction. Create a fetch-execute
cycle for this machine.

Suppose that the instruction format for a modified Little Man Computer
requires two consecutive locations for each instruction. The high-order digits of
the instruction are located in the first mail slot, followed by the low-order digits.
The IR is large enough to hold the entire instruction and can be addressed as
IR [high] and IR [low] to load it. You may assume that the op code part of the
instruction uses IR [high] and that the address is found in IR [low]. Write the
fetch-execute cycle for an ADD instruction on this machine.

The Little Prince Computer (LPC) is a mutant variation on the LMC. (The LPC
is so named because the differences are a royal pain.) The LPC has one additional
instruction. The extra instruction requires two consecutive words:

0XX
ovy

This instruction, known as move, moves data directly from location XX to
location YY without affecting the value in the accumulator. To execute this
instruction, the Little Prince would need to store the XX data temporarily. He
can do this by writing the value on a piece of paper and holding it until he
retrieves the second address. The equivalent in a real CPU might be called the
intermediate address register, or IAR. Write the fetch-execute cycle for the LPC
MOVE instruction.

Generally, the distance that a programmer wants to move from the current
instruction location on a BRANCH ON CONDITION is fairly small. This suggests that it
might be appropriate to design the BRANCH instruction in such a way that the new
location is calculated relative to the current instruction location. For example,
we could design a different LMC instruction 8CX. The C digit would specify the
condition on which to branch, and X would be a single-digit relative address.
Using 10’s complement, this would allow a branch of —5 to +4 locations from
the current address. If we were currently executing this instruction at location 24,
803 would cause a branch on negative to location 27. Write a fetch-execute cycle
for this BRANCH ON NEGATIVE RELATIVE instruction. You may ignore the condition
code for this exercise, and you may also assume that the complementary addition
is handled correctly. The single-digit address, X, is still found in IR [address].
As computer words get larger and larger, there is a law of diminishing returns:
the speed of execution of real application programs does not increase and may,
in fact, decrease. Why do you suppose that this is so?

Most modern computers provide a large number of general-purpose registers
and very few memory access instructions. Most instructions use these registers to
hold data instead of memory. What are the advantages to such an architecture?

7.16

7.17

7.18

7.19
7.20

CHAPTER 7 THE CPU AND MEMORY 239

Create the fetch-execute cycle for an instruction that moves a value from general
purpose register-1 to general purpose register-2. Compare this cycle to the cycle
for a LoAD instruction. What is the major advantage of the MOVE over the LoAD?

What are the trade-offs in using a serial bus versus a parallel bus to move data
from one place to another?

Until recently, most personal computers used a parallel PCI bus as a backplane
to interconnect the various components within the computer, but the PCI bus
was rarely, if ever, used to connect external devices to the computer. Modern
computers often use a serial adaptation of the PCI bus called PCI Express, which
is sometimes made available as a port to connect external devices. Identify at
least three shortcomings of the original PCI bus that made external use of the
bus impractical. Explain how the PCI Express bus overcomes each of these
limitations.

Explain why skew is not a factor in a serial bus.

Point-to-point buses generally omit lines for addressing. Why is this possible?
Suppose a point-to-point bus is used to connect two components together where
one of the components actually represents multiple addresses. How could a bus
with no address lines be used to satisfy the requirement for different addresses
in this case?

CHAPTER 8

CPU AND MEMORY:
DESIGN, ENHANCEMENT,
AND IMPLEMENTATION

8.0 INTRODUCTION

The Little Man Computer design, implemented in binary form, may be sufficient to
implement any program, but it is not necessarily a convenient way to do so. It is like
traveling overseas by freight steamer instead of by fast plane: it might be fun, but it
sure ain’t the easiest way to get the job done! Computers today are more sophisticated
and flexible, providing a greater variety of instructions, improved methods of
addressing memory and manipulating data, and implementation techniques that
allow instructions to be executed quickly and efficiently.

In Chapter 7, we discussed the principal features of a CPU: the basic architecture
of the CPU, register concept, instruction set, instruction formats, means of addressing
memory, and the fetch-execute cycle. In this chapter we will investigate some of the
additional design features and implementation techniques that help to give the modern
CPU its power.

