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Preface

The title given these notes, and the course numbered Statistics 601 at lowa
State University, is Advanced Statistical Methods. One might reasonably won-
der, as did I in preparing these notes, what characteristics are needed for a
statistical method to be considered advanced as opposed to elementary, in-
troductory, or basic. Is a method advanced if it demands a certain level of
mathematical sophistication to employ? Is a method advanced simply because
it does not fall into the body of topics usually contained in courses taught at
the undergraduate or beginning graduate level? Is a method advanced only
if it requires extensive knowledge of computing to bring into practice? The
Department of Statistics at lowa State University now requires that all stu-
dents intending to persue a PhD degree in statistics (including co-majors) take
this course on advanced methods in preparation for the written preliminary
examination. Thus, even more troubling than the question of what makes a
statistical method advanced, is the question of what every PhD student should
know beyond the topics contained in courses required of all MS students.

I have chosen to avoid addressing these questions directly because answers
to them, even if such answers exist, fail to capture the intent of an upper-level
course in statistical methods. I believe it is more profitable to ask what every
PhD student should be able to do, rather than to ask what every PhD student
should know. What every PhD student should be able to do is something
our faculty refer to with the slippery phrase “demonstrate methodological ma-
turity”. I say this phrase is slippery because it falls into the category of
something we can’t define but can usually agree on when it is exhibited. That
is, we can’t tell you what it is but we know it when we see it, which is a

most disturbing and unsatisfactory situation for graduate students who want
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to know what is needed to be successful in their program of study. While not
exhaustive of what everyone might consider methodological maturity, it seems
that two characteristics are often involved in demonstrations of such maturity.
First is the understanding that methods and theory are simply convenient ti-
tles used in our profession to refer to various topics, with theory comprising
many topics that can profitably be considered without motivating examples
or the existence of even hypothetical problems, and methods comprising many
topics that generally do require at least a hypothetical situation in which they
could be applied. The application of statistics often requires the use of both
topics we would typically categorize as theory and those we would typically
categorize as methods. Secondly, a demonstration of methodological maturity
is often characterized by the avoidence of a modular organization of possible
analyses. It is natural to organize our thinking along the lines of courses we
have taken and, when faced with a problem requiring statistical treatment, to
assign that problem to one of the modules formed by our formal educational
experiences. I spent any number of years in which I would determine that a
given problem was a “Stat 557 problem”, or a “Stat 515 problem”, or a “Stat
512 problem”, although my numbering system was based on my own education
rather than courses at Iowa State. This is not necessarily a bad thing, and
may even be beneficial to our overall learning progress. And, many problems
can be adequately dealt with using such an approach. But at some point a
PhD statistician is expected to move beyond such a categorization. It is not
the organization of topics into discrete courses that must be overcome (some
type of organization is necessary to enable learning) but the use of this orga-
nization in considering how a scientific problem is to be approached from a
statistical viewpoint. That is, methodological maturity is demonstrated when

a statistician uses the knowledge and techniques at his or her disposal to con-
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struct an appropriate analysis for a given problem rather than determining if
the problem is sufficiently round to fit in the round hole or sufficiently square
to fit in the square hole.

This course is intended to help you develop methodological maturity. It is
organized along the lines of what I call approaches to statistical analysis. These
notes are divided into three major parts, Approaches Based on Randomization,
Model Based Approaches, and The Bayesian Approach. At some point I hope
to add a fourth portion to the notes tentatively titled Approaches to Inference.
Even within one of these major parts I have avoided a modular presentation.
Thus, for example, general methods for constructing models are presented with
little consideration of what estimation procedures might be used. Estimation
procedures are presented without necessarily being attached to a particular
type of model.

Following from the above considerations, the advanced in Advanced Sta-
tistical Methods refers to the way statistical procedures are used to build an
analysis. You can expect to see some procedures and topics which are familiar
to you, and you will also see many topics that are new. But this still leaves
the issue of which particular topics should be included, and which passed over.
These decisions were made largely on the basis of issues raised in the Intro-
duction. The introductory portion of these notes begins with what will strike
many as a somewhat obtuse philosophical discussion. Some might even de-
scribe the first section to follow as “fluffy” or a matter of irrelevant semantics
alone. I believe, however, that consideration of what we mean by statistical
methods and, even more generally, statistical analysis is important in under-
standing the structure of this course and, in particular, the course notes. Thus,
I present this material not as a thorough discussion of philosophical considera-

tions about what makes statistics a legitimate scientific discipline but, rather,



as an idication of what drove the necessary decisions about what to include
and what to leave out of these notes. So read the Introduction, not from the
viewpoint of how we make philosophical sense out of what we call the field of
statistics, but from the viewpoint of how such considerations unfold into a way

to organize our thinking about the topic we call statistical methods.

Mark S. Kaiser
August 2004
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Chapter 1

INTRODUCTION

If you have not already done so, please read the preface to these notes now.
The material in this introduction is presented to explain why many of the top-
ics included in these notes are included, and why many other quite fine topics
in their own right are not included. The broad context in which these consider-
ations are made is that of scientific investigation, a bias that runs throughout
these notes. While many of the procedures discussed in this course may be
useful for the analysis of, for example, acceptance sampling data in a manufac-
turing process or data gathered from a stringent protocol for the licensing of a
drug, our primary focus will be the analysis of problems from research in the
applied sciences. Most scientific investigations are not repeatedly conducted
in the same way making, for example, the concept of error rates in hypothesis
testing of less importance than they would be in repeated decisions to accept
or reject batches of manufactured goods. What is desired is an analysis of

uncertainty and, by extension, a quantification of scientific evidence.



2 CHAPTER 1. INTRODUCTION

1.1 Statistical Analyses, Statistical Methods,

and Statistical Techniques

The statistics profession seems to be in a continual process of attempting
to define itself. This may be due, in part, from a long-perceived need to
distinguish statistics from mathematics and to establish recognition not only in
the academic community but also in society as a whole. In addition, however,
the rapid increase in computational capability has provided new tools for both
statisticians and workers in many other fields who pursue ways of examining
data and making inferential statements on the basis of those analyses. This
helps fuel what some statisticians see as an “identity crisis” for the profession
(see, for example, the ASA Presidential Address published in the March 2004
issue of JASA). So what, if anything, defines statistics as a discipline? Given
the diversity of activities that statisticians are involved in this question may be
too broad to be given a satisfactory answer. But we may be able to make some
progress by asking more specific questions about what constitutes statistical

analyses, statistical methods, or statistical techniques.

1.1.1 Discussion Items on Statistical Analyses

What does it mean to say that a particular examination of a problem con-
stitutes a statistical analysis? Some aspects of the procedures with which a
problem can be investigated that might be mentioned as possible characteris-

tics that qualify such procedures as statistical analyses include the following;:
1. involves the use of observed data

2. involves learning from data
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3. involves mathematical analysis

4. involves the examination of hypotheses
5. involves inferential statements

6. involves uncertainty

7. involves computation

The above list is not intended to include all the possibilities that one might
think of, but these types of characteristics are often mentioned in attempts
to “define” what constitutes a statistical analysis. In fact, phrases such as
these are sometimes combined to produce an answer to the question “what
is statistics?” such as several contained on the web page of the American

Statistical Association,

I like to think of statistics as the science of learning from data . . .

Jon Kettenring, 1997 ASA President

The mathematics of the collection, organization, and interpretation
of numerical data, especially the analysis of population character-
istics by inference from sampling.

American Heritage Dictionary

or

The steps of statistical analysis involve collecting information, eval-
uating it, and drawing conclusions.

Author of the ASA web page “What is Statistics?”
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A difficulty with such attempts to give definition to statistical analyses is
that they (almost necessarily) lack precision. Is solution of a set of partial dif-
ferential equations, using observed data to set initial and/or boundary value
conditions, necessarily a statistical analysis? Certainly this procedure involves
data and mathematical analysis. Is solution of a stochastic differential equa-
tion necessarily a statistical analysis? It does involves uncertainty and, again,
mathematical analysis. Are the use of machine learning or running a neural
network necessarily statistical analyses? These activities involve computation
and learning from data. Is examination of time recorded in flights around
world in different directions to confirm or contradict Einstein’s theory of spe-
cial relativity necessarily a statistical analysis? Here we have both a hypothesis
and data. I believe most of us would answer all of the above questions in the
negative. While these types of activities and procedures might be included
in something we would consider a statistical analysis they do not, in and of
themselves, qualify as statistical analyses.

The quote from Dr. Kettenring given previously is an attempt to provide
a simple indication of what statistical analysis is about in plain language that
is readily interpretable, and I do not fault such efforts that appear in places
such as the ASA web page. But they are not sufficient to provide guidance for
what topics should be covered in an advanced course on statistical methods.
The “learning from data” phrase has become popular, but really provides
little distinction between procedures we would consider statistical in nature
as opposed to other approaches. A few years ago I made a number of trips
over a relatively short period of time. As I am slow to turn in travel expenses
for reimbursement, I ended up with both high credit card balances and low
cash availability. For several months I sent in the minimum monthly payment

listed on several credit card statements. I noticed that, although I had made
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regular payments in the minimum required amounts, the total credit card
balances went up, not down! I learned from this experience, on the basis of
data consisting of my account balances, that minimum monthly payments are
not sufficient to reduce credit card debt. But I doubt that many of us would
consider this a statistical analysis.

Just as it is perhaps too general to ask what statistics is, perhaps at-
tempting to characterize statistical analyses remains too vague to address in
a satisfactory manner. We might narrow the discussion by considering what
we mean by a statistical method and then building up a statistical analysis as

consisting of the application of one or more such methods.

1.1.2 Discussion Items on Statistical Methods

We turn our attention, then,to the question of what it means to say that some
procedure is a statistical method. Consideration of this question might lead
us to assert that one or more of the following characteristics apply to such

methods:

1. involves a coherent (complete, logically consistent) process for the exam-
ination of data in all or a portion of a statistical analysis (even though

we haven’t entirely determined what we mean by analysis)

2. involves the expression or manipulation of data in a way that summarizes

the information the data contain about a question or quantity of interest

3. involves mathematical expressions for estimation and/or testing of quan-

tities in populations or theoretical probability distributions

Possible characterizations such as these are more well-focused than those

given in the previous subsection for statistical analyses, but are also more tech-
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nical in their implications. These more precise suggestions for characteristics
of a statistical method do embody many of the possibilities given previously
relative to the issue of a statistical analysis. The role of data comes through
clearly, and learning from data is sharpened to the summarization of infor-
mation contained in data about a particular question (hypothesis) or quantity
(object of inference) of interest. Uncertainty appears at least in the form of
probability distributions, and the role of mathematics in producing the appro-
priate summarization through estimation or testing is strongly implied. Several
aspects of the phrases above have also restricted the range of procedures that
might fall into one or more of these categories to a greater degree than what
was considered for statistical analyses. The concept of population or distrib-
ution alone is sufficient to exclude possibilities such as the credit card story
of Section 1.1; note here that the existence of such concepts does not imply
that only indefinite probabilities are involved in inference. The insertion of
a necessary logical basis for an overall procedure places a greater demand on
what might be considered a statistical method than is implied by a mathe-
matical solution to a well formulated problem, such as the solution of sets of
differential equations.

It seems that general agreement concerning the status of various procedures
as statistical methods is easier to attain than is true for statistical analyses.
For example, I believe most statisticians would not have difficulty agreeing that
maximum likelihood estimation, two-sample t-tests, and bootstrap estimation
of standard errors qualify as statistical methods. But it is less clear that other
common procedures employed by statisticians reach the level of a method.
Whether the production of a scatterplot is a statistical method could certainly
be questioned under criteria such as those listed above, and similarly for many

other common data displays such as stem-and-leaf plots, boxplots or even
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sophisticated rotating scatterplots in high dimension. Do procedures for the
interpolation of data through the use of splines or kriging qualify as statistical
methods? What if such procedures are combined with other assumptions or
procedures to produce measures of uncertainty for predictions? Perhaps we
should lower the demands another notch in our effort to define characteristics
and consider something that might be called statistical techniques. We could
then consider building up our concepts of statistical methods and eventually

analyses as organized collections of such techniques.

1.1.3 Discussion Items on Statistical Techniques

We have now reached the point in our discussion at which we wish to con-
sider what criteria might be used to categorize some procedure as a statistical

technique. Possibilities might include that a technique:
1. forms a part of a statistical method
2. is anything that proves useful in a statistical analysis
3. is used primarily by statisticians but not other disciplines

At this point many of us, myself included, would conclude that we have
simply progressed through the semantics of analysis, method, and technique to
make the question of what qualifies under the headings less controversial and
to allow nearly any procedure one wishes to consider to qualify as at least a
statistical technique. But this recognition brings with it an important message.
We typically use the words technique, method, and analysis with a sense of a
progression that entails increasing demands on organized structure, complete-
ness, and end product. A technique does not need to result in an inference

or conclusion, and need not contain an overall logical structure. A method
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must be more complete in attaining an narrow objective such as estimation or
prediction of quantities and, in the view of many statisticians, also providing
an associated measure of uncertainty. An analysis must combine one or more
methods and techniques in an organized and logical fashion to culminate in
conclusions, typically inferential in nature, about a question of interest.

I will close this brief subsection by pointing out that the development of
the phrases statistical technique, method, and analysis is analogous to the way
we use the words illustration, example, and application in referring to the pre-
sentation of manipulations of data or numbers. An illustration is constructed
to display some aspect of the manner in which a mathematical manipulation
of numbers functions. Illustrations may be built around real data but are also
often constructed in a purposeful manner (e.g., with carefully chosen numer-
ical values) for pedagogical purposes. Examples generally consist of at least
portions of an actual data set to demonstrate the way some procedure func-
tions in a real situation. Examples do, however, often simplify the setting
through either culling of the data to be used (e.g., ignoring extreme values)
or by putting aside justification of certain assumptions (e.g., taking “tuning”
parameters as known). An application, in contrast, focuses on a particular sci-
entific problem and must address all important issues involved in addressing
that problem statistically (e.g., determining how one sets tuning parameter
values in the context of the problem). A complete application must also cul-
minate in an indication of what can be concluded about the problem based
on the statistical analysis (yes, analysis) conducted. The connection with our
present topic is that the same type of progression with increasing requirements
in terms of completeness and logical organization is present in the progression
of illustration, example, and application as has been developed for technique,

method, and analysis in these notes.
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1.1.4 Statistical Methods and Analyses Revisited

The primary thesis of this portion of the Introduction results from revisiting
the concepts of methods and analyses in the light of the preceding discus-
sion, and is illustrated by considering the statistical procedure of simple linear
regression analysis. By far the most commonly employed manner of estimat-
ing the parameters of a simple linear regression model is ordinary least squares
(ols). I would consider ols a statistical technique but not, in and of itself, a sta-
tistical method. This is because ols simply constitutes a solution to a problem
of geometry, based on a mathematical projection theorem. What is statisti-
cal about ols estimators is that they possess certain properties (i.e., minimum
variance among all unbiased linear estimators) as given by the Gauss-Markov
theorem. It is when, in the usual progression in linear regression, we at-
tach normal distributions to the independent and identically distributed error
terms in the regression model that the procedure truly qualifies as a statistical
method. In addition, at this point we are able to use the sampling distributions
of estimators to develop inferential quantities (e.g., intervals for estimates or
predictions, confidence bands for the regression line, etc.). When such quanti-
ties are used to reach conclusions about scientific aspects of the problem that
led to the use of linear regression we can attach the label of analysis to the
entire process. I would argue that the critical step in this development is the
introduction of probability through the assignment of specific distributions to
the error terms. Certainly, to realize the Gauss-Markov results we need to
assume that these error terms are itd random variables with expectation zero
and constant variance so, in a sense, probability has come into play at this
point as well. But, we are unable to make use of this probability (except, per-

haps, asymptotically) until we have a more clear description of the associated
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distribution.

The more general conclusion suggested by this example is that it is the
infusion of probability into a problem, and the subsequent derivation of results
based on the probability structure developed, that forms the critical step from
technique to statistical method. The addition of inference procedures based in
a formal logical system then provides sufficient flesh for status as a statistical
analysis. But, fundamentally, probability is the “glue” that unites various
procedures and techniques that we use into what we call a statistical method

and statistical methods into what we call a statistical analysis.

Probability is not a thing, or subject to easy definition. Probability is a
concept or, rather, any of a number of concepts. As pointed out by Pollock
(1990) in the preface to his book on nomic probability, ... concepts are char-
acterized by their role in reasoning”. All concepts of probability obey the
same fundamental mathematical rules of behavior, which is why we can get
so far in our statistical education without belaboring the distinctions among
different concepts. But, the concept of probability that is utilized in a statis-
tical analysis determines to a large extent the manner in which it is brought
into play in the formulation of a problem, and also the interpretation of in-
ferential statements that result from an analysis. Indeed, different probability
concepts lead to different approaches to developing a statistical analysis for a
given problem, and this course is organized broadly around several of the most
common probability concepts employed by statisticians and the approaches to

analysis attached to them.
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1.2 Concepts of Probability

An argument has been made in Chapter 1.1 that probability is what we “hang
our hats on” as statisticians. Probability is what allows a quantification of
uncertainty in scientific investigation. But what is probability? There are any
number of notions of probability, indicating that probability is not a thing
but a concept. Concepts of probability include at least the following, taken
from books on the topic by Edwards (1972), Kyburg (1974), Oakes (1986) and
Pollock (1990):

1. Laplacian Probability

2. Relative Frequency Probability

3. Hypothetical Limiting Relative Frequency Probability
4. Nomic Probability

5. Logical Probability

6. Fiducial Probability

7. Propensity

8. Subjective Probability

9. Epistemic Probability

While comparing and contrasting these various notions of probability is a
fascinating topic and has formed the basis for more than one or two book-
length treatments, our concern with concepts of probability is the impact they
might have on how we design a statistical analysis of a problem. As mentioned

at the end of Chapter 1.1, statisticians do not often spend a great deal of time
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worrying about the nuances of various probability concepts, because all legiti-
mate concepts follow the same rules of mathematical behavior developed as the
probability calculus. But we perhaps should be more concerned with concepts
of probability than we generally appear to be. The concept of probability used
in a statistical analysis influences first of all the way probability is brought
into a statistical formulation of a problem (i.e., the approach to analysis). In
addition, the concept of probability being employed in an analysis influences
the meaning we should to inferential statements that result from the analysis.
In short, concepts of probability are important to statisticians because they
influence where probability “comes from” and where probability “goes to” in
a statistical analysis.

Here, we will briefly cover four major concepts of probability: Laplacian
Probability, Relative Frequency Probability, Hypothetical Limiting Relative
Frequency, and Epistemic Probability. For each of these probability concepts
we will list, in outline form, the basic notions involved, the fundamental char-

acteristic, calculation, and a few brief comments.

1.2.1 Laplacian Probability

Sometimes also called Classical Probability, the Laplacian probability concept
is well suited for problems involving fair coins, balanced dice or well-shuffled
decks of cards, and so it could also be considered as Gambling Probability. This
is the concept of probability we often see first in a presentation of set-theoretic

probability operations and rules (e.g., Stat 101, Stat 104).
Basic Notions

1. Operation: observation, measurement, or selection
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2. Sample Space: set of possible outcomes of an operation

3. Events: subsets of elements in the sample space

Fundamental Characteristic

Elements of the sample space (basic outcomes) are equally likely
Calculation

1. Let S denote the sample space, F C S denote an event, and |A| denote
the size of any set A.

2. Pr(E) = %

Comments

1. It is easy to verify that the axioms of probability are all met by Laplacian
probability (which is why we start with it in courses like 101 and 104).

2. The necessary fundamental characteristic of equally likely outcomes is
typically the result of physical properties of the operation (e.g., flipping

a coin, drawing a card).

3. Although essentially no one considers the Laplacian concept an accept-
able general notion of probability, I believe it can be applicable in quite
a number of situations and that statisticians use this probability concept
more than we sometimes realize. In fact, Laplacian probability is used

directly in some randomization based procedures.
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1.2.2 Relative Frequency

When we talk about relative frequency probability we usually mean the topic
of the next subsection, namely hypothetical limiting relative frequency. But
direct relative frequency probability has some application in finite population

problems.
Basic Notions
1. There exist a finite number of physically existing objects in a class B.

2. An operation consists of observing whether a selected object also belongs

to another class A.

Fundamental Characteristic

Probability is a direct consequence of physical realities, that is, things that

have actually happened.

Calculation

Pr(A|B) = &

Comments

1. This is a purely material concept of probability that is clearly inadequate
for many problems that we would like to apply probability to. For ex-
ample, a fair coin is to be tossed 3 times and then destroyed. What is
the probability that an arbitrary toss is a H? Here, our three tosses of
this coin are the class B and tosses that result in H are then our class A.

We might like to say 1/2 but, given there will be exactly 3 tosses, a H
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on and arbitrary toss will have relative frequency of either 0, 1/3, 2/3,or

1 so that only these choices agree with physical reality.

2. Despite its clear inadequacy as a general notion of probability, I have
included relative frequency here because it can apply in problems that

involve finite populations (we will illustrate this later in the course).

1.2.3 Hypothetical Limiting Relative Frequency

The concept of probability we usually defer to in traditional analyses based on
the theories of Fisher, Neyman, and Pearson (Egon, not Karl). This is what

we usually mean when we refer to relative frequency or frequentist probability.

Basic Notions

1. Operations (as in Laplacian and Relative Frequency probability) but that

can at least hypothetically be repeated an infinite number of times.
2. Sample Space (as in Laplacian probability)

3. Events (as in Laplacian probability)

Fundamental Characteristic

Operations that can be repeated hypothetically an infinite number of

times.
Calculation

1. Let n denote the number of operations conducted, and let E,, denote the
number of operations, out of the n operations conducted, that result in

an outcome contained in an event F.
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Comments

1. It is not as easy to verify that the axioms of probability are all met by
Hypothetical Limiting Relative Frequency Probability, but this concept
agrees with Laplacian Probability when both are applicable (e.g., flipping

a coin).

2. Outcomes need not be equally likely, but one-time or individual-specific

events are problematic (e.g., evolutionary events)

1.2.4  Epistemic Probability

Any concept of probability that cannot be expressed in terms of physical events
can be considered epistemic probability. In literature on theories of probability,
epistemic probability is often equated with subjective or personal probability.
These are somewhat “loaded” terms and there has been extensive debate about
whether objective probabilities can truly exist or, conversely, whether subjec-
tive probability is legitimate as a vehicle for empirical investigation. We will
take the more pragmatic view of many statisticians that non-physical probabil-

ity concepts can be useful, and refer to such concepts as epistemic probability.

Basic Notions

1. Probability = knowledge or belief.
2. Belief is updated or modified in the light of observed information.

3. Mathematical formalism is necessary for belief to be modified in a co-

herent manner.
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Fundamental Characteristic

Probability = knowledge or belief
Calculation

1. Let Pr(E) denote my belief about an event E. Let Pr(y|E) denote the
probability of observations y under event £ and Pr(y|E°) the probability

of observations y under the complement of E.

B Pr(y|E)Pr(E)
Pr(Ely) = Pr(y|E)Pr(E) + Pr(y|E°)Pr(E°)

Comments
1. Does not necessarily contradict the notion of an absolute truth.

2. Does not necessarily minimize the importance of empirical evidence in

scientific evaluation.

3. Does presume that scientific investigation rarely (if ever) takes place in

a vacuum of knowledge or belief.

1.2.5 Transition to Approaches to Statistical Analysis

Recall from the beginning of this section that concepts of probability affect
the way that probability is brought into a problem and the manner in which it
gives meaning to inference that results from the analysis of a problem. Another
way to say this is that concepts of probability are important in determining
where probability comes from in an analysis and where probability goes to as
the result of an analysis. One organization of this is in terms of approaches to

statistical analysis, which are divided here along the following lines:
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1. Analysis Through Randomization

Approaches based on randomization make use primarily of Laplacian and

Relative Frequency probability concepts as the basis for analysis.

. Analysis Using Models

Model based approaches are often presented in terms of Hypothetical
Limiting Relative Frequency and this is largely adequate. There can
be questions of whether such relative frequency is always adequate for
these approaches, particularly for interpretation of inferential statements.
Considerations related to this issue have, in fact, motivated many of
the probability concepts listed at the beginning of this section but not
discussed further (e.g., fiducial probability).

. Bayesian Analysis

The Bayesian approach may well make use of relative frequency prob-
ability, particularly in construction of the data model. But, the distin-
guishing characteristic of a Bayesian analysis is that it also makes use of

Epistemic probability in the form of prior and posterior distributions.
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Chapter 2

Populations, Attributes, and

Responses

Part 1 of these notes includes discussion of two approaches to statistical analy-
sis that I call the sampling approach and the experimental approach. The sam-
pling and experimental approaches to statistical analysis differ in ways that will
be made explicit in the sequel but, in their most basic form, they have in com-
mon the underlying concept of a population. We will present these approaches
largely under the assumption of a finite, physically existing population, but will
indicate attempts that have been made to extend the the basic ideas involved
to broader classes of problems. In this chapter, then, we consider first how
we might define the concept of a population. Chapter 2.1 presents the strict
concept of a finite, physically existing population, while alternative notions
that relax the strictness of this definition are considered in Chapter 2.2. In
large part, the distinctions involved between the ideas presented in these two
sections impact delicate philosophical issues involved in determining a precise

meaning for inferential statements, rather than the operational aspects of sam-
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pling or experimental approaches. Much of the relevant discussion concerning
such issues will be deferred until the (currently non-existing, but planned) part
of the notes on Approaches to Inference. Nevertheless, I believe it is beneficial
to understand that defining a population is not necessarily a trivial exercise
even at this point in our presentation. At a gross level, some understanding
of the importance of population definition can be obtained simply by recalling
traditional presentations of what is meant by the concepts of error rates or cov-
erage levels in introductory statistics courses. To communicate these concepts
we generally refer to repeated sampling or repeated observation of portions of
a population. Precisely what entities are to be sampled or observed, and what
collection of such entities constitutes the total population are questions that
are usually brushed over or taken as obvious (and examples are carefully cho-
sen in which the answer to these questions are fairly obvious). If an inferential
statement derives its meaning from repeated operations conducted on compo-
nents of some population, it behooves us to expend some effort in determining

precisely how we define a population and its associated characteristics.

Connected with the definition of a population are the concepts of attributes
and responses. These refer to quantifiable and observable phenomena attached
to the basic units of a population (once we have determined what might be
meant by the phrase population unit). For the most part, the concept of at-
tributes is involved with the sampling approach while the concept of responses
is involved with the experimental approach. The notions of attribute and

response will be discussed in Chapter 2.3.
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2.1 Finite, Physically Existing Populations

The concept of a finite, physically existing population is a relatively “pure” or
“strict” notion of what we would consider to constitute a population. It is also
the easiest to comprehend, although too often we fail to consider the potential
ramifications of departures from this concept of a population when we allow

more relaxed definitions such as those introduced later in the Chapter.

By a finite, physically existing population we mean a finite collection of dis-
crete entities we will call population units. Such units may be people, animals,
or objects such as steel beams, buildings, or ships. The phrase physically ex-
isting implies that such units are manifested in the real world in which we live,
not of hypothetical existence, and also are not subject to arbitrary definition

by a scientific investigator or statistician.

Arbitrary means not governed by any principle, or totally capricious in
nature. There is often no issue that requires extensive consideration in the
case of populations that consist of living organisms, such as people or cows.
Cows exist, and the definition of what constitutes a cow is not subject to a great
deal of debate (comical considerations aside). But other common situations
may demand more detailed examination. Consider, for example, the division
of an agricultural field into plots. Suppose we have a 1 hectare square field;
one hectare is 100 are and 1 are is 100 square meters. We want to divide this
field into 25 plots. It might be natural to begin at one corner of the field and
lay out square plots 20 meters on a side. Each plot would then consist of 4 are
in a square shape. But, we could just as easily form 25 plots by taking 4 meter
strips running the entire length of the field (100 m). In this configuration,
each plot would also consist of 4 are, but in a much different configuration.

Alternatively, we could discard a boarder strip of some given width around the
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entire field and divide the remaining area into 25 plots in various ways. The
point is that the plots are subject to arbitrary definition by an investigator,
and cannot be considered units of a physically existing population as we have
defined this concept. Contrast this with a situation in which we are given a
map of 100 fields, which may differ in size and shape. While these fields may
well have resulted from an arbitrary decision by someone at some point in time
(a surveyor, a politician, a farmer, etc.) for our purposes they simply exist as
given on the map, and are not subject to arbitrary definition by us. We might
well consider such fields as constituting a physically existing population.
Assuming a finite population that consists of well-defined physical objects
that are not subject to arbitrary definition, these fundamental population units
are sometimes aggregated into larger units, and a population defined as con-
sisting of the larger units. It is not entirely clear whether this procedure
introduces any serious difficulty for the strict concept of a finite, physically ex-
isting population. Certainly, if the fundamental units are discrete, physically
existing objects then so too are any aggregates of those units. But do the ag-
gregate units exist without arbitrary definition? The answer may well depend
on how the aggregation occurs, and in how flexible one is willing to be in what
is considered arbitrary. If there are “natural” groupings, such as people into
nuclear families (based on genetic relatedness) or functional families (based on
living arrangements) one might argue that the aggregation is not arbitrary.
What if the aggregation is based on random selection of fundamental units for
aggregate units? Random selection is diametrically opposed to arbitrary se-
lection in that it follows an exact and stringent principle (recall that arbitrary
means not based on any principle). On the other hand, determination of the
size of aggregate units may well be arbitrary in nature; you put 5 chickens in

a group, I'll put 6. I would argue that truly random aggregation results in
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a conditional population definition, the conditioning being on the size of the

aggregate units.

2.2 More Flexible Notions of Population

As should be clear from the previous section, definition of what is meant by
a population is not as clear cut as we sometimes would like to believe. A
fundamental consequence of a finite, physically existing population as defined
in Chapter 2.1 is that all units of a population may be individually identified
and assigned discrete labels (e.g., 1,2, ..., N). This automatically results
in the classical sampling frame of survey sampling methodology or a clearly
defined reference class for the experimental approach. But these approaches to
statistical analysis would certainly be of limited use if the situations in which
they could be applied was totally constrained by the need for a strictly defined
finite, physically existing population. There are a number of violations of
the population concept of Chapter 2.1 that are both common in applications
and appear to pose less than insurmountable obstacles for these statistical
approaches. Several of these difficulties are presented below and, for each, the
extent to which one is willing to accept departures from a tight definition of
population will depend on philosophical considerations and the degree to which
a convincing argument can be constructed for the adequacy of the analysis

undertaken.

1. Non-Static Populations
Many, if not most, interesting situations in which we might consider
making use of either the sampling or experimental approaches do not lend

themselves to the definition of a static population. Consider a survey of
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public opinion about construction of a new mega-mall on the outskirts
of a small city. One desires a (random) sample of city residents, and it
is that group of people about which conclusions are to be drawn (favor
or oppose construction of the new mall). There do not appear to be
major issues relative to defining a finite, physically existing population
of people in this case. The context of the problem is likely sufficient to
deal with issues such as transient versus permanent city residents or to
restrict the relevant population based on age (although what to do with
teenagers might be an interesting question). But, even in small cities,
people move in, move away, die, and are born on a daily basis. Thus,
the actual population about which we wish to draw a conclusion will
necessarily be different from the actual population from which we can
draw a sample. Nevertheless, few of us would consider the use of sampling
methodology inappropriate in this situation. This is because we believe
(expect, anticipate) that the population available for sampling will be
sufficiently similar in all relevant respects (primarily attitude about a

proposed mall) to the population about which a conclusion is desired.

The occurrence of a non-static population is arguably a reality in nearly
all problems involving living organisms. In an experiment to determine
the efficacy of a veterinary vaccine to prevent viral infections in pigs,
conclusions are made about a certain type of pig (breed, age, health
status) in general, not about the collection of pigs of that type that
actually existed at the beginning of the study. In a study of the asso-
ciation of having taken advanced placement courses in high school with
the chances of success (leaving this undefined at the moment) in college,

the population to be sampled is college-bound high school students at



2.2. MORE FLEXIBLE NOTIONS OF POPULATION 27

a particular point in time and region in space. But the population of

interest is college-bound high school students in general.

One aspect of non-static population status can have important conse-
quences for statistical analysis. A catastrophic change in the composi-
tion of a population during the time period of concern can vitiate the
intent of a study. It is clearly not wise for a political candidate to survey
residents of a given congressional district about a proposed tax increase if
the state is in the process of re-districting, particularly if the new bound-
aries are likely in include or exclude a major population center (e.g., large
city) from the district. With these types of population changes forming
fairly obvious caveats, we are typically willing to apply the methods of

sampling or experimentation to even non-static populations.

2. Populations of Unknown Size
It may be the case that a population of discrete physical objects can
be identified, and that population must be logically finite in size, but
the number of units comprised by the population is unknown. This may
be due to the fact that individual units in the population cannot be
uniquely identified for the entire population, but only for portions of
the population chosen for observation. For example, consider a study
of nitrate concentration in wells used for human water supply in a rural
portion of a state. It is most likely that a list of all such wells is not
available. If a particular areal unit (quadrat or subsection) is visited, it
may be possible to enumerate all of the wells that occur in that small
area. These situations are common, and survey sampling methodology

has been developed to deal with many such situations.

Many, if not most, controlled experiments are not conducted with units
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from a population of known size. Consider an experiment to assess the
effect of a growth hormone given to chickens on the protein content of
eggs produced by those chickens. Here, the fundamental population units
of concern are chickens (perhaps of a particular type). They are discrete,
physically existing entities not subject to arbitrary definition by a sta-
tistician. In this case, and for many experimental settings, the unknown
size of a population and the non-static nature of the population of in-
terest do not seem to be distinct issues. To object that we do not know
the total number of chickens of the type of concern is largely irrelevant,
since it will change over the course of the study anyway. It is mentioned
here because the experimental approach in “pure” form demands ran-
dom selection of population units to be included in a study. That this
is almost never possible changes the inferential framework available, as

will be discussed at greater length in later chapters.

Another type of situation that results in unknown population size occurs
from populations defined in terms of units that “join” the population
over time. Consider a study to determine the proportion of automobiles
that exceed the speed limit by more than 5 miles per hour during the
weekend on a given portion of interstate highway. Here, discrete, phys-
ically existing population units are readily available, but the size of the
population is not only unknown but actually undefined prior to the time
period of interest. In this example we would also have a non-static pop-
ulation, since it is unlikely that only one particular weekend would be of

Iinterest.

Of these types of departures from our basic concept of a physically ex-

isting population, the first and second seem to pose less difficulty for a
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statistical approach based on randomization than the last, in which units
join the population over time. This is because such situations generally
result in population units that are available for sampling only at the
time point in which they are identified as belonging to the population.
To accomplish some type of randomization in sampling we must make
use of surrogate units assumed to be unrelated to the object of inves-
tigation. In the example of automobile speeds we might, for instance,
define sampling units as intervals of time, distinct from the populations
units of true interest. A complete list of all time intervals in a weekend is
both of known size and is easily obtainable. If time of day is unrelated to
the object of investigation (proportion of speeding autos) then this poses
little difficulty. On the other hand, if time is related to the phenomenon
of interest, then this complicates the situation and our ability to apply

sampling methodology.

3. Hypothetical and Constructed Populations
This departure from our strict concept of a finite, physically existing pop-
ulation impacts primarily what is presented later in these notes as the
experimental approach. Many controlled experiments are conducted on
population units that are “constructed” by the investigator. Petri dishes
containing a given amount of growth media and inoculated with a certain
quantity of some micro-organism are constructed in the laboratory. Cell
cultures to which are added various antibodies and antigens are similarly
produced by the scientist conducting the investigation. Plantings of a
certain horticultural variety are made by adding plant material and soil
or other growth media, and may be subjected to various light regimens

to determine the effect on floral productivity. In these cases, the defin-
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ition of what constitutes a population unit may be less than arbitrary,
yet those units do not exist outside the universe defined by the study in
question. If the population is considered to be finite with a size deter-
mined by the number of units constructed, then the entire population
has been used in the experiment and there is no need to make inferential
statements about it. But, almost certainly, that collection of units is not
the object of inference. If we are to make inference based on what would
be expected in repetitions of the study protocol we are referring to rep-
etitions conducted with hypothetical population units, since the exact
study protocol is rarely repeated more than a few times, and generally

not more than once.

The impact on the experimental approach to statistical analysis of pop-
ulations defined on the basis of constructed units and, typically, of a hy-
pothetical nature, is almost identical to that of experiments conducted
with populations of unknown size or with units from non-static popula-
tions. This impact will be discussed at greater length in Chapter 4 and,

particular, in Part IV of the course when we deal with inference.

. Arbitrarily Defined Population Units

The issue of arbitrary definition of population units has been raised pre-
viously in the discussion of Chapter 2.1. This issue may be considered
relevant primarily for the sampling approach since under the experimen-
tal approach one could consider arbitrary population units to have been
constructed. The example of Chapter 2.1 concerning agricultural plots
in a field illustrates this nicely. If these plots are to become the objects
of some type of treatment (e.g., fertilizer level) then they may easily be

viewed in the same light as the petri dishes or horticultural plantings of
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the previous item in this list.

Concerning the sampling approach, there is lack of agreement among
statisticians about how serious the consequences of arbitrary definition
of population units are. On one hand, it is often possible to directly
apply the operational procedures of survey sampling methodology once
population units have been defined, regardless of whether that definition
was arbitrary or not. If we attach a caveat to inferential statements that
such conclusions are conditional on the definition of population units
employed, similar to what was discussed for aggregation of fundamental
units based on random grouping in Chapter 2.1, then many statisticians
see little reason the sampling approach cannot be used with confidence.
On the other hand, arbitrary definition of population units may well
interfere with the notion of units having inherent attributes of interest
as they will be defined in the next section, and this is of fundamental
importance for the sampling approach. If this is the case, then one
may well prefer to formulate the statistical problem in the context of a
model based or Bayesian approach, and this is the opinion of many other
statisticians. How far one is willing to “bend the rules”, so to speak, is
a matter of personal choice by a statistician. A statistician who has
considered the issue and made a deliberate decision is likely to be able to
defend that decision, even if it does not meet with universal approval. A
statistician who is not even aware there is an issue involved is on much

less solid footing.
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2.3 Attributes and Responses

Nearly all statistical applications involve the analysis of observed data, at least
a portion of which typically constitute a quantification of some phenomenon
of primary interest in a study. Even qualitative phenomena are typically as-
signed arbitrary numerical values, such as 0 and 1 for binary measures. In
the sampling approach, we will refer to such values as attributes of population
units, while in the experimental approach we will modify the concept of an

attribute slightly to develop the notion of a response.