It probably won’t surprise you to know that there are a large number of different
ways of performing these tasks. At the same time, it is important to recognize, right
from the outset, that additional features and a particular choice of organization do
not change the fundamental operation of the computer as we have already described
it. Rather, they represent variations on the ideas and techniques that we have already
described. These variations can simplify the programmer’s task and possibly speed up
program execution by creating shortcuts for common operations. However, nothing
introduced in this chapter changes the most important idea: that the computer is
nothing more than a machine capable of performing simple operations at very high
speeds.

The first section investigates different CPU architectures, with particular focus on
the modern manifestation and organization of traditional architectures The section
also briefly considers two interesting recent architectures, the Transmeta VLIW and
Intel EPIC architectures.

In the second section we consider various CPU features and enhancements, with
an emphasis on alternatives to the traditional control unit/ALU CPU organization.
We explain how these alternative organizations address major bottlenecks that limit
CPU execution speed, with a number of innovative techniques for improving CPU
performance.

Section 8.3 looks at memory enhancements. The most significant improvement
in memory access speed is cache memory. Cache memory is discussed in considerable
depth.

In Section 8.4, we present a general model that includes the features, enhancements,
and techniques described in Section 8.2. This model represents the organization of
most current CPUs.

Section 8.5 considers the concept of multiprocessing: a computer organization
consisting of multiple CPUs directly connected together, sharing memory, major buses,

241

242 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

and I/O. This organization adds both performance enhancement and additional design
challenges. We also briefly introduce a complementary feature, simultaneous multithread-
ing. Two types of multiprocessors are presented: the symmetrical multiprocessor is more
common. It is well-suited for general purpose computing. An alternative, the master-slave
multiprocessor is useful for computer applications characterized by computationally
intense, repetitive operations, such as graphics processing.

Finally, in Section 8.6, we present a brief commentary on the implementation of the
CPU organization that we have discussed in previous sections.

It is not our intention to overwhelm you in this chapter with myriad details to
memorize, nor to help you create a new career as an assembly language programmer or
computer hardware engineer, but this chapter will at least introduce you to the major
concepts, methods, and terminology used in modern computers. When reading this
chapter, remember to keep your focus on the larger picture: the details are just variations
on a theme.

8.1 CPU ARCHITECTURES

Overview

A CPU architecture is defined by the basic characteristics and major features of the
CPU. (CPU architecture is sometimes called instruction set architecture (ISA).) These
characteristics include such things as the number and types of registers, methods of
addressing memory, and basic design and layout of the instruction set. It does not include
consideration of the implementation, instruction execution speed, details of the inter-
face between the CPU and associated computer circuitry, and various optional features.
These details are usually referred to as the computer’s organization. The architecture may
or may not include the absence or presence of particular instructions, the amount of
addressable memory, or the data widths that are routinely processed by the CPU. Some
architectures are more tightly defined than others.

These ideas about computer architecture should not surprise you. Consider house
architecture. A split-level ranch house, for example, is easily recognized by its general
characteristics, even though there may be wide differences in features, internal organization,
and design from one split-level ranch to the next. Conversely, an A-frame house or a
Georgian house is recognized by specific, well-defined features that must be present in the
design to be recognized as A-frame or Georgian.

There have been many CPU architectures over the years, but only a few with longevity.
In most cases, that longevity has resulted from evolution and expansion of the architecture
to include new features, always with protection of the integrity of the original architecture,
as well as with improved design, technology, and implementation of the architecture.

At present, important CPU architectural families include the IBM mainframe series,
the Intel x86 family, the IBM POWER/PowerPC architecture, and the Sun SPARC family.
Each of these is characterized by a lifetime exceeding twenty years. The original IBM
mainframe architecture is more than forty-five years old. Architectural longevity protects
the investment of users by allowing continued use of program applications through system
upgrades and replacements.

CHAPTER 8 CPU AND MEMORY: DESIGN, ENHANCEMENT, AND IMPLEMENTATION 243

Most CPU architectures today are variations on the traditional design described in
Chapter 7.! There have also been a few interesting attempts to create other types, including
a stack-based CPU with no general-purpose registers, and two recent architectures called
very long instruction word (VLIW) from Transmeta and explicitly parallel instruction
computers (EPIC) from Intel. VLIW and EPIC architectures are too new to assess their
long-