In its fundamental form, the sampling approach assumes that associated
with each unit in the population is a fixed value of interest, called an attribute.
These attributes are characteristics of the population units, so that observation
of the same unit will always produce the same value of the attribute. In this
framework, the values of attributes associated with population units are not
realizations of some random mechanism (i.e., not realized values of random
variables). They are, rather, fixed, immutable characteristics of the units. My
car is a Honda civic. It will always be a Honda civic, unless it is transformed
into a different car, in which case it is no longer truly the same unit in a
population of cars. This notion of an attribute is quite stringent. My car is
red, which is one of its attributes, unless I decide to get it painted a different
color. Is it’s color then no longer one of its attributes? Clearly, we cannot
demand of an attribute that it remain characteristic of a population unit in
perpetuity. We can only require that an attribute remain characteristic of a
population unit for a certain time span appropriate within the context of any

given study.

All studies are relevant for only a certain time span. Public opinions change

based on events that cannot be anticipated at the time of a study; consider, as
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an extreme example, the general attitude about figherfighters in New York city
prior to and after the terrorist attack of September 11, 2002. The effect of an
insecticide on yield of a given crop may change as the target organism(s) evolve
resistance to the active ingredients of the insecticide. The average price of a 3
bedroom home in a given region will change over time. That an attribute is
an unchanging characteristic of a population unit must be interpreted within
the time span of relevance for a particular study. We take an attribute to be
a characteristic of population units that has a fixed value for the course of a
study. In fact, the time frame within which attributes can change for given
population units helps define the time frame within which conclusions from a
study are relevant.

Under the experimental approach, we will refer to measured or observed
values of the primary quantity or quantities of interest as responses. Responses
are essentially the same concept as attributes of population units in sampling
and are considered characteristics of population units, rather than values as-
sociated with random variables. A difference, however, is that responses are
allowed to be influenced by external factors within the time frame of a study.
For example, while low density lipoprotein (so-called “bad”cholesterol) levels
in humans may be considered characteristics of individuals for a reasonable
period of time, the level of cholesterol in an individual can certainly be influ-
enced by exercise, diet, and certain drugs. If we were interested in the average
cholesterol level in male professors between the ages of 40 and 60 we could
take a sample in which cholesterol level is considered the attribute of interest.
If, however, we were interested in whether cholesterol level in male professors
between 40 and 60 years of age could be influenced by consumption of one
serving of oatmeal per day (for 30 days say), we would exercise control over at

least a portion of the influence of diet and consider cholesterol level a response



34 CHAPTER 2. POPULATIONS, ATTRIBUTES AND RESPONSES

of interest. Thus, the term responses refers to attributes under a given set of
pertinent conditions and external influences. It is precisely the effect of certain
of these external influences (i.e., treatments or factors) that the experimental
approach is designed to assess.

One additional aspect of how attributes and responses are defined is impor-
tant, particularly under the experimental approach. In introductory courses
we often emphasize the concept of experimental unit and distinguish it from
sampling unit. In an experimental situation, a sampling unit is the entity
on which an observation or measurement is taken. Sampling units frequently
correspond to the fundamental population units of Chapter 2.1. Experimen-
tal units may also correspond to these population units. But, if fundamental
population units are aggregated into groups to which treatments are applied,
experimental units correspond to these aggregates. For example, if plantings of
a horticultural variety are constructed as described in Chapter 2.2, and groups
of these plantings placed in controlled environmental chambers to expose them
to different light regimens, then it is a group of plantings placed in one con-
trolled environmental chamber that constitutes an experimental unit in the
study. What is important is that the concept of a response applies to exper-
imental units not sampling units, unless the two coincide. Responses, then,
may consist of aggregated measurements made on individual sampling units
just as experimental units may consist of aggregated groups of fundamental
population units. In the horticultural example, the phenomenon of interest
may be the number of blossoms produced in a given time span, which can
be counted for each planting (sampling unit) but then must be totaled for all
plantings in a given chamber to constitute the response for that experimental
unit. The reason this is such a crucial point is that, as we will see in Chapter

4, probability enters a problem under the experimental approach only through
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randomized treatment assignment. Treatments are assigned to experimental
units and thus responses must be considered characteristics of experimental
units as well. To fore-shadow a latter portion of the course, we will note
that there are alternative structures in which to formulate this problem based
on statistical modeling, in which individual plantings do have individual “re-
sponses”. If such an alternative structure is used for analysis, however, one is
no longer applying the experimental approach to statistical analysis, which is

our main point here.
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Chapter 3

The Survey Sampling Approach

References: Cochran (1977), Wolter (1985), Sarndal et al. (1992), Thompson
(1992).

Consider a situation that involves a population of the type described in Chap-
ter 2.1, for which we are interested in a given attribute of the population units;
in nearly any real application we will have interest in multiple attributes but,
for now, consider only one of these. Let the values of this attribute for any

arbitrary ordering of the units in the population be denoted as x1, xs, ..., Tn.

Example 3.1

The National Marine Fisheries Service (NMFS) is responsible for estimating
the total commercial catch of groundfish (a certain class of commercially valu-
able fish) in the West Coast fishery, which consists of waters off the west coast
of the US from California up to southern Washington. The total commercial
catch consists of fish that are caught and delivered to a processing plant (i.e.,

are sold) plus fish that are caught but dumped back into the ocean (called

37
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“discard”). Fish may be discarded for any number of reasons, such as because
they are too small to be economically valuable, but discard adds to the over-
all mortality caused by the fishing industry and is thus important to know.
Records of kept catch are obtained by accessing records that must be provided
by processors (how much they bought, who they bought it from, when they
bought it, etc.) but getting an estimate of the discarded catch is more difficult.
To facilitate this estimation, trained observers are placed aboard some (gener-
ally about 10%) of the trips made by fishing vessels. The observers are able to
record the amount of discard (in weight) for hauls that are observed. Vessels,
on the other hand, are required to keep “loghooks” containing information on
trip dates, number of hauls made, time and geographic area of hauls, and other
information regardless of whether the trip was officially observed or not.
Nearly all of the estimation strategies considered to date by NMFS have
been based on survey sampling methodology. A fundamental question in the
use of such estimators is what definition should be given to the population and,
in particular, the basic population units. One option is to define population
units as trips made by vessels. The total number of trips made over a given
period (e.g., fishing season) is known. On the other hand, a population so
defined cannot be enumerated until after the fact (i.e., after the fishing season
is over) because there is no way to tell how many trips will be conducted before
they actually occur. Alternatively, one might define the population to consist
of vessels that purchase permits for the fishery (which they have to do before
fishing); units then are vessels. In this case, a list of the entire population is
available prior to any fishing. In the former case (population units defined as
fishing trips) we may encounter difficulties with populations of unknown size,
as discussed in Chapter 2.2, while in the latter case (population units defined

as vessels) we may encounter difficulties in defining an observable attribute
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for each unit. That is, if the attribute of interest is total catch, it may not
be possible to obtain these values for each sampled unit since it is difficult to
place an observer on board a vessel for all of the trips made by that vessel in
such a way that all hauls made on each trip are observed.

This example also illustrates what may be a difficulty in defining the quan-
tity of concern as an actual attribute of population units, regardless of whether
those are considered to be trips or vessels. Observers cannot actual measure
the total weight of discard for a given haul. Rather they estimate discard using
several approved methods that may involve sampling of a portion of the fish in
a haul or in a “discard pile”. Thus, if two observers were to observe the same
haul, it is exceedingly unlikely they would arrive at the same value for weight
of discard. Similarly, processors may sometimes use estimation procedures

rather than exact measurements for weight (particularly in large deliveries of

fish).

3.1 The Sampling Frame

Of fundamental importance in putting the sampling approach to statistical
analysis into action is the formation of what is known as a sampling frame. In
its most basic form, the sampling frame for a given problem is simply a list,
in arbitrary order, of all of the units in a population, and a unique identifier
for each unit. Forming sampling frames in more complex situations, such as
when the basic population units cannot be enumerated or identified in total,
is addressed in Statistics 521 and Statistics 621. Here, we are attempting to
communicate the fundamental ideas of the sampling approach, and we will
assume that a complete sampling frame of all basic population units is able to

be constructed.
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In operation, an important aspect of a sampling frame is that, once formu-
lated, the identifiers of population units remain inviolate. That is, if a given
population unit is designated as unit 4, it is always unit 4, and x4 refers to the
value of its attribute, never the attribute of any other unit in the population,
regardless of whether unit 4 is selected for observation (i.e., to be included in

a sample) or not.

Example 3.1 (cont.)

NMES identifies vessels and trips with unique numbers, and hauls within trips
are identified sequentially as 1,2,...,. The sampling frame for our popula-
tion of vessel/trip/haul might be represented, for example, as a table of the

following form:

Unit Total
Vessel Trip Haul Index Catch(lbs)

115 81 1 1 1
115 81 2 2 T
131 o1 5 N TN

3.2 Population Statistics as Parameters

Within the context of a basic sampling approach, statistics that are computed
over the entire population are considered “parameters”. For example, the

population mean, total, and variance are defined as,

1 N
Ho= N;%,
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N
T = Z:L’,-—Nu,
i=1
2 1 & 2
= — i — )°. 1
o = D) (3.1)

Similarly, the proportion of the population satisfying some condition or having

an attribute that belongs to a particular class A is,

% > I € A) (3.2)

=1

Py

where I(+) is the usual indicator function having the value 1 if the condition

of the argument is true and 0 otherwise.

We will be concerned with the estimation of population parameters such as
u, 7, 02, and P4. Note, at this point, that we have discussed nothing involving
randomness, probability, or uncertainty. If every unit in the population could
be observed, we would be able to compute these quantities exactly, and there

would be no need for statistics to enter the picture — this would be a census.

The need for statistics arises from the (usual) situation in which not every
unit in the population can be observed. We must then estimate population
parameters rather than simply compute them, and there is uncertainty involved
in our estimation because we have less than complete observation. This is
called sampling error in the survey sampling literature, and is the only source
of uncertainty to be considered. What is called nonsampling error may arise
from sources such as measurement error or nonresponse (a unit chosen for
observation is impossible to actually observe). We will mention nonresponse
in a later section, but for the most part in this development will consider only

sampling errors.
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3.3 Simple Random Sampling

The basic method for obtaining a portion of the population for observation
(i.e., a sample) is to use simple random sampling. This method is often used
in its own right to obtain a sample directly, and also forms the basic building

blocks from which we may construct more complex random sampling designs.

3.3.1 Simple Random Sampling Defined

Definition:
A simple random sample of n units, selected from a population of N units, is
any set of n units selected in such a way that all possible distinct sets of size

n are equally likely to be selected.

How many sets (samples) of size n are there? That is, if S, denotes the
set of possible samples (the set consisting of distinct sets of size n), what is

the size of S,,7

N!

S,l = A I
[Sn] = (N —n)!n!’

n
Denote (with an arbitrary ordering) the set of possible samples as S, =
{Sn1,---,Sum}, where M = |S,|. Then using Laplacian probability, we can
calculate the probability of any given sample S, say, as, for k=1,..., M,

1 1 (N —n)!In!

Pr(Snk) = 37 = S, — N

Comments

1. What is of fundamental importance here is that, given that we will es-
timate a population parameter on the basis of a sample, we have just

introduced probability into the overall problem formulation.
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2. It is worth emphasizing that, if one looses control of the sampling process,
then there is in fact no basis for statistical treatment of the problem.
That is, with a non-random sample, it is more than an issue of answers
that are likely to be “less than perfect”, it is an issue of having lost any

logical basis for conducting an analysis based on the use of probability.

3.3.2 Obtaining a Simple Random Sample

There are several ways to actually obtain a simple random sample, although
the sequential selection procedure described below is by far the easiest to pro-
gram. We assume that a complete sampling frame (list of population units
with unique identifiers) is available, such as the table of vessels, trips, and
hauls given previously for the groundfish example. For both of the procedures
to obtain a simple random sample given in what follows, let {U; : i =1,..., N}

denote the population units (in any arbitrary, but fixed order).

Group Selection Procedure

Directly from the definition of a simple random sample at the beginning of
Chapter 3.3.1, it is clear that one procedure to select such a sample from a
population of N units would be to enumerate all of the possible samples of
size n, and select one of them at random. For example, if N = 6 and n = 2,

the possible samples could be enumerated as follows:
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Sample Composition | Sample Composition

1 {U1,Us} 9 {Us, Us}
2 {Uy,Us} 10 {Us, Uy}
3 {Uy, Uy} 11 {Us, Us}
4 {U1,Us} 12 {Us, Us}
5 {U1,Us} 13 {U4, Us}
6 {Us, Us} 14 {U4, Us}
7 {Us, Uy} 15 {Us, Us}
8 {Us, Us}

Something worth mentioning at this point, because we will most likely see
it repeatedly, is how one of these samples would be randomly selected in a
computer algorithm. There are M = 15 possibilities. A computer algorithm

to select one at random would be:

1. Generate one value u* from a uniform distribution on the interval (0, 1).
This is easily accomplished using almost any statistical software or lan-

guage (e.g., Splus, R, SAS, etc.)

2. If u* < (1/15) select sample number 1, which would consist of population

units 1 and 2, {Uy, Us}.
3. If (1/15) < u* < (2/15) select sample number 2.
4. In general, if ((k —1)/15) < u* < (k/15) select sample k; k= 1,...,15.

While programming such a group sampling method is not difficult for prob-
lems such as this illustration (with small N and n), it can become much more
cumbersome for most real problems, such as that of Example 3.1 in which

N = 6,312 and we may want a sample of size n = 100 say. This motivates
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the next procedure which is equivalent to the group selection procedure, but

is easier to accomplish (i.e., program) in practice.

Sequential Selection Procedure

The sequential selection procedure is simply a computational version of exactly
what you would do if asked to draw n chips from a bowl containing a total of

N numbered chips. That is,

1. Select 1 unit at random from a population of size N.
2. Select 1 unit at random from the remaining population of size N — 1.

3. Select 1 unit at random from the remaining population of size N — 2.

n. Select 1 unit at random from the remaining population of size N —(n—1).

It is easy to prove that the sequential procedure is equivalent to the group
procedure. Restricting attention to our small example with N =6 and n = 2,
suppose that the group selection procedure resulted in selection of sample
number 5, consisting of {Uy, Us}, which had probability (1/15) of being chosen.
What would be the probability of this sample under the sequential procedure?

There are two mutually exclusive ways to select the sample {Uy, Us} in the
sequential procedure: (1) select U; at step one and Us at step two (call this
the event F1), and, (2) select Ug at step one and U; at step two (call this the

event Fy). Now,
PT(SQ’5> = PT(Fl U FQ) = PT(Fl) + PT’(FQ)
= (1/6)(1/5) + (1/6)(1/5)
= (1/15),
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which is the same as under the group selection procedure. Since this does not
depend at all (i.e., is WLOG) on which particular sample the demonstration

is for, the sampling procedures are equivalent for this example.

3.4 Estimation For Simple Random Samples

3.4.1 The Basic Estimators

It is natural to consider estimating population parameters such as u, 7, 02, or

P, using the same formulae as in (3.1) and (3.2) with only units selected for the
sample, rather than the entire population. Letting S denote the sample (of
size n) selected, we can represent such estimates without re-indexing sampled

and other population units as follows:

nz—l
N N
P o= No=="Sa,I(U; € 87
ni3
1 N
S Z(xz_ﬂ)2I(UZ€Sn)
n—1i
. 1 XN
Pa = Y Iw € A1 € S)) (3.3)

3.4.2 Properties of the Estimators

There are two major avenues by which to approach elucidation of proper-
ties of the basic estimators of Section 3.4.1. One, which is perhaps the more
straightforward, is to introduce the concept of random variables and consider
the indicator functions contained in the expressions of equation (3.3) to be

binary random variables. One may then use the operations of mathematical
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expectation and higher moments to derive properties of the estimators (which,
of course, then being functions of random variables are themselves random
variables). But, we have not used the concepts of mathematical expectation,
moments, or distributions up to this point, and it is possible to derive proper-
ties of the estimators without those mechanisms, which is what we will attempt
here, in an effort to keep the sampling approach “pure” with respect to its ori-
gins. Thus, we will rely on the basic operator of averaging, namely that the
average of a function h(-) applied to each of a set of numbers {z; : i =1,..., N}

is defined as

Note that, under this convention, the population parameter x of equation (3.1)
is the average of the attribute values x; in the population. Similarly, the pro-

portion Py of equation (3.2) is the average of the indicator variables I (z; € A).

Averaging and Probability of Sample Inclusion

Now, notice that the population average of the indicator that units are included

in a particular sample S} is

awg{I(U € §°)} = %Zj I(U: € 5) = 1. (3.4)

which turns out to be equal to the probability that a particular unit U; is
included in an arbitrary sample S, € S, = {S,x: k =1,...,M}. This can be
seen to be true because, still relying on the Laplacian concept of probability,

é\/lzl I(UZ € Sn,k)

P’T’(UZESH) M
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(=)
(N—D—(n=1))! (i—1)!

- [ em)

(N =D (N —n)!n!
(N —n)!(n—1)!N!

n
N’ (3.5)
where the first step in this progression is a direct reflection of the definition
of Laplacian probability, and the second step follows because the number of
samples of which a particular unit U; is a member is equal to the number of
samples of size n — 1 that can be formed from the N — 1 population units
excluding U;, while the total number of samples of size n is M = N!/((N —
n)!n!), as defined in Chapter 3.3.1. Thus, we have that

avg{I(U € S;;)} = Pr(U; € S,).

Now, the remarkable thing is that the probability that unit U; is included
in some arbitrary sample of size n, namely Pr(U; € S,), and the average
over population units that those units are included in a particular sample S,
namely avg{I(U € S})}, are also equal to the average over possible samples

{Snr:k=1,...,M} of the events U; € S, . That is,

CL’UgS{](UZ' S Sn)} = i % ](Uz € Sn,k)

[N 1)
{Nw}

==
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So, from (3.4), (3.5), and (3.6), we have that
avg{I(U € S;;)} = Pr(U; € S,) = avgs{I(U; € S,,)}.

That is, the average over population units that those units are included in a
particular sample is equal to the probability that a particular unit is included
in an arbitrary sample, is equal to the average over possible samples that a

particular unit is included in those samples.

Design Unbiasedness

Estimator of Population Mean

Denote the estimator fi in expression (3.3) for a particular sample k as ji,
and consider the average of fi;, over all possible samples of size n {S,; : k =

1,..., M},

B
;;>

avgs(p) =
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Any estimator of a population quantity  that satisfies avgs(f) = 6 when aver-
aged over all possible samples (under a given sampling design) is called design

unbiased. Thus, ji as defined in expression (3.3) is design unbiased for x4 under



20 CHAPTER 3. SAMPLING

simple random sampling.

Estimator of Population Variance

Similar to the notation fig, let the estimator of population variance in ex-
pression (3.3) for a given sample k be denoted 67. We would like to show
that 62 is design unbiased (under simple random sampling) for the population
variance o2, that is,

avgs(53) = 0.

To accomplish this requires several preliminary results. The first two of these

results you will verify as an assignment, namely,

1 Y N -1
R v (3.7)
=1
2 (N —1)?
T 2D wwy = o+ (N =1’ = o).

1<i<j<N

(3.8)

In addition, it will prove useful to consider the average over possible samples

of the squared estimator of the mean,

Ly 1 X1y ’
M};{uk} = M;{ﬁ;m(UiES"k)}
! % ! {ZxQI(U € Snk)
= a7 ) i i n,k
M= n |
+ 2 T [(UZ € Sn,k)[(Uj € S",k)
1<i<j<N
Ly Ly
= 3 T z;1(U; € Sy )
n? iS5 Mz
2 1 M
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— LN 2 2(n —1) 3.9
- nNZxZ+nN(N—1 22 it (3.9)

7 1<z<]<N

Finally, it will also be useful to re-express the estimator 67 in the following

manner,

(i — ) I(U; € Snp)

s

s
I
—_

(n—1)67 =

|
.MZ
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I
—_

(w7 = 2wsfuc + i) 1(Us € Sui)
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1 i=1

I
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.
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N

+ ZIUGSnk
=1

N

= > 27 I(U; € Sux) — nfi;. (3.10)
i=1
We are now prepared to demonstrate that the estimator % of expression

(3.3)is design unbiased for o under simple random sampling. To do so, we

begin with the result of equation (3.10),

1 X, 1 ¥ 1 2
_ iinil(UeS )—if:A2
- on—1 o M Z m M k:1,uk

which, on substitution from (3.9) becomes

1 X, 2n
n—l s 71—1[71_1\[1.:193@'Jr N(N—l ZZ”J]

1<i<j<N

- nfl(%éx?)- L (E) - 5 (5 5 e

1<i<j<N

|
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I IR S S .
T N&t N—l(N sz’xﬂ)

i=1 1<i<j<N
Finally, using (3.8) and (3.7) we arrive at,

M N -1
w2t = (Tyoee)

g (B e s - e - o)

N —1 N -1
= U2+M2_

N N
= o’ (3.11)

o2 — 12 + o2

Thus, the estimator 62 of expression (3.3) is design unbiased for o2 under sim-

ple random sampling.

Estimators of Population Totals and Proportions

That the basic estimator of a population total, 7 in expression (3.3) is de-
sign unbiased, under simple random sampling, for 7 is immediate from design
unbiasedness of i and the fact that 7 = Nji. Design unbiasedness of Py for
population proportions under simple random sampling is simple to show, and

is left as an exercise.

Variances of the Estimators

Notice that the population variance in (3.1) is (essentially) the average over
basic units of observation of the squared differences of an attribute (z) and
the average of the attribute (). Using this same notion of variance, variances
for the basic estimators of (3.3) are averages over basic units of observation for

those estimators (i.e., samples) of the squared differences of their values with
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their average value. That is, for an estimator 0 which can be computed for

individual samples {S,  : k =1,..., M}, the variance of 0 is

. 1 M . .
var(f) = i Z{@k —avgs(0)}°,
k=1
where
. 1 % R
avgs(0) = — > b;.
M=

Using this convention, and the same techniques of derivation employed in
demonstrating design unbiasedness of the basic estimators, we can easily derive
variances for those estimators.

Notice that, in particular, if 0 is design unbiased for the corresponding

population quantity 6,

var(f) = {éi — 20,0 + 92}

e
I
—_

<[= =[=
NE

B
Il
—

02 — 62

M=

(3.12)

Population Mean

Substituting (3.7) and (3.8) directly into (3.9) yields,

+ 12,

so that, design unbiasedness of i and application of (3.12) gives,

var(p) = & (N]; ”) . (3.13)

Population Total and Proportions
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The simple relation between population mean and total again immediately

yields

0.2

var(#) = N(N —n)Z-. (3.14)

n

Notice from (3.3) that the estimator of a population proportion is of the
same form as the estimator of a population mean with the attributes {z; : i =
1,..., N} replaced by the indicator that z; is in some class \A. We could then,
in deriving properties of the estimator of a proportion, simply define a new
attribute 2 = I(z; € A) and then use all of the results for mean estimation.
This is typically what is done, with one change in notation. In the case of
a numerical attribute, the variance 0 depends on functions of the attributes
other than the average (which is p); in particular, the function 3" 2?. In the
case that we replace attributes x; with indicator attributes z; we get,

2 1 al 2

i=1
1 )
= — L~ 22/ P+ P
N1 2P
N
= —P(1-P 3.15
P P), (3.15)
which depends on the attributes z, only through their mean, P.
From results for the estimator fi then, we immediately have that,

n ~

AﬁzgtjP“—P% (3.16)
and
var(P) = (]]\\;:?) P(ln_ P). (3.17)

Estimated Variances

Estimation of the variances of the basic estimators consists of using “plug-in”

estimates of the population quantities involved in expressions for variances
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presented previously. That is, given that 4% is an unbiased estimator of the
population parameter o2 and P is an unbiased estimator of the population
parameter P, substitution of 6% for o2 in expressions (3.13) and (3.14) yields
unbiased estimators for var(fi) and var(7). Similarly, substitution of P for P
in expression (3.15) yields an unbiased estimator for 0. Unbiasedness of these
variance estimators follows immediately from the fact that the variances are
all constants (functions of N and n) multiplied by the respective population

parameters (o2 in the cases of p and 7, and P in the case of P).

3.5 Unequal Probability Samples

Thus far, all of our probability calculations can be envisaged as applications of
Laplacian probability. Recall from section 3.3.1 that, under Laplcian probabil-

ity, any given sample of size n, namely S, ;, has probability of being selected

1 N —n)lnl

Thus, averages of estimators 6, over possible samples as (1/M) Y, 6), could

also be represented as,

O Pr(S,.x). (3.18)

B

avgg(é) =

k=1

Notice that expression (3.18) is in agreement with the usual definition of
expectation for a random variable (which here would be é) since, given that

some particular sample will be chosen,

ZPT’ k) :ij:

We will use the usual notion of expectation for discrete random variables to
extend the idea of averaging over possible samples. Note here that any 6 com-

puted from possible samples in a finite population of fized attributes x; must
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have a finite set of discrete values. Another way to see this is that, inter-
preting expression (3.18) as the definition of expectation for discrete random
variables, the quantities {ék ck=1,..., M} are possible values of the random
variable, not the random variable itself. Now, also note that the key operation
in derivation of properties of estimators under simple random sampling was
interchanging summations over possible samples (sum over k£ from 1 to M)
and over population units (sum over ¢ from 1 to N). This was key because,
after interchanging summations, summations over samples became constants
and then entire expressions reduced to sums over only population units; see,
for example, the demonstration of design unbiasedness for the basic estimator

of population mean in section 3.4.2.

If we have a set of possible samples of size n, S, = {Sn1,...,Snn} such
that not each of these samples has the same probability of being chosen, there

are a number of modifications we must make to our basic development.

1. First, we must determine what is meant that not each sample has the
same probability of being chosen, and how those probabilities for various

possible samples are to be computed.

2. Second, we replace simple averaging over possible samples with expec-
tation for discrete random variables (which is weighted averaging) to

determine properties of estimators.

3. Finally, we must determine whether any relations exist between probabil-
ities of samples and quantities attached to population units that allows

reduction of sums over possible samples to sums over population units.



3.5. UNEQUAL PROBABILITY SAMPLES 57

3.5.1 Appropriate Probability Concept

The first of the issues listed above, determination of an appropriate concept of
probability within which to consider sets of samples that may not all be equally
likely, is more difficult than it may at first appear. For one thing, we need to
distinguish between designs in which not all possible samples have the same
chance of being selected, and designs in which all possible samples are equally
likely but not all population units have the same chance of being selected for
the sample. The first of these possibilities (not all samples equally likely) is
probably much more rare than the second (equally likely samples constructed
from unequal chances of unit selection) but is at least hypothetically possible.
This situation also presents the greater difficulty for determining an appro-
priate probability context. While we will not go into this topic in detail, the

following comments seem pertinent:

1. It would seem difficult to envisage a situation in which one might con-
struct unequally likely samples that could not be better handled by
constructing equally likely samples from selection of units with unequal

probability.

2. It does not seem possible to attach any material concept of probability
to the selection of unequally likely samples. At fist glance it appears
that one should be able to list all samples to be considered (all possi-
ble samples) and then simply add “copies” of samples to be given higher
probability to the list, finally arriving at a set of possible outcomes which
could be considered equally likely (and hence to which Laplacian prob-
ability would still apply). The difficulty here is that only a discrete set
of varying probabilities would be possible. For example, if I start with

5 possible samples, of which I would like to increase the probability of



o8 CHAPTER 3. SAMPLING

selecting sample S5, I could make the probability of choosing sample S5
have values of 2/6, 3/7, 4/8, 5/9, etc., but nothing else. It would ap-
pear that samples of unequal chances of being selected can be given no
general probability framework without recourse to hypothetical limiting
frequency concepts. And, what would this do, for example, to the inter-

pretation of an estimated population proportion in a finite population?

For samples constructed in such a way so that all possible samples are
equally likely of selection, but for which the chances that individual popu-
lation units are included differ, the situation becomes less complex. In this
situation we are still able to apply the concept of Laplacian probability be-
cause the samples form a set of equally likely basic outcomes. The probability
that individual units are included in the sample may then be computed as
the probability of events under this concept of probability. Such samples are
sometimes called unequal probability samples but, because of the discussion
presented here and what appears in the next subsection, I prefer an often-used
alternative and refer to such samples as samples that result from restricted

randomization.

3.5.2 Obtaining Samples Through the Use of Restricted

Randomization

Obtaining random samples of equal probability, but with unequal probabilities
of selection for individual population units, is based on methods for obtaining
simple random samples, as eluded to at the beginning of Chapter 3.3. Two
related sampling designs that are common will be used to illustrate this point,

stratified random sampling and multistage sampling.
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Stratified Sampling

In a stratified sampling design the overall population is divided into subsets or
groups called strata, based (it is presumed) on some external (or prior) knowl-
edge that the groups differ in some systematic manner relative to the attribute
of interest. For example, it may be known (or generally accepted or believed)
that age groups in the voting population will demonstrate a systematic differ-
ence in support for a ballot initiative on decriminalization of marijuana (e.g.,
old voters more opposed, young voters more opposed, voters of middle age more
in favor). In essence, we delineate a partition of the overall population into sub-
populations. For an overall population consisting of units {U; : i = 1,..., N},
let such a partition be denoted as {U; : h=1,...,H,i=1,...,N}. In this
notation, h indexes the strata while 7 continues to index population units from
1 to N; an alternative notation would be to allow i to run from 1 to N, within
each stratum. The sampling frame is then also partitioned into frames for each

stratum according to the same system of indices.

Example 3.1 (cont.)

In the example of the West Coast groundfish fishery introduced at the begin-
ning of Chapter 3.1, it is known that vessels tend to fish in either the northern
portion of the fishery or the southern portion. A part of the reason for this is
that NMF'S regulates the fishery in two “zones”, north of 40°10’ latitude, and
south of 40°10’ latitude, which separates the very northern coast of California,
Oregon, and Washington from the bulk of California. Also, fishermen operat-
ing in these different zones catch a somewhat different mix of species and thus
use different gear (net types, mesh sizes, etc.). If we believe these difference

likely affect the way that vessels produce total catch values, we might decide
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to stratify the populations by zone and the sampling frame becomes,

Unit Total
Vessel Trip Haul Zone Index Catch (Ibs)
64 78 1 S 1 T
64 78 2 S 2 T
131 o1 5) N N TN

Since the ordering of units in a sampling frame is arbitrary, it is not necessary
that all of the units in the same stratum have consecutive unit indices (although
it is natural to arrange things so that this does occur). A desired overall
sample size n is then also divided into sample sizes for each stratum {n; : h =
1,...,H}, such that n = >, ny, and a simple random sample of size n, is
selected from each stratum; h=1,..., H.

Stratification basically consists of dividing one larger population into a
set of smaller populations and applying all of the methods of simple random
sampling to each of the small populations. Estimates for the total population
are then obtained by simply summing across each of the small populations
or strata (e.g., Thompson, 1992). We will not consider the details further in

lecture, although we might have an example in lab.

Multistage Sampling

Multistage sampling designs are similar to stratified designs, except that,
rather than taking a sample from each group (stratum) we first select a sam-

ple of groups at random from which to obtain observations. This is called
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multistage sampling because it can be extended to additional nested levels of
grouping, but we will deal only with two-stage designs.

It is typical in this setting to refer to the groups as primary sampling units
rather than strata. A fairly typical indexing system for multistage designs is to
now take N as the number of primary sampling units in the population, n as the
number of sampled primary units, M; as the number of fundamental population
units in the ¢¢th primary unit, and m; as the number of population units in
the ith primary unit that are sampled (e.g., Thompson, 1992, Chapter 13).
The population units are then indexed as {U;; :i=1,...,N; j=1,...,M,}.
We will not make use of this, or any other alternative indexing system, but be

aware that you are likely to encounter such systems in the literature.

3.5.3 Inclusion Probabilities and Linear Estimators

We are now prepared to address the second and third items needed to extend
the fundamental ideas of the survey sampling approach beyond simple random
sampling as identified in the list at the beginning of Chapter 3.5. In particular,
we want to make use of mathematical expectation to represent averaging over
samples (this was item 2), and to connect such expectation over samples with

expectation over population units (this was item 3).

Linear Estimators

Given attributes of population units {z; : ¢ = 1..., N} and a population
parameter ¢ to be estimated, a linear estimator of 6 for a given sample S,

has the form

N
i=1
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for a set of pre-specified (i.e., fixed) values {; : i =1..., N}. Linear estima-
tors play a central role in survey sampling methods, and many estimators may
be written in linear form. For example, the basic estimator of the mean under
simple random sampling is a linear estimator with 3; = (1/n) for a sample of
size n. Similarly, the basic estimator of the total under simple random sam-

pling is a linear estimator with 3; = N/n.

More Advanced Note: One of the reasons for saying linear estimators are cen-
tral to survey sampling methods is that, not only are many of the standard
estimators linear, but variances for nonlinear estimators are often derived by
forming a Taylor series expansion of the nonlinear estimator and then deriving
the variance for the linear approximation (e.g., Wolter, 1985).

Consider, for illustration, estimation of a population total 7 with a linear es-

timator
N
o= Bixid(U; € Sy ). (3.20)
i=1
Now, suppose we have a set of possible samples of size n S, = {Sy1, ..., Snm}-
Considering 7 as a random variable, with possible values {71, ..., 7y} in one-

to-one correspondence with the possible samples, the expected value of 7 is
M
E{7} =Y 7 Pr(Sns)- (3.21)
k=1

Expression (3.21) applies to any set of possible samples, even if they are not
equally likely, but recall that the interpretation of this type of expectation can
become murky if the samples are not equally likely.

Now, combining (3.20) and (3.21),

M N

E{7A'} = Z Z ﬁll',](U, € Sn,k) P’I“(Sn,k)

k=1i=1
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M
ﬁ,’l’i Z I(UZ - Sn,k) P’T’(Smk)

k=1

Bixi Pr(U; € S,), (3.22)

I
M= I]= I]=

@
Il
—

where, as before, S* denotes the sample of size n to be (or which will be)
selected. Note that, if the possible samples are all equally likely, the second
line of (3.22) becomes the number of samples of which U; is a member divided
by the number of (equally likely) possible samples, and we may go directly to
the concluding line based on Laplacian probability.

Now, (3.22) implies that 7 will be design unbiased for 7 if

1
= . i—1....N
b PrU, €S8 "

Inclusion Probabilities and the Horvitz-Thompson Estimator

Building on the result of expression (3.22) define the inclusion probability for

population unit U; as
m=Pr(U;€8S)); i=1,...,N. (3.23)

The linear estimator eluded to just above, with 3; given by the reciprocal of
the probability unit ¢ is included in the sample is called the Horvitz- Thompson

estimator of a population total,

Z;
—, (3.24)

i=1 T iesy M
and expression (3.21) implies that this estimator will be design unbiased for
any sampling design for which the inclusion probabilities can be computed for

each unit in the population (since we do not know which particular units will
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in fact end up in the selected sample S*.)

Now define what are called the second order inclusion probabilities for 7,7 =
L...,N; i #j,

mi;=Pr{(U; e S;)N(U; € S;)}. (3.25)

In sampling without replacement (which is all we are considering in this
class) the events U; € s} and U; € S} will not be independent, so that the ; ;
are not merely products of m; and ; (although this will be true, for example,
for units belonging to different strata in a stratified design with independent
selection for each stratum). Consider, for example, simple random sampling.
The probability that two units U; and U; are both included in the sample
is {n(n — 1)}/{N(N — 1)}, which we have actually seen before in expression
(3.9). Second-order inclusion probabilities are important in deriving variances
for estimators that can be placed into the Horvitz-Thompson framework, which

includes many of the typical estimators used in the survey sampling approach.

3.5.4 The Overall Generalization

The generalization of simple random sampling that has now been achieved

may be outlined as follows.

1. For a finite population of units {U; : i = 1,..., N}, define the binary

random variables Z; = I(U; € SJ).

2. Define inclusion probabilities as

m = Pr(Z;=1) and

m;=Pr{(Zi=1)N(Z; =1)}.
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3. For a given population quantity # consider linear estimators of the form

b = S Bm)nl(U; € 52)

i=1
N

= Zﬁz(ﬂz)l’zzz
i=1

Notice that we have taken the values {3; : i = 1,..., N} to be, in general,
functions of the inclusion probabilities {m; : ¢ = 1,..., N}, but they may or
may not depend explicitly on these inclusion probabilities.

We may derive properties of the linear estimators considered in this gener-

alization as,

E{6} = ;ﬁi(ﬂi)xiE{Zi}, (3.26)
and,
var{f} = Z/@2 (m)x2var{Z;} + ZZ zixjecov{Z;, Z;}. (3.27)

Now, under this formulation of estimators, the first and second moments of

the Z; are,

E{Z} = m,
var{Z;} = m—7=m(l—m),
cov{Z;, Z;} = FE{Z,Z;} — mm; = m; — m7;.
(3.28)

As an example, consider the Horvitz-Thompson estimator 7 of expression
(3.24), for which g;(m;) = 1/m;. Then,

var{t} = war {ivj z—Z}

i—1 T

= Z%var{Z}—|—2 ZZ

i=1 1<i<j<N TiTj

cov{Z,, Z;}
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N

—’2 (1—m)+2 ZZ x,x] 7rm ;)

Il
Mz

=1 T 1<i<j<N T
N1 -
iy — MM
- > (=)« +zzz(
i=1 T 1<i<j<N T

(3.29)

Now, for estimation of variances developed from expression (3.27), such as
given in (3.29) for the standard Horvitz-Thompson estimator of population
total, we need “plug-in” estimators that are unbiased for portions of the ex-
pression, such that the result is an unbiased estimator for the overall variance.
This is not always possible. Properties of expectations tell us that this possible
when the variance is a linear combination of quantities that can be estimated
in an unbiased manner.

Continuing with the example of the Horvitz-Thompson estimator of popu-
lation total given in (3.24), notice that the variance is composed of two additive
terms, each of which consists of a sum over all population units. Notice that,
for any simple function of attributes in the population h(z;), an unbiased es-

timator of the linear combination
N

0=> ah(z

i=1
is given by
5 h(;)

0 = Zai

ies;; i

= Zal x;)[(U; € SY)

Unbiasedness of 6 follows from,

iy = Yo piz)
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= > a;h(z;).

i=1
Thus, in the variance of expression (3.29), an unbiased estimator of the first

additive term is

N 2 N
1—m\ x: 1—m
i—1 < i > T (Ui € 55) i—1 ( 7 )xl ’

while an unbiased estimator of the second term is,

)33 (BB e ) n (0, € )

1<i<j<N T T

1 1
:222( — )xix»ZiZ-.
1<i<j<N\TiTj  Tij ’ ’
Substituting these expressions into (3.29) gives an unbiased estimator of

that variance,

var(7) = ¥ (1 ;if’) x?ZﬁQZZ(

i=1 1<i<j<N

1 1

g T

A number of important estimators may be formulated as functions of Horvitz-
Thompson estimators of population totals. For example, an estimator of the

population mean is,

~

T

An estimator of the ratio of two attributes in the population is

T\ Ta
Ty Bl Ty
Thus, the use of inclusion probabilities forms an important methodology in

the development of estimators for finite population problems.
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Example 3.2

As an illustration what is now possible, consider the following (hypothetical)
example. A federal resource agency has completed a wolf re-introduction pro-
gram in a major national park (e.g., Yellowstone National Park in the western
United States). Several members of congress from districts within which the
park lies are concerned with the economic impact this effort has had on sheep
ranchers near the park due to depredations from wolves that wander out of
the park (wolves are smart, but they can’t read boundary signs). You work
as a statistician for the resource agency involved, and are asked to design a
survey of sheep ranchers in the potentially affected areas to determine the to-
tal economic loss to the local sheep industry due to wolf depredations. After
much discussion, it is decided that individual sheep ranching operations will
constitute the basic units in the population, and that the total dollar loss due
to wolf depredations will be the attribute of interest. Assuming that there are
N ranches in the region of interest, and with x; representing dollar loss for

ranch ¢, the quantity to be estimated is

N
T = ZIZ
i=1

Now, suppose that licensing of sheep ranching operations is administered
through county offices (I don’t know if this is true or not, but suppose it
is). It is not difficult to obtain the number of licenses issued from each of-
fice in the region of interest, but no records are kept of economic loss due to
wolf depredations. Obtaining this information requires visiting the individual
ranches and going over detailed records. This would be, of course, impossible
to do for every ranch in the region. In addition, there are 32 counties in the

region and obtaining the locations, name of the responsible owner or man-
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ager, contact information, etc. for the individual ranches in counties is a time
consuming activity. It is decided to use a multi-stage sampling design with
counties as the primary sampling units and ranches as the secondary sampling

units. The sampling plan may be described as:
1. A simple random sample of 7 of the 32 counties will be selected.

2. From each of the sampled counties, a simple random sample of 10 indi-

vidual ranches will be selected to be visited.
3. For each ranch visited, the attribute of interest will be determined.

For our purposes in this example, assume there are no refusals to cooperate
from the ranchers, and the attribute of interest can be determined without
question (no lying, false records, etc.).

Everything from here on is largely a matter of notation and keeping track of
the units and quantities involved in an organized fashion. Denote the primary
sampling units as {U, ,(ll) :h=1,...H} from which a simple random sample of
n is to be selected; the superscript (1) denotes first stage sample, and in this
example we would have H = 32 possible primary sampling units for the stage
one samples and n® = 7. Let SO denote the first stage sample selected, let
{nn:h=1,..., H} denote the number of population units to be sampled from
each primary sampling unit if those units are selected in the stage one sample,
and denote the number of population units in each of the primary sampling
units as {N, : h=1,...,H}. Then N = #_| N, is the population size and
n=>yi, nhI(U,(Ll) € SW) is the total sample size. Finally, as before, let S*
denote the sample of population units selected from the two-stage sampling

design. For estimation of the population total, all that is necessary is to
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determine the inclusion probabilities for individual population units. Let

) = pPru) e M),

Mk = PO e SN e sy,

m = Pr{Uie SHIUY € S} Uie Uy,

7, = Pr{(Uie sy (U € SHIUY € SO} UL U € UD.

Here, we would have

1)
Wi(tl) = %7
O n(l)(n(l) 1)
Thk — H(H _ 1) )
n
=
2) N nh(nh — 1)

From these we can calculate the inclusion probabilities for individual popula-

tion units as,

T = W}(ll) 7Ti(\2h)’

Ty = momo U U e UY

1) _(2) (2 1 1
Tij = 7T,(L’]17TZ.(|}37T](.|,Z; U, € U;(L ), U; € U]i ),

Relying on the particular forms of these probabilities for simple random sam-
pling at each stage given previously, we arrive at the following inclusion prob-

abilities for individual units in the population:
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n(l)nh 1)
T N, = Y
nWny(ny — 1) 1
T, \J HNh(Nh — 1) J S h
n(l)(n(l) — 1)nhnk (1) 1)
i H(H — )N N, .

With these inclusion probabilities in hand, the population total, its variance,
and estimated variance are available from equations (3.24), (3.29) and (3.30),
respectively.

Now, one might question the use of going through all of this if what we have
arrived at is a standard design and associated estimators, which are available
in what is arguably simpler form in standard texts (e.g., Thompson (1992),
Chapter 13). Still within the context of this example, consider the following

scenario:

Congressman Higgenbottom (one of the congressmen from the districts in
which the park is located) contacts your agency with the names of two par-
ticular ranchers in his district who would very much like to be included in
the survey (they may, for example, be major campaign contributors for the
congressman). The good Congressman expresses the opinion that he would be
“mightily disappointed” if these two fine citizens, who are willing to go out of
their way to help the government in its efforts, could not contribute informa-
tion to the “fancy survey” planned by the agency. Given that Congressman
Higgenbottom is a member of the appropriations committee that passes bud-

gets for your agency, your supervisor translates the message to you as follows.

“Rancher A; and rancher A; will be _included as sampled units in the survey.
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Supposing that the sample list has not yet been drawn, how do you maintain
the scientific integrity of the survey while at the same time managing to retain

your job?

3.6 Extensions to Ill-Defined Populations

Our entire development of the survey sampling approach has assumed that
there is available a population of discrete physical units which are not sub-
ject to question, that is, are not ambiguous in definition, and which may be
individually identified (see Chapter 2). In addition, we have assumed that
each unit has one or more attributes which are characteristic of those units.
But, sampling methods are commonly employed in situations for which one or
more of these assumptions are not readily verified. There are three concerns
in such applications, two of which are fundamentally more troublesome than
the other. Specifically, the survey sampling approach is often applied in the

following situations.

1. Not all units in the population can be uniquely identified, and perhaps

only those units selected for observation can in fact be uniquely identified.

2. The population of interest does not consist of naturally occurring discrete

units. Rather, units must be defined in some arbitrary manner.

3. The attribute associated with each population unit is really an estimate

rather than an unambiguous characteristic of the unit.

The first of these difficulties is actually more easily (not easily, but more easily
than the others) overcome. Statistics 521 and Statistics 621 are courses that

cover this topic. I believe that the second and third difficulties present more
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fundamental (inter-related) problems for the survey sampling approach. The
second potential difficulty, arbitrary definition of population units, is not insur-
mountable in and of itself, as noted in Chapter 2.2. That is, given any specific
delineation of population units, Laplacian probability may be applied under
that definition, and everything developed to this point applies conditionally
on the population unit definition. However, the issue of unit definition is also
connected with the concept of an attribute (fixed, immutable characteristic of
a unit), and it is the third potential difficulty that constitutes the crux of the
matter.

Consider, for example, the problem of determining (estimating) the pro-
portion of acres (or hectares) planted in soybeans in Iowa that have “serious”
infections of soybean cyst nematode, a pest that attacks the roots of soybeans
and decreases yield. First, how does one unambiguously define units that con-
sist of an acre of planted soybeans? You draw your lines, but my lines might
be a translation consisting of a shift 1000 meters south and 500 meters east.
Is it possible that such a shift in unit definition changes the value of the at-
tribute of concern for at least some units in the population? Is it obvious that
such effects should “average out” over different definitions of population units
(i.e., increases are about the same as decreases?). Even without the poten-
tial problem of unit definition, how is a “serious” infection of soybean cyst
nematodes defined? And, how is it “observed” for a given population unit?
Recall that, in all of the statistical development for the sampling approach, the
attributes {x; : ¢ = 1,..., N} have been taken as fixed values for population
units {U; :i=1,...,N}.

These concerns do not invalidate the survey sampling approach to many
problems, but they do indicate that not every problem can be forced into the

confines necessary for the approach to be applicable. It is difficult, for example,
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to see how the problem of non-characteristic attributes for population units
can be overcome without recourse to the notion of random variables associated

with the observation or measurement process.

3.7 Interval Estimation

To this point, we have said nothing about inference from sampling finite pop-
ulations. First, we indicate the standard approach. Given an estimator 6 of

~

a population quantity 0, a derived variance var(f) and an estimate of that
variance var(f), a typical approach is to form an (1 — a) confidence interval
for 0 as either,

. Ay 1/2
0+ t1_(ajpyn {var(6)} (3.31)

where t1_(q/2):n—1 is the 1 —(a/2) quantile of a t-distribution with n—1 degrees
of freedom, or as,

. L a1)2
0 £ 21_(a)2) {var(@)} , (3.32)

where 2z1_(q/2) is the 1 — (a/2) quantile of a standard normal distribution.
Now, (3.31) comes directly from the elementary result for sample means

of normally distributed random variables. Its applicability seems to rest on

what might be called the ubiquitous statistical appeal to normality, stated quite

simply by Cochran (1977) as

“It is usually assumed that the estimates y and Y are normally

distributed about the corresponding population values.”

Chapter 2.15 in Cochran (1977) gives some discussion of the normality as-
sumption, and it is clear support for the assumption rests almost entirely on
asymptotic arguments for means of random variables (i.e., central limit theo-

rem results). In particular, a finite population central limit theorem for the
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basic estimator of the mean (/1) under simple random sampling requires that
N — oo and n — oo such that n/N — r for some r < 1. Thus, while some
support exists for the use of (3.32), (3.31) has no theoretical basis. It is impor-
tant to note here, that the random variables for which means are calculated
are estimators such as fi, not the population attributes {x; : i = 1,..., N},
which are considered fixed.

In a more complex setting involving averages of estimators from “random

groups” selected from the population, Wolter (1985) comments that

“Notwithstanding these failures of the stated assumptions [normal-
ity assumptions| Theorem 2.2 [standardization of normal random
variables to t-distributions| has historically formed the basis for
inference in complex surveys, largely because of the various as-

ymptotic results”

(Wolter, 1985, p. 23).
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Chapter 4

The Experimental Approach

References: Kempthorne and Folks (1971), Edgington (1980), Milliken and
Johnson (1992), Good (1994).

The second approach we will cover that relies on randomization to bring prob-
ability to bear on a problem is what will be called the Experimental Approach.
Recall the concept of a physically existent population discussed in Chapter 2.
Assume that such a population exists in a given problem, and that a simple
random sample of units from the population has been obtained; this assump-
tion is rarely met in the experimental approach, but the approach is most
easily described under this assumption. Our objective is to determine the ef-
fect of a given treatment or set of treatments on a response of interest (i.e.,
an attribute) among units of the population. For most of the discussion of
this chapter we will assume not only that we have obtained a random sample
of units in a population, but also that those units correspond to both exper-
imental units and sampling units. But see Chapter 2.3 for a discussion of

the distinction and the importance of connecting responses with experimental

77
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units. In its most basic form, the experimental approach shares with sampling

and survey methods two characteristics:

1. The existence of a well-define population of discrete objects (e.g., hu-
mans, pigs, plants, cows, horses, etc.). We will extend this notion in a
later section to what were called constructed populations in Chapter 2.2,

but for now we will retain the concept of an existent population.

2. Responses, similar to what were called attributes of population units
in Chapter 3, are considered characteristics of population units, not as-
sociated with random variables. See Chapter 2.3 for a more extensive

discussion of attributes and responses.

Recall that responses are allowed to be influenced by external factors within the
time frame of a study, as illustrated with the discussion of influences of exercise
and diet on cholesterol level in Chapter 2.2. Thus, the term responses refers to
attributes under a given set of pertinent conditions and external influences. It
is precisely the effect of certain of these external influences (i.e., treatments)

that the experimental approach is designed to assess.

4.1 Scientific Abstraction and Experiments

The word abstract can have a number of different meanings. We often use ab-
stract in its meaning of abstruse, or difficult to understand. But a fundamental
meaning of abstract is to separate, to express a quality apart from an object,
or to consider a part as divorced from the whole. This is, in many ways, the
essence of scientific experimentation. Consider an experiment in which green
leaves are brought into the laboratory and it is discovered that, in the pres-

ence of radiant energy, certain cells (chloroplasts) can produce carbohydrates
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from water and carbon monoxide. Has this experiment explained how plants
grow? Of course not, but it has examined a particular aspect of that problem,
divorced from the whole. In the experimental approach, the whole consists of
all of the external conditions to which a population unit is subject. The part is
to examine fluctuations in a small number of those conditions while holding all
others constant. The key element is control of all relevant factors. That is, the
external conditions, or factors, to which population units are subject must be
determined by the investigator, or under the control of the investigator. This
brings us to an important point, that experimentation involves invasive actions
on the part of the investigator (i.e., the assignment of treatment groups).
Now, it is physically impossible to exercise perfect control over all factors
that may influence a response of interest among population units. This would
require absolute control over, for example, both genetic and all environmental
conditions in a study on biological organisms. Differences that exist among
population units that are not subject to control by an investigator must be
considered inherent differences among units. Inherent differences produce dif-
ferences in responses and, hence, a certain level of uncertainty in response
values among population units (enter statistics). This is more than a trivial
matter, as the assessment of the effect of a treatment depends on quantifica-
tion of the amount of variability among units subject to the same conditions
(intra-treatment or inherent variability) to the amount of variability among

units subject to different conditions (inter-treatment variability).

4.2 The Nested Syllogism of Experimentation

The experimental approach also has close ties to fundamental logical argu-

ments known as syllogisms. A syllogism is a valid logical argument concerning
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propositions and conclusions such as the following, which is known as a dis-

junctive syllogism (disjunctive because of the first proposition):

Either A or B.
Not A.
Therefore B.

Consider the following propositions within the context of the disjunctive syl-

logism immediately above.

Proposition A: All parrots are green.

Proposition B: Some parrots are not green.

If a red parrot is observed, then we have verified “Not A” in the syllogism,

and the conclusion B that some parrots are not green has been proved.

Now consider the following syllogism, which is an argument known as modus

tollens in logic:

If A then C.
Not C.
Therefore, not A.

As a side note, you should recognize the similarity of these logical syllogisms
to some methods of mathematical proof. Finally, a nesting of these two valid

syllogisms yields the following nested syllogism of experimentation:
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Either A or B.
If A then C.

Not C.
Therefore not A.
Therefore B.

Lines 1, 4, and 5 constitute a valid disjunctive syllogism. Lines 2, 3 , and
4 constitute modus tollens. In the traditional experimental approach, we con-
nect the propositions with a disjunction between “chance” and “design” as

follows:

A: chance alone is in effect
B: design (a systematic force) is in effect

C: observable implication of chance alone

What happens statistically is that C is replaced with observable results
“expected” if chance alone is in operation. The statement “Not C” in the
nested syllogism is then replaced with “exceedingly low probability of C”, and
the statement “Therefore not A” is replaced with “either an exceptionally rare
event has occurred, or not A”. This should all look quite familiar to you, in

the following form:

Hy: p= po or Hy @ i # po (Either A or B).

If Hy then t* has a t-distribution with n — 1 degrees of freedom (If A then C).
Pr(t,—1 > t*) < a (C has low probability).

Reject Hy (Therefore not A).

Accept H; (Therefore B).
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4.3 Randomized Treatment Assignment

The demonstration immediately above pulls us too quickly into the use of the-
oretical probability distributions as an approximation to randomization proba-
bility, but is instructive for understanding the progression of the experimental
argument. We need to retreat, however, to the manner in which probability

is introduced in the experimental approach, without resort to t-distributions

and the like.

Consider a set of n population units that are to be divided into groups
exposed to k different sets of external factors (i.e., treatments). All other
conditions (subject to inherent differences among units) are to be controlled
at the same levels. Randomized treatment assignment is somewhat analogous
to simple random sampling in that each possible assignment of the k treatments
to the n units should be equally likely. The number of ways that n units can

be assigned to k treatments of sizes nq,...,ny is

n!

Example 4.1

Consider a small experiment in which 5 population units are to be assigned to
2 treatments of sizes 3 and 2. Denote the population units as Uy, Us, Us, Uy,
and Us, and the treatments as T} and 75. The possible treatment assignments

are:



4.3. RANDOMIZED TREATMENT ASSIGNMENT

Assignment Treatment Units

1 1 Uy, Us, Us
2 Uy, Us

2 1 Uy, Uy, Uy
2 Us, Us

3 1 Uy, Us, Us
2 Us, Uy

4 1 Uy, Us, Uy
2 Us, Us

5 1 Uy, Us, Us
2 Us, Uy

6 1 Uy, Uy, Us
2 Us, Us

7 1 Us, Us, Uy
2 U, Us

8 1 Us, Us, Us
2 Uy, Uy

9 1 Us, Uy, Us
2 Ur, Us

10 1 Us, Us, Us
2 Uy, Uy

83

In a manner similar to the group versus sequential selection procedures

in sampling, we may either enumerate all possible arrangements (as in the

previous table) and choose one at random, or choose n; units sequentially for

assignment to treatment 1, then choose ns of the remaining units sequentially

for assignment to treatment 2, and so forth, until the remaining n; units
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are assigned to treatment k. In practice, only one of the possible treatment
assignments will be used. We will refer to that particular arrangement as the
“actual assignment” | and all others as “possible assignments”.

In the above presentation, we have assumed that experimental units are the
same as sampling units and that these correspond to the fundamental units
of a defined population. It is worth reiterating the message of Chapter 2.3
that these need not be the same, in which case the “units” of concern are

experimental units (why?).

4.4 Quantifying Differences Among Treatments

Given a particular treatment assignment, we need to quantify the difference
among units subject to the various treatments. We are familiar with typical
test statistics such as the t—statistic and the F'—statistic. These quantities
may certainly be used to quantify the differences among treatment groups,
but they are by no means necessary; recall that we are not relying on random
variables or theoretical probability distributions at this point.

Any potential test statistics that are perfectly correlated in rank are called
equivalent test statistics. For example, consider a situation with two treatment
groups, denoted T; and T,. Let the observed responses from units assigned
to 11 be denoted as {z1; : j = 1,...,n1} and those from units assigned to

treatment 75 be denoted {xo; : j =1,...,n2}. Let

1 &
Tr; = _in,j; 1= 1,2
N 5
2 1 - 2
S; = Z(Iz,]_xz) ) 221,2,
n; — 1 j=1

2 s?(ny — 1) + s3(ng — 1)
P ny + No — 2 '
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It can be shown that the typical t—statistic
T1 — To
1/2°
{(2/m1) + (s3/m2) }

is perfectly monotonically correlated in absolute value with the simpler statistic

tr =

Note that this does not depend on the denominator of ¢* being invariant to
data permutations (it is, in fact, not). In a similar way, it can be shown that
the traditional F'—statistic in a one-way analysis of variance is equivalent to

the simpler statistic
(4.2)

Notice that the two examples we have given center on the magnitude of
response values in treatment groups, which is typical of the experimental
approach. The appeal to equivalence with traditional t—statistics and F'-
statistics is something of a false justification for the use of D* and T™. That
is, t—statistics and F—statistics are justified based on the concepts of ran-
dom variables, normal distributions, and statistical independence. None of
those concepts are necessary to support the logical basis of the experimen-
tal approach. Thus, an appeal to equivalence with these statistics to support
use of simpler forms such as D* and T* given above is without logical force.
What is necessary, however, is that a test statistic is chosen that meets two

requirements:

1. The test statistic must reflect the systematic effect that might be antici-

pated under whatever physical meaning is attached to treatment groups.
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At least hypothetically, it may be possible for a given treatment to de-
crease small responses and increase large responses, leading to an increase
in variability among units given that treatment. That such a situation
is not amenable to examination through the experimental approach is

indicated by the next requirement.

2. The treatment effect that might be anticipated must be realized in all,
or least the majority, of units which are exposed to it, and this must be

reflected in the statistic chosen.

A reasonable supposition is that the type of effect that distinguishes A from
B in the nested syllogism of experimentation of Section 4.2 should apply more
or less uniformly to each unit in the population. This makes it difficult to
envisage anticipated treatment effects other than a change in magnitude of

respoinse.

4.5 Permutation Tests

The fundamental procedure connected with the experimental approach is that
of permutation tests. Recall from the discussion of Chapter 2.3 that responses
are considered characteristic of units under a given set of pertinent external
influences (i.e., factors). In addition, recall from the discussion of Chapter 4.1
that all such factors are controlled to be constant for all units in the experiment
other than those that define the treatments of interest. Recall from Chapter
4.2 that a disjunction has been defined between chance alone and a systematic
effect of the (small number of) factors that define treatment groups. Finally,
recall from Chapter 4.3 that one of a number of equally likely assignments of

units to treatment groups has been chosen as the actual treatment assignment
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used in the experiment. Putting these together yields the following:

1. If chance alone is in operation, then the treatment groups have no effect
on responses, and all responses observed are subject only to inherent vari-
ability among units chosen for the experiment. The response attached to
a given unit would thus be the same no matter which treatment group

it happened to be assigned to.

2. If, further, random treatment assignment was conducted, each of the
possible treatment assignments was equally likely. Thus, the statistic
calculated to reflect between treatment differences for the actual treat-
ment assignment used is simply one value chosen with equal probability
from a set of values that could have arisen from the various possible

treatment assignments.

3. Given 1 and 2, the rank of the actual test statistic among those calculated
from arbitrary re-assignment of units to treatment groups can be used
to calculate the probability of obtaining a statistic as extreme as that

actually observed, under the hypothesis of chance alone.

This progression motivates a permutation test procedure, which is conducted

as follows:

1. For a given experimental design, consisting of n units assigned to k treat-
ment groups of sizes ny, ..., ng, list the set of all possible treatment as-

signments (as in Example 4.1).

2. For a given test statistic D, let D* represent the value calculated for
the actual treatment assignment, and compute the value of D for all
other possible assignments under the assumption that chance alone is in

operation.
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3. Rank all values of D computed in step 2, and define the p—value of the
test as (assuming that a treatment effect is associated with large values

of D) as,
No. D > D~

Pr(D > D*) =
Comments

1. The p—value in item 3 above has exactly the same definition as that you
are familiar with from previous courses (the probability of obtaining a
test statistic at least as extreme as that observed under the hypothesis

to be discredited).

2. This probability is calculated as that of an event under the Laplacian
concept of probability (number of outcomes for which the condition of an

event is satisfied divided by the total number of equally likely outcomes).

3. While the p—value has the definition you are familiar with, it may not
have the same interpretation you are accustomed to, as we are about to

see.

Example 4.1 (cont.)

Consider again the experiment of Example 4.1 with 5 units assigned to 2
treatments of sizes 3 and 2. There were 10 possible treatment assignments in

this experiment. Suppose the responses attached to these units were as follows:

Unit: Ul U2 U3 U4 U5
Value: 4.446 4.882 3.094 11.887 5.034

Suppose that the actual treatment assignment was assignment 1 in the table of

Chapter 4.3, namely units Uy, Uy and Us to treatment 1 and units Uy and Us



4.5. PERMUTATION TESTS 89

to treatment 2. Values of the test statistic D corresponding to the assignments

of that table are:

Assignment D

4.319
3.008
2.703
1.152
4.194
3.134
1.881
3.830
3.498
2.007

© o0 N O Ot k= W NN

—_
(@]

The value of the actual assignment was D* = 4.319, giving a p—value of

1
— =010
P=10

Should this p—value of 0.10 be considered a “significant” value? That is,
does p = 0.10 provide evidence against the proposition of chance alone? On
one level, we are generally trained that a p—value of 0.10 is not particularly
small (although it is on the boundary of what many scientists would accept).
If we do not consider 0.10 “small”, we would reach a conclusion that chance
alone cannot be discounted. But, p = 0.10 is the smallest p—value that could
be obtained from this experiment, no matter how extreme the effect of the
treatment. Thus, we should either be willing to accept it as an indication of
significance or admit that the experiment was designed in such a way that no

treatment effect could be detected (i.e., was a worthless exercise).
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Now, you may already be thinking that the use of a t-test could remove
the need to take the size of an experiment into account in the assessment
of p—values. This is true and, although in this situation the use of a t-test
would need to be considered an application of a modeling approach, here’s

what would happen:

7 2
ﬂ xX; S; n;

Ty 4141 08694 3
T, 8.460 23.4873 2

These values lead to:

512) t* df P

12.0334 —1.2453 3 0.8493

Clearly, a p—value of 0.8493 would not lead to rejection of the null hypoth-
esis (here, equality of treatment means). What happened here, and why such
a difference in the results of the permutation test and the t-test?

Relative to the outcome of the t-test, attention is immediately drawn to
the difference in sample variances for the two treatment groups (0.8694 versus
23.4873), and we might reasonably feel that the assumptions of the standard
t-test (i.e., equal variance) have been violated, thus nullifying the result of
this test for these data. Although one may always question the assumption of
normality, it would not be possible to assess this assumption with the amount
of data included in the experiment. In addition, we may understand that a
3 degree of freedom t-test is not very powerful for any but the most extreme
displacements (i.e., differences in distribution means).

On the other hand, it is also true that, in the actual assignment, all (i.e.,
both) values for treatment T3 are greater than all values for treatment T3.

The permutation test is formulated on the basis of “chance alone” — the use
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of group averages in the test statistic was simply to capture the characteristic
of interest, not as estimates of any population quantity. Thus, “population
means” do not enter into the formulation, and the distance between group
means is irrelevant, only the ordering of those means.

Comments

1. Combining the above observations gives insight into the fact that the
use of theoretical probability distributions (e.g., normal distributions for
responses, leading to typical test statistics distributed as t or F) is not
merely as an approximation to the p—value that would result from a
permutation test, at least in small experiments; we will discuss such ap-
proximation for large experiments in Chapter 4.9. Until only recently
I used to believe that theoretical distributions were motivated by such
approximation, and to remove the dependence of p—values on experi-
ment size, and that these motivations did not depend on the size of the
experiment; at my age, “recently” includes any time interval up to about

4 years in the past.

2. In actual fact, the units Uy, Uy and Us (treatment group 7} in the actual
assignment) were randomly generated from a N (5,2) distribution, using
notation N(u,c?), while units Us and U, were randomly selected from
a N(7.8,2) distribution. Since we know that the assumptions of the t-
test are satisfied, this emphasizes again that a parametric test such as
the t-test may not be a good approximation to the actual permutation
procedure in small experiments. Thus, in a true experimental approach,
it may well be impossible to divorce assessment of p—values from size of

experiment.

3. It is certainly true that normal distributions might be used in a model-
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ing approach for this example, leading here to a t-test which would be
perfectly valid. Thus, the important point is not that either the permu-
tation p—value or the t-test p—value are incorrect. They are, in fact,
both correct in that no assumptions under which they have been formu-
lated have been violated in either case. The important point is that the
experimental approach and the use of normal distributions as a model

are, in fact, different approaches.

. Finally, one might question whether the values reported for this example

were somewhat contrived, and this would, in a way, be correct. The
values were in fact generated from N(5,2) and N(7.8,2) distributions,
although such simulation was continued until a realization appropriate
for the example was obtained. A pertinent point is that this was easy to
do. In fact, only 4 data sets were generated from these two distributions
before obtaining the one used. This might give pause to any eager to
designate certain data values as “outliers” (such as the value of 11.887

in this example) in small sets of data.

4.6 Toward Inductive Inference

At the beginning of this chapter, it was assumed that a simple random sample

of n units had been selected (from a population of N units) for use in a given

experiment. The comment was made that this is rarely true in experimental

procedures, but that the experimental approach is most easily understood un-

der this assumption. In fact, obtaining a simple random sample of population

units to use in an experiment plays only one role, to allow construction of an

inductive argument, which is something of a elusive gold standard in statistical
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inference. Put simply, the question of induction is how the results of a par-
ticular experiment or study (using only n units) might be logically extended
to the entire population (consisting of N units). Under an assumption that a
simple random sample of size n from a population of size N has been obtained
for use in an experiment, an informal inductive argument can be constructed

as follows:

1. Under simple random sampling, component estimates of a test statistic
(such as means or variances for individual treatment groups) are unbi-
ased estimates of the corresponding population quantities under those
treatments. Unbiased here is in the sense of population averages as for

survey sampling methodology (see Chapter 3).

2. Test statistics constructed as linear functions of the component estimates
are thus unbiased estimates of those test statistics in the population,
this latter being an average over all possible samples of size n from a

population of size N.

3. Significance values (p—values) computed under permutation of treatment
assignments are thus unbiased estimates of a “population-level p—value”,

to test the hypothesis of chance alone.
Comments

1. This informal argument is difficult to make mathematically precise, pri-
marily because definition of the “population p—value” is elusive. Such
a quantity must depend on not only attributes that are characteristic of
population units (as in survey sampling) but on quantities that are char-

acteristic of population units under all relevant external factors. Since
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the set of relevant factors includes treatments that are not actually ap-
plied, this population p—value is a quantity that is hypothetical in na-

ture.

2. Despite the difficulty raised in comment 1, the notion that permutation
tests constitute a procedure that allows extension of inference beyond the
n units actually used in an experiment seems to have some rational force.
Since the n units selected for the experiment are chosen in a manner such
that all such groups are equally likely, conclusions from the n units used

should extend in a natural manner to the entire population of units.

3. It would be possible to devote a great deal of time to the issue of this
subsection, but it is doubtful that doing so would be of much value.
The primary reason for this is that it is extremely rare that experiments
are conducted with n units randomly sampled from a larger population.
In fact, the strongest proponents of procedures based on randomization
probability dismiss this possibility from the outset (e.g., Edgington, 1980;
Good, 1994).

4.7 Randomization Tests

The term randomization test is generally used to refer to a permutation test
procedure applied to an experiment for which the participating units have
not been selected by a random sample from an existing population. In this
context, the term randomization stems from the fact that the appropriate
permutation of data among groups is dictated by the (randomized) manner
in which treatments are assigned. Indeed, if a random sample of population

units was available there would be no need for further random assignment
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of treatments. We would simply assign the first n; units sampled from the
population to treatment 77, the next ns units sampled to treatment 7T, and so

forth.

4.7.1 Experiments Lacking Random Samples

In designed experiments, a random sample from a population is rarely, if ever,
available. Scientists use units that are available, perhaps taking a random
sample of available units if that is a large group, but more often it is a struggle

simply to obtain enough units in the first place.

Example 4.2

Consider an experiment which is designed to assess the effect of two differ-
ent diet regimens on weight gain in pigs. External factors in such a situation
may include breed, initial age at the start of experimentation, previous hous-
ing conditions, previous diet, sex, and birth condition (weak or normal say).
The experiment must control as best possible for all of these factors, and the
simplest structure is to select pigs for which all of these factors have been
essentially the same up until the time of the experiment (this issue is called
uniformity of units). From where does a scientist obtain pigs that satisfy a
reasonable condition of uniformity in all of these characteristics?

Certainly, it is not possible to obtain a list (i.e., sampling frame) of all such
pigs in existence. Even more, the intent of the experiment is clearly meant to
apply to future pigs, as well as current pigs, a “population” from which it is
most definitely impossible to draw a random sample.

In fact, the need to select units which are uniform in external factors that
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may influence the response of interest generally outweighs the desire to ob-
tain a random sample from some population, leading to a typical situation
in experiments in which units to be included are carefully selected (not at all

randomly selected from some existent population).

4.7.2 Experiments With Constructed Units

It is also common, at least in laboratory studies, to have units that are con-
structed or manufactured to certain specifications. For example, petri dishes
constructed to contain a given medium for growth of a particular cell type
would fit this situation, as would microarray plates prepared with particular

gene segments (sequences of nucleotides) in a series of “wells”.

Example 4.3

A simple experiment was conducted to investigate whether one of the primary
plant nutrients (phosphorus and nitrogen) limits algal growth in a reservoir in
Thailand (Sinagarind Reservoir). This reservoir, located northwest of Bangkok
provides water supply, irrigation and hydropower to the surrounding area. Ex-
cessive algal growth in this region with a 12 month growing season can clog
pumps, turbines, and filters, causing severe problems with these functions.

The experimental design was as follows:

1. A total of 12 translucent plastic containers (pre-treated so that the plastic
material would not affect the outcome of interest) were filled with surface

water from the reservoir.

2. Three of the containers received addition of 7.51g/L phosphorus (as
KyH POy), three containers received 112.5u¢/ L of nitrogen (as N HyNO3),



4.8. RANDOM SELECTION OF PERMUTATIONS 97

three containers received both phosphorus and nitrogen, and three con-
tainers received no nutrient addition. Which treatment was applied to
which container was determined by a random treatment assignment (this

was really true, I was there).

3. All containers were suspended at a depth of 1/2 the photic zone for 2
days.

4. Containers were collected, samples were filtered and algal content deter-
mined as the concentration of chlorophyll using standard procedures in

limnology (e.g., Jones et al., 1990).

4.8 Random Selection of Permutations

The use of randomly selected permutations of treatment assignments, from the
set of all possible permutations, applies to any permutation or randomization
test procedure. The fundamental idea is that one may obtain an unbiased esti-
mate of the “true” p—value by randomly sampling only a portion of the possible
treatment assignments. The “true” p—value here refers to the p—value that
would be obtained from computing the test statistics for all possible treat-
ment assignments. Random sampling of possible treatment assignments is
often called the use of random data permutations, while the use of all possible
treatment assignments is often called systematic data permutation.

One motivation for the use of random data permutation is certainly the
fact that the number of possible treatment assignments increases rapidly with
the size of an experiment and computing a test statistic for all of these can
be time consuming and difficult. For example, the table below presents the

number of possible treatment assignments for some experiments of differing
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types with k treatments and sample sizes of ny ..., ng, up to k = 4.
k' ny me mn3 ng No. Assignments
2 2 2 6
2 3 2 10
2 3 3 20
2 5 5 252
2 10 10 184,756
3 3 3 3 1,680
3 5 5 5 756,756
4 3 3 3 3 369,600
4 5 5 5 5 11,732,745,024

Note that, first of all, none of the above experimental designs contains more
than 20 units (i.e., they are all small experiments). Also, note that the effect
on number of treatment arrangements of an increase in group sizes becomes
much more extreme as the number of groups increases. For two groups (k =
2), an increase from 3 to 5 units per group increases the number of possible
assignments by 252/20 = 12.6. For k = 3 an increase from 3 to 5 units per
group results in a 450.45 times increase, while for 4 groups this value becomes
31,744.44. The implications for computation should be obvious, although with
modern computing speeds, the only one of the experiments in this table that
might give one pause is the last experiment with k = 4 treatments and 5 units
per treatment.

Equally important to the sheer number of possible assignments in practice,
however, is the difficulty of programming data permutations. For two groups

(treatments) of equal size, writing a computer function to identify all possible
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assignments is not difficult. But the task increases noticeably for groups of un-
equal size, and becomes even more onerous as the number of groups increases.
On the other hand, as we will see in lab, computing random data permuta-
tions is not difficult, even for multiple groups of unequal sizes. Thus, the use of
random data permutations remains probably the fundamental computational
method by which to conduct randomization (or permutation) tests in all but

the simplest of situations.

Example 4.3 (cont.)

Consider the nutrient enrichment experiment introduced in Example 4.3. The

data obtained from this experiment were as follows:

Treatment Rep Chl(ug/L)
Control (C) 1 2.375
2.350
2.500
3.325
3.175
3.525
2.450
2.575
2.400
4.950
4.900
3 4.875

Nitrogen (N)

Phosphorus (P)

N Plus P (NP)

N = W NN =W NN =W N

We will use data from this entire experiment in lab, but for now suppose we

consider only the C, N, and P treatments. There were a total of 9 units (bags
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of water) assigned to these treatments with sample sizes of n. = n,, = n, = 3.
Under an assumption that treatment has no effect on the response of interest

(i.e., chance alone) there are a total of

9l

31313~ 080

possible treatment assignments, which of which has equal probability. Using a
random selection of S = 100 of those possible assignments with the test statis-
tic T' of expression (4.2) resulted in p = 0.03 which should, by any standard,

be judged as evidence against the hypothesis of chance alone.

Ecological theory holds that there should be only one “limiting factor”
in operation for algal growth, and here we are considering nitrogen (N) and
phosphorus (P) as possibilities. We can use the available data as a test of
this scientific theory. If we examine only the C and P treatments we have 2
groups of size 3 each and thus 20 possible treatment assignments. If we list
out these assignments we will discover that there are “symmetric” or “mirror
image” pairs of assignments. For example, the assignment of U, Us, and Ug
to treatment C and Us, Us and Uy to treatment P gives the same test statistic
as the assignment of U, U3z and Uy to treatment C and U;, Us and Ug to
treatment P. Thus, there are only 10 assignments that need to be examined in
a systematic permutation procedure (i.e., considering all possible assignments).
The test statistic D of expression (4.1) yields the actual value D* = 0.067 and

values for the 10 unique possible assignments of the data are:



4.8. RANDOM SELECTION OF PERMUTATIONS 101

Assignment D Assignment D
1 0.067* 6 0.080
2 0.100 7 0.033
3 0.017 8 0.050
4 0.133 9 0.067
5 0.000 10 0.017

Here, the * superscript denotes the actual treatment assignment used. The

calculated p—value for this treatment comparison is then
= 1I(D>0067)— > =0.50
P=10" =" "1

Keeping in mind that the smallest p—value possible from this experiment would
be 2/20 = 1/10 = 0.10, we must conclude that the data provide no evidence
against a hypothesis of chance alone concerning the responses to the C and P
treatments.

A similar procedure applied to the C and N treatments yields:

Assignment D Assignment D
1 0.930* 6 0.380
2 0.380 7 0.150
3 0.480 8 0.170
4 0.250 9 0.400
5 0.280 10 0.300

and an associated p—value of 0.10, the smallest possible value. Overall, then,
we would conclude that there is no evidence for a systematic difference between

C and P treatments but there is evidence for a systematic difference between C
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and N treatments. Thus, based on the evidence provided by this experiment,
we would conclude that N is the limiting factor in Sinagarind Reservoir, and

that our results are consistent with (i.e., are confirmatory for) ecological theory.

The overall test in this experiment was of the ANOVA type with k =
3 treatment groups. With S = 100, the possible values of the calculated
p—value are contained in a set of values that have an increment of 0.01. That
is, possible values for the calculated p are in the set {0.01,0.02,...,1.00}.
Values for p with all permutations would have increments of only 1/1,680 =
0.000595. The p—value reported from a set of S = 100 randomly selected data
permutations was p = 0.03 which, as we have already noted, is an unbiased
estimate of the p—value that would be obtained from a systematic use of all
1,680 possible permutations (i.e., treatment assignments). This suggests the
possibility of conducting a Mote Carlo procedure to more precisely estimate
the true p—value, by conducting our procedure with S = 100 repeatedly. We
will call one procedure a “trial”. For example, if we conduct the randomization
test with S = 100 for a total of M independent trials, the average of the M
p—values should be a more precise estimator of the true p—value than that of
only one trial. The following table presents results for several different values

of the number of random permutations S and the number of trials M.
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S M  Mean Variance

100 20 0.025 0.000110
50 0.023 0.000135
100 0.022 0.000093
500 0.024 0.000137
200 20 0.018 0.000048
50 0.019 0.000065
100  0.017 0.000063
500 0.018 0.000075
500 20 0.015 0.000025
50 0.015 0.000028
100 0.015 0.000029
500 0.015 0.000026

It should be clear from the above table that increasing the number of
permutations used lends stability to mean p—value and the variance of those
values. What is curious is that the mean p—value appears to decrease as
the number of random data permutations used increases from S = 100 to
S = 500. The computer function I used in this example samples possible
permutations with replacement. At first glance, this may seem contradictory
to the intention of sampling a subset of permutations; if we were able to use all
possible permutations we would do so, each permutation appearing once and
only once in the set of possible arrangements. But this is not what we actually
want, unless we can indeed compute D for all possible arrangements. By
embedding the computation of a p—value in what is essentially a Monte Carlo
procedure, we have brought relative frequency probability into play. That is,

we have turned estimation of the true p—value into a problem of sampling
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from a multinomial distribution (in which the categories are defined by the set
of possible permutations). This is an interesting turn of events — we are using
randomization and Laplacian probability for the basis of inference, but relying
on relative frequency in computation of the p—value. A similar phenomenon
occurs in the computation of posterior distributions via simulation in some
Bayesian analyses. It is important in such situations to keep the roles of
various probability concepts clearly in mind. The analysis itself may not rely on
relative frequency probability but, when computations are conducted through
simulation or Monte Carlo methods, relative frequency becomes relevant for

the computational aspects of the analysis.

4.9 Theoretical Probability Approximations

As we have seen in consideration of Example 4.1, the experimental approach,
based on the application of Laplacian probability to possible treatment assign-
ments, is fundamentally distinct from the use of distributional assumptions of
normality, equal variance, and independence to derive t and F distributions for
comparison of group means. In fact, these procedures depend on the concept
of hypothetical limiting relative frequency discussed in Chapter 1.2. Neverthe-
less, there is a connection between typical procedures based on what is often
called “normal sampling theory” (t-tests, F-tests, and the like) and the exper-
imental approach. This connection is part historical and part asymptotic in

nature.
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4.9.1 The Historical Connection

Before the advent of high speed computers, the use of randomization proce-
dures in situations even as small as k£ = 3 treatments of sizes n; = ny = ng = 3
was somewhat prohibitive (there are 1,680 possible treatment assignments in
this setting). Random selection of the possible assignments using a computa-
tional algorithm was not possible either. And, then as now, this illustration
with a total of 9 units would have constituted a quite small experiment. With
the mathematical work of Fisher, Neyman, Pearson, Pitman, and others, there
was widespread use of theory based on the concepts of random variables hav-
ing normal distributions to compute p—values for tests. Such methods actually
fall into what we will call the modeling based approach, but this was (as far
as I can tell) not in the minds of these early workers. It does appear, however,
that a fair number of these eminent statisticians were willing to use theoretical
distributions (e.g., independent normal random variables and the associated
sampling distributions for t and F statistics) to approximate what were other-
wise incalculable randomization p—values. Several quotes to this effect, drawn

from the works of Edgington (1980) and Good (1994) are:
1. In the context of permutation tests, Fisher (1936, p. 59):

Actually the statistician does not carry out this very tedious
process but his conclusions have no justification beyond the
fact they could have been arrived at by this very elementary

method.
2. From Kempthorne (1955, p. 947):

Tests of significance in the randomized experiment have fre-

quently been presented by way of normal law theory, whereas
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their validity stems from randomization theory.
3. In summarizing a number of sources, Bradley (1968, p. 85):

Eminent statisticians have stated that the randomization test
is the truly correct one and that the corresponding paramet-
ric test is valid only to the extent that it results in the same

statistical decision.

4.9.2 The Asymptotic Connection

Good (1994) provides perhaps the most extensive summarization to date of as-
ymptotic connections between randomization (permutation) tests and typical
parametric tests. These connections center on the concept of power of a test
under the usual parametric assumptions. The general conclusion, in terms of
t-tests and F-tests is that, asymptotically, randomization and parametric tests
“make equally efficient use of the data” (Good, 1994, p. 177).

The idea of assessing permutation or randomization test procedures rela-
tive to their asymptotic properties under the assumptions of typical parametric
models seems to clash with the underlying motivations of at least randomiza-
tion test procedures in the first place. That is, randomization tests are based
on the principles of Laplacian probability applied to a small, finite set of units
manipulated in an experimental procedure. It would seem difficult to apply
asymptotic concepts to this setting. It would appear that the intent of Good
(1994), and references therein, is to demonstrate that little or nothing is lost
by using a randomization procedure even when large sample theory connected
with parametric tests is available and, while this may be indeed be an argument

in favor of randomization tests, it does not seem to justify the randomization
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theory in the first instance.

4.9.3 Where Does This Leave Us?

It is legitimate to question at this point, where we stand with regard to the
experimental approach and, in particular, the use of randomization test proce-
dures, be they applied through either systematic or random data permutation.
The following issues represent my own opinion and may not be (are probably
not, in fact) accepted by a majority of statisticians. At the same time, I would
claim that the majority of statisticians have not given these issues the serious

thought they deserve.

1. As clearly asserted by Edgington (1980) and eluded to by Good (1994),
randomization test procedures do not share the same conceptual basis as
parametric tests such as t-tests and F-tests. I trace the difference back to
the fundamental reliance of the experimental approach (and its manifes-

tation in permutation and randomization tests) on Laplacian probability.

2. It does appear to be the case that parametric test procedures and ran-
domization procedures tend to agree for large experiments (leaving the
definition of large vague). The primary differences seem to occur in ex-

periments of limited size. Such experiments do occur quite frequently.

3. Any justification for approximating randomization p—values with those
from tests based on theoretical probability concepts seems to have van-
ished with advances in computational ability. Particularly with random
data permutation, programming randomization tests is not a major dif-
ficulty, and computational time has ceased to be an issue at all. The

logical distinction seems to be a victim of history in that the developers
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of what is called here the experimental approach embraced parametric

test procedures so that they could accomplish computations.

4. Tt is true that randomization procedures appear most applicable in sit-
uations for which the treatment effect is believed to be an effect on the
magnitude of response that applies to all units in a more or less uniform
manner. This is acknowledged by Good (1994, page 2) in pointing out
that one of the few assumptions of a randomization test is that “. . .

the alternatives are simple shifts in value”.

Putting all of this together, I would suggest that the experimental approach,
while often eluded to as a justification for random sampling (if possible) and
randomized treatment assignment (as a basic tenet of experimentation), has
not been faithfully adhered to by statisticians. The experimental approach is
limited in application, but represents a forceful methodology. When appealed
to as justification for an analysis, it should be more than just “window dress-
ing”. It should be carried out in a manner consistent with the manner that it
introduces probability into a problem (i.e., through randomization founded on

the concept of Laplacian probability).
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Chapter 5

Statistical Abstraction, Random

Variables, and Distributions

We turn now to an approach that arguably constitutes (along with the Bayesian
approach, which can be cast as an extension of modeling) the majority of all
statistical analyses conducted today. This approach differs in a radical way
from those of sampling and what we have called the experimental approach.
The modeling approach rests on the mathematical concepts of random vari-
ables and theoretical probability distributions. While a population of phys-
ically existing (or constructed) units is allowed, it is not required for these
concepts to be valid. The focus of analysis becomes the values of parameters
in a model, not the value of some attribute or response in a population or
collection of experimental units. A fundamental characteristic of statistical
modeling is that the model represents a statistical conceptualization of the
scientific mechanism or phenomenon of interest, which could “produce” the

observed data as possible values of the random variables involved.

Recall the discussion of scientific abstraction in Chapter 4.1, where ab-

111
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straction was taken to mean consideration of a part divorced from the whole.
We now wish to translate this same idea into a statistical formulation called a
model. Any number of statisticians have indicated that the advent of general-
ized linear models (Nelder and Wedderburn, 1972) as an important landmark
in statistical modeling. Lindsey (1996, p. 21) indicates this paper of Nelder
and Wedderburn as seminal for the modeling approach. Why is this? After all,
models of one type or another have been around for far longer than the mid-
1900s, and there is little explicit discussion of the general topic of modeling in

the Nelder and Wedderburn paper.

The answer lies in the impetus of this paper for consideration of observ-
able phenomena as something more than simply signal plus noise. Clearly,
the signal plus noise concept for modeling has produced many useful results.
Additionally, from the viewpoint of extreme reductionism, signal plus noise
is “true” in that all events in the world are the result of some complex set
of deterministic processes; this is true of even human behavior if we under-
stood all of the chemical and physiological processes in the brain and spinal
cord. Under this reductionist view, and a perfect understanding of the subject
under study, the only role for uncertainty (to statisticians as represented in
probability structures) is through measurement error. There has long been
a tendency for statistics to mimic this thinking in models that consist of an
expected value component and an error distribution component. Many tra-
ditional linear models, such as the simple linear regression models, take this

form.

Y = Bo + O1x; + o€;; € ~iidN(0, 1).

This model is a direct reflection of signal (as the expectation 3y + B1x;) plus

noise (as the additive error ¢;). The standard interpretation we can find in
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many (probably most) texts on applied regression models is that the error
terms represent measurement error and other uncontrolled influences. The
fundamental assumption, then, is that other uncontrolled influences can be
adequately combined with measurement error into a single error term for the
model.

The major impact of generalized linear models was to promote considera-
tion of random and systematic model components rather than signal plus noise,
although Nelder and Wedderburn (1972) did not present their work in this con-
text. As we will see in the sequel, the random model component consists of
a description of the basic distributional form of response random variables,
not necessarily an error distribution, while the systematic model component
consists of a description of the expected values of the random component. I
would argue that this is more than a matter of semantics. The encouragement
is to consider the random model component first, rather than a form for the
expectation function first. In so doing, the stochastic model (i.e., distribu-
tional portion of the model) becomes much more than a description of the
manner in which observations are dispersed around their expectations. Hav-
ing made this step, we are then poised to consider models with, for example,
multiple stochastic elements or even models based on nonstationary stochastic
processes.

One additional point should be made at this introductory stage in our dis-
cussion of statistical models. We will not consider in detail either exploratory
phases of an analysis (although some use of exploratory techniques may appear
in lab) or purely data descriptive techniques such as nonparametric “models”
(e.g., spline or kernel smoothers). Our focus will be nearly entirely on para-
metric models. As we will indicate in greater detail later in this section, this

focus is tied to the role of a parametric model as a statistical conceptualiza-
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tion of a scientific mechanism or phenomenon of interest. As such, we desire
more than to detect possible patterns in data (exploratory approaches) or to
describe the way in which data fluctuate over time or in relation to other data

(e.g., nonparametric smoothers).

5.1 The Concept of Random Variables

The basic building blocks of a statistical model are random variables, but
what are random variables? First, random variables are not necessarily (in
fact, usually are not) something that can be physically realized, they are a
mathematical concept. Although we often refer to data as “observed values of
random variables” this is not, strictly speaking, a valid notion. What we actual
mean is that data represent possible values that might be assumed by random
variables. This is a subtle, but important, difference. Consider a collection
of n boards all milled to the same nominal thickness; the thicknesses will, of
course, vary due to any number of factors. Suppose that we have attached
random variables Y7, ...,Y, to those thicknesses, and have specified that, for
i=1,...,n, Y; ~idN(u,0?). Now, the thickness of board 1 (under constant
environmental conditions) is what it is; in the terminology of Part 1 of these
notes, an attribute of the board. To presume that it “could be” any value
—00 < y; < oo with probabilities given by a normal distribution is, frankly,
ludicrous. To say that the thickness of board 1 is a random variable before
observation because we don’t know what it is, and the particular value of the
random variable after observation because we then do know what it is, does
not entirely solve this dilemma. The thickness of board 1 is not a random
variable. We may, however, use a random variable that is connected with the

thickness of board 1 to allow a mathematical conceptualization of the values
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and uncertainties in thickness of the collection of boards. To put it a slightly
different way, random variables and theoretical probability distributions are
not simply an extension of finite populations to infinite collections of physical
units (if that were even a possibility). Random variables are mathematical
beasts, and they do not exist outside of the world of mathematics and statistics.
As we will reiterate in Section 5.3, our goal is to use the concepts of random
variables and associated probability distributions to formulate a meaningful
conceptualization of a real situation called a model and, through statistical
analysis of such a model, increase our knowledge of the real situation.
Formally, random variables are mathematical functions that map a set €2

onto the real line R. You have likely by this time seen the use of the triple
(Q, F,P)

to represent a probability space, and understand that a random variable Y is
a real-valued function Y :  — R such that Y~!: B — F, where B is the
o—algebra of Borel sets on the real line and F is a o—algebra of the set 2
(typically the o—algebra generated by Y, the smallest o—algebra for which
Y is F—measurable). Here, () is often unfortunately called a sample space
containing the possible outcomes of a random experiment. Note that this use
of the term experiment is not necessarily connected with our description of
experiments in Part 1 of this course. It is preferable to consider 2 an arbi-
trary set of any objects or elements of your choosing. These elements will be
denoted as w, and we will assume that w € 2. We will consider such elements
to be values of a scientific constructs. In the case of observable constructs the
phrase sample space for {2 may seem fairly obvious, as €2 then consists of the
set of possible outcomes of an observation or measurement operation. Even for

observable constructs, however, the concept of €2 as a set of possible outcomes
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is not entirely unambiguous.

Example 5.1

Consider a study of the composition of a forest bird community that involves
setting what are called mist nets (nets of fine mesh strung between two poles,
much like a very fragile volleyball net) in a forest. Birds are unable to detect
such nets and those that fly into the net are ensnared. Nets are typically set,
abandoned for a specified period of time (e.g., 2 hours), and then re-visited.
Birds are gently removed from the net, various characteristics recorded, and
released; this is, by the way, no small test of respect for bird life when it comes
to removing woodpeckers from a mist net without harming them. What sets

of outcomes () might arise from such an observational operation?

1. Species.
Here, €2 would consist of a list of all bird species that occur in the study

area such as

Q2 = {wood thrush, black and white warbler, yellowthroat, etc.}.

2. Sex.
Here, Q = {Male, Female}.

3. Weight.

In this case, we might take

N={w: 0 <w< o0}

Notice that, for the third observational characteristic of weight, we have

already departed from physical reality. That is, the set of possible outcomes of
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the actual measurement operation is determined by the inherent precision of
the measurement instrument (e.g., 0.5 grams for a scale marked in grams). In
addition, it is physically impossible that a hummingbird, for example, could
weigh 3 metric tons (which is still considerably less than oo). But the con-
struct of weight does not depend on the particular measurement tool used to
observe it, nor does it depend on a set of physically real “outcomes” of an ob-
servation process. For unobservable scientific constructs the situation becomes

even more obscure.

Example 5.2

A social scientist is interested in studying the effect of violent cartoons on
“aggressive behavior” in children ages 5 to 7. The construct of “aggressive
behavior” is ill-defined in terms of observable quantities. Rather, aggression is
assessed relative to a set of indicators assumed to be indicative of aggression.
In this situation, would it be possible to define a random variable that is a

direct reflection of the notion of aggression?

The point of the two examples above is that, while it is sometimes possible
to define 2 as a sample space in the traditional textbook sense (e.g., item
2 of example 5.1), and then proceed to a random variable that maps this
set to the real line, it is perhaps not the sample space that is fundamental,
but the concept of a random variable itself. In fact, in applications, € is
often determined relative to the random variable Y rather than the other way
around. It is important that a legitimate set {2 exist, of course, and it is

common that we take (2, F) = (R, B).
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5.2 Probability Distributions

In the probability space (€2, F, P), the set function P, defined on F, constitutes
a mapping from F to [0, 1], and obeys the axioms of probability. Briefly, we
can derive from Y : Q — R and P : F — [0, 1] the probability law Py as,

Py(B)=P(Y '(B))=P(Y € B); B¢cB,
the distribution function I as,
Fy)=Plw:Y(w) <y)=F (Y <y),

and, with the addition of the Radon-Nikodym theorem, the density function

[ as,
dP
f= ap, a.s. on F,

where P is dominated by Fy. For our purposes, Py will be either Lebesgue (for
continuous Y') or counting (for discrete ) measure.

What is the value of all of this for a consideration of statistical meth-
ods? The answer is that, in the formulation of models, we often construct
functions of random variables, specify either marginal, conditional, or joint
distributions, and either aggregate or disaggregate basic random variables. It
is essential that, whatever we end up with, a joint distribution appropriate
for the definition of a likelihood function exists. This is true regardless of
the approach taken to estimation and inference, be it exact theory, maximum
likelihood, likelihood approximations (e.g., quasi- and pseudo-likelihoods), or
Bayesian. While we may often “work in reverse” in that we may proceed to
identify probability laws and measures Py and P based on formulated densi-
ties f and distribution functions F', we must arrive at a situation in which all

of the above holds. This is, in some ways, similar to the previously mentioned
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tendency to describe €2 based on the concept of a random variable, rather than
vice versa.

Throughout the remainder of this part of the course we will use a number
of theoretical probability distributions, many of which you will already be
familiar with, at least in passing. In the next full section we will summarize
useful results for several families of distributions, most notably the exponential
family. Distributions within a family share various statistical properties (which
properties depends on which family). This makes it possible to use families
of distributions in basic model frameworks, arriving at classes of models that

inherit certain behaviors from the families on which they are founded.

5.3 Statistical Abstraction

We come now to one of the main events in the modeling approach, which is the
idea of statistical abstraction. If scientific abstraction consists of considering
a part of a problem divorced from the whole, statistical abstraction consists
of capturing the key elements of a problem in a small set of parameters of a
probabilistic model. What do we mean by the key elements?

The majority of scientific investigation is based on the concept that there
exists a mechanism that underlies the production of observable quantities. A
mechanism is the set of physical, chemical, and biological forces that govern the
manner in which some process functions. Certainly, discovery of a mechanism
is a key component of medical research; if the mechanism by which a disease
affects the body is known, the chances of developing an effective treatment or
vaccine are vastly increased. In about 1999, the US Environmental Protection
Agency (EPA) released regulations for “fine particulate matter”, defined as

particles of mean aerodynamic diameter less than 2.5 microns (a smoke par-
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ticle, for comparison is about 8 to 10 microns in diameter). The impetus for
these regulations was largely a number of large-scale studies that indicated a
relation between the ambient concentration of fine particulates in cities and
health outcomes such as the number of hospital admissions for asthma in those
cities. These new regulations prompted a number of legal battles and a study
commissioned to the National Research Council (NRC). In its report, a major
difficulty the NRC saw with the evidence used by EPA to issue new regulations
was that the mechanism by which fine particulates might produce respiratory
problems in humans had not been identified. I believe that enforcement of the
new regulations was suspended until additional studies could be conducted.
In many (most?) areas of science, mechanisms are not fully understood; if
they were, we would be moving closer to the type of perfect understanding of
the “signal” discussed at the beginning of this chapter. This is perhaps less
true of physics than many areas of biology, but even there understanding of a
basic mechanism under highly controlled conditions in a laboratory does not
necessarily indicate the exact physical behavior of the world in an uncontrolled
setting. Nevertheless, in nearly all scientific disciplines a finding of relation
among various quantities or constructs, or differences among groups in those
quantities or constructs, will likely not meet with acceptance among workers in
the discipline unless a plausible mechanism can be suggested (this is, of course,
not the same as having all of the details worked out). The one exception to
this is the occurrence of a phenomenon that is highly repeatable, but not in
the least understood. In such situations intense study is generally conducted
to determine why the phenomenon persists, that is, to suggest mechanisms.
Some of you may be old enough to remember a movie called The Awakening,
which was based on a true story. In it, a young psychiatrist (played by Robin

Williams) treated a group of nonfunctional mental patients with some type of
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a drug “cocktail” and an entire group of patients began functioning normally
for a time. They eventually relapsed. To me, the most poignant moment in the
movie was at the end, where they presented little descriptions of the real life
fates of the various characters (right before the credits). The psychiatrist, it
was noted, spent the remainder of a frustrated career attempting to duplicate
the effect of his treatment, to no avail. In short, something had occurred for
which the good doctor could suggest no plausible mechanism, and which could
not be repeated. While the event was wonderful, it provided no useful results
for the treatment of patients with the given affliction.

It does occur that a study will be conducted in which everything that might
possibly be related to the objective of the study is measured or observed.
Nearly every statistical consultant of any tenure has been presented with a
mountain of data gathered on a cornucopia of variables and asked to determine
“what is important”. Despite such horror stories, and despite the emergence of
what is called “data mining” (and other exploratory approaches for extremely
large collections of data) the norm in scientific investigation is still that data
are collected in a more focused manner.

The upshot of the above discussion for the purpose of statistical modeling
is that scientific mechanisms or repeatable phenomena represent the key ele-
ments of a problem to be captured in a small set of model parameters, which
is the question we have been attempting to address. By this we do not mean
a direct translation of a mechanism into mathematical terms (this would be
a deterministic process model, which are generally based on sets of partial
differential equations) but rather that we be able to “locate” the mechanism
in a small set of model parameters, and determine the relation of other model

parameters to those that represent the mechanism.
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Example 5.3

Suppose we have interest in the effect of altitude on the boiling point of some
substance; there is no need to get fancy, water works fine for this example. The
plausible (actually at this point in time more than merely plausible) mecha-
nism is the effect of atmospheric pressure on the amount of energy needed
to produce vaporization. To investigate this phenomenon we may use various
study designs, and these may, in turn, lead to different models. To simplify the
situation somewhat, suppose we have located a relatively small geographic re-
gion (e.g., near Seattle in the western US, or perhaps in Nepal) where altitude
covers a wide range in a short distance. To begin our modeling exercise, we
define random variables associated with the boiling temperature of water (in
degrees Kelvin, say) {Y; : ¢ = 1,...,n} and covariates as altitude (in meters
above sea level, say) {z; :i=1,...,n}.

One possibility is to place observers at n various altitudes along our cho-
sen gradient with portions of a common stock of water (such as deionized
water), identical (to within manufacturers specifications) thermometers and
other equipment, and have them measure the temperature at which this water
boils at the same time (starting heating to within one minute, say). We might

then begin a modeling exercise through examination of a linear model,
Y; = 0o+ bz + o6 € ~iidN(0,1).

In this model, the phenomenon of interest is embodied in the systematic model
component 3y + S1z;.

What is the relation of the other model parameter o to those that repre-
sent the phenomenon of interest? This dispersion (or variance, or precision)

parameter quantifies the degree to which observed values of the boiling point
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of water differ from what is “explained” by the modeled version of the effect
of altitude. In the study described, this would incorporate measurement error
and microclimate effects. But what, exactly, have we modeled through the
systematic component? The effect of altitude on the boiling point of deionized
water on a given day. If ordinary least squares is used to produce parameter
estimates for 8, and (3;, and the usual bias-corrected moment estimator of o2
is used, we might quantify our uncertainty about the modeled effect of altitude
on boiling point of deionized water on the given day through a joint confidence
region for Gy and ;. Consider, as a part of this uncertainty, only the variance

of the marginal distribution of ﬁl,

0.2

var{f1} = =

iy (T —7)*

Here we have the typical case that our uncertainty about the phenomenon of
interest is directly related to the variance of the observable random variables.

Another possible study design would be to place observers at n various
altitudes with (possibly randomly assigned) water from n different sources,
on n different days (again, perhaps randomly selected from days within some
specified time frame). We could fit the exact same linear regression model to
the resultant data from this study. The effect of altitude on boiling point of
water would be modeled through exactly the same portion of the model as be-
fore, namely By + B1x;. But what would be the relation of o to this systematic
model component? Now, o would reflect not only measurement errors and mi-
croclimate effects, but also varying water compositions and factors associated
with the days of observation (e.g., humidity, pressure due to atmospheric cells
of air that vary over time, etc.).

One likely effect of this design would be to increase the (true) value of

the variance of observable random variables, namely 2. This would, in turn,
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increase our uncertainty about the phenomenon under study. But, we have
used exactly the same model form as under the first study design, and we end
up with exactly the same portion of that model reflecting the phenomenon of
interest. How can we then have greater uncertainty (a priori, in fact) about
that phenomenon? Is, in fact, the same model term (3 + Bi12; modeling the

same phenomenon in these two situations?

Questions

1. Why might we want to randomly assign water types to observers, and

altitudes to days of observation?
2. Why might we not want to have each altitude observed on the same day?

3. Might might we not want to use this same simple linear regression model
if we provide each observer with several water types to be used at their

observation altitude on the same day?

4. Under what assumptions does the systematic model component 3y+ 31x;
represent the same scientific phenomenon under these two study designs?

Is this reasonable given that the first study design used deionized water?

Example 5.3 (cont.)

Now, consider a study design which is an extension of the type suggested
in question 2 above. That is, suppose we provide multiple water types to
observers on each day of observation. The water types might be randomly
chosen from a list of locations across the world. It might not be necessary to

actually visit these locations if the compositions of water at those locations
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were known (water can be completely deionized and then “reconstituted” to
contain various ionic compositions). This could easily lead to a larger study
if, for example, we choose K water types to be evaluated at our original n
altitudes, so that we may have the index 7 going from 1 to nK, or ¢ going from
1 to ny for each value of k from 1 to K (to allow for possible differences in the
number of altitudes that water types are successfully observed). Consider now

fitting a model of the following form, fori=1,...,nyand k=1,..., K,

Yie = Bro+ Brixik + o€,

(Bro, Be1) ~ w@dN (b, 5),

for some b = (by, by) and 2 x 2 covariance matrix 3, with m, h entry o, 5 for
m,h € {0,1}.

For this model, it is clear that
E(Yir) = bo + biwis,

and

var(Yir) = 00,0 + U(l,l)xik + 20(0,1) Tk + o’

Where now has our phenomenon of interest gone (i.e., where is it in this
model)? The effect of altitude on the boiling point of water is now captured
in the distribution of (G, Bk1); we will later call such a distribution a mizing
distribution. Notice that a major change has suddenly occurred in our repre-
sentation of the effect of altitude on the boiling point of water. That effect is no
longer a constant term but is, rather, an entire (bivariate) distribution. Does
this imply we no longer believe that there is a “true” effect of altitude? No, it

means that we no longer believe the the effect of altitude is manifested in the
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same way under all conditions. But, would it not be possible to determine the
effect of these other factors (ionic composition of the water, atmospheric con-
ditions) and incorporate them into a model? In principle, certainly it would.
In principle, we could carry such an exercise to the extreme in which the only
uncertainty involved would be a (in this case presumably very small) measure-
ment error. That we have been able to make modeling the simple process of
boiling water as complex as we have should convince you that this determinis-
tic approach, while appealing in some cases, is not generally applicable to the
range of complex scientific problems under consideration in the world.

What now are the relations of the other model parameters o2 and Y to
this mathematical formulation of the phenomenon of interest? The variance
o2 is back to its interpretation as in the first study design using only deionized
water (measurement error plus micro-scale effects). The elements of ¥, are now
indicative of the variability in how the effect of altitude is realized or manifested
in various situations. The exact meaning attached to this concept depends
fundamentally on the manner in which the situations to be observed were
chosen. It would, clearly, be an entirely different matter to assign (B0, Ok.1)
a probability distribution across purposefully chosen situations than across
situations chosen at random from some “pool” of those possible.

Returning from this example to the overall topic of this subsection, it should
be clear that what we are calling statistical abstraction is the process by which
a problem from the real world is brought into a conceptual world of random
variables, theoretical probability distributions, and hence is subject to the
methods of mathematical statistical analysis. A criticism that is sometimes
leveled at the modeling approach is that a model “doesn’t care where the data
come from”, or “how the data were obtained”. In one way this is true — given

the assumptions inherent in a model formulation, analysis will proceed in the
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same manner regardless of how the data used in its analysis were obtained.
What is missing from this criticism, however, is that no model can properly
operate beyond the context given it by the process of statistical abstraction
which (in a proper application) must have been given careful consideration. We
perhaps do not spend enough time discussing this aspect of statistical analysis
in the educational process, but it is my hope that, having been introduced to
the topic, you will see it woven into the material presented in the remainder

of this part of the course.

5.4 Summary of Key Points

It might be useful, at this point, to summarize many of the key ideas presented

in this section (the word model below implies a statistical model).

1. Modeling represents a fundamentally different approach to bringing prob-
ability concepts to bear on a problem than that of approaches based on

randomization.

2. Models represent a probabilistic conceptualization of a scientific mecha-
nism or phenomenon of interest, and the situation(s) under which that

mechanism or phenomenon leads to observable quantities.

3. The basic building blocks of a model are random variables. For applica-
tion in an empirical scientific investigation, models must include at some

point random variables associated with observable quantities.

4. The process of statistical abstraction, by which a mechanism or phe-
nomenon of interest is captured in a model formulation, involves the

objectives of study, the data collection design, and the choice of model.



128 CHAPTER 5. STATISTICAL ABSTRACTION

Finally, we will end this introduction to the modeling effort with a prelimi-
nary comment about the modeling process. While certainly connected with the
material of this chapter, theoretical probability distributions have not been the
focus of discussion. This is a direct reflection of point 3 immediately above.
Distributions are meaningless without random variables that (are assumed to)
follow them. In an application, the first step is not to select distributions, to
write down forms for systematic model components, or to begin considering
likelihoods. The first and, in many ways most important, step in developing
a statistical model is to define random variables appropriate for the problem
at hand. The fundamental properties of such random variables (i.e., set of
possible values, dependence or independence structure) will largely determine
at least a set of possible theoretical distributions that may be used to describe

their probabilistic behaviors.



Chapter 6

Families of Distributions Useful

in Modeling

We now begin consideration of the tools that are needed for successful statis-
tical modeling. These will include distributions, model structures, estimation
methods, inference methods, and model assessment methods. Certainly, to ad-
equately model the probabilistic behaviors of random variables, we must have
access to a variety of theoretical probability distributions. We will organize
the presentation of such distributions around the concept of families which, as
mentioned previously, often provide us a means of formulating classes of mod-
els that share important characteristics. It is important to note, however, that
we are involved in an introduction of useful distributions, not an exhaustive
effort at developing a catalog (see, e.g., the series of works edited by Johnson

and Kotz for such an effort).

Much of this section will be presented in the context of a single random
variable. When groups of random variables are necessary they will be indexed

by the subscript 7. It is important to note, however, that models always deal
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with groups or collections of random variables. Notation that will be used

throughout this section is as follows:

e Upper case letters such as X, Y, Z, W will be used to denote random
variables. The corresponding lower case letters will denote values that

could be assumed by these variables.

e The symbol 2 will be used to denote the set of possible values of a random
variable, subscripted with the variable symbol if needed for clarity, such

as Qy.

e Parameters will be denoted with Greek letters such as 6, ¢, and A\. The
parameter space, defined as the set of possible values of a parameter,
will be denoted as the corresponding upper case Greek letters, except as

noted.

e All parameters may be either scalars or vectors, the difference should be
clear from the context. When a generic symbol for a parameter is needed

it will be denoted as 6.

e Conditioning notation, y|x, will be used in two contexts. One is in which
the conditioning value(s) represent fixed quantities such as parameters
or covariates not considered random. The other will be in the usual
conditioning notation for two or more random variables. It is important
that you understand the context being used in a conditional statement

(so ask if it is not clear).
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6.1 Exponential Families

You have been introduced to exponential families of distributions in previous
courses (e.g., Statistics 542). These families constitute an essential class of
distributions for modeling purposes. There are various, equivalent, ways to
write what is called the exponential family form. For a random variable Y and
corresponding probability density function (pdf) or probability mass function

(pmf) some of these representations are, all for y €

fln) = exp{i:lqm)w)} e(n)h(y).
Fwlo) = a()t(y)exp{6" t(y)},
fln) = exp{ S qj(n)Tj(y)—B(n)}C(y)

1

<

Fule) = exp{ 8 ejTj<y>—B<e>+c<y>}. (6.1)

j=1
Note that, while § = (6y,...,60,) (or ) may be a vector, B(-) is a real-valued
function. Clearly, the definition of functions such as B(-), ¢(-), a(-), and h(-)
are not exactly the same in these various expressions, but you should be able

to easily work out the equivalence.
Example 6.1

If Y is a random variable such that Y ~ N(u,o0?), the fourth version of

the exponential family given in (1) can be used to write the density of Y with,

Tl(y>:y 0, = a

"o
0-2
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and,

We will use the fourth (last) expression in (6.1) as our basic form for expo-
nential family representation. Other common densities or mass functions that

can be written this way include

e The Poisson pmf with Q = {0,1,...}

The binomial pmf with Q@ ={0,1,...,n}

The negative binomial pmf with Q = {0,1,...}

The gamma pdf with = (0, 00)

The beta pdf with Q = (0, 1)

The log-normal pdf with Q = (0, co0)

The inverse Gaussian pdf with 2 = (0, co)

6.1.1 Properties of Exponential Families

Recall we are using the fourth (last) form for the expression of the exponential
family given in (6.1). Note, first, that the term exp{c(y)} in this expression
could be absorbed into the relevant measure. This is typically not done so that
integrals can be written with respect to dominating Lebesgue (for continuous
Y') or counting (for discrete Y') measures.

Exponential families possess a number of useful properties for modeling,

some of which we review here in a brief manner.
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. The parameter space O (the set of points such that f(y|0) > 0 for 6 € ©)

is a convex set. To avoid difficulties, we will consider only members of
the exponential family such that neither the 7}(y) nor the 6; satisfy a
linear constraint (in which case the representation is said to be “minimal”
or sometimes “full”). If © contains an open s—dimensional rectangle,
then the exponential family is said to be of “full rank”, or “regular”.
These items affect us in model specification because we want exponential
families to be written so that they are minimal and regular. For example,
a multinomial with H categories will only be minimal if we write the pmf

for H — 1 random variables.

. For a minimal, regular exponential family, the statistic T'= (13, ..., Ts)

is minimal sufficient for 6. This property is often useful because, as we
will see, the joint distribution of iid random variables belonging to an

exponential family are also of the exponential family form.

. For an integrable function h(-), dominating measure v, and any 6 in the

interior of O, the integral

/ h(y) exp {Z_: 0;T;(y) + C(y)} dv(y)

is continuous, has derivatives of all orders with respect to the 6;s, and
these derivatives can be obtained by interchanging differentiation and
integration (e.g., Theorem 4.1 in Lehmann, 1983). This property does
several things for us. First, it can be used to derive additional properties
of exponential families (such as the next property given for the form of
the moment generating function). In addition, it allows us to evaluate
expressions needed for estimation and variance evaluation through nu-

merical integration of derivatives, which can be important to actually
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conduct an analysis with real data.

. The property in item 3 can be used directly (e.g., Lehmann, 1983, p.29)

to show that

BT} = 55-BO)
ol TY).TY)} = 5 B

These lead directly to E(Y) and var(Y) for what are called natural
exponential families and exponential dispersion families (coming soon).
They also will provide an alternative parameterization of exponential

families in general (coming even sooner).

. The moment generating function of an exponential family is defined to

be that for the moments of the Tjs, as,

exp{B(0 + u)}
M p—
)= (@)
6.1.2 Parameterizations
In the final expression of (6.1) the parameters denote 6;; j = 1,...,s are

called canonical or sometimes natural parameters for the exponential family.

While the canonical parameterization usually leads to the easiest derivation of

properties (such as given above) it is not always the best parameterization for

purposes of estimation, inference, or model interpretation. While parameter

transformations can be used in a quite flexible manner (they are simple sub-

stitutions in density and mass functions), it is helpful to know several other

parameterizations that are fairly standard, and are often useful. We will de-

scribe two parameterizations h